2,274 Matching Annotations
  1. Jan 2024
    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The manuscript investigates the role of membrane contact sites (MCSs) and sphingolipid metabolism in regulating vacuolar morphology in the yeast Saccharomyces cerevisiae. The authors show that tricalbin (1-3) deletion leads to vacuolar fragmentation and the accumulation of the sphingolipid phytosphingosine (PHS). They propose that PHS triggers vacuole division through MCSs and the nuclear-vacuolar junction (NVJ). The study presents some solid data and proposes potential mechanisms underlying vacuolar fragmentation driven by this pathway. However, there are some concerns regarding the strength and interpretation of their lipid data, and the robustness of some conclusions. The manuscript would benefit from addressing these concerns and providing more conclusive evidence to support the proposed conclusions. Overall, the study provides valuable insights into the connection between MCSs, lipid metabolism, and vacuole dynamics, but further clarification will be highly valuable to strengthen the conclusions.

      We thank the thoughtful and positive feedback from Reviewer #1. Nevertheless, there are concerns raised regarding the strength and interpretation of the lipid data, as well as the robustness of specific conclusions. We acknowledge the importance of addressing the raised concerns and provide more conclusive evidence to support our proposed conclusions. We have responded in the "Recommendations to Authors" section and hope that our research has been further strengthened.

      Reviewer #2 (Public Review):

      This manuscript investigates the mechanism behind the accumulation of phytosphingosine (PHS) and its role in triggering vacuole fission. The study proposes that membrane contact sites (MCSs) are involved in two steps of this process. First, tricalbin-tethered MCSs between the endoplasmic reticulum (ER) and the plasma membrane (PM) or Golgi modulate the intracellular amount of PHS. Second, the accumulated PHS induces vacuole fission, most likely via the nuclear-vacuolar junction (NVJ). The authors suggest that MCSs regulate vacuole morphology through sphingolipid metabolism.

      While some of the results in the manuscript are interesting the overall logic is hard to follow. In my assessment of the manuscript, my primary concern lies in its broad conclusions which, in my opinion, exceed the available data and raise doubts. Here are some instances where this comes into play for this manuscript:

      We greatly appreciate the careful insights into our research from Reviewer #2. We have sincerely addressed the points one by one in the following.

      Major points for revision

      1) The rationale to start investigating a vacuolar fission phenotype in the beginning is very weak. It is basically based on a negative genetic interaction with NVJ1. Based on this vacuolar fragmentation is quantified. The binning for the quantifications is already problematic as, in my experience, WT cells often harbor one to three vacuoles. How are quantifications looking when 1-3 vacuoles are counted as "normal" and more than 3 vacuoles as "fragmented"? The observed changes seem to be relatively small and the various combinations of TCB mutants do not yield a clear picture.

      The number of vacuoles at a steady state could be influenced by various environmental factors, including the composition of the medium (manufacturer supplying the reagent and local water hardness) and the background of the strain. Possibly due to those causes, our observations differ from the experience of Reviewer #2. Indeed, we observed that WT cells always have one vacuole in YPD medium. Whereas in SD medium (Fig S3B only), WT cells have mainly one or two vacuoles per cell. In both cases, we observed that some of the mutants showed a different phenotype from the WT and that those differences are supported by student’s t-test and two-way ANOVA analysis.

      2) The analysis of the structural requirements of the Tcb3 protein is interesting but does not seem to add any additional value to this study. While it was used to quantify the mild vacuolar fragmentation phenotype it does not reoccur in any following analysis. Is the tcb3Δ sufficient to yield the lipid phenotype that is later proposed to cause the vacuolar fragmentation phenotype?

      We do not know whether tcb3Δ alone is sufficient to increase PHS as we have not examined it. Nevertheless, as another approach, we analyzed the difference in IPC level between tcb1Δ2Δ3Δ triple deletion and tcb3Δsingle deletion in a sec18 mutant background and showed that the reduction of IPC synthesis is similar between tcb1Δ2Δ3Δand tcb3Δ alone (unpublished). This result suggests that out of all tricalbins (Tcb1, Tcb2 and Tcb3), Tcb3 plays a central role. In addition, the IPC synthesis reduction phenotype was small in tcb1Δ alone and tcb2Δ alone, but a strong phenotype appeared in the tcb1Δtcb2Δ combined deletion (as strong as in tcb3Δ alone). The relationship between Tcb1 Tcb2 and Tcb3 indicated by these results is also consistent with the results of the structural analysis in this study. We have shown that Tcb3 physically interacts with Tcb1 and Tcb2 by immunoprecipitation analysis (unpublished). In the future, we plan to investigate the relationship between Tcb proteins in more detail, along with the details of the interactions between Tcb1, Tcb2, and Tcb3.

      3) The quantified lipid data also has several problems. i) The quantified effects are very small. The relative change in lipid levels does not allow any conclusion regarding the phenotypes. What is the change in absolute PHS in the cell. This would be important to know for judging the proposed effects. ii) It seems as if the lipid data is contradictory to the previous study from the lab regarding the role of tricalbins in ceramide transfer. Previously it was shown that ceramides remain unchanged and IPC levels were reduced. This was the rationale for proposing the tricalbins as ceramide transfer proteins between the ER and the mid-Golgi. What could be an explanation for this discrepancy? Does the measurement of PHS after labelling the cells with DHS just reflect differences in the activity of the Sur2 hydroxylase or does it reflect different steady state levels.

      i) As Reviewer #2 pointed out, it is a slight change, but we cannot say that it is not sufficient. We have shown that PHS increases in the range of 10~30% depending on the concentration of NaCl that induces vacuole division (This result is related to the answers to the following questions by Reviewer #3 and to the additional data in the new version). This observation supports the possibility that a small increase in PHS levels may have an effect on vacuole fragmentation. We did not analyze total PHS level by using methods such as liquid chromatography-mass spectrometry or ninhydrin staining of TLC-separated total lipids. The reason for this is that radiolabeling of sphingolipids using the precursor [3H]DHS provides higher sensitivity and makes it easier to detect differences. Moreover, using [3H]DHS labeling, we only measure PHS that is synthesized in the ER and that doesn’t originate from degradation of complex sphingolipids or dephosphorylation of PHS-1P in other organelles.

      ii) In our previous study (Ikeda et al. iScience. 2020), we separated the lipid labeled with [3H]DHS into ceramides and acylceramides. There was no significant change in ceramide levels, but acylceramides increased in tcb1Δ2Δ3Δ. Since we did not separate these lipids in the present study, the data shows the total amount of both ceramide and acylceramide. We apologize that the term in Figure 3A was wrong. We have corrected it. Also, we have used [3H]DHS to detect IPC levels, which differs from the previous analysis used [3H]inositol. This means the lipid amounts detected are completely different. Since the amount of inositol incorporated into cells varies from cell to cell, the amount loaded on the TLC plate is adjusted so that the total amount (signal intensity) of radioactively labeled lipids is almost the same. In contrast, for DHS labeling, the amount of DHS attached to the cell membrane is almost the same between cells, so we load the total amount onto the TLC plate without adjustment. In addition, the reduction in IPC levels due to Tcb depletion that we previously reported was seen only in sec12 or sec18 mutation backgrounds, and no reduction in IPC levels was observed in the tcb1Δ2Δ3Δ by [3H]inositol labeling (Ikeda et al. iScience. 2020). Therefore, we cannot simply compare the current results with the previous report due to the difference in experimental methods.

      The labeling time for [3H]DHS is 3 hours, and we are not measuring steady-state amounts, but rather analyzing metabolic reactions. Since [3H]DHS is converted to PHS by Sur2 hydroxylase in the cell, the possibility that differences in PHS amounts reflect differences in Sur2 hydroxylase activity cannot be ruled out. However, this possibility is highly unlikely since we have previously observed that the distribution of ceramide subclasses is hardly affected by tcb1Δtcb2Δtcb3Δ (Ikeda et al. iScience 2020). We have added to the discussion that the possibility of differences in Sur2 hydroxylase activity cannot be excluded.

      4) Determining the vacuole fragmentation phenotype of a lag1Δlac1Δ double mutant does not allow the conclusion that elevated PHS levels are responsible for the observed phenotype. This just shows that lag1Δlac1Δ cells have fragmented vacuoles. Can the observed phenotype be rescued by treating the cells with myriocin? What is the growth rate of a LAG1 LAC1 double deletion as this strain has been previously reported to be very sick. Similarly, what is the growth phenotype of the various LCB3 LCB4 and LCB5 deletions and its combinations.

      As Reviewer #2 pointed out, the vacuolar fragmentation in lag1Δlac1Δ itself does not attribute to the conclusion that increased PHS levels are the cause. Since this mutant strain has decreased level of ceramide and its subsequent product IPC/MIPC in addition to the increased level of the ceramide precursors LCB or LCB-1P, we have changed the manuscript as follows. As noted in the following comment by reviewer #2, myriocin treatment has been reported to induce vacuolar fragmentation, so we do not believe that experiments on recovery by myriocin treatment will lead to the expected results.

      ・ Previous Version: We first tested whether increased levels of PHS cause vacuolar fragmentation. Loss of ceramide synthases could cause an increase in PHS levels. Our analysis showed that vacuoles are fragmented in lag1Δlac1Δ cells, which lack both enzymes for LCBs (DHS and PHS) conversion into ceramides (Fig 3B). This suggests that ceramide precursors, LCBs or LCB-1P, can induce vacuolar fragmentation.

      ・Current Version: We first evaluated whether the increases in certain lipids are the cause of vacuolar fragmentation in tcb1Δ2Δ3Δ. Our analysis showed that vacuoles are fragmented in lag1Δlac1Δ cells, which lack both enzymes for LCBs (DHS and PHS) conversion into ceramides (Fig 3B). This suggests that the increases in ceramide and subsequent products IPC/MIPC are not the cause of vacuolar fragmentation, but rather its precursors LCBs or LCB-1P.

      As reviewer #2 pointed out, the lag1Δlac1Δ double mutant is very slow growing as shown below (Author response image 1). We also examined the growth phenotype of LCB3, LCB4, and LCB5 deletion strains, and found that the growth of these strains was the same as the wild strains, with no significant differences in growth (Author response image 1).

      Author response image 1.

      Cells (FKY5687, FKY5688, FKY36, FKY37, FKY33, FKY38) were adjusted to OD 600 = 1.0 and fivefold serial dilutions were then spotted on YPD plates, then incubated at 25℃ for 3 days.

      5) The model in Figure 3 E proposes that treatment with PHS accumulates PHS in the endoplasmic reticulum. How do the authors know where exogenously added PHS ends up in the cell? It would also be important to determine the steady state levels of sphingolipids after treatment with PHS. Or in other words, how much PHS is taken up by the cells when 40 µM PHS is added?

      It has been found that the addition of PHS well suppresses the Gas1 trafficking (Gaigg et al. J Biol Chem. 2006) and endocytosis phenotypes in lcb-100 mutants (Zanolari et al. EMBO J. 2000). Their suppression depends on Lcb3 localized to the ER. Thus, we know that PHS added from outside the cell reaches the ER and is functional.

      We also agree that it is important to measure the amount of PHS taken up into the cells. However, this is extremely difficult to do for the following reasons. The majority of PHS added to the medium remains attached to the surface layer of the cells. If we measure the lipids in the cells by MS, we would detect both lipids present on the outside and inside of the plasma membrane. This means we need to separate the outside from the inside of the cell's membrane to determine the exact amount of LCB that has taken up by the cells. Regretfully, this separation is currently technically difficult.

      6) Previous studies have observed that myriocin treatment itself results in vacuolar fragmentation (e.g. Hepowit et al. biorXivs 2022, Fröhlich et al. eLife 2015). Why does both, depletion and accumulation of PHS lead to vacuolar fragmentation?

      It’s exactly as Reviewer #2 said. Consistent with previous results with myriocin treatment, we also observed vacuolar fragmentation in the lcb1-100 mutant strain. Then we have added these papers to the references for further discussion. Our discussion is as follows.

      "Previous studies have observed that myriocin treatment results in vacuolar fragmentation (Hepowit et al. bioRxiv 2022; Now published in J Cell Sci. 2023, Fröhlich et al. eLife 2015). Myriocin treatment itself causes not only the depletion of PHS but also of complex sphingolipids such as IPC. This suggests that normal sphingolipid metabolism is important for vacuolar morphology. The reason for this is unclear, but perhaps there is some mechanism by which sphingolipid depletion affects, for example, the recruitment of proteins required for vacuolar membrane fusion. In contrast, our new findings show that both PHS increase and depletion cause vacuole fragmentation. Taken together, there may be multiple mechanisms controlling vacuole morphology and lipid homeostasis by responding to both increasing and decreasing level of PHS."

      7) The experiments regarding the NVJ genes are not conclusive. While the authors mention that a NVJ1/2/3 MDM1 mutant was shown to result in a complete loss of the NVJ the observed effects cannot be simply correlated. It is also not clear why PHS would be transported towards the vacuole. In the cited study (Girik et al.) the authors show PHS transport from the vacuole towards the ER. Here the authors claim that PHS is transported via the NVJ towards the vacuole. Also, the origin of the rationale of this study is the negative genetic interaction of tcb1/2/3Δ with nvj1Δ. This interaction appears to result in a strong growth defect according to the Developmental Cell paper. What are the phenotypes of the mutants used here? Does the additional deletion of NVJ genes or MDM1 results in stronger growth phenotypes?

      We seriously appreciate the concerns in our research. As reviewer #2 pointed out, we have not shown evidence in this study to support that PHS is transported directly from the ER to the vacuole, so it is unclear whether PHS is transported to the vacuole and its physiological relevance. Girik et al. showed that the NVJ resident protein Mdm1 is important for PHS transport between vacuole and ER. Given the applied experimental method that tracks PHS released in the vacuole, indeed only transport of PHS from the vacuole to the ER was verified. However, assuming that Mdm1 transports PHS along its concentration gradient we consider that under normal conditions, PHS is transported from the ER (as the organelle of PHS synthesis) to the vacuole. We clarified this interpretation by adding the following sentences to the manuscript at line 313:

      “The study applied an experimental method that tracks LCBs released in the vacuole and showed that Mdm1p is necessary for LCBs leakage into the ER. However, assuming that Mdm1p transports LCBs along its concentration gradient we consider that under normal conditions, LCBs is transported from the ER (as the organelle of PHS synthesis) to the vacuole.”

      The negative genetic interaction between tcb1/2/3Δ and nvj1Δ is consistent with this model, but under our culture conditions we did not observe a negative interaction between the genes encoding the TCB3 and NVJ junction proteins (Author response image 2). We do not know if this is due to strain background, culture conditions, or whether the deletions of TCB1 and TCB2 are also required for the negative interaction. We would like to analyze details in the future.

      Author response image 2.

      Cells (FKY 3868, FKY5560, FKY6187, FKY6189, FKY6190, FKY6188, FKY6409) were adjusted to OD 600 = 1.0 and fivefold serial dilutions were then spotted on YPD plates, then incubated at 25℃ for 3 days.

      Our results in this study show that deletion of the NVJ component gene partially suppresses vacuolar fission upon the addition of PHS. To clarify these facts, we have changed the sentences in Results and Discussion of our manuscript as follows. We hope that this change will avoid over-interpretation.

      ・ Previous: To test the role of NVJ-mediated “transport” for PHS-induced vacuolar fragmentation,

      ・Current: To test the role of NVJ-mediated “membrane contact” for PHS-induced vacuolar fragmentation,

      ・Previous: Taken together, we conclude from these findings that accumulated PHS in tricalbin deleted cells triggers vacuole fission via “non-vesicular transport of PHS” at the NVJ.

      ・Current: Taken together, we conclude from these findings that accumulated PHS in tricalbin deleted cells triggers vacuole fission via “contact between ER and vacuole” at the NVJ.

      ・Previous: Because both PHS- and tricalbin deletion-induced vacuolar fragmentations were partially suppressed by the lack of NVJ (Fig 4B, 4C), it is suggested that transport of PHS into vacuoles via the NVJ is involved in triggering vacuolar fragmentation.

      ・Current: Based on the fact that both PHS- and tricalbin deletion-induced vacuolar fragmentations were partially suppressed by the lack of NVJ (Fig 4B, 4C), it is possible that the trigger for vacuolar fragmentation is NVJ-mediated transport of PHS into the vacuole.

      8) As a consequence of the above points, several results are over-interpreted in the discussion. Most important, it is not clear that indeed the accumulation of PHS causes the observed phenotypes.

      We thank the suggestion by Reviewer #2. In particular, the concern that PHS accumulation really causes vacuolar fragmentation could only be verified by an in vitro assay system. This is an important issue to be resolved in the future.

      Reviewer #3 (Public Review):

      In this manuscript, the authors investigated the effects of deletion of the ER-plasma membrane/Golgi tethering proteins tricalbins (Tcb1-3) on vacuolar morphology to demonstrate the role of membrane contact sites (MCSs) in regulating vacuolar morphology in Saccharomyces cerevisiae. Their data show that tricalbin deletion causes vacuolar fragmentation possibly in parallel with TORC1 pathway. In addition, their data reveal that levels of various lipids including ceramides, long-chain base (LCB)-1P and phytosphingosine (PHS) are increased in tricalbin-deleted cells. The authors find that exogenously added PHS can induce vacuole fragmentation and by performing analyses of genes involved in sphingolipid metabolism, they conclude that vacuolar fragmentation in tricalbin-deleted cells is due to the accumulated PHS in these cells. Importantly, exogenous PHS- or tricalbin deletion-induced vacuole fragmentation was suppressed by loss of the nucleus vacuole junction (NVJ), suggesting the possibility that PHS transported from the ER to vacuoles via the NVJ triggers vacuole fission.

      This work provides valuable insights into the relationship between MCS-mediated sphingolipid metabolism and vacuole morphology. The conclusions of this paper are mostly supported by their results, but there is concern about physiological roles of tricalbins and PHS in regulating vacuole morphology under known vacuole fission-inducing conditions. That is, in this paper it is not addressed whether the functions of tricalbins and PHS levels are controlled in response to osmotic shock, nutrient status, or ER stress.

      We appreciate the comment, and we consider it an important point. To answer this, we have performed additional experiments. Please refer to the following section, "Recommendations For The Authors" for more details. These results and discussions also have been added to the revised Manuscript. We believe this upgrade makes our findings more comprehensive.

      There is another weakness in their claim that the transmembrane domain of Tcb3 contributes to the formation of the tricalbin complex which is sufficient for tethering ER to the plasma membrane and the Golgi complex. Their claim is based only on the structural simulation, but not on biochemical experiments such as co-immunoprecipitation and pull-down.

      We appreciate your valuable suggestion and would like to attempt to improve upon it in the future.

      Author response to Recommendations:

      The following is the authors' response to the Recommendations For The Authors. We have now incorporated the changes recommended by Reviewers to improve the interpretations and clarity of the manuscript.

      Reviewer #1 (Recommendations For The Authors):

      I would recommend the authors provide additional experimental data to fully support their claims or revise the writing of their manuscript to be more precise in their conclusions. In particular, I have suggestions/questions:

      Fig. 1A: display the results as in 1B (that is, different colors for different number of vacuoles, and the x axes showing the different conditions, in this case WT vs tcb1∆2∆3∆.

      In response to the suggestion of Reviewer #1, we have changed the display of results.

      Fig. S1B: the FM4-64 pattern looks different in the KO strain as compared to those shown in Fig. 1A. Is there a reason for that? Also, no positive control of cps1p not in the vacuole lumen is shown.

      Our apologies, this was probably due to the poor resolution of the images. We have made other observations and changed the Figure along with the positive control.

      Line 172: the last condition in Fig. 2B (vi), should be compared to the tcb1∆tcb2∆ condition (shown in fig 1).

      In response to the suggestion of Reviewer #1, we have changed the manuscript as follows: We found that cells expressing Tcb3(TM)-GBP and lacking Tcb1p and Tcb2p (Fig 2B (vi)) are even more fragmented than tcb1Δ2Δ in Fig 1B and are fragmented to a similar degree as tcb3Δ (Fig 1B and Fig 2B (ii)).

      Fig 2E: the model shown here can be tested, is there binding (similar to kin recognition mechanism of some Golgi proteins) between the different Tcb TMDs?

      As Reviewer #1 mentioned, we have confirmed by co-immunoprecipitation that Tcb3 binds to both Tcb1 and Tcb2 (unpublished). Furthermore, we will test if the binding can be observed with TMD alone in the future.

      Fig 3A: you measured an increase in PHS that is metabolized from DHS (which is what you label). Are there other routes to produce PHS independently of DHS? I mean, how is the increase reporting on the total levels of this lipid?

      PHS synthesized by Sur2 is converted to PHS-1P and phytoceramide. Conversely, PHS is reproduced by degradation of PHS1-P via Lcb3, Ysr3, and by degradation of phytoceramides via Ypc1 (Vilaça, Rita et al. Biochim Biophys Acta Mol Basis Dis. 2017. Fig1). Our analysis shows that these degradation substrates are not decreasing but rather accumulating in tcb1Δ2Δ3Δ strain, suggesting that the degradation system is not promoting PHS level. Therefore, the increase in detected PHS is most likely due to congestion/jams in metabolic processes downstream of PHS. Possible causes of the lipid metabolism disruption in Tcbdeletion cells have been discussed in the Discussion. To put it simply, (1) The reduced activity of a PtdIns4P phosphatase Sac1, due to MCS deficiency between ER and PM. (2) The impaired ceramide nonvesicular transport from the ER to the Golgi. (3) The low efficiency of PHS export by Rsb1, due to insufficient PHS diffusion between the ER and the PM.

      Line 248: did the authors test if the NVJ MCS is unperturbed in the triple Tcb KO?

      This is an exciting question. We are very interested in considering whether Tcb deficiency affects NVJ formation in terms of lipid transport. We would like to conduct further analysis in this regard in our future studies.

      Reviewer #2 (Recommendations For The Authors):

      I would suggest carefully evaluating the findings in this manuscript. Right now the connection between elevated PHS levels and vacuolar fragmentation are not really supported by the data. One of the major issues in the field of yeast sphingolipid biology is that quantification of the lipid levels is difficult and labor- and cost-intensive. But I think that it is very important to directly connect phenotypes with the lipid levels.

      Minor points:

      • In figure 1 c and d WT controls of the different treatments are lacking.

      As reviewer #2 had pointed out, we have added data for the WT controls.

      • The tcb1Δmutant appears to be sensitive in pH 5.0 media while the triple tricalbins mutant grows fine. Is that a known phenotype?

      We have performed this assay on SD plates. Then, to check whether this phenotype of tcb1Δ was specific or general, we re-analyzed the same strain in YPD medium. In YPD medium, tcb1Δ strain grew normally, while the control, vma3Δ, was still pH sensitive. Therefore, the growth of this tcb1Δ strain is dependent on the nutrient conditions of the medium but does not appear to be pH sensitive. This new data was inserted as part of Supplementary Figure 1.

      • Line 305. The is an "of" in the sentence that needs to be deleted.

      As pointed out by Reviewer #2, we have corrected the sentence.

      Reviewer #3 (Recommendations For The Authors):

      In supplementary Fig 2, the authors show the involvement of the NVJ in hyperosmotic shockinduced vacuole fission, but the involvement of tricalbins and PHS in this process is not tested. Does osmotic shock affect the level or distribution of tricalbins and PHS? They will be able to test whether overexpression of tricalbins inhibits hyperosmotic shock-induced vacuole fission or not. Also, they will be able to perform the similar experiments upon ER stressinduced vacuole fission.

      We appreciate Reviewer#3 for suggesting that it is important to test the involvement of PHS in hyperosmotic shock- or ER stress-induced vacuole fission. We have shown in a previous report that treatment with tunicamycin, which is ER stress inducer, increased the PHS level by about 20% (Yabuki et al. Genetics. 2019. Fig4). In addition, we tested the effect of hyperosmolarity on PHS levels for this time. Analysis of PHS under hyperosmotic shock conditions (0.2 M NaCl), in which vacuolar fragments were observed, showed an increase in PHS of about 10%. Furthermore, when the NaCl concentration was increased to 0.8 M, PHS levels increased up to 30%. In other words, we have shown that PHS increases in the range of tens of percent depending on the concentration of NaCl that induces vacuole division. This observation supports the possibility that a small increase in PHS levels may have an effect on vacuole fragmentation. Moreover, NaCl-induced vacuolar fragmentation, like that caused by PHS treatment, was also suppressed by PHS export from the cell by Rsb1 overexpression.

      These new data are now inserted, commented and discussed in the manuscript as Figure 5. We hope that these results will provide further insight into the more general aspects of PHS involvement in the vacuole fission process.

      Minor points:

      1) It is unclear for me whether endogenous Tcb3 is deleted in cells expressing Tcb3-GBP (FKY3903-3905 and FKY4754). They should clearly mention that these cells do not express endogenous Tcb3 in the manuscript.

      We apologize that our description was not clear. In this strain, endogenous TCB3 gene is tagged with GBP and the original Tcb3 has been replaced by the tagged version. We have changed the description in our manuscript.

      2) The strength of the effect of PHS on vacuole morphology looks different in respective WT cells in Fig 3C, 4B, and S2B. Is this due to the different yeast strains they used?

      Yes, we used BY4742 background for the strain in Figure 3C, SEY6210 background in Figure 4B, and HR background in Figure S2B. As a matter of fact, we observed that the strength of the PHS effect varies depending on their background. Strain numbers are now given in the legend so that the cells used for each data can be referenced in the strain list.

      3) p.3, line 44: the "SNARE" complex (instead of "protease")?

      We thank for the remarks on the incorrect wording. We have corrected this sentence.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer 1

      Strengths:

      The major strength of this paper is the series of laser cutting experiments supporting that asters position via pushing forces acting both on the boundary (see below for a relevant comment) and between asters. The combination of imaging, data analysis and mathematical modeling is also powerful.

      Author Response: We thank the Reviewer for the positive comments, especially in recognising the power of our quantitative approaches.

      Weaknesses:

      This paper has weaknesses, mainly in the presentation but also in the quality of the data which do not always support the conclusions satisfactorily (this might in part be a presentation issue).

      Author Response>: We address these concerns below.

      My overall suggestion for the authors is to explain better the motivation and interpretation of their experiments and also to remove some of the observations which seem to be there because they could be done rather than because they add to the main message of the paper, which I find straightforward, valuable and supported by the data in Figure 4.

      Author Response: We have extended the motivation of the study in the Introduction, and at the beginning of appropriate Results sections. We better motivate the force potential and especially the key results from Figure 4. We outline specific changes below.

      In Figure 2, it is difficult for me to understand what is being tracked. I believe that the authors track the yolk granules (visible as large green blobs) and not lipid droplets. There is some confusion between the text, legends and methods so I could not tell. If the authors are tracking yolk granules as a proxy for hydrodynamics flows it seems appropriate to cite previous papers that have used and verified these methods. More notably, this figure is somewhat disconnected with the rest of the paper. I find the analysis interesting in principle but would urge the authors to propose some interpretation of the experiments in the context of their big-picture message. At this point, I cannot understand what the Figure adds.

      Author Response: Indeed, we track the yolk droplets that move around the aster. In the extraction protocol, we likely get a mixture of lipid droplets and yolk granules; this is due to the extraction procedure involving shear forces within the pipette. We are not certain about the exact nature of these droplets, but they are likely to a large extent yolk. We have clarified the terminology in the text, the legend and methods section. In this figure, we now show that the droplets do not move towards the aster center as the hydrodynamic pulling model would suggest. Instead, they appear to passively respond to a repulsive force, that results in them streaming around the aster. We have added additional panels to the figure that illustrates the directionality of yolk granule movements (lines 159-164). We agree with the Reviewer that the context could have been clarified. The role of fluid flows in biological systems is, as the Reviewer highlights, well studied. We have added additional contextualisa8on in the text (lines 140-146). We also motivate more clearly the figure, as it provides evidence that the asters generate forces over 20µm scale (lines 159-164). This is highly relevant for one of the paper’s main conclusions – that the Drosophila blastocyst asters generate pushing forces that enable regular packing.

      In Figure 3, it is not surprising that the aster-aster interactions are different from interactions with the boundary which is likely more rigid. It is also hard to understand why the force and thus velocity should scale as microtubule length. This Figure should be better conceptualized. I think that it becomes clear at the end of the paper that the authors are trying to derive an effective potential to use in a mathematical model in Figure 5 to test their hypotheses. I think that should be told from the start, so a reader understands why these experiments are being shown.

      Author Response: We don’t claim that the force scales with microtubule length on a single microtubule. However, at larger distances from the aster, the microtubule density decreases, and hence the effective force decreases.

      The Reviewer is correct that we use these results to motivate our effective potential. We have brought this motivation forward in the manuscript to guide the reader (lines 169-171) and included a further note at the end of the section (lines 216-218).

      The experiments in Figure 4 are very nice in suppor8ng a pushing model. However, it would help if the authors could speculate what the single aster is pushing against in this experiment. The experiments reported in Figure 1 seemed to suggest that the aster mainly pushed against the boundary. In the experiments in Figure 4 do the individual asters touch the boundary on both sides? I think that readers need more information on what the extract looks like for those experiments.

      Author Response: We now include an additional panel B in Figure 4– that shows an example of an explant during aster ablation. The distance between asters is typically less than the distance to the explant boundary. Boundary effects likely play a small role in the aster-aster separation, in terms of potentially determining the axis of separation. However, the separation of asters occurs along a straight line for a substan8al period (>1 min) of separation; if boundary effects were more dominant, we may expect to see curving of the aster-aster separation trajectories as they also receive feedback from the boundary.

      Figure 4F could use some statistics. I doubt that the acceleration in the pink curves would be significant. I believe that the decelera8on is and that is probably the most crucial result. Since the authors present only 3 asters pairs it is important to be sure that these conclusions are solid.

      Author Response: We agree with the Reviewer. These experiments are challenging to do, as they require carefully controlled conditions. In two out of three experiments we see significant increase in acceleration in the pink curves. Of course, the interpretation of this must be caveated as our experimental number is low. These details are now provided in the revision (lines 263267).

      Reviewer 2

      Strengths:

      This study reveals a unique aster positioning mechanics in the syncytial embryo explant, which leads to an understanding of the mechanism underlying the positioning of multiple asters associated with nuclei in the embryo. The use of explants enabled accurate measurement of aster motility and, therefore, the construc8on of a quantitative model. This is a notable achievement.

      Author Response: We thank the Reviewer for their review, and in highlighting how our quantitative model is a clear step forward in our understanding of aster dynamics.

      Weaknesses:

      The main conclusion that aster repulsion predominates in this system has already been drawn by the same authors in their recent study (de-Carvalho et al., Development, 2022). As the present work provides additional support to the previous study using different experimental system, the authors should emphasize that the present manuscripts adds to it (but the conceptual novelty is limited).

      Author Response: While this study is related to the previous work, there are major differences. First, here we quantitatively assess aster dynamics within a “clean” system. Such accurate measurements are not possible in vivo currently. Further, experiments like laser ablation are much better defined within the explant system. We do recognise more clearly the previous work in the Introduc8on and lines 291-293, 299-300. Combined, with the different perspectives provided in these papers on the problem of aster positioning in syncytia, we believe these papers provide new and well-supported insights.

      The molecular mechanisms underlying aster repulsion remain unexplored since the authors were unable to identify specific factor(s) responsible for aster repulsion in the explant.

      Author Response: Given that the nature of the aster dynamics were not previously characterised, our work presents a major step forward. We show compelling evidence that an effective pushing force potential plays a role in aster interactions. With this critical knowledge, we can now explore for the potential molecular mechanisms – but such information lies beyond the current manuscript scope. This is particularly challenging due to the lack of specific microtubule drug inhibitors in Drosophila. We highlight related issues in the Discussion: paragraph starting on line 340 and lines 367-370.

      Specific suggestions:

      Microtubules should be visualized more clearly (either in live or fixed samples). This is particularly important in Figure 4E and Video 4 (laser ablation experiment to create asymmetric asters).

      Author Response: This is similar to Reviewer 1 final comment above. These experiments are very challenging and being able to see the microtubules with sufficient clarity is not straightforward. Given our controls and previous experience, we are confident we are ablating the microtubules.

      Minor points:

      1) The authors explain the roles of microtubule asters in several model systems in the first paragraph of the introduction part. Please specify the species and/or cell types in each description.

      Author Response: We have provided as suggested.

      2) In lines 164 and 172, the citing figure numbers should be modified to Supplementary Fig. 1A and 1B, respectively.

      Author Response: We thank the Reviewer for spotting this error. It has now been corrected.

      3) The authors showed in the previous study that the boundary in the explant does not have an intact cell cortex and f-actin compartments (de-Carvalho et al., Development, 2022). This important informa8on should also be described in the current manuscript. It is also valuable to mention whether the pulling force mechanism operates in embryos where the intact cell cortex is present.

      Author Response: This is an interesting point We have added a sentence in the discussion with this information. We have now added additional text in the Discussion (lines 324-327).

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      It is somewhat speculative that the structure represents the EIIa-bound regulatory state. There's a strong enough case that it should be analyzed in the discussion, but I don't think it is firmly established. Therefore, the title of the paper should be changed.

      Our answer: Thank you for the comment. We have changed the title to “Mobile barrier mechanisms for Na+-coupled symport in an MFS sugar transporter”

      Reading through the manuscript, it was challenging to distinguish what is new in the current manuscript and what has been done previously. There were a lot of parts where it was hard for me to identify the main point of the current study among all the details of previous studies. It would also benefit from shortening. For example:

      -Page 6: Nb725 binding has already been characterized extensively in the very nice JBC paper earlier this year. It's important to test 725-4 for binding, but since it doesn't change the binding interaction, and probably wouldn't be expected to, the entire section could be written more succinctly. The main point, which is that 725-4 behaves like 725, is lost among all the details

      Our answer: Thanks for this instructive suggestion. We have shortened the description in this section.

      -Page 9-10. I don't understand what summarizing all of the results from the previous D59C studies adds to the current story. It's important because it provides an indication of the substrate binding site, but its mechanism of action does not seem relevant to the current work.

      Our answer: We have shortened the description of the sugar-binding site and moved the previous Fig. 3b to supplementary figure sFig. 11. According to your comment about showing the location of the binding sites, which is also suggested by Reviewer #2, we modified Fig. 3 and added two panels to map the location of the bound Na+ in the inward-facing structure and the bound sugar in the outward-facing structure.

      The sugar-binding site identified in the published structure is critical to construct the mobile barrier mechanism. The sugar-binding residues identified in the published structure provided essential data to support the conclusion that the sugar-binding pocket is broken in the inward-facing structure. Thus, this published structure is mechanistically relevant to the current study.

      -Page 12. Too much summary of the previous outward structure. Since this is already part of the literature, it would be more efficient to reference the previous data when it is important to interpret the new data (or show as a figure).

      Our answer: The introduction of the previous sugar-binding sit is important for the detailed comparison between the two states as discussed above, but we agree with this reviewer and have significantly shortened the paragraph by moving the detailed description into the legend to the sFig. 11.

      -Instead of providing the PDB ID in figures of the current structure, just say "current work" or similar. Then it is obvious you are not citing a previous structure.

      Our answer: To distinguish clearly the new data and published results, the citation of the cryoEM structure [PDP ID 8T60] has been completely removed from the main text but kept in sTable 1.

      -An entire panel of Figure 3 is dedicated to ligand binding in a previous outward-facing structure.

      Showing it in the overlay would be sufficient.

      Our answer: It is the first time for us to show a structure with a bound-Na+. Fig. 3 also illustrates the spatial relationship between the sugar-binding pocket and the cation-binding pocket since both binding sites are determined now. As stated above, according to two reviewers’ comments, we have modified the Figures and the Fig. 3d is the overlay.

      Please increase the size of the font in all figures. It should be 6-8 point when printed on a standard sheet of paper. Labels in Figure 3, distances in Figure 4, and everything in Figure 5 is hard to see.

      Our answer: Thank you for the comments and the enlargement of the figure size and label font in all figures have been made.

      Figure 2: would be helpful to show Figure S8 in the main text, orienting the reader to the approximate location of substrate binding. What is known about the EIIA-Glc binding interface? Has anyone probed this by mutagenesis? Where are these residues on the overall structure, and are they somewhere other than the nanobody interface?

      Our answer: Thank you for this comment. We have added a panel for orienting the readers about the substrate location in MelB in Figure 3c. The sFig. 8 actually focuses on the details of Nb interactions with MelB. Our current data strongly supported the notion that the Nb-bound MelBSt structure mimics the EIIAGlc-bound MelB but is not structurally resolved, so we have tuned down our statement on EIIAGlc. There is one study suggesting the C-terminal tail helix may be involved in the EIIAGlc binding, which has been added to the discussion.

      Can Figure 5 be split into 2 figures and simplified?

      Our answer: thanks for the suggestion. We have split it into Figs. 5b and 6 and also moved the peptide mapping to the Fig 5a.

      What is the difference between cartoon and ribbon rendering?

      Our answer: Ribbon: illustrating the structure; cartoon: highlighting the positions with statistically significant protection or deprotection. The statistically significant changes are implied by the ribbon representation; Sphere: not covered by labeled peptides.

      Can the panels showing the kinetic data be enlarged? I don't think they need to surround the molecule. An array underneath would be fine.

      Our answer: We have enlarged all figures and labels. The placement of selected plots around the model could clearly show the difference in deuterium uptake rates between the transmembrane domain and extra-membrane regions. We will maintain this arrangement.

      Do colors in panel A correspond with colors in panel B?

      Our answer: The color usage in both are different. Now the two panels have been separated.

      Do I understand correctly that in the HDX experiments, negative values indicate positions that exchange more quickly in the nanobody-free protein relative to the nanobody-bound protein?

      Our answer: Your understanding is correct.

      I assume some of this is due to the protein changing conformation, but some of it might be due to burial at the nanobody-binding interface. Can those peptides be indicated?

      Our answer: Thank you for this comment. We have marked the peptide carrying the Nb-binding residues on uptake plots in Figs.6 and Extended Fig. 1. There are only three Nb-binding residues covered by many overlapping peptides. Most are not covered, either not carried by the labeled peptides (Tyr205, Ser206, and Ser207) or with insignificant changes (Pro132 and Thr133), except for Asp137, Lys138, and Arg141 which are presented in 8 labeled peptides.

      Few buried positions in the outward-facing state are expected to be solvent in the inward-facing state; unfortunately, inward-facing state they are buried by Nb binding.

      Make figure legends easier to interpret by removing non-essential methods details (like buffer conditions).

      Our answer: We removed the detailed method descriptions in most figure legends. Thank you.

      Check throughout for typos.

      ie page 9 Lue Leu

      Page 9 like likely

      Our answer: We have corrected them. Thank you!

      Reviewer #2 (Recommendations For The Authors):

      I have mostly minor questions/remarks.

      • Why not do the hdx-ms experiments in the presence of sugar? That would give a proper distinction between two conformational states, instead of an ensemble of states vs one state.

      Our answer: MelB conformation induced by sugar is also multiple states, and likely most are outward-facing states and occluded intermediate states. This is also supported by the new finding of an inward state with low sugar affinity. The ideal design should be one inward and one outward to understand the inward-outward transition. We have not identified an outward-facing mutant while we can obtain the inward by the Nb. WT MelBSt with bound Na+ favors the outward-facing state. Although our design is not ideal, we do have one state vs a predominant outward-facing WT with bound Na+.

      Minor comments:

      • Fig 5 is misleading as the peptide number does not match with the amino acid sequence. I would suggest putting a heat map with coverage on top. Or showing deuterium uptake per peptide. See examples below.

      Our answer: The peptide number should not match with sequence number. We have 155 overlapping peptides that cover the entire amino acid sequence including the 10-His tag, and there are 60 residues with no data because they are not covered by a labeled peptide. The residue positions that are covered by peptides are estimated by bars on the top. The cylinder length does not correspond to the length of the transmembrane helix, just for mapping purposes.

      • Can the authors explain how they found that the Nbs bind to the cytoplasmic side (before obtaining the structure)?

      Our answer: Our in vivo two-hybrid assay between the Nb and MelBSt indicated their interaction on the cytoplasmic surface of MelBSt, which is further confirmed by the melibiose fermentation and transport assay, where the transport activities were completely inhibited by intracellularly coexpressed Nb and MelBSt. Thanks for raising this question.

      • The authors use the word "substrate" indifferently for sugar and Na+ binding, which is a bit confusing. Technically, only sugar is the substrate and Na+ is a ligand, or cotransported-ion, that powers the reaction of transport. This might sound like nit-picking but it can lead to misunderstandings (at some point I thought two sugars were transported, and then I was looking for the second Na+ binding site).

      Our answer: We used to call the sugar and Na as co-substrate but we agree with this comment.

      We have changed by using substrate for the cargo sugar and coupling cation for the driving cation.

      • Abstract "only the inner barrier" - the is missing.

      Thanks. We have corrected this.

      • p.3 intro "and identified that the positive cooperativity of cation and melibiose, " something is missing.

      Thanks again. We missed the “as the core symport mechanism”.

      • P.6 Nb275_4 instead of Nb725_4

      Thank you very much for your careful reading.

      • P.7. Also, affinity affinities

      Thank you very much. We changed to “; and also, the -NPG affinity decreased by 21~32-fold for both Nbs”

      • P.8 " contains 417 MelBSt residues (positions 2-210, 219-355, and 364-432). This does not sum up to 417 residues.

      Thanks for your critical reading. We changed 364-432 to 262-432.

      • p.9 Lue 54

      We have corrected it to Leu54.

      • I find fig.3 hard to read. Can the authors show the Na+ binding pockets and sugar binding pockets within the structure? Especially figure 3b. why are the residues in different colors?

      Our answer: We have moved Fig 3b into sFig. 11. We colored the residues in the previous Fig 3B to match the hosting helices. We have added two panels to show the location of both sugar and Na in the molecular. Thank you for your comments.

      • Fig4 bcef. Colored circles at the end of the helices. What are they for?

      Our answer: We revised the legend. “The paired helices involved in either barrier formation were highlighted in the same colored circles.”

      • 86% coverage includes the his-tag - it would be good to clarify that.

      Our answer: Yes, it includes the 10-His tag.

      • Fig.7 - anti clockwise cycle of transport is counter-intuitive.

      Our answer: We have re-arranged. Our model was constructed originally to explain efflux due to limited information at the earlier state. Now more data are available allowing us to explain inflow and active transport.

      • Where are all the uptake plots per peptide for the HDX-MS data?

      Our answer: We have added the course raw data and prepared all uptake plots for all 71 peptides with statistically significant changes as an Extended Fig. 1.

      • P.22 protein was concentrated to 50 mg/mL. Really? That is a lot.

      This is correct. We can even concentrate MelBSt protein to greater than 50 mg/ml.

      • Have the authors looked into the potential role of lipids in regulating the conformational transition? Since the structure was obtained in nanodiscs, have they observed some unexplained densities? The role of lipid-protein interactions in regulating such transitions was observed for several transporters including MFS (Gupta K, et al. The role of interfacial lipids in stabilizing membrane protein oligomers. Nature. 2017 10.1038/nature20820. Martens C, et al. Direct protein-lipid interactions shape the conformational landscape of secondary transporters. Nat Commun. 2018 10.1038/s41467-018-06704-1.). Furthermore, I see the authors have already observed lipid specific functional regulation of MelB (ref: Hariharan, P., et al BMC Biol 16, 85 (2018). https://doi.org/10.1186/s12915-018-0553-0). A few words about this previous work, and even commenting on the absence of lipid-protein interactions in this current work is worthwhile.

      Our answer: Thanks for this very relevant comment. We paid attention to the unmodelled densities. There is one with potential but it is challenging to model it. We have added a sentence “There is no unexplained density that can be clearly modeled by lipids.” in the method to address this concern.

      Reviewer #3 (Recommendations For The Authors):

      1) In the following sentence, the authors report high errors for the Kd value. The anti-Fab Nb binding to NabFab was two-fold poorer than Nb725_4 at a Kd value of 0.11 {plus minus} 0.16 μM. The figure however indicates that the error value is 0.016 µM. Pls correct.

      Our answer: Thank you. You are correct. The error has been corrected. 0.16 ± 0.02 uM. In this revised manuscript, we present the data in nM units.

      2) Is the stoichiometry of the MelB:Na+ symport clearly known in this transporter. It can be mentioned in the discussion with appropriate references.

      Our answer: Yes, the stoichiometry of unity has been clearly determined, which was included in the second paragraph of the previous version.

      3) In the last section of results, the authors seem to suggest a greater movement within their Cterminal helical bundle compared to N-terminal helices. Is there evidence to suggest an asymmetry in the rocker switch between the two states of the transporter?

      Our answer: Our structural data revealed that the C-terminal bundle is more dynamic compared with the N-terminal bundle where hosts the residues for specific binding of galactoside and Na+. The HDX data showed that the most dynamic regions are the structurally unresolved C-terminal tail by either method, the conserved tail helix and the middle-loop helix. transmembrane helices are relatively less dynamic with similar distributions on both transmembrane bundles. Since the most dynamic regions are peripheral element associated with the C-terminal domain, it might give a wrong impression. With regard to the symmetric or asymmetric movement, which will certainly affect the dynamic interactions between the transporter and the lipids, we favor the notion that MelBSt performs symmetric movement during the rocker switch between inward and outward states at the least cost for the protein-lipids interaction.

      4) Figure 1. Are the thermograms exothermic or endothermic? clarify

      Our answer: In our thermograms, all positive peaks are exothermic due to the direct detection of the heat release by the TA instrument. We clarified this in Method and now we stress this in figure legends to avoid confusion.

      5) Figure 4a,d. Please put in a membrane bilayer and depict cytosolic and extracellular compartments for clarity.

      Thank you. We have added a bilayer and labeled the sidedness in this figure and other related figures.

      6) Fig 7. Melibiose symport cannot be referred to as Melibiose efflux transport in the legend as the latter refers to antiport. Pls rectify.

      Our answer: Influx and efflux are conventionally used to describe the direction of movement of a substrate. The use of symport and antiport indicates the directions of the coupling reaction for the cargo and cation. For the symporter MelB, melibiose efflux means that sugar with the coupled cation moves out, which is driven by the melibiose concentration. During the steady state of melibiose active transport, efflux rate = influx rate.

      7) Page 11 "A common feature of carrier transporters". The authors can use either carriers or transporters. Need not use both simultaneously.

      Sorry for overlooking this. We have deleted carriers. Thank you very much for your time.

      8) Several typos were noticed in this manuscript. some are listed below. pls correct.

      Page 4- last paragraph "Furthermore"

      We have corrected it. Thank you again!

      Page 7 - second para one repharse "affinity reduced by 21~32 fold/units.." pls clarify

      Added 21~32 fold.

      Page 9 - "so it is highly likely that inward-open conformation" pls correct.

      We have corrected to “likely”.

      Fig. S9c - correct the spelling "Distance".

      We have corrected to “Distance”

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1

      Major comments:

      1) The authors conclude that the bone growth defects are chondrocyte-specific, highlighting no changes in the IGF pathway. However, other bone cells such as mesenchymal progenitors, osteoblasts, osteocytes, and marrow stromal cells are also lateral plate mesoderm derived and likely have roles in the bone growth phenotypes (a). Additionally, while the size decrease of the proliferative zone was stated, no actual proliferation assays such as BrdU were conducted (b). With the elements being of such small size in the mutants, the defects are likely to be found at the earliest stages of limb development at E11.5-E13.5 and may be due to mesenchymal to chondrocyte transitions or defects in osteoblast lineage development (c). Overall, the skeletal characterization is not rigorous and does not identify even a likely cellular mechanism. Further, a molecular mechanism by which SMN functions in mesenchymal progenitors, chondrocytes, or osteoblast lineage cells has not been assessed (d).

      (a, c) As the reviewer commented, it seems to be a very important point to evaluate whether there is any problem in embryonic development from the time of mesenchymal cell condensation of the limb bud to the primary ossification center. However, when Hensel et al evaluated bone growth in P3 of severe SMA mice, the growth defect was not very large, with control femur length 3.5 mm and mutant 3.2 mm. it seems that even if SMN defects occur, there is no major problem with endochondral bone formation in the embryonic period (Hensel et al., 2020).

      In this study, the SMN2 1-copy mutant with the bone growth defect was found to have a similar reduction in SMN protein to the severe SMA mouse model in experiments quantifying SMN protein. When Hensel et al. performed an in vitro ossification test on primary osteoblasts from the other severe SMA mouse model (Taiwanese severe SMA), they found no significant difference compared to controls. In femurs at P3 from severe SMA mice, they found no difference in bone voxel density and bone thickness (Hensel et al., 2020). In our data, bone thickness was not different in Figure 1 and Figure 1 – figure supplement 2, and BMD was actually greater. Thus, we believe that osteoblast and osteocyte function does not appear to be impaired by the absence of SMNs. When we looked at cortical osteoblasts in our new Figure 1-figure supplement 2, there did not appear to be a significant difference in density.

      Furthermore, it is unlikely that BMSCs contributed to the bone growth we observed up to 2 weeks of age. the Lepr+Cxcl12+ BMSC population, which constitutes 94% ± 4% of CFU-F colonies formed by bone marrow cells (Zhou et al.k, 2014), is Prrx1-positive, and is known to be capable of osteogenesis in vivo, was only shown to differentiate into osteoblasts and form new bone in adults over 8 weeks of age. In the Lepr-cre; tdTomato; Col2.3-GFP mouse model, few cells expressing the osteoblast marker Col2.3-GFP are found before 2 months, and only about 3% of femur trabecular and cortical osteocytes express tdTomato at 2 months (Zhou et al., 2014). In Cxcl12-CreER; tdTomato; Col2.3-GFP mouse model, the researchers did not find tomato positivity in osteoblasts and osteocytes even after administration of tamoxifen at P3 and analysis 1 year later (Matsushita et al., 2020).

      We, therefore, concluded that the bone growth abnormalities observed in SMN2 1-copy mutants are due to problems in endochondral ossification caused by chondrocyte defects and not due to other Prrx1-lineage skeletal cells.

      (b) According to the reviewer's suggestion, we evaluated cell proliferation in the new Figure 1J-L by performing immunostaining for the Ki67 proliferation marker in growth plates.

      (d) As the reviewer pointed out, we enhanced the mechanism study and found the reduction of chondrocyte-derived IGF signaling and hypertrophic marker in new Figure 2. We evaluated the density of osteoblasts and osteoclasts, which can affect bone mineralization. We highlighted the limited impact of BMSCs on bone growth in the first two weeks of life. In a previous study, SMN-deleted osteoblasts did not show any issues with ossification (Hensel et al., 2020). In fact, osteoblast density in the SMN2 1-copy mutant was not different from the control, indicating that the skeletal abnormalities can largely be attributed to deficiencies in endochondral ossification caused by chondrocytes. Since chondrocytes are the local source of IGF and our mutants exhibit phenotypes similar to mouse models with reduced IGF, such as downregulated expression of Igf1 and Igfbp3, downregulated IGF-induced hypertrophic gene expression, reduced AKT phosphorylation, proliferation, and growth plate zone length, SMN-deleted chondrocytes probably showed these phenotypes due to decreased IGF secretion. Now, we added new Figure 2A-C, and E.

      2) Is the liver the only organ/tissue that supplied IGF to the chondrocytes or are other lateral plate mesoderm-derived cells potential suppliers? It's not possible to pin SMN deletion in chondrocytes as intrinsic ignoring the other bone cell types that it is depleted from in the Prrx1Cre genetic model.

      Recently, Oichi et al. reported that the local IGF source in the growth plate is chondrocytes by in situ hybridization and p-AKT staining (Oichi et al., 2023). When we measured IGF in chondrocytes isolated from articular cartilage, the expressions of Igf1 andIgfbp3 were markedly reduced in chondrocytes with SMN deletion compared to controls (New Figure 2E), suggesting that intrinsic SMN expression in chondrocytes plays an important role in the growth plate.

      3) Why is SMN protein being isolated from FAPs to assess levels in the null/SMN2 single copy/double copy mutants when the bone defects are supposed to be a chondrocyte-specific phenotype? This protein expression needs to be confirmed in chondrocytes themselves, and or other Prrx1Cre lineaged skeletal cells.

      According to the reviewer’s suggestion, we attempted to evaluate the protein levels in chondrocytes of the SMN2 1-copy mutant. However, we were unable to obtain sufficient numbers of chondrocytes, because of poor proliferation of mutant chondrocytes compared to controls in culture conditions. We could obtain ~10^4 viable cells from 1 mouse of SMN2 1-copy mutant. Therefore, our only options for confirming SMN deletion in chondrocytes were DNA and RNA work. As in the Prrx1-lineage FAPs that the amount of SMN protein correlates with the expression levels of full-length SMN mRNA (Figure 2H-J), we expect that the SMN protein in chondrocytes would be fully depleted due to poor full-length SMN mRNA expression (Figure 2H).

      4) Figure 2E should have example images of each type of NMJ characterization.

      We revised our figure by adding the example images in new Figure 3E.

      5) What are the overall NMJ numbers in the normal formation period? Are these constant into the juvenile period when the authors say the deterioration occurs?

      We appreciate the reviewer's constructive comments, and it would be interesting to see if we could see a difference in the total number of NMJs. However, there is one NMJ in every myofiber, and each muscle has hundreds to thousands of myofibers. The technical difficulty of confocal imaging an entire muscle, which can be several millimeters across, precludes experiments that count every NMJ and show a difference. It may be possible to do so by combining clearing and confocal line scanning techniques. In our analysis of the NMJ, the formation of the NMJ in the mutant appears to be normal. Additionally, the number of myofibers seems to be the same, and there may be no difference in the total NMJ number.

      6) For transplantation experiments the authors sorted YFP or TOMATO+ cells from the Prrx1Cre mice muscles, but refer to them as FAPs. It is known that other cells including tenocyte-like cells, pericytes, and vascular smooth muscle cells are identified by this reporter line. Staining for TOMATO colocalization with PDGFRA would help to clarify this.

      In the method ‘Hindlimb fibro-adipogenic progenitors isolation’ section, we sorted 7AAD–Lin–Vcam–Sca1+ population refers to FAPs. For FAPs transplantation, we also used YFP or TOMATO+ FAPs (7AAD–Lin–Vcam–Sca1+). The ‘FAPs transplantation’ method section did not specify the FAPs population in detail. This has been fixed in the new method. Sca1 (Ly6a) is an effective marker for identifying FAPs within Prrx1-lineage cells, as well as Pdgfra (Leinroth et al., 2022).

      7) The authors only compare the SMN2 single copy mutant transplantation to contralateral to show rescue, but how does this compare to overall wt morphology?

      According to the reviewer’s constructive comment, we compared them with wild-type morphology (new Figure 7A-D).

      8) The asterisks of TOMATO+ in Figure 6A are confusing. FAPs do not usually clump together to form such large plaques and are normally much thinner tendrils. What is the reason for this?

      As the reviewer states, FAPs have a fibroblast-like morphology with elongated thinner tendrils. The Figure 6A image in the figure shows a Z-sliced cell body portion of FAP, where the nucleus is located, and it appears blunt. We attached imaged tomato+ FAPs, in which their cell body parts are plaque-like.

      Author response image 1.

      Tomato+ FAPs in muscle

      9) Would transplantation of healthy FAPs after NMJ maturation in SMN mutants still rescue the phenotype? Assessment of this is key for therapy intervention timelines moving forward.

      It will be very interesting to see if the phenotype improves after NMJ maturation by healthy FAPs transplantation, but this is a technically difficult experiment to do because we found that FAPs do not implant effectively when injected into naive adult muscle. The transplantation into the adult is sufficiently possible if accompanied by an injury, but this eventually leads to new formation of NMJ again. Thus, it seems impossible to do transplantation experiment after NMJ maturation through general methods. If we discover a method to efficiently rescue SMNs from FAPs or identify a factor that affects FAPs' influence on NMJ, then we may be able to conduct this experiment.

      Reference

      Hensel, N., Brickwedde, H., Tsaknakis, K., Grages, A., Braunschweig, L., Lüders, K. A., Lorenz, H. M., Lippross, S., Walter, L. M., Tavassol, F., Lienenklaus, S., Neunaber, C., Claus, P., & Hell, A. K. (2020). Altered bone development with impaired cartilage formation precedes neuromuscular symptoms in spinal muscular atrophy. Human Molecular Genetics, 29(16), 2662–2673. https://doi.org/10.1093/hmg/ddaa145

      Leinroth, A. P., Mirando, A. J., Rouse, D., Kobayahsi, Y., Tata, P. R., Rueckert, H. E., Liao, Y., Long, J. T., Chakkalakal, J. V., & Hilton, M. J. (2022). Identification of distinct non-myogenic skeletal-muscle-resident mesenchymal cell populations. Cell Reports, 39(6), 110785. https://doi.org/10.1016/j.celrep.2022.110785

      Matsushita, Y., Nagata, M., Kozloff, K. M., Welch, J. D., Mizuhashi, K., Tokavanich, N., Hallett, S. A., Link, D. C., Nagasawa, T., Ono, W., & Ono, N. (2020). A Wnt-mediated transformation of the bone marrow stromal cell identity orchestrates skeletal regeneration. Nature Communications, 11(1). https://doi.org/10.1038/s41467-019-14029-w

      Oichi, T., Kodama, J., Wilson, K., Tian, H., Imamura Kawasawa, Y., Usami, Y., Oshima, Y., Saito, T., Tanaka, S., Iwamoto, M., Otsuru, S., & Enomoto-Iwamoto, M. (2023). Nutrient-regulated dynamics of chondroprogenitors in the postnatal murine growth plate. Bone Research, 11(1). https://doi.org/10.1038/s41413-023-00258-9

      Zhou, B. O., Yue, R., Murphy, M. M., Peyer, J. G., & Morrison, S. J. (2014). Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell, 15(2), 154–168. https://doi.org/10.1016/j.stem.2014.06.008

      Reviewer #2

      Major comments:

      1) Regarding bone deficits - CT analysis of bones should be more comprehensive than Figure 1A shows. How about cross-sections? (a) Are bone phenotypes also age-dependent? (b) PCR was done only for SMA and related proteins (such as IGF). IGF protein in the blood and relevant organs should be studied. Why not include biomarkers of osteoblasts or/and osteoclasts and their regulators? (c)

      (a) We appreciate the reviewer’s constructive comment. we added longitudinal section views in new Figure 1A and a description of trabecular bone volume and secondary ossification center in the main text.

      (b) Age-dependent evaluation is an important point. By adulthood, the difference between the SMN2 1-copy mutant and the control is much larger, and even at birth there is a slight difference, although not as large as at 2 weeks of age. We focused our phenotyping on bone growth at 2 weeks of age, a time when new bone formation by BMSCs is less influential, when bone growth is primarily driven by endochondral ossification of chondrocytes, and before the defect in the NMJ is primarily manifested.

      (c) As the reviewer comments, it is important that IGF are evaluated in tissues other than liver. However, the liver is most likely the source of systemic IGF, as shown by the liver-specific deletion of Igf1 and knockout of Igfals, a protein that forms the IGF ternary complex, which is predominantly expressed in the liver. This resulted in a 90% drop in serum IGF levels and a phenotype of shortened femur length and growth plates in the double KO mice (Yakar et al., 2002).

      The local IGF source in the growth plate is chondrocytes confirmed by Igf1 in situ hybridization and p-AKT staining (Oichi et al., 2023). From the In situ hybridization data, we can observe that bone marrow and bone do not express Igf1 at all, but only perichondrium and chondrocytes in the resting zone express Igf1 mRNA. Therefore, we can see that the only supplier of IGF among LPM-derived cells is chondrocytes, and in the new figure 2, we measured IGF pathway expression and AKT phosphorylation in chondrocytes. We have confirmed that the expression of Igf1/Igfbp3 is reduced in chondrocytes with SMN deletion.

      To assess serum IGF level, we could not set up this experiment condition during our revision period due to the requirement of administrative procedures for purchasing new apparatuses and the limitation of our research funds. However, as previously stated, there is no difference in the expression of Igf1 and Igfals in the liver, which accounts for 90% of serum IGF levels. Therefore, we did not anticipate significant variations in serum IGF levels.

      Evaluation of osteoblasts or osteoclasts was done by section staining due to sampling difficulties for PCR. we assessed osteoblasts and osteoclasts state in new Figure 1-figure supplement 2.

      2) What is the relationship between deficits of bone deficits and muscle deficits or even NMJ deficits? Are they inter-related? Is skeletal muscle development also defective in Smn∆MPC mice? Can NMJ deficits result from bone deficits? Or vice versa?

      Unfortunately, the reviewer's comments are very difficult to clarify in our study using the Prrx1-cre model. In skeletal muscle development, the myofiber number was not significantly different in our mouse models. A study has shown that inactivating noggin, a BMP antagonist expressed in condensed cartilage and immature chondrocytes, results in severe skeletal defects without affecting the early stages of muscle differentiation (Tylzanowski et al., 2006). Therefore, bone may not have a significant impact on the early development of muscle, but later in postnatal development it may have an impact on motor performance issues. The relationship between bone and NMJ hasn't been studied. The impact of bone defects on motor skill may result in muscle weakness and NMJ problems. In our study, we showed that NMJ deficit rescue by transplantation of FAPs and decreased IGF in chondrocytes, a key source of local IGF. This suggests that the functions of FAPs in NMJ and chondrocytes in bone deficit are crucial, rather than each other's influence.

      3) Regarding the rescue experiment, the interpretation of the data should be careful. Evidently, healthy FAPs (td-Tomato positive) were transplanted into TA muscles of 10 days-old SMN2 1-copy SmnΔMPC mice, and NMJs were looked at P56. The control was contralateral TA that was injected with the vehicle. As described above, the data had huge SEM and were difficult to interpret or believe. The control perhaps was wrong if FAPs act by releasing "chemicals" because FAPs from one leg may go to other muscles via blood. Second, if FAPs act via contact, the data shown did not support this. Two red FAPs were shown in Figure 6, one of which was superimposed with a nerve track to one of the three NMJs. This NMJ however did not show any difference to the other two, which did not support a contact mechanism. These rescue data were not convincing.

      We appreciate the reviewer’s critical comment, but the reviewer appears to have confused the minimum and maximum range bars in the box-and-whisker plot with the SEM error bar in the bar graph. We apologize for the insufficient description of the figure legends section. We revised them. New Figure 7C, which is a bar graph, has a sufficiently short SEM error bar. In contrast, box-and-whisker plots B and D depict the minimum and maximum range, instead of the SEM, and they are significantly different with a p-value of less than 0.001. If FAPs affect the NMJ via a paracrine factor or ECM with a short range of action, they may rescue the NMJ defect in a non-contact-dependent manner, without affecting the contralateral muscle. Also, the FAPs are heterogeneous, so if only a certain subpopulation rescues, the tomato+ FAP in the figure may not be the rescuing cells.

      4) For most experiments, the "n" numbers were too small. 3-5 mice were used for bone characterization. For the NMJ, most experiments were done with 3 mice. It was unclear how many NMJs were looked at. Perhaps due to small n numbers, the SEM values were enormous (for example, in Figure 6).

      As with the response to the previous comment, this is due to confusion between box-and-whisker plots and bar graphs, and our data was determined to be significant using the appropriate statistical method.

      5) Also for experimental design, some experiments included four genotypes of mice (Fig. 1 J,K) whereas some had only three (Fig.1 A, B, C, D and Fig.3) and others had two (many other figures).

      In the first experiments to confirm the phenotypes, we tested the 2-copy mutant, but it was not significantly different from the wild type, and in subsequent experiments, we mainly tested the only 1-copy mutant.

      6) What was the reason why mixed muscles were used for NMJ characterization (TA versus EDL)? Why not pick a type I-fiber muscle and a type II-fiber muscle?

      We appreciate the constructive comment from the reviewer. Firstly, we conducted a phenotype analysis on the TA muscle. For electrophysiological recording, the EDL muscle should be used for intact nerve with muscle preparation, technically. Additionally, for TEM imaging, EDL was a suitable muscle to locate NMJ positions before TEM processing. Both TA and EDL muscles are adjacent and have similar fiber-type compositions. It would be important to observe in different fiber types of muscles, but when we first identified the phenotype, various types of limb muscles showed similar defects, so we focused on specific muscles.

      7) The description of mouse strains was confusing. SMN2 transgenic mice (with different copies) were not described in the methods.

      We apologize for the insufficient description of the method section. By crossing mice with the SMN2+/+ homologous allele, SMN2 heterologous mice with only one SMN2 allele are SMN2 1-copy mice (SMN2+/0) and SMN2 homologous mice are SMN2 2-copy mice (SMN2+/+). We revised our manuscript method ‘Animals’ section.

      Reference Oichi, T., Kodama, J., Wilson, K., Tian, H., Imamura Kawasawa, Y., Usami, Y., Oshima, Y., Saito, T., Tanaka, S., Iwamoto, M., Otsuru, S., & Enomoto-Iwamoto, M. (2023). Nutrient-regulated dynamics of chondroprogenitors in the postnatal murine growth plate. Bone Research, 11(1). https://doi.org/10.1038/s41413-023-00258-9

      Tylzanowski, P., Mebis, L., and Luyten, F. P. (2006). The noggin null mouse phenotype is strain dependent and haploinsufficiency leads to skeletal defects. Dev. Dyn. 235, 1599–1607. doi: 10.1002/dvdy.20782

      Yakar, S., Rosen, C. J., Beamer, W. G., Ackert-Bicknell, C. L., Wu, Y., Liu, J. L., Ooi, G. T., Setser, J., Frystyk, J., Boisclair, Y. R., & LeRoith, D. (2002). Circulating levels of IGF-1 directly regulate bone growth and density. Journal of Clinical Investigation, 110(6), 771–781. https://doi.org/10.1172/JCI0215463

      Reviewer #3

      1) The authors used Prrx1Cre mouse with floxed Smn exon7(Smnf7) mouse carrying multiple (one or two) copies of the human SMN2 gene. Is it expressed both in chondrocytes and mesenchymal progenitors in the limb?

      We appreciate the reviewer's comment. We analyzed the deletion of Smn in chondrocytes and FAPs via Cre using genomic PCR and qRT-PCR, as depicted in new Figure 2. The SMN2 allele, which is expressed throughout the body, can rescue Smn knockout mouse lethality (Monani et al., 2000). Indeed, the short limb length and lethality observed in SMN2 0-copy mutants were mitigated by the presence of multiple copies of SMN2. Therefore, both Chondrocytes and FAPs may express SMN2 transcripts from the transgenic SMN2 allele.

      2) Page 10 regarding Fig.2E, please show pretzel-like structure. In Figure 2E, plaque, perforated, open, and branched are shown; however, the pretzel is not shown. The same issue is for the Fig. 3D explanation in the text on page 12.

      We appreciate the reviewer's constructive feedback. We included illustrative figures of all types of NMJ characterization, and the branched type is identical to the pretzel type. Therefore, we have replaced ‘branched’ with ‘pretzel’ in our text and revised Figure 3E by incorporating the example images.

      3) The explanation of the electrophysiology for Fig.4 in the text on pages 12 and 15 (RRP) is not so convincing for the readers. It is advisable to add TEM data for transplantation if it is not technically difficult.

      We appreciate the reviewer's critical feedback. Because we did not measure RRP directly, we removed speculation about the possibility of RRP difference. If observing the active zone with TEM and the docking synaptic vesicle would help quantify RRP, it is technically difficult to obtain images of sufficient quality to distinguish the active zones with our current TEM imaging technique.

      4) The authors used the word FAP for 7AAD(-)Lin(-)Vcam(-)Sca1(+). It is recommended to show the expression of PDGFR alpha. Furthermore, as the authors stated in the text, mesenchymal progenitors (FAPs) are heterogeneous. Please discuss this point further. Other reports show at least 6 subpopulations using single-cell analyses (Cell Rep. 2022).

      In the report, Ly6a (Sca1) is a good marker for FAPs, as well as Pdgfra (Leinroth et al., 2022). The 6 subpopulations expressed Ly6a. The one of subpopulations associated with NMJ was discovered. This population expressed Hsd11b1, Gfra1, and Ret and is located adjacent to the NMJ and responds to denervation, indicating an increased possibility of interaction with the NMJ organization. In further our study, we aim to determine which subpopulations are crucial for NMJ maturation by transplanting them to mutants for rescue.

      5) How do authors determine the number of FAP cells for transplantation?

      The FAPs transplantation was performed according to a previously reported our study (Kim et al., 2021).

      Reference Kim, J. H., Kang, J. S., Yoo, K., Jeong, J., Park, I., Park, J. H., Rhee, J., Jeon, S., Jo, Y. W., Hann, S. H., Seo, M., Moon, S., Um, S. J., Seong, R. H., & Kong, Y. Y. (2022). Bap1/SMN axis in Dpp4+ skeletal muscle mesenchymal cells regulates the neuromuscular system. JCI Insight, 7(10). https://doi.org/10.1172/jci.insight.158380

      Leinroth, A. P., Mirando, A. J., Rouse, D., Kobayahsi, Y., Tata, P. R., Rueckert, H. E., Liao, Y., Long, J. T., Chakkalakal, J. V., & Hilton, M. J. (2022). Identification of distinct non-myogenic skeletal-muscle-resident mesenchymal cell populations. Cell Reports, 39(6), 110785. https://doi.org/10.1016/j.celrep.2022.110785

      Monani, U. R., Sendtner, M., Coovert, D. D., Parsons, D. W., Andreassi, C., Le, T. T., Jablonka, S., Schrank, B., Rossol, W., Prior, T. W., Morris, G. E., & Burghes, A. H. M. (2000). The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn(-/-) mice and results in a mouse with spinal muscular atrophy. Human Molecular Genetics, 9(3), 333–339. https://doi.org/10.1093/hmg/9.3.333

    1. Author Response

      eLife assessment

      In this valuable study, the authors investigate the transcriptional landscape of tuberculous meningitis, revealing key molecular differences contributed by HIV co-infection. Whilst some of the evidence presented is compelling, the bioinformatics analysis is limited to a descriptive narrative of gene-level functional annotations, which are somewhat basic and fail to define aspects of biology very precisely. Whilst the work will be of broad interest to the infectious disease community, validation of the data is critical for future utility.

      Response: We appreciate eLife’s positive assessment, although we challenge the conclusion that we ‘fail to define aspects of biology very precisely’. Our stated objective was to use bioinformatics tools to identify the biological pathways and hub genes associated with TBM pathogenesis and the eLife assessment affirms we have investigated ‘the transcriptional landscape of tuberculous meningitis’. To more precisely define aspects of the biology will require another study with different design and methods. Therefore the criticism seems unnecessarily harsh given the limitations of our stated objective.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Tuberculous meningitis (TBM) is one of the most severe forms of extrapulmonary TB. TBM is especially prevalent in people who are immunocompromised (e.g. HIV-positive). Delays in diagnosis and treatment could lead to severe disease or mortality. In this study, the authors performed the largest-ever host whole blood transcriptomics analysis on a cohort of 606 Vietnamese participants. The results indicated that TBM mortality is associated with increased neutrophil activation and decreased T and B cell activation pathways. Furthermore, increased angiogenesis was also observed in HIV-positive patients who died from TBM, whereas activated TNF signaling and down-regulated extracellular matrix organisation were seen in the HIV-negative group. Despite similarities in transcriptional profiles between PTB and TBM compared to healthy controls, inflammatory genes were more active in HIV-positive TBM. Finally, 4 hub genes (MCEMP1, NELL2, ZNF354C, and CD4) were identified as strong predictors of death from TBM.

      Strengths:

      This is a really impressive piece of work, both in terms of the size of the cohort which took years of effort to recruit, sample, and analyse, and also the meticulous bioinformatics performed. The biggest advantage of obtaining a whole blood signature is that it allows an easier translational development into a test that can be used in the clinical with a minimally invasive sample. Furthermore, the data from this study has also revealed important insights into the mechanisms associated with mortality and the differences in pathogenesis between HIV-positive and HIV-negative patients, which would have diagnostic and therapeutic implications.

      Weaknesses:

      The data on blood neutrophil count is really intriguing and seems to provide a very powerful yet easy-to-measure method to differentiate survival vs. death in TBM patients. It would be quite useful in this case to perform predictive analysis to see if neutrophil count alone, or in combination with gene signature, can predict (or better predict) mortality, as it would be far easier for clinical implementation than the RNA-based method. Moreover, genes associated with increased neutrophil activation and decreased T cell activation both have significantly higher enrichment scores in TBM (Figure 9) and in morality (Figure 8). While I understand the basis of selecting hub genes in the significant modules, they often do not represent these biological pathways (at least not directly associated in most cases). If genes were selected based on these biologically relevant pathways, would they have better predictive values?

      Response: Blood neutrophil count was not found to be a predictor for TBM mortality in our previous studies. We agree it could be useful to perform predictive analysis with neutrophil count as suggested by reviewer. Regarding hub genes versus genes representative of the biological pathways, we cannot know which have better predictive values without performing variable selection for the sets of all genes including both hub genes and pathway representative genes, additional analysis which we will undertake.

      Reviewer #2 (Public Review):

      Summary:

      This manuscript describes the analysis of blood transcriptomic data from patients with TB meningitis, with and without HIV infection, with some comparison to those of patients with pulmonary tuberculosis and healthy volunteers. The objectives were to describe the comparative biological differences represented by the blood transcriptome in TBM associated with HIV co-infection or survival/mortality outcomes and to identify a blood transcriptional signature to predict these outcomes. The authors report an association between mortality and increased levels of acute inflammation and neutrophil activation, but decreased levels of adaptive immunity and T/B cell activation. They propose a 4-gene prognostic signature to predict mortality.

      Strengths:

      -Biological evaluations of blood transcriptomes in TB meningitis and their relationship to outcomes have not been extensively reported previously.

      -The size of the data set is a major strength and is likely to be used extensively for secondary analyses in this field of research.

      Weaknesses:

      The bioinformatic analysis is limited to a descriptive narrative of gene-level functional annotations curated in GO and KEGG databases. This analysis can not be used to make causal inferences. In addition, the functional annotations are limited to 'high-level' terms that fail to define biology very precisely. At best, they require independent validation for a given context. As a result, the conclusions are not adequately substantiated. The identification of a prognostic blood transcriptomic signature uses an unusual discovery approach that leverages weighted gene network analysis that underpins the bioinformatic analyses. However, the main problem is that authors seem to use all the data for discovery and do not undertake any true external validation of their gene signature. As a result, the proposed gene signature is likely to be overfitted to these data and not generalisable. Even this does not achieve significantly better prognostic discrimination than the existing clinical scoring.

      Response: As explained in response to the eLife assessment, our objective was to use bioinformatics tools to identify the biological pathways and hub genes associated with TBM pathogenesis. We agree that ‘This analysis can not be used to make causal inferences’: that would require different study design and approaches. The proposed gene signature has higher AUC values than the existing clinical model. We agree that validation of the gene signature in an independent sample set will be a crucial next step.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      Reviewer #1:

      Concerns Public Review:

      1)The framing of 'infinite possible types of conflict' feels like a strawman. While they might be true across stimuli (which may motivate a feature-based account of control), the authors explore the interpolation between two stimuli. Instead, this work provides confirmatory evidence that task difficulty is represented parametrically (e.g., consistent with literatures like n-back, multiple object tracking, and random dot motion). This parametric encoding is standard in feature-based attention, and it's not clear what the cognitive map framing is contributing.

      Suggestion:

      1) 'infinite combinations'. I'm frankly confused by the authors response. I don't feel like the framing has changed very much, besides a few minor replacements. Previous work in MSIT (e.g., by the author Zhongzheng Fu) has looked at whether conflict levels are represented similarly across conflict types using multivariate analyses. In the paper mentioned by Ritz & Shenhav (2023), the authors looked at whether conflict levels are represented similarly across conflict types using multivariate analyses. It's not clear what this paper contributes theoretically beyond the connections to cognitive maps, which feel like an interpretative framework rather than a testable hypothesis (i.e., these previous paper could have framed their work as cognitive maps).

      Response: We acknowledge the limitations inherent in our experimental design, which prevents us from conducting a strict test of the cognitive space view. In our previous revision, we took steps to soften our conclusions and emphasize these limitations. However, we still believe that our study offers valuable and novel insights into the cognitive space, and the tests we conducted are not merely strawman arguments.

      Specifically, our study aimed to investigate the fundamental principles of the cognitive space view, as we stated in our manuscript that “the representations of different abstract information are organized continuously and the representational geometry in the cognitive space is determined by the similarity among the represented information (Bellmund et al., 2018)”. While previous research has applied multivariate analyses to understand cognitive control representation, no prior studies had directedly tested the two key hypotheses associated with cognitive space: (1) that cognitive control representation across conflict types is continuous, and (2) that the similarity among representations of different conflict types is determined by their external similarity.

      Our study makes a unique contribute by directly testing these properties through a parametric manipulation of different conflict types. This approach differs significantly from previous studies in two ways. First, our parametric manipulation involves more than two levels of conflict similarity, enabling us to directly test the two critical hypotheses mentioned above. Unlike studies such as Fu et al. (2022) and other that have treated different conflict types categorically, we introduced a gradient change in conflict similarity. This differentiation allowed us to employ representational similarity analysis (RSA) over the conflict similarity, which goes beyond mere decoding as utilized in prior work (see more explanation below for the difference between Fu et al., 2022 and our study [1]).

      Second, our parametric manipulation of conflict types differs from previous studies that have manipulated task difficulty, and the modulation of multivariate pattern similarity observed in our study could not be attributed by task difficulty. Previous research, including the Ritz & Shenhav (2023) (see below explanation[2]), has primarily shown that task difficulty modulates univoxel brain activation. A recent work by Wen & Egner (2023) reported a gradual change in the multivariate pattern of brain activations across a wide range of frontoparietal areas, supporting the reviewer’s idea that “task difficulty is represented parametrically”. However, we do not believe that our results reflect the task difficulty representation. For instance, in our study, the spatial Stroop-only and Simon-only conditions exhibited similar levels of difficulty, as indicated by their relatively comparable congruency effects (Fig. S1). Despite this similarity in difficulty, we found that the representational similarity between these two conditions was the lowest (see revised Fig. S4, the most off-diagonal value). This observation aligns more closely with our hypothesis that these two conditions are most dissimilar in terms of their conflict types.

      [1] Fu et al. (2022) offers important insights into the geometry of cognitive space for conflict processing. They demonstrated that Simon and flanker conflicts could be distinguished by a decoder that leverages the representational geometry within a multidimensional space. However, their model of cognitive space primarily relies on categorical definitions of conflict types (i.e., Simon versus flanker), rather than exploring a parametric manipulation of these conflict types. The categorical manipulations make it difficult to quantify conceptual similarity between conflict types and hence limit the ability to test whether neural representations of conflict capture conceptual similarity. To the best of our knowledge, no previous studies have manipulated the conflict types parametrically. This gap highlights a broader challenge within cognitive science: effectively manipulating and measuring similarity levels for conflicts, as well as other high-level cognitive processes, which are inherently abstract. We therefore believe our parametric manipulation of conflict types, despite its inevitable limitations, is an important contribution to the literature.

      We have incorporated the above statements into our revised manuscript: Methodological implications. Previous studies with mixed conflicts have applied mainly categorical manipulations of conflict types, such as the multi-source interference task (Fu et al., 2022) and color Stroop-Simon task (Liu et al., 2010). The categorical manipulations make it difficult to quantify conceptual similarity between conflict types and hence limit the ability to test whether neural representations of conflict capture conceptual similarity. To the best of our knowledge, no previous studies have manipulated the conflict types parametrically. This gap highlights a broader challenge within cognitive science: effectively manipulating and measuring similarity levels for conflicts, as well as other high-level cognitive processes, which are inherently abstract. The use of an experimental paradigm that permits parametric manipulation of conflict similarity provides a way to systematically investigate the organization of cognitive control, as well as its influence on adaptive behaviors.

      [2] The work by Ritz & Shenhav (2023) indeed applied multivariate analyses, but they did not test the representational similarity across different levels of task difficulty in a similar way as our investigation into different levels of conflict types, neither did they manipulated conflict types as our study. They first estimated univariate brain activations that were parametrically scaled by task difficulty (e.g., target coherence), yielding one map of parameter estimates (i.e., encoding subspace) for each of the target coherence and distractor congruence. The multivoxel patterns from the above maps were correlated to test whether the target coherence and distractor congruence share the similar neural encoding. It is noteworthy that the encoding of task difficulty in their study is estimated at the univariate level, like the univariate parametric modulation analysis in our study. The representational similarity across target coherence and distractor congruence was the second-order test and did not reflect the similarity across different difficulty levels. Though, we have found another study (Wen & Egner, 2023) that has directly tested the representational similarity across different levels of task difficulty, and they observed a higher representational similarity between conditions with similar difficulty levels within a wide range of brain regions.

      Reference:

      Wen, T., & Egner, T. (2023). Context-independent scaling of neural responses to task difficulty in the multiple-demand network. Cerebral Cortex, 33(10), 6013-6027. https://doi.org/10.1093/cercor/bhac479

      Fu, Z., Beam, D., Chung, J. M., Reed, C. M., Mamelak, A. N., Adolphs, R., & Rutishauser, U. (2022). The geometry of domain-general performance monitoring in the human medial frontal cortex. Science (New York, N.Y.), 376(6593), eabm9922. https://doi.org/10.1126/science.abm9922

      Ritz, H., & Shenhav, A. (2023). Orthogonal neural encoding of targets and distractors supports multivariate cognitive control. https://doi.org/10.1101/2022.12.01.518771 Another issue is suggesting mixtures between two types of conflict may be many independent sources of conflict. Again, this feels like the strawman. There's a difference between infinite combinations of stimuli on the one hand, and levels of feature on the other hand. The issue of infinite stimuli is why people have proposed feature-based accounts, which are often parametric, eg color, size, orientation, spatial frequency. Mixing two forms of conflict is interesting, but the task limitations (i.e., highly correlated features) prevent an analysis of whether these are truly mixed (or eg reflect variations on just one of the conflict types). Without being able to compare a mixture between types vs levels of only one type, it's not clear what you can draw from these results re: how these are combined (and not clear how it reconciles the debate between general and specific).

      Response: As the reviewer pointed out, a feature (or a parameterization) is an efficient way to encode potentially infinite stimuli. This is the same idea as our hypothesis: different conflict types are represented in a cognitive space akin to concrete features such as a color spectrum. This concept can be illustrated in the figure below.

      Author response image 1.

      We would like to clarify that in our study we have manipulated five levels of conflict types, but they all originated from two fundamental sources: vertically spatial Stroop and horizontally Simon conflicts. We agree that the mixture of these two sources does not inherently generate additional conflict sources. However, this mixture does influence the similarity among different conflict conditions, which provides essential variability that is crucial for testing the core hypotheses (i.e., continuity and similarity modulation, see the response above) of the cognitive space view. This clarification is crucial as the reviewer’s impression might have been influenced by our introduction, where we repeatedly emphasized multiple sources of conflicts. Our aim in the introduction was to outline a broader conceptual framework, which might not directly reflect the specific design of our current study. Recognizing the possibility of misinterpretation, we have adjusted our introduction and discussion to place less emphasis on the variety of possible conflict sources. For example, we have removed the expression “The large variety of conflict sources implies that there may be innumerable number of conflict conditions” from the introduction. As we have addressed in the previous response, the observed conflict similarity effect could not be attributed to merely task difficulty. Similarly, the mixture of spatial Stroop and Simon conflicts should not be attributed to one conflict source only; doing so would oversimplify it to an issue of task difficulty, as it would imply that our manipulation of conflict types merely represented varying levels of a single conflict, akin to manipulating task difficulty when everything else being equal. Importantly, the mixed conditions differ from variations along a single conflict source in that they also incorporate components of the other conflict source, thereby introducing difference beyond that would be found within variances of a single conflict source. There are a few additional evidence challenging the single dimension assumption. In our previous revisions, we compared model fittings between the Cognitive-Space model and the Stroop-/Simon-only models, and results showed that the CognitiveSpace model (BIC = 5377093) outperformed the Stroop-Only (BIC = 5377122) and Simon-Only (BIC = 5377096) models. This suggests that mixed conflicts might not be solely reflective of either Stroop or Simon sources, although we did not include these results due to concerns raised by reviewers about the validity of such comparisons, given the high anticorrelation between the two dimensions. Furthermore, Fu et al. (2022) demonstrated that the mixture of Simon and Flanker conflicts (the sf condition) is represented as the vector sum of the Flanker and Simon dimensions within their space model, indicating a compositional nature. Similarly, our mixed conditions are combinations of Stroop and Simon conflicts, and it is plausible that these mixtures represent a fusion of both Stroop and Simon components, rather than just one. Thus, we disagree that the mixture of conflicts is a strawman. In response to this concern, we have included a statement in our limitation section: “Another limitation is that in our design, the spatial Stroop and Simon effects are highly anticorrelated. This constraint may make the five conflict types represented in a unidimensional space (e.g., a circle) embedded in a 2D space. This limitation also means we cannot conclusively rule out the possibility of a real unidimensional space driven solely by spatial Stroop or Simon conflicts. However, this appears unlikely, as it would imply that our manipulation of conflict types merely represented varying levels of a single conflict, akin to manipulating task difficulty when everything else being equal. If task difficulty were the primary variable, we would expect to see greater representational similarity between task conditions of similar difficulty, such as the Stroop and Simon conditions, which demonstrates comparable congruency effects (see Fig. S1). Contrary to this, our findings reveal that the Stroop-only and Simon-only conditions exhibit the lowest representational similarity (Fig. S4). Furthermore, Fu et al. (2022) has shown that the representation of mixtures of Simon and Flanker conflicts was compositional, rather than reflecting single dimension, which also applies to our cases.”

      My recommendation would be to dramatically rewrite to reduce the framing of this providing critical evidence in favor of cognitive maps, and being more overt about the limitations of this task. However, the authors are not required to make further revisions in eLife's new model, and it's not clear how my scores would change if they made those revisions (ie the conceptual limitations would remain, the claims would just now match the more limited scope).

      Response: With the above rationales and the adjustments we have made in the manuscripts, we believe that we have thoroughly acknowledged and articulated the limitations of our study. Therefore, we have decided against a complete rewrite of the manuscript.

      Public Review:

      2) The representations within DLPFC appear to treat 100% Stoop and (to a lesser extent) 100% Simon differently than mixed trials. Within mixed trials, the RDM within this region don't strongly match the predictions of the conflict similarity model. It appears that there may be a more complex relationship encoded in this region.

      Suggestion:

      2) RSMs in the key region of interest. I don't really understand the authors response here either. e.g,. 'It is essential to clarify that our conclusions were based on the significant similarity modulation effect identified in our statistical analysis using the cosine similarity model, where we did not distinguish between the within-Stroop condition and the other four within-conflict conditions (Fig. 7A, now Fig. 8A). This means that the representation of conflict type was not biased by the seemingly disparities in the values shown here'. In Figure 1C, it does look like they are testing this model.

      It seems like a stronger validation would test just the mixture trials (i.e., ignoring Simon-only and stroop-only). However, simon/stroop-only conditions being qualitatively different does beg the question of whether these are being represented parametrically vs categorically.

      Response: We apologize for the confusion caused by our previous response. To clarify, our conclusions have been drawn based on the robust conflict similarity effect.

      The conflict similarity regressor is defined by higher values in the diagonal cells (representing within-conflict similarity) than the off-diagonal cells (indicating between-conflict similarity), as illustrated in Fig. 1C and Fig. 8A (now Fig. 4B). It is important to note that this regressor may not be particularly sensitive to the variations within the diagonal cells. Our previous response aimed to emphasize that the inconsistencies observed along the diagonal do not contradict our core hypothesis regarding the conflict similarity effect.

      We recognized that since the visualization in Fig. S4, based on the raw RSM (i.e., Pearson correlation), may have been influenced by other regressors in our model than the conflict similarity effect. To reflect pattern similarity with confounding factors controlled for, we have visualized the RSM by including only the fixed effect of the conflict similarity and the residual while excluding all other factors. As shown in the revised Figure S4, the difference between the within-Stroop and other diagonal cells was greatly reduced. Instead, it revealed a clear pattern where that the diagonal values were higher than the off-diagonal values in the incongruent condition, aligning with our hypothesis regarding the conflict similarity modulator. Although some visual distinctions persist within the five diagonal cells (e.g., in the incongruent condition, the Stroop, Simon, and StMSmM conditions appear slightly lower than StHSmL and StLSmM conditions), follow-up one-way ANOVAs among these five diagonal conditions showed no significant differences. This held true for both incongruent and congruent conditions, with Fs < 1. Thus, we conclude that there is no strong evidence supporting the notion that Simon- and spatial Stroop-only conditions are systematically different from other conflict types. As a result, we decided not to exclude these two conflict types from analysis.

      Author response image 2.

      The stronger conflict type similarity effect in incongruent versus congruent conditions. Shown are the summary representational similarity matrices for the right 8C region in incongruent (left) and congruent (right) conditions, respectively. Each cell represents the averaged Pearson correlation (after regressing out all factors except the conflict similarity) of cells with the same conflict type and congruency in the 1400×1400 matrix. Note that the seemingly disparities in the values of withinconflict cells (i.e., the diagonal) did not reach significance for either incongruent or congruent trials, Fs < 1.

      Public Review:

      3) To orthogonalized their variables, the authors need to employ a complex linear mixed effects analysis, with a potential influence of implementation details (e.g., high-level interactions and inflated degrees of freedom).

      Suggestion:

      3) The DF for a mixed model should not be the number of observations minus the number of fixed effects. The gold standard is to use satterthwaite correction (e.g. in Matlab, fixedEffects(lme,'DFMethod','satterthwaite')), or number of subjects - number of fixed effects (i.e. you want to generalize to new subjects, not just new samples from the same subjects). Honestly, running a 4-way interaction probably is probably using more degrees of freedom than are appropriate given the number of subjects.

      Response: We concur with the reviewer’s comment that our previous estimation of degrees of freedom (DFs) was inaccurate. Following your suggestion, we have now applied the “Satterthwaite” approach to approximate the DFs for all our linear mixed effect model analyses. This adjustment has led to the correction of both DFs and p values. In the Methods section, we have mentioned this revision.

      “We adjusted the t and p values with the degrees of freedom calculated through the Satterthwaite approximation method (Satterthwaite, 1946). Of note, this approach was applied to all the mixed-effect model analyses in this study.”

      The application of this method has indeed resulted in a reduction of our statistical significance. However, our overall conclusions remained robust. Instead of the highly stringent threshold used in our previous version (Bonferonni corrected p < .0001), we have now adopted a relatively more lenient threshold of Bonferonni correction at p < 0.05, which is commonly employed in the literature. Furthermore, it is worth noting that the follow-up criteria 2 and 3 are inherently second-order analyses. Criterion 2 involves examining the interaction effect (conflict similarity effect difference between incongruent and congruent conditions), and criterion 3 involves individual correlation analyses. Due to their second-order nature, these criteria inherently have lower statistical power compared to criterion 1 (Blake & Gangestad, 2020). We thus have applied a more lenient but still typically acceptable false discovery rate (FDR) correction to criteria 2 and 3. This adjustment helps maintain the rigor of our analysis while considering the inherent differences in statistical power across the various criteria. We have mentioned this revision in our manuscript:

      “We next tested whether these regions were related to cognitive control by comparing the strength of conflict similarity effect between incongruent and congruent conditions (criterion 2) and correlating the strength to behavioral similarity modulation effect (criterion 3). Given these two criteria pertain to second-order analyses (interaction or individual analyses) and thus might have lower statistical power (Blake & Gangestad, 2020), we applied a more lenient threshold using false discovery rate (FDR) correction (Benjamini & Hochberg, 1995) on the above-mentioned regions.”

      With these adjustments, we consistently identified similar brain regions as observed in our previous version. Specifically, we found that only the right 8C region met the three criteria in the conflict similarity analysis. In addition, the regions meeting the criteria for the orientation effect included the FEF and IP2 in left hemisphere, and V1, V2, POS1, and PF in the right hemisphere. We have thoroughly revised the description of our results, updated the figures and tables in both the revised manuscript and supplementary material to accurately reflect these outcomes.

      Reference:

      Blake, K. R., & Gangestad, S. (2020). On Attenuated Interactions, Measurement Error, and Statistical Power: Guidelines for Social and Personality Psychologists. Pers Soc Psychol Bull, 46(12), 1702-1711. https://doi.org/10.1177/0146167220913363

      Minor:

      1. Figure 8 should come much earlier (e.g, incorporated into Figure 1), and there should be consistent terms for 'cognitive map' and 'conflict similarity'.

      Response: We appreciate this suggestion. Considering that Figure 7 (“The crosssubject RSA model and the rationale”) also describes the models, we have merged Figure 7 and 8 and moved the new figure ahead, before we report the RSA results. Now you could find it in the new Figure 4, see below. We did not incorporate them into Figure 1 since Figure 1 is already too crowded.

      Author response image 3.

      Fig. 4. Rationale of the cross-subject RSA model and the schematic of key RSMs. A) The RSM is calculated as the Pearson’s correlation between each pair of conditions across the 35 subjects. For 17 subjects, the stimuli were displayed on the top-left and bottom-right quadrants, and they were asked to respond with left hand to the upward arrow and right hand to the downward arrow. For the other 18 subjects, the stimuli were displayed on the top-right and bottom-left quadrants, and they were asked to respond with left hand to the downward arrow and right hand to the upward arrow. Within each subject, the conflict type and orientation regressors were perfectly covaried. For instance, the same conflict type will always be on the same orientation. To de-correlate conflict type and orientation effects, we conducted the RSA across subjects from different groups. For example, the bottom-right panel highlights the example conditions that are orthogonal to each other on the orientation, response, and Simon distractor, whereas their conflict type, target and spatial Stroop distractor are the same. The dashed boxes show the possible target locations for different conditions. (B) and (C) show the orthogonality between conflict similarity and orientation RSMs. The within-subject RSMs (e.g., Group1-Group1) for conflict similarity and orientation are all the same, but the cross-group correlations (e.g., Group2-Group1) are different. Therefore, we can separate the contribution of these two effects when including them as different regressors in the same linear regression model. (D) and (E) show the two alternative models. Like the cosine model (B), within-group trial pairs resemble betweengroup trial pairs in these two models. The domain-specific model is an identity matrix. The domaingeneral model is estimated from the absolute difference of behavioral congruency effect, but scaled to 0 (lowest similarity) – 1 (highest similarity) to aid comparison. The plotted matrices in B-E include only one subject each from Group 1 and Group 2. Numbers 1-5 indicate the conflict type conditions, for spatial Stroop, StHSmL, StMSmM, StLSmH, and Simon, respectively. The thin lines separate four different sub-conditions, i.e., target arrow (up, down) × congruency (incongruent, congruent), within each conflict type.

      In our manuscript, the term “cognitive map/space” was used when explaining the results in a theoretical perspective, whereas the “conflict similarity” was used to describe the regressor within the RSA. These terms serve distinct purposes in our study and cannot be interchangeably substituted. Therefore, we have retained them in their current format. However, we recognize that the initial introduction of the “Cognitive-Space model” may have appeared somewhat abrupt. To address this, we have included a brief explanatory note: “The model described above employs the cosine similarity measure to define conflict similarity and will be referred to as the Cognitive-Space model.”

    2. Author Response

      The following is the authors’ response to the previous reviews.

      Thank you and the reviewers for further providing constructive comments and suggestions on our manuscript. On behalf of all the co-authors, I have enclosed a revised version of the above referenced paper. Below, I have merged similar public reviews and recommendations (if applicable) from each reviewer and provided point-by-point responses.

      Reviewer #1:

      People can perform a wide variety of different tasks, and a long-standing question in cognitive neuroscience is how the properties of different tasks are represented in the brain. The authors develop an interesting task that mixes two different sources of difficulty, and find that the brain appears to represent this mixture on a continuum, in the prefrontal areas involved in resolving task difficulty. While these results are interesting and in several ways compelling, they overlap with previous findings and rely on novel statistical analyses that may require further validation.

      Strengths

      1. The authors present an interesting and novel task for combining the contributions of stimulus-stimulus and stimulus-response conflict. While this mixture has been measured in the multi-source interference task (MSIT), this task provides a more graded mixture between these two sources of difficulty.

      2. The authors do a good job triangulating regions that encoding conflict similarity, looking for the conjunction across several different measures of conflict encoding. These conflict measures use several best-practice approaches towards estimating representational similarity.

      3. The authors quantify several salient alternative hypothesis and systematically distinguish their core results from these alternatives.

      4. The question that the authors tackle is important to cognitive control, and they make a solid contribution.

      The authors have addressed several of my concerns. I appreciate the authors implementing best practices in their neuroimaging stats.

      I think that the concerns that remain in my public review reflect the inherent limitations of the current work. The authors have done a good job working with the dataset they've collected.

      Response: We would like to thank the reviewer for the positive evaluation of our manuscript and the constructive comments and suggestions. In response to your suggestions and concerns, we have removed the Stroop/Simon-only and the Stroop+Simon models, revised our conclusion and modified the misleading phrases.

      We have provided detailed responses to your comments below.

      1. The evidence from this previous work for mixtures between different conflict sources makes the framing of 'infinite possible types of conflict' feel like a strawman. The authors cite classic work (e.g., Kornblum et al., 1990) that develops a typology for conflict which is far from infinite. I think few people would argue that every possible source and level of difficulty will have to be learned separately. This work provides confirmatory evidence that task difficulty is represented parametrically (e.g., consistent with the n-back, MOT, and random dot motion literature).

      notes for my public concerns.

      In their response, the authors say:

      'If each combination of the Stroop-Simon combination is regarded as a conflict condition, there would be infinite combinations, and it is our major goal to investigate how these infinite conflict conditions are represented effectively in a space with finite dimensions.'

      I do think that this is a strawman. The paper doesn't make a strong case that this position ('infinite combinations') is widely held in the field. There is previous work (e.g., n-back, multiple object tracking, MSIT, dot motion) that has already shown parametric encoding of task difficulty. This paper provides confirmatory evidence, using an interesting new task, that demand are parametric, but does not provide a major theoretical advance.

      Response: We agree that the previous expression may have seemed somewhat exaggerative. While it is not “infinite”, recent research indeed suggests that the cognitive control shows domain-specificity across various “domains”, including conflict types (Egner, 2008), sensory modalities (Yang et al., 2017), task-irrelevant stimuli (Spape et al., 2008), and task sets (Hazeltine et al., 2011), to name a few.

      These findings collectively support the notion that cognitive control is contextspecific (Bream et al., 2014). That is, cognitive control can be tuned and associated with different (and potentially large numbers of) contexts. Recently, Kikumoto and Mayr (2020) demonstrated that combinations of stimulus, rule and response in the same task formed separatable, conjunctive representations. They further showed that these conjunctive representations facilitate performance. This is in line with the idea that each stimulus-location combination in the present task may be represented separately in a domain-specific manner. Moreover, domain-general task representation can also become domain-specific with learning, which further increases the number of domain-specific conjunctive representations (Mill et al., 2023). In line with the domain-specific account of cognitive control, we referred to the “infinite combinations” in our previous response to emphasize the extreme case of domainspecificity. However, recognizing that the term “infinite” may lead to ambiguity, we have replaced it with phrases such as “a large number of”, “hugely varied”, in our revised manuscript.

      We appreciate the reviewer for highlighting the potential connection of our work to existing literature that showed the parametric encoding of task difficulty (e.g., Dagher et al., 1999; Ritz & Shenhav, 2023). For instance, in Ritz et al.’s (2023) study, they parametrically manipulated target difficulty based on consistent ratios of dot color, and found that the difficulty was encoded in the caudal part of dorsal anterior cingulate cortex. Analogically, in our study, the “difficulty” pertains to the behavioral congruency effect that we modulated within the spatial Stroop and Simon dimensions. Notably, we did identify univariate effects in the right dmPFC and IPS associated with the difficulty in the Simon dimension. This parametric effect may lend support to our cognitive space hypothesis, although we exercised caution in interpreting their significance due to the absence of a clear brain-behavioral relevance in these regions. We have added the connection of our work to prior literature in the discussion. The parametric encoding of conflict also mirrors prior research showing the parametric encoding of task demands (Dagher et al., 1999; Ritz & Shenhav, 2023).

      However, our analyses extend beyond solely testing the parametric encoding of difficulty. Instead, we focused on the multivariate representation of different conflict types, which we believe is independent from the univariate parametric encoding. Unlike the univariate encoding that relies on the strength within one dimension, the multivariate representation of conflict types incorporates both the spatial Stroop and Simon dimensions. Furthermore, we found that similar difficulty levels did not yield similar conflict representation, as indicated by the low similarity between the spatial Stroop and Simon conditions, despite both showing a similar level of congruency effect (Fig. S1). Additionally, we also observed an interaction between conflict similarity and difficulty (i.e., congruency, Fig. 4B/D), such that the conflict similarity effect was more pronounced when conflict was present. Therefore, we believe that our findings make contribution to the literature beyond the difficulty effect.

      Reference:

      Egner, T. (2008). Multiple conflict-driven control mechanisms in the human brain. Trends in Cognitive Sciences, 12(10), 374-380. https://doi.org/10.1016/j.tics.2008.07.001

      Yang, G., Nan, W., Zheng, Y., Wu, H., Li, Q., & Liu, X. (2017). Distinct cognitive control mechanisms as revealed by modality-specific conflict adaptation effects. Journal of Experimental Psychology: Human Perception and Performance, 43(4), 807-818. https://doi.org/10.1037/xhp0000351

      Spapé MM, Hommel B (2008). He said, she said: episodic retrieval induces conflict adaptation in an auditory Stroop task. Psychonomic Bulletin Review,15(6):1117-21. https://doi.org/10.3758/PBR.15.6.1117

      Hazeltine E, Lightman E, Schwarb H, Schumacher EH (2011). The boundaries of sequential modulations: evidence for set-level control. Journal of Experimental Psychology: Human Perception & Performance. 2011 Dec;37(6):1898-914. https://doi.org/10.1037/a0024662

      Braem, S., Abrahamse, E. L., Duthoo, W., & Notebaert, W. (2014). What determines the specificity of conflict adaptation? A review, critical analysis, and proposed synthesis. Frontiers in Psychology, 5, 1134. https://doi.org/10.3389/fpsyg.2014.01134

      Kikumoto A, Mayr U. (2020). Conjunctive representations that integrate stimuli, responses, and rules are critical for action selection. Proceedings of the National Academy of Sciences, 117(19):10603-10608. https://doi.org/10.1073/pnas.1922166117.

      Mill, R. D., & Cole, M. W. (2023). Neural representation dynamics reveal computational principles of cognitive task learning. bioRxiv. https://doi.org/10.1101/2023.06.27.546751

      Dagher, A., Owen, A. M., Boecker, H., & Brooks, D. J. (1999). Mapping the network for planning: a correlational PET activation study with the Tower of London task. Brain, 122 ( Pt 10), 1973-1987. https://doi.org/10.1093/brain/122.10.1973

      Ritz, H., & Shenhav, A. (2023). Orthogonal neural encoding of targets and distractors supports multivariate cognitive control. https://doi.org/10.1101/2022.12.01.518771

      1. (Public Reviews) The degree of Stroop vs Simon conflict is perfectly negatively correlated across conditions. This limits their interpretation of an integrated cognitive space, as they cannot separately measure Stroop and Simon effects. The author's control analyses have limited ability to overcome this task limitation. While these results are consistent with parametric encoding, they cannot adjudicate between combined vs separated representations.

      (Recommendations) I think that it is still an issue that the task's two features (stroop and simon conflict) are perfectly correlated. This fundamentally limits their ability to measure the similarity in these features. The authors provide several control analyses, but I think these are limited.

      Response: We need to acknowledge that the spatial Stroop and Simon components in the five conflict conditions were not “perfectly” correlated, with r = –0.89. This leaves some room for the preliminary model comparison to adjudicate between these models. However, it’s essential to note that conclusions based on these results must be tempered. In line with the reviewer’s observation, we agree that the high correlation between the two conflict sources posed a potential limitation on our ability to independently investigate the contribution of spatial Stroop and Simon conflicts. Therefore, in addition to the limitation we have previously acknowledged, we have now further revised our conclusion and adjusted our expressions accordingly.

      Specifically, we now regard the parametric encoding of cognitive control not as direct evidence of the cognitive space view but as preliminary evidence that led us to propose this hypothesis, which requires further testing. Notably, we have also modified the title from “Conflicts are represented in a cognitive space to reconcile domain-general and domain-specific cognitive control” to “Conflicts are parametrically encoded: initial evidence for a cognitive space view to reconcile the debate of domain-general and domain-specific cognitive control”. Also, we revised the conclusion as: In sum, we showed that the cognitive control can be parametrically encoded in the right dlPFC and guides cognitive control to adjust goal-directed behavior. This finding suggests that different cognitive control states may be encoded in an abstract cognitive space, which reconciles the long-standing debate between the domain-general and domain-specific views of cognitive control and provides a parsimonious and more broadly applicable framework for understanding how our brains efficiently and flexibly represents multiple task settings.

      From Recommendations The authors perform control analyses that test stroop-only and simon-only models. However, these analyses use a totally different similarity metric, that's based on set intersection rather than geometry. This metric had limited justification or explanation, and it's not clear whether these models fit worse because of the similarity metric. Even here, Simon-only model fit better than Stroop+Simon model. The dimensionality analyses may reflect the 1d manipulation by the authors (i.e. perfectly corrected stroop and simon effects).

      Response: The Jaccard measure is the most suitable method we can conceive of for assessing the similarity between two conflicts when establishing the Stroop-only and Simon-only models, achieved by projecting them onto the vertical or horizontal axes, respectively (Author response image 1A). This approach offers two advantages. First, the Jaccard similarity combines both similarity (as reflected by the numerator) and distance (reflected by the difference between denominator and numerator) without bias towards either. Second, the Jaccard similarity in our design is equivalent to the cosine similarity because the denominator in the cosine similarity is identical to the denominator in the Jaccard similarity (both are the radius of the circle, Author response image 1B).

      Author response image 1.

      Definition of Jaccard similarity. A) Two conflicts (1 and 2) are projected onto the spatial Stroop/Simon axis in the Stroop/Simon-only model, respectively. The Jaccard similarity for Stroop-only and Simon-only model are and respectively. Letters a-d are the projected vectors from the two conflicts to the two axes. Blue and red colors indicate the conflict conditions. Shorter vectors are the intersection and longer vectors are the union. B) According to the cosine similarity model, the similarity is defined as , where e is the projected vector from conflict 1 to conflict 2, and g is the vector of conflict 1. The Jaccard similarity for this case is defined by , where f is the projector vector from conflict 2 to itself. Because f = g in our design, the Jaccard similarity is equivalent to the cosine similarity.

      Therefore, we believe that the model comparisons between cosine similarity model and the Stroop/Simon-Only models were equitable. However, we acknowledge the reviewer’s and other reviewers’ concerns about the correlation between spatial Stroop and Simon conflicts, which reduces the space to one dimension (1d) and limits our ability to distinguish between the Stroop-only and Simon-only models, as well as between Stroop+Simon and cosine similarity models. While these distinctions are undoubtedly important for understanding the geometry of the cognitive space, we recognize that they go beyond the major objective of this study, that is, to differentiate the cosine similarity model from domain-general/specific models. Therefore, we have chosen to exclude the Stroop-only, Simon-only and Stroop+Simon models in our revised manuscript.

      Something that raised additional concerns are the RSMs in the key region of interest (Fig S5). The pure stroop task appears to be represented very differently from all of the conditions that include simon conflict.

      Together, I think these limitations reflect the structure of the task and research goals, not the statistical approach (which has been meaningfully improved).

      Response: We appreciate the reviewer for pointing this out. It is essential to clarify that our conclusions were based on the significant similarity modulation effect identified in our statistical analysis using the cosine similarity model, where we did not distinguish between the within-Stroop condition and the other four within-conflict conditions (Fig. 7A, now Fig. 8A). This means that the representation of conflict type was not biased by the seemingly disparities in the values shown here. Moreover, to specifically test the differences between the within-Stroop condition and the other within-conflict conditions, we conducted a mixed-effect model analysis only including trial pairs from the same conflict type. In this analysis, the primary predictor was the cross-condition difference (0 for within-Stroop condition and 1 for other within-conflict conditions). The results showed no significant cross-condition difference in either the incongruent (t = 1.22, p = .23) or the congruent (t = 1.06, p = .29) trials. Thus, we believe the evidence for different similarities is inconclusive in our data and decided not to interpret this numerical difference. We have added this note in the revised figure caption for Figure S5.

      Author response image 2.

      Fig. S5. The stronger conflict type similarity effect in incongruent versus congruent conditions. (A) Summary representational similarity matrices for the right 8C region in incongruent (left) and congruent (right) conditions, respectively. Each cell represents the averaged Pearson correlation of cells with the same conflict type and congruency in the 1400×1400 matrix. Note that the seemingly disparities in the values of Stroop and other within-conflict cells (i.e., the diagonal) did not reach significance for either incongruent (t = 1.22, p = .23) or congruent (t = 1.06, p = .29) trials. (2) Scatter plot showing the averaged neural similarity (Pearson correlation) as a function of conflict type similarity in both conditions. The values in both A and B are calculated from raw Pearson correlation values, in contrast to the z-scored values in Fig. 4D.

      Minor:

      • In the analysis of similarity_orientation, the df is very large (~14000). Here, and throughout, the df should be reflective of the population of subjects (ie be less than the sample size).

      Response: The large degrees of freedom (df) in our analysis stem from the fact that we utilized a mixed-effect linear model, incorporating all data points (a total of 400×35=14000). In mixed-effect models, the df is determined by subtracting the number of fixed effects (in our case, 7) from the total number of observations. Notably, we are in line with the literature that have reported the df in this manner (e.g., Iravani et al., 2021; Schmidt & Weissman, 2015; Natraj et al., 2022).

      Reference:

      Iravani B, Schaefer M, Wilson DA, Arshamian A, Lundström JN. The human olfactory bulb processes odor valence representation and cues motor avoidance behavior. Proc Natl Acad Sci U S A. 2021 Oct 19;118(42):e2101209118. https://doi.org/10.1073/pnas.2101209118.

      Schmidt, J.R., Weissman, D.H. Congruency sequence effects and previous response times: conflict adaptation or temporal learning?. Psychological Research 80, 590–607 (2016). https://doi.org/10.1007/s00426-015-0681-x.

      Natraj, N., Silversmith, D. B., Chang, E. F., & Ganguly, K. (2022). Compartmentalized dynamics within a common multi-area mesoscale manifold represent a repertoire of human hand movements. Neuron, 110(1), 154-174. https://doi.org/10.1016/j.neuron.2021.10.002.

      • it would improve the readability if there was more didactic justification for why analyses are done a certain way (eg justifying the jaccard metric). This will help less technically-savvy readers.

      Response: We appreciate the reviewer’s suggestion. However, considering the Stroop/Simon-only models in our design may not be a valid approach for distinguishing the contributions of the Stroop/Simon components, we have decided not to include the Jaccard metrics in our revised manuscript.

      Besides, to improve the readability, we have moved Figure S4 to the main text (labeled as Figure 7), and added the domain-general/domain-specific schematics in Figure 8.

      Author response image 3.

      Figure 8. Schematic of key RSMs. (A) and (B) show the orthogonality between conflict similarity and orientation RSMs. The within-subject RSMs (e.g., Group1-Group1) for conflict similarity and orientation are all the same, but the cross-group correlations (e.g., Group2-Group1) are different. Therefore, we can separate the contribution of these two effects when including them as different regressors in the same linear regression model. (C) and (D) show the two alternative models. Like the cosine model (A), within-group trial pairs resemble between-group trial pairs in these two models. The domain-specific model is an identity matrix. The domain-general model is estimated from the absolute difference of behavioral congruency effect, but scaled to 0(lowest similarity)-1(highest similarity) to aid comparison. The plotted matrices here include only one subject each from Group 1 and Group 2. Numbers 1-5 indicate the conflict type conditions, for spatial Stroop, StHSmL, StMSmM, StLSmH, and Simon, respectively. The thin lines separate four different sub-conditions, i.e., target arrow (up, down) × congruency (incongruent, congruent), within each conflict type.

      Reviewer #2:

      This study examines the construct of "cognitive spaces" as they relate to neural coding schemes present in response conflict tasks. The authors use a novel experimental design in which different types of response conflict (spatial Stroop, Simon) are parametrically manipulated. These conflict types are hypothesized to be encoded jointly, within an abstract "cognitive space", in which distances between task conditions depend only on the similarity of conflict types (i.e., where conditions with similar relative proportions of spatial-Stroop versus Simon conflicts are represented with similar activity patterns). Authors contrast such a representational scheme for conflict with several other conceptually distinct schemes, including a domain-general, domain-specific, and two task-specific schemes. The authors conduct a behavioral and fMRI study to test which of these coding schemes is used by prefrontal cortex. Replicating the authors' prior work, this study demonstrates that sequential behavioral adjustments (the congruency sequence effect) are modulated as a function of the similarity between conflict types. In fMRI data, univariate analyses identified activation in left prefrontal and dorsomedial frontal cortex that was modulated by the amount of Stroop or Simon conflict present, and representational similarity analyses (RSA) that identified coding of conflict similarity, as predicted under the cognitive space model, in right lateral prefrontal cortex.

      This study tackles an important question regarding how distinct types of conflict might be encoded in the brain within a computationally efficient representational format. The ideas postulated by the authors are interesting ones and the statistical methods are generally rigorous.

      Response: We would like to express our sincere appreciation for the reviewer’s positive evaluation of our manuscript and the constructive comments and suggestions. In response to your suggestions and concerns, we excluded the StroopOnly, SimonOnly and Stroop+Simon models, and added the schematic of domain-general/specific model RSMs. We have provided detailed responses to your comments below.

      The evidence supporting the authors claims, however, is limited by confounds in the experimental design and by lack of clarity in reporting the testing of alternative hypotheses within the method and results.

      1. Model comparison

      The authors commendably performed a model comparison within their study, in which they formalized alternative hypotheses to their cognitive space hypothesis. We greatly appreciate the motivation for this idea and think that it strengthened the manuscript. Nevertheless, some details of this model comparison were difficult for us to understand, which in turn has limited our understanding of the strength of the findings.

      The text indicates the domain-general model was computed by taking the difference in congruency effects per conflict condition. Does this refer to the "absolute difference" between congruency effects? In the rest of this review, we assume that the absolute difference was indeed used, as using a signed difference would not make sense in this setting. Nevertheless, it may help readers to add this information to the text.

      Response: We apologize for any confusion. The “difference” here indeed refers to the “absolute difference” between congruency effects. We have now clarified this by adding the word “absolute” accordingly.

      "Therefore, we defined the domain-general matrix as the absolute difference in their congruency effects indexed by the group-averaged RT in Experiment 2."

      Regarding the Stroop-Only and Simon-Only models, the motivation for using the Jaccard metric was unclear. From our reading, it seems that all of the other models --- the cognitive space model, the domain-general model, and the domain-specific model --- effectively use a Euclidean distance metric. (Although the cognitive space model is parameterized with cosine similarities, these similarity values are proportional to Euclidean distances because the points all lie on a circle. And, although the domain-general model is parameterized with absolute differences, the absolute difference is equivalent to Euclidean distance in 1D.) Given these considerations, the use of Jaccard seems to differ from the other models, in terms of parameterization, and thus potentially also in terms of underlying assumptions. Could authors help us understand why this distance metric was used instead of Euclidean distance? Additionally, if Jaccard must be used because this metric seems to be non-standard in the use of RSA, it would likely be helpful for many readers to give a little more explanation about how it was calculated.

      Response: We believe that the Jaccard similarity measure is consistent with the Cosine similarity measure. The Jaccard similarity is calculated as the intersection divided by the union. To define the similarity of two conflicts in the Stroop-only and Simon-only models, we first project them onto the vertical or horizontal axes, respectively (as shown in Author response image 1A). The Jaccard similarity in our design is equivalent to the cosine similarity because the denominator in the Jaccard similarity is identical to the denominator in the cosine similarity (both are the radius of the circle, Author response image 1B).

      However, it is important to note that a cosine similarity cannot be defined when conflicts are projected onto spatial Stroop or Simon axis simultaneously. Therefore, we used the Jaccard similarity in the previous version of our manuscript.

      Author response image 4.

      Definition of Jaccard similarity. A) Two conflicts (1 and 2) are projected onto the spatial Stroop/Simon axis in the Stroop/Simon-only model, respectively. The Jaccard similarity for Stroop-only and Simon-only model are and respectively. Letters a-d are the projected vectors from the two conflicts to the two axes. Blue and red colors indicate the conflict conditions. Shorter vectors are the intersection and longer vectors are the union. B) According to the cosine similarity model, the similarity is defined as , where e is the projected vector from conflict 1 to conflict 2, and g is the vector of conflict 1. The Jaccard similarity for this case is defined by , where f is the projector vector from conflict 2 to itself. Because f = g in our design, the Jaccard similarity is equivalent to the cosine similarity.

      However, we agree with the reviewer’s and other reviewers’ concern that the correlation between spatial Stroop and Simon conflicts makes it less likely to distinguish the Stroop+Simon from cosine similarity models. While distinguishing them is essential to understand the detailed geometry of the cognitive space, it is beyond our major purpose, that is, to distinguish the cosine similarity model with the domain-general/specific models. Therefore, we have chosen to exclude the Stroop-only, Simon-only and Stroop+Simon models from our revised manuscript.

      When considering parameterizing the Stroop-Only and Simon-Only models with Euclidean distances, one concern we had is that the joint inclusion of these models might render the cognitive space model unidentifiable due to collinearity (i.e., the sum of the Stroop-Only and Simon-Only models could be collinear with the cognitive space model). Could the authors determine whether this is the case? This issue seems to be important, as the presence of such collinearity would suggest to us that the design is incapable of discriminating those hypotheses as parameterized.

      Response: We acknowledge that our design does not allow for a complete differentiation between the parallel encoding (StroopOnly+SimonOnly) model and the cognitive space model, given their high correlation (r = 0.85). However, it is important to note that the StroopOnly+SimonOnly model introduces more free parameters, making the model fitting poorer than the cognitive space model.

      Additionally, the cognitive space model also shows high correlations with the StroopOnly and SimonOnly models (both rs = 0.66). It is crucial to emphasize that our study’s primary goal does not involve testing the parallel encoding hypothesis (through the StroopOnly+SimonOnly model). As a result, we have chosen to remove the model comparison results with the StroopOnly, SimonOnly and StroopOnly+SimonOnly models. Instead, the cognitive space model shows lower correlation with the purely domain-general (r = −0.16) and domain-specific (r = 0.46) models.

      1. Issue of uniquely identifying conflict coding

      We certainly appreciate the efforts that authors have taken to address potential confounders for encoding of conflict in their original submission. We broach this question not because we wish authors to conduct additional control analyses, but because this issue seems to be central to the thesis of the manuscript and we would value reading the authors' thoughts on this issue in the discussion.

      To summarize our concerns, conflict seems to be a difficult variable to isolate within aggregate neural activity, at least relative to other variables typically studied in cognitive control, such as task-set or rule coding. This is because it seems reasonable to expect that many more nuisance factors covary with conflict -- such as univariate activation, level of cortical recruitment, performance measures, arousal --- than in comparison with, for example, a well-designed rule manipulation. Controlling for some of these factors post-hoc through regression is commendable (as authors have done here), but such a method will likely be incomplete and can provide no guarantees on the false positive rate.

      Relatedly, the neural correlates of conflict coding in fMRI and other aggregate measures of neural activity are likely of heterogeneous provenance, potentially including rate coding (Fu et al., 2022), temporal coding (Smith et al., 2019), modulation of coding of other more concrete variables (Ebitz et al., 2020, 10.1101/2020.03.14.991745; see also discussion and reviews of Tang et al., 2016, 10.7554/eLife.12352), or neuromodulatory effects (e.g., Aston-Jones & Cohen, 2005). Some of these origins would seem to be consistent with "explicit" coding of conflict (conflict as a representation), but others would seem to be more consistent with epiphenomenal coding of conflict (i.e., conflict as an emergent process). Again, these concerns could apply to many variables as measured via fMRI, but at the same time, they seem to be more pernicious in the case of conflict. So, if authors consider these issues to be germane, perhaps they could explicitly state in the discussion whether adopting their cognitive space perspective implies a particular stance on these issues, how they interpret their results with respect to these issues, and if relevant, qualify their conclusions with uncertainty on these issues.

      Response: We appreciate the reviewer’s insightful comments regarding the representation and process of conflict.

      First, we agree that the conflict is not simply a pure feature like a stimulus but often arises from the interaction (e.g., dimension overlap) between two or more aspects. For example, in the manual Stroop, conflict emerges from the inconsistent semantic information between color naming and word reading. Similarly, other higher-order cognitive processes such as task-set also underlie the relationship between concrete aspects. For instance, in a face/house categorization task, the taskset is the association between face/house and the responses. When studying these higher-order processes, it is often impossible to completely isolate them from bottomup features. Therefore, methods like the representational similarity analysis and regression models are among the limited tools available to attempt to dissociate these concrete factors from conflict representation. While not perfect, this approach has been suggested and utilized in practice (Freund et al., 2021).

      Second, we agree that conflict can be both a representation and an emerging process. These two perspectives are not necessarily contradictory. According to David Marr’s influential three-level theory (Marr, 1982), representation is the algorithm of the process to achieve a goal based on the input. Therefore, a representation can refer to not only a static stimulus (e.g., the visual representation of an image), but also a dynamic process. Building on this perspective, we posit that the representation of cognitive control consists of an array of dynamic representations embedded within the overall process. A similar idea has been proposed that the abstract task profiles can be progressively constructed as a representation in our brain (Kikumoto & Mayr, 2020).

      We have incorporated this discussion into the manuscript:

      "Recently an interesting debate has arisen concerning whether cognitive control should be considered as a process or a representation (Freund, Etzel, et al., 2021). Traditionally, cognitive control has been predominantly viewed as a process. However, the study of its representation has gained more and more attention. While it may not be as straightforward as the visual representation (e.g., creating a mental image from a real image in the visual area), cognitive control can have its own form of representation. An influential theory, Marr’s (1982) three-level model proposed that representation serves as the algorithm of the process to achieve a goal based on the input. In other words, representation can encompass a dynamic process rather than being limited to static stimuli. Building on this perspective, we posit that the representation of cognitive control consists of an array of dynamic representations embedded within the overall process. A similar idea has been proposed that the representation of task profiles can be progressively constructed with time in the brain (Kikumoto & Mayr, 2020)."

      Reference:

      Freund, M. C., Etzel, J. A., & Braver, T. S. (2021). Neural Coding of Cognitive Control: The Representational Similarity Analysis Approach. Trends in Cognitive Sciences, 25(7), 622-638. https://doi.org/10.1016/j.tics.2021.03.011

      Marr, D. C. (1982). Vision: A computational investigation into human representation and information processing. New York: W.H. Freeman.

      Kikumoto A, Mayr U. (2020). Conjunctive representations that integrate stimuli, responses, and rules are critical for action selection. Proceedings of the National Academy of Sciences, 117(19):10603-10608. https://doi.org/10.1073/pnas.1922166117.

      1. Interpretation of measured geometry in 8C

      We appreciate the inclusion of the measured similarity matrices of area 8C, the key area the results focus on, to the supplemental, as this allows for a relatively model-agnostic look at a portion of the data. Interestingly, the measured similarity matrix seems to mismatch the cognitive space model in a potentially substantive way. Although the model predicts that the "pure" Stroop and Simon conditions will have maximal self-similarity (i.e., the Stroop-Stroop and Simon-Simon cells on the diagonal), these correlations actually seem to be the lowest, by what appears to be a substantial margin (particularly the Stroop-Stroop similarities). What should readers make of this apparent mismatch? Perhaps authors could offer their interpretation on how this mismatch could fit with their conclusions.

      Response: We appreciate the reviewer for bringing this to our attention. It is essential to clarify that our conclusions were based on the significant similarity modulation effect observed in our statistical analysis using the cosine similarity model, where we did not distinguish between the within-Stroop condition and the other four withinconflict conditions (Fig. 7A). This means that the representation of conflict type was not biased by the seemingly disparities in the values shown here. Moreover, to specifically address the potential differences between the within-Stroop condition and the other within-conflict conditions, we conducted a mixed-effect model. In this analysis, the primary predictor was the cross-condition difference (0 for within-Stroop condition and 1 for other within-conflict conditions). The results showed no significant cross-condition difference in either the incongruent trials (t = 1.22, p = .23) or the congruent (t = 1.06, p = .29) trials. Thus, we believe the evidence for different similarities is inconclusive in our data and decided not to interpret this numerical difference.

      We have added this note in the revised figure caption for Figure S5.

      Author response image 5.

      Fig. S5. The stronger conflict type similarity effect in incongruent versus congruent conditions. (A) Summary representational similarity matrices for the right 8C region in incongruent (left) and congruent (right) conditions, respectively. Each cell represents the averaged Pearson correlation of cells with the same conflict type and congruency in the 1400×1400 matrix. Note that the seemingly disparities in the values of Stroop and other within-conflict cells (i.e., the diagonal) did not reach significance for either incongruent (t = 1.22, p = .23) or congruent (t = 1.06, p = .29) trials. (2) Scatter plot showing the averaged neural similarity (Pearson correlation) as a function of conflict type similarity in both conditions. The values in both A and B are calculated from raw Pearson correlation values, in contrast to the z-scored values in Fig. 4D.

      1. It would likely improve clarity if all of the competing models were displayed as summarized RSA matrices in a single figure, similar to (or perhaps combined with) Figure 7.

      Response: We appreciate the reviewer’s suggestion. We now have incorporated the domain-general and domain-specific models into the Figure 7 (now Figure 8).

      Author response image 6.

      Figure 8. Schematic of key RSMs. (A) and (B) show the orthogonality between conflict similarity and orientation RSMs. The within-subject RSMs (e.g., Group1-Group1) for conflict similarity and orientation are all the same, but the cross-group correlations (e.g., Group2-Group1) are different. Therefore, we can separate the contribution of these two effects when including them as different regressors in the same linear regression model. (C) and (D) show the two alternative models. Like the cosine model (A), within-group trial pairs resemble between-group trial pairs in these two models. The domain-specific model is an identity matrix. The domain-general model is estimated from the absolute difference of behavioral congruency effect, but scaled to 0(lowest similarity)-1(highest similarity) to aid comparison. The plotted matrices here include only one subject each from Group 1 and Group 2. Numbers 1-5 indicate the conflict type conditions, for spatial Stroop, StHSmL, StMSmM, StLSmH, and Simon, respectively. The thin lines separate four different sub-conditions, i.e., target arrow (up, down) × congruency (incongruent, congruent), within each conflict type.

      1. Because this model comparison is key to the main inferences in the study, it might also be helpful for most readers to move all of these RSA model matrices to the main text, instead of in the supplemental.

      Response: We thank the reviewer for this suggestion. We have moved the Fig. S4 to the main text, labeled as the new Figure 7.

      1. It may be worthwhile to check how robust the observed brain-behavior association (Fig 4C) is to the exclusion of the two datapoints with the lowest neural representation strength measure, as these points look like they have high leverage.

      Response: We calculated the Pearson correlation after excluding the two points and found it does not affect the results too much, with the r = 0.50, p = .003 (compared to the original r = 0.52, p = .001).

      Additionally, we found the two axes were mistakenly shifted in Fig 4C. Therefore, we corrected this error in the revised manuscript. The correlation results would not be influenced.

      Author response image 7.

      Fig. 4. The conflict type effect. (A) Brain regions surviving the Bonferroni correction (p < 0.0001) across the regions (criterion 1). Labeled regions are those meeting the criterion 2. (B) Different encoding of conflict type in the incongruent with congruent conditions. * Bonferroni corrected p < .05. (C) The brain-behavior correlation of the right 8C (criterion 3). The x-axis shows the beta coefficient of the conflict type effect from the RSA, and the y-axis shows the beta coefficient obtained from the behavioral linear model using the conflict similarity to predict the CSE in Experiment 2. (D) Illustration of the different encoding strength of conflict type similarity in incongruent versus congruent conditions of right 8C. The y-axis is derived from the z-scored Pearson correlation coefficient, consistent with the RSA methodology. See Fig. S4B for a plot with the raw Pearson correlation measurement. l = left; r = right.

      Reviewer #3:

      Yang and colleagues investigated whether information on two task-irrelevant features that induce response conflict is represented in a common cognitive space. To test this, the authors used a task that combines the spatial Stroop conflict and the Simon effect. This task reliably produces a beautiful graded congruency sequence effect (CSE), where the cost of congruency is reduced after incongruent trials. The authors measured fMRI to identify brain regions that represent the graded similarity of conflict types, the congruency of responses, and the visual features that induce conflicts. They applied univariate, multivariate, and connectivity analyses to fMRI data to identify brain regions that represent the graded similarity of conflict types, the congruency of responses, and the visual features that induce conflicts. They further directly assessed the dimensionality of represented conflict space.

      The authors identified the right dlPFC (right 8C), which shows 1) stronger encoding of graded similarity of conflicts in incongruent trials and 2) a positive correlation between the strength of conflict similarity type and the CSE on behavior. The dlPFC has been shown to be important for cognitive control tasks. As the dlPFC did not show a univariate parametric modulation based on the higher or lower component of one type of conflict (e.g., having more spatial Stroop conflict or less Simon conflict), it implies that dissimilarity of conflicts is represented by a linear increase or decrease of neural responses. Therefore, the similarity of conflict is represented in multivariate neural responses that combine two sources of conflict.

      The strength of the current approach lies in the clear effect of parametric modulation of conflict similarity across different conflict types. The authors employed a clever cross-subject RSA that counterbalanced and isolated the targeted effect of conflict similarity, decorrelating orientation similarity of stimulus positions that would otherwise be correlated with conflict similarity. A pattern of neural response seems to exist that maps different types of conflict, where each type is defined by the parametric gradation of the yoked spatial Stroop conflict and the Simon conflict on a similarity scale. The similarity of patterns increases in incongruent trials and is correlated with CSE modulation of behavior.

      The main significance of the paper lies in the evidence supporting the use of an organized "cognitive space" to represent conflict information as a general control strategy. The authors thoroughly test this idea using multiple approaches and provide convincing support for their findings. However, the universality of this cognitive strategy remains an open question.

      (Public Reviews) Taken together, this study presents an exciting possibility that information requiring high levels of cognitive control could be flexibly mapped into cognitive map-like representations that both benefit and bias our behavior. Further characterization of the representational geometry and generalization of the current results look promising ways to understand representations for cognitive control.

      Response: We would like to thank the reviewer for the positive evaluation of our manuscript and for providing constructive comments. In response to your suggestions, we have acknowledged the potential limitation of the design and the cross-subject RSA approach, and incorporated the open questions to the discussions. Please find our detailed responses below.

      The task presented in the study involved two sources of conflict information through a single salient visual input, which might have encouraged the utilization of a common space.

      Response: We agree that the unified visual input in our design may have facilitated the utilization of a common space. However, we believe the stimuli are not necessarily unified in the construction of the common space. To further test the potential interaction between the concrete stimulus setting and the cognitive space representation, it is necessary to use varied stimuli in future research. We have left this as an open question in the discussion:

      Can we effectively map any sources of conflict with completely different stimuli into a single space?

      The similarity space was analyzed at the level of between-individuals (i.e., crosssubject RSA) to mitigate potential confounds in the design, such as congruency and the orientation of stimulus positions. This approach makes it challenging to establish a direct link between the quality of conflict space representation and the patterns of behavioral adaptations within individuals.

      Response: By setting the variables as random effects at the subject level, we have extracted the individual effects that incorporate both the group-level fixed effects and individual-level random effects. We believe this approach yields results that are as reliable, if not more, than effects calculated from individual data only. First, the mixed effect linear (LME) model has included all the individual data, forming the basis for establishing random effects. Therefore, the individual effects derived from this approach inherently reflect the individual-specific effects. To support this notion, we have included a simulation script (accessible in the online file “simulation_LME.mlx” at https://osf.io/rcq8w) to demonstrate the strong consistency between the two approaches (see Author response image 8). In this simulation, we generated random data (Y) for 35 subjects, each containing 20 repeated measurements across 5 conditions. To streamline the simulation, we only included one predictor (X), which was treated as both fixed and random effects at the subject level. We applied two methods to calculate the individual beta coefficient. The first involved extracting individual beta coefficients from the LME model by summing the fixed effect with the subject-specific random effect. The second method was entailed conducting a regression analysis using data from each subject to obtain the slope. We tested their consistency by calculating the Pearson correlation between the derived beta coefficients. This simulation was repeated 100 times.

      Author response image 8.

      The consistent individual beta coefficients between the mixed effect model and the individual regression analysis. A) The distribution of Pearson correlation between the two methods for 100 times. B) An example from the simulation showing the highly correlated results from the two methods. Each data point indicates a subject (n=35).

      Second, the potential difference between the two methods lies in that the LME model have also taken the group-level variance into account, such as the dissociable variances of the conflict similarity and orientation across subject groups. This enabled us to extract relatively cleaner conflict similarity effects for each subject, which we believe can be better linked to the individual behavioral adaptations. Moreover, we have extracted the behavioral adaptations scores (i.e., the similarity modulation effect on CSE) using a similar LME approach. Conducting behavioral analysis solely using individual data would have been less reliable, given the limited sample size of individual data (~32 points per subject). This also motivated us to maintain consistency by extracting individual neural effects using LME models.

      Furthermore, it remains unclear at which cognitive stages during response selection such a unified space is recruited. Can we effectively map any sources of conflict into a single scale? Is this unified space adaptively adjusted within the same brain region? Additionally, does the amount of conflict solely define the dimensions of this unified space across many conflict-inducing tasks? These questions remain open for future studies to address.

      Response: We appreciate the reviewer’s constructive open questions. We respond to each of them based on our current understanding.

      1) It remains unclear at which cognitive stages during response selection such a unified space is recruited.

      We anticipate that the cognitive space is recruited to guide the transference of behavioral CSE at two critical stages. The first stage involves the evaluation of control demands, where the representational distance/similarity between previous and current trials influences the adjustment of cognitive control. The second stage pertains to is control execution, where the switch from one control state to another follows a path within the cognitive space. It is worth noting that future studies aiming to address this question may benefit from methodologies with higher temporal resolutions, such as EEG and MEG, to provide more precise insights into the temporal dynamics of the process of cognitive space recruitment.

      2) Can we effectively map any sources of conflict into a single scale?

      It is possible that various sources of conflict can be mapped onto the same space based on their similarity, even if finding such an operational defined similarity may be challenging. However, our results may offer an approach to infer the similarity between two conflicts. One way is to examine their congruency sequence effect (CSE), with a stronger CSE suggesting greater similarity. The other way is to test their representational similarity within the dorsolateral prefrontal cortex.

      3) Is this unified space adaptively adjusted within the same brain region? We do not have an answer to this question. We showed that the cognitive space does not change with time (Note. S3). What have adjusted is the control demand to resolve the quickly changing conflict conditions from trial to trial. Though, it is an interesting question whether the cognitive space may be altered, for example, when the mental state changes significantly. And if yes, we can further test whether the change of cognitive space is also within the right dlPFC.

      4) Additionally, does the amount of conflict solely define the dimensions of this unified space across many conflict-inducing tasks?

      Our understanding of this comment is that the amount of conflict refers to the number of conflict sources. Based on our current finding, the dimensions of the space are indeed defined by how many different conflict sources are included. However, this would require the different conflict sources are orthogonal. If some sources share some aspects, the cognitive space may collapse to a lower dimension. We have incorporated the first question into the discussion:

      Moreover, we anticipate that the representation of cognitive space is most prominently involved at two critical stages to guide the transference of behavioral CSE. The first stage involves the evaluation of control demands, where the representational distance/similarity between previous and current trials influences the adjustment of cognitive control. The second stage pertains to control execution, where the switch from one control state to another follows a path within the cognitive space. However, we were unable to fully distinguish between these two stages due to the low temporal resolution of fMRI signals in our study. Future research seeking to delve deeper into this question may benefit from methodologies with higher temporal resolutions, such as EEG and MEG.

      We have included the other questions into the manuscript as open questions, calling for future research.

      Several interesting questions remains to be answered. For example, is the dimension of the unified space across conflict-inducing tasks solely determined by the number of conflict sources? Can we effectively map any sources of conflict with completely different stimuli into a single space? Is the cognitive space geometry modulated by the mental state? If yes, what brain regions mediate the change of cognitive space?

      Minor comments:

      • The original comment about out-of-sample predictions to examine the continuity of the space was a suggestion for testing neural representations, not behavior (I apologize for the lack of clarity). Given the low dimensionality of the conflict space shown by the participation ratio, we expect that linear separability exists only among specific combinations of conditions. For example, the pair of conflicts 1 and 5 together is not linearly separable from conflicts 2 and 3. But combined with other results, this is already implied.

      Response: We apologize for the misunderstanding. In fact, performing a prediction analysis using the extensive RSM in our study does presents certain challenges, primarily due to its substantial size (1400x1400) and the intricate nature of the mixed-effect linear model. In our efforts to simplify the prediction process by excluding random effects, we did observe a correlation between the predicted and original values, albeit a relatively small Pearson correlation coefficient of r = 0.024, p < .001. This small correlation can be attributed to two key factors. First, the exclusion of data points impacts not only the conflict similarity regressor but also other regressors within the model, thereby diminishing the predictive power. Secondly, the large amount of data points in the model heightens the risk of overfitting, subsequently reducing the model’s capacity for generalization and increasing the likelihood of unreliable predictions. Given these potential problems, we have opted not to include this prediction in the revised manuscript.

    1. Author Response

      Author responses to the original review:

      The data we produce are not criticized as such and thus, do not require revision; the criticisms concern our interpretation of them. General themes of the reviews are that i) genetic signatures do not matter for defining neuronal types (here sympathetic versus parasympathetic); ii) that a cholinergic postganglionic autonomic neuron must be parasympathetic; and iii) that some physiology of the pelvic region would deserve the label “parasympathetic”. We answered the latter argument in (Espinosa-Medina et al., 2018) to which we refer the interested reader; and we fully disagree with the first two. Of note, part of the last sentence of the eLife assessment is misleading and does not reflect the referees’ comments. Our paper analyses genetic differences between the cranial and sacral outflow and uses them to argue that they cannot be both parasympathetic. The eLife assessment acknowledges the “genetic differences” but concludes that, somehow, they don’t detract from a common parasympathetic identity. We take issue with this paradox, of course, but it is coherent with the referee’s comments. On the other hand, the eLife assessment alone pushes the paradox one step further by stating that “functional differences” between the cranial and sacral outflows can’t either prevent them from being both parasympathetic. We would also object to this, but the only “functional differences” used by the referees to dismiss our diagnostic of a sympathetic-like character (rather than parasympathetic) for the sacral outflow are between noradrenergic and cholinergic, and between sympathetic and parasympathetic (and we also disagree with those, see above, and below) —not between cranial and sacral.

      We will thus use the opportunity offered by eLife to keep the paper as it is (with a few minor stylistic changes). We respond below to the referees’ detailed remarks and hope that the publication, as per eLife new model, of the paper, the referees’ comments and our response will help move the field forward.

      Public review by Referee #1

      “Consistently, the P3 cluster of neurons is located close to sympathetic neuron clusters on the map, echoing the conventional understanding that the pelvic ganglia are mixed, containing both sympathetic and parasympathetic neurons”.

      The greater closeness of P3 than of P1/2/4 to the sympathetic cluster can be used to judge P1/2/4 less sympathetic than P3 (and more… something else), but not more parasympathetic. There is no echo of the “conventional understanding” here.

      “A closer look at the expression showed that some genes are expressed at higher levels in sympathetic neurons and in P2 cluster neurons ” [We assume that the referee means “in sympathetic neurons and in P3 cluster neurons”] but much weaker in P1, P2, and P4 neurons such as Islet1 and GATA2, and the opposite is true for SST. Another set of genes is expressed weakly across clusters, like HoxC6, HoxD4, GM30648, SHISA9, and TBX20.

      These statements are inaccurate; On the one hand, the classification is not based on impression by visual inspection of the heatmap, but by calculations, using thresholds. Admittedly, the thresholds have an arbitrary aspect, but the referee can verify (by eye inspection of heatmap) that genes which we calculate as being at “higher levels in sympathetic neurons and in P3 cluster neurons, but much weaker in P1, P2, and P4 neurons” or vice versa, i.e. noradrenergic or cholinergic neurons (genes from groups V and VI, respectively), have a much bigger difference than those cited by the referee, indeed are quasi-absent from the weaker clusters or ganglia. In addition, even by subjective eye inspection:

      Islet is equally expressed in P4 and sympathetics.

      SST is equally expressed in P1 and sympathetics.

      Tbx20 is equally expressed in P2 and sympathetics.

      HoxC6, HoxD4, GM30648, SHISA9 are equally expressed in all clusters and all sympathetic ganglia.

      “Since the pelvic ganglia are in a caudal body part, it is not surprising to have genes expressed in pelvic ganglia, but not in rostral sphenopalatine ganglia, and vice versa (to have genes expressed in sphenopalatine ganglia, but not in pelvic ganglia), according to well recognized rostro-caudal body patterning, such as nested expression of hox genes.”

      We do not simply show “genes expressed in pelvic ganglia, but not in rostral sphenopalatine ganglia, and vice versa”, i.e. a genetic distance between pelvic and sphenopalatine, but many genes expressed in all pelvic cells and sympathetic ones, i.e. a genetic proximity between pelvic and sympathetic. This situation can be deemed “unsurprising”, but it can only be used to question the parasympathetic nature of pelvic cells (as we do), or considered irrelevant (as the referee does, because genes would not define cell types, see our response to an equivalent stance by Referee#2). Concerning Hox genes, we do take them into account, and speculate in the discussion that their nested expression is key to the structure of the autonomic nervous system, including its division into sympathetic and parasympathetic outflows.

      It is much simpler and easier to divide the autonomic nervous system into sympathetic neurons that release noradrenaline versus parasympathetic neurons that release acetylcholine, and these two systems often act in antagonistic manners, though in some cases, these two systems can work synergistically. It also does not matter whether or not pelvic cholinergic neurons could receive inputs from thoracic-lumbar preganglionic neurons (PGNs), not just sacral PGNs; such occurrence only represents a minor revision of the anatomy. In fact, it makes much more sense to call those cholinergic neurons located in the sympathetic chain ganglia parasympathetic.

      This “minor revision of the anatomy” would make spinal preganglionic neurons which are universally considered sympathetic (in the thoraco-lumbar chord), synapse onto large numbers of parasympathetic neurons (in the paravertebral chains for sweat glands and periosteum, and in the pelvic ganglion), robbing these terms of any meaning.

      Thus, from the functionality point of view, it is not justified to claim that "pelvic organs receive no parasympathetic innervation".

      There never was any general or rigorous functional definition of the sympathetic and parasympathetic nervous systems — it is striking, almost ironic, that Langley, creator of the term parasympathetic and the ultimate physiologist, provides an exclusively anatomic definition in his Autonomic Nervous System, Part I. Hence, our definition cannot clash with any “functionality point of view”. In fact, as we briefly say in the discussion and explore in (Espinosa-Medina et al., 2018), it is the “sacral parasympathetic” paradigm which is unjustified from a functionality point of view, for implying a functional antagonism across the lumbo-sacral gap, which has been disproven repeatedly. It remains to be determined which neurons are antagonistic to which on the blood vessels of the external genitals; antagonism within one division of the autonomic nervous system would not be without precedent (e.g. there exist both vasoconstrictor and vasodilator sympathetic neurons, and both, inhibitor and activator enteric motoneurons). The way to this question is finally open to research, and as referee#2 says “it is early days”.

      Public review by Referee #2

      This work further documents differences between the cranial and sacral parasympathetic outflows that have been known since the time of Langley - 100 years ago.

      We assume that the referee means that it is the “cranial and sacral parasympathetic outflows” which “have been known since the time of Langley”, not their differences (that we would “further document”): the differences were explicitly negated by Langley. As a matter of fact, the sacral and cranial outflows were first likened to each other by Gaskell, 140 years ago (Gaskell, 1886). This anatomic parallel (which is deeply flawed (Espinosa-Medina et al., 2018)) was inherited wholesale by Langley, who added one physiological argument (Langley and Anderson, 1895) (which has been contested many times (Espinosa-Medina et al., 2018) and references within).

      In addition, the sphenopalatine and other cranial ganglia develop from placodes and the neural crest, while sympathetic and sacral ganglia develop from the neural crest alone.

      Contrary to what the referee says, the sphenopalatine has no placodal contribution. There is no placodal contribution to any autonomic ganglion, sympathetic or parasympathetic (except an isolated claim concerning the ciliary ganglion (Lee et al., 2003)). All autonomic ganglia derive from the neural crest as determined a long time ago in chicken. For the sphenopalatine in mouse, see our own work (Espinosa-Medina et al., 2016).

      One feature that seems to set the pelvic ganglion apart is […] the convergence of preganglionic sympathetic and parasympathetic synapses on individual ganglion cells (Figure 3). This unusual organization has been reported before using microelectrode recordings (see Crowcroft and Szurszewski, J Physiol (1971) and Janig and McLachlan, Physiol Rev (1987)). Anatomical evidence of convergence in the pelvic ganglion has been reported by Keast, Neuroscience (1995).

      Contrary to what the referee says, we do not provide in Figure 3 any evidence for anatomic convergence, i.e. for individual pelvic ganglion cells receiving dual lumbar and sacral inputs. We simply show that cholinergic neurons figure prominently among targets of the lumbar pathway. This said, the convergence of both pathways on the same pelvic neurons, described in the references cited by the referee, is another major problem in the theory of the “sacral parasympathetic” (as we discussed previously (Espinosa-Medina et al., 2018)).

      It should also be noted that the anatomy of the pelvic ganglion in male rodents is unique. Unlike other species where the ganglion forms a distributed plexus of mini-ganglia, in male rodents the ganglion coalesces into one structure that is easier to find and study. Interestingly the image in Figure 3A appears to show a clustering of Chat-positive and Th-positive neurons. Does this result from the developmental fusion of mini ganglia having distinct sympathetic and parasympathetic origins?

      The clustering of Chat-positive and Th-positive cells could arise from a number of developmental mechanisms, that we have no idea of at the moment. This has no bearing on sympathetic and parasympathetic.

      In addition, Brunet et al dismiss the cholinergic and noradrenergic phenotypes as a basis for defining parasympathetic and parasympathetic neurons. However, see the bottom of Figure S4 and further counterarguments in Horn (Clin Auton Res (2018)).

      The bottom of Figure S4 simply indicates which cells are cholinergic and adrenergic. We have already expounded many times that noradrenergic and cholinergic do not coincide with sympathetic and parasympathetic. Henry Dale (Nobel Prize 1936) demonstrated this. Langley himself devoted several pages of his final treatise to this exception to his “Theory on the relation of drugs to nerve system” (Langley, 1921) (p43) (which was actually a bigger problem for him than it is for us, for reason which are too long to recount here; it is as if the theoretical difficulties experienced by Langley had been internalized to this day in the form of a dismissal of the cholinergic sympathetic neurons as a slightly scandalous but altogether forgettable oddity). (Horn, 2018) reviews the evidence that the thoracic cholinergic sympathetic phenotype is brought about by a secondary switch upon interaction with the target and argues that this would be a fundamental difference with the sacral “parasympathetic”. But in fact the secondary switch is preceded by co-expression of ChAT and VAChT with Th in most sympathetic neurons (reviewed in (Ernsberger and Rohrer, 2018)); and we have no idea of the dynamic in the pelvic ganglion. It may also be mentioned in this context that target-dependent specification of neuronal identity has also been demonstrated of other types of sympathetic neurons ((Furlan et al., 2016)

      What then about neuropeptides, whose expression pattern is incompatible with the revised nomenclature proposed by Brunet et al.?

      There was never any neuropeptide-inspired criterion for a nomenclature of the autonomic nervous system.

      Figure 1B indicates that VIP is expressed by sacral and cranial ganglion cells, but not thoracolumbar ganglion cells.

      Contrary to what the referee says, there are VIP-positive cells in our sympathetic data set and even strongly positive ones, except they are scattered and few (red bars on the UMAP). They correspond to cholinergic sympathetics, likely sudomotor, which are known to contain VIP (e.g.(Anderson et al., 2006)(Stanke et al., 2006)). In other words, VIP is probably part of what we call the cholinergic synexpression group (but was not placed in it by our calculations, probably because of a low expression level in sympathetic noradrenergic cells).

      The authors do not mention neuropeptide Y (NPY). The immunocytochemistry literature indicates that NPY is expressed by a large subpopulation of sympathetic neurons but never by sacral or cranial parasympathetic neurons.

      Contrary to what the referee says, Keast (Keast, 1995) finds 3.7% of pelvic neurons double stained for NPY and VIP in male rats, and says (Keast, 2006) that in females “co-expression of NPY and VIP is common” ( thus in cholinergic neurons that the referee calls “parasympathetic”). Single cell transcriptomics is probably more sensitive than immunochemistry, and in our dichotomized data set (table S1), NPY is expressed in all pelvic clusters and all sympathetic ganglia. In other words, it is one more argument for their kinship. It does not appear in the heatmap because it ranks below the 100 top genes.

      Answer to the original recommendations by Referee #2

      Introduction - the use of the words 'consensual' and 'promiscuity' are not clear and rather loaded in the context of the pelvic ganglia. Pick alternative words.

      There is no sexual innuendo inherent in “promiscuity”: “condition of elements of different kinds grouped or massed together without order” (Oxford English Dictionary). We replaced “never consensual” by “never generally accepted”.

      Results - Page 2 - what sex were the mice? Previous works indicate significant sexual dimorphism in the pelvic ganglion.

      The mice included both males and females, and male and female cells are represented in all ganglia and clusters. This is now mentioned in the Material and Methods. Thus, however unsuited to analyze sexual dimorphism, our data set ensures that all the cell types we describe are qualitatively present in both sexes.

      Results line 3 - the celiac and mesenteric ganglia are prevertebral ganglia and not part of the sympathetic chain. The chain refers to the paravertebral ganglia.

      We replaced “part of the prevertebral chain” by “belonging to prevertebral ganglia”. This said, there are precedents for “prevertebral chain ganglia” to designate the rostro-caudal series of prevertebral ganglia. Rita Levi-Montalcini, for example, who devoted her glorious career to sympathetic ganglia, writes in 1972 “The nerve cell population of para- and prevertebral chain ganglia is reduced to 3–5% of that of controls”. (10.1016/0006-8993(72)90405-2).

      Page 3 - "as the current dogma implies". Dogma often refers to opinion or church doctrine. The current nomenclature is neither. Pick another word.

      There is little in science that is proven to the point of eliminating any element of opinion. “Dogma” refers to “that which is held as a principle or tenet […], especially a tenet authoritatively laid down by […] a school of thought” (OED). And “dogma” is used in science to designate tenets better experimentally supported than the “sacral parasympathetic”, such as the “central dogma of molecular biology”.

      Page 3 - "To give justice" implies the classical notion is unjust. How about, 'to further explore previous evidence indicating that ....'

      The term is indeed not proper English for the meaning intended, and the right expression is “to do justice”, to mean: “to treat [a subject or thing] in a manner showing due appreciation, to deal with [it] as is right or fitting” (OED). We have corrected the paper accordingly.

      Page 4 top - the convergence indicated by Figure 3 does not justify excluding cholinergic and noradrenergic genes from the analysis.

      Contrary to what the referee says, Figure 3 does not show any “convergence”, see our answer to Referee#1. What Figure 3 shows is that cells that are targeted by the lumbar pathway (a pathway universally deemed “sympathetic”) are cholinergic in massive proportion. Therefore, by an uncontroversial criterion, the pelvic ganglion contains lots of sympathetic cholinergic neurons. The only other option is to declare that sympathetic preganglionic neurons synapse onto parasympathetic postganglionic ones (which is what Referee#1 proposes, and considers “much simpler”. We beg to differ).

      Our justification for excluding cholinergic and noradrenergic genes from the definition of “sympathetic” and “parasympathetic” is simply that sympathetic neurons can be cholinergic (to sweat glands and periosteum; and — as we show in Figure 3 — many targets of the lumbar pathway); One can also note that anywhere else in the nervous system, classifying cell types as a function of neurotransmitter phenotype would lead to non-sensical descriptions, such as putting together pyramidal cells and cerebellar granules, or motor neurons and basal forebrain cholinergic neurons. Indeed Referee#1 proposes such a revolutionary revision, by calling all cholinergic autonomic neurons “parasympathetic” (see our answer above).

      Keast (1995) did similar experiments and used presynaptic lesions to draw a different conclusion indicating preferential innervation pelvic subpopulations.

      Keast found “preferential” innervation of pelvic subpopulations based on lesion experiments; Nevertheless, she concluded (at the time) that “the correct definition of these two components of the nervous system is based on neuroanatomy rather than chemistry” (Keast, 2006).

      Page 4 - "In the aggregate, the pelvic ganglion is best described as a divergent sympathetic ganglion devoid of parasympathetic neurons" The notion of a divergent ganglion is completely unclear!

      We take “divergent” in a developmental or evolutionary meaning: related to sympathetic ganglia, yet somewhat differing from them. Elsewhere we use the word “modified”. Importantly (and as cited in the paper), a similar situation emerges from the single cell transcriptomic analysis of the lumbar and sacral preganglionics (by other research groups).

      Granted, it is devoid of neurons having the signature of cranial parasympathetics, but that is insufficient to conclude that they are not parasympathetics.

      If a genetic signature which is not only un-parasympathetic, but sympathetic-like remains compatible with some version of the label “parasympathetic”, we get dangerously close to dismissing the molecular make-up of a neuron as a definition of its type. This goes against any contemporary understanding of neuron types (take (Zeisel et al., 2018) among hundreds of other examples).

      Page 4 - "the entire taxonomy of autonomic ganglia could be a developmental readout of Hox genes." This reader completely agrees! We appreciate this would be difficult to test but it helps to explain possible differences along the rostro-caudal axis. Consider making this a key implication of the study!

      If the reader agrees, then his/her previous points become mysterious: we speculate that the Hox code determines the structure of the autonomic nervous system, i.e. the array, along the rostrocaudal axis, of a bulbar parasympathetic, a thoracolumbar sympathetic and lumbo-sacral “pelvo-sympathetic”. The existence of caudal parasympathetic neurons, on the contrary, would subvert any role for Hox genes: similar neurons (similar enough to be called by the same name) would arise at completely different rostro-caudal levels, i.e. with a different Hox code.

      Page 5 - "It is thus remarkable ...that we uncover in no way contradicts the physiology." Not really. The 'classical' sympathetic system innervates the limbs, and the skin and it participates in thermoregulation and in cardiovascular adjustments to exercise. The parasympathetic system does none of these things. Reclassing the pelvic outflow as pseudo-sympathetic contradicts this physiology.

      We do not say that the sacral outflow is classically sympathetic; We go all the way to proposing the special name “pelvo-sympathetic”; And we insist that these special sympathetic-like neurons have special targets (detrusor muscle, helicine arteries…): there is no contradiction. Not only is there no contradiction, but we remove the mind-twister of an anatomical/genetic/cell type-based “sacral parasympathetic” combined with a lack of physiological lumbosacral antagonism (we provide a short history of this dissonance in (Espinosa-Medina et al., 2018)), which led Wilfrid Jänig to write (Jänig, 2006)(p. 357): “Thus, functions assumed to be primarily associated with sacral (parasympathetic) are well duplicated by thoracolumbar (sympathetic) pathways. This shows that the division of the spinal autonomic systems into sympathetic and parasympathetic with respect to sexual functions is questionable”. We could not agree more: this division is questionable in terms of physiology and inexistent in terms of cell types. In other words, we reconcile cell types with physiology (but “it is early days”).

      Answer to the novel recommendations by Referee #2

      In addition to my original comments, important anatomical and functional distinctions are not explained by the data in this paper. ANATOMY- Sympathetic ganglia are located in close proximity to major branches of the aorta. Cranial and sacral parasympathetic ganglia are located next to or within the structures they innervate (e.g. eye, lung, heart, bladder).

      The pelvic ganglion, including some of its cholinergic neurons, that the referee insist are parasympathetic, is further removed from one of its major targets (the helicine arteries of the external genitals) than the sympathetic prevertebral ganglia are of some of theirs (like the gut or kidney). We discussed this issue in (Espinosa-Medina et al., 2018).

      FUNCTION- The sympathetic system controls state variables (e.g. body temperature, blood pressure, serum electrolytes and fluid balance), parasympathetic neurons do not.

      Even in the classical view, the sympathetic system controls the blood vessels of the external genitals or the size of the pupil, for example, which are not state variables.

      […] The data in the paper are a useful next step in defining the genetic diversity of autonomic neurons but do not justify or improve upon existing nomenclature. The future challenge is to understand distinctions between subsets of autonomic ganglion cells that innervate different targets and the principles that govern the integrative function of the autonomic motor system that controls behavior.

      We thank the referee for finding our data useful; and we fully agree with the latter statement. However, neurons, like many other cell types, are hierarchically organized (Zeng and Sanes, 2017), i.e. subsets of neurons belong to sets, with defining traits. Our data argue that there is no parasympathetic neuronal set that includes any pelvic ganglionic neuron. In contrast, there is a ganglionic sympathetic set (defined by our analysis of gene expression) which includes all of them — as there is a preganglionic sympathetic set that includes sacral preganglionics (Alkaslasi et al., 2021; Blum et al., 2021)(although the direct comparison with cranial preganglionics is yet to be made).

      References

      Anderson, C. R., Bergner, A. and Murphy, S. M. (2006). How many types of cholinergic sympathetic neuron are there in the rat stellate ganglion? Neuroscience 140, 567–576.

      Alkaslasi, M. R., Piccus, Z. E., Hareendran, S., Silberberg, H., Chen, L., Zhang, Y., Petros, T. J. and Le Pichon, C. E. (2021). Single nucleus RNA-sequencing defines unexpected diversity of cholinergic neuron types in the adult mouse spinal cord. Nat Commun 12, 2471.

      Blum, J. A., Klemm, S., Shadrach, J. L., Guttenplan, K. A., Nakayama, L., Kathiria, A., Hoang, P. T., Gautier, O., Kaltschmidt, J. A., Greenleaf, W. J., et al. (2021). Single-cell transcriptomic analysis of the adult mouse spinal cord reveals molecular diversity of autonomic and skeletal motor neurons. Nat Neurosci 24, 572–583.

      Ernsberger, U. and Rohrer, H. (2018). Sympathetic tales: subdivisons of the autonomic nervous system and the impact of developmental studies. Neural Dev 13, 20.

      Espinosa-Medina I, Saha O, Boismoreau F, Chettouh Z, Rossi F, Richardson WD, Brunet JF (2016) The sacral autonomic outflow is sympathetic. Science 354, 893-897

      Espinosa-Medina, I., Saha, O., Boismoreau, F. and Brunet, J.-F. (2018). The “sacral parasympathetic”: ontogeny and anatomy of a myth. Clin Auton Res 28, 13–21.

      Furlan, A., La Manno, G., Lübke, M., Häring, M., Abdo, H., Hochgerner, H., Kupari, J., Usoskin, D., Airaksinen, M. S., Oliver, G., et al. (2016). Visceral motor neuron diversity delineates a cellular basis for nipple- and pilo-erection muscle control. 19, 1331–1340.

      Gaskell, W. H. (1886). On the Structure, Distribution and Function of the Nerves which innervate the Visceral and Vascular Systems. J Physiol 7, 1-80.9.

      Horn, J. P. (2018). The sacral autonomic outflow is parasympathetic: Langley got it right. Clin Auton Res 28, 181–185.

      Jänig, W. (2006). The Integrative Action of the Autonomic Nervous System: Neurobiology of Homeostasis. Cambridge: Cambridge University Press.

      Keast, J. R. (1995). Visualization and immunohistochemical characterization of sympathetic and parasympathetic neurons in the male rat major pelvic ganglion. Neuroscience 66, 655–662.

      Keast, J. R. (2006). Plasticity of pelvic autonomic ganglia and urogenital innervation. International Review of Cytology - a Survey of Cell Biology, Vol 248 248, 141-+.

      Langley, J. N. (1921). In The autonomic nervous system (Pt. I)., p. Cambridge: Heffer & Sons ltd.

      Langley, J. N. and Anderson, H. K. (1895). The Innervation of the Pelvic and adjoining Viscera: Part II. The Bladder. Part III. The External Generative Organs. Part IV. The Internal Generative Organs. Part V. Position of the Nerve Cells on the Course of the Efferent Nerve Fibres. J Physiol 19, 71–139.

      Lee, V. M., Sechrist, J. W., Luetolf, S. and Bronner-Fraser, M. (2003). Both neural crest and placode contribute to the ciliary ganglion and oculomotor nerve. Developmental biology 263, 176–190.

      Stanke, M., Duong, C. V., Pape, M., Geissen, M., Burbach, G., Deller, T., Gascan, H., Parlato, R., Schütz, G. and Rohrer, H. (2006). Target-dependent specification of the neurotransmitter phenotype:cholinergic differentiation of sympathetic neurons is mediated in vivo by gp130 signaling. Development 133, 141–150.

      Zeisel, A., Hochgerner, H., Lönnerberg, P., Johnsson, A., Memic, F., van der Zwan, J., Häring, M., Braun, E., Borm, L. E., La Manno, G., et al. (2018). Molecular Architecture of the Mouse Nervous System. Cell 174, 999-1014.e22.

      Zeng, H. and Sanes, J. R. (2017). Neuronal cell-type classification: challenges, opportunities and the path forward. Nat Rev Neurosci 18, 530–546.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We greatly appreciate the overwhelmingly positive summaries from all three reviewers and the eLife editorial team. All reviewers provided extremely detailed feedback regarding the initially submitted manuscript, we appreciate their efforts in helping us improve this manuscript. Below, are listed each of the specific comments made by the reviewers, and our responses to them in a point-by-point format.

      The only notable change made to the manuscript that was not in response to comments from a reviewer was regarding nomenclature of the structure that we had previously called the nuclear microtubule organising centre (MTOC). We had used the term MTOC to describe the entire structure, which spans the nuclear envelope and comprises an intranuclear portion and cytoplasmic extensions. Given recent evidence, including findings from this study, it is possible that both the intranuclear region and cytoplasmic extensions both have microtubule nucleating capacity, and therefore both meet the definition of an MTOC. To disambiguate this, we now refer to the overall structure as the centriolar plaque (CP), consistent with previous literature. The intranuclear portion of the CP will be referred to as the inner CP, while the cytoplasmic portion will be referred to as the outer CP.

      Reviewer #1 (Recommendations For The Authors):

      1) In the first part of the result section, a paragraph on sample processing for U-ExM could be added, with reference to Fig 1b.

      The following section has been added to the first paragraph of the results “…In this study all parasites were fixed in 4% paraformaldehyde (PFA), unless otherwise stated, and anchored overnight at 37 °C before gelation, denaturation at 95 °C and expansion. Expanded gels were measured, before shrinking in PBS, antibody staining, washing, re-expansion, and imaging (Figure 1b). Parasites were harvested at multiple time points during the intraerythrocytic asexual stage and imaged using Airyscan2 super-resolution microscopy, providing high-resolution three-dimensional imaging data (Figure 1c). A full summary of all target-specific stains used in this study can be found in Figure 1d.”

      2) The order of the figures could be changed for more consistency. For example, fig 2b is cited before 2a.

      An earlier reference to figure 2a was added to rectify this discrepancy.

      3) In Fig 2b it is difficult to distinguish the blue (nuclear) and green (plasma membrane) lines.x

      The thickness of these lines has been doubled.

      4) It is unclear what the authors want to show in Fig 2a.

      The intention of this figure, as with panel a of the majority of the organelle-specific figures in this manuscript, is simply to show what the target protein/structure looks like across intraerythrocytic development.

      5) Lines 154-155, the numbers of MTOC observed do not match those in Supplt Fig2c.

      This discrepancy has been addressed, the numbers in Supplementary Figure 2c were accurate so the text has been changed to reflect this.

      6) Line 188: the authors should explain the principle of C1 treatment.

      The following explanation of C1 treatment has been provided:

      “To ensure imaged parasites were fully segmented, we arrested parasite development by adding the reversible protein kinase G inhibitor Compound 1 (C1). This inhibitor arrests parasite maturation after the completion of segmentation but before egress. When C1 is washed out, parasites egress and invade normally, ensuring that observations made in C1-arrested parasites are physiologically relevant and not a developmental artefact due to arrest.”

      7) Lines 195-204: this part is rather difficult to follow as analysis of the basal complex is detailed later in the manuscript. The authors refer to Fig4 before describing Fig3.

      This has been clarified in the text.

      8) Lines 225 and 227, the authors cite Supplt Fig 2b about the Golgi, but probably meant Supplt Fig 4? In Supplt Fig 4, the authors could provide magnification in insets to better illustrate the Golgi-MTOC association.

      This should have been a reference to Supplementary Figure 2e instead of 2b, which has now been changed. In Supplementary Figure 4, zooms into a single region of Golgi have been provided to more clearly show its MTOC association.

      9) Supplt Fig8 is wrong (duplication of Supplt Fig6).

      We apologise for this mistake, the correct figure is now present in Supplementary Figure 8.

      10) Line 346: smV5 should be defined, and generation of the parasites should be described in the methods.

      This has now been defined, but we have not described the generation of the parasites, as this was performed in a previous study that we have referenced.

      11) Lines 361-362: "By the time the basal complex reaches its maximum diameter..." This sentence is not very clear, the authors could explain more precisely the sequence of events, indicating that the basal complex starts moving in the basal direction, as clearly illustrated in Fig 4a.

      This has been prefaced with the following sentence “…As the parasite undergoes segmentation, the basal complex expands and starts moving in the basal direction.”

      12) Supplt Fig6 comes after Supplt Fig9 in the narrative, and therefore could be placed after.

      Supplementary Figure 6 and 9 follow the order in which they are referred to in the text.

      13) Line 538: Supplt Fig9e instead of 9d.

      This has been fixed.

      14) Line 581: does the PFA-glutaraldehyde fixation allows visualizing other structures in addition to cytostome bulbs?

      While PFA-glutaraldehyde fixation allows visualisation of cytostome bulbs, to date we have not observed any other structure that stains/preserves better using NHS Ester or BODIPY Ceramide in PFA-glutaraldehyde fixed parasites. As a general trend, all structures other than cytostomes become somewhat more difficult to identify using NHS Ester or BODIPY Ceramide in PFA-glutaraldehyde fixed samples due to the local contrast with the red blood cell cytoplasm. It seems likely that this is just due to the preservation of RBC cytoplasm, and would be expected from any fixation method that doesn’t result in RBC lysis, rather than anything unique to glutaraldehyde.

      15) Line 652-653: It is unclear how the authors can hypothesize that rhoptries form de novo rather than splitting based on their observations.

      This not something we can say with certainty, we have however, introduced the following paragraph to qualify our claims: “Overall, we present three main observations suggesting that rhoptry pairs undergo sequential de novo biogenesis rather than dividing from a single precursor rhoptry. First, the tight correlation between rhoptry and MTOC cytoplasmic extension number suggests that either rhoptry division happens so fast that transition states are not observable with these methods or that each rhoptry forms de novo and such transition states do not exist. Second, the heterogeneity in rhoptry size throughout schizogony favors a model of de novo biogenesis given that it would be unusual for a single rhoptry to divide into two rhoptries of different sizes. Lastly, well-documented heterogeneity in rhoptry density suggests that, at least during early segmentation, rhoptries have different compositions. Heterogeneity in rhoptry contents would be difficult to achieve so quickly after biogenesis if they formed through fission of a precursor rhoptry.”

      16) Line 769: is expansion microscopy sample preparation compatible with FISH?

      Yes, there are publications of expansion being done with both MERFISH and FISH. Though it has not yet been applied to plasmodium. See examples: Wang, Guiping, Jeffrey R. Moffitt, and Xiaowei Zhuang. "Multiplexed imaging of high-density libraries of RNAs with MERFISH and expansion microscopy." Scientific reports 8.1 (2018): 4847. And Chen, Fei, et al. "Nanoscale imaging of RNA with expansion microscopy." Nature methods 13.8 (2016): 679-684.

      17) In the methods, the authors could provide details on the gel mounting step for imaging This is particularly important since this paper will likely serve as a reference standard for expansion microscopy in the field. Also, illustration that cryopreservation of gels does not modify the quality of the images would be useful.

      The following section has been added to our “image acquisition” paragraph: “Immediately before imaging, a small slice of gel ~10mm x ~10mm was cut and mounted on an imaging dish (35mm Cellvis coverslip bottomed dishes NC0409658 - FisherScientific) coated with Poly-D lysine. The side of the gel containing sample is placed face down on the coverslip and a few drops of ddH20 are added after mounting to prevent gel shrinkage due to dehydration during imaging.”

      We have decided not to illustrate that cryopreservation does not alter gel quality, as this is something that is already covered in the study that first cryopreserved gels, which is referenced in our methods section.

      Reviewer #2 (Recommendations For The Authors):

      1) Advantages and limitations of the expansion method are generally well discussed. The only matter in that respect that I was wondering is if expansion can always be assumed to be linear for all components of a cell. The hemozoin crystal does not expand (maybe not surprisingly), but could there also be other cellular structures that on a smaller scale separate or expand at a different rate than others? Is there any data on this from other organisms? I am raising this here not as a criticism of this work but if known to occur, it might need mentioning somewhere to alert the reader to it, particularly in regards to the many measurements in the paper (see also point 4). This might be a further factor contributing to the finding that the IMC and PPM could not be resolved.

      This is an excellent point and, to our knowledge, one that is currently still under investigation in the field. It is well-documented that expansion protocols need to be customized to each cell type and tissue they are applied to. Each solution used for fixation and anchoring as well as timing and temperature of denaturation can affect the expansion factor achieved as well as how isotropic/anisotropic the expanded structures turn out. However, we do not know of any examples where isotropic expansion was achieved for everything but an organelle or component of the cell. It is our impression that if the cell seems to have attained isotropic expansion, this is assumed to also be the case for the subcellular structures within it. Nonetheless, we think it remains a possibility to be considered specially as more structures are characterized using these methods. In the case of our IMC/PPM findings, when we performed calculations taking into account our experimental expansion factor as well as antibody effects, it was clear that the resolution of our microscope was not enough to resolve the two structures using our current labelling methods. So, we suspect most of the effect is driven by that. However, this still needs to be validated by attempting to resolve the two structures though alternative labelling and imaging methods.

      2) I understand that many things described in the results part are interconnected but still the level of hopping around between different figures/supp figures is considerable (see also point 6 on synchronicity of Figure parts). I do not have a simple fix, but maybe the authors could check if they could come up with a way to streamline parts of their results into a somewhat more reader friendly order.

      This has been a problem we encountered from the beginning and, after trying multiple presentations of the results and discussion, we realized they all have drawbacks. We eventually settled on this presentation as the “least confusing”. We agree, however, that the figure references and order could be better streamlined and have addressed this to the best of our ability.

      3) Are the authors sure the ER expands well and the BIP signal (Fig. S5) gives a signal reflecting the true shape of the ER? The signal in younger parasites seems rather extensive compared to what the ER (in my experience) typically looks like in these stages in live parasites.

      While there may be a discrepancy between how the presumably dynamic ER appears in live cells, and how it appears using BiP staining, we think it is unlikely this is a product of expansion. Additionally, if there were to be an artefactual change in the ER, it would be likely under-expansion rather than over-expansion, which to our knowledge has not been reported. In our opinion, the BiP staining we observe is comparable between unexpanded and expanded samples. We have included comparative images in Author response image 1 with DNA in cyan and BiP in yellow, unexpanded (left) and expanded (right) using the same microscope and BiP antibody.

      Author response image 1.

      4) It is nice to have measurements of the apicoplast and mitochondria, but given their size, this could also have been done in unexpanded, ideally live parasites, avoiding expansion and fixing artifacts. While the expansion has many nice features, measuring area of large structures may not be one where it is strictly needed. I am not saying this is not useful information, but maybe a note could be added to the manuscript that the conclusions on mitochondria and apicoplast area and division might be worth confirming in live parasites. A brief mention on similarities and differences to previous work analysing the shape and multiplication of these organelles through blood stage development (van Dooren et al MolMicrobiol2005) might also be useful.

      We agree with the reviewer that previous studies such as van Dooren et al. (2005) demonstrate that it is possible to track apicoplast and mitochondrial growth without expansion and share the opinion that live parasites are better for these measurements. Expansion only provides an advantage when more organelle-level resolution is needed. For example, in studying the association between these organelles and the MTOC or visualizing other branch-specific interactions.

      5) I could not find the Supp Fig. 8 on the IMC, the current Supp Fig. 8 is a duplication of Supp Fig. 6

      This has been addressed, Supplementary Figure 8 now refers to the IMC.

      6) Figure order is not very synchronous with the text: Fig. 2a is mentioned after Fig. 2b, Fig. 4b is mentioned first for Fig. 4 (Fig. 4a is not by itself mentioned) and before Fig. 3 is mentioned; Fig. 3b is before Fig. 3a.

      We have done our best to fix these discrepancies, but concede that we have not found a way to order these sections that doesn’t lead to some confusion.

      7) Fig. S2a, The label "Centrin" on left image is difficult to read

      We have increased the font size and changed colour slightly in the hope it is leigible.

      8) In Fig. 2a, the centrin foci are very focal and difficult to see in these images, particularly when printed out but also on screen. To a lesser extent this is also the case for CINCH in Fig. 4a (particularly when printed; when zoomed-in on screen, the signal is well visible). This issue of difficulties in seeing the fluorescence signal of some markers, particularly when printed out, applies also to other images of the paper.

      In the images of full size parasites, this is an issue that we cannot easily overcome as the fluorescent channels are already at maximum brightness without overexposure. To try and address this, we have provided zooms that we hope will more clearly show the fluorescence in these panels.

      9) Expand "C1" in line 188 (first use).

      This has been addressed in response to a previous comment.

      10) Line 227; does Supp Fig. 2b really show Golgi- cytoplasmic MTOC association?

      We have rephrased the wording of this section to clarify that we are observing proximity and not necessarily a physical tethering, however it is worth nothing that this was an accidental reference to Supplementary Figure 2b, and should’ve been Supplementary Figure 2e.

      11) Line 230, in segmented schizonts the Golgi was considered to be at the apical end. It might be more precise to call its location to be close to the nucleus on the side facing the apical end of the parasite. It seems to me it often tends to be closer to the nucleus (in line with its proximity to the ER, see also point 13).

      We have added more detail to this description clarifying that despite being at the apical end, the Golgi is closer to the nucleus.

      12) Supp Fig. S5: Is the top cell indeed a ring? In the second cell there seem to be two nuclei, I assume this is a double infection (please indicate this in the legend or use images of a single infection).

      In our opinion, the top cell in Supplementary Figure 5 is a ring. This is based on its size and its lack of an observable food vacuole (an area that lacks NHS ester staining). We typically showed images of ameoboid rings to avoid this ambiguity, but we think this parasite is a ring nonetheless. For the second image, this parasite is not doubly infected, as both DNA masses are actually contained within the same dumbbell shaped nuclear envelope. This parasite is likely undergoing its first anaphase (or the Plasmodium equivalent of anaphase) and will likely soon undergo its first nuclear division to separate these two DNA masses into individual nuclei.

      13) Line 244: I would not call the Golgi a part of the apical cluster of organelles. All secretory cargo originates from the ER-Golgi-transGolgi axis in a directional manner and this axis is connected to the nucleus by the perinuclear ER. If seen from a secretory pathway centred view, it is the other way around and you could call the apical organelles part of the nuclear periphery which would be equally non-ideal.

      Everything is close together in such a small cell. The secretory pathway likely is arranged in a serial manner starting from the perinuclear region to the transGolgi where cargo is sorted into vesicles for different destinations of which one is for the delivery of material to the apical organelles. The proposition that the Golgi is part of the apical cluster therefore somehow feels wrong, as the Golgi can still be considered to be upstream of the transGolgi before apical cargo branches off from other cargo destined for other destinations We agree with the reviewer that claiming a functional association between the Golgi and the apical organelles would be odd and we by no means meant to imply such functional grouping. Our intent was to confirm observations previously made about Golgi positioning by electron microscopy studies such as Bannister et al. (2000) at a larger spatial and temporal scale. These studies make the observation that the Golgi is spatially associated with the rhoptries at the apical end of the parasites. Logically, the Golgi is tied to the apical organelles through the secretory pathway as the reviewer suggests, but we claim no further relationship beyond that of organelle biogenesis. We have made modifications to the text to clarify these points.

      14) Lines 300 - 308 (and thereafter): I assume these were also expanded parasites and the microtubule length is given after correction for expansion. I would recommend to indicate in line 274 (when first explaining the expansion factor) that all following measurements in the text represent corrected measures or, if this is not always the case, indicate on each occasion. Is the expansion factor accurate and homogenous enough to draw firm conclusions (see also point 1)? Could it be a reason for the variation seen with SPMTs? Could a cellular reference be used as a surrogate to account for cell specific expansion or would you assume that cellular substructure specific expansion differences exist and prevent this?

      This is correct, the reported number is the number corrected for expansion factor, and the corresponding graphs with uncorrected data are present in the Supplementary Figures. We have clarified this in the text. Uneven expansion can be caused when certain organelles/structures do not properly denature. Given that out protocol denatures using highly concentrated SDS at 95 °C for 90 minutes, we do not anticipate that any subcellular compartments would expand significantly differently. In this study our expansion factors varied from ~4.1-4.7 across all gels, and for our corrected values we used the median expansion factor of 4.25. If we are interpreting the length of an interpolar spindle as 20 µm for example, the value would be corrected value would be 4.7 µm when divided by the median expansion factor, 4.9 µm when divided by the lowest, and 4.2 µm when divided by the highest. These values fall well within the measurement error, and so we expect that these small deviations in expansion factor between gels have a fairly minimal influence on variation in microtubule lengths.

      15) Line 353: this is non-essential, but a 3D view of the broken basal ring might better illustrate the 2 semicircles

      We have added the following panel to Supplementary Figure 3 to illustrate this more clearly:

      Author response image 2.

      16) The way the figure legends are shaped, it often seems only panel (a) is from expansion microscopy while the microscopy images in the other parts of the figures have no information on the method used. I assume all images are from expansion microscopy, maybe this could be clarified by placing this statement in a position of the legend that makes it clear it is for all images in a figure.

      This has been clarified in the figure legends.

      17) Fig. 8b, is it clear that internal RON4 is not below or above? Consider showing a 3D representation or side view of these max projections.

      If in these images, we imagine we are looking at the ‘top’ of the rhoptries, our feeling is that the RON4 signal is on the ‘bottom’, at the part closest to the apical polar ring. We tried projecting this, however, but the images were not particularly due to spherical aberrations. Because of this, we have refrained from commenting on the RON4 location relative to the rhoptry bulb prior to elongation.

      18) Line 684 "...distribution or RON4": replace or with of. The information of the next sentence is partly redundant, consider adding it in brackets.

      This has been addressed.

      19) Fig. 9a the EBA175 signal is not very prominent and a bit noisy, are the authors confident this is indeed showing only EBA175 or is there also some background?-AK

      We agree with the reviewer that the EBA175 antibody shows a significant amount of background fluorescence, specially in the food vacuole area. However, we think the puncta corresponding to micronemal EBA175 can be clearly distinguished from background.

      20) Fig. 9b, the long appearance of the micronemes in the z-dimension likely is due to axial stretch (due to point spread function in z and refractive index mismatch), in reality they probably are more spherical. It might be worth mentioning somewhere that this likely is not how these organelles are really shaped in that dimension (spherical fluorescent beads could give an estimation of that effect in the microscopy setup used).

      After recently acquiring a water-immersion objective lens for comparison, it is clear that the transition from oil to hydrogel causes a degree of spherical aberration in the Z-plane, which in this instance causes the micronemes to be more oblong. As we make no conclusions based on the shape of the micronemes, however, we don’t think this is a significant consideration. This is an assumption that should be made when looking at any image whose resolution is not equal in all 3-dimensions. We also note that the more spherical shape of micronemes can be inferred from the max intensity projections in Figure 9c.

      21) Fig. 9b, the authors mention in the text that there is NHS ester signal that overlaps with the fluorescence signal, can occasions of this be indicated in the figure?

      Figure 9b was already quite busy, so we instead added the following extra panel to this figure that more clearly shows the NHS punctae we thought may have been micronemes:

      Author response image 3.

      22) Fig. 9, line 695, the authors write that the EBA puncta were the same size as AMA1 puncta. To me it seems the AMA1 areas are larger than the EBA foci, is their size indeed similar? Was this measured?

      Since we did not conduct any measurements and doing so robustly would be difficult given the density of the puncta, we have decided to remove our comment on the relative size of the puncta.

      23) Materials and methods: Remove "to" in line 871; explain bicarb and incomplete medium in line 885 (non-malaria researchers will not understand what is meant here); line 911 and start of 912 seem somewhat redundant

      This has been addressed.

      24) Is there more information on what the Airyscan processing at moderate filter level does? The background of the images seems to have an intensity of 0 which in standard microscopy images should be avoided (see for instance doi:10.1242/jcs.03433) similar to the general standard of avoiding entirely white backgrounds on Western blots. I understand that some background subtraction processes will legitimately result in this but then it would be nice to know a bit better what happened to the original image.

      We have taken the following excerpt from a publication on Airyscan to help clarify:

      "Airyscan processing consists of deconvolution and pixel reassignment, which yield an image with higher resolution and reduced noise. This can be a contributor to the low background in some channels. The level of filtering is the processing strength, with higher filtering giving higher resolution but increased chances of artefacts. More information about the principles behind Airyscan processing can be found in the following two publications, though details on the algorithm itself seem to be proprietary: Huff, Joseph. "The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution." (2015): i-ii. AND Wu, Xufeng, and John A. Hammer. "Zeiss airyscan: Optimizing usage for fast, gentle, super-resolution imaging." Confocal Microscopy: Methods and Protocols. New York, NY: Springer US, 2021. 111-130."

      We cannot find any further information about the specifics of Airyscan filtering, however, the moderate filter that we used is the default setting. This information was included just for clarity, rather than something we determined by comparison to other filtering settings.

      In regards to the background, the majority of some images having an intensity value of 0 is partially out of our control. For all NHS Ester images, the black point of the images was 0 so areas that lack signal (white in the case of NHS Ester) truly had no signal detected for those pixels. While we appreciate that never altering the black point of images displays 100% of the data in the image, images with any significant background can become impossibly difficult to interpret. We have done our best to try and present images where the black point is modified to remove background for ease of interpretation by the readers only.

      Reviewer #3 (Public Review):

      1) Most importantly, in order to justify the authors claim to provide an "Atlas", I want to strongly suggest they share their raw 3D-imaging data (at least of the main figures) in a data repository. This would allow the readers to browse their structure of interest in 3D and significantly improve the impact of their study in the malaria cell biology field.

      We agree completely that the potential impact of this study is magnified by public sharing of the data. The reason that this was not done at the time of submission is that most public repositories do not allow continued deposition of data, and so new images included in response to reviewers comments would’ve been separated from the initial submission, which we saw as needlessly complicated. All 647 images that underpin the results discussed in this manuscript are now publicly available in Dryad (https://doi.org/10.5061/dryad.9s4mw6mp4)

      2) The organization of the manuscript can be improved. Aside some obvious modifications as citing the figures in the correct order (see also further comments and recommendations), I would maybe suggest one subsection and one figure per analyzed cellular structure/organelle (i.e. 13 sections). This would in my opinion improve readability and facilitate "browsing the atlas".

      This is actually how we had originally formatted this manuscript, but this structure made discussing inter-connected organelles, such as the IMC and basal complex, impossibly difficult to navigate. We have done our best to make the manuscript flow better, but have not come up with any way to greatly restructure the manuscript so to increase its readability.

      3) Considering the importance of reliability of the U-ExM protocol for this study the authors should provide some validation for the isotropic expansion of the sample e.g. by measuring one well defined cellular structure.

      The protocol we used comes from the Bertiaux et al., 2021 PLoS Biology study. In this study they show isotropic expansion of blood-stage parasites.

      4) In the absence of time-resolved data and more in-depth mechanistic analysis the authors must down tone some of their conclusions specifically around mitochondrial membrane potential, subpellicular microtubule depolymerization, and kinetics of the basal complex.

      Our conclusions regarding mitochondrial membrane potential and basal complex kinetics have been dampened. We have not, however, changed our wording around microtubule depolymerisation. Partial depolymerisation of microtubules during fixation is a known phenomenon in Plasmodium, and in our opinion, our explanation of this offers a hypothesis that is balanced with respective to evidence: “we hypothesise that most SPMTs measured in our C1-treated schizonts had partially depolymerised. P. falciparum microtubules are known to rapidly depolymerise during fixation10,29. It is unclear, however, why this depolymerization was observed most often in C1-arrested parasites. Thus, we cannot determine whether these shorter microtubules are a by-product of drug-induced arrest or a biologically relevant native state that occurs at the end of segmentation.”

      5) The observation that the centriolar plaque extensions remains consistently tethered to the plasma membrane is of high significance. To more convincingly demonstrate this point, it would be very helpful to show one zoomed-in side view of nucleus with a mitotic spindle were both centriolar plaques are in contact with the plasma membrane.

      We of course agree that this is one of our most important observations, but in our opinion this is already demonstrated in Figure 2b. The third panel from the right shows a mitotic spindle and has the location of the cytoplasmic extensions, nuclear envelope and parasite plasma membranes annotated.

      6) Please verify the consistent use of the term trophozoite and schizont. In Fig. 1c a parasite with two nuclei, likely in the process of karyofission is designated as trophozoite, which contrasts with the mononucleated trophozoite shown in Fig. 1a. The reviewer is aware of the more "classical" description of the schizont as parasite with more than 2 nuclei, but based on the authors advanced knowledge of cell cycle progression and mitosis I would encourage them to make a clear distinction between parasites that have entered mitotic stages and pre-mitotic parasites (e.g. by applying the term schizont, and trophozoite, respectively).

      For this study, we have interpreted any parasite having three or more nuclei as being a schizont. We are aware this morphological interpretation is not universally held and indeed suboptimal for studying some aspects of parasite development, but all definitions of a schizont have some drawbacks. Whether a parasite has entered mitosis or not is obviously a hugely significant event in the context of cell biology, but in a mononucleated parasite this could only be determined using immunofluorescence microscopy with cell cycle or DNA replication markers.

      7) Aldolase does not localize diffusely in the cytoplasm in schizont stages as in contrast to earlier stage. The authors should comment on that.

      We are unclear if this is an interpretation of the images in supplementary figure 1, or inferred from other studies. If this is an interpretation of the images in Supplementary Figure 1, we do not agree that the images show a significant change in the localisation of aldolase. It is possible that this difference in interpretation comes from the strong punctate signal observed more readily in the schizont images. This is the strong background signal in or around the food vacuole we mention in the text. These punctae are significantly brighter than the cytosolic aldolase signal, making it difficult to see them on the aldolase only channel, but aldolase signal can clearly be seen in the cytoplasm on the merge images.

      8) Line 79. Uranyl acetate is just one of the contrasting agents used in electron microscopy. The authors might reformulate this statement. Possibly this would also be a good opportunity to briefly mention that electron density measured in EM and protein-density labeled by NHS-Ester can be similar but are not equivalent.

      We have expanded on this in the text.

      9) The authors claim that they investigate the association between the MTOC and the APR (line 194), but strictly speaking only look at subpellicular microtubules and an associated protein density. The argument that there is a "NHS ester-dense focus" (line 210) without actual APR marker is not quite convincing enough to definitively designate this as the APR.

      While an APR marker would of course be very useful, there are currently no published examples of APR markers in blood-stage parasites. We therefore think that the timing of appearance, location, and staining density are sufficient for identifying this structure as the APR, as it has previously been designated through EM studies. We have nonetheless softened our language around APR-related observations.

      10) Line 226: The authors should also discuss the organization of the Golgi in early schizonts (Fig. S4). (not only 2 nuclei and segmenter stages).

      We did not mean to imply that all 22 parasites had only 2 nuclei, but instead that they had 2 or more nuclei. Therefore, early schizonts are included in this analysis, with Golgi closely associated with all their MTOCs.

      11) Line 242: To the knowledge of the reviewer the nuclear pore complexes, although clustered in merozoites and ring stages, don't particularly "define the apical end of the parasite".

      The MTOC is surrounded by NPCs, which because of the location of the MTOC end up being near the forming apical end of the merozoite, but we have removed this as it was needlessly confusing.

      12) Supplementary Figure 8 is missing (it's a repetition of Fig. S6).

      This has been addressed.

      13) Line 253: asexual blood stage parasites have two classes of MTs. Other stages can have more.

      This has been clarified.

      14) Fig. 3f: Please comment how much of these observations of "only one" SPMT could result from suboptimal resolution (e.g. in z-direction) or labeling. Otherwise use line profiles to argue that you can always safely distinguish SPMT pairs.

      In the small number of electron tomograms of merozoites where the subpellicular microtubules have been rendered, they have been seen to have 2 or 3 SPMTs. Despite this, we don’t think it is likely that the single SPMT merozoites observed in this study are caused by a resolution limitation. SPMTs were measured in 3D, rather than from projections, and any schizont where the SPMTs were pointing towards the objective lens, elongating the parasite in Z, were not imaged. Additionally, our number of merozoites with a single SPMT correspond with the same data collected in the Bertiaux et al., 2021 PLoS Biology study. We cannot rule this out as a possibility, as sometimes SPMTs cross over each other in three-dimensions, and at these intersection points they cannot be individually resolved. We, however, think it is very unlikely that two SPMTs would be so close that they can never be resolved across any part of their length.

      15) Lines 302ff: the claim that variability in SPMT size must be a consequence of depolymerzation is unfounded. The dynamics of SPMT are unknown at this point. Similarly unfounded is the definitive claim that it is known that P.f. MTs depolymerize upon fixation. Other possibilities should be considered. SPMT could also simply shorten in C1-arrested parasites.

      While we agree with the reviewer that much about SPMT dynamics in schizonts remains unknown, we disagree with the claim that our consideration of SPMT depolymerization as a possible explanation for our observations is unfounded. Microtubule depolymerization is a well-known fixation and sample preparation artefact in both mammalian cells and a well-documented phenomenon in Plasmodium when parasites are washed with PBS prior to fixation. We convey in the text our belief that it is possible that SPMTs shorten in C1-arrested parasites as a result of drug treatment. However, it is our opinion that there simply is not enough evidence at this moment to conclusively pinpoint the cause of our observed depolymerization. As we mention in the text, further experiments are needed in order to determine with confidence whether depolymerization is a consequence of our fixation protocol, a consequence of C1 treatment (or the length of that treatment), or a biological phenomenon resulting from parasite maturation.

      16) Line 324: "up to 30 daughter merozoites"

      Schizonts can have more than 30 daughter merozoites, so we have not altered this statement.

      17) Figure 4b. Line 354 The postulated breaking in two is not well visible and here the authors should attempt a more conservative interpretation of the data (especially with respect to those early basal complex dynamics).

      We think that the basal complex dividing or breaking in two is the more conservative interpretation of our data. There is no evidence to suggest that a second basal complex is formed de novo and, while never before described using a basal complex protein, the cramp-like structure and dynamics we observe are consistent with that observed in early IMC proteins. We have updated the text to provide additional context and make the reasoning behind our hypothesis clearer.

      18) Line 365: Commenting on their relative size would require a quantification of APR and basal complex size (can be provided in the text).

      We are unsure what this is in reference to, as there is no mention of the APR in the basal complex section.

      19) Lines 375ff: The claim that NHS Ester is a basal complex marker should be mitigated or more convincing images without the context of anti-CINCH staining being sufficient to identify the ring structure should be presented.

      We have provided high quality, zoomed-in images without anti-CINCH staining in Fig. 5D&E, 6C, 7b, and Supplementary Fig. 8 that show that even in the absence of a basal complex antibody, the basal complex still stains densely by NHS ester.

      20) Line 407: The claim that there are differences in membrane potential along the mitochondria needs to be significantly mitigated. There are several alternative explanations of this staining pattern (some of which the authors name themselves). Differences in local compartment volume, differences in membrane surface, diffusibility/leakage of the dye can definitively play a role in addition to fixation and staining artefacts (also brought forward recently for U-ExM by Laporte et al. 2022 Nat Meth). Confirming the hypothesis of the authors would need significantly more experimental evidence that is outside the scope of this study.

      We have significantly dampened and qualified the wording in this section. It now reads: “These clustered areas of Mitotracker staining were highly heterogeneous in size and pattern. Small staining discontinuities like these are commonly observed in mammalian cells when using Mitotracker dyes due to the heterogeneity of membrane potential from cristae to cristae as well as due to fixation artifacts. At this point, we cannot determine whether the staining we observed represents a true biological phenomenon or an artefact of this sample preparation approach. Our observed Mitotracker-enriched pockets could be an artifact of PFA fixation, a product of local membrane depolarization, a consequence of heterogeneous dye retention, or a product of irregular compartments of high membrane potential within the mitochondrion, to mention a few possibilities. Further research is needed to conclusively pinpoint an explanation.”

      21) Fig. 7e: The differences in morphology using different fixation methods are interesting. Can the authors provide a co-staining of K13-GFP together with the better-preserved structures in the GA-containing fixation protocol to demonstrate that these are indeed cytostome bulbs?

      Figure 7 has been changed substantially to show more clearly the preservation of the red blood cell membrane following PFA-GA fixation, followed by direct comparison of K13-GFP stained parasites fixed in either PFA only or PFA-GA. The cytostome section of the results has also changed to reflect this, the changed section now reads:

      “PFA-glutaraldehyde fixation allows visualization of cytostome bulb The cytostome can be divided into two main components: the collar, a protein dense ring at the parasite plasma membrane where K13 is located, and the bulb, a membrane invagination containing red blood cell cytoplasm {Milani, 2015 #63;Xie, 2020 #62}.While we could identify the cytostomal collar by K13 staining, these cytostomal collars were not attached to a membranous invagination. Fixation using 4% v/v paraformaldehyde (PFA) is known to result in the permeabilization of the RBC membrane and loss of its cytoplasmic contents65. Topologically, the cytostome is contiguous with the RBC cytoplasm and so we hypothesised that PFA fixation was resulting in the loss of cytostomal contents and obscuring of the bulb. PFA-glutaraldehyde fixation has been shown to better preserve the RBC cytoplasm65. Comparing PFA only with PFA-glutaraldehyde fixed parasites, we could clearly observe that the addition of glutaraldehyde preserves both the RBC membrane and RBC cytoplasmic contents (Figure 7c). Further, while only cytostomal collars could be observed with PFA only fixation, large membrane invaginations (cytostomal bulbs) were observed with PFA-glutaraldehyde fixation (Figure 7d). Cytostomal bulbs were often much longer and more elaborate spreading through much of the parasite (Supplementary Video 1), but these images are visually complex and difficult to project so images displayed in Figure 7 show relatively smaller cytostomal bulbs. Collectively, this data supports the hypothesis that these NHS-ester-dense rings are indeed cytostomes and that endocytosis can be studied using U-ExM, but PFA-glutaraldehyde fixation is required to maintain cytostome bulb integrity.”

      22) It would be helpful to the readers to indicate in the schematic in Fig. 1b at which point NHS-Ester staining is implemented.

      Figure 1b is slightly simplified in the sense that it doesn’t differentiate primary and secondary antibody staining, but we have updated it to reflect that antibody and dye staining are concurrent, rather than separate.

      23) In Fig. 2B the second panel from the right the nuclear envelope boundary does not seem to be accurately draw as it includes the centrin signal of the centriolar plaque.

      Thank you for pointing this out, it has now been redrawn.

      24) Line 44-45: should read "up to 30 new daughter merozoites" (include citations).

      We have included a citation here, but left it as approximately 30 daughter merozoites as the study found multiple cells with >30 daughter merozoites.

      25) Line 49: considering its discovery in 2015 the statement that it has gained popularity in the last decade can probably be omitted.

      This has been removed.

      26) Fig S1 should probably read "2N" (instead of "2n"). Or alternatively "2C" could be fine.

      27) Line 154: To help comprehension please define the term "branch number" in this context when it comes up.

      A definition for branch has now been provided.

      28) Fig. S5: To my estimation it is not an "early trophozoite", which is depicted.

      While this parasite technically fits our definition of trophozoite, as it has not yet undergone nuclear division, we have swapped it for a visibly earlier parasite for clarity. This is the new parasite depicted

      Author response image 4.

      29) Fig. 2a is not referenced before Fig. 2b in the text.

      This has been addressed.

      30) I could not find the reference to Fig. S2e and its discussion.

      It was wrongly labelled as Supplementary Figure 2b in the text, this has now been addressed.

      31) The next Figure referenced in the text after Fig. 2b is Fig. 4b. Fig.3 is only referenced and discussed later, which was quite confusing.

      The numbering discrepancies have been addressed.

      32) Line 196: Figure reference is missing.

      This data did not have a figure reference, but the numbers have now been provided in-text.

      33) Fig. 3c: Is "Branches per MTOC" not just total branches divided by two? If so it can be omitted. If not so please explain the difference.

      Yes it was total branched divided by two, this has been removed from Figure 3c.

      34) Figure 5c and 6d: The authors should show examples of the image segmentation used to calculate the surface area.

      Surface area calculation was done in an essentially one step process. From maximum intensity projections, free-hand regions of interest were drawn, from which ZEN automatically calculates their area. Example as Author response image 5:

      Author response image 5.

      35) Figure 7b should also show the NHS Ester staining alone for the zoom in.

      We have included the NHS ester staining alone on the zoom on, but we have slightly changed the presentation of these two panels to show both the basal complex and cytostomes as follows:

      Author response image 6.

      36) To which degree are Rhoptry necks associated with MTOC extensions?

      This cannot easily be determined with the images we have so far. Before elongated necks are visible, the RON4 signal does appear pointed towards the MTOC extensions. Rhoptry necks don’t seem to elongate until segmentation, when the MTOC starts to move away from the apical end of the parasite. So it is possible there is a transient association, but we cannot easily discern this from our data.

    1. Author Response

      Reviewer #1 (Public Review):

      [...] Genes expressed in the same direction in lowland individuals facing hypoxia (the plastic state) as what is found in the colonised state are defined as adaptative, while genes with the opposite expression pattern were labelled as maladaptive, using the assumption that the colonised state must represent the result of natural selection. Furthermore, genes could be classified as representing reversion plasticity when the expression pattern differed between the plasticity and colonised states and as reinforcement when they were in the same direction (for example more expressed in the plastic state and the colonised state than in the ancestral state). They found that more genes had a plastic expression pattern that was labelled as maladaptive than adaptive. Therefore, some of the genes have an expression pattern in accordance with what would be predicted based on the plasticity-first hypothesis, while others do not.

      Thank you for a precise summary of our work. We appreciate the very encouraging comments recognizing the value of our work. We have addressed concerns from the reviewer in greater detail below.

      Q1. As pointed out by the authors themselves, the fact that temperature was not included as a variable, which would make the experimental design much more complex, misses the opportunity to more accurately reflect the environmental conditions that the colonizer individuals face at high altitude. Also pointed out by the authors, the acclimation experiment in hypoxia lasted 4 weeks. It is possible that longer term effects would be identifiable in gene expression in the lowland individuals facing hypoxia on a longer time scale. Furthermore, a sample size of 3 or 4 individuals per group depending on the tissue for wild individuals may miss some of the natural variation present in these populations. Stating that they have a n=7 for the plastic stage and n= 14 for the ancestral and colonized stages refers to the total number of tissue samples and not the number of individuals, according to supplementary table 1.

      We shared the same concerns as the reviewer. This is partly because it is quite challenging to bring wild birds into captivity to conduct the hypoxia acclimation experiments. We had to work hard to perform acclimation experiments by taking lowland sparrows in a hypoxic condition for a month. We indeed have recognized the similar set of limitations as the review pointed out and have discussed the limitations in the study, i.e., considering hypoxic condition alone, short time acclimation period, etc. Regarding sample sizes, we have collected cardiac muscle from nine individuals (three individuals for each stage) and flight muscle from 12 individuals (four individuals for each stage). We have clarified this in Supplementary Table 1.

      Q2. Finally, I could not find a statement indicating that the lowland individuals placed in hypoxia (plastic stage) were from the same population as the lowland individuals for which transcriptomic data was already available, used as the "ancestral state" group (which themselves seem to come from 3 populations Qinghuangdao, Beijing, and Tianjin, according to supplementary table 2) nor if they were sampled in the same time of year (pre reproduction, during breeding, after, or if they were juveniles, proportion of males or females, etc). These two aspects could affect both gene expression (through neutral or adaptive genetic variation among lowland populations that can affect gene expression, or environmental effects other than hypoxia that differ in these populations' environments or because of their sexes or age). This could potentially also affect the FST analysis done by the authors, which they use to claim that strong selective pressure acted on the expression level of some of the genes in the colonised group.

      The reviewer asked how individual tree sparrows used in the transcriptomic analyses were collected. The individuals used for the hypoxia acclimation experiment and represented the ancestral lowland population were collected from the same locality (Beijing) and at the same season (i.e., pre-breeding) of the year. They are all adults and weight approximately 18g. We have clarified this in the Supplementary Table S1 and Methods. We did not distinguish males from females (both sexes look similar) under the assumption that both sexes respond similarly to hypoxia acclimation in their cardiac and flight muscle gene expression.

      The Supplementary Table 2 lists the individuals that were used for sequence analyses. These individuals were only used for sequence comparisons but not for the transcriptomic analyses. The population genetic structure analyzed in a previously published study showed that there is no clear genetic divergence within the lowland population (i.e., individuals collected from Beijing, Tianjing and Qinhuangdao) or the highland population (i.e., Gangcha and Qinghai Lake). In addition, there was no clear genetic divergence between the highland and lowland populations (Qu et al. 2020).

      Author response image 1.

      Figure 1. Population genetic structure of the Eurasian Tree Sparrow (Passer montanus). The genetic structure generated using FRAPPE. The colors in each column represent the contribution from each subcluster (Qu et al. 2020). Yellow, highland population; blue, lowland population.

      Q4. Impact of the work There has been work showing that populations adapted to high altitude environments show changes in their hypoxia response that differs from the short-term acclimation response of lowland population of the same species. For example, in humans, see Erzurum et al. 2007 and Peng et al. 2017, where they show that the hypoxia response cascade, which starts with the gene HIF (Hypoxia-Inducible Factor) and includes the EPO gene, which codes for erythropoietin, which in turns activates the production of red blood cell, is LESS activated in high altitude individuals compared to the activation level in lowland individuals (which gives it its name). The present work adds to this body of knowledge showing that the short-term response to hypoxia and the long term one can affect different pathways and that acclimation/plasticity does not always predict what physiological traits will evolve in populations that colonize these environments over many generations and additional selection pressure (UV exposure, temperature, nutrient availability). Altogether, this work provides new information on the evolution of reaction norms of genes associated with the physiological response to one of the main environmental variables that affects almost all animals, oxygen availability. It also provides an interesting model system to study this type of question further in a natural population of homeotherms.

      Erzurum, S. C., S. Ghosh, A. J. Janocha, W. Xu, S. Bauer, N. S. Bryan, J. Tejero et al. "Higher blood flow and circulating NO products offset high-altitude hypoxia among Tibetans." Proceedings of the National Academy of Sciences 104, no. 45 (2007): 17593-17598. Peng, Y., C. Cui, Y. He, Ouzhuluobu, H. Zhang, D. Yang, Q. Zhang, Bianbazhuoma, L. Yang, Y. He, et al. 2017. Down-regulation of EPAS1 transcription and genetic adaptation of Tibetans to high-altitude hypoxia. Molecular biology and evolution 34:818-830.

      Thank you for highlighting the potential novelty of our work in light of the big field. We found it very interesting to discuss our results (from a bird species) together with similar findings from humans. In the revised version of manuscript, we have discussed short-term acclimation response and long-term adaptive evolution to a high-elevation environment, as well as how our work provides understanding of the relative roles of short-term plasticity and long-term adaptation. We appreciate the two important work pointed out by the reviewer and we have also cited them in the revised version of manuscript.

      Reviewer #2 (Public Review):

      This is a well-written paper using gene expression in tree sparrow as model traits to distinguish between genetic effects that either reinforce or reverse initial plastic response to environmental changes. Tree sparrow tissues (cardiac and flight muscle) collected in lowland populations subject to hypoxia treatment were profiled for gene expression and compared with previously collected data in 1) highland birds; 2) lowland birds under normal condition to test for differences in directions of changes between initial plastic response and subsequent colonized response. The question is an important and interesting one but I have several major concerns on experimental design and interpretations.

      Thank you for a precise summary of our work and constructive comments to improve this study. We have addressed your concerns in greater detail below.

      Q1. The datasets consist of two sources of data. The hypoxia treated birds collected from the current study and highland and lowland birds in their respective native environment from a previous study. This creates a complete confounding between the hypoxia treatment and experimental batches that it is impossible to draw any conclusions. The sample size is relatively small. Basically correlation among tens of thousands of genes was computed based on merely 12 or 9 samples.

      We appreciate the critical comments from the reviewer. The reviewer raised the concerns about the batch effect from birds collected from the previous study and this study. There is an important detail we didn’t describe in the previous version. All tissues from hypoxia acclimated birds and highland and lowland birds have been collected at the same time (i.e., Qu et al. 2020). RNA library construction and sequencing of these samples were also conducted at the same time, although only the transcriptomic data of lowland and highland tree sparrows were included in Qu et al. (2020). The data from acclimated birds have not been published before.

      In the revised version of manuscript, we also compared log-transformed transcript per million (TPM) across all genes and determined the most conserved genes (i.e., coefficient of variance ≤  0.3 and average TPM ≥ 1 for each sample) for the flight and cardiac muscles, respectively (Hao et al. 2023). We compared the median expression levels of these conserved genes and found no difference among the lowland, hypoxia-exposed lowland, and highland tree sparrows (Wilcoxon signed-rank test, P<0.05). As these results suggested little batch effect on the transcriptomic data, we used TPM values to calculate gene expression level and intensity. This methodological detail has been further clarified in the Methods and we also provided a new supplementary Figure (Figure S5) to show the comparative results.

      Author response image 2.

      The median expression levels of the conserved genes (i.e., coefficient of variance ≤ 0.3 and average TPM ≥ 1 for each sample) did not differ among the lowland, hypoxia-exposed lowland, and highland tree sparrows (Wilcoxon signed-rank test, P<0.05).

      The reviewer also raised the issue of sample size. We certainly would have liked to have more individuals in the study, but this was not possible due to the logistical problem of keeping wild bird in a common garden experiment for a long time. We have acknowledged this in the manuscript. In order to mitigate this we have tested the hypothesis of plasticity following by genetic change using two different tissues (cardiac and flight muscles) and two different datasets (co-expressed gene-set and muscle-associated gene-set). As all these analyses show similar results, they indicate that the main conclusion drawn from this study is robust.

      Q2. Genes are classified into two classes (reversion and reinforcement) based on arbitrarily chosen thresholds. More "reversion" genes are found and this was taken as evidence reversal is more prominent. However, a trivial explanation is that genes must be expressed within a certain range and those plastic changes simply have more space to reverse direction rather than having any biological reason to do so.

      Thank you for the critical comments. There are two questions raised we should like to address them separately. The first concern centered on the issue of arbitrarily chosen thresholds. In our manuscript, we used a range of thresholds, i.e., 50%, 100%, 150% and 200% of change in the gene expression levels of the ancestral lowland tree sparrow to detect genes with reinforcement and reversion plasticity. By this design we wanted to explore the magnitudes of gene expression plasticity (i.e., Ho & Zhang 2018), and whether strength of selection (i.e., genetic variation) changes with the magnitude of gene expression plasticity (i.e., Campbell-Staton et al. 2021).

      As the reviewer pointed out, we have now realized that this threshold selection is arbitrarily. We have thus implemented two other categorization schemes to test the robustness of the observation of unequal proportions of genes with reinforcement and reversion plasticity. Specifically, we used a parametric bootstrap procedure as described in Ho & Zhang (2019), which aimed to identify genes resulting from genuine differences rather than random sampling errors. Bootstrap results suggested that genes exhibiting reversing plasticity significantly outnumber those exhibiting reinforcing plasticity, suggesting that our inference of an excess of genes with reversion plasticity is robust to random sampling errors. We have added these analyses to the revised version of manuscript, and provided results in the Figure 2d and Figure 3d.

      Author response image 3.

      Figure 2a (left) and Figure 2b (right). Frequencies of genes with reinforcement and reversion plasticity (>50%) and their subsets that acquire strong support in the parametric bootstrap analyses (≥ 950/1000).

      In addition, we adapted a bin scheme (i.e., 20%, 40% and 60% bin settings along the spectrum of the reinforcement/reversion plasticity). These analyses based on different categorization schemes revealed similar results, and suggested that our inference of an excess of genes with reversion plasticity is robust. We have provided these results in the Supplementary Figure S2 and S4.

      Author response image 4.

      (A) and Figure S4 (B). Frequencies of genes with reinforcement and reversion plasticity in the flight and cardiac muscle. (A) For genes identified by WGCNA, all comparisons show that there are more genes showing reversion plasticity than those showing reinforcement plasticity for both the flight and cardiac msucles. (B) For genes that associated with muscle phentoypes, all comparisons show that there are more genes showing reversion plasticity than those showing reinforcement plasticity for the flight muscle, while more than 50% of comparisons support an excess of genes with reversion plasticity for the cardiac muscle. Two-tailed binomial test, NS, non-significant; , P < 0.05; , P < 0.01; **, P < 0.001.

      The second issue that the reviewer raised is that the plastic changes simply have more space to reverse direction rather than having any biological reason to do so. While a causal reason why there are more genes with expression levels being reversed than those with expression levels being reinforced at the late stages is still contentious, increasingly many studies show that genes expression plasticity at the early stage may be functionally maladapted to novel environment that the species have recently colonized (i.e., lizard, Campbell-Staton et al. 2021; Escherichia coli, yeast, guppies, chickens and babblers, Ho and Zhang 2018; Ho et al. 2020; Kuo et al. 2023). Our comparisons based on the two genesets that are associated with muscle phenotypes corroborated with these previous studies and showed that initial gene expression plasticity may be nonadaptive to the novel environments (i.e., Ghalambor et al. 2015; Ho & Zhang 2018; Ho et al. 2020; Kuo et al. 2023; Campbell-Staton et al. 2021).

      Q3. The correlation between plastic change and evolved divergence is an artifact due to the definitions of adaptive versus maladaptive changes. For example, the definition of adaptive changes requires that plastic change and evolved divergence are in the same direction (Figure 3a), so the positive correlation was a result of this selection (Figure 3d).

      The reviewer raised an issue that the correlation between plastic change and evolved divergence is an artifact because of the definition of adaptive versus maladaptive changes, for example, Figure 3d. We agree with the reviewer that the correlation analysis is circular because the definition of adaptive and maladaptive plasticity depends on the direction of plastic change matched or opposed that of the colonized tree sparrows. We have thus removed previous Figure 3d-e and related texts from the revised version of manuscript. Meanwhile, we have changed Figure 3a to further clarify the schematic framework.

    1. Author Response:

      Reviewer #1 (Public Review):

      Despite numerous studies on quinidine therapies for epilepsies associated with GOF mutant variants of Slack, there is no consensus on its utility due to contradictory results. In this study Yuan et al. investigated the role of different sodium selective ion channels on the sensitization of Slack to quinidine block. The study employed electrophysiological approaches, FRET studies, genetically modified proteins and biochemistry to demonstrate that Nav1.6 N- and C-tail interacts with Slack's C-terminus and significantly increases Slack sensitivity to quinidine blockade in vitro and in vivo. This finding inspired the authors to investigate whether they could rescue Slack GOF mutant variants by simply disrupting the interaction between Slack and Nav1.6. They find that the isolated C-terminus of Slack can reduce the current amplitude of Slack GOF mutant variants co-expressed with Nav1.6 in HEK cells and prevent Slack induced seizures in mouse models of epilepsy. This study adds to the growing list of channels that are modulated by protein-protein interactions, and is of great value for future therapeutic strategies.

      I have a few comments with regard to how Nav1.6 sensitize Slack to block by quinidine.

      (1) It is not clear to me if the Slack induced current amplitude varies depending on the specific Nav subtype. To this end, it would be valuable to test if Slack open probability is affected by the presence of specific Nav subtypes. Nav induced differences in Slack current amplitude and open probability could explain why individual Nav subtypes show varied ability to sensitize Slack to quinidine blockade.

      We appreciate the reviewer for raising this point. In order to address whether the whole-cell current amplitudes of Slack varies depending on the specific NaV subtype, we examined Slack current amplitudes upon co-expression of Slack with specific NaV subtypes in HEK293 cells. The results have shown that there are no significant differences in Slack current amplitudes upon co-expression of Slack with different NaV channel subtypes (Author response image 1), suggesting whole-cell Slack current amplitudes cannot explain the varied ability of NaV subtypes to sensitize Slack to quinidine blockade. To investigate the effect of different NaV channel subtypes on Slack open probability, we will perform the single-channel recordings in the future studies.

      Author response image 1.

      The amplitudes of Slack currents upon co-expression of Slack with specific NaV subtypes in HEK293 cells. ns, p > 0.05, one-way ANOVA followed by Bonferroni’s post hoc test.

      (2) It has previously been shown that INaP (persistent sodium current) is important for inducing Slack currents. Here the authors show that INaT (transient sodium current) of Nav1.6 is necessary for the sensitization of Slack to quinidine block whereas INaP surprisingly has no effect. The authors then show that the N-tail together with C-tail of Nav1.6 can induce same effect on Slack as full-length Nav1.6 in presence of high intracellular concentrations of sodium. However, it is not clear to me how the isolated N- and C-tail of Nav1.6 can induce sensitization of Slack to quinidine by interacting with C-terminus of Slack, while sensitization also is dependant on INaT. The authors speculate on different slack open conformation, but one could speculate if there is a missing link, such as an un-identified additional interacting protein that causes the coupling.

      We fully agree the importance of investigating the detailed mechanism underlying the sensitization of Slack to quinidine blockade mediated by the N- and C-termini of NaV1.6. Regarding the possibility of additional interacting proteins (“missing link”) that mediate the coupling between Slack and NaV1.6, our GST-pull down assays involving Slack and the N- and C-termini of NaV1.6 (Fig. S7) suggest a direct interaction between Slack and NaV1.6 channels. This finding leads us to consider the possibility of additional interacting proteins might be excluded. In order to further address these questions, we plan to employ structural biological methods, such as cryo-electron microscopy (cryo-EM).

      Reviewer #2 (Public Review):

      This is a very interesting paper about the coupling of Slack and Nav1.6 and the insight this brings to the effects of quinidine to treat some epilepsy syndromes.

      Slack is a sodium-activated potassium channel that is important to hyperpolarization of neurons after an action potential. Slack is encoded by KNCT1 which has mutations in some epilepsy syndromes. These types of epilepsy are treated with quinidine but this is an atypical antiseizure drug, not used for other types of epilepsy. For sufficient sodium to activate Slack, Slack needs to be close to a channel that allows robust sodium entry, like Na channels or AMPA receptors. but more mechanistic information is not available. Of particular interest to the authors is what allows quinidine to be effective in reducing Slack.

      In the manuscript, the authors show that Nav, not AMPA receptors are responsible for Slack activation, at least in cultured neurons (HeK293, primary cortical neurons). Most of the paper focuses on the evidence that Nav1.6 promotes Slack sensitivity to quinidine.

      (1) The paper is very well written although there are reservations about the use of non-neuronal cells or cultured primary neurons rather than a more intact system.

      We appreciate the reviewer's positive evaluation of our work. We acknowledge that utilizing a more intact system would provide valuable insights into the inhibitory effect of quinidine on Slack-NaV1.6. However, there are certain challenges associated with studying Slack currents in their entirety.

      First, in our experiments, isolating Slack currents from Na+-activated K+ currents in an intact system is challenging as selective inhibitors for Slick are currently unavailable. To address this, we propose using Slick gene knockout mice to specifically measure Slack currents under physiological conditions in the future investigations. Second, we have observed that the interaction between Slack and NaV1.6 primarily occurs at the axon initial segment of neurons. This poses a difficulty when using brain slices for measurements, as employing the whole-cell voltage-clamp technique to assess Slack at the axon initial segment may introduce systemic errors.

      We believe that testing the pharmacological effects of quinidine on Slack-NaV1.6 in primary neurons remains the optimal approach. Although non-neuronal cells or cultured primary neurons may not fully replicate the complexity of an intact system, they still provide valuable insights into the interactions between Slack and NaV1.6, and the effects of quinidine.

      (2) I also have questions about the figures.

      We will make the necessary modifications and clarifications based on the reviewer's comments:

      (3) Finally, riluzole is not a selective drug, so the limitations of this drug should be discussed.

      We thank the reviewer for raising this point. We will discuss the limitations of riluzole in our revised version of the manuscript.

      (4) On a minor point, the authors use the term in vivo but there are no in vivo experiments.

      We thanks the reviewer for raising this point. In our experiments, although we did not conduct experiments directly in living organisms, our results demonstrated the co-immunoprecipitation of NaV1.6 with Slack in homogenates from mouse cortical and hippocampal tissues (Fig. 3C). This result may support that the interaction between Slack and NaV1.6 occurs in vivo.

      Reviewer #3 (Public Review):

      Yuan et al., set out to examine the role of functional and structural interaction between Slack and NaVs on the Slack sensitivity to quinidine. Through pharmacological and genetic means they identify NaV1.6 as the privileged NaV isoform in sensitizing Slack to quinidine. Through biochemical assays, they then determine that the C-terminus of Slack physically interacts with the N- and C-termini of NaV1.6. Using the information gleaned from the in vitro experiments the authors then show that virally-mediated transduction of Slack's C-terminus lessens the extent of SlackG269S-induced seizures. These data uncover a previously unrecognized interaction between a sodium and a potassium channel, which contributes to the latter's sensitivity to quinidine.

      The conclusions of this paper are mostly well supported by data, but some aspects of functional and structural studies in vivo as well as physically interaction need to be clarified and extended.

      (1) Immunolabeling of the hippocampus CA1 suggests sodium channels as well as Slack colocalization with AnkG (Fig 3A). Proximity ligation assay for NaV1.6 and Slack or a super-resolution microscopy approach would be needed to increase confidence in the presented colocalization results. Furthermore, coimmunoprecipitation studies on the membrane fraction would bolster the functional relevance of NaV1.6-Slac interaction on the cell surface.

      We thank the reviewer for good suggestions. We acknowledge that employing proximity ligation assay and high-resolution techniques would significantly enhance our understanding of the localization of the Slack-NaV1.6 coupling.

      At present, the technical capabilities available in our laboratory and institution do not support high-resolution testing. However, we are enthusiastic about exploring potential collaborations to address these questions in the future. Furthermore, we fully recognize the importance of conducting co-immunoprecipitation (Co-IP) assays from membrane fractions. While we have already completed Co-IP assays for total protein and quantified the FRET efficiency values between Slack and NaV1.6 in the membrane region, the Co-IP assays on membrane fractions will be conducted in our future investigations.

      (2) Although hippocampal slices from Scn8a+/- were used for studies in Fig. S8, it is not clear whether Scn8a-/- or Scn8a+/- tissue was used in other studies (Fig 1J & 1K). It will be important to clarify whether genetic manipulation of NaV1.6 expression (Fig. 1K) has an impact on sodium-activated potassium current, level of surface Slack expression, or that of NaV1.6 near Slack.

      We thank the reviewer for pointing this out. In Fig. 1G,J,K, primary cortical neurons from homozygous NaV1.6 knockout (Scn8a-/-) mice were used. We will clarify this information in the revised manuscript. In terms of the effects of genetic manipulation of NaV1.6 expression on IKNa and surface Slack expression, we compared the amplitudes of IKNa measured from homozygous NaV1.6 knockout (NaV1.6-KO) neurons and wild-type (WT) neurons. The results showed that homozygous knockout of NaV1.6 does not alter the amplitudes of IKNa (Author response image 2). The level of surface Slack expression will be tested further.

      Author response image 2.

      The amplitudes of IKNa in WT and NaV1.6-KO neurons (data from manuscript Fig. 1K). ns, p > 0.05, unpaired two-tailed Student’s t test.

      (3) Did the epilepsy-related Slack mutations have an impact on NaV1.6-mediated sodium current?

      We thank the reviewer’s question. We examined the amplitudes of NaV1.6 sodium current upon expression alone or co-expression of NaV1.6 with epilepsy-related Slack mutations (K629N, R950Q, K985N). The results showed that the tested epilepsy-related Slack mutations do not alter the amplitudes of NaV1.6 sodium current (Author response image 3).

      Author response image 3.

      The amplitudes of NaV1.6 sodium currents upon co-expression of NaV1.6 with epilepsy-related Slack mutant variants (SlackK629N, SlackR950Q, and SlackK985N). ns, p>0.05, one-way ANOVA followed by Bonferroni’s post hoc test.

      4) Showing the impact of quinidine on persistent sodium current in neurons and on NaV1.6-expressing cells would further increase confidence in the role of persistent sodium current on sensitivity of Slack to quinidine.

      We appreciate the reviewer’s question. Previous studies have shown that quinidine can inhibit persistent sodium currents at low concentrations1. In our experiments, blocking persistent sodium currents by application of riluzole in the bath solution showed no significant effects on the sensitivity of Slack to quinidine blockade upon co-expression of Slack with NaV1.6 (Fig. 2F,H). This result suggested that persistent sodium currents were not involved in the sensitization of Slack to quinidine blockade.

      1. Ju YK, Saint DA, Gage PW. Effects of lignocaine and quinidine on the persistent sodium current in rat ventricular myocytes. Br J Pharmacol. Oct 1992; 107(2):311-6. doi:10.1111/j.1476-5381.1992.tb12743.x
    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Chan et al. tried identifying the binding sites or pockets for the KCNQ1-KCNE1 activator mefenamic acid. Because the KCNQ1-KCNE1 channel is responsible for cardiac repolarization, genetic impairment of either the KCNQ1 or KCNE1 gene can cause cardiac arrhythmia. Therefore, the development of activators without side effects is highly demanded. Because the binding of mefenamic acid requires both KCNQ1 and KCNE1 subunits, the authors performed drug docking simulation by using KCNQ1-KCNE3 structural model (because this is the only available KCNQ1-KCNE structure) with substitution of the extracellular five amino acids (R53-Y58) into D39-A44 of KCNE1. That could be a limitation of the work because the binding mode of KCNE1 might differ from that of KCNE3. Still, they successfully identified some critical amino acid residues, including W323 of KCNQ1 and K41 and A44 of KCNE1. They subsequently tested these identified amino acid residues by analyzing the point mutants and confirmed that they attenuated the effects of the activator. They also examined another activator, yet structurally different DIDS, and reported that DIDS and mefenamic acid share the binding pocket, and they concluded that the extracellular region composed of S1, S6, and KCNE1 is a generic binding pocket for the IKS activators.

      The data are solid and well support their conclusions, although there are a few concerns regarding the choice of mutants for analysis and data presentation.

      Other comments:

      1. One of the limitations of this work is that they used psKCNE1 (mostly KCNE3), not real KCNE1, as written above. It is also noted that KCNQ1-KCNE3 is in the open state. Unbinding may be facilitated in the closed state, although evaluating that in the current work is difficult.

      We agree that it is difficult to evaluate the role of unbinding from our model. Our data showing that longer interpulse intervals have a normalizing effect on the GV curve (Figure 3-figure supplement 2) could be interpreted to suggest that unbinding occurs in the closed state. Alternatively, the slowing of deactivation caused by S1-S6 interactions and facilitated by the activators may effectively be exceeded at the longer interpulse intervals.

      1. According to Figure 2-figure supplement 2, some amino acid residues (S298 and A300) of the turret might be involved in the binding of mefenamic acid. On the other hand, Q147 showing a comparable delta G value to S298 and A300 was picked for mutant analysis. What are the criteria for the following electrophysiological study?

      EP experiments interrogated selected residues with significant contributions to mefenamic acid and DIDs coordination as revealed by the MM/GBSA and MM/PBSA methods. A300 was identified as potentially important. We did attempt A300C but were never able to get adequate expression for analysis.

      1. It is an interesting speculation that K41C and W323A stabilize the extracellular region of KCNE1 and might increase the binding efficacy of mefenamic acid. Is it also the case for DIDS? K41 may not be critical for DIDS, however.

      Yes, we found K41 was not critical to the binding/action of DIDS compared to MEF. In electrophysiological experiments with the K41C mutation, DIDS induced a leftward GV shift (~ -25 mV) whereas the normalized response was statistically non-significant. In MD simulation studies, we observed detachment of DIDS from K41C-Iks only in 3 runs out of 8 simulations. This is in contrast to Mef, where the drug left the binding site of K41C-Iks complex in all simulations.

      1. Same to #2, why was the pore turret (S298-A300) not examined in Figure 7?

      Again, we attempted A300C but could not get high enough expression.

      Reviewer #3 (Public Review):

      Weaknesses:

      1. The computational aspect of the work is rather under-sampled - Figure 2 and Figure 4. The lack of quantitative analysis on the molecular dynamic simulation studies is striking, as only a video of a single representative replica is being shown per mutant/drug. Given that the simulations shown in the video are extremely short; some video only lasts up to 80 ns. Could the author provide longer simulations in each simulation condition (at least to 500 ns or until a stable binding pose is obtained in case the ligand does not leave the binding site), at least with three replicates per each condition? If not able to extend the length of the simulations due to resources issue, then further quantitative analysis should be conducted to prove that all simulations are converged and are sufficient. Please see the rest of the quantitative analysis in other comments.

      We provide more quantitative analysis for the existing MD simulations and ran five additional simulations with 500 ns duration by embedding the channel in a POPC lipid membrane. For the new MD simulations, we used a different force field in order to minimize ambiguity related to force fields as well. Analysis of these data has led to new data and supplemental figures regarding RMSD of ligands during the simulations (Figure 4-figure supplement 1 and Figure 6-figure supplement 3), clustering of MD trajectories based on Mef conformation (Figure 2-figure supplement 3 and Figure 6 -figure supplement 2), H-bond formation over the simulations (Figure 2-figure supplement 4 and Figure 6-figure supplement 1). We have edited the manuscript to include this new information where appropriate.

      1. Given that the protein is a tetramer, at least 12 datasets could have been curated to improve the statistic. It was also unclear how frequently the frames from the simulations were taken in order to calculate the PBSA/GBSA.

      By using one ligand for each ps-IKs channel complex we tried to keep the molecular system and corresponding analysis as simple as was possible. Our initial results have shown that 4D docking and subsequent MD simulations with only one ligand bound to ps-IKs was complicated enough. Our attempts to dock 4 ligands simultaneously and analyze the properties of such a system were ineffective due to difficulties in: i) obtaining stable complexes during conformational sampling and 4D docking procedures, since the ligand interaction covers a region including three protein chains with dynamic properties, ii) possible changes of receptor conformation properties at three other subunits when one ligand is already occupying its site, iii) marked diversity of the binding poses of the ligand as cluster analysis of ligand-channels complex shows (Figure 2-figure supplement 3).

      We have added a line in the methods to clarify the use of only one ligand per channel complex in simulations.

      In order to calculate MMPBSA/MMGBSA we used a frame every 0.3 ns throughout the 300 ns simulation (1000 frames/simulation) or during the time the ligand remained bound. We have clarified this in the Methods.

      1. The lack of labels on several structures is rather unhelpful (Figure 2B, 2C, 4B). The lack of clarity of the interaction map in Figures 2D and 6A.

      We updated figures considering the reviewer's comments and added labels. For 2D interaction maps, we provided additional information in figure legends to improve clarity.

      1. The RMSF analysis is rather unclear and unlabelled thoroughly. In fact, I still don't quite understand why n = 3, given that the protein is a tetramer. If only one out of four were docked and studied, this rationale needs to be explained and accounted for in the manuscript.

      The rationale of conducting MD simulations with one ligand bound to IKs is explained in response to point 2 of the reviewer’s comments.

      RMSF analysis in Figure 4C-E was calculated using the chain to which Mef was docked but after Mef had left the binding site. Details were added to the methods.

      1. For the condition that the ligands suppose to leave the site (K42C for Mef and Y46A for DIDS), can you please provide simulations at a sufficient length of time to show that ligand left the site over three replicates? Given that the protein is a tetramer, I would be expecting three replicates of data to have four data points from each subunit. I would be expecting distance calculation or RMSD of the ligand position in the binding site to be calculated either as a time series or as a distribution plot to show the difference between each mutant in the ligand stability within the binding pocket. I would expect all the videos to be translatable to certain quantitative measures.

      We have shown in the manuscript that the MEF molecule detaches from the K41C/IKs channel complex in all three simulations (at 25 ns, 70 ns and 20 ns, Table. 4). Similarly, the ligand left the site in all five new 500 ns duration simulations. We did not provide simualtions for Y46A, but Y46C left the binding site in 4 of 5 500 ns simulations and changed binding pose in the other.

      Difficulties encountered upon extending the docking and MD simulations for 4 receptor sites of the channel complex is discussed in our response to point # 2 of the reviewer.

      1. Given that K41 (Mef) and Y46 are very important in the coordination, could you calculate the frequency at which such residues form hydrogen bonds with the drug in the binding site? Can you also calculate the occupancy or the frequency of contact that the residues are making to the ligand (close 4-angstrom proximity etc.) and show whether those agree with the ligand interaction map obtained from ICM pro in Figure 2D?

      We thank the reviewer for the suggestion to analyze the H-bond contribution to ligand dynamics in the binding site. In the plots shown in Figure 2-figure supplement 4 and Figure 6-figure supplement 1, we now provide detailed information about the dynamics of the H-bond formation between the ligand and the channel-complex throughout simulations. In addition, we have quantified this and have added these numbers to a table (Table 2) and in the text of the results.

      1. Given that the author claims that both molecules share the same binding site and the mode of ligand binding seems to be very dynamic, I would expect the authors to show the distribution of the position of ligand, or space, or volume occupied by the ligand throughout multiple repeats of simulations, over sufficient sampling time that both ligand samples the same conformational space in the binding pocket. This will prove the point in the discussion - Line 463-464. "We can imagine a dynamic complex... bind/unbind from Its at a high frequency".

      To support our statement regarding a dynamic complex we analyzed longer MD simulations and clustered trajectories, from this an average conformation from each cluster was extracted and provided as supplementary information which shows the different binding modes for Mef (Figure 2-figure supplement 3). DIDS was more stable in MD simulations and though there were also several clusters, they were similar enough that when using the same cut-off distance as for mefenamic acid, they could be grouped into one cluster. (Note the scale differences on dendrogram between Figure 2-figure supplement 3 and Figure 6-figure supplement 2).

      1. I would expect the authors to explain the significance and the importance of the PBSA/GBSA analysis as they are not reporting the same energy in several cases, especially K41 in Figure 2 - figure supplement 2. It was also questionable that Y46, which seems to have high binding energy, show no difference in the EPhys works in figure 3. These need to be commented on.

      Several studies indicate that G values calculated using MM/PBSA and MM/GBSA methods may vary. Some studies report marked differences and the reasons for such a discrepancy is thoroughly discussed in a review by Genheden and Ryde (PMID: 25835573). Therefore, we used both methods to be sure that key residues contributing to ligand binding identified with one method appear in the list of residues for which the calculations are done with the other method.

      Y46C which showed only a slightly less favorable binding energy and did not unbind during 300 ns simulations, unbound, or changed pose in 4 out of 5 of the longer simulations in the presence of a lipid membrane (Figure 4-figure supplement 1). The discrepancy between electrophysiological and MD data is commented in the manuscript (pages 12-13).

      1. Can the author prove that the PBSA/GBSA analysis yielded the same average free energy throughout the MD simulation? This should be the case when the simulations are converged. The author may takes the snapshots from the first ten ns, conduct the analysis and take the average, then 50, then 100, then 250 and 500 ns. The author then hopefully expects that as the simulations get longer, the system has reached equilibrium, and the free energy obtained per residue corresponds to the ensemble average.

      As we mention in the manuscript, MEF- channel interactions are quite dynamic and vary even from simulation to simulation. The frequent change of the binding pose of the ligands observed during simulations (represented in Figure 2 - figure supplement 3 as clusters) is a clear reflection of such a dynamic process. Therefore, we do not expect the same average energy throughout the simulation but we do expect that G values stands above the background for key residues, which was generally the case (Figure 2 - figure supplement 2 and Figure 6.)

      1. The phrase "Lowest interaction free energy for residues in ps-KCNE1 and selected KCNQ1 domains are shown as enlarged panels (n=3 for each point)" needs further explanation. Is this from different frames? I would rather see this PBSA and GBSA calculated on every frame of the simulations, maybe at the one ns increment across 500 ns simulations, in 4 binding sites, in 3 replicas, and these are being plotted as the distribution instead of plotting the smallest number. Can you show each data point corresponding to n = 3?

      The MMPBSA/MMGBSA was calculated for 1000 frames across 3x300 ns simulations with 0.3 ns sampling interval, together 3000 frames, shown in Figure 2-figure supplement 2 and includes error bars to show the differences across runs. We have updated the legend for greater clarity.

      1. I cannot wrap my head around what you are trying to show in Figure 2B. This could be genuinely improved with better labelling. Can you explain whether this predicted binding pose for Mef in the figure is taken from the docking or from the last frame of the simulation? Given that the binding mode seems to be quite dynamic, a single snapshot might not be very helpful. I suggest a figure describing different modes of binding. Figure 2B should be combined with figure 2C as both are not very informative.

      We have updated Figure 2B with better labelling and added a new figure showing the different modes of binding (Figure 2-figure supplement 3).

      1. Similar to the comment above, but for Figure 4B. I do not understand the argument. If the author is trying to say that the pocket is closed after Mef is removed - then can you show, using MD simulation, that the pocket is openable in an apo to the state where Mef can bind? I am aware that the open pocket is generated through batches of structures through conformational sampling - but as the region is supposed to be disordered, can you show that there is a possibility of the allosteric or cryptic pocket being opened in the simulations? If not, can you show that the structure with the open pocket, when the ligand is removed, is capable of collapsing down to the structure similar to the cryo-EM structure? If none of the above work, the author might consider using PocketMiner tools to find an allosteric pocket (https://doi.org/10.1038/s41467-023-36699-3) and see a possibility that the pocket exists.

      Please see the attached screenshot which depicts the binding pocket from the longest run we performed (1250 ns) before drug detachment (grey superimposed structures) and after (red superimposed structures). Mefenamic acid is represented as licorice and colored green. Snapshots for superimposition were collected every 10 ns. As can be seen in the figure, when the drug leaves the binding site (after 500 ns, structures colored red), the N-terminal residue of psKCNE1, W323, and other residues that form the pocket shift toward the binding site, overlapping with where Mefenamic acid once resided. The surface structure in Figure 4B shows this collapse.

      Author response image 1.

      In the manuscript, we propose that drug binding occurs by the mechanism that could be best described by induced fit models, which state that the formation of the firm complexes (channel-Mef complex) is a result of multiple-states conformational adjustments of the bimolecular interaction. These interactions do not necessarily need to have large interfaces at the initial phase. This seems to be the case in Mef with IKS interactions, since we could not identify a pocket of appropriate size either using PocketMiner software suggested by the reviewer or with PocketFinder tool of ICM-pro software.

      1. Figure 4C - again, can you show the RMSF analysis of all four subunits leading to 12 data points? If it is too messy to plot, can you plot a mean with a standard deviation? I would say that a 1-1.5 angstroms increase in the RMSF is not a "markedly increased", as stated on line 280. I would also encourage the authors to label whether the RMSF is calculated from the backbone, side-chain or C-alpha atoms and, ideally, compare them to see where the dynamical properties are coming from.

      Please see the answer to comment #4. We agree that the changes are not so dramatic and modified the text accordingly. RMSD was calculated for backbone atom to compare residues with different side chains, a note of this is now in the methods and statistical significance of ps-IKs vs K41C, W323A and Y46C is indicated in Figures 4C-4E.

      1. In the discussion - Lines 464-467. "Slowed deactivation of the S1/KCNE1/Pore domain/drug complex... By stabilising the activated complex. MD simulation suggests the latter is most likely the case." Can you point out explicitly where this has been proven? If the drug really stabilised the activated complex, can you show which intermolecular interaction within E1/S1/Pore has the drug broken and re-form to strengthen the complex formation? The authors have not disproven the point on steric hindrance either. Can this be disproved by further quantitative analysis of existing unbiased equilibrium simulations?

      The stabilization of S1/KCNE1/Pore by drugs does not necessarily have to involve a creation of new contacts between protein parts or breakage of interfaces between them. The stabilization of activated complexes by drugs may occur when the drug simultaneously binds to both moveable parts of the channel, such as voltage sensor(s) or upper KCNE1 region, and static region(s) of the channel, such as the pore domain. We have changed the corresponding text for better clarity.

      1. Figure 4D - Can you show this RMSF analysis for all mutants you conducted in this study, such as Y46C? Can you explain the difference in F dynamics in the KCNE3 for both Figure 4C and 4D?

      We now show the RMSF for K41C, W323A and Y46C in Figure 4C-E. We speculate that K41 (magenta) and W323 (yellow), given their location at the lipid interface (see Author response image 1), may be important stabilizing residues for the KCNE N-terminus, whereas Y46 (green) which is further down the TMD has less of an impact.

      Author response image 2.

      1. Line 477: the author suggested that K41 and Mef may stabilise the protein-protein interface at the external region of the channel complex. Can you prove that through the change in protein-protein interaction, contact is made over time on the existing MD trajectories, whether they are broken or formed? The interface from which residues help to form and stabilise the contact? If this is just a hypothesis for future study, then this has to be stated clearly.

      It is known that crosslinking of several residues of external E1 with the external pore residues dramatically stabilizes voltage-sensors of KCNQ1/KCNE1 complex in the up-state conformation. This prevents movable protein regions in the voltage-sensors returning to their initial positions upon depolarization, locking the channel in an open state. We suggest that MEF may restrain the backward movement of voltage-sensors in a similar way that stabilizes open conformation of the channel. The stabilization of the voltage sensor domain through MEF occurs due to contacts of the drug with both static (pore domain) and dynamic protein parts (voltage-sensors and external KCNE1 regions). We have changed the corresponding part of the text.

      1. The author stated on lines 305-307 that "DIDS is stabilised by its hydrophobic and vdW contacts with KCNQ1 and KCNE1 subunits as well as by two hydrogen bonds formed between the drug and ps-KCNE1 residue L42 and KCNQ1 residue Q147" Can you show, using H-bond analysis that these two hydrogen bonds really exist stably in the simulations? Can you show, using minimum distance analysis, that L42 are in the vdW radii stably and are making close contact throughout the simulations?

      We performed a detailed H-bond analysis (Figure 6-supplement figure 1) which shows that DIDS forms multiple H-bond over the simulations, though only some of them (GLU43, TYR46, ILE47, SER298, TYR299, TRP323 ) are stable. Thus, the H-bonds that we observed in DIDS-docking experiments were unstable in MD simulations. As in the case of the IKs-MEF complex, the prevailing H-bonds exhibit marked quantitative variability from simulation to simulation. We have added a table detailing the most frequent H-bonds during MD simulations (Table 2).

      1. Discussion - In line 417, the author stated that the "S1 appears to pull away from the pore" and supplemented the claim with the movie. This is insufficient. The author should demonstrate distance calculation between the S1 helix and the pore, in WT and mutants, with and without the drug. This could be shown as a time series or distribution of centre-of-mass distance over time.

      We tried to analyze the distance changes between the upper S1 and the pore domain but failed to see a strong correlation We have removed this statement from the discussion.

      1. Given that all the work were done in the open state channel with PIP2 bound (PDB entry: 6v01), could the author demonstrate, either using docking, or simulations, or alignment, or space-filling models - that the ligand, both DIDS and Mef, would not be able to fit in the binding site of a closed state channel (PDB entry: 6v00). This would help illustrate the point denoted Lines 464-467. "Slowed deactivation of the S1/KCNE1/Pore domain/drug complex... By stabilising the activated complex. MD simulation suggests the latter is most likely the case."

      As of now, a structure representing the closed state of the channel does not exist. 6V00 is the closed inactivated state of the channel pore with voltage-sensors in the activated conformation. In order to create simulation conditions that reliably describe the electrophysiological experiments, at least a good model for closed channels with resting state voltage sensors is necessary.

      1. The author stated that the binding pose changed in one run (lines 317 to 318). Can you comment on those changes? If the pose has changed - what has it changed to? Can you run longer simulations to see if it can reverse back to the initial confirmation? Or will it leave the site completely?

      Longer simulations and trajectory clustering revealed several binding modes, where one pose dominated in approximately 50% of all simulations in Figure 2-figure supplement 3 encircled with a blue frame.

      1. Binding free energy of -32 kcal/mol = -134 kJ/mol. If you try to do dG = -RTlnKd, your lnKd is -52. Your Kd is e^-52, which means it will never unbind if it exists. I am aware that this is the caveat with the methodologies. But maybe these should be highlighted throughout the manuscript.

      We thank the reviewer for this comment. G values, and corresponding Kd values, calculated from simulation of Mef-ps-IKs complex do not reflect the apparent Kd values determined in electrophysiological experiments, nor do they reflect Kd values of drug binding that could be determined in biochemical essays. Important measures are the changes observed in simulations of mutant channel complexes relative to wild type. We now briefly mention this issue in the manuscript.

      Reviewer #1 (Recommendations For The Authors):

      1) It would be nice to have labels of amino acid residues in Figure 2B.

      We updated Figure 2B and added some residue labels.

      2) Fig. 3A and 7A. In what order the current traces are presented? I don't see the rule.

      We have now arranged the current traces in a more orderly manner, listing them first by ascending KCNE1 residue numbers and then by ascending KCNQ1 residue numbers. Now consistent with Fig 3 and 7 (normalized response and delta V1/2).

      3) Line 312 "A44 and Y46 were more so." A44 may be more critical, but I can't see Y46 is more, according to Figure 2-figure supplement2 and Figure 6.

      Indeed, comparison of the energy decomposition data indicates approximately the same ∆G values for Y46. We have revised this in the text correspondingly.

      4) Line 267 "Mefenamic acid..." I would like to see the movie.

      We no longer have access to this original movie

      5) In supplemental movies 5-7, the side chains of some critical amino acid residues (W323, K41) would be better presented as in movies 1-4.

      We have retained the original presentations of these movies as the original files are no longer available.

      Reviewer #2 (Recommendations For The Authors):

      General comments:

      1) To determine the effect of mefenamic acid and DIDS on channel closing kinetics, a protocol in which they step from an activating test pulse to a repolarizing tail pulse to -40 mV for 1 s is used. If I understand it right, the drug response is assessed as the difference in instantaneous tail current amplitude and the amplitude after 1 s (row 599-603). The drug response of each mutant is then normalized to the response of the WT channel. However, for several mutants there is barely any sign of current decay during this relatively brief pulse (1 s) at this specific voltage. To determine drug effects more reliably on channel closing kinetics/the extent of channel closing, I wonder if these protocols could be refined? For instance, to cover a larger set of voltages and consider longer timescales?

      To clarify, the drug response of each mutant is not normalized to the response of the WT channel. In fact, our analysis is not meant to compare mutant and WT tail current decay but rather how isochronal tail current decay is changed in response to drug treatment in each channel construct. As acknowledged by the reviewer, the peak to end difference currents were calculated by subtracting the minimum amplitude of the deactivating current from the peak amplitude of the deactivating current. But the difference current in mefenamic acid or DIDS was normalized to the maximum control (in the absence of drug) difference current and subtracted from 1.0 to obtain the normalized response. Thus, the difference in tail current decay in the absence and in the presence of drug is measured within the same time scale and allow a direct comparison between before and after drug treatment. As shown in Fig 3D and 7C, a large drug response such as the one measured in WT channels is reflected by a value close to 1. A smaller drug response is indicated by low values. We recognize that some mutations resulted in an intrinsic inhibition of tail current decay in the absence of drug, which potentially lead to underestimating the normalized response value. Our goal was not to study in detail the effects of the drug on channel closing kinetics, but only to determine the impact of the mutation on drug binding by using tail current decay as a readout. Consequently, we believe that the duration of the deactivating tail current used in this experiment was sufficient to detect drug-induced tail current decay inhibition.

      2) The effect of mefenamic acid seems to be highly dependent on the pulse-to-pulse interval in the experiments. For instance, for WT in Figure 3 - Figure supplement 1, a 15 s pulse-to-pulse interval provides a -100 mV shift in V1/2 induced by mefenamic acid, whereas there is no shift induced when using a 30 s pulse-to-pulse interval. Can the authors explain why they generally consider a 15 s pulse-to-pulse interval more suitable (physiologically relevant?) in their experiments to assess drug effects?

      In our previous experiments, we have determined that a 15 s inter-pulse interval is generally adequate for the WT IKs channels to fully deactivate before the onset of the next pulse. Consistent with our previous work (Wang et al. 2019), we observed that in wild-type EQ channels, there is no current summation from one pulse to the next one (see Fig 1A, bottom panel). This is important as the IKs channel complex is known to be frequency dependent i.e. current amplitude increases as the inter-pulse interval gets shorter. Such current summation results in a leftward shift of the conductance-voltage (GV) relationship. This is also important with regards to drug effects. As indicated by the reviewer, mefenamic acid effects are prominent with a 15 sec inter-pulse interval but less so with a 30 sec inter-pulse interval when enough time is given for channels to more completely deactivate. Full effects of mefenamic acid would have therefore been concealed with a 30sec inter-pulse interval.

      Moreover, our patch-clamp recordings aim to explore the distinct responses of mutant channels to mefenamic acid and DIDS in comparison to the wild-type channel. It is important to note that the inter-pulse interval's physiological relevance is not necessarily crucial in this context.

      3) Related to comment 1 and 2, there is a large diversity in the intrinsic properties of tested mutants. For instance, V1/2 ranges from 4 to 70 mV. Also, there is large variability in the slope of the G-V curves. Whether channel closing kinetics, or the impact of pulse-to-pulse interval, vary among mutants is not clear. Could the authors please discuss whether the intrinsic properties of mutants may affect their ability to respond to mefenamic acid and DIDS? Also, please provide representative current families and G-V curves for all assessed mutants in supplementary figures.

      The intrinsic properties of some mutants vary from the WT channels and influence their responsiveness to mefenamic acid and DIDS. The impact of the mutations on the IKs channel complex are reflected by changes in V1/2 (Table 1, 4) and tail current decay (Figs. 3, 7). But, it is the examination of the drug effects on these intrinsic properties (i.e. GV curve and tail current decay) that constitutes the primary endpoint of our study. We consider that the degree by which mef and DIDS modify these intrinsic properties reflects their ability to bind or not to the mutated channel. In our analysis, we compared each mutant's response to mefenamic acid and DIDS with its respective control. Consequently, the intrinsic properties of the mutant channels have already been considered in our evaluation. As requested, we have provided representative current families and G-V curves for all assessed mutants in Figure 3-figure supplement 1 and Figure 7-figure supplement 1.

      4) The A44C and Y148C mutants give strikingly different currents in the examples shown in Figure 3 and Figure 7. What is the reason for this? In the examples in figure 7, it almost looks like KCNE1 is absent. Although linked constructs are used, is there any indication that KCNE1 is not co-assembled properly with KCNQ1 in those examples?

      The size of the current is critical to determining its shape, as during the test pulse there is some endogenous current mixed in which impacts shape. A44C and Y148C currents shown in Figure 7 are smaller with a larger contribution of the endogenous current, mostly at the foot of the current trace. In our experience there is little endogenous current in the tail current at -40 mV and for this reason we focus our measurements there.

      Although constructs with tethered KCNQ1 and KCNE1 were used, we cannot rule out the possibility that Q1 and E1 interaction was altered by some of the mutations. Several KCNE1 and KCNQ1 residues have been identified as points of contact between the two subunits. For instance, the KCNE1 loop (position 36-47) has been shown to interact with the KCNQ1 S1-S2 linker (position 140-148) (Wang et al, 2011). Thus, it is conceivable that mutation of one or several of those residues may alter KCNQ1/KCNE1 interaction and modify the activation/deactivation kinetics of the IKs channel complex.

      5) I had a hard time following the details of the simulation approaches used. If not already stated (I could not find it), please provide: i) details on whether the whole channel protein was considered for 4D docking or a docking box was specified, ii) information on how simulations with mutant ps-IKs were prepared (for instance with the K41C mutant), especially whether the in silico mutated channel was allowed to relax before evaluation (and for how long). Also, please make sure that information on simulation time and number of repeats are provided in the Methods section.

      For 4D docking, only residues within 0.8 nm of psKCNE1 residues D39-A44 were selected. Complexes with mutated residues were relaxed using the same protocol as the WT channel, (equilibration with gradually releasing restraints with a final equilibration for 10 ns where only the backbone was constrained with 50 kcal/mol/nm2). We have updated the methods accordingly.

      Specific comments:

      In figure legends, please provide information on whether data represents mean +/- SD or SEM. Also, please provide information on which statistical test was used in each figure.

      We revised the figure legend to add the nature of the statistical test used.

      G-V curves are normalized between 0 and 1. However, for many mutants the G-V relationship does not reach saturation at depolarized voltages. Does this affect the estimated V1/2? I could not really tell as I was not sure how V1/2 was determined for different mutants (could the explanation on row 595-598 be clarified)?

      The primary focus here is in the shift between the control response and drug response for each mutant, rather than the absolute V1/2 values. The isochronal G-V curves that are generated for each construct (WT and mutant) utilize an identical voltage protocol. This approach ensures a uniform comparison among all mutants. By observing the shifts in these curves, we can gain insight into the response of mutant channels to the drug. This information ultimately helps elucidate the inherent properties of the mutant channels and contributes to our understanding of the drug's binding mechanism to the channel.

      As requested by the reviewer, we also clarified the way V1/2 was generated: When the G-V curve did not reach zero, the V1/2 value was directly read from the plot at the voltage point where the curve crossed the 0.5 value on the y coordinate.

      A general comment is that the Discussion is fairly long and some sections are quite redundant to the Results section. The authors could consider focusing the text in the Discussion.

      We changed the discussion correspondingly wherever it was appropriate.

      I found it a bit hard to follow the authors interpretation on whether their drug molecules remain bound throughout the experiments, or whether there is fast binding/unbinding. Please clarify if possible.

      In the 300 ns MD simulations mefenamic acid and DIDS remained stably bound to WT-ps-IKS, binding of drugs to mutant complexes are described in the Table 3 and Table 5. In longer simulations with the channel embedded in a lipid environment, mefenamic acid unbinds in two out of five runs for WT-ps-IKs (Figure 4 – figure supplement 1), and DIDS shows a few events where it briefly unbinds (Figure 6 -figure supplement 3). Based on electrophysiological data we speculate that drugs might bind and unbind to WT-ps-IKs during the gating process. We do not see bind-unbinding in MD simulations, since the model we used in simulations reflects only open conformation of the channel-complex with an activated-state voltage-sensor, whereas a resting-state voltage sensor condition was not considered.

      The authors have previously shown that channels with no, one or two KCNE1 subunits are not, or only to a small extent, affected by mefenamic acid (Wang et al., 2020). Could the details of the binding site and proposed mechanisms of action provide clues as to why all binding sites need to be occupied to give prominent drug effects?

      In the manuscript, we propose that the binding of drugs induces conformational changes in the pocket region that stabilize S1/KCNE1/Pore complex. In the tetrameric channel with 4:4 alpha to beta stoichiometry the drugs are likely to occupy all four sites with complete stabilization of S1/KCNE1/Pore. When one or more KCNE1 subunits is absent, as in case of EQQ, or EQQQQ constructs, drugs will bind to the site(s) where KCNE1 is available. This will lead to stabilization of the only certain part of the S1/KCNE1/Pore complex. We believe that the corresponding effect of the drug, in this case will be partially effective.

      There is a bit of jumping in the order of when some figures are introduced (e.g. row 178 and 239). The authors could consider changing the order to make the figures easier to follow.

      We have changed the corresponding section appropriately to improve the reading flow.

      Row 237: "Data not shown", please show data.

      The G-V curve of the KCNE1 Y46C mutant displays a complex, double Boltzmann relationship which does not allow for the calculation of a meaningful V1/2 nor would it allow for an accurate determination of drug effects. Consequently, we have excluded it from the manuscript.

      In the Discussion, the author use the term "KCNE1/3". Does this correspond to the previous mention of "ps-KCNE1"?

      Yes, this refers to ps-KCNE1. We have changed it correspondingly.

      Row 576: When was HMR 1556 used?

      While HMR 1556 was used in preliminary experiments to confirm that the recorded current was indeed IKs, it does not provide substantial value to the data presented in our study or our experiments. As a result, we have excluded HMR 1556 experiments from the final results and have revised the Methods section accordingly.

      Reviewer #3 (Recommendations For The Authors):

      1) Figures 2D and 6A are very unclear. Can the authors provide labels as text rather than coloured circles, whether the residue is on Q1 or E1? There is also a distance label in the figure in the small font with the faintest shade of grey, which I believe is supposed to be hydrogen bonds. Can this be improved for clarity?

      We feel that additional labels on the ligand diagrams to be more confusing, instead, we updated the description in the legend and added labels to Figure 2B and Figure 6B to improve the clarity of residue positions. In addition, we have added 2 new figures with more detailed information about H-bonds (Figure 2-figure supplement 4, Figure 6- figure supplement 1).

      2) Figure 2B - all side chains need labelling in different binding modes. The green ligand on blue protein is very difficult to see. Suddenly, the ligand turns light blue in panel 2C. Can this be consistent throughout the manuscript?

      Figure 2B is updated according to this comment.

      3) Figure 2 - figure supplement 2, and figure 6B. Can the author show the residue number on the x-axis instead of just the one-letter abbreviation? This requires the reader to count and is not helpful when we try to figure out where the residue is at a glance. I would suggest a structure label adjacent to the plot to show whether they are located with respect to the drug molecule.

      Since the numbers for residues on either end of the cluster are indicated at the bottom of each boxed section, we feel that adding residue numbers would just further clutter the figure.

      4) Figure 2 - figure supplement 2, and Figure 6B. Can you explain what is being shown in the error bar? I assume standard deviation?

      Error bars on Figure 2-figure supplement 2 represent SEM. We added corresponding text in the figure legend.

      5) Figure 2 - figure supplement 2, and figure 6B. Can you explain how many frames are being accounted for in this PBSA calculation?

      For Figure 2- figure supplement 2 and Figure 6B a frame was made every 0.3 ns over 3x300 ns simulation, 1000 frames for each simulation, 3000 frames overall.

      6) Figure 3D/E and 7C/D, it would be helpful to show which mutant show agreeable results with the simulations, PBSA/GBSA and contact analyses as suggested above.

      The inconsistencies and discrepancies between the results of MD simulations and electrophysiological experiments are discussed throughout the manuscript.

      7) Figure legend, figure 3E - I assume that there is a type that is different mutants with respect to those without the drug. Otherwise, how could WT, with respect to WT, has -105 mV dV1/2?

      The reviewer is correct in that the bars indicate the difference in V1/2 between control and drug treatment. Thus, the difference in V1/2 (∆V1/2) between the V1/2 calculated for WT control and the V1/2 for mefenamic acid is indeed -105 mV. We have now revised Figure 3E's legend to accurately reflect this and ensure a clear understanding of the data presented.

      8) Figure 3 - figure supplement 1B is very messy, and I could not extract the key point from it. Can this be plotted on a separate trace? At least 1 WT trace and one mutant trace, 1 with WT+drug and one mut+drug as four separate plots for clarity?

      The key message of this figure is to illustrate the similarities of EQ WT + Mef and EQ L142C data. Thus, after thorough consideration, we have concluded that maintaining the current figure, which displays the progressive G-V curve shift in EQ WT and L142C in a superimposed manner, best illustrates the gradual shift in the G-V curves. This presentation allows for a clearer and more immediate comparison of the curve shifts, which may be more challenging to discern if the G-V curves were separated into individual figures. We believe that the existing format effectively communicates the relevant information in a comprehensive and accessible manner.

      9) Figure 4B - the label Voltage is blended into the orange helix. Can the label be placed more neatly?

      We altered the labels for this figure and added that information in the figure description.

      10) Can you show the numerical label of the residue, at least only to the KCNE1 portion in Figures 4C and 4D?

      We updated these figures and added residue numbering for clarity.

      11) Can you hide all non-polar hydrogen atoms in figure 8 and colour each subunit so that it agrees with the rest of the manuscripts? Can you adjust the position of the side chain so that it is interpretable? Can you summarise this as a cartoon? For example, Q147 and Y148 are in grey and are very far hidden away. So as S298. Can you colour-code your label? The methionine (I assume M45) next to T327 is shown as the stick and is unlabelled. Maybe set the orthoscopic view, increase the lighting and rotate the figures in a more interpretable fashion?

      We agree that Fig.8 is rather small as originally presented. We have tried to emphasize those residues we feel most critical to the study and inevitably that leads to de-emphasis of other, less important residues. As long as the figure is reproduced at sufficient size we feel that it has sufficient clarity for the purposes of the Discussion.

      12) Line 538-539. Can you provide more detail on how the extracellular residues of KCNE3 are substituted? Did you use Modeller, SwissModel, or AlphaFold to substitute this region of the KCNEs?

      We used ICM-pro to substitute extracellular residues of KCNE3 and create mutant variants of the Iks channel. This information is provided in the methods section now.

      13) Line 551: The PIP2 density was solved using cryo-EM, not X-ray crystallography.

      We corrected this.

      14) Line 555: The system was equilibrated for ten ns. In which ensemble? Was there any restraint applied during the equilibration run? If yes, at what force constant?

      The system was equilibrated in NVT and NPT ensembles with restraints. These details are added to methods. In the new simulations, we did equilibrations gradually releasing spatial from the backbone, sidechains, lipids, and ligands. A final 30 ns equilibration in the NPT ensemble was performed with restraint only for backbone atoms with a force constant of 50 kJ/mol/nm2. Methods were edited accordingly.

      15) Line 557: Kelvin is a unit without a degree.

      Corrected

      16) Line 559: PME is an electrostatic algorithm, not a method.

      Corrected

      17) Line 566: Collecting 1000 snapshots at which intervals. Given your run are not equal in length, how can you ensure that these are representative snapshots?

      Please see comment #5.

      18) Table 3 - Why SD for computational data and SEM for experimental data?

      There was no particular reason for using SD in some graphs. We used appropriate statistical tests to compare the groups where the difference was not obvious.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Review:

      1. Evidence for a disulfide bridge contained in membrane-associated FGF2 dimers

      This aspect was brought up in detail by both Reviewer #1 and Reviewer #3. It has been addressed in the revised manuscript by (i) new experimental and computational analyses, (ii) a more detailed discussion of previous work from our lab in which experiments were done the reviewers were asking for and (iii) a more general discussion of known examples of disulfide formation in protein complexes with a particular focus on membrane surfaces facing the cytoplasm, the inner plasma membrane leaflet being a prominent example. Please find our detailed comments in our direct response to Reviewers #1 and #3, see below.

      1. Affinity towards PI(4,5)P2 comparing FGF2 dimers versus monomers

      This is an aspect that has been raised by Reviewer 3 along with additional comments on the interaction of FGF2 with PI(4,5)P2. Please find our detailed response below. With regard to PI(4,5)P2 affinity aspects of FGF2 dimers versus FGF2 monomers, we think that the increased avidity of FGF2 dimers with two high affinity binding pockets for PI(4,5)P2 are a good explanation for the different values of free energies of binding that were calculated from the atomistic molecular dynamics simulations shown in Fig. 9. This phenomenon is well known for many biomolecular interactions and is also consistent with the cryoEM data contained in our manuscript, showing a FGF2 dimer with two PI(4,5)P2 binding sites facing the membrane surface.

      1. C95-C95 FGF2 dimers as signaling units

      We have put forward this hypothesis since in structural studies analyzing the FGF ternary signaling complex consisting of FGF2, FGF receptor and heparin, FGF2 mutants were used that lack C95. Nevertheless, two FGF2 molecules are contained in FGF signaling complexes. In addition to the papers on the structure of the FGF signaling complex, we have cited work that showed that C95-C95 crosslinked FGF2 dimers are efficient FGF signaling modules (Decker et al, 2016; Nawrocka et al, 2020). Therefore, being based on an assembly/disassembly mechanism with the transient formation of poreforming FGF2 oligomers, we think it is an interesting idea that the FGF2 secretion pathway produces C95-C95 disulfide-linked FGF2 dimers at the outer plasma membrane leaflet that can engage in FGF2 ternary signaling complexes. While this is a possibility we put forward to stimulate the field, it of course remains a hypothesis which has been clearly indicated as such in the revised manuscript.

      Reviewer #1:

      1. Evidence for disulfide-bridged FGF2 dimers and higher oligomers on non-reducing versus reducing SDS gels

      The experiment suggested by Reviewer #1 is an important one that has been published by our group in previous work. In these studies, we found FGF2 oligomers analyzed on non-reducing SDS gels to be sensitive to DTT, turning the vast majority of oligomeric FGF2 species into monomers [(Müller et al, 2015); Fig. 3, compare panel D with panel H]. This phenomenon could be observed most clearly after short periods of incubations (0.5 hours) of FGF2 with PI(4,5)P2-containing liposomes. These findings constituted the original evidence for PI(4,5)P2-induced FGF2 oligomerization to depend on the formation of intermolecular disulfide bridges.

      In the current manuscript, we established the structural principles underlying this process and identified C95 to be the only cysteine residue involved in disulfide formation. Based on biochemical cross-linking experiments in cells, cryo-electron tomography, predictions from AlphaFold-2 Multimer and molecular dynamics simulations, we demonstrated a strong FGF2 dimerization interface in which C95 residues are brought into close proximity when FGF2 is bound to membranes in a PI(4,5)P2-dependent manner. These findings provide the structural basis by which disulfide bridges can be formed from the thiols contained in the side chains of two C95 residues directly facing each other in the dimerization interface. In the revised manuscript, we included additional data that further strengthen this analysis. In the experiments shown in the new Fig. 10, we combined chemical cross-linking with mass spectrometry, further validating the reported FGF2 dimerization interface. In addition, illustrated in the new Fig. 8, we employed a new computational analysis combining 360 individual atomistic molecular dynamics simulations, each spanning 0.5 microseconds, with advanced machine learning techniques. This new data set corroborates our findings, demonstrating that the C95-C95 interface self-assembles independently of C95-C95 disulfide formation, based on electrostatic interactions. Intriguingly, it is consistent with our experimental findings based on cross-linking mass spectrometry (new Fig. 10) where cross-linked peptides could also be observed with the C77/95A variant form of FGF2, suggesting a protein-protein interface whose formation does not depend on disulfide formation. Therefore, we propose that disulfide formation occurs in a subsequent step, representing the committed step of FGF2 membrane translocation with the formation of disulfide-bridged FGF2 dimers being the building blocks for pore-forming FGF2 oligomers.

      As a more general remark on the mechanistic principles of disulfide formation in different cellular environments, we would like to emphasize that it is a common misconception that the reducing environment of the cytoplasm generally makes the formation of disulfide bridges unlikely or even impossible. From a biochemical point of view, the formation of disulfide bridges is not limited by a reducing cellular environment but is rather controlled by kinetic parameters when two thiols are brought into proximity. Indeed, it has become well established that disulfide bridges can also be formed in compartments other than the lumen of the ER/Golgi system, including the cytoplasm. For example, viruses maturing in the cytoplasm can form stable structural disulfide bonds in their coat proteins (Locker & Griffiths, 1999; Hakim & Fass, 2010). Moreover, many cytosolic proteins, including phosphatases, kinases and transcriptions factors, are now recognized to be regulated by thiol oxidation and disulfide bond formation, formed as a post-transcriptional modification (Lennicke & Cocheme, 2021). In numerous cases with direct relevance for our studies on FGF2, disulfide bond formation and other forms of thiol oxidation occur in association with membrane surfaces. In fact, many of these processes are linked to the inner plasma membrane leaflet (Nordzieke & Medrano-Fernandez, 2018). Growth factors, hormones and antigen receptors are observed to activate transmembrane NADPH oxidases generating O2·-/H2O2 (Brown & Griendling, 2009). For example, the local and transient oxidative inactivation of membrane-associated phosphatases (e.g., PTEN) serves to enhance receptor associated kinase signaling (Netto & Machado, 2022). It is therefore conceivable that similar processes introduce disulfide bridges into FGF2 while assembling into oligomers at the inner plasma membrane leaflet. In the revised version of our manuscript, we have discussed the above-mentioned aspects in more detail, with the known role of NADPH oxidases in disulfide formation at the inner plasma membrane leaflet being highlighted.

      Reviewer #2:

      1. Potential effects of a C95A substitution on protein folding and comparison with a C95S substitution with regard to phenotypes observed in FGF2 secretion

      A valid point that we indeed addressed at the beginning of this project. Most importantly, we tested whether both FGF2 C95A and FGF2 C95S are characterized by severe phenotypes in FGF2 secretion efficiency. As shown in the revised Fig. 1, cysteine substitutions by serine showed very similar FGF2 secretion phenotypes compared to cysteine to alanine substitutions (Fig. 1C and 1D). In addition, in the pilot phase of this project, we also compared recombinant forms of FGF2 C95A and FGF2 C95S in various in vitro assays. For example, we tested the full set of FGF2 variants in membrane integrity assays as the ones contained in Fig. 4. As shown in Author response image 1, FGF2 variant forms carrying a serine in position 95 behaved in a very similar manner as compared to FGF2 C95A variant forms. Relative to FGF2 wild-type, membrane pore formation was strongly reduced for both types of C95 substitutions. By contrast, both FGF2 C77S and C77A did show activities that were similar to FGF2 wild-type.

      Author response image 1.

      From these experiments, we conclude that changes in protein structure are not the basis for the phenotypes we report on the C95A substitution in FGF2.

      1. Effects of a C77A substitution on FGF2 membrane recruitment in cells

      The effect of a C77A substitution in FGF2 recruitment to the inner plasma membrane leaflet is indeed a moderate one. This is likely to be the case because C77 is only one residue of a more complex surface that contacts the α1 subunit of the Na,K-ATPase. Stronger effects can be observed when K54 and K60 are changed, residues that are positioned in close proximity to C77 (Legrand et al, 2020). Nevertheless, as shown in the revised Fig. 1, we consistently observed a reduction in membrane recruitment when comparing FGF2 C77A with FGF2 wild-type. When analyzing the raw data without GFP background subtraction, a significant reduction of FGF2 C77A was observed compared to FGF2 wild-type (Fig. 1A and 1B). We therefore conclude that C77 does not only play a role in FGF2/α1 interactions in biochemical assays using purified components (Fig. 7) but also impairs FGF2/α1 interactions in a cellular context (Fig. 1A and 1B).

      1. Identity of the protein band in Fig. 3 labeled with an empty diamond

      This is a misunderstanding as we did not assign this band to a FGF2-GFP dimer. When we produced the corresponding cell lines, we used constructs that link FGF2 with GFP via a ‘self-cleaving’ P2A sequence. During translation, even though arranged on one mRNA, this causes the production of FGF2 and GFP as separate proteins in stoichiometric amounts, the latter being used to monitor transfection efficiency. However, a small fraction is always expressed as a complete FGF2-P2A-GFP fusion protein (a monomer). This band can be detected with the FGF2 antibodies used and was labeled in Fig. 3 by an empty diamond.

      1. Labeling of subpanels in Fig. 5A

      We have revised Fig. 5 according to the suggestion of Reviewer #2.

      1. FGF2 membrane binding efficiencies shown in Fig. 5C

      It is true that FGF2 variant forms defective in PI(4,5)P2-dependent oligomerization (C95A and C77/95A) bind to membranes with somewhat reduced efficiencies. This is also evident form the intensity profiles shown in Fig. 5A and was observed in biochemical in vitro experiments as well. A plausible explanation for this phenomenon would be the increased avidity when FGF2 oligomerizes, stabilizing membrane interactions (see also Fig. 9B).

      1. Residual activities of FGF2 C95A and C77/95A in membrane pore formation?

      We do not assign the phenomenon in Fig. 5 Reviewer #2 is referring to as controlled activities of FGF2 C95A and C77/95A in membrane pore formation. Rather, GUVs containing PI(4,5)P2 are relatively labile structures with a certain level of integrity issues upon protein binding and extended incubation times being conceivable. It is basically a technical limitation of this assay with GUVs incubated with proteins for 2 hours. Even after substitution of PI(4,5)P2 with a Ni-NTA membrane lipid, background levels of loss of membrane integrity can be observed (Fig. 6). Therefore, as compared to FGF2 C95A and C77/95A, the critical point here is that FGF2 wt and FGF2 C77A do display significantly higher levels of a loss of membrane integrity in PI(4,5)P2-containing GUVs, a phenomenon that we interpret as controlled membrane pore formation. By contrast, all variant forms of FGF2 show only background levels for loss of membrane integrity in GUVs containing the Ni-NTA lipid.

      1. Why does PI(4,5)P2 induce FGF2 dimerization?

      This has been studied extensively in previous work (Steringer et al, 2017). As also discussed in the current manuscript, the interaction of FGF2 with membranes through its high affinity PI(4,5)P2 binding pocket orients FGF2 molecules on a 2D surface that increase the likelihood of the formation of the C95containing FGF2 dimerization interface. Moreover, in the presence of cholesterol at levels typical for plasma membranes, PI(4,5)P2 clusters containing up to 4 PI(4,5)P2 molecules (Lolicato et al, 2022), a process that may further facilitate FGF2 dimerization.

      1. Is it possible to pinpoint the number of FGF2 subunits in oligomers observed in cryo-electron tomography?

      We indeed took advantage of the Halo tags that appear as dark globular structures in cryo-electron tomography. For most FGF2 oligomers with FGF2 subunits on both sides of the membrane, we could observe 4 to 6 Halo tags which is consistent with the functional subunit number that has been analyzed for membrane pore formation (Steringer et al., 2017; Sachl et al, 2020; Singh et al, 2023). However, since the number of higher FGF2 oligomers we observed in cryo-electron tomography was relatively small and the nature of these oligomers appears to be highly dynamic, caution should be taken to avoid overinterpretation of the available data.

      Reviewer #3:

      1. Conclusive demonstration of disulfide-linked FGF2 dimers

      A similar point was raised by Reviewer #1, so that we would like to refer to our response on page 2, see above.

      1. Identity of FGF2-P2A-GFP observed in Fig. 3

      Again, a similar point has been made, in this case by Reviewer #2 (Point 3). The observed band is not a FGF2-P2A-GFP dimer but rather the complete FGF2-P2A-GFP fusion protein (a monomer) that corresponds to a small population produced during mRNA translation where the P2A sequence did not cause the production of FGF2 and GFP as separate proteins in stoichiometric amounts.

      1. Quantification of GFP signals in Fig. 6

      Fig. 6 has been revised according to the suggestion of Reviewer #3. A comprehensive comparison of PI(4,5)P2 and the Ni-NTA membrane lipid in FGF2 membrane translocation assays is also contained in previous work that introduced the GUV-based FGF2 membrane translocation assay (Steringer et al., 2017).

      1. Experimental evidence for various aspects of FGF2 interactions with PI(4,5)P2

      Most of the points raised by Reviewer #3 have been addressed in previous work. For example, FGF2 has been demonstrated to dimerize only on membrane surfaces containing PI(4,5)P2 (Müller et al., 2015). In solution, FGF2 remained a monomer even after hours of incubation as analyzed by native gel electrophoresis and reducing vs. non-reducing SDS gels (see Fig. 3 in Müller et al, 2015). In the same paper, the first evidence for a potential role of C95 in FGF2 oligomerization has been reported, however, at the time, our studies were limited to FGF2 C77/95A. In the current manuscript, the in vitro experiments shown in Figs. 2 to 6 establish the unique role of C95 in PI(4,5)P2-dependent FGF2 oligomerization. As discussed above, FGF2 oligomers have been shown to contain disulfide bridges based on analyses on non-reducing gels in the absence and presence of DTT (Müller et al., 2015).

      References

      Brown DI, Griendling KK (2009) Nox proteins in signal transduction. Free Radic Biol Med 47: 1239-1253 Decker CG, Wang Y, Paluck SJ, Shen L, Loo JA, Levine AJ, Miller LS, Maynard HD (2016) Fibroblast growth factor 2 dimer with superagonist in vitro activity improves granulation tissue formation during wound healing. Biomaterials 81: 157-168

      Hakim M, Fass D (2010) Cytosolic disulfide bond formation in cells infected with large nucleocytoplasmic DNA viruses. Antioxid Redox Signal 13: 1261-1271

      Legrand C, Saleppico R, Sticht J, Lolicato F, Muller HM, Wegehingel S, Dimou E, Steringer JP, Ewers H, Vattulainen I et al (2020) The Na,K-ATPase acts upstream of phosphoinositide PI(4,5)P2 facilitating unconventional secretion of Fibroblast Growth Factor 2. Commun Biol 3: 141

      Lennicke C, Cocheme HM (2021) Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol Cell 81: 3691-3707

      Locker JK, Griffiths G (1999) An unconventional role for cytoplasmic disulfide bonds in vaccinia virus proteins. J Cell Biol 144: 267-279

      Lolicato F, Saleppico R, Griffo A, Meyer A, Scollo F, Pokrandt B, Muller HM, Ewers H, Hahl H, Fleury JB et al (2022) Cholesterol promotes clustering of PI(4,5)P2 driving unconventional secretion of FGF2. J Cell Biol 221

      Müller HM, Steringer JP, Wegehingel S, Bleicken S, Munster M, Dimou E, Unger S, Weidmann G, Andreas H, GarciaSaez AJ et al (2015) Formation of Disulfide Bridges Drives Oligomerization, Membrane Pore Formation and Translocation of Fibroblast Growth Factor 2 to Cell Surfaces. J Biol Chem 290: 8925-8937

      Nawrocka D, Krzyscik MA, Opalinski L, Zakrzewska M, Otlewski J (2020) Stable Fibroblast Growth Factor 2 Dimers with High Pro-Survival and Mitogenic Potential. Int J Mol Sci 21

      Netto LES, Machado L (2022) Preferential redox regulation of cysteine-based protein tyrosine phosphatases: structural and biochemical diversity. FEBS J 289: 5480-5504

      Nordzieke DE, Medrano-Fernandez I (2018) The Plasma Membrane: A Platform for Intra- and Intercellular Redox Signaling. Antioxidants (Basel) 7

      Sachl R, Cujova S, Singh V, Riegerova P, Kapusta P, Muller HM, Steringer JP, Hof M, Nickel W (2020) Functional Assay to Correlate Protein Oligomerization States with Membrane Pore Formation. Anal Chem 92: 14861-14866

      Singh V, Macharova S, Riegerova P, Steringer JP, Muller HM, Lolicato F, Nickel W, Hof M, Sachl R (2023) Determining the Functional Oligomeric State of Membrane-Associated Protein Oligomers Forming Membrane Pores on Giant Lipid Vesicles. Anal Chem 95: 8807-8815

      Steringer JP, Lange S, Cujova S, Sachl R, Poojari C, Lolicato F, Beutel O, Muller HM, Unger S, Coskun U et al (2017) Key steps in unconventional secretion of fibroblast growth factor 2 reconstituted with purified components. eLife 6: e28985

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The paper from Hsu and co-workers describes a new automated method for analyzing the cell wall peptidoglycan composition of bacteria using liquid chromatography and mass spectrometry (LC/MS) combined with newly developed analysis software. The work has great potential for determining the composition of bacterial cell walls from diverse bacteria in high-throughput, allowing new connections between cell wall structure and other important biological functions like cell morphology or host-microbe interactions to be discovered. In general, I find the paper to be well written and the methodology described to be useful for the field. However, there are areas where the details of the workflow could be clarified. I also think the claims connecting cell wall structure and stiffness of the cell surface are relatively weak. The text for this topic would benefit from a more thorough discussion of the weak points of the argument and a toning down of the conclusions drawn to make them more realistic.

      Thank you for your thorough and insightful review of our manuscript. We greatly appreciate your positive and constructive feedbacks on our methodology. We have carefully reviewed your comments and have responded to each point as follows:

      Specific points:

      1) It was unclear to me from reading the paper whether or not prior knowledge of the peptidoglycan structure of an organism is required to build the "DBuilder" database for muropeptides. Based on the text as written, I was left wondering whether bacterial samples of unknown cell wall composition could be analyzed with the methods described, or whether some preliminary characterization of the composition is needed before the high-throughput analysis can be performed. The paper would be significantly improved if this point were explicitly addressed in the main text. We apologize for not making it clearer. The prior knowledge of the peptidoglycan structure of an organism is indeed required to build the “DBuilder” database to accurately identify muropeptides; otherwise, the false discovery rate might increase. While peptidoglycan structures of certain organisms might not have been extensively studied, users still remain the flexibility to adapt the muropeptide compositions based on their study, referencing closely related species for database construction. We have addressed this aspect in the main text to ensure a clearer understanding.

      “(Section HAMA platform: a High-throughput Automated Muropeptide Analysis for Identification of PGN Fragments) …(i) DBuilder... Based on their known (or putative) PGN structures, all possible combinations of GlcNAc, MurNAc and peptide were input into DBuilder to generate a comprehensive database that contains monomeric, dimeric, and trimeric muropeptides (Figure 1b)."

      2) The potential connection between the structure of different cell walls from bifidobacteria and cell stiffness is pretty weak. The cells analyzed are from different strains such that there are many possible reasons for the change in physical measurements made by AFM. I think this point needs to be explicitly addressed in the main text. Given the many possible explanations for the observed measurement differences (lines 445-448, for example), the authors could remove this portion of the paper entirely. Conclusions relating cell wall composition to stiffness would be best drawn from a single strain of bacteria genetically modified to have an altered content of 3-3 crosslinks.

      We understand your concern regarding the weak connection between cell wall structure and cell stiffness. We will make a clear and explicit statement in the main text to acknowledge that the cells analyzed are derived from different strains, introducing the possibility of various factors influencing the observed changes in physical measurements as determined by AFM. Furthermore, we greatly appreciate your suggestion to consider genetically modified strains to investigate the role of cross-bridge length in determining cell envelope stiffness. In this regard, we are in the process of developing a CRISPR/Cas genome editing toolbox for Bifidobacterium longum, and we plan on this avenue of investigation for future work.

      Reviewer #2 (Public Review):

      The authors introduce "HAMA", a new automated pipeline for architectural analysis of the bacterial cell wall. Using MS/MS fragmentation and a computational pipeline, they validate the approach using well-characterized model organisms and then apply the platform to elucidate the PG architecture of several members of the human gut microbiota. They discover differences in the length of peptide crossbridges between two species of the genus Bifidobacterium and then show that these species also differ in cell envelope stiffness, resulting in the conclusion that crossbridge length determines stiffness.

      We appreciate your thoughtful review of our manuscript and your recognition of the potential significance of our work in elucidating the poorly characterized peptidoglycan (PGN) architecture of the human gut microbiota.

      The pipeline is solid and revealing the poorly characterized PG architecture of the human gut microbiota is worthwhile and significant. However, it is unclear if or how their pipeline is superior to other existing techniques - PG architecture analysis is routinely done by many other labs; the only difference here seems to be that the authors chose gut microbes to interrogate.

      We apologize if this could have been clearer. The HAMA platform stands apart from other pipelines by utilizing automatic analysis of LC-MS/MS data to identify muropeptides. In contrast, most of the routine PGN architecture analyses often use LC-UV/Vis or LC-MS platform, where only the automatic analyzing PGFinder software is supported. To our best knowledge, a comparable pipeline on automatically analyzing LC-MS/MS data was reported by Bern et al., which they used commercial Byonic software with an in-house FASTA database and specific glycan modifications. They achieved accurate and sensitive identification on monomer muropeptides, but struggled with cross-linked muropeptides due to the limitations of the Byonic software. We believe that our pipeline introducing the automatic and comprehensive analysis on muropeptide identification (particularly for Gram-positive bacterial peptidoglycans) would be a valuable addition to the field. To enhance clarity, we have adjusted the context as follows:

      (Introduction) … Although they both demonstrated great success in identifying muropeptide monomers, the accurate identification of muropeptide multimers and other various bacterial PGN structures still remains unresolved. This is because deciphering the compositions requires MS/MS fragmentation, but it is still challenging to automatically annotate MS/MS spectra from these complex muropeptide structures."

      I do not agree with their conclusions about the correlation between crossbridge length and cell envelope stiffness. These experiments are done on two different species of bacteria and their experimental setup therefore does not allow them to isolate crossbridge length as the only differential property that can influence stiffness. These two species likely also differ in other ways that could modulate stiffness, e.g. turgor pressure, overall PG architecture (not just crossbridge length), membrane properties, teichoic acid composition etc.

      Regarding the conclusions drawn about the correlation between cross-bridge length and cell envelope stiffness, we understand your point and appreciate your feedback. We revisit this section of our manuscript and tone down the conclusions drawn from this aspect of the study. We also recognize the importance of considering other potential factors that could influence stiffness, as you mentioned above. In light of this, we mentioned the need for further investigations, potentially involving genetically modified strains, in the main text to isolate and accurately determine the impact of bridge length on cell envelope stiffness.

      Reviewer #1 (Recommendations For The Authors):

      Minor points:

      1) One thing to consider would be testing the robustness of the analysis pipeline with one the well-characterized bacteria studied, but genetically modifying them to change the cell wall composition in predictable ways. Does the analysis pipeline detect the expected changes?

      We appreciate the reviewer's suggestion and would like to provide a clear response. Regarding to testing the pipeline with genetically modified strains, our lab previously worked on genetically modified S. maltophilia (KJΔmrdA).1 Inactivation of mrdA turned out the increasing level of N-acetylglucosaminyl-1,6-anhydro-N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diamnopimelic acid-D-alanine (GlcNAc-anhMurNAc tetrapeptide) in muropeptide profiles, which is the critical activator ligands for mutant strain ΔmrdA-mediated β-lactamase expression. In this case, our platform could provide rapid PGN analysis for verifying the expected change of muropeptide profiles (see Author response image 1). Besides, if the predictable changes involve genetically modifications on interpeptide bridges within the PGN structure, for example, the femA/B genes of S. aureus, which are encoded for the synthesis of interpeptide bridges,2 our current HAMA pipeline is capable of detecting these anticipated changes. However, if the genetically modifications involve the introduce of novel components to PGN structures, then it would need to create a dedicated database specific to the genetically modified strain.

      Author response image 1.

      2) Line 368: products catalyzed > products formed

      The sentence has been revised.

      “(Section Inferring PGN Cross-linking Types Based on Identified PGN Fragments) …Based on the muropeptide compositional analysis mentioned above, we found high abundances of M3/M3b monomer and D34 dimer in the PGNs of E. faecalis, E. faecium, L. acidophilus, B. breve, B. longum, and A. muciniphila, which may be the PGN products formed by Ldts.”

      3) Lines 400-402: Is it possible the effect is related to porosity, not "hardness".

      Thank you for the suggestion. The possibility of the slower hydrolysis rate of purified PGN in B. breve being related to porosity is indeed noteworthy. While this could be a potential factor, we would like to acknowledge the limited existing literature that directly addresses the relation between PGN architecture and porosity. It is plausible that current methods available for assessing cell wall porosity may have certain limitations, contributing to the scarcity of relevant studies. In light of this, we would like to propose a speculative explanation for the observed effect. It is plausible that the tighter PGN architecture resulting from shorter interpeptide bridges in B. breve could contribute to its harder texture. This speculation is grounded in the concept that a more compact PGN structure might lead to increased stiffness, aligning with our observations of higher cell stiffness in B. breve.

      4) Lines 403-408: See point #2 above.

      Thank you for the suggestion. We have explicitly addressed this point in the main text:

      “(Section Exploring the Bridge Length-dependent Cell Envelope Stiffness in B. longum and B. breve) … Taken all together, we speculate that a tight peptidoglycan network woven by shorter interpeptide bridges or 3-3 cross-linkages could give bacteria stiffer cell walls. However, it is important to note that cell stiffness is a mechanical property that also depends on PGN thickness, overall architecture, and turgor pressure. These parameters may vary among different bacterial strains. Hence, carefully controlled, genetically engineered strains with similar characteristics will be needed to dissect the role of cross-bridge length in cell envelope stiffness.”

      5) Lines 428-429: It is not clear to me how mapping the cell wall architecture provides structural information about the synthetic system. It is also not clear how antibiotic resistance can be inferred. More detail is needed here to flesh out these points.

      Thank you for the suggestion. To provide further clarity on these important aspects, the context in the manuscript has been revised.

      “(Discussion) …Importantly, our HAMA platform provides a powerful tool for mapping peptidoglycan architecture, giving structural information on the PGN biosynthesis system. This involves the ability to infer possible PGN cross-linkages based on the type of PGN fragments obtained from hydrolysis. For instance, the identification of 3-3 cross-linkage formed by L,D-transpeptidases (Ldts) is of particular significance. Unlike 4-3 cross-linkages, the 3-3 cross-linkage is resistant to inhibition by β-Lactam antibiotics, a class of antibiotics that commonly targets bacterial cell wall synthesis through interference with 4-3 cross-linkages. Therefore, by elucidating the specific cross-linkage types within the peptidoglycan architecture, our approach offers insights into antibiotic resistance mechanisms.”

      6) Line 478: "maneuvers are proposed for" > "work is needed to generate". Also, delete "innovative". Also "in silico" > "in silico-based".

      The sentence has been revised.

      “(Discussion) …To achieve a more comprehensive identification of muropeptides, future work is needed to generate an expanded database, in silico-based fragmentation patterns, and improved MS/MS spectra acquisition.”

      7) Line 485: "Its" > "It has potential"

      The sentence has been revised.

      “(Discussion) …It has potential applications in identifying activation ligands for antimicrobial resistance studies, characterizing key motifs recognized by pattern recognition receptors for host-microbiota immuno-interaction research, and mapping peptidoglycan in cell wall architecture studies.”

      8) Figure 1 legend: Define Gb and Pb.

      Gb and Pb are the abbreviations of glycosidic bonds and peptide bonds. We have revised the Figure legend 1 as follow:

      “(Figure legend 1) …(b) DBuilder constructs a muropeptide database containing monomers, dimers, and trimers with two types of linkage: glycosidic bonds (Gb) and peptide bonds (Pb).”

      9) Figure 2: It is hard to see what is going on in panel a and c with all the labels. Consider removing them and showing a zoomed inset with labels in addition to ab unlabeled full chromatogram.

      We apologize for not making this clearer. The panel a and c in Figure 2 were directly generated by the Analyzer as a software screenshot of the peak annotations on chromatogram. Our intention was to present a comprehensive PGN mapping (approximately 70% of the peak area was assigned to muropeptide signals) using this platform. We understand the label density might affect clarity, so we have added the output tables of the whole muropeptide identifications as source data (Table 1–Source Data 1&2). Additionally, we have uploaded the Analyzer output files (see Additional Files), which can be better visualized in the Viewer program, and it also allows users zoom in for detailed labeling information.

      10) Figure 3: It is worth pointing out what features of the MS/MS fingerprints are helping to discriminate between species.

      Thank you for the suggestion. We have revised Figure 3 and the legend as follow:

      “(Figure legend 3) …The sequence of each isomer was determined using in silico MS/MS fragmentation matching, with the identified sequence having the highest matching score. The key MS/MS fragments that discriminate between two isomers are labeled in bold brown.”

      Author response image 2.

      11) Figure 4 and 5 legend: Can you condense the long descriptions of the abbreviations - or at least only refer to them once?

      Certainly, to enhance clarity and conciseness in the figure legends, we have revised Figure legend 5 as follow:

      “(Figure legend 5) …(b) Heatmap displaying …. Symbols: M, monomer; D, dimer; T, trimer (numbers indicate amino acids in stem peptides). Description of symbol abbreviations as in Figure legend 4, with the addition of "Glycan-T" representing trimers linked by glycosidic bonds.”

      Reviewer #2 (Recommendations For The Authors):

      1. Please read the manuscript carefully for spelling errors.

      We appreciate your careful review of our manuscript. We have thoroughly rechecked the entire manuscript for spelling errors and have made the necessary corrections to ensure the accuracy and quality of the text.

      1. Line 46 - "multilayered" is likely only true for Gram-positive bacteria.

      We thank reviewer #2 for bringing up this concern. Indeed, Gram-negative bacteria mostly possess single layer of peptidoglycan, but could be up to three layers in some part of the cell surface.3, 4 In order to reduce the confusion, we have rewritten the context as follow: “(Introduction) …PGN is a net-like polymeric structure composed of various muropeptide molecules, with their glycans linearly conjugated and short peptide chains cross-linked through transpeptidation.”

      1. Methods section: It seems like pellets from a 10 mL bacterial culture were ultimately suspended in 1.5 L (750 mL water + 750 mL tris) - why such a large volume? And how were PG fragments subsequently washed (centrifugation? There is no information on this in the Methods).

      We apologize for the mislabeling on the units. The accurate volume should be “1.5 mL (750 µL water + 750 µL tris)”. We have updated the correct volume in the Methods section (lines 99-100). For the washing process of purified PGN, we added 1 mL water, centrifuged at 10,000 rpm for 5 minutes, and removed supernatant. This information has added to the Methods section (lines 95-98).

      1. Line 183 - why were 6 modifications chose as the cutoff? Please make rationale more clear.

      We thank reviewer #2 for the comments. We set the maximum modification number of 6 in the assumption of one modification on each sugar of a trimeric muropeptide. A lower cutoff could effectively limit the identification of muropeptides with unlikely numbers of modifications, whereas a higher cutoff could allow for having multiple modifications on a muropeptide. In our hand, muropeptide modifications of E. coli are mostly N-deacetyl-MurNAc and anhydro-MurNAc, and modifications of gut microbes used here are mostly N-deacetyl-GlcNAc, anhydro-MurNAc, O-acetyl-MurNAc, loss of GlcNAc, and amidated iso-Glu. While we recommend starting data analysis with the cutoff of 6 modifications, users are free to adjust this based on their studies.

      1. Line 339 - define donor vs. acceptor here (can be added in parentheses after explaining the relevant chemical reactions further above in the text)

      Thank you for the suggestion. To provide greater clarity regarding the roles of the donor and acceptor substrates in the transpeptidation process, we have revised the content in the manuscript as follows:

      “(Section Inferring PGN Cross-linking Types Based on Identified PGN Fragments) …In general, there are two types of PGN cross-linkage…. Transpeptidation involves two stem peptides which function as acyl donor and acceptor substrates, respectively. As the enzyme names imply, the donor substrates that Ddts and Ldts bind to are terminated as D,D-stereocenters and L,D-stereocenters, which structurally means pentapeptides and tetrapeptides. During D,D-transpeptidation, Ddts recognize D-Ala4-D-Ala5 of the donor stem (pentapeptide) and remove the terminal D-Ala5 residue, forming an intermediate. The intermediate then cross-links the NH2 group in the third position of the neighboring acceptor stem, forming a 4-3 cross-link.”

      1. Line 366 following - can you calculate % crosslinks based on these numbers? What does "high abundance" of 3,3 crosslinks mean in this context? Is this the majority of PG?

      Thank you for your questions. Calculating the percentage of crosslinks based on the muropeptide compositional numbers is a valid consideration. However, it's important to note that the muropeptides we analyzed were hydrolyzed by mutanolysin, and as such, deriving an accurate % crosslink value from these data might not provide a true representation of the crosslinking percentage within the PGN network. For a more precise determination of % crosslinks, methods such as solid-phase NMR on purified peptidoglycan would be required. Our research provides insights into the characterization of PGN fragments and allows us to infer potential PGN cross-linkage types and the enzymes involved based on the dominant muropeptide fragments. Regarding the phrase "high abundance" in the context, it indicates that the M3b/M4b monomer and D34 dimer muropeptides represent a significant portion of the hydrolysis products. These muropeptides are major constituents within the PGN fragments obtained from the enzymatic hydrolysis.

      1. Line 375 - I am not sure PG is a meaningful diffusion barrier for drugs and signaling molecules, give that even larger proteins can apparently diffuse through the pores.

      Thank you for raising this point. Peptidoglycan indeed possesses relatively wide pores that allow for the diffusion of larger molecules, including proteins.5 Research has provided a rough estimate of the porosity of the PGN meshwork, suggesting that it allows for the diffusion of proteins with a maximum molecular mass of around 50 kDa.6 Considering this, we acknowledge that PGN may not serve as a significant diffusion barrier for drugs and signaling molecules. The porosity of the PGN scaffold, which is defined by the degree of cross-linking, plays a role in influencing the transport of molecules to the cell membrane. Thus, while PGN may not serve as a strict diffusion barrier, its structural characteristics still impact bacterial cell mechanics and interactions. We have revised the manuscript to reflect this understanding:

      “(Section Exploring the Bridge Length-dependent Cell Envelope Stiffness in B. longum and B. breve) …The porosity of the PGN scaffold, defined by the degree of cross-linking, influences the transport of larger molecules such as proteins. Therefore, modifications to PGN structure are anticipated to significantly affect bacterial cell mechanics and interactions.”

      1. Line 400 - what does "slower hydrolysis rate" refer to, is this chemical hydrolysis or enzymatic (autolysins?). also, I am not sure hydrolysis rate of either modality allows for solid conclusions about how hard (line 402) the PG is.

      Thank you for your comments. The hydrolysis rate here refers to the enzymatic hydrolysis, specifically the mutanolysin cleaving the β-N-acetylmuramyl-(1,4)-N-acetylglucosamine linkage. Indeed, there is no direct correlation between the hydrolysis rate and the hardness of PGN architecture, although the structure rigidity is a key determinant in protein digestion.7 Considering the enzymatic hydrolysis rate depending on the accessibility of the substrate to the enzyme, we proposed that the tighter PGN architecture could also lead to a slower hydrolysis rate. This speculation aligns with our observations of higher cell stiffness or more compact PGN structure of B. breve and its slower hydrolysis rate. We understand this is indirect proof, so the revised sentence now reads:

      “(Section Exploring the Bridge Length-dependent Cell Envelope Stiffness in B. longum and B. breve) …Furthermore, B. breve also showed a slower enzymatic hydrolysis rate in purified PGNs, implying that the cell wall structure of B. breve is characterized by a compact PGN architecture.”

      1. Line 424 - I am not convinced this pipeline can detect PG architectures that other pipelines cannot; likely, the difference between previous analyses and theirs is due to different growth conditions (3,3 crosslink formation is often modulated by environmental factors/growth stage). In the next sentence, it sounds like mutanolysin treatment is a novelty in PG analysis (which it is not).

      We apologize if this could have been clearer and we have revised the paragraph to describe our study more accurately. We agree that different growth conditions could influence PGN architecture and other pipelines could manually identify the PGN architectures or automatically identify them if they are not too complex. Our original intention was to highlight the ability of the HAMA program to automatically identify unreported PGN structure. Here are the revised sentences:

      “(Discussion) …We speculate that this finding may be influenced by the comprehensive mass spectrometric approaches we employed or by variations in growth conditions. Moreover, we utilized the well-established enzymatic method involving mutanolysin to cleave the β-N-acetylmuramyl-(1,4)-N-acetylglucosamine linkage, which preserves the original peptide linkage in intact PGN subunits.”

      1. Line 440- 442: As outlined in more detail above: I don't think you can conclude something about the relationship between bridge length and envelope stiffness based on these data. Thank you for your valuable feedback. We agree that our data may not definitively support the direct conclusion about the relationship between bridge length and envelope stiffness in Bifidobacterium species. Instead, we will rephrase this section to accurately present the observed correlations without overgeneralizing:

      “(Discussion) … Notably, our study suggested a potential correlation between the cell stiffness and the compactness of bacterial cell walls in Bifidobacterium species (Figure 5). B. longum, which predominantly harbors tetrapeptide bridges (Ser-Ala-Thr-Ala), exhibits a trend towards lower stiffness, whereas B. breve, characterized by PGN cross-linked with monopeptide bridges (Gly), demonstrates a trend towards higher stiffness. These findings suggested that it may be correlated between the increased rigidity and the more compact PGN architecture built by shorter cross-linked bridges.”

      References: 1. Huang, Y.-W.; Wang, Y.; Lin, Y.; Lin, C.; Lin, Y.-T.; Hsu, C.-C.; Yang, T.-C., Impacts of Penicillin Binding Protein 2 Inactivation on β-Lactamase Expression and Muropeptide Profile in Stenotrophomonas maltophilia. mSystems 2017, 2 (4), 00077-00017.

      1. Jarick, M.; Bertsche, U.; Stahl, M.; Schultz, D.; Methling, K.; Lalk, M.; Stigloher, C.; Steger, M.; Schlosser, A.; Ohlsen, K., The serine/threonine kinase Stk and the phosphatase Stp regulate cell wall synthesis in Staphylococcus aureus. Sci. Rep. 2018, 8 (1), 13693.

      2. Labischinski, H.; Goodell, E. W.; Goodell, A.; Hochberg, M. L., Direct proof of a "more-than-single-layered" peptidoglycan architecture of Escherichia coli W7: a neutron small-angle scattering study. J. Bacteriol. 1991, 173 (2), 751-756.

      3. Rohde, M., The Gram-Positive Bacterial Cell Wall. Microbiol. Spectr. 2019, 7 (3), gpp3-0044-2018.

      4. Vollmer, W.; Höltje, J. V., The architecture of the murein (peptidoglycan) in gram-negative bacteria: vertical scaffold or horizontal layer(s)? J. Bacteriol. 2004, 186 (18), 5978-5987.

      5. Vollmer, W.; Blanot, D.; De Pedro, M. A., Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 2008, 32 (2), 149-167.

      6. Li, Q.; Zhao, D.; Liu, H.; Zhang, M.; Jiang, S.; Xu, X.; Zhou, G.; Li, C., "Rigid" structure is a key determinant for the low digestibility of myoglobin. Food Chem.: X 2020, 7, 100094.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Response to the Referee Comments We would like to express our appreciation to the editor and the reviewers for their thoughtful comments and constructive suggestions on the manuscript. We agree with most of the comments and have carefully revised the manuscript accordingly. The revisions are highlighted in red font in the revised manuscript. Below are point-by-point responses to the referee’s comments.

      Public Reviews:

      Reviewer #1 (Public Review):

      Microglia are increasingly recognized as playing an important role in shaping the synaptic circuit and regulating neural dynamics in response to changes in their surrounding environment and in brain states. While numerous studies have suggested that microglia contribute to sleep regulation and are modulated by sleep, there has been little direct evidence that the morphological dynamics of microglia are modulated by the sleep/wake cycle. In this work, Gu et al. applied a recently developed miniature two-photon microscope in conjunction with EEG and EMG recording to monitor microglia surveillance in freely-moving mice over extended period of time. They found that microglia surveillance depends on the brain state in the sleep/wake cycle (wake, non-REM, or REM sleep). Furthermore, they subjected the mouse to acute sleep deprivation, and found that microglia gradually assume an active state in response. Finally, they showed that the state-dependent morphological changes depend on norepinephrine (NE), as chemically ablating noradrenergic inputs from locus coeruleus abolished such changes; this is in agreement with previous publications. The authors also showed that the effect of NE is partially mediated by β2-adrenergic receptors, as shown with β2-adrenergic receptor knock-out mice. Overall, this study is a technical tour de force, and its data add valuable direct evidence to the ongoing investigations of microglial morphological dynamics and its relationship with sleep. However, there are a number of details that need to be clarified, and some conclusions need to be corroborated by more control experiments or more rigorous statistical analysis. Specifically:

      1. The number of branch points per microglia shown here (e.g., Fig. 2g) is much lower than the values of branch points in the literature, e.g., Liu T et al., Neurobiol. Stress 15: 100342, 2021 (mouse dmPFC, IHC); Liu YU et al., Nat. Neurosci. 22: 1771-81, 2019 (mouse S1, in vivo 2P imaging). The authors need to discuss the possible source of such discrepancy.

      Thank you for raising this important point. Two reasons may account for this difference. Firstly, the difference in the definition of branch points in the software. Liu YU et al. used the Sholl analysis of image J software to analyze the number of branch points of microglia. Sholl analysis defines the number of branch points as the number of crossings between branches and concentric circles of increasing radii. We reconstructed microglia morphology using Imaris, a software that defines branching points based on the number of bifurcation points. The number of bifurcations calculated represents the number of microglia branch points. Secondly, this and previous studies found that more branching points present in the state of anesthesia. The morphological characteristics of microglia in head-fixed mice under anesthesia was reported by Liu T et al. and the microglia reconstruction results presented by the authors are indeed more complex than ours. In short, this is an aspect that we have been paying attention to, and the main reasons for this difference may lie in the definition of branch points, analysis methods and related choice of thresholds. True differences in brain states and the heterogeneity of microglia in different brain regions may also contribute to the apparent discrepancy.

      1. Microglia process end-point speed (Fig. 2h, o): here the authors show that the speed is highest in the wake state and lowest in NREM, which agrees with the measurement on microglia motility during wakefulness vs NREM in a recent publication (Hristovska I et al., Nat. Commun. 13: 6273, 2022). However, Hristovska et al. also reported lower microglia complexity in NREM vs wake state, which seems to be the opposite of the finding in this paper. The authors need to discuss the possible source of such differences.

      This is also an important point. Hristovska et al. reported the morphodynamic characteristics of microglia during wakefulness and NREM sleep. It is worth noting that the sleep state of the mice in their experiments was unnatural due to the head fixation and body limitations, the duration of NREM sleep (sleep stability) being quite different from the NREM sleep analyzed under natural sleep. The limitations of this approach are also discussed by Hristovska et al. “Even though sleep episodes were, as anticipated, shorter than those observed in freely moving animals, changes in neuronal activity characteristic of NREM sleep were monitored by EEG recordings, and changes in morphodynamics were observed during single episodes. Several episodes of REM sleep were detected, but they were too short and rare to be analyzed reliably.” The unnatural sleep state would lead to an increase in the microarousal state, and ultimately a change in the structure of the sleep state, which may be the main reason for the difference in microglia behavior from our natural sleep. We have discussed this in the revised manuscript. Please see line 292298.

      1. Fig. 3: the authors used single-plane images to analyze the morphological changes over 3 or 6 hours of SD, which raises the concern that the processes imaged at the baseline may drift out of focus, leading to the dramatic reduction in process lengths, surveillance area, and number of branch points. In fact, a previous study (Bellesi M et al., J. Neurosci. 37(21): 5263-73, 2017) shows that after 8 h SD, the number of microglia process endpoints per cell and the summed process length per cell do not change significantly (although there is a trend to decline). The authors may confirm their findings by either 3D imaging in vivo, or 3D imaging in fixed tissue.

      Three lines of evidence indicate that microglia morphology changes in Fig 3 are due to SD, rather than variations in the focal plane. First, our single-plane images were quite stable over 3 or 6 hours of SD, though occasional reversible drifts might happen due to sudden motions. Second, per your suggestion, further experiments and analysis of 3D imaging were performed to monitor microglia dynamics during sleep deprivation. The new result is shown in revised Fig. S3 C-D: the length of microglia branches and the number of branching points were significantly reduced after SD, in agreement with the results of single-plane imaging. Furthermore, we detected no significant difference in microglia branching characteristics during 6h sleep deprivation in 2AR KO mice (Fig.S4), and this indirectly affirmed that singleplane imaging is stable enough for detecting true changes in branching during SD.

      1. Fig. 4b: the EEG and EMG signals look significantly different from the example given in Fig. 2a. In particular, the EMG signal appears completely flat except for the first segment of wake state; the EEG power spectrum for REM appears dark; and the wake state corresponds to stronger low frequency components (below ~ 4 Hz) compared to NREM, which is the opposite of Fig. 2a. This raises the concern whether the classification of sleep stage is correct here.

      Thank you for insightful comments. We carefully examined the behavioral video of Figure 4b, there were occasionally microarousal events indicated by slow head rotation during NREM sleep, while the companion EMG signals were completely flat, which is atypical during sleep wake cycle. The microarousal events were not excluded from sleep, which makes this set of data unrepresentative and contrary to Fig.4b. In our revised manuscript, we replaced it with more representative data that can clearly and consistently distinguish between different brain states in mice on EMG and EEG. Please see revised Fig.2a, page 34; revised Fig.4b, page 37.

      1. Fig. 4 NE dynamics. • How long is a single continuous imaging session for NE? • When monitoring microglia surveillance, the authors were able to identify wake or NREM states longer than 15 min, and REM states longer than 5 min. Here the authors selected wake/NREM states longer than 1 min and REM states longer than 30 s. What makes such a big difference in the time duration selected for analysis? • Also, the definition of F0 is a bit unclear. Is the same F0 used throughout the entire imaging session, or is it defined with a moving window?

      A single continuous session of NE imaging usually took about 1 hour. Subsequent analysis was performed on imaging data from each recording that included wake, NREM sleep, and REM sleep. Because of the different time scales of microglia morphological dynamic (relatively slow) and NE signals (fast), we used different time windows in the previous analysis in the previous version of the manuscript.

      Per your suggestion, we have now set the same time window selection criteria for both microglia morphological and NE dynamic analysis: for wake and NREM sleep durations longer than 1 minute, and REM sleep durations longer than 30 seconds. We updated the Methods and all statistics in related figures, please see line 151-154, 481-485, 490-492; Fig. 2e-g and 2l-n, page 34. F0 definition is now explained in the Methods section. Please see line 521-522.

      1. Fig. 5b: how does the microglia morphology in LC axon ablation mice compare with wild type mice under the wake state? The text mentioned "more contracted" morphology but didn't give any quantification. Also, the morphology of microglia in the wake state (Fig. 5b) appears very different from that shown in Fig. S3C1 (baseline). What is the reason?

      The morphology of microglia is indeed heterogeneous and variable, affected by factors including brain state, brain region, microenvironmental changes, along with animal-to-animal difference. We didn’t perform the microglia morphology comparison between the LC axon ablation mice and wild type mice and, in view of this, we removed the description of “more contracted morphology” from the main text. It should also be noted that, as we primarily focused on changes of a microglia in different states over time by selfcomparison, we minimized possible effects of heterogeneity in microglia morphology on our conclusions.

      1. The relationship between NE level and microglia dynamics. Fig. 4C shows that the extracellular NE level is the highest in the wake state and the lowest in REM. Previous studies (Liu YU et al., Nat. Neurosci. 22(11):1771-1781, 2019; Stowell RD et al., Nat. Neurosci. 22(11): 1782-1792, 2019) suggest that high NE tone corresponds to reduced microglia complexity and surveillance. Hence, it would be expected that microglia process length, branch point number, and area/volume are higher in REM than in NREM. However, Fig. 2l-n show the opposite. How should we understand this ?

      Your point is well-taken. On the one hand, our data clearly showed that NE is critically involved in the brain state-dependent microglia dynamic surveillance, with evidence from the ablation of the LC-NE projection and from the β2AR knockout animal model.

      On the other hand, we also understand that NE is not the sole determinant, so the relationship between the NE level and the complexity and surveillance may not be unique.

      In this regard, other potential modulators also present dynamic during sleepwake cycle and may partake in the regulation of microglia dynamic surveillance. previous studies (Liu YU et al., 2019; Stowell RD et al., 2019) have shown that microglia can be jointly affected by surrounding neuronal activity and NE level during wake. It has been reported that LC firing stops (Aston-Jones et al., 1981; Rasmussen et al., 1986), while inhibitory neurons, such as PV neurons and VIP neurons, become relatively active during REM sleep (Brécier et al., 2022). ATP level in basal forebrain is shown to be higher in REM than NREM (Peng et al., 2023). In addition, our own preliminary result (Author response image 1) also showed a higher adenosine level in REM than NREM in somatosensory cortex. Last but not the least, we found that β2AR knockout failed to abolish microglial responses to sleep state switch and SD stress altogether.

      In brief, microglia are highly sensitive to varied changes in the surrounding environment, and many a modulator may participate in the microglia dynamic during sleep state. This may underlie the microglia complexity difference between REM and NREM. Future investigations are warranted to delineate the signal-integrative role of microglia in physiology and under stress. We have discussed the pertinent points in the revised manuscript. Please see line 343-354.

      Author response image 1.

      Extracellular adenosine levels in somatosensory cortex in different brain states. AAV2/9-hSyn-GRABAdo1.0 (Peng W. et al., Science. 2020) was injected into the somatosensory cortex (A/P, -1 mm; M/L, +2 mm; D/V, -0.3 mm). Data from the same recording are connected by lines. n = 9 from 3 mice.

      Reviewer #2 (Public Review):

      The manuscript describes an approach to monitor microglial structural dynamics and correlate it to ongoing changes in brain state during sleep-wake cycles. The main novelty here is the use of miniaturized 2p microscopy, which allows tracking microglia surveillance over long periods of hours, while the mice are allowed to freely behave. Accordingly, this experimental setup would permit to explore long-lasting changes in microglia in a more naturalistic environment, which were previously not possible to identify otherwise. The findings could provide key advances to the research of microglia during natural sleep and wakefulness, as opposed to anesthesia. The main findings of the paper are that microglia increase their process motility and surveillance during REM and NREM sleep as compared to the awake state. The authors further show that sleep deprivation induces opposite changes in microglia dynamics- limiting their surveillance and size. The authors then demonstrate potential causal role for norepinephrine secretion from the locus coeruleus (LC) which is driven by beta 2 adrenergic receptors (b2AR) on microglia. However, there are several methodological and experimental concerns which should be addressed.

      The major comments are summarized below:

      1. The main technological advantage of the 2p miniaturized microscope is the ability to track single cells over sleep cycles. A main question that is unclear from the analysis and the way the data is presented is: are the structural changes in microglia reversible? Meaning, could the authors provide evidence that the same cell can dynamically change in sleep state and then return to similar size in wakefulness? The same question arises again with the data which is presented for anesthesia, is this change reversible?

      As revealed by long-term free behavioral mTPM imaging, the brain-statedependent morphological changes in microglia were reproducible and reversible. Author response image 2 shows that microglia displayed reversible dynamic changes during multiple rounds of sleep-wake transition. Author response image 3 shows that microglia dynamics induced by anesthesia also exhibited reversibility.

      Author response image 2.

      Long-term tracking of microglia process area in different brain states. Data analysis used 8 cells. Data total of 31 time points were selected from in vivo imaging data and were used to characterize the morphological changes of microglia over a continuous 7-hour period.

      Author response image 3.

      Reversible changes of microglial process length, area, number of branch points under anesthesia. Wake group: 30 minute-accommodation to new environment; Isoflurane group: 1.5% in air applied at a flow rate of 0.4 L/min for 30 minutes; Recovery group: 30 minutes after recovery from anesthesia. n = 9 cells from 3 mice for each group.

      1. The binary comparison between brain states is misleading, shouldn't the changes in structural dynamics compared to the baseline of the state onset? The authors method describes analysis of the last 5 minutes in each sleep/wake state. However, these transitions are directional- for instance, REM usually follows NREM, so the description of a decrease in length during REM sleep could be inaccurate.

      As you know, the time scale of microglia morphological dynamic is relatively slow, so we analyzed the microglia morphological dynamic of the last part (30s in the revised manuscript) of each state instead of the state onset, allowing time for stabilization of the microglia response to inter-state transition.

      Further, we compared microglia dynamic between two NREM groups transiting to different subsequent states: group1 (NREM to REM) vs group2 (NREM to Wake). This precaution was to exclude the directional effect of state transitions. Our results showed that there was no difference in microglial length, area, number of branching points between the two NREM groups (Author response image 4), indicating that the last 30s of each NREM was not affected by its following state and that it’s reasonable to perform binary comparison.

      Author response image 4.

      Microglial morphological length, area change, and number of branch points of the last 30s of NREM sleep followed by REM or Wake. n = 9 cells from 3 mice for each group.

      1. Sleep deprivation- again, it is unclear whether these structural changes are reversible. This point is straightforward to address using this methodology by measuring sleep following SD. In addition, the authors chose a method to induce sleep deprivation that is rather harsh. It is unclear if the effect shown is the result of stress or perhaps an excess of motor activity.

      We adopted the method of forced exercise as it has been commonly used for sleep deprivation (Pandi-Perumal et al., 2007; Nollet M et al., 2020), though it does have the potential limitation of excess of motor activity.

      In light of your comments and suggestion, we presented new data demonstrating that sleep duration of the mice, mostly NREM sleep, increased compensatively (ZT9-10) after the 6-hour sleep deprivation (ZT2-8) (revised Fig. S3B). This result shows that sleep deprivation indeed increase sleep pressure in the mice. As the sleep pressure was eased during recovery sleep, morphological changes of microglia were reversed over a timescale of several hours (revised Fig. S3 E-J).

      1. The authors perform measurements of norepinephrine with a recently developed GRAB sensor. These experiments are performed to causally link microglia surveillance during sleep to norepinephrine secretion. They perform 2p imaging and collect data points which are single neurons, and it is unclear why the normalization and analysis is performed for bulk fluorescence similar to data obtained with photometry.

      We did not perform single-neuron analysis for two reasons. First, our experimental conditions, e.g., the expression of the NE indicator and the control of imaging laser intensity, did not yield sufficient signal-to-noise to clearly discriminate individual neurons with two-photon imaging. Second, NE signal may play a modulatory role, and fluorescence changes appeared to be global, rather than local or cell-specific. Therefore, we analyzed fluorescence changes in different brain states over the whole field-of-view in Fig. 4, rather than at the subregional or single-cell level.

      1. The experiments involving b2AR KO mice are difficult to interpret and do not provide substantial mechanistic insight. Since b2AR are expressed throughout numerous cell types in the brain and in the periphery, it is entirely not clear whether the effects on microglia dynamics are direct. The conclusion and the statement regarding the expression of b2AR in microglia is not supported by the references the authors present, which simply demonstrate the existence and function of b2AR in microglia. In addition, these mice show significant changes in sleep pattern and increased REM sleep. This could account for reasons for the changes in microglia structure rather than the interpretation that these are direct effects.

      To summarize, the main conclusions of the paper require further support with analysis of existing data and experimental validation.

      Previous studies have revealed that norepinephrine (NE) has a modulating effect on microglial dynamics through β2AR pathway (Stowell RD et al., 2019; Liu YU et al., 2019). Stowell et al. and Liu et al. use in vivo two-photon imaging to demonstrate that microglia dynamics differ between awake and anesthetized mice and to highlight the roles of NE and β2AR in these states (Gyoneva S et al., 2013; Stowell RD et al., 2019; Liu YU et al., 2019). To evaluate the direct effect of β2AR on microglial dynamics, Stowell et al. administered the β2AR agonist clenbuterol to anesthetized mice and found that this decreased the motility, arbor complexity, and process coverage of microglia in the parenchyma (Stowell RD et al., 2019). Inhibition of β2AR by antagonist ICI-118,551 in awake mice recapitulated the effects of anesthesia by enhancing microglial arborization and surveillance (Stowell RD et al., 2019). In addition, it has been shown microglia expressed higher numbers of β2ARs than any other cells in the brain (Zhang et al., 2014).

      To this end, our current work provided new evidence to support the involvement of the LC-NE-β2AR axis in modulating microglia dynamics both during natural sleep-wake cycle and under SD stress. While we were aware the limitation of using pan-tissue β2AR knockout model that precluded us from pinpointing role of microglial β2AR, it is safe to state that β2-adrenergic receptor signaling plays a significant role in the sleep-state dependent microglia dynamic surveillance, based on the present and previous data.

      We have discussed this in the revised manuscript. Please see line 324-354. As you suggested, we added references to support the statement regarding the expression of β2AR in microglia (please see line 333).

      Recommendations for the authors: please note that you control which, if any, revisions, to undertake

      Reviewer #1 (Recommendations For The Authors):

      Some technical details need to be clarified. Also, please double-check for typos.

      1. In vivo imaging preparation: how long is the recovery time between window/EEG implantation surgery and imaging/recording?

      Imaging data were collected one month after the surgery. We have added descriptions to the methods section of the revised manuscript. Please see line 419.

      1. Statistical analysis: the authors used t-test or ANOVA without first checking whether the data pass the normality test. If the data does not follow a normal distribution, nonparametric tests would be more appropriate.

      Per your suggestion, we performed the test of statistical significance using parametric (ANOVA) if past the normality test, or the non-parametric (Friedman) tests for non-normal data. Please see line 533-535.

      1. Fig. 1b needs a minor change. In the figure, the EMG electrodes appear to be connected to the brain as well.

      We have corrected this oversight. Thank you.

      1. Fig. 1c: it would be helpful to give examples of raw EEG and EMG traces for REM and NREM separately.

      Raw traces are now shown as suggested. Please see Fig. 1c, page 32.

      1. Fig. 1h: is each data point one microglia or one end-point?

      In Fig. 1h, each data represents the average speed of all branches of one microglia, not one end-point.

      1. Sleep deprivation starts at 9 am. What time corresponds to Zeitgeber Time 0 (ZT0, the beginning of the light phase)?

      We now clarified that 9 am corresponds to Zeitgeber time 2. Please see line 196.

      1. Line 61: the authors referred to Ramon y Cajal's original suggestion that microglia dynamics are coupled to the sleep-wake cycle. However, the cited paper only indicates that Cajal suggested a role of astrocytes in the sleep-wake cycle, not microglia. In addition, there is a typo in the line: there should be a space between "Ramon" and "y" in Cajal's name.

      We have updated the statement and reference literature to point out the microglia’s involvement in the sleep-wake cycle. The typo was corrected. Please see line 64-65.

      1. Fig. S3B: As each group has only 3 mice, it is unclear how t-test can yield p < 0.01 or even 0.001.

      We checked the original data again and it was correct. This small p-values may be due to the small intra-group difference of control group.

      1. Line 251-253, "Figure 4h-n" should be "Figure 5h-n"?

      We have revised it. Please see line 265-266.

      1. Fig. 5h: the receptor should be "adrenergic receptor", not "adrenal receptor".

      We changed the term to “adrenergic receptor”. Please see Fig 5h.

      1. Fig. 5g, n: the number of data points is apparently less than the sample size given in the figure legend. Perhaps some data points have exactly the same value so they overlap? The authors may consider plotting identical values with a slight shift so that the number of data points shown matches the actual sample size, to avoid confusion.

      Yes, we have added small jitters so different data points can be seen to avoid confusion. Please see Fig. 5n.

      1. There are some typos (e.g., Line 217, "he" should be "the") and some incomplete references (e.g., [13], [22], [34], [35] lack volume and page number, [15] and [39] lack publisher information). Some references have inconsistent formats (e.g., "Journal of Neuroscience" is sometimes abbreviated and sometimes not). Please correct these.

      We have corrected these oversights. Please see references, page 27.

      Reviewer #2 (Recommendations For The Authors):

      Major issues:

      1. Re-analyze the data in a manner that allows to follow and compare the same cells over different state transitions. This is necessary to evaluate the reversibility of microglia structure. In addition, consider analysis of the change from the beginning to the end of each state.

      As shown in response figure 2, microglia dynamics were reversible during multiple rounds of sleep-wake transition.

      1. It would be nice to see the raw data obtained over time, at least for Figure 1, before offline correction of movement to evaluate the imaging quality and level of drift during imaging.

      We agree to your good suggestion. Please see the supporting material video.

      1. It would be helpful to add an analysis of the percent time spent in each state for the 10 hour recordings.

      Advice has been adopted. Please see revised Fig. S4C.

      1. In Figure 2 the results are from 15 cells from several animals. How much do the results vary between mice? It will be helpful to show if this varies between different mice by labeling cells from each mouse differently.

      In Author response image 5, in which we have labeled the distribution of data points from seven mice, there was mixed distribution of data from different animals at each brain state, but no clear animal-to-animal difference.

      Author response image 5.

      Quantitative analysis of microglial length based on multi-plane microglial imaging. n = 17 cells from 7 mice for each group. In right panel, each color codes data from the same animal.

      1. SD- please add some quantification for sleep and EEG to show that the manipulation really caused sleep deprivation. To address the confound of forced movement and stress, it might be helpful to add quantification of movement compared to an undisturbed wakefulness.

      We have added related data (revised Fig. S3B), as suggested. Please see line 196-197.

      1. The DSP4 application should be also performed with NE measurements to verify the specific of the NE signal measured as well as the DSP4 toxin.

      Following your suggestion, we have added DSP4 data in revised Fig. S4B.

      1. Some suggested refined experiments for the b2AR KO are: a-A conditional b2AR KO in microglia, as cited in the work. b- Local application of a b2 blocker during SD. c- Imaging of NE dynamics in the b2 animals. If NE dynamics during natural sleep cycle are perturbed, then this suggests upstream mechanisms rather than direct microglia effects as suggested by the authors.

      We agree that the current study cannot pinpoint a direct effect of microglia harbored β2AR. We have discussed this limitation in the revised manuscript.

      Please see line 324-354.

      Minor:

      1. Typo on page 4 (microcopy instead of microscopy).

      It was corrected. Please see line 87.

      1. Typo page 11- 'and he largest changes in NE' - supposed to be 'the'.

      We have corrected these mistakes. Please see line 228.

      1. Fig. 4- there are several units missing in the figure in panel b: the top is Hz, but what does the color bar indicate exactly? 2 what? both for theta/delta and for NE. We have modified this figure and legend for clarity. Please see Fig. 4, page 37.

      2. Bottom of page 12- referring to figure 4 but talking about figure 5.

      The typo was corrected. Please see line 265-266.

      Reference

      1. Aston-Jones G, Bloom FE. Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci. 1, 876–886 (1981).

      2. Bellesi M, de Vivo L, Chini M, Gilli F, Tononi G, Cirelli C. Sleep loss promotes astrocytic phagocytosis and microglial activation in mouse cerebral cortex. J Neurosci. 37, 5263–5273 (2017).

      3. Brécier A, Borel M, Urbain N, Gentet LJ. Vigilance and behavioral state-dependent modulation of cortical neuronal activity throughout the sleep/wake cycle. J Neurosci. 42, 4852–66 (2022).

      4. Dworak M, McCarley RW, Kim T, Kalinchuk AV, Basheer R. Sleep and brain energy levels: ATP changes during sleep. J Neurosci. 30, 9007-16 (2010).

      5. Gyoneva S., Traynelis SF. Norepinephrine modulates the motility of resting and activated microglia via different adrenergic receptors. J Biol Chem. 288, 15291302 (2013).

      6. Kjaerby C, Andersen M, Hauglund N, Untiet V, Dall C, Sigurdsson B, Ding F, Feng J, Li Y, Weikop P, Hirase H, Nedergaard M. Memory-enhancing properties of sleep depend on the oscillatory amplitude of norepinephrine. Nat Neurosci. 25, 1059–1070 (2022).

      7. Liu T, Lu J, Lukasiewicz K, Pan B, Zuo Y. Stress induces microglia-associated synaptic circuit alterations in the dorsomedial prefrontal cortex. Neurobiology of Stress. 15, 100342 (2021).

      8. Liu YU, Ying Y, Li Y, Eyo UB, Chen T, Zheng J, Umpierre AD, Zhu J, Bosco DB, Dong H, Wu LJ. Neuronal network activity controls microglial process surveillance in awake mice via norepinephrine signaling. Nat Neurosci. 22, 1771–1781 (2019).

      9. Nollet M, Wisden W, Franks NP. Sleep deprivation and stress: a reciprocal relationship. Interface Focus. 10, 20190092 (2020).

      10. Pandi-Perumal SR, Cardinali DP, Chrousos GP. 2007. Neuroimmunology of sleep. New York, NY: Springer.

      11. Peng W, Liu X, Ma G, Wu Z, Wang Z, Fei X, Qin M, Wang L, Li Y, Zhang S, Xu M. Adenosine-independent regulation of the sleep-wake cycle by astrocyte activity. Cell Discov. 9, 16 (2023).

      12. Peng W, Wu Z, Song K, Zhang S, Li Y, Xu M. Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons. Science. 369, 6508 (2020).

      13. Rasmussen K, Morilak DA, Jacobs BL. Single unit activity of locus coeruleus neurons in the freely moving cat: I. During naturalistic behaviors and in response to simple and complex stimuli. Brain Research. 371, 324–334 (1986).

      14. Stowell RD, Sipe GO, Dawes RP, Batchelor HN, Lordy KA, Whitelaw BS, Stoessel MB, Bidlack JM, Brown E, Sur M, Majewska AK. Noradrenergic signaling in the wakeful state inhibits microglial surveillance and synaptic plasticity in the mouse visual cortex. Nat Neurosci. 22, 1782-1792 (2019).

      15. Umpierre AD, Bystrom LL, Ying Y, Liu YU, Worrell G, Wu LJ. Microglial calcium signaling is attuned to neuronal activity in awake mice. Elife. 27, e56502 (2020).

      16. Wang Z, Fei X, Liu X, Wang Y, Hu Y, Peng W, Wang YW, Zhang S, Xu M. REM sleep is associated with distinct global cortical dynamics and controlled by occipital cortex. Nat Commun. 13, 6896 (2022).

      17. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N, Deng S, Liddelow SA, Zhang C, Daneman R, Maniatis T, Barres BA, Wu JQ. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 34, 11929–11947 (2014).

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The Hedgehog (HH) protein family is important for embryonic development and adult tissue maintenance. Deregulation or even temporal imbalances in the activity of one of the main players in the HH field, sonic hedgehog (SHH), can lead to a variety of human diseases, ranging from congenital brain disorders to diverse forms of cancers. SHH activates the GLI family of transcription factors, yet the mechanisms underlying GLI activation remain poorly understood. Modification and activation of one of the main SHH signalling mediators, GLI2, depends on its localization to the tip of the primary cilium. In a previous study the lab had provided evidence that SHH activates GLI2 by stimulating its phosphorylation on conserved sites through Unc-51-like kinase 3 (ULK3) and another ULK family member, STK36 (Han et al., 2019). Recently, another ULK family member, ULK4, was identified as a modulator of the SHH pathway (Mecklenburg et al. 2021). However, the underlying mechanisms by which ULK4 enhances SHH signalling remained unknown. To address this question, the authors employed complex biochemistry-based approaches and localization studies in cell culture to examine the mode of ULK4 activity in the primary cilium in response to SHH. The study by Zhou et al. demonstrates that ULK4, in conjunction with STK36, promotes GLI2 phosphorylation and thereby SHH pathway activation. Further experiments were conducted to investigate how ULK4 interacts with SHH pathway components in the primary cilium. The authors show that ULK4 interacts with a complex formed between STK36 and GLI2 and hypothesize that ULK4 functions as a scaffold to facilitate STK36 and GLI2 interaction and thereby GLI2 phosphorylation by STK36. Furthermore, the authors provide evidence that ULK4 and STK36 co-localize with GLI2 at the ciliary tip of NIH 3T3 cells, and that ULK4 and STK36 depend on each other for their ciliary tip accumulation. Overall, the described ULK4-mediated mechanism of SHH pathway modulation is based on detailed and rigorous Co-IP experiments and kinase assays as well as confocal imaging localization studies. The authors used various mutated and wild-type constructs of STK36 and ULK4 to decipher the mechanisms underlying GLI2 phosphorylation at the tip of the primary cilium. These novel results on SHH pathway activation add valuable insight into the complexity of SHH pathway regulation. The data also provide possible new strategies for interfering with SHH signalling which has implications in drug development (e.g., cancer drugs).

      However, it will be necessary to explore additional model systems, besides NIH3T3, HEK293 and MEF cell cultures, to conclude on the universality of the mechanisms described in this study. Ultimately, it needs to be addressed whether ULK4 modulates SHH pathway activity in vivo. Is there evidence that genetic ablation of ULK4 in animal models leads to less efficient SHH pathway induction? It also remains to be resolved how ULK3 and ULK4 act in distinct or common manners to promote SHH signalling. Another remaining question is, whether cell type- and tissue-specific features exist, that play a role in ULK3- versus ULK4-dependent SHH pathway modulation. In particular for the studies on ciliary tip localization of factors, relevant for SHH pathway transduction, a higher temporal resolution will be needed in the future as well as a deeper insight into tissue/ cell type-specific mechanisms. These caveats, mentioned here, don't have to be addressed in new experiments for the revision of this manuscript but could be discussed.

      We agree with the reviewer that it would be important to investigate in the future the in vivo function Ulk4 in Shh signaling, the relationship between Ulk3 and Ulk4/Stk36, and possible cell type/tissue specificity of these two kinase systems. This will need the generation of single and double knockout mice and examine Hh related phenotypes in different tissues and developmental stages. The precise mechanism by which Ulk4 and Stk36 are translocated to the ciliary tip is also an important and unsolved issue. We include several paragraphs in the “discussion” section to address these outstanding questions for future study.

      Reviewer #2 (Public Review):

      The authors provide solid molecular and cellular evidence that ULK4 and STK36 not only interact, but that STK36 is targeted (transported?) to the cilium by ULK4. Their data helps generate a model for ULK4 acting as a scaffold for both STK36 and its substrate, Gli2, which appear to co-localise through mutual binding to ULK4. This makes sense, given the proposed role of most pseuodkinases as non-catalytic signaling hubs. There is also an important mechanistic analysis performed, in which ULK4 phosphorylation in an acidic consensus by STK36 is demonstrated using IP'd STK36 or an inactive 'AA' mutant, which suggests this phosphorylation is direct.

      The major strength of the study is the well-executed combination of logical approaches taken, including expression of various deletion and mutation constructs and the careful (but not always quantified in immunoblot) effects of depleting and adding back various components in the context of both STK36 and ULK3, which broadens the potential impact of the work. The biochemical analysis of ULK4 phosphorylation appears to be solid, and the mutational study at a particular pair of phosphorylation sites upstream of an acidic residue (notably T2023) is further strong evidence of a functional interaction between ULK4/STK36. The possibility that ULK4 requires ATP binding for these mechanisms is not approached, though would provide significant insight: for example it would be useful to ask if Lys39 in ULK4 is involved in any of these processes, because this residue is likely important for shaping the ULK4 substrate-binding site as a consequence of ATP binding; this was originally shown in PMID 24107129 and discussed more recently in PMID: 33147475 in the context of the large amount of ULK4 proteomics data released.

      The reviewer raised an interesting question of whether ATP binding to the pseudokinase domain of Ulk4 might be required for its function, i.e., by regulating the interaction with its binding partner. In a recent study (Preuss et al. 2020;PMID: 33147475), the critical Lys39 for ATP binding was converted to Arg (KR mutation); however, unlike in most kinases the KR mutation affect ATP binding, the K39R mutation in the Ulk4 pseudokinase did not affect ATP binding although it slightly increased ADP binding (PMID: 33147475). Another mutation made by Preuss et al(PMID: 33147475), N239L, affected protein stability, making it impossible to determine whether this mutation affect ATP binding. Therefore, in the absence of clear approach to perturb ATP binding without affecting the overall structure of Ulk4, it would be challenging to address whether ATP binding regulates the ability of Ulk4 to bind its substrates. Nevertheless, we discuss the possibility that ATP binding might regulate Ulk4/Stk36 interaction and Shh signaling.

      The discussion is excellent, and raises numerous important future work in terms of potential transportation mechanisms of this complex. It also explains why the ULK4 pseudokinase domain is linked to an extended C-terminal region. Does AF2 predict any structural motifs in this region that might support binding to Gli2?

      The extended C-terminal domain of Ulk4 contains Arm/HEAT repeats (protein-protein interacting domain), which are predicted by AF2 to form alpha helixes.

      A weakness in the study, which is most evident in Figure 1, where Ulk4 siRNA is performed in the NIH3T3 model (and effects on Shh targets and Gli2 phosphorylation assessed), is that we do not know if ULK4 protein is originally present in these cells in order to actually be depleted. Also, we are not informed if the ULK4 siRNA has an effect on the 'rescue' by HA-ULK4; perhaps the HA-ULK4 plasmid is RNAi resistant, or if not, this explains why phosphorylation of Gli2 never reaches zero? Given the important findings of this study, it would be useful for the authors to comment on this, and perhaps discuss if they have tried to evaluate endogenous levels of ULK4 (and Stk36) in these cells using antibody-based approaches, ideally in the presence and absence of Shh. The authors note early on the large number of binding partners identified for ULK4, and siRNA may unwittingly deplete some other proteins that could also be involved in ULK4 transport/stability in their cellular model.

      Due to the lack of reliable Ulk4 and Stk36 antibodies, we were unable to confirm knockdown efficiency by western blot analysis. Therefore, we relied on the measure Ulk4 and STk36 mRNA expression by RT-qPCR to estimate the knockdown efficiency (Fig 1- figure supplement 1). We used mouse Ulk4 shRNA to carry out the knockdown experiments in NIH3T3 and MEF cells while the human version of Ulk4 (hUlk4) was used for the rescue experiments (Fig 1- figure supplement 2; Fig. 8). We have confirmed that the mUlk4 shRNA targeting sequence is not conserved in hUlk4; therefore, the hULK4 construct is RNAi resistant. The rescue experiments strongly argue that the effect of Ulk4 RNAi on Shh signaling is due to loss of endogenous Ulk4. This argument is further strengthened by the observations that mutations that affected Ulk4 and Stk36 ciliary tip localization also affected Shh signaling such as Gli2 phosphorylation and Ptch1/Gli expression (Fig. 8).

      The sequence of ULK4 siRNAs is not included in the materials and methods as far as I can see.

      We have added the mouse Ulk4 RNAi target sequence in the revised version.

      Reviewer #3 (Public Review):

      In this manuscript, Zhou et al. demonstrate that the pseudokinase ULK4 has an important role in Hedgehog signaling by scaffolding the active kinase Stk36 and the transcription factor Gli2, enabling Gli2 to be phosphorylated and activated.

      Through nice biochemistry experiments, they show convincingly that the N-terminal pseudokinase domain of ULK4 binds Stk36 and the C-terminal Heat repeats bind Gli2.

      Lastly, they show that upon Sonic Hedgehog signaling, ULK4 localizes to the cilia and is needed to localize Stk36 and Gli2 for proper activation.

      This manuscript is very solid and methodically shows the role of ULK4 and STK36 throughout the whole paper, with well controlled experiments. The phosphomimetic and incapable mutations are very convincing as well. I think this manuscript is strong and stands as is, and there is no need for additional experiments.

      Overall, the strengths are the rigor of the methods, and the convincing case they bring for the formation of the ULK4-Gli2-Stk36 complex. There are no weaknesses noted. I think a little additional context for what is being observed in the immunofluorescence might benefit readers who are not familiar with these cell types and structures.

      We thank this reviewer for the positive comments.

      Recommendations For the Authors

      Reviewer #1 (Recommendations For The Authors):

      This elegant study has been thoroughly and thoughtfully designed and the dataset is solid. The biochemistry results are overall very convincing. Some data lack quantification and there needs to be more information on data analyses and statistics. The following suggestions and comments aim at strengthening the manuscript.

      1. Please provide quantification normalized to input for IP experiments (Figures 1 E - F; Figure 8 C). More information on data analyses and statistics should be provided and included as information in the figure legends.

      Thanks for the suggestions, we have done the quantification and statistics analyses for Figures 1E-G and Figure8 C as requested.

      1. Did the authors investigate whether overexpressing hULK4 in the control NIH3T3 cells leads to an increase in pS230/232 (related to Figure 1E)? This would nicely support the notion of a promoting effect of ULK4 on GLI2 phosphorylation.

      We did not. We speculated that overexpressing hULK4 may not significantly promote GLI2 phosphorylation because Ulk4 is a pseudokinase and endogenous Stk36 (the kinase partner of Ulk4) is limited.

      1. The CO-IP experiments to show GLI2 activation were performed in NIH3T3 cells, whereas HEK293 cells were used for the experiments shown in Figure 2. Is there a specific reason for switching between cell lines also for experiments shown in Figures 3 C- I? Did the authors repeat some of the key experiments in both cell lines?

      In mammalian cells, Shh-induced activation of GLI2 depends on primary cilia (Han et al., 2019). NIH3T3 cells form the primary cilia but HEK293T cells do not. Therefore, we used NIH3T3 cells to examine the processes that are regulated by the Shh treatment assay (e.g., the Shh-induced phosphorylation of GLI2 and STK36). The HEK293 cells were used to map binding domain between ULK4 and STK36/GLI2/SUFU due to the high transfection efficiency.

      1. In Figure 2 D-E the authors nicely showed that hUlk4N-HA interacted with CFP-Stk36 but not with Myc-Gli2/Fg-Sufu whereas hUlk4C-HA formed a complex with Myc-Gli2/Fg-Sufu but not with CFP-Stk36. In Figure 4E the authors showed in their Co-IP experiments that Fg-Stk36 and Myc-Gli2 form a complex independent of SHH treatment. Did the authors see some pull down of Stk36, still in complex with Gli2, using hUlk4C IP and pull down of Gli2, still in complex with Stk36, using hUlk4N IP?

      We did not test that. As we have shown in Figures 4A and 4E, knockdown of endogenous ULK4 nearly abolished the interaction between Myc-GLi2 and Fg-Stk36, suggesting that Ulk4 is the major scaffold to bring Skt36 and Gli2 together, and that there is little if any direct interaction between GLi2 and Stk36.

      1. Another method to verify hULK4-Stk36-Gli2 complex formation (Figure 4) would be helpful. For example, proximity ligation assays, tripartite split GFP assays, or colocalization based on expansion STED immunofluorescence microscopy could be performed to temporally and spatially resolve localization of Ulk4, Stk36 and Gli2 upon SHH stimulation in the primary cilium

      Thanks for the suggestions. We think that our current study using biochemical and cell biology approaches have provide sufficient evidence that Ulk4, Stk36 and Gli2 form complexes. We will keep in mind of those more sophisticated methods in our future endeavors.

      1. Please provide more representative images of Ulk4, Stk36 and Gli2 localization in NIH3T3 cells or lower magnification overview images showing more than one cell (Figure 5).

      We have provided more representative images in Figure 5- figure supplement 1A-F of the revised manuscript.

      1. Confirmation of the results shown in Figure 5 in a second cell line would strengthen the data.

      We have confirmed the results in MEFs (see Figure 5- figure supplement 1G-J)

      1. Did the authors add immunofluorescence for tubulin as a ciliary base marker to ensure correct assignment of ciliary tip versus ciliary base localization for quantification experiments (Figures 5 - 8)?

      It has been well documented that GLi2 is accumulated at the ciliary tip in respond to Shh treatment; therefore, we used Gli2 as a marker for ciliary tip where both Ulk4 and Stk36 were also accumulated. γ tubulin staining could be another marker to assign the ciliary tip vs base; however, the antibody combination we have did not allow us to simultaneously stain γ tubulin and acetylated tubulin (Ac-Tub).

      1. SMO localization as a further readout of SHH pathway activation might be considered to be added for some of the key results (e.g., Figure 6). Is SMO trafficking affected after depletion or overexpression of ULK4?

      Due to the lack of a workable antibody to detect endogenous Smo in our hands, we did not determine whether the trafficking of SMO is affected after depletion or overexpression of ULK4. However, we noticed that a recent study reported that the SHH-induced ciliary SMO accumulation was impaired in Ulk4 siRNA treated cells (Mecklenburg et al. 2021). We include this information and its implication in the discussion section

      1. Do the authors see ULK4 only at the ciliary tip after SHH stimulation or is there also a dynamic time-dependent localization along the ciliary shaft? The image in Figure 6E (dKO + Stk36 WT) seems to show ULK4 also in the shaft.

      Unlike Smo that is evenly distributed alone the axoneme of primary cilia, ULK4 is mainly accumulated at ciliary tips upon Shh stimulation. Ulk4 is also located at low levels outside the cilia and sometimes in the ciliary shaft during its transit to the ciliary tip (e.g., see Figure 5- figure supplement 1F1-2; J1-2).

      1. Is the immunofluorescence signal for Ulk4 significantly reduced after shRNA treatment to deplete Ulk4 (Figure 6A)?

      We constructed a cell line that stably expressed ULK4 shRNA. The knockdown efficiency was determined by measuring Ulk4 mRNA expression (Fig 1_figure supplement 1). Because we were unable to obtain a reliable ULK4 antibody for immunostaining, we did not examine by whether ULK4 signal was depleted by Ulk4 shRNA.

      1. The labelled ciliary tip resembles in some cases images seen for ciliary abscission. The authors could use membrane/ciliary membrane markers to ensure "intraciliary" localization of the investigated factors.

      Thanks for the suggestion. We will try that in our future experiments.

      1. How many replicates were used in the three independent quantitative RT-PCR experiments (Figure 1 A-D)?

      We used 3 replicates in each independent quantitative RT-PCR assay.

      1. Please provide p values or statement on no significance for the comparison between Ulk3 single and Ulk3/Ulk4 double knockdown (Figure 1C) and between Stk36 single and Stk36/Ulk4 double knockdown (Figure 1D; Fig1_Figure Supplement 2).

      Thanks for the suggestion, we have added the p value or “ns” as asked.

      1. Figure legends in general are a bit short could have some more detailed information.

      Thank you for the suggestion, we have revised the Figure legends as asked.

      1. What do the asterisks present in Figure 4 C-D?

      Thanks for the suggestion. The asterisks in Figure 4C-D indicated the full length STK36 and truncated form STK36N and STK36C fragments. We that included this information in the figure legend.

      1. The authors state that a previous study described ULK4 as a genetic modifier for holoprosencephaly and that this raised the possibility that ULK4 may participate in HH signal transduction. Primary ciliary localization of ULK4 in mouse neuronal tissue and SHH pathway modulation by ULK4 in cell culture have been shown by Mecklenburg et al. 2021 before. Maybe the authors could rephrase their introduction and discussion accordingly.

      Thanks for the suggestion, we have changed the introduction and discussion accordingly.

      1. Overexpression studies in heterologous systems using tagged proteins can potentially have an influence on their subcellular localization and function. Please discuss this caveat.

      We have mentioned this caveat in the “discussion” section of the revised manuscript. However, we have tried to express the transgene at low levels using the lentiviral vector containing a weak promoter to ensure that the exogenously expressed proteins are still regulated by Hh signaling. We have also confirmed that the tagged Ulk4 and Stk36 can rescue the loss of endogenous genes.

      1. More details in the Methods section should be provided on the SHH induction in NIH3T3 cells, HEK293 cells and MEFs.

      We have revised the methods section on Shh induction.

      1. ULK4 is known to have at least three isoforms that exhibit varying abundance across developmental stages in mice and humans (Lang et al., 2014) (DOI:10.1242/jcs.137604). Can the authors speculate on potential common and distinct functions of the different ULK4 isoforms on SHH pathway modulation based on their present results?

      It is interesting that Ulk4 has multiple isoforms in both mouse and human. Several short isoforms in both mouse and human lack the pseudokinase domain while one short isoform in mouse lacks the C-terminal region essential for Ulk4 ciliary tip localization. We speculate that the C-terminally deleted isoform may not have a function in the Shh pathway based on our results shown in Fig. 7 and 8 but might still have functions in other cellular processes.

      Reviewer #2 (Recommendations For The Authors):

      The paper is well written, and clear throughout, with excellent (up-to-date) citations to the field.

      We thank reviewer #2 for the positive comments.

      Reviewer #3 (Recommendations For The Authors):

      My only quibble is that the immunofluorescence images are a little confusing, especially to people outside of the field. Please include an image of the whole field and improve the captions. Is that a single cell for each cilia? Why are there so few cilia? The DAPI makes it seem like What are we looking at? Are those multiple nuclei in Figure 6? They seem a little small if that's the 5 uM scale bar

      We provide uncropped images of Figure 5E to show the entire cells (below). We have added some context to improve the captions. Most of the mammalian cells such as MEF and NIH3T3 cells contain a single primary cilium; however, mutilated cells do exist. The DAPI staining indicated the nuclei. The cells shown in Figure 6 have single nucleus (the scale should be 2 µM). Due to the unevenness of DAPI signals in the nuclei, only the strong signals (puncta) were shown for individual nuclei.

      Author response image 1.

      One small typo: GLL2 instead of GLI2 on line 363

      Thanks, we have corrected this spelling mistake.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We sincerely thank and express our appreciation to each of the reviewers for their thorough critique of our manuscript.

      Reviewer #1 (Recommendations For The Authors):

      1. The analysis of whole study comes from only 4 cells from L2/3 of ferret visual cortex; however, it is well known that there is a high level of functional heterogeneity within the cortical neurons. Do those four neurons have similar or different response properties? If the four neurons are functionally different, the weak or no correlation may result from heterogenous distribution pattern of mitochondria associated with heterogenous functionality.

      This is an important consideration and often a limitation of CLEM studies. While cortical neurons do exhibit a high degree of functional heterogeneity (similar to spine activity), the 4 cells examined all had selective (OSI > 0.4) somatic responses to oriented gratings, although they differed in their exact orientation preference. Due to experimental limitations of recording from a large population of dendritic spines, we did not characterize other response properties for which their sensitivity might differ. We did not consider orientation preference a metric of study, but instead characterized the difference in preference from the somatic output, allowing comparisons across spines. In addition, our measurements were limited to proximal, basal dendrites rather than any location in the dendritic tree. Nonetheless, we attempted to address this concern by examining spines with functionally heterogenous visual responses within single cells, as reported in our manuscript: mitochondrial volume within a 1 µm radius was correlated with difference in orientation preference relative to the soma across all 4 cells, the mean r = 0.49 +/- 0.22 s.d.), suggesting that cell-to-cell variability has a minimal impact on our main conclusions.

      Even with our limited measurements, there is a large amount of functional heterogeneity in dendritic spine responses (Extended Data Figure 2, Scholl et al. 2021), far greater than the small differences in somatic responses of these 4 cells (Figure 3, Scholl et al. 2021). Moreover, the individual dendrites from these 4 cells exhibited substantial heterogeneity in the distribution of mitochondria. We cannot rule out whether heterogeneity at various scales may obscure certain relationships or result in the weak correlations we observed. We also note that future advancements in volume electron microscopy should allow for greater sample sizes that can better address the role of functional (and structural) heterogeneity. We have added text in the Discussion section about the potential structure-function relationships that might be obscured or revealed by neuron heterogeneity.

      1. The authors argued that "mitochondria are not necessarily positioned to support the energy needs of strong spines." However, the overall energy needs of a spine depend not only on the synaptic strength but also on the frequency of synaptic activity. Is there a correlation between the mitochondria volume around a spine and the overall activity of the spine? This data needs to be analyzed to confirm the distribution of mitochondria is independent of local energy needs.

      The reviewer is correct, but our experimental paradigm was not optimally designed to measure the ‘frequency’ of synaptic activity in vivo. This could have been accomplished with flashed gratings or, perhaps, presenting drifting gratings at different temporal frequencies. For spines tuned to higher temporal frequencies in V1, we may expect greater energy needs, although as the reviewer suggests, energy needs will depend on synapse (and bouton) size. Because we are not able to directly measure activity frequency as carefully or beautifully as can be done ex vivo or in nerve fibers, we do not feel confident in attempting such analysis in this study. Instead, based on previous studies, we assumed that larger synapses might be able to transmit higher frequencies, and thus have higher energy demands. We believe future in vivo studies will more directly measure synaptic frequency for comparison with mitochondria.

      We have added text in the Discussion about this caveat and potential future experiments.

      1. In the results section, the authors briefly mentioned that "We also considered other spine response properties related to tuning preference; specifically, orientation selectivity and response amplitude at the preferred orientation. For either metric, we observed no relationship to mitochondria within 1 μm radius (selectivity: 1 μm: r = -0.081, p = 0.269, n = 60; max response amplitude: 1 μm: r = -0.179, p = 0.078, n = 64) but did see a weak, significant relationship to both at a 5 μm radius (selectivity: r = 0.175, p = 0.027, n = 121; max response amplitude: r =-0.166, p = 0.030, n = 129)." Here only statistic results were given while the data were not presented in the figure illustration. Based on the methods and Figure 3B, it seems that the preferred orientations were calculated based on the vector summation. How did the authors calculate the "response amplitude at the preferred orientation"? This needs to be clarified. In addition, given the huge variety of orientation selectivity, using the response amplitude at the preferred orientation may not be the best parameter to correlate with the mitochondria volume which is indicative of energy needs. It might be necessary to include the baseline activity without visual stimulation and the average response for visual stimuli of different orientations in the analysis.

      We apologize for this oversight, as the details are present in our previous study (Scholl et al., 2021). Response amplitude and preferred orientation were calculated from a Gaussian curve fitting procedure with specific parameters describing those exact values (see Scholl et al. 2021 or Scholl et al. 2013). Only spines with selective responses (vector strength index > 0.1) and passing our SNR criterion were used for these analyses. We have now added this information to the Methods section and referred to it in the Results. With respect to the reviewer’s other concern, we also examined the average response amplitude (across all visual stimuli). There we found no relationship between the volume of mitochondria within 1 or 5 microns of a spine, however, because spines differ greatly in their selectivity (range = 0 – 0.8) the average response may not be an appropriate metric to compare across spines.

      1. A continuation from the former point, do the spines with similar preferred orientation to the somatic Ca signal have similar Ca signal strength, orientation selectivity index and other characteristics to the spines with different preferred orientation? As shown in the examples (Figure 3B), the spine on the right with different orientation preference compared with its soma has considerably larger response in non-preferred orientation compared to the spine on the left. Thus, the overall activity of the spine on the right may be higher than the spine which has similar preferred orientation to the soma. The authors showed that a positive correlation between difference in orientation preference and mitochondria volume (Figure 3C). Could this be simply due to higher spine activity for non-preferred orientation or spontaneous activity? Thus, the mitochondria might be positioned to support spines with higher overall activity rather than diverse response property.

      The reviewer brings up an interesting consideration. We examined the response properties of spines co-tuned (∆θpref < 22.5 deg) and differentially-tuned (∆θpref > 67.5 deg) to the soma. The orientation selectivity was not different between the two groups (p = 0.12, Wilcoxon ranksum test), although there was a small trend towards co-tuned inputs being more selective. We found that calcium response amplitudes for the preferred stimulus were also not different (p = 0.58, Wilcoxon ranksum test). These analyses are now included as a sentence in the Results.

      We agree with the reviewer that higher spontaneous activity in non-preferred spines may help explain the mitochondrial relationship we observe. However, our current dataset does not have sufficiently long recordings to measure spontaneous synaptic activity. Further, when considering a non-anesthetized preparation, spontaneous activity is highly dependent on brain state and an animal’s self-driven brain activity, which all must be experimentally controlled or measured to accurately address this.

      1. In addition, the information about the orientation selectivity of the soma is also missing. Do the four cells shown here all have similar level of orientation selectivity? Or some have relative weak orientation selectivity in the soma?

      Yes, all 4 cells have a similar OSI (range = 0.4 – 0.57, mean = 0.46 +/ 0.08 s.d.). This has been added to the Results section.

      1. This study focused on only a fraction of spines that are (1) responsive (2) osi > 0.1. However, in theory energy consumption is also related to non-responsive spines and spines with weak orientation tuning. What is the percentage of tuned and untuned spines? What's the correlation of mitochondria volume and spine activity level for untuned spines? I also recommend including the non-responsive spines into the analysis. For example, for each mitochondrion calculate the averaged overall activity of spines within certain distance from the mitochondrion, including the non-responsive spines. I would predict there may be more active spines and higher overall spine activity of dentritic segments near a mitochondrion than segments far from a mitochondrion.

      A majority of spines were tuned for orientation (~91%), although we specifically chose to only analyze data from spines with verifiable, independent calcium events. All analyses except those involving measurements of orientation preference use all dendritic spines (i.e. tuned and untuned). We have clarified this in the Results.

      These other ‘silent’ (i.e. without resolvable visual activity) spines may significantly contribute to energy demands of a dendrite too, as our methods (GCaMP6s expression) likely only capture synaptic events driving Ca+2 influx through NMDA receptors or VGCCs. We expect that glutamate imaging (e.g. iGlusnfr) may open the door to additional analyses to fully characterize functional relationship between spines and mitochondria.

      1. The correlation coefficient for mitochondria volume and difference in orientation preference is relatively low (r=0.3150). With such weak correlation, the explanatory power of this data is limited.

      We agree that while the correlation is significant, it is not particularly strong. To better represent the noise surrounding this measurement, we performed a bootstrap correlation analysis, sampling with replacement (1 micron: mean r = 0.31 +/- 0.11 s.e., 5 micron: mean r = 0.02 +/- 0.10 s.e.). We now include this in the Results.

      1. Why do the numbers of spines in different figures vary? For example, n=60 for 1micron in Figure 3, 54 in Figure 3c, 31 in Figure 4b, 51 in Figure 4e and so on.

      We apologize for the lack of clarity. Each analysis presented different requirements of the data. For example, orientation preference was computed only for selective (OSI > 1) spines (Fig. 3c), but this requirement did not apply to comparisons with selectivity or response amplitude (Fig. 3d). Similarly, as stated in the Results and Methods, measurements of local heterogeneity require a minimum number of neighboring spines (n > 2), limiting the number of usable spines for analysis (Fig. 4). We have clarified this in the text.

      1. In Figure 6a, the sample sizes of mito+ spines and mito- spines are extremely unbalanced, which affects the stat power of the analysis. I recommend performing a randomization test.

      We thank the reviewer for this suggestion. We ran permutation tests to compare the similarity in mean values between equally sampled values from each distribution. These tests supported our original analysis and conclusions. We have added these tests to the Results.

      1. Ca signals are approximations of electrical signals. How well are spinal calcium signals correlated to synaptic strength and local depolarization? This should be put into discussion.

      There is unlikely a simple, direct relationship between spine calcium signal and synaptic strength or membrane depolarization, and this has never been addressed in vivo. Koester and Johnston (2005) performed paired recordings in slice and showed that single presynaptic action potentials producing successful transmission generate widely different calcium amplitudes (Fig. 3). Another study from Sobczyk, Scheuss, and Svoboda (2005) used two-photon glutamate uncaging on single spines and showed that micro-EPSC’s evoked are uncorrelated with the spine calcium signal amplitude. We have added a note about this in the discussion.

      1. In Figure 4i, the negative correlation may depend on the 4 data points on the right side. How influential are those data points?

      Spearman’s correlation coefficient analysis is robust to outliers and it is highly unlikely these datapoints are critical with our sample size (n > 100 spines).

      1. Raw data of Ca responses were missing.

      Some data has been published with the parent publication (Scholl et al., 2021). As spine imaging data is difficult to obtain and highly unique, we prefer to provide raw data directly upon reasonable request of the corresponding author.

      1. What is the temporal frequency of the drifting grating? Was it fixed or the speed of the grating was fixed?

      This was fixed to 4 Hz and this is now included in the Methods.

      Reviewer #2 (Recommendations For The Authors):

      1. Most of the measurements were based on the distance from the base of the spine neck, and "only on spines with measurable mitochondrial volume at each radius" were analyzed. To better understand the causality, it may also be interesting to have an analysis based on the distance from mitochondria. Would the result be different if the measurements are not 1µm / 5µm from spine but 1µm / 5µm from mitochondria? (e.g. total spine volume in 1µm / 5µm from mitochondria).

      In fact, our first iteration of this study focused on exactly this metric: measuring the distance to nearest mitochondria. However, after lengthy discussions between the authors, we ultimately decided this metric was inferior to a volumetric one. Our decision was based on several factors: (1) distance to mitochondrion is ill defined (e.g. distance to the a mitochondrion center or nearest membrane edge?), (2) the total amount of mitochondrial volume within a dendritic shaft should allow the greatest amount of energetic support (e.g. more cristae for ATP production, greater capacity for calcium buffering), and (3) we would not account for the geometry of individual mitochondria or their placement near a spine (e.g. when 2 different mitochondria are next to the same spine) We have added further clarification of our reasoning to the Results.

      Nonetheless, we present the reviewer some of our original analyses correlating distance to mitochondria (from the base of the spine and including the spine neck length):

      Author response image 1.

      Here, we examined the relationship to spine head volume, spine-soma orientation preference difference, and the local orientation preference heterogeneity. No relationship showed any significant correlation. Again, this may not be surprising given the drawbacks of measuring ‘distance to mitochondria’.

      1. Is there a selection criterion for the spine for the analysis? Are filopodia spines excluded in the analysis?

      Spines were analyzed regardless of structural classification; however, they were only analyzed if they had a synaptic density with synaptic vesicle accumulation. In our dataset (including those visualized in vivo and reconstructed from the EM volume) we observed no filopodia.

      1. The result states that "56.8% of spines had no mitochondria volume within 1 μm and 12.1% of spines had none within 5 μm.". In other words, around 43% of spines had mitochondria within 1 μm. It would be interesting to show whether there is a correlation between mitochondria size and spine density.

      We agree that this is an interesting measurement. It has been reported that mitochondrial unit length along the dendrite co-varies with linear synapse density in the neocortical distal dendrites of mice (Turner et al., 2022). This was specifically true in distal portions of dendrites more than 60 µm from the soma, because mitochondria volume increases as a function of distance roughly up to this point, then remains relatively constant beyond this distance.

      To investigate this possibility, we calculated the local spine density around an individual spine and compared to the mitochondria volume within 1 or 5 µm. We found no evidence of a correlation between local spine density and the volume of mitochondria (1 µm: Spearman r = -0.07447, p = 0.2859; 5 µm: r = -0.04447, p = 0.3141). However, the majority of our measurements are more proximal than 60 µm (our median distance of all spines = 49.4 µm, max = 114 µm) and this may be one reason why observe no correlation.

      1. In Figure 3B, the drifting grating directions are examined from 0 to 315 degrees in the experiment. However, in Figure 3C and 3D, the spine-soma difference of orientation preference was limited to 0 to 90 degree in the graph. Is the graph trimmed, or is there a cause that limits the spine-soma difference of orientation preference to 90?

      Ferret visual cortical neurons are highly sensitive to grating direction and the responses are fit by a double Gaussian curve which estimates the ‘orientation preference’ (0-180 deg). We then calculated the absolute difference in orientation preference and wrapped that value in circular space so the maximum difference possible is 90 deg (e.g. 135 deg -> 45 deg).

      1. In Figure 4D-F, how is the temporal correlation of calcium activity determined? Is it based on stimulated activity or basal activity? A brief explanation may be helpful to the readers. Also, scale bars could be added to Fig 4D.

      Temporal correlation is computed as the signal correlation between 2 spines over the entire imaging session at that field of view. Specifically, we measured the Pearson correlation between each spine’s ∆F/F trace. To measure the local spatiotemporal correlation, we computed correlations between all neighboring spines within 5 microns and took the average of those values. We have clarified this in the Results section.

      1. Figure 3C and Figure 4D displayed a significant correlation in 1µm range and such correlation drastically diminished once the criterion changed to 5µm range. It would be interesting to include the criterion of intermediate ranges. It would be interesting to see if there is a trend or tendency or if there is a "cut-off" limit.

      We agree with the reviewer that the drastic change in the correlations between 1 and 5 µm range was surprising to see. While these volumetric measurements are time consuming, we returned to our data and measured an intermediate point of 3 µm. Investigating relationships reported in our study, we found no significant trends for spine-soma similarity (Spearman’s r = -0.011, p = 0.54) or local heterogeneity (Spearman’s r = 0.11, p = 0.23). This suggests that a potential ‘critical distance’ might be less than 3 µm; however, far more additional measurements and analyses would be needed to attempt to identify exactly what this distance is.

      1. In Figure 5, it is shown that spines having mitochondrion in the head or neck are larger. However, only 10 spines are found with mitochondria inside. In the current dataset, are mitochondria abundantly found in large spines? Further analysis or justification would be informative to address this.

      In our dataset, mitochondria were found in ~5% of all spines. Spines with mitochondria have a median volume of approximately 0.6 µm3, roughly twice as large as than those without mitochondria, as the reviewer suggests. In the entire population of spines without mitochondria, a volume of 0.6 µm3 represents roughly the 82nd percentile. In other words, of the total population of 157 spines without mitochondria, only 29 had equal or greater volume than the median spine with a mitochondrion. We believe this trend is clearly shown in Figure 5A and is supported by our analysis, including new permutation tests suggested by Reviewer 1.

      Reviewer #3 (Recommendations For The Authors):

      1. The authors state that their unsupervised method "quickly and accurately identified mitochondria," but the methods section only says that segmentations were proofread. Was every segmentation examined and judged to be accurate, or was only a subset of the 324 mitochondria checked?

      After deep learning-based extraction, each mitochondrion segmentation was manually proofread. For each dendrite segment, this was ~10-20 mitochondria, so it did not take long to manually inspect and edit each mitochondrion segmentation.

      1. The EM image of the mitochondrion in the spine head in Figure 2C is low resolution and does not apply to the bulk of the data. Images more representative of the analyzed data should be added to supplement the cartoons.

      Our primary rationale for including this specific image was to show that the mitochondria located within spines are small, round, and to include a view of the synapse as well as the mitochondrion. We now include enlarge and additional EM images to Figure 1C.

      1. The majority of spines did not have any mitochondria within a 1 micron radius and were excluded from the correlation analyses, so most of the conclusions are based on a minority of spines. It would be interesting to see comparisons between spines with and without nearby mitochondria. Correlations between the absolute distance to any mitochondrion, synapse size, and mismatch to soma orientation would be especially interesting.

      The reviewer brings up a good point. It is true that many spines were excluded from our analysis based on the fact that they did not have nearby mitochondria within 1 or 5 µm (56.8% of spines had no mitochondria volume within 1 μm and 12.1% of spines had none within 5 μm). We compared the distributions of synapse size, mismatch to soma, and orientation selectivity of two groups of spines – those with at least some mitochondria within 1 µm (n = 65) versus spines without any mitochondria within 5 µm (n = 19).

      We found no difference in the distributions between spine volume (1 µm: median = 0.29 µm3, IQR = 0.41 µm3; no mitochondria within 5 µm: median = 0.40 µm3, IQR = 0.37 µm3; p = 0.67) or PSD area (1 µm: median = 0.26 µm2, IQR = 0.33 µm2; no mitochondria within 5 µm: median = 0.31 µm2, IQR = 0.36 µm2; p = 0.49). For functional measures, we also saw no difference in orientation selectivity (1 µm: median = 0.29, IQR = 0.28; no mitochondria within 5 µm: median = 0.28, IQR = 0.15; p = 0.74) or mismatch to soma orientation (1 µm: median = 0.54 deg, IQR = 0.86 deg; no mitochondria within 5 µm: median = 0.46 deg, IQR = 0.47 deg; p = 0.75). We now include analyses in the Results.

      We also looked at the absolute distances to mitochondria and did not find any significant relationships to spine head volume, spine-soma orientation preference difference, or the local orientation preference heterogeneity (see our response to reviewer #2 for more information).

      1. In Figure 1A the mitochondria appear to be taking up a substantial fraction of the dendritic shaft diameter, even for distal dendrites. It would be useful to know the absolute diameter of the dendrites and mitochondria, given that this is not rodent data and there is no reference for either in the ferret.

      We agree with the reviewer’s point, although we would like to remind the reviewer that these are basal dendrites of layer 2/3 cells. Basal dendrites tend to be thinner than apical branches. Interestingly, in some cases, the dendrite even swells to accommodate a mitochondrion. We did not incorporate this measurement in our study because it is not trivial; dendrite diameter is variable and dendrites are not perfect cylinders. Although we did not make precise measurements across our dendrites, the diameter is comparable to what has been seen in mouse cortex (Turner et al., 2022), roughly 500-1000 nm, but as small as 100 nm at some pinch points. In terms of mitochondria, many were roughly spherical or oblong, therefore the maximum diameters we report are roughly similar to, if not a bit larger than, those of the cross-sectional diameter.

      1. As a rule, PSD area is correlated with spine volume, which makes the observation that spines with mitochondria have larger volume but not PSD area surprising. With n=10 it is difficult to draw conclusions, but it would be interesting to know the PSD area-to-volume ratio of other spines of the same volume and synapse size.

      We were also somewhat surprised to see this, but exactly as the reviewer mentioned, we believe it to be a limitation of the sample size. The difference in volume was large enough to be detected despite a small sample size. We saw a trend towards larger synapses when spines have mitochondria (the median was approximately 60% larger), and we would expect with a larger comparison that PSD area would be significantly greater in spines with mitochondria.

      We calculated the PSD area-to-spine head volume ratio for spines with or without mitochondria. Spines with mitochondria had a significantly lower ratio compared to those without (Mann-Whitney test, p = 0.0056, mito - = 0.78, n = 10; mito + = 0.53, n = 157). As the reviewer mentions, it is somewhat difficult to draw a conclusion from this, but it appears that the PSD does not scale with the increased spine head size.

      Author response image 2.

      The only way to definitively address this is to increase the sample size, which is becoming easier to achieve with the progression of volume EM imaging and analysis techniques in recent times. We look forward to addressing this in the future.

      1. Nothing is made of the significant fact that these data come from the visual system of a carnivore, not a mouse. Consideration of differences in visual physiology between rodents and carnivores would be worthwhile to put the function of these dendrites in context.

      We thank the reviewer for this consideration and have added text to the Discussion.

    1. Author Response

      Reviewer #2 (Public Review):

      Manassaro et al. present an extensive three-session study in which they aimed to change defensive responses (skin conductance; SCR) to an aversively conditioned stimulus by targeting medial prefrontal cortex (their words) using repetitive TMS prior to retrieval. They report that stimulating mPFC using TMS abolishes SCR responses to the conditioned stimulus, and that this effect is specific for the stimulated region and the specific CS-US association, given that SCR responses to a different modality US are not changed.

      I like how the authors have clearly attempted to control for several potential confounds by including multiple stimulation sites, measured SCR responses to several unconditioned stimuli, and applied the experiment in multiple contexts. However, several conceptual and practical issues remain that I think limit the value of potential conclusions drawn from this work.

      The first issue that I have with this study concerns the relationship between the TMS manipulation and the theoretical background the authors present in their rationale. In the introduction the authors sketch that what they call 'mPFC' is involved in regulation of threat responses. They make a convincing case, however, almost all of the evidence they present concerns the ventromedial part of the prefrontal cortex (refs 18-25). The authors then mention that no one has ever studied the effects of 'mPFC'-TMS on threat memories. That is not surprising given that stimulating vmPFC with TMS is very difficult, if not impossible. Simulation of the electrical field that develops as a consequence from the authors manipulation (using the same TMS coil and positioning the authors use) shows that vmPFC (or mPFC for that matter) is not stimulated. The authors then continue in the methods section stating that the region they aimed for was BA10. This region they presumably do stimulate, however, that does not follow logically from their argument. BA10 is anatomically, cytoarchitectonically and functionally a wholly different area than vmPFC and I wonder if their rationale would hold given that they stimulate BA10.

      We would like to thank the Reviewer for highlighting this very important point. The Reviewer is right in stating that the Brodmann area 10 (BA 10) is anatomically, cytoarchitectonically, and functionally distinct from the ventromedial PFC. As we reported in the Methods section, the coil placement over the frontopolar midline electrode (Fpz) according to the international 10‒20 EEG coordinate system directly focused the stimulation over the medial portion of the BA 10. In the literature, the aPFC is also known as the “frontopolar cortex” or the “rostral frontal cortex” and encompasses the most anterior portion of the prefrontal cortex, which corresponds to the BA 10. In line with this observation, we have corrected “medial prefrontal cortex” (mPFC) with “medial anterior prefrontal cortex” (aPFC) throughout the manuscript. We also have corrected the theoretical background and the rationale in the Introduction section by mentioning several studies that: i) Reported the involvement of the aPFC in emotional down-regulation (Volman et al., 2013; Koch et al., 2018; Bramson et al., 2020). ii) Traced anatomical connections between the medial/lateral aPFC and the amygdala (Peng et al., 2018; Folloni et al., 2019; Bramson et al., 2020). iii) Detected functional connections between the aPFC and the vmPFC during fear down-regulation (Klumpers et al., 2010). iv) Found hypoactivation, reduced connectivity, and altered thickness of aPFC in PTSD patients (Lanius et al., 2005; Morey et al., 2008; Sadeh et al., 2015; Sadeh et al., 2016). v) Revealed that strong activation of the aPFC may promote a higher resilience against PTSD onset (Kaldewaij et al., 2021) and that enhanced aPFC activity and potentiated aPFC-vmPFC connectivity is detectable after effective therapy in PTSD patients (Fonzo et al., 2017). Furthermore, we discussed our results in light of this evidence in the Discussion section. We really thank the Reviewer for this key implementation of our study.

      The second concern I have is that although I think the authors should be praised for including both sham and active control regions, the controls might not be optimally chosen to control for the potential confounds of their condition of interest (mPFC-TMS). Namely, TMS on the forehead can be unpleasant, if not painful, whereas sham-TMS or TMS applied to the back of the head or even over dlPFC is not (or less so at the very least). Given that the SCR results after mPFC TMS show exactly the same temporal pattern as the sham-TMS but with a lower starting point, one could wonder whether a painful stimulation prior to the retrieval might have already caused habituation to painful stimulation observed in SCR in consequent CS presentations. A control region that would have been more obvious to take is the lateral part of BA10, by moving the TMS coil several centimeters to the left or right, circumventing all things potentially called medial but giving similar unpleasant sensations (pain etc).

      We would also like to thank the Reviewer for bringing to light this issue and allowing us to strengthen our results. The Reviewer is right in pointing out that rTMS application over the forehead can be subjectively perceived as unpleasant, relative to other head coordinates or sham stimulation. The question of whether an unpleasant stimulation prior to the retrieval might provoke habituation to discomfort sensations and lead to weaker SCRs in the consequent CS presentations is valid and reasonable. We also thank the Reviewer for advising us to stimulate the lateral part of BA 10 as an active control site. However, given the potential involvement of the lateral BA 10 in the fear network (see previous point) and the potential risks due to the anatomical proximity of lateral BA 10 with the temporal lobe, we reasoned to adopt an alternative approach to investigate whether “a painful stimulation prior to the retrieval might have already caused habituation to painful stimulation observed in SCR in consequent CS presentations”. We repeated the entire experiment in one further group (ctrl discomfort, n = 10) by replacing the rTMS procedure with a 10-min discomfort-inducing procedure over the same site of the forehead (Fpz) to mimic the rTMS-evoked unpleasant sensations in the absence of neural stimulation effects (see the new version of the Methods section). The electrical stimulation intensity was individually calibrated through a staircase procedure (0 = no discomfort; 10 = high discomfort). The shock amplitude was set at the current level corresponding to the mean rating of ‘4’ on the subjective scale because, in the new experiments that we performed targeting the aPFC with rTMS (n = 9), we collected participants’ rTMS-induced discomfort ratings obtaining a mean rating of 3.833 ± 0.589 SEM on the same scale. We found CS-evoked SCR levels not significantly different to those of the sham group during the test session as well as during the follow-up session, suggesting that the discomfort experienced during the rTMS procedure did not contribute to the reduction of electrodermal responses observed in the aPFC group. We reported the results of this experiment in the Results section and Figure 2-figure supplement 2.

      My final concern is that the main analyses are performed on single trials of SCR responses, which is a relatively noise measure to use on single trials. This is also done in relatively small groups (n=21). I would have liked to see both the raw or at least averaged timeseries SCR data plotted, and a rationale explaining how the authors decided on the current sample sizes, if that was based on a power analyses one must have expected quite strong effects.

      Following the Reviewer’s suggestion, we decided to remove the analysis on single trials, and we apologize for not including SCR timeseries. To quantify the amount of effect induced by the rTMS protocol, we have now added within-group comparisons (through 2 × 2 mixed ANOVAs) that show, for each group, the amount of change in CS-evoked SCRs from the conditioning phase to the test phase, as well as from the conditioning phase to the follow-up phase. Furthermore, to directly and simply depict these changes, in addition to dot plots, we have also represented them with line charts (Figs. 2C, 2H, 4C, 4H, 5C, 5H). To estimate the sample size, we had previously performed a power analysis through G*Power 3.1.9.2 and it had resulted in n = 21 per experimental group. However, by correcting data pre-processing procedures (in accordance with Reviewer 1), we obtained data that were not normally distributed. Thus, we reasoned to enlarge our sample width by re-performing a power analysis (with the new suggested statistical analyses) and then repeating the experiments. For the main statistics, i.e. mixed ANOVA (within-between interaction) with two groups and two measurements, with the following input parameters: α equal to 0.05, power (1-β) equal to 0.95, and a hypothesized effect size (f) equal to 0.25, the new estimated sample size resulted in n = 30 per experimental group.

    1. Author Response

      Reviewer #1 (Public Review):

      In this manuscript, the Authors implement a delayed feedback control method and use it for the first time in biological neuronal networks. They extend a well-established computational theory and expand it into the biological realm. With this, they obtain novel evidence, never considered before, that showcases the difference between simulated neuronal networks and biological ones. Furthermore, they optimize the DFC method to achieve optimal results in the control of cell excitability in the content of biological neuronal networks, taking advantage of a closed-loop stimulation setup that, by itself, is not trivial to build and operate and that will certainly have a positive impact the fields of cellular and network electrophysiology.

      Regarding the results, it would be very constructive if the Authors could share the code for the quasi-real-time interface with the Multichannel Systems software (current and older hardware versions), as this represents likely a bottleneck preventing more researchers to implement such an experimental paradigm.

      On the data focusing on the effects of the DFC algorithms on neuronal behavior, the evidence is very compelling, although more care should be devoted to the statistical analyses, since some of the applied statistical tests are not appropriate. In a more biological sense, further discussion and clarification of the experimental details would improve this manuscript, making it more accessible and clearer for researchers across disciplines (i.e., ranging from computational to experimental Neuroscience) and increasing the impact of this research.

      In summary, this work represents a necessary bridge between recent advances in computational neuroscience and the biological implementation of neuronal control mechanisms.

      Regarding sharing the control code, our application for closed-loop stimulation using aDFC, DFC and Poisson is now available in GitHub (https://github.com/NCN-Lab/aDFC). This was, in fact, our initial intention following the reviewing process. With this application, the user can run the developed algorithms with the MEA2100-256 System from Multi Channel Systems MCS GmbH.

      Same with the data. The dataset with the spike data from all experiments is also now publicly available in Zenodo. The data can be found in https://doi.org/10.5281/zenodo.10138446.

      Regarding the improvements in the statistical analysis, the tests are now performed following Reviewer #1 suggestions. Important to emphasize that this did not change the results/ conclusions of the work.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We want to thank the Editor and Reviewers for their thorough assessment of the manuscript as well as their constructive critiques. We have collated below the public review and recommendations from each Reviewer as well as our responses to them.

      eLife assessment

      This study by Verdikt et al. provided solid evidence demonstrating the potential impacts of Δ9-tetrahydrocannabinol (Δ9-THC) on early embryonic development using mouse embryonic stem cells (mESCs) and in vitro differentiation. Their results revealed that Δ9-THC enhanced mESCs proliferation and metabolic adaptation, possibly persisting through differentiation to Primordial Germ Cell-Like Cells (PGCLCs), though the evidence supporting this persistence was incomplete. Although the study is important, it was limited by being conducted solely in vitro and lacking parallel human model experiments.

      Reviewer #1 (Public Review):

      The authors investigated the metabolic effects of ∆9-THC, the main psychoactive component of cannabis, on early mouse embryonic cell types. They found that ∆9-THC increases proliferation in female mouse embryonic stem cells (mESCs) and upregulates glycolysis. Additionally, primordial germ cell-like cells (PGCLCs) differentiated from ∆9-THC-exposed cells also show alterations to their metabolism. The study is valuable because it shows that physiologically relevant ∆9-THC concentrations have metabolic effects on cell types from the early embryo, which may cause developmental effects. However, the claim of "metabolic memory" is not justified by the current data, since the effects on PGCLCs could potentially be due to ∆9-THC persisting in the cultured cells over the course of the experiment, even after the growth medium without ∆9-THC was added.

      The study shows that ∆9-THC increases the proliferation rate of mESCs but not mEpiLCs, without substantially affecting cell viability, except at the highest dose of 100 µM which shows toxicity (Figure 1). Treatment of mESCs with rimonabant (a CB1 receptor antagonist) blocks the effect of 100 nM ∆9-THC on cell proliferation, showing that the proliferative effect is mediated by CB1 receptor signaling. Similarly, treatment with 2-deoxyglucose, a glycolysis inhibitor, also blocks this proliferative effect (Figure 4G-H). Therefore, the effect of ∆9-THC depends on both CB1 signaling and glycolysis. This set of experiments strengthens the conclusions of the study by helping to elucidate the mechanism of the effects of ∆9-THC.

      Although several experiments independently showed a metabolic effect of ∆9-THC treatment, this effect was not dose-dependent over the range of concentrations tested (10 nM and above). Given that metabolic effects were observed even at 10 nM ∆9-THC (see for example Figure 1C and 3B), the authors should test lower concentrations to determine the dose-dependence and EC50 of this effect. The authors should also compare their observed EC50 with the binding affinity of ∆9-THC to cellular receptors such as CB1, CB2, and GPR55 (reported by other studies).

      The study also profiles the transcriptome and metabolome of cells exposed to 100 nM ∆9-THC. Although the transcriptomic changes are modest overall, there is upregulation of anabolic genes, consistent with the increased proliferation rate in mESCs. Metabolomic profiling revealed a broad upregulation of metabolites in mESCs treated with 100 nM ∆9-THC.

      Additionally, the study shows that ∆9-THC can influence germ cell specification. mESCs were differentiated to mEpiLCs in the presence or absence of ∆9-THC, and the mEpiLCs were subsequently differentiated to mPGCLCs. mPGCLC induction efficiency was tracked using a BV:SC dual fluorescent reporter. ∆9-THC treated cells had a moderate increase in the double positive mPGCLC population and a decrease in the double negative population. A cell tracking dye showed that mPGCLCs differentiated from ∆9-THC treated cells had undergone more divisions on average. As with the mESCs, these mPGCLCs also had altered gene expression and metabolism, consistent with an increased proliferation rate.

      My main criticism is that the current experimental setup does not distinguish between "metabolic memory" vs. carryover of THC (or its metabolites) causing metabolic effects. The authors assume that their PGCLC induction was performed "in the absence of continuous exposure" but this assumption may not be justified. ∆9-THC might persist in the cells since it is highly hydrophobic. In order to rule out the persistence of ∆9-THC as an explanation of the effects seen in PGCLCs, the authors should measure concentrations of ∆9-THC and THC metabolites over time during the course of their PGCLC induction experiment. This could be done by mass spectrometry. This is particularly important because 10 nM of ∆9-THC was shown to have metabolic effects (Figure 1C, 3B, etc.). Since the EpiLCs were treated with 100 nM, if even 10% of the ∆9-THC remained, this could account for the metabolic effects. If the authors want to prove "metabolic memory", they need to show that the concentration of ∆9-THC is below the minimum dose required for metabolic effects.

      Overall, this study is promising but needs some additional work in order to justify its conclusions. The developmental effects of ∆9-THC exposure are important for society to understand, and the results of this study are significant for public health.

      *Reviewer #1 (Recommendations For The Authors):

      This has the potential to be a good study, but it's currently missing two key experiments:

      What is the minimum dose of ∆9-THC required to see metabolic effects?

      We would like to thank Reviewer 1 for their insightful comments. We have included exposures to lower doses of ∆9-THC in Supplementary Figure 1. Our data shows that ∆9-THC induces mESCs proliferation from 1nM onwards. However, when ESCs and EpiLCs were exposed to 1nM of ∆9-THC, no significant change in mPGCLCs induction was observed (updated Figure 6B). Of note, in their public review, Reviewer 1 mentioned that “The authors should also compare their observed EC50 with the binding affinity of ∆9-THC to cellular receptors such as CB1, CB2, and GPR55 (reported by other studies).” According to the literature, stimulation of non-cannabinoid receptors and ion channels (including GPR18, GPR55, TRPVs, etc.) occurs at 40nM-10µM of ∆9-THC (Banister et al., 2019). We therefore expect that at the lower nanomolar range tested, CB1 is the main receptor stimulated by ∆9-THC, as we showed for the 100nM dose in our rimonabant experiments (Fig. 2).

      Is the residual THC concentration during the PGCLC induction below this minimum dose? Even if the effects are due to residual ∆9-THC, this would not undermine the overall study. There would simply be a different interpretation of the results.

      This experiment was particularly important to distinguish between a “true” ∆9-THC metabolic memory or residual ∆9-THC leftover during PGCLCs differentiation. Our mass spectrometry quantification revealed that no significant ∆9-THC could be detected in day 5 embryoid bodies compared to treated EpiLCs prior to differentiation (Supplementary Figure 13). These results support the existence of ∆9-THC metabolic memory across differentiation.

      You also do not mention whether you tested your cells for mycoplasma. This is important since mycoplasma contamination is a common problem that can cause artifactual results. Please test your cells and report the results.

      All cells were tested negative for mycoplasma by a PCR test (ATCC® ISO 9001:2008 and ISO/IEC 17025:2005 quality standards). This information has been added in the Material and Methods section.

      Minor points:

      1. I don't think it's correct to say that cannabis is the most commonly used psychoactive drug. Alcohol and nicotine are more commonly used. See: https://nida.nih.gov/research-topics/alcohol and https://www.cancer.gov/publications/dictionaries/cancer-terms/def/psychoactive-substance I looked at the UN drugs report [ref 1] and alcohol or nicotine were not included on that list of drugs, so the UN may use a different definition. This doesn't affect the importance or conclusions of this study, but the wording should be changed.

      We agree and are now following the WHO description of cannabis (https://www.who.int/teams/mental-health-and-substance-use/alcohol-drugs-and-addictive-behaviours/drugs-psychoactive/cannabis) by referring to it as the “most widely used illicit drug in the world”. (Line 44).

      1. It would be informative to use your RNA-seq data to examine the expression of receptors for ∆9-THC such as CB1, CB2, and GPR55. CB1 might be the main one, but I am curious to see if others are present.

      We have explored the protein expression of several cannabinoid receptors, including CB2, GPR18, GPR55 and TRPV1 (Bannister et al., 2019). These proteins, except TRPV1, were lowly expressed in mouse embryonic stem cells compared to the positive control (mouse brain extract, see Author response image 1). Furthermore, our experiment with Rimonabant showed that the proliferative effects of ∆9-THC are mediated through CB1.

      Author response image 1.

      Cannabinoid receptors and non-cannabinoid receptors protein expression in mouse embryonic stem cells.

      1. Make sure to report exact p-values. You usually do this, but there are a few places where it says p<0.0001. Also, report whether T-tests assumed equal variance (Student's) or unequal variance (Welch's). [In general, it's better to use unequal variance, unless there is good reason to assume equal variance.]

      Prism, which was used for statistical analyses, only reports p-values to four decimal places. For all p-values that were p<0.0001, the exact decimals were calculated in Excel using the “=T.DIST.2T(t, df)” function, where the Student’s distribution and the number of degrees of freedom computed by Prism were inputted. Homoscedasticity was confirmed for all statistical analyses in Prism.

      1. Figure 2A: An uncropped gel image should be provided as supplementary data. Additionally, show positive and negative controls (from cells known to either express CB1 or not express CB1)

      The uncropped gel image is presented in Author response image 2. The antibody was validated on mouse brain extracts as a positive control as shown in Figure 1.

      Author response image 2.

      Uncropped gel corresponding to Fig. 2A where an anti-CB1 antibody was used.

      1. Figure 6B: Please show a representative gating scheme for flow cytometry (including controls) as supplementary data. Also, was a live/dead stain used? What controls were used for compensation? These details should be reported.

      The gating strategy is presented in Supplementary Figure 11. The Material and Methods section has also been expanded.

      1. As far as I can tell, you only used female mESCs. It would be good to test the effects on male mESCs as well since these have some differences due to differences in X-linked gene expression (female mESCs have two active X chromosomes). I understand that you might not have a male BV:SC reporter line, so it would be acceptable to omit the mPGCLC experiments on male cells.

      We have tested the 10nM-100µM dose range in the male R8 mESCs (Supplementary Figure 3). Similar results as with the female H18 cells were observed. Accordingly, PGCLCs induction was increased when R8 ESCs + EpiLCs were exposed to 100nM of ∆9-THC (Supplementary Figure 12). This is in line with ∆9-THC impact on fundamentally conserved metabolic pathways across species and sex, although it should be noted that one representative model of each sex is not sufficient to exclude sex-specific effects.

      Reviewer #2 (Public Review):

      In the study conducted by Verdikt et al, the authors employed mouse Embryonic Stem Cells (ESCs) and in vitro differentiation techniques to demonstrate that exposure to cannabis, specifically Δ9-tetrahydrocannabinol (Δ9-THC), could potentially influence early embryonic development. Δ9-THC was found to augment the proliferation of naïve mouse ESCs, but not formative Epiblast-like Cells (EpiLCs). This enhanced proliferation relies on binding to the CB1 receptor. Moreover, Δ9-THC exposure was noted to boost glycolytic rates and anabolic capabilities in mESCs. The metabolic adaptations brought on by Δ9-THC exposure persisted during differentiation into Primordial Germ Cell-Like Cells (PGCLCs), even when direct exposure ceased, and correlated with a shift in their transcriptional profile. This study provides the first comprehensive molecular assessment of the effects of Δ9-THC exposure on mouse ESCs and their early derivatives. The manuscript underscores the potential ramifications of cannabis exposure on early embryonic development and pluripotent stem cells. However, it is important to note the limitations of this study: firstly, all experiments were conducted in vitro, and secondly, the study lacks analogous experiments in human models.

      Reviewer #2 (Recommendations For The Authors):

      1. EpiLCs, characterized as formative pluripotent stem cells rather than primed ones, are a transient population during ESC differentiation. The authors should consider using EpiSCs and/or formative-like PSCs (Yu et al., Cell Stem Cell, 2021; Kinoshita et al., Cell Stem Cell, 2021), and amend their references to EpiLCs as "formative".

      Indeed, EpiLCs are a transient pluripotent stem cell population that is “functionally distinct from both naïve ESCs and EpiSCs” and “enriched in formative phase cells related to pre-streak epiblast” (Kinoshita et al., Cell Stem Cell, 2021). Here, we used the differentiation system developed by M. Saitou and colleagues to derive PGCLCs (Hayashi et al, 2011). Since EpiSCs are refractory to PGCLCs induction (Hayashi et al, 2011), we used the germline-competent EpiLCs and took advantage of a well-established differentiation system to derive mouse PGCLCs. Most authors, however, agree that in terms of epigenetic and metabolic profiles, mouse EpiLCs represent a primed pluripotent state. We have added that PGCs arise in vivo “from formative pluripotent cells in the epiblast” on lines 85-86.

      1. Does the administration of Δ9-THC, at concentrations from 10nM to 1uM, alter the cell cycle profiles of ESCs?

      The proliferation of ESCs was associated with changes in the cell cycle, as presented in the new Supplementary Figure 2, which we discuss in lines 118-123.

      1. Could Δ9-THC treatment influence the differentiation dynamics from ESCs to EpiLCs?

      No significant changes were observed in the pluripotency markers associated with ESCs and EpiLCs (Supplementary Figure 9). We have added this information in lines 277-279.

      1. The authors should consider developing knockout models of cannabinoid receptors in ESCs and EpiLCs (or EpiSCs and formative-like PSCs) for control purposes.

      This is an excellent suggestion. Due to time and resource constraints, however, we focused our mechanistic investigation of the role of CB1 on the use of rimonabant which revealed a reversal of Δ9-THC-induced proliferation at 100nM.

      1. Lines 134-136: "Importantly, SR141716 pre-treatment, while not affecting cell viability, led to a reduced cell count compared to the control, indicating a fundamental role for CB1 in promoting proliferation." Regarding Figure 2D, does the Rimonabant "+" in the "mock" group represent treatment with Rimonabant only? If that's the case, there appears to be no difference from the Rimonabant "-" mock. The authors should present results for Rimonabant-only treatment.

      To be able to compare the effects +/- Rimonabant and as stated in the figure legend, each condition was normalized to its own control (mock with, or without Rimonabant). Author response image 3 is the unnormalized data showing the same effects of Δ9-THC and Rimonabant on cell number.

      Author response image 3.

      Unnormalized data corresponding to the Figure 2D.

      1. In Figure 3, both ESCs and EpiLCs show a significant decrease in oxygen consumption and glycolysis at a 10uM concentration. Do these conditions slow cell growth? BrdU incorporation experiments (Figure 1) seem to contradict this. With compromised bioenergetics at this concentration, the authors should discuss why cell growth appears unaffected.

      Indeed, we believe that cell growth is progressively restricted upon increasing doses of ∆9-THC (consider Supplementary Figure 2). In addition, oxygen consumption and glycolysis can be decoupled from cellular proliferation, especially considering the lower time ranges we are working with (44-48h).

      1. Beyond Δ9-THC exposure prior to PGCLCs induction, it would be also interesting to explore the effects of Δ9-THC on PGCLCs during their differentiation.

      We agree with the Reviewer. Our aim was to study whether exposure prior to differentiation could have an impact, and if so, what are the mediators of this impact. Full exposure during differentiation is another exposure paradigm that is relevant but would not have allowed us to show the metabolic memory of ∆9-THC exposure. Future work, however, will be dedicated to analyzing the effect of continuous exposure through differentiation.

      1. As PGC differentiation involves global epigenetic changes, it would be interesting to investigate how Δ9-THC treatment at the ESCs/EpiLCs stage may influence PGCLCs' transcriptomes.

      We also agree with the Reviewer. While this paper was not primarily focused on Δ9-THC’s epigenetic effects, we have explored the impact of Δ9-THC on more than 100 epigenetic modifiers in our RNA-seq datasets. These results are shown in Supplementary Table 1 and Supplementary Figure 10 and discussed in lines 301-316.

      1. Lines 407-408: The authors should exercise caution when suggesting "potentially adverse consequences" based solely on moderate changes in PGCLCs transcriptomes.

      We agree and have modified the sentence as follows: “Our results thus show that exposure to Δ9-THC prior to specification affects embryonic germ cells’ transcriptome and metabolome. This in turn could have adverse consequences on cell-cell adhesion with an impact on PGC normal development in vivo.“

      1. Investigating the possible impacts of Δ9-THC exposure on cultured mouse blastocysts, implantation, post-implantation development, and fertility could yield intriguing findings.

      We thank the Reviewer for this comment. We have amended our discussion to include these points in the last paragraph.

      1. Given that naïve human PSCs and human PGCLCs differentiation protocols have been established, the authors should consider carrying out parallel experiments in human models.

      We have performed Δ9-THC exposures in hESCs (Supplementary Figure 4 and Supplementary Figure 5), showing that Δ9-THC alters the cell number and general metabolism of these cells. We present these results in light of the differences in metabolism between mouse and human embryonic stem cells on lines 135-141 and 185-188. Implications of these results are discussed in lines 474-486.

      Reviewer #3 (Public Review):

      Verdikt et al. focused on the influence of Δ9-THC, the most abundant phytocannabinoid, on early embryonic processes. The authors chose an in vitro differentiation system as a model and compared the proliferation rate, metabolic status, and transcriptional level in ESCs, exposure to Δ9-THC. They also evaluated the change of metabolism and transcriptome in PGCLCs derived from Δ9-THC-exposed cells. All the methods in this paper do not involve the differentiation of ESCs to lineage-specific cells. So the results cannot demonstrate the impact of Δ9-THC on preimplantation developmental stages. In brief, the authors want to explore the impact of Δ9-THC on preimplantation developmental stages, but they only detected the change in ESCs and PGCLCs derived from ESCs, exposure to Δ9-THC, which showed the molecular characterization of the impact of Δ9-THC exposure on ESCs and PGCLCs.

      Reviewer #3 (Recommendations For The Authors):

      1. To demonstrate the impact of Δ9-THC on preimplantation developmental stages, ESCs are an appropriate system. They have the ability to differentiate three lineage-specific cells. The authors should perform differentiation experiments under Δ9-THC-exposure, and detect the influence of Δ9-THC on the differentiation capacity of ESCs, more than just differentiate to PGCLCs.

      We apologize for the lack of clarity in our introduction. We specifically looked at the developmental trajectory of PGCs because of the sensitivity of these cells to environmental insults and their potential contribution to transgenerational inheritance. We have expanded on these points in our introduction and discussion sections (lines 89-91 and 474-486). Because our data shows the relevance of Δ9-THC-mediated metabolic rewiring in ESCs subsisting across differentiation, we agree that differentiation towards other systems (neuroprogenitors, for instance) would yield interesting data, albeit beyond the scope of the present study.

      1. Epigenetics are important to mammalian development. The authors only detect the change after Δ9-THC-exposure on the transcriptome level. How about methylation landscape changes in the Δ9-THC-exposure ESCs?

      We have explored the impact of Δ9-THC on more than 100 epigenetic modifiers in our RNA-seq datasets. These results are shown in Supplementary Table 1 and Supplementary Figure 10, discussed in lines 301-316. While indeed the changes in DNA methylation profiles appear relevant in the context of Δ9-THC exposure (because of Tet2 increased expression in EpiLCs), we highlight that other epigenetic marks (histone acetylation, methylation or ubiquitination) might be relevant for future studies.

      1. In the abstract, the authors claimed that "the results represent the first in-depth molecular characterization of the impact of Δ9-THC exposure on preimplantation developmental stages." But they do not show whether the Δ9-THC affects the fetus through the maternal-fetal interface.

      We have addressed the need for increased clarity and have modified the sentence as follows: “These results represent the first in-depth molecular characterization of the impact of Δ9-THC exposure on early stages of the germline development.”

      1. To explore the impact of cannabis on pregnant women, the human ESCs may be a more proper system, due to the different pluripotency between human ESCs and mouse ESCs.

      We have performed Δ9-THC exposures in hESCs (Supplementary Figure 4 and Supplementary Figure 5). These preliminary results show that Δ9-THC exposure negatively impacts the cell number and general metabolism of hESCs. With the existence of differentiation systems for hPGCLCs, future studies will need to assess whether Δ9-THC-mediated metabolic remodelling is also carried through differentiation in human systems. We discuss these points in the last paragraph of our discussion section.

      1. All the experiments are performed in vitro, and the authors should validate their results in vivo, at least a Δ9-THC-exposure pregnant mouse model.

      Our work is the first of its kind to show that exposure to a drug of abuse can alter the normal development of the embryonic germline. We agree with the Reviewer that to demonstrate transgenerational inheritance of the effects reported here, future experiments in an in vivo mouse model should be conducted. The metabolic remodeling observed upon cannabis exposure could also be directly studied in a human context, although these experiments would be beyond the scope of the present study. For instance, changes in glycolysis may be detected in pregnant women using cannabis, or directly measured in follicular fluid in a similar manner as done by Fuchs-Weizman and colleagues (Fuchs-Weizman et al., 2021). We hope that our work can provide the foundation to inform such in vivo studies.

    1. Author Response

      Reviewer #1 (Public Review):

      The manuscript by Grove and colleagues analyzes the role of TEAD1 transcription factors in all events regulating PNS myelin formation and maintenance and regeneration. Throughout the manuscript, the authors compare the results obtained to those they previously described in YAP/TAZ double knockout mice. Strengths of the manuscript are combined in vivo analyses by generating mutants constitutively lacking TEAD1 expression in myelinating Schwann cells (P0Cre//TEAD1f/f mice: cKO) and mutants in which TEAD1 expression can be ablated after tamoxifen-mediated recombination is myelinating Schwann cells (PlpCreER//TEAD1f/f mice: iKO). Using this approach the authors were able to assess the role of TEAD1 in all aspects related to PNS myelin: formation as well as maintenance and remyelination after injury. By exploiting these models, they were able to define the role of TEAD1 in regulating Schwann cell proliferation as well as in the cholesterol biosynthetic pathway. Collectively, their data indicate that TEAD 1 has a composite role in PNS myelination being required for developmental myelination, but dispensable for myelin maintenance. Further, they also describe a role for TEAD1 in promoting PNS remyelination after an injury event.

      Despite these strengths, there are some weaknesses that should be addressed by the authors:

      1) The manuscript would benefit from better and more detailed analysis of the role of the other TEAD transcription factors, as they are likely redundant in function to TEAD1. For example, since in cKO mice some fibers can escape the sorting defect and eventually myelinate, albeit at a lower level, could they determine whether TEAD2-4 transcription factors might compensate for TEAD1 absence in this setting?

      We speculate that other TEADs, most likely both TEAD2 and TEAD3, compensate TEAD1 in myelinating some developing axons. We also speculate that TEAD4 counteracts TEAD1, resulting in excessive proliferation of Schwann cells in Tead1 cKO. Unfortunately, because, unlike TEAD1, floxed/congenic alleles and IHC-compatible antibodies are not yet available for TEAD2-4, it is difficult to determine their roles. We attempted to knock down TEAD2-4 by injecting AAV-shRNAs into the sciatic nerves of WT and Tead1 iKO, but this intervention was not successful. Our future studies will determine compensatory and/or opposing roles of other TEADs during development and homeostasis and after nerve injury.

      2) A striking result of the study is the morphological defects observed in the process of axonal sorting and in the Remak fibers formation of TEAD1 cKO mice. To explain the sorting defect, the authors correctly analyze Schwann cell proliferation. However, since axonal sorting is mediated by the interaction between the extracellular matrix and intracellular cytoskeleton rearrangement, they should address also these two aspects. As per the Remak bundles and the poly-axonal myelination they observe, it is difficult to reconcile this "abnormal" myelination with the fact that TEAD1 cKO mice have a very severe myelinating phenotype, which is persistent in adulthood.

      It is noteworthy that we found radial sorting to be delayed, but not blocked, in Tead1 cKO, as we had previously reported for Yap/Taz cDKO mice in our earlier publication (Grove et al., eLIFE 2017). The primary reason that myelin development fails in Schwann cells lacking YAP/TAZ (or TEAD1 in the present report) is because they do not initiate myelination of sorted axons, not because of defective radial sorting. We showed that radial sorting was delayed in Schwann cells lacking YAP/TAZ because of their late S phase entry (Figure 4 in Grove et al., eLIFE 2017). In addition, our earlier report demonstrated that the key laminin receptor, integrin 6, is strongly downregulated but axons are nevertheless sorted out by Schwann cells in Yap/Taz cDKO (Figure 4-figure supplement 2 in Grove et al., eLIFE 2017). Our current view, therefore, is that extracellular matrix may contribute to reducing Schwann cell proliferation (Berti et al., 2011; Pellegatta et al., 2013; Yu, Feltri, Wrabetz, Strickland, & Chen, 2005), which helps to delay radial sorting, but that it is not required for Schwann cells lacking YAP/TAZ (or TEAD1) to sort axons (see the author response #2 in Grove et al., eLIFE 2017). Based on this information, we disagree with the reviewer that it is essential for us to address the role of extracellular matrix in delaying radial sorting in Tead1 cKO.

      Regarding Remak bundles, ‘thinly’ myelinated Remak bundles are only ‘occasionally’ observed in Tead1 cKO mice. Given that some large axons are still myelinated in Tead1 cKO mice, likely due to compensation by other TEADs, we speculate that Remak bundles are occasionally myelinated by other TEADs in Tead1 cKO. We have clarified our description and expanded our discussion of TEAD1 regulation of Remak bundles, including abnormal polyaxonal myelination.

      3) In the analyses of the cholesterol biosynthetic pathway, TEAD1 seems to be only partly involved. Again, which is the role of any of the other TEADs?

      Examining cholesterol biosynthesis pathways (SREBP1 and 2) and their target enzymes (SCD1, HMGCR, FDPS, IDI1) in Tead1 cKO and Yap/Taz cDKO, we showed that TEAD1 is required for upregulating FDPS and IDI1. These data suggest that TEAD1 plays a major role in mediating YAP/TAZ-driven cholesterol synthesis by upregulating FDPS and IDI1. It is also important to note that FDPS and IDI1 levels are reduced in TEAD1 cKO as ‘greatly’ as those in Yap/Taz cDKO (Figure 5). We therefore speculate that other TEADs compensate TEAD1 modestly, if at all, in upregulating FDPS and IDI1. We do not rule out the possibility, however, that other TEADs fully compensate TEAD1 in ‘maintaining’ cholesterol synthesis in adult Schwann cells. We will address these important questions in the future when the key resources mentioned above become available to study TEAD2-4.

      4) Why do cKO mice die before P60?

      In accordance with IACUC guidelines, we humanely euthanized Tead1 cKO mice before P60 because, like Yap/Taz cKO mice, they develop severe peripheral neuropathy.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      We thank the reviewer for the positive evaluation of our manuscript. We have closely examined the issues raised, and below we offer a point-by-point response to each comment. In the revised manuscript below, all the introduced changes are marked with red font.

      1. There may be a general typo concerning micromolar and millimolar…

      Response 1: The reviewer is correct, and during the reformatting of the manuscript, in some portions of the manuscript, the units used to indicate TPEN concentrations, always µM, were switched to mM. We have corrected those mistakes.

      1. In Figure 1C/Lines 150-152, the authors use DTPA and EDTA as extracellular chelators for zinc… Was the amount of zinc in the media measured and determined to be below the amount of chelator used? Additionally, these chelators are not specific for zinc, but can bind other divalent cations including calcium. Even though zinc binds more tightly than calcium to these chelators, by mass action calcium and magnesium ions may outcompete DTPA and EDTA, leaving zinc availability unperturbed. How do the authors take these interactions into account to determine that chelation of extracellular zinc has no effect on intracellular calcium oscillations? The best way to test this is to use zinc responsive fluorescent probes in a sample of the calcium- and magnesium-replete medium and see if the addition of the DTPA or EDTA alters zinc fluorescence in the cuvette.

      Response 2: We tested several conditions to determine the effect of chelators on the zinc concentration of the monitoring media using commercially available Zn2+ probes. The fluorescent zinc probe FluoZin3 added extracellularly shows high fluorescence, consistent with trace amounts of zinc and possibly non-specific bindings of other cations.

      Further, the media tested was replete with the concentrations of Ca2+ and Mg2+ in TLHEPES. To establish if the non-permeable external chelators we used could bind external Zn2+ despite the high concentrations of Ca2+ and Mg2+, we followed the reviewer’s suggestion of adding the chelators to the complete media in the presence of FluoZin3. The addition of EDTA caused a protracted, ~5 min, but significant decrease in FluoZin3’s fluorescence, suggesting it is effective at removing external Zn2+ despite the presence of other divalent cations (Author response image 1A). We used a second approach where we added the chelator in the presence of nominal concentrations of Ca2+ and Mg2+ to increase the chelators’ chances to find and chelate Zn2+ (Author response image 1B). Then, we injected mPlcζ mRNA, which initiated persistent but low-frequency oscillations, as expected due to the lack of external Ca2+. Remarkably, upon restoring it, the responses became of high frequency, and upon increasing Mg2+, they acquired the regular pattern, consistent with Mg2+’s inhibition of channels that mediate Ca2+ influx. These results show that the chelation of extracellular zinc does not replicate TPEN’s effect, which suggests that TPEN’s abrupt and inhibiting ability on Ca2+ oscillations is most likely due to the 43 chelation of internal Zn2+.

      Author response image 1.

      Cell-impermeable chelators effectively reduce Zn2+ levels in external media but do prevent initiation or continuation of Ca2+ oscillations. (A) A representative trace of FluoZin3 fluorescence in replete monitoring media (TL-HEPES). The media was supplemented with cell-impermeable FluoZin-3, and after initiation of monitoring, the addition of EDTA (100 μM) occurred at the designated point (triangle). (B) The left black trace represents Ca2+ oscillations initiation by injection of mPlcζ mRNA (0.01 μg/μl). The oscillations were monitored in Ca2+ and Mg2+-free media and in the presence of EDTA (110 μM) to chelate residual divalent cations derived from the water source or reagents used to make the media. The right red trace represents the initiation of oscillations as above, but after a period indicated by the black and green bars, Ca2+ and Mg2+ were sequentially added back.

      Noteworthy, low EDTA concentrations, 10-µM, have been used to enhance in vitro culture conditions of mammalian embryos. In fact, it is the key ingredient to overcome the two-cell block that initially prevented the in vitro development of zygotes srom inbred strains. It is unknown how EDTA mediates this effect, which is detectable in Ca2+ and Mg2+ replete media and is only effective when placed extracellularly, but it has been attributed to its ability to chelate toxic metals introduced as impurities by other media components; one study demonstrated that the Zn2+ present in the oil used to overlay the culture medium micro drops was the target (Erbach et al., Human Reproduction, 1995, 10, 3248-54). We included some of these points in the revised version of the manuscript and added this figure as Supplementary Figure 1.

      1. The reviewer noted that while dKO eggs showed reduced labile zinc levels, the amount of total zinc is not determined. Further, the response to thapsigargin in dKO eggs didn’t phenocopy the profile in eggs treated with TPEN. The reviewer argued that without further experimentation, such as comparing polar body extrusion and egg activation rate between WT and dKO, it seems to be a stretch to state that these eggs are zinc deficient.

      Response 3: We agree that the statement, ‘zinc deficient,’ is an overstatement without determining the total zinc levels and associated phenotypes. Therefore, in the revised version of the manuscript, we referred to dKO-derived eggs and embryos as “low-level labile Zn2+ eggs”. Our follow-up studies show that eggs from dKO females seem to undergo egg activation events, such as the timing and rate of second polar body extrusion and pronuclear formation, with a similar dynamic to WT females. Hence, we estimate that the labile Zn2+ levels in dKO eggs are not as low as those of WT eggs treated with TPEN. Consequently, these intermediate zinc levels may have subtle effects, such as changing the Thapsigargin-induced Ca2+ release through the IP3R1 without causing widespread inhibition of cellular events observed after TPEN. We would argue that this approach is significant because it can distinguish how the different cellular events and proteins and enzymes have distinct affinities or zinc requirements and, in this case, start uncovering the channel(s) present in oocytes and eggs that may contribute to regulating zinc homeostasis.

      1. The reviewer pointed out that since zinc is not redox active, it is unclear how zinc could be modifying cysteine residues of IP3R1.The reviewer suggested the possibility that excess zinc is binding to the cysteines and preventing their oxidation leading to the inhibition of the IP3R1 by blocking the channel, thereby preventing calcium release.

      Response 4: The reviewer correctly points out that the mechanism(s) whereby excess Zn2+ modifies the IP3R1 function is undetermined in our study. Further, our description of ‘modifying’ is ambiguous and could be misinterpreted. Data in the literature, some of which we cite in the manuscript, shows that “oxidation of cysteine residues enhances receptor’s sensitivity to ligands in various cell types”. Zn2+ preferentially binds to reduced cysteine residues, and thus, we agree with the proposed reviewer's suggestion that “excess zinc may occupy reduced cysteine residues, preventing their oxidization required to sensitize the receptor”. As noted by the reviewer, we cannot rule out that it might be directly blocking the IP3R1 channel. We have modified the corresponding paragraphs in the Discussion.

      1. Line 80 and 411, there are three other reports demonstrate the zinc reallocation to the egg shell or ejection as the zinc spark; Zebrafish: Converse et al. in Sci. Reports 10, 15673 (2020); X. lavis: Seeler et al. in Nature Chem. 13, 683-691 (2021), C. elegans: Mendoza et al. in Biology of Reproduction 107(2):406-418 (2022).

      Response 5: Thank you for pointing this out, and we have added these references.

      1. Line 129, when discussing that Zn2+ concentrations are reduced after TPEN as visualized by FluoZin-3, the authors should cite the article in which FluoZin-3 was first reported and this result was demonstrated initially: "Detection and Imaging of Zinc Secretion from Pancreatic β-Cells Using a New Fluorescent Zinc Indicator" by Gee et al. J. Am. Chem. Soc 124, 5, 776-778.

      Response 6: Thank you for pointing this out, and we have added this reference.

      1. In Figure 1E/Table 1 the authors evaluated if TPEN supplementation affects meiosis and pronuclear formation; however, the timing of TPEN treatment is unclear. When was TPEN introduced? Were the eggs left in the same media containing TPEN following fertilization, or were they transferred to different media?

      Response 7: Thank you for pointing this out, and we have noted the time of the addition in the figure and text.

      1. Line 1011 and 1012, ZnTP should be ZnPT.

      Response 8: Thank you for pointing this out, which is now corrected.

      Reviewer #2:

      1. The reviewer raises the question of whether a more complex relationship could exist between the levels of zinc in MII eggs by indicating, “a more active relationship such that zinc efflux associated with each calcium spike could be necessary for terminating the Ca spike by depleting cytoplasmic zinc.” The reviewer also states, “Perhaps, rather than simply a permissive role, the normal Zn fluxes during activation may be acutely changing IP3-R gating sensitivity.”

      Response 1: We agree that the demonstration that TPEN dose-dependently delays and consistently terminates ongoing Ca2+ rises perhaps reflects a more nuanced relationship between cytoplasmic labile zinc concentrations, Ca2+ oscillations, and IP3R1 function. Uncovering the precise nature of this relationship would require additional studies, such as determining the impact of TPEN on IP3 binding to its cognate receptor, regulation of channel gating, and more in-depth functional-structural experiments. However, these studies will demand time and complex experimental design and are beyond the scope of the current work. Nevertheless, they are excellent suggestions for future studies.

      We would argue against the reviewer’s suggestion that “zinc sparks directly contribute to shaping the oscillations.” Zn2+ released during the sparks is not labile, but Zn2+ bound to cortical granules-resident proteins, most of which are inaccessible to the cytosol and hence to IP3R1s and should not perturb its function. We examined (data not shown) that the levels of cytosolic labile Zn2+, as assessed with FluoZin3, remained steady for over three hours of Plcζ mRNA-initiated oscillations. Further, because the Zn2+ sparks cease after the third or fourth Ca2+ rise, it would mean, at the very least, that this mechanism only operates on the first few responses. Thus, while the change of cytosolic Ca2+ concentrations triggers the Zn2+ sparks, we argue that the opposite influence is unlikely to hold true.

      1. The reviewer also pointed out that the role of Trpv3 and Trpm7 in Zn2+ homeostasis seems to be minor and that the effects of genetic deletion of those channels are not as clear as those obtained by TPEN. Given that dKO eggs make it to the MII and release more but not less calcium upon thapsigargin than control despite the lowered labile Zn2+ level, the reviewer speculated that the loss of those channels changes calcium gating independent of Zn2+ concentration.

      Response 2: TRPV3, TRPM7, and Cav3.2 are the three channels identified to permeate Ca2+ during oocyte maturation and egg activation in mice. We and other groups have observed that in oocytes and eggs, these channels partly compensate for the absence of each other because the deletion of these channels individually has a limited effect on Ca2+ oscillations and fertility. Thus, in the case of oocytes from Trpv3 and Trpm7 dKO animals, the other plasma membrane channel(s), most likely Cav3.2, is plausibly compensating, and its enhanced function underlies the increased Ca2+ response to Thapsigargin.

      Nevertheless, the slower time to the peak and the lesser steep rise of the Thapsigargin induced rise suggest a negative impact of the dKO environment on IP3R1’s ability to mediate Ca2+ release. Based on the rest of the results in the manuscript, we attribute this change to the lower levels of labile Zn2+ in dKO eggs.

      1. Lastly, the reviewer noted the upregulation of the Fura-2AM following addition of ZnPT. The reviewer indicated that 0.05 uM ZnPT might not increase intracellular Zn2+ to change Fura-2 fluorescence, but it might be sufficient Zn2+ to enter the cell and keep the IP3R1 channels open causing a sustained rise in cytoplasmic calcium and preventing oscillations. Further, if this interpretation holds true, the inhibitory effects of high Zn2+ on IP3R1’s gating shown in figure 7 would be precluded.

      Response 3: We acknowledge that the increased levels of Fura-2 fluorescence following the addition of ZnPT could be due to the increased Zn2+ levels acting on IP3R1, increasing its open probability, and elevating cytosolic Ca2+ levels. We have added this consideration to the discussion. Nevertheless, our evidence suggests that this is unlikely because, as shown in Figure 6 H, I, the ER-Ca2+ levels as assessed by D1ER recordings did not change following the addition of ZnPT, whereas Rhod-2 fluorescence did, suggesting that the two events are seemingly uncoupled. Further, constant leak from the ER and extended high cytosolic Ca2+ would lead to egg activation or cell death, neither of which changes were observed.

      Reviewer #3:

      The reviewer noted that the present study deepened the understanding of the role of zinc in regulating calcium channels and stores at fertilization beyond the previously known Zn2+ requirement in oocyte maturation and the cell cycle progression. We appreciate these comments.

      1. Fig. 1. The reviewer wondered why we selected 10 μM TPEN for most of the experiments in the manuscript. The reviewer noted this concentration only stopped the Ca2+oscillations in just half of the eggs after ICSI.

      Response 1: We used 10-μM TPEN throughout the study because it blocked ~50% of the oscillations of a robust trigger of Ca2+ responses such as ICSI and reduced the frequency in the remaining eggs. This concentration of TPEN abrogates and prevents the responses by milder stimuli, such as Acetylcholine and SrCl2. Importantly, thimerosal and Plcζ mRNA overcome the inhibition by 10μM but not 50-μM TPEN. However, 50μM TPEN inactivates Emi2, a Zn2+-dependent enzyme, causing parthenogenic activation and cell cycle progression, and we wanted to avoid this confounding factor. Therefore, we determined 10-μM is a “threshold” concentration and selected it for the remaining studies. We also reasoned that it would allow the detection of more subtle effects of reducing the levels of labile zinc, causing a milder inhibition of IP3R1 sensitivity and a progressive delay or modification of the responses to other agonists rather than fully abrogating them, which is the case with higher concentrations.

      1. Line131 - no concentration of TPEN stated? Or 'the addition of different concentrations of TPEN"?

      Response 2: We have corrected this. We have now added 50-100 µM concentrations.

      1. Line 146 - instead of TPEN, all TPEN concentrations?

      Response 3: We have added these corrections, as at the concentrations we tested here, 5μM TPEN and above, all caused a reduction in the baseline of Fura-2 fluorescence.

      1. Line 1046 - 'We submit'? Propose?

      Response 4: We have replaced the word submit for propose. Thank you for the suggestion.

    1. Author Response

      Reviewer #2 (Public Review):

      In this paper, the authors discover that postsynaptic mitochondria in C. elegans govern glutamate receptor trafficking dynamics. The core results are two-fold. For one, they find that loss or inhibition of mcu-1 - the C. elegans mitochondrial calcium uniporter - increases GLR-1 glutamate receptor accumulation at the postsynaptic dendritic sites and enhances its trafficking dynamics. The authors hypothesize that this effect on glutamate receptors may have something to do with mitochondrial ROS production. This is because ROS is a by-product of normal oxidative phosphorylation, downstream of calcium import. Indeed, the generation of artificially high amounts of mitochondrial ROS has the opposite effect of mcu-1 loss: decreased glutamate receptor subunit accumulation. Collectively, the results support the idea that mitochondrial function can control receptor dynamics at synaptic sites. This is interesting because tight control of synaptic function likely combines several mitochondrial functions: energy production, calcium buffering, and (here) ROS signaling.

      STRENGTHS

      • The C. elegans genetic model is a strength because the authors are able to make refined conclusions by classical loss-of-function mutants (e.g., mcu-1) along with an impressive cytological toolkit to examine GLR-1 dynamics.

      • The use of pharmacology as a second means to test those genetic conclusions is a strength.

      • The authors' careful reagent verification of reporters (Ca2+, ROS, etc.) is a strength.

      • The ability to link fundamental mitochondrial processes to GLR-1 exocytosis will expand how the field thinks about mitochondrial synapse function.

      WEAKNESSES

      For the most part, the data in the paper support the conclusions, and the authors were careful to try experiments in multiple ways. But please see below:

      • (Main Point) The data are good, but they fall short of mechanism (e.g., Line 322). Figure 6 is accurate as drawn. But calcium and ROS are not abstract signals. They are likely exerting affirmative actions on specific targets. The Discussion does acknowledge this in terms of ROS and it speculates on possible targets.

      We thank the reviewer for their analytical review of our manuscript. We agree that all molecular players involved in the proposed mechanism were not identified by the data presented, so we modified the text to remove overstatements. We also agree that Ca2+ and ROS signaling is not abstract. Rather, there are specific and diverse targets of both Ca2+ and ROS signaling. Follow-up experiments are underway to identify and provide evidence for the necessity of potential ROS/Ca2+ targets in this proposed mechanism. For the current manuscript, we have modified our verbiage in an attempt to not mislead or overstate what our results suggest (e.g., changes/additions to the beginning of the ‘Discussion’, lines 365-377 and 385-388) and updated the illustration of the proposed model to include dashed lines that, as mentioned in the figure legend, indicate indirect action by ROS and Ca2+ (see revised Figure 7).

      The general idea seems to be that mitochondria import calcium through MCU-1 (and interacting factors). As a result, oxidative phosphorylation successfully occurs and mitochondrial ROS is a signaling by-product that signals glutamate receptors not to undergo exocytosis. But there are other interpretations of what might happen in between. In fact, if OXPHOS is disrupted, it is known that this can generate a lot more mitochondrial ROS than the normal by-product levels.

      We do agree that an alternative explanation could be that genetic or pharmacological inhibition of mitochondrial Ca2+ uptake disrupts oxidative phosphorylation, and as a result, inefficiencies or uncoupling in the electron transport chain would lead to an even greater increase in mitochondrial ROS production. Although oxidative phosphorylation was not directly measured, one of our post hoc analyses of GLR-1 transport suggests ATP levels are comparable between controls, mcu-1 mutants, and with Ru360 treatment: the velocity of GLR-1 transport is unchanged between these experimental groups. The processivity of molecular motors (which dictates transport velocity) is highly sensitive to relative ATP abundance. Thus, if ATP levels were dramatically decreased in mcu-1 mutants or following Ru360 treatment, then one would expect a detectable change in GLR-1 transport velocities, but we observed no change (see revised Figure S2E and related discussion at lines 183-190). Although these results do not directly indicate whether ATP production is altered with loss or inhibition of MCU-1, it does suggest that basal ATP levels remain sufficient to support the metabolic demands of GLR-1 transport.

      This reviewer wonders if excess ROS would cause an extreme response. Or alternatively, if scavenging ROS via pharmacological scavengers or SOD expression would reverse the effects.

      These are good points, and we have previously published experiments that address each of them. First, we have seen that globally increasing ROS with various concentrations of H2O2 within the physiological range (<100 nM) decreased GLR-1 transport to a similar extent (PMID: 32847966) indicating that there is not a dose-dependent decrease in GLR-1 transport. We have also assessed GLR-1 transport after treatment with concentrations of H2O2 well above the physiological range (e.g., 500 nM), but these high concentrations obliterated all GLR-1 transport. Contrary to what one may expect, we showed that decreasing ROS via pharmacological or genetic means (probably below physiological range) decreased GLR-1 transport (PMID: 35622512) via a Ca2+ independent mechanism. In other words, ROS scavenging did not have the opposite effect on GLR-1 transport, but we have not combined ROS scavenging with optical induction of ROS production (e.g., via KillerRed) nor have we assessed the potential influence of ROS scavenging on synaptic recruitment. Although we agree that these are important follow-up experiments, they will require a more sensitive ROS indicator because current genetically encoded in vivo ROS sensors cannot detect decreases in ROS levels below the physiological range (< 10 nM) (PMID: 31586057).

      Small Points

      • 33.3 mHz - just making sure, do the authors mean once every 30 seconds? That would be more straightforward.

      Yes, we do mean a 1-second pulse of light every 30 seconds. We have clarified this in the manuscript text (line 115).

      • Figure 2 is confusing. The text says that the mcu-1 mutants have a GLR-1::GFP FRAP rate that is comparable to controls (Lines 165-167). But Figure 2E suggests that it is markedly less, which is the opposite result of the slight increase in rate resulting from Ru360 treatment. And is the explanation why the GLR-1::GFP results differ from the SEP::GLR-1 results a difference between total GFP vs. surface GFP?

      The confusion is due to an incorrect statement in the results text. We have corrected this error and appreciate the reviewer for bringing it to our attention (lines 173-174).

      • I could not watch Video 2 (not sure if it is the file or just the copy I downloaded).

      We thank the reviewer for bringing this to our attention and we believe we have remedied the issue.

      • It is good that the authors tried both optical stimulation and mechanical stimulation (dropping culture plates to stimulate the worms, Figure 3). Why was the mechanical stimulation set aside for further tests in the paper?

      Mechanical stimulation consisted of dropping culture plates containing 2-3 C. elegans onto a lab bench every 30 seconds for 5 or 10 minutes. This mechanical stimulation paradigm was technically cumbersome and was less effective at inducing changes in mito-roGFP fluorescence that optical stimulation. This is likely due to habituation to the mechanical stimulus which has been well-characterized in C. elegans. The optical stimulation was therefore used as it is a more reliable and repeatable method for stimulating the AVA neuron.

      • Does this process affect all kinds of transport, or is it just the glutamate receptors? Was anything else examined?

      Transport of other proteins has not been examined in the context of mitoROS signaling. Our attempts at visualizing and quantifying the transport, synaptic delivery and exocytosis of other synaptic proteins in vivo has proven to be more technically challenging likely due to relatively lower expression in the C. elegans neurons suitable for transport analysis.

      Reviewer #3 (Public Review):

      Reactive oxygen species (ROS) have been previously shown to regulate glutamate receptor phosphorylation, long-distance transport, and delivery of glutamate receptors to synapses, however, the source of ROS is unclear. In this study, the authors test if mitochondria act as a signaling hub and produce ROS in response to neuronal activity in order to regulate glutamate receptor trafficking. The authors use a variety of optogenetic tools including the calcium reporter mitoGCaMP and the ROS reporter mito-roGFP to monitor changes in calcium and ROS, respectively, in mitochondria after activating neurons with ChRimson in the genetic model organism C. elegans. Repeated stimulation of interneurons called AVA with ChRimson leads to increased calcium uptake into mitochondria in dendrites and increased mitochondrial ROS production. The mitochondrial calcium uniporter mcu-1 is required for these effects because mcu-1 genetic loss of function or treatment with Ru360, a drug that inhibits mcu-1, inhibits the uptake of calcium into mitochondria and ROS production after neuronal activation. Mcu-1 genetic loss of function is correlated with an increase in exocytosis of glutamate receptors but a decrease in glutamate receptor transport and delivery to dendrites. This study suggests that mitochondria monitor neuronal activity by taking up calcium and downregulating glutamate receptor trafficking via ROS, as a means to negatively regulate excitatory synapse function.

      Strengths

      -The use of multiple optogenetic tools and approaches to monitor mitochondrial calcium, reactive oxygen species, and glutamate receptor trafficking in live organisms.

      -Identifying a novel signaling role for dendritic mitochondria which is to monitor neuronal activity (via calcium uptake into mitochondria) and generate a signal (reactive oxygen species) that regulates glutamate receptors at synapses.

      Weaknesses

      -Although the use of KillerRed to generate ROS downstream of mcu-1 is a clever approach, the fact that activation of KillerRed results in reduced GLR-1 exocytosis, delivery, and transport raises the concern that KillerRed is generating a high level or ROS that might be toxic to cellular processes. Experiments showing that other cellular processes are not affected by KillerRed activation and testing if reduced ROS production mimics the effects of blocking mcu-1 would strengthen the conclusions in this study.

      We thank the reviewer for their careful analyses of our findings. It is plausible that KillerRed could cause toxic levels of ROS, in fact, it was originally used to instigate oxidative stress-induced apoptosis to achieve cell-specific ablation. These cell ablation protocols required 20+ minutes of KillerRed activation with substantially higher levels of irradiation (e.g., 3.8 mW/mm [PMID: 24209746] vs. our light dosage of 25 µW/mm2). Additionally, our transgenic C. elegans strains expressing KillerRed were designed to have a relatively low KillerRed expression and were screened for low expression based on KillerRed’s fluorescence. Using these strains, we were able to minimally activate KillerRed in the AVA neuron resulting in ROS elevations at mitochondria that were comparable to neuronal activity-induced increases in mitochondrial ROS as measured by mito-roGFP. Specifically, we found that 10 minutes of mechano-stimulation and 5 minutes of ChRimson stimulation increased the fluorescence ratio (Fratio) of mito-roGFP nearly two-fold (Figure 4A-B and 4C-E). A 15-second pulse of light focused on a small region activating mitoKR in the AVA neurite also caused similar two-fold increase in the mito-roGFP Fratio (Figure 4C-E) comparable to what neuronal activity induced. Our 5-minute global KillerRed activation less effectively increased the mito-roGFP Fratio at mitochondria in the AVA neurite compared to neuronal activity (revised Figure 4B and 4H) but was sufficient in decreasing GLR-1 transport (revised Figure 5G-H). So, we decided to do all experiments with 5 minutes of global KillerRed activation since lower activation levels of KillerRed were more likely to achieve non-toxic, signaling levels of ROS. Since we strongly agree that this data is important for tool validation, we have reorganized the manuscript such that these data are now a primary figure (see revised Figure 4 and new results sub-section starting at line 252).

      Additionally, we added supplemental transport velocity data. This data shows that local photoactivation as well as whole-cell activation of KillerRed does not alter transport velocity of GLR-1 vesicles within the neurite (revised Figure S4A and S4B and lines 272-276 and 287-289), which would be the case if ATP, microtubules, or actin dynamics were affected. This supports that our local and whole-cell activation protocol does not cause toxic levels of ROS production.

      Lastly, the reviewer questions whether decreasing ROS alters GLR-1 transport, synaptic delivery and exocytosis in a similar fashion to loss or inhibition of mcu-1, and if so, would further support the proposed mechanism. We have decreased ROS via genetic (catalase overexpression) and pharmacological (using the mitochondria-targeted antioxidant MitoTEMPO) means and seen that diminished ROS levels decrease GLR-1 transport albeit to a lesser degree than that caused by loss/inhibition of mcu-1 (PMID: 35622512). To determine if decreased GLR-1 transport during diminished ROS levels involves mcu-1, we would need to assess GLR-1 transport in mcu-1 mutants while ROS is decreased (e.g., using MitoTEMPO treatment) to see if their combined effect phenocopies the effect of mcu-1(lf) or decreased ROS alone. However, as mentioned previously, we are unable to measure ROS levels below the sensitivity of roGFP but within physiological range so we cannot currently calibrate or validate our methods for scavenging ROS in vivo. This is why we have not yet analyzed synaptic delivery or exocytosis rates of GLR-1 in the context of decreased ROS, but these would be interesting follow-up experiments that may further support our model once more sensitive ROS sensors are available.

      Reviewer #4 (Public Review):

      Using optogenetic stimulation, the authors presented compelling evidence that neuronal activity increases mitochondrial calcium levels, facilitated by the mitochondrial uniporter MCU-1. Through ratiometric measurements, they showed that mitochondrial ROS levels also increase due to neuronal activity via MCU-1. Subsequent FRAP studies were employed to investigate the trafficking of the AMPA receptor, GLR-1. By integrating genetic and pharmacological methodologies, the recovery rate of GLR-1 was assessed. The authors concluded that increased mitochondrial ROS due to neuronal activity reduces the trafficking and exocytosis of AMPA receptors. They proposed that mitochondrial ROS serves as a homeostatic mechanism regulating AMPA receptor trafficking and abundance, thus maintaining synaptic strength. This research is crucial as it provides a direct link between mitochondrial signaling and AMPA receptor trafficking.

      However, there are several significant concerns regarding the methodologies and quantifications employed in this manuscript. The authors utilized GLR-SEP to label surface AMPA receptors and relied on the "FRAP rate" as an indicator of the exocytosis rate. The absence of direct visualization of exocytosis using GLR-SEP, and the lack of direct measurements of exocytosis events, casts doubt on the conclusions about ROS's impact on AMPA receptor exocytosis. Furthermore, the "FRAP rate" determined in this study is a combination of recovery rates (incorporating both endosomal trafficking and diffusion) with the mobile fractions of AMPA receptors, potentially weakened interpretations of the findings. A more comprehensive discussion addressing the conflicting effects of MCU-1 and ROS on GLR-GFP FRAP recovery and dendritic trafficking would enable readers to grasp the intricate roles of mitochondrial calcium and ROS in modulating synaptic receptors.

      We appreciate the reviewer’s attention to detail while reviewing our article. Their major concern about directly visualizing exocytosis events is valid since changes in exocytosis and endocytosis would dictate the amount of SEP::GLR-1 at the synaptic membrane. However, streaming imaging of SEP in vivo is technically difficult showing only few exocytosis events and provides short “snapshots” (1-2 minutes, longer streaming imaging causes photobleaching and photo-toxicity) which must be extrapolated to longer time frames. Our 16-minute SEP::GLR-1 FRAP protocol allows us to capture all plasma membrane recruitment and quantify the relative balance between exo- and endocytosis. It also allows for longer observational periods during which we can detect changes in GLR-1 recruitment to and retention at the synaptic membrane in genetic mutants and with drug treatments. In addition, our photobleaching approach involves photobleaching a ~40-60 µm region proximally and distally to the imaging region which limits the influence of receptor diffusion on the FRAP rate. The reviewer makes a valid point that receptor endocytosis rates would also influence the SEP::GLR-1 FRAP rate. We have now changed the text in the results and discussion to include this information (lines 155-161, and changing “exocytosis” to “synaptic recruitment” throughout the manuscript when discussing SEP::GLR-1 FRAP results [e.g, at lines 169, 208, and 321]).

    1. Author Response

      The following is the authors’ response to the original reviews.

      necessary clarifications on some of the reviewers' suggestions.

      Reviewer #1 (Public Review):

      Weaknesses:

      • This is a pilot study with only 24 cases and 24 controls. Because the human microbiota entails individual variability, this work should be confirmed with a higher sample size to achieve enough statistical power.

      Thank you for your suggestion. Unlike the high sparsity of 16s rRNA, the data density of metagenomic data is higher. Based on the experience of previous research, the sample size used this time can basically meet the requirements. However, your suggestion is very valuable, increasing the sample size allows better in-depth analysis. Due to limitations of objective factors, it is difficult for us to continue to increase the sample size in this study.

      • The authors do not report here the use of blank controls. The use of this type of control is important to "subtract" the potential background from plasticware, buffer or reagents from the real signal. Lack of controls may lead to microbiome artefacts in the results. This can be seen in the results presented where the authors report some bacterial contaminants (Agrobacterium tumefaciensis, Aequorivita lutea, Chitinophagaceae, Marinobacter vinifirmus, etc) as part of the most common bacteria found in cervical samples.

      Thank you for your suggestion. Applying blank controls in low biomass areas can effectively avoid contamination caused by the environment or kits. This opinion is consistent with that published by Raphael Eisenhofer et al. in Trends in Microbiology. When designing this study, we considered that this study described a biomass-rich site, and the abundance of dominant species was much higher than that of the possible 'kitome', so we did not set a blank control. On the other hand, our main discussion object in this study is high-abundance species, and the species filtering threshold for some analyzes was raised to 50%. Therefore, we believe that the absence of the blank control has little effect on the conclusions of this study. However, your opinion is spot on. Failure to set up a negative control will affect our future research on rare species. We will add a description in the Limitations section of the Discussion section.

      • Samples used for this study were collected from the cervix. Why not collect samples from the uterine cavity and isthmocele fluid (for cases)? In their previous paper using samples from the same research protocol ((IRB no. 2019ZSLYEC-005S) they used endometrial tissue from the patients, so access to the uterine cavity was guaranteed.

      Thank you for your suggestion. In Author response image 1 we show the approximate location of our cervical swab sampling. There are two main reasons for choosing cervical swabs:

      1) The adsorption of swabs allows us to obtain sufficient nucleic acid for high-depth sequencing, while the isthmocele fluid varies greatly among patients, which will introduce unnecessary batch effects.

      2) Since the female reproductive tract is a continuous whole, our sampling location is close to the lesion in the cervix, which can be effectively studied. On the other hand, the microbial biomass of the endometrium is probably two orders of magnitude lower than that of the cervix, and it is difficult to avoid contamination of the lower genital tract when sampling.

      Based on the above reasons, we selected cervical swabs for our microbial data.

      Author response image 1.

      • Through the use of shotgun genomics, results from all the genomes of the organisms present in the sample are obtained. However, the authors have only used the metagenomic data to infer the taxonomical annotation of fungi and bacteria.

      Thank you for your suggestion. The advantage of metagenomics is that it can obtain all the nucleic acid information of the entire environment. However, in the study of the female reproductive tract, the database of viruses and archaea is still immature, in order to ensure the accuracy of the results, we did not conduct the study. Looking forward to the emergence of a mature database in the future.

      Reviewer #1 (Recommendations For The Authors):

      • It would be interesting to use another series of functional data coming from the metagenomic analyses (not only taxonomic) to expand and reinforce the results presented.

      Thank you for your suggestion. We have dissected the functional data of microbiota in the article.

      • The authors have previously published the 16S rRNA sequencing and transcriptomic analysis of the same set of patients. It would be nice to see the integration of all the datasets produced.

      Thank you for your suggestion. There is no doubt that integrating all the data will have more dimensional results. In our previous study we focused on microbe-host interactions. However, there is an unanswered question: What are the characteristics of the regulatory network within microbiota? Therefore, we answered this question in this study, exploring the complex interaction processes within microbial communities. In addition to direct effects, interactions between microbiota may also occur through special metabolite experiments. Therefore, we introduced the analysis of the untargeted metabolome. However, 16s rRNA can only provide bacterial information, so we did not integrate the data. In addition, the transcriptome provides host information and is not the focus of this study. However, your suggestion is very valuable, and we will integrate all the data in the next study on the exploration of treatment methods.

      Reviewer #2 (Public Review):

      Weaknesses: Methodological descriptions are minimal.

      Some example:

      *The CON group (line 147) has not been defined. I supposed it is the control group.

      • There are no statistics related to shotgun sequencing. How many reads have been sequenced? How many have been removed from the host? How many are left to study bacteria and fungi? Are these reads proportional among the 48 samples? If not, what method has been used to normalise the data?

      • ggClusterNet has numerous algorithms to better display the modules of the microbiome network. Which one has been used?

      Thank you for your suggestion. We have added details to the method.

      Reviewer #2 (Recommendations For The Authors):

      I think the author should take into account the points described in the "Weaknesses" section. The lack of detail extends to almost all the analyses that have been included in the manuscript. Although the results are sound, I think it is important to understand what has been analysed and how it has been analysed. It is important that all work is reproducible and this requires vital information.

      For example, what parameters have been used for bowtie2? has a local analysis been used? or end-to-end ? Some parameters like --very-sensitive are important for this kind of analysis. You can also use specific programs like kneaddata.

      The Raw data preprocessing section should be more detailed.

      The same with the "Taxa and functional annotation" section, how have the data been normalised? has any Zero-Inflated Gamma probabilistic model algorithm been taken into account? How were the 0 (no species detected) in the shallow samples treated?

      Which algorithms have been used for LEfSe ? Kluskal-Wallis->(Wilcoxon)->LDA ?

      Which p-value has been used as cut-off ? this p-value has been corrected for multiple testing?

      • Information on ggClusterNet should be included and explained.

      The first section of the results and Table 1 should be in the Materials and Methods.

      Thank you for your suggestion. We have added details to the method.

      In the fungi section, it is mentioned that 431 species have been found. They should be included in a supplementary table.

      How many bacteria were found? Please include them also in a supplementary table.

      Thank you for your suggestion. We have added the corresponding table.

      Reviewer #3 (Public Review):

      Major

      1. Smoke or drink conditions, as well as diseases like hypertension and diabetes are important factors that could influence the metabolism of the host, thus the authors should add them in the exclusion criteria in the Methods.

      Thanks to reviewer #3 for professional comments. We have made corresponding additions in the method section. We also followed this standard when recruiting subjects.

      1. The sample size of this study is not large enough to draw a convincing conclusion.

      Thank you for your suggestion. Unlike the high sparsity of 16s rRNA, the data density of metagenomic data is higher. Based on the experience of previous research, the sample size used this time can basically meet the requirements. However, your suggestion is very valuable, increasing the sample size allows better in-depth analysis. Due to limitations of objective factors, it is difficult for us to continue to increase the sample size in this study.

      Reviewer #3 (Recommendations For The Authors):

      Please recruit more samples.

      In addition, there are many formatting and grammatical mistakes in the manuscript.

      Minor

      1. In Line 24-25 of the "Composition and characteristics of fungal communities", the format of "Goyaglycoside A and Janthitrem E." shouldn't be italic.

      2. In Line 126 of the "Metabolite detection using liquid chromatography (LC) and mass spectrometry (MS)", the "10 ul" should be changed to "Ten ul". Beginning with arabic numerals in a sentence should be avoided.

      3. In Line 170 of the "Composition and characteristics of bacterial communities", the "162 differential species" should be "One hundred and sixty-two differential species".

      4. In Line 187 of the "Composition and characteristics of fungal communities", the "42 differential" should be "Forty-two differential".

      Thanks to reviewer #3 for professional comments. We have completely revised the language of the article.

    1. Author Response

      Reviewer #1 (Public Review):

      Payne et al. have investigated the neural basis of VOR adaptation with the goal of constraining sites and mechanisms of plasticity supporting cerebellar learning. This has been an area of intense debate for decades; previous competing models have argued extensively about the sites of plasticity and the strength of eye velocity feedback/ efference copy signals to Purkinje cells has been central to the debate. This paper nicely explores the consequences of varying the strength of this feedback and in so doing, provides a potential explanation for why Purkinje cell responses during VOR cancellation could exhibit stronger responses following learning, despite net depression of the strength of their vestibular inputs. In that sense it provides some reconciliation of existing models. The work appears to be well done and the paper is well written. The manuscript could be improved and the significance of the work clarified and enhanced by contextualizing the work more appropriately within the existing literature in this area.

      We thank the reviewer for the nice summary of this work’s contribution to the long-standing debate regarding sites and mechanisms of plasticity underlying cerebellar learning.

      We have revised the manuscript to address several key points raised by the reviewer. We now emphasize that the main evidence for weak feedback arises from interpreting our model in the context of the existing experimental evidence for plasticity rules in the cerebellar cortex, and we have clarified the commonalities and differences from the Miles-Lisberger model. Several missing references are now included. Additionally, we clarify the comparison of our model to data after learning, and explain how altered signaling through the visual pathways drives paradoxical changes in neural activity without requiring plasticity in the visual pathways. We hope that these changes better situate the work to be interpreted appropriately in the context of the existing literature.

      Reviewer #2 (Public Review):

      Payne et al. use a computational approach to predict the sites and directions of plasticity within the vestibular cerebellum that explain an unresolved controversy regarding the basis of VOR learning. Specifically, the conclusion by Miles and Lisberger (1981) that vestibular inputs onto Purkinje cells (PCs) must potentiate, rather than depress (as in the Marr/Albus/Ito model), following gain-increase learning because when the VOR is cancelled, PC firing increases rather than decreases. Payne et al. provide a novel model solution that recapitulates the results of Miles and Lisberger but, paradoxically, uses plasticity in the cerebellar cortex that weakens PC output rather than strengthens it. However, the model only succeeds when efference copy feedback to the cerebellar cortex is relatively weak thereby allowing a second feedback pathway to drive PC activity during VOR cancellation to counteract the learned change in gain. Because the model is biologically constrained, the findings are well supported. This work will likely benefit the field by providing a number of potentially experimentally testable conclusions. The findings will be of interest to a wider audience if the results can be extrapolated to other cerebellar-dependent learning behaviors rather then just VOR gain-increase learning. Overall, the manuscript is very well written with clearly delineated results and conclusions.

      We appreciate the reviewer’s comments that the model is well-constrained and provides a solution to the long-standing debate surrounding sites and directions of plasticity underlying VOR learning.

      The reviewer raises an important question: do our results generalize across the cerebellum? We note first that we are studying the cerebellum to illustrate a core problem in modeling systems throughout the brain, namely, how to disambiguate plasticity in the face of ubiquitous feedback loops, both within the brain and between the brain and the environment. Within the cerebellum, we focused on VOR learning due to the wealth of experimental data available. While the specific effect of feedback strength on plasticity will depend on the details of the relevant cerebellar circuit, our general approach can be applied to other areas, given sufficient data, in order to determine how plasticity is distributed in the face of potential feedback loops. Importantly, error-driven LTD of the parallel fiber-Purkinje cell synapse is a fundamental hypothesized mechanism for cerebellar learning which has been generally accepted elsewhere in the cerebellum, but was called into question for VOR learning in the flocculus by the Miles-Lisberger model. Thus, our study of VOR learning has broad implications for reconciling plasticity mechanisms across the cerebellum.

      We also note that, even within the VOR circuit, the direction of plasticity and the relative dependence on plasticity at each site may depend on the timescale of learning. On longer timescales, there is thought to be consolidation of learning from a cerebellar cortical site to a brainstem site. Such consolidation from a faster-learning site to a slower-learning site is known as systems consolidation and has been shown theoretically to mitigate the ‘plasticity-stability dilemma’ of having fast learning without over-writing longer-term learning. Our model is compatible with both error-driven plasticity in the cerebellar cortex and a site of plasticity in the brainstem, with brainstem plasticity potentially mediating consolidation of earlier learned changes in the cerebellar cortex. We have now updated the text significantly to discuss the broader implications of the results and to address the reviewer’s specific comments.

      Reviewer #3 (Public Review):

      Summary: In this study, the authors attempt to determine what is the role (and strength) of feedback in a closed-loop (cerebellar) system.

      Strengths:

      1) By combining extensive data fitting of cerebellar experimental observations this study provides deep insights into existing questions and more broadly on the role of feedback and what are the limitations when inferring feedback in (plastic) neural circuits.

      2) Another strength of this study is the gradual build-up of evidence by using models of different complexities to help build the argument that weak feedback is sufficient to explain experimental observations.

      3) The paper is well-written and structured.

      Weaknesses:

      1) In principle feedback can (i) drive dynamics or/and (ii) drive learning directly. Throughout the paper, the authors refer to only the first case (i.e. dynamics). However, the role of feedback in learning is already implicitly assumed by the authors when jointly fitting the model before and after learning. Note that the general conclusion that feedback (in general) is weak may be to the first view (i.e. dynamics), but not the second. Given that a key conclusion of the paper is that no feedback is sufficient to explain the data, this suggests that feedback may instead be used for learning/plasticity.

      We fully agree with the reviewer that our conclusions do not preclude an important role for many other types of feedback, including as an instructive signal for learning. Instead of explicitly considering feedback for learning in our model, we consider static snapshots before and after learning to infer plasticity, while remaining agnostic to the neural algorithm used to achieve such plasticity. A widely held hypothesis is that motor error signals carried by climbing fibers instruct LTD at co-active parallel fiber inputs to Purkinje cells; this is indeed a form of feedback, operating on a slower timescale than “feedback for dynamics.” This “feedback for learning” is not modeled here but is fully consistent with our results, as discussed in a new paragraph of our Discussion (end of Section 3.4.1 “Pathways undergoing plasticity”).

      2) There are some potential limitations of the conclusions drawn due to the model inference methods used. The methods used (fmincon) can easily get stuck in local minima and more importantly they do not provide an overview of the likelihood of parameters given the data. A few studies have now shown that it is important to apply more powerful inference techniques both to infer plasticity (Bykowska et al. Frontiers 2019) and neural dynamics (Gonçalves et al. eLife 2020). As highlighted by Costa et al. Frontiers 2013 using more standard fitting methods can lead to misleading interpretations. Given the large range of experimental data used to constrain the model, this may not be an issue, but it is not explicitly shown.

      The reviewer correctly points out that we used a deterministic model-fitting procedure. To address this concern, we complemented the full dynamic model with a simple analytic model ( Figure 5 ) for which we could fully derive the cost function landscape and analytically show that there is a line of parameters corresponding to a perfect degeneracy in the model. Thus, the challenge in the model we analyze is that there are too many solutions, rather than it being difficult to find a solution. Given this degeneracy, we chose to fix the level of efference copy feedback and then find the (now non-degenerate) solutions, and to then compare these different solutions with regards to their implications for the correlated strengths and changes in strengths of different pathways. We have edited the relevant section of the Discussion for clarity on this topic, and have added references to the additional strategies for model inference mentioned above, in Section 3.3 “Relation to other sloppy models”.

      3) There is some lack of clarity on how the feedback pathways as currently presented should be interpreted in the brain.

      We interpret this comment as referring to the questions of (1) whether our model includes a pathway for learning through feedback, (2) what is the anatomical implementation of the efference copy feedback pathway and visual pathways, and (3) how should the positive weights on the efference copy feedback pathway k PE be interpreted. We address these below.

      (1) Feedback for learning was discussed in point 1 above.

      (2) Anatomical implementation of efference copy pathway: We have edited the Discussion to clarify that there is anatomical evidence for efference copy input to the cerebellum, but that a key aspect of ‘feedback’ is that activity functionally loops back onto itself. Instead, neurons carrying eye movement commands (such as in the vestibular nucleus) could send signals to the cerebellum, without receiving output from the same cerebellar neurons – this would correspond to a ‘spiraling’ pathway that does not form a closed feedback loop (Figure 8). Thus we argue that the existence of the gross anatomical pathways does not necessitate a role for strong, functional, efference copy feedback (Discussion, Section 3.1, lines 481-491).

      Anatomical implementation of visual pathway: The visual feedback pathways considered here are those that would receive visual motion information from the environment. This visual feedback is itself changed by eye movements, thus providing a net overall negative feedback loop that helps to stabilize gaze. This pathway has been proposed to involve cortical regions such as MST (discussed in Materials and Methods, Model Implementation, lines 769-774).

      (3) Interpretation of positive feedback loop: In our model, the efference copy feedback filter, k PE , has positive weight. This corresponds to the positive net sign of the Purkinje cell to brainstem to Purkinje cell feedback loop. Specifically, the Purkinje cell to brainstem pathway is inhibitory (because Purkinje cells are inhibitory), the brainstem to eye velocity command pathway is inhibitory (to achieve counter-rotation of the eyes in response to head turns), and the feedback of this eye velocity command back to Purkinje cells (k PE ) is positive. Thus this loop in our model represents positive feedback. This is now clarified in Materials and Methods, Model Implementation, lines 748.

      4) The functional benefits of having (or not) feedback could be better discussed (related to point 1 above).

      Related to point 1 above, it is certainly the case that feedback is necessary for learning. We do not explicitly model the climbing fiber feedback thought to be involved in learning/plasticity of the parallel fiber pathway.

      We instead focus on the role of efference copy feedback, and how it functionally impacts the required sites and signs of plasticity in the circuit. As shown in the paper, if the efference copy pathway is strong, then this is most consistent with learned changes in eye movements being driven primarily by plasticity in the brainstem pathway (as in the Miles-Lisberger hypothesis), whereas if the efference copy pathway is weak, then this is most consistent with learned changes in eye movements being driven by net depression in the parallel fiber to Purkinje cell pathway (as in the classic Marr-Albus-Ito model and as suggested by most cellular and molecular studies of parallel fiber-Purkinje cell plasticity), in addition to a role of plasticity in the brainstem pathway. We also note that, in the ‘Strong Feedback’ model, the feedback is so strong that the system is on the brink of instability – this has been argued to have the functional benefit of providing ‘inertia’ to eye movements that could help to maintain eye movements during smooth pursuit when a target goes behind an occluder, but it also has the disadvantage of placing the system at a level of positive feedback near the brink of instability. We also note that the visual feedback pathway through the environment, emphasized in this work, serves as a negative feedback loop that reduces deviations between the eye and target velocity. We have extensively re-written the first section of the Discussion (Section 3.1), in order to more clearly lay out the implications of each model for circuit plasticity and feedback.

      5) Some of the key conclusions of the work are not described in the abstract, namely that feedback is weak in the cerebellar system.

      Thank you for raising this point, we have added this key conclusion to the end of the abstract: “Our results address a long-standing debate regarding cerebellum-dependent motor learning, suggesting a reconciliation in which error-driven plasticity of synaptic inputs to Purkinje cells is compatible with seemingly oppositely directed changes in Purkinje cell activity. More broadly, the results demonstrate how learning-related changes in neural activity can appear to contradict the sign of the underlying plasticity when either internal feedback or feedback through the environment is present.”

      Claims:

      The argument is well-built throughout the paper, but there are some potential caveats with the general interpretation (see weaknesses).

      Impact:

      This work has the potential to bring important messages on how best to interpret and infer the role of feedback in neural systems. For the field of the cerebellum, it also proposes solutions to long-standing problems.

    1. Author Response

      Reviewer #1 (Public Review):

      Summary:

      Cyclic Nucleotide Binding (CNB) domains are pervasive structural components involved in signaling pathways across eukaryotes and prokaryotes. Despite their similar structures, CNB domains exhibit distinct ligand-sensing capabilities. The manuscript offers a thorough and convincing investigation that clarifies numerous puzzling aspects of nucleotide binding in Trypanosoma.

      Strengths:

      One of the strengths of this study is its multifaceted methodology, which includes a range of techniques including crystallography, ITC (Isothermal Titration Calorimetry), fluorimetry, CD (Circular Dichroism) spectroscopy, mass spectrometry, and computational analysis. This interdisciplinary approach not only enhances the depth of the investigation but also offers a robust cross-validation of the results.

      Weaknesses:

      None noticed.

      Reviewer #2 (Public Review):

      Summary:

      This manuscript clearly shows that Trypanosoma PKA is controlled by nucleoside analogues rather than cyclic nucleotides, which are the primary allosteric effectors of human PKA and PKG. The authors demonstrate that the inosine, guanosine, and adenosine nucleosides bind with high affinity and activate PKA in the tropical pathogens T. brucei, T. cruzi and Leishmania. The underlying determinants of nucleoside binding and selectivity are dissected by solving the crystal structure of T. cruzi PKAR(200-503) and T. brucei PKAR(199-499) bound to inosine at 1.4 Å and 2.1 Å resolution and through comparative mutational analyses. Of particular interest is the identification of a minimal subset of 2-3 residues that controls nucleoside vs. cyclic nucleotide specificity.

      Strengths:

      The significance of this study lies not only in the structure-activity relationships revealed for important targets in several parasite pathogens but also in the understanding of CNB's evolutionary role.

      Weaknesses:

      The main missing piece is the model for activation of the kinetoplastid PKA which remains speculative in the absence of a structure for the trypanosomatid PKA holoenzyme complex. However, this appears to be beyond the scope of this manuscript, which is already quite dense.

      We fully agree that insight into the activation mechanism and its possible deviation from the mammalian paradigm requires a holoenzyme structure revealing the details of R-C interaction. We have attempted Cryo-EM from LEXSY-produced holoenzyme, yet upscaling the purification procedures described in this manuscript have repeatedly failed in spite of numerous protocol changes and optimizations. Much more work is required to achieve this.

      Reviewer #2 (Recommendations For The Authors):

      Some minor points to consider for enhancing the impact of this interesting manuscript:

      1) The nucleoside affinities measured are mainly for the regulatory subunits unbound to the kinase domain. How would nucleoside affinities change when the regulatory subunits are bound to the kinase domain, which is presumably the case under resting conditions? An estimation of this change in affinity is important because it more closely relates to the variations in cellular nucleoside concentrations needed for activation.

      This is an important question and we have given an indirect answer in the manuscript, but not very explicit. The EC50 values for kinase activation of the purified holoenzyme complexes are very similar or almost identical to the kD values measured by ITC with free regulatory subunits. By inference, the binding kD for the holoenzyme and for the free R-subunit cannot be very different. In addition, we have recently determined the EC50 for PKA activation in vivo in trypanosomes using a bioluminescence complementation reporter assay. The values fit perfectly to the values obtained with purified holoenzyme (Wu et al. in preparation). A sentence in Results (lines 201-203) has been added.

      2) The authors should point out that a major implication of nucleoside vs. cyclic nucleotide activation is in terms of signal termination. If phosphodiesterases (PDEs) are responsible for cAMP/cGMP signal termination, what terminates nucleoside-dependent signaling? Although the answer to this question may not be known at this stage, it is important to highlight this critical implication of the authors' study.

      The mechanism of signal termination is indeed unknown so far. We speculate that some enzymes of the purine salvage pathways are differentially localized in subcellular compartments and thereby able to establish microdomains that enable nucleoside signaling. In addition, PKA subunit phosphorylations/dephosphorylations and/or protein turnover may also regulate signal termination. As an example, free PKAC1 is rapidly degraded upon depletion of the PKAR subunit by RNAi. We have now mentioned signal termination in Discussion and have revised the last part of Discussion (lines 567-602). A possible approach to monitor compartmentalized signaling would be using the FluoSTEPs technology (Tenner et al., Sci. Adv. 2021; 7: eabe4091), but adapting this to the trypanosome system will not be a short-term task.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Assessment note: “Whereas the results and interpretations are generally solid, the mechanistic aspect of the work and conclusions put forth rely heavily on in vitro studies performed in cultured L6 myocytes, which are highly glycolytic and generally not viewed as a good model for studying muscle metabolism and insulin action.”

      While we acknowledge that in vitro models may not fully recapitulate the complexity of in vivo systems, we believe L6 myotubes are appropriate for studying the mechanisms underlying muscle metabolism and insulin action. L6 myotubes possess many important characteristics relevant to our research, including high insulin sensitivity and a similar mitochondrial respiration sensitivity compared to primary muscle fibres. Furthermore, several studies have demonstrated the utility of L6 myotubes as a model for studying insulin sensitivity and metabolism, including our own previous work (PMID: 19805130, 31693893, 19915010) and work of others (PMID:12086937, 29486284, 15193147).

      Importantly, our observations from the L6 myotube model are supported by in vivo data from both mice and humans. Chow (Figure 3J, K) and high-fat fed mice (new data - Supplementary Figure 4 H-I) demonstrated a reduction in mitochondrial Ceramide and an increase in CoQ9. Muscle biopsies from humans showed a strong negative correlation between mitochondrial C18:0 ceramide levels and insulin sensitivity (PMID: 29415895). Further, complex I and IV abundance was strongly correlated with both muscle insulin sensitivity and mitochondrial ceramide (CerC18:0) (Figure 6E, F). This is consistent with our observations in L6 myotubes (Figure 6H, I). These findings support the relevance of our in vitro results to in vivo muscle metabolism.

      Points from reviewer 1

      1. Although the authors' results suggest that higher mitochondrial ceramide levels suppress cellular insulin sensitivity, they rely solely on a partial inhibition (i.e., 30%) of insulin-stimulated GLUT4-HA translocation in L6 myocytes. It would be critical to examine how much the increased mitochondrial ceramide would inhibit insulin-induced glucose uptake in myocytes using radiolabeled deoxy-glucose. Another important question to be addressed is whether glycogen synthesis is affected in myocytes under these experimental conditions. Results demonstrating reductions in insulin-stimulated glucose transport and glycogen synthesis in myocytes with dysfunctional mitochondria due to ceramide accumulation would further support the authors' claim.

      Response: We have now conducted additional experiments focusing on glycogen synthesis as a readout of insulin sensitivity, as it offers an orthogonal method for assessing GLUT4 translocation and glucose uptake. L6-myotubes overexpressing the mitochondrial-targeted ASAH1 construct (as described in Fig. 3) were challenged with palmitate and insulin stimulated glycogen synthesis was measured using 14C radiolabeled glucose. As shown below, palmitate suppressed insulin-induced glycogen synthesis, which was effectively prevented by overexpression of ASAH1 (N = 5, * p<0.05) supporting our previous observation using GLUT4 translocation as a readout of insulin sensitivity (Fig. 3). These results provide additional evidence highlighting the role of dysfunctional mitochondria in muscle cell glucose metabolism.

      These data have now been added to Supplementary Figure 4K and the results modified as follows:

      “...For this reason, several in vitro models have been employed involving incubation of insulin sensitive cell types with lipids such as palmitate to mimic lipotoxicity in vivo. In this study we have used cell surface GLUT4-HA abundance as the main readout of insulin response...”

      “Notably, mtASAH1 overexpression protected cells from palmitate-induced insulin resistance without affecting basal insulin sensitivity (Fig. 3E). Similar results were observed using insulin-induced glycogen synthesis as an orthologous technique for Glut4 translocation. These results provide additional evidence highlighting the role of dysfunctional mitochondria in muscle cell glucose metabolism (Sup. Fig. 5K). Importantly, mtASAH1 overexpression did not rescue insulin sensitivity in cells depleted…”

      Author response image 1.

      Additionally, the following text was added to the method section:

      “L6 myotubes overexpressing ASAH were grown and differentiated in 12-well plates, as described in the Cell lines section, and stimulated for 16 h with palmitate-BSA or EtOH-BSA, as detailed in the Induction of insulin resistance section.

      On day seven of differentiation, myotubes were serum starved in DMEM for 3.5 h. After incubation for 1 h at 37 °C with 2 µCi/ml D-[U-14C]-glucose in the presence or absence of 100 nM insulin, glycogen synthesis assay was performed, as previously described (Zarini S. et al., J Lipid Res, 63(10): 100270, 2022).”

      1. In addition, it would be critical to assess whether the increased mitochondrial ceramide and consequent lowering of energy levels affect all exocytic pathways in L6 myoblasts or just the GLUT4 trafficking. Is the secretory pathway also disrupted under these conditions?

      Response: This is an interesting point raised by the reviewer that is aimed at the next phase of this work, to identify how ceramide induced mitochondrial dysfunction drives insulin resistance. Looking at energy deficiency in more detail as well as general trafficking is part of ongoing work, but given the complexity of this question, it is beyond the scope of the current study.

      Points from reviewer 2

      1. The mechanistic aspect of the work and conclusions put forth rely heavily on studies performed in cultured myocytes, which are highly glycolytic and generally viewed as a poor model for studying muscle metabolism and insulin action. Nonetheless, the findings provide a strong rationale for moving this line of investigation into mouse gain/loss of function models.

      Response: We acknowledge that in vitro models may not fully mimic in vivo complexity as described above in the response to the “Assessment note”. We have now added to the Discussion:

      “In this study, we mainly utilised L6-myotubes, which share many important characteristics with primary muscle fibres. Both types of cells exhibit high sensitivity to insulin and respond similarly to maximal doses of insulin, with GLUT4 translocation stimulated between 2 to 4 times over basal levels in response to 100 nM insulin (as shown in Fig. 1-4 and (46,47)). Additionally, mitochondrial respiration in L6-myotubes has a similar sensitivity to mitochondrial poisons, as observed in primary muscle fibres (as shown in Fig. 5 (48)). Finally, inhibiting ceramide production increases CoQ levels in both L6-myotubes and adult muscle tissue (as shown in Fig. 2-3). Therefore, L6-myotubes possess the necessary metabolic features to investigate the role of mitochondria in insulin resistance, and this relationship is likely applicable to primary muscle fibres”.

      1. One caveat of the approach taken is that exposure of cells to palmitate alone is not reflective of in vivo physiology. It would be interesting to know if similar effects on CoQ are observed when cells are exposed to a more physiological mixture of fatty acids that includes a high ratio of palmitate, but better mimics in vivo nutrition.

      Response: We appreciate the reviewer's comment. Previously, we reported that mitochondrial CoQ depletion occurs in skeletal muscle after 14 and 42 days of HFHSD feeding, coinciding with the onset of insulin resistance (PMID: 29402381, see figure below).

      Author response image 2.

      These data demonstrated that our in vitro model recapitulates the loss of CoQ in insulin resistance observed in muscle tissue in response to a more physiological mixture of fatty acids. Further, it has been reported that different fatty acids can induce insulin resistance via different mechanisms (PMID:20609972), which would complicate interpretation of the data. Saturated fatty acids such as palmitate increase ceramides in cell-lines and humans, but unsaturated FAs generally do not (PMID: 10446195,14592453,34704121). As such we conclude that palmitate is a cleaner model for studying the effects of ceramide on skeletal muscle function.

      We have added to discussion:

      “…These findings align with our earlier observations demonstrating that mice exposed to HFHSD exhibit mitochondrial CoQ depletion in skeletal muscle (Fazakerley et al. 2018).”

      1. While the utility of targeting SMPD5 to the mitochondria is appreciated, the results in Figure 5 suggest that this manoeuvre caused a rather severe form of mitochondrial dysfunction. This could be more representative of toxicity rather than pathophysiology. It would be helpful to know if these same effects are observed with other manipulations that lower CoQ to a similar degree. If not, the discrepancies should be discussed.

      Response: As the reviewer suggests many of these lipids can cause cell death (toxicity) if the dose is too high. We have previously found that low levels (0.15 mM) of palmitate were sufficient to trigger insulin resistance without any signs of toxicity (Hoehn, K, PNAS, 19805130). Using a similar approach, we show that mitochondrial membrane potential is maintained in SMPD5 overexpressing cells (Sup. Fig. 2J - and Author response image 2). Given that toxicity is associated with a loss of mitochondrial membrane potential (eg., 50uM Saclac; RH panel), these data suggest SMPD5 overexpression is not causing overt toxicity.

      Author response image 3.

      Furthermore, we conducted an overrepresentation analysis of molecular processes within our proteomic data from SMPD5-overexpressing cells. As depicted below, no signs of cell toxicity were observed in our model at the protein level. This data is now available in supplementary table 1.

      Author response table 1.

      Our results are therefore consistent with a pathological condition induced by elevated levels of ceramides independently of cellular toxicity. The following text has been added to the discussion:“...downregulation of the respirasome induced by ceramides may lead to CoQ depletion.

      Despite the significant impact of ceramide on mitochondrial respiration, we did not observe any indications of cell damage in any of the treatments, suggesting that our models are not explained by toxicity and increased cell death (Sup. Fig. 2H & J).”

      1. The conclusions could be strengthened by more extensive studies in mice to assess the interplay between mitochondrial ceramides, CoQ depletion and ETC/mitochondrial dysfunction in the context of a standard diet versus HF diet-induced insulin resistance. Does P053 affect mitochondrial ceramide, ETC protein abundance, mitochondrial function, and muscle insulin sensitivity in the predicted directions?

      Response: We agree with the referee about the importance of performing in vivo studies to corroborate our in vitro data. We have now conducted extensive new studies in mice skeletal muscle using targeted metabolomic and lipidomic analyses to investigate the impact of ceramide depletion in CoQ levels in HF-fed mice. Mice were exposed to a HF-fed diet with or without the administration of P053 (selective inhibitor of CerS1) for 5 weeks. As illustrated in the figures below, the administration of P053 led to a reduction in ceramide levels (left panel), increase in CoQ levels (middle panel) and a negative correlation between these molecules (right panel), which is consistent with our in vitro findings.

      Author response image 4.

      Additional suggestions:

      1. Figure 1: How does increased mitochondrial ceramide affect fatty acid oxidation (FAO) in L6-myocytes? As the accumulation of mitochondrial ceramide inhibits respirasome and mitochondrial activity in vitro, can reduce FAO in vivo, due to high mitochondrial ceramide, accounts for ectopic lipid deposition in skeletal muscle of obese subjects?

      Response: We appreciate the reviewer for bringing up this intriguing point. We would like to emphasise that Complex II activity is vital for fatty acid oxidation. As shown in Fig. 5H, our results indicate that specifically Complex II mediated respiration was diminished in cells with SMPD5 overexpression, suggesting that ceramides hinder the mitochondria's capability to oxidise lipids. We agree that this mechanism may potentially play a role in the ectopic lipid accumulation seen in individuals with obesity.

      We have added the following text to discussion:

      “...the mitochondria to switch between different energy substrates depending on fuel availability, named “metabolic Inflexibility”...this mechanism may potentially play a role in the ectopic lipid accumulation seen in individuals with obesity, a condition linked with cardio-metabolic disease.”

      1. Figure 2: Although the authors show that mtSMPD5 overexpression does not affect ceramide abundance in whole cell lysate, it would be critical to examine the abundance of this lipid in other cellular membranes and organelles, particularly plasma membrane. What is the effect of mtSMPD5 overexpression on plasma membrane lipids composition? Does that affect GLUT4-containing vesicles fusion into the plasma membrane, possibly due to depletion of v-SNARE or tSNARE?

      Response: While we acknowledge the importance of this point we strongly feel that measuring lipids in purified membranes has its limitations because it is impossible to purify specific membranes without contamination from other kinds of membranes. For example, we have done proteomics on purified plasma membranes from different cell types and we always observe considerable mitochondrial contamination with these membranes (e.g. PMID 21928809). This was the main factor that led us to use the mitochondrial targeting approach.

      Nevertheless we do acknowledge that there is a possibility that ceramides that are produced in the mitochondria in SMPD5 cells could leak out of mitochondria into other membranes and this could influence other aspects of GLUT4 trafficking and insulin action. However, we believe that the studies using mito targeted ASAH mitigate against this problem. Thus, we have now included a statement in the revised manuscript as follows: “It is also possible that ceramides generated within mitochondria in SMPD5 cells leak out from the mitochondria into other membranes (e.g. PM and Glut4 vesicles) affecting other aspects of Glut4 trafficking and insulin action. However, the observation that ASAH1 overexpression reversed IR without affecting whole cell ceramides argues against this possibility.”.

      1. Figure 4: One critical piece of information missing is the effect (if any) of mitochondrial ceramide accumulation on the mRNAs encoding the ETC components affected by this lipid. Although the ETC protein's lower stability may account for the effect of increased ceramide, transcriptional inhibition can't be ruled out without checking the mRNA expression levels for these ETC components.

      Response: To address this point, we have quantified the mRNA abundance of nine complex I subunits that exhibit downregulation in our proteomic dataset subsequent to mtSMPD5 overexpression (as depicted in Figure 4G).

      Induction of mtSMPD5 expression with doxycycline (below - Left hand panel) had no effect on the mRNA levels of the Complex I subunits (below - right hand panel).. This is consistent with our initial hypothesis that the reduction in electron transport chain (ETC) components, caused by heightened ceramide levels, primarily arises from alterations in protein stability rather than gene expression. While we acknowledge the possibility that certain subunits might be regulated at the transcriptional level, the absence of mRNA downregulation across our data strongly suggests that, at the very least, a portion of the observed protein depletion is attributed to diminished protein stability. We have incorporated this dataset into Supplementary Figure 6J and added the following text to the results:

      Author response image 5.

      “Importantly, CI downregulation was not associated with reduction in gene expression as shown in Sup. Fig. 6J.”

      Additionally, we have added the following text to discussion:

      “In addition, the absence of mRNA downregulation in mtSMPD5 overexpressing cells strongly suggests that at least a portion of the observed protein depletion within CI is attributed to diminished protein stability.”

      1. Figure 3: The authors state that neither palmitate nor mtASAH1 overexpression affected insulin-dependent Akt phosphorylation. However, the results in Figure 3F-G do not support this conclusion, as the overexpression of mtASAH1 does enhance the insulin-stimulated AKT (thr-308) phosphorylation. They need to clarify this issue.

      Response: We have now analysed these data in a manner that preserves the control variance, consistent with the other figures in the manuscript and there is no significant change in Akt phosphorylation in ASAH over-expressing cells.

      Author response image 6.

      1. Figure S2: A functional assessment of mitochondrial function in HeLa cells would be helpful to validate the small effect of Saclac treatment on CI NDUFB8.

      Response: Mitochondrial respiration was conducted in cells treated with Saclac (2 µM and 10 µM) for 24 hours. As shown below, in Hela cells, we did not detect any mitochondrial respiratory impairments at low doses, but only at high doses of Saclac. This suggests that the minor effect of Saclac on CI NDUFB8 is insufficient to alter mitochondrial function.

      Author response image 7.

      Reviewer #2 (Recommendations For The Authors):

      Additional questions and comments for consideration:

      1. The working model links ceramide-induced CoQ depletion to a reduction in ETC proteins and accompanying deficits in OxPhos capacity. The idea that mitochondrial dysfunction necessarily precedes and causes insulin resistance has been heavily debated for years because many animal and human studies have found no overt changes in ETC proteins and/or mitochondrial respiratory capacity during the early phases of insulin resistance. How do the investigators reconcile their work in the context of this controversy?

      Response: We acknowledge this controversy in our revised manuscript more clearly now as follows on page 21: “We present evidence that mitochondrial dysfunction precedes insulin resistance. However, previous studies have failed to observe changes in mitochondrial morphology, respiration or ETC components during early stages of insulin resistance (72). However, in many cases such studies fail to document changes in insulin-dependent glucose metabolism in the same tissue as was used for assessment of mitochondrial function. This is crucial because we and others do not observe impaired insulin action in all muscles from high fat fed mice for example. In addition, surrogate measures such as insulin-stimulated Akt phosphorylation may not accurately reflect tissue specific insulin action as demonstrated in figure 1C. Thus, further work is required to clarify some of these inconsistencies''.

      1. While the utility of targeting SMPD5 to the mitochondria is appreciated, the results in Figure 5 suggest that this manoeuvre caused a rather severe form of mitochondrial dysfunction. Is this representative of pathophysiology or toxicity?

      Response: We believe we have addressed this in point 3 above (Principal comments, reviewer 1, point 3)

      1. How did this affect other mitochondrial lipids (e.g. cardiolipin)?

      Response: As shown in the supplementary figure 3, SMPD5 overexpression did not affect other lipids species such as cardiolipin (D-J). We have added to results:

      “Importantly, mtSMPD5 overexpression did not affect ceramide abundance in the whole cell lysate nor other lipid species inside mitochondria such as cardiolipin, cholesterol and DAGs (Sup. Fig. 3 A, D-J)”

      1. Are these severe effects rescued by CoQ supplementation?

      Response: We have performed additional experiments to address this point. As shown below, mitochondrial ceramide accumulation induced by palmitate was not reversed by CoQ supplementation, as demonstrated in Figure 1F. We have added to results:

      “Addition of CoQ9 had no effect on control cells but overcame insulin resistance in palmitate treated cells (Fig. 1A). Notably, the protective effect of CoQ9 appears to be downstream of ceramide accumulation, as it had no impact on palmitate-induced ceramide accumulation (Fig. 1E-F). Strikingly, both myriocin and CoQ9…”

      Additionally, we assessed mitochondrial respiration by using SeaHorse in cells with SMPD5 overexpression treated with or without CoQ supplementation. Our results, depicted below, indicate that CoQ supplementation reversed the ceramide-induced decrease in basal and ATP linked mitochondrial respiration. We have modified Fig.5.

      Author response image 8.

      We have added to results:

      “Respiration was assessed in intact mtSMPD5-L6 myotubes treated with CoQ9 by Seahorse extracellular flux analysis. mtSMPD5 overexpression decreased basal and ATP-linked mitochondrial respiration (Fig. 5 A, B &C), as well as maximal, proton-leak and non-mitochondrial respiration (Fig. 5 A, D, E & F) suggesting that mitochondrial ceramides induce a generalised attenuation in mitochondrial function. Interestingly, CoQ9 supplementation partially recovered basal and ATP-linked mitochondrial respiration, suggesting that part of the mitochondrial defects are induced by CoQ9 depletion. The attenuation in mitochondrial respiration is consistent with a depletion of the ETC subunits observed in our proteomic dataset (Fig. 4)...”

      1. Are these same effects observed with other manipulations that lower CoQ to a similar degree?

      Response: As mentioned in point 5 (additional suggestions from Reviewer 1), we conducted mitochondrial respiration measurements on HeLa cells treated with Saclac (2 µM and 10 µM) for 24 hours. Our findings showed no signs of mitochondrial respiratory impairments at low doses of Saclac in HeLa cells, despite observing CoQ depletion at this dose (Fig. Sup. 2C). We believe that this variation could be due to the varying sensitivity of mitochondrial respiration/ETC abundance to ceramide-induced CoQ depletion in different cell lines. Alternatively, it is possible that reduced mitochondrial respiration is a secondary event to other mitochondrial/cellular defects such as mitochondrial fragmentation or deficient nutrient transport inside mitochondria.

      *Author response image 9.

      1. The mitochondrial concentrations of CoQ required to maintain insulin sensitivity in L6 myocytes seem to vary from experiment to experiment. Is it the absolute concentration that matters and/or the change relative to a baseline condition?

      Response: This is an excellent observation. The findings indicate that the absolute concentration of CoQ is the determining factor for insulin sensitivity, rather than the relative depletion of CoQ compared to basal conditions. We have added to discussion: “Finally, mtASAH1 overexpression increased CoQ levels. In both control and mtASAH1 cells, palmitate induced a depletion of CoQ, however the levels in palmitate treated mtASAH1 cells remained similar to control untreated cells (Fig. 3I). This suggests that the absolute concentration of CoQ is crucial for insulin sensitivity, rather than the relative depletion compared to basal conditions, thus supporting the causal role of mitochondrial ceramide accumulation in reducing CoQ levels in insulin resistance”

      1. Considering that CoQ has been shown to have antioxidant properties, does the rescue observed after a 16 h treatment require the prolonged exposure, or alternatively, are similar effects observed during short-term exposures (~1-2 h), which might imply a different or additional mechanism.

      Response: This is an excellent point that we have long considered. The problem is how to address the question in a way that will be definitive and we are concerned that the experiment suggested by the referee will not generate definitive data. A major issue is that CoQ has low solubility and needs to reach the right compartment. As such if short term treatment (as suggested) does not rescue, it would be difficult to make any definite conclusions as this might just be because insufficient CoQ is delivered to mitochondria. Conversely, if short term treatment does rescue this could be either because CoQ does get into mitochondria and regulate ETC or because of its general antioxidant function. So, even if we observe a rescue after 1 hour of incubation with CoQ, it will not clarify whether this is due to the antioxidant effect or simply because 1 hour is adequate to boost mitoCoQ levels. Thus, in our view this experiment might not get us any closer to the answer. Nevertheless, we do feel this is an important point and we have added the following statement to our revised manuscript to acknowledge this: “Because CoQ can accumulate in various intracellular compartments, it's important to consider that its impact on insulin resistance might be due to its overall antioxidant properties rather than being limited to a mitochondrial effect”

      1. In Figure 1, CoQ depletion due to 4NB treatment resulted in increased ceramide levels. Could this be due to impaired palmitate oxidation leading to rerouting of intracellular palmitate to the ceramide pathway? This could be tested using stable isotope tracers.

      Response: We have added the statement below to the manuscript to address this point. We feel that while an interesting experiment to perform it is somewhat outside of the major focus of this study.

      “One possibility is that CoQ directly controls ceramide turnover (35). An alternate possibility is that CoQ inside mitochondria is necessary for fatty acid oxidation (12) and CoQ depletion triggers lipid overload in the cytoplasm promoting ceramide production (36). Future studies are required to determine how CoQ depletion promotes Cer accumulation. Regardless, these data indicate that ceramide and CoQ have a central role in regulating cellular insulin sensitivity.”

      1. To a similar point, it would be helpful to know if the C2 ceramide analog is sufficient to cause elevated mito-ceramide and/or CoQ depletion. If not, the results might imply mitochondrial uptake of palmitate is required.

      Response: We feel this point is analogous to Point 7 above in that this experiment is not definitive enough to make any clear conclusions as it may or may not work for many different reasons. For example, C2 ceramide may not work simply because it has the wrong chain length.

      Moreover, it is clear that C2 ceramide has effects that clearly differ from those observed with palmitate most notably the inhibitory effect on Akt signalling. For these reasons we do not agree with the logic of this experiment.

      We have mentioned in the results section:

      “Based on these data we surmise that C2-ceramide does not faithfully recapitulate physiological insulin resistance, in contrast to that seen with incubation with palmitate”.

      1. Likewise, does inhibition of CPT1 ameliorate or exacerbate palmitate-induced insulin resistance?

      Response: This experiment has been performed by a number of different labs. For instance, muscle specific CPT1 overexpression is protective against high fat diet induced insulin resistance in mice (Bruce C, PMID19073774), CPT1 overexpression protects L6E9 muscle cells from fatty acid-induced insulin resistance (Sebastian D, PMID17062841) and increased beta-oxidation in muscle cells enhances insulin stimulated glucose metabolism and is protective against lipid induced insulin resistance (Perdomo G, PMID15105415). We have now cited all of these studies in our revised manuscript in the discussion: “In fact, increased fatty acid oxidation is protective against insulin resistance in several model organisms (37–39)”

      1. Does the addition of palmitate to the cells treated with mtSMPD5 further reduce CoQ9 (Figure 2I and 2J)?

      Response: This intriguing observation, as highlighted by the referee, has prompted us to conduct additional experiments to investigate the effects of palmitate and SMPD5 overexpression on Coenzyme Q (CoQ) levels in L6 myotubes. As demonstrated in the figures presented below, both palmitate and SMPD5 overexpression independently resulted in the depletion of CoQ9, with no observed additive effects suggesting that they shared a common pathway driving CoQ9 deficiency. One plausible hypothesis is that ceramides may trigger the depletion of a specific CoQ9 pool localised within the inner mitochondrial membrane, likely the pool associated with Complex I (CI) in the Electron Transport Chain (ETC). This hypothesis is supported by previous studies indicating that approximately ~25 - 35 % of CoQ binds to CI (PMID: 33722627) and our data demonstrating that ceramide induces a selective depletion of CI in L6 myotubes (Fig. 4).

      We have added this result to Fig. 2I in the main section.

      Author response image 10.

      We have added to the result section:

      “Mitochondrial CoQ levels were depleted in both palmitate-treated and mtSMPD5-overexpressing cells without any additive effects. This suggests that these strategies to increase ceramides share a common mechanism for inducing CoQ depletion in L6 myotubes (Fig. 2I).”

      We have added to the discussion section:

      “...These are known to form supercomplexes or respirasomes where ~25 - 35 % of CoQ is localised in mammals (58,16).…The observation that both palmitate and SMPD5 overexpression trigger CoQ depletion without additive effects support the notion that ceramides may trigger the depletion of a specific CoQ9 pool localised within the inner mitochondrial membrane.”

      1. Some of the cell-based experiments appear to be underpowered and therefore confidence in the interpretations might benefit from additional repeats. For example, in Figure 3i, it appears that palmitate still causes a substantial reduction of CoQ in the cells treated with mtASAH1, even though mito-ceramide levels are restored to baseline. Please specify if these and other results are representative of multiple cell culture experiments or a single experiment.

      Response: All data were derived from a minimum of 3-4 independent experiments from at least two separate cultures of L6 cells. Separate batches of drug treatments were prepared for each experiment. We have previously compared metabolic parameters between batches of cells differentiated at different times (i.e. at least weeks apart) in a previous study (Krycer PMID 31744882) and found variations of <20% for insulin-stimulated glucose oxidation. With an expected variance of 20% and a type I error rate of 0.05, this is sufficient to detect a 40% difference with a power of 0.8. As the reviewer has indicated this is likely underpowered in situations where variance is unexpectedly high or if a small difference needs to be detected.

      In terms of Fig3, the reviewer raises an interesting point. As discussed in point 6, the fact that palmitate still appears to cause a depletion of CoQ in mtASAH1 cells likely indicates that the absolute concentration of CoQ is the determining factor for insulin sensitivity, rather than the relative depletion of CoQ compared to basal conditions. We have added to the discussion:

      “Finally, mtASAH1 overexpression increased CoQ levels. In both control and mtASAH1 cells, palmitate induced a depletion of CoQ, but this effect was less pronounced in the mtASAH1 cell line (Fig. 3I). Our results suggest that the absolute concentration of CoQ is crucial for insulin sensitivity, rather than the relative depletion compared to basal conditions, thus supporting the causal role of mitochondrial ceramide accumulation in reducing CoQ levels in insulin resistance”

      1. The color scheme of 2E is inconsistent with other panels in the figure.

      Response: Corrected

      1. It would be helpful if the axis labels for CoQ graphs were labeled as "Mito-CoQ" for clarity.

      Response: Corrected

    1. Author Response

      The following is the authors’ response to the previous reviews

      We appreciate the positive comments from the editors and reviewers. The followings are the point to point responses to the questions and comments of the Reviewers:

      Reviewer #1 (Public Review):

      In this study, Jiamin Lin et al. investigated the potential positive feedback loop between ZEB2 and ACSL4, which regulates lipid metabolism and breast cancer metastasis. They reported a correlation between high expression of ZEB2 and ACSL4 and poor survival of breast cancer patients, and showed that depletion of ZEB2 or ACSL4 significantly reduced lipid droplets abundance and cell migration in vitro. The authors also claimed that ZEB2 activated ACSL4 expression by directly binding to its promoter, while ACSL4 in turn stabilized ZEB2 by blocking its ubiquitination. While the topic is interesting, there are several concerns with the study:

      1. My concern regarding the absence of appropriate thresholds or False Discovery Rate (FDR) adjustments for the RNA-seq analysis has not been addressed, leading to incorrect thresholds and erroneous identification of significant signals.

      Response: We thank the reviewer for the concern about the RNA-seq analysis. RNA-seq data was analyzed by the Benjamini and Hochberg’s approach for controlling the false discovery rate. The procedure of RNA-seq bioinformatic analysis is as follows: For data analysis, raw data of fastq format were firstly processed through in-house perl scripts. In this step, clean data were obtained by removing reads containing adapter, reads containing N base and low quality reads from raw data. All the downstream analyses were based on the clean data with high quality. Index of the reference genome was built using Hisat2 v2.0.5 and paired-end clean reads were aligned to the reference genome using Hisat2 v2.0.5. FeatureCounts v1.5.0-p3 was used to count the reads numbers mapped to each gene, and then FPKM of each gene was calculated based on the length of the gene and reads count mapped to this gene. Differential expression analysis of two conditions/groups was performed using the DESeq2 R package (1.20.0). The resulting P-values were adjusted using the Benjamini and Hochberg’s approach for controlling the false discovery rate. Genes with an adjusted P-value (<0.05) found by DESeq2 were assigned as differentially expressed.

      1. In Figure 3B and C, it appears that the knockdown efficiency of ACSL4 is inadequate in these cells, which contradicts the Western blot results presented in Figure 2F.

      Response: We thank the reviewer for the concern. In figure 3B and 3C, we use the shRNA for the knockdown experiment and in Figure 2F we use siRNA for the knockdown experiment, so the efficiency of them were different.

      1. Regarding Figure 6, the discovery of consensus binding sequences (CACCT) for ZEB2 alone is insufficient evidence to support the direct binding of ZEB2 to the ACSL4 promoter.

      Response: We thank the reviewer for the concern. We performed chromatin immunoprecipitation (ChIP), which examines the direct interaction between DNA and protein, to test if ZEB2 directly binds to the ACSL4 promoter. The results showed that the primer set 1, which covered -184 to -295 of ACSL4 promoter region exhibited apparent ZEB2 binding (Fig. 6F). Moreover, the mutant sequence (AAAA) of ACSL4 promoter showed significant decreased luciferase activity (Fig. 7H). All these evidences suggest that ZEB2 directly bond to the consensus sequence of ACSL4 promoter.

      1. For Figure 7E, there are multiple bands present, and it appears that ZEB2-HA has been cropped, which should ideally be presented with unaltered raw data. Please provide the uncropped raw data.

      Response: We thank the reviewer for the concern. The raw data of the figure 7E ZEB2-HA is shown in Author response image 1:

      Author response image 1.

      1. In Figure 7C, the author claimed to have used 293T cells for the ubiquitin assay, which are not breast cancer cells. Moreover, the efficiency of over-expression differs between ZEB2 and ACSL4 in 293T cell lines. Performing the experiment in an unrelated cell line to justify an important interaction is not acceptable.

      Response: We thank the reviewer for the concern. We also performed the ubiquitination assay in MDA-MB-231 cells in Fig 7D (Author response image 2), The results confirm that knockdown of ACSL4 obviously enhanced the ubiqutination of ZEB2. We also have performed the IP experiment in MDA-MB-231 cells in Author response image 3 (Fig 7F). The results confirmed the interaction between ZEB2 and ACSL4:

      Author response image 2.

      Author response image 3.

      Reviewer #2 (Public Review):

      In this study, the authors validated a positive feedback loop between ZEB2 and ACSL4 in breast cancer, which regulates lipid metabolism to promote metastasis.

      Overall, the study is original, well structured, and easy to read.

      We appreciate the positive comments from the reviewer.

      Reviewer #3 (Public Review):

      The manuscript by Lin et al. reveals a novel positive regulatory loop between ZEB2 and ACSL4, which promotes lipid droplets storage to meet the energy needs of breast cancer metastasis.

      We appreciate the positive comments from the reviewer.

      Reviewer #2 (Recommendations For The Authors):

      I still have some points that should be addressed by the Authors:

      The interaction between ACSL4 and ZEB2 is still not convincing, due to the cellular localization of ACSL4 and ZEB2 is different. The authors should consider utilizing the Duolink experiment to more accurately determine the interaction location of these two proteins in cells.

      Response: We appreciate the reviewer’s suggestion. We performed GST pull-down assay to examine whether ZEB2 and ACSL4 form a complex. GST pull-down assay confirmed the interaction of ZEB2 and ACSL4 (Supplementary Fig. S10). We also performed immunofluorescence assay and found that ZEB2 was co-localized with ACSL4 in some certain regions of the cytoplasm in Author response image 5 (Supplementary Fig. S11):

      Author response image 4.

      Author response image 5.

      In Figure S4, the authors showed both "shACSL4" and "siACSL4", which is a description error.

      Response: We appreciate the reviewer to point out the mistake. We have corrected the "siACSL4" into "shACSL4".

      Author response image 6.

      Reviewer #3 (Recommendations For The Authors):

      The manuscript is improved.

      We appreciate the positive comments from the reviewer.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      In this study, the authors attempt to describe alterations in gene expression, protein expression, and protein phosphorylation as a consequence of chronic adenylyl cyclase 8 overexpression in a mouse model. This model is claimed to have resilience to cardiac stress.

      Major strengths of the study include 1) the large dataset generated which will have utility for further scientific inquiry for the authors and others in the field, 2) the innovative approach of using cross-analyses linking transcriptomic data to proteomic and phosphoproteomic data. One weakness is the lack of a focused question and clear relevance to human disease. These are all critical biological pathways that the authors are studying and essentially, they have compiled a database that could be surveyed to generate and test future hypotheses.

      Thank you for your efforts to review our manuscript, we are delighted to learn that you found our approach to link transcriptomic, proteomic and phosphoproteome data in our analysis to be innovative. Your comment that we have not focused on a question with clear relevance to human disease is “right on point!”

      During chronic pathophysiologic states e.g., chronic heart failure (CHF) in humans, AC/cAMP/PKA/Ca2+ signaling increases progressively the degree of heart failure progresses, leading to cardiac inflammation, mediated in part, by cyclic-AMP- induced up- regulation of renin-angiotensin system (RAS) signaling. Standard therapies for CHF include β-adrenoreceptor blockers and RAS inhibitors, which although effective, are suboptimal in amelioration of heart failure progression. One strategy to devise novel and better therapies for heart failure, would be to uncover the full spectrum of concentric cardio- protective adaptations that becomes activated in response to severe, chronic AC/cAMP/PKA/Ca2+ -induced cardiac stress.

      We employed unbiased omics analyses, in our prior study (https://elifesciences.org/articles/80949v1) of the mouse harboring cardiac specific overexpression of adenylyl cyclase type 8 (TGAC8), and identified more than 2,000 transcripts and proteins, comprising a broad array of biological processes across multiple cellular compartments, that differed in TGAC8 left ventricle compared to WT. These bioinformatic analyses revealed that marked overexpression of AC8 engages complex, concentric adaptation "circuity" that has evolved in mammalian cells to confer resilience to stressors that threaten health or life. The main human disease category identified in these analyses was Organismal Injury and Abnormalities, suggesting that defenses against stress were activated as would be expected, in response to cardiac stress. Specific concentric signaling pathways that were enriched and activated within the TGAC8 protection circuitry included cell survival initiation, protection from apoptosis, proliferation, prevention of cardiac-myocyte hypertrophy, increased protein synthesis and quality control, increased inflammatory and immune responses, facilitation of tissue damage repair and regeneration and increased aerobic energetics. These TGAC8 stress response circuits resemble many adaptive mechanisms that occur in response to the stress of disease states and may be of biological significance to allow for proper healing in disease states such as myocardial infarction or failure of the heart. The main human cardiac diseases identified in bioinformatic analyses were multiple types cardiomyopathies, again suggesting that mechanisms that confer resilience to the stress of chronic increased AC-PKA-Ca2+ signaling are activated in the absence of heart failure in the super-performing TGAC8 heart at 3-months of age.

      In the present study, we performed a comprehensive in silico analysis of transcription, translation, and post-translational patterns, seeking to discover whether the coordinated transcriptome and proteome regulation of the adaptive protective circuitry within the AC8 heart that is common to many types of cardiac disease states identified in our previous study (https://elifesciences.org/articles/80949v1) extends to the phosphoproteome.

      Reviewer #2 (Public Review):

      In this study, the investigators describe an unbiased phosphoproteomic analysis of cardiac-specific overexpression of adenylyl cyclase type 8 (TGAC8) mice that was then integrated with transcriptomic and proteomic data. The phosphoproteomic analysis was performed using tandem mass tag-labeling mass spectrometry of left ventricular (LV) tissue in TGAC8 and wild-type mice. The initial principal component analysis showed differences between the TGAC8 and WT groups. The integrated analysis demonstrated that many stress-response, immune, and metabolic signaling pathways were activated at transcriptional, translational, and/or post-translational levels.

      The authors are to be commended for a well-conducted study with quality control steps described for the various analyses. The rationale for following up on prior transcriptomic and proteomic analyses is described. The analysis appears thorough and well-integrated with the group's prior work. Confirmational data using Western blot is provided to support their conclusions. Their findings have the potential of identifying novel pathways involved in cardiac performance and cardioprotection.

      Thank you for your efforts to review our manuscript, we are delighted to learn that you found our approach to link transcriptomic, proteomic and phosphoproteome data in our analysis. We are delighted that you found our work to be well-conducted, to have been well performed, and that our analysis was thorough and well-integrated with our prior work in this arena and that are findings have the potential of identifying novel pathways involved in cardiac performance and cardioprotection.

      Reviewer #1 (Recommendations For The Authors):

      I humbly suggest that the authors reconsider the title, as it could be more clear as to what they are studying. Are the authors trying to highlight pathways related to cardiac resilience? Resilience might be a clearer word than "performance and protection circuitry".

      Thank you for this important comment. We have revised the title accordingly: Reprogramming of cardiac phosphoproteome, proteome and transcriptome confers resilience to chronic adenylyl cyclase-driven stress.

      Perhaps the text can be reviewed in detail by a copy-editor, as there are many grammatically 'awkward' elements (for example, line 56: "mammalians" instead of mammals), inappropriate colloquialisms (for example, line 73: "port-of-call"), and stylistic unevenness that make it difficult to read.

      We have reviewed the text in detail, with the assistance of a copy editor, in order to identify and correct awkward elements and to search for other colloquialisms. Finally, although “stylistic unevenness” to which you refer may be difficult for us to identify during our re-edits, we have tried our best to identify and revise them.

      The best-written sections are the first few paragraphs of the discussion section, which finally clarify why the TGAC8 mouse is important in understanding cardiac resilience to stress and how the present study leverages this model to disentangle the biological processes underlying the resilience. I wish this had been presented in this manner earlier in the paper, (in the abstract and introduction) so I could have had a clearer context in which to interpret the data. It would also be helpful to point out whether the TGAC8 mouse has any correlates with human disease.

      Thank you for this very important comment. Well put! In addition to recasting the title to include the concept of resilience, we have revised both the abstract and introduction to feature what you consider to be important to the understanding of cardiac resilience to stress, and how the present study leverages this model to disentangle the biological processes underlying the resilience.

      Reviewer #2 (Recommendations For The Authors):

      1. How were the cutoffs determined to distinguish between upregulated/downregulated phosphoproteins and phosphopeptides?

      Thank you for this important question. We used the same criteria to distinguish differences between TGAC8 and WT for unnormalized and normalized phosphoproteins, -log10(p-value) > 1.3, and log2FoldChange <= -0.4 (down) or log2FoldChange >= 0.4 (up), as stated in the methods section, main text and figure legend. The results were consistent across all analyses and selectively verified by experiments.

      1. Were other models assessed for correlation between transcriptome and phosphoproteome other than a linear relationship of log2 fold change?

      Thank you for this comment. In addition to a linear relationship of log2 fold change of molecule expression, we also compared protein activities, e.g., Fig 4F, and pathways enriched from different omics, e.g., Fig 3D, 5J, 6B and 6F.

      1. Figures 1A and 5G seem to show outliers. How many biological and technical replicates would be needed to minimize error?

      Thank you for the question. Figures 1A and 5G were PCA plots which, as expected, manifested some genetic variability among the same genotypes. The PCA plots, however, are useful in determining how the identified items separated, both within and among genotypes. For bioinformatics analysis such as ours, 4-5 samples are sufficient to accomplish this, as demonstrated by separation, by genotype, of samples in PCA. Thus, in addition to discovery of true heterogeneity among the samples, our results are still able to robustly discover the true differences between the genotypes.

      1. Were the up/downregulated genes more likely to be lowly expressed (which would lead to larger log2 changes identified)?

      In response to your query, we calculated the average expression of phosphorylation levels across all samples to observe whether they were expressed in low abundance in all samples. We also generated the MA plots, an application of a Bland–Altman plot, to create a visual representation of omics data. The MA plots in Author response image 1 illustrate that the target molecules with significantly changed phosphorylation levels did not aggregate within the very low abundance. To confirm this conclusion, we adopted two sets of cutoffs: (1) change: -log10(p-value) > 1.3, and log2FoldChange < 0 (down) or log2FoldChange > 0 (up); and (2) change_2: -log10(p-value) > 1.3, and log2FoldChange <= -0.4 (down) or log2FoldChange >= 0.4 (up).

      Author response image 1.

      1. "We verified some results through wet lab experiments" in the abstract is vague.

      Thank you for the good suggestion. What we meant to indicate here was that identified genotypic differences in selected proteins, phosphoproteins and RNAs discovered in omics were verified by western blots, protein synthesis detection, proteosome activity detection, and protein soluble and insoluble fractions detection. However, we have deleted the reference to the wet lab experiments in the revised manuscript.

      1. There are minor syntactical errors throughout the text.

      Thank you very much for the suggestion. As noted in our response, we have edited and revised those errors throughout the text.

    1. Author Response

      Reviewer #1 (Public Review):

      Summary:

      The investigators have performed a state-of-the art systematic review and meta-analysis of studies that may help to answer the research question: if administration of multiple antibiotics simultaneously prevents antibiotic resistance development in individuals. The amount of studies eligible for analysis is very low, and within that low number, there is huge variability in bug-drug combinations studied and most studies had a high risk of bias, further limiting the capability of meta-analysis to answer the research question. In addition, based on I2 values there is also huge statistical heterogeneity between outcomes of studies compared, further limiting the predictive value of meta-analysis. In fact, the only 2 studies meeting all eligibility criteria addressed the treatment of mycobacterium tuberculosis, for which the research question is hardly applicable. The authors, therefore, conclude that "our analysis could not identify any benefit or harm of using a higher or a lower number of antibiotics regarding within-patient resistance development." Apart from articulating this knowledge gap, the findings will not have consequences for patient care, but may stimulate the scientific community to better address this research question in future studies.

      Strengths:

      The systematic and rigorous approach for the review and meta-analysis.

      Weaknesses:

      None identified.

      We thank the reviewer for this thoughtful and positive appraisal of our work.

      Reviewer #2 (Public Review):

      Summary:

      The authors performed a systematic review and meta-analysis to investigate whether the frequency of emergence of resistance is different if combination antibiotic therapy is used compared to fewer antibiotics. The review shows that there is currently insufficient evidence to reach a conclusion due to the limited sample size. High-quality studies evaluating appropriate antimicrobial resistance endpoints are needed.

      Strengths:

      The strengths of the manuscript are that the article addresses a relevant research question that is often debated. The article is well-written and the methodology used is valid. The review shows that there is currently insufficient evidence to reach a conclusion due to the limited sample size. High-quality studies evaluating appropriate antimicrobial resistance endpoints are needed. I have several comments and suggestions for the manuscript.

      Weaknesses:

      Weaknesses of the manuscript are the large clinical and statistical heterogeneity and the lack of clear definitions of acquisition of resistance. Both these weaknesses complicate the interpretation of the study results.

      We thank the reviewer for the positive comments and pointing out where our work can be improved.

      Major comments:

      My main concern about the manuscript is the extent of both clinical and statistical heterogeneity, which complicates the interpretation of the results. I don't understand some of the antibiotic comparisons that are included in the systematic review. For instance the study by Paul et al (50), where vancomycin (as monotherapy) is compared to co-trimoxazole (as combination therapy). Emergence (or selection) of co-trimoxazole in S. aureus is in itself much more common than vancomycin resistance. It is logical and expected to have more resistance in the co-trimoxazole group compared to the vancomycin group, however, this difference is due to the drug itself and not due to co-trimoxazole being a combination therapy. It is therefore unfair to attribute the difference in resistance to combination therapy. Another example is the study by Walsh (71) where rifampin + novobiocin is compared to rifampin + co-trimoxazole. There is more emergence of resistance in the rifampin + co-trimoxazole group but this could be attributed to novobiocin being a different type of antibiotic than co-trimoxazole instead of the difference being attributed to combination therapy. To improve interpretation and reduce heterogeneity my suggestion would be to limit the primary analyses to regimens where the antibiotics compared are the same but in one group one or more antibiotic(s) are added (i.e. A versus A+B). The other analyses are problematic in their interpretation and should be clearly labeled as secondary and their interpretation discussed.

      We acknowledge the presence of statistical and clinical heterogeneity in our overall analysis. The decision to pursue this comprehensive examination was predefined in our previously published study protocol (PROSPERO CRD42020187257) and driven by our interest whether, despite some differences, we could either identify an overarching effect of combination therapy on resistance or identify factors that explain potential differences of the effect of combination therapy across pathogens/drugs. We indeed, find that heterogeneity is high, however identifying the driving factors of this heterogeneity is difficult as evidence is limited.

      We carried out several subgroup analyses, e.g. explicitly focusing on specific pathogen groups and medical conditions or exploring heterogeneity in treatment arms (figure 3, supplementary materials section 6). However, it is important to highlight that the number of studies available for these subgroup analyses was low. Additionally, recognizing the high heterogeneity within treatment arms, we performed a subgroup analysis focusing solely on resistances of antibiotics common to both arms (supplementary material section 6.1.8; which would avoid comparisons such as the one between vancomycin and co-trimoxazole raised by the reviewer). Unfortunately, this also revealed substantial heterogeneity. While we aimed to address heterogeneity through these subgroup analyses, limitations arose due to the number of studies meeting specific criteria and the nature of data provided by these studies.

      Moreover, regarding the concern on interpretation of co-trimoxazole as combination therapy, we acknowledge the confusion surrounding its classification as one or two antibiotics. Despite the common contemporary view of co-trimoxazole as a single antibiotic, we chose to consider it as two antibiotics due to historical practices, as observed in Black et al. (1982), where trimethoprim was compared to trimethoprim and sulfamethoxazole. We recognize that this decision may lead to confusion and we consider conducting a further sensitivity analysis in the future version of this manuscript, exploring the possibility of considering co-trimoxazole as a single antibiotic. We agree that the slight trend of less antibiotics performing better overserved for MRSA, should not be over interpreted as this is driven by the two studies Walsh et al 1993 and Paul et al 2015 as pointed out by the reviewer. In lines 183-186 we discuss this issue that for better evaluation of antibiotic combination therapy, more studies which use identical antibiotics (i.e. A versus A+B) are needed. We will try to clarify and highlight this in the future version of the manuscript.

      Another concern is about the definition of acquisition of resistance, which is unclear to me. If for example meropenem is administered and the follow-up cultures show Enterococcus species (which is intrinsically resistant to meropenem), does this constitute acquisition of resistance? If so, it would be misleading to determine this as an acquisition of resistance, as many people are colonized with Enterococci and selection of Enterococci under therapy is very common. If this is not considered as the acquisition of resistance please include how the acquisition of resistance is defined per included study.

      Thank you for pointing out this potential ambiguity. Our definition of “acquisition of resistance” is agnostic to bacterial species and hence intrinsically resistant species can be included if they were only detected during the follow-up culture by the studies. We will clarify this in the definition of “acquisition of the resistance” in the manuscript (see l. 259-260). However, it was not always clear from the studies which pathogens were acquired or whether intrinsically resistant species were not reported. Therefore, we rely on the studies' specifications of resistant and non-resistant without further classifying data into intrinsic and non-intrinsic resistance. The outcome “acquisition of resistance” can be seen more of a risk assessment for having any resistant bacterium during or after treatment. In contrast, the outcome “emergence of resistance” is more rigorous, demanding the same species to be measured as more resistant during or after treatment.

      Table S1 is not sufficiently clear because it often only contains how susceptibility testing was done but not which antibiotics were tested and how a strain was classified as resistant or susceptible.

      In Table S1, we omitted the listing of antibiotics for which susceptibility testing was performed, as this information is already presented in the main text (Table 1). However, we agree that linking this information better in a future version would benefit the understanding. Given the variability in methods used to assess resistance and the variability in drugs, the comparability of breakpoints is limited. Hence, we decided not to provide further details on this aspect so far.

      Line 85: "Even though within-patient antibiotic resistance development is rare, it may contribute to the emergence and spread of resistance."

      Depending on the bug-drug combination, there is great variation in the propensity to develop within-patient antibiotic resistance. For example: within-patient development of ciprofloxacin resistance in Pseudomonas is fairly common while within-patient development of methicillin resistance in S. aureus is rare. Based on these differences, large clinical heterogeneity is expected and it is questionable where these studies should be pooled.

      We agree that our formulation neglects differences in prevalence of within-host resistance emergence depending on bug-drug combinations. We will correct this in our upcoming version. (i.e. we will correct our statement to: “Within-patient antibiotic resistance development, even if rare, can contribute to the emergence and spread of resistance.”)

      Line 114: "The overall pooled OR for acquisition of resistance comparing a lower number of antibiotics versus a higher one was 1.23 (95% CI 0.68 - 2.25), with substantial heterogeneity between studies (I2=77.4%)"

      What consequential measures did the authors take after determining this high heterogeneity? Did they explore the source of this large heterogeneity? Considering this large heterogeneity, do the authors consider it appropriate to pool these studies?

      Thank you for highlighting this lack of clarity. In our upcoming version, we will emphasize the sub-analyses conducted to explore heterogeneity (i.e., figure 3 and supplementary materials section 6). Nevertheless, these analyses faced limitations due to the scarcity of evidence and the data provided by the studies. Given the lack of appropriate evidence, it is hard to identify the source of heterogeneity. The decision to pool all studies was pre-specified in our previously published study protocol (PROSPERO CRD42020187257) and was motivated by the question whether there is a general effect of combination therapy on resistance development or identify factors that explain potential differences of the effect of combination therapy across bug-drug combinations.

    1. Author Response

      The following is the authors’ response to the current reviews.

      We confirm that that “count-down” parameter, mentioned by reviewer 1, is indeed counted from the first lockdown day and increases continuously, even when we do not have any data – and that this is clearly written in the manuscript.


      The following is the authors’ response to the original reviews.

      Reviewer 1:

      (Note, while these authors do reference Derryberry et al., I thought that there could have been much more direct comparison between the results of the two approaches).

      We added some more discussion of the differences between the papers.

      One important drawback of the approach, which potentially calls into question the authors' conclusions, is that the acoustic sampling only occurred during the pandemic: for several lockdown periods and then for a period of 10 days immediately after the end of the final lockdown period in May of 2020. Several relevant things changed from March to May of 2020, most notably the shift from spring to summer, and the accompanying shift into and through the breeding season (differing for each of the three focal species). Although the statistical methods included an attempt to address this, neither the inclusion of the "count down" variable nor the temperature variable could account for any non-linear effects of breeding phenology on vocal activity. I found the reliance on temperature particularly troubling, because despite the authors' claims that it was "a good proxy of seasonality", an examination of the temperature data revealed a considerable non-linear pattern across much of the study duration. In addition, using a period immediately after the lockdowns as a "no-lockdown" control meant that any lingering or delayed effects of human activity changes in the preceding two months could still have been relevant (not to mention the fact that despite the end of an official lockdown, the pandemic still had dramatic effects on human activity during late May 2020).

      In general, the reviewer is correct, and we reformulated some of the text to more carefully address these points. However, we would like to note two things: (1) Changes occurred rapidly with birds rapidly changing their behavior – this is one of the main conclusions of our study, i.e., that urban dwelling animals are highly plastic in behavior. So that lingering effects were unlikely. (2) Changes occurred in both directions, and thus seasonality (which is expected to have a uni-directional effect) cannot explain everything we observed. We are not sure what the reviewer means by ‘considerable non-linear patterns’ when referring to the temperature. Except for ~5 days with temperatures that exceeded the expected average by 3-4 degrees, the temperature increased approximately linearly during the period as expected from seasonality (see Author response image 1). Following the reviewer’s comment, we tested whether exclusion of data from these days changes the results and found no change.

      We would like to note that in terms of breeding, all birds were within the same state during both the lockdown and the non-lockdown periods. Parakeets and crows have a long breeding season Feb-end of June with one cycle. They will stay around the nest throughout this season and especially in the peak of the season March-May. Prinias start slightly later at the beginning of March with 2-3 cycles till end of June.

      Regarding the comment about human activity, as we now also note in the manuscript, reality in Israel was actually the opposite of the reviewer’s suggestion with people returning to normal behavior towards the end of the lockdown (even before its official removal). We believe that this added noise to our results, and that the effect of the lockdown was probably higher than we observed.

      Author response image 1.

      Another weakness of the current version of the manuscript is the use of a supposed "contradiction" in the existing literature to create the context for the present study. Although the various studies cited do have many differences in their results, those other papers lay out many nuanced hypotheses for those differences. Almost none of the studies cited in this manuscript actually reported blanket increases or decreases in urban birds, as suggested here, and each of those papers includes examples of species that showed different responses. To suggest that they are on opposite sides of a supposed dichotomy is a misrepresentation. Many of those other studies also included a larger number of different species, whereas this study focused on three. Finally, this study was completed at a much finer spatial scale than most others and was examining micro-habitat differences rather than patterns apparent across landscapes. I believe that highlighting differences in scale to explain nuanced differences among studies is a much better approach that more accurately adds to the body of literature.

      We thank the reviewer for this good feedback and revised the manuscript, accordingly, placing more emphasis on the micro-scale of this study.

      Finally a note on L244-247: I would recommend against discounting the possibility that lockdowns resulted in changes to the birds' vocal acoustics, as Derryberry et al. 2020 found, especially while suggesting that their results were the effects of signal processing artifacts. Audio analysis is not my area of expertise, but isn't it possible that the birds did increase call intensity, but were simply not willing (or able) to increase it to the same degree as the additional ambient noise?

      This is an important question. The fact is that when ambient noise increases (at the relevant frequency channels), then the measured vocalizations will also increase. There is no way to separate the two effects. Thus, as scientists, when we cannot measure an effect, it is safer not to suggest an effect. Unfortunately, most studies that claim an increase in vocalizations’ intensity in noise, do not account for this potential artifact (and most of them do not estimate noise at a species-specific level as we have done). This has created a lot of “noise” in the field. We do not want to criticize the Derryberry results without analyzing the data, but from reading their methods it does not seem like they took the noise into account in their acoustic measurements. But if you look at their figure 4A you will see a lot of variability in measuring the minimum frequency – which could be strongly affected by ambient noise.

      In light of the above, we thus prefer to be careful and not to state changes that are probably false. We added some of this information to the manuscript. We also added the linear equations to the graph (in the caption of figure 3) where it can be seen that the slope is always <=1.

      Reviewer 2:

      The explanation of methods can be improved. For example, it is not clear if data were low-pass filtered before resampling to avoid aliasing.

      We edited the methods and hopefully they are clearer now. Regarding the specific question – yes, an LPF was applied to prevent aliasing before the resampling. This information was added to the manuscript.

      It is quite possible that birds move into the trees and further from the recorders with human activity. Since sound level decreases by the square of the distance of the source from the recorders, this could significantly affect the data. As indicated in the Discussion, this is a significant parameter that could not be controlled.

      The reviewer is correct, and we addressed this point. Such biases could arise with any type of surveying including manual transects (except for perhaps, placing tags on the animals). We note that we only analyzed high SNR signals and that the species we selected somewhat overcome this bias – both crows and parakeets are not shy and Prinias are anyway shy and prefer to not be out in the open. We would also expect to see a stronger effect for human speech if this was a central phenomenon, and we did not see this, but of course this might have affected our results.

      In interpreting the data, the authors mention the effect of human activity on bird vocalizations in the context of inter-species predator-prey interactions; however, the presence of humans could also modify intraspecies interactions by acting as triggers for communication of warning and alarm, and/or food calls (as may sometimes be the case) to conspecifics. Along the same lines, it is important to have a better understanding of the behavioral significance of the syllables used to monitor animal activity in the present study.

      We agree with this point and added more discussion of both this potential bias and the type of syllables that were analyzed.

      Another potential effect that may influence the results but is difficult to study, relates to the examination of vocalizations near to the ambient noise level. This is the bandwidth of sound levels where most significant changes may occur, for example, due to the Lombard effect demonstrated in bird and bat species. However, as indicated, these are also more difficult to track and quantify. Moreover, human generated noise, other than speech, may be a more relevant factor in influencing acoustic activity of different bird species. Speech, per se, similar to the vocalizations of many other species, may simply enrich the acoustic environment so that the effects observed in the present study may be transient without significant long-term consequences.

      We note that we already included a noise parameter (in addition to human speech) in the original manuscript. Following the reviewer’s comment, we examined another factor, namely we replaced the previous ambient noise parameter with an estimate of ambient noise under 1kHz which should reflect most anthropogenic noise (not restricted to human speech). This model gave very similar results to the previous one (which is not very surprising as noise is usually correlated). We added this information to the revised manuscript, and we now also added examples of anthropogenic noise to the supplementary materials (Fig. S8). In general, we accept the comments made by the reviewer, but would like to emphasize that we only analyze high SNR vocalization (and not vocalizations that were close to the noise level). This strategy should have overcome biases that resulted from slight changes in ambient noise.

      In general, the authors achieved their aim of illustrating the complexity of the effect of human activity on animal behavior. At the same time, their study also made it clear that estimating such effects is not simple given the dynamics of animal behavior. For example, seasonality, temperature changes, animal migration and movement, as well as interspecies interactions, such as related to predator-prey behavior, and inter/intra-species competition in other respects can all play into site-specific changes in the vocal activity of a particular species.

      We completely agree and tried to further emphasize this in the revised manuscript. This is one of the main conclusions of this study – we should be careful when reaching conclusions.

      Although the methods used in the present study are statistically rigorous, a multivariate approach and visualization techniques afforded by principal components analysis and multidimensional scaling methods may be more effective in communicating the overall results.

      Following this comment, we ran a discriminant function analysis with the parameters of the best model (site category, ambient noise, human activity, temperature and lockdown state) with the task of classifying the level of bird activity. The DFA analysis managed to classify activity significantly above chance and the weights of the parameters revealed some insight about their relative importance. We added this information to the revised manuscript

      Suggestions for improvement:

      In Figure 2, the labeling of the Y-axis in the right panel should be moved to the left, similar to A and C. This will provide clear separation between the two side-to-side panels.

      Revised

      In Figure 3, it will be good to see the regression lines (as dashed lines) separately for the lockdown and no-lockdown conditions in addition to the overall effect.

      Revised

      Editor:

      Limitations

      Scale: The study's limited spatial and temporal scale was not addressed by the authors, which contrasts with the broader scope of other cited studies. To enhance the significance of the study, acknowledging and clearly highlighting this limitation, along with its potential caveats, modifications in the language used throughout the text would be beneficial. Furthermore, although the authors examined slight variations in habitat, it is important to note that all sites were primarily located within an urban landscape.

      We revised the manuscript accordingly.

      Control period: The control period is significantly shorter than the lockdown treatment period and occurs at a different time of year, potentially impacting the vocalization patterns of birds due to different annual cycle stages. It is crucial to consider that the control period falls within the pandemic timeframe despite being shortly after the lockdowns ended.

      Revised – we included a control comparison to periods of equal length within the lockdown. People gradually stopped obeying the lockdown regulations before its removal so in fact, the official removal date is probably an overestimate for the effect of the lockdown. We now explain this.

      Recommendations

      Human-generated noise, beyond speech, might have a greater influence on the acoustic activity of various bird species, but previous studies lacked detailed human activity data. Instead of solely noting the number of human talkers, the authors could quantify other aspects of human activity such as vehicles or overall anthropogenic noise volume. Exploring the relationships between these factors and bird activity at a fine scale, while disentangling them from bird detection, would be compelling. It is important to consider the potential difficulty in resolving other anthropogenic sounds within a specific bandwidth, which could be demonstrated to readers through spectrograms and potential post-pandemic changes. Such information, including daily coefficient of variation/fluctuation rather than absolute frequency spectra, could provide valuable insights.

      We note that we have already included an ambient noise factor (in addition to human speech) in the previous version. Following the reviewers’ comments, we examined another factor, namely we replaced the current ambient noise parameter with the ambient noise under 1kHz which should reflect most of anthropogenic noise (not restricted to human speech). This model gave very similar results to the previous one (which is not surprising as noise is usually correlated). We also added several spectrograms in the Supplementary material that show examples of different types of noise.

      Authors should limit their data interpretation to the impact of lockdown on behavioral responses within small-scale variations in habitat. A key critique is the assumption that activity changes solely resulted from the lockdown, disregarding other environmental factors and phenology.

      Following the editor comment we realized that our conclusion\assertations were not clear. We never claimed that activity changes solely resulted from the lockdown. While revsing the mansucirpt we ensurred that we show a significant effect of temperature, ambient noise and human activity – all of which are not dependent on lockdown. We made an effort to emphasize the complexity of the system. We show that the lockdown seemed to have an additional impact, but we never claimed it was the only factor.

      To address this, the authors could compare acoustic monitoring data within a shorter timeframe before and after the lockdown (20 days), while also controlling for temperature effects, to strengthen the validity of their claims. They would need to explain in their discussion, however, that such a comparison may still be confounded by any carry-over effects from the 10 days of treatment.

      This analysis would be difficult because although the lockdown was officially removed at a specific date, it was gradually less respected by the citizens and thus the last period of the lockdown was somewhere between lockdown and no-lockdown. This is why we chose the approach of taking 10 days randomly from within the lockdown period and comparing them with the 10 post-lockdown days. We now clarify the reason better.

      An option is that authors could frame their analysis as a study of the behavior of wildlife coming out of a lockdown, to draw a distinction from other studies that compared pre-pandemic data to pandemic data.

      Good idea – revised.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank all three Reviewers for their comments and have revised the manuscript accordingly.

      Reviewer #1 (Public Review):

      The main objective of this paper is to report the development of a new intramuscular probe that the authors have named Myomatrix arrays. The goal of the Myomatrix probe is to significantly advance the current technological ability to record the motor output of the nervous system, namely fine-wire electromyography (EMG). Myomatrix arrays aim to provide large-scale recordings of multiple motor units in awake animals under dynamic conditions without undue movement artifacts and maintain long-term stability of chronically implanted probes. Animal motor behavior occurs through muscle contraction, and the ultimate neural output in vertebrates is at the scale of motor units, which are bundles of muscle fibers (muscle cells) that are innervated by a single motor neuron. The authors have combined multiple advanced manufacturing techniques, including lithography, to fabricate large and dense electrode arrays with mechanical features such as barbs and suture methods that would stabilize the probe's location within the muscle without creating undue wiring burden or tissue trauma. Importantly, the fabrication process they have developed allows for rapid iteration from design conception to a physical device, which allows for design optimization of the probes for specific muscle locations and organisms. The electrical output of these arrays is processed through a variety of means to try to identify single motor unit activity. At the simplest, the approach is to use thresholds to identify motor unit activity. Of intermediate data analysis complexity is the use of principal component analysis (PCA, a linear second-order regression technique) to disambiguate individual motor units from the wide field recordings of the arrays, which benefits from the density and numerous recording electrodes. At the highest complexity, they use spike sorting techniques that were developed for Neuropixels, a large-scale electrophysiology probe for cortical neural recordings. Specifically, they use an estimation code called kilosort, which ultimately relies on clustering techniques to separate the multi-electrode recordings into individual spike waveforms.

      The biggest strength of this work is the design and implementation of the hardware technology. It is undoubtedly a major leap forward in our ability to record the electrical activity of motor units. The myomatrix arrays trounce fine-wire EMGs when it comes to the quality of recordings, the number of simultaneous channels that can be recorded, their long-term stability, and resistance to movement artifacts.

      The primary weakness of this work is its reliance on kilosort in circumstances where most of the channels end up picking up the signal from multiple motor units. As the authors quite convincingly show, this setting is a major weakness for fine-wire EMG. They argue that the myomatrix array succeeds in isolating individual motor unit waveforms even in that challenging setting through the application of kilosort.

      Although the authors call the estimated signals as well-isolated waveforms, there is no independent evidence of the accuracy of the spike sorting algorithm. The additional step (spike sorting algorithms like kilosort) to estimate individual motor unit spikes is the part of the work in question. Although the estimation algorithms may be standard practice, the large number of heuristic parameters associated with the estimation procedure are currently tuned for cortical recordings to estimate neural spikes. Even within the limited context of Neuropixels, for which kilosort has been extensively tested, basic questions like issues of observability, linear or nonlinear, remain open. By observability, I mean in the mathematical sense of well-posedness or conditioning of the inverse problem of estimating single motor unit spikes given multi-channel recordings of the summation of multiple motor units. This disambiguation is not always possible. kilosort's validation relies on a forward simulation of the spike field generation, which is then truth-tested against the sorting algorithm. The empirical evidence is that kilosort does better than other algorithms for the test simulations that were performed in the context of cortical recordings using the Neuropixels probe. But this work has adopted kilosort without comparable truth-tests to build some confidence in the application of kilosort with myomatrix arrays.

      Kilosort was developed to analyze spikes from neurons rather than motor units and, as Reviewer #1 correctly points out, despite a number of prior validation studies the conditions under which Kilosort accurately identifies individual neurons are still incompletely understood. Our application of Kilosort to motor unit data therefore demands that we explain which of Kilosort’s assumptions do and do not hold for motor unit data and explain how our modifications of the Kilosort pipeline to account for important differences between neural and muscle recording, which we summarize below and have included in the revised manuscript.

      Additionally, both here and in the revised paper we emphasize that while the presented spike sorting methods (thresholding, PCA-based clustering, and Kilosort) robustly extract motor unit waveforms, spike sorting of motor units is still an ongoing project. Our future work will further elaborate how differences between cortical and motor unit data should inform approaches to spike sorting as well as develop simulated motor unit datasets that can be used to benchmark spike sorting methods.

      For our current revision, we have added detailed discussion (see “Data analysis: spike sorting”) of the risks and benefits of our use of Kilosort to analyze motor unit data, in each case clarifying how we have modified the Kilosort code with these issues in mind:

      “Modification of spatial masking: Individual motor units contain multiple muscle fibers (each of which is typically larger than a neuron’s soma), and motor unit waveforms can often be recorded across spatially distant electrode contacts as the waveforms propagate along muscle fibers. In contrast, Kilosort - optimized for the much more local signals recorded from neurons - uses spatial masking to penalize templates that are spread widely across the electrode array. Our modifications to Kilosort therefore include ensuring that Kilosort search for motor unit templates across all (and only) the electrode channels inserted into a given muscle. In this Github repository linked above, this is accomplished by setting parameter nops.sigmaMask to infinity, which effectively eliminates spatial masking in the analysis of the 32 unipolar channels recorded from the injectable Myomatrix array schematized in Supplemental Figure 1g. In cases including chronic recording from mice where only a single 8-contact thread is inserted into each muscle, a similar modification can be achieved with a finite value of nops.sigmaMask by setting parameter NchanNear, which represents the number of nearby EMG channels to be included in each cluster, to equal the number of unipolar or bipolar data channels recorded from each thread. Finally, note that in all cases Kilosort parameter NchanNearUp (which defines the maximum number of channels across which spike templates can appear) must be reset to be equal to or less than the total number of Myomatrix data channels.”

      “Allowing more complex spike waveforms: We also modified Kilosort to account for the greater duration and complexity (relative to neural spikes) of many motor unit waveforms. In the code repository linked above, Kilosort 2.5 was modified to allow longer spike templates (151 samples instead of 61), more spatiotemporal PCs for spikes (12 instead of 6), and more left/right eigenvector pairs for spike template construction (6 pairs instead of 3). These modifications were crucial for improving sorting performance in the nonhuman primate dataset shown in Figure 3, and in a subset of the rodent datasets (although they were not used in the analysis of mouse data shown in Fig. 1 and Supplemental Fig. 2a-f).”

      Furthermore, as the paper on the latest version of kilosort, namely v4, discusses, differences in the clustering algorithm is the likely reason for kilosort4 performing more robustly than kilosort2.5 (used in the myomatrix paper). Given such dependence on details of the implementation and the use of an older kilosort version in this paper, the evidence that the myomatrix arrays truly record individual motor units under all the types of data obtained is under question.

      We chose to modify Kilosort 2.5, which has been used by many research groups to sort spike features, rather than the just-released Kilosort 4.0. Although future studies might directly compare the performance of these two versions on sorting motor unit data, we feel that such an analysis is beyond the scope of this paper, which aims primarily to introduce our electrode technology and demonstrate that a wide range of sorting methods (thresholding, PCA-based waveform clustering, and Kilosort) can all be used to extract single motor units. Additionally, note that because we have made several significant modifications to Kilosort 2.5 as described above, it is not clear what a “direct” comparison between different Kilosort versions would mean, since the procedures we provide here are no longer identical to version 2.5.

      There is an older paper with a similar goal to use multi-channel recording to perform sourcelocalization that the authors have failed to discuss. Given the striking similarity of goals and the divergence of approaches (the older paper uses a surface electrode array), it is important to know the relationship of the myomatrix array to the previous work. Like myomatrix arrays, the previous work also derives inspiration from cortical recordings, in that case it uses the approach of source localization in large-scale EEG recordings using skull caps, but applies it to surface EMG arrays. Ref: van den Doel, K., Ascher, U. M., & Pai, D. K. (2008). Computed myography: three-dimensional reconstruction of motor functions from surface EMG data. Inverse Problems, 24(6), 065010.

      We thank the Reviewer for pointing out this important prior work, which we now cite and discuss in the revised manuscript under “Data analysis: spike sorting” [lines 318-333]:

      “Our approach to spike sorting shares the same ultimate goal as prior work using skin-surface electrode arrays to isolate signals from individual motor units but pursues this goal using different hardware and analysis approaches. A number of groups have developed algorithms for reconstructing the spatial location and spike times of active motor units (Negro et al. 2016; van den Doel, Ascher, and Pai 2008) based on skin-surface recordings, in many cases drawing inspiration from earlier efforts to localize cortical activity using EEG recordings from the scalp (Michel et al. 2004). Our approach differs substantially. In Myomatrix arrays, the close electrode spacing and very close proximity of the contacts to muscle fibers ensure that each Myomatrix channel records from a much smaller volume of tissue than skin-surface arrays. This difference in recording volume in turn creates different challenges for motor unit isolation: compared to skin-surface recordings, Myomatrix recordings include a smaller number of motor units represented on each recording channel, with individual motor units appearing on a smaller fraction of the sensors than typical in a skin-surface recording. Because of this sensordependent difference in motor unit source mixing, different analysis approaches are required for each type of dataset. Specifically, skin-surface EMG analysis methods typically use source-separation approaches that assume that each sensor receives input from most or all of the individual sources within the muscle as is presumably the case in the data. In contrast, the much sparser recordings from Myomatrix are better decomposed using methods like Kilosort, which are designed to extract waveforms that appear only on a small, spatially-restricted subset of recording channels.”

      The incompleteness of the evidence that the myomatrix array truly measures individual motor units is limited to the setting where multiple motor units have similar magnitude of signal in most of the channels. In the simpler data setting where one motor dominates in some channel (this seems to occur with some regularity), the myomatrix array is a major advance in our ability to understand the motor output of the nervous system. The paper is a trove of innovations in manufacturing technique, array design, suture and other fixation devices for long-term signal stability, and customization for different muscle sizes, locations, and organisms. The technology presented here is likely to achieve rapid adoption in multiple groups that study motor behavior, and would probably lead to new insights into the spatiotemporal distribution of the motor output under more naturally behaving animals than is the current state of the field.

      We thank the Reviewer for this positive evaluation and for the critical comments above.

      Reviewer #2 (Public Review):

      Motoneurons constitute the final common pathway linking central impulse traffic to behavior, and neurophysiology faces an urgent need for methods to record their activity at high resolution and scale in intact animals during natural movement. In this consortium manuscript, Chung et al. introduce highdensity electrode arrays on a flexible substrate that can be implanted into muscle, enabling the isolation of multiple motor units during movement. They then demonstrate these arrays can produce high-quality recordings in a wide range of species, muscles, and tasks. The methods are explained clearly, and the claims are justified by the data. While technical details on the arrays have been published previously, the main significance of this manuscript is the application of this new technology to different muscles and animal species during naturalistic behaviors. Overall, we feel the manuscript will be of significant interest to researchers in motor systems and muscle physiology, and we have no major concerns. A few minor suggestions for improving the manuscript follow.

      We thank the Reviewer for this positive overall assessment.

      The authors perhaps understate what has been achieved with classical methods. To further clarify the novelty of this study, they should survey previous approaches for recording from motor units during active movement. For example, Pflüger & Burrows (J. Exp. Biol. 1978) recorded from motor units in the tibial muscles of locusts during jumping, kicking, and swimming. In humans, Grimby (J. Physiol. 1984) recorded from motor units in toe extensors during walking, though these experiments were most successful in reinnervated units following a lesion. In addition, the authors might briefly mention previous approaches for recording directly from motoneurons in awake animals (e.g., Robinson, J. Neurophys. 1970; Hoffer et al., Science 1981).

      We agree and have revised the manuscript to discuss these and other prior use of traditional EMG, including here [lines 164-167]:

      “The diversity of applications presented here demonstrates that Myomatrix arrays can obtain highresolution EMG recordings across muscle groups, species, and experimental conditions including spontaneous behavior, reflexive movements, and stimulation-evoked muscle contractions. Although this resolution has previously been achieved in moving subjects by directly recording from motor neuron cell bodies in vertebrates (Hoffer et al. 1981; Robinson 1970; Hyngstrom et al. 2007) and by using fine-wire electrodes in moving insects (Pfluger 1978; Putney et al. 2023), both methods are extremely challenging and can only target a small subset of species and motor unit populations. Exploring additional muscle groups and model systems with Myomatrix arrays will allow new lines of investigation into how the nervous system executes skilled behaviors and coordinates the populations of motor units both within and across individual muscles…

      For chronic preparations, additional data and discussion of the signal quality over time would be useful. Can units typically be discriminated for a day or two, a week or two, or longer?

      A related issue is whether the same units can be tracked over multiple sessions and days; this will be of particular significance for studies of adaptation and learning.

      Although the yields of single units are greatest in the 1-2 weeks immediately following implantation, in chronic preparations we have obtained well-isolated single units up to 65 days post-implant. Anecdotally, in our chronic mouse implants we occasionally see motor units on the same channel across multiple days with similar waveform shapes and patterns of behavior-locked activity. However, because data collection for this manuscript was not optimized to answer this question, we are unable to verify whether these observations actually reflect cross-session tracking of individual motor units. For example, in all cases animals were disconnected from data collection hardware in between recording sessions (which were often separated by multiple intervening days) preventing us from continuously tracking motor units across long timescales. We agree with the reviewer that long-term motor unit tracking would be extremely useful as a tool for examining learning and plan to address this question in future studies.

      We have added a discussion of these issues to the revised manuscript [lines 52-59]:

      “…These methods allow the user to record simultaneously from ensembles of single motor units (Fig. 1c,d) in freely behaving animals, even from small muscles including the lateral head of the triceps muscle in mice (approximately 9 mm in length with a mass of 0.02 g 23). Myomatrix recordings isolated single motor units for extended periods (greater than two months, Supp. Fig. 3e), although highest unit yield was typically observed in the first 1-2 weeks after chronic implantation. Because recording sessions from individual animals were often separated by several days during which animals were disconnected from data collection equipment, we are unable to assess based on the present data whether the same motor units can be recorded over multiple days.”

      Moreover, we have revised Supplemental Figure 3 to show an example of single motor units recorded >2 months after implantation:

      Author response image 1.

      Longevity of Myomatrix recordings In addition to isolating individual motor units, Myomatrix arrays also provide stable multi-unit recordings of comparable or superior quality to conventional fine wire EMG…. (e) Although individual motor units were most frequently recorded in the first two weeks of chronic recordings (see main text), Myomatrix arrays also isolate individual motor units after much longer periods of chronic implantation, as shown here where spikes from two individual motor units (colored boxes in bottom trace) were isolated during locomotion 65 days after implantation. This bipolar recording was collected from the subject plotted with unfilled black symbols in panel (d).

      It appears both single-ended and differential amplification were used. The authors should clarify in the Methods which mode was used in each figure panel, and should discuss the advantages and disadvantages of each in terms of SNR, stability, and yield, along with any other practical considerations.

      We thank the reviewer for the suggestion and have added text to all figure legends clarifying whether each recording was unipolar or bipolar.

      Is there likely to be a motor unit size bias based on muscle depth, pennation angle, etc.?

      Although such biases are certainly possible, the data presented here are not well-suited to answering these questions. For chronic implants in small animals, the target muscles (e.g. triceps in mice) are so small that the surgeon often has little choice about the site and angle of array insertion, preventing a systematic analysis of this question. For acute array injections in larger animals such as rhesus macaques, we did not quantify the precise orientation of the arrays (e.g. with ultrasound imaging) or the muscle fibers themselves, again preventing us from drawing strong conclusions on this topic. This question is likely best addressed in acute experiments performed on larger muscles, in which the relative orientations of array threads and muscle fibers can be precisely imaged and systematically varied to address this important issue.

      Can muscle fiber conduction velocity be estimated with the arrays?

      We sometimes observe fiber conduction delays up to 0.5 msec as the spike from a single motor unit moves from electrode contact to electrode contact, so spike velocity could be easily estimated given the known spatial separation between electrode contacts. However (closely related to the above question) this will only provide an accurate estimate of muscle fiber conduction velocity if the electrode contacts are arranged parallel to fiber direction, which is difficult to assess in our current dataset. If the arrays are not parallel, this computation will produce an overestimate of conduction velocity, as in the extreme case where a line of electrode contacts arranged perpendicular to the fiber direction might have identical spike arrival times, and therefore appear to have an infinite conduction velocity. Therefore, although Myomatrix arrays can certainly be used to estimate conduction velocity, such estimates should be performed in future studies only in settings where the relative orientation of array threads and muscle fibers can be accurately measured.

      The authors suggest their device may have applications in the diagnosis of motor pathologies. Currently, concentric needle EMG to record from multiple motor units is the standard clinical method, and they may wish to elaborate on how surgical implantation of the new array might provide additional information for diagnosis while minimizing risk to patients.

      We thank the reviewer for the suggestion and have modified the manuscript’s final paragraph accordingly [lines 182-188]:

      “Applying Myomatrix technology to human motor unit recordings, particularly by using the minimally invasive injectable designs shown in Figure 3 and Supplemental Figure 1g,i, will create novel opportunities to diagnose motor pathologies and quantify the effects of therapeutic interventions in restoring motor function. Moreover, because Myomatrix arrays are far more flexible than the rigid needles commonly used to record clinical EMG, our technology might significantly reduce the risk and discomfort of such procedures while also greatly increasing the accuracy with which human motor function can be quantified. This expansion of access to high-resolution EMG signals – across muscles, species, and behaviors – is the chief impact of the Myomatrix project.”

      Reviewer #3 (Public Review):

      This work provides a novel design of implantable and high-density EMG electrodes to study muscle physiology and neuromotor control at the level of individual motor units. Current methods of recording EMG using intramuscular fine-wire electrodes do not allow for isolation of motor units and are limited by the muscle size and the type of behavior used in the study. The authors of Myomatrix arrays had set out to overcome these challenges in EMG recording and provided compelling evidence to support the usefulness of the new technology.

      Strengths:

      They presented convincing examples of EMG recordings with high signal quality using this new technology from a wide array of animal species, muscles, and behavior.

      • The design included suture holes and pull-on tabs that facilitate implantation and ensure stable recordings over months.

      • Clear presentation of specifics of the fabrication and implantation, recording methods used, and data analysis.

      We thank the Reviewer for these comments.

      Weaknesses:

      The justification for the need to study the activity of isolated motor units is underdeveloped. The study could be strengthened by providing example recordings from studies that try to answer questions where isolation of motor unit activity is most critical. For example, there is immense value for understanding muscles with smaller innervation ratio which tend to have many motor neurons for fine control of eyes and hand muscles.

      We thank the Reviewer for the suggestion and have modified the manuscript accordingly [lines 170-174]:

      “…how the nervous system executes skilled behaviors and coordinates the populations of motor units both within and across individual muscles. These approaches will be particularly valuable in muscles in which each motor neuron controls a very small number of muscle fibers, allowing fine control of oculomotor muscles in mammals as well as vocal muscles in songbirds (Fig. 2g), in which most individual motor neurons innervate only 1-3 muscle fibers (Adam et al. 2021).”

      Reviewer #1 (Recommendations for The Authors):

      I would urge the authors to consider a thorough validation of the spike sorting piece of the workflow. Barring that weakness, this paper has the potential to transform motor neuroscience. The validation efforts of kilosort in the context of Neuropixels might offer a template for how to convince the community of the accuracy of myomatrix arrays in disambiguating individual motor unit waveforms.

      I have a few minor detailed comments, that the authors may find of some use. My overall comment is to commend the authors for the precision of the work as well as the writing. However, exercising caution associated with kilosort could truly elevate the paper by showing where there is room for improvement.

      We thank the Reviewer for these comments - please see our summary of our revisions related to Kilosort in our reply to the public reviews above.

      L6-7: The relationship between motor unit action potential and the force produced is quite complicated in muscle. For example, recent work has shown how decoupled the force and EMG can be during nonsteady locomotion. Therefore, it is not a fully justified claim that recording motor unit potentials will tell us what forces are produced. This point relates to another claim made by the authors (correctly) that EMG provides better quality information about muscle motor output in isometric settings than in more dynamic behaviors. That same problem could also apply to motor unit recordings and their relationship to muscle force. The relationship is undoubtedly strong in an isometric setting. But as has been repeatedly established, the electrical activity of muscle is only loosely related to its force output and lacks in predictive power.

      This is an excellent point, and our revised manuscript now addresses this issue [lines 174-176]:

      “…Of further interest will be combining high-resolution EMG with precise measurement of muscle length and force output to untangle the complex relationship between neural control, body kinematics, and muscle force that characterizes dynamic motor behavior. Similarly, combining Myomatrix recordings with high-density brain recordings….”

      L12: There is older work that uses an array of skin mounted EMG electrodes to solve a source location problem, and thus come quite close to the authors' stated goals. However, the authors have failed to cite or provide an in-depth analysis and discussion of this older work.

      As described above in the response to Reviewer 1’s public review comments, we now cite and discuss these papers.

      L18-19: "These limitations have impeded our understanding of fundamental questions in motor control, ..." There are two independently true statements here. First is that there are limitations to EMG based inference of motor unit activity. Second is that there are gaps in the current understanding of motor unit recruitment patterns and modification of these patterns during motor learning. But the way the first few paragraphs have been worded makes it seem like motor unit recordings is a panacea for these gaps in our knowledge. That is not the case for many reasons, including key gaps in our understanding of how muscle's electrical activity relates to its force, how force relates to movement, and how control goals map to specific movement patterns. This manuscript would in fact be strengthened by acknowledging and discussing the broader scope of gaps in our understanding, and thus more precisely pinpointing the specific scientific knowledge that would be gained from the application of myomatrix arrays.

      We agree and have revised the manuscript to note this complexity (see our reply to this Reviewer’s other comment about muscle force, above).

      L140-143: The estimation algorithms yields potential spikes but lacking the validation of the sorting algorithms, it is not justifiable to conclude that the myomatrix arrays have already provided information about individual motor units.

      Please see our replies to Reviewer #1s public comments (above) regarding motor unit spike sorting.

      L181-182: "These methods allow very fine pitch escape routing (<10 µm spacing), alignment between layers, and uniform via formation." I find this sentence hard to understand. Perhaps there is some grammatical ambiguity?

      We have revised this passage as follows [lines 194-197]:

      "These methods allow very fine pitch escape routing (<10 µm spacing between the thin “escape” traces connecting electrode contacts to the connector), spatial alignment between the multiple layers of polyimide and gold that constitute each device, and precise definition of “via” pathways that connect different layers of the device.”

      L240: What is the rationale for choosing this frequency band for the filter?

      Individual motor unit waveforms have peak energy at roughly 0.5-2.0 kHz, although units recorded at very high SNR often have voltage waveform features at higher frequencies. The high- and lowpass cutoff frequencies should reflect this, although there is nothing unique about the 350 Hz and 7,000 Hz cutoffs we describe, and in all recordings similar results can be obtained with other choices of low/high frequency cutoffs.

      L527-528: There are some key differences between the electrode array design presented here and traditional fine-wire EMG in terms of features used to help with electrode stability within the muscle. A barb-like structure is formed in traditional fine-wire EMG by bending the wire outside the canula of the needle used to place it within the muscle. But when the wire is pulled out, it is common for the barb to break off and be left behind. This is because of the extreme (thin) aspect ratio of the barb in fine wire EMG and low-cycle fatigue fracture of the wire. From the schematic shown here, the barb design seems to be stubbier and thus less prone to breaking off. This raises the question of how much damage is inflicted during the pull-out and the associated level of discomfort to the animal as a result. The authors should present a more careful statement and documentation with regard to this issue.

      We have updated the manuscript to highlight the ease of inserting and removing Myomatrix probes, and to clarify that in over 100 injectable insertions/removal there have been zero cases of barbs (or any other part) of the devices breaking off within the muscle [lines 241-249]:

      “…Once the cannula was fully inserted, the tail was released, and the cannula slowly removed. After recording, the electrode and tail were slowly pulled out of the muscle together. Insertion and removal of injectable Myomatrix devices appeared to be comparable or superior to traditional fine-wire EMG electrodes (in which a “hook” is formed by bending back the uninsulated tip of the recording wire) in terms of both ease of injection, ease of removal of both the cannula and the array itself, and animal comfort. Moreover, in over 100 Myomatrix injections performed in rhesus macaques, there were zero cases in which Myomatrix arrays broke such that electrode material was left behind in the recorded muscle, representing a substantial improvement over traditional fine-wire approaches, in which breakage of the bent wire tip regularly occurs (Loeb and Gans 1986).”

      Reviewer #2 (Recommendations For The Authors):

      The Abstract states the device records "muscle activity at cellular resolution," which could potentially be read as a claim that single-fiber recording has been achieved. The authors might consider rewording.

      The Reviewer is correct, and we have removed the word “cellular”.

      The supplemental figures could perhaps be moved to the main text to aid readers who prefer to print the combined PDF file.

      After finalizing the paper we will upload all main-text and supplemental figures into a single pdf on biorXiv for readers who prefer a single pdf. However, given that the supplemental figures provide more technical and detailed information than the main-text figures, for the paper on the eLife site we prefer the current eLife format in which supplemental figures are associated with individual main-text figures online.

      Reviewer #3 (Recommendations For The Authors):

      • The work could be strengthened by showing examples of simultaneous recordings from different muscles.

      Although Myomatrix arrays can indeed be used to record simultaneously from multiple muscles, in this manuscript we have decided to focus on high-resolution recordings that maximize the number of recording channels and motor units obtained from a single muscle. Future work from our group with introduce larger Myomatrix arrays optimized for recording from many muscles simultaneously.

      • The implantation did not include mention of testing the myomatrix array during surgery by using muscle stimulation to verify correct placement and connection.

      As the Reviewer points out electrical stimulation is a valuable tool for confirming successful EMG placement. However we did not use this approach in the current study, relying instead on anatomical confirmation of muscle targeting (e.g. intrasurgical and postmortem inspection in rodents) and by implanting large, easy-totarget arm muscles (in primates) where the risk of mis-targeting is extremely low. Future studies will examine both electrical stimulation and ultrasound methods for confirming the placement of Myomatrix arrays.

      References cited above

      Adam, I., A. Maxwell, H. Rossler, E. B. Hansen, M. Vellema, J. Brewer, and C. P. H. Elemans. 2021. 'One-to-one innervation of vocal muscles allows precise control of birdsong', Curr Biol, 31: 3115-24 e5.

      Hoffer, J. A., M. J. O'Donovan, C. A. Pratt, and G. E. Loeb. 1981. 'Discharge patterns of hindlimb motoneurons during normal cat locomotion', Science, 213: 466-7.

      Hyngstrom, A. S., M. D. Johnson, J. F. Miller, and C. J. Heckman. 2007. 'Intrinsic electrical properties of spinal motoneurons vary with joint angle', Nat Neurosci, 10: 363-9.

      Loeb, G. E., and C. Gans. 1986. Electromyography for Experimentalists, First edi (The University of Chicago Press: Chicago, IL).

      Michel, C. M., M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli, and R. Grave de Peralta. 2004. 'EEG source imaging', Clin Neurophysiol, 115: 2195-222.

      Negro, F., S. Muceli, A. M. Castronovo, A. Holobar, and D. Farina. 2016. 'Multi-channel intramuscular and surface EMG decomposition by convolutive blind source separation', J Neural Eng, 13: 026027.

      Pfluger, H. J.; Burrows, M. 1978. 'Locusts use the same basic motor pattern in swimming as in jumping and kicking', Journal of experimental biology, 75: 81-93.

      Putney, Joy, Tobias Niebur, Leo Wood, Rachel Conn, and Simon Sponberg. 2023. 'An information theoretic method to resolve millisecond-scale spike timing precision in a comprehensive motor program', PLOS Computational Biology, 19: e1011170.

      Robinson, D. A. 1970. 'Oculomotor unit behavior in the monkey', J Neurophysiol, 33: 393-403.

      van den Doel, Kees, Uri M Ascher, and Dinesh K Pai. 2008. 'Computed myography: three-dimensional reconstruction of motor functions from surface EMG data', Inverse Problems, 24: 065010.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Firstly, we must take a moment to express our sincere gratitude to editorial board for allowing this work to be reviewed, and to the peer reviewers for taking the time and effort to review our manuscript. The reviews are thoughtful and reflect the careful work of scientists who undoubtedly have many things on their schedule. We cannot express our gratitude enough. This is not a minor sentiment. We appreciate the engagement.

      Allow us to briefly highlight some of the changes made to the revised manuscript, most on behalf of suggestions made by the reviewers:

      1) A supplementary figure that includes the calculation of drug applicability and variant vulnerability for a different data set–16 alleles of dihydrofolate reductase, and two antifolate compounds used to treat malaria–pyrimethamine and cycloguanil.

      2) New supplementary figures that add depth to the result in Figure 1 (the fitness graphs): we demonstrate how the rank order of alleles changes across drug environments and offer a statistical comparison of the equivalence of these fitness landscapes.

      3) A new subsection that explains our specific method used to measure epistasis.

      4) Improved main text with clarifications, fixed errors, and other addendums.

      5) Improved referencing and citations, in the spirit of better scholarship (now with over 70 references).

      Next, we’ll offer some general comments that we believe apply to several of the reviews, and to the eLife assessment. We have provided the bulk of the responses in some general comments, and in response to the public reviews. We have also included the suggestions and made brief comments to some of the individual recommendations.

      On the completeness of our analysis

      In our response, we’ll address the completeness issue first, as iterations of it appear in several of the reviews, and it seems to be one of the most substantive philosophical critiques of the work (there are virtually no technical corrections, outside of a formatting and grammar fixes, which we are grateful to the reviewers for identifying).

      To begin our response, we will relay that we have now included an analysis of a data set corresponding to mutants of a protein, dihydrofolate reductase (DHFR), from Plasmodium falciparum (a main cause of malaria), across two antifolate drugs (pyrimethamine and ycloguanil). We have also decided to include this new analysis in the supplementary material (see Figure S4).

      Author response image 1.

      Drug applicability and variant vulnerability for 16 alleles of dihydrofolate reductase.

      Here we compute the variant vulnerability and drug applicability metrics for two drugs, pyrimethamine (PYR) and cycloguanil (CYC), both antifolate drugs used to treat malaria. This is a completely different system than the one that is the focus of the submitted paper, for a different biomedical problem (antimalarial resistance), using different drugs, and targets. Further, the new data provide information on both drugs of different kinds, and drug concentrations (as suggested by Reviewer #1; we’ve also added a note about this in the new supplementary material). Note that these data have already been the subject of detailed analyses of epistatic effects, and so we did not include those here, but we do offer that reference:

      ● Ogbunugafor CB. The mutation effect reaction norm (mu-rn) highlights environmentally dependent mutation effects and epistatic interactions. Evolution. 2022 Feb 1;76(s1):37-48.

      ● Diaz-Colunga J, Sanchez A, Ogbunugafor CB. Environmental modulation of global epistasis is governed by effective genetic interactions. bioRxiv. 2022:202211.

      Computing our proposed metrics across different drugs is relatively simple, and we could have populated our paper with suites of similar analyses across data sets of various kinds. Such a paper would, in our view, be spread too thin–the evolution of antifolate resistance and/or antimalarial resistance are enormous problems, with large literatures that warrant focused studies. More generally, as the reviewers doubtlessly understand, simply analyzing more data sets does not make a study stronger, especially one like ours, that is using empirical data to both make a theoretical point about alleles and drugs and offer a metric that others can apply to their own data sets.

      Our approach focused on a data set that allowed us to discuss the biology of a system: a far stronger paper, a far stronger proof-of-concept for a new metric. We will revisit this discussion about the structure of our study. But before doing so, we will elaborate on why the “more is better” tone of the reviews is misguided.

      We also note that study where the data originate (Mira et al. 2015) is focused on a single data set of a single drug-target system. We should also point out that Mira et al. 2015 made a general point about drug concentrations influencing the topography of fitness landscapes, not unlike our general point about metrics used to understand features of alleles and different drugs in antimicrobial systems.

      This isn’t meant to serve as a feeble appeal to authority – just because something happened in one setting doesn’t make it right for another. But other than a nebulous appeal to the fact that things have changed in the 8 years since that study was published, it is difficult to argue why one study system was permissible for other work but is somehow “incomplete” in ours. Double standards can be appropriate when they are justified, but in this case, it hasn’t been made clear, and there is no technical basis for it.

      Our study does what countless other successful ones do: utilizes a biological system to make a general point about some phenomena in the natural world. In our case, we were focused on the need for more evolution-inspired iterations of widely used concepts like druggability. For example, a recent study of epistasis focused on a single set of alleles, across several drugs, not unlike our study:

      ● Lozovsky ER, Daniels RF, Heffernan GD, Jacobus DP, Hartl DL. Relevance of higher-order epistasis in drug resistance. Molecular biology and evolution. 2021 Jan;38(1):142-51.

      Next, we assert that there is a difference between an eagerness to see a new metric applied to many different data sets (a desire we share, and plan on pursuing in the future), and the notion that an analysis is “incomplete” without it. The latter is a more serious charge and suggests that the researcher-authors neglected to properly construct an argument because of gaps in the data. This charge does not apply to our manuscript, at all. And none of the reviewers effectively argued otherwise.

      Our study contains 7 different combinatorially-complete datasets, each composed of 16 alleles (this not including the new analysis of antifolates that now appear in the revision). One can call these datasets “small” or “low-dimensional,” if they choose (we chose to put this front-and-center, in the title). They are, however, both complete and as large or larger than many datasets in similar studies of fitness landscapes:

      ● Knies JL, Cai F, Weinreich DM. Enzyme efficiency but not thermostability drives cefotaxime resistance evolution in TEM-1 β-lactamase. Molecular biology and evolution. 2017 May 1;34(5):1040-54.

      ● Lozovsky ER, Daniels RF, Heffernan GD, Jacobus DP, Hartl DL. Relevance of higher-order epistasis in drug resistance. Molecular biology and evolution. 2021 Jan;38(1):142-51.

      ● Rodrigues JV, Bershtein S, Li A, Lozovsky ER, Hartl DL, Shakhnovich EI. Biophysical principles predict fitness landscapes of drug resistance. Proceedings of the National Academy of Sciences. 2016 Mar 15;113(11):E1470-8.

      ● Ogbunugafor CB, Eppstein MJ. Competition along trajectories governs adaptation rates towards antimicrobial resistance. Nature ecology & evolution. 2016 Nov 21;1(1):0007.

      ● Lindsey HA, Gallie J, Taylor S, Kerr B. Evolutionary rescue from extinction is contingent on a lower rate of environmental change. Nature. 2013 Feb 28;494(7438):463-7.

      These are only five of very many such studies, some of them very well-regarded.

      Having now gone on about the point about the data being “incomplete,” we’ll next move to the more tangible comment-criticism about the low-dimensionality of the data set, or the fact that we examined a single drug-drug target system (β lactamases, and β-lactam drugs).

      The criticism, as we understand it, is that the authors could have analyzed more data,

      This is a common complaint, that “more is better” in biology. While we appreciate the feedback from the reviewers, we notice that no one specified what constitutes the right amount of data. Some pointed to other single data sets, but would analyzing two different sets qualify as enough? Perhaps to person A, but not to persons B - Z. This is a matter of opinion and is not a rigorous comment on the quality of the science (or completeness of the analysis).

      ● Should we analyze five more drugs of the same target (beta lactamases)? And what bacterial orthologs?

      ● Should we analyze 5 antifolates for 3 different orthologs of dihydrofolate reductase?

      ● And in which species or organism type? Bacteria? Parasitic infections?

      ● And why only infectious disease? Aren’t these concepts also relevant to cancer? (Yes, they are.)

      ● And what about the number of variants in the aforementioned target? Should one aim for small combinatorially complete sets? Or vaster swaths of sequence space, such as the ones generated by deep mutational scanning and other methods?

      I offer these options in part because, for the most part, were not given an objective suggestion for appropriate level of detail. This is because there is no answer to the question of what size of dataset would be most appropriate. Unfortunately, without a technical reason why a data set of unspecified size [X] or [Y] is best, then we are left with a standard “do more work” peer review response, one that the authors are not inclined to engage seriously, because there is no scientific rationale for it.

      The most charitable explanation for why more datasets would be better is tied to the abstract notion that seeing a metric measured in different data sets somehow makes it more believable. This, as the reviewers undoubtedly understand, isn’t necessarily true (in fact, many poor studies mask a lack of clarity with lots of data).

      To double down on this take, we’ll even argue the opposite: that our focus on a single drug system is a strength of the study.

      The focus on a single-drug class allows us to practice the lost art of discussing the peculiar biology of the system that we are examining. Even more, the low dimensionality allows us to discuss–in relative detail–individual mutations and suites of mutations. We do so several times in the manuscript, and even connect our findings to literature that has examined the biophysical consequences of mutations in these very enzymes.

      (For example: Knies JL, Cai F, Weinreich DM. Enzyme efficiency but not thermostability drives cefotaxime resistance evolution in TEM-1 β-lactamase. Molecular biology and evolution. 2017 May 1;34(5):1040-54.)

      Such detail is only legible in a full-length manuscript because we were able to interrogate a system in good detail. That is, the low-dimensionality (of a complete data set) is a strength, rather than a weakness. This was actually part of the design choice for the study: to offer a new metric with broad application but developed using a system where the particulars could be interrogated and discussed.

      Surely the findings that we recover are engineered for broader application. But to suggest that we need to apply them broadly in order to demonstrate their broad impact is somewhat antithetical to both model systems research and to systems biology, both of which have been successful in extracting general principles for singular (often simple) systems and models.

      An alternative approach, where the metric was wielded across an unspecified number of datasets would lend to a manuscript that is unfocused, reading like many modern machine learning papers, where the analysis or discussion have little to do with actual biology. We very specifically avoided this sort of study.

      To close our comments regarding data: Firstly, we have considered the comments and analyzed a different data set, corresponding to a different drug-target system (antifolate drugs, and DHFR). Moreover, we don’t think more data has anything to do with a better answer or support for our conclusions or any central arguments. Our arguments were developed from the data set that we used but achieve what responsible systems biology does: introduces a framework that one can apply more broadly. And we develop it using a complete, and well-vetted dataset. If the reviewers have a philosophical difference of opinion about this, we respect it, but it has nothing to do with our study being “complete” or not. And it doesn’t speak to the validity of our results.

      Related: On the dependence of our metrics on drug-target system

      Several comments were made that suggest the relevance of the metric may depend on the drug being used. We disagree with this, and in fact, have argued the opposite: the metrics are specifically useful because they are not encumbered with unnecessary variables. They are the product of rather simple arithmetic that is completely agnostic to biological particulars.

      We explain, in the section entitled “Metric Calculations:

      “To estimate the two metrics we are interested in, we must first quantify the susceptibility of an allelic variant to a drug. We define susceptibility as $1 - w$, where w is the mean growth of the allelic variant under drug conditions relative to the mean growth of the wild-type/TEM-1 control. If a variant is not significantly affected by a drug (i.e., growth under drug is not statistically lower than growth of wild-type/TEM-1 control, by t-test P-value < 0.01), its susceptibility is zero. Values in these metrics are summaries of susceptibility: the variant vulnerability of an allelic variant is its average susceptibility across drugs in a panel, and the drug applicability of an antibiotic is the average susceptibility of all variants to it.”

      That is, these can be animated to compute the variant vulnerability and drug applicability for data sets of various kinds. To demonstrate this (and we thank the reviewers for suggesting it), we have analyzed the antifolate-DHFR data set as outlined above.

      Finally, we will make the following light, but somewhat cynical point (that relates to the “more data” more point generally): the wrong metric applied to 100 data sets is little more than 100 wrong analyses. Simply applying the metric to a wide number of datasets has nothing to do with the veracity of the study. Our study, alternatively, chose the opposite approach: used a data set for a focused study where metrics were extracted. We believe this to be a much more rigorous way to introduce new metrics.

      On the Relevance of simulations

      Somewhat relatedly, the eLife summary and one of the reviewers mentioned the potential benefit of simulations. Reviewer 1 correctly highlights that the authors have a lot of experience in this realm, and so generating simulations would be trivial. For example, the authors have been involved in studies such as these:

      ● Ogbunugafor CB, Eppstein MJ. Competition along trajectories governs adaptation rates towards antimicrobial resistance. Nature ecology & evolution. 2016 Nov 21;1(1):0007.

      ● Ogbunugafor CB, Wylie CS, Diakite I, Weinreich DM, Hartl DL. Adaptive landscape by environment interactions dictate evolutionary dynamics in models of drug resistance. PLoS computational biology. 2016 Jan 25;12(1):e1004710.

      ● Ogbunugafor CB, Hartl D. A pivot mutation impedes reverse evolution across an adaptive landscape for drug resistance in Plasmodium vivax. Malaria Journal. 2016 Dec;15:1-0.

      From the above and dozens of other related studies, we’ve learned that simulations are critical for questions about the end results of dynamics across fitness landscapes of varying topography. To simulate across the datasets in the submitted study would be be a small ask. We do not provide this, however, because our study is not about the dynamics of de novo evolution of resistance. In fact, our study focuses on a different problem, no less important for understanding how resistance evolves: determining static properties of alleles and drugs, that provide a picture into their ability to withstand a breadth of drugs in a panel (variant vulnerability), or the ability of a drug in a panel to affect a breadth of drug targets.

      The authors speak on this in the Introduction:

      “While stepwise, de novo evolution (via mutations and subsequent selection) is a key force in the evolution of antimicrobial resistance, evolution in natural settings often involves other processes, including horizontal gene transfer and selection on standing genetic variation. Consequently, perspectives that consider variation in pathogens (and their drug targets) are important for understanding treatment at the bedside. Recent studies have made important strides in this arena. Some have utilized large data sets and population genetics theory to measure cross-resistance and collateral sensitivity. Fewer studies have made use of evolutionary concepts to establish metrics that apply to the general problem of antimicrobial treatment on standing genetic variation in pathogen populations, or for evaluating the utility of certain drugs’ ability to treat the underlying genetic diversity of pathogens”

      That is, the proposed metrics aren’t about the dynamics of stepwise evolution across fitness landscapes, and so, simulating those dynamics don’t offer much for our question. What we have done instead is much more direct and allows the reader to follow a logic: clearly demonstrate the topography differences in Figure 1 (And Supplemental Figure S2 and S3 with rank order changes).

      Author response image 2.

      These results tell the reader what they need to know: that the topography of fitness landscapes changes across drug types. Further, we should note that Mira et al. 2015 already told the basic story that one finds different adaptive solutions across different drug environments. (Notably, without computational simulations).

      In summary, we attempted to provide a rigorous, clean, and readable study that introduced two new metrics. Appeals to adding extra analysis would be considered if they augmented the study’s goals. We do not believe this to be the case.

      Nonetheless, we must reiterate our appreciation for the engagement and suggestions. All were made with great intentions. This is more than one could hope for in a peer review exchange. The authors are truly grateful.

      eLife assessment

      The work introduces two valuable concepts in antimicrobial resistance: "variant vulnerability" and "drug applicability", which can broaden our ways of thinking about microbial infections through evolution-based metrics. The authors present a compelling analysis of a published dataset to illustrate how informative these metrics can be, study is still incomplete, as only a subset of a single dataset on a single class of antibiotics was analyzed. Analyzing more datasets, with other antibiotic classes and resistance mutations, and performing additional theoretical simulations could demonstrate the general applicability of the new concepts.

      The authors disagree strongly with the idea that the study is ‘incomplete,” and encourage the editors and reviewers to reconsider this language. Not only are the data combinatorially complete, but they are also larger in size than many similar studies of fitness landscapes. Insofar as no technical justification was offered for this “incomplete” summary, we think it should be removed. Furthermore, we question the utility of “theoretical simulations.” They are rather easy to execute but distract from the central aims of the study: to introduce new metrics, in the vein of other metrics–like druggability, IC50, MIC–that describe properties of drugs or drug targets.

      Public Reviews:

      Reviewer #1 (Public Review):

      The manuscript by Geurrero and colleagues introduces two new metrics that extend the concept of "druggability"- loosely speaking, the potential suitability of a particular drug, target, or drug-target interaction for pharmacological intervention-to collections of drugs and genetic variants. The study draws on previously measured growth rates across a combinatoriality complete mutational landscape involving 4 variants of the TEM-50 (beta lactamase) enzyme, which confers resistance to commonly used beta-lactam antibiotics. To quantify how growth rate - in this case, a proxy for evolutionary fitness - is distributed across allelic variants and drugs, they introduce two concepts: "variant vulnerability" and "drug applicability".

      Variant vulnerability is the mean vulnerability (1-normalized growth rate) of a particular variant to a library of drugs, while drug applicability measures the mean across the collection of genetic variants for a given drug. The authors rank the drugs and variants according to these metrics. They show that the variant vulnerability of a particular mutant is uncorrelated with the vulnerability of its one-step neighbors and analyze how higher-order combinations of single variants (SNPs) contribute to changes in growth rate in different drug environments.

      The work addresses an interesting topic and underscores the need for evolutionbased metrics to identify candidate pharmacological interventions for treating infections. The authors are clear about the limitations of their approach - they are not looking for immediate clinical applicability - and provide simple new measures of druggability that incorporate an evolutionary perspective, an important complement to the orthodoxy of aggressive, kill-now design principles. I think the ideas here will interest a wide range of readers, but I think the work could be improved with additional analysis - perhaps from evolutionary simulations on the measured landscapes - that tie the metrics to evolutionary outcomes.

      The authors greatly appreciate these comments, and the proposed suggestions by reviewer 1. We have addressed most of the criticisms and suggestions in our comments above.

      Reviewer #2 (Public Review):

      The authors introduce the notions of "variant vulnerability" and "drug applicability" as metrics quantifying the sensitivity of a given target variant across a panel of drugs and the effectiveness of a drug across variants, respectively. Given a data set comprising a measure of drug effect (such as growth rate suppression) for pairs of variants and drugs, the vulnerability of a variant is obtained by averaging this measure across drugs, whereas the applicability of a drug is obtained by averaging the measure across variants.

      The authors apply the methodology to a data set that was published by Mira et al. in 2015. The data consist of growth rate measurements for a combinatorially complete set of 16 genetic variants of the antibiotic resistance enzyme betalactamase across 10 drugs and drug combinations at 3 different drug concentrations, comprising a total of 30 different environmental conditions. For reasons that did not become clear to me, the present authors select only 7 out of 30 environments for their analysis. In particular, for each chosen drug or drug combination, they choose the data set corresponding to the highest drug concentration. As a consequence, they cannot assess to what extent their metrics depend on drug concentration. This is a major concern since Mira et al. concluded in their study that the differences between growth rate landscapes measured at different concentrations were comparable to the differences between drugs. If the new metrics display a significant dependence on drug concentration, this would considerably limit their usefulness.

      The authors appreciate the point about drug concentration, and it is one that the authors have made in several studies.

      The quick answer is that whether the metrics are useful for drug type-concentration A or B will depend on drug type-concentration A or B. If there are notable differences in the topography of the fitness landscape across concentration, then we should expect the metrics to differ. What Reviewer #2 points out as a “major concern,” is in fact a strength of the metrics: it is agnostic with respect to type of drug, type of target, size of dataset, or topography of the fitness landscape. And so, the authors disagree: no, that drug concentration would be a major actor in the value of the metrics does not limit the utility of the metric. It is simply another variable that one can consider when computing the metrics.

      As discussed above, we have analyzed data from a different data set, in a different drug-target problem (DHFR and antifolate drugs; see supplemental information). These demonstrate how the metric can be used to compute metrics across different drug concentrations.

      As a consequence of the small number of variant-drug combinations that are used, the conclusions that the authors draw from their analysis are mostly tentative with weak statistical support. For example, the authors argue that drug combinations tend to have higher drug applicability than single drugs, because a drug combination ranks highest in their panel of 7. However, the effect profile of the single drug cefprozil is almost indistinguishable from that of the top-ranking combination, and the second drug combination in the data set ranks only 5th out of 7.

      We reiterate our appreciation for the engagement. Reviewer #2 generously offers some technical insight on measurements of epistasis, and their opinion on the level of statistical support for our claims. The authors are very happy to engage in a dialogue about these points. We disagree rather strongly, and in addition to the general points raised above (that speak to some of this), will raise several specific rebuttals to the comments from Reviewer #2.

      For one, the Reviewer #2 is free to point to what arguments have “weak statistical support.” Having read the review, we aren’t sure what this is referring to. “Weak statistical support” generally applies to findings built from underpowered studies, or designs constructed in manner that yield effect sizes or p-values that give low confidence that a finding is believable (or is replicable). This sort of problem doesn’t apply to our study for various reasons, the least of which being that our findings are strongly supported, based on a vetted data set, in a system that has long been the object of examination in studies of antimicrobial resistance.

      For example, we did not argue that magnetic fields alter the topography of fitness landscapes, a claim which must stand up to a certain sort of statistical scrutiny. Alternatively, we examined landscapes where the drug environment differed statistically from the non-drug environment and used them to compute new properties of alleles and drugs.

      We can imagine that the reviewer is referring to the low-dimensionality of the fitness landscapes in the study. Again: the features of the dataset are a detail that the authors put into the title of the manuscript. Further, we emphasize that it is not a weakness, but rather, allows the authors to focus, and discuss the specific biology of the system. And we responsibly explain the constraints around our study several times, though none of them have anything to do with “weak statistical support.”

      Even though we aren’t clear what “weak statistical support” means as offered by Reviewer 2, the authors have nonetheless decided to provide additional analyses, now appearing in the new supplemental material.

      We have included a new Figure S2, where we offer an analysis of the topography of the 7 landscapes, based on the Kendall rank order test. This texts the hypothesis that there is no correlation (concordance or discordance) between the topographies of the fitness landscapes.

      Author response image 3.

      Kendall rank test for correlation between the 7 fitness landscapes.

      In Figure S3, we test the hypothesis that the variant vulnerability values differ. To do this, we calculate a paired t-test. These are paired by haplotype/allelic variant, so the comparisons are change in growth between drugs for each haplotype.

      Author response image 4.

      Paired t-tests for variant vulnerability.

      To this point raised by Reviewer #2:

      “For example, the authors argue that drug combinations tend to have higher drug applicability than single drugs, because a drug combination ranks highest in their panel of 7. However, the effect profile of the single drug cefprozil is almost indistinguishable from that of the top-ranking combination, and the second drug combination in the data set ranks only 5th out of 7.”

      Our study does not argue that drug combinations are necessarily correlated with a higher drug applicability. Alternatively, we specifically highlight that one of the combinations does not have a high drug applicability:

      “Though all seven drugs/combinations are β-lactams, they have widely varying effects across the 16 alleles. Some of the results are intuitive: for example, the drug regime with the highest drug applicability of the set—amoxicillin/clavulanic acid—is a mixture of a widely used β-lactam (amoxicillin) and a β-lactamase inhibitor (clavulanic acid) (see Table 3). We might expect such a mixture to have a broader effect across a diversity of variants. This high applicability is hardly a rule, however, as another mixture in the set, piperacillin/tazobactam, has a much lower drug applicability (ranking 5th out of the seven drugs in the set) (Table 3).”

      In general, we believe that the submitted paper is responsible with regards to how it extrapolates generalities from the results. Further, the manuscript contains a specific section that explains limitations, clearly and transparently (not especially common in science). For that reason, we’d encourage reviewer #2 to reconsider their perspective. We do not believe that our arguments are built on “weak” support at all. And we did not argue anything particular about drug combinations writ large. We did the opposite— discussed the particulars of our results in light of the biology of the system.

      Thirdly, to this point:

      “To assess the environment-dependent epistasis among the genetic mutations comprising the variants under study, the authors decompose the data of Mira et al. into epistatic interactions of different orders. This part of the analysis is incomplete in two ways. First, in their study, Mira et al. pointed out that a fairly large fraction of the fitness differences between variants that they measured were not statistically significant, which means that the resulting fitness landscapes have large statistical uncertainties. These uncertainties should be reflected in the results of the interaction analysis in Figure 4 of the present manuscript.”

      The authors are uncertain with regards to the “uncertainties” being referred to, but we’ll do our best to understand: our study utilized the 7 drug environments from Mira et al. 2015 with statistically significant differences between growth rates with and without drug. And so, this point about how the original set contained statistically insignificant treatments is not relevant here. We explain this in the methods section:

      “The data that we examine comes from a past study of a combinatorial set of four mutations associated with TEM-50 resistance to β-lactam drugs [39 ]. This past study measured the growth rates of these four mutations in combination, across 15 different drugs (see Supplemental Information).”

      We go on to say the following:

      “We examined these data, identifying a subset of structurally similar β-lactams that also included β-lactams combined with β-lactamase inhibitors, cephalosporins and penicillins. From the original data set, we focus our analyses on drug treatments that had a significant negative effect on the growth of wild-type/TEM-1 strains (one-tailed ttest of wild-type treatment vs. control, P < 0.01). After identifying the data from the set that fit our criteria, we were left with seven drugs or combinations (concentration in μg/ml): amoxicillin 1024 μg/ ml (β-lactam), amoxicillin/clavulanic acid 1024 μg/m l (βlactam and β-lactamase inhibitor) cefotaxime 0.123 μg/ml (third-generation cephalosporin), cefotetan 0.125 μg/ml (second-generation cephalosporins), cefprozil 128 μg/ml (second-generation cephalosporin), ceftazidime 0.125 μg/ml (third-generation cephalosporin), piperacillin and tazobactam 512/8 μg/ml (penicillin and β-lactamase inhibitor). With these drugs/mixtures, we were able to embody chemical diversity in the panel.”

      Again: The goal of our study was to develop metrics that can be used to analyze features of drugs and targets and disentangle these metrics into effects.

      Second, the interpretation of the coefficients obtained from the epistatic decomposition depends strongly on the formalism that is being used (in the jargon of the field, either a Fourier or a Taylor analysis can be applied to fitness landscape data). The authors need to specify which formalism they have employed and phrase their interpretations accordingly.

      The authors appreciate this nuance. Certainly, how to measure epistasis is a large topic of its own. But we recognize that we could have addressed this more directly and have added text to this effect.

      In response to these comments from Reviewer #2, we have added a new section focused on these points (reference syntax removed here for clarity; please see main text for specifics):

      “The study of epistasis, and discussions regarding the means to detect and measure now occupies a large corner of the evolutionary genetics literature. The topic has grown in recent years as methods have been applied to larger genomic data sets, biophysical traits, and the "global" nature of epistatic effects. We urge those interested in more depth treatments of the topic to engage larger summaries of the topic.”

      “Here will briefly summarize some methods used to study epistasis on fitness landscapes. Several studies of combinatorially-complete fitness landscapes use some variation of Fourier Transform or Taylor formulation. One in particular, the Walsh-Hadamard Transform has been used to measure epistasis across a wide number of study systems. Furthermore, studies have reconciled these methods with others, or expanded upon the Walsh-Hadamard Transform in a way that can accommodate incomplete data sets. These methods are effective for certain sorts of analyses, and we strongly urge those interested to examine these studies.”

      “The method that we've utilized, the LASSO regression, determines effect sizes for all interactions (alleles and drug environments). It has been utilized for data sets of similar size and structure, on alleles resistant to trimethoprim. Among many benefits, the method can accommodate gaps in data and responsibly incorporates experimental noise into the calculation.”

      As Reviewer #2 understands, there are many ways to examine epistasis on both high and low-dimensional landscapes. Reviewer #2 correctly offers two sorts of formalisms that allow one to do so. The two offered by Reviewer #2, are not the only means of measuring epistasis in data sets like the one we have offered. But we acknowledge that we could have done a better job outlining this. We thank Reviewer #2 for highlighting this, and believe our revision clarifies this.

      Reviewer #3 (Public Review):

      The authors introduce two new concepts for antimicrobial resistance borrowed from pharmacology, "variant vulnerability" (how susceptible a particular resistance gene variant is across a class of drugs) and "drug applicability" (how useful a particular drug is against multiple allelic variants). They group both terms under an umbrella term "drugability". They demonstrate these features for an important class of antibiotics, the beta-lactams, and allelic variants of TEM-1 beta-lactamase.

      The strength of the result is in its conceptual advance and that the concepts seem to work for beta-lactam resistance. However, I do not necessarily see the advance of lumping both terms under "drugability", as this adds an extra layer of complication in my opinion.

      Firstly, the authors greatly appreciate the comments from Reviewer #3. They are insightful, and prescriptive. And allow us to especially thank reviewer 3 for supplying a commented PDF with some grammatical and phrasing suggestions/edits. This is much appreciated. We have examined all these suggestions and made changes.

      In general, we agree with the spirit of many of the comments. In addition to our prior comments on the scope of our data, we’ll communicate a few direct responses to specific points raised.

      I also think that the utility of the terms could be more comprehensively demonstrated by using examples across different antibiotic classes and/or resistance genes. For instance, another good model with published data might have been trimethoprim resistance, which arises through point mutations in the folA gene (although, clinical resistance tends to be instead conferred by a suite of horizontally acquired dihydrofolate reductase genes, which are not so closely related as the TEM variants explored here).

      1. In our new supplemental material, we now feature an analysis of antifolate drugs, pyrimethamine and cycloguanil. We have discussed this in detail above and thank the reviewer for the suggestion.

      2. Secondly, we agree that the study will have a larger impact when the metrics are applied more broadly. This is an active area of investigation, and our hope is that others apply our metrics more broadly. But as we discussed, such a desire is not a technical criticism of our own study. We stand behind the rigor and insight offered by our study.

      The impact of the work on the field depends on a more comprehensive demonstration of the applicability of these new concepts to other drugs.

      The authors don’t disagree with this point, which applies to virtually every potentially influential study. The importance of a single study can generally only be measured by its downstream application. But this hardly qualifies as a technical critique of our study and does not apply to our study alone. Nor does it speak to the validity of our results. The authors share this interest in applying the metric more broadly.

      Reviewer #1 (Recommendations For The Authors):

      • The main weakness of the work, in my view, is that it does not directly tie these new metrics to a quantitative measure of "performance". The metrics have intuitive appeal, and I think it is likely that they could help guide treatment options-for example, drugs with high applicability could prove more useful under particular conditions. But as the authors note, the landscape is rugged and intuitive notions of evolutionary behavior can sometimes fail. I think the paper would be much improved if the authors could evaluate their new metrics using some type of quantitative evolutionary model. For example, perhaps the authors could simulate evolutionary dynamics on these landscapes in the presence of different drugs. Is the mean fitness achieved in the simulations correlated with, for example, the drug applicability when looking across an ensemble of simulations with the same drug but varied initial conditions that start from each individual variant? Similarly, if you consider an ensemble of simulations where each member starts from the same variant but uses a different drug, is the average fitness gain captured in some way by the variant vulnerability? All simulations will have limitations, of course, but given that the landscape is fully known I think these questions could be answered under some conditions (e.g. strong selection weak mutation limit, where the model could be formulated as a Markov Chain; see 10.1371/journal.pcbi.1004493 or doi: 10.1111/evo.14121 for examples). And given the authors' expertise in evolutionary dynamics, I think it could be achieved in a reasonable time. With that said, I want to acknowledge that with any new "metrics", it can be tempting to think that "we need to understand it all" before it is useful, and I don't want to fall into that trap here.

      The authors respect and appreciate these thoughtful comments.

      As Reviewer #1 highlighted, the authors are experienced with building simulations of evolution. For reasons we have outlined above, we don’t believe they would add to the arc of the current story and may encumber the story with unnecessary distractions. Simulations of evolution can be enormously useful for studies focused on particulars of the dynamics of evolution. This submitted study is not one of those. It is charged with identifying features of alleles and drugs that capture an allele’s vulnerability to treatment (variant vulnerability) and a drug’s effectiveness across alleles (drug applicability). Both features integrate aspects of variation (genetic and environmental), and as such, are improvements over both metrics used to describe drug targets and drugs.

      • The new metrics rely on means, which is a natural choice. Have the authors considered how variance (or other higher moments) might also impact evolutionary dynamics? I would imagine, for example, that the ultimate outcome of a treatment might depend heavily on the shape of the distribution, not merely its mean. This is also something one might be able to get a handle on with simulations.

      These are relevant points, and the authors appreciate them. Certainly, moments other than the mean might have utility. This is the reason that we computed the one-step neighborhood variant vulnerability–to see if the variant vulnerability of an allele was related to properties of its mutational neighborhood. We found no such correlation. There are many other sorts of properties that one might examine (e.g., shape of the distribution, properties of mutational network, variance, fano factor, etc). As we don’t have an informed reason to pursue any of this in lieu of others, we are pleased to investigate this in the future.

      Also, while we’ve addressed general points about simulations above, we want to note that our analysis of environmental epistasis does consider the variance. We urge Reviewer #1 to see our new section on “Notes on Methods Used to Measure Epistasis” where we explain some of this and supply references to that effect.

      • As I understand it, the fitness measurements here are measures of per capita growth rate, which is reasonable. However, the authors may wish to briefly comment on the limitations of this choice-i.e. the fact that these are not direct measures of relative fitness values from head-to-head competition between strains.

      Reviewer #1 is correct: the metrics are computed from means. As Reviewer 1 definitely understands, debates over what measurements are proper proxies for fitness go back a long time. We added a slight acknowledgement about the existence of multiple fitness proxies in our revision.

      • The authors consider one-step variant vulnerability. Have the authors considered looking at 2-step, 3-step, etc analogs of the 1-step vulnerability? I wonder if these might suggest potential vulnerability bottlenecks associated with the use of a particular drug/drug combo or trajectories starting from particular variants.

      This is an interesting point. We provided one-step values as a means of interrogating the mutational neighborhood of alleles in the fitness landscape. While there could certainly be other pattern-relationships between the variant vulnerability and features of a fitness landscape (as the reviewer recognizes), we don’t have a rigorous reason to test them, other than an appeal to “I would be curious if [Blank].” As in, attempting to saturate the paper with these sorts of examinations might be fun, could turn up an interesting result, but this is true for most studies.

      To highlight just how serious we are about future questions along these lines, we’ll offer one specific question about the relationship between metrics and other features of alleles or landscapes. Recent studies have examined the existence of “evolvabilityenhancing mutations,” that propel a population to high-fitness sections of a fitness landscape:

      ● Wagner, A. Evolvability-enhancing mutations in the fitness landscapes of an RNA and a protein. Nat Commun 14, 3624 (2023). https://doi.org/10.1038/s41467023-39321-8

      One present and future area of inquiry involves whether there is any relationship between metrics like variant vulnerability and these sorts of mutations.

      We thank Reviewer 1 for engagement on this issue.

      • Fitness values are measured in the presence of a drug, but it is not immediately clear how the drug concentrations are chosen and, more importantly, how the choice of concentration might impact the landscape. The authors may wish to briefly comment on these effects, particularly in cases where the environment involves combinations of drugs. There will be a "new" fitness landscape for each concentration, but to what extent do the qualitative features changes-or whatever features drive evolutionary dynamics--change?

      This is another interesting suggestion. We have analyzed a new data set for dihydrofolate reductase mutants that contains a range of drug concentrations of two different antifolate drugs. The general question of how drug concentrations change evolutionary dynamics has been addressed in prior work of ours:

      ● Ogbunugafor CB, Wylie CS, Diakite I, Weinreich DM, Hartl DL. Adaptive landscape by environment interactions dictate evolutionary dynamics in models of drug resistance. PLoS computational biology. 2016 Jan 25;12(1):e1004710.

      ● Ogbunugafor CB, Eppstein MJ. Competition along trajectories governs adaptation rates towards antimicrobial resistance. Nature ecology & evolution. 2016 Nov 21;1(1):0007.

      There are a very large number of environment types that might alter the drug availability or variant vulnerability metrics. In our study, we used an established data set composed of different alleles of a Beta lactamase, with growth rates measured across a number of drug environments. These drug environments consisted of individual drugs at certain concentrations, as outlined in Mira et al. 2015. For our study, we examined those drugs that had a significant impact on growth rate.

      For a new analysis of antifolate drugs in 16 alleles of dihydrofolate reductase (Plasmodium falciparum), we have examined a breadth of drug concentrations (Supplementary Figure S4). This represents a different sort of environment that one can use to measure the two metrics (variant vulnerability or drug applicability). As we suggest in the manuscript, part of the strength of the metric is precisely that it can incorporate drug dimensions of various kinds.

      • The metrics introduced depend on the ensemble of drugs chosen. To what extent are the chosen drugs representative? Are there cases where nonrepresentative ensembles might be advantageous?

      The authors thank the reviewer for this. The general point has been addressed in our comments above. Further, the general question of how a study of one set of drugs applies to other drugs applies to every study of every drug, as no single study interrogates every sort of drug ensemble. That said, we’ve explained the anatomy of our metrics, and have outlined how it can be directly applied to others. There is nothing about the metric itself that has anything to do with a particular drug type – the arithmetic is rather vanilla.

      Reviewer #2 (Recommendations For The Authors):

      1. Regarding my comment about the different formalisms for epistatic decomposition analysis, a key reference is

      Poelwijk FJ, Krishna V, Ranganathan R (2016). The Context-Dependence of Mutations: A Linkage of Formalisms. PLoS Comput Biol 12(6): e1004771.

      The authors appreciate this, are fans of this work, and have cited it in the revision.

      An example where both Fourier and Taylor analyses were carried out and the different interpretations of these formalisms were discussed is

      Unraveling the causes of adaptive benefits of synonymous mutations in TEM-1 βlactamase. Mark P. Zwart, Martijn F. Schenk, Sungmin Hwang, Bertha Koopmanschap, Niek de Lange, Lion van de Pol, Tran Thi Thuy Nga, Ivan G. Szendro, Joachim Krug & J. Arjan G. M. de Visser Heredity 121:406-421 (2018)

      The authors are grateful for these references. While we don’t think they are necessary for our new section entitled “Notes on methods used to detect epistasis,” we did engage them, and will keep them in mind for other work that more centrally focuses on methods used to detect epistasis. As the author acknowledges, a full treatment of this topic is too large for a single manuscript, let alone a subsection of one study. We have provided a discussion of it, and pointed the readers to longer review articles that explore some of these topics in good detail:

      ● C. Bank, Epistasis and adaptation on fitness landscapes, Annual Review of Ecology, Evolution, and Systematics 53 (1) (2022) 457–479.

      ● T. B. Sackton, D. L. Hartl, Genotypic context and epistasis in individuals and populations, Cell 166 (2) (2016) 279–287.

      ● J. Diaz-Colunga, A. Skwara, J. C. C. Vila, D. Bajic, Á. Sánchez, Global epistasis and the emergence of ecological function, BioRxviv

      1. Although the authors label Figure 4 with the term "environmental epistasis", as far as I can see it is only a standard epistasis analysis that is carried out separately for each environment. The analysis of environmental epistasis should instead focus on which aspects of these interactions are different or similar in different environments, for example, by looking at the reranking of fitness values under environmental changes [see Ref.[26] as well as more recent related work, e.g. Gorter et al., Genetics 208:307-322 (2018); Das et al., eLife9:e55155 (2020)]. To some extent, such an analysis was already performed by Mira et al., but not on the level of epistatic interaction coefficients.

      The authors have provided a new analysis of how fitness value rankings have changed across drug environments, often a signature of epistatic effects across environments (Supplementary Figure S1).

      We disagree with the idea that our analysis is not a sort of environmental epistasis; we resolve coefficients between loci across different environments. As with every interrogation of G x E effects (G x G x E in our case), what constitutes an “environment” is a messy conversation. We have chosen the route of explaining very clearly what we mean:

      “We further explored the interactions across this fitness landscape and panels of drugs in two additional ways. First, we calculated the variant vulnerability for 1-step neighbors, which is the mean variant vulnerability of all alleles one mutational step away from a focal variant. This metric gives information on how the variant vulnerability values are distributed across a fitness landscape. Second, we estimated statistical interaction effects on bacterial growth through LASSO regression. For each drug, we fit a model of relative growth as a function of M69L x E104K x G238S x N276D (i.e., including all interaction terms between the four amino acid substitutions). The effect sizes of the interaction terms from this regularized regression analysis allow us to infer higher-order dynamics for susceptibility. We label this calculation as an analysis of “environmental epistasis.”

      As the grammar for these sorts of analyses continues to evolve, the best one can do is be clear about what they mean. We believe that we communicated this directly and transparently.

      1. As a general comment, to strengthen the conclusions of the study, it would be good if the authors could include additional data sets in their analysis.

      The authors appreciate this comment and have given this point ample treatment. Further, other main conclusions and discussion points are focused on the biology of the system that we examined. Analyzing other data sets may demonstrate the broader reach of the metrics, but it would not alter the strength of our own conclusions (or if they would, Reviewer #2 has not told us how).

      1. There are some typos in the units of drug concentrations in Section 2.4 that should be corrected.

      The authors truly appreciate this. It is a great catch. We have fixed this in the revised manuscript.

      Reviewer #3 (Recommendations For The Authors):

      I would suggest demonstrating the concepts for a second drug class, and suggest folA variants and trimethoprim resistance, for which there is existing published data similar to what the authors have used here (e.g. Palmer et al. 2015, https://doi.org/10.1038/ncomms8385)

      The authors appreciate this insight. As previously described, we have analyzed a data set of folA mutants for the Plasmodium falciparum ortholog of dihydrofolate reductase, and included these results in new supplemental material. Please see the supplementary material.

      There are some errors in formatting and presentation that I have annotated in a separate PDF file (https://elife-rp.msubmit.net/eliferp_files/2023/04/11/00117789/00/117789_0_attach_8_30399_convrt.pdf), as the absence of line numbers makes indicating specific things exceedingly difficult.

      The authors apologize for the lack of line numbers (an honest oversight), but moreover, are tremendously grateful for this feedback. We have looked at the suggested changes carefully and have addressed many of them. Thank you.

      One thing to note: we have included a version of Figure 4 that has effects on the same axes. It appears in the supplementary material (Figure S4).

      In closing, the authors would like to thank the editors and three anonymous reviewers for engagement and for helpful comments. We are confident that the revised manuscript qualifies as a substantive revision, and we are grateful to have had the opportunity to participate.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      The regulation of motor autoinhibition and activation is essential for efficient intracellular transport. This manuscript used biochemical approaches to explore two members in the kinesin-3 family. They found that releasing UNC-104 autoinhibition triggered its dimerization whereas unlocking KLP-6 autoinhibition is insufficient to activate its processive movement, which suggests that KLP-6 requires additional factors for activation, highlighting the common and diverse mechanisms underlying motor activation. They also identified a coiled-coil domain crucial for the dimerization and processive movement of UNC-104. Overall, these biochemical and single-molecule assays were well performed, and their data support their statements. The manuscript is also clearly written, and these results will be valuable to the field.

      Thank you very much!

      Ideally, the authors can add some in vivo studies to test the physiological relevance of their in vitro findings, given that the lab is very good at worm genetic manipulations. Otherwise, the authors should speculate the in vivo phenotypes in their Discussion, including E412K mutation in UNC-104, CC2 deletion of UNC-104, D458A in KLP-6.

      1. We have shown the phenotypes unc-104(E412K) mutation in C. elegans (Niwa et al., Cell Rep, 2016) and described about it in discussion (p.14 line 3-4). The mutant worm showed overactivation of the UNC-104-dependent axonal transport, which is consistent with our biochemical data showing that UNC-104(1-653)(E412K) is prone to form a dimer and more active than wild type.

      2. It has been shown that L640F mutation induces a loss of function phenotype in C. elegans (Cong et al., 2021). The amount of axonal transport is reduced in unc-104(L640F) mutant worms. L640 is located within the CC2 domain. To show the importance of CC2-dependent dimerization in the axonal transport in vivo, we biochemically investigated the impact of L640F mutation.

      By introducing L640F into UNC-104(1-653)(E412K), we performed SEC analysis. The result shows that UNC-104(1-653)(E412K,L640F) failed to form stable dimers despite the release of their autoinhibition (new Figure S8). This result strongly suggests the importance of the CC2 domain in the axonal transport in vivo. Based on the result, we discussed it in the revised manuscript (p.13 line 6-8).

      1. Regarding KLP-6(D458A), we need a genetic analysis using genome editing and we would like to reserve it for a future study. We speculate that the D458A mutation could lead to an increase in transport activity in vivo similar to unc-104(E412K). This is because the previous study have shown that wild-type KLP-6 was largely localized in the cell body, while KLP-6(D458A) was enriched at the cell periphery in the N2A cells (Wang et al., 2022). We described it in discussion (p.14 line 13-14).

      While beyond the scope of this study, can the author speculate on the candidate for an additional regulator to activate KLP-6 in C. elegans?

      The heterodimeric mechanoreceptor complex, comprising LOV-1 and PKD-2, stands as potential candidates for regulating KLP-6 dimerization. We speculate the heterodimerization property is suitable for the enhancement of KLP-6 dimerization. On the other hand, it's noteworthy that KLP-6 can undergo activation in Neuro 2a cells upon the release of autoinhibition (Wang et al., 2022). This observation implies the involvement of additional factors which are not present in sf9 cells may be able to induce dimerization. Post-translational modifications would be one of the candidates. We discussed it in p14 line 7-14.

      The authors discussed the differences between their porcine brain MTs and chlamydonomas axonemes in UNC-104 assays. However, the authors did not really retest UNC-104 on axonemes after more than two decades, thereby not excluding other possibilities.

      We thought that comparing different conditions used in different studies is essential for the advancement of the field of molecular motors. Therefore, we newly performed single-molecule assay using Chlamydomonas axonemes and compared the results with brain MTs (Fig. S6). Just as observed in the study by Tomoshige et al., we were also unable to observe the processive runs of UNC-104(1-653) on Chlamydomonas axonemes (Fig. S6A). Furthermore, we found that the landing rate of UNC-104(1-653) on Chlamydomonas axonemes was markedly lower in comparison to that on purified porcine microtubules (Fig. S6B).

      Reviewer #1 (Recommendations For The Authors):

      More discussion as suggested above would improve the manuscript.

      We have improved our manuscript as described above.

      Reviewer #2 (Public Review):

      The Kinesin superfamily motors mediate the transport of a wide variety of cargos which are crucial for cells to develop into unique shapes and polarities. Kinesin-3 subfamily motors are among the most conserved and critical classes of kinesin motors which were shown to be self-inhibited in a monomeric state and dimerized to activate motility along microtubules. Recent studies have shown that different members of this family are uniquely activated to undergo a transition from monomers to dimers.

      Niwa and colleagues study two well-described members of the kinesin-3 superfamily, unc104 and KLP6, to uncover the mechanism of monomer to dimer transition upon activation. Their studies reveal that although both Unc104 and KLP6 are both self-inhibited monomers, their propensities for forming dimers are quite different. The authors relate this difference to a region in the molecules called CC2 which has a higher propensity for forming homodimers. Unc104 readily forms homodimers if its self-inhibited state is disabled while KLP6 does not.

      The work suggests that although mechanisms for self-inhibited monomeric states are similar, variations in the kinesin-3 dimerization may present a unique form of kinesin-3 motor regulation with implications on the forms of motility functions carried out by these unique kinesin-3 motors.

      Thank you very much!

      Reviewer #2 (Recommendations For The Authors):

      The work is interesting but the process of making constructs and following the transition from monomers to dimers seems to be less than logical and haphazard. Recent crystallographic studies for kinesin-3 have shown the fold and interactions for all domains of the motor leading to the self-inhibited state. The mutations described in the manuscript leading to disabling of the monomeric self-inhibited state are referenced but not logically explained in relation to the structures. Many of the deletion constructs could also present other defects that are not presented in the mutations. The above issues prevent wide audience access to understanding the studies carried out by the authors.

      We appreciate this comment. We improved it as described bellow.

      Suggestions: Authors should present schematic, or structural models for the self-inhibited and dimerized states. The conclusions of the papers should be related to those models. The mutations should be explained with regard to these models and that would allow the readers easier access. Improving access to the readers in and outside the motor field would truly improve the impact of the manuscript on the field.

      The structural models illustrating the autoinhibited state have been included in new Figure S4, accompanied by an explanation of the correlation between the mutations and these structures in the figure legend. Additionally, schematic models outlining the dimerization process of both UNC-104 and KLP-6 have been provided in Figure S9 to enhance reader comprehension of the process.

      Reviewer #3 (Public Review):

      In this work, Kita et al., aim to understand the activation mechanisms of the kinesin-3 motors KLP-6 and UNC-104 from C. elegans. As with many other motor proteins involved in intracellular transport processes, KLP-6 and UNC-104 motors suppress their ATPase activities in the absence of cargo molecules. Relieving the autoinhibition is thus a crucial step that initiates the directional transport of intracellular cargo. To investigate the activation mechanisms, the authors make use of mass photometry to determine the oligomeric states of the full-length KLP-6 and the truncated UNC-104(1-653) motors at sub-micromolar concentrations. While full-length KLP-6 remains monomeric, the truncated UNC-104(1-653) displays a sub-population of dimeric motors that is much more pronounced at high concentrations, suggesting a monomer-to-dimer conversion. The authors push this equilibrium towards dimeric UNC-104(1-653) motors solely by introducing a point mutation into the coiled-coil domain and ultimately unleashing a robust processivity of the UNC-104 dimer. The authors find that the same mechanistic concept does not apply to the KLP-6 kinesin-3 motor, suggesting an alternative activation mechanism of the KLP-6 that remains to be resolved. The present study encourages further dissection of the kinesin-3 motors with the goal of uncovering the main factors needed to overcome the 'self-inflicted' deactivation.

      Thank you very much!

      Reviewer #3 (Recommendations For The Authors):

      126-128: It is surprising that surface-attachment does not really activate the full-length KLP6 motor (v=48 {plus minus} 42 nm/s). Can the authors provide an example movie of the gliding assay for the FL KLP6 construct? Gliding assays are done by attaching motors via their sfGFP to the surface using anti-GFP antibodies. Did the authors try to attach the full-length KLP-6 motor directly to the surface? If the KLP-6 motor sticks to the surface via its (inhibitory) C-terminus, this attachment would be expected to activate the motor in the gliding assay, ideally approaching the in vivo velocities of the activated motor.

      We have included an example kymograph showing the gliding assay of KLP-6FL (Fig. S1A). When we directly attached KLP-6FL to the surface, the velocity was 0.15 ± 0.02 µm/sec (Fig. S1B), which is similar to the velocity of KLP-6(1-390). While the velocity observed in the direct-attachment condition is much better than those observed in GFP-mediated condition, the observed velocity remains considerably slower than in vivo velocities. Firstly, we think this is because dimerization of KLP-6 is not induced by the surface attachment. Previous studies have shown that monomeric proteins are generally slower than dimeric proteins in the gliding assay (Tomishige et al., 2002). These are consistent with our observation that KLP-6 remains to be monomeric even when autoinhibition is released. Secondly, in vitro velocity of motors is generally slower than in vivo velocity.

      156-157: It seems that the GCN4-mediated dimerization induces aggregation of the KLP6 motor domains as seen in the fractions under the void volume in Figure 3B (not seen with the Sf9 expressed full-length constructs, see Figure 1B). Also, the artificially dimerized motor construct does not fully recapitulate the in vivo velocity of UNC-104. Did the authors analyze the KLP-6(1-390)LZ with mass photometry and is it the only construct that is expressed in E. coli?

      KLP-6::LZ protein is not aggregating. We have noticed that DNA and RNA from E. coli exists in the void fraction and they occasionally trap recombinant kinesin-3 proteins in the void fraction. To effectively remove these nucleic acids from our protein samples, we employed streptomycin sulfate as a purification method (Liang et al., Electrophoresis, 2009). Please see Purification of recombinant proteins in Methods. In the size exclusion chromatography analysis, we observed that KLP-6(1-393)LZ predominantly eluted in the dimer fraction (New Figure 3). Subsequently, we reanalyzed the motor's motility using a total internal reflection fluorescence (TIRF) assay, as shown in the revised Figure 3. Even after these efforts, the velocity was not changed significantly. The velocity of KLP-6LZ is about 0.3 µm/sec while that of cellular KLP-6::GFP is 0.7 µm/sec (Morsci and Barr, 2011). Similar phenomena, "slower velocity in vitro", has been observed in other motor proteins.

      169: In Wang et al., (2022) the microtubule-activated ATPase activities of the mutants were measured in vitro as well, with the relative activities of the motor domain and the D458A mutant being very similar. The D458A mutation is introduced into the full-length motor in Wang et al., while in the present work, the mutation is introduced into the truncated KLP-6(1-587) construct. Can the authors explain their reasoning for the latter?

      (1) Kinesins are microtubule-stimulated ATPases. i.e. The ATPase activity is induced by the binding with a microtubule.

      (2) Previous studies have shown that the one-dimensional movement of the monomeric motor domain of kinesin-3 depends on the ATPase activity even when the movement does not show clear plus-end directionality (Okada et al., Science, 1998).

      (3) While KLP-6(1-587) does not bind to microtubules, both KLP-6(1-390) (= the monomeric motor domain) and KLP-6(1-587)(D458A) similarly bind to microtubules and show one dimensional diffusion on microtubules (Fig. 4E and S2B).

      Therefore, the similar ATPase activities of the motor domain(= KLP-6(1-390)) and KLP-6(D458A) observed by Wang et al. is because both proteins similarly associate with and hydrolyze ATP on microtubules, which is consistent with our observation. On the other hand, because KLP-6(wild type) cannot efficiently bind to microtubules, the ATPase activity is low.

      Can the authors compare the gliding velocities of the KLP-6(1-390)LZ vs KLP-6(1-587) vs KLP-6(1-587)(D458A) constructs to make sure that the motors are similarly active?

      We conducted a comparative analysis of gliding velocities involving KLP-6(1-390), KLP-6(1-587), and KLP-6(1-587)(D458A) (Fig. S1C). We used KLP-6(1-390) instead of KLP-6(1-390)LZ, aligning with the protein used by Wang et al.. We demonstrated that both KLP-6(1-587) and KLP-6(1-587) (D458A) exhibited activity levels comparable to that of KLP-6(1-390). The data suggests that the motor of all recombinant proteins are similarly active.

      Please note that, unlike full length condition (Fig. 1D and S1A and S1B), the attachment to the surface using the anti-GFP antibody can activates KLP-6(1-587). The data suggests that, due to the absence of coverage by the MBS and MATH domain (Wang et al., Nat. Commun., 2022), the motor domain of KLP-6(1-587) to some extent permits direct binding to microtubules under gliding assay conditions.

      Are the monomeric and dimeric UNC-104(1-653) fractions in Figure 5B in equilibrium? Did the authors do a re-run of the second peak of UNC-104(1-653) (i.e. the monomeric fraction with ~100 kDa) to assess if the monomeric fraction re-equilibrates into a dimer-monomer distribution?

      We conducted a re-run of the second peak of UNC-104(1-653) and verified its re-equilibration into a distribution of dimers and monomers after being incubated for 72 hours at 4°C (Fig. S5).

      UNC-104 appears to have another predicted coiled-coiled region around ~800 aa (e.g. by NCoils) that would correspond to the CC3 in the mammalian homolog KIF1A. This raises the question if the elongated UNC-104(1-800) would dimerize more efficiently than UNC-104(1-653) (authors highlight the sub-population of dimerized UNC-104(1-653) at low concentrations in Figure 5C) and if this dimerization alone would suffice to 'match' the UNC-104(1-653)E412K mutant (Figure 5D). Did the authors explore this possibility? This would mean that dimerization does not necessarily require the release of autoinhibition.

      We have tried to purify UNC-104(1-800) and full-length UNC-104 using the baculovirus system. However, unfortunately, the expression level of UNC-104(1-800) and full length UNC-104 was too low to perform in vitro assays even though codon optimized vectors were used. Instead, we have analyzed full-length human KIF1A. We found that full-length KIF1A is mostly monomeric, not dimeric (Please look at the Author response image 1). The property is similar to UNC-104(1-653) (Figure 5A-C). Therefore, we think CC3 does not strongly affect dimerization of KIF1A, and probably its ortholog UNC-104. Moreover, a recent study has shown that CC2 domain, but not other CC domains, form a stable dimer in the case of KIF1A (Hummel and Hoogenraad, JCB, 2021). Given the similarity in the sequence of KIF1A and UNC-104, we anticipate that the CC2 domain of UNC-104 significantly contributes to dimerization, potentially more than other CC domains. We explicitly describe it in the Discussion in the revised manuscript.

      Author response image 1.

      Upper left, A representative result of size exclusion chromatography obtained from the analysis of full-length human KIF1A fused with sfGFP.

      Upper right, A schematic drawing showing the structure of KIF1A fused with sfGFP and a result of SDS-PAGE recovered from SEC analysis. Presumable dimer and monomer peaks are indicated.

      Lower left, Presumable dimer fractions in SEC were collected and analyzed by mass photometry. The result confirms that the fraction contains considerable amount of dimer KIF1A.

      Lower right, Presumable monomer fractions were collected and analyzed by mass photometry. The result confirms that the fraction mainly consists of monomer KIF1A.

      Note that these results obtained from full-length KIF1A protein are similar to those of UNC-104(1-653) protein shown in Figure 5A-C.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      The authors describe a method to decouple the mechanisms supporting pancreatic progenitor self-renewal and expansion from feed-forward mechanisms promoting their differentiation. The findings are important because they have implications beyond a single subfield. The strength of evidence is solid in that the methods, data and analyses broadly support the claims with only minor weaknesses.

      We are grateful for the substantial effort that reviewers put into reading our manuscript and providing such a detailed feedback. We have strived to address, as much as possible, all comments and criticisms. Thanks to the feedback, we believe that we have now a significantly improved manuscript. Below, there is a point-bypoint response.

      Reviewer #1 (Public Review)

      In this manuscript, the authors are developing a new protocol that aims at expanding pancreatic progenitors derived from human pluripotent stem cells under GMP-compliant conditions. The strategy is based on hypothesis-driven experiments that come from knowledge derived from pancreatic developmental biology.

      The topic is of major interest in the view of the importance of amplifying human pancreatic progenitors (both for fundamental purposes and for future clinical applications). There is indeed currently a major lack of information on efficient conditions to reach this objective, despite major recurrent efforts by the scientific community.

      Using their approach that combines stimulation of specific mitogenic pathways and inhibition of retinoic acid and specific branches of the TGF-beta and Wnt pathways, the authors claim to be able, in a highly robust and reproducible manner) to amplify in 10 passages the number of pancreatic progenitors (PP) by 2,000 folds, which is really an impressive breakthrough.

      The work is globally well-performed and quite convincing. I have however some technical comments mainly related to the quantification of pancreatic progenitor amplification and to their differentiation into beta-like cells following amplification.

      We thank the reviewer for the positive assessment. Below we provide a point-by-point response to specific comments and criticisms.

      Reviewer #1 (Recommendations For The Authors)

      Figure 1:

      Panel A: What is exactly counted in Fig. 1A? Is it the number of PP (as indicated in the title) or the total number of cells? If it is PPs, was it done following PDX1/NKX6.1/SOX9 staining and FACS quantification? This question applies to a number of Figures and the authors should be clear on this point.

      We now define ‘PP cells’ as ‘PP-containing cells’ (PP cells) the first time we use the term in the RESULTS section.

      Panel D: I do not understand the source of TGFb1, GDF11, FGF18, PDGFA. Which cell type(s) express such factors in culture? I was not convinced that the signals are produced by PP and act through an autocrine loop. I have the same type of questions for the receptors: PDGFR on the second page of the results; RARs and RXRs on the third page.

      We refer to these factors/receptors as components of a tentative autocrine loop. We agree we do not prove it and we now comment on this in the discussion section.

      Figure 2:

      FACS plots are very difficult to analyze for two reasons: I do not understand the meaning of the y axes (PDX1/SOX9). Does that mean that 100% of the cells were PDX1+/SOX9+? The authors should show the separated FACS plots. More importantly, the x axes indicate that NKX6.1 FACS staining is very weak. This is by far different from what can be read in publications performing the same types of experiments (publications by Millman, Otonkoski...as examples). How was quantification performed when it is so difficult to properly define positive vs negative populations? It is necessary to present proper "negative controls" for FACS experiments and to clearly indicate how positive versus cells were defined

      We now explain the gating strategy better in the results section, all controls are included in figure S2.

      Figure 3:

      What is the exact "phenotype" of the cells that incorporated EdU: It would be really instructive to add PDX1/NKX6.1/SOX9 staining on top of EdU. I am also surprised that 20% of the cells stain positive for Annexin V. This is a huge fraction. Does that mean that many cells (20%) are dying and if the case, how amplification can take place under such deleterious conditions?

      This is an interesting mechanistic point but performing these experiments would delay the publication of the final manuscript for too long. These assays were done at p3 in order to catch CINI cells that do not expand in most cases. It is important to note that cell death also appears higher in CINI cells. It is likely that the combination of these effects results in reproducible expansion under C5. We comment on the possibilities in the discussion section.

      Figure 4:

      On FACS plots the intensity at the single cell level (see x-axis of the figure) of the NKX6.1 staining is found to increase in Fig. 4G by 50-100 folds when compared to Fig. 4E. Is it expected? This should be discussed in the text. Do the authors observe the same increase by immunocytochemistry?

      The apparent difference is actually 10-fold (from 2x102 to 2x103). We think that the most likely reason for this apparent increase is that at p0 we typically used very few cells for the FC in order to keep as many as possible for the subsequent expansion. If we had used more, we would be able to also detect cells with higher expression. As we mention in the bioinformatics analysis, NKX6 expression does increase with passaging and therefore it is also possible that at least part of this increase is real. However, we don’t have suitable data (same number of cells analyzed at each passage) to address this in a reliable manner.

      Figure 5

      Previous data from the scientific literature indicate that in vitro, by default, PP gives rise to duct-like cells. This is a bit described in the result section and supplementary figures taking into account the expression of transcription factors. However the data are not clearly explained and described in quite a qualitative manner. They should appear in a quantitative fashion (and the main figures), adding additional duct cell markers such as Carbonic anhydrase, SPP1, CFTR, and others. I assume that the authors can easily use their transcriptomic data to produce a Figure to be described and discussed in detail.

      We think it can be misleading to use such markers (other than TFs and the latter only as a collective) because specific markers of terminal differentiation are more often than not expressed during development in multipotent progenitors, the most conspicuous example been CPA1. To illustrate the point, we used the RNA Seq data of and plotted the expression values of a panel of duct genes in isolated human fetal progenitors (Ramond et al., 2017) together with their expression in p0 PP and ePP cells from all three different procedure (please see below). All raw RNA Seq data were processed together to enable direct comparison. According to the analysis of Ramond et al the A population corresponds to MPCs, C to early endocrine progenitors (EP), D to late endocrine progenitors and, by inference and gene expression pattern B to BPs. Expression levels of all these markers were very similar suggesting that these markers cannot be used to distinguish between duct cells and progenitor cells. Importantly, SC-islets derived from either dPP or ePP cells express extremely low and similar levels of KRT19, a marker of duct cells. This latter information is now included in the last part of the results (Figure S7).

      Author response image 1.

      Fig. 7:<br /> The figure is a bit disappointing for 2 reasons. In A and B, the quality of INS, GCG, and SST staining is really poor. In E, GSIS is really difficult to interpret. They should not be presented as stimulatory indexes. The authors should present independently: INS content; INS secretion at low glucose; INS secretion at high glucose; INS secretion with KCL. Finally, the authors should indicate that glucose poorly (around 2 fold) activates insulin/C-Pept secretion in their stem-cell-derived islets.

      We disagree with the quality assessment of the immunofluorescence. Stimulation indexes are also used very widely but we now provide data for actual C-peptide secretion normalized for DNA content of the SC-islets. For technical reasons we do not have normalized C-peptide secretion for human islets. However, we provide a direct comparison to the stimulation index of human islets assayed under the same conditions (2.7 mM glucose / 16.7 mM glucose / 16.7 mM glucose + 30 mM KCl) without presenting SC-islets separately and tweaking the glucose basal (lowering) and stimulation (increasing) levels to inflate the stimulation index. This is unfortunately common. In any case, we do not claim an improvement in the differentiation conditions and our S5-S7 steps may not be optimal but this is not the subject of this work.

      Reviewer #2 (Public Review)

      Summary

      The paper presents a novel approach to expand iPSC-derived pdx1+/nkx6.1+ pancreas progenitors, making them potentially suitable for GMP-compatible protocols. This advancement represents a significant breakthrough for diabetes cell replacement therapies, as one of the current bottlenecks is the inability to expand PP without compromising their differentiation potential. The study employs a robust dataset and state-of-the-art methodology, unveiling crucial signaling pathways (eg TGF, Notch...) responsible for sustaining pancreas progenitors while preserving their differentiation potential in vitro.

      Strengths

      This paper has strong data, guided omics technology, clear aims, applicability to current protocols, and beneficial implications for diabetes research. The discussion on challenges adds depth to the study and encourages future research to build upon these important findings.

      We thank the reviewer for the positive assessment. Below we provide a point-by-point response to general comments and criticisms.

      Weaknesses

      The paper does have some weaknesses that could be addressed to improve its overall clarity and impact. The writing style could benefit from simplification, as certain sections are explained in a convoluted manner and difficult to follow, in some instances, redundancy is evident. Furthermore, the legends accompanying figures should be self-explanatory, ensuring that readers can easily understand the presented data without the need to be checking along the paper for information.

      We have simplified the text in several places and removed redundancies, particularly in the discussion. We revisited the figure legends and made minor corrections to increase clarity. However, regarding the figure legends, we think that adding the interpretation of the results would be redundant to the main text.

      The culture conditions employed in the study might benefit from more systematic organization and documentation, making them easier to follow.<br /> There is a comparative Table (Table S1) where all conditions are summarized. We refer to this Table every time that we introduce a new condition. We also have a Table (Table S4) which presents all different media and components used it the differentiation procedure.

      Another important aspect is the functionality of the expanded cells after differentiation. While the study provides valuable insights into the expansion of pancreas progenitors in vitro and does the basic tests to measure their functionality after differentiation the paper could be strengthened by exploring the behavior and efficacy of these cells deeper, and in an in vivo setting.

      This will be done in a future study where we will also introduce a number of modifications in S5-S7

      Quantifications for immunofluorescence (IF) data should be displayed.

      We have not conducted quantifications of IFs because FC is much more objective and accurate. We have not conducted FC for CDX2 and AFP because all other data strongly favor C6 anyway. It should be noted that CDX2 and AFP expression is generally not addressed at all presumably because it raises uncomfortable questions and, to our knowledge, we are the first to address this so exhaustively.

      Some claims made in the paper may come across as somewhat speculative.

      We have now indicated so where applicable.

      Additionally, while the paper discusses the potential adaptability of the method to GMP-compatible protocols, there is limited elaboration on how this transition would occur practically or any discussion of the challenges it might entail.

      We have now added a paragraph discussing this in the discussion section.

      Reviewer #2 (Recommendations For The Authors)

      Related to Figure 1:

      • Unclear if CINI or SB431542 + CINI was used (first paragraph of results...)

      The paragraph was unclear and it is now rewritten

      • Was the differentiation to PP similar between the different attempts? A basic QC for each Stem Cell technology differentiation would be good to include.

      We added (Figure 1B) a comparison of expression data of general genes (QC) in PP cells showing very comparable patterns of expression. Some of these PP cells went on to expand and most did not but there is no apparent correlation of this with the gene expression data.

      • qPCR data - relative fold? over what condition? (indicate on axis label)

      We added a label as well as an explanation on p0 values in the figure legend

      • FGF18/ PDGFA - worth including background in pancreas development as in the other factors.

      Background information has been added

      • Bioinformatics is a bit biased with a few genes selected - what are the DEGs / top enriched pathways? Maybe worth showing a volcano plot of the DEGs for example.

      We have done all these standard analyses but we think that they did not contribute anything else useful to the study with the exception of pointing to the finding that the TGFb pathway is negatively correlated with expansion, and this is included in the study. The ‘unbiased’ analysis that the reviewer suggests did not turn out something else useful to exploit for the expansion. This does not mean that our approach is biased – in our view it is hypothesis-driven. As we also write in the manuscript, if in a certain pathway a key gene fails to be expressed, the pathway will not show up in any GO or GSEA analyses. However, the pathway will still be regulated. The RA and FGF18 cases clearly illustrate this. We realize that these analyses have become a standard but we think that it is not the only way to approach genomics data and these approaches did not offer much in the context of this study.

      • The E2F part is very speculative

      The pathway came up as a result of ‘unbiased’ GSEA analyses. However, we do agree and rephrased.

      • The authors claim ' the negative correlation of TGFb signalling with expansion retrospectively justifies the use of A83 '. However, p0 is not treated with A83 - how can they tell that there is a correlation between TGFb signalling and expansion?

      The correlation came from the RNA Seq data analysis during expansion. We have rephrased slightly to convey the message more clearly.

      • Typo with TGFbeta inhibitor name is mispelled (A3801)

      Corrected

      • Page 5 - last paragraph - Table S3? (isnt it refering to S2?)

      Since Table S2 is the list of the regulated genes and S3 is the list of the regulated signaling pathway components both are relevant here, we now refer to both.

      • In the text Figure 2G should read Figure 1G (page 7, end of 1st paragraph).

      Corrected

      • 'Autocrine loop' existence – speculative

      Added the phrase ‘we speculated’. We refer to this only as a tentative interpretation. We also elaborate in the discussion now.

      Related to Figure 2:

      • I am not sure if I would refer to chemical "activation/inhibition" of pathways as 'gain/loss of function'. Maybe this term is more adequate for genetic modifications.

      For genetic manipulations, these terms are (supposed to be) accompanied by the adjective ‘genetic’ but to avoid misinterpretations we changed the terms to activation and inhibition as suggested.

      • It would be good to include a summary of the different conditions as a schematic in one of the figures, to make it very clear to the reader what the conditions are.

      We tried this in an early version of the manuscript but, in our view, it was adding complexity, rather than simplifying things. The problem is that as such the Table cannot be integrated in any figure if eg in Figure 2 it would be too early, if in Figure 4 it would be too late and so on. All conditions show up in detail in Table S1.

      • Nkx6.1 - is the image representative? It looks like Nkx6.1 decreases over the passages.

      We do mention in the text that ‘… even though expansion (in C5) appeared to somewhat reduce the number of NKX6.1+ cells. (Figure 2E-G). As we mentioned, this was one of the reasons to continue with other conditions (C6-C8).

      • Upregulation of AFP/ CDX2 is a bit concerning - the IF for C5 p5 shows a high proportion of CDX2+ cells (Fig S2I). perhaps it would be good to quantify the IF.

      It was concerning – this is why we then tested conditions C6-8. Since it is C6 that we propose at the end, it would be, in our view, extraneous to quantify CDX2 in C5.

      • How do C5/C1/C0 compare to CINI?

      We now remind the reader in the results section that CINI was not reproducible - so any other comparison would be extraneous.

      Related to Figure 3:

      • There is a 'Lore Ipsum' label above B

      Corrected

      Related to Figure 4:

      • It is good that AFP expression is reduced at p10, but there seems to be a high proportion of AFP at p5. IF/FACS should be quantified.

      We think that this would not add significantly since there are several other criteria, particularly the increase of the PDX1+/SOX9+/NKX6.1+ that clearly show that the C6 condition is preferable. Further elaboration of C6 could use such additional criteria. We comment on CDX2 / AFP in the discussion.

      • CDX2 should be quantified by IF / FACS.

      We think that this would not add significantly since there are several other criteria, particularly the increase of the PDX1+/SOX9+/NKX6.1+ that clearly show that the C6 condition is preferable. Further elaboration of C6 could use such additional criteria. We comment on CDX2 / AFP in the discussion.

      • Karyotype analysis is good but not very precise when analyzing genetic micro alterations... what does a low-pass sequencing of the expanding lines look like? Are there any micro-deletions in the expanding lines?

      This is an unusual request. Microdeletions may occur at any point – during passaging of hPS cells, differentiation as well as well as expansion but such data are so far not shown in publications – and reasonably so in our opinion. Thus, we have not done this analysis but it certainly would be appropriate in a clinical setting as part of QC.

      • Data supporting that the cells can be cryopreserved and recovered with >85% survival rate is not provided.

      We now provide data for the C6-mediated expansion (Figure 4J). The freezing procedure was developed during the time we were testing C5 and we don’t have sufficient data to show reliably the survival of the cells during C5 expansion. Thus, we have now removed the reference in the C5 part of the manuscript.

      Related to Figure 5:

      -Figure 5C - perhaps worth commenting on the different pathways that are enriched when cells undergo expansion and show some of the genes that are up/down regulated.

      This is indeed of interest but since it will not address any specific question in the context of this work (eg is the endocrine program repressed?) and since it would not be followed by additional experiments we think that it would burden the manuscript unnecessarily. The data are accessible for any type of analysis through the GEO database.

      • Figure S5D shows in vitro clustering away from in vivo PP - it would be good to explain how in vitro generated PP differs from their in vivo counterparts instead of restricting the comparison to the in vitro protocol.

      We have added a possible interpretation of this observation in the results section and discuss, how one could go properly about this comparison.

      • Quantification of Fig5F should be included. Is GP2 expression detectable by IF at p5 too?

      We have quantified GP2 expression by FC at p10 but not at earlier stages. We include now the FC data in Fig5F

      • Validation of Fig5G by qPCR would be good. PDX1 did not seem reduced by IF in Figure 4.

      The purpose of Fig5G is to compare the expression of the same genes across different expansion approaches. Therefore, in our view, qPCRs would not be appropriate since we do not have samples from the other approaches. We did not claim a reduction in PDX1 expression.

      • How can the authors explain the NGN3 expression at PP?

      In our view, differentiation is a dynamic process and not all cells are synchronized at the same cell type, this is true in vivo and in vitro. Sc-RNA Seq data indeed show a small population of cells at PP that are NEUROG3+ (our unpublished data). We have now included this in the discussion.

      Related to Figure 6:

      • How do the different lines differ? Any statistical comparison between lines?

      There is a paragraph dealing with the comparison of PP and ePP cells (p5 and p10) from different lines at the level of gene expression and the data are in Figure S6A-G. Then there is a paragraph addressing this at the level of PDX1/SOX9/NKX6.1 expression by FC. We have now expanded and rewrote the latter to include statistical comparisons across PPs from different lines at p0, p5 an p10

      Related to Figure 7:

      • Mention the use of micropatterned

      Micropatterned wells - not really correct. They use Aggrewells, micropatterned plates are something else.

      We changed ‘micropatterned wells’ into ‘microwells’

      • Figure 7D, those are qPCR data. The label is inconsistent, why did they call it fold induction instead of fold change? Also, not sure if plotting the fold change to hPSC is the best here.

      We use fold change when comparing the expression of the same gene at different passages but fold induction when comparing to its expression in hPS cells. We made sure it is also explained in the figure legends.

      • Absolute values should be shown for the GSIS to determine basal insulin secretion. Also, sequential stimulation to address if the cells are able to respond to multiple glucose stimulations.

      We include now the secreted amounts of human C-peptide under the different conditions (Figure S7) normalized for cell numbers using their DNA content for the normalization. The many parameters we have used suggest that dPP and ePP SC-islets are very similar. If we were claiming a better S5-S7 procedure, such an assay would have been necessary but in this context, we think it is not absolutely necessary.

      • In vivo data would have strengthened the story. It is not clear if, in vivo, the cells will behave as the nonexpanded iPSC-derived beta cells.

      We agree and these studies are under way but we do not expect to complete them soon. We feel that it is important that this work appears sooner rather than later.

      Reviewer #3 (Public Review)

      Summary:

      In this work, Jarc et al. describe a method to decouple the mechanisms supporting progenitor self-renewal and expansion from feed-forward mechanisms promoting their differentiation.

      The authors aimed at expanding pancreatic progenitor (PP) cells, strictly characterized as PDX1+/SOX9+/NKX6.1+ cells, for several rounds. This required finding the best cell culture conditions that allow sustaining PP cell proliferation along cell passages, while avoiding their further differentiation. They achieve this by comparing the transcriptome of PP cells that can be expanded for several passages against the transcriptome of unexpanded (just differentiated) PP cells.

      The optimized culture conditions enabled the selection of PDX1+/SOX9+/NKX6.1+ PP cells and their consistent, 2000-fold, expansion over ten passages and 40-45 days. Transcriptome analyses confirmed the stabilization of PP identity and the effective suppression of differentiation. These optimized culture conditions consisted of substituting the Vitamin A containing B27 supplement with a B27 formulation devoid of vitamin A (to avoid retinoic acid (RA) signaling from an autocrine feed-forward loop), substituting A38-01 with the ALK5 II inhibitor (ALK5i II) that targets primarily ALK5, supplementation of medium with FGF18 (in addition to FGF2) and the canonical Wnt inhibitor IWR-1, and cell culture on vitronectin-N (VTN-N) as a substrate instead of Matrigel.

      Strengths:

      The strength of this work relies on a clever approach to identify cell culture modifications that allow expansion of PP cells (once differentiated) while maintaining, if not reinforcing, PP cell identity. Along the work, it is emphasized that PP cell identity is associated with the co-expression of PDX1, SOX9, and NKX6.1. The optimized protocol is unique (among the other datasets used in the comparison shown here) in inducing a strong upregulation of GP2, a unique marker of human fetal pancreas progenitors. Importantly GP2+ enriched hPS cell-derived PP cells are more efficiently differentiating into pancreatic endocrine cells (Aghazadeh et al., 2022; Ameri et al., 2017).

      The unlimited expansion of PP cells reported here would allow scaling-up the generation of beta cells, for the cell therapy of diabetes, by eliminating a source of variability derived from the number of differentiation procedures to be carried out when starting at the hPS cell stage each time. The approach presented here would allow the selection of the most optimally differentiated PP cell population for subsequent expansion and storage. Among other conditions optimized, the authors report a role for Vitamin A in activating retinoic acid signaling in an autocrine feed-forward loop, and the supplementation with FGF18 to reinforce FGF2 signaling.

      This is a relevant topic in the field of research, and some of the cell culture conditions reported here for PP expansion might have important implications in cell therapy approaches. Thus, the approach and results presented in this study could be of interest to researchers working in the field of in vitro pancreatic beta cell differentiation from hPSCs. Table S1 and Table S4 are clearly detailed and extremely instrumental to this aim.

      We thank the reviewer for the positive assessment. Below we provide a point-by-point response to general comments and criticisms.

      Weaknesses

      The authors strictly define PP cells as PDX1+/SOX9+/NKX6.1+ cells, and this phenotype was convincingly characterized by immunofluorescence, RT-qPCR, and FACS analysis along the work. However, broadly defined PDX1+/SOX9+/NKX6.1+ could include pancreatic multipotent progenitor cells (MPC, defined as PDX1+/SOX9+/NKX6.1+/PTF1A+ cells) or pancreatic bipotent progenitors (BP, defined as PDX1+/SOX9+/NKX6.1+/PTF1A-) cells. It has been indeed reported that Nkx6.1/Nkx6.2 and Ptf1a function as antagonistic lineage determinants in MPC (Schaffer, A.E. et al. PLoS Genet 9, e1003274, 2013), and that the Nkx6/Ptf1a switch only operates during a critical competence window when progenitors are still multipotent and can be uncoupled from cell differentiation. It would be important to define whether culturing PDX1+/SOX9+/NKX6.1+ PP (as defined in this work) in the best conditions allowing cell expansion is reinforcing either an MPC or BP phenotype. Data from Figure S2A (last paragraph of page 7) suggests that PTF1A expression is decreased in C5 culture conditions, thus more homogeneously keeping BP cells in this media composition. However, on page 15, 2nd paragraph it is stated that "the strong upregulation of NKX6.2 in our procedure suggested that our ePP cells may have retracted to an earlier PP stage". Evaluating the co-expression of the previously selected markers with PTF1A (or CPA2), or the more homogeneous expression of novel BP markers described, such as DCDC2A (Scavuzzo et al. Nat Commun 9, 3356, 2018), in the different culture conditions assayed would more shield light into this relevant aspect.

      This is certainly an interesting point. The RNA Seq data suggest that ePP cells resemble BP cells rather than MPCs and that this occurs during expansion. We have now added a new paragraph in the results section to illustrate this and added graphs of CPA2, PTF1A and DCDC2A expression during expansion in Figure 5, S5 as well as data in Table S5. In summary, we favor the interpretation that expanded cells are close but not identical to the BP identity and refer to that in the discussion. We have also amended the statement on page 15 stating the strong upregulation of NKX6.2 in our procedure suggested that our ePP cells may have retracted to an earlier PP stage.

      In line with the previous comment, it would be extremely insightful if the authors could characterize or at least discuss a potential role for YAP underlying the mechanistic effects observed after culturing PP in different media compositions. It is well known that the nuclear localization of the co-activator YAP broadly promotes cell proliferation, and it is a key regulator of organ growth during development. Importantly in this context, it has been reported that TEAD and YAP regulate the enhancer network of human embryonic pancreatic progenitors and disruption of this interaction arrests the growth of the embryonic pancreas (Cebola, I. et al. Nat Cell Biol 17, 615-26, 2015). More recently, it has also been shown that a cell-extrinsic and intrinsic mechanotransduction pathway mediated by YAP acts as gatekeeper in the fate decisions of BP in the developing pancreas, whereby nuclear YAP in BPs allows proliferation in an uncommitted fate, while YAP silencing induces EP commitment (Mamidi, A. et al. Nature 564, 114-118, 2018; Rosado-Olivieri et al. Nature Communications 10, 1464, 2019). This mechanism was further exploited recently to improve the in vitro pancreatic beta cell differentiation protocol (Hogrebe et al., Nature Protocols 16, 4109-4143, 2021; Hogrebe et al, Nature Biotechnology 38, 460-470, 2020). Thus, YAP in the context of the findings described in this work could be a key player underlying the proliferation vs differentiation decisions in PP.

      We do refer to these publications now and refer to the YAP pathway in the introduction and results sections as well as in the discussion. We have not investigated more because the kinetics of the different components of the pathway are complex and do not give an indication of whether the pathway becomes more or less active – please see below.

      Author response image 2.

      Regarding the improvements made in the PP cell culture medium composition to allow expansion while avoiding differentiation, some of the claims should be better discussed and contextualized with current stateof-the-art differentiation protocols. As an example, the use of ALK5 II inhibitor (ALK5i II) has been reported to induce EP commitment from PP, while RA was used to induce PP commitment from the primitive gut tube cell stage in recently reported in vitro differentiation protocols (Hogrebe et al., Nature Protocols 16, 41094143, 2021; Rosado-Olivieri et al. Nature Communications 10, 1464, 2019). In this context, and to the authors' knowledge, is Vitamin A (triggering autocrine RA signaling) usually included in the basal media formulations used in other recently reported state-of-the-art protocols? If so, at which stages? Would it be advisable to remove it?

      These points and our views are now included in the discussion

      In this line also, the supplementation of cell culture media with the canonical Wnt inhibitor IWR-1 is used in this work to allow the expansion of PP while avoiding differentiation. A role for Wnt pathway inhibition during endocrine differentiation using IWR1 has been previously reported (Sharon et al. Cell Reports 27, 22812291.e5, 2019). In that work, Wnt inhibition in vitro causes an increase in the proportion of differentiated endocrine cells. It would be advisable to discuss these previous findings with the results presented in the current work. Could Wnt inhibition have different effects depending on the differential modulation of the other signaling pathways?

      These points are now included in the discussion together with the points above

      Reviewer #3 (Recommendations For The Authors)

      Recommendations for improving the writing and presentation and minor comments on the text and figures:

      • In the Introduction (page 3, line 1) it is stated: "Diabetes is a global epidemic affecting > 9% of the global population and its two main forms result from .....". The authors could rephrase/remove "global" repeated twice.

      Corrected

      • On page 4 of the introduction, in the context of "Unlimited expansion of PP cells in vitro will require disentangling differentiation signals from proliferation/maintenance signals. Several pathways have been implicated in these processes..." the authors are advised to consider mentioning the YAP mediated mechanisms as another key aspect underlying MPC phenotype (Cebola, I. et al. Nat Cell Biol 17, 615-26, 2015) and the BP to endocrine progenitor (EP) commitment (Mamidi, A. et al. Nature 564, 114-118, 2018; Rosado-Olivieri et al. Nature Communications 10, 1464, 2019). This should be better discussed in the context of the Weaknesses mentioned in the Public Review. It would be worth considering adding effectors and other molecules involved in YAP and Hippo pathway signaling to Table S3.

      We have added the role of the Hippo/YAP pathway in the introduction and mentioned in the results the finding that components of the pathway are generally not regulated except two that are now added in Table S3

      • In page 4, paragraph 3, near "and SB431542, another general (ALK4/5/7) TGFβ inhibitor", consider removing "another". SB431542 is the same inhibitor mentioned in the other protocols at the beginning of the paragraph.

      The paragraph is rewritten because it was not clear – we used A83-01 and not SB431542. Other approaches had used SB431542.

      • Page 5, Table S2 is cited after Table S3, please consider reordering.

      In fact, both S2 and S3 are relevant there, therefore we quote both now.

      • Page 8, 2nd paragraph, near "Expression of both AFP and CDX2 increased transiently upon expansion, at p5 (Figure S2H-J)." How do you explain results in FigS2C, D and FigS2E (AFP/CDX2)? RT-qPCR data does not suggest transient downregulation.

      AFP and CDX2 were – wrongly – italicized in the quoted passage. Therefore, in one case we refer to the protein and in the other to the transcript levels. We corrected and added the qualifier ‘appeared’. The difference is most likely due to translational regulation but we did not elaborate since we do not know. In any case, we have used the, less favorable but more robust, gene expression levels as the main criterion.

      • Page 9, end of 2nd paragraph, Figure 5A is cited but it looks like this should be Figure 4A.

      Corrected

      • Page 9, 3rd paragraph, when stating "C5 ePP cells of the same passage no..." please replace "no" with a number or a suitable abbreviation.

      Corrected

      • Page 9, 3rd paragraph. Expressing the values in the Y axis in a consistent manner for FigS2B-D and FigS4A would make a comparison easier.

      We strive to keep sections autonomous so that the reader would not have to flip between figures and sections – this is why we think that figure S4A is preferable as it is; it is a direct comparison of C6 to C5 for the different markers and has the additional advantage that one needs not to include p0 levels.

      • Page 9, 3rd paragraph. Green dots in FigS4A stand for p5 cells? if so, shouldn't these average 1 for all assayed genes?

      No, because the baseline (average 1) is the C5 expression at the corresponding passage no. We changed the y-axis label, hopefully it is clearer now.

      • Page 10 3rd paragraph, please include color labels in Fig. 5G.

      The different colors here correspond to the different expansion procedures that are compared. The samples are labelled on the x axis.

      • Page 10 3rd paragraph, Figure 6G is cited but it looks like this should be Figure 5G.

      Corrected

      • Page 11, 1st paragraph, at "TF genes such as FOXA2 and RBJ remained comparable", please double check if "RBJ" should be "RBPJ".

      Corrected

      • Page 11, end of 1st paragraph, when stating "Of note, expression of PTF1A was also undetectable in all ePP cells (Table S5)", is PTF1A expression level close to 1000 (which units?) in Table S5 considered undetectable?

      This statement regarding ‘undetectable PTF1A expression’ refers to expanded PP cells (ePP), not PP cells at p0. For the latter, expression is indeed close to 1000 in normalized RNA-sequence counts as mentioned in the Table legend.

      -Page 11, 4th paragraph, "In summary, the comparative transcriptome analyses suggested that our C6 expansion procedure is more efficient at strengthening the PP identity". In the context of comments made in the Public Review, more accuracy needs to be put when defining PP identity. Are these MPC or BP?

      The RNA Seq data suggest that expansion promotes a MPC  BP transition. We have added a paragraph in the corresponding results section and comment in the discussion.

      • Page 15, 2nd paragraph, the sentence "expression of PTF1A, recently shown to promote endocrine differentiation of hPS cells (Miguel-Escalada et al., 2022)" is confusing. Please double-check sentence syntax and reference. Does PTF1A expression "promote" or "create epigenetic competence" for endocrine differentiation?

      Its role is in the MPCs and it prepares the epigenetic landscape to allow for duct and endocrine specification later, thus it ‘creates epigenetic competence’. The paper was cited out of context and we have now corrected it.

      Additional recommendations by the Reviewing Editor:

      An insufficient number of experimental repetitions have been used for the following data: (Figure 1A, n = 2; Figures 2B-D, p10, n = 2; Figures 6A and B, VTN-N, n = 1).

      This is true but we do not draw quantitative conclusions from or do comparisons with these data.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We would like to thank the reviewers for their thoughtful evaluation of our manuscript. We considered all the comments and prepared the revised version. The following are our responses to the reviewers’ comments. All references, including those in the original manuscript are included at the end of this point-by-point response.

      Reviewer #1 (Public Review):

      Weaknesses:

      1) The authors should better review what we know of fungal Drosophila microbiota species as well as the ecology of rotting fruit. Are the microbiota species described in this article specific to their location/setting? It would have been interesting to know if similar species can be retrieved in other locations using other decaying fruits. The term 'core' in the title suggests that these species are generally found associated with Drosophila but this is not demonstrated. The paper is written in a way that implies the microbiota members they have found are universal. What is the evidence for this? Have the fungal species described in this paper been found in other studies? Even if this is not the case, the paper is interesting, but there should be a discussion of how generalizable the findings are.

      The reviewer inquires as to whether the microbial species described in this article are ubiquitously associated with Drosophila or not. Indeed, most of the microbes described in this manuscript are generally recognized as species associated with Drosophila spp. For example, yeasts such as Hanseniaspora uvarum, Pichia kluyveri, and Starmerella bacillaris have been detected in or isolated from Drosophila spp. collected in European countries as well as the United States and Oceania (Chandler et al., 2012; Solomon et al., 2019). As for bacteria, species belonging to the genera Pantoea, Lactobacillus, Leuconostoc, and Acetobacter have also previously been detected in wild Drosophila spp. (Chandler et al., 2011). These statements have been incorporated into our revised manuscript (lines 391-397). Nevertheless, the term “core” in the manuscript and title may lead to misunderstanding, as the generality does not ensure the ubiquitous presence of these microbial species in every individual fly. Considering this point, we replaced the “core” with “key,” a term that is more appropriate to our context.

      2) Can the authors clearly demonstrate that the microbiota species that develop in the banana trap are derived from flies? Are these species found in flies in the wild? Did the authors check that the flies belong to the D. melanogaster species and not to the sister group D. simulans?

      Can the authors clearly demonstrate that the microbiota species that develop in the banana trap are derived from flies? Are these species found in flies in the wild?

      The reviewer asked whether the microbial species detected from the fermented banana samples were derived from flies. To address this question, additional experiments under more controlled conditions would be needed, such as artificially introducing wild flies onto fresh bananas in the laboratory. Nevertheless, the microbes potentially originate from wild flies, as supported by the literature cited in our response to the Weakness 1).

      Alternative sources of microbes also merit consideration. For example, microbes may have been introduced to unfermented bananas by penetration through peel injuries (lines 1300-1301). In addition, they could be introduced by insects other than flies, given that rove beetles (Staphylinidae) and sap beetles (Nitidulidae) were observed in some of the traps. The explanation of these possibilities have been incorporated into DISCUSSION (lines 414427) of our revised manuscript.

      Did the authors check that the flies belong to the D. melanogaster species and not to the sister group D. simulans?

      Our sampling strategy was designed to target not only D. melanogaster but also other domestic Drosophila species, such as D. simulans, that inhabit human residential areas. For the traps where adult flies were caught, we identified the species of the drosophilids as shown in Table S1, thereby showing the presence of either or both D. melanogaster and D. simulans. We added these descriptions in MATERIALS AND METHODS (lines 511-512 and 560-562), and DISCUSSION (lines 378-379).

      3) Did the microarrays highlight a change in immune genes (ex. antibacterial peptide genes)? Whatever the answer, this would be worth mentioning. The authors described their microarray data in terms of fed/starved in relation to the Finke article. They should clarify if they observed significant differences between species (differences between species within bacteria or fungi, and more generally differences between bacteria versus fungi).

      Did the microarrays highlight a change in immune genes (ex. antibacterial peptide genes)? Whatever the answer, this would be worth mentioning.

      Regarding the antimicrobial peptide genes, statistical comparisons of our RNA-seq data across different conditions were impracticable because most of the genes showed low expression levels. The RNA-seq data of the yeast-fed larvae is shown in Author response Table 1. While a subset of genes exhibited significantly elevated expression in the nonsupportive conditions relative to the supportive ones, this can be due to intra-sample variability rather than the difference in the nutritional conditions. Similar expression profiles were observed in the bacteria-fed larvae as well (data not shown). Therefore, it is difficult to discuss a change in immune genes in the paper. Additionally, the previous study that conducted larval microarray analysis (Zinke et al., 2002) did not explicitly focus on immune genes.

      Author response table 1.

      Antimicrobial peptide genes are not up-regulated by any of the microbes. Antimicrobial peptides gene expression profiles of whole bodies of first-instar larvae fed on yeasts. TPM values of all samples and comparison results of gene expression levels in the larvae fed on supportive and non-supportive yeasts are shown. Antibacterial peptide genes mentioned in Hanson and Lemaitre, 2020 are listed. NA or na, not available.

      They should clarify if they observed significant differences between species (differences between species within bacteria or fungi, and more generally differences between bacteria versus fungi).

      We did not observe significant differences in the gene expression profiles of the larvae fed on different microbial species within bacteria or fungi, or between those fed on bacteria and those fed on fungi. For example, the gene expression profiles of larvae fed on the various supportive microbes showed striking similarities to each other, as evidenced by the heat map showing the expression of all genes detected in larvae fed either yeast or bacteria (Author response image 1). Similarities were also observed among larvae fed on various nonsupportive microbes.

      Only a handful of genes showed different expression patterns between larvae fed on yeast and those fed on bacteria. Thus, it is challenging to discuss the potential differential impacts of yeast and bacteria on larval growth, if any.

      Author response image 1.

      Gene expression profiles of larvae fed on the various supporting microbes show striking similarities to each other. Heat map showing the gene expression of the first-instar larvae that fed on yeasts or bacteria. Freshly hatched germ-free larvae were placed on banana agar inoculated with each microbe and collected after 15 h feeding to examine gene expression of the whole body. Note that data presented in Figures 3A and 4C in the original manuscript, which are obtained independently, are combined to generate this heat map. The labels under the heat map indicate the microbial species fed to the larvae, with three samples analyzed for each condition. The lactic acid bacteria (“LAB”) include Lactiplantibacillus plantarum and Leuconostoc mesenteroides, while the lactic acid bacterium (“AAB”) represents Acetobacter orientalis. “LAB + AAB” signifies mixtures of the AAB and either one of the LAB species. The asterisks in the label highlight “LAB + AAB” or “LAB” samples clustered separately from the other samples in those conditions; “” indicates a sample in a “LAB + AAB” condition (Lactiplantibacillus plantarum + Acetobacter orientalis), and “*” indicates a sample in a “LAB” condition (Leuconostoc mesenteroides). Brown abbreviations of scientific names are for the yeast-fed conditions. H. uva, Hanseniaspora uvarum; K. hum, Kazachstania humilis; M. asi, Martiniozyma asiatica; Sa. cra, Saccharomycopsis crataegensis; P. klu, Pichia kluyveri; St. bac, Starmerella bacillaris; BY4741, Saccharomyces cerevisiae BY4741 strain.

      4) The whole paper - and this is one of its merits - points to a role of the Drosophila larval microbiota in processing the fly food. Are these bacterial and fungal species found in the gut of larvae/adults? Are these species capable of establishing a niche in the cardia of adults as shown recently in the Ludington lab (Dodge et al.,)? Previous studies have suggested that microbiota members stimulate the Imd pathway leading to an increase in digestive proteases (Erkosar/Leulier). Are the microbiota species studied here affecting gut signaling pathways beyond providing branched amino acids?

      The whole paper - and this is one of its merits - points to a role of the Drosophila larval microbiota in processing the fly food. Are these bacterial and fungal species found in the gut of larvae/adults? Are these species capable of establishing a niche in the cardia of adults as shown recently in the Ludington lab (Dodge et al.,)?

      Although we did not investigate the microbiota in the gut of either larvae or adults, we did compare the microbiota within surface-sterilized larvae or adults with the microbiota in food samples. We found that adult flies and early-stage foods, as well as larvae and late-stage foods, harbored similar microbial species (Figure 1F). Additionally, previous studies examining the gut microbiota in wild adult flies have detected microbes belonging to the same species or taxa as those isolated from our foods (Chandler et al., 2011; Chandler et al., 2012). We have elaborated on this in our response to Weakness 1).

      While we did not investigate whether these species are capable of establishing a niche in the cardia of adults, we have cited the study by Dodge et al., 2023 in our revised manuscript and discussed the possibility that predominant microbes in adult flies may show a propensity for colonization (lines 410-413).

      Previous studies have suggested that microbiota members stimulate the Imd pathway leading to an increase in digestive proteases (Erkosar/Leulier). Are the microbiota species studied here affecting gut signaling pathways beyond providing branched amino acids?

      The reviewer inquires whether the supportive microbes in our study stimulate gut signaling pathways and induce the expression of digestive protease genes, as demonstrated in a previous study (Erkosar et al., 2015). Based on our RNA-seq data, this is unlikely. The aforementioned study demonstrated that seven protease genes are upregulated through Imd pathway stimulation by a bacterium that promotes the larval growth. In our RNA-seq analysis, these seven genes did not exhibit a consistent upregulation in the presence of the supportive microbes (H. uva or K. hum in Author response table 2A; Le. mes + A. ori in Author response table 2B). Rather, they exhibited a tendency to be upregulated by the presence of non-supportive microbes (St. bac or Pi. klu in Author response table 2A; La. pla in Author Response Table 2B).

      Author response table 2.

      Most of the peptidase genes reported by Erkosar et al., 2015 are more highly expressed under the non-supportive conditions than the supportive conditions. Comparison of the expression levels of seven peptidase genes derived from the RNA-seq analysis of yeast-fed (A) or bacteria-fed (B) first-instar larvae. A previous report demonstrated that the expression of these genes is upregulated upon association with a strain of Lactiplantibacillus plantarum, and that the PGRP-LE/Imd/Relish signaling pathway, at least partially, mediates the induction (Erkosar et al., 2015). H. uva, Hanseniaspora uvarum; K. hum, Kazachstania humilis; P. klu, Pichia kluyveri; S. bac, Starmerella bacillaris; La. pla, Lactiplantibacillus plantarum; Le. mes, Leuconostoc mesenteroides; A. ori, Acetobacter orientalis; ns, not significant.

      Reviewer #2 (Public Review):

      Weaknesses:

      The experimental setting that, the authors think, reflects host-microbe interactions in nature is one of the key points. However, it is not explicitly mentioned whether isolated microbes are indeed colonized in wild larvae of Drosophila melanogaster who eat bananas. Another matter is that this work is rather descriptive and a few mechanical insights are presented. The evidence that the nutritional role of BCAAs is incomplete, and molecular level explanation is missing in "interspecies interactions" between lactic acid bacteria (or yeast) and acetic acid bacteria that assure their inhabitation. Apart from these matters, the future directions or significance of this work could be discussed more in the manuscript.

      The experimental setting that, the authors think, reflects host-microbe interactions in nature is one of the key points. However, it is not explicitly mentioned whether isolated microbes are indeed colonized in wild larvae of Drosophila melanogaster who eat bananas.

      The reviewer asks whether the isolated microbes were colonized in the larval gut. Previous studies on microbial colonization associated with Drosophila have predominantly focused on adults (Pais et al. PLOS Biology, 2018), rather than larval stages. Developing larvae continually consume substrates which are already subjected to microbial fermentation and abundant in live microbes until the end of the feeding larval stage. Therefore, we consider it difficult to discuss microbial colonization in the larval gut. We have mentioned this point in DISCUSSION of the revised manuscript (lines 408-410).

      Another matter is that this work is rather descriptive and a few mechanical insights are presented. The evidence that the nutritional role of BCAAs is incomplete, and molecular level explanation is missing in "interspecies interactions" between lactic acid bacteria (or yeast) and acetic acid bacteria that assure their inhabitation.

      While we recognize the importance of comprehensive mechanistic analysis, elucidation of more detailed molecular mechanisms lies beyond the scope of this study and will be a subject of future research.

      Regarding the nutritional role of BCAAs, the incorporation of BCAAs enabled larvae fed with the non-supportive yeast to grow to the second-instar stage. This observation implies that consumption of BCAAs upregulates diverse genes involved in cellular growth processes in larvae. We mentioned a previously reported interaction between lactic acid bacteria (LAB) and acetic acid bacteria (AAB) in the manuscript (lines 433-436). LAB may facilitate lactate provision to AAB, consequently enhancing the biosynthesis of essential nutrients such as amino acids. To test this hypothesis, future experiments will include the supplementation of lactic acid to AAB culture plates, and the co-inoculation of AAB with LAB mutant strains defective in lactate production to assess both larval growth and continuous larval association with AAB. With respect to AAB-yeast interactions, metabolites released from yeast cells might benefit AAB growth, and this possibility will be investigated through the supplementation of AAB culture plates with candidate metabolites identified in the cell suspension supernatants of the late-stage yeasts.

      Apart from these matters, the future directions or significance of this work could be discussed more in the manuscript.

      We appreciate the reviewer's recommendations. The explanation of the universality of our findings has been included in the revised DISCUSSION (lines 391-397). We have also added descriptions on the implication of compositional shifts occurring in adult microbiota (lines 404413), possible inoculation routes of different microbes (lines 414-427), and hypotheses on the mechanism of larval growth promotion by yeasts (lines 469-476), all of which could be the focus of our future study.

      Reviewer #3 (Public Review):

      Weaknesses:

      Despite describing important findings, I believe that a more thorough explanation of the experimental setup and the steps expected to occur in the exposed diet over time, starting with natural "inoculation" could help the reader, in particular the non-specialist, grasp the rationale and main findings of the manuscript. When exactly was the decision to collect earlystage samples made? Was it when embryos were detected in some of the samples? What are the implications of bacterial presence in the no-fly traps? These samples also harbored complex microbial communities, as revealed by sequencing. Were these samples colonized by microbes deposited with air currents? Were they the result of flies that touched the material but did not lay eggs? Could the traps have been visited by other insects? Another interesting observation that could be better discussed is the fact that adult flies showed a microbiome that more closely resembles that of the early-stage diet, whereas larvae have a more late-stage-like microbiome. It is easy to understand why the microbiome of the larvae would resemble that of the late-stage foods, but what about the adult microbiome? Authors should discuss or at least acknowledge the fact that there must be a microbiome shift once adults leave their food source. Lastly, the authors should provide more details about the metabolomics experiments. For instance, how were peaks assigned to leucine/isoleucine (as well as other compounds)? Were both retention times and MS2 spectra always used? Were standard curves produced? Were internal, deuterated controls used?

      When exactly was the decision to collect early-stage samples made? Was it when embryos were detected in some of the samples?

      We collected traps and early-stage samples 2.5 days after setting up the traps. This duration was determined from pilot experiments. A shorter collection time resulted in a lower likelihood of obtaining traps visited by adult flies, whereas a longer collection time caused overcrowding of larvae as well as deaths of adults from drowning in the liquid seeping out of the fruits. These procedural details have been included in the MATERIALS AND METHODS section of the revised manuscript (lines 523-526).

      What are the implications of bacterial presence in the no-fly traps? These samples also harbored complex microbial communities, as revealed by sequencing. Were these samples colonized by microbes deposited with air currents? Were they the result of flies that touched the material but did not lay eggs? Could the traps have been visited by other insects?

      We assume that the origins of the microbes detected in the no-fly trap foods vary depending on the species. For instance, Colletotrichum musae, the fungus that causes banana anthracnose, may have been present in fresh bananas before trap placement. The filamentous fungi could have originated from airborne spores, but they could also have been introduced by insects that feed on these fungi. We have included these possibilities in the DISCUSSION section of the revised manuscript (lines 417-421).

      Another interesting observation that could be better discussed is the fact that adult flies showed a microbiome that more closely resembles that of the early-stage diet, whereas larvae have a more late-stage-like microbiome. It is easy to understand why the microbiome of the larvae would resemble that of the late-stage foods, but what about the adult microbiome? Authors should discuss or at least acknowledge the fact that there must be a microbiome shift once adults leave their food source.

      We are grateful for the reviewer's insightful suggestion regarding shifts in the adult microbiome. We have included in the DISCUSSION section of the revised manuscript the possibility that the microbial composition may change substantially during pupal stages or after adult eclosion (lines 404-413).

      Lastly, the authors should provide more details about the metabolomics experiments. For instance, how were peaks assigned to leucine/isoleucine (as well as other compounds)? Were both retention times and MS2 spectra always used?

      In this metabolomic analysis, LC-MS/MS with triple quadrupole MS monitors the formation of fragment ions from precursor ions specific to each target compound. The use of PFPP columns, which provide excellent separation of amino acids and nucleobases, allows chromatographic peaks of many structural isomers to be separated into independent peaks. In addition, all measured compounds are compared with data from a standard library to confirm retention time agreement. Structural isomers were separated either by retention time on the column or by compound-specific MRM signals (in fact, leucine and isoleucine have both unique MRM channels and column separations). Detailed MRM conditions are identical to the previously published study (Oka et al., 2017). These have been included in the revised ‘LC-MS/MS measurement’ section in MATERIALS AND METHODS (lines 810-824).

      Were standard curves produced?

      Since relative quantification of metabolite amounts was performed in this study, no standard curve was generated to determine absolute concentrations. However, a standard compound of known concentration (single point) was measured to confirm retention time and relative area values.

      Were internal, deuterated controls used?

      Internal standards for deuterium-labeled compounds were not used in this study. This is because it is not realistic to obtain deuterium-labeled compounds for all compounds since a large number of compounds are measured. However, an internal standard (L-methionine sulfone) is added to the extraction solvent to calculate the recovery rate. This has been included in the revised ‘LC-MS/MS measurement’ section in MATERIALS AND METHODS (lines 824-825).

      Reviewer #1 (Recommendations For The Authors):

      Additional comments 1. The authors should do a better job of presenting their data. It took me quite a while to understand the protocol of Figure 1. Panel 1A, B, C could be improved. For instance, 1A suggests that flies are transferred to the lab while this is in fact the banana trap. Indicate 'Banana trap colonized by flies' rather 'wild-type flies in the trap'. 1C: should indicate that the food suspension comes from the banana trap. 1B,D,D: do not use pale color as legend. Avoid the use of indices in Figure 2 (Y1 rather than Y1). Grey colors are difficult to distinguish in Figure 2. Etc. It is a pain for reviewers that figure legends are on the verso of each figure and not just below.

      We thank the reviewer for the detailed suggestions to improve the clarity and comprehensibility of our figures. We have improved the figures according to the suggestions. As for the figure legends, we have placed them below each respective figure whenever possible.

      1. Clarify in the text if 'sample' means food substratum or flies/larvae (ex. line 116 and elsewhere).

      We have revised the word “sample” throughout our manuscript and eliminated the confusion.

      1. Line 170 - clarify what you mean by fermented food.

      We have replaced the “fermented larval foods” with “fermented bananas” in our revised manuscript (line 165).

      1. Line 199 - what is the meaning of 'stocks'.

      We have replaced the “stocks” with “strains” (line 195).

      1. Line 320 - explain more clearly what the yeast-conditioned banana-agar plate and cell suspension supernatant are, and what the goals of using these media are. This will help in understanding the subsequent text.

      We have added a supplemental figure illustrating the sample preparation for the metabolomic analysis (Figure S6), with the following legend describing the procedure (lines 1335-1346): “Sample preparation process for the metabolomic analysis. We suspected that the supportive live yeast cells may release critical nutrients for larval growth, whereas the non-supportive yeasts may not. To test this possibility, we made three distinct sample preparations of individual yeast strains (yeast cells, yeast-conditioned banana-agar plates, and cell suspension supernatants). Yeast cells were for the analysis of intracellular metabolites, whereas yeast-conditioned banana-agar plates and cell suspension supernatants were for that of extracellular metabolites. The samples were prepared as the following procedures. Yeasts were grown on banana-agar plates for 2 days at 25°C, and then scraped from the plates to obtain “yeast cells.” Next, the remaining yeasts on the resultant plates were thoroughly removed, and a portion from each plate was cut out (“yeast-conditioned banana agar”). In addition, we suspended yeast cells from the agar plates into sterile PBS, followed by centrifugation and filtration to eliminate the yeast cells, to prepare “cell suspension supernatants.”

      1. Figure 5 is difficult to understand. Provide more explanation. Consider moving the 'all metabolites panel' to Supp. Better explain what this holidic medium is.

      The holidic medium is a medium that has been commonly used in the Drosophila research community, which contains ~40 known nutrients, and supports the larval development to pupariation (Piper et al., 2014; Piper et al., 2017). We have introduced this explanation to the RESULTS section of the manuscript (lines 322-327). However, the scope of our research reaches beyond the analysis of the holidic medium components, because feeding the holidic medium alone causes a significant delay in larval growth, suggesting a lack of nutritional components (Piper et al., 2014). Thus, we believe the "All Metabolites" panels should be placed alongside the corresponding “The holidic medium components” panels.

      1. I could not access Figure 6 when downloading the PDF. The page is white and an error message appears - it is problematic to review a paper lacking a figure.

      We regret any inconvenience caused, perhaps due to a system error. Please refer to the Author response image 2, which is identical to Figure 6 of our original manuscript.

      Author response image 2.

      Supportive yeasts facilitate larval growth by providing nutrients, including branched-chain amino acids, by releasing them from their cells (Figure 6 from the original manuscript). (A and B) Growth of larvae feeding on yeasts on banana agar supplemented with leucine and isoleucine. (A) The mean percentage of the live/dead individuals in each developmental stage. n=4. (B) The percentage of larvae that developed into second instar or later stages. The “Not found” population in Figure 6A was omitted from the calculation. Each data point represents data from a single tube. Unique letters indicate significant differences between groups (Tukey-Kramer test, p < 0.05). (C) The biosynthetic pathways for leucine and isoleucine with S. cerevisiae gene names are shown. The colored dots indicate enzymes that are conserved in the six isolated species, while the white dots indicate those that are not conserved. Abbreviations of genera are given in the key in the upper right corner. LEU2 is deleted in BY4741. (D-G) Representative image of Phloxine B-stained yeasts. The right-side images are expanded images of the boxed areas. The scale bar represents 50 µm. (H) Summary of this study. H. uvarum is predominant in the early-stage food and provides Leu, Ile, and other nutrients that are required for larval growth. In the late-stage food, AAB directly provides nutrients, while LAB and yeasts indirectly contribute to larval growth by enabling the stable larva-AAB association. The host larva responds to the nutritional environment by dramatically altering gene expression profiles, which leads to growth and pupariation. H. uva, Hanseniaspora uvarum; K. hum, Kazachstania humilis; Pi. klu, Pichia kluyveri; St. bac, Starmerella bacillaris; GF, germ-free.

      1. Line 323 - Consider rewriting this sentence (too long, explain what the holidic medium is and why this is interesting). "In the yeast-conditioned banana-agar plates, which were anticipated to contain yeast-derived nutrients, many well-known nutrients included in a chemically defined synthetic (holidic) medium for Drosophila melanogaster (Piper et al., 2014, 2017) were not increased compared to the sterile banana-agar plates; instead, they exhibited drastic decreases irrespective of the yeast species."

      We thank the reviewer's suggestion to improve the readability of our manuscript. We have rewritten the sentence in the revised manuscript (lines 320-328) as follows: “The yeastconditioned banana-agar plates were expected to contain yeast-derived nutrients. On the contrary, the result revealed a depletion of various metabolites originally present in the sterile banana agar (Figure 5A). This result prompted us to focus on the metabolites in the chemically defined (holidic) medium for Drosophila melanogaster Piper et al., 2014; Piper et al., 2017. This medium contains ~40 known nutrients, and supports the larval development to pupariation, albeit at the half rate compared to that on a yeast-containing standard laboratory food Piper et al., 2014; Piper et al., 2017. Therefore, the holidic medium could be considered to contain the minimal essential nutrients required for larval growth. Our analysis indicated a substantial reduction of these known nutrients in the yeast-conditioned plates compared to their original quantities (Figure 5B).”

      Reviewer #2 (Recommendations For The Authors):

      Suggestions for improved or additional experiments, data or analyses.

      1. It should be clearly shown (or stated) that isolated microbes, such as H. uvarum and Pa. agglomerans, are indigenous microbes in wild Drosophila melanogaster in their outdoor sampling.

      We thank the reviewer for the suggestions. Addressing the presence of isolated microbes within wild D. melanogaster adults is important, but cannot be feasible with our data for the following reasons. Our microbiota analysis of adults was conducted using pooled individuals of multiple Drosophila species, rather than using D. melanogaster exclusively. Moreover, the microbial isolation and the analysis of adult microbiota were carried out in two independent samplings (Figures 1A and 1E in the original manuscript, respectively). As a result, the microbial species detected in the adults were slightly different from those isolated from the food samples collected in the previous sampling. Nevertheless, it is worth noting that H. uvarum dominated in 2 out of the 3 adult samples, constituting >80% of the fungal composition. Pantoea agglomerans was not detected in the adults, although Enterobacterales accounted for >59% in 2 out of the 3 samples. Therefore, these isolated microbial species, or at least their phylogenetically related species, are presumed to be indigenous to wild D. melanogaster.

      If the reviewer’s suggestion was to state the dominance of H. uvarum and Pantoea agglomerans in early-stage foods, we have added a supplemental figure showing the species-level microbial compositions corresponding to Figure 1B of the original manuscript (Figure S1), and further revised the manuscript (lines 180-186).

      1. The reviewer supposes that the indigenous microbes of flies may differ from what they usually eat. In this study, the authors use banana-based food, but is it justified in terms of the natural environment of the places where those microbes were isolated? In other words, did sampled wild flies eat bananas outside the laboratory at Kyoto University?

      Drosophila spp. inhabit human residential areas and feed on various fermented fruits and vegetables. In the areas surrounding Kyoto University, they can be found in garbage in residential dwellings as well as supermarkets. In this regard, fruits are natural food sources of wild Drosophila in the area.

      Among various fruits, bananas were selected based on the following two reasons. Firstly, bananas were commonly used in previous Drosophila studies as a trap bait or a component of Drosophila food (Anagnostou et al., 2010; Stamps et al., 2012; Consuegra et al., 2020). Secondly, and rather practically, bananas can be obtained in Japan all year at a relatively low cost. Previous studies have used various fruits such as grapes (Quan and Eisen, 2018), figs (Pais et al., 2018), and raspberries (Cho and Rohlfs, 2023). However, these fruits are only available during limited seasons and are more expensive per volume than bananas. Thus, they were not practical for our study, which required large amounts of fruit-based culture media. We have included a brief explanation regarding this point in MATERIALS AND METHODS (lines 514-518).

      1. In Fig. 6B, the Leu and Ile experiment, is the added amount of those amino acids appropriate in the context that they mention "...... supportive yeasts had concentrations of both leucine and isoleucine that were at least four-fold higher than those of non-supportive yeasts"?

      We acknowledge that the supplementation should be carried out ideally in a quantity equivalent to the difference between the released amounts of supportive and non-supportive species. However, achieving this has been highly challenging. Previous studies determined the amount of amino acid supplementation by quantifying their concentration in the bacteriaconditioned media (Consuegra et al., 2020; Henriques et al., 2020). However, we found that quantifying the exact concentrations of the amino acids is not feasible with our yeasts. As shown in Figure 5B in the original manuscript, the amino acid contents were markedly reduced in the yeast-conditioned banana agar compared to the agar without yeasts, presumably because of the uptake by the yeasts. Thus, the amino acids released from yeast cells on the banana-agar plate are not expected to accumulate in the medium. As this reviewer pointed out, in the cell suspension supernatants of the supportive yeasts, concentrations of both leucine and isoleucine were at least four-fold higher compared to those of non-supportive yeasts (Figures 5G-H in the original submission), However, this measurement does not give the absolute amount of either amino acid available for larvae. Given these constraints, we opted for the amino acid concentrations in the holidic medium, which support larval growth under axenic conditions (Piper et al., 2014). We also showed that the supplementation of the amino acids at that concentration to the bananaagar plate was not detrimental to larval growth (Figures 6A-B in the original manuscript). These rationales have been included in the revised ‘Developmental progression with BCAA supplementation’ section in MATERIALS AND METHODS of our manuscript (lines 840-847).

      1. In addition to the above, it can be included other amino acids or nutrients as control experiments.

      As mentioned in our manuscript (lines 365-368), we did supplement other amino acids, lysine and asparagine, which failed to rescue the larval growth.

      1. In the experiment of Fig. 2E, how about examining larval development using heat-killed LAB or yeast with live AAB? The reviewer speculates that one possibility is that AAB needs nutrients from LAB.

      We did not feed larvae with heat-killed LAB and live AAB for the following reasons. LAB grows very poorly on banana agar compared to yeasts, and preparation of LAB required many banana-agar plates even when we fed live bacteria to larvae. Adding dead LAB to banana-agar tubes would require far more plates, but this preparation is impractical. Furthermore, heat-killing may not allow the investigation of the contribution of heat-unstable or volatile compounds.

      As for the reviewer's suggestion regarding the addition of heat-killed yeast with AAB, heat-killed yeast itself promotes larval growth, as shown in Figures 4G and 4H in the original manuscript, so the contribution of yeast cannot be examined using this method.

      Recommendations for improving the writing and presentation.

      1. It would be good to mention that during sample collection, other insects (other than Drosophila species) were not found in the food if this is true.

      Insects other than Drosophila spp. were found in several traps in the sampling shown in Figures 1C-F. These insects, rove beetles (Staphylinidae) and sap beetles (Nitidulidae), seemed to share a niche with Drosophila in nature. Therefore, we believe that the contamination of these insects did not interfere with our goal of obtaining larval food samples. We added these descriptions and explanations to MATERIALS AND METHODS (lines 527531).

      1. There are many different kinds of bananas. It should be mentioned the detailed information.

      We had included the information on the banana in MATERIALS AND METHODS section (line 622).

      1. Concerning the place of sample collection, detailed longitude, and latitude information can be provided (this is easily obtained from Google Maps). When the collection was performed should also be mentioned. This may suggest the environment of the "wild flies" they collected.

      We added a table listing the dates of our collections, along with the longitude and latitude of each sampling place (Table S1A).

      1. The reviewer could not find how the authors conducted heat killing of yeast.

      We added the following procedure to the ‘Quantification of larval development’ section in MATERIALS AND METHODS (lines 680-688). “When feeding heat-killed yeasts to larvae, yeasts were added to the banana-agar tubes and subsequently heated as following procedures. The yeasts were revived from frozen stocks on banana-agar plates, incubated at 25°C, and then streaked on fresh agar plates. After 2-day incubation, yeast cells were scraped from the plates and suspended in PBS at the concentration of 400 mg of yeast cells in 500 µL of PBS. 125 µL of the suspensions were added to banana-agar tubes prepared as described, and after centrifugation at 3,000 x g for 5 min, the supernatants were removed. The amount of cells in each tube is ~50x compared to that when feeding live yeasts, which compensates for the reduced amount due to their inability to proliferate. The tubes were subsequently heated at 80°C for 30 min before adding germ-free larvae.”

      1. The reviewer prefers that all necessary information on how to see figures be provided in figure legends. For example, an explanation of some abbreviations is missing.

      We carefully re-examined the figure legends and added necessary information.

      1. Many of the figures are not kind to readers, i.e., one needs to refer to the legends and main text very frequently. Adding subheadings (titles) to each figure may help.

      We added subheadings to our figures to improve the comprehensibility.

      Reviewer #3 (Recommendations For The Authors):

      I have some minor questions/suggestions about the manuscript that, if addressed, may increase the clarity and quality of the work.

      1. Please, when referring to microbial species in the abbreviated form, use only the first letter of the genus. For example, P. agglomerans should be used, not Pa. agglomerans.

      We are concerned about the potential confusion caused by using only the first letter of genera, since several genera mentioned in our work share the first letters, such as P (Pichia and Pantoea), S (Starmerella, Saccharomyces, and Saccharomycopsis), or L (Lactiplantibacillus and Leuconostoc). Therefore, we used only the unabbreviated form of the above seven genera in our revised manuscript. We have also made every effort to avoid abbreviations in our figures and tables, but found it necessary to retain two-letter abbreviations when spaces are particularly limiting.

      1. In lines 294-298, how exactly was the experiment where yeasts were killed by anti-fungal agents performed? If these agents killed the yeast, how was the microbial growth on plates required to have biomass for fly inoculation obtained? Please, clarify this section.

      The yeasts were grown on normal banana-agar plates before the addition onto the anti-fungal agents-containing banana agar. We added the following procedure to MATERIALS AND METHODS (lines 689-695). “When feeding yeasts on banana agar supplemented with antifungal agents, the yeasts were individually grown on normal banana agar twice before being suspended in PBS at the concentration of 400 mg of yeast cells in 500 µL of PBS. 125 µL of the suspensions was introduced onto the anti-fungal agents (10 mL/L 10% p-hydroxybenzoic acid in 70% ethanol and 6 mL/L propionic acid, following the concentration described in Kanaoka et al., 2023)-containing banana agar in 1.5 mL tubes. After centrifugation, the supernatants were removed. The amount of cells in each tube is ~50x compared to that when feeding live yeasts.”

      1. In lines 557-558, please clarify how rDNA copy numbers can be calculated in this way.

      Considering the results of the ITS and 16S sequencing analysis, it was highly likely that rDNAs from bananas and Drosophila were amplified along with microbial rDNA in this qPCR. To estimate the microbial rDNA copy number, we assumed that the proportion of microbial rDNA within the total amplification products remains consistent between the qPCR and the corresponding sequencing analysis, because the template DNA samples and amplified regions were shared between the analyses. Based on this, the copy number of microbial rDNA was estimated by multiplying the qPCR results with the microbial rDNA ratio observed in the ITS or 16S sequencing analysis of each sample. This methodology has been detailed in the MATERIALS AND METHODS section (lines 609-615).

      1. In lines 609-611, how did you check for cells left from the previous day? Microscopy? Or do you mean that if there was liquid still in the sample you would not add more bacterial cultures? Please, clarify.

      We observed with the naked eye from outside the tubes to determine if additional AAB should be introduced. Since we placed AAB on the banana agar in a lump, we examined whether the lumps were gone or not. We have added these procedures in MATERIALS AND METHODS (lines 671-673).

      1. In Figure 2A, it is hard to differentiate between the gray tones. Please, improve this.

      We have distinguished the plots for different conditions by changing the shape of the markers on the graphs.

      1. In the legend of Figure 4, line 1101, I believe the panel letters are incorrect.

      We have corrected the manuscript (lines 1241-1242) from “heat-killed yeasts on banana agar (H and I) or live yeasts on a nutritionally rich medium (J and K)” to “heat-killed yeasts on banana agar (G and H) or live yeasts on a nutritionally rich medium (I and J).”

      1. In Figure S1, authors showed that bananas that were not inoculated still had detectable rDNA signal. Is this really because bacteria can penetrate the peel? Or could this be the “reagent microbiome”? Alternatively, could these microbes have been introduced during sample prep, such as cutting the bananas?

      The detection of rDNA in bananas that were not inoculated with microbes was unlikely to be due to microbial contamination during experimental manipulation. The reviewer pointed out the possibility that the “reagent microbiome”, presumably the microbes in PBS, are detected from the uninoculated bananas. This seems to be unlikely, considering the PBS was sterilized by autoclaving before use. To ensure that no viable microbe was left in the autoclaved PBS, we applied a portion of the PBS onto a banana-agar plate and confirmed no colony was formed after incubation for a few days. DNA derived from dead microbes might be present in the PBS, but the PBS-added bananas were incubated for 4 days, so it is also unlikely that a detectable amount of DNA remained until sample collection. Furthermore, we believe that no contamination occurred during sample preparation. Banana peels were treated with 70% ethanol before removing them extremely carefully to avoid touching the fruit inside. All tools were sterilized before use. Taking all of these into account, we speculate that the microbes were already present in the bananas before peeling. We added the details of the sample preparation processes in MATERIALS AND METHODS (lines 518-521 and 540).

      Other major revisions

      1. We deposited our yeast genome annotation data in the DDBJ Annotated/Assembled Sequences database, and the accession numbers have been added to the ‘Data availability’ section in MATERIALS AND METHODS (lines 868-873).

      2. The bacterial composition data in Figure 1B was corrected, because in the original version, the data for Place 3 and Place 4 was plotted in reverse. The original and revised plots are shown side by side in Author response image 3. We hope that the reviewers agree that this replacement of the plots does not affect our conclusion (p5, lines 117-120).

      Author response image 3.

      Comparison of the original and revised version of bacterial composition graph in Figure 1B. Comparison of the original (left) and revised (right) version of the graph at the bottom of Figure 1B, which shows the result of bacterial composition analysis. The color key, which is unmodified, is placed below the revised version.

      1. The plot data and labels in the RNA-seq result heatmaps (Figures 3A and 4C) have been corrected. In these figures, row Z-scores of log2(TPM + 1) were to be plotted, as indicated by the key in each figure. However, in the original version, row Z-scores of TPM was erroneously plotted. Thus, Figures 3A and 4C of the original version have been replaced with the correct plots, and the original and revised plots are shown side by side in Author response images 4A and 4B. We hope that the reviewers agree that this replacement of the plots does not affect our conclusion (p7, lines 222-226 and p9, lines 277-281).

      Author response image 4.

      Comparison of the original and revised version of Figures 3A and 4C. (A and B) Comparison of the original (left) and revised (right) version of Figures 3A (A) or 4C (B).

      1. The keys in the original Figures 3D and 4F indicate that log2(fold change) was used to plot all data. However, when plotting the data from the previous study (Zinke et al., 2002), their “fold change value” was used. We have corrected the keys, plots, and legend of Figure 3D to reflect the different nature of the data from our RNA-seq analysis and those from microarray analysis by Zinke et al. The original and revised plots are shown side by side in Author response image 5. We hope that the reviewers agree that this replacement of the plots does not affect our conclusion (p7, lines 228230 and p9, 277-284).

      Author response image 5.

      Comparison of the original and revised version of Figures 3D and 4F. (A and B) Comparison of the original (left) and revised (right) version of Figures 3D (A) or 4F (B).

      1. The labels in Figure S5C and S5D (Figure S4C and S4D in the original version) have been corrected (they are "Pichia kluyveri > Supportive" and "Starmerella bacillaris > Supportive" rather than "Non-support. > H. uva" and "Non-support. > K. hum"). Additionally, we have reintroduced the circle indicating the number of “dme04070: Phosphatidylinositol signaling system” DEGs in Figure S5D, which was missing in Figure S4D of the original version. The original and revised figures are shown in Author response image 6.

      Author response image 6.

      Comparison of the original and revised version of Figures S5C and S5D. (A and B) Comparison of the original (left) and revised (right) versions of Figures S5C (A) or S5D (B). The original figures corresponding to the aforementioned figures were Figures S4C and S4D, respectively.

      1. The "Fermentation stage" column in Table 1, which indicated whether each microbe was considered an early-stage microbe or a late-stage microbe, has been removed to avoid confusion. This is because some of the microbes (Hanseniaspora uvarum, Pichia kluyveri, and Pantoea agglomerans) were employed in both of the feeding experiments using the microbes detected from the early-stage foods (Figures 2A, 2B, S2A, and S2B) and those from the late-stage foods (Figures 2C, 2D, S2C, and S2D).

      2. The leftmost column in Table S7 has been edited to indicate species names rather than “Sample IDs,” because the IDs were not used in anywhere else in the paper.

      Reference

      Chandler, J. A., Lang, J., Bhatnagar, S., Eisen, J. A. and Kopp, A. (2011). Bacterial communities of diverse Drosophila species: Ecological context of a host-microbe model system. PLoS Genetics 7, e1002272.

      Chandler, J. A., Eisen, J. A. and Kopp, A. (2012). Yeast communities of diverse Drosophila species: Comparison of two symbiont groups in the same hosts. Applied and Environmental Microbiology 78, 7327–7336.

      Cho, H. and Rohlfs, M. (2023). Transmission of beneficial yeasts accompanies offspring production in Drosophila—An initial evolutionary stage of insect maternal care through manipulation of microbial load? Ecology and Evolution 13, e10184.

      Consuegra, J., Grenier, T., Akherraz, H., Rahioui, I., Gervais, H., da Silva, P. and Leulier, F. (2020). Metabolic Cooperation among Commensal Bacteria Supports Drosophila Juvenile Growth under Nutritional Stress. iScience 23, 101232.

      Dodge, R., Jones, E. W., Zhu, H., Obadia, B., Martinez, D. J., Wang, C., Aranda-Díaz, A., Aumiller, K., Liu, Z., Voltolini, M., et al. (2023). A symbiotic physical niche in Drosophila melanogaster regulates stable association of a multi-species gut microbiota. Nat Commun 14, 1557.

      Erkosar, B., Storelli, G., Mitchell, M., Bozonnet, L., Bozonnet, N. and Leulier, F. (2015). Pathogen Virulence Impedes Mutualist-Mediated Enhancement of Host Juvenile Growth via Inhibition of Protein Digestion. Cell Host & Microbe 18, 445–455.

      Hanson, M. A. and Lemaitre, B. (2020). New insights on Drosophila antimicrobial peptide function in host defense and beyond. Current Opinion in Immunology 62, 22–30.

      Henriques, S. F., Dhakan, D. B., Serra, L., Francisco, A. P., Carvalho-Santos, Z., Baltazar, C., Elias, A. P., Anjos, M., Zhang, T., Maddocks, O. D. K., et al. (2020). Metabolic cross-feeding in imbalanced diets allows gut microbes to improve reproduction and alter host behaviour. Nat Commun 11, 4236.

      Oka, M., Hashimoto, K., Yamaguchi, Y., Saitoh, S., Sugiura, Y., Motoi, Y., Honda, K., Kikko, Y., Ohata, S., Suematsu, M., et al. (2017). Arl8b is required for lysosomal degradation of maternal proteins in the visceral yolk sac endoderm of mouse embryos. Journal of Cell Science jcs.200519.

      Pais, I. S., Valente, R. S., Sporniak, M. and Teixeira, L. (2018). Drosophila melanogaster establishes a species-specific mutualistic interaction with stable gut-colonizing bacteria. PLOS Biology 16, e2005710.

      Piper, M. D. W., Blanc, E., Leitão-Gonçalves, R., Yang, M., He, X., Linford, N. J., Hoddinott, M. P., Hopfen, C., Soultoukis, G. A., Niemeyer, C., et al. (2014). A holidic medium for Drosophila melanogaster. Nature Methods 11, 100–105.

      Piper, M. D. W., Soultoukis, G. A., Blanc, E., Mesaros, A., Herbert, S. L., Juricic, P., He, X., Atanassov, I., Salmonowicz, H., Yang, M., et al. (2017). Matching Dietary Amino Acid Balance to the In Silico-Translated Exome Optimizes Growth and Reproduction without Cost to Lifespan. Cell Metab 25, 610–621.

      Quan, A. S. and Eisen, M. B. (2018). The ecology of the drosophila-yeast mutualism in wineries. PLOS ONE 13, e0196440.

      Solomon, G. M., Dodangoda, H., McCarthy-Walker, T. T., Ntim-Gyakari, R. R. and Newell, P. D. (2019). The microbiota of Drosophila suzukii influences the larval development of Drosophila melanogaster. PeerJ 7, e8097.

      Zinke, I., Schütz, C. S., Katzenberger, J. D., Bauer, M. and Pankratz, M. J. (2002). Nutrient control of gene expression in Drosophila: microarray analysis of starvation and sugar-dependent response. The EMBO Journal 21, 6162–6173.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We would like to thank the reviewers for their thoughtful comments and constructive suggestions. Point-by-point responses to comments are given below:

      Reviewer #1 (Recommendations For The Authors):

      This manuscript provides an important case study for in-depth research on the adaptability of vertebrates in deep-sea environments. Through analysis of the genomic data of the hadal snailfish, the authors found that this species may have entered and fully adapted to extreme environments only in the last few million years. Additionally, the study revealed the adaptive features of hadal snailfish in terms of perceptions, circadian rhythms and metabolisms, and the role of ferritin in high-hydrostatic pressure adaptation. Besides, the reads mapping method used to identify events such as gene loss and duplication avoids false positives caused by genome assembly and annotation. This ensures the reliability of the results presented in this manuscript. Overall, these findings provide important clues for a better understanding of deep-sea ecosystems and vertebrate evolution.

      Reply: Thank you very much for your positive comments and encouragement.

      However, there are some issues that need to be further addressed.

      1. L119: Please indicate the source of any data used.

      Reply: Thank you very much for the suggestion. All data sources used are indicated in Supplementary file 1.

      1. L138: The demographic history of hadal snailfish suggests a significant expansion in population size over the last 60,000 years, but the results only show some species, do the results for all individuals support this conclusion?

      Reply: Thank you for this suggestion. The estimated demographic history of the hadal snailfish reveals a significant population increase over the past 60,000 years for all individuals. The corresponding results have been incorporated into Figure 1-figure supplements 8B.

      Author response image 1.

      (B) Demographic history for 5 hadal snailfish individuals and 2 Tanaka’s snailfish individuals inferred by PSMC. The generation time of one year for Tanaka snailfish and three years for hadal snailfish.

      1. Figure 1-figure supplements 8: Is there a clear source of evidence for the generation time of 1 year chosen for the PSMC analysis?

      Reply: We apologize for the inclusion of an incorrect generation time in Figure 1-figure supplements 8. It is important to note that different generation times do not change the shape of the PSMC curve, they only shift the curve along the axis. Due to the absence of definitive evidence regarding the generation time of the hadal snailfish, we have referred to Wang et al., 2019, assuming a generation time of one year for Tanaka snailfish and three years for hadal snailfish. The generation time has been incorporated into the main text (lines 516-517): “The generation time of one year for Tanaka snailfish and three years for hadal snailfish.”.

      1. L237: Transcriptomic data suggest that the greatest changes in the brain of hadal snailfish compared to Tanaka's snailfish, what functions these changes are specifically associated with, and how these functions relate to deep-sea adaptation.

      Reply: Thank you for this suggestion. Through comparative transcriptome analysis, we identified 3,587 up-regulated genes and 3,433 down-regulated genes in the brains of hadal snailfish compared to Tanaka's snailfish. Subsequently, we conducted Gene Ontology (GO) functional enrichment analysis on the differentially expressed genes, revealing that the up-regulated genes were primarily associated with cilium, DNA repair, protein binding, ATP binding, and microtubule-based movement. Conversely, the down-regulated genes were associated with membranes, GTP-binding, proton transmembrane transport, and synaptic vesicles, as shown in following table (Supplementary file 15). Previous studies have shown that high hydrostatic pressure induces DNA strand breaks and damage, and that DNA repair-related genes upregulated in the brain may help hadal snailfish overcome these challenges.

      Author response table 1.

      GO enrichment of expression up-regulated and down-regulated genes in hadal snailfish brain.

      We have added new results (Supplementary file 15) and descriptions to show the changes in the brains of hadal snailfish (lines 250-255): “Specifically, there are 3,587 up-regulated genes and 3,433 down-regulated genes in the brain of hadal snailfish compared to Tanaka snailfish, and Gene Ontology (GO) functional enrichment analyses revealed that up-regulated genes in the hadal snailfish are associated with cilium, DNA repair, and microtubule-based movement, while down-regulated genes are enriched in membranes, GTP-binding, proton transmembrane transport, and synaptic vesicles (Supplementary file 15).”

      1. L276: What is the relationship between low bone mineralization and deep-sea adaptation, and can low mineralization help deep-sea fish better adapt to the deep sea?

      Reply: Thank you for this suggestion. The hadal snailfish exhibits lower bone mineralization compared to Tanaka's snailfish, which may have facilitated its adaptation to the deep sea. On one hand, this reduced bone mineralization could have contributed to the hadal snailfish's ability to maintain neutral buoyancy without excessive energy expenditure. On the other hand, the lower bone mineralization may have also rendered their skeleton more flexible and malleable, enhancing their resilience to high hydrostatic pressure. Accordingly, we added the following new descriptions (lines 295-300): “Nonetheless, micro-CT scans have revealed shorter bones and reduced bone density in hadal snailfish, from which it has been inferred that this species has reduced bone mineralization (M. E. Gerringer et al., 2021); this may be a result of lowering density by reducing bone mineralization, allowing to maintain neutral buoyancy without expending too much energy, or it may be a result of making its skeleton more flexible and malleable, which is able to better withstand the effects of HHP.”

      1. L293: The abbreviation HHP was mentioned earlier in the article and does not need to be abbreviated here.

      Reply: Thank you for the correction. We have corrected the word. Line 315.

      1. L345: It should be "In addition, the phylogenetic relationships between different individuals clearly indicate that they have successfully spread to different trenches about 1.0 Mya".

      Reply: Thank you for the correction. We have corrected the word. Line 374.

      1. It is curious what functions are associated with the up-regulated and down-regulated genes in all tissues of hadal snailfish compared to Tanaka's snailfish, and what functions have hadal snailfish lost in order to adapt to the deep sea?

      Reply: Thank you for this suggestion. We added a description of this finding in the results section (lines 337-343): “Next, we identified 34 genes that are significantly more highly expressed in all organs of hadal snailfish in comparison to Tanaka’s snailfish and zebrafish, while only seven genes were found to be significantly more highly expressed in Tanaka’s snailfish using the same criterion (Figure 5-figure supplements 1). The 34 genes are enriched in only one GO category, GO:0000077: DNA damage checkpoint (Adjusted P-value: 0.0177). Moreover, five of the 34 genes are associated with DNA repair.” This suggests that up-regulated genes in all tissues in hadal snailfish are associated with DNA repair in response to DNA damage caused by high hydrostatic pressure, whereas down-regulated genes do not show enrichment for a particular function.

      Overall, the functions lost in hadal snailfish adapted to the deep sea are mainly related to the effects of the dark environment, which can be summarized as follows (lines 375-383): “The comparative genomic analysis revealed that the complete absence of light had a profound effect on the hadal snailfish. In addition to the substantial loss of visual genes and loss of pigmentation, many rhythm-related genes were also absent, although some rhythm genes were still present. The gene loss may not only come from relaxation of natural selection, but also for better adaptation. For example, the grpr gene copies are absent or down-regulated in hadal snailfish, which could in turn increased their activity in the dark, allowing them to survive better in the dark environment (Wada et al., 1997). The loss of gpr27 may also increase the ability of lipid metabolism, which is essential for coping with short-term food deficiencies (Nath et al., 2020).”

      Reviewer #2 (Recommendations For The Authors):

      I have pointed out some of the examples that struck me as worthy of additional thought/writing/comments from the authors. Any changes/comments are relatively minor.

      Reply: Thank you very much for your positive comments on this work.

      For comparative transcriptome analyses, reads were mapped back to reference genomes and TPM values were obtained for gene-level count analyses. 1:1 orthologs were used for differential expression analyses. This is indeed the only way to normalize counts across species, by comparing the same gene set in each species. Differential expression statistics were run in DEseq2. This is a robust way to compare gene expression across species and where fold-change values are reported (e.g. Fig 3, creatively by coloring the gene name) the values are best-practice.

      In other places, TPM values are reported (e.g. Fig 2D, Fig 4C, Fig 5A, Fig 4-Fig supp 4) to illustrate expression differences within a tissue across species. The comparisons look robust, although it is not made clear how the values were obtained in all cases. For example, in Fig 2D the TPM values appear to be from eyes of individual fish, but in Fig 4C and 5A they must be some kind of average? I think that information should be added to the figure legends.

      Of note: TPM values are sensitive to the shape of the RNA abundance distribution from a given sample: A small number of very highly expressed genes might bias TPM values downward for other genes. From one individual to another or from one species to another, it is not obvious to me that we should expect the same TPM distribution from the same tissues, making it a challenging metric for comparison across samples, and especially across species. An alternative measure of RNA abundance is normalized counts that can be output from DEseq2. See:

      Zhao, Y., Li, M.C., Konaté, M.M., Chen, L., Das, B., Karlovich, C., Williams, P.M., Evrard, Y.A., Doroshow, J.H. and McShane, L.M., 2021. TPM, FPKM, or normalized counts? A comparative study of quantification measures for the analysis of RNA-seq data from the NCI patient-derived models repository. Journal of translational medicine, 19(1), pp.1-15.

      If the authors would like to keep the TPM values, I think it would be useful for them to visualize the TPM value distribution that the numbers were derived from. One way to do this would be to make a violin plot for species/tissue and plot the TPM values of interest on that. That would give a visualization of the ranked value of the gene within the context of all other TPM values. A more highly expressed gene would presumably have a higher rank in context of the specific tissue/species and be more towards the upper tail of the distribution. An example violin plot can be found in Fig 6 of:

      Burns, J.A., Gruber, D.F., Gaffney, J.P., Sparks, J.S. and Brugler, M.R., 2022. Transcriptomics of a Greenlandic Snailfish Reveals Exceptionally High Expression of Antifreeze Protein Transcripts. Evolutionary Bioinformatics, 18, p.11769343221118347.

      Alternatively, a comparison of TPM and normalized count data (heatmaps?) would be of use for at least some of the reported TPM values to show whether the different normalization methods give comparable outputs in terms of differential expression. One reason for these questions is that DEseq2 uses normalized counts for statistical analyses, but values are expressed as TPM in the noted figures (yes, TPM accounts for transcript length, but can still be subject to distribution biases).

      Reply: Thank you for your suggestions. Following your suggestions, we modified Fig 2D, Fig 4C, Fig 4-Fig supp 4, and Fig 5-Fig supp 1, respectively. In the differential expression analyses, only one-to-one orthologues of hadal snailfish and Tanaka's snailfish can get the normalized counts output by DEseq2, so we showed the normalized counts by DEseq2 output for Fig 2D, Fig 4C, Fig 4-Fig supp 4, Fig 5-Fig supp 1, and for Fig 5A, since the copy number of fthl27 genes undergoes specific expansion in hadal snailfish, we visualized the ranking of all fthl27 genes across tissues by plotting violins in Fig 5-Fig supp 2.

      Author response image 2.

      (D) Log10-transformation normalized counts for DESeq2 (COUNTDESEQ2) of vision-related genes in the eyes of hadal snailfish and Tanka's snailfish. * represents genes significantly downregulated in hadal snailfish (corrected P < 0.05).

      Author response image 3.

      (C) The deletion of one copy of grpr and another copy of down-regulated expression in hadal snailfish. The relative positions of genes on chromosomes are indicated by arrows, with arrows to the right representing the forward strand and arrows to the left representing the reverse strand. The heatmap presented is the average of the normalized counts for DESeq2 (COUNTDESEQ2) in all replicate samples from each tissue. * represents tissue in which the grpr-1 was significantly down-regulated in hadal snailfish (corrected P < 0.05).

      Author response image 4.

      Expression of the vitamin D related genes in various tissues of hadal snailfish and Tanaka's snailfish. The heatmap presented is the average of the normalized counts for DESeq2 (COUNTDESEQ2) in all replicate samples from each tissue.

      Author response image 5.

      (B) Expression of the ROS-related genes in different tissues of hadal snailfish and Tanaka's snailfish. The heatmap presented is the average of the normalized counts for DESeq2 (COUNTDESEQ2) in all replicate samples from each tissue.

      Author response image 6.

      Ranking of the expression of individual copies of fthl27 gene in hadal snailfish and Tanaka's snailfish in various tissues showed that all copies of fthl27 in hadal snailfish have high expression. The gene expression presented is the average of TPM in all replicate samples from each tissue.

      Line 96: Which BUSCOs? In the methods it is noted that the actinopterygii_odb10 BUSCO set was used. I think it should also be noted here so that it is clear which BUSCO set was used for completeness analysis. It could even be informally the ray-finned fish BUSCOs or Actinopterygii BUSCOs.

      Reply: Thank you for this suggestion. We used Actinopterygii_odb10 database and we added the BUSCO set to the main text as follows (lines 92-95): “The new assembly filled 1.26 Mb of gaps that were present in our previous assembly and have a much higher level of genome continuity and completeness (with complete BUSCOs of 96.0 % [Actinopterygii_odb10 database]) than the two previous assemblies.”

      Lines 102-105: The medaka genome paper proposes the notion that the ancestral chromosome number between medaka, tetraodon, and zebrafish is 24. There may be other evidence of that too. Some of that evidence should be cited here to support the notion that sticklebacks had chromosome fusions to get to 21 chromosomes rather than scorpionfish having chromosome fissions to get to 24. Here's the medaka genome paper:

      Kasahara, M., Naruse, K., Sasaki, S., Nakatani, Y., Qu, W., Ahsan, B., Yamada, T., Nagayasu, Y., Doi, K., Kasai, Y. and Jindo, T., 2007. The medaka draft genome and insights into vertebrate genome evolution. Nature, 447(7145), pp.714-719.

      Reply: Thank you for your great suggestion. Accordingly, we modified the sentence and added the citation as follows (lines 100-105): “We noticed that there is no major chromosomal rearrangement between hadal snailfish and Tanaka’s snailfish, and chromosome numbers are consistent with the previously reported MTZ-ancestor (the last common ancestor of medaka, Tetraodon, and zebrafish) (Kasahara et al., 2007), while the stickleback had undergone several independent chromosomal fusion events (Figure 1-figure supplements 4).”

      Line 161-173: "Along with the expression data, we noticed that these genes exhibit a different level of relaxation of natural selection in hadal snailfish (Figure 2B; Figure 2-figure supplements 1)." With the above statment and evidence, the authors are presumably referring to gene losses and differences in expression levels. I think that since gene expression was not measured in a controlled way it may not be a good measure of selection throughout. The reported genes could be highly expressed under some other condition, selection intact. I find Fig2-Fig supp 1 difficult to interpret. I assume I am looking for regions where Tanaka’s snailfish reads map and Hadal snailfish reads do not, but it is not abundantly clear. Also, other measures of selection might be good to investigate: accumulation of mutations in the region could be evidence of relaxed selection, for example, where essential genes will accumulate fewer mutations than conditional genes or (presumably) genes that are not needed at all. The authors could complete a mutational/SNP analysis using their genome data on the discussed genes if they want to strengthen their case for relaxed selection. Here is a reference (from Arabidopsis) showing these kinds of effects:

      Monroe, J.G., Srikant, T., Carbonell-Bejerano, P., Becker, C., Lensink, M., Exposito-Alonso, M., Klein, M., Hildebrandt, J., Neumann, M., Kliebenstein, D. and Weng, M.L., 2022. Mutation bias reflects natural selection in Arabidopsis thaliana. Nature, 602(7895), pp.101-105.

      Reply: Thank you for pointing out this important issue. Following your suggestion, we have removed the mention of the down-regulation of some visual genes in the eyes of hadal snailfish and the results of the original Fig2-Fig supp 1 that were based on reads mapping to confirm whether the genes were lost or not. To investigate the potential relaxation of natural selection in the opn1sw2 gene in hadal snailfish, we conducted precise gene structure annotation. Our findings revealed that the opn1sw2 gene is pseudogenized in hadal snailfish, indicating a relaxation of natural selection. We have included this result in Figure 2-figure supplements 1.

      Author response image 7.

      Pseudogenization of opn1sw2 in hadal snailfish. The deletion changed the protein’s sequence, causing its premature termination.

      Accordingly, we have toned down the related conclusions in the main text as follows (lines 164-173): “We noticed that the lws gene (long wavelength) has been completely lost in both hadal snailfish and Tanaka’s snailfish; rh2 (central wavelength) has been specifically lost in hadal snailfish (Figure 2B and 2C); sws2 (short wavelength) has undergone pseudogenization in hadal snailfish (Figure 2-figure supplements 1); while rh1 and gnat1 (perception of very dim light) is both still present and expressed in the eyes of hadal snailfish (Figure 2D). A previous study has also proven the existence of rhodopsin protein in the eyes of hadal snailfish using proteome data (Yan, Lian, Lan, Qian, & He, 2021). The preservation and expression of genes for the perception of very dim light suggests that they are still subject to natural selection, at least in the recent past.”

      Line 161-170: What tissue were the transcripts derived from for looking at expression level of opsins? Eyes?

      Reply: Thank you for your suggestions. The transcripts used to observe the expression levels of optic proteins were obtained from the eye.

      Line 191: What does tmc1 do specifically?

      Reply: Thank you for this suggestion. The tmc1 gene encodes transmembrane channel-like protein 1, involved in the mechanotransduction process in sensory hair cells of the inner ear that facilitates the conversion of mechanical stimuli into electrical signals used for hearing and homeostasis. We added functional annotations for the tmc1 in the main text (lines 190-196): “Of these, the most significant upregulated gene is tmc1, which encodes transmembrane channel-like protein 1, involved in the mechanotransduction process in sensory hair cells of the inner ear that facilitates the conversion of mechanical stimuli into electrical signals used for hearing and homeostasis (Maeda et al., 2014), and some mutations in this gene have been found to be associated with hearing loss (Kitajiri, Makishima, Friedman, & Griffith, 2007; Riahi et al., 2014).”

      Line 208: "it is likely" is a bit proscriptive

      Reply: Thank you for this suggestion. We rephrased the sentence as follows (lines 213-215): “Expansion of cldnj was observed in all resequenced individuals of the hadal snailfish (Supplementary file 10), which provides an explanation for the hadal snailfish breaks the depth limitation on calcium carbonate deposition and becomes one of the few species of teleost in hadal zone.”

      Line 199: maybe give a little more info on exactly what cldnj does? e.g. "cldnj encodes a claudin protein that has a role in tight junctions through calcium independent cell-adhesion activity" or something like that.

      Reply: Thank you for this suggestion. We have added functional annotations for the cldnj to the main text (lines 200-204): “Moreover, the gene involved in lifelong otolith mineralization, cldnj, has three copies in hadal snailfish, but only one copy in other teleost species, encodes a claudin protein that has a role in tight junctions through calcium independent cell-adhesion activity (Figure 3B, Figure 3C) (Hardison, Lichten, Banerjee-Basu, Becker, & Burgess, 2005).”

      Lines 199-210: Paragraph on cldnj: there are extra cldnj genes in the hadal snailfish, but no apparent extra expression. Could the authors mention that in their analysis/discussion of the data?

      Reply: Thank you for your suggestions. Despite not observing significant changes in cldnj expression in the brain tissue of hadal snailfish compared to Tanaka's snailfish, it is important to consider that the brain may not be the primary site of cldnj expression. Previous studies in zebrafish have consistently shown expression of cldnj in the otocyst during the critical early growth phase of the otolith, with a lower level of expression observed in the zebrafish brain. However, due to the unavailability of otocyst samples from hadal snailfish in our current study, our findings do not provide confirmation of any additional expression changes resulting from cldnj amplification. Consequently, it is crucial to conduct future comprehensive investigations to explore the expression patterns of cldnj specifically in the otocyst of hadal snailfish. Accordingly, we added a discussion of this result in the main text (lines 209-214): “In our investigation, we found that the expression of cldnj was not significantly up-regulated in the brain of the hadal snailfish than in Tanaka’s snailfish, which may be related to the fact that cldnj is mainly expressed in the otocyst, while the expression in the brain is lower. However, due to the immense challenge in obtaining samples of hadal snailfish, the expression of cldnj in the otocyst deserves more in-depth study in the future.”

      Lines 225-231: I wonder whether low expression of a circadian gene might be a time of day effect rather than an evolutionary trait. Could the authors comment?

      Reply: Thank you for your suggestions. Previous studies have shown that the grpr gene is expressed relatively consistently in mouse suprachiasmatic nucleus (SCN) throughout the day (Figure 4-figure supplements 1) and we hypothesize that the low expression of grpr-1 gene expression in hadal snailfish is an evolutionary trait. We have modified this result in the main text (lines 232-242): “In addition, in the teleosts closely related to hadal snailfish, there are usually two copies of grpr encoding the gastrin-releasing peptide receptor; we noticed that in hadal snailfish one of them is absent and the other is barely expressed in brain (Figure 4C), whereas a previous study found that the grpr gene in the mouse suprachiasmatic nucleus (SCN) did not fluctuate significantly during a 24-hour light/dark cycle and had a relatively stable expression (Pembroke, Babbs, Davies, Ponting, & Oliver, 2015) (Figure 4-figure supplements 1). It has been reported that grpr deficient mice, while exhibiting normal circadian rhythms, show significantly increased locomotor activity in dark conditions (Wada et al., 1997; Zhao et al., 2023). We might therefore speculate that the absence of that gene might in some way benefit the activity of hadal snailfish under complete darkness.”

      Author response image 8.

      (B) Expression of the grpr in a 24-hour light/dark cycle in the mouse suprachiasmatic nucleus (SCN). Data source with http://www.wgpembroke.com/shiny/SCNseq.

      Line 253: What is gpr27? G protein coupled receptor?

      Reply: We apologize for the ambiguous description. Gpr27 is a G protein-coupled receptor, belonging to the family of cell surface receptors. We introduced gpr27 in the main text as follows (lines 270-273): “Gpr27 is a G protein-coupled receptor, belonging to the family of cell surface receptors, involved in various physiological processes and expressed in multiple tissues including the brain, heart, kidney, and immune system.”

      Line 253: Fig4 Fig supp 3 is a good example of pseudogenization!

      Reply: Thank you very much for your recognition.

      Line 279: What is bglap? It regulates bone mineralization, but what specifically does that gene do?

      Reply: We apologize for the ambiguous description. The bglap gene encodes a highly abundant bone protein secreted by osteoblasts that binds calcium and hydroxyapatite and regulates bone remodeling and energy metabolism. We introduced bglap in the main text as follows (lines 300-304): “The gene bglap, which encodes a highly abundant bone protein secreted by osteoblasts that binds calcium and hydroxyapatite and regulates bone remodeling and energy metabolism, had been found to be a pseudogene in hadal fish (K. Wang et al., 2019), which may contribute to this phenotype.”

      Line 299: Introduction of another gene without providing an exact function: acaa1.

      Reply: We apologize for the ambiguous description. The acaa1 gene encodes acetyl-CoA acetyltransferase 1, a key regulator of fatty acid β-oxidation in the peroxisome, which plays a controlling role in fatty acid elongation and degradation. We introduced acaa1 in the main text as follows (lines 319-324): “In regard to the effect of cell membrane fluidity, relevant genetic alterations had been identified in previous studies, i.e., the amplification of acaa1 (encoding acetyl-CoA acetyltransferase 1, a key regulator of fatty acid β-oxidation in the peroxisome, which plays a controlling role in fatty acid elongation and degradation) may increase the ability to synthesize unsaturated fatty acids (Fang et al., 2000; K. Wang et al., 2019).”

      Fig 5 legend: The DCFH-DA experiment is not an immunofluorescence assay. It is better described as a redox-sensitive fluorescent probe. Please take note throughout.

      Reply: Thank you for pointing out our mistakes. We corrected the word. Line 1048 and 1151 as follows: “ROS levels were confirmed by redox-sensitive fluorescent probe using DCFH-DA molecular probe in 293T cell culture medium with or without fthl27-overexpression plasmid added with H2O2 or FAC for 4 hours.”

      Line 326: Manuscript notes that ROS levels in transfected cells are "significantly lower" than the control group, but there is no quantification or statistical analysis of ROS levels. In the methods, I noticed the mention of flow cytometry, but do not see any data from that experiment. Proportion of cells with DCFH-DA fluorescence above a threshold would be a good statistic for the experiment... Another could be average fluorescence per cell. Figure 5B shows some images with green dots and it looks like more green in the "control" (which could better be labeled as "mock-transfection") than in the fthl27 overexpression, but this could certainly be quantified by flow cytometry. I recommend that data be added.

      Reply: Thank you for your suggestions. We apologize for the error in the main text, we used a fluorescence microscope to observe fluorescence in our experiments, not a flow cytometer. We have corrected it in the methods section as follows (lines 651-653): “ROS levels were measured using a DCFH-DA molecular probe, and fluorescence was observed through a fluorescence microscope with an optional FITC filter, with the background removed to observe changes in fluorescence.” Meanwhile, we processed the images with ImageJ to obtain the respective mean fluorescence intensities (MFI) and found that the MFI of the fthl27-overexpression cells were lower than the control group, which indicated that the ROS levels of the fthl27-overexpression cells were significantly lower than the control group. MFI has been added to Figure 5B.

      Author response image 9.

      ROS levels were confirmed by redox-sensitive fluorescent probe using DCFH-DA molecular probe in 293T cell culture medium with or without fthl27-overexpression plasmid added with H2O2 or FAC for 4 hours. Images are merged from bright field images with fluorescent images using ImageJ, while the mean fluorescence intensity (MFI) is also calculated using ImageJ. Green, cellular ROS. Scale bars equal 100 μm.

      Regarding the ROS experiment: Transfection of HEK293T cells should be reasonably straightforward, and the experiment was controlled appropriately with a mock transfection, but some additional parameters are still needed to help interpret the results. Those include: Direct evidence that the transfection worked, like qPCR, western blots (is the fthl27 tagged with an antigen?), coexpression of a fluorescent protein. Then transfection efficiency should be calculated and reported.

      Reply: Thank you for your suggestions. To assess the success of the transfection, we randomly selected a subset of fthl27-transfected HEK293T cells for transcriptome sequencing. This approach allowed us to examine the gene expression profiles and confirm the efficacy of the transfection process. As control samples, we obtained transcriptome data from two untreated HEK293T cells (SRR24835259 and SRR24835265) from NCBI. Subsequently, we extracted the fthl27 gene sequence of the hadal snailfish, along with 1,000 bp upstream and downstream regions, as a separate scaffold. This scaffold was then merged with the human genome to assess the expression levels of each gene in the three transcriptome datasets. The results demonstrated that the fthl27 gene exhibited the highest expression in fthl27-transfected HEK293T cells, while in the control group, the expression of the fthl27 gene was negligible (TPM = 0). Additionally, the expression patterns of other highly expressed genes were similar to those observed in the control group, confirming the successful fthl27 transfection. These findings have been incorporated into Figure 5-figure supplements 3.

      Author response image 10.

      (B) Reads depth of fthl27 gene in fthl27-transfected HEK293T cells and 2 untreated HEK293T cells (SRR24835259 and SRR24835265) transcriptome data. (C) Expression of each gene in the transcriptome data of fthl27-transfected HEK293T cells and 2 untreated HEK293T cells (SRR24835259 and SRR24835265), where the genes shown are the 4 most highly expressed genes in each sample.

      Lines 383-386: expression of DNA repair genes is mentioned, but not shown anywhere in the results?

      Reply: Thank you for your suggestions. Accordingly, we added a description of this finding in the results section (lines 337-343): “Next, we identified 34 genes that are significantly more highly expressed in all organs of hadal snailfish in comparison to Tanaka’s snailfish and zebrafish, while only seven genes were found to be significantly more highly expressed in Tanaka’s snailfish using the same criterion (Figure 5-figure supplements 1). The 34 genes are enriched in only one GO category, GO:0000077: DNA damage checkpoint (Adjusted P-value: 0.0177). Moreover, five of the 34 genes are associated with DNA repair.”. And we added the information in the Figure 5-figure supplements 1C.

      Author response image 11.

      (C) Genes were significantly more highly expressed in all tissues of the hadal snailfish compared to Tanaka's snailfish, and 5 genes (purple) were associated with DNA repair.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      Reviewer #3 comment

      1) One suggestion for improvement is to consider incorporating the results from Figure S9 into in the main Figure 6, which would enhance readers' comprehension.

      We appreciate your valuable feedback. Based on the reviewer’s suggestion, we have incorporated results from the Figure S9 into the main Figure 6, as shown below. Manuscripts and figure legends have also been modified accordingly.

      Author response image 1.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the reviewers for truly valuable advice and comments. We have made multiple corrections and revisions to the original pre-print accordingly per the following comments:

      1. Pro1153Leu is extremely common in the general population (allele frequency in gnomAD is 0.5). Further discussion is warranted to justify the possibility that this variant contributes to a phenotype documented in 1.5-3% of the population. Is it possible that this variant is tagging other rare SNPs in the COL11A1 locus, and could any of the existing exome sequencing data be mined for rare nonsynonymous variants?

      One possible avenue for future work is to return to any existing exome sequencing data to query for rare variants at the COL11A1 locus. This should be possible for the USA MO case-control cohort. Any rare nonsynonymous variants identified should then be subjected to mutational burden testing, ideally after functional testing to diminish any noise introduced by rare benign variants in both cases and controls. If there is a significant association of rare variation in AIS cases, then they should consider returning to the other cohorts for targeted COL11A1 gene sequencing or whole exome sequencing (whichever approach is easier/less expensive) to demonstrate replication of the association.

      Response: Regarding the genetic association of the common COL11A1 variant rs3753841 (p.(Pro1335Leu)), we do not propose that it is the sole risk variant contributing to the association signal we detected and have clarified this in the manuscript. We concluded that it was worthy of functional testing for reasons described here. Although there were several common variants in the discovery GWAS within and around COL11A1, none were significantly associated with AIS and none were in linkage disequilibrium (R2>0.6) with the top SNP rs3753841. We next reviewed rare (MAF<=0.01) coding variants within the COL11A1 LD region of the associated SNP (rs3753841) in 625 available exomes representing 46% of the 1,358 cases from the discovery cohort. The LD block was defined using Haploview based on the 1KG_CEU population. Within the ~41 KB LD region (chr1:103365089- 103406616, GRCh37) we found three rare missense mutations in 6 unrelated individuals, Table below. Two of them (NM_080629.2:c.G4093A:p.A1365T; NM_080629.2:c.G3394A:p.G1132S), from two individuals, are predicted to be deleterious based on CADD and GERP scores and are plausible AIS risk candidates. At this rate we could expect to find only 4-5 individuals with linked rare coding variants in the total cohort of 1,358 which collectively are unlikely to explain the overall association signal we detected. Of course, there also could be deep intronic variants contributing to the association that we would not detect by our methods. However, given this scenario, the relatively high predicted deleteriousness of rs3753841 (CADD= 25.7; GERP=5.75), and its occurrence in a GlyX-Y triplet repeat, we hypothesized that this variant itself could be a risk allele worthy of further investigation.

      Author response table 1.

      We also appreciate the reviewer’s suggestion to perform a rare variant burden analysis of COL11A1. We did conduct pilot gene-based analysis in 4534 European ancestry exomes including 797 of our own AIS cases and 3737 controls and tested the burden of rare variants in COL11A1. SKATO P value was not significant (COL11A1_P=0.18), but this could due to lack of power and/or background from rare benign variants that could be screened out using the functional testing we have developed.

      1. COL11A1 p.Pro1335Leu is pursued as a direct candidate susceptibility locus, but the functional validation involves both: (a) a complementation assay in mouse GPCs, Figure 5; and (b) cultured rib cartilage cells from Col11a1-Ad5 Cre mice (Figure 4). Please address the following:

      2A. Is Pro1335Leu a loss of function, gain of function, or dominant negative variant? Further rationale for modeling this change in a Col11a1 loss of function cell line would be helpful.

      Response: Regarding functional testing, by knockdown/knockout cell culture experiments, we showed for the first time that Col11a1 negatively regulates Mmp3 expression in cartilage chondrocytes, an AIS-relevant tissue. We then tested the effect of overexpressing the human wt or variant COL11A1 by lentiviral transduction in SV40-transformed chondrocyte cultures. We deleted endogenous mouse Col11a1 by Cre recombination to remove the background of its strong suppressive effects on Mmp3 expression. We acknowledge that Col11a1 missense mutations could confer gain of function or dominant negative effects that would not be revealed in this assay. However as indicated in our original manuscript we have noted that spinal deformity is described in the cho/cho mouse, a Col11a1 loss of function mutant. We also note the recent publication by Rebello et al. showing that missense mutations in Col11a2 associated with congenital scoliosis fail to rescue a vertebral malformation phenotype in a zebrafish col11a2 KO line. Although the connection between AIS and vertebral malformations is not altogether clear, we surmise that loss of the components of collagen type XI disrupt spinal development. in vivo experiments in vertebrate model systems are needed to fully establish the consequences and genetic mechanisms by which COL11A1 variants contribute to an AIS phenotype.

      2B. Expression appears to be augmented compared WT in Fig 5B, but there is no direct comparison of WT with variant.

      Response: Expression of the mutant (from the lentiviral expression vector) is increased compared to mutant. We observed this effect in repeated experiments. Sequencing confirmed that the mutant and wildtype constructs differed only at the position of the rs3753841 SNP. At this time, we cannot explain the difference in expression levels. Nonetheless, even when the variant COL11A1 is relatively overexpressed it fails to suppress MMP3 expression as observed for the wildtype form.

      2C. How do the authors know that their complementation data in Figure 5 are specific? Repetition of this experiment with an alternative common nonsynonymous variant in COL11A1 (such as rs1676486) would be helpful as a comparison with the expectation that it would be similar to WT.

      Response: We agree that testing an allelic series throughout COL11A1 could be informative, but we have shifted our resources toward in vivo experiments that we believe will ultimately be more informative for deciphering the mechanistic role of COL11A1 in MMP3 regulation and spine deformity.

      2D. The y-axes of histograms in panel A need attention and clarification. What is meant by power? Do you mean fold change?

      Response: Power is directly comparable to fold change but allows comparison of absolute expression levels between different genes.

      2E. Figure 5: how many technical and biological replicates? Confirm that these are stated throughout the figures.

      Response: Thank you for pointing out this oversight. This information has been added throughout.

      1. Figure 2: What does the gross anatomy of the IVD look like? Could the authors address this by showing an H&E of an adjacent section of the Fig. 2 A panels?

      Response: Panel 2 shows H&E staining. Perhaps the reviewer is referring to the WT and Pax1 KO images in Figure 3? We have now added H&E staining of WT and Pax1 KO IVD as supplemental Figure 3E to clarify the IVD anatomy.

      1. Page 9: "Cells within the IVD were negative for Pax1 staining ..." There seems to be specific PAX1 expression in many cells within the IVD, which is concerning if this is indeed a supposed null allele of Pax1. This data seems to support that the allele is not null.

      Response: We have now added updated images for the COL11A1 and PAX1 staining to include negative controls in which we omitted primary antibodies. As can be seen, there is faint autofluorescence in the PAX1 negative control that appears to explain the “specific staining” referred to by the reviewer. These images confirm that the allele is truly a null.

      1. There is currently a lack of evidence supporting the claim that "Col11a1 is positively regulated by Pax1 in mouse spine and tail". Therefore, it is necessary to conduct further research to determine the direct regulatory role of Pax1 on Col11a1.

      Response: We agree with the reviewer and have clarified that Pax1 may have either a direct or indirect role in Col11a1 regulation.

      1. There is no data linking loss of COL11A1 function and spine defects in the mouse model. Furthermore, due to the absence of P1335L point mutant mice, it cannot be confirmed whether P1335L can actually cause AIS, and the pathogenicity of this mutation cannot be directly verified. These limitations need to be clearly stated and discussed. A Col11a1 mouse mutant called chondroysplasia (cho), was shown to be perinatal lethal with severe endochondral defects (https://pubmed.ncbi.nlm.nih.gov/4100752/). This information may help contextualize this study.

      Response: We partially agree with the reviewer. Spine defects are reported in the cho mouse (for example, please see reference 36 Hafez et al). We appreciate the suggestion to cite the original Seegmiller et al 1971 reference and have added it to the manuscript.

      1. A recent article (PMID37462524) reported mutations in COL11A2 associated with AIS and functionally tested in zebrafish. That study should be cited and discussed as it is directly relevant for this manuscript.

      Response: We agree with the reviewer that this study provides important information supporting loss of function I type XI collagen in spinal deformity. Language to this effect has been added to the manuscript and this study is now cited in the paper.

      1. Please reconcile the following result on page 10 of the results: "Interestingly, the AISassociated gene Adgrg6 was amongst the most significantly dysregulated genes in the RNA-seq analysis (Figure 3c). By qRT-PCR analysis, expression of Col11a1, Adgrg6, and Sox6 were significantly reduced in female and male Pax1-/- mice compared to wild-type mice (Figure 3d-g)." In Figure 3f, the downregulation of Adgrg6 appears to be modest so how can it possibly be highlighted as one of the most significantly downregulated transcripts in the RNAseq data?

      Response: By “significant” we were referring to the P-value significance in RNAseq analysis, not in absolute change in expression. This language was clearly confusing, and we have removed it from the manuscript.

      1. It is incorrect to refer to the primary cell culture work as growth plate chondrocytes (GPCs), instead, these are primary costal chondrocyte cultures. These primary cultures have a mixture of chondrocytes at differing levels of differentiation, which may change differentiation status during the culturing on plastic. In sum, these cells are at best chondrocytes, and not specifically growth plate chondrocytes. This needs to be corrected in the abstract and throughout the manuscript. Moreover, on page 11 these cells are referred to as costal cartilage, which is confusing to the reader.

      Response: Thank you for pointing out these inconsistencies. We have changed the manuscript to say “costal chondrocytes” throughout.

      Minor points

      • On 10 of the Results: "These data support a mechanistic link between Pax1 and Col11a1, and the AIS-associated genes Gpr126 and Sox6, in affected tissue of the developing tail." qRT-PCR validation of Sox6, although significant, appears to be very modestly downregulated in KO. Please soften this statement in the text.

      Response: We have softened this statement.

      • Have you got any information about how the immortalized (SV40) costal cartilage affected chondrogenic differentiation? The expression of SV40 seemed to stimulate Mmp13 expression. Do these cells still make cartilage nodules? Some feedback on this process and how it affects the nature of the culture what be appreciated.

      Response: The “+ or –“ in Figure 5 refers to Ad5-cre. Each experiment was performed in SV40-immortalized costal chondrocytes. We have removed SV40 from the figure and have clarified the legend to say “qRT-PCR of human COL11A1 and endogenous mouse Mmp3 in SV40 immortalized mouse costal chondrocytes transduced with the lentiviral vector only (lanes 1,2), human WT COL11A1 (lane 3), or COL11A1P1335L. Otherwise we absolutely agree that understanding Mmp13 regulation during chondrocyte differentiation is important. We plan to study this using in vivo systems.

      • Figure 1: is the average Odds ratio, can this be stated in the figure legend?

      Response: We are not sure what is being asked here. The “combined odds ratio” is calculated as a weighted average of the log of the odds.

      • A more consistent use of established nomenclature for mouse versus human genes and proteins is needed.

      Human:GENE/PROTEIN

      Mouse: Gene/PROTEIN

      Response: Thank you for pointing this out. The nomenclature has been corrected throughtout the manuscript.

      • There is no Figure 5c, but a reference to results in the main text. Please reconcile. -There is no Figure 5-figure supplement 5a, but there is a reference to it in the main text. Please reconcile.

      Response: Figure references have been corrected.

      • Please indicate dilutions of all antibodies used when listed in the methods.

      Response: Antibody dilutions have been added where missing.

      • On page 25, there is a partial sentence missing information in the Histologic methods; "#S36964 Invitrogen, CA, USA)). All images were taken..."

      Response: We apologize for the error. It has been removed.

      • Table 1: please define all acronyms, including cohort names.

      Response: We apologize for the oversight. The legend to the Table has been updated with definitions of all acronyms.

      • Figure 2: Indicate that blue staining is DAPI in panel B. Clarify that "-ab" as an abbreviation is primary antibody negative.

      Response: A color code for DAPI and COL11A! staining has been added and “-ab” is now defined.

      • Page 4: ADGRG6 (also known as GPR126)...the authors set this up for ADGRG6 but then use GPR126 in the manuscript, which is confusing. For clarity, please use the gene name Adgrg6 consistently, rather than alternating with Gpr126.

      Response: Thank you for pointing this out. GPR126 has now been changed to ADGRG6 thoughout the manuscript.

      • REF 4: Richards, B.S., Sucato, D.J., Johnston C.E. Scoliosis, (Elsevier, 2020). Is this a book, can you provide more clarity in the Reference listing?

      Response: Thank you for pointing this out. This reference has been corrected.

      • While isolation was addressed, the methods for culturing Rat cartilage endplate and costal chondrocytes are poorly described and should be given more text.

      Response: Details about the cartilage endplate and costal chondrocyte isolation and culture have been added to the Methods.

      • Page 11: 1st paragraph, last sentence "These results suggest that Mmp3 expression"... this sentence needs attention. As written, I am not clear what the authors are trying to say.

      Response: This sentence has been clarified and now reads “These results suggest that Mmp3 expression is negatively regulated by Col11a1 in mouse costal chondrocytes.”

      • Page 13: line 4 from the bottom, "ECM-clearing"? This is confusing do you mean ECM degrading?

      Response: Yes and thank you. We have changed to “ECM-degrading”.

      • Please use version numbers for RefSeq IDs: e.g. NM_080629.3 instead of NM_080629 Response: This change has been made in the revised manuscript.

      • It would be helpful for readers if the ethnicity of the discovery case cohort was clearly stated as European ancestry in the Results main text.

      Response: “European ancestry” has been added at first description of the discovery cohort in the manuscript.

      • Avoid using the term "mutation" and use "variant" instead.

      Response: Thank you for pointing this out. “Variant” is now used throughout the manuscript.

      • Define error bars for all bar charts throughout and include individual data points overlaid onto bars.

      Response: Thank you. Error bars are now clarified in the Figure legends.

    2. Author Response

      The following is the authors’ response to the previous reviews.

      We thank the reviewers for truly valuable advice and comments. We have made multiple corrections and revisions to the original pre-print accordingly per the following comments:

      1. Pro1153Leu is extremely common in the general population (allele frequency in gnomAD is 0.5). Further discussion is warranted to justify the possibility that this variant contributes to a phenotype documented in 1.5-3% of the population. Is it possible that this variant is tagging other rare SNPs in the COL11A1 locus, and could any of the existing exome sequencing data be mined for rare nonsynonymous variants?

      One possible avenue for future work is to return to any existing exome sequencing data to query for rare variants at the COL11A1 locus. This should be possible for the USA MO case-control cohort. Any rare nonsynonymous variants identified should then be subjected to mutational burden testing, ideally after functional testing to diminish any noise introduced by rare benign variants in both cases and controls. If there is a significant association of rare variation in AIS cases, then they should consider returning to the other cohorts for targeted COL11A1 gene sequencing or whole exome sequencing (whichever approach is easier/less expensive) to demonstrate replication of the association.

      Response: Regarding the genetic association of the common COL11A1 variant rs3753841 (p.(Pro1335Leu)), we do not propose that it is the sole risk variant contributing to the association signal we detected and have clarified this in the manuscript. We concluded that it was worthy of functional testing for reasons described here. Although there were several common variants in the discovery GWAS within and around COL11A1, none were significantly associated with AIS and none were in linkage disequilibrium (R2>0.6) with the top SNP rs3753841. We next reviewed rare (MAF<=0.01) coding variants within the COL11A1 LD region of the associated SNP (rs3753841) in 625 available exomes representing 46% of the 1,358 cases from the discovery cohort. The LD block was defined using Haploview based on the 1KG_CEU population. Within the ~41 KB LD region (chr1:103365089- 103406616, GRCh37) we found three rare missense mutations in 6 unrelated individuals, Table below. Two of them (NM_080629.2: c.G4093A:p.A1365T; NM_080629.2:c.G3394A:p.G1132S), from two individuals, are predicted to be deleterious based on CADD and GERP scores and are plausible AIS risk candidates. At this rate we could expect to find only 4-5 individuals with linked rare coding variants in the total cohort of 1,358 which collectively are unlikely to explain the overall association signal we detected. Of course, there also could be deep intronic variants contributing to the association that we would not detect by our methods. However, given this scenario, the relatively high predicted deleteriousness of rs3753841 (CADD= 25.7; GERP=5.75), and its occurrence in a GlyX-Y triplet repeat, we hypothesized that this variant itself could be a risk allele worthy of further investigation.

      Author response table 1.

      We also appreciate the reviewer’s suggestion to perform a rare variant burden analysis of COL11A1. We did conduct pilot gene-based analysis in 4534 European ancestry exomes including 797 of our own AIS cases and 3737 controls and tested the burden of rare variants in COL11A1. SKATO P value was not significant (COL11A1_P=0.18), but this could due to lack of power and/or background from rare benign variants that could be screened out using the functional testing we have developed.

      1. COL11A1 p.Pro1335Leu is pursued as a direct candidate susceptibility locus, but the functional validation involves both: (a) a complementation assay in mouse GPCs, Figure 5; and (b) cultured rib cartilage cells from Col11a1-Ad5 Cre mice (Figure 4). Please address the following:

      2A. Is Pro1335Leu a loss of function, gain of function, or dominant negative variant? Further rationale for modeling this change in a Col11a1 loss of function cell line would be helpful.

      Response: Regarding functional testing, by knockdown/knockout cell culture experiments, we showed for the first time that Col11a1 negatively regulates Mmp3 expression in cartilage chondrocytes, an AIS-relevant tissue. We then tested the effect of overexpressing the human wt or variant COL11A1 by lentiviral transduction in SV40-transformed chondrocyte cultures. We deleted endogenous mouse Col11a1 by Cre recombination to remove the background of its strong suppressive effects on Mmp3 expression. We acknowledge that Col11a1 missense mutations could confer gain of function or dominant negative effects that would not be revealed in this assay. However as indicated in our original manuscript we have noted that spinal deformity is described in the cho/cho mouse, a Col11a1 loss of function mutant. We also note the recent publication by Rebello et al. showing that missense mutations in Col11a2 associated with congenital scoliosis fail to rescue a vertebral malformation phenotype in a zebrafish col11a2 KO line. Although the connection between AIS and vertebral malformations is not altogether clear, we surmise that loss of the components of collagen type XI disrupt spinal development. in vivo experiments in vertebrate model systems are needed to fully establish the consequences and genetic mechanisms by which COL11A1 variants contribute to an AIS phenotype.

      2B. Expression appears to be augmented compared WT in Fig 5B, but there is no direct comparison of WT with variant.

      Response: Expression of the mutant (from the lentiviral expression vector) is increased compared to mutant. We observed this effect in repeated experiments. Sequencing confirmed that the mutant and wildtype constructs differed only at the position of the rs3753841 SNP. At this time, we cannot explain the difference in expression levels. Nonetheless, even when the variant COL11A1 is relatively overexpressed it fails to suppress MMP3 expression as observed for the wildtype form.

      2C. How do the authors know that their complementation data in Figure 5 are specific? Repetition of this experiment with an alternative common nonsynonymous variant in COL11A1 (such as rs1676486) would be helpful as a comparison with the expectation that it would be similar to WT.

      Response: We agree that testing an allelic series throughout COL11A1 could be informative, but we have shifted our resources toward in vivo experiments that we believe will ultimately be more informative for deciphering the mechanistic role of COL11A1 in MMP3 regulation and spine deformity.

      2D. The y-axes of histograms in panel A need attention and clarification. What is meant by power? Do you mean fold change?

      Response: Power is directly comparable to fold change but allows comparison of absolute expression levels between different genes.

      2E. Figure 5: how many technical and biological replicates? Confirm that these are stated throughout the figures.

      Response: Thank you for pointing out this oversight. This information has been added throughout.

      1. Figure 2: What does the gross anatomy of the IVD look like? Could the authors address this by showing an H&E of an adjacent section of the Fig. 2 A panels?

      Response: Panel 2 shows H&E staining. Perhaps the reviewer is referring to the WT and Pax1 KO images in Figure 3? We have now added H&E staining of WT and Pax1 KO IVD as supplemental Figure 3E to clarify the IVD anatomy.

      1. Page 9: "Cells within the IVD were negative for Pax1 staining ..." There seems to be specific PAX1 expression in many cells within the IVD, which is concerning if this is indeed a supposed null allele of Pax1. This data seems to support that the allele is not null.

      Response: We have now added updated images for the COL11A1 and PAX1 staining to include negative controls in which we omitted primary antibodies. As can be seen, there is faint autofluorescence in the PAX1 negative control that appears to explain the “specific staining” referred to by the reviewer. These images confirm that the allele is truly a null.

      1. There is currently a lack of evidence supporting the claim that "Col11a1 is positively regulated by Pax1 in mouse spine and tail". Therefore, it is necessary to conduct further research to determine the direct regulatory role of Pax1 on Col11a1.

      Response: We agree with the reviewer and have clarified that Pax1 may have either a direct or indirect role in Col11a1 regulation.

      1. There is no data linking loss of COL11A1 function and spine defects in the mouse model. Furthermore, due to the absence of P1335L point mutant mice, it cannot be confirmed whether P1335L can actually cause AIS, and the pathogenicity of this mutation cannot be directly verified. These limitations need to be clearly stated and discussed. A Col11a1 mouse mutant called chondroysplasia (cho), was shown to be perinatal lethal with severe endochondral defects (https://pubmed.ncbi.nlm.nih.gov/4100752/). This information may help contextualize this study.

      Response: We partially agree with the reviewer. Spine defects are reported in the cho mouse (for example, please see reference 36 Hafez et al). We appreciate the suggestion to cite the original Seegmiller et al 1971 reference and have added it to the manuscript.

      1. A recent article (PMID37462524) reported mutations in COL11A2 associated with AIS and functionally tested in zebrafish. That study should be cited and discussed as it is directly relevant for this manuscript.

      Response: We agree with the reviewer that this study provides important information supporting loss of function I type XI collagen in spinal deformity. Language to this effect has been added to the manuscript and this study is now cited in the paper.

      1. Please reconcile the following result on page 10 of the results: "Interestingly, the AISassociated gene Adgrg6 was amongst the most significantly dysregulated genes in the RNA-seq analysis (Figure 3c). By qRT-PCR analysis, expression of Col11a1, Adgrg6, and Sox6 were significantly reduced in female and male Pax1-/- mice compared to wild-type mice (Figure 3d-g)." In Figure 3f, the downregulation of Adgrg6 appears to be modest so how can it possibly be highlighted as one of the most significantly downregulated transcripts in the RNAseq data?

      Response: By “significant” we were referring to the P-value significance in RNAseq analysis, not in absolute change in expression. This language was clearly confusing, and we have removed it from the manuscript.

      1. It is incorrect to refer to the primary cell culture work as growth plate chondrocytes (GPCs), instead, these are primary costal chondrocyte cultures. These primary cultures have a mixture of chondrocytes at differing levels of differentiation, which may change differentiation status during the culturing on plastic. In sum, these cells are at best chondrocytes, and not specifically growth plate chondrocytes. This needs to be corrected in the abstract and throughout the manuscript. Moreover, on page 11 these cells are referred to as costal cartilage, which is confusing to the reader.

      Response: Thank you for pointing out these inconsistencies. We have changed the manuscript to say “costal chondrocytes” throughout.

      Minor points

      • On 10 of the Results: "These data support a mechanistic link between Pax1 and Col11a1, and the AIS-associated genes Gpr126 and Sox6, in affected tissue of the developing tail." qRT-PCR validation of Sox6, although significant, appears to be very modestly downregulated in KO. Please soften this statement in the text.

      Response: We have softened this statement.

      • Have you got any information about how the immortalized (SV40) costal cartilage affected chondrogenic differentiation? The expression of SV40 seemed to stimulate Mmp13 expression. Do these cells still make cartilage nodules? Some feedback on this process and how it affects the nature of the culture what be appreciated.

      Response: The “+ or –“ in Figure 5 refers to Ad5-cre. Each experiment was performed in SV40-immortalized costal chondrocytes. We have removed SV40 from the figure and have clarified the legend to say “qRT-PCR of human COL11A1 and endogenous mouse Mmp3 in SV40 immortalized mouse costal chondrocytes transduced with the lentiviral vector only (lanes 1,2), human WT COL11A1 (lane 3), or COL11A1P1335L. Otherwise we absolutely agree that understanding Mmp13 regulation during chondrocyte differentiation is important. We plan to study this using in vivo systems.

      • Figure 1: is the average Odds ratio, can this be stated in the figure legend?

      Response: We are not sure what is being asked here. The “combined odds ratio” is calculated as a weighted average of the log of the odds.

      • A more consistent use of established nomenclature for mouse versus human genes and proteins is needed.

      Human:GENE/PROTEIN Mouse: Gene/PROTEIN

      Response: Thank you for pointing this out. The nomenclature has been corrected throughtout the manuscript.

      • There is no Figure 5c, but a reference to results in the main text. Please reconcile. -There is no Figure 5-figure supplement 5a, but there is a reference to it in the main text. Please reconcile.

      Response: Figure references have been corrected.

      • Please indicate dilutions of all antibodies used when listed in the methods.

      Response: Antibody dilutions have been added where missing.

      • On page 25, there is a partial sentence missing information in the Histologic methods; "#S36964 Invitrogen, CA, USA)). All images were taken..."

      Response: We apologize for the error. It has been removed.

      • Table 1: please define all acronyms, including cohort names.

      Response: We apologize for the oversight. The legend to the Table has been updated with definitions of all acronyms.

      • Figure 2: Indicate that blue staining is DAPI in panel B. Clarify that "-ab" as an abbreviation is primary antibody negative.

      Response: A color code for DAPI and COL11A! staining has been added and “-ab” is now defined.

      • Page 4: ADGRG6 (also known as GPR126)...the authors set this up for ADGRG6 but then use GPR126 in the manuscript, which is confusing. For clarity, please use the gene name Adgrg6 consistently, rather than alternating with Gpr126.

      Response: Thank you for pointing this out. GPR126 has now been changed to ADGRG6 thoughout the manuscript.

      • REF 4: Richards, B.S., Sucato, D.J., Johnston C.E. Scoliosis, (Elsevier, 2020). Is this a book, can you provide more clarity in the Reference listing?

      Response: Thank you for pointing this out. This reference has been corrected.

      • While isolation was addressed, the methods for culturing Rat cartilage endplate and costal chondrocytes are poorly described and should be given more text.

      Response: Details about the cartilage endplate and costal chondrocyte isolation and culture have been added to the Methods.

      • Page 11: 1st paragraph, last sentence "These results suggest that Mmp3 expression"... this sentence needs attention. As written, I am not clear what the authors are trying to say.

      Response: This sentence has been clarified and now reads “These results suggest that Mmp3 expression is negatively regulated by Col11a1 in mouse costal chondrocytes.”

      • Page 13: line 4 from the bottom, "ECM-clearing"? This is confusing do you mean ECM degrading?

      Response: Yes and thank you. We have changed to “ECM-degrading”.

      • Please use version numbers for RefSeq IDs: e.g. NM_080629.3 instead of NM_080629

      Response: This change has been made in the revised manuscript.

      • It would be helpful for readers if the ethnicity of the discovery case cohort was clearly stated as European ancestry in the Results main text.

      Response: “European ancestry” has been added at first description of the discovery cohort in the manuscript.

      • Avoid using the term "mutation" and use "variant" instead.

      Response: Thank you for pointing this out. “Variant” is now used throughout the manuscript.

      • Define error bars for all bar charts throughout and include individual data points overlaid onto bars.

      Response: Thank you. Error bars are now clarified in the Figure legends.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Positive comments:

      We appreciate the positive comments of the editor and reviewers. The editor noted that the paper presents a “technological advance” that has enabled “important insights about the brain circuits through which the cerebellum could participate in social interactions.” Reviewer 1 thought this was a “timely and important study with solid evidence for correlative conclusions” and that the experiments were “technically challenging” and “well-performed”. Reviewer 2 stated that the finding of correlated activity between the regions is “interesting as non-motor functions of the cerebellum are relatively little explored.” They also thought “that the data are presented clearly, and the manuscript is well-written”. Reviewer 3 mentioned that “this approach can be useful for many neuroscientists”. We thank all the positive comments from the editors and all the reviewers.

      Reviewer #1 (Public Review)

      While the novelty of the device is strongly emphasized, I find that its value is somewhat diminished by the wire-free device developed by the same group as it should thus be possible to perform calcium imaging wire-free and electrophysiological recording via a single conventional cable (or also via wireless headstages).

      While it would be potentially possible to use a wire-free Miniscope in parallel with a wired electrophysiology recording system, this would result in a larger footprint on the animal’s head, more than a gram in increased weight due to an added LiPo battery, a larger electrophysiology head-stage, and limited recording length due to a battery capacity of around 20 minutes. Our main goal for the development of the E-scope platform was to develop an expandable electrophysiology recording board that would work with all previously built UCLA Miniscopes while also streamlining the integration of power and data into the coaxial cable connection already familiar to hundreds of labs using Miniscopes. The vast majority of Miniscope experiments are done using wired systems and we aimed to support the expansion of those systems instead of requiring a more substantial switch to using wire-free Miniscopes.

      The role of the identified network activations in social interactions is not touched upon.

      We agree with the reviewer that we have not discovered a causal role for the co-modulated activity patterns we have observed. As these causal experiments will require the development of real-time techniques for blocking socially evoked changes in firing rate in cerebellum and ACC, we are currently planning experiments to address causality. These results will be described in a future publication.

      Reviewer #1 (Recommendations for the Authors):

      Please provide the number of recorded mice.

      The number is now provided in the revised manuscript.

      If the recorded areas (cerebellar cortex, DN, and ACC) are part of the same circuit regulating social interactions, it would be nice to get insights into the directionality of the circuit. The authors favor the possibility that during social behavior, cerebellar efferences indirectly influence ACC activities (as in Figure 4A), however, no evidence is presented to support this interpretation. ACC activities might also indirectly influence PC firing. It may be possible to get insights into this by comparing the timing of neuronal activity in the different areas with respect to social onset.

      For this study, we mainly focused on the output of the cerebellar circuit to the cortex as previous work shows that dentate nucleus projects to the thalamus, which in turn projects to ACC and other cortical regions. (Badura et al.,eLife, 2018; Kelly et al., Nat. Neurosci., 2020) The temporal resolution of calcium imaging is limited (with the rise time of calcium events with genetically-encoded indicators taking hundreds of milliseconds) such that the resolution is insufficient to precisely assess the relative onset timing of the two regions. Our work certainly does not rule out cortical influences on PC firing.

      Reviewer #2 (Public Review)

      However, the causal relationship is far from established with the methods used, leaving it unclear if these two brain regions are similarly engaged by the behavior or if they form a pathway/loop.

      As indicated in our response to Reviewer #1’s similar critique, the goal of the presented study is to demonstrate the feasibility and capabilities of this novel device. This new tool will allow us to conduct a comprehensive and rigorous study to assess the causal role of the interactions between the cerebellum and ACC in social behavior (as well as other behaviors). These experiments are being designed now.

      Reviewer #2 (Recommendations for the Authors):

      It is unclear what is entirely unique about the E-scope. It seems that its advance is simply a common cable that allows interfacing with both devices (lighter weight than two cables is stated in the Discussion). Is this really an advance? What are its limitations? E.g., how close can the recording sites be to one another? How can it be configured for any other extracellular recording approach (tetrodes, 64-channel arrays, or Neuropixels)?

      In our experience, multiple lines of wires tethered to different head-mounted devices on an animal significantly impacts their behavior. Therefore, one of the major advantages of the UCLA Miniscope Platform is the use of a single, flexible coaxial cable to minimize the impact on tethering on behavior. The E-Scope platform builds on top of this work by incorporating electrophysiology recording capabilities into this single, flexible coaxial cable. Additionally, the electrophysiology recording hardware is backwards compatible with all previously built UCLA Miniscopes and can run through open-source and commercial commutators already used in Miniscope experiments.

      The available bandwidth within the shared single coaxial cable can handle megapixel Miniscope imaging along with the maximum data output of a 32 channel Intan Ephys IC. The E-Scope platform presented here does run the Intan Ephys IC at 20KSps for all 32 channels instead of the maximum 30KSps due to microcontroller speed limitations, but this could be overcome by using a fast microcontroller or clock, or slightly reducing the total number of electrodes samples. Finally, the E-Scope was designed to support any electrode types supported by the Intan Ephys IC. This includes up to 32 channels of passive probes such as single electrodes, tetrodes, silicon probes, and flexible multi-channel arrays but does not include Neuropixels as Neuropixels use custom active electronics on the probe to multiplex, sample, and serialize electrophysiology data.

      The authors only analyzed simple spikes in PCs for social-related activity. What about complex spikes? Is this correlated with ACC activity?

      Complex spikes were detectable to the extent that we were able to define that the recorded cell was a PC, but because these cells were recorded in freely behaving mice, accurate complex spike detection was not reliable enough to be used for further correlational analyses.

      The data is sampled in the two regions (cerebellum and ACC) at very different rates (imaging is much slower than electrophysiology; ephys data was binned). How does this affect the correlation plots?

      We generated firing rate maps for the cerebellar neural activity using a binning size that matched the sampling frequency of calcium imaging (see Methods). As mentioned in our methods, to study the relationship between the electrophysiology and calcium imaging data we binned the spike trains using 33 ms bins to match the calcium imaging sampling rate (~30 Hz). This limits the temporal resolution to calculate fine-scale correlations, but the correlations that we report are on a behaviorally relevant temporal scale. The fine temporal resolution of the electrophysiology data however can still be used to further examine at a higher temporal resolution the relationship between cerebellar output and specific social behavior epochs.

      For the correlation analysis, over what time frame was the activity relationship examined? How was this duration determined?

      Author response image 1.

      The main criteria for the time frame used to study the correlation analysis was the behavioral timescale of social interaction [see figure above for the number of social (red) and object (blue) interaction bouts (a), their duration (b) and coefficient of variation (CV) (c)]. Overall, the activity relationship time frame was based on the average duration of the social interactions (~3 sec). Periods of 3.8 before and 5.8 sec after interaction onset were used to study. Accordingly, the cross-correlograms were constructed using a maximum lag length of 5 sec. In the article we reported correlation at lag 0.

      The relationship between the cerebellum and ACC seems unconvincing. If two brain regions are similarly engaged by the behavior, wouldn't they have a high correlation? Is the activity in one region driving the other?

      We reference studies showing an anatomical and functional indirect connection between the cerebellum and the ACC or prefrontal cortex (Badura et al., eLife, 2018). Also, as stated in the introduction, the ACC is a recognized brain area for social behavioral studies. In the results, we stated that correlations increase in groups of neurons that are similarly engaged during a specific epoch in the social interaction was an expected finding. What was not expected was that there would be no difference in the distribution's correlation when the social epochs were removed, suggesting that intrinsic connectivity does not drive a difference in correlations.

      Although, since there is a cerebello-cortical loop, further study will be needed to understand which area initiates this type of activity during social behavior,

      • In the figures, the color-coded scale bars should be labeled as z-scores (confusing without them).

      • In Figure 4, the color differences for Soc-ACC, Soc+ACC and SocNS ACC should be more striking as it is hard to tell them apart because they are all similar shades of blue-gray.

      We thank the reviewer for their suggestions for improving the figures. We have incorporated these changes in Figures 2, 3 and along with their figure supplements. Graphs in Figure 4D-G have been edited to make the lines more visible to the reader.

      Reviewer #3 (Public Review)

      However, a mouse weighs between 20 and 40 g, so that an implant of 4.5 g is still quite considerable. It can be expected that this has an impact on the behavior and, possibly, the well-being of the animals. Whether this is the case or not, is not really addressed in this study.

      The weight of the E-Scope (4.5 g) is near the maximum that is tolerated by animals in our experience. We therefore acclimated the mouse to the weight with dummy scopes of increasing weights over a 7-10 day period. During this period, we observed the animal to have normal exploratory behavior. Specifically, there is no change in the sociability of the animals (Figure 2A) and animals cover the large arena (48x 48 cm, Figure 2H).

      Overall, the description of animal behavior is rather sparse. The methods state only that stranger age-matched mice were used, but do not state their gender. The nature of the social interactions was not described? Was their aggressive behavior, sexual approach and/or intercourse? Did the stranger mice attack/damage the E-Scope? Were the interactions comparable (using which parameters?) with and without E-Scope attached? It is not even described what the authors define as an "interaction bout" (Figure 2A). The number of interaction bouts is counted per 7 minutes, I presume? This is not specified explicitly.

      As mentioned in the methods section of the original version of our manuscript, all the target mice were age-matched “male” mice. As per the reviewer’s suggestion, we now have added in the manuscript that before any of our social interaction behavioral experiments, aggressive or agitated mice were removed after assessing their behavior in the arena during habituation. For all trials, all mice were introduced for the first time.

      We also mention in the methods section of our manuscript, that social behaviors were evaluated by proximity between the subject mouse and novel target mouse (2 cm from the body, head, or base of tail). From our recordings, we did not observe any aggressive, mounting, nor any other dominance behavior over the E-Scope subject mouse during the 7 minutes of social interaction assessment. Social interaction bouts in Figure 2A show the average number of social interaction bouts during the recording time. This has now been expanded upon in our revised manuscript.

      It would be very insightful if the authors would describe which events they considered to be action potentials, and which not. Similarly, the raw traces of Figure 1E are declared to be single-unit recordings of Purkinje cells. Partially due to the small size of the traces (invisible in print and pixelated in the digital version), I have a hard time recognizing complex spikes and simple spikes in these traces. This is a bit worrisome, as the authors declare the typical duration of the pause in simple spike firing after a complex spike to be 20-100 ms. In my experience, such long pauses are rare in this region, and definitely not typical. In the right panel of Figure 1A, an example of a complex spike-induced pause is shown. This pause is around 15 ms, so not typical according to the text, and starts only around 4 ms after the complex spike, which should not be the case and suggests either a misalignment of the figure or the detection of complex spike spikelets as simple spikes, while the abnormally long pause suggests that the authors fail to detect a lot of simple spikes. The authors could provide more confidence in their data by including more raw data, making explicit how they analyzed the signals, and by reporting basic statistics of firing properties (like rate, cv or cv2, pause duration). In this respect, Figure 2 - figure supplement 3 shows quite a large percentage of cells to have either a very low or a very high firing rate.

      We now provide a better example of simple spikes and complex spikes in Fig 1E and corrected our comment in the body of the manuscript. Previous version of the SS x CS cross-correlation histogram in Figure 1G as the reviewer mentions, was not the best example, because of the detected CS spikelets. However, the detection of CS spikelets has little impact on the interpretation of the results. We have replaced this figure with a better example of the SS x CS cross-correlation histogram.

      The number of Purkinje cells recorded during social interactions is quite low: only 11 cells showed a modulation in their spiking activity (unclear whether in complex spikes, simple spikes or both. During object interaction, only 4 cells showed a significant modulation. Unclear is whether the latter 4 are a subset of the former 11, or whether "social cells" and "object cells" are different categories. Having so few cells, and with these having different types of modulation, the group of cells for each type of modulation is really small, going down to 2 cells/group. It is doubtful whether meaningful interpretation is possible here.

      While the number of neurons is not as high as those reported for other regions, the number presented depicts the full range of responses to social behavior. It is extremely difficult to obtain stable neurons in freely behaving socially interacting animals and only a handful of neurons could be recorded in each animal. Among these recorded neurons only a subset responds to social interactions further reducing the numbers. The results however are consistent among cell types and the direction of modulation fits with the inhibitory connectivity between PCs and DN neurons. To our knowledge, we are the first group to publish neuronal activity of PC and DN neurons from freely behaving mice during social behavior.

      Neural activity patterns observed during social interaction do not necessarily relate specifically to social interaction, but can also occur in a non-social context. The authors control this by comparing social interactions with object interactions, but I miss a direct comparison between the two conditions, both in terms of behavior (now only the number of interactions is counted, not their duration or intensity), and in terms of neural activity. There is some analysis done on the interaction between movement and cerebellar activity (Figure 2 - figure supplement 4), but it is unclear to what extent social interactions and movements are separated here. It would already help to indicate in the plots with trajectories (e.g., Fig. 2H) indicate the social interactions (e.g., social interaction-related movements in red, the rest of the trajectories in black).

      We have updated the social interaction plots in Figure 2H in the revised version of the manuscript.

      Reviewer #3 (Recommendations for the Authors):

      Increase the number of cerebellar neurons that are recorded.

      Due to the difficulty of the experiment and the low yield which we get for cerebellar recordings, substantially increasing the number of neurons will require many more experiments which are not feasible at this time.

      Include more raw data and make the analysis procedure more insightful with illustrations of intermediate steps.

      We have included a more thorough description of the analysis in the methods section of the revised manuscript.

      Provide a better description of the behavior.

      We have increased the level of detail regarding the mouse behavior in the Results and Methods sections. This includes a more detailed description of the parameters we used to analyze the social interaction.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      eLife assessment

      This valuable paper examines gene expression differences between male and female individuals over the course of flower development in the dioecious angiosperm Trichosantes pilosa. The authors show that male-biased genes evolve faster than female-biased and unbiased genes. This is frequently observed in animals, but this is the first report of such a pattern in plants. In spite of the limited sample size, the evidence is mostly solid and the methods appropriate for a non-model organism. The resources produced will be used by researchers working in the Cucurbitaceae, and the results obtained advance our understanding of the mechanisms of plant sexual reproduction and its evolutionary implications: as such they will broadly appeal to evolutionary biologists and plant biologists.

      Public Reviews:

      Reviewer #1 (Public Review):

      The evolution of dioecy in angiosperms has significant implications for plant reproductive efficiency, adaptation, evolutionary potential, and resilience to environmental changes. Dioecy allows for the specialization and division of labor between male and female plants, where each sex can focus on specific aspects of reproduction and allocate resources accordingly. This division of labor creates an opportunity for sexual selection to act and can drive the evolution of sexual dimorphism.

      In the present study, the authors investigate sex-biased gene expression patterns in juvenile and mature dioecious flowers to gain insights into the molecular basis of sexual dimorphism. They find that a large proportion of the plant transcriptome is differentially regulated between males and females with the number of sex-biased genes in floral buds being approximately 15 times higher than in mature flowers. The functional analysis of sex-biased genes reveals that chemical defense pathways against herbivores are up-regulated in the female buds along with genes involved in the acquisition of resources such as carbon for fruit and seed production, whereas male buds are enriched in genes related to signaling, inflorescence development and senescence of male flowers. Furthermore, the authors implement sophisticated maximum likelihood methods to understand the forces driving the evolution of sex-biased genes. They highlight the influence of positive and relaxed purifying selection on the evolution of male-biased genes, which show significantly higher rates of non-synonymous to synonymous substitutions than female or unbiased genes. This is the first report (to my knowledge) highlighting the occurrence of this pattern in plants. Overall, this study provides important insights into the genetic basis of sexual dimorphism and the evolution of reproductive genes in Cucurbitaceae.

      Reviewer #2 (Public Review):

      Summary:

      This study uses transcriptome sequence from a dioecious plant to compare evolutionary rates between genes with male- and female-biased expression and distinguish between relaxed selection and positive selection as causes for more rapid evolution. These questions have been explored in animals and algae, but few studies have investigated this in dioecious angiosperms, and none have so far identified faster rates of evolution in male-biased genes (though see Hough et al. 2014 https://doi.org/10.1073/pnas.1319227111).

      Strengths:

      The methods are appropriate to the questions asked. Both the sample size and the depth of sequencing are sufficient, and the methods used to estimate evolutionary rates and the strength of selection are appropriate. The data presented are consistent with faster evolution of genes with male-biased expression, due to both positive and relaxed selection.

      This is a useful contribution to understanding the effect of sex-biased expression in genetic evolution in plants. It demonstrates the range of variation in evolutionary rates and selective mechanisms, and provides further context to connect these patterns to potential explanatory factors in plant diversity such as the age of sex chromosomes and the developmental trajectories of male and female flowers.

      Weaknesses:

      The presence of sex chromosomes is a potential confounding factor, since there are different evolutionary expectations for X-linked, Y-linked, and autosomal genes. Attempting to distinguish transcripts on the sex chromosomes from autosomal transcripts could provide additional insight into the relative contributions of positive and relaxed selection.

      Reviewer #3 (Public Review):

      The potential for sexual selection and the extent of sexual dimorphism in gene expression have been studied in great detail in animals, but hardly examined in plants so far. In this context, the study by Zhao, Zhou et al. al represents a welcome addition to the literature.

      Relative to the previous studies in Angiosperms, the dataset is interesting in that it focuses on reproductive rather than somatic tissues (which makes sense to investigate sexual selection), and includes more than a single developmental stage (buds + mature flowers).<br /> Some aspects of the presentation have been improved in this new version of the manuscript.

      Specifically:

      • the link between sex-biased and tissue-biased genes is now slightly clearer,

      • the limitation related to the de novo assembled transcriptome is now formally acknowledged,

      • the interpretation of functional categories of the genes identified is more precise,

      • the legends of supplementary figures have been improved - a large number of typos have been fixed.

      in response to this first round of reviews. As I detail below, many of the relevant and constructive suggestions by the previous reviewers were not taken into account in this revision.

      For instance:

      • Reviewer 2 made precise suggestions for trying to take into account the potential confounding factor of sex-chromosomes. This suggestion was not followed.

      For the question of reviewer 2:

      The presence of sex chromosomes is a potential confounding factor, since there are different evolutionary expectations for X-linked, Y-linked, and autosomal genes. Attempting to distinguish transcripts on the sex chromosomes from autosomal transcripts could provide additional insight into the relative contributions of positive and relaxed selection.

      Empirically, the analyses could be expanded by an attempt to distinguish between genes on the autosomes and the sex chromosomes. Genotypic patterns can be used to provisionally assign transcripts to XY or XX-like behavior when all males are heterozygous and all females are homozygous (fixed X-Y SNPs) and when all females are heterozygous and males are homozygous (lost or silenced Y genes). Comparing such genes to autosomal genes with sex-biased expression would sharpen the results because there are different expectations for the efficacy of selection on sex chromosomes. See this paper (Hough et al. 2014; https://www.pnas.org/doi/abs/10.1073/pnas.1319227111), which should be cited and does in fact identify faster substitution rates in Y-linked genes.

      Authors’ response: We have cited Hough et al. (2014) and Sandler et al. (2018) in the revised manuscript. We agree that the presence of sex chromosomes is potentially a confounding factor. By adopting methods in Hough et al. (2014) and Sandler et al. (2018), we tried to distinguish transcripts on sex chromosomes from autosomal chromosomes. For a total of 2,378 unbiased genes, we found that 36 genes were putatively sex chromosomal genes, 20 of which were exclusively heterozygous and homozygous for males and females, respectively; while the other 16 genes showing an opposite genotyping patterns between males and females. For 343 male-biased genes, only three ones exhibit a pattern of potentially sex-linked. For the 1,145 female-biased genes, we identified 19 genes which might located on the sex chromosomes. Among the 19 genes, five genes were exclusively heterozygous for males and exclusively homozygous for females, while reversed genotyping patterns presented in the other 14 genes. So, sex-linked genes may contribute relatively little to rapid evolution of male-biased genes. An alternative explanation is that the results could be unreliable due to small sample sizes. Thus, we did not describe them in the Results section. We will investigate the issue when whole genome sequences and population datasets become available in the near future.

      • Reviewer 1 & 3 indicated that results were mentioned in the discussion section without having been described before. This was not fixed in this new version.

      For the question of reviewer 1:

      2) Paragraph (407-416) describes the analysis of duplicated genes under relaxed selection but there is no mention of this in the results.

      Authors’ response: Following this suggestion, in the Results section, we have added a sentence, “We also found that most of them were members of different gene families generated by gene duplication (Table S13)” on line 310-311 in the revised manuscript (Rapid_evolution_of_malebiased_genes_Trichosanthes_pilosa_Tracked_change_2023_11_06.docx).

      For the question of reviewer 1:

      38- line 417-424. The discussion should not contain new results.

      Authors’ response: Thank you for pointing out this. In the Results section, we have added a few sentences as following: “Similarly, given that dN/dS values of sex-biased genes were higher due to codon usage bias, lower dS rates would be expected in sex-biased genes relative to unbiased genes (Ellegren & Parsch, 2007; Parvathy et al., 2022). However, in our results, the median of dS values in male-biased genes were much higher than those in female-biased and unbiased genes in the results of ‘free-ratio’ (Fig. S4A, female-biased versus male-biased genes, P = 6.444e-12 and malebiased versus unbiased genes, P = 4.564e-13) and ‘two-ratio’ branch model (Fig. S4B, femalebiased versus male-biased genes, P = 2.2e-16 and male-biased versus unbiased genes, P = 9.421e08, respectively). ” on line 323-331, and consequently, removed the following sentence, “femalebiased vs male-biased genes, P = 6.444e-12 and male-biased vs unbiased genes, P = 4.564e-13” and “female-biased versus male-biased genes, P = 2.2e-16 and male-biased versus unbiased genes, P = 9.421e-08, respectively” in the Discussion section.

      • Reviewer 1 asked for a comparison between the number of de novo assembled unigenes in this transcriptome and the number of genes in other Cucurbitaceae species. I could not see this comparison reported.

      Authors’ response: In the first revision, we described only percentages. We have now added the number of genes. We modify this part as follows: “The majority of unigenes were annotated by homologs in species of Cucurbitaceae (61.6%, 36,375), including Momordica charantia (16.3%, 9,625), Cucumis melo (11.9%, 7,027), Cucurbita pepo (11.9%, 7,027), Cucurbita moschata (11.5%, 6,791), Cucurbita maxima (10.1%, 5,964) and other species (38.4%, 22,676) (Fig. S1C).”.

      • Reviewer 1 pointed out that permutation tests were more appropriate, but no change was made to the manuscript.

      Authors’ response: Thank you for your suggestion. In the first revision, we have indirectly responded to the issues. Wilcoxon rank sum test is more commonly used for all comparisons between sex-biased and unbiased genes in many papers. Additionally, we tested datasets using permutation t-tests, which is consistent with the results of Wilcoxon rank sum test. For example, we found that only in floral buds, there are significant differences in ω values in the results of ‘free-ratio’ (female-biased versus male-biased genes, P = 0.04282 and male-biased versus unbiased genes, P = 0.01114) and ‘two-ratio’ model (female-biased versus male-biased genes, P = 0.01992 and male-biased versus unbiased genes, P = 0.02127, respectively). We also described these results in the Results section accordingly (line 278-284).

      • Reviewer 3 pointed out the small sample size (both for the RNA-seq and the phylogenetic analysis), but again this limitation is not acknowledged very clearly.

      Authors’ response: Sorry, we acknowledged that our sample size was relatively small. In the revised version, we have added a sentence as follows, “Additionally, our sample size is relatively small, and may provide low power to detect differential expression.” in the Discussion section.

      • Reviewer 1 & 3 pointed out that Fig 3 was hard to understand and asked for clarifications that I did not see in the text and the figure in unchanged.

      Authors’ response: Thank you for your suggestions. We have revised the manuscript to clarify the meaning of the acronym (F1TGs, F2TGs, M1TGs, M2TGs, F1BGs, F2BGs, M1BGs and M2BGs) and presented the number of genes. We have added two labels, indicating that panels A and B correspond to males and C and D to females in Fig. 3.

      • Reviewer 3 suggested to combine all genes with sex-bias expression when evaluating the evolutionary rate, in addition to the analyses already done. This suggestion was not followed.

      For the question of reviewer 3:line 196 and following: In these analyses, I could not understand the rationale for keeping buds vs mature flowers as separate analyses throughout. Why not combine both and use the full set of genes showing sex-bias in any tissue? This would increase the power and make the presentation of the results a lot more straightforward.

      Authors’ response: Thank you for your suggestions. In the first revision, we tried to respond to the issues. First, we observed strong sexual dimorphism in floral buds, such as racemose versus solitary, early-flowering versus late-flowering. Second, as you pointed out earlier, “the dataset is interesting in that it focuses on reproductive rather than somatic tissues (which makes sense to investigate sexual selection), and includes more than a single developmental stage (buds + mature flowers)”, we totally agree with you on this point. Third, according to your suggestions, we combined all genes with sex-bias expression to evaluate the evolutionary rates. We found significant differences (please see a Figure below) in ω values in the results of ‘free-ratio’ (female-biased versus male-biased genes, P =0.005622 and male-biased versus unbiased genes, P = 0.001961) and ‘two-ratio’ model (female-biased versus male-biased genes, P = 0.008546 and male-biased versus unbiased genes, P = 0.009831, respectively) using Wilcoxon rank sum test. However, the significance is lower than previous results in floral buds due to sex-biased genes of mature flower joined, especially compared to the results of “free-ratio model”. Additionally, we also test all combined genes with sex-bias expression using permutation t-test. Unfortunately, there are no significant differences in ω values expect for male-biased versus unbiased genes in the results of ‘free-ratio’ model (P = 0.03034) and ‘two-ratio’ model (P = 0.0376), respectively. To a certain extent, the combination of all genes with sex-bias expression may cover the signals of rapid evolution of sex-biased genes in floral buds. Therefore, these results are not described in our manuscript. In the near future, we would like to make further investigations through more development stages of flowers and new technologies (e.g. Single-Cell method, See Murat et al., 2023) in each sex to consolidate the conclusion, and it is hoped that we could find more meaningful results.

      Author response image 1.

      • Reviewer 3 pointed out that hand-picking specific categories of genes was not statistically valid, and in fact not necessary in the present context. This was not changed.

      For the question of reviewer3: removing genes on a post-hoc basis seems statistically suspicious to me. I don't think your analysis has enough power to hand-pick specific categories of genes, and it is not clear what this brings here. I suggest simply removing these analyses and paragraphs.

      Authors’ response: Thank you for your suggestions. We have changed them accordingly. We removed a part of the following paragraph, “To confirm the contributions of positive selection and relaxed selection to rapid rates of male-biased genes in floral buds, we generated three datasets of OGs by excluding different sets of genes. Specifically, we excluded 18 relaxed selective male-biased genes (5.23%), 98 positively selected male-biased genes (28.57%), and 112 male-biased genes (32.65%) under positive and relaxed selection from 343 OGs (Fig. S4). We observed that after excluding male-biased genes under relaxed purifying selection, the median (0.264) decreased by 0.34% compared to the median (0.265) of all OGs (Fig. S4A-B). However, after excluding positively selected male-biased genes, the median (0.236) was reduced by 11% (Fig. S4A, C) in the results of ‘free-ratio’ branch model. This pattern was consistent with the results of ‘two-ratio’ branch model as well (Fig. S4E-G).” on line 290 to 300.

      However, we kept the following paragraph, “We also analyzed female-biased and unbiased genes that underwent positive and relaxed selection in floral buds (Tables S6-S10). We identified 216 (18.86%) positively selected, and 69 (6.03%) relaxed selective female-biased genes from 1,145 OGs, respectively. Similarly, we found 436 (18.33%) positively selected, and 43 (1.81%) unbiased genes under relaxed selection from 2,378 OGs, respectively. Notably, male-biased genes have a higher proportion (10%) of positively selected genes compared to female-biased and unbiased genes. However, relaxed selective male-biased genes have a higher proportion (3.24%) than unbiased genes, but about 0.8% lower than that of female-biased genes.”. In this way, we can compare the proportion of sex-biased genes that have undergone positive selection and release selection among female-biased genes, unbiased genes and male-biased genes in floral buds in the Discussion section.

      • Reviewer 1 asked for all data to be public, but I could not find in the manuscript where the link to the data on ResearchGate was provided.

      Authors’ response: We have added a link in the Data Availability section.

      • Reviewers 1 & 3 pointed out that since only two tissues were compared, the claims on pleiotropy should have been toned down, but no change was made to the text.

      Authors’ response: Thank you for your suggestions. We revised “due to low pleiotropic constraints” to “due to low evolutionary constraints” and revised “low pleiotropy” to “low constraints”.

      • Reviewer 1 asked for a clarification on which genes are plotted on the heatmap of Fig3C and an explanation of the color scale. No change was made.

      Authors’ response: Sorry for the confusion. Actually, Reviewer 1 asked that “Fig. 2C, which genes are plotted on the heatmap and what is the color scale corresponding to?” In the previous revision, we have revised them (See Fig. 2 Sex-biased gene expression for floral buds and flowers at anthesis in males and females of Trichosanthes pilosa). Sex-biased genes (the union of sex-biased genes in F1, M1, F2 and M2) are plotted on the heatmap. The color gradient represents from high to low (from red to green) gene expression.

      • Reviewer 1 asked for panel B in Fig S5 and S6 to be removed. They are still there. They asked for abbreviations to be explained in the legend of Fig S8. This was not done. They asked for details about columns headers. Such detailed were not added. They asked for more recent references on line 53-56: this was not done.

      Authors’ response: We have removed panel B in Fig. S5 and S6. We explained abbreviations in text and Fig. S8. We added more details about the column headers in Supplementary Table S4, S5, S6, S7, S8, S9 and S10. We also added more recent references on line 53-56.

      Recommendations for the authors:

      Reviewer #3 (Recommendations For The Authors):

      Authors’ response: Thank you for your suggestions. We have revised/fixed these issues following your concerns and suggestions.

      Line 46-48 would be clearer as « Sexual dimorphism is the condition where sexes of the same species exhibit different morphological, ecological and physiological traits in gonochoristic animals and dioecious plants, despite male and female individuals sharing the same genome except for sex chromosomes or sex-determining loci »

      Authors’ response: Thanks. We have revised it accordingly.

      Line 50: replace «in both » by «between the two »

      Authors’ response: We have revised it.

      Line 51: « genes exclusively » -> « genes expressed exclusively »

      Authors’ response: We have revised it.

      Line 58: « in many animals » -> « in several animal species »

      Authors’ response: We have revised it to “in some animal species”.

      Line 58: « to which » -> « of this bias »

      Authors’ response: We have revised it.

      Line 64: « Most dioecious plants possess homomorphic sex-chromosomes that are roughly similar in size when viewed by light microscopy. » : a reference is missing

      Authors’ response: We have added the reference.

      Line 67: remove « that »

      Authors’ response: We have revised it.

      line 96: change to: « only the five above-mentioned studies »

      Authors’ response: We have revised it.

      Line 97: remove « the »

      Authors’ response: We have revised it.

      Line 111: « Drosophia » -> Drosophila

      Authors’ response: We have revised it.

      Line 114: exhibiting -> « exhibited »

      Authors’ response: We have revised it.

      Line 115: suggest -> « suggesting »

      Authors’ response: We have revised it.

      Line 117: « studies in plants have rarely reported elevated rates of sex-biased genes » : is it « rarely » or « never » ?

      Authors’ response: We have revised to “never”.

      Line 143: « It’s » -> « Its »

      Authors’ response: We have revised it.

      Line 143-146: say whether the male parts (e.g. anthers) are still present in females flowers, and the female parts (pistil+ ovaries) in the male flowers, or whether these respective organs are fully aborted.

      Authors’ response: We have added the following sentence, “The male parts (e. g., anthers) of female flowers, and the female parts (e. g., pistil and ovaries) of male flowers are fully aborted” in line 148150 of the Introduction section.

      Line 158: this is now clearer, but please specify whether you are talking about 12 floral buds in total, or 12 per individual (i.e. 72 buds in total).

      Authors’ response: We have revised it to “Using whole transcriptome shotgun sequencing, we sequenced floral buds and flowers at anthesis from female and male of dioecious T. pilosa. We set up three biological replicates from three female and three male plants, including 12 samples in total (six floral buds and six flowers at anthesis)”.

      Line 194-198: These sentences are unclear and hard to link to the figure. Consider changing for « In male plants, the number of tissue-biased genes in flowers at anthesis (M2TGs: n = 2795) was higher than that in floral buds (M1TGs: n = 1755, Fig. 3A and 3B). Figure 3 is also very hard to read. Adding a label on the side to indicate that panels A and B correspond to male-biased genes and C and D to female-biased genes could be useful.

      Authors’ response: Thank you for your suggestions. We have revised the text to clarify the meaning of the acronym (F1TGs, F2TGs, M1TGs, M2TGs, F1BGs, F2BGs, M1BGs and M2BGs) and presented the number of genes. We have added two labels, indicating that panels A and B correspond to males and C and D to females in Figure 3.

      Line 208: explain the approach: e.g. « We then compared rates of protein evolution among malebiased, female-biased and unbiased genes. To do this, we sequenced floral bud transcriptomes from the closely related T. anguina, as well as two more distant outgroups, T. kirilowii and Luffa cylindrica. T. kirilowii is a dioecious species like T. pilosa, and the other two are monoecious. We identified one-to-one orthologous groups (OGs) for 1,145 female-biased, 343 male-biased, and 2,378 unbiased genes. »

      Authors’ response: We have revised this paragraph to the following, “We compared rates of protein evolution among male-biased, female-biased and unbiased genes in four species with phylogenetic relationships (((T. anguina, T. pilosa), T. kirilowii), Luffa cylindrica), including dioecious T. pilosa, dioecious T. kirilowii, monoecious T. anguina in Trichosanthes, together with monoecious Luffa cylindrica. To do this, we sequenced transcriptomes of T. pilosa. We also collected transcriptomes of T. kirilowii, as well as genomes of T. anguina and Luffa cylindrica.”

      Line 220: « the same ω value was in all branches » -> « all branches are constrained to have the same ω value ».

      Authors’ response: We have revised it.

      Line 221: « results of the 'two-ratio' branch model ... »

      Authors’ response: We have revised it.

      Line 235: add a few words to explain why the effect size is bigger than for buds, but still is not significant: e.g. «possibly because of limited statistical power due to the low number of sex-biased genes in flowers at anthesis »

      Authors’ response: We have revised this to “However, there is no statistically significant difference in the distribution of ω values using Wilcoxon rank sum tests for female-biased versus male-biased genes (P = 0.0556), female-biased versus unbiased genes (P = 0.0796), and male-biased versus unbiased genes (P = 0.3296) possibly because of limited statistical power due to the low number of sex-biased genes in flowers at anthesis.” in line 260-261.

      Line 255: explain in plain English what the « A model » is. This was already requested in the previous version.

      Authors’ response: We have revised “A model” to “classical branch-site model A”.

      Line 258: explain in plain English what the « foreground 2b ω value » corresponds to

      Authors’ response: We have revised to as follows, “foreground 2b ω value” to “foreground ω >1”. Additionally, we also added the sentence “The classical branch-site model assumes four site classes (0, 1, 2a, 2b), with different ω values for the foreground and background branches. In site classes 2a and 2b, the foreground branch undergoes positive selection when there is ω > 1.” in line 624-627.

      Line 259: explain how these different approaches complement each other rather than being redundant. This was also already requested in the previous version.

      Authors’ response: Sorry. We have now revised it as follows, “As a complementary approach, we utilized the aBSREL and BUSTED methods that are implemented in HyPhy v.2.5 software, which avoids false positive results by classical branch-site models due to the presence of rate variation in background branches, and detected significant evidence of positive selection.” in line 292-295.

      Line 270: remove « dramatically », and also remove « or eliminated at both gene-wide and genomewide levels », as well as « relative to positive selection »

      Authors’ response: Thank you for your suggestions. We have revised it.

      Line 290-309: remove this section - this was already pointed out in the previous reviews as a « ad hoc » procedure, and this point has already been made clear with the RELAX analysis.

      Authors’ response: Thank you for your suggestions. We revised this section accordingly. We remove the following paragraph, “To confirm the contributions of positive selection and relaxed selection to rapid rates of male-biased genes in floral buds, we generated three datasets of OGs by excluding different sets of genes. Specifically, we excluded 18 relaxed selective male-biased genes (5.23%), 98 positively selected male-biased genes (28.57%), and 112 male-biased genes (32.65%) under positive and relaxed selection from 343 OGs (Fig. S4). We observed that after excluding malebiased genes under relaxed purifying selection, the median (0.264) decreased by 0.34% compared to the median (0.265) of all OGs (Fig. S4A-B). However, after excluding positively selected malebiased genes, the median (0.236) was reduced by 11% (Fig. S4A, C) in the results of ‘free-ratio’ branch model. This pattern was consistent with the results of ‘two-ratio’ branch model as well (Fig. S4E-G).” on line 334-344.

      However, we kept the other parts “We also analyzed female-biased and unbiased genes that underwent positive and relaxed selection in floral buds (Tables S6-S10). We identified 216 (18.86%) positively selected, and 69 (6.03%) relaxed selective female-biased genes from 1,145 OGs, respectively. Similarly, we found 436 (18.33%) positively selected, and 43 (1.81%) unbiased genes under relaxed selection from 2,378 OGs, respectively. Notably, male-biased genes have a higher proportion (10%) of positively selected genes compared to female-biased and unbiased genes. However, relaxed selective male-biased genes have a higher proportion (3.24%) than unbiased genes, but about 0.8% lower than that of female-biased genes.”. In this way, we can compare the proportion of sex-biased genes that have undergone positive selection and release selection among female-biased genes, unbiased genes and male-biased genes in floral buds in the Discussion sections.

      Line 348: Here you talk about « Numerous studies », but then only report three studies. Please clarify.

      Authors’ response: Thank you for your suggestions. We have revised it to “Several studies”.

      Line 352: Cut the sentence: « In contrast, the wind-pollinated dioecious plant Populus balsamifera ... »

      Authors’ response: Thank you for your suggestions. We have revised it.

      Line 357: « In contrast to the above studies... »: If I understand correctly, this is not in contrast to the observation in Populus balsamifera. Please clarify.

      Authors’ response: Thank you for your suggestions. We have revised to “Similar to the above study of Populus balsamifera.”.

      Line 420: « our results » -> « we »; « that underwent » -> « undergoing »

      Authors’ response: Thank you for your suggestions. We have revised it.

      Figure 3 is very hard to read and poorly labeled (see my comments on line 194 above). It is also hard to link to the text, since the numbers reported in the text are actually not present in the figure unless the readers makes some calculations themselves. This should be improved. Also, the use of acronyms (e.g. M1BG, F2TG etc.) contributes to making the text very difficult to read. The acronyms should at least be explained very clearly in the text when they are used.

      Authors’ response: Thank you for your suggestions. We have revised the text to clarify the meaning of the acronym (F1TGs, F2TGs, M1TGs, M2TGs, F1BGs, F2BGs, M1BGs and M2BGs) and give the number of genes. We have added two labels, indicating that panels A and B correspond to males and C and D to females in Figure 3.

    1. Author Response

      We are grateful to the reviewers for their positive feedback with their comments and suggestions on the manuscript. Reviewer 1 has indicated two weaknesses and Reviewer 2 has none. With this provisional reply, we address the two concerns of the Reviewer 1:

      1) Data obtained from a single aminoacyl-tRNA (D-Tyr-tRNATyr) have been generalized to imply that what is relevant to this model substrate is true for all other D-aa-tRNAs. This is not a risk-free extrapolation. Why do the authors believe that the length of the amino acid side chain will not matter in the activity of DTD2?

      We thank the reviewer for bringing up this important point. We wish to clarify that only a few of the aminoacyl-tRNA synthetases are known to charge D-amino acids and only D-Leu (Yeast), D-Asp (Bacteria, Yeast), D-Tyr (Bacteria, Cyanobacteria, Yeast) and D-Trp (Bacteria) show toxicity in vivo in the absence of known DTD (Soutourina J. et al., JBC, 2000; Soutourina O. et al., JBC, 2004; Wydau S. et al., JBC, 2009). D-Tyr-tRNATyr is used as a model substrate to test the DTD activity in the field because of the conserved toxicity of D-Tyr in various organisms. DTD2 has been shown to recycle D-Asp-tRNAAsp and D-Tyr-tRNATyr with the same efficiency both in vitro and in vivo (Wydau S. et al., NAR, 2007). Moreover, we have previously shown that it recycles acetaldehyde-modified D-Phe-tRNAPhe and D-Tyr-tRNATyr in vitro (Mazeed M. et al., Science Advances, 2021). We have earlier shown that DTD1, another conserved chiral proofreader across bacteria and eukaryotes, acts via a side chain independent mechanism (Ahmad S. et al., eLife, 2013). Considering the action on multiple side chains with different chemistry and size, it can be proposed with reasonable confidence that DTD2 also operates based on a side chain independent manner.

      2) While the use of EFTu supports that the ternary complex formation by the elongation factor can resist modifications of L-Tyr-tRNATyr by the aldehydes or other agents, in the context of the present work on the role of DTD2 in plants, one would want to see the data using eEF1alpha. This is particularly relevant because there are likely to be differences in the way EFTu and eEF1alpha may protect aminoacyl-tRNAs (for example see description in the latter half of the article by Wolfson and Knight 2005, FEBS Letters 579, 3467-3472).

      We thank the reviewer for bringing another important point. We analysed the aa-tRNA bound elongation factor structures from both bacteria (PDB id: 1TTT) and mammal (PDB id: 5LZS) and found that the amino acid binding site is highly conserved where side chain of amino acid is projected outside. Modelling of D-amino acid in the same site shows serious clashes, indicating D-chiral rejection during aa-tRNA binding by elongation factor. In addition, the amino group of amino acid is tightly selected by the main chain atoms of elongation factor thereby lacking a space for aldehydes to enter and then modify the L-aa-tRNAs and Gly-tRNAs. Minor differences near the amino acid side chain binding site (as indicated in Wolfson and Knight, FEBS Letters, 2005) might induce the amino acid specific binding differences. However, those changes will have no influence when the D-chiral amino acid enters the pocket, as the whole side chain would clash with the active site. We will present a sequence and structural conservation analysis to clarify this important point in our revised manuscript. Overall, our structural analysis suggests a conserved mode of aa-tRNA selection by elongation factor across life forms and therefore, our biochemical results with bacterial elongation factor Tu (EF-Tu) reflect the protective role of elongation factor in general across species.

      In our revised manuscript, we will provide a thorough point-by-point response to the above as well as all the specific reviewer comments. We also intend to include new analysis with updated data that would address the key questions raised by the reviewers.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The biogenesis of outer membrane proteins (OMPs) into the outer membranes of Gram-negative bacteria is still not fully understood, particularly substrate recognition and insertion by beta-assembly machinery (BAM). In the studies, the authors present their studies that in addition to recognition by the last strand of an OMP, sometimes referred to as the beta-signal, an additional signal upstream of the last strand is also important for OMP biogenesis.

      Strengths:

      1. Overall the manuscript is well organized and written, and addresses an important question in the field. The idea that BAM recognizes multiple signals on OMPs has been presented previously, however, it was not fully tested.

      2. The authors here re-address this idea and propose that it is a more general mechanism used by BAM for OMP biogenesis.

      3. The notion that additional signals assist in biogenesis is an important concept that indeed needs fully tested in OMP biogenesis.

      4. A significant study was performed with extensive experiments reported in an attempt to address this important question in the field.

      5. The identification of important crosslinks and regions of substrates and Bam proteins that interact during biogenesis is an important contribution that gives clues to the path substrates take en route to the membrane.

      Weaknesses:

      Major critiques (in no particular order):

      1. The title indicates 'simultaneous recognition', however no experiments were presented that test the order of interactions during OMP biogenesis.

      We have replaced the word “Simultaneous” with “Dual” so as not to reflect on the timing of the recognition events for the distinct C-terminal signal and -5 signal.

      1. Aspects of the study focus on the peptides that appear to inhibit OmpC assembly, but should also include an analysis of the peptides that do not to determine this the motif(s) present still or not.

      We thank the reviewer for this comment. Our study focuses on the peptides which exhibited an inhibitory effect in order to elucidate further interactions between the BAM complex and substrate proteins, especially in early stage of the assembly process. In the case of peptide 9, which contains all of our proposed elements but did not have an inhibitory effect, there is the presence of an arginine residue at the polar residue next to hydrophobic residue in position 0 (0 Φ). As seen in Fig S5, S6, and S7, there are no positively charged amino acids in the polar residue positions in the -5 or last strands. This might be the reason why peptide 9, as well as peptide 24, the β-signal derived from the mitochondrial OMP Tom40 and contains a lysine at the polar position, did not display an inhibitory effect. Incorporating the reviewer's suggestions might elucidate conditions that should not be added to the elements, but this is not the focus of this paper and was not discussed to avoid complicating the paper.

      1. The β-signal is known to form a β-strand, therefore it is unclear why the authors did not choose to chop OmpC up according to its strands, rather than by a fixed peptide size. What was the rationale for how the peptide lengths were chosen since many of them partially overlap known strands, and only partially (2 residues) overlap each other? It may not be too surprising that most of the inhibitory peptides consist of full strands (#4, 10, 21, 23).

      A simple scan of known β-strands would have been an alternative approach, however this comes with the bias of limiting the experiments to predicted substrate (strand) sequences, and it presupposes that the secondary structure element would be formed by this tightly truncated peptide.

      Instead, we allowed for the possibility that OMPs meet the BAM complex in an unfolded or partially folded state, and that the secondary structure (β-strand) might only form via β-argumentation after the substrate is placed in the context of the lateral gate. We therefore used peptides that mapped right across the entirety of OmpC, with a two amino acid overlap.

      To clarify this important point regarding the unbiased nature of our screen, we have revised the text:

      (Lines 147-151) "We used peptides that mapped the entirety of OmpC, with a two amino acid overlap. This we considered preferable to peptides that were restricted by structural features, such as β-strands, in consideration that β-strand formation may or may not have occurred in early-stage interactions at the BAM complex."

      1. It would be good to have an idea of the propensity of the chosen peptides to form β-stands and participate in β-augmentation. We know from previous studies with darobactin and other peptides that they can inhibit OMP assembly by competing with substrates.

      We appreciate the reviewer's suggestion. However, we have not conducted biophysical characterizations of the peptides to calculate the propensity of each peptide to form β-stands and participate in β-augmentation. The sort of detailed biophysical analysis done for Darobactin (by the Maier and Hiller groups, The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase Nature 593:125-129) was a Nature publication based on this single peptide. A further biophysical analysis of all of the peptides presented here goes well beyond the scope of our study.

      1. The recognition motifs that the authors present span up to 9 residues which would suggest a relatively large binding surface, however, the structures of these regions are not large enough to accommodate these large peptides.

      The β-signal motif (ζxGxx[Ω/Φ]x[Ω/Φ]) is an 8-residue consensus, some of the inhibitory peptides include additional residues before and after the defined motif of 8 residues, and the lateral gate of BamA has been shown interact with a 7-residue span (eg. Doyle et al, 2022). Cross-linking presented in our study showed BamD residues R49 and G65 cross-linked to the positions 0 and 6 of the internal signal in OmpC (Fig. 6D).

      We appreciate this point of clarification and have modified the text to acknowledge that in the final registering of the peptide with its binding protein, some parts of the peptide might sit beyond the bounds of the BamD receptor’s binding pocket and the BamA lateral gate:

      (Lines 458-471) "The β-signal motif (ζxGxx[Ω/Φ]x[Ω/Φ]) is an eight-residue consensus, and internal signal motif is composed of a nine-residue consensus. Recent structures have shown the lateral gate of BamA interacts with a 7-residue span of substrate OMPs. Interestingly, inhibitory compounds, such as darobactin, mimic only three resides of the C-terminal side of β-signal motif. Cross-linking presented here in our study showed that BamD residues R49 and G65 cross-linked to the positions 0 and 6 of the internal signal in OmpC (Fig. 6D). Both signals are larger than the assembly machineries signal binding pocket, implying that the signal might sit beyond the bounds of the signal binding pocket in BamD and the lateral gate in BamA. These finding are consistent with similar observations in other signal sequence recognition events, such as the mitochondrial targeting presequence signal that is longer than the receptor groove formed by the Tom20, the subunit of the translocator of outer membrane (TOM) complex (Yamamoto et al., 2011). The presequence has been shown to bind to Tom20 in several different conformations within the receptor groove (Nyirenda et al., 2013)."

      Moreover, the distance between amino acids of BamD which cross-linked to the internal signal, R49 and Y62, is approximately 25 Å (pdbID used 7TT3). The distance of the maximum amino acid length of the internal signal of OmpC, from F280 to Y288, is approximately 22 Å (pdbID used 2J1N). This would allow for the signal to fit within the confines of the TRP motif of BamD.

      Author response image 1.

      1. The authors highlight that the sequence motifs are common among the inhibiting peptides, but do not test if this is a necessary motif to mediate the interactions. It would have been good to see if a library of non-OMP related peptides that match this motif could also inhibit or not.

      With respect, this additional work would not address any biological question relevant to the function of BamD. To randomize sequences and then classify those that do or don’t fit the motif would help in refining the parameters of the β-signal motif, but that was not our intent.

      We have identified the peptides from within the total sequence of an OMP, shown which peptides inhibit in an assembly assay, and then observed that the inhibitory peptides conform to a previously published (β-signal) motif.

      1. In the studies that disrupt the motifs by mutagenesis, an effect was observed and attributed to disruption of the interaction of the 'internal signal'. However, the literature is filled with point mutations in OMPs that disrupt biogenesis, particular those within the membrane region. F280, Y286, V359, and Y365 are all residues that are in the membrane region that point into the membrane. Therefore, more work is needed to confirm that these mutations are in parts of a recognition motif rather than on the residues that are disrupting stability/assembly into the membrane.

      As the reviewer pointed out, the side chains of the amino acids constituting the signal elements we determined were all facing the lipid side, of which Y286 and Y365 were important for folding as well as to be recognized. However, F280A and V359A had no effect on folding, but only on assembly through the BAM complex. The fact that position 0 functions as a signal has been demonstrated by peptidomimetics (Fig. 1) and point mutant analysis (Fig. 2). We appreciate this clarification and have modified the text to acknowledge that the all of the signal element faces the lipid side, which contributes to their stability in the membrane finally, and before that the BAM complex actively recognizes them and determines their orientation:

      (Lines 519-526) After OMP assembly, all elements of the internal signal are positioned such that they face into the lipid-phase of the membrane. This observation may be a coincidence, or may be utilized by the BAM complex to register and orientate the lipid facing amino acids in the assembling OMP away from the formative lumen of the OMP. Amino acids at position 6, such as Y286 in OmpC, are not only component of the internal signal for binding by the BAM complex, but also act in structural capacity to register the aromatic girdle for optimal stability of the OMP in the membrane.

      1. The title of Figure 3 indicates that disrupting the internal signal motif disrupts OMP assembly, however, the point mutations did not seem to have any effect. Only when both 280 and 286 were mutated was an effect observed. And even then, the trimer appeared to form just fine, albeit at reduced levels, indicating assembly is just fine, rather the rate of biogenesis is being affected.

      We appreciate this point and have revised the title of Figure 3 to be:

      (Lines 1070-1071) "Modifications in the putative internal signal slow the rate of OMP assembly in vivo."

      1. In Figure 4, the authors attempt to quantify their blots. However, this seems to be a difficult task given the lack of quality of the blots and the spread of the intended signals, particularly of the 'int' bands. However, the more disturbing trend is the obvious reduction in signal from the post-urea treatment, even for the WT samples. The authors are using urea washes to indicate removal of only stalled substrates. However a reduction of signal is also observed for the WT. The authors should quantify this blot as well, but it is clear visually that both WT and the mutant have obvious reductions in the observable signals. Further, this data seems to conflict with Fig 3D where no noticeable difference in OmpC assembly was observed between WT and Y286A, why is this the case?

      We have addressed this point by adding a statistical analysis on Fig. 4A. As the reviewer points out, BN-PAGE band quantification is a difficult task given the broad spread of the bands on these gels. Statistical analysis showed that the increase in intermediates (int) was statistically significant for Y286A at all times until 80 min, when the intermediate form signals decrease.

      (Lines 1093-1096) "Statistical significance was indicated by the following: N.S. (not significant), p<0.05; , p<0.005; *. Exact p values of intermediate formed by Wt vs Y286A at each timepoint were as follows; 20 minutes: p = 0.03077, 40 minutes: p = 0.02402, 60 minutes: p = 0.00181, 80 minutes: p = 0.0545."

      Further regarding the Int. band, we correct the statement as follows.

      (Lines 253-254) "Consistent with this, the assembly intermediate which was prominently observed at the OmpC(Y286A) can be extracted from the membranes with urea;"

      OMP assembly in vivo has additional periplasmic chaperones and factors present in order to support the assembly process. Therefore, it is likely that some proteins were assembled properly in vivo compared to their in vitro counterparts. Such a decrease has been observed not only in E. coli but also in mitochondrial OMP import (Yamano et al., 2010).

      1. The pull-down assays with BamA and BamD should include a no protein control at the least to confirm there is no non-specific binding to the resin. Also, no detergent was mentioned as part of the pull downs that contained BamA or OmpC, nor was it detailed if OmpC was urea solubilized.

      We have performed pull down experiments with a no-protein (Ni-NTA only) control as noted (Author response image 1). The results showed that the amount of OmpC carrying through on beads only was significantly lower than the amount of OmpC bound in the presence of BamD or BamA. The added OmpC was not treated with urea, but was synthesized by in vitro translation; the in vitro translated OmpC is the standard substrate in the EMM assembly assay (Supp Fig. S1) where it is recognized by the BAM complex. Thus, we used it for pull-down as well and, to make this clearer, we have revised as follows:

      Author response image 2.

      Pull down assay of radio-labelled OmpC with indicated protein or Ni-NTA alone (Ni-NTA) . T; total, FT; Flow throw, W; wash, E; Elute.

      (Lines 252-265) "Three subunits of the BAM complex have been previously shown to interact with the substrates: BamA, BamB, and BamD (Hagan et al., 2013; Harrison, 1996; Ieva et al., 2011). In vitro pull-down assay showed that while BamA and BamD can independently bind to the in vitro translated OmpC polypeptide (Fig .S9A), BamB did not (Fig. S9B)."

      11.

      • The neutron reflectometry experiments are not convincing primarily due to the lack controls to confirm a consistent uniform bilayer is being formed and even if so, uniform orientations of the BamA molecules across the surface.

      • Further, no controls were performed with BamD alone, or with OmpC alone, and it is hard to understand how the method can discriminate between an actual BamA/BamD complex versus BamA and BamD individually being located at the membrane surface without forming an actual complex.

      • Previous studies have reported difficulty in preparing a complex with BamA and BamD from purified components.

      • Additionally, little signal differences were observed for the addition of OmpC. However, an elongated unfolded polypeptide that is nearly 400 residues long would be expected to produce a large distinct signal given that only the C-terminal portion is supposedly anchored to BAM, while the rest would be extended out above the surface.

      • The depiction in Figure 5D is quite misleading when viewing the full structures on the same scales with one another.

      We have addressed these five points individually as follows.

      i. The uniform orientation of BamA on the surface is guaranteed by the fixation through a His-tag engineered into extracellular loop 6 of BamA and has been validated in previous studies as cited in the text. Moreover, to explain this, we reconstructed another theoretical model for BamA not oriented well in the system as below. However, we found that the solid lines (after fitting) didn’t align well with the experimental data. We therefore assumed that BamA has oriented well in the membrane bilayer.

      Author response image 3.

      Experimental (symbols) and fitted (curves) NR profiles of BamA not oriented well in the POPC bilayer in D2O (black), GMW (blue) and H2O (red) buffer.

      ii. There would be no means by which to do a control with OmpC alone or BamD alone as neither protein binds to the lipid layer chip. OmpC is diluted from urea and then the unbound OmpC is washed from the chip before NR measurements. BamD does not have an acyl group to anchor it to the lipid layer, without BamA to anchor to, it too is washed from the chip before NR measurements. We have reconstructed another theoretical model for both of BamA + BamD embedding in the membrane bilayer, and the fits were shown below. Apparently, the fits didn’t align well with the experimental data, which discriminate the BamA/BamD individually being located at the membrane surface without forming an actual complex.

      Author response image 4.

      Experimental (symbols) and fitted (curves) NR profiles of BamA+D embedding together in the POPC bilayer in D2O (black), GMW (blue) and H2O (red) buffer.

      iii. The previous studies that reported difficulty in preparing a complex with BamA and BamD from purified components were assays done in aqueous solution including detergent solubilized BamA, or with BamA POTRA domains only. Our assay is superior in that it reports the binding of BamD to a purified BamA that has been reconstituted in a lipid bilayer.

      iv. The relatively small signal differences observed for the addition of OmpC are expected, since OmpC is an elongated, unfolded polypeptide of nearly 400 residues long which, in the context of this assay, can occupy a huge variation in the positions at which it will sit with only the C-terminal portion anchored to BAM, and the rest moving randomly about and extended from the surface.

      v. We appreciate the point raised and have now added a note in the Figure legend that these are depictions of the results and not a scale drawing of the structures.

      1. In the crosslinking studies, the authors show 17 crosslinking sites (43% of all tested) on BamD crosslinked with OmpC. Given that the authors are presenting specific interactions between the two proteins, this is worrisome as the crosslinks were found across the entire surface of BamD. How do the authors explain this? Are all these specific or non-specific?

      The crosslinking experiment using purified BamD was an effective assay for comprehensive analysis of the interaction sites between BamD and the substrate. However, as the reviewer pointed out, cross-linking was observed even at the sites that, in the context of the BAM complex, interact with BamC as a protein-protein interaction and would not be available for substrate protein-protein interactions. To complement this, analysis and to address this issue, we also performed the experiment in Fig. 6C.

      In Fig. 6C, the interaction of BamD with the substrate is examined in vivo, and the results demonstrate that if BPA is introduced into the site, we designated as the substrate recognition site, it is cross-linked to the substrate. On the other hand, position 114 was found to crosslink with the substrate in vitro crosslinking, but not in vivo. It should be noted that position 114 has also been confirmed to form cross-link products with BamC, we believe that BamD-substrate interactions in the native state have been investigated. To explain the above, we have added the following description to the Results section.

      (Lines 319-321) "Structurally, these amino acids locate both the lumen side of funnel-like structure (e.g. 49 or 62) and outside of funnel-like structure such as BamC binding site (e.g. 114) (fig. S12C). (Lines 350-357) Positions 49, 53, 65, and 196 of BamD face the interior of the funnel-like structure of the periplasmic domain of the BAM complex, while position 114 is located outside of the funnel-like structure (Bakelar et al., 2016; Gu et al., 2016; Iadanza et al., 2016). We note that while position 114 was cross-linked with OmpC in vitro using purified BamD, that this was not seen with in vivo cross-linking. Instead, in the context of the BAM complex, position 114 of BamD binds to the BamC subunit and would not be available for substrate binding in vivo (Bakelar et al., 2016; Gu et al., 2016; Iadanza et al., 2016)."

      1. The study in Figure 6 focuses on defined regions within the OmpC sequence, but a more broad range is necessary to demonstrate specificity to these regions vs binding to other regions of the sequence as well. If the authors wish to demonstrate a specific interaction to this motif, they need to show no binding to other regions.

      The region of affinity for the BAM complex was determined by peptidomimetic analysis, and the signal region was further identified by mutational analysis of OmpC. Subsequently, the subunit that recognizes the signal region was identified as BamD. In other words, in the process leading up to Fig. 6, we were able to analyze in detail that other regions were not the target of the study. We have revised the text to make clear that we focus on the signal region including the internal signal, and have not also analyzed other parts of the signal region:

      (Lines 329-332) "As our peptidomimetic screen identified conserved features in the internal signal, and cross-linking highlighted the N-terminal and C-terminal TPR motifs of BamD as regions of interaction with OmpC, we focused on amino acids specifically within the β-signals of OmpC and regions of BamD which interact with β-signal."

      1. The levels of the crosslinks are barely detectable via western blot analysis. If the interactions between the two surfaces are required, why are the levels for most of the blots so low?

      These are western blots of cross-linked products – the efficiency of cross-linking is far less than 100% of the interacting protein species present in a binding assay and this explains why the levels for the blots are ‘so low’. We have added a sentence to the revised manuscript to make this clear for readers who are not molecular biologists:

      (Lines 345-348) "These western blots reveal cross-linked products representing the interacting protein species. Photo cross-linking of unnatural amino acid is not a 100% efficient process, so the level of cross-linked products is only a small proportion of the molecules interacting in the assays."

      15.

      • Figure 7 indicates that two regions of BamD promote OMP orientation and assembly, however, none of the experiments appears to measure OMP orientation?

      • Also, one common observation from panel F was that not only was the trimer reduced, but also the monomer. But even then, still a percentage of the trimer is formed, not a complete loss.

      (i) We appreciate this point and have revised the title of Figure 7 to be:

      (Lines 1137-1138) "Key residues in two structurally distinct regions of BamD promote β-strand formation and OMP assembly."

      (ii) In our description of Fig. 7F (Lines 356-360) we do not distinguish between the amount of monomer and trimer forms, since both are reflective of the overall assembly rate i.e. assembly efficiency. Rather, we state that:

      "The EMM assembly assay showed that the internal signal binding site was as important as the β-signal binding site to the overall assembly rates observed for OmpC (Fig. 7F), OmpF (fig. S15D), and LamB (fig. S15E). These results suggest that recognition of both the C-terminal β-signal and the internal signal by BamD is important for efficient protein assembly."

      16.

      • The experiment in Fig 7B would be more conclusive if it was repeated with both the Y62A and R197A mutants and a double mutant. These controls would also help resolve any effect from crowding that may also promote the crosslinks.

      • Further, the mutation of R197 is an odd choice given that this residue has been studied previously and was found to mediate a salt bridge with BamA. How was this resolved by the authors in choosing this site since it was not one of the original crosslinking sites?

      As stated in the text, the purpose of the experiment in Figure 7B is to measure the impact of pre-forming a β-strand in the substrate (OmpC) before providing it to the receptor (BamD). We thank the reviewer for the comment on the R197 position of BamD. The C-terminal domain of BamD has been suggested to mediate the BamA-BamD interface, specifically BamD R197 amino acid creates a salt-bridge with BamA E373 (Ricci et al., 2012). It had been postulated that the formation of this salt-bridge is not strictly structural, with R197 highlighted as a key amino acid in BamD activity and this salt-bridge acts as a “check-point” in BAM complex activity (Ricci et al., 2012, Storek et al., 2023). Our results agree with this, showing that the C-terminus of BamD acts in substrate recognition and alignment of the β-signal (Fig. 6, Fig S12). We show that amino acids in the vicinity of R197 (N196, G200, D204) cross-linked well to substrate and mutations to the β-signal prevent this interaction (Fig S12B, D). For mutational analysis of BamD, we looked then at the conservation of the C-terminus of BamD and determined R197 was the most highly conserved amino acid (Fig 6C). In order to account for this, we have adjusted the manuscript:

      (Lines 376-377) "R197 has previously been isolated as a suppressor mutation of a BamA temperature sensitive strain (Ricci et al., 2012)."

      (Lines 495-496) "This adds an additional role of the C-terminus of BamD beyond a complex stability role (Ricci et al., 2012; Storek et al., 2023)."

      1. As demonstrated by the authors in Fig 8, the mutations in BamD lead to reduction in OMP levels for more than just OmpC and issues with the membrane are clearly observable with Y62A, although not with R197A in the presence of VCN. The authors should also test with rifampicin which is smaller and would monitor even more subtle issues with the membrane. Oddly, no growth was observed for the Vec control in the lower concentration of VCN, but was near WT levels for 3 times VCN, how is this explained?

      While it would be interesting to correlate the extent of differences to the molecular size of different antibiotics such as rifampicin, such correlations are not the intended aim of our study. Vancomycin (VCN) is a standard measure of outer membrane integrity in our field, hence its use in our tests for membrane integrity.

      We apologize to the reviewer as Figure 8 D-G may have been misleading. Figure 8D,E are using bamD shut-down cells expressing plasmid-borne BamD mutants. Whereas Figure 8F, G are the same strain as used in Figure 3. We have adjusted the figure as well as the figure legend: (Lines 1165-1169) D, E E coli bamD depletion cells expressing mutations at residues, Y62A and R197A, in the β-signal recognition regions of BamD were grown with of VCN. F, G, E coli cells expressing mutations to OmpC internal signal, as shown in Fig 3, grown in the presence of VCN. Mutations to two key residues of the internal signal were sensitive to the presence of VCN.

      1. While Fig 8I indeed shows diminished levels for FY as stated, little difference was observed for the trimer for the other mutants compared to WT, although differences were observed for the dimer. Interestingly, the VY mutant has nearly WT levels of dimer. What do the authors postulate is going on here with the dimer to trimer transition? How do the levels of monomer compare, which is not shown?

      The BN-PAGE gel system cannot resolve protein species that migrate below ~50kDa and the monomer species of the OMPs is below this size. We can’t comment on effects on the monomer because it is not visualized. The non-cropped gel image is shown here. Recently, Hussain et al., has shown that in vitro proteo-liposome system OmpC assembly progresses from a “short-lived dimeric” form before the final process of trimerization (Hussain et al., 2021). However, their findings suggest that LPS plays the final role in stimulation of dimer-to-trimer, a step well past the recognition step of the β-signals. Mutations to the internal signal of OmpC results in the formation of an intermediate, the substrate stalled on the BAM complex. This stalling, presumably, causes a hinderance to the BAM complex resulting in reduced timer and loss of dimer OmpF signal in the EMM of cells expressing OmpC double mutant strain, FY. cannot resolve protein species that migrate below ~50kDa and the monomer species of the OMPs is below this size. We can’t comment on effects on the monomer because it is not visualized. The non-cropped gel image is shown here. We have noted this in the revised text:

      Author response image 5.

      Non-cropped gel of Fig. 8I. the asterisk indicates a band observed in the sample loading wells at the top of the gel.

      (Lines 417-418) "The dimeric form of endogenous OmpF was prominently observed in both the OmpC(WT) as well as the OmpC(VY) double mutant cells."

      1. In the discussion, the authors indicate they have '...defined an internal signal for OMP assembly', however, their study is limited and only investigates a specific region of OmpC. More is needed to definitively say this for even OmpC, and even more so to indicate this is a general feature for all OMPs.

      We acknowledge the reviewer's comment on this point and have expanded the statement to make sure that the conclusion is justified with the specific evidence that is shown in the paper and the supplementary data. We now state:

      (Lines 444-447) "This internal signal corresponds to the -5 strand in OmpC and is recognized by BamD. Sequence analysis shows that similar sequence signatures are present in other OMPs (Figs. S5, S6 and S7). These sequences were investigated in two further OMPs: OmpF and LamB (Fig. 2C and D)."

      Note, we did not state that this is a general feature for all OMPs. That would not be a reasonable proposition.

      20.

      • In the proposed model in Fig 9, it is hard to conceive how 5 strands will form along BamD given the limited surface area and tight space beneath BAM.

      • More concerning is that the two proposal interaction sites on BamD, Y62 and R197, are on opposite sides of the BamD structure, not along the same interface, which makes this model even more unlikely.

      • As evidence against this model, in Figure 9E, the two indicates sites of BamD are not even in close proximity of the modeled substrate strands.

      We can address the reviewer’s three concerns here:

      i. The first point is that the region (formed by BamD engaged with POTRA domains 1-2 and 5 of BamA) is not sufficient to accommodate five β-strands. Structural analysis reveals that the interaction between the N-terminal side of BamD and POTRA1-2 is substantially changed the conformation by substrate binding, and that this surface is greatly extended. This surface does have enough space to accommodate five beta-strands, as now documented in Fig. 9D, 9E using the latest structures (7TT5 and 7TT2) as illustrations of this. The text now reads:

      (Lines 506-515) "Spatially, this indicates the BamD can serve to organize two distinct parts of the nascent OMP substrate at the periplasmic face of the BAM complex, either prior to or in concert with, engagement to the lateral gate of BamA. Assessing this structurally showed the N-terminal region of BamD (interacting with the POTRA1-2 region of BamA) and the C-terminal region of BamD (interacting with POTRA5 proximal to the lateral gate of BamA) (Bakelar et al., 2016; Gu et al., 2016; Tomasek et al., 2020) has the N-terminal region of BamD changing conformation depending on the folding states of the last four β-strands of the substrate OMP, EspP (Doyle et al., 2022). The overall effect of this being a change in the dimensions of this cavity change, a change which is dependent on the folded state of the substrate engaged in it (Fig 9 B-E)."

      ii. The second point raised regards the orientation of the substrate recognition residues of BamD. Both Y62A and R197 were located on the lumen side of the funnel in the EspP-BAM transport intermediate structure (PDBID;7TTC); Y62A is relatively located on the edge of BamD, but given that POTRA1-2 undergoes a conformational change and opens this region, as described above, both are located in locations where they could bind to substrates. This was explained in the following text in the results section of revised manuscript.

      (Lines 377-379) "Each residue was located on the lumen side of the funnel-like structure in the EspP-BAM assembly intermediate structure (PDBID; 7TTC) (Doyle et al., 2022)."

      **Reviewer #2 (Public Review):"

      Previously, using bioinformatics study, authors have identified potential sequence motifs that are common to a large subset of beta-barrel outer membrane proteins in gram negative bacteria. Interestingly, in that study, some of those motifs are located in the internal strands of barrels (not near the termini), in addition to the well-known "beta-signal" motif in the C-terminal region.

      Here, the authors carried out rigorous biochemical, biophysical, and genetic studies to prove that the newly identified internal motifs are critical to the assembly of outer membrane proteins and the interaction with the BAM complex. The author's approaches are rigorous and comprehensive, whose results reasonably well support the conclusions. While overall enthusiastic, I have some scientific concerns with the rationale of the neutron refractory study, and the distinction between "the intrinsic impairment of the barrel" vs "the impairment of interaction with BAM" that the internal signal may play a role in. I hope that the authors will be able to address this.

      Strengths:

      1. It is impressive that the authors took multi-faceted approaches using the assays on reconstituted, cell-based, and population-level (growth) systems.

      2. Assessing the role of the internal motifs in the assembly of model OMPs in the absence and presence of BAM machinery was a nice approach for a precise definition of the role.

      Weaknesses:

      1. The result section employing the neutron refractory (NR) needs to be clarified and strengthened in the main text (from line 226). In the current form, the NR result seems not so convincing.

      What is the rationale of the approach using NR?

      We have now modified the text to make clear that:

      (Lines 276-280) "The rationale to these experiments is that NR provides: (i) information on the distance of specified subunits of a protein complex away from the atomically flat gold surface to which the complex is attached, and (ii) allows the addition of samples between measurements, so that multi-step changes can be made to, for example, detect changes in domain conformation in response to the addition of a substrate."

      What is the molecular event (readout) that the method detects?

      We have now modified the text to make clear that:

      (Lines 270-274) "While the biochemical assay demonstrated that the OmpC(Y286A) mutant forms a stalled intermediate with the BAM complex, in a state in which membrane insertion was not completed, biochemical assays such as this cannot elucidate where on BamA-BamD this OmpC(Y286A) substrate is stalled."

      What are "R"-y axis and "Q"-x axis and their physical meanings (Fig. 5b)?

      The neutron reflectivity, R, refers to the ratio of the incoming and exiting neutron beams and it is measured as a function of Momentum transfer Q, which is defined as Q=4π sinθ/λ, where θ is the angle of incident and λ is the neutron wavelength. R(Q)is approximately given byR(Q)=16π2/ Q2 |ρ(Q)|2, where R(Q) is the one-dimensional Fourier transform of ρ(z), the scattering length density (SLD) distribution normal to the surface. SLD is the sum of the coherent neutron scattering lengths of all atoms in the sample layer divided by the volume of the layer. Therefore, the intensity of the reflected beams is highly dependent on the thickness, densities and interface roughness of the samples. This was explained in the following text in the method section of revised manuscript.

      (Lines 669-678) "Neutron reflectivity, denoted as R, is the ratio of the incoming to the exiting neutron beams. It’s calculated based on the Momentum transfer Q, which is defined by the formula Q=4π sinθ/λ, where θ represents the angle of incidence and λ stands for the neutron wavelength. The approximate value of R(Q) can be expressed as R(Q)=16π2/ Q2 |ρ(Q)|2, where R(Q) is the one-dimensional Fourier transform of ρ(z), which is the scattering length density (SLD) distribution perpendicular to the surface. SLD is calculated by dividing the sum of the coherent neutron scattering lengths of all atoms in a sample layer by the volume of that layer. Consequently, factors such as thickness, volume fraction, and interface roughness of the samples significantly influence the intensity of the reflected beams."

      How are the "layers" defined from the plot (Fig. 5b)?

      The “layers” in the plot (Fig. 5b) represent different regions of the sample being studied. In this study, we used a seven-layer model to fit the experimental data (chromium - gold - NTA - HIS8 - β-barrel - P3-5 - P1-2. This was explained in the following text in the figure legend of revised manuscript. (Lines 1115-1116) The experimental data was fitted using a seven-layer model: chromium - gold - NTA - His8 - β-barrel - P3-5 - P1-2.

      What are the meanings of "thickness" and "roughness" (Fig. 5c)?

      We used neutron reflectometry to determine the relative positions of BAM subunits in a membrane environment. The binding of certain subunits induced conformational changes in other parts of the complex. When a substrate membrane protein is added, the periplasmic POTRA domain of BamA extends further away from the membrane surface. This could result in an increase in thickness as observed in neutron reflectometry measurements.

      As for roughness, it is related to the interface properties of the sample. In neutron reflectometry, the intensity of the reflected beams is highly dependent on the thickness, densities, and interface roughness of the samples. An increase in roughness could suggest changes in these properties, possibly due to protein-membrane interactions or structural changes within the membrane.

      (Lines 1116-1120) "Table summarizes of the thickness, roughness and volume fraction data of each layer from the NR analysis. The thickness refers to the depth of layered structures being studied as measured in Å. The roughness refers to the irregularities in the surface of the layered structures being studied as measured in Å."

      What does "SLD" stand for?

      We apologize for not explaining abbreviation when the SLD first came out. We explained it in revised manuscript. (Line 298)

      1. In the result section, "The internal signal is necessary for insertion step of assembly into OM" This section presents an important result that the internal beta-signal is critical to the intrinsic propensity of barrel formation, distinct from the recognition by BAM complex. However, this point is not elaborated in this section. For example, what is the role of these critical residues in the barrel structure formation? That is, are they involved in any special tertiary contacts in the structure or in membrane anchoring of the nascent polypeptide chains?

      We appreciate the reviewer's comment on this point. Both position 0 and position 6 appear to be important amino acids for recognition by the BAM complex, since mutations introduced at these positions in peptide 18 prevent competitive inhibition activity.

      In terms of the tertiary structure of OmpC, position 6 is an amino acid that contributes to the aromatic girdle, and since Y286A and Y365A affected OMP folding as measured in folding experiments, it is perhaps their position in the aromatic girdle that contributes to the efficiency of β-barrel folding in addition to its function as a recognition signal. We have added a sentence in the revised manuscript:

      (Lines 233-236) "Position 6 is an amino acid that contributes to the aromatic girdle. Since Y286A and Y365A affected OMP folding as measured in folding experiments, their positioning into the aromatic girdle may contributes to the efficiency of β-barrel folding, in addition to contributing to the internal signal."

      The mutations made at position 0 had no effect on folding, so this residue may function solely in the signal. Given the register of each β-strand in the final barrel, the position 0 residues have side-chains that face out into the lipid environment. From examination of the OmpC crystal structure, the residue at position 0 makes no special tertiary contacts with other, neighbouring residues.  

      Reviewer #1 (Recommendations For The Authors):

      Minor critiques (in no particular order):

      1. Peptide 18 was identified based on its strong inhibition for EspP assembly but another peptide, peptide 23, also shows inhibition and has no particular consensus.

      We would correct this point. Peptide 23 has a strong consensus to the canonical β-signal. We had explained the sequence consensus of β-signal in the Results section of the text. In the third paragraph, we have added a sentence indicating the relationship between peptide 18 and peptide 23.

      (Lines 152-168) "Six peptides (4, 10, 17, 18, 21, and 23) were found to inhibit EspP assembly (Fig. 1A). Of these, peptide 23 corresponds to the canonical β-signal of OMPs: it is the final β-strand of OmpC and it contains the consensus motif of the β-signal (ζxGxx[Ω/Φ]x[Ω/Φ]). The inhibition seen with peptide 23 indicated that our peptidomimetics screening system using EspP can detect signals recognized by the BAM complex. In addition to inhibiting EspP assembly, five of the most potent peptides (4, 17, 18, 21, and 23) inhibited additional model OMPs; the porins OmpC and OmpF, the peptidoglycan-binding OmpA, and the maltoporin LamB (fig. S3). Comparing the sequences of these inhibitory peptides suggested the presence of a sub-motif from within the β-signal, namely [Ω/Φ]x[Ω/Φ] (Fig. 1B). The sequence codes refer to conserved residues such that: ζ, is any polar residue; G is a glycine residue; Ω is any aromatic residue; Φ is any hydrophobic residue and x is any residue (Hagan et al., 2015; Kutik et al., 2008). The non-inhibitory peptide 9 contained some elements of the β-signal but did not show inhibition of EspP assembly (Fig. 1A).

      Peptide 18 also showed a strong sequence similarity to the consensus motif of the β-signal (Fig. 1B) and, like peptide 23, had a strong inhibitory action on EspP assembly (Fig. 1A). Variant peptides based on the peptide 18 sequence were constructed and tested in the EMM assembly assay (Fig. 1C)."

      1. It is unclear why the authors immediately focused on BamD rather than BamB, given that both were mentioned to mediate interaction with substrate. Was BamB also tested?

      We thank the reviewer for this comment. Following the reviewer's suggestion, we have now performed a pull-down experiment on BamB and added it to Fig. S9. We also modified the text of the results as follows.

      (Lines 262-265) "Three subunits of the BAM complex have been previously shown to interact with the substrates: BamA, BamB, and BamD (Hagan et al., 2013; Harrison, 1996; Ieva et al., 2011). In vitro pull-down assay showed that while BamA and BamD can independently bind to the in vitro translated OmpC polypeptide (Fig .S9A), BamB did not (Fig. S9B)."

      1. For the in vitro folding assays of the OmpC substrates, labeled and unlabeled, no mention of adding SurA or any other chaperone which is known to be important for mediating OMP biogenesis in vitro.

      We appreciate the reviewer’s concerns on this point, however chaperones such as SurA are non-essential factors in the OMP assembly reaction mediated by the BAM complex: the surA gene is not essential and the assembly of OMPs can be measured in the absence of exogenously added SurA. It remains possible that addition of SurA to some of these assays could be useful in detailing aspects of chaperone function in the context of the BAM complex, but that was not the intent of this study.

      1. For the supplementary document, it would be much easier for the reader to have the legends groups with the figures.

      Following the reviewer's suggestion, we have placed the legends of Supplemental Figures together with each Figure.

      1. Some of the figures and their captions are not grouped properly and are separated which makes it hard to interpret the figures efficiently.

      We thank the reviewer for this comment, we have revised the manuscript and figures to properly group the figures and captions together on a single page.

      1. The authors begin their 'Discussion' with a question (line 454), however, they don't appear to answer or even attempt to address it; suggest removing rhetorical questions.

      As per the reviewers’ suggestion, we removed this question.

      1. Line 464, 'unbiased' should be removed. This would imply that if not stated, experiments are 'negatively' biased.

      We removed this word and revised the sentence as follows:

      (Lines 431-433) "In our experimental approach to assess for inhibitory peptides, specific segments of the major porin substrate OmpC were shown to interact with the BAM complex as peptidomimetic inhibitors."

      1. Lines 466-467; '...go well beyond expected outcomes.' What does this statement mean?

      Our peptidomimetics led to unexpected results in elucidating the additional essential signal elements. The manuscript was revised as follows:

      (Lines 433-435) "Results for this experimental approach went beyond expected outcomes by identifying the essential elements of the signal Φxxxxxx[Ω/Φ]x[Ω/Φ] in β-strands other than the C-terminal strand."

      1. Line 478; '...rich information that must be oversimplified...'?

      We appreciate the reviewer’s pointed out. For more clarity, the manuscript was revised as follows:

      (Lines 450-453) "The abundance of information which arises from modeling approaches and from the multitude of candidate OMPs, is generally oversimplified when written as a primary structure description typical of the β-signal for bacterial OMPs (i.e. ζxGxx[Ω/Φ]x[Ω/Φ]) (Kutik et al., 2008)."

      1. There are typos in the supplementary figures.

      We have revised and corrected the Supplemental Figure legends.  

      Reviewer #2 (Recommendations For The Authors):

      1. In Supplementary Information, I recommend adding the figure legends directly to the corresponding figures. Currently, it is very inconvenient to go back and forth between legends and figures.

      Following the reviewer's suggestion, we have placed the legends of Supplemental Figures together with each Figure.

      1. Line 94 (p.3): "later"

      Lateral?

      Yes. We have corrected this.

      1. Line 113 (p.3): The result section, "Peptidomimetics derived from E. coli OmpC inhibit OMP assembly" Rationale of the peptide inhibition assay is not clear. How can the peptide sequence that effectively inhibit the assembly interpreted as the b-assembly signal? By competitive binding to BAM or by something else? What is the authors' hypothesis in doing this assay?

      In revision, we have added following sentence to explain the aim and design of the peptidomimetics:

      (Lines 140-145) "The addition of peptides with BAM complex affinity, such as the OMP β-signal, are capable of exerting an inhibitory effect by competing for binding of substrate OMPs to the BAM complex (Hagan et al., 2015). Thus, the addition of peptides derived from the entirety of OMPs to the EMM assembly assay, which can evaluate assembly efficiency with high accuracy, expects to identify novel regions that have affinity for the BAM complex."

      1. Line 113- (p.3) and Fig. S1: The result section, "Peptidomimetics derived from E. coli OmpC inhibit OMP assembly"

      Some explanation seems to be needed why b-barrel domain of EspP appears even without ProK?

      We appreciate the reviewer’s pointed out. We added following sentence to explain:

      (Lines 128-137) "EspP, a model OMP substrate, belongs to autotransporter family of proteins. Autotransporters have two domains; (1) a β-barrel domain, assembled into the outer membrane via the BAM complex, and (2) a passenger domain, which traverses the outer membrane via the lumen of the β-barrel domain itself and is subsequently cleaved by the correctly assembled β-barrel domain (Celik et al., 2012). When EspP is correctly assembled into outer membrane, a visible decrease in the molecular mass of the protein is observed due to the self-proteolysis. Once the barrel domain is assembled into the membrane it becomes protease-resistant, with residual unassembled and passenger domains degraded (Leyton et al., 2014; Roman-Hernandez et al., 2014)."

      1. Line 186 (p.6): "Y285"

      Y285A?

      We have corrected the error, it was Y285A.

      1. Lines 245- (p. 7)/ Lines 330- (p. 10)

      It needs to be clarified that the results described in these paragraphs were obtained from the assays with EMM.

      We appreciate the reviewer’s concerns on these points. For the first half, the following text was added at the beginning of the applicable paragraph to indicate that all of Fig. 4 is the result of the EMM assembly assay.

      (Line 241) "We further analyzed the role of internal β-signal by the EMM assembly assay. At the second half, we used purified BamD but not EMM. We described clearly with following sentence."

      (Lines 316-318) "We purified 40 different BPA variants of BamD, and then irradiated UV after incubating with 35S-labelled OmpC."

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      The bacterial neurotransmitter:sodium symporter homoglogue LeuT is an well-established model system for understanding the fundamental basis for how human monoamine transporters, such as the dopamine and serotonin, couple ions with neurotransmitter uptake. Here the authors provide convincing data to show that the K+ catalyses the return step of the transport cycle in LeuT by binding to one of the two sodium sites. The paper is an important contribution, but it's still unclear exactly where K+ binds in LeuT, and how to incorporate K+ binding into a transport cycle mechanism.

      Public Reviews:

      Reviewer #1 (Public Review):

      This manuscript tackles an important question, namely how K+ affects substrate transport in the SLC6 family. K+ effects have previously been reported for DAT and SERT, but the prototypical SLC6fold transporter LeuT was not known to be sensitive to the K+ concentration. In this manuscript, the authors demonstrate convincingly that K+ inhibits Na+ binding, and Na+-dependent amino acid binding at high concentrations, and that K+ inside of vesicles containing LeuT increases the transport rate. However, outside K+ apparently had very little effect. Uptake data are supplemented with binding data, using the scintillation proximity assay, and transition metal FRET, allowing the observation of the distribution of distinct conformational states of the transporter.<br /> Overall, the data are of high quality. I was initially concerned about the use of solutions of very high ionic strength (the Km for K+ is in the 200 mM range), however, the authors performed good controls with lower ionic strength solutions, suggesting that the K+ effect is specific and not caused by artifacts from the high salt concentrations.

      The major issue I have with this manuscript is with the interpretation of the experimental data. Granted that the K+ effect seems to be complex. However, it seems counterintuitive that K+ competes with Na+ for the same binding site, while at the same time accelerating the transport rate. Even if K+ prevents rebinding of Na+ on the inside of vesicles, it would be expected that K+ then stabilizes this Na+-free conformation, resulting in a slowing of the transport rate. However, the opposite is found. I feel that it would be useful to perform some kinetic modeling of the transport cycle to identify a mechanism that would allow K+ to act as a competitive inhibitor of Na+ binding and rate-accelerator at the same time.

      This ties into the second point: It is not mentioned in the manuscript what the configuration of the vesicles is after LeuT reconstitution. Are they right-side out? Is LeuT distributed evenly in inside-out and right-side out orientation? Is the distribution known? If yes, how does it affect the interpretation of the uptake data with and without K+ gradient?

      Finally, mutations were only made to the Na1 cation binding site. These mutations have an effect mostly to be expected, if K+ would bind to this site. However, indirect effects of mutations can never be excluded, and the authors acknowledge this in the discussion section. It would be interesting to see the effect of K+ on a couple of mutants that are far away from Na+/substrate binding sites. This could be another piece of evidence to exclude indirect effects, if the K+ affinity is less affected.

      Reviewer #2(Public Review):

      To characterize the relationship between Na+ and K+ binding to LeuT, the effect of K+ on Na+- dependent [3 H] leucine binding was studied using a scintillation proximity assay. In the presence of K+ the apparent affinity for sodium was reduced but the maximal binding capacity for this ion was unchanged, consistent with a competitive mechanism of inhibition between Na+ and K+.

      To obtain a more direct readout of K+ binding to LeuT, tmFRET was used. This method relies on the distance-dependent quenching of a cysteine-conjugated fluorophore (FRET donor) by a transition metal (FRET acceptor). This method is a conformational readout for both ion- and ligand-binding. Along with the effect of K+ on Na+-dependent [3 H] leucine binding, the findings support the existence of a specific K+ binding site in LeuT and that K+ binding to this site induces an outward closed conformation.

      It was previously shown that in liposomes inlaid with LeuT by reconstitution, intra-vesicular K+ increases the concentrative capacity of [ 3 H] alanine. To obtain insights into the mechanistic basis of this phenomenon, purified LeuT was reconstituted into liposomes containing a variety of cations, including Na+ and K+ followed by measurements of [ 3 H] alanine uptake driven by a Na+ gradient.

      The ionic composition of the external medium was manipulated to determine if the stimulation of [3 H] alanine uptake by K+ was due to an outward directed potassium gradient serving as a driving force for sodium-dependent substrate transport by moving in the direction opposite to that of sodium and the substrate. Remarkably it was found that it is the intra-liposomal K+ per se that increases the transport rate of alanine and not a K+ gradient, suggesting that binding of K+ to the intra-cellular face of the transporter could prevent the rebinding of sodium and the substrate thereby reducing their efflux from the cell. These conclusions assume that the measured radioactive transport is via right-side-out liposomes rather than from their inverted counterparts (in case of a random orientation of the transporters in the proteoliposomes). Even though this assumption is likely to be correct, it should be tested.

      Since K+- and Na+-binding are competitive and K+ excludes substrate binding, the Authors chose to focus on the Na1 site where the carboxyl group of the substrate serves as one of the groups which coordinate the sodium ion. This was done by the introduction of conservative mutations of the amino acid residues forming the Na1 site. The potassium interaction in these mutants was monitored by sodium dependent radioactive leucine binding. Moreover, the effect the effect of Na+ with and without substrate as well as that of potassium on the conformational equilibria was measured by tmFRET measurements on the mutants introduced in the construct enabling the measurements. The results suggest that K+-binding to LeuT modulates substrate transport and that the K+ affinity and selectivity for LeuT is sensitive to mutations in the Na1 site, pointing toward the Na1 site as a candidate site for facilitating the interaction between K+ in some NSS members.

      The data presented in this manuscript are of very high quality. They are a detailed extension of results by the same group (Billesbolle et. al, Ref. 16 from the list) providing more detailed information on the importance of the Na1 site for potassium interaction. Clearly this begs for the identification of the binding site in a potassium bound LeuT structure in the future. Presumably LeuT was studied here because it appears that it is relatively easy to determine structures of many conformational states. Furthermore, convincing evidence showed that the stimulatory effect of K+ on transport is not because of energization of substrate accumulation but is rather due to the binding of this cation to a specific site.

      Reviewer #1 (Recommendations For The Authors):

      • Include a transport mechanism that can account for the K+ effects.

      We appreciate the opportunity to elaborate further regarding how we envision this complex mechanism. It is generally known that, within the LeuT-fold transporters, the return step is ratelimiting for the transport process. Our data suggests that K+ binds to the inward-facing apo form.

      Accordingly, we propose that the role of K+ binding is to facilitate LeuT to overcome the rate-limiting step. We propose the following mechanistic model: When Na+ and substrate is released to the intracellular environment the transporter must return to the outward-facing conformation. This can happen in (at least) two ways: 1) The transporter in its apo-form closes the inner gate and opens to the extracellular side, now ready to perform a new transport cycle. 2) The transporter rebinds Na+, which allows for the rebinding of substrate. It can now go in reverse (efflux) or it once again release its content. The transporter can naturally also only rebind Na+ and release it again to the cytosol.

      The purpose of K+ binding is to prevent Na+ rebinding and to promote a conformational state of the transporter, which does not allow Na+ binding. Even though Na+ has a higher affinity for the site, K+ is much more abundant.

      This model is supported by our previous experiment, showing that intravesicular K+ prevents [3H]alanine efflux while LeuT performs Na+-dependent alanine transport. Thus, the increase in Vmax could be due to a decreased efflux (exchange mode), or a facilitation of the rate-limiting step, or a combination of the two.

      Note that the model does not require that K+ is counter-transported. It just has to prevent Na+ rebinding. However, even though we failed to show K+ counter-transport, it does not mean that it does not happen. Further experiments must clarify this issue.

      To be more explicit about our proposed mechanistic model, we have expanded the last paragraph in the Discussion section. It now reads:

      “We propose that K+ binding either facilitates LeuT transition from inward- to outward-facing (the rate limiting step of the transport cycle), or solely prevents the rebinding and possible efflux of Na+ and substrate. It could also be a combination of both. Either way, intracellular K+ will lead to an increase in Vmax and concentrative capacity. Note that our previous experiment showed an increased [3H]alanine efflux when LeuT transports alanine in the absence of intra-vesicular K+16. Specifically, the mechanistic impact of K+ could be to catalyze LeuT away from the state that allows the rebinding of Na+ and substrate. This way, K+ binding would decrease the possible rebinding of intracellularly released Na+ and substrate, thereby rectifying the transport process and increase the concentrative capacity and Vmax (Figure 6). Our results suggest that K+ is not counter-transported but rather promotes LeuT to overcome an internal rate limiting energy barrier. However, further investigations must be performed before any conclusive statement can be made here.”

      • Describe the orientation of the transporter in the vesicles.

      When working with reconstituted NSS, the transport activity is determined by the Na+ gradient. This is also evident in the experiments where we dissipate the Na+ gradient. Here we find transport activity compatible to background. We can also see in the literature, that directionality is rarely determined for transport proteins in reconstituted systems. When that is said, it is difficult to know how the inside-out LeuT contribute to the transport process. Will they work in reverse and contribute to the accumulation of intravesicular [3H]alanine? If so, to what extent? They will likely not be affected by the intravesicular K+. Therefore, their possible contribution will ‘work against’ our results and decrease the apparent K+ effects reported herein. Taken together, unless the vast majority of LeuT molecules are inside-out, knowing the actual proportion will not, in our perspective, affect our interpretations and conclusions of the data.

      When that is said, we have also been curious about this issue and with the question raised by the reviewer, we performed the suggested experiment. We have inserted the results in Figure 3 – Figure supplement 1D. The figure shows that a fraction of the reconstituted LeuT are susceptible to thrombin cleavage of the accessible C-terminal. We have quantified the cleaved fraction to around 40% of the total (see Author response image 1 below). It is, however, a crude estimate since it is difficult to perform reliable dosimetry with fractions that close together. Thus, we are reluctant to add a quantitative measure in the article text.

      Author response image 1.

      We have inserted the following in the main text:

      “It is difficult to control the directionality of proteins when they are reconstituted into lipid vesicles. They will be inserted in both orientations. Outside-out and inside-out. In the case of LeuT it is the imposed Na+-gradient which is determines the directionality of transport. Uptake through the insideout transporters will probably also happen. Note that the inside-out LeuT will not have the K+ binding site exposed to the intra-vesicular environment. Accordingly, a propensity of transporters will likely not be influenced by the added K+ and will tend to mask the contribution of K+ to the transport mode from the right-side out LeuT. To investigate LeuT directionality in our reconstituted samples, we performed thrombin cleavage of accessible C-terminals on intact and perforated vesicles, respectively. The result suggests that the proportion of LeuT inserted as outside-out is larger than the proportion with an inside-out directionality (Figure 3 – Figure supplement 1D).”

      For the inserted Figure 3 – Figure supplement 1D, we have added the following legend:<br /> “(D) SDS-PAGE analysis of LeuT proteoliposomes following time-dependent thrombin digestion of accessible C-terminals (reducing the mass of LeuT by ~1.3 kDa). The reaction was terminated by the addition of PMSF at the specified time points. The lanes corresponding to the time-dependent proteolysis are flanked by lanes containing proteoliposomes without thrombin (left, 0 min) or digested in the presence of DDM (right, 180 min+DDM). Arrows indicate bands of full-length (top) and cleaved (bottom) LeuT.”

      • Check the effects of mutations away from the Na1 cation binding site.

      We have included the LeuT K398C in the study as a negative control for unspecific effects on Na+ and K+ binding. The mutant exhibit Na+ dependent [3H]leucine binding and K+-dependency similar to LeuT WT – see Table 2 and Table 2 - Figure Supplement 1G.

      As a minor point, the authors use the term "affinity" liberally. However, unless these are direct binding experiments, the term "apparent affinity" may be more appropriate, since Km values are affected by the transport cycle (in uptake), as well as binding of cations/substrate.

      We thank the reviewer for emphasizing this important point. We have revised the manuscript accordingly. We use ‘affinity’ when it has been determined under equilibrium conditions, either as a SPA binding experiment or based on tmFRET. We use the term ‘Km’ when the apparent affinity has been determined during non-equilibrium conditions such as during substrate transport.

      Reviewer #2 (Recommendations For The Authors):

      As mentioned in part 2, it is important to show the effect of internal potassium on transport in-sided liposomes. This could be done using the methodology developed by Tsai et. al. Biochemistry 51 (2012) 1557-1585.

      We appreciate this important point and have performed the suggested experiment. See reviewer 1 comment #2

      In the Abstract and throughout it is mentioned that K+ is not counter transported, yet on the bottom of p. 16 it is mentioned that this is possible.

      We have tried to be very cautious with any interpretation about whether K+ is only binding or whether it is also counter-transported. Either way, it must facilitate a transition towards a non-Na+ binding state. We tried to differentiate between the two possibilities by investigating if an outwarddirected K+ gradient alone could drive transport (Figure 3E). We do not observe any significant difference from background (no gradient). However, the gained information is rather weak: It is still possible that K+ is counter-transported, but the K+ gradient does not impose any driving force. Instead, it ensures a rectification of the Na+-dependent substrate transport. If so, this experiment would come up negative even if K+ is counter-transported.

      To be more explicit, we have changed the wording on page 16.

      Our results suggests that K+ is not counter-transported, but rather promote LeuT to overcome an internal rate limiting energy barrier. However, further investigations must be performed before any conclusive statement can be made here.

      Fig.2-Fig. Supplement 1: it is important to show that the effect of leucine is sodium-dependent by adding the control K+ and leucine.

      We thank the reviewer for suggesting this important control. We have added the experiment to Figure 2 – Figure supplement 1 as suggested. The effect is not different from K+ alone supporting the SPA-binding data that K+-binding does not promote substrate binding.

      Point for discussion: Whereas potassium is counter transported in SERT, there are conflicting interpretations on this in DAT (Ref. 15 from the list and Bhat et. al eLife (2021) 10:e67996). The situation in LeuT seems like the scenario described by Bhat et. al.

      We appreciate the suggestion for a proposed link between LeuT and hDAT. Although, as mentioned above, we find it early days to be too certain on this option. We have now mentioned the mechanistic similarity in the Discussion following our description of the proposed mechanistic model (see first request from reviewer #1):

      “If K+ is not counter-transported, LeuT might comply with the mechanism previously suggested for the human DAT31.”

      Fig. 5-Fig. Supplement 1: Why are no data on N27Q and N286Q given? If these mutants have no transport activity this should be stated. Moreover, alanine uptake by A22V is almost sodium independent and is also very fast, suggesting binding, not transport. Are the counts sensitive to ionophores like nigericin?

      We appreciate this important point. Indeed, the LeuT N27Q and N286Q are transport inactive. This information is now inserted in the main text when describing the conformational dynamics of N27QtmFRET and N286QtmFRET.

      We agree with the reviewer that the [3H]alanine uptake for A22V is not very conclusive. The vesicles with Na+ on both sides (open diamonds) do allow [3H]alanine binding. Vesicles with added gramicidin are similar in activity. The fast rate could indeed suggest a binding event. This we also do not rule out in the main text. However, the contribution in activity from LeuT A22V in vesicles with a Na+ gradient cannot be explained by a binding event alone. Then it should bind more [3H]alanine in the presence of a Na+ gradient, which is possible, but hard to imagine. Also, the alanine affinity for LeuT A22V is ~1 µM (Table 1). At this affinity it should be literally impossible to detect any binding because the off-rate is so fast that it would all dissociate during the washing procedure.

      We have described the data and left out any interpretation (e.g. changed ‘[3H]alanine transport’ to ‘[3H]alanine activity’). In addition, we have replaced: “This correlates with the lack of changes in conformational equilibrium observed in the tmFRET data between the NMDG+, Na+ and K+ states.” with: “Further investigations must clarify whether the changes in observed [3H]alanine activity constitutes a transport- or a binding event.”

      Lower part of p. 16. The Authors speculate "that the mechanistic impact of K+ binding could be to accelerate a transition away from the conformation where Na+ and substrate are released, to a state where they can no longer rebind and thus revert the transport process (efflux)". This could be easily tested by measuring exchange, which should not be influenced by potassium.

      We performed this experiment in Billesbolle et al. 2016. Nat Commun (Fig. 1f). We show that the exchange is decreased in the presence of K+. We hypothesize that this is because K+ binding forces LeuT away from the exchange mode.

    1. Author Response

      Response to the Reviews

      We are grateful for these balanced, nuanced evaluations of our work concerning the observed epistatic trends and our interpretations of their mechanistic origins. Overall, we think the reviewers have done an excellent job at recognizing the novel aspects of our findings while also discussing the caveats associated with our interpretations of the biophysical effects of these mutations. We believe it is important to consider both of these aspects of our work in order to appreciate these advances and what sorts of pertinent questions remain.

      Notably, both reviewers suggest that a lack of experimental approaches to compare the conformational properties of GnRHR variants weakens our claims. We would first humbly suggest that this constitutes a more general caveat that applies to nearly all investigations of the cellular misfolding of α-helical membrane proteins. Whether or not any current in vitro folding measurements report on conformational transitions that are relevant to cellular protein misfolding reactions remains an active area of debate (discussed further below). Nevertheless, while we concede that our structural and/ or computational evaluations of various mutagenic effects remain speculative, prevailing knowledge on the mechanisms of membrane protein folding suggest our mutations of interest (V276T and W107A) are highly unlikely to promote misfolding in precisely the same way. Thus, regardless of whether or not we were able experimentally compare the relevant folding energetics of GnRHR variants, we are confident that the distinct epistatic interactions formed by these mutations reflect variations in the misfolding mechanism and that they are distinct from the interactions that are observed in the context of stable proteins. In the following, we provide detailed considerations concerning these caveats in relation to the reviewers’ specific comments.

      Reviewer #1 (Public Review):

      The paper carries out an impressive and exhaustive non-sense mutagenesis using deep mutational scanning (DMS) of the gonadotropin-releasing hormone receptor for the WT protein and two single point mutations that I) influence TM insertion (V267T) and ii) influence protein stability (W107A), and then measures the effect of these mutants on correct plasma membrane expression (PME).

      Overall, most mutations decreased mGnRHR PME levels in all three backgrounds, indicating poor mutational tolerance under these conditions. The W107A variant wasn't really recoverable with low levels of plasma membrane localisation. For the V267T variant, most additional mutations were more deleterious than WT based on correct trafficking, indicating a synergistic effect. As one might expect, there was a higher degree of positive correlation between V267T/W107A mutants and other mutants located in TM regions, confirming that improper trafficking was a likely consequence of membrane protein co-translational folding. Nevertheless, context is important, as positive synergistic mutants in the V27T could be negative in the W107A background and vice versa. Taken together, this important study highlights the complexity of membrane protein folding in dissecting the mechanism-dependent impact of disease-causing mutations related to improper trafficking.

      Strengths

      This is a novel and exhaustive approach to dissecting how receptor mutations under different mutational backgrounds related to co-translational folding, could influence membrane protein trafficking.

      Weaknesses

      The premise for the study requires an in-depth understanding of how the single-point mutations analysed affect membrane protein folding, but the single-point mutants used seem to lack proper validation.

      Given our limited understanding of the structural properties of misfolded membrane proteins, it is unclear whether the relevant conformational effects of these mutations can be unambiguously validated using current biochemical and/ or biophysical folding assays. X-ray crystallography, cryo-EM, and NMR spectroscopy measurements have demonstrated that many purified GPCRs retain native-like structural ensembles within certain detergent micelles, bicelles, and/ or nanodiscs. However, helical membrane protein folding measurements typically require titration with denaturing detergents to promote the formation of a denatured state ensemble (DSE), which will invariably retain considerable secondary structure. Given that the solvation provided by mixed micelles is clearly distinct from that of native membranes, it remains unclear whether these DSEs represent a reasonable proxy for the misfolded conformations recognized by cellular quality control (QC, see https://doi.org/10.1021/acs.chemrev.8b00532). Thus, the use and interpretation of these systems for such purposes remains contentious in the membrane protein folding community. In addition to this theoretical issue, we are unaware of any instances in which GPCRs have been found to undergo reversible denaturation in vitro- a practical requirement for equilibrium folding measurements (https://doi.org/10.1146/annurev-biophys-051013-022926). We note that, while the resistance of GPCRs to aggregation, proteolysis, and/ or mechanical unfolding have also been probed in micelles, it is again unclear whether the associated thermal, kinetic, and/ or mechanical stability should necessarily correspond to their resistance to cotranslational and/ or posttranslational misfolding. Thus, even if we had attempted to validate the computational folding predictions employed herein, we suspect that any resulting correlations with cellular expression may have justifiably been viewed by many as circumstantial. Simply put, we know very little about the non-native conformations are generally involved in the cellular misfolding of α-helical membrane proteins, much less how to measure their relative abundance. From a philosophical standpoint, we prefer to let cells tell us what sorts of broken protein variants are degraded by their QC systems, then do our best to surmise what this tells us about the relevant properties of cellular DSEs.

      Despite this fundamental caveat, we believe that the chosen mutations and our interpretation of their relevant conformational effects are reasonably well-informed by current modeling tools and by prevailing knowledge on the physicochemical drivers of membrane protein folding and misfolding. Specifically, the mechanistic constraints of translocon-mediated membrane integration provide an understanding of the types of mutations that are likely to disrupt cotranslational folding. Though we are still learning about the protein complexes that mediate membrane translocation (https://doi.org/10.1038/s41586-022-05336-2), it is known that this underlying process is fundamentally driven by the membrane depth-dependent amino acid transfer free energies (https://doi.org/10.1146/annurev.biophys.37.032807.125904). This energetic consideration suggests introducing polar side chains near the center of a nascent TMDs should almost invariably reduce the efficiency of topogenesis. To confirm this in the context of TMD6 specifically, we utilized a well-established biochemical reporter system to confirm that V276T attenuates its translocon-mediated membrane integration (Fig. S1)- at least in the context of a chimeric protein. We also constructed a glycosylation-based topology reporter for full-length GnRHR, but ultimately found its’ in vitro expression to be insufficient to detect changes in the nascent topological ensemble. In contrast to V276T, the W107A mutation is predicted to preserve the native topological energetics of GnRHR due to its position within a soluble loop region. W107A is also unlike V276T in that it clearly disrupts tertiary interactions that stabilize the native structure. This mutation should preclude the formation of a structurally conserved hydrogen bonding network that has been observed in the context of at least 25 native GPCR structures (https://doi.org/10.7554/eLife.5489). However, without a relevant folding assay, the extent to which this network stabilizes the native GnRHR fold in cellular membranes remains unclear. Overall, we admit that these limitations have prevented us from measuring how much V276T alters the efficiency of GnRHR topogenesis, how much the W107A destabilizes the native fold, or vice versa. Nevertheless, given these design principles and the fact that both reduce the plasma membrane expression of GnRHR, as expected, we are highly confident that the structural defects generated by these mutations do, in fact, promote misfolding in their own ways. We also concede that the degree to which these mutagenic perturbations are indeed selective for specific folding processes is somewhat uncertain. However, it seems exceedingly unlikely that these mutations should disrupt topogenesis and/ or the folding of the native topomer to the exact same extent. From our perspective, this is the most important consideration with respect to the validity of the conclusions we have made in this manuscript.

      Furthermore, plasma membrane expression has been used as a proxy for incorrect membrane protein folding, but this not necessarily be the case, as even correctly folded membrane proteins may not be trafficked correctly, at least, under heterologous expression conditions. In addition, mutations can affect trafficking and potential post-translational modifications, like glycosylation.

      While the reviewer is correct that the sorting of folded proteins within the secretory pathway is generally inefficient, it is also true that the maturation of nascent proteins within the ER generally bottlenecks the plasma membrane expression of most α-helical membrane proteins. Our group and several others have demonstrated that the efficiency of ER export generally appears to scale with the propensity of membrane proteins to achieve their correct topology and/ or to achieve their native fold (see https://doi.org/10.1021/jacs.5b03743 and https://doi.org/10.1021/jacs.8b08243). Notably, these investigations all involved proteins that contain native glycosylation and various other post-translational modification sites. While we cannot rule out that certain specific combinations of mutations may alter expression through their perturbation of post-translational GnRHR modifications, we feel confident that the general trends we have observed across hundreds of variants predominantly reflect changes in folding and cellular QC. This interpretation is supported by the relationship between observed trends in variant expression and Rosetta-based stability calculations, which we identified using unbiased unsupervised machine learning approaches (compare Figs. 6B & 6D).

      Reviewer #2 (Public Review):

      Summary:

      In this paper, Chamness and colleagues make a pioneering effort to map epistatic interactions among mutations in a membrane protein. They introduce thousands of mutations to the mouse GnRH Receptor (GnRHR), either under wild-type background or two mutant backgrounds, representing mutations that destabilize GnRHR by distinct mechanisms. The first mutant background is W107A, destabilizing the tertiary fold, and the second, V276T, perturbing the efficiency of cotranslational insertion of TM6 to the membrane, which is essential for proper folding. They then measure the surface expression of these three mutant libraries, using it as a proxy for protein stability, since misfolded proteins do not typically make it to the plasma membrane. The resulting dataset is then used to shed light on how diverse mutations interact epistatically with the two genetic background mutations. Their main conclusion is that epistatic interactions vary depending on the degree of destabilization and the mechanism through which they perturb the protein. The mutation V276T forms primarily negative (aggravating) epistatic interactions with many mutations, as is common to destabilizing mutations in soluble proteins. Surprisingly, W107A forms many positive (alleviating) epistatic interactions with other mutations. They further show that the locations of secondary mutations correlate with the types of epistatic interactions they form with the above two mutants.

      Strengths:

      Such a high throughput study for epistasis in membrane proteins is pioneering, and the results are indeed illuminating. Examples of interesting findings are that: (1) No single mutation can dramatically rescue the destabilization introduced by W107A. (2) Epistasis with a secondary mutation is strongly influenced by the degree of destabilization introduced by the primary mutation. (3) Misfolding caused by mis-insertion tends to be aggravated by further mutations. The discussion of how protein folding energetics affects epistasis (Fig. 7) makes a lot of sense and lays out an interesting biophysical framework for the findings.

      Weaknesses:

      The major weakness comes from the potential limitations in the measurements of surface expression of severely misfolded mutants. This point is discussed quite fairly in the paper, in statements like "the W107A variant already exhibits marginal surface immunostaining" and many others. It seems that only about 5% of the W107A makes it to the plasma membrane compared to wild-type (Figures 2 and 3). This might be a low starting point from which to accurately measure the effects of secondary mutations.

      The reviewer raises an excellent point that we considered at length during the analysis of these data and the preparation of the manuscript. Though we remain confident in the integrity of these measurements and the corresponding analyses, we now realize this aspect of the data merits further discussion and documentation in our forthcoming revision, in which we will outline the following specific lines of reasoning.

      Still, the authors claim that measurements of W107A double mutants "still contain cellular subpopulations with surface immunostaining intensities that are well above or below that of the W107A single mutant, which suggests that this fluorescence signal is sensitive enough to detect subtle differences in the PME of these variants". I was not entirely convinced that this was true.

      We made this statement based on the simple observation that the surface immunostaining intensities across the population of recombinant cells expressing the library of W107A double mutants was consistently broader than that of recombinant cells expressing W107A GnRHR alone (see Author response image 1 for reference). Given that the recombinant cellular library represents a mix of cells expressing ~1600 individual variants that are each present at low abundance, the pronounced tails within this distribution presumably represent the composite staining of many small cellular subpopulations that express collections of variants that deviate from the expression of W107A to an extent that is significant enough to be visible on a log intensity plot.

      Author response image 1.

      Firstly, I think it would be important to test how much noise these measurements have and how much surface immunostaining the W107A mutant displays above the background of cells that do not express the protein at all.

      For reference, the average surface immunostaining intensity of HEK293T cells transiently expressing W107A GnRHR was 2.2-fold higher than that of the IRES-eGFP negative, untransfected cells within the same sample- the WT immunostaining intensity was 9.5-fold over background by comparison. Similarly, recombinant HEK293T cells expressing the W107A double mutant library had an average surface immunostaining intensity that was 2.6-fold over background across the two DMS trials. Thus, while the surface immunostaining of this variant is certainly diminished, we were still able to reliably detect W107A at the plasma membrane even under distinct expression regimes. We will include these and other signal-to-noise metrics for each experiment in a new table in the revised version of this manuscript.

      Beyond considerations related to intensity, we also previously noticed the relative intensity values for W107A double mutants exhibited considerable precision across our two biological replicates. If signal were too poor to detect changes in variant expression, we would have expected a plot of the intensity values across these two replicates to form a scatter. Instead, we found DMS intensity values for individual variants to be highly correlated from one replicate to the next (Pearson’s R= 0.97, see Author response image 2 for reference). This observation empirically demonstrates that this assay consistently differentiated between variants that exhibit slightly enhanced immunostaining from those that have even lower immunostaining than W107A GnRHR.

      Author response image 2.

      But more importantly, it is not clear if under this regimen surface expression still reports on stability/protein fitness. It is unknown if the W107A retains any function or folding at all. For example, it is possible that the low amount of surface protein represents misfolded receptors that escaped the ER quality control.

      While we believe that such questions are outside the scope of this work, we certainly agree that it is entirely possible that some of these variants bypass QC without achieving their native fold. This topic is quite interesting to us but is quite challenging to assess in the context of GPCRs, which have complex fitness landscapes that involve their propensity to distinguish between different ligands, engage specific components associated with divergent downstream signaling pathways, and navigate between endocytic recycling/ degradation pathways following activation. In light of the inherent complexity of GPCR function, we humbly suggest our choice of a relatively simple property of an otherwise complex protein may be viewed as a virtue rather than a shortcoming. Protein fitness is typically cast as the product of abundance and activity. Rather than measuring an oversimplified, composite fitness metric, we focused on one variable (plasma membrane expression) and its dominant effector (folding). We believe restraining the scope in this manner was key for the elucidation of clear mechanistic insights.

      The differential clustering of epistatic mutations (Fig. 6) provides some interesting insights as to the rules that dictate epistasis, but these too are dominated by the magnitude of destabilization caused by one of the mutations. In this case, the secondary mutations that had the most interesting epistasis were exceedingly destabilizing. With this in mind, it is hard to interpret the results that emerge regarding the epistatic interactions of W107A. Furthermore, the most significant positive epistasis is observed when W107A is combined with additional mutations that almost completely abolish surface expression. It is likely that either mutation destabilizes the protein beyond repair. Therefore, what we can learn from the fact that such mutations have positive epistasis is not clear to me. Based on this, I am not sure that another mutation that disrupts the tertiary folding more mildly would not yield different results. With that said, I believe that the results regarding the epistasis of V276T with other mutations are strong and very interesting on their own.

      We agree with the reviewer. In light of our results we believe it is virtually certain that the secondary mutations characterized herein would be likely to form distinct epistatic interactions with mutations that are only mildly destabilizing. Indeed, this insight reflects one of the key takeaway messages from this work- stability-mediated epistasis is difficult to generalize because it should depend on the extent to which each mutation changes the stability (ΔΔG) as well as initial stability of the WT/ reference sequence (ΔG, see Figure 7). Frankly, we are not so sure we would have pieced this together as clearly had we not had the fortune (or misfortune?) of including such a destructive mutation like W107A as a point of reference.

      Additionally, the study draws general conclusions from the characterization of only two mutations, W107A and V276T. At this point, it is hard to know if other mutations that perturb insertion or tertiary folding would behave similarly. This should be emphasized in the text.

      We agree and will be sure to emphasize this point in the revised manuscript.

      Some statistical aspects of the study could be improved:

      1. It would be nice to see the level of reproducibility of the biological replicates in a plot, such as scatter or similar, with correlation values that give a sense of the noise level of the measurements. This should be done before filtering out the inconsistent data.

      We thank the reviewer for this suggestion and will include scatters for each genetic background like the one shown above in the supplement of the revised version of the manuscript.

      1. The statements "Variants bearing mutations within the C- terminal region (ICL3-TMD6-ECL3-TMD7) fare consistently worse in the V276T background relative to WT (Fig. 4 B & E)." and "In contrast, mutations that are 210 better tolerated in the context of W107A mGnRHR are located 211 throughout the structure but are particularly abundant among residues 212 in the middle of the primary structure that form TMD4, ICL2, and ECL2 213 (Fig. 4 C & F)." are both hard to judge. Inspecting Figures 4B and C does not immediately show these trends, and importantly, a solid statistical test is missing here. In Figures 4E and F the locations of the different loops and TMs are not indicated on the structure, making these statements hard to judge.

      We apologize for this oversight and thank the reviewer for pointing this out. We will include additional statistical tests to reinforce these conclusions in the revised version of the manuscript.

      1. The following statement lacks a statistical test: "Notably, these 98 variants are enriched with TMD variants (65% TMD) relative to the overall set of 251 variants (45% TMD)." Is this enrichment significant? Further in the same paragraph, the claim that "In contrast to the sparse epistasis that is generally observed between mutations within soluble proteins, these findings suggest a relatively large proportion of random mutations form epistatic interactions in the context of unstable mGnRHR variants". Needs to be backed by relevant data and statistics, or at least a reference.

      We will include additional statistical tests for this in the revised manuscript and will ensure the language we use is consistent with the strength of the indicated statistical enrichment.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Thank you for organizing the reviews for our manuscript: Behavioral entrainment to rhythmic auditory stimulation can be modulated by tACS depending on the electrical stimulation field properties,” and for the positive eLife assessment. We also thank the reviewers for their constructive comments. We have addressed every comment, which has helped to improve the transparency and readability of the manuscript. The main changes to the manuscript are summarized as follows:

      1. Surrogate distributions were created for each participant and session to estimate the effect of tACS-phase lag on behavioral entrainment to the sound that could have occurred by chance or because of our analysis method (R1). The actual tACS-amplitude effects were normalized relative to the surrogate distribution, and statistical analysis was performed on the normalized (z-score) values. This analysis did not change our main outcome: that tACS modulates behavioral entrainment to the sound depending on the phase lag between the auditory and the electrical signals. This analysis has now been incorporated into the Results section and in Fig. 3c-d.

      2. Two additional supplemental figures were created to include the single-participant data related to Fig. 3b and 3e (R2).

      3. Additional editing of the manuscript has been performed to improve the readability.

      Below, you will find a point-by-point response to the reviewers’ comments.

      Reviewer #1 (Public Review):

      We are grateful for the reviewer’s positive assessment of the potential impact of our study. The reviewer’s primary concerns were 1) the tACS lag effects reported in the manuscript might be noise because of the realignment procedure, and 2) no multiple comparisons correction was conducted in the model comparison procedure.

      In response to point 1), we have reanalyzed the data in exactly the manner prescribed by the reviewer. Our effects remain, and the new control analysis strengthens the manuscript. 2) In the context of model comparison, the model selection procedure was not based on evaluating the statistical significance of any model or predictor. Instead, the single model that best fit the data was selected as the model with the lowest Akaike’s information criterion (AIC), and its superiority relative to the second-best model was corroborated using the likelihood ratio test. Only the best model was evaluated for significance and analyzed in terms of its predictors and interactions. This model is an omnibus test and does not require multiple comparison correction unless there are posthoc decompositions. For similar approaches, see (Kasten et al., 2019).

      Below, we have responded to each comment specifically or referred to this general comment.

      Summary of what the authors were trying to achieve.

      This paper studies the possible effects of tACS on the detection of silence gaps in an FM-modulated noise stimulus. Both FM modulation of the sound and the tACS are at 2Hz, and the phase of the two is varied to determine possible interactions between the auditory and electric stimulation. Additionally, two different electrode montages are used to determine if variation in electric field distribution across the brain may be related to the effects of tACS on behavioral performance in individual subjects.

      Major strengths and weaknesses of the methods and results.

      The study appears to be well-powered to detect modulation of behavioral performance with N=42 subjects. There is a clear and reproducible modulation of behavioral effects with the phase of the FM sound modulation. The study was also well designed, combining fMRI, current flow modeling, montage optimization targeting, and behavioral analysis. A particular merit of this study is to have repeated the sessions for most subjects in order to test repeat-reliability, which is so often missing in human experiments. The results and methods are generally well-described and well-conceived. The portion of the analysis related to behavior alone is excellent. The analysis of the tACS results is also generally well described, candidly highlighting how variable results are across subjects and sessions. The figures are all of high quality and clear. One weakness of the experimental design is that no effort was made to control for sensation effects. tACS at 2Hz causes prominent skin sensations which could have interacted with auditory perception and thus, detection performance.

      The reviewer is right that we did not control for the sensation effects in our paradigm. We asked the participants to rate the strength of the perceived stimulation after each run. However, this information was used only to assess the safety and tolerability of the stimulation protocol. Nevertheless, we did not consider controlling for skin sensations necessary given the within-participant nature of our design (all participants experienced all six tACS–audio phase lag conditions, which were identical in their potential to cause physical sensations; the only difference between conditions was related to the timing of the auditory stimulus). That is, while the reviewer is right that 2-Hz tACS can indeed induce skin sensation under the electrodes, in this study, we report the effects that depend on the tACS-phase lag relative to the FM-stimulus. Note that the starting phase of the FM-stimulus was randomized across trials within each block (all six tACS audio lags were presented in each block of stimulation). We have no reason to expect the skin sensation to change with the tACS-audio lag from trial to trial, and therefore do not consider this to be a confound in our design. We have added some sentences with this information to the Discussion section:

      Pages 16-17, lines 497-504: “Note that we did not control for the skin sensation induced by 2-Hz tACS in this experiment. Participants rated the strength of the perceived stimulation after each run. However, this information was used only to assess the safety and tolerability of the stimulation protocol. It is in principle possible that skin sensation would depend on tACS phase itself. However, in this study, we report effects that depend on the relationship between tACS-phase and FM-stimulus phase, which changed from trial to trial as the starting phase of the FM-stimulus was randomized across trials. We have no reason to expect the skin sensation to change with the tACS-audio lag and therefore do not consider this to be a confound in our data.”

      Appraisal of whether the authors achieved their aims, and whether the results support their conclusions.

      Unfortunately, the main effects described for tACS are encumbered by a lack of clarity in the analysis. It does appear that the tACS effects reported here could be an artifact of the analysis approach. Without further clarification, the main findings on the tACS effects may not be supported by the data.

      Likely impact of the work on the field, and the utility of the methods and data to the community.

      The central claim is that tACS modulates behavioral detection performance across the 0.5s cycle of stimulation. However, neither the phase nor the strength of this effect reproduces across subjects or sessions. Some of these individual variations may be explainable by individual current distribution. If these results hold, they could be of interest to investigators in the tACS field.

      The additional context you think would help readers interpret or understand the significance of the work.

      The following are more detailed comments on specific sections of the paper, including details on the concerns with the statistical analysis of the tACS effects.

      The introduction is well-balanced, discussing the promise and limitations of previous results with tACS. The objectives are well-defined.

      The analysis surrounding behavioral performance and its dependence on the phase of the FM modulation (Figure 3) is masterfully executed and explained. It appears that it reproduces previous studies and points to a very robust behavioral task that may be of use in other studies.

      Again, we would like to thank the reviewer for the positive assessment of the potential impact of our work and for the thoughtful comments regarding the methodology. For readability in our responses, we have numbered the comments below.

      1. There is a definition of tACS(+) vs tACS(-) based on the relative phase of tACS that may be problematic for the subsequent analysis of Figures 4 and 5. It seems that phase 0 is adjusted to each subject/session. For argument's sake, let's assume the curves in Fig. 3E are random fluctuations. Then aligning them to best-fitting cosine will trivially generate a FM-amplitude fluctuation with cosine shape as shown in Fig. 4a. Selecting the positive and negative phase of that will trivially be larger and smaller than a sham, respectively, as shown in Fig 4b. If this is correct, and the authors would like to keep this way of showing results, then one would need to demonstrate that this difference is larger than expected by chance. Perhaps one could randomize the 6 phase bins in each subject/session and execute the same process (fit a cosine to curves 3e, realign as in 4a, and summarize as in 4b). That will give a distribution under the Null, which may be used to determine if the contrast currently shown in 4b is indeed statistically significant.

      We agree with the reviewer’s concerns regarding the possible bias induced by the realignment procedure used to estimate tACS effects. Certainly, when adjusting phase 0 to each participant/session’s best tACS phase (peak in the fitting cosine), selecting the positive phase of the realigned data will be trivially larger than sham (Fig. 4a). This is why the realigned zero-phase and opposite phase (trough) bins were excluded from the analysis in Fig. 4b. Therefore, tACS(+) vs. tACS(-) do not represent behavioral entrainment at the peak positive and negative tACS lags, as both bins were already removed from the analysis. tACS(+) and tACS(-) are the averages of two adjacent bins from the positive and negative tACS lags, respectively (Zoefel et al., 2019). Such an analysis relies on the idea that if the effect of tACS is sinusoidal, presenting the auditory stimulus at the positive half cycle should be different than when the auditory stimulus lags the electrical signal by the other half. If the effect of tACS was just random noise fluctuations, there is no reason to assume that such fluctuations would be sinusoidal; therefore, any bias in estimating the effect of tACS should be removed when excluding the peak to which the individual data were realigned. Similar analytical procedures have been used previously in the literature (Riecke et al., 2015; Riecke et al., 2018). We have modified the colors in Fig. 4a and 4c (former 4b) and added a new panel to the figure (new 4b) to make the realignment procedure, including the exclusion of the realigned peak and trough data, more visually obvious.

      Moreover, we very much like the reviewer’s suggestion to normalize the magnitude of the tACS effect using a permutation strategy. We performed additional analyses to normalize our tACS effect in Fig. 4c by the probability of obtaining the effect by chance. For each subject and session, tACS-phase lags were randomized across trials for a total of 1000 iterations. For each iteration, the gaps were binned by the FM-stimulus phase and tACS-lag. For each tACS-lag, the amplitude of behavioral entrainment to the FM-stimulus was estimated (FM-amplitude), as shown in Fig. 3. Similar to the original data, a second cosine fit was estimated for the FM-amplitude by tACS-lag. Optimal tACS-phase was estimated from the cosine fit and FM-amplitude values were realigned. Again, the realigned phase 0 and trough were removed from the analysis, and their adjacent bins were averaged to obtain the FM-amplitude at tACS(+) and tACS(−), as shown in Fig. 4c. We then computed the difference between 1) tACS(+) and sham, 2) tACS(-) and sham, and 3) tACS(+) and tACS (-), for the original data and the permuted datasets. This procedure was performed for each participant and session to estimate the size of the tACS effect for the original and surrogate data. The original tACS effects were transformed to z-scores using surrogate distributions, providing us with an estimate of the size of the real effect relative to chance. We then computed one-sample t-tests to compare whether the effects of tACS were statistically significant. In fact, this analysis showed that the tACS effects were still statistically significant. This analysis has been added to the Results and Methods sections and is included in Figure 4d.

      Page 10, lines 282-297: “In order to further investigate whether the observed tACS effect was significantly larger than chance and not an artifact of our analysis procedure (33), we created 1000 surrogate datasets per participant and session by permuting the tACS lag designation across trials. The same binning procedure, realignment, and cosine fits were applied to each surrogate dataset as for the original data. This yielded a surrogate distribution of tACS(+) and tACS(-) values for each participant and session. These values were averaged across sessions since the original analysis did not show a main effect of session. We then computed the difference between tACS(+) and sham, tACS(-) and sham, and tACS(+) and tACS(-), separately for the original and surrogate datasets. The obtained difference for the original data where then z-scored using the mean and standard deviation of the surrogate distribution. Note that in this case we used data of all 42 participants who had at least one valid session (37 participants with both sessions). Three one-sample t-tests were conducted to investigate whether the size of the tACS effect obtained in the original data was significantly larger than that obtained by chance (Fig. 4d). This analysis showed that all z-scores were significantly higher than zero (all t(41) > 2.36, p < 0.05, all p-values corrected for multiple comparisons using the Holm-Bonferroni method).”

      Page 31, lines 962-972: “To further control that the observed tACS effects were not an artifact of the analysis procedure, the difference between the tACS conditions (sham, tACS(+), and tACS(-)) were normalized using a permutation approach. For each participant and session, 1000 surrogate datasets were created by permuting the tACS lag designation across trials. The same binning procedure, realignment, and cosine fits were applied to each surrogate dataset as for the original data (see above). FM-amplitude at sham, tACS(+) and tACS(-) were averaged across sessions since the original analysis did not show a main effect of session. Difference between tACS conditions were estimated for the original and surrogate datasets and the resulting values from the original data were z-scored using the mean and standard deviation from the surrogate distributions. One-sample t-tests were conducted to test the statistical significance of the z-scores. P-values were corrected for multiple comparisons using the Holm-Bonferroni method.”

      1. Results of Fig 5a and 5b seem consistent with the concern raised above about the results of Fig. 4. It appears we are looking at an artifact of the realignment procedure, on otherwise random noise. In fact, the drop in "tACS-amplitude" in Fig. 5c is entirely consistent with a random noise effect.

      Please see our response to the comment above.

      1. To better understand what factors might be influencing inter-session variability in tACS effects, we estimated multiple linear models ..." this post hoc analysis does not seem to have been corrected for multiple comparisons of these "multiple linear models". It is not clear how many different things were tried. The fact that one of them has a p-value of 0.007 for some factors with amplitude-difference, but these factors did not play a role in the amplitude-phase, suggests again that we are not looking at a lawful behavior in these data.

      We suspect that the reviewer did not have access to the supplemental materials where all tables (relevant here is Table S3) are provided. This post hoc analysis was performed as an exploratory analysis to better understand the factors that could influence the inter-session variability of tACS effects. In Table S3, we provide the formula for each of the seven models tested, including their Akaike information criteria corrected for small samples (AICc), R2, F, and p-values. As described in the methods section, the winning model was selected as the model with the smallest AICc. A similar procedure has been previously used in the literature (Kasten et al., 2019). Moreover, to ensure that our winning model was better at explaining the data than the second-best unrestricted model, we used the likelihood ratio test. After choosing the winning model and before reporting the significance of the predictors, we examined the significance of the model in and of itself, taking into account its R2 as well as F- and p-values relative to a constant model. Thus, only one model is being evaluated in terms of statistical significance. Therefore, to our understanding, there are no multiple comparisons to correct for. We added the information regarding the selection procedure, hoping this will make the analysis clearer.

      See page 12, lines 354-360: “This model was selected because it had the smallest Akaike’s information criterion (corrected for small samples), AICc. Moreover, the likelihood ratio test showed no evidence for choosing the more complex unrestricted model (stat = 2.411, p = 0.121). Following the same selection criteria, the winning model predicting inter-session variability in tACS-phase, included only the factor gender (Table S4). However, this model was not significant in and of itself when compared to a constant model (F-statistic vs. constant model: 3.05, p = 0.09, R2 = 0.082).”

      1. "So far, our results demonstrate that FM-stimulus driven behavioral modulation of gap detection (FM-amplitude) was significantly affected by the phase lag between the FM-stimulus and the tACS signal (Audio-tACS lag) ..." There appears to be nothing in the preceding section (Figures 4 and 5) to show that the modulation seen in 3e is not just noise. Maybe something can be said about 3b on an individual subject/session basis that makes these results statistically significant on their own. Maybe these modulations are strong and statistically significant, but just not reproducible across subjects and sessions?

      Please see our response to the first comment regarding the validity of our analysis for proving the significant effect of tACS lag on modulating behavioral entrainment to the FM-stimulus (FM-amplitude), and the new control analysis. After performing the permutation tests, to make sure the reported effects are not noise, our statistical analysis still shows that tACS-lag does significantly modulate behavioral entrainment to the sound (FM-amplitude). Thus, the reviewer is right to say “these modulations are strong and statistically significant, just not reproducible across subjects and sessions”. In this regard, we consider our evaluation of session-to-session reliability of tACS effects is of high relevance for the field, as this is often overlooked in the literature.

      1. "Inter-individual variability in the simulated E-field predicts tACS effects" Authors here are attempting to predict a property of the subjects that was just shown to not be a reliable property of the subject. Authors are picking 9 possible features for this, testing 33 possible models with N=34 data points. With these circumstances, it is not hard to find something that correlates by chance. And some of the models tested had interaction terms, possibly further increasing the number of comparisons. The results reported in this section do not seem to be robust, unless all this was corrected for multiple comparisons, and it was not made clear?

      We thank the reviewer very much for this comment. While the reviewer is right that in these models, we are trying to predict an individual property (tACS-amplitude) that was not test–retest reliable across sessions, we still consider this to be a valid analysis. Here, we take the tACS-amplitude averaged across sessions, trying to predict the probability of a participant to be significantly modulated by tACS, in general, regardless of day-to-day variability. Regarding the number of multiple regression models, how we chose the winning model and the appropriateness/need of multiple-comparisons correction in this case, please see our explanation under “Reviewer 1 (Public review)” and our response to comment 3.

      1. "Can we reduce inter-individual variability in tACS effects ..." This section seems even more speculative and with mixed results.

      We agree with the reviewer that this section is a bit speculative. We are trying to plant some seeds for future research can help move the field forward in the quest for better stimulation protocols. We have added a sentence at the end of the section to explicitly say that more evidence is needed in this regard.

      Page 14, lines 428-429: “At this stage, more evidence is needed to prove the superiority of individually optimized tACS montages for reducing inter-individual variability in tACS effects.”

      Given the concerns with the statistical analysis above, there are concerns about the following statements in the summary of the Discussion:

      1. "2) does modulate the amplitude of the FM-stimulus induced behavioral modulation (FM-amplitude)"

      This seems to be based on Figure 4, which leaves one with significant concerns.

      Please see response to comment 1. We hope the reviewer is satisfied with our additional analysis to make sure the effect of tACS here reported is not noise.

      1. "4) individual variability in tACS effect size was partially explained by two interactions: between the normal component of the E-field and the field focality, and between the normal component of the E-field and the distance between the peak of the electric field and the functional target ROIs."

      The complexity of this statement alone may be a good indication that this could be the result of false discovery due to multiple comparisons.

      We respectfully disagree with the reviewer’s opinion that this is a complex statement. We think that these interaction effects are very intuitive as we explain in the results and discussion sections. These significant interactions show that for tACS to be effective, it matters that current gets to the right place and not to irrelevant brain regions. We believe this finding is of great importance for the field, since most studies on the topic still focus mostly on predicting tACS effects from the absolute field strength and neglect other properties of the electric field.

      For the same reasons as stated above, the following statements in the Abstract do not appear to have adequate support in the data:

      "We observed that tACS modulated the strength of behavioral entrainment to the FM sound in a phase-lag specific manner. ... Inter-individual variability of tACS effects was best explained by the strength of the inward electric field, depending on the field focality and proximity to the target brain region. Spatially optimizing the electrode montage reduced inter-individual variability compared to a standard montage group."

      Please see response to all previous comments

      In particular, the evidence in support of the last sentence is unclear. The only finding that seems related is that "the variance test was significant only for tACS(-) in session 2". This is a very narrow result to be able to make such a general statement in the Abstract. But perhaps this can be made clearer.

      We changed this sentence in the abstract to:

      Page 2, lines 41-43: “Although additional evidence is necessary, our results also provided suggestive insights that spatially optimizing the electrode montage could be a promising tool to reduce inter-individual variability of tACS effects.”

      Reviewer #3 (Public Review):

      In "Behavioral entrainment to rhythmic auditory stimulation can be modulated by tACS depending on the electrical stimulation field properties" Cabral-Calderin and collaborators aimed to document 1) the possible advantages of personalized tACS montage over standard montage on modulating behavior; 2) the inter-individual and inter-session reliability of tACS effects on behavioral entrainment and, 3) the importance of the induced electric field properties on the inter-individual variability of tACS.

      To do so, in two different sessions, they investigated how the detection of silent gaps occurring at random phases of a 2Hz- amplitude modulated sound could be enhanced with 2Hz tACS, delivered at different phase lags. In addition, they evaluated the advantage of using spatially optimized tACS montages (information-based procedure - using anatomy and functional MRI to define the target ROI and simulation to compare to a standard montage applied to all participants) on behavioral entrainment. They first show that the optimized and the standard montages have similar spatial overlap to the target ROI. While the optimized montage induced a more focal field compared to the standard montage, the latter induced the strongest electric field. Second, they show that tACS does not modify the optimal phase for gap detection (phase of the frequency-modulated sound) but modulates the strength of behavioral entrainment to the frequency-modulated sound in a phase-lag specific manner. However, and surprisingly, they report that the optimal tACS lag, and the magnitude of the phasic tACS effect were highly variable across sessions. Finally, they report that the inter-individual variability of tACS effects can be explained by the strength of the inward electric field as a function of the field focality and on how well it reached the target ROI.

      The article is interesting and well-written, and the methods and approaches are state-of-the-art.

      Strengths:

      • The information-based approach used by the authors is very strong, notably with the definition of subject-specific targets using a fMRI localizer and the simulation of electric field strength using 3 different tACS montages (only 2 montages used for the behavioral experiment).

      • The inter-session and inter-individual variability are well documented and discussed. This article will probably guide future studies in the field.

      Weaknesses:

      • The addition of simultaneous EEG recording would have been beneficial to understand the relationship between tACS entrainment and the entrainment to rhythmic auditory stimulation.

      We are grateful for the Reviewer’s positive assessment of our work and for the reviewer’s recommendations. We agree with the reviewer that adding simultaneous EEG or MEG to our design would have been beneficial to understand tACS effects. However, as the reviewer might be familiar with, such combination also possesses additional challenges due to the strong artifacts induced by tACS in the EEG signals, which is at the frequency of interest and several orders of magnitude higher than the signal of interest. Unfortunately, the adequate setup for simultaneous tACS-EEG was not available at the moment of the study. Nevertheless, since we are using a paradigm that we have repeatedly studied in the past and have shown it entrains neural activity and modulates behavior rhythmically, we are confident our results are of interest on their own. For readability of our answers, we numbered to comments below.

      1. It would have been interesting to develop the fact that tACS did not "overwrite" neural entrainment to the auditory stimulus. The authors try to explain this effect by mentioning that "tACS is most effective at modulating oscillatory activity at the intended frequency when its power is not too high" or "tACS imposes its own rhythm on spiking activity when tACS strength is stronger than the endogenous oscillations but it decreases rhythmic spiking when tACS strength is weaker than the endogenous oscillations". However, it is relevant to note that the oscillations in their study are by definition "not endogenous" and one can interpret their results as a clear superiority of sensory entrainment over tACS entrainment. This potential superiority should be discussed, documented, and developed.

      We thank the reviewer very much for this remark. We completely agree that our results could be interpreted as a clear superiority of sensory entrainment over tACS entrainment. We have now incorporated this possibility in the discussion.

      Page 16, line 472-478: “Alternatively, our results could simply be interpreted as a clear superiority of the auditory stimulus for entrainment. In other words, sensory entrainment might just be stronger than tACS entrainment in this case where the stimulus rhythm was strong and salient. It would be interesting to further test whether this superiority of sensory entrainment applies to all sensory modalities or if there is a particular advantage for auditory stimuli when they compete with electrical stimulation. However, answering this question was beyond the scope of our study and needs further investigations with more appropriate paradigms.”

      1. The authors propose that "by applying tACS at the right lag relative to auditory rhythms, we can aid how the brain synchronizes to the sounds and in turn modulate behavior." This should be developed as the authors showed that the tACS lags are highly variable across sessions. According to their results, the optimal lag will vary for each tACS session and subtle changes in the montage could affect the effects.

      We thank the reviewer for this remark. We believe that the right procedure in this case would be using close-loop protocols where the optimal tACS-lag is estimated online as we discuss in the summary and future directions sub-section. We tried to make this clearer in the same sentence that the reviewer mentioned.

      Page 17, line 506-508: “Since optimal tACS phase was variable across participants and sessions, this approach would require closed-loop protocols where the optimal tACS lag is estimated online (see next section).”

      1. In a related vein, it would be very useful to show the data presented in Figure 3 (panels b,d,e) for all participants to allow the reader to evaluate the quality of the data (this can be added as a supplementary figure).

      Thank you very much for the suggestion. We have added two new supplemental figures (Fig S1 and S2) to show individual data for Fig. 3b and 3e. Note that Fig. 3d already shows the individual data as each circle represents optimal FM-phase for a single participant.

      Reviewer #1 (Recommendations For The Authors):

      Minor comments:

      "was optimized in SimNIBS to focus the electric field as precisely as possible at the target ROI" It appears that some form of constrained optimization was used. It would be good to clarify which method was used, including a reference.

      Indeed, SimNIBS implements a constrained optimization approach based on pre-calculated lead fields. We have added the corresponding reference. All parameters used for the optimization are reported in the methods (see sub-section Electric field simulations and montage optimization). Regarding further specifics, the readers are invited to check the MATLAB code that was used for the optimization which is made available at: https://osf.io/3yutb

      "Thus, each montage has its pros and cons, and the choice of montage will depend on which of these dependent measures is prioritized." Well put. It would be interesting to know if authors considered optimizing for intensity on target. That would give the strongest predicted intensity on target, which seems like an important desideratum. Individualizing for something focal, as expected, did not give the strongest intensity. In fact, the method struggled to achieve the desired intensity of 0.1V/m in some subjects. It would be interesting to have a discussion about why this particular optimization method was selected.

      The specific optimization method used in this study was somewhat arbitrary, as there is no standard in the field. It was validated in prior studies, where it was also demonstrated that it performs favorably compared to alternative methods (Saturnino et al., 2019; Saturnino et al., 2021). The underlying physics of the head volume conductor generally limits the maximally achievable focality, and requires a tradeoff between focality and the desired intensity in the target. This tradeoff depends on the maximal amount of current that can be injected into the electrodes due to safety limits (4 mA in total in our case). Further constraints of the optimization in our application were the simultaneous targeting of two areas, and achieving field directions in the targets roughly parallel to those of auditory dipoles. Given the combination of these constraints, as the reviewer noticed, we could not even achieve the desired intensity of .1V/m in some subjects. As we wanted to stimulate both auditory cortices equally, our priority was to have the E-fields as similar as possible between hemispheres. Future studies optimizing for only one target would be easier to optimize for target intensity (assuming the same maximal total current injection). Alternatively, relaxing the constraint on direction and optimizing only for field intensity would help to increase the field intensities in the targets, but would lead to differing field directions in the two targets. As an example, see Rev. Fig.1 below. We extensively discuss some of these points in the discussion section: “Are individually optimized tACS montage better?” (Pages 21-22).

      Additionally, we added a few sentences in the Results and Methods giving more details about the optimization approach.

      Page 5, lines 115-116: “Using individual finite element method (FEM) head models (see Methods) and the lead field-based constrained optimization approach implemented in SimNIBS (31)”

      Page 27, lines 819-822: “The optimization pipeline employed the approach described in (31) and was performed in two steps. First, a lead field matrix was created per individual using the 10-10 EEG virtual cap provided in SimNIBS and performing electric field simulations based on the default tissue conductivities listed below.”

      Author response image 1.

      E-field distributions for one example participant. Brain maps show the results from the same optimization procedure described in the main manuscript but with no constraint for the current direction (top) or constraining the current direction (bottom). Note that the desired intensity of .1 V/m can be achieved when the current direction is not constrained.

      The terminology of "high-definition HD" used here is unconventional and may confuse some readers. The paper cited for ring electrodes (18) does not refer to it as HD. A quick search for high-definition HD yields mostly papers using many small electrodes, not ring electrodes. They look more like what was called "individualized". More conventional would be to call the first configuration a "ring-electrode", and the "individualized" configuration might be called "individualized HD".

      We thank the reviewer for this remark. We changed the label of the high-definition montage to ring-electrode. Regarding the individualized configuration, we prefer not to use individualized HD as it has the same number of electrodes as the standard montage.

      "So far, we have evaluated whether tACS at different phase lags interferes with stimulus-brain synchrony and modulates behavioral signatures of entrainment" The paper does not present any data on stimulus-brain synchrony. There is only an analysis of behavior and stimulus/tACS phase.

      We agree with the reviewer. To be more careful with such statement we now modified the sentence to say:

      Page 10, lines 303-304: “So far, we have evaluated whether tACS at different phase lags modulates behavioral signatures of entrainment: FM-amplitude and FM-phase.”

      "However, the strength of the tACS effect was variable across participants." and across sessions, and the phase also was variable across subjects and sessions.

      "tACS-amplitude estimates were averaged across sessions since the session did not significantly affect FM-amplitude (Fig. 5a)." More importantly, the authors show that "tACS-amplitude" was not reproducible across sessions.

      Unfortunately, we did not understand what the reviewer is suggesting here, and would have to ask the reviewer in this case to provide us with more information.

      References

      Kasten FH, Duecker K, Maack MC, Meiser A, Herrmann CS (2019) Integrating electric field modeling and neuroimaging to explain inter-individual variability of tACS effects. Nat Commun 10:5427. Riecke L, Sack AT, Schroeder CE (2015) Endogenous Delta/Theta Sound-Brain Phase Entrainment Accelerates the Buildup of Auditory Streaming. Curr Biol 25:3196-3201.

      Riecke L, Formisano E, Sorger B, Baskent D, Gaudrain E (2018) Neural Entrainment to Speech Modulates Speech Intelligibility. Curr Biol 28:161-169 e165.

      Saturnino GB, Madsen KH, Thielscher A (2021) Optimizing the electric field strength in multiple targets for multichannel transcranial electric stimulation. J Neural Eng 18.

      Saturnino GB, Siebner HR, Thielscher A, Madsen KH (2019) Accessibility of cortical regions to focal TES: Dependence on spatial position, safety, and practical constraints. Neuroimage 203:116183.

      Zoefel B, Davis MH, Valente G, Riecke L (2019) How to test for phasic modulation of neural and behavioural responses. Neuroimage 202:116175.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer 1 (Public review):

      Weaknesses: The interpretation is somewhat model-dependent, and it is unclear if the interpretation is unique. For example, it is unclear if the heterogeneous release probability among sites, silent sites, can explain the results. N estimates out of variance-mean analysis for example may be limited by the availability of postsynaptic receptors.

      To address this criticism, we have added a paragraph in the Discussion outlining the main assumptions underlying our work and how possible deviations from these assumptions may have affected our conclusions. This new paragraph is titled ' Assumptions behind our analysis, and possible limitations of our conclusions'.

      Reviewer 1, Recommendations to Authors:

      Without molecular evidence or anatomical evidence, the model and conclusions may remain as a postulate at this stage. This can be discussed carefully. Also, the study looks a bit narrow regarding the scope, only dealing with RS-DS model vs TS-LS model. Maybe, the authors pick up a bit more qualitative findings that directly support RS-DS model.

      To address these issues, another paragraph has been added to the Discussion titled 'Functional evidence in favor of the RS/DS model at PF-MLI synapses, and remaining uncertainties on the molecular composition and morphological arrangement of docking sites'.

      Minor: Fukaya et al. studied not cerebellar mossy fiber synapses.

      We apologize for this error, which has now been rectified.

      Reviewer 2 (Public review):

      It remains unclear how generalizable the findings are to other types of synapses.

      We agree with the Reviewer: this is a limitation of our study. In the Discussion we have a paragraph titled 'Maximum RRP size for other synaptic types' where we discuss this point. As we say in this paragraph, central synapses are clearly diverse, and the level of applicability of our results across preparations will depend on our ability to extend SV counting to various types of brain synapses. For the moment SV counting has been applied to only two types of synapses: PF-MLI synapses and hMF-IN synapses. We are encouraged by the fact that the simple synapse study by Tanaka et al. (2021), carried out at hMF-IN synapses, offers another example where the ratio between RRP size and N is larger than 1.

      Recommendations to Authors,

      Minor comments:

      The manuscript is at times difficult to read or reads like a review. The introduction could be shortened to concisely outline the motivation and premises for the study. The results and methods sections should not contain excessive interpretation and discussion. Although very informative, it distracts from the simple principal message.

      To address these criticisms, we have shortened the Introduction and parts of the Results section. These changes have resulted in a presentation of Results that is shorter and more focused on data and simulations than in the previous version. Nevertheless, readers need to be informed of ongoing research on docking sites and the principles of sequential models to understand the usefulness of our work. For this reason, we have maintained a theoretical section at the beginning of Results.

      The rationale for the choice of synapse and experimental conditions remains unclear until the discussion. This needs to be clearly addressed at the beginning, in the introduction, or in the results. In particular, the extracellular calcium concentration and the addition of 4-AP to the recording solution should be addressed in the results.

      The reason to choose the PF-MLI synapse is now indicated at the end of the Introduction. The rationale underlying our choice of experimental conditions including the extracellular calcium concentration and the addition of 4-AP is now briefly explained in the beginning the second section of Results (titled 'Maximizing RRP size and its release during AP trains'), and more extensively in the Methods section (as in the previous version of the manuscript).

      Potential confounds of the approach should be discussed (e.g. could a broadened AP in 4-AP alter synchronicity of release, i.e. desynchronization of release, especially during trains. That could be complemented with information on the EPSC kinetics (rise, decay) under different experimental conditions, as well as during train stimulation. How could presynaptic calcium concentration and time course in 4-AP impact the conclusions?

      To study the effects of 4-AP on AP broadening we have performed a new analysis of EPSC latencies in control and in 4-AP. In both cases the first latencies were independent of i. In 4-AP, first latencies displayed a small right shift of 0.2 ms (see additional figure below). This indicates that 4-AP does broaden the AP waveform, but that the extent of this broadening is limited. This new information has been added in the Methods of the revised manuscript.

      As suspected by the Reviewer, the latency distribution changes as a function of i and in the presence of 4-AP. Consistent with earlier findings (Miki et al., 2018), the proportion of 2-step release (with longer latencies) augments as a function of i both in control and in 4-AP. We also find that the value of the fast time constant of the latency distribution,τf, is larger in 4-AP than in control. This last result probably indicates a longer presynaptic calcium entry in 4-AP.

      In the revised version, we describe these results in the Methods section, in a new paragraph titled 'Changes in latency distributions as a function of i and of experimental conditions'.

      While the latency distributions change as a function of i and as a function of experimental conditions, this does not affect our conclusions, because these conclusions are based on the summed number of release events after each AP (or in other words, on the integral of the latency distributions).

      The kinetics of mEPSCs (risetime and decay time) are unchanged by 4-AP or by PTP. Consequently, in a given experiment, we used the same template to perform our deconvolution analysis for all conditions that were examined (starting with 3 mM Cao up to 200 Hz). This information has now been added in Methods.

      Following an AP stimulation, the amount of calcium entry in the presence of 4-AP is presumably much larger than in control. TEA, a weaker K channel blocker than 4-AP at PF-MLI synapses, elicits a marked increase in calcium entry (Malagon et al., 2020). This suggests an even larger increase with 4-AP, even though this has not been directly confirmed in the present work. The enhanced calcium entry translates in an increase in the parameters pr, r and s of our model. The important thing for our study is to increase pr and r as much as possible to promote the emptying of the RRP during trains. Knowing the exact amount of calcium entry and its relation to pr /r increase is not essential for this purpose. Likewise, whether r (and/or s) increase as a function of i is of little practical importance since much of the RRP is emptied already after the second stimulation, at least in the most extreme case (200 Hz stimulation).

      The applicability of this model to other synapses needs to be addressed more thoroughly. This synapse, under physiological conditions, has a very low Pr, and the experimental conditions have to be adjusted dramatically to achieve a high-Pr. How applicable are the conclusions to high-Pr synapses and/or synapses that operate in a multivesicular release regime? Although that might be difficult to test experimentally it should be addressed in the discussion.

      The applicability issue to other synapses has been addressed above, in response to the public comments of the same Reviewer.

      As the Reviewer points out, the PF-MLI synapse has a small P value under physiological conditions. One can speculate that synapses that exhibit a higher P value may have a higher docking site occupancy than PF-MLI synapses. This feature would increase their chance of having a ratio of RRP size over N larger than 1, as it occurs in PF-MLI synapses in high docking occupancy conditions. A sentence making this point has been added to the paragraph titled 'Maximum RRP size for other synaptic types' in the revised manuscript.

      Author response image 1.

      Latency histograms for s1 in control and in the presence of 4-AP. After normalization, the averaged latency histogram in 4-AP displays an additional delay of 0.2 ms, and a slowing of the time constant τf from 0.47 ms to 0.70 ms.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer 1

      “The exact levels of inhibition, excitation, and neuromodulatory inputs to neural networks are unknown. Therefore, the work is based on fine-tuned measures that are indirectly based on experimental results. However, obtaining such physiological information is challenging and currently impossible. From a computational perspective it is a challenge that in theory can be solved. Thus, although we have no ground-truth evidence, this framework can provide compelling evidence for all hypothesis testing research and potentially solve this physiological problem with the use of computers.”

      Response: We agree with the reviewer. This work was intended to determine the feasibility of reverse engineering motor unit firing patterns, using neuron models with a high degree realism. Given the results support this feasibility, our model and technique will therefore serve to construct new hypotheses as well as testing them.

      • Common input structure lines 115

      I agree with the following concepts, but I would specify that there is not only one dominant common input. It has been shown that there are multiple common inputs to the same motor nuclei (e.g., the two inputs are orthogonal and are shared with a subset of the active motoneurons) particularly for agonist motoneuron pools of synergistic muscles. On the hand muscles the authors are correct that there is only one dominant common input. Moreover, there is also some animal work suggesting that common inputs is just an epiphenomenon. This is completely in contradiction to what we observe in-vivo in the firing patterns of motor units, but perhaps worth mentioning and discussing.

      Response: Thanks for emphasizing this point. We have cited a recent reference discussing the important issue of common drive and the possibility of more than one source. Our simulations assume the net form of the excitatory input to all motoneurons in the pool is the same, except for noise. This net form (which produces the linear CST output in each case) essentially represents the sum of all inputs, both descending and sensory. Our results show the same over pattern as human data, i.e. that all motor unit firing patterns have similar trajectories (again allowing for the impact of noise). Future studies will consider separating excitatory inputs into different sources.

      It is interesting that the authors mention suprathreshold rate modulation. Could the authors just discuss more on how the model would respond to a simulated suprathreshold current for all simulated motoneurons (i.e., like the ones generated during a suprathreshold-injected current or voluntary maximal feedforward movement?)

      Response: Thank you for this point. Our use of the term “suprathreshold” was not applied correctly. We meant “suprathreshold” to refer to amount of input above the recruitment threshold. We have decided to remove this term so now the sentence “…so less is available for rate modulation…”.

      194 a full point is missing.

      Response: We addressed the error.

      204-231 and 232-259, these two paragraphs have been copied twice.

      Response: We addressed the error.

      Line 475 typo

      Response: We addressed the error.

      591 It would be interesting to add the me it takes a standard computer with known specs and a super computer to run over one batch of simulation (i.e., how long one of the 6,300,000 simulation takes).

      Response: Each simulation took about 20 minutes of real me. Assuming a standard computer with 16 processor cores using a similar microarchitecture as Bebop (Intel Broadwell architecture), the standard computer could run 16 simulations at a me (one simulation assigned per core). This would take the standard computer about 15 years to complete all 6.3M simulations.

      594 I don't understand why there are 6M simulations, could the authors provide more info on the combinations and why there are 6M simulations.

      Response: The 6M simulations are the total number of simulations that were performed for this work. A detailed explanation can be found in section: “Machine learning inference of motor pool characteristics” at line 591. Briefly, there were 315,000 simulations of a pool of 20 motoneurons (20 x 315,000 = 6.3 million). The 315,000 simulations was required to run all possible combinations of 15 patens of inhibition, 5 of neuromodulation, 7 of distribution of excitatory inputs and 30 different repeats of synaptic noise with different seeds. In addition, there were 20 iterations for each of these combinations to generate a linear CST output (as illustrated in Fig. 3). 15 x5 x 7 x 30 x 20=315,000.

      In several simulations it seems that there was a lot of fine-tuning of inputs to match the measured motor unit firing pattern. Have the authors ever considered a fully black-box AI approach? If they think is interesting maybe it could spice up the discussion.

      Response: We agree that AI has potential for reverse engineering the whole system and we are looking into adding it to future version of this algorithm as an alternative. We started with a simple but powerful grid search to enhance our understanding of the interaction between inputs, neuron properties and outputs.

      Reviewer 2

      Comment 1:

      “First, I believe that the relation between individual motor neuron behavioral characteristics (delta F, brace height etc.) and the motor neuron input properties can be illustrated more clearly. Although this is explained in the text, I believe that this is not optimally supported by figures. Figure 6 to some extent shows this, but figures 8 and 9 as well as Table 1 shows primarily the goodness of fit rather than the actual fit.”

      Response: We agree with the reviewer that showing the relationship between the motor neuron behavioral characteristics (delta F, brace height etc.) and the motor neuron input properties would be a great addition to the manuscript. Because the regression models have multiple dimensions (7 inputs and 3 outputs) it is difficult to show the relationship in a static image. We thought it best to show the goodness of fit even though it is more abstract and less intuitive. We added a supplemental diagram to Figure 8 to show the structure of the reverse engineered model that was fit (see Figure 8D).

      Author response image 1.

      Figure 8. Residual plots showing the goodness of fit of the different predicted values: (A) Inhibition, (B) Neuromodulation and (C) excitatory Weight Rao. The summary plots are for the models showing highest 𝑅𝑅2 results in Table 1. The predicted values are calculated using the features extracted from the firing rates (see Figure 7, section Machine learning inference of motor pool characteristics and Regression using motoneuron outputs to predict input organization). Diagram (D) shows the multidimensionality of the RE models (see Model fits) which have 7 feature inputs (see Feature Extraction) predicting 3 outputs (Inhibition, Neuromodulation and Weight Rao).

      Comment 2:

      “Second, I would have expected the discussion to have addressed specifically the question of which of the two primary schemes (pushpull, balanced) is the most prevalent. This is the main research question of the study, but it is to some degree le unanswered. Now that the authors have identified the relation between the characteristics of motor neuron behaviors (which has been reported in many previous studies), why not exploit this finding by summarizing the results of previous studies (at least a few representative ones) and discuss the most likely underlying input scheme? Is there a consistent trend towards one of the schemes, or are both strategies commonly used?”

      Response: We agree with the reviewer that our discussion should have addressed which of the two primary schemes – push-pull or balanced – is the most prevalent. At first glance, the upper right of Figure 6 looks the most realistic when compared to real data. We thus would expect that the push-pull scheme to dominate for the given task.

      We added a brief section (Push-Pull vs Balance Motor Command) in the discussion to address the reviewer’s comments. This section is not exhaustive but frames the debate using relevant literature. We are also now preparing to deploy these techniques on real data.

      Comment 3:

      In addition, it seems striking to me that highly non-linear excitation profiles are necessary to obtain a linear CST ramp in many model configurations. Although somewhat speculative, one may expect that an approximately linear relation is desired for robust and intuitive motor control. It seems to me that humans generally have a good ability to accurately grade the magnitude of the motor output, which implies that either a non-linear relation has been learnt (complex task), or that the central nervous system can generally rely on a somewhat linear relation between the neural drive to the muscle and the output (simpler task).

      Response: We agree with the reviewer, and we were surprised by these results. Our motoneuron pool is equipped with persistent inward currents (PICs) which are nonlinear. Therefore, for the motoneuron to produce a linear output the central nervous system would have to incorporate these nonlinearities into its commands.

      Following this reasoning, it could be interesting to report also for which input scheme, the excitation profile is most linear. I understand that this is not the primary aim of the study, but it may be an interesting way to elaborate on the finding that in many cases non-linear excitation profiles were needed to produce the linear ramp.

      This is a very interesting point. The most realistic firing patterns – with respect to human data – are found in the parameter regions in the upper right in Figure 6, which in fact produce the most nonlinear input (see push-pull pattern in Figure 4C). However, in future studies we hope to separate the total motor command illustrated here into descending and feedback commands. This may result in a more linear descending drive.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This paper investigates host and viral factors influencing transmission of alpha and delta SARS-CoV-2 variants in the Syrian hamster model and fundamentally increases knowledge regarding transmission of the virus via the aerosol route. The strength of evidence is solid and could be improved with a clearer presentation of the data.

      We thank the editors for their assessment. We are excited to present a revised version of the manuscript with improved data presentation and an improved discussion addressing the reviewer’s concerns.

      Public Reviews:

      Reviewer #1 (Public Review):

      In the submitted manuscript, Port et al. investigated the host and viral factors influencing the airborne transmission of SARS-CoV-2 Alpha and Delta variants of concern (VOC) using a Syrian hamster model. The authors analyzed the viral load profiles of the animal respiratory tracts and air samples from cages by quantifying gRNA, sgRNA, and infectious virus titers. They also assessed the breathing patterns, exhaled aerosol aerodynamic profile, and size distribution of airborne particles after SARS-CoV-2 Alpha and Delta infections. The data showed that male sex was associated with increased viral replication and virus shedding in the air. The relationship between co-infection with VOCs and the exposure pattern/timeframe was also tested. This study appears to be an expansion of a previous report (Port et al., 2022, Nature Microbiology). The experimental designs were rigorous, and the data were solid. These results will contribute to the understanding of the roles of host and virus factors in the airborne transmission of SARS-CoV-2 VOCs.

      Reviewer #2 (Public Review):

      This manuscript by Port and colleagues describes rigorous experiments that provide a wealth of virologic, respiratory physiology, and particle aerodynamic data pertaining to aerosol transmission of SARS-CoV-2 between infected Syrian hamsters. The data is particularly significant because infection is compared between alpha and delta variants, and because viral load is assessed via numerous assays (gRNA, sgRNA, TCID) and in tissues as well as the ambient environment of the cage. The paper will be of interest to a broad range of scientists including infectious diseases physicians, virologists, immunologists and potentially epidemiologists. The strength of evidence is relatively high but limited by unclear presentation in certain parts of the paper.

      Important conclusions are that infectious virus is only detectable in air samples during a narrow window of time relative to tissue samples, that airway constriction increases dynamically over time during infection limiting production of fine aerosol droplets, that variants do not appear to exclude one another during simultaneous exposures and that exposures to virus via the aerosol route lead to lower viral loads relative to direct inoculation suggesting an exposure dose response relationship.

      While the paper is valuable, I found certain elements of the data presentation to be unclear and overly complex.

      Reviewer #1 (Recommendations For The Authors):

      We thank the reviewer for their comments and their attention to detail. We have taken the following steps to address their suggestions and concerns.

      However, the following concerns need to be issued.

      1. Summary seems to be too simple, and some results are not clearly described in the summary.

      We have edited the summary and hope to have addressed the concerns raised by providing more information. We think that the summary includes all relevant findings.

      “It remains poorly understood how SARS-CoV-2 infection influences the physiological host factors important for aerosol transmission. We assessed breathing pattern, exhaled droplets, and infectious virus after infection with Alpha and Delta variants of concern (VOC) in the Syrian hamster. Both VOCs displayed a confined window of detectable airborne virus (24-48 h), shorter than compared to oropharyngeal swabs. The loss of airborne shedding was linked to airway constriction resulting in a decrease of fine aerosols (1-10µm) produced, which are suspected to be the major driver of airborne transmission. Male sex was associated with increased viral replication and virus shedding in the air. Next, we compared the transmission efficiency of both variants and found no significant differences. Transmission efficiency varied mostly among donors, 0-100% (including a superspreading event), and aerosol transmission over multiple chain links was representative of natural heterogeneity of exposure dose and downstream viral kinetics. Co-infection with VOCs only occurred when both viruses were shed by the same donor during an increased exposure timeframe (24-48 h). This highlights that assessment of host and virus factors resulting in a differential exhaled particle profile is critical for understanding airborne transmission.”

      1. Aerosol transmission experiment should be described in Materials and Methods although it is cited as Reference 21#;

      We have modified Line 433:

      “Aerosol caging

      Aerosol cages as described by Port et al. [2] were used for transmission experiments and air sampling as indicated. The aerosol transmission system consisted of plastic hamster boxes (Lab Products) connected by a plastic tube. The boxes were modified to accept a 7.62 cm (3') plastic sanitary fitting (McMaster-Carr), which enabled the length between the boxes to be changed. Airflow was generated with a vacuum pump (Vacuubrand) attached to the box housing the naïve animals and was controlled with a float-type meter/valve (McMaster-Carr).”

      And Line 458: “During the first 5 days, hamsters were housed in modified aerosol cages (only one hamster box) hooked up to an air pump.”.

      Especially, one superspreading event of Alpha VOC (donor animal) was observed in iteration A (Figure 4). What causes that event, experiment system?

      Based on the observed variation in airborne shedding (of the cages from which this was directly measured), we believe that one plausible explanation for the super-spreading event was that the Alpha-infected donor shed considerably more virus during the exposure than other donors, and thus more readily infected the sentinels. That said, it is also conceivable that other factors such as hamster behavior (e.g., closeness to the cage outlet, sleeping) or variable sentinel susceptibility could affect the distribution of transmissions.

      1. Same reference is repeatedly listed as Refs 2 and 21#.

      Addressed. We thank the reviewer for their attention to detail. We have also removed reference 53, which was the same as 54.

      1. Two forms of described time (hour and h) are used in the manuscript. Single form should be chosen.

      This has been addressed.

      5) Virus designation located in line 371 and line 583 is inconsistent, and it needs to be revised.

      For consistency we have chosen this nomenclature for the viruses used: SARS-CoV-2 variant Alpha (B.1.1.7) (hCoV320 19/England/204820464/2020, EPI_ISL_683466) and variant Delta (B.1.617.2/) (hCoV-19/USA/KY-CDC-2-4242084/2021, EPI_ISL_1823618).

      1. In Figure 5F, what time were lung and nasal turbinate tissues collected after virus infection?

      This has been added to the legend. Day 5. Line 904.

      1. Line 562-563, what is the coating antigen (spike protein, generated in-house)? purified or recombinant protein?

      It is in-house purified recombinant protein. This has been added to the methods.

      1. Line 575 and line 578: 10,000x is not standard description, and it should be revised.

      Done.

      Reviewer #2 (Recommendations For The Authors):

      We thank the reviewer for their comments and suggestions to improve the manuscript, and hope we have addressed all concerns adequately.

      • Direct interpretation of the linear regression slope in Figure 3 is challenging. Is the most relevant parameter for transmission known? Intuitively, it would be the absolute number of small droplets at a given timepoint rather than the slope and it would be easier to interpret if the data were reported in this fashion.

      We decided to show a percentage of counts to normalize the data among animals, as we observed large inter-individual variation in counts. The reviewer is correct that it is most likely the number of particles that would be most relevant to transmission, though much (including the role of particle size) remains to be determined. We have added a sentence to the results which explains this in L157.

      Therefore, we decided in this first analysis to utilize the slope measurement and not raw counts. The focus was on the slopes and how particle profiles were changing post inoculation. Because we have focused on percentages, it seems not appropriate to present particle counts within each diameter range because the analysis, model, and results are based on these percentages of particles.

      Use of regression to compute slope is a useful measure because it uses data from all timepoints to estimate the regression line and, therefore, the % of particles on each day. We decided on these methods because efficiency is especially important in a study with a relatively small number of animals and slopes are also a good surrogate for how animal particle profiles are changing post-inoculation.

      To assist with the interpretation: 1) We removed Figure 3C and D and replaced Figure 3B with individual line plots for all conditions to visualize the slopes. The figure legend was corrected to reflect these changes.

      2) We replaced L169 onwards to read: (Figure 3B). Females had a steeper decline at an average rate of 2.2 per day after inoculation in the percent of 1-10 μm particles (and a steeper incline for <0.53 μm) when compared to males, while holding variant group constant. When we compared variant group while holding sex constant, we found that the Delta group had a steeper decline at an average rate of 5.6 per day in the percent of 1-10 μm particles (and a steeper incline for <0.53 μm); a similar trend, but not as steep, was observed for the Alpha group.

      The estimated difference in slopes for Delta vs. controls and Alpha vs. controls in the percent of <0.53 μm particles was 5.4 (two-sided adjusted p= 0.0001) and 2.4 (two-sided adjusted p = 0.0874), respectively. The estimated difference in slopes for percent of 1-10 μm particles was not as pronounced, but similar trends were observed for Delta and Alpha. Additionally, a linear mixed model was considered and produced virtually the same results as the simpler analysis described above; the corresponding linear mixed model estimates were the same and standard errors were similar.

      • Fig 4: what is "limit of quality" mentioned in the legend? Are these samples undetectable?

      We have clarified this in the legend: “3.3 = limit of detection for RNA (<10 copies/rxn)”. If samples have below 10 copy numbers per reaction, they are determined to be below the limit of detection. The limit of detection is 10 copy number/rxn. All samples below 10 copies/rxn are taken to be negative and set = 10 copies/rxn, which equals 3.3. Log10 copies/mL oral swab.

      • Fig 4C would be easier to process in graphical rather than tabular form. The meaning of the colors is unclear.

      We agree with the reviewer that this is difficult to interpret, but we are uncertain if the same data in a tabular format would be easier to digest. We realized that the legend was misplaced and have added this back into the figure, which we hope clarifies the colors and the limit of detection.

      • Figure 4D & E are uninterpretable. What do the pie charts represent?

      We have remodeled this part of the figure to a schematic representation of the majority variant which transmitted for each individual sentinel, and have added a table (Table S1) which summarizes the exact sequencing results for the oral swabs. The reviewer is correct that it was difficult to interpret the pie charts, considering most values are either 0 or close to 100%. We hope this addresses the question. The legend states:

      Author response image 1.

      Airborne attack rate of Alpha and Delta SARS-CoV-2 variants. Donor animals (N = 7) were inoculated with either the Alpha or Delta variant with 103 TCID50 via the intranasal route and paired together randomly (1:1 ratio) in 7 attack rate scenarios (A-G). To each pair of donors, one day after inoculation, 4-5 sentinels were exposed for a duration of 4 h (i.e., h 24-28 post inoculation) in an aerosol transmission set-up at 200 cm distance. A. Schematic figure of the transmission set-up. B. Day 1 sgRNA detected in oral swabs taken from each donor after exposure ended. Individuals are depicted. Wilcoxon test, N = 7. Grey = Alpha, teal = Delta inoculated donors. C. Respiratory shedding measured by viral load in oropharyngeal swabs; measured by sgRNA on day 2, 3, and 5 for each sentinel. Animals are grouped by scenario. Colors refer to legend below. 3.3 = limit of detection of RNA (<10 copies/rxn). D. Schematic representation of majority variant for each sentinel as assessed by percentage of Alpha and Delta detected in oropharyngeal swabs taken at day 2 and day 5 post exposure by deep sequencing. Grey = Alpha, teal = Delta, white = no transmission.

      • Fig S2G is uninterpretable. Please label and explain.

      We have now included an explanations of the figure S2F. The figure is a graphic representation of the neutralization data depicted in Figure S2F. The spacing between grid lines is 1 unit of antigenic distance, corresponding to a twofold dilution of serum in the neutralization assay. The resulting antigenic distance depicted between Alpha and Delta is roughly a 4-fold difference in neutralization between homologous (e.g., Alpha sera with the Alpha virus vs. heterologous, Alpha sera with the Delta virus).

      • I would consider emphasizing lines 220-225 in the summary and abstract. The important implication is that aerosol transmission is more representative of natural heterogeneity of exposure dose and downstream viral kinetics. This is an often-overlooked point.

      We agree with the reviewer and have added this in Line 43.

      • Fig 5: A cartoon similar to Fig 4A showing timing of sentinel exposure with number of animals would be helpful.

      We have added this as a new panel A for Figure 5. See the redrafted Figure 5 below.

      • For Fig 5E & F It would be helpful to use a statistical test to more formally assess whether proportion at exposure predicts proportion of variants in downstream sentinel infection.

      This has been added as a new Figure 5 panel H and I, which we hope addresses the reviewer’s comment.

      Author response image 2.

      Airborne competitiveness of Alpha and Delta SARS-CoV-2 variants. A. Schematic. Donor animals (N = 8) were inoculated with Alpha and Delta variant with 5 x 102 TCID50, respectively, via the intranasal route (1:1 ratio), and three groups of sentinels (Sentinels 1, 2, and 3) were exposed subsequently at a 16.5 cm distance. Animals were exposed at a 1:1 ratio; exposure occurred on day 1 (Donors  Sentinels 1) and day 2 (Sentinels  Sentinels). B. Respiratory shedding measured by viral load in oropharyngeal swabs; measured by gRNA, sgRNA, and infectious titers on days 2 and day 5 post exposure. Bar-chart depicting median, 96% CI and individuals, N = 8, ordinary two-way ANOVA followed by Šídák's multiple comparisons test. C/D/E. Corresponding gRNA, sgRNA, and infectious virus in lungs and nasal turbinates sampled five days post exposure. Bar-chart depicting median, 96% CI and individuals, N = 8, ordinary two-way ANOVA, followed by Šídák's multiple comparisons test. Dark orange = Donors, light orange = Sentinels 1, grey = Sentinels 2, dark grey = Sentinels 3, p-values indicated where significant. Dotted line = limit of quality. F. Percentage of Alpha and Delta detected in oropharyngeal swabs taken at days 2 and day 5 post exposure for each individual donor and sentinel, determined by deep sequencing. Pie-charts depict individual animals. Grey = Alpha, teal = Delta. G. Lung and nasal turbinate samples collected on day 5 post inoculation/exposure. H. Summary of data of variant composition, violin plots depicting median and quantiles for each chain link (left) and for each set of samples collected (right). Shading indicates majority of variant (grey = Alpha, teal = Delta). I. Correlation plot depicting Spearman r for each chain link (right, day 2 swab) and for each set of samples collected across all animals (left). Colors refer to legend on right. Abbreviations: TCID, Tissue Culture Infectious Dose.”

      We have additionally added to the results section: L284: “Combined a trend, while not significant, was observed for increased replication of Delta after the first transmission event, but not after the second, and in the oropharyngeal cavity (swabs) as opposed to lungs (Figure 5H) (Donors compared to Sentinels 1: p = 0.0559; Donors compared to Sentinels 2: p = >0.9999; Kruskal Wallis test, followed by Dunn’s test). Swabs taken at 2 DPI/DPE did significantly predict variant patterns in swabs on 5 DPI/DPE (Spearman’s r = 0.623, p = 0.00436) and virus competition in the lower respiratory tract (Spearman’s r = 0.60, p = 0.00848). Oral swab samples taken on day 5 strongly correlate with both upper (Spearman’s r = 0.816, p = 0.00001) and lower respiratory tract tissue samples (Spearman’s r = 0.832, p = 0.00002) taken on the same day (Figure 5I).”

      • Fig 1A: how are pfu/hour inferred? This is somewhat explained in the supplement, but I found the inclusion of model output as the first panel confusing and am still not 100% clear how this was done. Consider, explaining this in the body of the paper.

      We have added a more detailed explanation of the PFU/h inference to the main text: The motivation for the model was to link more readily measurable quantities such as RNA measured in oral swabs to the quantity of greatest interest for transmission (infectious virus per unit time in the air). To do this, we jointly infer the kinetics of shed airborne virus and parameters relating observable quantities (infected sentinels, plaques from purified air sample filters) to the actual longitudinal shedding. The inferential model uses mechanistic descriptions of deposition of infectious virus into the air, uptake from the air, and loss of infectious virus in the environment to extract estimates of the key kinetic parameters, as well as the resultant airborne shedding, for each animal.

      We have added this information to L106 in the results and hope this clarifies the rationale and execution of the model.

      More minor points:

      • Line 292: "poor proxy" seems too strong as peak levels of viral RNA correlate with positive airway cultures. It might be more accurate to say that high levels of viral RNA during early infection only somewhat correlate with positive airway cultures.

      We have rephrased this to clarify that while peak RNA viral loads are predictive of positive cultures, measuring RNA, especially early during infection and only once, may not be sufficient to infer the magnitude or time-dependence of infectious virus shedding into the air. See Line 308: “We found that swab viral load measurements are a valuable but imperfect proxy for the magnitude and timing of airborne shedding. Crucially, there is a period early in infection (around 24 h post-infection in inoculated hamsters) when oral swabs show high infectious virus titers, but air samples show low or undetectable levels of virus. Viral shedding should not be treated as a single quantity that rises and falls synchronously throughout the host; spatial models of infection may be required to identify the best correlates of airborne infectiousness [32]. Attempts to quantify an individual’s airborne infectiousness from swab measurements should thus be interpreted with caution, and these spatiotemporal factors should be considered carefully.”

      • Line 352: Re is dependent on time of an outbreak (population immunity) and cannot be specified for a given variant as it depends on multiple other variables

      We agree that the current phrasing here could be interpreted to suggest, incorrectly, that Re is an intrinsic property of a variant. We have deleted that language and reworded the section to emphasize that the critical question is heterogeneity in transmission, not mean reproduction number. Line 348: “Moreover, at the time of emergence of Delta, a large part of the human population was either previously exposed to and/or vaccinated against SARS-CoV-2; that underlying host immune landscape also affects the relative fitness of variants. Our naïve animal model does not capture the high prevalence of pre-existing immunity present in the human population and may therefore be less relevant for studying overall variant fitness in the current epidemiological context. Analyses of the cross-neutralization between Alpha and Delta suggest subtly different antigenic profiles [35], and Delta’s faster kinetics in humans may have also helped it cause more reinfections and “breakthrough” infections [36].

      Our two transmission experiments yielded different outcomes. When sentinel hamsters were sequentially exposed, first to Alpha and then to Delta, generally no dual infections—both variants detectable—were observed. In contrast, when we exposed hamsters simultaneously to one donor infected with Alpha and another infected with Delta, we were able to detect mixed-variant virus populations in sentinels in one of the cages (Cage F, see Appendix figures S1, S2). The fact that we saw both single-lineage and multi-lineage transmission events suggests that virus population bottlenecks at the point of transmission do indeed depend on exposure mode and duration, as well as donor host shedding. Notably, our analysis suggests that the Alpha-Delta co-infections observed in the Cage F sentinels could be due to that being the one cage in which both the Alpha and the Delta donor shed substantially over the course of the exposure (Appendix figures S2, S3). Mixed variant infections were not retained equally, and the relative variant frequencies differed between investigated compartments of the respiratory tract, suggesting roles for randomness or host-and-tissue specific differences in virus fitness.

      A combination of host, environmental and virus parameters, many of which vary through time, play a role in virus transmission. These include virus phenotype, shedding in air, individual variability and sex differences, changes in breathing patterns, and droplet size distributions. Alongside recognized social and environmental factors, these host and viral parameters might help explain why the epidemiology of SARS-CoV-2 exhibits classic features of over-dispersed transmission [37]. Namely, SARS-CoV-2 circulates continuously in the human population, but many transmission chains are self-limiting, while rarer superspreading events account for a substantial fraction of the virus’s total transmission. Heterogeneity in the respiratory viral loads is high and some infected humans release tens to thousands of SARS-CoV-2 virions/min [38, 39]. Our findings recapitulate this in an animal model and provide further insights into mechanisms underlying successful transmission events. Quantitative assessment of virus and host parameters responsible for the size, duration and infectivity of exhaled aerosols may be critical to advance our understanding of factors governing the efficiency and heterogeneity of transmission for SARS-CoV-2, and potentially other respiratory viruses. In turn, these insights may lay the foundation for interventions targeting individuals and settings with high risk of superspreading, to achieve efficient control of virus transmission [40].”

      • The limitation section should mention that this animal model does not capture the large prevalence of pre-existing immunity at present in the population and may therefore be less relevant in the current epidemiologic context.

      We agree and have added this more clearly, see response above.

      • Limitation: it is unclear if airway and droplet dynamics in the hamster model are representative of humans.

      We have added the following sentence: Line 331: “It remains to be determined how well airway and particle size distribution dynamics in Syrian hamsters model those in humans.”

      • The mathematical model is termed semi-mechanistic but I think this is not accurate as the model appears to have no mechanistic assumptions.

      We describe the model as semi-mechanistic because it uses mechanistic descriptions of the shedding and uptake process (as described above), incorporating factors including respiration rate and environmental loss, and makes the mechanistic assumption that measurable swab and airborne shedding all stem from a shared within-host infection process that produces exponential growth of virus up to a peak, followed by exponential decay. The model is only semi-mechanistic, however, as we do not attempt a full model of within-host viral replication and shedding (e.g. a target-cell limited virus kinetics model).

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer 1

      Comment 1: It is worth mentioning that the authors show that there are Arid1a transcripts that escape the Cre system. This might mask the phenotype of the Arid1a knockout, given that many sequencing techniques used here are done on a heterogeneous population of knockout and wild-type spermatocytes.

      Response: The proportions of undifferentiated spermatogonia (PLZF+) with detectable (ARID1A+) and non-detectable (ARID1A=) levels of ARID1A protein by immunostaining on testes cryosections obtained from 1-month old Arid1afl/fl (control) and Arid1acKO (CKO) males were 74% ARID1A negative (CKO) and 26% ARID1A positive (CKO) as compared to 95% ARID1A positive and 5% ARID1A negative in WT controls. The manuscript includes these data (page 5, lines 114-116). Furthermore, Western blot analysis of STA-Put purified pachytene WT and mutant spermatocytes showed significantly reduced levels of ARID1A protein in mutant cells (95% reduction). The manuscript has added these data (page 5, line 116 and Fig. S2).

      Comment 2: In relation to this, I think that the use of the term "pachytene arrest" might be overstated, since this is not the phenotype truly observed (these mice produce sperm).

      Response: Based on the profiling of prophase-I spermatocytes by co-staining for SYCP3 and ARID1A, we observed a marked reduction in mid-late pachytene spermatocytes that lacked ARID1A, indicating a failure to progress beyond pachynema in the absence of ARID1A (Table 1 in manuscript). Furthermore, we were unable to detect diplotene spermatocytes lacking ARID1A protein. Haploid spermatid populations isolated from Arid1acKO males appeared normal, expressing the wild-type allele, suggesting that they originated from spermatocytes that failed to undergo efficient Cre recombination (Fig. S3). Arid1acKO also produces viable sperm at a level equal to their wild-type controls (see page 5, lines 123-126). It is reasonable to conclude that the absence of ARID1A results in a pachynema arrest and that the viable sperm are from escapers. We cannot make any conclusions regarding the requirement of ARID1A for progression beyond pachynema.

      Comment 3: ARID1A is present throughout prophase I, and it might have pre-MSCI roles that impact earlier stages of Meiosis I, and cell death might be happening in these earlier stages too.

      Response: We did not observe an effect on the frequency of leptotene and zygotene spermatocytes lacking ARID1A. There appeared to be an accumulation of these prophase-I populations in response to the loss of ARID1A, consistent with a failure in progression beyond pachynema in the mutants (Table 1 in the manuscript).

      Additionally, we did not detect any significant difference in the numbers of undifferentiated spermatogonia expressing PLZF (also known as ZBTB16) in 1-month-old Arid1acKO relative to Arid1afl/fl males (see Table below, now included in the manuscript as supplemental Table 1). Therefore, the Arid1a conditional knockouts generated with a Stra8-Cre did not appear to impact earlier stages of spermatogenesis. However, potential roles of ARID1A early in spermatogenesis might be revealed using a more efficient and earlier-acting germline Cre transgene. In this case, an inducible Cre transgene would be needed, given the haploinsufficiency associated with Arid1a. Such haploinsufficiency was why we used the Stra8-Cre. The lack of Cre expression in the female germline allowed the transmission of the floxed allele maternally.

      Author response table 1.

      Comment 4: Overall, the research presented here is solid, adds new knowledge on how sex chromatin is silenced during meiosis, and has generated relevant databases for the field.

      Response: We thank the reviewer for this comment.

      Reviewer 2

      Comment 1: The conditional deletion mouse model of ARIDA using Stra8-cre showed inefficient deletion; spermatogenesis did not appear to be severely compromised in the mutants. Using this data, the authors claimed that meiotic arrest occurs in the mutants. This is obviously a misinterpretation.

      Response: As stated in response to Reviewer 1, testes cryosections obtained from 1-month-old control and mutant males showed that 74% are ARID1A negative (CKO) and 26% ARID1A positive (CKO) as compared to 95% ARID1A positive and 5% ARID1A negative in WT controls (page 5, lines 114-116). This difference is dramatic. Western blot analysis of STA-Put purified pachytene WT and mutant spermatocytes also showed a significant reduction of ARID1A protein in mutant cells (Fig. S2). We observed a marked decrease in mid-late pachytene spermatocytes that lacked ARID1A, indicating a failure to progress beyond pachynema without ARID1A (Table 1 from the manuscript). Furthermore, we were unable to detect any diplotene spermatocytes lacking ARID1A protein. These data suggest that the haploid spermatids originated from spermatocytes that failed to undergo efficient Cre recombination (Fig. S3). Comparison of cKO and wild-type littermate yielded nearly identical results (Avg total conc WT = 32.65 M/m; Avg total conc cKO = 32.06 M/ml), indicating that the cKO’s produce viable sperm at a level equal to their wild-type controls. Taken together, the conclusion that the absence of ARID1A results in a pachynema arrest and that the escapers produce the haploid spermatids is firm. By IF, we see that ~70% of the spermatocytes have deleted ARID1A. Therefore, we disagree with the reviewer’s comments that “spermatogenesis did not appear to be severely compromised in the mutants”.

      Comment 2: In the later parts, the authors performed next-gen analyses, including ATAC-seq and H3.3 CUT&RUN, using the isolated cells from the mutant mice. However, with this inefficient deletion, most cells isolated from the mutant mice appeared not to undergo Cre-mediated recombination. Therefore, these experiments do not tell any conclusion pertinent to the Arid1a mutation.

      Response: We agree that the ATAC-seq and CUT&RUN data were derived from a mixed population of pachytene spermatocytes consisting of mutants and, to a much lesser extent, escapers. As stated, based on our previous study (Menon et al., 2021, Nat. Commun., PMID: 34772938) and additional analyses in this current work, the undifferentiated spermatogonia lacking ARID1A indicates that Stra8-Cre is ~ 70% efficient. With this efficiency, we can detect striking changes in H3.3 occupancy and chromatin accessibility in the mutants relative to wild-type spermatocytes.

      Comment 3: Furthermore, many of the later parts of this study focus on the analysis of H3.3 CUT&RUN. However, Fig. S7 clearly suggests that the H3.3 CUT&RUN experiment in the wild-type simply failed. Thus, none of the analyses using the H3.3 CUT&RUN data can be interpreted.

      Response: We would like to draw the attention of the reviewer to a recent study (Fointane et al., 2022, NAR, PMID: 35766398) where the authors observed an identical X chromosome-wide spreading of H3.3 in mouse meiotic cells by ChIP-seq. The genomic distribution matches the microscopic observation of H3.3 coating of the sex chromosomes. Therefore, in normal spermatocytes, H3.3 distribution is pervasive across the X chromosome, with very few peaks observed in intergenic regions. Additionally, we detected H3.3 enrichment at TSSs of ARID1A-regulated autosomal genes in wild-type pachytene spermatocytes, albeit reduced relative to the mutants, indicating that the H3.3 CUT&RUN worked. For these reasons, we do not agree with the reviewer’s assessment that the H3.3 CUT&RUN experiment failed in the wild type.

      Comment 4: If the author wishes to study the function of ARID2 in spermatogenesis, they may need to try other cre-lines to have more robust phenotypes, and all analyses must be redone using a mouse model with efficient deletion of ARID2.

      Response: As noted, we chose Stra8-Cre to conditionally knockout Arid1a because ARID1A is haploinsufficient during embryonic development. The lack of Cre expression in the maternal germline allows for transmission of the floxed allele, allowing for the experiments to progress.

      Reviewer 3

      Comment 1: A challenge with the author's CKO model is the incomplete efficiency of ARID1A loss, due to incomplete CRE-mediated deletion. The authors effectively work around this issue, but they don't state specifically what percentage of CKO cells lack ARID1A staining. This information should be added.

      Response: Our data indicate that Stra8-Cre is ~ 70% efficient. This information has been added.

      Comment 2: They refer to cells that retain ARID1A staining in CKO testes as 'internal controls' but this reviewer finds that label inappropriate.

      Response: We have dropped ‘internal controls’ and used ‘escapers’ instead.

      Comment 3: Although some cells that retain ARID1A won't have undergone CRE-mediated excision, others may have excised but possibly have delayed kinetics of deletion or ARID1A RNA/protein turnover and loss. Such cells likely have partial ARID1A depletion to different extents and, therefore, in some cases, are no longer wild-type. In subsequent figures in which co-staining for ARID1A is done, it would be appropriate for the authors to specify if they are quantifying all cells from CKO testes, or only those that lack ARID1A staining.

      Response: We were unable to detect any diplotene spermatocytes lacking ARID1A protein. The data suggest that the haploid spermatids originated from spermatocytes that failed to undergo efficient Cre recombination (Fig. S3). Thus, we conclude that the absence of ARID1A results in a pachynema arrest and that the escapers produce haploid spermatids. In figures displaying quantification data, we indicate whether the quantification was performed on spermatocytes lacking or containing ARID1A from cKO testes. By IF, we see that ~70% of the spermatocytes have deleted ARID1A.

      Comment 4: The authors don't see defects in a few DDR markers in ARID1A CKO cells and conclude that the role of ARID1A in silencing is 'mutually exclusive to DDR pathways' (p 12) and 'occurs independently of DDR signaling' (p30). The data suggest that ARID1A may not be required for DDR signaling, but do not rule out the possibility that ARID1A is downstream of DDR signaling (and the authors even hypothesize this on p30). The data provided do not justify the conclusion that ARID1A acts independently of DDR signaling.

      associated DDR factors such as: H2Ax; ATR; and MDC1. We observed an abnormal persistence of elongating RNA polymerase II on the mutant XY body in response to the loss of ARID1A, emphasizing its role in the transcriptional repression of the XY during pachynema. The loss of ARID1A results in a failure to silence sex-linked genes and does so in the presence of DDR signaling factors in the XY body. As the reviewer notes, we highlighted the possibility that DDR pathways might influence ARID1A recruitment to the XY, evidenced by the hyperaccumulation of ARID1A on the sex body late in diplonema. Therefore, whether ARID1A is dependent on DDR signaling remains an open question.

      Comment 5: After observing no changes in levels or localization of H3.3 chaperones, the authors conclude that 'ARID1A impacts H3.3 accumulation on the sex chromosomes without affecting its expression or incorporation during pachynema.' It's not clear to this reviewer what the authors mean by this. Aside from the issue of not having tested DAXX or HIRA activity, are they suggesting that some other process besides altered incorporation leads to H3.3 accumulation, and if so, what process would that be?

      Response: The loss of ARID1A might result in an abnormal redistribution of DAXX or HIRA on the XY, potentially contributing to the defects in H3.3 accumulation and canonical H3.1/3.2 eviction on the XY. While speculative at this point, it is also possible that the persistence of elongating RNAPII in response to the loss of ARID1A might prevent the sex chromosome-wide coating of H3.3. Addressing the mechanism underlying ARID1A-governed H3.3 accumulation on the XY body remains a topic for future investigation.

      Comment 6: The authors find an interesting connection between certain regions that gained chromatin accessibility after ARID1A loss (clusters G1 and G3) and the presence of the PRDM9 sequence motif. The G1 and G3 clusters also show DMC1 occupancy and H3K4me3 enrichment. However, an additional cluster with gained accessibility (G4) also shows DMC1 occupancy and H3K4me3 enrichment but has modest H3.3 accumulation. The paper would benefit for additional discussion about the G4 cluster (which encompasses 960 peak calls). Is there any enrichment of PRDM9 sites in G4? If H3.3 exclusion governs meiotic DSBs, how does cluster G4 fit into the model?

      Response: We agree that, compared to G1+G3, cluster G4 shows an insignificant increase in H3.3 occupancy in the absence of ARID1A (Figure 6B). The plot profile associated with the heatmap confirms this result (Figure 6B). Therefore, cluster G4 is very distinct in its chromatin composition from G1+G3 upon the loss of ARID1A and, as such, is not inconsistent with our model of H3.3 antagonism with DSB sites. Additionally, we did not observe an enrichment of PRDM9 sites in G4. Since G4 does not display similar dynamics in H3.3 occupancy to G1+G3, DMC1 association might not be perturbed at G4 in response to the loss of ARID1A. Future studies will be required to determine the genomic associations of DMC1 and H3K4me3 in response to the loss of ARID1A.

      Comment 7: The impacts of ARID1A loss on DMC1 focus formation (reduced sex chromosome association) are very interesting and also raise additional questions. Are DMC1 foci on autosomes also affected during pachynema? The corresponding lack of apparent effect on RAD51 implies that breaks are still made and resected, enabling RAD51 filament formation. A more thorough quantitative assessment of RAD51 focus formation will be interesting in the long run, enabling determination of the number of break sites and the kinetics of repair, which the authors suggest is perturbed by ARID1A loss but doesn't directly test. It isn't clear how a nucleosomal factor (H3.3) would influence loading of recombinases onto ssDNA, especially if the alteration is not at the level of resection and ssDNA formation. Additional discussion of this point is warranted. Lastly, there currently are various notions for the interplay between RAD51 and DMC1 in filament formation and break repair, and brief discussion of this area and the implications of the new findings from the ARID1A CKO would strengthen the paper further.

      Response: The impact of H3.3 on the loading of recombinases might be an indirect consequence of ARID1A-governed sex-linked transcriptional repression. In a recent study, Alexander et al. (Nat. Commun, 2023, PMID: 36990976) showed that transcriptional activity and meiotic recombination are spatially compartmentalized during meiosis. Therefore, the persistence of elongating RNA polymerase II on a sex body depleted for H3.3 in the absence of ARID1A might contribute to the defect in DMC1 association. RAD51 and DMC1 are known to bind ssDNA at PRDM9/SPO11 designated DSB hotspots. However, these recombinases occupy unique domains. DMC1 localizes nearest the DSB breakpoint, promoting strand exchange, whereas RAD51 is further away (Hinch et al., PMID32610038). We show that loss of Arid1a decreases DMC1 foci on the XY chromosomes without affecting RAD51. These findings indicate that BAF-A plays a role in the loading and/or retention of DMC1 to the XY chromosomes. This information has been added to the discussion.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We are very grateful to both reviewers for taking the time to review our manuscript and data in great detail. We thank you for the fair assessment of our work, the helpful feedback, and for recognizing the value of our work. We have done our best to address your concerns below:

      eLife assessment This work reports a valuable finding on glucocorticoid signaling in male and female germ cells in mice, pointing out sexual dimorphism in transcriptomic responsiveness. While the evidence supporting the claims is generally solid, additional assessments would be required to fully confirm an inert GR signaling despite the presence of GR in the female germline and GR-mediated alternative splicing in response to dexamethasone treatment in the male germline. The work may interest basic researchers and physician-scientists working on reproduction and

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Cincotta et al set out to investigate the presence of glucocorticoid receptors in the male and female embryonic germline. They further investigate the impact of tissue-specific genetically induced receptor absence and/or systemic receptor activation on fertility and RNA regulation. They are motivated by several lines of research that report inter and transgenerational effects of stress and or glucocorticoid receptor activation and suggest that their findings provide an explanatory mechanism to mechanistically back parental stress hormone exposure-induced phenotypes in the offspring.

      Strengths:

      A chronological immunofluorescent assessment of GR in fetal and early life oocyte and sperm development.

      RNA seq data that reveal novel cell type specific isoforms validated by q-RT PCR E15.5 in the oocyte.

      2 alternative approaches to knock out GR to study transcriptional outcomes. Oocytes: systemic GR KO (E17.5) with low input 3-tag seq and germline-specific GR KO (E15.5) on fetal oocyte expression via 10X single cell seq and 3-cap sequencing on sorted KO versus WT oocytes both indicating little impact on polyadenylated RNAs

      2 alternative approaches to assess the effect of GR activation in vivo (systemic) and ex vivo (ovary culture): here the RNA seq did show again some changes in germ cells and many in the soma.

      They exclude oocyte-specific GR signaling inhibition via beta isoforms.

      Perinatal male germline shows differential splicing regulation in response to systemic Dex administration, results were backed up with q-PCR analysis of splicing factors. Weaknesses:

      COMMENT #1: The presence of a protein cannot be entirely excluded based on IF data

      We agree that very low levels of GR could escape the detection by IF and confocal imaging. We feel that our IF data do match transcript data in our validation studies of the GR KO using (1) qRT-PCR on fetal ovary in Fig 2E and (2) scRNA-seq in germ cells and ovarian soma in Fig S2B.

      COMMENT #2: (staining of spermatids is referred to but not shown).

      You are correct that this statement was based on a morphological identification of spermatids using DAPI morphology. We have performed a co-stain for GR with the spermatocyte marker SYCP3, and the spermatid/spermatozoa marker PNA (Peanut Agglutinin; from Arachis hypogaea) in adult testis tissue. We have updated Figure 4D to reflect this change, as well as the corresponding text in the Results section.

      COMMENT #3: The authors do not consider post-transcriptional level a) modifications also triggered by GR activation b) non-coding RNAs (not assessed by seq).

      We thank the reviewer for raising this very important point about potential post-transcriptional (non-genomic) effects of GR in the fetal oocyte. We agree that while our RNA-seq results show only a minimal transcriptional response, we cannot rule out a non-canonical signaling function of GR, such as the regulation of cellular kinases (as reviewed elsewhere1), or the regulation of non coding RNAs at the post-transcriptional level, and we have amended the discussion to include a sentence on this point. However, while we fully acknowledge the possibility of GR regulating non-genomic level cellular signaling, we chose not to explore this option further based on the lack of any overall functional effect on meiotic progression when GR signaling was perturbed- either by KO (Figure 2D) or dex-mediated activation (Figure S3C).

      COMMENT #4: Sequencing techniques used are not total RNA but either are focused on all polyA transcripts (10x) or only assess the 3' prime end and hence are not ideal to study splicing

      We thank the reviewer for raising this concern, however this statement is not correct and we have clarified this point in the Results section to explain how the sequencing libraries of the male germ cell RNA-seq were prepared. We agree that certain sequencing techniques (such as 3’ Tag-Seq) that generate sequencing libraries from a limited portion of an entire transcript molecule are not appropriate for analysis of differential splicing. This was not the case, however, for the RNA-seq libraries prepared on our male germ cells treated with dexamethasone. These libraries were constructed using full length transcripts that were reverse transcribed using random hexamer priming, thus accounting for sequencing coverage across the full transcript length. As a result, this type of library prep technique should be sufficient for capturing differential splicing events along the length of the transcript. We do, however, point out that these libraries were constructed on polyA-enriched transcripts. Thus while we obtained full length transcript coverage for these polyA transcripts, any differential splicing taking place in non poly-adenylated RNA moieties were not captured. While we are excited about the possibility of exploring GR-mediated splicing regulation of other RNA species in the future, we chose to focus the scope of our current study on polyA mRNA molecules specifically.

      COMMENT #5: The number of replicates in the low input seq is very low and hence this might be underpowered

      While the number of replicates (n=3-4 per condition) is sufficient for performing statistical analysis of a standard RNA-seq experiment, we do acknowledge and agree with the reviewer that low numbers of FACS-sorted germ cells from individual embryos combined with the low input 3’ Tag-Seq technique could have led to higher sample variability than desired. Given that we validated our bulk RNA-seq analysis of GR knockout ovaries using an orthogonal single-cell RNA-seq approach, we feel that our conclusions regarding a lack of transcriptional changes upon GR deletion remain valid.

      COMMENT #6: Since Dex treatment showed some (modest) changes in oocyte RNA - effects of GR depletion might only become apparent upon Dex treatment as an interaction.

      We may be missing the nuance of this point, but our interpretation of an effect that is seen only when the KO is treated with Dex would be that the mechanism would not be autonomous in germ cells but indirect or off-target.

      COMMENT #7: Effects in oocytes following systemic Dex might be indirect due to GR activation in the soma.

      As both the oocytes and ovarian soma express GR during the window of dex administration, we agree that it is possible that the few modest changes seen in the oocyte transcriptome are the result of indirect effects following robust GR signaling in the somatic compartment. However, given that these modest oocyte transcript changes in response to dex treatment did not significantly alter the ability of oocytes to progress through meiosis, we chose not to explore this mechanism further.

      COMMENT #8: Even though ex vivo culture of ovaries shows GR translocation to the nucleus it is not sure whether the in vivo systemic administration does the same.

      AND

      The conclusion that fetal oocytes are resistant to GR manipulation is very strong, given that "only" poly A sequencing and few replicates of 3-prime sequencing have been analyzed and information is lacking on whether GR is activated in germ cells in the systemically dex-injected animals.

      If we understand correctly, the first part refers to a technical limitation and the second part takes issue with our interpretation of the data. For the former, we appreciate this astute insight on the conundrum of detecting a response to systemic dex in fetal oocytes, which is generally monitored by nuclear translocation of GR. As shown in Figure 1A and 1B, GR localization is overwhelmingly nuclear in fetal oocytes of WT animals at E13.5 without addition of any dex. We could not, therefore, use GR translocation as a proxy for activation in response to dex treatment. We instead used ex vivo organ culture to monitor localization changes, as we were able to maintain fetal ovaries ex vivo in hormone-depleted and ligand negative conditions. As shown in Fig. 3, these defined culture conditions elicited a shift of GR to the cytoplasm of fetal oocytes. This led us to conclude that GR is capable of translocating between nucleus and cytoplasm in fetal oocytes, and we were able to counteract this loss in nuclear localization by providing dex ligand in the media.

      We feel that our conclusion that oocytes are resistant to manipulation of glucocorticoid signaling despite their possession of the receptor and capacity for nuclear translocation is substantiated by multiple results: meiotic phenotyping, bulk RNA-seq and scRNA-seq analysis of both GR KO and dex dosed mice. Our basis for testing the timing and fidelity of meiotic prophase I was the coincident onset of GR expression in female germ cells at E13, and the disappearance of GR in neonatal oocytes as they enter meiotic arrest. The lack of transcriptional changes observed in oocytes in response to dex has made it even more challenging to demonstrate a bona fide “activation” of GR. Observation of a dose-dependent induction of the canonical GR response gene Fkbp5 in the somatic cells of the fetal ovary (Figure S3A and 3A) affirmed that dex traverses the placenta. We agree with the reviewer that it remains possible that dex or GR KO could lead to changes in epigenetic marks or small RNAs in oocytes, and have mentioned these possibilities in the discussion, but we note that even epigenetic perturbations during oocyte development such as the loss of Tet1 or Dnmt1 result in measurable changes in the transcriptome and the timing of meiotic prophase 2–4.

      COMMENT #9: This work is a good reference point for researchers interested in glucocorticoid hormone signaling fertility and RNA splicing. It might spark further studies on germline-specific GR functions and the impact of GR activation on alternative splicing. While the study provides a characterization of GR and some aspects of GR perturbation, and the negative findings in this study do help to rule out a range of specific roles of GR in the germline, there is still a range of other potential unexplored options. The introduction of the study eludes to implications for intergenerational effects via epigenetic modifications in the germline, however, it does not mention that the indirect effects of reproductive tissue GR signaling on the germline have indeed already been described in the context of intergenerational effects of stress.

      The reviewer raises an excellent point that we have not made sufficient distinction in our manuscript between prior studies of gestational stress and preconception stress and the light that our work may shed on those findings. We have revised the introduction to clarify this difference, and added reference to an outstanding study that identifies glucocorticoid-induced changes to microRNA cargo of extracellular vesicles shed by epididymal epithelial cells that when transferred to mature sperm can induce changes in the HPA axis and brain of offspring 5. Interestingly, this GR-mediated effect in the epididymal epithelial cells concurs with our observation in the adult testis that GR can be detected only cKit+ spermatogonia but not in subsequent stages of spermatids.

      COMMENT #10: Also, the study does not assess epigenetic modifications.

      We agree with the reviewer that exploring the role of GR in regulating epigenetic modifications within the germline is an area of extreme interest given the potential links between stress and transgenerational epigenetic inheritance. As this is a broader topic that requires a more thorough and comprehensive set of experiments, we have intentionally chosen to keep this work separate from the current study, and hope to expand upon this topic in the future.

      COMMENT #11: The conclusion that the persistence of a phenotype for up to three generations suggests that stress can induce lasting epigenetic changes in the germline is misleading. For the reader who is unfamiliar with the field, it is important to define much more precisely what is referred to as "a phenotype". Furthermore, this statement evokes the impression that the very same epigenetic changes in the germline have been observed across multiple generations.

      We see how this may be misleading, and we have amended the text of the introduction and discussion accordingly to avoid the use of the term “phenotype”.

      COMMENT #12: The evidence of the presence of GR in the germline is also somewhat limited - since other studies using sequencing have detected GR in the mature oocyte and sperm.

      As described above in response to Comment #2, we have included immunostaining of adult testis in a revised Figure 4D and shown that we detect GR in PLZF+ and cKIT+ spermatogonia. We also show low/minimal expression in some (SYCP3+) early meiotic spermatocytes, but not in (Lectin+) spermatids. We are not aware of any studies that have shown expression of GR protein in the mature oocyte.

      COMMENT #13: The discussion ends again on the implications of sex-specific differences of GR signaling in the context of stress-induced epigenetic inheritance. It states that the observed differences might relate to the fact that there is more evidence for paternal lineage findings, without considering that maternal lineage studies in epigenetic inheritance are generally less prevalent due to some practical factors - such as more laborious study design making use of cross-fostering or embryo transfer.

      We thank the reviewer for this valid point, and we have amended the discussion section.

      Reviewer #2 (Public Review):

      Summary:

      There is increasing evidence in the literature that rodent models of stress can produce phenotypes that persist through multiple generations. Nevertheless, the mechanism(s) by which stress exposure produces phenotypes are unknown in the directly affected individual as well as in subsequent offspring that did not directly experience stress. Moreover, it has also been shown that glucocorticoid stress hormones can recapitulate the effects of programmed stress. In this manuscript, the authors test the compelling hypothesis that glucocorticoid receptor (GR)-signaling is responsible for the transmission of phenotypes across generations. As a first step, the investigators test for a role of GR in the male and female germline. Using knockouts and GR agonists, they show that although germ cells in male and female mice have GR that appears to localize to the nucleus when stimulated, oocytes are resistant to changes in GR levels. In contrast, the male germline exhibits changes in splicing but no overt changes in fertility.

      Strengths:

      Although many of the results in this manuscript are negative, this is a careful and timely study that informs additional work to address mechanisms of transmission of stress phenotypes across generations and suggests a sexually dimorphic response to glucocorticoids in the germline. The work presented here is well-done and rigorous and the discussion of the data is thoughtful. Overall, this is an important contribution to the literature.

      Reviewer #1 (Recommendations For The Authors):

      RECOMMENDATION #1: To assess whether in females the systemic Dex administration directly activates GR in oocytes it would be great to assess GR activation following Dex administration, and ideally to see the effects abolished when Dex is administered to germline-specific KO animals.

      In regard to the recommendation to assess GR activation in response to systemic dex administration, we refer the reviewer back to our response in Comment #8 highlighting the difficulties defining and measuring GR activation in the germline.

      This therefore has made it difficult to assess whether any of the modest effects seen in response to dex are abolished in our germline-specific KO animals. While repeating our RNA-seq experiment in dex-dosed germline KO animals would address whether the ~60 genes induced in oocytes are the result of oocyte-intrinsic GR activity, we have decided not to explore this mechanism further due to the overall lack of a functional effect on meiotic progression in response to dex (Figure S3C).

      RECOMMENDATION #2: To further strengthen the link between GR and alternative splicing it would be great to see the dex administration experiment repeated in germline specific GR KO's.

      While we understand the reviewer’s suggestion to explore whether deletion of GR in the spermatogonia is sufficient to abrogate the dex-mediated decreases in splice factor expression, we chose not to explore the details of this mechanism given that deletion of GR in the male germline does not impair fertility (Figure 6).

      RECOMMENDATION #3: I am wondering how much a given reduction in one of the splicing factors indeed affects splicing events. Can the authors relate this to literature, or maybe an in vitro experiment can be done to see whether the level of differential splicing events detected is in a range that can be expected in the case of the magnitude of splicing factor reduction?

      It has been shown in many instances in the literature that a full genetic deletion of a single splice factor leads to impairments in spermatogenesis, and ultimately infertility 6–16. We suspect that dex treatment leads to fewer differential splicing events than a full splice factor deletion, given that dex treatment causes a broader decrease in splice factor expression without entirely abolishing any single splice factor. We have amended the discussion section to include this point. While we share the reviewer’s curiosity to compare the effects of dex vs genetic deletion of splicing machinery on the overall magnitude of differential splicing events, we unfortunately do not have access to mice with a floxed splice factor at this time. While we have considered knocking out one or more splice factors in an ex vivo cultured testis to compare alongside dex treatment, our efforts to date have proven unsuccessful due to high cell death upon culture of the postnatal testis for more than 24 hours.

      RECOMMENDATION #4: It is unclear from the methods whether in germline-specific KO's also the controls received tamoxifen.

      We thank the reviewer for catching this missing piece of information. All control embryos that were assessed received an equivalent dose of tamoxifen to the germline-specific KO embryos. The only difference between cKOs and controls was the presence of the Cre transgene. We have updated the Materials and Methods 3’ Tag-Seq sample preparation section to include the sentence: “Both GRcKO/cKO and control GRflox/flox embryos were collected from tamoxifen-injected dams, and thus were equally exposed to tamoxifen in utero”.

      Reviewer #2 (Recommendations For The Authors):

      I just have only a few comments/questions.

      RECOMMENDATION #5: It is somewhat surprising that GR is expressed in female germ cells, yet there doesn't seem to be a requirement. Is there any indication of what it does? Is the long-term stability of the germline compromised?

      We thank the reviewer for these questions, and we agree that it was quite surprising to find a lack of GR function in the female germline despite its robust expression. The question of whether loss of GR affects the long-term stability of the female germline is interesting, given that similar work in GR KO zebrafish has shown impairments to female reproductive capacity, yet only upon aging 17–19.

      While we have shared interest in this question, technical limitations thus far have prevented us from properly assessing the effect of GR loss in aged females. Homozygous deletion of GR results in embryonic lethality at approximately E17.5. Conditional deletion of GR using Oct4-CreERT2 with a single dose of tamoxifen (2.5 mg / 20g mouse) at E9.5 results in complete deletion of GR by E10.5, although dams consistently suffer from dystocia and are no longer able to deliver viable pups. While using the more active tamoxifen metabolite (4OHT) at 0.1 mg / 20g has allowed for successful delivery, the resulting deletion rate is very poor (see qPCR results in panel below, left). While using half the dose of standard tamoxifen (1.25 mg / 20g mouse) at E9.5 has on rare occasions led to a successful delivery, the resulting recombination efficiency is insufficient (Author response image 1 right panel).

      Author response image 1.

      While a Blimp1-Cre conditional KO model was used to assess male fertility on GR deletion, we believe this model may not be ideal for studying fertility in the context of aging. While Blimp1-Cre is highly specific to the germ cells within the gonad, there are many cell types outside of the gonad that express Blimp1, including the skin and certain cells of the immune system. It is unclear, particularly over the course of aging, whether any effects on fertility seen would be due to an oocyte-intrinsic effect, or the result of GR loss elsewhere in the body. While we hope to explore the role of GR in the aging oocyte further using alternative Cre models in the future, this is currently outside the scope of this work.

      RECOMMENDATION #6: Figure 5b: what is the left part of that panel? Is it the same volcano plot for germ cells as shown in part a but with splicing factors?

      We apologize if this panel was unclear. Yes, the left panel of Figure 5B is in fact the same volcano plot in 5A, labeled with splicing factors instead of top genes. We have edited Figure 5B and corresponding figure legend to clarify this.

      References: 1. Oakley, R.H., and Cidlowski, J.A. (2013). The biology of the glucocorticoid receptor: New signaling mechanisms in health and disease. J. Allergy Clin. Immunol. 132, 1033–1044. 10.1016/j.jaci.2013.09.007.

      1. Hargan-Calvopina, J., Taylor, S., Cook, H., Hu, Z., Lee, S.A., Yen, M.-R., Chiang, Y.-S., Chen, P.-Y., and Clark, A.T. (2016). Stage-Specific Demethylation in Primordial Germ Cells Safeguards against Precocious Differentiation. Dev. Cell 39, 75–86. 10.1016/j.devcel.2016.07.019.

      2. Hill, P.W.S., Leitch, H.G., Requena, C.E., Sun, Z., Amouroux, R., Roman-Trufero, M., Borkowska, M., Terragni, J., Vaisvila, R., Linnett, S., et al. (2018). Epigenetic reprogramming enables the transition from primordial germ cell to gonocyte. Nature 555, 392–396. 10.1038/nature25964.

      3. Eymery, A., Liu, Z., Ozonov, E.A., Stadler, M.B., and Peters, A.H.F.M. (2016). The methyltransferase Setdb1 is essential for meiosis and mitosis in mouse oocytes and early embryos. Development 143, 2767–2779. 10.1242/dev.132746.

      4. Chan, J.C., Morgan, C.P., Leu, N.A., Shetty, A., Cisse, Y.M., Nugent, B.M., Morrison, K.E., Jašarević, E., Huang, W., Kanyuch, N., et al. (2020). Reproductive tract extracellular vesicles are sufficient to transmit intergenerational stress and program neurodevelopment. Nat Commun 11, 1499. 10.1038/s41467-020-15305-w.

      5. Kuroda, M., Sok, J., Webb, L., Baechtold, H., Urano, F., Yin, Y., Chung, P., Rooij, D.G. de, Akhmedov, A., Ashley, T., et al. (2000). Male sterility and enhanced radiation sensitivity in TLS−/− mice. Embo J 19, 453–462. 10.1093/emboj/19.3.453.

      6. Liu, W., Wang, F., Xu, Q., Shi, J., Zhang, X., Lu, X., Zhao, Z.-A., Gao, Z., Ma, H., Duan, E., et al. (2017). BCAS2 is involved in alternative mRNA splicing in spermatogonia and the transition to meiosis. Nat Commun 8, 14182. 10.1038/ncomms14182.

      7. Li, H., Watford, W., Li, C., Parmelee, A., Bryant, M.A., Deng, C., O’Shea, J., and Lee, S.B. (2007). Ewing sarcoma gene EWS is essential for meiosis and B lymphocyte development. J Clin Invest 117, 1314–1323. 10.1172/jci31222.

      8. O’Bryan, M.K., Clark, B.J., McLaughlin, E.A., D’Sylva, R.J., O’Donnell, L., Wilce, J.A., Sutherland, J., O’Connor, A.E., Whittle, B., Goodnow, C.C., et al. (2013). RBM5 Is a Male Germ Cell Splicing Factor and Is Required for Spermatid Differentiation and Male Fertility. Plos Genet 9, e1003628. 10.1371/journal.pgen.1003628.

      9. Zagore, L.L., Grabinski, S.E., Sweet, T.J., Hannigan, M.M., Sramkoski, R.M., Li, Q., and Licatalosi, D.D. (2015). RNA Binding Protein Ptbp2 Is Essential for Male Germ Cell Development. Mol Cell Biol 35, 4030–4042. 10.1128/mcb.00676-15.

      10. Xu, K., Yang, Y., Feng, G.-H., Sun, B.-F., Chen, J.-Q., Li, Y.-F., Chen, Y.-S., Zhang, X.-X., Wang, C.-X., Jiang, L.-Y., et al. (2017). Mettl3-mediated m6A regulates spermatogonial differentiation and meiosis initiation. Cell Res 27, 1100–1114. 10.1038/cr.2017.100.

      11. Horiuchi, K., Perez-Cerezales, S., Papasaikas, P., Ramos-Ibeas, P., López-Cardona, A.P., Laguna-Barraza, R., Balvís, N.F., Pericuesta, E., Fernández-González, R., Planells, B., et al. (2018). Impaired Spermatogenesis, Muscle, and Erythrocyte Function in U12 Intron Splicing-Defective Zrsr1 Mutant Mice. Cell Reports 23, 143–155. 10.1016/j.celrep.2018.03.028.

      12. Ehrmann, I., Crichton, J.H., Gazzara, M.R., James, K., Liu, Y., Grellscheid, S.N., Curk, T., Rooij, D. de, Steyn, J.S., Cockell, S., et al. (2019). An ancient germ cell-specific RNA-binding protein protects the germline from cryptic splice site poisoning. Elife 8, e39304. 10.7554/elife.39304.

      13. Legrand, J.M.D., Chan, A.-L., La, H.M., Rossello, F.J., Änkö, M.-L., Fuller-Pace, F.V., and Hobbs, R.M. (2019). DDX5 plays essential transcriptional and post-transcriptional roles in the maintenance and function of spermatogonia. Nat Commun 10, 2278. 10.1038/s41467-019-09972-7.

      14. Yuan, S., Feng, S., Li, J., Wen, H., Liu, K., Gui, Y., Wen, Y., and Wang, X. (2021). hnRNPH1 recruits PTBP2 and SRSF3 to cooperatively modulate alternative pre-mRNA splicing in germ cells and is essential for spermatogenesis and oogenesis. 10.21203/rs.3.rs-1060705/v1.

      15. Wu, R., Zhan, J., Zheng, B., Chen, Z., Li, J., Li, C., Liu, R., Zhang, X., Huang, X., and Luo, M. (2021). SYMPK Is Required for Meiosis and Involved in Alternative Splicing in Male Germ Cells. Frontiers Cell Dev Biology 9, 715733. 10.3389/fcell.2021.715733.

      16. Maradonna, F., Gioacchini, G., Notarstefano, V., Fontana, C.M., Citton, F., Valle, L.D., Giorgini, E., and Carnevali, O. (2020). Knockout of the Glucocorticoid Receptor Impairs Reproduction in Female Zebrafish. Int J Mol Sci 21, 9073. 10.3390/ijms21239073.

      17. Facchinello, N., Skobo, T., Meneghetti, G., Colletti, E., Dinarello, A., Tiso, N., Costa, R., Gioacchini, G., Carnevali, O., Argenton, F., et al. (2017). nr3c1 null mutant zebrafish are viable and reveal DNA-binding-independent activities of the glucocorticoid receptor. Sci Rep-uk 7, 4371. 10.1038/s41598-017-04535-6.

      18. Faught, E., Santos, H.B., and Vijayan, M.M. (2020). Loss of the glucocorticoid receptor causes accelerated ovarian ageing in zebrafish. Proc Royal Soc B 287, 20202190. 10.1098/rspb.2020.2190.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors develop a method to fluorescently tag peptides loaded onto dendritic cells using a two-step method with a tetracystein motif modified peptide and labelling step done on the surface of live DC using a dye with high affinity for the added motif. The results are convincing in demonstrating in vitro and in vivo T cell activation and efficient label transfer to specific T cells in vivo. The label transfer technique will be useful to identify T cells that have recognised a DC presenting a specific peptide antigen to allow the isolation of the T cell and cloning of its TCR subunits, for example. It may also be useful as a general assay for in vitro or in vivo T-DC communication that can allow the detection of genetic or chemical modulators.

      Strengths:

      The study includes both in vitro and in vivo analysis including flow cytometry and two-photon laser scanning microscopy. The results are convincing and the level of T cell labelling with the fluorescent pMHC is surprisingly robust and suggests that the approach is potentially revealing something about fundamental mechanisms beyond the state of the art.

      Weaknesses:

      The method is demonstrated only at high pMHC density and it is not clear if it can operate at at lower peptide doses where T cells normally operate. However, this doesn't limit the utility of the method for applications where the peptide of interest is known. It's not clear to me how it could be used to de-orphan known TCR and this should be explained if they want to claim this as an application. Previous methods based on biotin-streptavidin and phycoerythrin had single pMHC sensitivity, but there were limitations to the PE-based probe so the use of organic dyes could offer advantages.

      We thank the reviewer for the valuable comments and suggestions. Indeed, we have shown and optimized this labeling technique for a commonly used peptide at rather high doses to provide a proof of principle for the possible use of tetracysteine tagged peptides for in vitro and in vivo studies. However, we completely agree that the studies that require different peptides and/or lower pMHC concentrations may require preliminary experiments if the use of biarsenical probes is attempted. We think it can help investigate the functional and biological properties of the peptides for TCRs deorphaned by techniques. Tetracysteine tagging of such peptides would provide a readily available antigen-specific reagent for the downstream assays and validation. Other possible uses for modified immunogenic peptides could be visualizing the dynamics of neoantigen vaccines or peptide delivery methods in vivo. For these additional uses, we recommend further optimization based on the needs of the prospective assay.

      Reviewer #2 (Public Review):

      Summary:

      The authors here develop a novel Ovalbumin model peptide that can be labeled with a site-specific FlAsH dye to track agonist peptides both in vitro and in vivo. The utility of this tool could allow better tracking of activated polyclonal T cells particularly in novel systems. The authors have provided solid evidence that peptides are functional, capable of activating OTII T cells, and that these peptides can undergo trogocytosis by cognate T cells only.

      Strengths:

      -An array of in vitro and in vivo studies are used to assess peptide functionality.

      -Nice use of cutting-edge intravital imaging.

      -Internal controls such as non-cogate T cells to improve the robustness of the results (such as Fig 5A-D).

      -One of the strengths is the direct labeling of the peptide and the potential utility in other systems.

      Weaknesses:

      1. What is the background signal from FlAsH? The baselines for Figure 1 flow plots are all quite different. Hard to follow. What does the background signal look like without FLASH (how much fluorescence shift is unlabeled cells to No antigen+FLASH?). How much of the FlAsH in cells is actually conjugated to the peptide? In Figure 2E, it doesn't look like it's very specific to pMHC complexes. Maybe you could double-stain with Ab for MHCII. Figure 4e suggests there is no background without MHCII but I'm not fully convinced. Potentially some MassSpec for FLASH-containing peptides.

      We thank the reviewer for pointing out a possible area of confusion. In fact, we have done extensive characterization of the background and found that it has varied with the batch of FlAsH, TCEP, cytometer and also due to the oxidation prone nature of the reagents. Because Figure 1 subfigures have been derived from different experiments, a combination of the factors above have likely contributed to the inconsistent background. To display the background more objectively, we have now added the No antigen+Flash background to the revised Fig 1.

      It is also worthwhile noting that nonspecific Flash incorporation can be toxic at increasing doses, and live cells that display high backgrounds may undergo early apoptotic changes in vitro. However, when these cells are adoptively transferred and tracked in vivo, the compromised cells with high background possibly undergo apoptosis and get cleared by macrophages in the lymph node. The lack of clearance in vitro further contributes to different backgrounds between in vitro and in vivo, which we think is also a possible cause for the inconsistent backgrounds throughout the manuscript. Altogether, comparison of absolute signal intensities from different experiments would be misleading and the relative differences within each experiment should be relied upon. We have added further discussion about this issue.

      1. On the flip side, how much of the variant peptides are getting conjugated in cells? I'd like to see some quantification (HPLC or MassSpec). If it's ~10% of peptides that get labeled, this could explain the low shifts in fluorescence and the similar T cell activation to native peptides if FlasH has any deleterious effects on TCR recognition. But if it's a high rate of labeling, then it adds confidence to this system.

      We agree that mass spectrometry or, more specifically tandem MS/MS, would be an excellent addition to support our claim about peptide labeling by FlAsH being reliable and non-disruptive. Therefore, we have recently undertaken a tandem MS/MS quantitation project with our collaborators. However, this would require significant time to determine the internal standard based calibration curves and to run both analytical and biological replicates. Hence, we have decided pursuing this as a follow up study and added further discussion on quantification of the FlAsH-peptide conjugates by tandem MS/MS.

      1. Conceptually, what is the value of labeling peptides after loading with DCs? Why not preconjugate peptides with dye, before loading, so you have a cleaner, potentially higher fluorescence signal? If there is a potential utility, I do not see it being well exploited in this paper. There are some hints in the discussion of additional use cases, but it was not clear exactly how they would work. One mention was that the dye could be added in real-time in vivo to label complexes, but I believe this was not done here. Is that feasible to show?

      We have already addressed preconjugation as a possible avenue for labeling peptides. In our hands, preconjugation resulted in low FlAsH intensity overall in both the control and tetracysteine labeled peptides (Author response image 1). While we don’t have a satisfactory answer as to why the signal was blunted due to preconjugation, it could be that the tetracysteine tagged peptides attract biarsenical compounds better intracellularly. It may be due to the redox potential of the intracellular environment that limits disulfide bond formation. (PMID: 18159092)

      Author response image 1.

      Preconjugation yields poor FlAsH signal. Splenic DCs were pulsed with peptide then treated with FlAsH or incubated with peptide-FlAsH preconjugates. Overlaid histograms show the FlAsH intensities on DCs following the two-step labeling (left) and preconjugation (right). Data are representative of two independent experiments, each performed with three biological replicates.

      1. Figure 5D-F the imaging data isn't fully convincing. For example, in 5F and 2G, the speeds for T cells with no Ag should be much higher (10-15micron/min or 0.16-0.25micron/sec). The fact that yours are much lower speeds suggests technical or biological issues, that might need to be acknowledged or use other readouts like the flow cytometry.

      We thank the reviewer for drawing attention to this technical point. We would like to point out that the imaging data in fig 5 d-f was obtained from agarose embedded live lymph node sections. Briefly, the lymph nodes were removed, suspended in 2% low melting temp agarose in DMEM and cut into 200 µm sections with a vibrating microtome. Prior to imaging, tissue sections were incubated in complete RPMI medium at 37 °C for 2 h to resume cell mobility. Thus, we think the cells resuming their typical speeds ex vivo may account for slightly reduced T cell speeds overall, for both control and antigen-specific T cells (PMID: 32427565, PMID: 25083865). We have added text to prevent the ambiguity about the technique for dynamic imaging. The speeds in Figure 2g come from live imaging of DC-T cell cocultures, in which the basal cell movement could be hampered by the cell density. Additionally, glass bottom dishes have been coated with Fibronectin to facilitate DC adhesion, which may be responsible for the lower average speeds of the T cells in vitro.

      Reviewer #1 (Recommendations For The Authors):

      Does the reaction of ReAsH with reactive sites on the surface of DC alter them functionally? Functions have been attributed to redox chemistry at the cell surface- could this alter this chemistry?

      We thank the reviewer for the insight. It is possible that the nonspecific binding of biarsenical compounds to cysteine residues, which we refer to as background throughout the manuscript, contribute to some alterations. One possible way biarsenicals affect the redox events in DCs can be via reducing glutathione levels (PMID: 32802886). Glutathione depletion is known to impair DC maturation and antigen presentation (PMID: 20733204). To avoid toxicity, we have carried out a stringent titration to optimize ReAsH and FlAsH concentrations for labeling and conducted experiments using doses that did not cause overt toxicity or altered DC function.

      Have the authors compared this to a straightforward approach where the peptide is just labelled with a similar dye and incubated with the cell to load pMHC using the MHC knockout to assess specificity? Why is this that involves exposing the DC to a high concentration of TCEP, better than just labelling the peptide? The Davis lab also arrived at a two-step method with biotinylated peptide and streptavidin-PE, but I still wonder if this was really necessary as the sensitivity will always come down to the ability to wash out the reagents that are not associated with the MHC.

      We agree with the reviewer that small undisruptive fluorochrome labeled peptide alternatives would greatly improve the workflow and signal to noise ratio. In fact, we have been actively searching for such alternatives since we have started working on the tetracysteine containing peptides. So far, we have tried commercially available FITC and TAMRA conjugated OVA323-339 for loading the DCs, however failed to elicit any discernible signal. We also have an ongoing study where we have been producing and testing various in-house modified OVA323-339 that contain fluorogenic properties. Unfortunately, at this moment, the ones that provided us with a crisp, bright signal for loading revealed that they have also incorporated to DC membrane in a nonspecific fashion and have been taken up by non-cognate T cells from double antigen-loaded DCs. We are actively pursuing this area of investigation and developing better optimized peptides with low/non-significant membrane incorporation.

      Lastly, we would like to point out that tetracysteine tags are visible by transmission electron microscopy without FlAsH treatment. Thus, this application could add a new dimension for addressing questions about the antigen/pMHCII loading compartments in future studies. We have now added more in-depth discussion about the setbacks and advantages of using tetracysteine labeled peptides in immune system studies.

      The peptide dosing at 5 µM is high compared to the likely sensitivity of the T cells. It would be helpful to titrate the system down to the EC50 for the peptide, which may be nM, and determine if the specific fluorescence signal can still be detected in the optimal conditions. This will not likely be useful in vivo, but it will be helpful to see if the labelling procedure would impact T cell responses when antigen is limited, which will be more of a test. At 5 µM it's likely the system is at a plateau and even a 10-fold reduction in potency might not impact the T cell response, but it would shift the EC50.

      We thank the reviewer for the comment and suggestion. We agree that it is possible to miss minimally disruptive effects at 5 µM and titrating the native peptide vs. modified peptide down to the nM doses would provide us a clearer view. This can certainly be addressed in future studies and also with other peptides with different affinity profiles. A reason why we have chosen a relatively high dose for this study was that lowering the peptide dose had costed us the specific FlAsH signal, thus we have proceeded with the lowest possible peptide concentration.

      In Fig 3b the level of background in the dsRed channel is very high after DC transfer. What cells is this associated with and does this appear be to debris? Also, I wonder where the ReAsH signal is in the experiments in general. I believe this is a red dye and it would likely be quite bright given the reduction of the FlAsH signal. Will this signal overlap with signals like dsRed and PHK-26 if the DC is also treated with this to reduce the FlAsH background?

      We have already shown that ReAsH signal with DsRed can be used for cell-tracking purposes as they don’t get transferred to other cells during antigen specific interactions (Author response image 2). In fact, combining their exceptionally bright fluorescence provided us a robust signal to track the adoptively transferred DCs in the recipient mice. On the other hand, the lipophilic membrane dye PKH-26 gets transferred by trogocytosis while the remaining signal contributes to the red fluorescence for tracking DCs. Therefore, the signal that we show to be transferred from DCs to T cells only come from the lipophilic dye. To address this, we have added a sentence to elaborate on this in the results section. Regarding the reviewer’s comment on DsRed background in Figure 3b., we agree that the cells outside the gate in recipient mice seems slightly higher that of the control mice. It may suggest that the macrophages clearing up debris from apoptotic/dying DCs might contribute to the background elicited from the recipient lymph node. Nevertheless, it does not contribute to any DsRed/ReAsH signal in the antigen-specific T cells.

      Author response image 2.

      ReAsH and DsRed are not picked up by T cells during immune synapse. DsRed+ DCs were labeled with ReAsH, pulsed with 5 μM OVACACA, labeled with FlAsH and adoptively transferred into CD45.1 congenic mice mice (1-2 × 106 cells) via footpad. Naïve e450-labeled OTII and e670-labeled polyclonal CD4+ T cells were mixed 1:1 (0.25-0.5 × 106/ T cell type) and injected i.v. Popliteal lymph nodes were removed at 42 h post-transfer and analyzed by flow cytometry. Overlaid histograms show the ReAsh/DsRed, MHCII and FlAsH intensities of the T cells. Data are representative of two independent experiments with n=2 mice per group.

      In Fig 5b there is a missing condition. If they look at Ea-specific T cells for DC with without the Ova peptide do they see no transfer of PKH-26 to the OTII T cells? Also, the FMI of the FlAsH signal transferred to the T cells seems very high compared to other experiments. Can the author estimate the number of peptides transferred (this should be possible) and would each T cell need to be collecting antigens from multiple DC? Could the debris from dead DC also contribute to this if picked up by other DC or even directly by the T cells? Maybe this could be tested by transferring DC that are killed (perhaps by sonication) prior to inoculation?

      To address the reviewer’s question on the PKH-26 acquisition by T cells, Ea-T cells pick up PKH-26 from Ea+OVA double pulsed DCs, but not from the unpulsed or single OVA pulsed DCs. OTII T cells acquire PKH-26 from OVA-pulsed DCs, whereas Ea T cells don’t (as expected) and serve as an internal negative control for that condition. Regarding the reviewer’s comment on the high FlAsH signal intensity of T cells in Figure 5b, a plausible explanation can be that the T cells accumulate pMHCII through serial engagements with APCs. In fact, a comparison of the T cell FlAsH intensities 18 h and 36-48 h post-transfer demonstrate an increase (Author response image 3) and thus hints at a cumulative signal. As DCs are known to be short-lived after adoptive transfer, the debris of dying DCs along with its peptide content may indeed be passed onto macrophages, neighboring DCs and eventually back to T cells again (or for the first time, depending on the T:DC ratio that may not allow all T cells to contact with the transferred DCs within the limited time frame). We agree that the number and the quality of such contacts can be gauged using fluorescent peptides. However, we think peptides chemically conjugated to fluorochromes with optimized signal to noise profiles and with less oxidation prone nature would be more suitable for quantification purposes.

      Author response image 3.

      FlAsH signal acquisition by antigen specific T cells becomes more prominent at 36-48 h post-transfer. DsRed+ splenic DCs were double-pulsed with 5 μM OVACACA and 5 μM OVA-biotin and adoptively transferred into CD45.1 recipients (2 × 106 cells) via footpad. Naïve e450-labeled OTII (1 × 106 cells) and e670-labeled polyclonal T cells (1 × 106 cells) were injected i.v. Popliteal lymph nodes were analyzed by flow cytometry at 18 h or 48 h post-transfer. Overlaid histograms show the T cell levels of OVACACA (FlAsH). Data are representative of three independent experiments with n=3 mice per time point

      Reviewer #2 (Recommendations For The Authors):

      As mentioned in weaknesses 1 & 2, more validation of how much of the FlAsH fluorescence is on agonist peptides and how much is non-specific would improve the interpretation of the data. Another option would be to preconjugate peptides but that might be a significant effort to repeat the work.

      We agree that mass spectrometry would be the gold standard technique to measure the percentage of tetracysteine tagged peptide is conjugated to FlAsH in DCs. However, due to the scope of such endevour this can only be addressed as a separate follow up study. As for the preconjugation, we have tried and unfortunately failed to get it to work (Reviewer Figure 1). Therefore, we have shifted our focus to generating in-house peptide probes that are chemically conjugated to stable and bright fluorophore derivates. With that, we aim to circumvent the problems that the two-step FlAsH labeling poses.

      Along those lines, do you have any way to quantify how many peptides you are detecting based on fluorescence? Being able to quantify the actual number of peptides would push the significance up.

      We think two step procedure and background would pose challenges to such quantification in this study. although it would provide tremendous insight on the antigen-specific T cell- APC interactions in vivo, we think it should be performed using peptides chemically conjugated to fluorochromes with optimized signal to noise profiles.

      In Figure 3D or 4 does the SA signal correlate with Flash signal on OT2 cells? Can you correlate Flash uptake with T cell activation, downstream of TCR, to validate peptide transfers?

      To answer the reviewer’s question about FlAsH and SA correlation, we have revised the Figure 3d to show the correlation between OTII uptake of FlAsH, Streptavidin and MHCII. We also thank the reviewer for the suggestion on correlating FlAsH uptake with T cell activation and/or downstream of TCR activation. We have used proliferation and CD44 expressions as proxies of activation (Fig 2, 6). Nevertheless, we agree that the early events that correspond to the initiation of T-DC synapse and FlAsH uptake would be valuable to demonstrate the temporal relationship between peptide transfer and activation. Therefore, we have addressed this in the revised discussion.

      Author response image 4.

      FlAsH signal acquisition by antigen specific T cells is correlates with the OVA-biotin (SA) and MHCII uptake. DsRed+ splenic DCs were double-pulsed with 5 μM OVACACA and 5 μM OVA-biotin and adoptively transferred into CD45.1 recipients (2 × 106 cells) via footpad. Naïve e450-labeled OTII (1 × 106 cells) and e670-labeled polyclonal T cells (1 × 106 cells) were injected i.v. Popliteal lymph nodes were analyzed by flow cytometry. Overlaid histograms show the T cell levels of OVACACA (FlAsH) at 48 h post-transfer. Data are representative of three independent experiments with n=3 mice.

      Minor:

      Figure 3F, 5D, and videos: Can you color-code polyclonal T cells a different color than magenta (possibly white or yellow), as they have the same look as the overlay regions of OT2-DC interactions (Blue+red = magenta).

      We apologize for the inconvenience about the color selection. We have had difficulty in assigning colors that are bright and distinct. Unfortunately, yellow and white have also been easily mixed up with the FlAsH signal inside red and blue cells respectively. We have now added yellow and white arrows to better point out the polyclonal vs. antigen specific cells in 3f and 5d.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      This nice study by Miyano combines slice electrophysiology and superresolution microscopy to address the role of RBP2 in Ca2+ channel clustering and neurotransmitter release at hippocampal mossy fiber terminals. While a number of studies demonstrated a critical role for RBPs in clustering Ca2+ channels at other synapses and some provided evidence for a role of the protein in molecular coupling of Ca2+ channels and release sites, the present study targets another key synapse that is an important model for presynaptic studies and offers access to a microdomain controlled synaptic vesicle (SV) release mechanism with low initial release probability.

      Summarizing a large body of high-quality work, the authors demonstrate reduced Ca2+ currents and a reduced release probability. They attribute the latter to the reduced Ca2+ influx and can restore release by increasing Ca2+ influx. Moreover, they propose an altered fusion competence of the SVs, which is not so strongly supported by the data in my view.

      The effects are relatively small, but I think the careful analysis of the RBP role at the mossy fiber synapse is an important contribution.

      We thank the reviewer for careful assessment of the paper. We agree that while reduced Ca influx in KO is relatively straightforward, impaired priming is somewhat indirect, remaining as suggestion. We also noted that Moser and colleagues have analyzed the function of RIM-BP2 at hair cell synapses and also showed reduced Ca influx. In cortical synapses, there have been no study using direct presynaptic recording. In the revision, we carefully cited previous studies and tried to be fair. We hope that the current revision is much improved.

      Reviewer #2 (Public Review):

      The proper expression and organization of CaV channels at the presynaptic release sites are subject to coordinative and redundant control of many active zone-specific molecules including RIM-BPs. Previous studies have demonstrated that ablation of RIM-BPs in various mammalian synapses causes significant impairment of synaptic transmission, either by reducing CaV expression or decoupling CaV from synaptic vesicles. The mechanisms remain unknown.

      In the manuscript, Sakaba and colleagues aimed to examine the specific role of RIM-BP2 at the hippocampal mossy fiber-CA3 pyramidal cell synapse, which is well-characterized by low initial release probability and strong facilitation during repetitive stimulation. By directly recording Ca2+ currents and capacitance jumps from the MF boutons, which is very challenging but feasible, they showed that depolarization-evoked Ca2+ influx was reduced significantly (~39%) by KO of RIM-BP2, but no impacts on Ca-induced exocytosis and RRP (measured by capacitance change). They used STED microscopy to image the spatial distribution of the CaV2.1 cluster but found no change in the cluster number with a slight decrease in cluster intensity (~20%). They concluded that RIM-BP2 functions in tonic synapses by reducing CaV expression and thus differentially from phasic synapses by decoupling CaV-SV.

      In general, they provide solid data showing that RIM-BP2 KO reduces Ca influx at MF-CA3 synapse, but the phenotype is not new as Moser and colleagues have also used presynaptic recording and capacitance measurement and shown that RIM-BP2 KO reduces Ca2+ influx at hair cell active zone (Krinner et al., 2017), although at different synapse model expressing CaV1.3 instead of CaV2.1. Further, the concept that RIM-BP2 plays diverse functions in transmitter release at different central synapses has also been proposed with solid evidence (Brockmann et al., 2019).

      We thank the reviewer for careful reading of the ms. We agree that previous studies have sown reduced Ca influx at hair cells, and diverse function of RIM-BP2 in different central synapses have been proposed by Brockman et al. The new point of this study is we firmly and quantitatively show the reduced Ca currents using direct presynaptic recording, which has not been done in mossy fiber synapses or cortical synapses in general. Quantitative and time-resolved measurements of the presynaptic currents cannot be done by other methods, so far. In this revision, we point this out carefully.  

      Reviewer #1 (Recommendations For The Authors):

      The MS is overall carefully prepared and I have only a few minor comments to help with further improving the manuscript.

      Abstract:

      I think the notion of different RBP function at tonic and phasic synapses is not so well founded. The reduced number of Ca2+ channels and their altered topography have been shown in multiple synapses that also include those with phasic release. Quantitative structural and functional analysis of presynaptic Ca2+ channels of RBP-2 and RBP1-2 DKO deficient AZs closely related to the present study has e.g. been provided for auditory synapses (e.g. hair cells, endbulb/calyx of end synapses that provide both phasic and sustained release.

      In abstract, we have omitted description of phasic vs tonic synapses, because it is not well founded as the reviewer pointed out. Specifically, in abstract (Line 13~):

      “Synaptic vesicles dock and fuse at the presynaptic active zone (AZ), the specialized site for transmitter release. AZ proteins play multiple roles such as recruitment of Ca2+ channels as well as synaptic vesicle docking, priming and fusion. However, the precise role of each AZ protein type remains unknown. In order to dissect the role of RIM-BP2 at mammalian cortical synapses having low release probability, we applied direct electrophysiological recording and super-resolution imaging to hippocampal mossy fiber terminals of RIM-BP2 KO mice. By using direct presynaptic recording, we found the reduced Ca2+ currents. The measurements of EPSCs and presynaptic capacitance suggested that the initial release probability was lowered because of the reduced Ca2+ influx and impaired fusion competence in RIM-BP2 KO. Nevertheless, larger Ca2+ influx restored release partially. Consistent with presynaptic recording, STED microscopy suggested less abundance of P/Q-type Ca2+ channels at AZs deficient in RIM-BP2. Our results suggest that the RIM-BP2 regulates both Ca2+ channel abundance and transmitter release at mossy fiber synapses.”

      Intro:

      Line 48: consider adding Butola et al., 2021 /endbuld of Held to reference which concurs on the notion made for Calyx. However, a contrasting finding was made for another synapse with tight coupling: RBP2 deletion did not alter tight coupling in hair cells (Krinner et al., 2017). Line 51: RBP-DKO/lack of additional effect of RBP1 deletion: suggest adding Krinner et al., 2021 to reference, which concurs with the notion made for hair cells.

      We cited Butola et al., 2021 (Line 49) and Krinner et al., 2021 (Line 52), as the reviewer suggested.

      Results:

      STED microscopy: I am concerned with two aspects of the analysis/presentation. I) I recommend replacing density with abundance as the authors do not resolve single channels. II) I appreciate the note of caution about the fact that STED nanoscopy due to the non-linear nature of the depletion process should/could not be easily used to quantify copy numbers based on immunofluorescence. I would recommend the authors perform 2D Gaussian fitting to at least the Cav2.1 immunofluorescent spots neighboring Munc13-1 spots and report the short and long axis estimates as well as potentially the area. Should the authors have confocal Cav2.1 and Cav2.2 immunofluorescent data co-acquired with STED of Munc13-1, this would be very valuable additional information, but I do not think the experiment is essential for the sake of publication if it was not done already, given the large body of high-quality physiology data.

      I) We have changed the term from density to abundance as the reviewer suggested throughout the manuscript.

      II) As the reviewer suggested, we have carried out 2D Gaussian fitting of Cav2.1 spots. The length, width, and area of Cav2.1 clusters in the AZ were not different between WT and RIM-BP2 KO terminals (Line 431-433, Figure 7-figure supplement 4). The spatial resolution of STED, especially at mossy fiber synapses in the tissue, and a small difference between WT and KO (~30 % expected from electrophysiology) could prevent detection of the difference, unlike ribbon synapses and fly NMJ where release sites and Ca channel clusters are well defined. We should also note that the intensity was calculated similar to previous studies (integral of signal intensity, Krinner et al., 2017), and not absolute peak intensity.  

      As the reviewer suggested, we have added confocal data ((Line 434-436, Figure 7-figure supplement 5). We have determined the AZ area from the Munc13-1 STED data, and Munc13-1, Cav2.1 and Cav2.2 intensities were quantified. As shown in the figure, only Ca2.1 intensity was reduced in KO, consistent with the STED data.

      Nevertheless, we should be cautious about interpretation of the intensity as the reviewer suggested, and are aware that the data are just consistent with electrophysiology. From imaging, we only see a qualitative rather than quantitative difference between WT and KO.

      Discussion:

      I think the focus on alterations of presynaptic Ca channels could be further strengthened along with the discussion of the relevant previous studies.

      Thank you for the suggestion. We have added a paragraph as shown below in the discussion (Line 531~).

      “By using direct presynaptic patch clamp recordings, we here observed a decrease of Ca2+ current amplitudes (~30%) in RIM-BP2 KO mice (Fig. 1). Consistently, STED microscopy supported reduced abundance of P/Q-type Ca2+ channels (Cav2.1) in the mutant mossy fiber terminal (Fig. 7). Interestingly, this observation is similar to that at Drosophila NMJ and hair cell synapses (Liu et al., 2011; Krinner et al., 2017), but not that at other synapses (Acuna et al., 2015; Grauel et al., 2016; Butola et al., 2021), suggesting that the functional role of RIM-BP2 in recruiting Ca2+ channels differs among synapse types. “

      Reviewer #2 (Recommendations For The Authors):

      Minor questions:

      1) The title is misleading as it only shows RIM-BP2 regulates CaV expression but not clustering.

      This has been pointed out by the 1st reviewer, too. We have adopted the term “abundance” as suggested by the 1st reviewer and changed to “RIM-BP2 regulates Ca2+ channel abundance and neurotransmitter release at hippocampal mossy fiber terminals.”

      2) Figure 7 legend. Again, RIM-BP2 only changes the intensity of CaV2.1 clusters but not the density.

      Changed Figure 7 title from “RIM-BP2 deletion alters the density …” to “RIM-BP2 deletion alters the signal intensity …”.

      3) Line 31: "Ca2+ influx through voltage-gated Ca2+ channels triggers neurotransmitter release from synaptic vesicles within a millisecond" is not correct. Ca-evoked transmitter release can only occur with such fast speed at very specialized synapses such as the calyx of Held but not at general chemical synapses.

      We changed “within a millisecond” to “within milliseconds” (Line 30).

      4) Line 44-46: In Drosophila NMJs and at Drosophila NMJs are redundant.

      We eliminated “at Drosophila NMJs”.

      5) The authors should use the verb tense consistently throughout the manuscript such as"In RIM-BP1,2 DKO mice, the coupling between Ca2+ channels and synaptic vesicles became loose, and action potential-evoked neurotransmitter release was reduced at the calyx of Held synapse (Acuna et al., 2015). At hippocampal CA3-CA1 synapses, RIM-BP2 deletion alters Ca2+ channel localization at the AZs without altering total Ca2+ influx. Besides, RIM-BP1,2 DKO has no additional effect...".

      We changed verb tenses in Line 46-49, Line 55-58, and Line 62-67. We also checked the ms once more. Thank you for pointing this out.

      6) Line 59: technically difficulty should be technical difficulty.

      Fixed.

      7) Figure 4A-B are representative traces of 0.5 mM EGTA (black) or 5 mM EGTA (red) recorded from the same terminals or from different terminals but simply superimposed?

      Representative traces are recorded from different terminals. We describe this point in the figure legend (Fig 4A). We are very sorry for confusion.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer 1 (public):

      1) “It is unclear whether new in vivo experiments were conducted for this study”.

      All in vivo experiments were conducted for this study by using previously published fly stocks to directly compare N- and C-terminal shedding side-by-side in two Hh-dependent developmental systems. This is now clearly stated in the revised supplement (Fig. S8). We also conducted these experiments because previous in vivo studies in flies often relied on Hh overexpression in the fat body, raising questions about their physiological relevance. Our in vivo analyses of Hh function in wing and eye discs are more physiologically relevant and can explain the previously reported presence of non-lipidated bioactive Hh in disc tissue (PMID: 23554573).

      2) “A critical shortcoming of the study is that experiments showing Shh secretion/export do not include a Shh(-) control condition. Without demonstration that the bands analyzed are specific for Shh(+) conditions, these experiments cannot be appropriately evaluated”.

      The Cell Signaling Technology C9C5 anti-Shh antibody used in our study is highly specific against Shh, and it has been used in over 60 publications. C9C5 even lacks cross-reactivity with highly similar Ihh or Dhh (https://www.cellsignal.com/products/primary-antibodies/shh-c9c5-rabbit-mab/2207?_requestid=1528451). We confirmed C9C5 specificity repeatedly (one example is shown below; another quality control that includes media of mock-transfected cells is now shown in Fig. S1) and never observed unspecific bands under any experimental condition. As shown below, C9C5 and R&D AF464 anti-Shh antibodies (the latter were previously used in our lab) detect the same bands.

      Author response image 1.

      Shh immunoblot. R&D 8908-SH served as a size control for full-length dual-lipidated Shh, and C25S;26-35Shh served as a size control for N-terminally truncated monolipidated Shh. Both C25SShh bands are specific: One represents the full-length protein and the bottom band represents N-truncated processed proteins. The blot was first incubated with antibody AF464 and reincubated (after stripping) with the much more sensitive antibody C9C5.

      3) “A stably expressing Shh/Hhat cell line would reduce condition to condition and experiment to experiment variability”.

      We agree and therefore have previously aimed to establish stable Hhat-expressing cell lines. However, we found that long-term Hhat overexpression eliminated transfected cells after several passages, or cells gradually ceased to express Hhat. This prevented us from establishing stable cell lines co-expressing Shh/Hhat despite several attempts and different strategies. Instead, we established transient co-expression of Shh/Hhat from the same mRNA as the next-best strategy for reliable near-quantitative Shh palmitoylation in our assays.

      4) “Unusual normalization strategies are used for many experiments, and quantification/statistical analyses are missing for several experiments”.

      We repeated all qPCR assays to eliminate this shortcoming. Biological activities and transcriptional responses of palmitoylated Shh and non-palmitoylated C25AShh are now directly compared and quantified (revised Fig. 4A,B, newly included Fig. 6, revised Fig. S5B). The original comparison of both proteins with dual-lipidated R&D 8908-SH is still important in order to show that both Shh and C25AShh in serum-containing media have equally high, and not equally low, activities because R&D 8908-SH is generally seen as the Shh form with the highest biological activity. These comparisons are therefore still discussed in the main manuscript text and are now shown in Fig. S5E.

      5) “The study provides a modest advance in the understanding of the complex issue of Shh membrane extraction”

      We believe that the revised manuscript advances our understanding of Shh membrane extraction beyond the modest in three important ways. First, although Disp was indeed known as a furin-activated Hh exporter, our findings show for the first time that furin activation of Disp is strictly linked to proteolytic Shh processing as the underlying release mode, fully consistent with data obtained from the Disp-/- cells.

      Second, Scube2 was known as a Shh release enhancer and several lipoproteins were previously shown to play a role in the process, but our findings are the first to show that synergistic Disp/Scube2 function depends on the presence of lipoprotein and that HDL (but no other lipoprotein) accepts free cholesterol or a novel monolipidated Shh variant from Disp. This challenges the dominant model of Scube2 chaperone function in Hh release and transport (PMID 22902404, PMID 22677548, PMID 36932157).

      Third, we show that this Shh variant is fully bioactive, despite the lack of the palmitate. Therefore, N-palmitate is dispensable for Shh signaling to Ptch1 receptors, but only if the morphogen is released by, and physically linked to, HDL. In contrast, previously published studies analyzed monolipidated Shh variants in the absence of HDL, resulting in variably reduced bioactivity of these physiologically irrelevant forms. Therefore, our findings challenge the current dominating model of N-palmitate-dependent Shh signaling to Ptch1 (this model also does not postulate any role for lipoproteins, PMID 36932157) and essential roles of N-palmitate (stating that the N-palmitate is sufficient for signaling, PMID 27647915).

      Reviewer 2 (public):

      1) “However, the results concerning the roles of lipoproteins and Shh lipid modifications are largely confirmatory of previous results, and molecular identity/physiological relevance of the newly identified Shh variant remain unclear”.

      We disagree with this assessment on several points. First, our findings do not confirm, but strongly challenge, the current dogma of Disp-mediated handover of dual-lipidated Shh to Scube2 as a soluble acceptor (instead of to HDL, PMID 36932157). Second, we report three new findings: Disp, Scube2, and lipoproteins all interact to specifically increase N-terminal Shh shedding, whereas C-terminal shedding is optional; Disp function depends on the presence of HDL; and HDL modulates Shh shedding (dual Shh shedding in the absence of HDL versus N-shedding and HDL association in its presence). Our work also directly determines the molecular identity of a previously unknown Shh variant as monolipidated (by RP-HPLC), HDL associated (by SEC and density gradient centrifugation), and fully bioactive (in two cell-based reporter assays).

      Third, regarding the physiological relevance of our findings: Fig. S8 demonstrates that deletion of the N-terminal sheddase target site of Hh abolishes all Hh biofunction in Drosophila eye discs and wing discs, which strongly supports physiological relevance of N-terminal Hh shedding during release. N-terminal shedding is further consistent with in vivo findings of others. These studies showed that artificial monolipidated Shh variants (C25SShh and ShhN) generate highly variable loss-of-function phenotypes in vivo, but can also generate gain-of-function phenotypes if compared with the dual-lipidated cellular protein 1, 2, 3, 4, 5. These observations are difficult to align with the dominating model of essential N-palmitate function at the level of Ptch1 (PMID 36932157), because the lack of N-palmitate is expected to always diminish signaling in all tissue contexts and developmental stages. Our finding that dual-lipidated Shh is strictly released in a Disp/Scube2-controlled manner from producing cells, while artificial monolipidated Shh variants leak uncontrolled from the cellular surface, explains these seemingly paradoxical in vivo findings much better. This is because uncontrolled Shh release can increase Shh signaling locally (when physiological release would normally be prevented at this site 6 or time), while it can also decrease it (for example, in situations requiring timed pulses of Shh release and signaling 7, 8, 9, 10, 11). This is discussed in our manuscript (Discussion, first paragraph).

      2) The molecular properties of the processed Shh variants are unclear – incorporation of cholesterol/palmitate and removal of peptides were not directly demonstrated…

      We also disagree on this point. Our study is the only one that uses RP-HPLC and defined controls (dual-lipidated commercial R&D 9808-SH, dual-lipidated cellular proteins eluting at the same positions, non-lipidated or monolipidated controls, Fig. S1F-K) to compare the lipidation status of cellular and corresponding solubilized Shh and to determine their exact lipidation status (Figs. 1, 3, 5, Figs. S4, S6, S7). Co-expressed Hhat assures full Shh palmitoylation during biosynthesis (as shown in original Figs. 1A and S2F-K & S4A and as confirmed by R&D 9808-SH) as an essential prerequisite to reliably conduct and interpret these analyses. The removal of peptides is demonstrated by the increase in electrophoretic mobility of soluble forms, if compared with their dual-lipidated cellular precursor, because chemical delipidation results in a decrease in electrophoretic mobility in SDS-PAGE (as discussed in detail in 12 that we now cite in our work).

      3) This (N-terminal palmitoylation status) is particularly relevant …, as the signaling activity of non-palmitoylated Hedgehog proteins is controversial.

      We agree with this comment and are aware of the published data. However, in our work, we have demonstrated strong signaling activities by using C25AShh mutants that are fully impaired in their ability to undergo N-palmitoylation (Fig. 4, Fig. S5). These are highly bioactive if associated with HDL. Therefore, we do not see any ambiguity in our findings and suggest that the reports of others resulted from different experimental conditions.

      4) A decrease in hydrophobicity is no proof for cleavage of palmitate, this could also be due to addition of a shorter acyl group.

      As shown in the original manuscript, we have controlled for this possibility: RP-HPLC was established by using defined controls (dual-lipidated, non-lipidated, or monolipidated, Fig. S1F-K and corresponding color coding). Because the cellular Shh precursor prior to release was always dual-lipidated, whereas the soluble form was not, lipids were clearly lost during release (because a decrease in the hydrophobicity of soluble proteins is always shown relative to that in their dual-lipidated cellular precursors). The increase in electrophoretic mobility detected for the very same proteins in SDS-PAGE demonstrates delipidation during their release (please see my reply to point 2 above). Finally, the suggested possibility of palmitate exchange for shorter acyls during Shh release at the cell surface is extremely unlikely, as there is no known machinery to catalyze this exchange at the plasma membrane. Hh acylation only occurs in the ER membrane via Hhat 13.

      5) “It would be important to demonstrate key findings in cells that secrete Shh endogenously”.

      We now show that Panc1 cells release endogenous Shh in truncated form, as our transfected cells do (Fig. S1). Moreover, the experimental data shown in Fig. S8B demonstrate that engrailed-controlled expression of sheddase-resistant Hh variants in wing disc cells completely blocks endogenous Hh produced in the same cells by stalling Disp-mediated morphogen export. Both findings strongly support our key finding that N-processing is not optional but absolutely required to finalize Hh release.

      6) Co-fractionation of Shh and ApoA1 is not convincing, as the two proteins peak at different molecular weights…. The authors could use an orthogonal approach, optimally a demonstration of physical interaction, or at least fractionation by a different parameter

      Shifted Shh peaks upon physiologically relevant Shh transfer via Disp to HDL must be expected in SEC, because Shh association with HDL subfractions increases their size. Comparing relative peaks of Shh-loaded HDL with Shh-free reference HDL suggests 10-15 Shh molecules per HDL (adding 200kDa - 300kDa to its molecular mass). This is now stated in the revised manuscript (page 10, line 2).

      Still, to further support direct Shh/HDL association, we analyzed high molecular weight Shh SEC fractions by subsequent RP-HPLC. This approach confirms direct physical interactions between cholesteroylated Shh and HDL (now shown in Fig. S6G).

      We support this possibility further by density gradient centrifugation, again demonstrating that Shh and HDL interact physically (now shown in Fig. S6 E,F).

      Recommendations from the reviewing editor:

      1) “The authors should certainly tone down statements of novelty because much of the work is confirmatory in nature”

      We followed this request in our revised manuscript and now clearly point out what was known and what we add to the concept of Disp and lipoprotein-mediated Hh export. Still, as outlined in our response to reviewer 2, our findings align with only one previously published model of lipoprotein-mediated Hh transport, while they do not support the most current models of Disp-mediated handover of dual-lipidated Shh to Scube2 (PMID 36932157) and essential signaling roles of N-palmitate at the level of the receptor Ptch1. Thus, our work should not be viewed solely as confirmatory of one of the many previous models, because at the same time it also contradicts the other models of Hh solubilization and transport.

      2) “Inclusion of the Shh(-) control”

      Please see our reply to reviewer 1 above. The Cell Signaling Technology C9C5 anti-Shh antibody used in our study is highly specific against Shh. We also carefully characterized the C9C5 antibody before any of the experiments shown in our work had been initiated. We never observed any unspecific C9C5 reactivity that otherwise would – of course – have prevented us from switching to this antibody from the AF464 antibodies that we had previously used. Consistent C9C5 antibody specificity is evident from the representative example shown below that was recently produced in our lab: no cellular proteins or TCA-precipitated serum-depleted media components from mock-transfected cells (left two lanes) react with C9C5.

      Author response image 2.

      Top left: C9C5 detects the cellular 45kDa Shh precursor and the 19 kDa signaling-active protein. No unspecific signals are detected in untransfected cells and supernatants of such cells (left two lanes). Right: Loading control on the stripped blot.

      3) “Clean up how the data are normalized for quantification”

      Please see our reply to reviewer 1 above. Normalization has been changed for the indicated figures. We also repeated qPCR analyses and added new ones to the manuscript that include required controls. We also changed figure outlines in accordance with the request.

      4) “The issue of a non-specific band of this Shh antibody is critical”

      Please see our replies above. In our hands, unspecific C9C5 antibody binding was never observed.

      5) “Regarding experimental rigor, I would add that the HPLC … should just show the real data points”

      We agree and added individual data points to our revised manuscript.

      Recommendations for the authors:

      1) I would like to see the controls in the same figure with the experimental results.

      We show antibody specificity controls together with released Shh in Fig. S1.

      2) Figure 2 confirms previously published results. It was shown in PMC5811216 that Disp processing by furin is required for Shh release from producing cells.

      Indeed, it was shown that furin processing of Disp increases Shh release (supposedly together with lipids), but we show here that furin-activated Disp specifically mediates proteolytic Shh shedding and loss of lipids – which is not the same. Indeed, we show this finding because we interpret it the other way around: Because it is known that furin activation of Disp increases Shh release by some means (PMC5811216), our observation that furin-mediated Disp activation specifically increases Shh shedding independently supports our model.

      3) Figure 3: it is stated that there is no increase in Shh release into the media…

      We removed this statement.

      4) Figure S5: Scale bars are missing.

      We added scale bars to the figures.

      5) Figure 4: A direct comparison between wt Shh and C25A conditioned media for qPCR is needed.

      We agree and repeated all experiments. Results confirm our previous findings and are shown in revised Fig. 4 and in Fig. S5.

      6) What other components can be examined in addition to ApoA1 as a marker for HDL? Why is the Shh peak shifted to the left? What about exovesicles?

      We also detected ApoE4, a mobile lipoprotein present on expanding (large) HDL (Figs. 5, 6, Figs S6, 7) 14. We also used density gradient centrifugation to support the Shh/HDL association. Regarding the leftwards Shh size shift relative to the major HDL peak in SEC, please refer to our explanation above – if loaded with Shh, a size increase of the respective HDL subfraction is expected. Finally, we did not test the role of exovesicles in our assays. However, due to their large size (60-120nm, HDL 7-12 nm), Shh associated with exovesicles should have eluted in the void volume of our gel filtration column. This we never observed.

      7) Why is osteoblast differentiation used?

      C3H10T1/2 osteoblast differentiation is strongly driven by Ihh and Shh activity and is established as a sensitive and robust assay. Still, following this reviewer’s advice, we conducted qPCR assays on these cells and in addition on NIH3T3 cells to support our findings.

      Finally, we corrected all minor mistakes regarding spelling and figure labeling. We also improved the readability of the revised manuscript, as suggested by reviewer 2.

      References

      1. Gallet A, Ruel L, Staccini-Lavenant L, Therond PP. Cholesterol modification is necessary for controlled planar long-range activity of Hedgehog in Drosophila epithelia. Development 133, 407-418 (2006).

      2. Porter JA, et al. Hedgehog patterning activity: role of a lipophilic modification mediated by the carboxy-terminal autoprocessing domain. Cell 86, 21-34 (1996).

      3. Lewis PM, et al. Cholesterol modification of sonic hedgehog is required for long-range signaling activity and effective modulation of signaling by Ptc1. Cell 105, 599-612 (2001).

      4. Huang X, Litingtung Y, Chiang C. Region-specific requirement for cholesterol modification of sonic hedgehog in patterning the telencephalon and spinal cord. Development 134, 2095-2105 (2007).

      5. Lee JD, et al. An acylatable residue of Hedgehog is differentially required in Drosophila and mouse limb development. Dev Biol 233, 122-136 (2001).

      6. Corrales JD, Rocco GL, Blaess S, Guo Q, Joyner AL. Spatial pattern of sonic hedgehog signaling through Gli genes during cerebellum development. Development 131, 5581-5590 (2004).

      7. Cordero D, Marcucio R, Hu D, Gaffield W, Tapadia M, Helms JA. Temporal perturbations in sonic hedgehog signaling elicit the spectrum of holoprosencephaly phenotypes. J Clin Invest 114, 485-494 (2004).

      8. Dessaud E, et al. Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism. Nature 450, 717-720 (2007).

      9. Garcia-Morales D, Navarro T, Iannini A, Pereira PS, Miguez DG, Casares F. Dynamic Hh signalling can generate temporal information during tissue patterning. Development 146, (2019).

      10. Harfe BD, Scherz PJ, Nissim S, Tian H, McMahon AP, Tabin CJ. Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell 118, 517-528 (2004).

      11. Nahmad M, Stathopoulos A. Dynamic interpretation of hedgehog signaling in the Drosophila wing disc. PLoS Biol 7, e1000202 (2009).

      12. Ehring K, et al. Conserved cholesterol-related activities of Dispatched 1 drive Sonic hedgehog shedding from the cell membrane. J Cell Sci 135, (2022).

      13. Coupland CE, et al. Structure, mechanism, and inhibition of Hedgehog acyltransferase. Mol Cell 81, 5025-5038 e5010 (2021).

      14. Sacks FM, Jensen MK. From High-Density Lipoprotein Cholesterol to Measurements of Function: Prospects for the Development of Tests for High-Density Lipoprotein Functionality in Cardiovascular Disease. Arterioscler Thromb Vasc Biol 38, 487-499 (2018).

    1. Author Response

      The following is the authors’ response to the previous reviews

      The revised manuscript is much improved - many unclear points are now better explained. However, in our opinion, some issues could still be significantly improved.

      1. Statistics: none of us are experts in statistics but several things remain questionable in our opinion and if it were our study, we would consult with an expert:

      a) while we understand the authors note about N-chasing and p-hacking, we wonder how the number of N's was premeditated before obtaining the results. Why in 4M an N of 3 is sufficient while in 3E the N is >20 (and not mentioned). At the very least, we think it would be wise to be cautious when stating something as not-significant when it is clear (as in 4M) that the likelihood of it actually being statistically significant is quite large.

      b) In most analyses, the data is not only normalized by actin or some other measure but also to the first (i.e left side on the graph) condition, resulting in identical data points that equal '1' (in Figure 4 alone - C; I; K; M; and O) - while this might be scientifically sound, it should be mentioned (the specific normalization) and also note that this technique shadows any real variance that exists in the original data in this condition. consider exploring techniques to overcome this issue.

      c) In 3C, - if we understand the experiment, you want to convince us that the DIFFERENCE between eB2-FC compared to FC is larger in the control compared to the experiment. We are not absolutely sure that the statistical tools employed here are sufficient - which is why we would consult an expert.

      A) We are aware that many studies do not consistently quantify such experiments. For example, there are essentially no published examples of the signalling timelines of EphB2 receptors as in Fig. 5. By striving to quantifying such biochemical effects, an unquantified experiment stands out, and so perhaps we were too strict by trying to quantify as many experiments as possible, resulting in low n’s for some of them. We acknowledge that additional experiments on EPHB1 protein stability may reach significance. We have adjusted our text on line 332-335 to point to this interesting trend, and slightly changed the conclusion to this section. Similarly, we commented on similar trends when describing Figs. 1E and 4G on lines 901 and 952.

      B) For the Western blot band intensity normalisation, we believe that our method is scientifically sound. Normally, when the replicate samples are loaded on one gel and blotted on the same membrane, the experimenter only needs to normalise the target band intensity to its cognate loading control band intensity for quantitation. However, we usually have a large number of samples from multiple experiments, carried out on different dates. For example, in Fig. 4B,C there are 7 biological replicates collected from 7 experiments and in Fig. 4D there are 10 protein samples. It is not possible for us to run all samples on the same gel. In addition, due to the combined effects of variance in transfer efficiency, the potency of antibodies, detection efficiency and the developing time for each blot, it is practically impossible to generate similar band intensity for each batch. Thus, we use normalisation of test bands to the loading control for individual experiments, and this analysis method is widely accepted by reputable journals with a focus on biochemical experiments (for example: PMID 37695914: Fig. 3 A,B,C; PMID 36282215: Fig. 3 B,C,D,E; PMID 33843588: Fig. 3 C,D,E,F,G,H). Since the value of the first sample on the plot is 1, which is a hypothetical value and does not meet the parametric test requirement, we performed one-sample t-test for statistics when other samples are compared with the first sample (PMID 35243233 Fig. 6 A,B,C,D; https://www.graphpad.com/quickcalcs/oneSampleT1/, “A one sample t-test compares the mean with a hypothetical value. In most cases, the hypothetical value comes from theory. For example, if you express your data as 'percent of control', you can test whether the average differs significantly from 100.”). Thus, we believe that our normalisation and statistical methods are both correct with a large number of precedents.

      C) This comment refers to the cell collapse experiment shown in Fig. 3C for which the data are plotted in Fig. 3D. We stand by the statistical method used. There are two groups of cells (CTRLCRISPR and MYCBP2 CRISPR) and two treatments for each cell group (Fc control and eB2), thus we should use two-way ANOVA. Since we compared the cell retraction effects of Fc and eB2 on the two groups of cells, Sidak post hoc comparison is the right method to avoid errors introduced by multiple comparisons. Here is an example of an eLife article that used the same statistical method for similar comparisons: PMID 37830910, Fig. 1 H,I. To make the comparison easier, we grouped the experiments by cell type (CTRLCRISPR and MYCBP2 CRISPR) as opposed to by treatment. Below, the old version is on the right, and the new version is on the left. The conclusion is that eB2 induces less cell collapse in cells depleted of MYCBP2, when compared to the control cells. However, eB2 is still able to collapse cells lacking MYCBP2.

      Author response image 1.

      Revisiting these data, we noticed an error introduced when CC compiled the data used to generate Fig. 3D. The data were acquired from nine biological replicates per condition. CC used a mix of two methods for cell collapse rate calculation: the first method involved the sum of collapsed cells and all cells from multiple regions of one coverslip (biological replicate). The second method involved computing a collapse rate in each region which then was used to calculate the average collapse rate for the entire coverslip (technical replicate). Given the small cell numbers due to sparse culture conditions, we believe that the first method is a more conservative approach. We hence re-plotted all replicate data using the first method. This resulted in slightly different % collapse and p values. These were changed accordingly in the text and plot and do not affect the conclusion of this experiment.

      2) thanks for the clarification that the interaction between the extracellular domain of EPHB2 and MYCBP2 might not occur directly - however, unless we missed this it was not clearly stated in the text. It is an important point and also a cool direction for the future - to find the elusive co-receptor that actually helps EPHB2 and MYCBP2 form a complex.

      We now also refer to this in the results section on line 215.

      “Since EPHB2 is a transmembrane protein and MYCBP2 is localised in the cytosol, these experiments suggest that the interaction between the extracellular domain of EPHB2 and MYCBP2 might be indirect and mediated by other unknown transmembrane proteins.”

      3) The Hela CRISPR cell line is better explained in the response letter but still not sufficiently explained in the text for a non-expert reader. If the authors want any reader to comprehend this, we would strongly recommend adding a scheme.

      We now include a schematic outlining the CRISPR cell generation as Fig. 3A and its description on line 926.

      Author response image 2.

      4) To clarify some of our previous (and persisting) concerns about Figure 3D/E - it is true that a reduction in 25% of cell size is dramatic. But (if we understand correctly) your claim is that a reduction in 22% (this is a guess, as the actual numbers are not supplies) is significantly less than 25%. Even if it is, statistically speaking, significant, what is the physiological relevance of this very slight effect? In this experiment, the N was quite large, and we wonder if the images in D are representative - it would be nice to label the data points in E to highlight which images you used.

      We now mention the average cell area contraction measurements in the legend to Fig. 3F on line 935. We also tracked down the individual cells shown in Fig. 3E and they are now labelled as data points in blue in Fig. 3F. HeLa cell collapse is a simplified model of EPHB2 function and we do not know whether the difference between the behaviour of CTRLCRISPR and MYCBP2 CRISPR cells is physiologically significant and thus we prefer not to speculate on this.

      5) Figure 3F and other stripe assays - In the end, it is your choice how to quantify. We believe that quantifying area of overlap is a more informative and objective measurement that might actually benefit your analyses. That said, if you do keep the quantification as it is now, you have to define the threshold of what you mean by "cell/s (or an axon in 7A, where it is even more complicated as are you eluding to primary, secondary, or even smaller branches) are RESIDING within the stripe". Is 1% overlap sufficient or do you need 10 or 50% overlap?

      We now added this statement to the methods on line 745: “A cell was considered to be on an ephrin-B2 stripe when more than 50% of its nucleus was located on that stripe”. For chick explant stripe assay, when measuring the length of an axon on a stripe, we only measured the main axons originated from the explants.

      For explant/stripe experiments in Fig. 7 AB, we now use the term “GFP-expressing neurite” rather than “branch”. This was already present in the results of the previous version, but the methods and legend needed to be brought up to date (lines 786 and 1008. We think that “branch” was a confusing term that was supposed to mean the same thing as “neurite” but came across as some indication of branching. We do not know whether the GFP+ neurites were primary or secondary extensions of explants, or in fact, whether some of them contained more than one axon. We also adjusted the method to reflect the fact that some stripes were used in conjunction with a single explant and added a reference to a previous study extensively using this method (Poliak et al., 2015) on line 778.

      6) We still don't get the link to the lysosomal degradation. Your data suggests that in your cells EPHB2 is primarily degraded by the lysosomal pathway and not proteasome. Any statement about MYCBP2 is not strongly supported by the data, in our opinion - Unless you develop some statistical measurement that shows that the effect of BafA1 is statistically different in MYCBP2 cells than in control cells. Currently, this is not the case and the link is therefore not warranted in our opinion.

      We generated a new version of Fig. 4K with average increase in EPHB2 levels in the presence of BafA1 and CoQ, compared to DMSO treated controls (see below). BafA1 and CoQ restored EPHB2 protein levels by 19% and 14% respectively in CtrlCRISPR cells, while the inhibitors restored EPHB2 protein levels by 40% and 35% respectively in MYCBP2 CRISPR cells.

      Author response image 3.

      For each of the 4 replicates, the increase in EPHB2 levels by BafA1 compared to DMSO is as follows:

      Author response table 1.

      These values are not significantly different between CtrlCRISPR cells versus MYCBP2 CRISPR cells (p= 0.08, student’s t test). Similarly for the CoQ experiment. We now temper our conclusion for this experiment: Although the difference in percentage increase between CTRLCRISPR cells and MYCBP2CRISPR cells is not significant, this trend raises the possibility that the loss of MYCBP2 promotes EPHB2 receptor degradation through the lysosomal pathway (line 319). We also adjusted the section title (line 306).

      7) While the C. elegans part is now MUCH better explained - we are not sure we understand the additional insight. The fact that vab-1 and glo4 double mutants are additive as are vab1 and fsn1, suggest they act in parallel (if the mutants are NULL, and not if they are hypomorphs, if one wants to be accurate) - how this relates to your story is unclear. The vab1/rpm1 double mutant is still uninformative and incomplete. rpm1 phenotype is so severe that nothing would make it more severe. We read the Jin paper that the authors directed to - nothing makes the rpm1 phenotype more severe. Yes, some DOWNSTREAM elements make the rpm1 phenotype LESS severe - this is not something you were testing, to the best of our knowledge. Rather, you wanted to see if rpm1 mutant resulted in stabilization of vab1 and thus suppression of vab1 phenotype - we are just not sure the system is amenable to test (actually reject) your hypothesis that Vab1 is degraded by rpm1. Also, assuming we are talking about NULLs, the fact that the rpm1 phenotype is WAY stronger than the vab1 mutant, suggests that rpm1 functions via multiple routes, adding even more complexity to the system. Given these results, despite the much improved clarity, we are still not sure that the worm data adds new insight, rather than potentially confusing the reader.

      We realise that the genetic interactions between vab-1 and the RPM-1/MYCBP2 signalling network are complicated. However, we insist on keeping the data for the sake of its availability for future studies and completeness. We also think it is important for readers and the community to see these data, even if the authors and reviewers are not entirely in agreement about the importance/interpretation of experimental outcomes. It is our hope that the community will examine the results and draw their own conclusions.

      A few points of clarification:

      The C. elegans experiments were designed to test genetically if the vertebrate interactions between EPHB2 and MYCBP2 and its signalling network are conserved. We studied two kinds of interactions: (1) between vab-1 and RPM-1/MYCBP2 downstream proteins (GLO-4 and FSN-1) and (2) between vab-1 and rpm-1. For these studies, we used null alleles for vab-1, glo-4 and fsn-1 which is now noted on lines 440, 453, 475 and 859. Our findings are consistent with the VAB-1 Ephrin receptor functioning in parallel to known RPM-1 binding proteins. This is further supported by new data: vab-1; fsn-1 double mutants showed enhanced incidence of axon overextension defects using a second transgenic background, zdIs5 (Pmec-4::GFP), to visualize axon termination (Fig. 8F).

      This second transgenic background also allowed us to generate new data to address your concerns about phenotypic saturation in rpm-1 mutants. To do this, we used the zdIs5 (Pmec4::GFP) genetic background, in which axon termination defects are not saturated in rpm-1 mutants (Fig. 8F) because they can be enhanced by other mutants such as cdc-42 and unc-33 (Fig. 7C, D, in Borgen et al. Development 144, 4658–4672 (2017), PMID 29084805). In this new background, we found that vab-1 loss of function fails to enhance the incidence of severe “hook” defects in rpm-1 mutants which is an indication that the two genes function in the same pathway. Importantly, prior studies in this background, also showed that mutants in the RPM-1 signalling network (e.g. fsn-1, glo-4 and ppm-2) do not enhance the incidence of severe “hook” defects as double mutants with rpm-1 compared to rpm-1 single mutants (Fig. 7B, ibid.).

      To reflect these ideas more clearly, we revised the Results section pertaining to C. elegans genetics (starting on line 418) and tempered our discussion (lines 517). Basically, this section now says that we studied genetic interactions between vab-1 and the RPM-1/MYCBP2 signalling network. From these experiments we conclude that: (1) The enhancement of overextension defects in vab-1; glo-4 and vab-1; fsn-1 double mutants compared to single mutants indicates that VAB-1/EPHR functions in parallel to known RPM-1 binding proteins to facilitate axon termination, and (2) Since the vab-1; rpm-1 double mutants do not display an increased frequency or severity of overextension defects compared to rpm-1 single mutants, VAB-1 /EPHR functions in the same genetic pathway as RPM-1/MYCBP2.

      The new genetic data included in this version were generated by Karla J. Opperman who is now included as a co-author.

      Further corrections:

      Author response image 4.

      Because of the errors associated with quantifications in Fig. 3D (see above), we reviewed other quantification methodologies and noticed another discrepancy that required a correction. In the hippocampal neuron growth cone collapse assay shown in the previous version of Fig. 7 D (left), the growth cones were classified into three groups: 1, fully collapsed; 2, hard to tell, but not fully collapsed; 3, fan-shape cones. Two different quantifications were performed as follows: (1), number of fully collapsed cones divided by the numbers of all growth cones; (2), number of fully collapsed cones divided by [number of fully collapsed cones + fan-shape cones]. CC erroneously used the second method to generate Fig. 7D.

      We think that the first method is more appropriate. Furthermore, since n=5 for the Fc and eB1-Fc conditions, but n=3 for the eB2-Fc condition, we decided to omit it. The final plot for figure 7D is the following:

      Author response image 5.

      Our conclusion still stands that exogenous FBD1 WT overexpression impaired the growth cone collapse mediated by EphB.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      The association of vitamin D supplementation in reducing Asthma risk is well studied, although the mechanistic basis for this remains unanswered. In the presented study, Kilic and co-authors aim to dissect the pathway of Vitamin D mediated amelioration of allergic airway inflammation. They use initial leads from bioinformatic approaches, which they then associate with results from a clinical trial (VDAART) and then validate them using experimental approaches in murine models. The authors identify a role of VDR in inducing the expression of the key regulator Ikzf3, which possibly suppresses the IL-2/STAT5 axis, consequently blunting the Th2 response and mitigating allergic airway inflammation.

      Strengths:

      The major strength of the paper lies in its interdisciplinary approach, right from hypothesis generation, and linkage with clinical data, as well as in the use of extensive ex vivo experiments and in vivo approaches using knock-out mice.

      The study presents some interesting findings including an inducible baseline absence/minimal expression of VDR in lymphocytes, which could have physiological implications and needs to be explored in future studies.

      Weaknesses:

      The core message of the study relies on the role of vitamin D and its receptor in suppressing the Th2 response. However, there is scope for further dissection of relevant pathophysiological parameters in the in vivo experiments, which would enable stronger translation to allergic airway diseases like Asthma.

      To a large extent, the authors have been successful in validating their results, although a few inferences could be reinforced with additional techniques, or emphasised in the discussion section (possibly utilising the ideas and speculative section offered by the journal).

      The study inferences also need to be read in the context of the different sub-phenotypes and endotypes of Asthma, where the Th2 response may not be predominant. Moreover, the authors have referenced vitamin D doses for the murine models from the VDAART trials and performed the experiments in the second generation of animals. While this is appreciated, the risk of hypervitaminosis-D cannot be ignored, in view of its lipid solubility. Possibly comparison and justification of the doses used in murine experiments from previous literature, as well as the incorporation of an emphasised discussion about the side effects and toxicity of Vitamin D, is an important aspect to consider.

      In no way do the above considerations undermine the importance of this elegant study which justifies trials for vitamin D supplementation and its effects on Asthma. The work possesses tremendous potential.

      We thank the reviewer for their careful assessment of our paper and helpful suggestions. Please find the point-by-point responses to the reviewer recommendations below.

      Reviewer #2 (Public Review):

      Summary:

      This study seeks to advance our knowledge of how vitamin D may be protective in allergic airway disease in both adult and neonatal mouse models. The rationale and starting point are important human clinical, genetic/bioinformatic data, with a proposed role for vitamin D regulation of 2 human chromosomal loci (Chr17q12-21.1 and Chr17q21.2) linked to the risk of immune-mediated/inflammatory disease. The authors have made significant contributions to this work specifically in airway disease/asthma. They link these data to propose a role for vitamin D in regulating IL-2 in Th2 cells implicating genes associated with these loci in this process.

      Strengths:

      Here the authors draw together evidence from multiple lines of investigation to propose that amongst murine CD4+ T cell populations, Th2 cells express high levels of VDR, and that vitamin D regulates many of the genes on the chromosomal loci identified to be of interest, in these cells. The bottom line is the proposal that vitamin D, via Ikfz3/Aiolos, suppresses IL-2 signalling and reduces IL-2 signalling in Th2 cells. This is a novel concept and whilst the availability of IL-2 and the control of IL-2 signalling is generally thought to play a role in the capacity of vitamin D to modulate both effector and especially regulatory T cell populations, this study provides new data.

      Weaknesses:

      Overall, this is a highly complicated paper with numerous strands of investigation, methodologies etc. It is not "easy" reading to follow the logic between each series of experiments and also frequently fine detail of many of the experimental systems used (too numerous to list), which will likely frustrate immunologists interested in this. There is already extensive scientific literature on many aspects of the work presented, much of which is not acknowledged and largely ignored. For example, reports on the effects of vitamin D on Th2 cells are highly contradictory, especially in vitro, even though most studies agree that in vivo effects are largely protective. Similarly, other reports on adult and neonatal models of vitamin D and modulation of allergic airway disease are not referenced. In summary, the data presentation is unwieldy, with numerous supplementary additions, which makes the data difficult to evaluate and the central message lost. Whilst there are novel data of interest to the vitamin D and wider community, this manuscript would benefit from editing to make it much more readily accessible to the reader.

      Wider impact: Strategies to target the IL-2 pathway have long been considered and there is a wealth of knowledge here in autoimmune disease, transplantation, GvHD etc - with some great messages pertinent to the current study. This includes the use of IL-2, including low dose IL-2 to boost Treg but not effector T cell populations, to engineered molecules to target IL-2/IL-2R.

      We thank the reviewer for their careful assessment of our paper and helpful suggestions. Please find the point-by-point responses to the reviewer recommendations below. In addition, we have revisited the Introduction and Discussion, added additional subsection headings, and provided additional schematics to make the general flow of the paper more accessible to a wider audience.

      Reviewer #1 (Recommendations For The Authors):

      There are certain aspects of the manuscript which could be revisited in order to provide more clarity to the reader. Some of these are:

      1. In vivo experiments : The major inference and its impact is derived from the effect of VDR on Ikzf3 expression, and consequently on the Th2 response. While the study employs both in vivo and ex vivo approaches to validate this claim, pathophysiological aspects could have been explored in more detail, by using cytokine panels, possibly techniques to measure airway resistance, as well as by reducing the variations in the sample sizes used in different groups. Similarly, certain inferences from ex vivo studies may be important to demonstrate in the in vivo setting as well. A justification for the incorporation of both Balb/c and C57 Bl6 mice for the experiments could also be incorporated in the manuscript.

      2. Certain sections, especially those connecting VDR, Ikzf1/3 and IL2/STAT axis seem associative. This is indicated by Figure 5 H as well, where the effects of calcitriol administration in KO cells indicate additional pathways at play, possibly through indirect effects. The use of additional techniques like ChIP, co-IP and establishing STAT induction/activation would probably strengthen the findings, alternatively, a clear distinction between the speculative and the definitive results could be made in the discussion section, as the journal encourages. Similar considerations could be made for VDR and Ikzf3.

      3. Role of other cells :

      a. While the investigators have explored the phenotype on other cell types like Th1 and Treg, at places there remains a lacuna. For instance, the absence of neutrophil fractions from the DLC-BAL, as well inconsistencies in the groups selected for comparison. For eg. in Figure 3 Supplementary Figure 2, the figure suggests IL13 expression in CD4+ cells, yet the text reads incubated Th2 cells. This could be made more lucid.

      b. In Figure 3 Supplementary Figure 1 there is a trend towards an increase in IL-10 levels, whereas in Supplementary Figure 2 there is a drop in the IL13 level in the VDR KO group, which has not been explained.

      c. While 17q loci form the predominant loci associated with Asthma, other loci important in Asthma on chromosomes 2,6,9, 22 could be discussed in the manuscript as well, even if they can't be explored in depth.

      1. Quantification of histology and confocal images could provide an objective assessment to the readers. Possibly incorporation of co-localisation panels for the IF images showing membrane/cytoplasmic/ nuclear localisation of the VDR under various conditions.

      2. Structure of the manuscript: At places the manuscript has a disrupted flow, as well as mislabelled figures (Figure 2SF1B is 1C, Fig 2c is 2b in the results, ). Flow gates can be arranged sequentially and consistent labelling of the gates and axis would ease interpretation. In some places sample sizes mentioned do not match the dot graphs in the figures (figure 3K-L). In the same figure and others (Figure 5 Supplementary Figure 2), a comparison of all groups would be beneficial. A restructuring of the results and corrections, could assist the reader. Also, a visualization of the VDAART analysis in the main figures, corroborating with the results sections would do justice to the interesting approach and findings. The clearances and approvals for the study also need to be incorporated into the manuscript. If possible, the incorporation of a schematic showing the proposed pathway for VDR-induced Ikzf3 and subsequent suppression of the genes present on Chr 17 loci to mitigate allergic airway inflammation would help.

      Reviewer #2 (Recommendations For The Authors):

      A few specific points: A number of immune concepts are studied without reference to the broader literature and the data presented data on occasion counter these earlier findings. Examples of this include:

      • Vitamin D can both enhance and inhibit IL-13 synthesis, demonstrated both in vitro and ex vivo, and these effects are clearly context-specific. I am not questioning the validity of the present experimental findings in this specific experimental model), but the experimental context - the problem is that this is not discussed.

      • Short-term bulk Th2 cultures are used with no indication of their enrichment for lineage-specific markers or cytokine - their conclusions might be enhanced by this. Data on genes/markers of interest could be further enhanced by showing FACS plots of co-expression e.g. Th2 genes e.g. IL-13/GATA3 with these other markers.

      • Are human Th2 enriched for VDR, since the backdrop to this study is human clinical and genetic data? For a study that has based its rationale on human clinical/genetic studies it would be great to confirm these findings in human Th2 cells.

      • The Discussion might comment on some of these wider issues.

      • Minor typos throughout, including in figure legends

      Reviewer #1

      1. The study inferences also need to be read in the context of the different sub-phenotypes and endotypes of Asthma, where the Th2 response may not be predominant.

      We agree that asthma has many sub-phenotypes and endotypes and that the Th2 response may not be predominant in all of them, but we focus here on the origins of the disease in the first few years of life and the genetic and molecular mechanisms associate with disease onset where the Th2 response is important.

      1. Moreover, the authors have referenced vitamin D doses for the murine models from the VDAART trials and performed the experiments in the second generation of animals. While this is appreciated, the risk of hypervitaminosis-D cannot be ignored, in view of its lipid solubility. Possibly comparison and justification of the doses used in murine experiments from previous literature, as well as the incorporation of an emphasized discussion about the side effects and toxicity of Vitamin D, is an important aspect to consider.

      We appreciate this comment from the reviewers allowing us to review vitamin D toxicity in more detail. Given the length of this review we did not include this in the manuscript discussion but provide it here.

      Vitamin D supplementation in humans is debated due to possibility of intoxication from overdose. Vitamin D intoxication is a rare medical condition associated with hypercalcemia, hyperphosphatemia, and suppressed parathyroid hormone level and is typically seen in patients who are receiving very high doses of vitamin D, ranging from 50,000 to 1 million IU/d for several months to years 1,2. Intoxication observed at lower doses might be attributable to rare genetic disorders 1. By far the bigger problem in humans is vitamin D deficiency; this is especially true in pregnant women where dosage requirements are high due to the needs of the fetus. It is estimated that virtually all pregnant women are vitamin D insufficient or deficient 3. VDAART has shown that vitamin D in a dose of 4400 IC given to pregnant women can prevent asthma in their offspring. There were no adverse side effects in the mother or the infant from this dose 4.

      In rodents, a few studies have reported vitamin D intoxication with very high vitamin D doses 5(PMID: 23405058: 50.000 IU/kg 120d -> toxicity in females). In contrast there are several studies using 2-2.5 times higher doses of vitamin D than we use here, that do not report adverse events in mouse models of disease 6,7. Our doses of vitamin D are identical to those used in VDAART and are lower than those used in any of these other rodent studies. In addition, while we did not specifically assess specific signs of vitamin D intoxication, we can exclude any impact on animal well-being, health, reproduction, and behavior throughout the study.

      1. The major inference and its impact are derived from the effect of VDR on Ikzf3 expression, and consequently on the Th2 response. While the study employs both in vivo and ex vivo approaches to validate this claim, pathophysiological aspects could have been explored in more detail, by using cytokine panels, possibly techniques to measure airway resistance, as well as by reducing the variations in the sample sizes used in different groups.

      We have added the following sentence to the discussion: “Additional cytokine measurements in the mice as well as measurement of airway resistance would have added to the pathophysiological data linking IKFZ3 expression to TH2 response.”

      1. Similarly, certain inferences from ex vivo studies may be important to demonstrate in the in vivo setting as well. A justification for the incorporation of both Balb/c and C57 Bl6 mice for the experiments could also be incorporated in the manuscript.

      We agree with the reviewers that ex vivo results may require in vivo confirmation. We have added a sentence explaining the rationale for use of both Balb/c and C57BL/6 mice in the results section “Vitamin D suppresses the activation of the IL-2/Stat5 pathway and cytokine production in Th2 cells”: “To ensure that the above findings were not restricted to the C57BL/6 mouse strain, the inverse experiment was performed in Balb/c mice. This mouse strain is commonly used for type 2 driven inflammation.”

      1. Certain sections, especially those connecting VDR, Ikzf1/3 and IL2/STAT axis seem associative. This is indicated by Figure 5 H as well, where the effects of calcitriol administration in KO cells indicate additional pathways at play, possibly through indirect effects.

      We appreciate this comment. The RNA-Seq results showed an over representation of the IL-2/STAT5 pathway in Vit-D deficient Th2 cells compared to those under Vitamin D supplementation. We further show the induction of IKZF3 expression with calcitriol stimulation. High IKZF3 expression is known to suppress IL-2 expression. Lack of IKZF3 diminishes the suppressive activity of calcitriol on IL-2 expression. However, as pointed out by the reviewer, Figure 5 H implicates additional pathways regulated by calcitriol for the suppression of IL-2 and we note that in the text.

      1. The use of additional techniques like ChIP, co-IP and establishing STAT induction/activation would probably strengthen the findings, alternatively, a clear distinction between the speculative and the definitive results could be made in the discussion section, as the journal encourages. Similar considerations could be made for VDR and Ikzf3.

      We have added the following sentence to the discussion. We have focused here on establishing the relationship between VDR binding and IKFZ3 activation or repression and subsequent ORMDL3 and Il2 activation. Additional use of ChIP or co-IP to establish STAT induction and activation would have been of potential value.

      1. Role of other cells: a. While the investigators have explored the phenotype on other cell types like Th1 and Treg, at places there remains a lacuna. For instance, the absence of neutrophil fractions from the DLC BAL, as well inconsistencies in the groups selected for comparison. For e.g., in Figure 3 Supplementary Figure 2, the figure suggests IL13 expression in CD4+ cells, yet the text reads incubated Th2 cells. This could be made more lucid.

      We appreciate this comment and would like to clarify. Neutrophil numbers were assessed in the presented in vivo models and showed no differences in neutrophil number due to genotype or vitamin D diet. We added the graphs to the supplement in Figure 3 - figure supplement 1A and Figure 5 - figure supplement 1B and refer to the figures in the main text. All in vivo data were analyzed by Mixed-effect ANOVA analysis or Two-way ANOVA test with Holm-Šidák’s post-hoc analysis (factors: genotype & exposure). To keep the plots clear, we incorporated only the statistic for the groups of interest.

      1. b) In Figure 3 Supplementary Figure 1 there is a trend towards an increase in IL-10 levels, whereas in Supplementary Figure 2 there is a drop in the IL13 level in the VDR KO group, which has not been explained.

      We apologize for any confusion. Figure 3 supplementary Figure 1 shows cytokine positive CD4+ T cells isolated from saline and HDM exposed mouse lungs. These data were analyzed with a Mixed-effect ANOVA analysis or Two-way ANOVA test with Holm-Šidák’s post-hoc analysis (factors: genotype & exposure) and were not found significant. Figure 3 supplementary Figure 2 shows IL-13 levels in the system of in vitro polarization of naïve CD4+ T cells into Th2 cells. The difference between this result and the findings in Figure 3H is the in vivo setting in which additional factors such as IL-4 can aggravate the immune response.

      1. c) While 17q loci form the predominant loci associated with Asthma, other loci important in Asthma on chromosomes 2,6,9, 22 could be discussed in the manuscript as well, even if they can't be explored in depth.

      This is an excellent comment. Our preliminary results confirm that three asthma susceptibility loci: 2q12.1 (IL1RL1), 6p21.32 (HLA-DQA1/B1/A2/B2) and 22q12.3 (IL2RB) each have VDR and IKZF3 binding sites either in enhancers predicted by GeneHancer to target these genes or within these genes themselves. In particular, we found (i) VDR binding sites within IL18RAP and in the enhancer region GH02J102301 targeting IL1RL1, and IKZF3 binding sites within IL1RL1; (ii) VDR binding sites in the enhancer regions GH06J032940 and GH06J031813 targeting HLA-DQA2, and IKZF3 binding sites within HLA-DQA1; (iii) VDR and IKZF3 binding sites within IL2RB. In contrast, the region 9p24.1 (IL33) has no documented VDR or IKZF3 binding sites within IL33 or in the promoter regions targeting IL33. Investigating these additional genetic loci further, using the integrative approach taken here with 17q12-21, is beyond the scope of this current manuscript but based on these preliminary results, would be a worthwhile scientific endeavor.

      1. Quantification of histology and confocal images could provide an objective assessment to the readers. Possibly incorporation of co-localisation panels for the IF images showing membrane/cytoplasmic/nuclear localisation of the VDR under various conditions.

      We agree that quantification of histology and confocal images could provide an overview of VDR expression in the lungs. Given the knowledge on VDR expression in a variety of cell types, including structural cells in the lungs and the focus of this manuscript on CD4+ T cells, we focused on determining VDR expression in CD4+ T cells isolated from saline and HDM exposed lungs in the mouse models studied (Figure 2 C; Fig. 2- figure supplement 1 B & C, Figure 3 C; Figure 5 - figure supplement 1) as well as in vitro (Figure 2 - figure supplement 2; Figure 5 - figure supplement 2).

      1. Structure of the manuscript: At places the manuscript has a disrupted flow, as well as mislabeled figures (Figure 2SF1B is 1C, Fig 2c is 2b in the results, ). Flow gates can be arranged sequentially and consistent labelling of the gates and axis would ease interpretation.

      We appreciate this comment and have corrected the mislabeled figures and tried to improve the flow.

      1. In some places sample sizes mentioned do not match the dot graphs in the figures (figure 3K-L). In the same figure and others (Figure 5 Supplementary Figure 2), a comparison of all groups would be beneficial.

      We appreciate this comment and have checked the sample sizes. Each of these experiments compared two groups and these two groups were compared statistically. We corrected the sample size for Figure 5 Supplementary Figure 2 C in the manuscript.

      1. A restructuring of the results and corrections, could assist the reader.

      We have restructured both the results and the discussion, incorporating the changes noted here in the response to the reviewers, to make the flow of the manuscript easier to read.

      1. Also, a visualization of the VDAART analysis in the main figures, corroborating with the results sections would do justice to the interesting approach and findings.

      We have now added the below schematic to Figure 1-figure supplement 1C to summarize the analyses conducted on the VDAART data.

      Author response image 1.

      1. The clearances and approvals for the study also need to be incorporated into the manuscript.

      These were in the checklist and have been moved to the main text of the manuscript.

      1. If possible, the incorporation of a schematic showing the proposed pathway for VDR induced Ikzf3 and subsequent suppression of the genes present on Chr 17 loci to mitigate allergic airway inflammation would help.

      We have a figure for this (below) that we have incorporated into the manuscript as Figure 5 - figure supplement 3:

      Author response image 2.

      Cartoon Summarizing Vitamin D molecular genetics at 17q12-21

      Reviewer #2

      1. A few specific points: A number of immune concepts are studied without reference to the broader literature and the data presented data on occasion counter these earlier findings. Examples of this include:

      a. Vitamin D can both enhance and inhibit IL-13 synthesis, demonstrated both in vitro and ex vivo, and these effects are clearly context-specific. I am not questioning the validity of the present experimental findings in this specific experimental model), but the experimental context - the problem is that this is not discussed.

      We thank the reviewer for this comment. We have now included a sentence in the discussion section mentioning the contradictory results. It reads as follows:

      “We acknowledge that the impact of vitamin D on Th2 biology is conflicting in the literature. While several groups report Th2 promoting activity, we, and others, show inhibition of type 2 cytokine production 8–11. These discrepancies could be due to the model system studied, e.g., PBMC and purified CD4+ T cells, or the dose of vitamin D or the mouse strain.”

      b. Short-term bulk Th2 cultures are used with no indication of their enrichment for lineage specific markers or cytokine – their conclusions might be enhanced by this. Data on genes/markers of interest could be further enhanced by showing FACS plots of co-expression e.g., Th2 genes e.g., IL-13/GATA3 with these other markers.

      We appreciate this comment. The in vitro culture system used for Th2 cell differentiation has been well described in the literature. As shown in Figure 3 - figure supplement 2; Figure 4 E and Figure 5 - figure supplement 2 D & E the lineage specific IL-13 cytokine levels are detectable at high levels.

      c. Are human Th2 cells enriched for VDR, since the backdrop to this study is human clinical and genetic data? For a study that has based its rationale on human clinical/genetic studies it would be great to confirm these findings in human Th2 cells.

      We appreciate this comment and are curious to explore this in future research. The VDAART trial is a double-blinded multicenter trial in which an immediate processing of the blood samples and an enrichment of different immune cell populations was not feasible. Other publicly available data sets report gene expression derived from mixed and peripheral (blood) cells and not local (lung) tissues. Published in vitro studies on human Th2 cells do not report VDR expression in comparison to other Th subsets, which would allow the assessment of enrichment.

      1. The Discussion might comment on some of these wider issues.

      We have rewritten the discussion to incorporate many of the issues raised in this review.

      1. Minor typos throughout, including in figure legends.

      We have edited all of the figure legends.

      References

      1. Holick, M. F. Vitamin D Is Not as Toxic as Was Once Thought: A Historical and an Up-to-Date Perspective. Mayo Clinic proceedings 90, 561–564; 10.1016/j.mayocp.2015.03.015 (2015).

      2. Hossein-nezhad, A. & Holick, M. F. Vitamin D for health: a global perspective. Mayo Clinic proceedings 88, 720–755; 10.1016/j.mayocp.2013.05.011 (2013).

      3. Hollis, B. W. & Wagner, C. L. New insights into the vitamin D requirements during pregnancy. Bone research 5, 17030; 10.1038/boneres.2017.30 (2017).

      4. Litonjua, A. A. et al. Effect of Prenatal Supplementation With Vitamin D on Asthma or Recurrent Wheezing in Offspring by Age 3 Years: The VDAART Randomized Clinical Trial. JAMA 315, 362–370; 10.1001/jama.2015.18589 (2016).

      5. Gianforcaro, A., Solomon, J. A. & Hamadeh, M. J. Vitamin D(3) at 50x AI attenuates the decline in paw grip endurance, but not disease outcomes, in the G93A mouse model of ALS, and is toxic in females. PloS one 8, e30243; 10.1371/journal.pone.0030243 (2013).

      6. Landel, V., Millet, P., Baranger, K., Loriod, B. & Féron, F. Vitamin D interacts with Esr1 and Igf1 to regulate molecular pathways relevant to Alzheimer's disease. Molecular neurodegeneration 11, 22; 10.1186/s13024-016-0087-2 (2016).

      7. Agrawal, T., Gupta, G. K. & Agrawal, D. K. Vitamin D supplementation reduces airway hyperresponsiveness and allergic airway inflammation in a murine model. Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology 43, 672–683; 10.1111/cea.12102 (2013).

    1. Author Response

      Response to Reviewer 1:

      Summary of what the author was trying to achieve: In this study, the author aimed to develop a method for estimating neuronal-type connectivity from transcriptomic gene expression data, specifically from mouse retinal neurons. They sought to develop an interpretable model that could be used to characterize the underlying genetic mechanisms of circuit assembly and connectivity.

      Strengths: The proposed bilinear model draws inspiration from commonly implemented recommendation systems in the field of machine learning. The author presents the model clearly and addresses critical statistical limitations that may weaken the validity of the model such as multicollinearity and outliers. The author presents two formulations of the model for separate scenarios in which varying levels of data resolution are available. The author effectively references key work in the field when establishing assumptions that affect the underlying model and subsequent results. For example, correspondence between gene expression cell types and connectivity cell types from different references are clearly outlined in Tables 1-3. The model training and validation are sufficient and yield a relatively high correlation with the ground truth connectivity matrix. Seemingly valid biological assumptions are made throughout, however, some assumptions may reduce resolution (such as averaging over cell types), thus missing potentially important single-cell gene expression interactions.

      Thank you for acknowledging the strengths of this work. The assumption to average gene expression data across individual cells within a given cell type was made in response to the inherent limitations of, for example, the mouse retina dataset, where individual cell-level connectivity and gene expression data are not profiled jointly (the second scenario in our paper). This approach was a necessary compromise to facilitate the analysis at the cell type level. However, in datasets where individual cell-level connectivity and gene expression data are matched, such as the C.elegans dataset referenced below, our model can be applied to achieve single-cell resolution (the first scenario in our paper), offering a more detailed understanding of genetic underpinnings in neuronal connectivity.

      Weaknesses: The main results of the study could benefit from replication in another dataset beyond mouse retinal neurons, to validate the proposed method. Dimensionality reduction significantly reduces the resolution of the model and the PCA methodology employed is largely non-deterministic. This may reduce the resolution and reproducibility of the model. It may be worth exploring how the PCA methodology of the model may affect results when replicating. Figure 5, ’Gene signatures associated with the two latent dimensions’, lacks some readability and related results could be outlined more clearly in the results section. There should be more discussion on weaknesses of the results e.g. quantification of what connectivity motifs were not captured and what gene signatures might have been missed.

      I value the suggestion of validating the propose method in another dataset. In response, I found the C.elegans dataset in the references the reviewer suggested below a good candidate for this purpose, and I plan to explore this dataset and incorporate findings in the revised manuscript. I understand the concerns regarding the PCA methodology and its potential impact on the model’s resolution and reproducibility. In response, alternative methods, such as regularization techniques, will be explored to address these issues. Additionally, I agree that enhancing the clarity and readability of Figure 5, as well as including a more comprehensive discussion of the model’s limitations, would significantly strengthen the manuscript.

      The main weakness is the lack of comparison against other similar methods, e.g. methods presented in Barabási, Dániel L., and Albert-László Barabási. "A genetic model of the connectome." Neuron 105.3 (2020): 435-445. Kovács, István A., Dániel L. Barabási, and Albert-László Barabási. "Uncovering the genetic blueprint of the C. elegans nervous system." Proceedings of the National Academy of Sciences 117.52 (2020): 33570-33577. Taylor, Seth R., et al. "Molecular topography of an entire nervous system." Cell 184.16 (2021): 4329-4347.

      Thank you for highlighting the importance of comparing our model with others, particularly those mentioned in your comments. After reviewing these papers, I find that our bilinear model aligns closely with the methods described, especially in [1, 2]. To see this, let’s start with Equation 1 in Kovács et al. [2]:

      In this equation, B represents the connectivity matrix, while X denotes the gene expression patterns of individual neurons in C.elegans. The operator O is the genetic rule operator governing synapse formation, linking connectivity with individual neuronal expression patterns. It’s noteworthy that the work of Barabási and Barabási [1] explores a specific application of this framework, focusing on O for B that represents biclique motifs in the C.elegans neural network.

      To identify the the operator O, the authors sought to minimize the squared residual error:

      with regularization on O.

      Adopting the notation from our bilinear model paper and using Z to represent the connectivity matrix, the above becomes

      Coming back to the bilinear model formulation, the optimization problem, as formulated for the C.elegans dataset where individual neuron connectivity and gene expression are accessible, takes the form:

      where we consider each neuron as a distinct neuronal type. In addition, we extend the dimensions of X and Y to encompass the entire set of neurons in C.elegans, with X = Y ∈ Rn×p, where n signifies the total number of neurons and p the number of genes. Accordingly, our optimization challenge evolves into:

      Upon comparison with the earlier stated equation, it becomes clear that our approach aligns consistently with the notion of O = ABT. This effectively results in a decomposition of the genetic rule operator O. This decomposition extends beyond mere mathematical convenience, offering several substantial benefits reminiscent of those seen in the collaborative filtering of recommendation systems:

      • Computational Efficiency: The primary advantage of this approach is its improvement in computational efficiency. For instance, solving for O ∈ Rp×p necessitates determining p2 entries. In contrast, solving for A ∈ Rp×d and B ∈ Rp×d involves determining only 2pd entries, where p is the number of genes, and d is the number of latent dimensions. Assuming the existence of a lower-dimensional latent space (d << p) that captures the essential variability in connectivity, resolving A and B becomes markedly more efficient than resolving O. Additionally, from a computational system design perspective, inferring the connectivity of a neuron allows for caching the latent embeddings of presynaptic neurons XA or postsynaptic neurons XB with a space complexity of O(nd). This is significantly more space-efficient than caching XO or OXT, which has a space complexity of O(np). This difference is particularly notable when dealing with large numbers of neurons, such as those in the entire mouse brain. The bilinear modeling approach thus enables effective handling of large datasets, simplifying the optimization problem and reducing computational load, thereby making the model more scalable and faster to execute.

      • Interpretability: The separation into A for presynaptic features and B for postsynaptic features provides a clearer understanding of the distinct roles of pre- and post- synaptic neurons in forming the connection. By projecting the pre- and post- synaptic neurons into a shared latent space through XA and YB, one can identify meaningful representations within each axis, as exemplified in different motifs from the mouse retina dataset. The linear characteristics of A and B facilitate direct evaluation of each gene’s contribution to a latent dimension. This interpretability, offering insights into the genetic factors influencing synaptic connections, is beyond what O could provide itself.

      • Flexibility and Adaptability: The bilinear model’s adaptability is another strength. Much like collaborative filtering, which can manage very different user and item features, our bilinear model can be tailored to synaptic partners with genetic data from varied sources. A potential application of this model is in deciphering the genetic correlates of long-range projectomic rules, where pre- and post-synaptic neurons are processed and sequenced separately, or even involving post-synaptic targets being brain regions with genetic information acquired through bulk sequencing. This level of flexibility also allows for model adjustments or extensions to incorporate other biological factors, such as proteomics, thereby broadening its utility across various research inquiries into the determinants of neuronal connectivity.

      In the study by Taylor et al. [3], the authors introduced a generalization of differential gene expressions (DGE) analysis called network DGE (nDGE) to identify genetic determinants of synaptic connections. It focuses on genes co-expressed across pairs of neurons connected, compared with pairs without connection.

      As the authors acknowledged in the method part of the paper, nDGE can only examine single genes co-expressed at synaptic terminals: "While the nDGE technique introduced here is a generalization of standard DGE, interrogating the contribution of pairs of genes in the formation and maintenance of synapses between pairs of neurons, nDGE can only account for a single co-expressed gene in either of the two synaptic terminals (pre/post)."

      In contrast, the bilinear model offers a more comprehensive analysis by seeking a linear combination of gene expressions in both pre- and post-synaptic neurons. This model goes beyond the scope of examining individual co-expressed genes, as it incorporates different weights for the gene expressions of pre- and post-synaptic neurons. This feature of the bilinear model enables it to capture not only homogeneous but also complex and heterogeneous genetic interactions that are pivotal in synaptic connectivity. This highlights the bilinear model’s capability to delve into the intricate interactions of synaptic gene expression.

      Appraisal of whether the author achieved their aims, and whether results support their conclusions: The author achieved their aims by recapitulating key connectivity motifs from single-cell gene expression data in the mouse retina. Furthermore, the model setup allowed for insight into gene signatures and interactions, however could have benefited from a deeper evaluation of the accuracy of these signatures. The author claims the method sets a new benchmark for single-cell transcriptomic analysis of synaptic connections. This should be more rigorously proven. (I’m not sure I can speak on the novelty of the method)

      I value your appraisal. In response, additional validation of the bilinear model on a second dataset will be undertaken.

      Discussion of the likely impact of the work on the field, and the utility of methods and data to the community : This study provides an understandable bilinear model for decoding the genetic programming of neuronal type connectivity. The proposed model leaves the door open for further testing and comparison with alternative linear and/or non-linear models, such as neural networkbased models. In addition to more complex models, this model can be built on to include higher resolution data such as more gene expression dimensions, different types of connectivity measures, and additional omics data.

      Thank you for your positive assessment of the potential impact of the study.

      Response to Reviewer 2:

      Summary: In this study, Mu Qiao employs a bilinear modeling approach, commonly utilized in recommendation systems, to explore the intricate neural connections between different pre- and post-synaptic neuronal types. This approach involves projecting single-cell transcriptomic datasets of pre- and post-synaptic neuronal types into a latent space through transformation matrices. Subsequently, the cross-correlation between these projected latent spaces is employed to estimate neuronal connectivity. To facilitate the model training, connectomic data is used to estimate the ground-truth connectivity map. This work introduces a promising model for the exploration of neuronal connectivity and its associated molecular determinants. However, it is important to note that the current model has only been tested with Bipolar Cell and Retinal Ganglion Cell data, and its applicability in more general neuronal connectivity scenarios remains to be demonstrated.

      Strengths: This study introduces a succinct yet promising computational model for investigating connections between neuronal types. The model, while straightforward, effectively integrates singlecell transcriptomic and connectomic data to produce a reasonably accurate connectivity map, particularly within the context of retinal connectivity. Furthermore, it successfully recapitulates connectivity patterns and helps uncover the genetic factors that underlie these connections.

      Thank you for your positive assessment of the paper.

      Weaknesses:

      1. The study lacks experimental validation of the model’s prediction results.

      Thank you for pointing out the importance of experimental validation. I acknowledge that the current version of the study is focused on the development and validation of the computational model, using the datasets presently available to us. Moving forward, I plan to collaborate with experimental neurobiologists. These collaborations are aimed at validating our model’s predictions, including the delta-protocadherins mentioned in the paper. However, considering the extensive time and resources required for conducting and interpreting experimental results, I believe it is more pragmatic to present a comprehensive experimental study, including the design and execution of experiments informed by the model’s predictions, in a separate follow-up paper. I intend to include a paragraph in the discussion of this paper outlining the future direction for experimental validation.

      1. The model’s applicability in other neuronal connectivity settings has not been thoroughly explored.

      I recognize the importance of assessing the model across different neuronal systems. In response to similar feedback from Reviewer 1, I am keen to extend the study to include the C.elegans dataset mentioned earlier. The results from applying our bilinear model to the second dataset will be incorporated into the revised manuscript.

      1. The proposed method relies on the availability of neuronal connectomic data for model training, which may be limited or absent in certain brain connectivity settings.

      The concern regarding the dependency of our model on the availability of connectomic data is valid. While complete connectomes are available for organisms like C.elegans and Drosophila, and efforts are underway to map the connectome of the entire mouse brain, such data may not always be accessible for all research contexts. Recognizing this limitation, part of the ongoing research is to explore ways to adapt our model to the available data, such as projectomic data. Furthermore, our bilinear model is compatible with trans-synaptic virus-based sequencing techniques [4, 5], allowing us to leverage data from these experimental approaches to uncover the genetic underpinnings of neuronal connectivity. These initiatives are crucial steps towards broadening the applicability of our model, ensuring its relevance and usefulness in diverse brain connectivity studies where detailed connectomic data may not be readily available.

      References

      [1] Dániel L. Barabási and Albert-László Barabási. A genetic model of the connectome. Neuron, 105(3):435–445, 2020.

      [2] István A. Kovács, Dániel L. Barabási, and Albert-László Barabási. Uncovering the genetic blueprint of the c. elegans nervous system. Proceedings of the National Academy of Sciences, 117(52):33570–33577, 2020.

      [3] Seth R. Taylor, Gabriel Santpere, Alexis Weinreb, Alec Barrett, Molly B. Reilly, Chuan Xu, Erdem Varol, Panos Oikonomou, Lori Glenwinkel, Rebecca McWhirter, Abigail Poff, Manasa Basavaraju, Ibnul Rafi, Eviatar Yemini, Steven J. Cook, Alexander Abrams, Berta Vidal, Cyril Cros, Saeed Tavazoie, Nenad Sestan, Marc Hammarlund, Oliver Hobert, and David M. 3rd Miller. Molecular topography of an entire nervous system. Cell, 184(16):4329–4347, 2021.

      [4] Nicole Y. Tsai, Fei Wang, Kenichi Toma, Chen Yin, Jun Takatoh, Emily L. Pai, Kongyan Wu, Angela C. Matcham, Luping Yin, Eric J. Dang, Denise K. Marciano, John L. Rubenstein, Fan Wang, Erik M. Ullian, and Xin Duan. Trans-seq maps a selective mammalian retinotectal synapse instructed by nephronectin. Nat Neurosci, 25(5):659–674, May 2022.

      [5] Aixin Zhang, Lei Jin, Shenqin Yao, Makoto Matsuyama, Cindy van Velthoven, Heather Sullivan, Na Sun, Manolis Kellis, Bosiljka Tasic, Ian R. Wickersham, and Xiaoyin Chen. Rabies virusbased barcoded neuroanatomy resolved by single-cell rna and in situ sequencing. bioRxiv, 2023.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This study presents a potentially valuable discovery which indicates that activation of the P2RX7 pathway can reduce the lung fibrosis after its establishment by inflammatory damage. If confirmed, the study could clarify the role of specific immune networks in the establishment and progression of lung fibrosis. However, the presented data and analyses are incomplete as they primarily rely on limited pharmacological treatments with modest effect sizes. I hope you will be convinced by the validity of our approaches with the following explanation/information and I remain at your disposal to discuss

      Public Reviews:

      Reviewer #1 (Public Review):

      In this revised preprint the authors investigate whether a presumably allosteric P2RX7 activating compound that they previously discovered reduces fibrosis in a bleomycin mouse model. They chose this particular model as publicly available mRNA data indicate that the P2RX7 pathway is downregulated in idiopathic pulmonary fibrosis patients compared to control individuals. In their revised manuscript, the authors use three proxies of lung damage, Ashcroft score, collagen fibers, and CD140a+ cells, to assess lung damage following the administration of bleomycin. These metrics are significantly reduced on HEI3090 treatment. Additional data implicate specific immune cell infiltrates and cytokines, namely inflammatory macrophages and damped release of IL-17A, as potential mechanistic links between their compound and reduced fibrosis. Finally, the researchers transplant splenocytes from WT, NLRP3-KO, and IL-18-KO mice into animals lacking the P2RX7 receptor to specifically ascertain how the transplanted splenocytes, which are WT for P2RX7 receptor, respond to HEI3090 (a P2RX7 agonist). Based on these results, the authors conclude that HEI3090 enhanced IL-18 production through the P2RX7-NLRP3 inflammasome axis to dampen fibrosis.

      These findings could be interesting to the field, as there are conflicting results as to whether NLRP3 activation contributes to fibrosis and if so, at what stage(s) (e.g., acute damage phase versus progression). The revised manuscript is more convincing in that three orthogonal metrics for lung damage were quantified. However, major weaknesses of the study still include inconsistent and small effect sizes of HEI3090 treatment versus either batch effects from transplanted splenocytes or the effects of different genetic backgrounds. Moreover, the fundamental assumption that HEI3090 acts specifically and functionally through the P2RX7 pathway in this model cannot be directly tested, as the authors now provide results indicating that P2RX7 knockout mice do not establish lung fibrosis on bleomycin treatment.

      I’m particularly concerned by the assumption made by reviewer 1 concerning the fact that P2RX7 knockout mice do not establish lung fibrosis on bleomycin treatment.

      Indeed, what we showed in the point-to-point response is that BLM induces fibrosis in both WT and P2RX7 KO mice, but the intensity of the fibrosis is reduced in P2RX7KO mice, panel A. Therefore, as discussed in our first response, our results confirmed the previous publication of Riteau et al, that P2RX7 participates in BLM-induced lung fibrosis (see panel B).

      Author response image 1.

      Bleomycin induced lung fibrosis in WT versus p2rx7 KO mice. A: lung from BLM-treated mice were stained with HE and fibrosis was quantified using the Ashcroft protocol. Result showed that fibrosis induced by BLM in KO mice is reduced as compared to WT mice. B: Representative images of lung sections at day 14 after BLM treatment stained with H&E as published in Riteau et al. and illustrating that fibrosis induced by BLM in KO mice is reduced as compared to WT mice. WT mice vehicle (n=4) or p2rx7 KO (n=6) mice. Two-tailed Mann-Whitney test, p values: **p < 0.01.

      Importantly, this lower intensity of lung fibrosis in P2RX7 KO mice, does not interfere with the capacity of our molecule to attenuate lung fibrosis, as demonstrated in the adoptive transfer of IL1B KO splenocytes in P2RX7 KO mice, in which HEI3090 decreases the Ashcroft score, the % of fibrosis and the collagen fibers (see below).

      Author response image 2.

      HEI3090 activity requires P2RX7’s expressing immune cells: Experimental design. p2rx7-/- mice were given 3.106 il1β-/- splenocytes i.v. one day prior to BLM delivery (i.n. 2.5 U/kg). Mice were treated daily i.p. with 1.5 mg/kg HEI3090 or vehicle for 14 days. (C) Representative images of lung sections at day 14 after treatment stained with H&E and Sirius Red with il1β-/- splenocytes, bar= 100 µm (left) and fibrosis score assessed by the Ashcroft method, the % of fibrosis and the content of collagen fibers (right). Each point represents one mouse (n=2 in WT and NLRP3 experiment, n =1 in IL18 and IL1B experiment), data represented as violin plot or mean±SEM, two-tailed Mann-Whitney test, *p < 0.05. WT: Wildtype, KO: P2RX7 knock-out

      Importantly, in the same experimental setting, e.g adoptive transfer of splenocytes from different genetic backgrounds, HEI3090 decreases the fibrosis intensity only with WT and IL1B KO splenocytes and not with NLRP3 KO and IL18KO splenocytes.

      Author response image 3.

      HEI3090 activity requires P2RX7’s expressing immune cells: Experimental design. p2rx7-/- mice were given 3.106 WT, NLRP3-/-, IL18-/- or IL1β-/- splenocytes i.v. one day prior to BLM delivery (i.n. 2.5 U/kg). Mice were treated daily i.p. with 1.5 mg/kg HEI3090 or vehicle for 14 days. Fibrosis in whole lung was assessed by the % of fibrosis (upper panel) and the content of collagen fibers (lower panel). Each point represents one mouse (n=2 in WT and NLRP3 experiments, n =1 in IL18 and IL1B experiment). Data represented as violin plot or mean±SEM, two-tailed Mann-Whitney test, *p < 0.05. WT: Wildtype, KO: P2RX7 knock-out

      In order to provide clear evidence that HEI3090 functions through P2RX7, a different lung fibrosis model that does not require P2RX7 would be necessary. For example, in such a system the authors could demonstrate a lack of HEI3090-mediated therapeutic effect on P2RX7 knockout.

      Since BLM induces lung fibrosis in P2RX7 KO mice as we showed in this manuscript and as already published by Riteau in 2010, shown earlier in our response (first figure) and because HEI3090 is able to decrease the intensity of fibrosis in WT and IL1B-/- → P2RX7 KO mice but not in KO, NLRP3-/- → P2RX7 KO and IL18-/- → P2RX7 KO mice we believe that our data sustain the conclusion that

      1. HEI3090 required the expression of P2RX7 in immune cells to mediate the antifibrotic activity,

      2. IL1B is not a crucial effector mediating the antifibrotic effect of HEI3090.

      Molecularly, additional evidence on specificity, such as thermal proteome profiling and direct biophysical binding experiments, would also enhance the authors' argument that the compound indeed binds P2RX7 directly and specifically. Since all small molecules have some degree of promiscuity, the absence of an additional P2RX7 modulator, or direct recombinant IL-18 administration (as suggested by another reviewer), is needed to orthogonally validate the functional importance of this pathway. Another way the authors could probe pathway specificity would involve co-administering α-IL-18 with HEI3090 in several key experiments (similar to Figure 4L).

      At the moment we have no funds to do these experiments and given the high competition, we have decided to publish our story without these new data.

      Reviewer #2 (Public Review):

      In the study by Hreich et al, the potency of P2RX7-specific positive modulator HEI3090, developed by the authors, for the treatment of Idiopathic pulmonary fibrosis (IPF) was investigated. Recently, the authors have shown that HEI3090 can protect against lung cancer by stimulating dendritic cell P2RX7, resulting in IL-18 production that stimulates IFN-γ production by T and NK cells (DOI: 10.1038/s41467-021-20912-2). Interestingly, HEI3090 increases IL-18 levels only in the presence of high eATP. Since the treatment options for IPF are limited, new therapeutic strategies and targets are needed. The authors first show that P2RX7/IL-18/IFNG axis is downregulated in patients with IPF. Next, they used a bleomycin-induced lung fibrosis mouse model to show that the use of a positive modulator of P2RX7 leads to the activation of the P2RX7/IL-18 axis in immune cells that limits lung fibrosis onset or progression. Mechanistically, treatment with HEI3090 enhanced IL-18-dependent IFN-γ production by lung T cells leading to a decreased production of IL-17 and TGFβ, major drivers of IPF. The major novelty is the use of the small molecule HEI3090 to stimulate the immune system to limit lung fibrosis progression by targeting the P2RX7, which could be potentially combined with current therapies available. Overall, the study was well performed, and the manuscript is clear.

      We thank the reviewer for this very positive comments.

      However, there is need for more details on the description and interpretation of the adoptive transfer experiments, as well as the statistical analyses and number of replicate independent experiments.

      I’m concerned by the reviewer’s comments, and I would like to bring additional information/explanation, which I hope will convince you on the validity of our approaches.

      Author response image 4.

      Adoptive transfer experiment. Adoptive transfer experiments are classically used to document which immune cells participate in immune cell responses (with more than 150 publications in pubmed with the key words adoptive transfer and onco immunology) and intravenous administration is a common route to trigger lungs (PMID: 23336716). To characterize the molecular effector (P2RX7, NLRP3, IL18 and IL1B) accounting for the antifibrotic effect of HEI3090 we purified splenocytes from donor mice and administrated them intra venously in P2RX7 KO mice. As shown in Author response image 4, HEI3090 has no antifibrotic activity when splenocyte isolated from mice invalidated for p2rx7 are iv into P2RX7 KO mice (KO in KO). By contrast, HEI3090 has antifibrotic activity when WT splenocytes expressing P2RX7 (isolated from WT mice) are transferred into P2RX7 KO mice (WT in KO).

      This experiment brings strong evidence to demonstrate the efficacy of adoptive transfer approach to identify molecular effector required to mediate the antifibrotic effect of HEI3090.

      Statistical analyses and number of replicate independent experiments

      We thank the reviewer for his comment, and we apologize to not have been sufficiently clear in our previous response with this miss phrased statement “the experiment was stopped when significantly statistical results were observed” when we should have written “the experiment was stopped when each experimental group contained at least 5 mice”.

      To define the size of experimental groups we did a pilot experiment, with 4 WT mice (e.g. 4 biological replicates) in each group (as shown aside), and a statistical forecasting based on the result of the pilot experiment (40% difference, standard error: 0.9, α risk: 0.05, power: 0.8). Since we focused on the effect of HEI3090 we based our statistical analysis on a one-way ANOVA analysis comparing in each experiment the vehicle and the treated group.

      The pilot experiment and statistical forecasting indicated 4 mice per group to characterize the effect of HEI3090 on BLM-induced lung fibrosis. Each experiment was started with 6 to 8 mice per group. Being aware that 30% of mice can unexpectedly dye due to BLM treatment, we duplicated the experiment, when necessary, to include at least 5 mice in each group of each experiment meaning 5 biological replicates, knowing that 4 mice are sufficient to statistically analyze the results. In each experiment we have checked for the presence of outlier, using the ROULT method, and removed the outliers when necessary.

    2. Author Response

      The following is the authors’ response to the previous reviews.

      Point to point response for the editors

      We are deeply grateful for the time you have devoted to reviewing this manuscript, and we sincerely thank you. Your insightful feedback has been instrumental in enhancing the quality of our work.

      In the revised version of the manuscript, we have carefully addressed each of the concerns you raised. Below, you will find a detailed summary of how your feedback has been incorporated to improve the overall content and clarity of the document.

      1. P2RX7 effects: In Figure 2, the vehicle treated P2RX7 knockout (panel M) shows an Ashcroft score of about 1.5 after BLM. Comparing this to the Ashcroft score of 3 after BLM in the wildtype (panel C) suggests that P2RX7 deletion is an effective way to reduce fibrosis by half!.

      The argument that HEI3090 also reduces fibrosis by activating P2RX7 is of course very difficult to convey and it seems contradictory that P2RX7 deletion and P2RX7 activation can be both anti-fibrotic. This is an unusual claim and confuses the reviewers as well as the future readers.

      This has many important health implications because activating an inflammatory pathway via P2RX7 and IL-18 could be risky in terms of a fibrosis treatment as inflammatory activation can also worsen fibrosis. The authors' own P2RX7 KO data (untreated vehicle groups) indeed confirms that P2RX7 can be pro-fibrotic.

      We thank the editors for their comment highlighting the lack of clarity in our message. Indeed, we verified whether the antifibrotic action of HEI3090 depends on the expression of P2RX7 by inducing lung fibrosis in P2RX7 KO mice. In doing so, we initially observed that P2RX7 plays a role in the development of BLM-induced lung fibrosis. This is illustrated by a decrease of 50% in the Ashcroft score, as shown in Figure 2M and Supplemental Figure 2C of the revised manuscript.

      To increase the clarity of your message, we added in the text the following paragraph:

      "We further verified whether the antifibrotic action of HEI3090 depends on the expression of P2RX7 by inducing lung fibrosis in p2rx7 knockout (KO) mice. In doing so, we initially observed that P2RX7 plays a role in the development of BLM-induced lung fibrosis. This is illustrated by a decrease of 50% in the Ashcroft score, with a mean value of 1.7 in P2RX7 knockout mice compared to 3 in wild-type mice (Figure 2M and Supplemental Figure 2C). It is important to note that p2rx7 -/- mice still exhibit signs of lung fibrosis, such as thickening of the alveolar wall and a reduction in free air space, in comparison to naïve mice that received PBS instead of BLM (see Supplemental Figure 2A). This result confirms a previous report indicating that BLM-induced lung fibrosis partially depends on the activation of the P2RX7/pannexin-1 axis, leading to the production of IL-1β in the lung. Additionally, in contrast to the observations in WT mice, HEI3090 failed to attenuate the remaining lung fibrosis in p2rx7 -/- mice, as measured by the Ashcroft score (Figure 2M), the percentage of lung tissue with fibrotic lesions, or the intensity of collagen fibers (Supplemental Figure 2D). These results show that P2RX7 alone participates in fibrosis and that HEI3090 exerts a specific antifibrotic effect through this receptor (see Supplemental Figure 2C)."

      Since we used the HEI3090 compound in this study and to be closer to the results, we have replaced the title of 2 chapters in the results section as followed:

      “HEI3090 inhibits the onset of pulmonary fibrosis in the bleomycin mouse model” instead of P2RX7 activation inhibits the onset of pulmonary fibrosis in the bleomycin mouse model and “HEI3090 shapes immune cell infiltration in the lungs" instead of P2RX7 activation shapes immune cell infiltration in the lungs

      We concur that the observation of both anti-fibrotic effects following P2RX7 deletion and P2RX7 activation appears contradictory. This specific aspect has been thoroughly addressed and extensively discussed in the revised manuscript.

      “A major unmet need in the field of IPF is new treatment to fight this uncurable disease. In this preclinical study, we demonstrate the ability of immune cells to limit lung fibrosis progression. Based on the hypothesis that a local activation of a T cell immune response and upregulation of IFN-γ production has antifibrotic proprieties, we used the HEI3090 positive modulator of the purinergic receptor P2RX7, previously developed in our laboratory (Douguet et al., 2021), to demonstrate that activation of the P2RX7/IL-18 pathway attenuates lung fibrosis in the bleomycin mouse model. We have demonstrated that lung fibrosis progression is inhibited by HEI3090 in the fibrotic phase but also in the acute phase of the BLM fibrosis mouse model, i.e. during the period of inflammation. This lung fibrosis mouse model commonly employed in preclinical investigations, has recently been recognized as the optimal model for studying IPF (Jenkins et al., 2017). In this model, the intrapulmonary administration of BLM induces DNA damage in alveolar epithelial type 1 cells, triggering cellular demise and the release of ATP. The extracellular release of ATP from injured cells activates the P2RX7/pannexin 1 axis, initiating the maturation of IL1β and subsequent induction of inflammation and fibrosis. In line with this, mice lacking P2RX7 exhibited reduced neutrophil counts in their bronchoalveolar fluids and decreased levels of IL1β in their lungs compared to WT mice (Riteau et al., 2010). Based on these findings, Riteau and colleagues postulated that the inhibition of P2RX7 activity may offer a potential strategy for the therapeutic control of fibrosis in lung injury. In the present study we provided strong evidence showing that selective activation of P2RX7 on immune cells, through the use of HEI3090, can dampen inflammation and fibrosis by releasing IL-18. The efficacy of HEI3090 to inhibit lung fibrosis was evaluated histologically on the whole lung’s surface by evaluating the severity of fibrosis using three independent approaches applied to the whole lung, the Ashcroft score, quantification of fibroblasts/myofibroblasts (CD140a) and polarized-light microscopy of Sirius Red staining to quantify collagen fibers. All these methods of fibrosis assessment revealed that HEI3090 exerts an inhibitory effect on lung fibrosis, underscoring the necessity for a thorough pre-clinical assessment of HEI3090's mode of action. Notably, HEI3090 functions as an activator, rather than an inhibitor, of P2RX7, further emphasizing the importance of elucidating its intricate mechanisms.”

      We trust that the detailed explanation provided therein will adequately persuade both the reviewers and future readers.

      1. The statistical concerns are based on the phrasing of "the experiment was stopped when significantly statistical results were observed". This is different from the power analysis approach that the authors describe in their latest rebuttal. However, it raises the question why the power analysis was performed using "on a one-way ANOVA analysis comparing in each experiment the vehicle and the treated group". The analyses in the manuscript use the Mann-Whitney test for several comparisons which ahs the assumption that the samples do NOT have a normal distribution. An ANOVA and t-tests have the assumption that samples are normally distributed. If the power analysis and "statistical forecasting" assumed a normal distribution and used an ANOVA, then shouldn't all the analyses also use a statistical test appropriate for normally distributed samples such as ANOVA and t-tests?

      Several of the data points in the figures seem to be normally distributed and therefore t-test for two group comparisons would be more appropriate. The most rigorous approach would be to check for normal distribution before choosing the correct statistical test and using the t-test/ANOVA in normally distributed data as well as Mann-Whitney for non-normally distributed data.

      We described in the Material and Method section of the revised manuscript our approach to determine the size of experimental group.

      “The determination of experimental group sizes involved conducting a pilot experiment with four mice in each group. Subsequently, a power analysis, based on the pilot experiment's findings (which revealed a 40% difference with a standard error of 0.9, α risk of 0.05, and power of 0.8), was performed to ascertain the appropriate group size for studying the effects of HEI3090 on BLM-induced lung fibrosis. The results of the pilot experiment and power analysis indicated that a group size of four mice was sufficient to characterize the observed effects. For each full-scale experiment, we initiated the study with 6 to 8 mice per group, ensuring a minimum of 5 mice in each group for robust statistical analysis. Additionally, we systematically employed the ROULT method to identify and subsequently exclude any outliers present in each experiment before conducting statistical analyses”.

      We now described in the Material and Method section how we carried out the statistical analyses.

      “Quantitative data were described and presented graphically as medians and interquartiles or means and standard deviations. The distribution normality was tested with the Shapiro's test and homoscedasticity with a Bartlett's test. For two categories, statistical comparisons were performed using the Student's t-test or the Mann–Whitney's test. For three and more categories, analysis of variance (ANOVA) or non-parametric data with Kruskal–Wallis was performed to test variables expressed as categories versus continuous variables. If this test was significant, we used the Tukey's test to compare these categories and the Bonferroni’s test to adjust the significant threshold. For the Gene Set Enrichment Analyses (GSEA), bilateral Kolmogorov–Smirnov test, and false discovery rate (FDR) were used. All statistical analyses were performed by biostatistician using Prism8 program from GraphPad software. Tests of significance was two-tailed and considered significant with an alpha level of P < 0.05. (graphically: * for P < 0.05, ** for P < 0.01, *** for P < 0.001).”

      We also added in the legend of each figure, the statistical analysis used to determine each p-values.

      1. Adoptive transfer: The concerns of the reviewers include an unclear analysis of the effects of adoptive transfer itself and the approaches used to analyze the data independent of the HEI3090 effect. For example, in Figure 4, the adoptive transfer IL18-/- cells (vehicle group) leads to an Ashcroft score of about 1 and among the lowest of the BLM exposed mice. Does that mean that IL18 is pro-fibrotic and that its absence is beneficial? If yes, it would go against the core premise of the study that IL18 is beneficial. Statistical comparisons of the all the vehicle conditions in the adoptive transfer would help clarify whether adoptive transfer of NLRP3-/-, IL18-/- in wild-type and P2RX7-/- mice reduces or increases fibrosis. Such multiple comparisons are necessary to fully understand the adoptive transfer studies and would also require the appropriate statistical test with corrections for multiple comparisons such as Kruskal-Wallis for data without normal distribution and ANOVA with post hoc correction for normal distribution.

      We added a new paragraph in the revised version of the manuscript to explain the adoptive transfer approach.

      “We wanted to further investigate the mechanism of action of HEI3090 by identifying the cellular compartment and signaling pathway required for its activity. Since the expression of P2RX7 and the P2RX7-dependent release of IL-18 are mostly associated with immune cells (Ferrari et al., 2006), and since HEI3090 shapes the lung immune landscape (Figure 3), we investigated whether immune cells were required for the antifibrotic effect of HEI3090. To do so, we conducted adoptive transfer experiments wherein immune cells from a donor mouse were intravenously injected one day before BLM administration into an acceptor mouse. The intravenous injection route was chosen as it is a standard method for targeting the lungs, as previously documented (Wei and Zhao, 2014). This approach was previously used with success in our laboratory (Douguet et al., 2021). It is noteworthy that this adoptive transfer approach did not influence the response to HEI3090. This was observed consistently in both p2rx7 -/- mice and p2rx7 -/- mice that received splenocytes of the same genetic background. In both cases, HEI3090 failed to mitigate lung fibrosis, as depicted in Figure 2M and Supplemental Figures 2D and 6A and B.”

      We added the Supplemental Figure 7 showing that the genetic background does not impact lung fibrosis at steady step levels where p-values were analyzed by one-way ANOVA, with Kruskal-Wallis test for multiple comparisons.

      Author response image 1.

      Supplemental Figure 7 : The genetic background does not impact lung fibrosis at steady step levels. p2rx7-/- mice were given 3.106 WT, nlrp3-/ , i118-/ or illb -l- splenocytes i_v_ one day prior to BLM delivery (i_n_ 2.5 LJ/kg) p2rx7-/- mice or p2rx7-/- mice adoptively transferred with splenocytes from indicated genetic background were treated daily i.p with mg/kg HE13090 or vehicle for 14 days. Fibrosis score assessed by the Ashcroft method. P-values were analyzed on all treated and non treated groups by one-way ANOVA, with Kruskal-Wallis test for multiple comparisons. The violin plot illustrates the distribution of Ashcroft scores across indicated experimental groups. The width of the violin at each point represents the density of data, and the central line indicates the median expression level. Each point represents one biological replicate. ns, not significant

    1. Author Response

      The following is the authors’ response to the current reviews.

      Public Reviews:

      Reviewer #2 (Public Review):

      Summary:

      This paper tests the idea that schooling can provide an energetic advantage over solitary swimming. The present study measures oxygen consumption over a wide range of speeds, to determine the differences in aerobic and anaerobic cost of swimming, providing a potentially valuable addition to the literature related to the advantages of group living.

      Response: Thank you for the positive comments.

      Strengths:

      The strength of this paper is related to providing direct measurements of the energetics (oxygen consumption) of fish while swimming in a group vs solitary. The energetic advantages of schooling has been claimed to be one of the major advantages of schooling and therefore a direct energetic assessment is a useful result.

      Response: Thank you for the positive comments.

      Weaknesses:

      1) Regarding the fish to water volume ratio, the arguments raised by the authors are valid. However, the ratio used is still quite high (as high as >2000 in solitary fish), much higher than that recommended by Svendsen et al (2006). Hence this point needs to be discussed in the ms (summarising the points raised in the authors' response)

      Response: Thank you for the comments. We have addressed this point in the previous comments. In short, our ratio is within the range of the published literature. We conducted the additional signal-to-noise analysis for quality assurance.

      2) Wall effects: Fish in a school may have been swimming closer to the wall. The fact that the convex hull volume of the fish school did not change as speed increased is not a demonstration that fish were not closer to the wall, nor is it a demonstration that wall effect were not present. Therefore the issue of potential wall effects is a weakness of this paper.

      Response: Thank you for the comments. We have addressed this point in the previous comments. We provided many other considerations in addition to the convex hull volume. In particular, our boundary layer is < 2.5mm, which was narrower than the width of the giant danio of ~10 mm.

      3) The authors stated "Because we took high-speed videos simultaneously with the respirometry measurements, we can state unequivocally that individual fish within the school did not swim closer to the walls than solitary fish over the testing period". This is however not quantified.

      Response: Thank you for the comments. We have addressed this point in the previous comments. We want to note that the statement in the response letter is to elaborate the discussion points, but not stated as data in the manuscript. The bottom line is very few studies used PIV to quantify the thickness of the boundary layer like what we did in our experiment.

      4) Statistical analysis. The authors have dealt satisfactorily with most of the comments.

      However :

      (a) the following comment has not been dealt with directly in the ms "One can see from the graphs that schooling MO2 tends to have a smaller SD than solitary data. This may well be due to the fact that schooling data are based on 5 points (five schools) and each point is the result of the MO2 of five fish, thereby reducing the variability compared to solitary fish."

      (b) Different sizes were used for solitary and schooling fishes. The authors justify using larger fish as solitary to provide a better ratio of respirometer volume to fish volume in the tests on individual fish. However, mass scaling for tail beat frequency was not provided. Although (1) this is because of lack of data for this species and (2) using scaling exponent of distant species would introduce errors of unknown magnitude, this is still a weakness of the paper that needs to be acknowledged here and in the ms.

      Response: Thank you for the comments. We have addressed both points in the previous comments and provided comprehensive discussions. We also stated the caveats in the method section of the manuscript.

      Reviewer #3 (Public Review):

      Zhang and Lauder characterized both aerobic and anaerobic metabolic energy contributions in schools and solitary fishes in the Giant danio (Devario aequipinnatus) over a wide range of water velocities. By using a highly sophisticated respirometer system, the authors measure the aerobic metabolisms by oxygen uptake rate and the non-aerobic oxygen cost as excess post-exercise oxygen consumption (EPOC). With these data, the authors model the bioenergetic cost of schools and solitary fishes. The authors found that fish schools have a J-shaped metabolism-speed curve, with reduced total energy expenditure per tail beat compared to solitary fish. Fish in schools also recovered from exercise faster than solitary fish. Finally, the authors conclude that these energetic savings may underlie the prevalence of coordinated group locomotion in fish.

      The conclusions of this paper are mostly well supported by data.

      Response: Thank you for the positive comments.

      Recommendations for the authors:

      Reviewer #3 (Recommendations For The Authors):

      I have read carefully the revised version of the manuscript and would like to thank the authors for addressing all my comments/suggestions.

      I have no additional comments/suggestions. Now, I strongly believe that this manuscript deserves to be published in eLife.

      Response: Thank you for the positive comments.


      The following is the authors’ response to the original reviews.

      General responses

      Many thanks to the reviewers and editors for their very helpful comments on our manuscript. Below we respond (in blue text) to each of the reviewer comments, both the public ones and the more detailed individual comments in the second part of each review. In some cases, we consider these together where the same point is made in both sets of comments. We have made several changes to the manuscript in response to reviewer suggestions, and we respond in detail to the comments of reviewer #2 who feels that we have overstated the significance of our manuscript and suggests several relevant literature references. We prepared a table summarizing these references and why they differ substantially from the approach taken in our paper here.

      Overall, we would like to emphasize to both reviewers and readers of this response document that previous studies of fish schooling dynamics (or collective movement of vertebrates in general, see Commentary Zhang & Lauder 2023 J. Exp. Biol., doi:10.1242/jeb.245617) have not considered a wide speed range and thus the importance of measuring EPOC (excess post-exercise oxygen consumption) as a key component of energy use. Quantifying both aerobic and non-aerobic energy use allows us to calculate the total energy expenditure (TEE) which we show differs substantially and, importantly, non-linearly with speed between schools and measurements on solitary individuals. Comparison between school total energy use and individual total energy use are critical to understanding the dynamics of schooling behaviour in fishes.

      The scope of this study is the energetics of fish schools. By quantifying the TEE over a wide range of swimming speeds, we also show that the energetic performance curve is concave upward, and not linear, and how schooling behaviour modifies this non-linear relationship.

      In addition, one key implication of our results is that kinematic measurements of fish in schools (such as tail beat frequency) are not a reliable metric by which to estimate energy use. Since we recorded high-speed video simultaneously with energetic measurements, we are able to show that substantial energy savings occur by fish in schools with little to no change in tail beat frequency, and we discuss in the manuscript the various fluid dynamic mechanisms that allow this. Indeed, studies of bird flight show that when flying in a (presumed) energy-saving V-formation, wing beat frequency can actually increase compared to flying alone. We believe that this is a particularly important part of our findings: understanding energy use by fish schools must involve actual measurements of energy use and not indirect and sometimes unreliable kinematic measurements such as tail beat frequency or amplitude.

      Reviewer #1 (Public Review):

      Summary:

      In the presented manuscript the authors aim at quantifying the costs of locomotion in schooling versus solitary fish across a considerable range of speeds. Specifically, they quantify the possible reduction in the cost of locomotion in fish due to schooling behavior. The main novelty appears to be the direct measurement of absolute swimming costs and total energy expenditure, including the anaerobic costs at higher swimming speeds.

      In addition to metabolic parameters, the authors also recorded some basic kinematic parameters such as average distances or school elongation. They find both for solitary and schooling fish, similar optimal swimming speeds of around 1BL/s, and a significant reduction in costs of locomotion due to schooling at high speeds, in particular at ~5-8 BL/s.

      Given the lack of experimental data and the direct measurements across a wide range of speeds comparing solitary and schooling fish, this appears indeed like a potentially important contribution of interest to a broader audience beyond the specific field of fish physiology, in particular for researchers working broadly on collective (fish) behavior.

      Response: Thank you for seeing the potential implications of this study. We also believe that this paper has broader implications for collective behaviour in general, and outline some of our thinking on this topic in a recent Commentary article in the Journal of Experimental Biology: (Zhang & Lauder 2023 doi:10.1242/jeb.245617). Understanding the energetics of collective behaviours in the water, land, and air is a topic that has not received much attention despite the widespread view that moving as a collective saves energy.

      Strengths:

      The manuscript is for the most part well written, and the figures are of good quality. The experimental method and protocols are very thorough and of high quality. The results are quite compelling and interesting. What is particularly interesting, in light of previous literature on the topic, is that the authors conclude that based on their results, specific fixed relative positions or kinematic features (tail beat phase locking) do not seem to be required for energetic savings. They also provide a review of potential different mechanisms that could play a role in the energetic savings.

      Response: Thank you for seeing the nuances we bring to the existing literature and comment on the quality of the experimental method and protocols. Despite a relatively large literature on fish schooling based on previous biomechanical research, our studies suggest that direct measurement of energetic cost clearly demonstrates the energy savings that result from the sum of different fluid dynamic mechanisms depending on where fish are, and also emphasizes that simple metrics like fish tail beat frequency do not adequately reflect energy savings during collective motion.

      Weaknesses:

      A weakness is the actual lack of critical discussion of the different mechanisms as well as the discussion on the conjecture that relative positions and kinematic features do not matter. I found the overall discussion on this rather unsatisfactory, lacking some critical reflections as well as different relevant statements or explanations being scattered across the discussion section. Here I would suggest a revision of the discussion section.

      Response: The critical discussion of the different possible energy-saving mechanisms is indeed an important topic. We provided a discussion about the overall mechanism of ‘local interactions’ in the first paragraph of “Schooling Dynamics and energy conservation”. To clarify, our aim with Figure 1 is to introduce the current mechanisms proposed in the existing engineering/hydrodynamic literature that have studied a number of possible configurations both experimentally and computationally. Thank you for the suggestion of better organizing the discussion to critically highlight different mechanisms that would enable a dynamic schooling structure to still save energy and why the appendage movement frequency does not necessarily couple with the metabolic energy expenditure. Much of this literature uses computational fluid dynamic models or experiments on flapping foils as representative of fish. This exact issue is of great interest to us, and we are currently engaged in a number of other experiments that we hope will shed light on how fish moving in specific formations do or don’t save energy.

      Our aim in presenting Figure 1 at the start of the paper was to show that there are several ways that fish could save energy when moving in a group as shown by engineering analyses, but before investigating these various mechanisms in detail we first have to show that fish moving in groups actually do save energy with direct metabolic measurements. Hence, our paper treats the various mechanisms as inspiration to determine experimentally if, in fact, fish in schools save energy, and if so how much over a wide speed range. Our focus is to experimentally determine the performance curve that shows energy use as speed increases, for schools compared to individuals. Therefore, we have elected not to go into detail about these different hydrodynamic mechanisms in this paper, but rather to present them as a summary of current engineering literature views and then proceed to document energy savings (as stated in the second last paragraph of Introduction). We have an Commentary paper in the Journal of Experimental Biology that addresses this issue generally, and we are reluctant to duplicate much of that discussion here (Zhang & Lauder 2023 doi:10.1242/jeb.245617). We are working hard on this general issue as we agree that it is very interesting. We have revised the Introduction (second last paragraph of Introduction) and Discussion (first paragraph of Discussion) to better indicate our approach, but we have not added any significant discussion of the different hydrodynamic energy saving proposals as we believe that it outside the scope of this first paper and more suitable as part of follow-up studies.

      Also, there is a statement that Danio regularly move within the school and do not maintain inter-individual positions. However, there is no quantitative data shown supporting this statement, quantifying the time scales of neighbor switches. This should be addressed as core conclusions appear to rest on this statement and the authors have 3d tracks of the fish.

      Response: Thank you for pointing out this very important future research direction. Based on our observations and the hypothesized mechanisms for fish within the school to save energy (Fig. 1), we have been conducting follow-up experiments to decipher the multiple dynamic mechanisms that enable the fish within the school to save energy. Tracking the 3D position of each individual fish body in 3D within the fish school has proven difficult. We currently have 3D data on the nose position obtained simultaneously with the energetic measurements, but we do not have full 3D fish body positional data. Working with our collaborators, we are developing a 3-D tracking algorithm that will allow us to quantify how long fish spend in specific formations, and we currently have a new capability to record high-speed video of fish schooling moving in a flow tank for many hours (see our recent perspective by Ko et al., 2023 doi.org/10.1098/rsif.2023.0357). The new algorithms and the results will be published as separate studies and we think that these ongoing experiments are outside the scope of the current study with its focus on energetics. Nevertheless, the main point of Fig. 1 is to provide possible mechanisms to inspire future studies to dissect the detailed hydrodynamic mechanisms for energy saving, and the points raised by this comment are indeed extremely interesting to us and our ongoing experiments in this area. We provide a statement to clarify this point in the 1st paragraph of “Schooling dynamics and energy conservation” section.

      Further, there is a fundamental question on the comparison of schooling in a flow (like a stream or here flow channel) versus schooling in still water. While it is clear that from a pure physics point of view that the situation for individual fish is equivalent. As it is about maintaining a certain relative velocity to the fluid, I do think that it makes a huge qualitative difference from a biological point of view in the context of collective swimming. In a flow, individual fish have to align with the external flow to ensure that they remain stationary and do not fall back, which then leads to highly polarized schools. However, this high polarization is induced also for completely non-interacting fish. At high speeds, also the capability of individuals to control their relative position in the school is likely very restricted, simply by being forced to put most of their afford into maintaining a stationary position in the flow. This appears to me fundamentally different from schooling in still water, where the alignment (high polarization) has to come purely from social interactions. Here, relative positioning with respect to others is much more controlled by the movement decisions of individuals. Thus, I see clearly how this work is relevant for natural behavior in flows and that it provides some insights on the fundamental physiology, but I at least have some doubts about how far it extends actually to “voluntary” highly ordered schooling under still water conditions. Here, I would wish at least some more critical reflection and or explanation.

      Response: We agree completely with this comment that animal group orientations in still fluid can have different causes from their locomotion in a moving fluid. We very much agree with the reviewer that social interactions in still water, which typically involve low-speed locomotion and other behaviours such as searching for food by the group, can be important and could dictate fish movement patterns. In undertaking this project, we wanted to challenge fish to move at speed, and reasoned that if energy savings are important in schooling behaviour due to hydrodynamic mechanisms, we should see this when fish are moving forward against drag forces induced by fluid impacting the school. Drag forces scale as velocity squared, so we should see energy savings by the school, if any, as speed increases.

      We also quantified fish school swimming speeds in the field from the literature and presented a figure showing that in nature fish schools can and do move at considerable speeds. This figure is part of our overview on collective behaviour recently in J. Exp. Biol. (Zhang & Lauder 2023 doi:10.1242/jeb.245617). It is only by studying fish schools moving over a speed range that we can understand the performance curve relating energy use to swimming speed. Indeed, we wonder if fish moving in still water as a collective versus as solitary individuals would show energy savings at all. We now provided the justification for studying fish schooling in moving fluids in the second and third paragraph of the Introduction. When animals are challenged hydrodynamically (e.g. at higher speed), it introduces the need to save energy. Movement in still water lacks the need for fish to save energy. When fish do not need to save locomotor energy in still water, it is hard to justify why we would expect to observe energy saving and related physiological mechanisms in the first place. As the reviewer said, the ‘high polarization in still water has to come purely from social interactions’. Our study does not dispute this consideration, and indeed we agree with it! In our supplementary materials, we acknowledged the definitions for different scenarios of fish schooling can have different behavioural and ecological drivers. Using these definitions, we explicitly stated, in the introduction, that our study focuses on active and directional schooling behaviour to understand the possible hydrodynamic benefits of energy expenditure for collective movements of fish schools. By stating the scope of our study at the outset, we hope that this will keep the discussion focused on the energetics and kinematics of fish schools, without unnecessarily addressing other many possible reasons for fish schooling behaviours in the discussion such as anti-predator grouping, food searching, or reproduction as three examples.

      As this being said, we acknowledge (in the 2nd paragraph of the introduction) that fish schooling behaviour can have other drivers when the flow is not challenging. Also, there are robotic-&-animal interaction studies and computational fluid dynamic simulation studies (that we cited) that show individuals in fish schools interact hydrodynamically. Hydrodynamic interactions are not the same as behaviour interactions, but it does not mean individuals within the fish schooling in moving flow are not interacting and coordinating.

      Related to this, the reported increase in the elongation of the school at a higher speed could have also different explanations. The authors speculate briefly it could be related to the optimal structure of the school, but it could be simply inter-individual performance differences, with slower individuals simply falling back with respect to faster ones. Did the authors test for certain fish being predominantly at the front or back? Did they test for individual swimming performance before testing them in groups together? Again this should be at least critically reflected somewhere.

      Response: Thank you for raising this point. If the more streamlined schooling structure above 2 BL/s is due to the weaker individuals not catching up with the rest of the school, we would expect the weaker individuals to quit swimming tests well before 8 BL/s. However, we did not observe this phenomenon. Although we did not specifically test for the two questions the reviewer raises here, our results suggest that inter-individual variation in the swimming performance of giant Danio is not at the range of 2 to 8 BL/s (a 400% difference). While inter-individual differences certainly exist, we believe that they are small relative to the speeds tested as we did not see any particular individuals consistently unable to keep up with the school or certain individuals maintaining a position near the back of the school. As this being said, we provide additional interpretations for the elongated schooling structure at the end of the 2nd paragraph of the “schooling dynamics and energy conservation” section.

      Reviewer #1 (Recommendations For The Authors):

      Line 58: The authors write "How the fluid dynamics (...) enable energetic savings (...)". However, the paper focuses rather on the question of whether energetic savings exist and does not enlighten us on the dominant mechanisms. Although it gives a brief overview of all possible mechanisms, it remains speculative on the actual fluid dynamical and biomechanical processes. Thus, I suggest changing "How" to "Whether".

      Response: Great point! We changed “How” to “Whether”.

      Lines 129-140: In the discussion of the U-shaped aerobic rate, there is no direct comparison of the minimum cost values between the schooling and solitary conditions. Only the minimum costs during schooling are named/discussed. In addition to the data in the figure, I suggest explicitly comparing them as well for full transparency.

      Response: Thanks for raising this point. We did not belabor this point because there was no statistical significance. As requested, we added a statement to address this with statistics in the 1st paragraph of the Results section.

      Line 149: The authors note that the schooling fish have a higher turning frequency than solitary fish. Here, a brief discussion of potential explanations would be good, e.g. need for coordination with neighbors -> cost of schooling.

      Response: Thank you for the suggestion. In the original version of the manuscript, we discussed that the higher turning frequency could be related to higher postural costs for active stability adjustment at low speeds. As requested, we now added that high turn frequency can relate to the need for coordination with neighbours in the last paragraph of the “Aerobic metabolic rate–speed curve of fish schools” section. As indicated above, the suspected costs of coordination did not result in higher costs of schooling at the lower speed (< 2 BL s-1, where the turn frequency is higher).

      Line 151: The authors discuss the higher maximum metabolic rate of schooling fish as a higher aerobic performance and lower use of aerobic capacity. This may be confusing for non-experts in animal physiology and energetics of locomotion. I recommend providing somewhere in a paper an additional explanation to clarify it to non-experts. While lines 234-240 and further below potentially address this, I found this not very focused or accessible to non-experts. Here, I suggest the authors consider revisions to make it more comprehensible to a wider, interdisciplinary audience.

      Response: We agree with the reviewer that the difference between maximum oxygen uptake and maximum metabolic rate can be confusing. In fact, among animal physiologists, these two concepts are often muddled. One of the authors is working on an invited commentary from J. Exp. Biol. to clearly define these two concepts. We have made the language in the section “Schooling dynamics enhances aerobic performance and reduces non-aerobic energy use” more accessible to a general audience. In addition, the original version presented the relevant framework in the first and the second paragraphs of the Introduction when discussing aerobic and non-aerobic energy contribution. In brief, when vertebrates exhibit maximum oxygen uptake, they use aerobic and non-aerobic energy contributions that both contribute to their metabolic rate. Therefore, the maximum total metabolic rate is higher than the one estimated from only maximum oxygen uptake. We used the method presented in Fig. 3a to estimate the maximum metabolic rate for metabolic energy use (combining aerobic and non-aerobic energy use). In kinesiology, maximum oxygen uptake is used to evaluate the aerobic performance and energy use of human athletes is estimated by power meters or doubly labelled water.

      Line 211: The authors write that Danio regularly move within the school and do not maintain inter-individual positions. Given that this is an important observation, and the relative position and its changes are crucial to understanding the possible mechanisms for energetic savings in schools, I would expect some more quantitative support for this statement, in particular as the authors have access to 3d tracking data. For example introducing some simple metrics like average time intervals between swaps of nearest neighbors, possibly also resolved in directions (front+back versus right+left), should provide at least some rough quantification of the involved timescales, whether it is seconds, tens of seconds, or minutes.

      Response: As responded in the comment above, 3-D tracking of both body position and body deformation of multiple individuals in a school is not a trivial research challenge and we have ongoing research on this issue. We hope to have results on the 3D positions of fish in schools soon! For this manuscript, we believe that the data in Figure 4E which shows the turning frequency of fish in schools and solitary controls shows the general phenomenon of fish moving around (as fish turn to change positions within the school), but we agree that more could be done to address this point and we are indeed working on it now.

      Lines 212-217: There is a very strong statement that energetic savings by collective motion do not require fixed positional arrangements or specific kinematic features. While possibly one of the most interesting findings of the paper, I found that in its current state, it was not sufficiently/satisfactorily discussed. For example for the different mechanisms summarized, there will be clearly differences in their relevance based on relative distance and position. For example mechanisms 3 and 4 likely have significant contributions only at short distances. Here, the question is how relevant can they be if the average distance is 1 BL? Also, 1BL side by side is very much different from 1BL front to back, given the elongated body shape. For mechanisms 1 and 2, it appears relative positioning is quite important. Here, having maybe at least some information from the literature (if available) on the range of wall or push effects or the required precision in relative positioning for having a significant benefit would be very much desired. Also, do the authors suggest that a) these different effects overlap giving any position in the school a benefit, or b) that there are specific positions giving benefits due to different mechanisms and that fish "on purpose" switch only between these energetic "sweet" spots, I guess this what is towards the end referred to as Lighthill conjecture? Given the small group size I find a) rather unlikely, while b) actually also leads to a coordination problem if every fish is looking for a sweet spot. Overall, a related question is whether the authors observed a systematic change in leading individuals, which likely have no, or very small, hydrodynamic benefits.

      Response: Thank you for the excellent discussion on this point. As we responded above, we have softened the tone of the statement. In the original version, we were clear that the known mechanisms as summarized in Fig. 1 lead us to ‘expect’ that fish do not need to be in a fixed position to save energy.

      In general, current engineering/hydrodynamic studies suggest that any fish positioned within one body length (both upstream and downstream and side by side) will benefit from one or more of the hydrodynamic mechanisms that we expect will reduce energy costs, relative to a solitary individual. Our own studies using robotic systems suggest that a leading fish will experience an added mass “push” from a follower when the follower is located within roughly ½ body length behind the leader. We cited a Computational Fluid Dynamic (CFD) study about the relative distance among individuals for energy saving to be in effect. Please keep in mind that CFD simulation is a simplified model of the actual locomotion of fish and involves many assumptions and currently only resolves the time scale of seconds (see commentary of Zhang & Lauder 2023 doi:10.1242/jeb.245617 in J. Exp. Biol. for the current challenges of CFD simulation). To really understand the dynamic positions of fish within the school, we will need 3-D tracking of fish schools with tools that are currently being developed. Ideally, we would also have simultaneous energetic measurements, but of course, this is enormously challenging and it is not clear at this time how to accomplish this.

      We certainly agree that the relative positions of fish (vertically staggered or in-line swimming) do affect the specific hydrodynamic mechanisms being used. We cited the study that discussed this, but the relative positions of fish remain an active area of research. More studies will be out next few years to provide more insight into the effects of the relative positions of fish in energy saving. The Lighthill conjecture is observed in flapping foils and whether fish schools use the Lighthill conjecture for energy saving is an active area of research but still unclear. We also provided a citation about the implication of the Lighthill conjecture on fish schools. Hence, our original version stated ‘The exact energetic mechanisms….would benefit from more in-depth studies’. We agree with the reviewer that not all fish can benefit Lighthill conjecture (if fish schools use it) at any given time point, hence the fish might need to rotate in using the Lighthill conjecture. This is one more explanation for the dynamic positioning of fish in a school.

      Overall, in response to the question raised, we do not believe that fish are actively searching for “sweet spots” within the school, although this is only speculation on our part. We believe instead that fish, located in a diversity of positions within the school, get the hydrodynamic advantage of being in the group at that configuration.

      We believe that fish, once they group and maintain a grouping where individuals are all within around one body length distance from each other, will necessarily get hydrodynamic benefits. As a collective group, we believe that at any one time, several different hydrodynamic mechanisms are all acting simultaneously and result in reduced energetic costs (Fig. 1).

      Figure 4E: The y-axis is given in the units of 10-sec^-1 which is confusing is it 10 1/s or 1/(10s)? Why not use simply the unit of 1/s which is unambiguous?

      Response: Thank you for the suggestions. We counted the turning frequency over the course of 10 seconds. To reflect more accurately on what we did, we used the suggested unit of 1/(10s) to more correctly correspond to how we made the measurements and the duration of the measurement. We recognize that this is a bit non-standard but would like to keep these units if possible.

      Figure 4F: The unit in the school length is given in [mm], which suggests that the maximal measured school length is 4mm, this can't be true.

      Response: Thank you for pointing this out. The unit should be [cm], which we corrected.

      Reviewer #2 (Public Review):

      Summary:

      This paper tests the idea that schooling can provide an energetic advantage over solitary swimming. The present study measures oxygen consumption over a wide range of speeds, to determine the differences in aerobic and anaerobic cost of swimming, providing a potentially valuable addition to the literature related to the advantages of group living.

      Response: Thank you for acknowledging our contribution is a valuable addition to the literature on collective movement by animals.

      Strengths:

      The strength of this paper is related to providing direct measurements of the energetics (oxygen consumption) of fish while swimming in a group vs solitary. The energetic advantages of schooling have been claimed to be one of the major advantages of schooling and therefore a direct energetic assessment is a useful result.

      Response: Thank you for acknowledging our results are useful and provide direct measurements of energetics to prove a major advantage of schooling relative to solitary motion over a range of speeds.

      Weaknesses:

      The manuscript suffers from a number of weaknesses which are summarised below:

      1) The possibility that fish in a school show lower oxygen consumption may also be due to a calming effect. While the authors show that there is no difference at low speed, one cannot rule out that calming effects play a more important role at higher speed, i.e. in a more stressful situation.

      Response: Thank you for raising this creative point on “calming”. When vertebrates are moving at high speeds, their stress hormones (adrenaline, catecholamines & cortisol) increase. This phenomenon has been widely studied, and therefore, we do not believe that animals are ‘calm’ when moving at high speed and that somehow a “calming effect” explains our non-linear concave-upward energetic curves. “Calming” would have to have a rather strange non-linear effect over speed to explain our data, and act in contrast to known physiological responses involved in intense exercise (whether in fish or humans). It is certainly not true for humans that running at high speeds in a group causes a “calming effect” that explains changes in metabolic energy expenditure. We have added an explanation in the third paragraph in the section “Schooling dynamics enhances aerobic performance and reduces non-aerobic energy use”. Moreover, when animal locomotion has a high frequency of appendage movement (for both solitary individual and group movement), they are also not ‘calm’ from a behavioural point of view. Therefore, we respectfully disagree with the reviewer that the ‘calming effect’ is a major contributor to the energy saving of group movement at high speed. It is difficult to believe that giant danio swimming at 8 BL/s which is near or at their maximal sustainable locomotor limits are somehow “calm”. In addition, we demonstrated by direct energetic measurement that solitary individuals do not have a higher metabolic rate at the lower speed and thus directly show that there is very likely no cost of “uncalm” stress that would elevate the metabolic rate of solitary individuals. Furthermore, the current version of this manuscript compared the condition factor of the fish in the school and solitary individuals and found no difference (see Experimental Animal Section in the Methods). This also suggests that the measurement on the solitary fish is likely not confounded by any stress effects.

      Finally, and as discussed further below, since we have simultaneous high-speed videos of fish swimming as we measure oxygen consumption at all speeds, we are able to directly measure fish behaviour. Since we observed no alteration in tail beat kinematics between schools and individuals (a key result that we elaborate on below), it’s very hard to justify that a “calming” effect explains our results. Fish in schools swimming at speed (not in still water) appear to be just as “calm” as solitary individuals.

      2) The ratio of fish volume to water volume in the respirometer is much higher than that recommended by the methodological paper by Svendsen et al. (J Fish Biol 2016) Response: The ratio of respirometer volume to fish volume is an important issue that we thought about in detail before conducting these experiments. While Svendsen et al., (J. Fish Biol. 2016) recommend a respirometer volume-to-fish volume ratio of 500, we are not aware of any experimental study comparing volumes with oxygen measuring accuracy that gives this number as optimal. In addition, the Svendsen et al. paper does not consider that their recommendation might result in fish swimming near the walls of the flume (as a result of having relatively larger fish volume to flume volume) and hence able to alter their energetic expenditure by being near the wall. In our case, we needed to be able to study both a school (with higher animal volumes) and an individual (relatively lower volume) in the same exact experimental apparatus. Thus, we had to develop a system to accurately record oxygen consumption under both conditions.

      The ratio of our respirometer to individual volume for schools is 693, while the value for individual fish is 2200. Previous studies (Parker 1973, Abrahams & Colgan, 1985, Burgerhout et al., 2013) that used a swimming-tunnel respirometer (i.e., a sealed treadmill) to measure the energy cost of group locomotion used values that range between 1116 and 8894 which are large and could produce low-resolution measurements of oxygen consumption. Thus, we believe that we have an excellent ratio for our experiments on both schools and solitary individuals, while maintaining a large enough value that fish don’t experience wall effects (see more discussion on this below, as we experimentally quantified the flow pattern within our respirometer).

      The goal of the recommendation by Svendsen et al. is to achieve a satisfactory R2 (coefficient of determination) value for oxygen consumption data. However, Chabot et al., 2020 (DOI: 10.1111/jfb.14650) pointed out that only relying on R2 values is not always successful at excluding non-linear slopes. Much worse, only pursuing high R2 values has a risk of removing linear slopes with low R2 only because of a low signal-to-noise ratio and resulting in an overestimation of the low metabolic rate. Although we acknowledge the excellent efforts and recommendations provided by Svendsen et al., 2016, we perhaps should not treat the ratio of respirometer to organism volume of 500 as the gold standard for swim-tunnel respirometry. Svendsen et al., 2020 did not indicate how they reached the recommendation of using the ratio of respirometer to organism volume of 500. Moreover, Svendsen et al., 2020 stated that using an extended measuring period can help to resolve the low signal-to-noise ratio. Hence, the key consideration is to obtain a reliable signal-to-noise ratio which we will discuss below.

      To ensure we obtain reliable data quality, we installed a water mixing loop (Steffensen et al., 1984) and used the currently best available technology of oxygen probe (see method section of Integrated Biomechanics & Bioenergetic Assessment System) to improve the signal-to-noise ratio. The water mixing loop is not commonly used in swim-tunnel respirometer. Hence, if a previously published study used a respirometer-to-organism ratio up to 8894, our updated oxygen measuring system is completely adequate to produce reliable signal-to-noise ratios in our system with a respirometer-to-organism ratio of 2200 (individuals) and 693 (schools). In fact, our original version of the manuscript used a published method (Zhang et al., 2019, J. Exp. Biol. https://doi.org/10.1242/jeb.196568) to analyze the signal-to-noise ratio and provided the quantitative approach to determine the sampling window to reliably capture the signal (Fig. S5).

      3) Because the same swimming tunnel was used for schools and solitary fish, schooling fish may end up swimming closer to the wall (because of less volume per fish) than solitary fish. Distances to the wall of schooling fish are not given, and they could provide an advantage to schooling fish.

      Response: This is an issue that we considered carefully in designing these experiments. After considering the volume of the respirometer and the size of the fish (see the response above), we decided to use the same respirometer to avoid any other confounding factors when using different sizes of respirometers with potentially different internal flow patterns. In particular, different sizes of Brett-type swim-tunnel respirometers differ in the turning radius of water flow, which can produce different flow patterns in the swimming section. Please note that we quantified the flow pattern within the flow tank using particle image velocimetry (PIV) (so we have quantitative velocity profiles across the working section at all tested speeds), and modified the provided baffle system to improve the flow in the working section.

      Because we took high-speed videos simultaneously with the respirometry measurements, we can state unequivocally that individual fish within the school did not swim closer to the walls than solitary fish over the testing period (see below for the quantitative measurements of the boundary layer). Indeed, many previous respirometry studies do not obtain simultaneous video data and hence are unable to document fish locations when energetics is measured.

      In studying schooling energetics, we believe that it is important to control as many factors as possible when making comparisons between school energetics and solitary locomotion. We took great care as indicated in the Methods section to keep all experimental parameters the same (same light conditions, same flow tank, same O2 measuring locations with the internal flow loop, etc.) so that we could detect differences if present. Changing the flow tank respirometer apparatus between individual fish and the schools studied would have introduced an unacceptable alteration of experimental conditions and would be a clear violation of the best experimental practices.

      We have made every effort to be clear and transparent about the choice of experimental apparatus and explained at great length the experimental parameters and setup used, including the considerations about the wall effect in the extended Methods section and supplemental material provided.

      Our manuscript provides the measurement of the boundary layer (<2.5 mm at speeds > 2 BL s-1) in the methods section of the Integrated Biomechanics & Bioenergetic Assessment System. We also state that the boundary layer is much thinner than the body width of the giant danio (~10 mm) so that the fish cannot effectively hide near the wall. Due to our PIV calibration, we are able to quantify flow near the wall.

      In the manuscript, we also provide details about the wall effects and fish schools as follows from the manuscript: ”…the convex hull volume of the fish school did not change as speed increased, suggesting that the fish school was not flattening against the wall of the swim tunnel, a typical feature when fish schools are benefiting from wall effects. In nature, fish in the centre of the school effectively swim against a ‘wall’ of surrounding fish where they can benefit from hydrodynamic interactions with neighbours.”’ The notion that the lateral motion of surrounding slender bodies can be represented by a streamlined wall was also proposed by Newman et al., 1970 J. Fluid Mech. These considerations provide ample justification for the comparison of locomotor energetics by schools and solitary individuals.

      4) The statistical analysis has a number of problems. The values of MO2 of each school are the result of the oxygen consumption of each fish, and therefore the test is comparing 5 individuals (i.e. an individual is the statistical unit) vs 5 schools (a school made out of 8 fish is the statistical unit). Therefore the test is comparing two different statistical units. One can see from the graphs that schooling MO2 tends to have a smaller SD than solitary data. This may well be due to the fact that schooling data are based on 5 points (five schools) and each point is the result of the MO2 of five fish, thereby reducing the variability compared to solitary fish. Other issues are related to data (for example Tail beat frequency) not being independent in schooling fish.

      Response: We cannot agree with the reviewer that fish schools and solitary individuals are different statistical units. Indeed, these are the two treatments in the statistical sense: a school versus the individual. This is why we invested extra effort to replicate all our experiments on multiple schools of different individuals and compare the data to multiple different solitary individuals. This is a standard statistical approach, whether one is comparing a tissue with multiple cells to an individual cell, or multiple locations to one specific location in an ecological study. Our analysis treats the collective movement of the fish school as a functional unit, just like the solitary individual is a functional unit. At the most fundamental level of oxygen uptake measurements, our analysis results from calculating the declining dissolved oxygen as a function of time (i.e. the slope of oxygen removal). Comparisons are made between the slope of oxygen removal by fish schools and the slope of oxygen removal by solitary individuals. This is the correct statistical comparison.

      The larger SD in individuals can be due to multiple biological reasons other than the technical reasons suggested here. Fundamentally, the different SD between fish schools and individuals can be the result of differences between solitary and collective movement and the different fluid dynamic interactions within the school could certainly cause differences in the amount of variation seen. Our interpretation of the ‘numerically’ smaller SD in fish schools than that of solitary individuals suggests that interesting hydrodynamic phenomena within fish schools remain to be discovered.

      Reviewer #2 (Recommendations For The Authors):

      I have reviewed a previous version of this paper. This new draft is somewhat improved but still presents a number of issues which I have outlined below.

      Response: Thanks for your efforts to improve our paper with reviews, but a number of your comments apply to the previous version of the paper, and we have made a number of revisions before submitting it to eLife. We explain below how this version of the manuscript addresses many of your comments from both the previous and current reviews. As readers can see from our responses below, this version of the manuscript version no longer uses only ‘two-way ANOVA’ as we have implemented an additional statistical model. (Please see the comments below for more detailed responses related to the statistical models).

      1) One of the main problems, and one of the reasons (see below) why many previous papers have measured TBF and not the oxygen consumption of a whole school, is that schooling also provides a calming effect (Nadler et al 2018) which is not easily differentiated from the hydrodynamic advantages (Abraham and Colgan 1985). This effect can reduce the MO2 while swimming and the EPOC when recovering. The present study does not fully take this potential issue into account and therefore its results are confounded by such effects. The authors state (line 401) that " the aerobic locomotion cost of solitary individuals showed no statistical difference from (in fact, being numerically lower) that of fish schools at a very low testing speed. The flow speed is similar to some areas of the aerated home aquarium for each individual fish. This suggests that the stress of solitary fish likely does not meaningfully contribute to the higher locomotor costs". While this is useful, the possibility that at higher speeds (i.e. a more stressful situation) solitary fish may experience more stress than fish in a school, cannot be ruled out.

      Response: Thank you for finding our results and data useful. We have addressed the comments on calming or stress effects in our response above. The key point is that either solitary or school fish are challenged (i.e. stressed) at a high speed where the sizable increases in stress hormones are well documented in the exercise physiology literature. We honestly just do not understand how a “calming” effect could possibly explain the upward concave energetic curves that we obtained, and how “calming” could explain the difference between schools and solitary individuals. Since we have simultaneous high-speed videos of fish swimming as we measure oxygen consumption at all speeds, we are able to directly observe fish behaviour. It is not exactly clear what a “calming effect” would look like kinematically or how one would measure this experimentally, but since we observed no alteration in tail beat kinematics between schools and individuals (a key result that we elaborate on below), it’s very hard to justify that a “calming” effect explains our results. Fish in schools appear to be just as “calm” as solitary individuals.

      If the reviewer's “calming effect” is a general issue, then birds flying in a V-formation should also experience a “calming effect”, but at least one study shows that birds in a V-formation experience higher wing beat frequencies.

      In addition, Nalder et al., 2018 (https://doi.org/10.1242/bio.031997) did not study any such “calming effect”. We assume the reviewer is referring to Nalder et al., 2016, which showed that shoaling reduced fish metabolic rates in a resting respirometer that has little-to-no water current that would motivate fish to swim (which is very different from the swim-tunnel respirometer we used). Moreover, the inter-loop system used by Nalder et al., 2016 has the risk of mixing the oxygen uptake of the fish shoal and solitary individuals. Hence, we believe that it is not appropriate to extend the results of Nalder et al., 2016 to infer and insist on a calming effect for fish schools that we studied which are actively and directionally swimming over a wide speed range up to and including high speeds. Especially since our data clearly show that ‘the aerobic locomotion cost of solitary individuals showed no statistical difference from (in fact, being numerically lower) that of fish schools at very low testing speeds’. More broadly, shoaling and schooling are very different in terms of polarization as well as the physiological and behavioural mechanisms used in locomotion. Shoaling behaviour by fish in still water is not the same as active directional schooling over a speed range. Our supplementary Table 1 provides a clear definition for a variety of grouping behaviours and makes the distinction between shoaling and schooling.

      Our detailed discussion about other literature mentioned by this reviewer can be seen in the comments below.

      2) The authors overstate the novelty of their work. Line 29: "Direct energetic measurements demonstrating the 30 energy-saving benefits of fluid-mediated group movements remain elusive" The idea that schooling may provide a reduction in the energetic costs of swimming dates back to the 70s, with pioneering experimental work showing a reduction in tail beat frequency in schooling fish vs solitary (by Zuyev, G. V. & Belyayev, V. V. (1970) and theoretical work by Weihs (1973). Work carried out in the past 20 years (Herskin and Steffensen 1998; Marras et al 2015; Bergerhout et al 2013; Hemelrijk et al 2014; Li et al 2021, Wiwchar et al 2017; Verma et al 2018; Ashraf et al 2019) based on a variety of approaches has supported the idea of a reduction in swimming costs in schooling vs solitary fish. In addition, group respirometry has actually been done in early and more recent studies testing the reduction in oxygen consumption as a result of schooling (Parker, 1973; Itazawa et al., 1978; Abrahams and Colgan 1985; Davis & Olla, 1992; Ross & Backman, 1992, Bergerhout et al 2013; Currier et al 2020). Specifically, Abrahams and Colgan (1985) and Bergerhout et al (2013) found that the oxygen consumption of fish swimming in a school was higher than when solitary, and Abrahams and Colgan (1985) made an attempt to deal with the confounding calming effect by pairing solitary fish up with a neighbor visible behind a barrier. These issues and how they were dealt with in the past (and in the present manuscript) are not addressed by the present manuscript. Currier et al (2020) found that the reduction of oxygen consumption was species-specific.

      Response: We cannot agree with this reviewer that we have overstated the novelty of our work, and, in fact, we make very specific comments on the new contributions of our paper relative to the large previous literature on schooling. We are well aware of the literature cited above and many of these papers have little or nothing to do with quantifying the energetics of schooling. In addition, many of these papers rely on simple kinematic measurements which are unrelated to direct energetic measurements of energy use. To elaborate on this, we present the ‘Table R’ below which evaluates and compares each of the papers this reviewer cites above. The key message (as we wrote in the manuscript) is that none of the previous studies measured non-aerobic cost (and thus do not calculate the total energy expenditure (TEE), which we show to be substantial. In addition, many of these studies do not compare schools to individuals, do not quantify both energetics and kinematics, and do not study a wide speed range. Only 33% of previous studies used direct measurements of aerobic metabolic rate to compare the locomotion costs of fish schools and solitary individuals (an experimental control). We want to highlight that most of the citations in the reviewer’s comments are not about the kinematics or hydrodynamics of fish schooling energetics, although they provide peripheral information on fish schooling in general. We also provide an overview of the literature on this topic in our paper in the Journal of Experimental Biology (Zhang & Lauder 2023 doi:10.1242/jeb.245617) and do not wish to duplicate that discussion here. We summarized and cited the relevant papers about the energetics of fish schooling in Table 1.

      Author response table 1.

      Papers cited by Reviewer #2, and a summary of their contributions and approach.

      References cited above:

      Zuyev, G., & Belyayev, V. V. (1970). An experimental study of the swimming of fish in groups as exemplified by the horsemackerel [Trachurus mediterraneus ponticus Aleev]. J Ichthyol, 10, 545-549.

      Weihs, D. (1973). Hydromechanics of fish schooling. Nature, 241(5387), 290-291.

      Herskin, J., & Steffensen, J. F. (1998). Energy savings in sea bass swimming in a school: measurements of tail beat frequency and oxygen consumption at different swimming speeds. Journal of Fish Biology, 53(2), 366-376.

      Marras, S., Killen, S. S., Lindström, J., McKenzie, D. J., Steffensen, J. F., & Domenici, P. (2015). Fish swimming in schools save energy regardless of their spatial position. Behavioral ecology and sociobiology, 69, 219-226.

      Burgerhout, E., Tudorache, C., Brittijn, S. A., Palstra, A. P., Dirks, R. P., & van den Thillart, G. E. (2013). Schooling reduces energy consumption in swimming male European eels, Anguilla anguilla L. Journal of experimental marine biology and ecology, 448, 66-71.

      Hemelrijk, C. K., Reid, D. A. P., Hildenbrandt, H., & Padding, J. T. (2015). The increased efficiency of fish swimming in a school. Fish and Fisheries, 16(3), 511-521.

      Li, L., Nagy, M., Graving, J. M., Bak-Coleman, J., Xie, G., & Couzin, I. D. (2020). Vortex phase matching as a strategy for schooling in robots and in fish. Nature communications, 11(1), 5408.

      Wiwchar, L. D., Gilbert, M. J., Kasurak, A. V., & Tierney, K. B. (2018). Schooling improves critical swimming performance in zebrafish (Danio rerio). Canadian Journal of Fisheries and Aquatic Sciences, 75(4), 653-661.

      Verma, S., Novati, G., & Koumoutsakos, P. (2018). Efficient collective swimming by harnessing vortices through deep reinforcement learning. Proceedings of the National Academy of Sciences, 115(23), 5849-5854.

      Ashraf, I., Bradshaw, H., Ha, T. T., Halloy, J., Godoy-Diana, R., & Thiria, B. (2017). Simple phalanx pattern leads to energy saving in cohesive fish schooling. Proceedings of the National Academy of Sciences, 114(36), 9599-9604.

      Parker Jr, F. R. (1973). Reduced metabolic rates in fishes as a result of induced schooling. Transactions of the American Fisheries Society, 102(1), 125-131.

      Itazawa, Y., & Takeda, T. (1978). Gas exchange in the carp gills in normoxic and hypoxic conditions. Respiration physiology, 35(3), 263-269.

      Abrahams, M. V., & Colgan, P. W. (1985). Risk of predation, hydrodynamic efficiency and their influence on school structure. Environmental Biology of Fishes, 13, 195-202.

      Davis, M. W., & Olla, B. L. (1992). The role of visual cues in the facilitation of growth in a schooling fish. Environmental biology of fishes, 34, 421-424.

      Ross, R. M., Backman, T. W., & Limburg, K. E. (1992). Group-size-mediated metabolic rate reduction in American shad. Transactions of the American Fisheries Society, 121(3), 385-390.

      Currier, M., Rouse, J., & Coughlin, D. J. (2021). Group swimming behaviour and energetics in bluegill Lepomis macrochirus and rainbow trout Oncorhynchus mykiss. Journal of Fish Biology, 98(4), 1105-1111.

      Halsey, L. G., Wright, S., Racz, A., Metcalfe, J. D., & Killen, S. S. (2018). How does school size affect tail beat frequency in turbulent water?. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 218, 63-69.

      Johansen, J. L., Vaknin, R., Steffensen, J. F., & Domenici, P. (2010). Kinematics and energetic benefits of schooling in the labriform fish, striped surfperch Embiotoca lateralis. Marine Ecology Progress Series, 420, 221-229.

      3) In addition to the calming effect, measuring group oxygen consumption suffers from a number of problems as discussed in Herskin and Steffensen (1998) such as the fish volume to water volume ratio, which varies considerably when testing a school vs single individuals in the same tunnel and the problem of wall effect when using a small volume of water for accurate O2 measurements. Herskin and Steffensen (1998) circumvented these problems by measuring tailbeat frequencies of fish in a school and then calculating the MO2 of the corresponding tailbeat frequency in solitary fish in a swim tunnel. A similar approach was used by Johansen et al (2010), Marras et al (2015), Halsey et al (2018). However, It is not clear how these potential issues were dealt with here. Here, larger solitary D. aequipinnatus were used to increase the signal-to-noise ratio. However, using individuals of different sizes makes other variables not so directly comparable, including stress, energetics, and kinematics. (see comment 7 below).

      Response: We acknowledge the great efforts made by previous studies to understand the energetics of fish schooling. These studies, as detailed in the table and elaborated in the response above (see comment 2) are very different from our current study. Our study achieved a direct comparison of energetics (including both aerobic and non-aerobic cost) and kinematics between solitary individuals and fish schools that has never been done before. Our detailed response to the supposed “calming effect” is given above.

      As highlighted in the previous comments and opening statement, our current version has addressed the wall effect, tail beat frequency, and experimental and analytical efforts invested to directly compare the energetics between fish schools and solitary individuals. As readers can see in our comprehensive method section, achieving the direct comparison between solitary individuals and fish schools is not a trivial task. Now we want to elaborate on the role of kinematics as an indirect estimate of energetics. Our results here show that kinematic measurements of tail beat frequency are not reliable estimates of energetic cost, and the previous studies cited did not measure EPOC and those costs are substantial, especially as swimming speed increases. Fish in schools can save energy even when the tail beat frequency does not change (although school volume can change as we show). We elaborated (in great detail) on why kinematics does not always reflect on the energetics in the submitted version (see last paragraph of “Schooling dynamics and energy conservation” section). Somehow modeling what energy expenditure should be based only on tail kinematics is, in our view, a highly unreliable approach that has never been validated (e.g., fish use more than just tails for locomotion). Indeed, we believe that this is an inadequate substitute for direct energy measurements. We disagree that using slightly differently sized individuals is an issue since we recorded fish kinematics across all experiments and included the measurements of behaviour in our manuscript. Slightly altering the size of individual fish was done on purpose to provide a better ratio of respirometer volume to fish volume in the tests on individual fish, thus we regard this as a benefit of our approach and not a concern.

      Finally, in another study of the collective behaviour of flying birds (Usherwood, J. R., Stavrou, M., Lowe, J. C., Roskilly, K. and Wilson, A. M. (2011). Flying in a flock comes at a cost in pigeons. Nature 474, 494-497), the authors observed that wing beat frequency can increase during flight with other birds. Hence, again, we cannot regard movement frequency of appendages as an adequate substitute for direct energetic measurements.

      4) Svendsen et al (2016) provide guidelines for the ratio of fish volume to water volume in the respirometer. The ratio used here (2200) is much higher than that recommended. RFR values higher than 500 should be avoided in swim tunnel respirometry, according to Svendsen et al (2016).

      Response: Thank you for raising this point. Please see the detailed responses above to the same comment above. We believe that our experimental setup and ratios are very much in line with those recommended, and represent a significant improvement on previous studies which use large ratios.

      5) Lines 421-436: The same goes for wall effects. Presumably, using the same size swim tunnel, schooling fish were swimming much closer to the walls than solitary fish but this is not specifically quantified here in this paper. Lines 421-436 provide some information on the boundary layer (though wall effects are not just related by the boundary layer) and some qualitative assessment of school volume. However, no measurement of the distance between the fish and the wall is given.

      Response: Please see the detailed responses above to the same comment. Specifically, we used the particle image velocimetry (PIV) system to measure the boundary layer (<2.5 mm at speeds > 2 BL s-1) and stated the parameters in the methods section of the Integrated Biomechanics & Bioenergetic Assessment System. We also state that the boundary layer is much thinner than the body width of the giant danio (~10 mm) so that the fish cannot effectively hide near the wall. Due to our PIV calibration, we are able to quantify flow near the wall.

      Due to our video data obtained simultaneously with energetic measurements, we do not agree that fish were swimming closer to the wall in schools and also note that we took care to modify the typical respirometer to both ensure that flow across the cross-section did not provide any refuges and to quantify flow velocities in the chamber using particle image velocimetry. We do not believe that any previous experiments on schooling behaviour in fish have taken the same precautions.

      6) The statistical tests used have a number of problems. Two-way ANOVA was based on school vs solitary and swimming speed. However, there are repeated measures at each speed and this needs to be dealt with. The degrees of freedom of one-way ANOVA and T-tests are not provided. These tests took into account five groups of fish vs. five solitary fish. The values of MO2 of each school are the result of the oxygen consumption of each fish, and therefore the test is comparing 5 individuals (i.e. an individual is the statistical unit) vs 5 schools (a school made out of 8 fish is the statistical unit). Therefore the test is comparing two different statistical units. One can see from the graphs that schooling MO2 tend to have a smaller SD than solitary data. This may well be due to the fact that schooling data are based on 5 points (five schools) and each point is the result of the MO2 of five fish, thereby reducing the variability compared to solitary fish. TBF, on the other hand, can be assigned to each fish even in a school, and therefore TBF of each fish could be compared by using a nested approach of schooling fish (nested within each school) vs solitary fish, but this is not the statistical procedure used in the present manuscript. The comparison between TBFs presumably is comparing 5 individuals vs all the fish in the schools (6x5=30 fish). However, the fish in the school are not independent measures.

      Response: We cannot agree with this criticism, which may be based on this reviewer having seen a previous version of the manuscript. We did not use two-way ANOVA in this version. This version of the manuscript reported the statistical value based on a General Linear Model (see statistical section of the method). We are concerned that this reviewer did not in fact read either the Methods section or the Results section. In addition, it is hard to accept that, from examination of the data shown in Figure 3, there is not a clear and large difference between schooling and solitary locomotion, regardless of the statistical test used.

      Meanwhile, the comments about the ‘repeated’ measures from one speed to the next are interesting, but we cannot agree. The ‘repeated’ measures are proper when one testing subject is assessed before and after treatment. Going from one speed to the next is not a treatment. Instead, the speed is a dependent and continuous variable. In our experimental design, the treatment is fish school, and the control is a solitary individual. Second, we never compared any of our dependent variables across different speeds within a school or within an individual. Instead, we compared schools and individuals at each speed. In this comparison, there are no ‘repeated’ measures. We agree with the reviewer that fish in the school are interacting (not independent). This is one more reason to support our approach of treating fish schools as a functional and statistical unit in our experiment design (more detailed responses are stated in the response to the comment above).

      7) The size of solitary and schooling individuals appears to be quite different (solitary fish range 74-88 cm, schooling fish range 47-65 cm). While scaling laws can correct for this in the MO2, was this corrected for TBF and for speed in BL/s? Using BL/s for speed does not completely compensate for the differences in size.

      Response: Our current version has provided justifications for not conducting scaling in the values of tail beat frequency. Our justification is “The mass scaling for tail beat frequency was not conducted because of the lack of data for D. aequipinnatus and its related species. Using the scaling exponent of distant species for mass scaling of tail beat frequency will introduce errors of unknown magnitude.”. Our current version also acknowledges the consideration about scaling as follows: “Fish of different size swimming at 1 BL s-1 will necessarily move at different Reynolds numbers, and hence the scaling of body size to swimming speed needs to be considered in future analyses of other species that differ in size”

      Reviewer #3 (Public Review):

      Summary:

      Zhang and Lauder characterized both aerobic and anaerobic metabolic energy contributions in schools and solitary fishes in the Giant danio (Devario aequipinnatus) over a wide range of water velocities. By using a highly sophisticated respirometer system, the authors measure the aerobic metabolisms by oxygen uptake rate and the non-aerobic oxygen cost as excess post-exercise oxygen consumption (EPOC). With these data, the authors model the bioenergetic cost of schools and solitary fishes. The authors found that fish schools have a J-shaped metabolism-speed curve, with reduced total energy expenditure per tail beat compared to solitary fish. Fish in schools also recovered from exercise faster than solitary fish. Finally, the authors conclude that these energetic savings may underlie the prevalence of coordinated group locomotion in fish.

      The conclusions of this paper are mostly well supported by data, but some aspects of methods and data acquisition need to be clarified and extended.

      Response: Thank you for seeing the value of our study. We provided clarification of the data acquisition system with a new panel of pictures included in the supplemental material to show our experimental system. We understand that our methods have more details and justifications than the typical method sections. First, the details are to promote the reproducibility of the experiments. The justifications are the responses to reviewer 2, who reviewed our previous manuscript version and also posted the same critiques after we provided the justifications for the construction of the system and the data acquisition.

      Strengths:

      This work aims to understand whether animals moving through fluids (water in this case) exhibit highly coordinated group movement to reduce the cost of locomotion. By calculating the aerobic and anaerobic metabolic rates of school and solitary fishes, the authors provide direct energetic measurements that demonstrate the energy-saving benefits of coordinated group locomotion in fishes. The results of this paper show that fish schools save anaerobic energy and reduce the recovery time after peak swimming performance, suggesting that fishes can apport more energy to other fitness-related activities whether they move collectively through water.

      Response: Thank you. We are excited to share our discoveries with the world.

      Weaknesses:

      Although the paper does have strengths in principle, the weakness of the paper is the method section. There is too much irrelevant information in the methods that sometimes is hard to follow for a researcher unfamiliar with the research topic. In addition, it was hard to imagine the experimental (respirometer) system used by the authors in the experiments; therefore, it would be beneficial for the article to include a diagram/scheme of that respiratory system.

      Response: We agree with the reviewer and hence added the pictures of the experimental system in the supplementary materials (Fig. S4). We think pictures are more realistic to present the system than schematics. We also provide a picture of the system during the process of making the energetic measurements. It is to show the care went to ensure fish are not affected by any external stimulation other than the water velocity. The careful experimental protocol is very critical to reveal the concave upward shaped curve of bony fish schools that was never reported before. Many details in the methods have been included in response to Reviewer 2.

      Reviewer #3 (Recommendations For The Authors):

      Overall, this is a very interesting, well-written, and nice article. However, many times the method section looks like a discussion. Furthermore, the authors need to check the use of the word "which" throughout the text. I got the feeling that it is overused/misused sometimes.

      Response: Thank you for the positive comments. The method is written in that way to address the concerns of Reviewer 2 who reviewed our previous versions. We corrected the overuse of ‘which’ throughout the manuscript.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Transcriptional readthrough, intron retention, and transposon expression have been previously shown to be elevated in mammalian aging and senescence by multiple studies. The current manuscript claims that the increased intron retention and readthrough could completely explain the findings of elevated transposon expression seen in these conditions. To that end, they analyze multiple RNA-seq expression datasets of human aging, human senescence, and mouse aging, and establish a series of correlations between the overall expression of these three entities in all datasets.

      While the findings are useful, the strength of the evidence is incomplete, as the individual analyses unfortunately do not support the claims. Specifically, to establish this claim there is a burden of proof on the authors to analyze both intron-by-intron and gene-by-gene, using internal matched regions, and, in addition, thoroughly quantify the extent of transcription of completely intergenic transposons and show that they do not contribute to the increase in aging/senescence. Furthermore, the authors chose to analyze the datasets as unstranded, even though strand information is crucial to their claim, as both introns and readthrough are stranded, and if there is causality, than opposite strand transposons should show no preferential increase in aging/senescence. Finally, there are some unclear figures that do not seem to show what the authors claim. Overall, the study is not convincing.

      Major concerns: 1) Why were all datasets treated as unstanded? Strand information seems critical, and should not be discarded. Specifically, stranded information is crucial to increase the confidence in the causality claimed by the authors, since readthrough and intron retention are both strand specific, and therefore should influence only the same strand transposons and not the opposite-strand ones.

      This is an excellent suggestion. Since only one of our datasets was stranded, we did not run stranded analyses for the sake of consistency. We would like to provide two analyses here that consider strandedness:

      First, we find that within the set of all expressed transposons (passing minimal read filtering), 86% of intronic transposons match the strand of the intron (3147 out of 3613). In contrast, the number is 51% after permutation of the strands. Similarly, when we randomly select 1000 intronic transposons 45% match the strandedness of the intron (here we select from the set of all transposons). This is consistent with the idea that most transposons are only detectable because they are co-expressed on the sense strand of other features that are highly expressed.

      As for the readthrough data, 287 out of 360 transposons (79%) within readthrough regions matched the strand of the gene and its readthrough.

      Second, in the model we postulate, the majority of transposon transcription occurs as a co-transcriptional artifact. This applies equally to genic transposons (gene expression), intronic (intron retention) and gene proximal (readthrough or readin) transposons. Therefore, we performed the following analysis for the set of all transposons in the Fleischer et al. fibroblast dataset.

      When we invert the strand annotation for transposons, before counting and differential expression, we would expect the counts and log fold changes to be lower compared to using the “correct” annotation file.

      Indeed, we show that out of 6623 significantly changed transposons with age only 226 show any expression in the “inverted run” (-96%). (Any expression is defined as passing basic read filtering.)

      Out of the 226 transposons that can be detected in both runs most show lower counts (A) and age-related differential expression converging towards zero (B) in the inverted run (Fig. L1).

      Author response image 1.

      Transposons with inverted strandedness (“reverse”) show lower expression levels (log counts; A) and no differential expression with age (B) when compared to matched differentially expressed transposons (“actual”). For this analysis we selected all transposons showing significant differential expression with age in the actual dataset that also showed at least minimal expression in the strand-inverted analysis (n=226). Data from Fleischer et al. (2018). (A) The log (counts) are clipped because we only used transposons that passed minimal read filtering in this analysis. (B) The distribution of expression values in the actual dataset is bimodal and positive since some transposons are significantly up- or downregulated. This bimodal distribution is lost in the strand-inverted analysis.

      2) "Altogether this data suggests that intron retention contributes to the age-related increase in the expression of transposons" - this analysis doesn't demonstrate the claim. In order to prove this they need to show that transposons that are independent of introns are either negligible, or non-changing with age.

      We would like to emphasize that we never claimed that intron retention and readthrough can explain all of the age-related increases in transposon expression. In fact, our data is compatible with a multifactorial origin of transposons expression. Age- and senescence-related transposon expression can occur due to: 1/ intron retention, 2/ readthrough, 3/ loss of intergenic heterochromatin. Specifically, we do not try to refute 3.

      However, since most transposons are found in introns or downstream of genes, this suggests that intron retention and readthrough will be major, albeit non-exclusive, drivers of age-related changes in transposons expression. Even if the fold-change for intergenic transposons with aging or senescence were higher this would not account for the broadscale expression patterns seen in RNAseq data.

      To further illustrate this, we analyzed transposons located in introns, genes, downstream (ds) or upstream (us) of genes (distance to gene < 25 kb) or in intergenic regions (distance to gene > 25 kb). Indeed, we find that although intergenic transposons show similar log-fold changes to other transposon classes (Fig. L2A), their total contribution to read counts is negligible (Fig. L2B, Fig. Fig. S15). We have also now added a more nuanced explanation of this issue to the discussion.

      Author response image 2.

      We analyzed transposons located in introns, genes, downstream (ds) or upstream (us) of genes (distance to gene < 25 kb) or in intergenic regions (distance to gene > 25 kb). Independent of their location, transposons show similar differential expression with aging or cellular senescence (A). In contrast, the expression of transposons (log counts) is highly dependent on their location and the median log(count) value decreases in the order: genic > intronic > ds > us > intergenic.

      Author response image 3.

      Total counts are the sum of all counts from transposons located in introns, genes, downstream (ds) or upstream (us) of genes (distance to gene < 25 kb) or in intergenic regions (distance to gene > 25 kb). Counts were defined as cumulative counts across all samples.

      3) Additionally, the correct control regions should be intronic regions other than the transposon, which overall contributed to the read counts of the intron.

      4) Furthermore, analysis of read spanning intron and partly transposons should more directly show this contribution.

      Thank you for this comment. To rephrase this, if we understand correctly, the concern is that an increase in transposon expression could bias the analysis of intron retention since transposons often make up a substantial portion of an intron. We would like to address this concern with the following three points:

      First, if the concern is the correlation between log fold-change of transposons vs log fold-change of their containing introns, we do not think that this kind of data is biased. While transposons make up much of the intron, a single transposon on average only accounts for less than 10% of an intron.

      Second, to address this more directly, we show here that even introns that do not contain expressed transposons are increased in aging fibroblasts and after induction of cellular senescence (Fig. S8). This shows that intron retention is universal and most likely not heavily biased by the presence or absence of expressed transposons.

      Author response image 4.

      We split the set of introns that significantly change with cellular aging (A) or cell senescence (B) into introns that contain at least one transposon (has_t) and those that do not contain any transposons (has_no_t). Intron retention is increased in both groups. In this analysis we included all transposons that passed minimal read filtering (n=63782 in A and n=124173 in B). Median log-fold change indicated with a dashed red line for the group of introns without transposons.

      Third, we provide an argument based on the distribution of transposons within introns (Fig. L3).

      Author response image 5.

      The 5’ and 3’ splice sites show the highest sequence conservation between introns, whereas the majority of the intronic sequence does not. This is because these sites contain binding sites for splicing factors such as U1, U2 and SF1 (A). Transposons could affect splicing and we present a biologically plausible mechanism and two ancillary hypotheses here (B). If transposons affect the splicing (retention) of introns the most likely mechanism would be via impairment of splice site recognition because a transposon close to the site forms a secondary structure, binds an effector protein or provides inadequate sequences for pairing. Hypothesis 1: Transposons impair splicing because they are close to the splice site. Hypothesis 2: Transposons do not impair splicing because they are located away from the splice junction. Retained introns should show a similar depletion of transposons around the junction.

      Image adapted from: Ren, Pingping, et al. "Alternative splicing: a new cause and potential therapeutic target in autoimmune disease." Frontiers in Immunology 12 (2021): 713540.

      Consistent with hypothesis 2 (“transposons do not impair splicing”), we show that the distribution of transposons within introns is similar for the set of all transposons and all significant transposons within significantly overexpressed introns (Fig. S7. A and B is similar in the case of aged fibroblasts; D and E is similar in the case of cellular senescence). If transposon expression was causally linked to changes in intron retention, the most likely mechanism would be via an impairment of splicing. We would expect transposons to be located close to the splice junction, which is not what we observed. Instead, the data is more consistent with intron retention as a driver of transposon expression.

      Author response image 6.

      Transposons are evenly distributed within introns except for the region close to splice junctions (A-E). Transposons appear to be excluded from the splice junction-adjacent region both in all introns (A, D) and in significantly retained introns (B, E). In addition, transposon density of all introns and significantly retained introns is comparable (C, F). We included only introns containing at least one transposon in this analysis. A) Distribution of 2292769 transposons within 163498 introns among all annotated transposons. B) Distribution of 195190 transposons within 14100 introns significantly retained with age. C) Density (transposon/1kb of intron) of transposons in all introns (n=163498) compared to significantly retained introns (n=14100). D) as in (A) E) Distribution of 428130 transposons within 13205 introns significantly retained with induced senescence. F) Density (transposon/1kb of intron) of transposons in all introns (n=163498) compared to significantly retained introns (n=13205).

      5) "This contrasts with the almost completely even distribution of randomly permuted transposons." How was random permutation of transposons performed? Why is this contract not trivial, and why is this a good control?

      Permutation was performed using the bedtools shuffle function (Quinlan et al. 2010). We use the set of all annotated transposons and all reshuffled transposons as a control. It is interesting to observe that these two show a very similar distribution with transposons evenly spread out relative to genes. In contrast, expressed transposons are found to cluster downstream of genes. This gave rise to our initial working hypothesis that readthrough should affect transposon expression.

      6) Fig 4: the choice to analyze only the 10kb-20kb region downstream to TSE for readthrough regions has probably reduced the number of regions substantially (there are only 200 left) and to what extent this faithfully represent the overall trend is unclear at this point.

      This is addressed in Suppl. Fig. 7, we repeated the analysis for every 10kb region between 0 and 100kb, showing similar results.

      Furthermore, we show below in a new figure that the results are comparable when we measure readthrough in the 0 to 10kb region, while the sample size of readthrough regions is increased.

      Finally, it is commonly accepted to remove readthrough regions overlapping genes, which while reducing sample size, increases accuracy for readthrough determination (Rosa-Mercado et al. 2021). Without filtering readthrough regions can overlap neighboring genes which is reflected in an elevated ratio of Readthrough_counts/Genic_counts (Fig. S9).

      Author response image 7.

      A) Readthrough was determined in a region 0 to 10 kb downstream of genes for a subset of genes that were at least 10 kb away from the nearest neighboring gene (n=684 regions). The log2 ratio of readthrough to gene expression is plotted across five age groups (adolescent n=32, young n=31, middle-aged n=22, old n=37 and very old n=21). B) As in (A) but data is plotted on a per sample basis. C) Readthrough was determined in a region 0 to 10 kb downstream of genes for a subset of genes that were at least 10 kb away from the nearest neighboring gene (n=1045 regions). The log2 ratio of readthrough to gene expression is plotted for the groups comprising senescence (n=12) and the non-senescent group (n=6). D) As in (D) but data is plotted on a per sample basis and for additional control datasets (serum-starved, immortalized, intermediate passage and early passage). N=3 per group.

      7) Fig. 5B shows the opposite of the authors claims: in the control samples there are more transposon reads than in the KCl samples.

      Thank you for pointing this out. During preparation of the manuscript the labels of Fig. 5B were switched (however, the color matching between Fig. 5A-C is correct). We apologize for this mistake, which we have now corrected.

      8) "induced readthrough led to preferential expression of gene proximal transposons (i.e. those within 25 kb of genes), when compared with senescence or aging". A convincing analysis would show if there is indeed preferential proximity of induced transposons to TSEs. Since readthrough transcription decays as a function of distance from TSEs, the expression of transposons should show the same trends if indeed simply caused by readthrough. Also, these should be compared to the extent of transposon expression (not induction) in intergenic regions without any readthrough, in these conditions.

      This is a very good suggestion. We now provide two new supplementary figures analyzing the distance-dependence of transposon expression.

      In the first figure (Fig. S13) we show that readthrough decreases with distance (A, B) and we show that transposon counts are higher for transposons close to genes, following a similar pattern to readthrough. This is true in fibroblasts isolated from aged donors (A) and with cellular senescence (B).

      Author response image 8.

      Readthrough counts (rt_counts) decrease exponentially downstream of genes, both in the aging dataset (A) and in the cellular senescence dataset (B). Although noisier, the pattern for transposon counts (transp_cum_counts) is similar with higher counts closer to gene terminals, both in the aging dataset (C) and in the cellular senescence dataset (D). Readthrough counts are the cumulative counts across all genes and samples. Readthrough was determined in 10 kb bins and the values are assigned to the midpoint of the bin for easier plotting. Transposon counts are the cumulative counts across all samples for each transposon that did not overlap a neighboring gene. n=801 in (C) and n=3479 in (D).

      In the second figure (Fig. S14) we show that transposons found downstream of genes with high readthrough show a more pronounced log-fold change (differential expression) than transposons downstream of genes with low readthrough (defined based on log-fold change). This is true in fibroblasts isolated from aged donors (A) and with cellular senescence (B). Furthermore, the difference between high and low readthrough region transposons is diminished for transposons that are more than 10 kb downstream of genes, as would be expected given that readthrough decreases with distance.

      Author response image 9.

      Transposons found downstream of genes with high readthrough (hi_RT) show a more pronounced log-fold change (transp_logfc) than transposons downstream of genes with low readthrough (low_RT). This is true in fibroblasts isolated from aged donors (A) and with cellular senescence (B). Furthermore, the difference between high and low readthrough region transposons is diminished for transposons that are more than 10 kb downstream of genes (“Transp > 10 kb”). Transposons in high readthrough regions were defined as those in the top 20% of readthrough log-fold change. Readthrough was measured between 0 and 10 kb downstream from genes. n=2124 transposons in (A) and n=6061 transposons in (B) included in the analysis.

      Reviewer #2 (Public Review):

      In this manuscript, the authors examined the role of transcription readout and intron retention in increasing transcription of transposable elements during aging in mammals. It is assumed that most transposable elements have lost the regulatory elements necessary for transcription activation. Using available RNA-seq datasets, the authors showed that an increase in intron retention and readthrough transcription during aging contributes to an increase in the number of transcripts containing transposable elements.

      Previously, it was assumed that the activation of transposable elements during aging is a consequence of a gradual imbalance of transcriptional repression and a decrease in the functionality of heterochromatin (de repression of transcription in heterochromatin). Therefore, this is an interesting study with important novel conclusion. However, there are many questions about bioinformatics analysis and the results obtained.

      Major comments:

      1) In Introduction the authors indicated that only small fraction of LINE-1 and SINE elements are expressed from functional promoters and most of LINE-1 are co-expressed with neighboring transcriptional units. What about other classes of mobile elements (LTR mobile element and transposons)?

      We thank the reviewer for this comment. Historically, most repetitive elements, e.g. DNA elements and retrotransposon-like elements, have been considered inactive, having accrued mutations which prevent them from transposition. On the other hand, based on recent data it is indeed very possible that certain LTR elements become active with aging as suggested in several manuscripts (Liu et al. 2023, Autio et al. 2020). However, these elements are not well annotated and our final analysis (Fig. 6) relies on a well-defined distinction between active and inactive elements. (See also question 2 for further discussion.)

      Finally, we would like to point out some of the difficulties with defining expression and re-activation of LTR/ERV elements based on RNAseq data that have been highlighted for the Liu manuscript and are concordant with several of our results: https://pubpeer.com/publications/364E785636ADF94732A977604E0256

      Liu, Xiaoqian, et al. "Resurrection of endogenous retroviruses during aging reinforces senescence." Cell 186.2 (2023): 287-304.

      Autio A, Nevalainen T, Mishra BH, Jylhä M, Flinck H, Hurme M. Effect of ageing on the transcriptomic changes associated with expression at the HERV-K (HML-2) provirus at 1q22. Immun Ageing. 2020;17(1):11.

      2) Results: Why authors considered all classes of mobile elements together? It is likely that most of the LTR containing mobile elements and transposons contain active promoters that are repressed in heterochromatin or by KRAB-C2H2 proteins.

      We do not consider LTR containing elements because there is uncertainty regarding their overall expression levels and their expression with aging (Nevalainen et al. 2018). Furthermore, we believe that substantial activity of LTR elements in human genomes should have been detectable through patterns of insertional mutagenesis. Yet studies generally show low to negligible levels of LTR (ERV) mutagenesis. Here, for example, at a 200-fold lower rate than for LINEs (Lee et al. 2012).

      Importantly, our analysis in Fig. 6 relies on well-annotated elements like LINEs, which is why we do not include LTR or SINE elements that could be potentially expressed. However, for other analyses we did consider element families independently as can be seen in Table S1, for example.

      Nevalainen, Tapio, et al. "Aging-associated patterns in the expression of human endogenous retroviruses." PLoS One 13.12 (2018): e0207407.

      Lee, Eunjung, et al. "Landscape of somatic retrotransposition in human cancers." Science 337.6097 (2012): 967-971.

      3) Fig. 2. A schematic model of transposon expression is not presented clearly. What is the purpose of showing three identical spliced transcripts?

      This is indeed confusing. There are three spliced transcripts to schematically indicate that the majority of transcripts will be correctly spliced and that intron retention is rare (estimated at 4% of all reads in our dataset). We have clarified the figure now, please see below:

      Author response image 10.

      A schematic model of transposon expression. In our model, represented in this schematic, transcription (A) can give rise to mRNAs and pre-mRNAs that contain retained introns when co-transcriptional splicing is impaired. This is often seen during aging and senescence, and these can contain transposon sequences (B). In addition, transcription can give rise to mRNAs and pre-mRNAs that contain transposon sequences towards the 3’-end of the mRNA when co-transcriptional termination at the polyadenylation signal (PAS) is impaired (C, D) as seen with aging and senescence. Some of these RNAs may be successfully polyadenylated (as depicted here) whereas others will be subject to nonsense mediated decay. Image created with Biorender.

      4) The study analyzed the levels of RNA from cell cultures of human fibroblasts of different ages. The annotation to the dataset indicated that the cells were cultured and maintained. (The cells were cultured in high-glucose (4.5mg/ml) DMEM (Gibco) supplemented with 15% (vol/vol) fetal bovine serum (Gibco), 1X glutamax (Gibco), 1X non-essential amino acids (Gibco) and 1% (vol/vol) penicillin-streptomycin (Gibco). How correct that gene expression levels in cell cultures are the same as in body cells? In cell cultures, transcription is optimized for efficient division and is very different from that of cells in the body. In order to correlate a result on cells with an organism, there must be rigorous evidence that the transcriptomes match.

      We agree and have updated the discussion to reflect this shortcoming. While we do not have human tissue data, we would like to draw the reviewer’s attention to Fig. S3 where we presented some liver data for mice. We now provide an additional supplementary figure (in a style similar to Fig. S2) showing how readthrough, transposon expression and intron retention changes in 26 vs 5-month-old mice (Fig. S4). Indeed, intron, readthrough and transposons increase with age in mice, although this is more pronounced for transposons and readthrough.

      Author response image 11.

      Intron, readthrough and transposon elements are elevated in the liver of aging mice (26 vs 5-month-old, n=6 per group). Readthrough and transposon expression is especially elevated even when compered to genic transcripts. The percentage of upregulated transcripts is indicated above each violin plot and the median log10-fold change for genic transcripts is indicated with a dashed red line.

      Finally, just to elaborate, we used the aging fibroblast dataset by Fleischer et al. for three reasons:

      1) Yes, aging fibroblasts could be a model of human aging, with important caveats as you correctly point out,

      2) it is one of the largest such datasets allowing us to draw conclusions with higher statistical confidence and do things such as partial correlations

      3) it has been analyzed using similar techniques before (LaRocca, Cavalier and Wahl 2020) and this dataset is often used to make strong statements about transposons and aging such as transposon expression in this dataset being “consistent with growing evidence that [repetitive element] transcripts contribute directly to aging and disease”. Our goal was to put these statements into perspective and to provide a more nuanced interpretation.

      LaRocca, Thomas J., Alyssa N. Cavalier, and Devin Wahl. "Repetitive elements as a transcriptomic marker of aging: evidence in multiple datasets and models." Aging Cell 19.7 (2020): e13167.

      5) The results obtained for isolated cultures of fibroblasts are transferred to the whole organism, which has not been verified. The conclusions should be more accurate.

      We agree and have updated the discussion accordingly.

      6) The full pipeline with all the configuration files IS NOT available on github (pabisk/aging_transposons).

      Thank you for pointing this out, we have now uploaded the full pipeline and configuration files.

      7) Analysis of transcripts passing through repeating regions is a complex matter. There is always a high probability of incorrect mapping of multi-reads to the genome. Things worsen if unpaired short reads are used, as in the study (L=51). Therefore, the authors used the Expectation maximization algorithm to quantify transposon reads. Such an option is possible. But it is necessary to indicate how statistically reliable the calculated levels are. It would be nice to make a similar comparison of TE levels using only unique reads. The density of reads would drop, but in this case it would be possible to avoid the artifacts of the EM algorithm.

      We thank the reviewer for this suggestion. We show here that mapping only unique alignments (outFilterMultimapNmax=1 in STAR) leads to similar results.

      For the aging fibroblast dataset:

      Author response image 12.

      For the induced senescence dataset:

      Author response image 13.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      Receptor tyrosine kinases such as ALK play critical roles during appropriate development and behaviour and are nodal in many disease conditions, through molecular mechanisms that weren't completely understood. This manuscript identifies a previously unknown neuropeptide precursor as a downstream transcriptional target of Alk signalling in Clock neurons in the Drosophila brain. The experiments are well designed with attention to detail, the data are solid and the findings will be useful to those interested in events downstream of signalling by receptor tyrosine kinases.

      Authors response: We thank the reviewers for this assessment of our Manuscript. We are happy to accept the current eLife assessment of our manuscript. In our revised manuscript we have addressed all of the major reviewer comments, including additional experiments suggested by the reviewers, which have significantly strengthened the revised version.

      Reviewer #1 (Public Review):

      Sukumar et al build on a body of work from the Palmer lab that seeks to unravel the transcriptional targets of Alk signaling (a receptor tyrosine kinase). Having uncovered its targets in the mesoderm in an earlier study, they seek to determine its targets in the central nervous system. To do this, they use Targeted DamID (TaDa) in the wild-type and Alk dominant negative background and identify about 1700 genes that might be under the control of Alk signalling. Using their earlier data and applying a set of criteria - upregulated in gain-of-Alk, downregulated in loss-of-Alk, and co-expressed with Alk positive cells in single cell datasets - they arrive upon a single gene, Sparkly, which is predicted to be a neuropeptide precursor.

      They generate antibodies and mutants for Sparkly and determine that it is responsive to Alk signalling and is expressed in many neuroendocrine cells, as well as in clock neurons. Though the mutants survive, they have reduced lifespans and are hyperactive. In summary, the authors identify a previously unidentified transcriptional target of Alk signalling, which is likely cleaved into a neuropeptide and is involved in regulating circadian activity.

      The data support claims made, are generally well presented and the manuscript clearly written. The link between circadian control of Alk signalling in Clock neurons > Spar expression > ultimately controlling circadian activity, however, was not clear.

      Authors response: We thank the reviewer for this through reading of our manuscript and for kindly highlighting the important takeaways from the study. The role of Alk signalling in activity, circadian rhythm and sleep has previously been reported by other groups in the following studies – (Bai and Sehgal, 2015; Weiss et al, 2017; Gouzi, Bouraimi et al 2018), which we have discussed in our manuscript. We also have identified a hyperactivity phenotype in our Alk CNS specific loss-of-function allele, AlkRA, which is similar to the Spar loss-of-function mutant phenotype. We hypothesize that one of ways in which Alk signalling regulates fly activity is through regulating Spar gene expression in neuroendocrine cells. This is supported by our data which shows Alk expression in Clock neurons, as well by the new experimental data showing an activity phenotype in flies expressing Spar RNAi driven by the Clk678-Gal4 driver.

      Reviewer #2 (Public Review):

      This manuscript illustrates the power of "combined" research, incorporating a range of tools, both old and new to answer a question. This thorough approach identifies a novel target in a well-established signalling pathway and characterises a new player in Drosophila CNS development.

      Largely, the experiments are carried out with precision, meeting the aims of the project, and setting new targets for future research in the field. It was particularly refreshing to see the use of multi-omics data integration and Targeted DamID (TaDa) findings to triage scRNA-seq data. Some of the TaDa methodology was unorthodox (and should be justifed/caveats mentioned in the main text), however, this does not affect the main finding of the study.

      Their discovery of Spar as a neuropeptide precursor downstream of Alk is novel, as well as its ability to regulate activity and circadian clock function in the fly. Spar was just one of the downstream factors identified from this study, therefore, the potential impact goes beyond this one Alk downstream effector.

      Authors response: We thank the reviewer for the positive comments highlighting the strengths of our study. TaDa was used as a semi-quantitative readout of the transcriptional activity in a Alk loss-of-function background with an emphasis on relative differences in peaks close to GATC sites, providing an important dataset for integration with bulk and single cell RNAseq. As the reviewer points out there are important considerations when interpreting this data and we have now added sentences in the discussion to inform readers of possible caveats of our TaDa dataset.

      Reviewer #3 (Public Review):

      Summary:

      The receptor tyrosine kinase Anaplastic Lymphoma Kinase (ALK) in humans is nervous system expressed and plays an important role as an oncogene. A number of groups have been signalling ALK signalling in flies to gain mechanistic insight into its various role. In flies, ALK plays a critical role in development, particularly embryonic development and axon targeting. In addition, ALK also was also shown to regulate adult functions including sleep and memory. In this manuscript, Sukumar et al., used a suite of molecular techniques to identify downstream targets of ALK signalling. They first used targeted DamID, a technique that involves a DNA methylase to RNA polymerase II, so that GATC sites in close proximity to PolII binding sites are marked. They performed these experiments in wild-type and ALK loss of function mutants (using an Alk dominant negative ALkDN), to identify Alk responsive loci. Comparing these loci with a larval single-cell RNAseq dataset identified neuroendocrine cells as an important site of Alk action. They further combined these TaDa hits with data from RNA seq in Alk Loss and Gain of Function manipulations to identify a single novel target of Alk signalling - a neuropeptide precursor they named Sparkly (Spar) for its expression pattern. They generated a mutant allele of Spar, raised an antibody against Spar, and characterised its expression pattern and mutant behavioural phenotypes including defects in sleep and circadian function.

      Strengths:

      The molecular biology experiments using TaDa and RNAseq were elegant and very convincing. The authors identified a novel gene they named Spar. They also generated a mutant allele of Spar (using CrisprCas technology) and raised an antibody against Spar. These experiments are lovely, and the reagents will be useful to the community. The paper is also well written, and the figures are very nicely laid out making the manuscript a pleasure to read.

      Weaknesses:

      My main concerns were around the genetics and behavioural characterisation which is incomplete. The authors generated a novel allele of Spar - Spar ΔExon1 and examined sleep and circadian phenotypes of this allele. However, they have only one mutant allele of Spar, and it doesn't appear as if this mutant was outcrossed, making it very difficult to rule out off-target effects. To make this data convincing, it would be better if the authors had a second allele, perhaps they could try RNAi?

      Further, the sleep and circadian characterisation could be substantially improved. In Fig 8 E-F it appears as if sleep was averaged over 30 days! This is a little bizarre. They then bin the data as day 1 - 12 and 12-30. This is not terribly helpful either. Sleep in flies, as in humans, undergoes ontogenetic changes - sleep is high in young flies, stabilises between day 3-12, and shows defects by around 3 weeks of age (cf Shaw et al., 2000 PMID 10710313). The standard in the sleep field is to average over 3 days or show one representative day. The authors should reanalyse their data as per this standard, and perhaps show data from 310 day old flies, and if they like from 20-30 day old flies. Further, sleep data is usually analysed and presented from lights on to lights on. This allows one to quantify important metrics of sleep consolidation including bout lengths in day and night, and sleep latency. These metrics are of great interest to the community and should be included.

      The authors also claim there are defects in circadian anticipatory activity. However, these data, as presented are not solid to me. The standard in the field is to perform eduction analyses and quantify anticipatory activity e.g. using the method of Harrisingh et al. (PMID: 18003827). Further, circadian period could also be evaluated. There are several free software packages to perform these analyses so it should not be hard to do.

      Authors response: We thank the reviewer for the thorough reading of our manuscript and for generously praising the positives as well as pointing out the weakness of our study. We have now addressed the highlighted weaknesses in behavioural experiments. In particular, we have reanalysed our data according to the reviewer’s suggestions. In addition, we provide experimental data, driving Spar RNAi in Clock neurons, that support our Spar mutant analysis.

      Point-by-point response to the reviewers’ concerns:

      Point 1. “My main concerns were around the genetics and behavioural characterisation which is incomplete. The authors generated a novel allele of Spar - Spar ΔExon1 and examined sleep and circadian phenotypes of this allele. However, they have only one mutant allele of Spar, and it doesn't appear as if this mutant was outcrossed, making it very difficult to rule out off-target effects. To make this data convincing, it would be better if the authors had a second allele, perhaps they could try RNAi?”

      Authors response: As per the reviewer's suggestion, we conducted a targeted knockdown of Sparkly specifically in clock neurons (Clk-Gal4 > Spar-RNAi) and assessed the circadian phenotypes. Flies were monitored for 5 days in LD followed by a shift to DD, similar to our previous LD-DD experiments. The results revealed a significant disruption in both activity and sleep during the DD transition period upon knockdown of Spar in circadian clock neurons. These findings strongly align with the expression pattern of Spar in clock neurons (Figure 7i-l’’). We have now included a new main figure (Figure 9) together with several supplementary figure (Figure 9 – figure supplements 1 and 2) and discussed these experiments on pages 17-18 of the results section of the revised manuscript.

      Point 2. “Further, the sleep and circadian characterisation could be substantially improved. In Fig 8 E-F it appears as if sleep was averaged over 30 days! This is a little bizarre. They then bin the data as day 1 - 12 and 12-30. This is not terribly helpful either. Sleep in flies, as in humans, undergoes ontogenetic changes - sleep is high in young flies, stabilises between day 3-12, and shows defects by around 3 weeks of age (cf Shaw et al., 2000 PMID 10710313). The standard in the sleep field is to average over 3 days or show one representative day. The authors should reanalyse their data as per this standard, and perhaps show data from 3–10-day old flies, and if they like from 20–30-day old flies.”

      Authors response: We have reanalysed these data according to the reviewer's suggestions and revised the sleep data presented. Specifically, we have focused on two 3-day periods, days 5-7 as well as days 20-22. By averaging the sleep mean during these time points, we observed a significant decrease in average sleep duration in the SparΔExon1 and Alk ΔRA mutant flies at a younger age (Figure 8h-h’, Figure 8 – figure supplement 2). However, no significant effect was observed in older flies (Figure 8h-h’, Figure 8 – figure supplement 2). We have incorporated this new data into Figure 8 and provided a detailed description in the results section (page 16) of the revised manuscript.

      Point 3. “Further, sleep data is usually analysed and presented from lights on to lights on. This allows one to quantify important metrics of sleep consolidation including bout lengths in day and night, and sleep latency. These metrics are of great interest to the community and should be included.”

      Authors response: We have now reanalysed these data as per the reviewer's suggestion. From the raw data collected over a span of 3 days, we specifically selected the lights on-lights on data and examined the average sleep duration. Notably, we observed a significant downregulation of average sleep in SparΔExon1 and AlkΔRA flies, but only at a younger age (Figure 8h-h’, Figure 8 – figure supplement 2). Furthermore, we assessed the number of sleep bouts using this data and found a significant increase in the number of bouts in younger SparΔExon1 and AlkΔRA flies, with no changes observed at an older age (Figure 8 – figure supplement 2). Additionally, we evaluated the number of bouts in flies that were initially monitored in LD and then shifted to DD, observing a significant decrease in the number of sleep bouts in SparΔExon1 flies following the transition to DD (Figure 9d). This new data is described in detail in the results section (pages 16-18) of the revised manuscript.

      Point 4. “The authors also claim there are defects in circadian anticipatory activity. However, these data, as presented are not solid to me. The standard in the field is to perform eduction analyses and quantify anticipatory activity e.g. using the method of Harrisingh et al. (PMID: 18003827).”

      Authors response: We appreciate the valuable suggestion provided by the reviewer. In accordance with the referenced paper by Harrisingh et al. (2007), we calculated the "anticipation score" defined as the percentage of activity in the 6hour period preceding the lights-on or lights-off transition that occurs in the 3-hour window just before the transition. To analyse the mean activity of the flies, we selected the data corresponding to the 6 hours before lights-on and the 6 hours before lights-off, averaged over a 14-day period under normal LD conditions. Interestingly, we observed a significant increase in the mean activity of SparΔExon1 flies during both morning anticipation (a.m. anticipation) and evening anticipation (p.m. anticipation) (Figures 8f). Furthermore, we analysed this parameter for flies entrained in DD and found that SparΔExon1 flies exhibited lower mean activity during both morning and evening anticipation (Figures 8g). We have incorporated this new data into Figure 8 and provided a detailed description in the results section (pages 16-18) of the revised manuscript.

      Point 5. Further, circadian period could also be evaluated. There are several free software packages to perform these analyses so it should not be hard to do.

      Authors response: We have now evaluated the circadian period as suggested by the reviewer; generating a chi-square periodogram for each fly to calculate the free-running period for the flies that were under normal LD conditions additionally to the ones that were entrained in DD. We calculated the percentage of flies that had a shorter or longer period than 1440 min (24 h) and observed that w1118 and SparΔExon1 flies have a longer circadian period (Figure 8 – figure supplement 4) but following the shift to DD, they tend to have a shorter circadian period (Figure 9 – figure supplement 3). This new data is described in the results (pages 16-18).

      Recommendations for the authors:

      There are two major concerns that we recommend the authors address:

      1) The behaviour: There are a number of unconventional representations of the behavioural data in this manuscript. We recommend that the authors revisit their data representation to adhere to conventions in the field - specific suggestions are in the reviews. We also suggest an additional experiment - an RNAi/different allele/rescue experiment to ensure that the phenotypes the authors observe are not due to off-target effects of the mutant they have generated.

      Authors response: In the revised manuscript, we have reanalysed the behavioural data according to the reviewers’ recommendations (included in Figures 8 and 9 of the revised version). In addition, we have performed a targeted Spar RNAi experiment in clock neurons (included in Figure 9 of the revised version), identifying a hyperactive behavioural phenotype similar to that of Spar mutants. The inclusion of these new analyses and data strengthens the manuscript and support the conclusion that Spar plays a role in regulation of behaviour.

      2) TaDa analyses: We were concerned that the authors might be picking up false positives with the way they have analysed their data. While this may not matter for this study, it will be useful to reason out their approach and keep this in mind for any other targets they choose from these data for further studies.

      Authors response: In line with the reviewers concerns we have now highlighted the potential caveats and drawbacks of our TaDa dataset in the discussion section of the revised manuscript (detailed in response to Reviewer #2 below).

      Reviewer #1 (Recommendations For The Authors):

      Though generally well written, I felt that some sections could be written in more detail. For example, the text around Figure 5 was not very informative. Many of the other approaches to the analyses and details of datasets used were glossed over. Since the manuscript uses a lot of previously published data, it would be nice to give more details about them in the context of the results.

      Authors response: We thank the reviewer for this recommendation. We have now added additional information about peptidomics analysis in the results and in the legend of Figure 5. We have also included a table in the Methods that summarised the datasets used in this study, including the Dataset name, brief description and reference.

      In the panels where co-localisations have been represented, it would be nice to include enlarged insets depicting the co-labelling. It is not always obvious in the way the figures have currently been represented. For example, in Fig 2G, Alk stain appears to be everywhere, but the authors make the point that it is enriched in neuroendocrine cells (as labelled by dimmed), but the co-localisation isn't evident. Similar issues come up with the sparkly colocalisations.

      Authors response: As suggested by the reviewer, we have now added additional panels to complement the stainings in Figure 2G. These new data are included as Figure 2 – figure supplement 1 (Alk/Dimm-Gal4>UAS-GFPcaax staining) and as Figure 4 – figure supplement 1 (Alk/Spar staining), which indicate colocalization in the central brain and ventral nerve cord prosecretory cells with enlarged panels.

      Supplementary figures S3C and 3F appear garbled to me? Maybe it didn't upload properly?

      Authors response: Unfortunately, this issue is not apparent to us. However, we have now re-uploaded these Figures.

      Sparkly's responsiveness to Alk signalling: Visually, there does not seem to be an increase or decrease in spar levels in the images in Fig 4F-H. How was the quantification done? I would suggest a more detailed interpretation of their results related to spar's responsiveness to Alk signalling - at the mRNA vs protein levels and the GOF vs LOF conditions.

      Authors response: We thank the reviewer for this constructive recommendation. In the revised manuscript, we have now repeated this experiment with increased numbers of larval CNS followed by blinded image analysis. These results also show an increased fluorescence intensity as measured by corrected total cell fluorescence (CTCF), confirming our previous observation of increased Spar protein expression in in Alk gain-of-function conditions compared to controls. In this analysis, changed in Spar levels in Alk loss-of-function remained non-significant compared to control, in agreement with our previous data. As suggested by the reviewer, we have now included several additional sentences discussing the possible reasons for these observations. This following text is now included on Page 11 of the results section:

      “While our bulk RNA-seq and TaDa datasets show a reduction in Spar transcript levels in Alk loss-of-function conditions, this reduction is not reflected at the protein level. This observation may reflect additional uncharacterised pathways that regulate Spar mRNA levels as well as translation and protein stability. Taken together, these observations confirm that Spar expression is responsive to Alk signaling in CNS, although Alk is not critically required to maintain Spar protein levels.” We have also added an additional Image analysis method section explaining the methodology of the CTCF fluorescent intensity quantification on Page 28.

      Reviewer #2 (Recommendations For The Authors):

      It was surprising to see that the authors did not use Dam-only controls. This is to control for background methylation by Dam (i.e. accessible chromatin). This does not invalidate the main results of the manuscript, however, there could be false positives in the dataset for genes that are seen to be up-regulated in the mutant condition (e.g. if accessibility is increased in the mutant but not transcription, then it would look like increased Pol II binding, when it isn't). As the study was focusing on genes down-regulated in the mutant, this is less of an issue, as it is very unlikely to see an increase in transcription with a decrease in accessibility (that could provide a false positive). The authors should explain their rationale for not using Dam-only controls, and the associated caveats, in the manuscript.

      Authors response: We agree with the reviewer’s comment on possibility of identifying false positive candidates from our TaDa dataset. Especially, if one is seeking to find a gene with increased Pol II occupancy in a Alk dominant negative condition. However, our analysis only focuses on genes which are responsive to Alk-manipulation, namely, genes which are downregulated in the Alk dominant negative condition. One of the rationales for not using a Dam-only control was that in our previous Mendoza-Garcia et al, 2021 study, we employed a similar method and were able to successfully identify already known and novel targets of Alk signalling in embryonic mesoderm comparing the Dam-Pol II versus Dam-Pol II; Alk Dominant negative conditions. In the current version of the manuscript, we have expanded our discussion of these caveats as follows (Discussion, Page 19-20):

      “A potential drawback of our TaDa dataset is the identification of false positives, due to non-specific methylation of GATC sites at accessible regions in the genome by Dam protein. Hence, our experimental approach likely more reliably identifies candidates which are downregulated upon Alk inhibition. In our analysis, we have limited this drawback by focusing on genes downregulated upon Alk inhibition and integrating our analysis with additional datasets, followed by experimental validation. This approach is supported by the identification of numerous previously iden- tied Alk targets in our TaDa candidate list.”

      Related to this, could the authors make it clear/justify why they chose to use peakbased analysis of the Dam-Pol II data rather than looking at signals across whole transcripts? For example, this could result in false positives if a gene switches from having no Pol II to having paused Pol II.

      Authors response: In our opinion, a peak based analysis is dependable in this context. We chose to prioritize peaks close (+/- 1kb) to transcription start sites (TSS) to increase the chances of finding true Pol II occupancy peaks. Also, during bioinformatics analysis using Damid-seq pipeline (Maksimov et al, 2016) fragments not aligning to GATC borders are excluded. Therefore, a whole transcript Pol II occupancy peak analysis may not be always feasible. We agree with the reviewer that a paused Pol II will result in false positives, however, it will only result in an increase of a specific peak and in our case, we are seeking to identify peaks with lower pol II occupancy as a result of Alk knockdown. Furthermore, we depend on additional integration with additional relevant datasets to minimise false positive candidates for detailed analysis. In the current version of the manuscript these caveats have been mentioned and discussed (see point above).

      Do the authors have any theories about the mode of action of Spar? Or ideas about how this might be followed up? If so, that could be included in the Discussion.

      Authors response: Other than identifying modified Spar derived peptides, which suggest a target receptor, possibly a GPCR, were have no other data currently that allows us to speculate more on the mode of action of Spar. We are currently working hard to try to identify a receptor, but this is a challenging and ongoing process. In the discussion we speculate regarding the identity of the Spar receptor, as well as its location, which is likely in the CNS, and body muscle, however, these are open questions that we can hopefully answer in a future study.

      Reviewer #3 (Recommendations For The Authors):

      Spar protein expression was unchanged in Alk loss of function. This is a curious result as the authors used RNA seq data from Alk loss of function to identify Spar. This could be commented on in the discussion.

      Authors response: We thank the reviewer for this comment, and they are correct in noticing this. We have also thought about this, and reviewer #1 also commented. To confirm this result, we repeated this experiment with increased numbers of larval CNS followed by blinded image analysis for the revised version. These results also show an increased fluorescence intensity as measured by corrected total cell fluorescence (CTCF), confirming our previous observation of increased Spar protein expression in in Alk gain-of-function conditions compared to controls. In this analysis, changed in Spar levels in Alk loss-of-function remained non-significant compared to control, in agreement with our previous data. As suggested by reviewer #1, we have now included several additional sentences discussing the possible reasons for these observations. This following text is now included on Page 11 of the results section:

      “While our bulk RNA-seq and TaDa datasets show a reduction in Spar transcript levels in Alk loss-of-function conditions, this reduction is not reflected at the protein level. This observation may reflect additional uncharacterised pathways that regulate Spar mRNA levels as well as translation and protein stability. Taken together, these observations confirm that Spar expression is responsive to Alk signaling in CNS, although Alk is not critically required to maintain Spar protein levels.”

      Pg 19: Spar is expressed in the Mushroom Bodies (MBs). Do they mean in Kenyon Cells (KCs)? I don't see this expression in the figures. Maybe this could be highlighted in the figure. It would definitely be of interest if this were true.

      Authors response: We agree with the reviewer that this would be interesting. We have not performed detailed staining of the mushroom bodies at this point, however, Spar mRNA expression in a transcriptomics analysis performed by Crocker et al, 2016, identifies Spar in all cell types, including Kenyon cells. We have now included this and cited this reference in the discussion.

      Spar is also expressed in multiple potential sleep regulatory sites including clock neurons, the PI, AstA cells and so on. Some of these might be arousal-promoting and some sleep-promoting. Taking out Spar in both sleep and arousal-promoting subsets might have complex effects. The authors might want to knock down Alk in different subsets of neurons to make more targeted manipulations.

      Authors response: We thank the reviewer for this suggestion regarding interesting experiments to further investigate Spar function. We are planning to follow up and study the role of Alk signalling in different neuronal subsets, with a specific interest in neuroendocrine/prosecretory cells.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer No.1 (public)

      The authors present a study focused on addressing the key challenge in drug discovery, which is the optimization of absorption and affinity properties of small molecules through in silico methods. They propose active learning as a strategy for optimizing these properties and describe the development of two novel active learning batch selection methods. The methods are tested on various public datasets with different optimization goals and sizes, and new affinity datasets are curated to provide up-todate experimental information. The authors claim that their active learning methods outperform existing batch selection methods, potentially reducing the number of experiments required to achieve the same model performance. They also emphasize the general applicability of their methods, including compatibility with popular packages like DeepChem.

      Strengths:

      Relevance and Importance: The study addresses a significant challenge in the field of drug discovery, highlighting the importance of optimizing the absorption and affinity properties of small molecules through in silico methods. This topic is of great interest to researchers and pharmaceutical industries.

      Novelty: The development of two novel active learning batch selection methods is a commendable contribution. The study also adds value by curating new affinity datasets that provide chronological information on state-of-the-art experimental strategies.

      Comprehensive Evaluation: Testing the proposed methods on multiple public datasets with varying optimization goals and sizes enhances the credibility and generalizability of the findings. The focus on comparing the performance of the new methods against existing batch selection methods further strengthens the evaluation.

      Weaknesses:

      Lack of Technical Details: The feedback lacks specific technical details regarding the developed active learning batch selection methods. Information such as the underlying algorithms, implementation specifics, and key design choices should be provided to enable readers to understand and evaluate the methods thoroughly.

      Evaluation Metrics: The feedback does not mention the specific evaluation metrics used to assess the performance of the proposed methods. The authors should clarify the criteria employed to compare their methods against existing batch selection methods and demonstrate the statistical significance of the observed improvements.

      Reproducibility: While the authors claim that their methods can be used with any package, including DeepChem, no mention is made of providing the necessary code or resources to reproduce the experiments. Including code repositories or detailed instructions would enhance the reproducibility and practical utility of the study.

      Suggestion 1:

      Elaborate on the Methodology: Provide an in-depth explanation of the two active learning batch selection methods, including algorithmic details, implementation considerations, and any specific assumptions made. This will enable readers to better comprehend and evaluate the proposed techniques.

      Answer: We thank the reviewer for this suggestion. Following this comments we have extended the text in Methods (in Section: Batch selection via determinant maximization and Section: Approximation of the posterior distribution) and in Supporting Methods (Section: Toy example). We have also included the pseudo code for the Batch optimization method.

      Suggestion 2:

      Clarify Evaluation Metrics: Clearly specify the evaluation metrics employed in the study to measure the performance of the active learning methods. Additionally, conduct statistical tests to establish the significance of the improvements observed over existing batch selection methods.

      Answer: Following this comment we added to Table 1 details about the way we computed the cutoff times for the different methods. We also provide more details on the statistics we performed to determine the significance of these differences.

      Suggestion 3:

      Enhance Reproducibility: To facilitate the reproducibility of the study, consider sharing the code, data, and resources necessary for readers to replicate the experiments. This will allow researchers in the field to validate and build upon your work more effectively.

      Answer: This is something we already included with the original submission. The code is publicly available. In fact, we provide a phyton library, ALIEN (Active Learning in data Exploration) which is published on the Sanofi Github(https://github.com/ Sanofi-Public/Alien). We also provide details on the public data used and expect to provide the internal data as well. We included a small paragraph on code and data availability.

      Reviewer No.2 (public)

      Suggestion 1:

      The authors presented a well-written manuscript describing the comparison of activelearning methods with state-of-art methods for several datasets of pharmaceutical interest. This is a very important topic since active learning is similar to a cyclic drug design campaign such as testing compounds followed by designing new ones which could be used to further tests and a new design cycle and so on. The experimental design is comprehensive and adequate for proposed comparisons. However, I would expect to see a comparison regarding other regression metrics and considering the applicability domain of models which are two essential topics for the drug design modelers community.

      Answer: We want to thank the reviewer for these comments. We provide a detailed response to the specific comments below. 

      Reviewer No.1 (Recommendations For The Authors)

      Recommendation 1:

      The description provided regarding the data collection process and the benchmark datasets used in the study raises some concerns. The comment specifically addresses the use of both private (Sanofi-owned) and public datasets to benchmark the various batch selection methods. Lack of Transparency: The comment lacks transparency regarding the specific sources and origins of the private datasets. It would be crucial to disclose whether these datasets were obtained from external sources or if they were generated internally within Sanofi. Without this information, it becomes difficult to assess the potential biases or conflicts of interest associated with the data.

      Answer: We would like to thank the reviewer for this comment. As mentioned in the paper, the public github page contains links to all the public data and we expect also to the internal Sanofi data. We also now provide more information on the specific experiments that were internally done by Sanofi to collect that data.

      Potential Data Accessibility Issues: The utilization of private datasets, particularly those owned by Sanofi, may raise concerns about data accessibility. The lack of availability of these datasets to the wider scientific community may limit the ability of other researchers to replicate and validate the study’s findings. It is essential to ensure that the data used in research is openly accessible to foster transparency and encourage collaboration.

      Answer: Again, as stated above we expect to release the data collected internally on the github page.

      Limited Information on Dataset Properties: The comment briefly mentions that the benchmark datasets cover properties related to absorption, distribution, pharmacokinetic processes, and affinity of small drug molecules to target proteins. However, it does not provide any specific details about the properties included in the datasets or how they were curated. Providing more comprehensive information about the properties covered and the methods used for curation would enhance the transparency and reliability of the study.

      To address these concerns, it is crucial for the authors to provide more detailed information about the data sources, dataset composition, representativeness, and curation methods employed. Transparency and accessibility of data are fundamental principles in scientific research, and addressing these issues will strengthen the credibility and impact of the study.

      Answer: We agree with this comment and believe that it is important to be explicit about each of the datasets and to provide information on the new data. We note that we already discuss the details of each of the experiments in Methods and, of course, provide links to the original papers for the public data. We have now added text to Supporting Methods that describes the experiments in more details as well as providing literature references for the experimental protocols used. As noted above, we expect to provide our new internal data on the public git page. 

      Recommendation 2:

      Some comments on the modeling example Approximation of the posterior distribution. Lack of Methodological Transparency: The comment fails to provide any information regarding the specific method or approach used for approximating the posterior distribution. Without understanding the methodology employed, it is impossible to evaluate the quality or rigor of the approximation. This lack of transparency undermines the credibility of the study.

      Answer: We want to thank the reviewer for pointing this out. Based on this comment we added more information to Section: Approximation of the posterior distribution. Moreover, we now provide details on the posterior approximation in Section: Two approximations for computing the epistemic covariance.

      Questionable Assumptions: The comment does not mention any of the assumptions made during the approximation process. The validity of any approximation heavily depends on the underlying assumptions, and their omission suggests a lack of thorough analysis. Failing to acknowledge these assumptions leaves room for doubt regarding the accuracy and relevance of the approximation.

      Answer: We are not entirely sure which assumptions the reviewer is referring to here. The main assumption we can think of that we have used is the fact that getting within X% of the optimal model is a good enough approximation. We have specifically discussed this assumption and tested multiple values of X. While it would have been great to have X = 0 this is unrealistic for retrospective studies. For Active Learning the main question is how many experiments can be saved to obtain similar results and the assumptions we used are basically ’what is the definition of similar’. We now added this to Discussion.

      Inadequate Validation: There is no mention of any validation measures or techniques used to assess the accuracy and reliability of the approximated posterior distribution. Without proper validation, it is impossible to determine whether the approximation provides a reasonable representation of the true posterior. The absence of validation raises concerns about the potential biases or errors introduced by the approximation process.

      Answer: We sincerely appreciate your concern regarding the validation of the approximated posterior distribution. We acknowledge that our initial submission might not have clearly highlighted our validation strategy. It is, of course, very hard to determine the accuracy of the distribution our model learns since such distribution cannot be directly inferred using experiments (no ’ground truth’). Instead, we use an indirect method to determine the accuracy. Specifically, we conducted retrospective experiment using the learned distribution. In these experiments, we indirectly validated our approximation by measuring the error with the respective method. The results from these retrospective experiments provided evidence for the accuracy and reliability of our approximation in representing the true posterior distribution. We now emphasize this in Methods.

      Uncertainty Quantification: The comment does not discuss the quantification of uncertainty associated with the approximated posterior distribution. Properly characterizing the uncertainty is crucial in statistical inference and decision-making. Neglecting this aspect undermines the usefulness and applicability of the approximation results.

      Answer: Thank you for pointing out the importance of characterizing uncertainty in statistical inference and decision-making, a sentiment with which we wholeheartedly agree. In our work, we have indeed addressed the quantification of uncertainty associated with the approximated posterior distribution. Specifically, we utilized Monte Carlo Dropout (MC Dropout) as our method of choice. MC Dropout is a widely recognized and employed technique in the neural networks domain to approximate the posterior distribution, and it offers an efficient way to estimate model uncertainty without requiring any changes to the existing network architecture [1, 2]. In the revised version, we provide a more detailed discussion on the use of Monte Carlo Dropout in our methodology and its implications for characterizing uncertainty.

      Comparison with Gold Standard: There is no mention of comparing the approximated posterior distribution with a gold standard or benchmark. Failing to provide such a comparison leaves doubts about the performance and accuracy of the approximation method. A lack of benchmarking makes it difficult to ascertain the superiority or inferiority of the approximation technique employed.

      Answer: As noted above, it is impossible to find gold standard information for the uncertainly distribution. It is not even clear to us how such gold standard can be experimentally determined since its a function of a specific model and data. If the reviewer is aware of such gold standard we would be happy to test it. Instead, in our study, we opted to benchmark our results against state-of-the-art batch active learning methods, which also rely on uncertainty prediction (such uncertainty prediction is the heart of any active learning method as we discuss). Results clearly indicate that our method outperforms prior methods though we agree that this is only an indirect way to validate the uncertainty approximation.

      Reviewer No.2 (Recommendations For The Authors)

      Recommendation 1:

      The text is kind of messy: there are two results sections, for example. It seems that part of the text was duplicated. Please correct it.

      Answer: We want to thank the reviewer pointing this out. These were typos and we fixed them accordingly.

      Recommendation 2:

      Text in figures is very small and difficult to read. Please redraw the figures, increasing the font size: 10-12pt is ideal in comparison with the main text.

      Answer: We want to thank the reviewer for this comment and we have made the graphics larger.

      Recommendation 3: Please, include specific links to data availability instead of just stating it is available at the Sanofi-Public repository.

      Answer: We want to thank the reviewer for this comment and added the links and data to the Sanofi Github page listed in the paper.

      Recommendation 4:

      What are the descriptors used to train the models?

      Answer: We represented the molecules as molecular graphs using the MolGraphConvFeaturizer from the DeepChem library. We now explicitly mention this in Methods.

      Recommendation 5:

      Regarding the quality of the models, I strongly suggest two approaches instead of using only RMSE as metrics of models’ performance. I recommend using the most metrics as possible as reported by Gramatica (https://doi.org/10.1021/acs.jcim.6b00088). I also recommend somehow comparing the increment on the dataset diversity according to the employed descriptors (applicability domain) as a measurement to further applications on the unseen molecules.

      Answer: We want to thank the reviewer for this great suggestions. As suggested we added new comparison metrics to the Supplement.

      • Distribution plot for the range of the Y values Figure 8 • Clustering of the data sets represented as fingerprints Supplementary material Figure 5,6

      • Retrospective experiments with Spearman correlation coefficient. Supplementary material Figure: 2,3,4

      I suggest also a better characterization of datasets including the nature and range of the Y variable, the source of data in terms of experimentation, and chemical (structural and physicochemical) comparison of samples within each dataset.

      Answer: As noted above in response to a similar comment by Reviewer 1, we have added more detailed information about the different experiments we tested to Supporting Methods.

      References

      [1] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of The 33rd International Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Research, pages 1050–1059, New York, New York, USA, 20–22 Jun 2016. PMLR.

      [2] N.D. Lawrence. Variational Inference in Probabilistic Models. University of Cambridge, 2001.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This is a very well written and performed study describing a TOPBP1 separation of function mutation, resulting in defective MSCI maintenance but normal sex body formation. The phenotype differs from that of a previous TOPBP1 null allele, in which both MSCI and sex body formation were defective. Additional defects in CHK phosphorylation and SETX localization are also described.

      Strengths:

      The study is very rigorous, with a remarkably large number of MSCI marks assayed, phosphoproteomics (leading to the interesting SETX discovery) and 10X RNAseq, allowing the MSCI phenotype to be further deconvolved. The approaches in most cases are robust.

      Weaknesses:

      There aren't many; please find list below:

      1) The authors are committed to the idea that maintenance of MSCI is the major defect here. However, based on the data, an alternative would be that some cells achieve sex body formation and MSCI normally, while others do not. It would only take a small percentage of cells exhibiting MSCI failure to kill all the cells in the same germinal epithelium, so this could still explain the complete pachytene block. This isn't a major point...this phenotype is clearly different to the TOPBP1 KO, but a broader discussion of possibilities in the discussion would help. I raise this in the context of both the cytology and 10X analysis:

      a) The assessment that sex body formation is normal is based on cytology in Supp 8 and 9, but a more rigorous approach would be to assess condensation of the XY pair in stage-matched spread cells (maybe they have that data already) by measuring distances between the X and Y centromere, or looking at stage IV of the seminiferous cycle, where all cells should have oval sex bodies but sex body mutants have persistent elongated XY pairs (see work of Namekawa and Turner). The authors do actually mention that gH2AX spreading is defective in many cells....and if this is true, condensation to form a sex body would almost certainly not have taken place in those cells.

      We appreciate the reviewer’s comment and have performed the experiment suggested, counting the number of elongated sex bodies in all sex body-positive cells in seminiferous tubules stained with γH2AX and DAPI (as done by Turner in Hirota et al., 2018). The experiment did not show significant differences between Topbp1+/+ and Topbp1B5/B5 as shown in Author response image 1.

      Author response image 1.

      Topbp1B5/B5 displays normal condensation of the XY-pair. A) Immunostaining of XY condensation in Topbp1+/+ and Topbp1B5/B5 testes sections (γH2AX: green and DAPI: gray). B) Quantification of all sex body-positive cells per tubule (Topbp1+/+ number of cells counted = 781, number of tubules counted = 28, number of mice = 3; Topbp1B5/B5 number of cells counted = 967, number of tubules counted = 28, number of mice = 3). C) Quantification of elongated-sex body cells per tubule (Topbp1+/+ number of cells counted = 19 and 762 normal round/oval-sex bodies cells, number of tubules counted = 28, number of mice = 3; Topbp1B5/B5 number of cells counted = 45 and 922 normal round/oval-sex bodies cells, number of tubules counted = 28, number of mice = 3).

      b) Regarding the 10X data, the finding that expression of some XY genes is elevated and others are not is also consistent with a "partial" phenotype (some cells have normal XY bodies and MSCI, others fail in both). In Fig 6E, X expression looks to be elevated in B5 vs wt at all stages...if this were a maintenance issue, shouldn't it be equal to that in wt and then elevate later?

      We understand the point raised by the reviewer, however we do not favor the “partial” phenotype model because of the absence of any post-pachytene spermatocytes in the B5 mutant. If some cells had escaped the MSCI defect, we would expect to detect cells progressing further in meiosis. Because we cannot rule out completely the possibility of a subtle disruption in XY silencing initiation, we decided to better emphasize this point in the discussion (lines 391-394).

      In Figure 6E, the X-linked genes were normalized against chromosome 9-linked genes. The normalization against pre-leptotene was done for the results displayed on Figure 7, in which we demonstrate the maintenance issue. Furthermore, for the 10X analysis, while the same number of cells were loaded for wild-type and mutant, the composition of cells varied between these two samples. Despite the fact that very few “spermatocyte 3” cells were detected in the mutant, those cells displayed much higher X-linked gene expression than the wild-type spermatocyte 3 cells.

      2) How is the quantitation showing impaired localization of select markers (e.g. SETX) normalized? How do we know that the antibody staining simply didn't work as well on the mutant slides?

      The quantification showing impaired localization of the selected markers such as SETX was done as described by Sims, et al. 2022 and Adams, et al. 2018. In brief, the green signal was measured along (XY cores) or across (XY DNA loops) the X and Y chromosomes and normalized against the analogous signal on the autosomal chromosomes. The possibility that the antibody simply did not work as well on the mutant is unlikely since multiple biological replicates were performed and we reproducibly followed standard practices in the field for meiotic spreads staining, imaging, and quantification. We also note that our findings published in Sims et al, 2022 show that ATR inhibition strongly impairs SETX localization to the sex body, further substantiating our claim that signaling via ATR-TOPBP1 controls SETX.

      3) Is testis TOPBP1 protein expression reduced in the B5 mutant?

      TOPBP1 protein abundance in the B5 mutant is reduced in lysates from whole testis, measured via western blot. We did not detect a significant reduction in TOPBP1 signal intensity measured by immunofluorescence in pachytene spreads of the B5 mutant.

      4) 10X analysis: how were the genes on the y-axis in Supp 24 arranged? Is this by location on the X chromosome?

      These genes were sorted by location across the chromosome X.

      5) The final analyses in Fig 7: X-genes are subdivided based on their behavior (up, down, unchanged). What isn't clear to me is whether the authors have considered the fact that there are global changes in gene expression during meiosis (very low in lep , zyg and early pach, then ramps up hugely from mid pach). In other words, is this normalized to autosomal gene expression?

      For the final analysis in Fig7, the normalization was done by their expression at the pre-leptotene stage. Moreover, the analysis was made comparing X-linked gene behavior in Wild-type vs B5 mutant.

      6) Again regarding the 10X analysis, my prediction would be that not ALL X and Y gene would increase in pach if MSCI were ablated...we should remember that XY genes have been subject to MSCI for some 160 million years of evolution, and this will mean that many enhancers that originally drove their expression prior to the evolution of MSCI will now be lost. This has been our experience: many XY genes aren't elevated at pach even in mutants in which MSCI is totally defective. I'd urge the authors to consider this possibility when they use XY gene expression patterns to diagnose the severity or timing of the MSCI phenotype. This could be a discussion point.

      We greatly appreciate the reviewer’s suggestion and have added discussion about this point to lines 392400).

      Reviewer #2 (Public Review):

      Summary:

      This paper described the role of BRCT repeat 5 in TOPBP1, a DNA damage response protein, in the maintenance of meiotic sex chromosome inactivation (MSCI). By analyzing a Topbp1 mutant mouse with amino acid substitutions in BRCT repeat 5, the authors found reduced phosphorylation of a DNA/RNA helicase, Sentaxin, and decreased localization of the protein to the X-Y sex body in pachynema. Moreover, the authors also found decreased repression of several genes on the sex chromosomes in the male mice.

      Strengths:

      The works including phospho-proteomics and single-cell RNA sequencing with lots of data have been done with great care and most of the results are convincing.

      Weaknesses:

      One concern is that, although the Topbp1 mutant spermatocytes show very severe defects after the stage of late pachynema, the defect in the gene silencing in the sex body is relatively weak. It is a bit difficult to explain how such a weak mis regulation of the gene silencing in mice causes the complete loss of cells in the late stage of spermatogenesis.

      We appreciate the reviewer’s comment. We note that even subtle mis-regulation of XY gene silencing has been reported to lead to significant loss of cells in late stage of prophase I (Ichijima et al., 2011; Modzelewski et al., 2012). Moreover, it is possible that some cells with drastic changes in X-gene expression were excluded from the downstream analysis due to high levels of mitochondrial gene expression (cells that were likely dying due to apoptosis). The exclusion of cells with high levels of mitochondrial gene expression is a common practice in downstream analysis of sc-RNA sequencing data.

      Reviewer #3 (Public Review):

      The work presented by Ascencao and coworkers aims to deepen into the process of sex chromosome inactivation during meiosis (MSCI) as a critical factor in the regulation of meiosis progression in male mammals. For this purpose, they have generated a transgenic mouse model in which a specific domain of TOPBP1 protein has been mutated, hampering the binding of a number of protein partners and interfering with the regulatory cascade initiated by ATR. Through the use of immunolocalization of an impressive number of markers of MSCI, phosphoproteomics and single cell RNA sequencing (scRNAseq), the authors are able to show that despite a proper morphological formation of the sex body and the incorporation of most canonical MSCI makers, sex chromosome-liked genes are reactivated at some point during pachytene and this triggers meiosis progression breakdown, likely due to a defective phosphorylation of the helicase SETX.

      The manuscript presents a clear advance in the understanding of MSCI and meiosis progression with two main strengths. First, the generation of a mouse model with a very uncommon phenotype. Second, the use of a vast methodological approach. The results are well presented and illustrated. Nevertheless, the discussion could be still a bit tuned by the inclusion of some ideas, and perhaps speculations, that have not been considered.

      We appreciate the reviewer’s comment and have improved the discussion section addressing the points raised in the “recommendation For the Authors”.

      Reviewer #1 (Recommendations For The Authors):

      I don't have any additional points here

      Reviewer #2 (Recommendations For The Authors):

      The paper by Ascencao et al. describes a separation-in-function allele of TOPBP1 critical for DNA damage response (DDR) that confers a specific defect in XY sex chromosome inactivation during male mouse meiosis. The authors constructed a Topbp1 separation-of-function mouse by introducing amino acid substitutions in BRCT repeat 5 and found the mice with normal DDR response in mitosis and meiosis show male infertility. Topbp1(B5/B5) mice do not contain spermatocytes after diplonema, as a result, little spermatids/sperms. In the mice, most of the meiotic events in prophase I including chromosome synapsis and meiotic recombination as well as the formation of the sex body are normal. The detailed proteomic analysis revealed the reduced ATR-dependent phosphorylation of a DNA/RNA helicase, Sentaxin. And also single-cell RNA sequencing found that the expression of some of genes from sex chromosomes are not silenced well compared to the control. The works with lots of data have been done with great care and most of the results are convincing. One clear concern is that, although the authors nicely showed a defect in gene silencing in sex chromosomes in the Topbp1(B5/B5) mice, how a small defect in the gene silencing leads to the complete loss of diplotene spermatocytes remains unaddressed.

      Major points:

      Although the authors showed a change in the transcriptome in spermatocytes of Topbp1(B5/B5) male mice, the authors cannot explain the complete lack of spermatids in this mouse. Even the transcriptome seems not to provide a clue.

      1) Given that the TOPBP1-B5 protein cannot bind to both 53BP1 and BLM, it is interesting to check the localization of both proteins on meiotic chromosome spreads (in the case of 53BP1, the localization in MEFs with DNA damage).

      We appreciate the reviewer’s comment. We have tried to stain BLM in meiotic spreads using several different antibodies, however we were not successful getting specific signals for BLM. In the case of 53BP1, we monitored its localization, and it was not significantly different from Topbp1-/- meiotic spreads, please refer to Supplemental Figure 11. While we appreciate the reviewer’s suggestion of looking at the localization of 53BP1 in MEFs with DNA damage, we opted not to perform the experiment because we have shown that 53BP1 can still bind the BRCT 1 and 2 domains of TOPBP1 as previously described (Bigot et al., 2019; Cescutti et al., 2010; Liu et al., 2017). Additionally, both male and female 53BP1 KO mice are fertile (Ward et al., 2003), thus the partial disruption in binding to 53BP1 that we observed in TOPBP1 B5 mutant is likely not causing the infertility phenotype.

      2) A recent preprint by Fujiwara et al. (doi: https://doi.org/10.1101/2023.04.12.536672) showed the accumulation of R-loops in spermatocyte spreads in Senataxin knockout mice. The authors may check the R-loop on the sex body in Topbp1-B5 mice.

      We thank the reviewer for the suggestion. We have tried several protocols to stain R-loops (including the protocol used in the paper mentioned above) but were not successful.

      3) The authors need to check the protein level (and band shift) of Senataxin in the testis by western blotting analysis.

      We have tried several SETX antibodies, and none worked for western blot analysis.

      4) If possible, the authors can see any protein interaction between TOPBP1 and Senataxin.

      We appreciate the suggestion, and we will investigate this interaction in future work.

      5) The authors need to check the statistics in the paper.

      (1) It is better to show actual P-values in the case of "ns".

      P-values were added to the respective figure legends.

      (2) In focus counting such as Figures 3D, G, H, 4B, D, F, H, 5E, and F (and in Supplemental Figures), please indicate how many spreads were counted in each mouse. Moreover, the distribution of focus numbers and intensity of fluorescence are not parametric (not normal distribution). It is better to use a non-parametric method such as Mann-Whitney's U test.

      We appreciate the reviewer's comment and upon consulting with a Statistician at Cornell Statistical Consulting Unit (CSCU), we were advised to use a linear mixed effect model to take into account the variability in cells within each mouse when comparing mice between groups (Topbp1+/+ vs Topbp1B5/B5). We then reanalyzed all quantified meiotic spreads using this mixed effect model, and the p-value, number of mice, and number of cells counted for each group are displayed in the respective figure legends. Upon going through all the quantified meiotic spreads, we realized a minor error in one of the previous data points related to SETX staining in Topbp1+/+ and have fixed it. Using the previous quantification data and the new stats analysis the p-value for cores was 0.5598 and p-value for loops was 0.0273. Now using the correct values and the new stats analysis the p-value for cores is 0.5987 and p-value for loops is 0.0452. The correction did not change the conclusion of this data and is now displayed in the new Figure 5. We also realized a mistake in the ATR quantification when the spreadsheet was moved from excel to Graphpad. Using the previous quantification and the new stats analysis the p-value for cores was 0.2451 and p-value for loops was 0.8933. Now using the correct values and the new stats analysis the p-value for cores is 0.4068 and p-value for loops is 0.9396. The correction did not change the conclusion of this data and is now displayed in the new Figure 4. Moreover, we realized that we used n = 8 (n = number of mice) for MDC1 quantification and n = 2 for pCHK1_S345, instead of n =3 as shown in the preprint version of the manuscript. Corrected values were added to their respective figures and figure legends.

      (3) From Figures 6E, 7B, and 7C, the authors conclude the difference in the expression profile between wild type and Topbp1(B5) spermatocytes. It is better to show P-values for the comparison. Particularly, in Figure 7C, Xiap expression kinetics look similar between wild type and the mutant.

      We have added p-values to figures 6E and 7B and their respective figures or figure legends.<br /> In figure 7C, we now recognize that the Δ could have been misleading as we meant to compare Wild-type SP2 to Wild-type SP3 and Mutant SP2 to SP3; and not comparing Wild-type SP3 to Mutant SP3. Therefore, the Δ was excluded from Figure 7C. For the comparisons between expression levels of SP2 and SP3, it is challenging to calculate p-values for a single gene since these cells have started X-gene silencing and expression values are very low. Meaningful p-values for the comparisons between Wildtype SP3 to Mutant SP3 can be visualized in Figure 7B, where the comparison is based on number of genes instead of expression levels of each gene.

      Minor comments:

      1) Line 34: SPO11 is NOT a nuclease. Just delete it.

      It has been deleted (see line 34).

      2) Line 71, a protein: Is this protein ATR? Is so, please write it. If not, please give the name of the protein.

      In line 71 (now lines 79-80), we refer to TOPBP1-interacting proteins in general since many of these interactions happen through a phosphorylation in the TOPBP1’s interactor. This is the case for BLM, 53BP1, FANCJ, and RAD9. ATR interacts with TOPBP1 through TOPBP1’s AAD domain and this is not a phospho-mediated interaction. We restructured the sentence for clarity.

      3) In the Introduction, the authors often refer to a review by Cimprich and Cortez (2008) in various places. It is better to cite an original paper or the other an appropriate review.

      We have accepted the reviewer’s suggestion and added original papers when appropriate.

      4) Line 143-145: The authors generated eight charge reversal point mutations in the BRCT domain 5 of TOPBP1. If possible, it is helpful to mention the logic to generate these substitutions and also why BRCT domain 5, is not other domains.

      We generated eight charge reversal point mutations to abrogate all possible phospho-dependent interactions and avoid potential residual interactions. We have mutated other BRCT domains as well, which will be published separately.

      5) Line 174 (and Figure 2E): RPA should be either RPA2 or RPA32.

      Corrected (it is RPA2).

      6) Figure 5C-F: Please explain in more detail how the authors quantified the SETX signals. Why the two results are different?

      The quantification was done as described by Sims, et al. 2022, yielding separate data for XY cores and DNA loops. In brief, the green signal was measured along (XY cores) or across (XY DNA loops) the X and Y chromosomes. Signals were normalized by the signal in the autosomal chromosomes.

      Reviewer #3 (Recommendations For The Authors):

      I have no major criticisms, but I include a list of comments and suggestions (some of them conceptual, and disputable) that could help the authors to improve some parts of the manuscript.

      1) Line 52: I realize that the term protein "sequestration" (used in many instances along the manuscript) has been widespread in the literature related to MSCI in the last years. While this might be a cool way to describe the dynamics of proteins accumulating in the sex body, this reviewer considers this term is totally inappropriate. It is confusing and introduces at least to mistakes to the fact of protein accumulation in the sex body. First, it seems to indicate that once trapped in the sex body, proteins are incapable of leaving it, which might be completely wrong (histone replacement refutes this idea). Second, it is suggested that DDR proteins are attracted by the sex body and cannot remain associated to autosomes even if DNA repair has not been completed. This has also been demonstrated to be incorrect (see for example PDMI 19714216). Moreover, DDR proteins can associate de novo to chromosomes if needed, for instance upon DNA damage caused by chemicals or irradiation. Thus, I suggest that the use of "sequestration" should be evaluated more critically, evaluating the misleading ideas that are subjacent to this term. The use of protein "accumulation" is much more objective and descriptive of the real facts.

      We thank the reviewer’s suggestion and have addressed it in lines 52, 97 and 324.

      2) Line 88: Just as a deference to the original ideas, it would be nice to acknowledge that the inactivation of sex chromosomes and the formation of a sex body in mouse meiosis was described more than 50 years ago (PDMI 5833946; 4854664). Likewise, the ideas about the sequential achievement and reinforcement of MSCI during pachytene have been developed during the last 20 years, far before the recent reports cited in the manuscript. Citations to these "old fashion" works would be great.

      We appreciate the reviewer’s suggestion and have addressed it in line 86.

      3) Line 90. Please, take into consideration that such a strong effect on meiosis progression occurs mainly in some knockout mice models and that in many other models (including hybrid mice models from natural populations) autosomal regions can remain unsynapsed and accumulate DDR proteins without impairing meiosis. In other mammalian species, meiosis is even more permissive to these MSUC phenomena.

      We appreciate the reviewer’s suggestion and have addressed it at line 88.

      4) Line 211: The differences in the abundance of MLH1 and MLH3 are remarkable. If these two proteins are supposed to form a heterodimer leading to crossover formation, then the increase of only MLH1 might be related to a different process, not leading to crossover (even not class II ones).

      We agree with the reviewer’s comment and have included this point in the discussion (lines 491- 497).

      5) Line 217: I have some doubts about the results presented in Supplementary Figure 9. First, it is not clear to me how the represented cells counts were performed. Each spot is supposed to represent cell counts in a single individual, but how many cells were counted per individual? The proportion of cells could be a better indicator. Second, some B5/B5 individuals' counts were close to the ones displayed in the wild type. Did mutant animals show a high divergence compared to each other? It could be great to have each individual data displayed in a pie chart, and not only the aggregated data.

      We have now addressed this in the new Supplemental figure 9 legend. Each dot in the graph represents the sum of cells counted for each individual. We counted cells from 8 mice for each, Topbp1+/+ and Topbp1B5/B5.

      Here we summarize the total cells counted per individual:

      Author response table 1.

      6) Line 222: The data on 53BP1 deserve further attention. On the one side, from the analysis presented in Supplementary Figure 11, it seems that 53BP1 tends to show a lower intensity in Topbp1B5/B5 mice. Since only 2 mice were analyzed, while for most of the other proteins 3-8 animals were studied, I suggest increasing the number of animals analyzed for 53BP1 localization, to test if this slight difference turns significant. This is relevant since: 1) the association of 53BP1 protein in somatic cells was clearly affected, and 2) 53BP1 is one of the last MSCI markers incorporated to the sex body at mid-late pachytene. These results should be moved to the main text and not appear as supplementary data. On the other hand, if no differences were to be found in meiosis, compared to somatic cells, how do authors explain these differences? Would 53BP1 have another partner at the sex body apart from TOPBP1? Could TOPBP1 have other BRCT domains (apart from domain 5) able to bind 53BP1?

      We appreciate the reviewer’s suggestion; however, we had an issue with 53BP1 antibody. We analyzed 2 mice and needed to re-order the antibody. This antibody was backordered for almost one year, and when we finally received the order, the company had changed the clone for this antibody, and it no longer worked for meiotic spreads. In somatic cells, we see in HEK-293T a partial disruption in the binding to TOPBP1 B5 through IP-MS and IP-Western blot. The disruption is only partial due to the binding of 53BP1 to other domains in TOPBP1 such as BRCT 1 and 2 (Bigot et al., 2019; Cescutti et al., 2010; Liu et al., 2017). However, in assays in which we would expect a phenotypic response caused by impaired 53BP1, we did not see any effect, such as survival after IR (using the mice) and survival after phleomycin challenge (using Mefs). Moreover, 53BP1 KO mice, males and females, are fertile (Ward et al., 2003) so, the partial disruption in binding to 53BP1 that we observed in TOPBP1 B5 mutant is likely not causing the infertility phenotype.

      7) Line 250: I do not understand what is represented in Figure 5A. Why did the author mix two different experiments (differences in phosphoprotein abundance in B5/B5 compared to wild type and the interference of ATR with AZ20)?

      To account for the differences in cell population observed in the whole testis between Topbp1+/+ and Topbp1B5/B5, and to know exactly which phosphorylation changes were due to disruption in the ATR signaling and not pleiotropic effects, we combined two different phosphoproteomes: One phosphoproteome from the comparison between Topbp1+/+ and Topbp1B5/B5 and another one from the comparison between Vehicle or ATR inhibitor-treated mice. By utilizing this approach, we only consider hits that were disrupted in both analyses. A similar method was used by Sims et.al, 2022 (Sims et al., 2022).

      8) It is not clearly explained what is represented in Figure 6B. There is no explanation in the text or the figure legend. Do this represent the difference between scRNAseq in control and Topbp1B5/B5? If so, please, clarify.

      We thank the reviewer’s comment and have addressed it in the legend of Figure 6B.

      9) Line 342 and following. The authors describe a decrease of gene silencing. The use of two negative concepts is always confusing and results in the conversion to a positive one. I suggest considering the possibility of just talking about increase of gene expression, in order to make the message clearer.

      We appreciate the reviewer’s point here, but it is important to note that the phenomenon disrupted in our mutants is MSCI, which is by definition a gene silencing mechanism. This phenotype is not as simple as “increased gene expression”, it is the removal of a mechanism that is a key feature of prophase I. Thus, because we are focusing on the mechanism of MSCI, it is crucial to maintain this (albeit unusual) terminology.

      10) As for the classification of spermatocytes into 9 categories, I am curious about which spermatocytes are included in each of these categories. For instance, from cytology it seems that in Topbp1B5/B5 mice, spermatocytes are able to reach mid-late pachytene. However, in the spermatocyte categories established by scRNAseq they only reach class 3. Therefore, which are the populations included in the remaining 6 classes of spermatocytes? Do authors have any morphological correlation to these scRNAseq categories? Is it possible that in this mutant morphological advance of meiosis and gene expression profiles are uncoupled?

      The clustering of cells to a specific group is based on RNA expression, which does not always match cytological features. Moreover, during the analysis, cells with high expression of mitochondrial genes are excluded (these are dying cells that do not pass the quality control). Thus, while Topbp1B5/B5 reaches a mid-late-pachytene stage according to cytological analyses, in the single-cell RNA seq analysis we could only detect one pachytene stage. The other 6 remaining categories of spermatocytes can be classified according to their best-fit profile of gene expression. For that, we use the classification described by Chen et al., 2018 and Lau et al.,2020. Spermatocytes 3-5 = Pachytene, Spermatocytes 6-7 = Diplotene, Spermatocytes 8-9 = secondary spermatocytes (metaphase I/II). The gene markers used for this classification are displayed in Author response image 2.

      Author response image 2.

      Genes used as markers of spermatocytes captured in the scRNAseq analysis. Violin plots display the distribution of cells expressing Gm960 (Leptotene marker), Meiob (Leptotene/Zygotene marker), Psma8 (Pachytene marker), Pwill1 (Pachytene marker), Pou5f2 (Diplotene marker), and Ccna1 (Secondary Spermatocytes marker).

      11) Figure 6E shows that overexpression of X-linked genes is not a feature of spermatocytes but it is initiated in spermatogonia. This fact has not been properly stated in the text and perhaps not sufficiently highlighted.

      We noticed subtle changes during the spermatogonia stage and have addressed the reviewer’s comment in lines 317-322, however the downstream analyses related to a defect in X-gene silencing maintenance displayed in Figure 7 were done based on normalization of gene expression to its respective pre-leptotene stage.

      12) Supplementary Figure 24 shows that some X-linked genes are more expressed in Topbp1B5/B5 compared to control mice. In the figure it can be observed that many genes accumulate at the bottom of the graph. Does this have any correlation to the location of these genes along the X chromosome, for instance near or within the PAR? This could correlate with the defects in γH2AX accumulation at this region.

      These are the locations along the chromosome. Only the bottom 5 rows are within the PAR region, so this accumulation is not within the PAR region specifically. The bottom tenth of the genes in the heatmap correspond to roughly a 17 Mb region.

      13) The authors only analyzed the overexpression of genes located on the X chromosome. It would be interesting to show the behavior of Y-linked genes as well.

      The coverage of Y-linked genes was not very high and that is why we have not shown the results in the paper. However, the results for Y-linked genes were similar to the X-linked genes and can be visualized in Author response image 3.

      Author response image 3.

      Single cell RNAseq reveals that Topbp1B5/B5 spermatocytes initiate MSCI but fail to promote full silencing of Y chromosome-linked genes. Violin plot displaying the ratio of the average expression of Y chromosome genes by the average expression of chromosome 9 genes at different stages of spermatogenesis for Topbp1+/+ and Topbp1B5/B5 cells.

      14) Line 425: Authors indicate that it is not known if association of TOPBP1 and BLM, 53BP1 or other proteins is disrupted in Topbp1B5/B5 spermatocytes. Could these experiments be performed in the testis, as they were in somatic cells?

      The cellular composition in Topbp1+/+ and Topbp1B5/B5 testes is very different so it would not be a fair comparison. While we have tried to isolate pachytene cells to perform these experiments, we were successful only when using Topbp1+/+ but not Topbp1B5/B5, likely due to the extremely small size of the mutant testis.

      15) Line 455 and following. I find that the discussion about the role of SETX is not completely clear. It seems that a failure of SETX function could result in defective or no transcription, as a consequence of the impossibility to resolve RNA-DNA hybrid molecules. Therefore, should impairment of SETX lead to reduced or enhanced transcription? Please clarify. On the other hand, this defect in SETX function should affect the whole genome, and not only sex chromosomes. Do authors have any clues about this broad effect?

      We thank the reviewer’s comment and have expanded on discussion in lines 470-474. While we agree with the reviewer’s point that an impairment on SETX should affect the whole genome, however, during pachytene stage, SETX is mostly localized to the sex body. The Topbp1B5/B5 shows a specific defect in X and Y silencing maintenance during pachytene stage, thus we hypothesized that an impairment in SETX localization during pachytene should especially impair the X and Y chromosomes.

      16) As a general comment to the discussion section, I think authors could extend into some specific ideas or speculations. It is shocking that sex chromosome-linked genes are able to escape silencing without dismantling the complex (almost complete) MSCI response in the Topbp1 mutant (although perhaps this is not so surprising considering the high number of escapees reported in the inactivated X chromosome in female somatic cells).

      How to explain this paradox? One possibility (which would make a real breakthrough) is that the expression of sex chromosome-linked genes represents a regulated response to meiotic defects, and not just an unfortunate consequence of a defective MSCI. Thus, MSCI might be somehow irrelevant to prevent the execution of this sex chromosome-based program to stop meiosis progression when needed. The fact that this regulated activation was never proposed is perhaps due to the fact that most of the meiosis mutants characterized so far are unable to reach the stage at which MSCI is properly established, which is the most remarkable difference with the Topbp1 mutant studied here.

      Although naïve, the critical point for the activation of this sex chromosome-based program seems to depend simply on the transcription of Zfy1 and Zfy2 (encoding for transcription factors). The signaling cascades up and downstream these genes are the real mystery, awaiting further studies.

      We thank the very interesting point raised by the reviewer. Our interpretation of the data is that X and Y silencing being a dynamic process requires an initiation step and a maintenance step driven/controlled by the DDR machinery, and that Topbp1B5/B5 shows a grossly normal initiation of X and Y silencing but fails on maintain MSCI. Moreover, the expression of Zfy1 and Zfy2 have been previously demonstrated as enough to trigger cell death (Royo et al., 2010; Vernet et al., 2016), and Topbp1B5/B5 cells show increased expression of these genes. However, we do not exclude the very interesting possibility, raised by the reviewer, that the expression of XY-linked genes represents a regulated response to meiotic defects to stop meiosis progression, leading to the cell death observed in Topbp1B5/B5, which makes the Topbp1B5/B5 an unique model for these studies as most of the previous meiosis mutants are unable to reach the stage at which MSCI is properly established. We add discussion about this exciting point in lines 513-522.

      17) Scale bars are impossible to read in Figures 1I and J, and are missing in all the other image figures. Please, correct.

      We have addressed this in the new Figure 1. For figures displaying meiotic spreads, adding a scale bar is not a common practice in the field as these cells are swollen while being prepared.

      18) Line 828. Since Paula Cohen is an author of the manuscript, it seems weird to acknowledge herself in this section.

      Corrected.

      References

      Adams SR, Maezawa S, Alavattam KG, Abe H, Sakashita A, Shroder M, Broering TJ, Sroga Rios J, Thomas MA, Lin X, Price CM, Barski A, Andreassen PR, Namekawa SH. 2018. RNF8 and SCML2 cooperate to regulate ubiquitination and H3K27 acetylation for escape gene activation on the sex chromosomes. PLoS Genet 14. doi:10.1371/journal.pgen.1007233

      Bigot N, Day M, Baldock RA, Watts FZ, Oliver AW, Pearl LH. 2019. Phosphorylation-mediated interactions with topbp1 couple 53bp1 and 9-1-1 to control the g1 DNA damage checkpoint. Elife 8:1–28.

      Cescutti R, Negrini S, Kohzaki M, Halazonetis TD. 2010. TopBP1 functions with 53BP1 in the G1 DNA damage checkpoint. EMBO J 29:3723–3732.

      Chen Y, Zheng Y, Gao Y, Lin Z, Yang S, Wang T, Wang Q, Xie N, Hua R, Liu M, Sha J, Griswold MD, Li J, Tang F, Tong M-H. 2018. Single-cell RNA-seq uncovers dynamic processes and critical regulators in mouse spermatogenesis. Cell Res 28:879–896.

      Hirota T, Blakeley P, Sangrithi MN, Mahadevaiah SK, Encheva V, Snijders AP, ElInati E, Ojarikre OA, de Rooij DG, Niakan KK, Turner JMA. 2018. SETDB1 Links the Meiotic DNA Damage Response to Sex Chromosome Silencing in Mice. Dev Cell 47:645-659.e6.

      Ichijima Y, Ichijima M, Lou Z, Nussenzweig A, Daniel Camerini-Otero R, Chen J, Andreassen PR, Namekawa SH. 2011. MDC1 directs chromosome-wide silencing of the sex chromosomes in male germ cells. Genes and Development 25:959–971.

      Lau X, Munusamy P, Ng MJ, Sangrithi M. 2020. Single-Cell RNA Sequencing of the Cynomolgus Macaque Testis Reveals Conserved Transcriptional Profiles during Mammalian Spermatogenesis. Dev Cell 54:548-566.e7.

      Liu Y, Cussiol JR, Dibitetto D, Sims JR, Twayana S, Weiss RS, Freire R, Marini F, Pellicioli A, Smolka MB. 2017. TOPBP1Dpb11 plays a conserved role in homologous recombination DNA repair through the coordinated recruitment of 53BP1Rad9. J Cell Biol 216:623–639.

      Modzelewski AJ, Holmes RJ, Hilz S, Grimson A, Cohen PE. 2012. AGO4 regulates entry into meiosis and influences silencing of sex chromosomes in the male mouse germline. Dev Cell 23:251–264. Royo H, Polikiewicz G, Mahadevaiah SK, Prosser H, Mitchell M, Bradley A, De Rooij DG, Burgoyne PS, Turner JMA. 2010. Evidence that meiotic sex chromosome inactivation is essential for male fertility. Curr Biol 20:2117–2123.

      Sims JR, Faça VM, Pereira C, Ascenção C, Comstock W, Badar J, Arroyo-Martinez GA, Freire R, Cohen PE, Weiss RS, Smolka MB. 2022. Phosphoproteomics of ATR signaling in mouse testes. Elife 11. doi:10.7554/eLife.68648

      Vernet N, Mahadevaiah SK, de Rooij DG, Burgoyne PS, Ellis PJI. 2016. Zfy genes are required for efficient meiotic sex chromosome inactivation (MSCI) in spermatocytes. Hum Mol Genet 25:5300–5310.

      Ward IM, Minn K, van Deursen J, Chen J. 2003. p53 Binding protein 53BP1 is required for DNA damage responses and tumor suppression in mice. Mol Cell Biol 23:2556–2563.

      Yeo AJ, Becherel OJ, Luff JE, Graham ME, Richard D, Lavin MF. 2015. Senataxin controls meiotic silencing through ATR activation and chromatin remodeling. Cell Discovery 1. doi:10.1038/celldisc.2015.25

    1. Author Response

      The following is the authors’ response to the original reviews.

      We would like to thank the reviewers for their work, and the very useful comments.

      Public reviews:

      Reviewer #2

      1) The authors discussed possible reasons for the different results of the RRP sizes between this study and Alten et al., 2021. One of them is how the hypertonic solution is applied. The authors thought that the long application of hypertonic solution in Alten et al., 2021 caused an overlapping release of RRP and upstream vesicle pools because Alten et al., 2021 measured 10-fold larger RRP size than what was measured in this study. However, Alten et al., 2021 measured RRP from IPSCs and a single inhibitory vesicle fusion causes larger charge transfer than an excitatory vesicle. The authors need to take this into consideration and 10-fold is likely an overestimate.

      Answer: Thank you for pointing out this important difference. We have modified the text in the Discussion accordingly and we no longer refer to the 10-fold difference.

      2) Statistical tests should be performed for protein expression levels (Fig 2A and Fig 10A) and in vitro fusion assays (Fig 8D,E and Fig 9 B,C).

      Answer: We inserted new panels B and C in Fig. 2 and Fig. 10 showing all the Western Blot data and performed statistical tests (none were significant). For the in vitro fusion assays, we have inserted statistical tests in panels 8E and 9C. The quantities in those panels (subdivided into “Pre Ca2+”, “post Ca2+” and “end fusion”) are based on the data in Figure 8D and 9B. We have therefore not inserted separate statistical tests in Figures 8D and 9B.

      Reviewer #1 (Recommendations For The Authors):

      It would be quite interesting for future studies to address how these three mutations in SNAP-25 behave in the Syt1 null background in their electrophysiological experiments. Does the I167N allele block the enhanced spontaneous release in the Syt1 null? Do the V48F and D1667 alleles synergize with Syt1 to enhance spontaneous release to even higher levels? By examining how different components interact to shape the energy landscape for priming and fusion, these types of approaches should be quite revealing.

      Answer: We agree with the reviewer that these future studies would be interesting. Unfortunately, they are beyond our current capacities.

      Reviewer #2 (Recommendations For The Authors):

      1) In the introduction, when discussing haploinsufficiency of Munc18-1 causes a decrease in release, additional references should be included, for example, the studies in flies (Wu et al., 1998, EMBO), human neurons (Patzke et al., 2015 JCI), and mouse neurons (Toonen et al., 2006 PNAS; Chen et al., 2020 eLife).

      Answer: Thank you for the suggestion. We have rewritten the text and added additional references.

      2) The authors may consider introducing additional motivations and significance of this study. For example, the evoked EPSCs cannot be properly measured in the cultures of Alten et al., 2021, but was properly studied here.

      Answer: We agree and have added additional motivations in the Introduction.

    1. Author Response

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Given knowledge of the amino acid sequence and of some version of the 3D structure of two monomers that are expected to form a complex, the authors investigate whether it is possible to accurately predict which residues will be in contact in the 3D structure of the expected complex. To this effect, they train a deep learning model that takes as inputs the geometric structures of the individual monomers, per-residue features (PSSMs) extracted from MSAs for each monomer, and rich representations of the amino acid sequences computed with the pre-trained protein language models ESM-1b, MSA Transformer, and ESM-IF. Predicting inter-protein contacts in complexes is an important problem. Multimer variants of AlphaFold, such as AlphaFold-Multimer, are the current state of the art for full protein complex structure prediction, and if the three-dimensional structure of a complex can be accurately predicted then the inter-protein contacts can also be accurately determined. By contrast, the method presented here seeks state-of-the-art performance among models that have been trained end-to-end for inter-protein contact prediction.

      Strengths:

      The paper is carefully written and the method is very well detailed. The model works both for homodimers and heterodimers. The ablation studies convincingly demonstrate that the chosen model architecture is appropriate for the task. Various comparisons suggest that PLMGraph-Inter performs substantially better, given the same input than DeepHomo, GLINTER, CDPred, DeepHomo2, and DRN-1D2D_Inter. As a byproduct of the analysis, a potentially useful heuristic criterion for acceptable contact prediction quality is found by the authors: namely, to have at least 50% precision in the prediction of the top 50 contacts.

      We thank the reviewer for recognizing the strengths of our work!

      Weaknesses:

      My biggest issue with this work is the evaluations made using bound monomer structures as inputs, coming from the very complexes to be predicted. Conformational changes in protein-protein association are the key element of the binding mechanism and are challenging to predict. While the GLINTER paper (Xie & Xu, 2022) is guilty of the same sin, the authors of CDPred (Guo et al., 2022) correctly only report test results obtained using predicted unbound tertiary structures as inputs to their model. Test results using experimental monomer structures in bound states can hide important limitations in the model, and thus say very little about the realistic use cases in which only the unbound structures (experimental or predicted) are available. I therefore strongly suggest reducing the importance given to the results obtained using bound structures and emphasizing instead those obtained using predicted monomer structures as inputs.

      We thank the reviewer for the suggestion! We evaluated PLMGraph-Inter with the predicted monomers and analyzed the result in details (see the “Impact of the monomeric structure quality on contact prediction” section and Figure 3). To mimic the real cases, we even deliberately reduced the performance of AF2 by using reduced MSAs (see the 2nd paragraph in the ““Impact of the monomeric structure quality on contact prediction” section). We leave some of the results in the supplementary of the current manuscript (Table S2). We will move these results to the main text to emphasize the performance of PLMGraph-Inter with the predicted monomers in the revision.

      In particular, the most relevant comparison with AlphaFold-Multimer (AFM) is given in Figure S2, not Figure 6. Unfortunately, it substantially shrinks the proportion of structures for which AFM fails while PLMGraph-Inter performs decently. Still, it would be interesting to investigate why this occurs. One possibility would be that the predicted monomer structures are of bad quality there, and PLMGraph-Inter may be able to rely on a signal from its language model features instead. Finally, AFM multimer confidence values ("iptm + ptm") should be provided, especially in the cases in which AFM struggles.

      We thank the reviewer for the suggestion! Yes! The performance of PLMGraph-Inter drops when the predicted monomers are used in the prediction. However, it is difficult to say which is a fairer comparison, Figure 6 or Figure S2, since AFM also searched monomer templates (see the third paragraph in 7. Supplementary Information : 7.1 Data in the AlphaFold-Multimer preprint: https://www.biorxiv.org/content/10.1101/2021.10.04.463034v2.full) in the prediction. When we checked our AFM runs, we found that 99% of the targets in our study (including all the targets in the four datasets: HomoPDB, HeteroPDB, DHTest and DB5.5) employed at least 20 templates in their predictions, and 87.8% of the targets employed the native templates. We will provide the AFM confidence values of the AFM predictions in the revision.

      Besides, in cases where any experimental structures - bound or unbound - are available and given to PLMGraph-Inter as inputs, they should also be provided to AlphaFold-Multimer (AFM) as templates. Withholding these from AFM only makes the comparison artificially unfair. Hence, a new test should be run using AFM templates, and a new version of Figure 6 should be produced. Additionally, AFM's mean precision, at least for top-50 contact prediction, should be reported so it can be compared with PLMGraph-Inter's.

      We thank the reviewers for the suggestion! We would like to notify that AFM also searched monomer templates (see the third paragraph in 7. Supplementary Information : 7.1 Data in the AlphaFold-Multimer preprint: https://www.biorxiv.org/content/10.1101/2021.10.04.463034v2.full) in the prediction. When we checked our AFM runs, we found that 99% of the targets in our study (including all the targets in the four datasets: HomoPDB, HeteroPDB, DHTest and DB5.5) employed at least 20 templates in their predictions, and 87.8% of the targets employed the native template.

      It's a shame that many of the structures used in the comparison with AFM are actually in the AFM v2 training set. If there are any outside the AFM v2 training set and, ideally, not sequence- or structure-homologous to anything in the AFM v2 training set, they should be discussed and reported on separately. In addition, why not test on structures from the "Benchmark 2" or "Recent-PDB-Multimers" datasets used in the AFM paper?

      We thank the reviewer for the suggestion! The biggest challenge to objectively evaluate AFM is that as far as we known, AFM does not release the PDB ids of its training set and the “Recent-PDB-Multimers” dataset. “Benchmark 2” only includes 17 heterodimer proteins, and the number can be further decreased after removing targets redundant to our training set. We think it is difficult to draw conclusions from such a small number of targets. In the revision, we will analyze the performance of AFM on targets released after the date cutoff of the AFM training set, but with which we cannot totally remove the redundancy between the training and the test sets of AFM.

      It is also worth noting that the AFM v2 weights have now been outdated for a while, and better v3 weights now exist, with a training cutoff of 2021-09-30.

      We thank the reviewer for reminding the new version of AFM. The only difference between AFM V3 and V2 is the cutoff date of the training set. Our test set would have more overlaps with the training set of AFM V3, which is one reason that we think AFM V2 is more appropriate to be used in the comparison.

      Another weakness in the evaluation framework: because PLMGraph-Inter uses structural inputs, it is not sufficient to make its test set non-redundant in sequence to its training set. It must also be non-redundant in structure. The Benchmark 2 dataset mentioned above is an example of a test set constructed by removing structures with homologous templates in the AF2 training set. Something similar should be done here.

      We agree with the reviewer that testing whether the model can keep its performance on targets with no templates (i.e. non-redundant in structure) is important. We will perform the analysis in the revision.

      Finally, the performance of DRN-1D2D for top-50 precision reported in Table 1 suggests to me that, in an ablation study, language model features alone would yield better performance than geometric features alone. So, I am puzzled why model "a" in the ablation is a "geometry-only" model and not a "LM-only" one.

      Using the protein geometric graph to integrate multiple protein language models is the main idea of PLMGraph-Inter. Comparing with our previous work (DRN-1D2D_Inter), we consider the building of the geometric graph as one major contribution of this work. To emphasize the efficacy of this geometric graph, we chose to use the “geometry-only” model as the base model. We will further clarity this in the revision.

      Reviewer #2 (Public Review):

      This work introduces PLMGraph-Inter, a new deep-learning approach for predicting inter-protein contacts, which is crucial for understanding protein-protein interactions. Despite advancements in this field, especially driven by AlphaFold, prediction accuracy and efficiency in terms of computational cost) still remains an area for improvement. PLMGraph-Inter utilizes invariant geometric graphs to integrate the features from multiple protein language models into the structural information of each subunit. When compared against other inter-protein contact prediction methods, PLMGraph-Inter shows better performance which indicates that utilizing both sequence embeddings and structural embeddings is important to achieve high-accuracy predictions with relatively smaller computational costs for the model training.

      The conclusions of this paper are mostly well supported by data, but test examples should be revisited with a more strict sequence identity cutoff to avoid any potential information leakage from the training data. The main figures should be improved to make them easier to understand.

      We thank the reviewer for recognizing the significance of our work! We will revise the manuscript carefully to address the reviewer’s concerns.

      1. The sequence identity cutoff to remove redundancies between training and test set was set to 40%, which is a bit high to remove test examples having homology to training examples. For example, CDPred uses a sequence identity cutoff of 30% to strictly remove redundancies between training and test set examples. To make their results more solid, the authors should have curated test examples with lower sequence identity cutoffs, or have provided the performance changes against sequence identities to the closest training examples.

      We thank the reviewer for the valuable suggestion! Using different thresholds to reduce the redundancy between the test set and the training set is a very good suggestion, and we will perform the analysis in the revision. In the current version of the manuscript, the 40% sequence identity is used as the cutoff for many previous studies used this cutoff (e.g. the Recent-PDB-Multimers used in AlphaFold-Multimer (see: 7.8 Datasets in the AlphaFold-Multimer paper); the work of DSCRIPT: https://www.cell.com/action/showPdf?pii=S2405-4712%2821%2900333-1 (see: the PPI dataset paragraph in the METHODS DETAILS section of the STAR METHODS)). One reason for using the relatively higher threshold for PPI studies is that PPIs are generally not as conserved as protein monomers.

      We performed a preliminary analysis using different thresholds to remove redundancy when preparing this provisional response letter:

      Author response table 1.

      Table1. The performance of PLMGraph-Inter on the HomoPDB and HeteroPDB test sets using native structures(AlphaFold2 predicted structures).

      Method:

      To remove redundancy, we clustered 11096 sequences from the training set and test sets (HomoPDB, HeteroPDB) using MMSeq2 with different sequence identity threshold (40%, 30%, 20%, 10%) (the lowest cutoff for CD-HIT is 40%, so we switched to MMSeq2). Each sequence is then uniquely labeled by the cluster (e.g. cluster 0, cluster 1, …) to which it belongs, from which each PPI can be marked with a pair of clusters (e.g. cluster 0-cluster 1). The PPIs belonging to the same cluster pair (note: cluster n - cluster m and cluster n-cluster m were considered as the same pair) were considered as redundant. For each PPI in the test set, if the pair cluster it belongs to contains the PPI belonging to the training set, we remove that PPI from the test set.

      We will perform more detailed analyses in the revised manuscript.

      1. Figures with head-to-head comparison scatter plots are hard to understand as scatter plots because too many different methods are abstracted into a single plot with multiple colors. It would be better to provide individual head-to-head scatter plots as supplementary figures, not in the main figure.

      We thank the reviewer for the suggestion! We will include the individual head-to-head scatter plots as supplementary figures in the revision.

      3) The authors claim that PLMGraph-Inter is complementary to AlphaFold-multimer as it shows better precision for the cases where AlphaFold-multimer fails. To strengthen the point, the qualities of predicted complex structures via protein-protein docking with predicted contacts as restraints should have been compared to those of AlphaFold-multimer structures.

      We thank the reviewer for the suggestion! We will add this comparison in the revision.

      4) It would be interesting to further analyze whether there is a difference in prediction performance depending on the depth of multiple sequence alignment or the type of complex (antigen-antibody, enzyme-substrates, single species PPI, multiple species PPI, etc).

      We thank the reviewer for the suggestion! We will perform such analysis in the revision.

    1. Author Response

      We are grateful for the constructive comments of the reviewers. Here is a provisional response to major questions.

      To Question 1, we appreciate that you point out that the phenotypes of pan-neuronal knockout of PDFR by unmodified Cas9 (Fig 2H-2I, in previous manuscript) whose morning anticipation still exist at some level (Fig a) though the decreases of morning anticipation index (Fig b) and advanced evening activity were not as pronounced as observed in han5304 (Fig 3C Hyun et al., 2005), our response is that the difference between pan-neuronal knockout of PDFR by unmodified Cas9 might be caused by the limited efficiency of unmodified Cas9 in our conditional system. We will adjust the relevant conclusions in the revised version, and these findings underscore the necessity to enhance the efficiency of the original Cas9

      Author response image 1.

      To Question 2, that some expression profiles of clock neurons are not consistent with previous reports, such as Dh31 and ChAT in s-LNvs, our response is that the differences can be attributed to the variation in expression patterns between 3’ terminal KI-LexA (used in this gene expression dissection) and KO-GAL4, KI-GAL4, or transgenic GAL4. We have indeed observed differences when identical sites were inserted in frame with Gal4 or LexA.

      To Question 3, that our description of advanced morning anticipation versus no morning anticipation with the term "opposite" is not accurate enough, our response is that we will modify that. Mutants of CNMa or CNMaR exhibit advanced morning activity, suggesting an inhibitory role of CNMa/CNMaR. Mutants of Pdf/Pdfr, on the other hand, showed no morning anticipation, indicating a promoting role in morning anticipation.

      To Question 4, whether we have generated transgenic UAS-sgRNA flies for all CCT genes or only a subset, our response is that we have indeed generated UAS-sgRNA flies for all CCT genes.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Like the "preceding" co-submitted paper, this is again a very strong and interesting paper in which the authors address a question that is raised by the finding in their co-submitted paper - how does one factor induce two different fates. The authors provide an extremely satisfying answer - only one subset of the cells neighbors a source of signaling cells that trigger that subset to adopt a specific fate. The signal here is Delta and the read-out is Notch, whose intracellular domain, in conjunction with, presumably, SuH cooperates with Bsh to distinguish L4 from L5 fate (L5 is not neighbored by signalproviding cells). Like the back-to-back paper, the data is rigorous, well-presented and presents important conclusions. There's a wealth of data on the different functions of Notch (with and without Bsh). All very satisfying.

      Thanks!

      I have again one suggestion that the authors may want to consider discussing. I'm wondering whether the open chromatin that the author convincingly measure is the CAUSE or the CONSEQUENCE of Bsh being able to activate L4 target genes. What I mean by this is that currently the authors seem to be focused on a somewhat sequential model where Notch signaling opens chromatin and this then enables Bsh to activate a specific set of target genes. But isn't it equally possible that the combined activity of Bsh/Notch(intra)/SuH opens chromatin? That's not a semantic/minor difference, it's a fundamentally different mechanism, I would think. This mechanism also solves the conundrum of specificity - how does Notch know which genes to "open" up? It would seem more intuitive to me to think that it's working together with Bsh to open up chromatin, with chromatin accessibility than being a "mere" secondary consequence. If I'm not overlooking something fundamental here, there is actually also a way to distinguish between these models - test chromatin accessibility in a Bsh mutant. If the author's model is true, chromatin accessibility should be unchanged.

      I again finish by commending the authors for this terrific piece of work.

      Thanks! It is a crucial question whether Notch signaling regulates chromatin landscape independently of a primary HDTF. We will include this discussion in the text and pursue it in our next project.

      We think Notch signaling may regulate chromatin accessibility independently of a primary HDTF based on our observation: in larval ventral nerve cord, all premotor neurons are NotchON neurons while all postsensory neurons are NotchOFF neurons; NotchON neurons share similar functional properties, despite expressing distinct HDTFs, possibly due to the common chromatin landscape regulated by Notch signaling.

      Reviewer #2 (Public Review):

      Summary:

      In this work, the authors explore how Notch activity acts together with Bsh homeodomain transcription factors to establish L4 and L5 fates in the lamina of the visual system of Drosophila. They propose a model in which differential Notch activity generates different chromatin landscapes in presumptive L4 and L5, allowing the differential binding of the primary homeodomain TF Bsh (as described in the cosubmitted paper), which in turn activates downstream genes specific to either neuronal type. The requirement of Notch for L4 vs. L5 fate is well supported, and complete transformation from one cell type into the other is observed when altering Notch activity. However, the role of Notch in creating differential chromatin landscapes is not directly demonstrated. It is only based on correlation, but it remains a plausible and intriguing hypothesis.

      Thanks for the positive feedback!

      Strengths:

      The authors are successful in characterizing the role of Notch to distinguish between L4 and L5 cell fates. They show that the Notch pathway is active in L4 but not in L5. They identify L1, the neuron adjacent to L4 as expressing the Delta ligand, therefore being the potential source for Notch activation in L4. Moreover, the manuscript shows molecular and morphological/connectivity transformations from one cell type into the other when Notch activity is manipulated.

      Thanks!

      Using DamID, the authors characterize the chromatin landscape of L4 and L5 neurons. They show that Bsh occupies distinct loci in each cell type. This supports their model that Bsh acts as a primary selector gene in L4/L5 that activates different target genes in L4 vs L5 based on the differential availability of open chromatin loci.

      Thanks!

      Overall, the manuscript presents an interesting example of how Notch activity cooperates with TF expression to generate diverging cell fates. Together with the accompanying paper, it helps thoroughly describe how lamina cell types L4 and L5 are specified and provides an interesting hypothesis for the role of Notch and Bsh in increasing neuronal diversity in the lamina during evolution.

      Thanks for the positive feedback on both manuscripts.

      Weaknesses:

      Differential Notch activity in L4 and L5:

      ● The manuscript focuses its attention on describing Notch activity in L4 vs L5 neurons. However, from the data presented, it is very likely that the pool of progenitors (LPCs) is already subdivided into at least two types of progenitors that will rise to L4 and L5, respectively. Evidence to support this is the activity of E(spl)-mɣ-GFP and the Dl puncta observed in the LPC region. Discussion should naturally follow that Notch-induced differences in L4/L5 might preexist L1-expressed Dl that affect newborn L4/L5. Therefore, the differences between L4 and L5 fates might be established earlier than discussed in the paper. The authors should acknowledge this possibility and discuss it in their model.

      We agree. Historically, LPCs are thought to be homogenous; our data suggests otherwise. We now emphasize this in the Discussion as requested. We are also investigating this question using single-cell RNAseq on LPCs to look for molecular heterogeneities. Nevertheless, whether L4 is generated by E(spl)mɣ-GFP+ (NotchON) LPCs does not affect our conclusion that Notch signaling and the primary HDTF Bsh are integrated to specify L4 fate over L5.

      ● The authors claim that Notch activation is caused by L1-expressed Delta. However, they use an LPC driver to knock down Dl. Dl-KD should be performed exclusively in L1, and the fate of L4 should be assessed.

      Dl is transiently expressed in newborn L1 neurons. To knock down Dl in newborn L1, we need to express Dl-RNAi before the onset of Dl expression in newborn L1; the only known Gal4 line expressed that early is the LPC-Gal4, which is the one that we used.

      ● To test whether L4 neurons are derived from NotchON LPCs, I suggest performing MARCM clones in early pupa with an E(spl)-mɣ-GFP reporter.

      We agree! Whether L4 neurons are derived from NotchON LPCs is a great question. However, MARCM clones in early pupa with an E(spl)-mɣ-GFP reporter will not work because E(spl)-mɣ-GFP reporter is only expressed in LPCs but not lamina neurons. We now mention this in the Discussion.

      ● The expression of different Notch targets in LPCs and L4 neurons may be further explored. I suggest using different Notch-activity reporters (i.e., E(spl)-GFP reporters) to further characterize these. differences. What cause the switch in Notch target expression from LPCs to L4 neurons should be a topic of discussion.

      Thanks! It is a great question why Notch induces Espl-mɣ in LPCs but Hey in newborn neurons. However, it is not the question we are tackling in this paper and it will be a great direction to pursue in future. We will add this to our Discussion.

      Notch role in establishing L4 vs L5 fates:

      ● The authors describe that 27G05-Gal4 causes a partial Notch Gain of Function caused by its genomic location between Notch target genes. However, this is not further elaborated. The use of this driver is especially problematic when performing Notch KD, as many of the resulting neurons express Ap, and therefore have some features of L4 neurons. Therefore, Pdm3+/Ap+ cells should always be counted as intermediate L4/L5 fate (i.e., Fig3 E-J, Fig3-Sup2), irrespective of what the mechanistic explanation for Ap activation might be. It's not accurate to assume their L5 identity. In Fig4 intermediate-fate cells are correctly counted as such.

      We disagree that the use of 27G05-Gal4 is problematic when performing Notch-KD because our conclusion from Notch-KD is that Bsh without Notch signaling activates Pdm3 and specifies L5 fate. However, 27G05-Gal4 does not have any effect on Pdm3 expression. To make this clearer, we will quantify the percentage of Pdm3+ L5 neurons in Bsh+ lamina neurons for Notch-KD experiment. We are sorry this wasn't clearer.

      ● Lines 170-173: The temporal requirement for Notch activity in L5-to-L4 transformation is not clearly delineated. In Fig4-figure supplement 1D-E, it is not stated if the shift to 29{degree sign}C is performed as in Fig4-figure supplement 1A-C.

      Thank you for catching this. We will correct it in the text.

      ● Additionally, using the same approach, it would be interesting to explore the window of competence for Notch-induced L5-to-L4 transformation: at which point in L5 maturation can fate no longer be changed by Notch GoF?

      Our data show that Bsh with transient Notch signaling in newborn neurons specifies L4 fate while Bsh without Notch signaling in newborn neurons specifies L5 fate. Therefore, we think the window of fate competence is during newborn neurons.

      However, as suggested by the reviewer, we did the experiment (see figure below). We used Gal80 (Gal80 inhibits Gal4 activity at 18C) to temporarily control Bsh-Gal4 activity for expressing N-ICD (the active form of Notch) in L5 neurons. We found that tub-Gal80ts, Bsh-Gal4>UAS-N-ICD is unable to induce ectopic L4 neurons when we shift the temperature from 18C to 30C to inactivate Gal80 at 15 hours after pupal formation, which is close to the end of lamina neurogenesis. However, it is unknown how many hours it takes to inactivate Gal80 and activate Bsh-Gal4 and thus we decided not to include this data in our manuscript.

      Author response image 1.

      L4-to-L3 conversion in the absence of Bsh

      ● Although interesting, the L4-to-L3 conversion in the absence of Bsh is never shown to be dependent on Notch activity. Importantly, L3 NotchON status is assumed based on their position next to Dlexpressing L1, but it is not empirically tested. Perhaps screening Notch target reporter expression in the lamina, as suggested above, could inform this issue.

      Our data show the L4-to-L3 conversion in the absence of Bsh and in the presence of Notch activity while the L5-to-L1 conversion in the absence of Bsh and in the absence of Notch activity. Therefore, Notch activity is necessary for the L4-to-L3 conversion. Unfortunately, currently, we only have Hey as an available Notch target reporter in newborn neurons. To tackle this challenge in the future, we will profile the genome-binding targets of endogenous Notch in newborn neurons. This will identify novel genes as Notch signaling reporters in neurons for the field.

      ● Otherwise, the analysis of Bsh Loss of Function in L4 might be better suited to be included in the accompanying manuscript that specifically deals with the role of Bsh as a selector gene for L4 and L5.

      That is an interesting suggestion, but without knowing that Bsh + Notch = L4 identity the experiment would be hard to interpret. Note that we took advantage of Notch signaling to trace the cell fate in the absence of Bsh and found the L4-to-L3 conversion (see Figure 5G-K).

      Different chromatin landscape in L4 and L5 neurons

      ● A major concern is that, although L4 and L5 neurons are shown to present different chromatin landscapes (as expected for different neuronal types), it is not demonstrated that this is caused by Notch activity. The paper proves unambiguously that Notch activity, in concert with Bsh, causes the fate choice between L4 and L5. However, that this is caused by Notch creating a differential chromatin landscape is based only in correlation. (NotchON cells having a different profile than NotchOFF). Although the authors are careful not to claim that differential chromatin opening is caused directly by Notch, this is heavily suggested throughout the text and must be toned down.e.g.: Line 294: "With Notch signaling, L4 neurons generate distinct open chromatin landscape" and Line 298: "Our findings propose a model that the unique combination of HDTF and open chromatin landscape (e.g. by Notch signaling)" . These claims are not supported well enough, and alternative hypotheses should be provided in the discussion. An alternative hypothesis could be that LPCs are already specified towards L4 and L5 fates. In this context, different early Bsh targets in each cell type could play a pioneer role generating a differential chromatin landscape.

      We agree and appreciate the comment, it is well justified. We have toned down our comments and clearly state that this is a correlation that needs to be tested for a causal relationship. The reviewer posits: “An alternative hypothesis: different early Bsh targets in each cell type could play a pioneer role generating a differential chromatin landscape.” Yes, it is a crucial question whether Notch signaling regulates chromatin landscape independently of a primary HDTF (e.g., Bsh). We will include this discussion in the text and pursue it in our next project. We think Notch signaling may regulate chromatin accessibility independently of a primary HDTF based on our observation: in larval ventral nerve cord, all premotor neurons are NotchON neurons while all post-sensory neurons are NotchOFF neurons; NotchON neurons share similar functional properties, despite expressing distinct HDTFs, possibly due to the common chromatin landscape regulated by Notch signaling.

      ● The correlation between open chromatin and Bsh loci with Differentially Expressed genes is much higher for L4 than L5. It is not clear why this is the case, and should be discussed further by the authors.

      We agree and think in L5 neurons, the secondary HDTF Pdm3 also contributes to L5-specific gene transcription during the synaptogenesis window, in addition to Bsh. We will include this in the text.

    1. Author Response

      The following is the authors’ response to the latest reviews.

      A revised version of the manuscript models "slope-based" excitability changes in addition to "threshold-based" changes. This serves to address the above concern that as constructed here changes in excitability threshold are not distinguishable from changes in input. However, it remains unclear what the model would do should only a subset of neurons receive a given, fixed input. In that case, are excitability changes sufficient to induce drift? This remains an important question that is not addressed by the paper in its current form.

      Thank you for this important point. In the simulation of two memories (Fig. S6), we stimulated half of the neural population for each of the two memories. We therefore also showed that drift happens when only a subset of neuron was simulated.


      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Current experimental work reveals that brain areas implicated in episodic and spatial memory have a dynamic code, in which activity r imulated networks for epresenting familiar events/locations changes over time. This paper shows that such reconfiguration is consistent with underlying changes in the excitability of cells in the population, which ties these observations to a physiological mechanism.

      Delamare et al. use a recurrent network model to consider the hypothesis that slow fluctuations in intrinsic excitability, together with spontaneous reactivations of ensembles, may cause the structure of the ensemble to change, consistent with the phenomenon of representational drift. The paper focuses on three main findings from their model: (1) fluctuations in intrinsic excitability lead to drift, (2) this drift has a temporal structure, and (3) a readout neuron can track the drift and continue to decode the memory. This paper is relevant and timely, and the work addresses questions of both a potential mechanism (fluctuations in intrinsic excitability) and purpose (time-stamping memories) of drift.

      The model used in this study consists of a pool of 50 all-to-all recurrently connected excitatory neurons with weights changing according to a Hebbian rule. All neurons receive the same input during stimulation, as well as global inhibition. The population has heterogeneous excitability, and each neuron's excitability is constant over time apart from a transient increase on a single day. The neurons are divided into ensembles of 10 neurons each, and on each day, a different ensemble receives a transient increase in the excitability of each of its neurons, with each neuron experiencing the same amplitude of increase. Each day for four days, repetitions of a binary stimulus pulse are applied to every neuron.

      The modeling choices focus in on the parameter of interest-the excitability-and other details are generally kept as straightforward as possible. That said, I wonder if certain aspects may be overly simple. The extent of the work already performed, however, does serve the intended purpose, and so I think it would be sufficient for the authors to comment on these choices rather than to take more space in this paper to actually implement these choices. What might happen were more complex modeling choices made? What is the justification for the choices that are made in the present work?

      The two specific modeling choices I question are (1) the excitability dynamics and (2) the input stimulus. The ensemble-wide synchronous and constant-amplitude excitability increase, followed by a return to baseline, seems to be a very simplified picture of the dynamics of intrinsic excitability. At the very least, justification for this simplified picture would benefit the reader, and I would be interested in the authors' speculation about how a more complex and biologically realistic dynamics model might impact the drift in their network model. Similarly, the input stimulus being binary means that, on the singleneuron level, the only type of drift that can occur is a sort of drop-in/drop-out drift; this choice excludes the possibility of a neuron maintaining significant tuning to a stimulus but changing its preferred value. How would the use of a continuous input variable influence the results.

      (1) In our model, neurons tend to compete for allocation to the memory ensemble: neurons with higher excitability tend to be preferentially allocated and neurons with lower excitability do not respond to the stimulus. Because relative, but not absolute excitability biases this competition, we suggest that the exact distribution of excitability would not impact the results qualitatively. On the other hand, the results might vary if excitability was considered dependent on the activity of the neurons as previously reported experimentally (Cai 2016, Rachid 2016, Pignatelli 2019). An increase in excitability following neural activity might induce higher correlation among ensembles on consecutive days, decreasing the drift.

      (2) We thank the reviewer for this very good point. Indeed, two recent studies (Geva 2023 , Khatib 2023) have highlighted distinct mechanisms for a drift of the mean firing rate and the tuning curve. We extended the last part of the discussion to include this point: “Finally, we intended to model drift in the firing rates, as opposed to a drift in the turning curve of the neurons. Recent studies suggest that drifts in the mean firing rate and tuning curve arise from two different mechanisms [33, 34]. Experience drives a drift in neurons turning curve while the passage of time drives a drift in neurons firing rate. In this sense, our study is consistent with these findings by providing a possible mechanism for a drift in the mean firing rates of the neurons driven a dynamical excitability. Our work suggests that drift can depend on any experience having an impact on excitability dynamics such as exercise as previously shown experimentally [9, 35] but also neurogenesis [9, 31, 36], sleep [37] or increase in dopamine level [38]”

      Result (1): Fluctuations in intrinsic excitability induce drift

      The two choices highlighted above appear to lead to representations that never recruit the neurons in the population with the lowest baseline excitability (Figure 1b: it appears that only 10 neurons ever show high firing rates) and produce networks with very strong bidirectional coupling between this subset of neurons and weak coupling elsewhere (Figure 1d). This low recruitment rate need may not necessarily be problematic, but it stands out as a point that should at least be commented on. The fact that only 10 neurons (20% of the population) are ever recruited in a representation also raises the question of what would happen if the model were scaled up to include more neurons.

      This is a very good point. To test how the model depends on the network size, we plotted the drift index against the size of the ensemble. With this current implementation, we did not observe a significant correlation between the drift rate and size of the initial ensemble (Figure S2).

      Author response image 1.

      The rate of the drift does not depend on the size of the engram. Drift rate against the size of the original engram. Each dot shows one simulation (Methods). n = 100 simulations.

      Result (2): The observed drift has a temporal structure

      The authors then demonstrate that the drift has a temporal structure (i.e., that activity is informative about the day on which it occurs), with methods inspired by Rubin et al. (2015). Rubin et al. (2015) compare single-trial activity patterns on a given session with full-session activity patterns from each session. In contrast, Delamare et al. here compare full-session patterns with baseline excitability (E = 0) patterns. This point of difference should be motivated. What does a comparison to this baseline excitability activity pattern tell us? The ordinal decoder, which decodes the session order, gives very interesting results: that an intermediate amplitude E of excitability increase maximizes this decoder's performance. This point is also discussed well by the authors. As a potential point of further exploration, the use of baseline excitability patterns in the day decoder had me wondering how the ordinal decoder would perform with these baseline patterns.

      This is a good point. Here, we aimed at dissociating the role of excitability from the one of the recurrent currents. We introduced a time decoder that compares the pattern with baseline excitability (E = 0), in order to test whether the temporal information was encoded in the ensemble i.e. in the recurrent weights. By contrast, because the neural activity is by construction biased towards excitability, a time decoder performed on the full session would work in a trivial way.

      Result (3): A readout neuron can track drift

      The authors conclude their work by connecting a readout neuron to the population with plastic weights evolving via a Hebbian rule. They show that this neuron can track the drifting ensemble by adjusting its weights. These results are shown very neatly and effectively and corroborate existing work that they cite very clearly.

      Overall, this paper is well-organized, offers a straightforward model of dynamic intrinsic excitability, and provides relevant results with appropriate interpretations. The methods could benefit from more justification of certain modeling choices, and/or an exploration (either speculative or via implementation) of what would happen with more complex choices. This modeling work paves the way for further explorations of how intrinsic excitability fluctuations influence drifting representations.

      Reviewer #2 (Public Review):

      In this computational study, Delamare et al identify slow neuronal excitability as one mechanism underlying representational drift in recurrent neuronal networks and that the drift is informative about the temporal structure of the memory and when it has been formed. The manuscript is very well written and addresses a timely as well as important topic in current neuroscience namely the mechanisms that may underlie representational drift.

      The study is based on an all-to-all recurrent neuronal network with synapses following Hebbian plasticity rules. On the first day, a cue-related representation is formed in that network and on the next 3 days it is recalled spontaneously or due to a memory-related cue. One major observation is that representational drift emerges day-by-day based on intrinsic excitability with the most excitable cells showing highest probability to replace previously active members of the assembly. By using a daydecoder, the authors state that they can infer the order at which the reactivation of cell assemblies happened but only if the excitability state was not too high. By applying a read-out neuron, the authors observed that this cell can track the drifting ensemble which is based on changes of the synaptic weights across time. The only few questions which emerged and could be addressed either theoretically or in the discussion are as follows:

      1. Would the similar results be obtained if not all-to-all recurrent connections would have been molded but more realistic connectivity profiles such as estimated for CA1 and CA3?

      This is a very interesting point. We performed further simulations to show that the results are not dependent on the exact structure of the network. In particular, we show that all-to-all connectivity is not required to observe a drift of the ensemble. We found similar results when the recurrent weights matrix was made sparse (Fig. S4a-c, Methods). Similarly to all-to-all connectivity, we found that the ensemble is informative about its temporal history (Fig. S4d) and that an output neuron can decode the ensemble continuously (Fig. S4e).

      Author response image 2.

      Sparse recurrent connectivity shows similar drifting behavior as all-to-all connectivity. The same simulation protocol as Fig. 1 was used while the recurrent weights matrix was made 50% sparse (Methods). a) Firing rates of the neurons across time. The red traces correspond to neurons belonging to the first assembly, namely that have a firing rate higher than the active threshold after the first stimulation. The black bars show the stimulation and the dashed line shows the active threshold. b) Recurrent weights matrices after each of the four stimuli show the drifting assembly. c) Correlation of the patterns of activity between the first day and every other days. d) Student's test t-value of the ordinal time decoder, for the real (blue) and shuffled (orange) data and for different amplitudes of excitability E. e) Center of mass of the distribution of the output weights (Methods) across days. c-e) Data are shown as mean ± s.e.m. for n = 10 simulations.

      1. How does the number of excited cells that could potentially contribute to an engram influence the representational drift and the decoding quality?

      This is indeed a very good question. We did not observe a significant correlation between the drift rate and size of the initial ensemble (Fig. S2).

      Author response image 3.

      The rate of the drift does not depend on the size of the engram. Drift rate against the size of the original engram. Each dot shows one simulation (Methods). n = 100 simulations.

      1. How does the rate of the drift influence the quality of readout from the readout-out neuron?

      We thank the reviewer for this interesting question. We introduced a measure of the “read-out quality” and plotted this value against the rate of the drift. We found a small correlation between the two quantities. Indeed, the read-out quality decreases with the rate of the drift.

      Author response image 4.

      The quality of the read-out decreases with the rate of the drift. Read-out quality computed on the firing rate of the output neuron against the rate of the drift (Methods). Each dot shows one simulation. n = 100 simulations.

      Reviewer #3 (Public Review):

      The authors explore an important question concerning the underlying mechanism of representational drift, which despite intense recent interest remains obscure. The paper explores the intriguing hypothesis that drift may reflect changes in the intrinsic excitability of neurons. The authors set out to provide theoretical insight into this potential mechanism.

      They construct a rate model with all-to-all recurrent connectivity, in which recurrent synapses are governed by a standard Hebbian plasticity rule. This network receives a global input, constant across all neurons, which can be varied with time. Each neuron also is driven by an "intrinsic excitability" bias term, which does vary across cells. The authors study how activity in the network evolves as this intrinsic excitability term is changed.

      They find that after initial stimulation of the network, those neurons where the excitability term is set high become more strongly connected and are in turn more responsive to the input. Each day the subset of neurons with high intrinsic excitability is changed, and the network's recurrent synaptic connectivity and responsiveness gradually shift, such that the new high intrinsic excitability subset becomes both more strongly activated by the global input and also more strongly recurrently connected. These changes result in drift, reflected by a gradual decrease across time in the correlation of the neuronal population vector response to the stimulus.

      The authors are able to build a classifier that decodes the "day" (i.e. which subset of neurons had high intrinsic excitability) with perfect accuracy. This is despite the fact that the excitability bias during decoding is set to 0 for all neurons, and so the decoder is really detecting those neurons with strong recurrent connectivity, and in turn strong responses to the input. The authors show that it is also possible to decode the order in which different subsets of neurons were given high intrinsic excitability on previous "days". This second result depends on the extent by which intrinsic excitability was increased: if the increase in intrinsic excitability was either too high or too low, it was not possible to read out any information about past ordering of excitability changes.

      Finally, using another Hebbian learning rule, the authors show that an output neuron, whose activity is a weighted sum of the activity of all neurons in the network, is able to read out the activity of the network. What this means specifically, is that although the set of neurons most active in the network changes, the output neuron always maintains a higher firing rate than a neuron with randomly shuffled synaptic weights, because the output neuron continuously updates its weights to sample from the highly active population at any given moment. Thus, the output neuron can readout a stable memory despite drift.

      Strengths:

      The authors are clear in their description of the network they construct and in their results. They convincingly show that when they change their "intrinsic excitability term", upon stimulation, the Hebbian synapses in their network gradually evolve, and the combined synaptic connectivity and altered excitability result in drifting patterns of activity in response to an unchanging input (Fig. 1, Fig. 2a). Furthermore, their classification analyses (Fig. 2) show that information is preserved in the network, and their readout neuron successfully tracks the active cells (Fig. 3). Finally, the observation that only a specific range of excitability bias values permits decoding of the temporal structure of the history of intrinsic excitability (Fig. 2f and Figure S1) is interesting, and as the authors point out, not trivial.

      Weaknesses:

      1. The way the network is constructed, there is no formal difference between what the authors call "input", Δ(t), and what they call "intrinsic excitability" Ɛ_i(t) (see Equation 3). These are two separate terms that are summed (Eq. 3) to define the rate dynamics of the network. The authors could have switched the names of these terms: Δ(t) could have been considered a global "intrinsic excitability term" that varied with time and Ɛ_i(t) could have been the external input received by each neuron i in the network. In that case, the paper would have considered the consequence of "slow fluctuations of external input" rather than "slow fluctuations of intrinsic excitability", but the results would have been the same. The difference is therefore semantic. The consequence is that this paper is not necessarily about "intrinsic excitability", rather it considers how a Hebbian network responds to changes in excitatory drive, regardless of whether those drives are labeled "input" or "intrinsic excitability".

      This is a very good point. We performed further simulations to model “slope-based”, instead of “threshold-based”, changes in excitability (Fig. S5a, Methods). In this new definition of excitability, we changed the slope of the activation function, which is initially sampled from a random distribution. By introducing a varying excitability, we found very similar results than when excitability was varied as the threshold of the activation function (Fig. S5b-d). We also found similarly that the ensemble is informative about its temporal history (Fig. S5e) and that an output neuron can decode the ensemble continuously (Fig. S5f).

      Author response image 5.

      Change of excitability as a variable slope of the input-output function shows similar drifting behavior as considering a change in the threshold. The same simulation protocol as Fig. 1 was used while the excitability changes were modeled as a change in the activation function slope (Methods). a) Schema showing two different ways of defining excitability, as a threshold (top) or slope (bottom) of the activation function. Each line shows one neuron and darker lines correspond to neurons with increased excitability. b) Firing rates of the neurons across time. The red traces correspond to neurons belonging to the first assembly, namely that have a firing rate higher than the active threshold after the first stimulation. The black bars show the stimulation and the dashed line shows the active threshold. c) Recurrent weights matrices after each of the four stimuli show the drifting assembly. d) Correlation of the patterns of activity between the first day and every other days. e) Student's test t-value of the ordinal time decoder, for the real (blue) and shuffled (orange) data and for different amplitudes of excitability E. f) Center of mass of the distribution of the output weights (Methods) across days. d-f) Data are shown as mean ± s.e.m. for n = 10 simulations.

      1. Given how the learning rule that defines input to the readout neuron is constructed, it is trivial that this unit responds to the most active neurons in the network, more so than a neuron assigned random weights. What would happen if the network included more than one "memory"? Would it be possible to construct a readout neuron that could classify two distinct patterns? Along these lines, what if there were multiple, distinct stimuli used to drive this network, rather than the global input the authors employ here? Does the system, as constructed, have the capacity to provide two distinct patterns of activity in response to two distinct inputs?

      This is an interesting point. In order to model multiple memories, we introduced non-uniform feedforward inputs, defining different “contexts” (Methods). We adapted our model so that two contexts target two random sub-populations in the network. We also introduced a second output neuron to decode the second memory. The simulation protocol was adapted so that each of the two contexts are stimulated every day (Fig. S6a). We found that the network is able to store two ensembles that drift independently (Fig. S6 and S7a). We were also able to decode temporal information from the patterns of activity of both ensembles (Fig. S7b). Finally, both memories could be decoded independently using two output neurons (Fig. S7c and d).

      Author response image 6.

      Two distinct ensembles can be encoded and drift independently. a) and b) Firing rates of the neurons across time. The red traces in panel b) correspond to neurons belonging to the first assembly and the green traces to the second assembly on the first day. They correspond to neurons having a firing rate higher than the active threshold after the first stimulation of each assembly. The black bars show the stimulation and the dashed line shows the active threshold. c) Recurrent weights matrices after each of the eight stimuli showing the drifting of the first (top) and second (bottom) assembly.

      Author response image 7.

      The two ensembles are informative about their temporal history and can be decoded using two output neurons. a) Correlation of the patterns of activity between the first day and every other days, for the first assembly (red) and the second assembly (green). b) Student's test t-value of the ordinal time decoder, for the first (red, left) and second ensemble (green, right) for different amplitudes of excitability E. Shuffled data are shown in orange. c) Center of mass of the distribution of the output weights (Methods) across days for the first (w?ut , red) and second (W20L't , green) ensemble. a-c) Data are shown as mean ± s.e.m. for n = 10 simulations. d) Output neurons firing rate across time for the first ensemble (Yl, top) and the second ensemble (h, bottom). The red and green traces correspond to the real output. The dark blue, light blue and yellow traces correspond to the cases where the output weights were randomly shuffled for every time points after presentation of the first, second and third stimulus, respectively.

      Impact:

      Defining the potential role of changes in intrinsic excitability in drift is fundamental. Thus, this paper represents a potentially important contribution. Unfortunately, given the way the network employed here is constructed, it is difficult to tease apart the specific contribution of changing excitability from changing input. This limits the interpretability and applicability of the results.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Weinberger et al. use different fate-mapping models, the FIRE model and PLX-diet to follow and target different macrophage populations and combine them with single-cell data to understand their contribution to heart regeneration after I/R injury. This question has already been addressed by other groups in the field using different models. However, the major strength of this manuscript is the usage of the FIRE mouse model that, for the first time, allows specific targeting of only fetal-derived macrophages. The data show that the absence of resident macrophages is not influencing infarct size but instead is altering the immune cell crosstalk in response to injury, which is in line with the current idea in the field that macrophages of different origins have distinct functions in tissues, especially after an injury. To fully support the claims of the study, specific targeting of monocyte-derived macrophages or the inhibition of their influx at different stages after injury would be of high interest. In summary, the study is well done and important for the field of cardiac injury. But it also provides a novel model (FIRE mice + RANK-Cre fate-mapping) for other tissues to study the function of fetal-derived macrophages while monocyte-derived macrophages remain intact.

      Response from the authors: We thank the reviewer for the thorough review and the positive feedback, and we agree that the Csf1r-FIRE mice represent an interesting model for studying the role of resident embryo-derived macrophages in different tissues and pathologies.

      Recent work of the Cochain lab demonstrated by combined CITE-seq analysis and CCR2 antibody treatment that monocyte depletion does not affect levels of resident tissue macrophages after myocardial infarction (REF Rizzo et al PMID: 35950218), supporting the concept to specifically investigate the role of resident and recruited macrophages. While previous work has addressed the effects of broad CCR2-mediated monocyte depletion, information on differential macrophage subsets derived from blood monocytes has been lacking. We agree with the reviewer that targeting subsets of monocyte-derived macrophages, such as for example Ly6Chi monocytes, MHCII+Il1b+ macrophages, and Isg15hi populations (REF Rizzo et al PMID: 35950218), or interference with their recruitment at different time-points after myocardial infarction would be of interest and could help to decipher their functions in the different stages of cardiac healing. However, these studies would go beyond the scope of the current analysis and will be addressed in a separate project.

      Reviewer #2 (Public Review):

      In this study Weinberger et al. investigated cardiac macrophage subsets after ischemia/reperfusion (I/R) injury in mice. The authors studied a ∆FIRE mouse model (deletion of a regulatory element in the Csf1r locus), in which only tissue resident macrophages might be ablated. The authors showed a reduction of resident macrophages in ∆FIRE mice and characterized its macrophages populations via scRNAseq at baseline conditions and after I/R injury. 2 days after I/R protocol ∆FIRE mice showed an enhanced pro inflammatory phenotype in the RNAseq data and differential effects on echocardiographic function 6 and 30 days after I/R injury. Via flow cytometry and histology the authors confirmed existing evidence of increased bone marrow-derived macrophage infiltration to the heart, specifically to the ischemic myocardium. Macrophage population in ∆FIRE mice after I/R injury were only changed in the remote zone. Further RNAseq data on resident or recruited macrophages showed transcriptional differences between both cell types in terms of homeostasis-related genes and inflammation. Depleting all macrophage using a Csf1r inhibitor resulted in a reduced cardiac function and increased fibrosis.

      Strengths

      1) The authors utilized robust methodology encompassing state of the art immunological methods, different genetic mouse models and transcriptomics.

      2) The topic of this work is important given the emerging role of tissue resident macrophages in cardiac homeostasis and disease.

      Response from the authors: We thank the reviewer for pointing out the strengths of our study, and putting the findings in context of the current view of the role of resident macrophages.

      Weaknesses:

      1) Specificity of ∆FIRE mouse model for ablating resident macrophages.

      The study builds on the assumption that only resident macrophages are ablated in ∆FIRE mice, while bone marrow-derived macrophages are unaffected. While the effects of the ∆FIRE model is nicely shown for resident macrophages, the authors did not directly assess bone marrow-derived macrophages. Moreover, in the immunohistological images in Fig. 1D nearly all macrophages appear to be absent. It would be helpful to further address the question of whether recruited macrophages are influenced in ∆FIRE mice. Evaluation of YFP positive heart and blood cells in ∆FIRE mice crossed with Flt3CreRosa26eYFP mice could clarify whether bone marrow-derived cardiac macrophages are influenced in ∆FIRE mice. This would be even more relevant in the I/R model where recruitment of bone marrow-derived macrophages is increased. A more direct assessment of recruited macrophages in ∆FIRE mice could also help to discuss potential similarities or discrepancies to the study of Bajpai et al, Circ Res 2018, which showed distinct effects of resident versus recruited macrophages after myocardial infarction. Providing the quantification of flow cytometry data (fig. 1E-F) would be supportive.

      Response from the authors: We thank the reviewer for these comments. The reviewer addresses the specificity of the ∆FIRE mouse model for ablating resident macrophages and its potential effects on bone marrow-derived macrophages. Our single-cell sequencing data support the specificity of the ∆FIRE model regarding embryo-derived resident macrophages in two ways. First, the ∆FIRE mice are characterized by the specific reduction of embryo-derived macrophage clusters (e.g. homeostatic macrophages as well as antigen-presenting macrophages) in baseline conditions, while the abundance of recruited macrophages (e.g. Ccr2hiLy6chi macrophages, Cx3Cr1hi macrophages) is not altered (Fig. 2B-D). Second, transcriptomic analysis of bone marrow-derived macrophage clusters (e.g. Ccr2hiLy6chi macrophages, Cx3Cr1hi macrophages) and of monocytes revealed no differences in ∆FIRE compared to control mice. On the other hand, we found substantial transcriptome differences in clusters that were mainly of embryonic origins (e.g. homeostatic macrophages as well as antigenpresenting macrophages) (Fig.2 and Fig S.4). These findings indicate that the ∆FIRE model mainly induces changes in embryo-derived macrophages.

      We agree with this reviewer that crossbreeding of ∆FIRE mice with Flt3CreRosa26eYFP mice would be of interest, and we have been working hard to establish this line. However, our breeding efforts have thus far been in vain, which is probably due to the necessity to keep a CBA/Ca background for the FIRE model (as reported by JAX: https://www.jax.org/strain/032783) and requires further backcrossing of Flt3CreRosa26eYFP mice with the respective CBA strain. In future work, we plan to carry out this experiment and also to specifically target monocyte-derived macrophages.

      The reviewer further asks about the modality to quantify cardiac macrophages, and suggests flow cytometry to quantify their number and not only use immunohistology. The quantification of cardiac immune cells shown in Fig. 1D (formerly 1C) was in fact performed by flow cytometry. We apologize for the lack of clarity. We rearranged the figure and added this information to the figure legend. We also added quantification by immunohistology, which is now shown in Fig. 1G.

      2) Limited adverse cardiac remodeling in ∆FIRE mice after I/R.

      The authors suggested an adverse cardiac remodeling in ∆FIRE mice. However, the relevance of a <5% reduction in ejection fraction/stroke volume within an overall normal range in ∆FIRE mice is questionable. Moreover, 6 days after I/R injury ∆FIRE mice were protected from the impairment in ejection fraction and had a smaller viability defect. Based on the data few questions may arise: Why was ablation of resident macrophages beneficial at earlier time points? Are recruited macrophages affected in ∆FIRE mice (see above)? Overall, the manuscript could benefit if the claim of an adverse remodeling in ∆FIRE mice would be discussed more carefully.

      Underlying mechanisms:

      The study did not functionally evaluated targets from transcriptomics to provide further mechanistic insights. It would be helpful if the authors discuss potential mechanisms of the differential effects of macrophages after ischemia in more detail.

      Response from the authors: The reviewer raises the question why the ablation of resident macrophages trends towards a beneficial effect at earlier time points after I/R injury. Further, the reviewer questions the relevance of a <5% reduction in ejection fraction/stroke volume over time in the light of an otherwise modestly reduced ejection fraction.

      In this study we used the experimental mouse model of ischemia-reperfusion injury with transient (1h) coronary artery occlusion. The potential disadvantage of this model is the smaller infarct size and smaller effects on cardiac function. However, it better represents the clinical picture and pathology of myocardial infarction in human patients with timely reperfusion by percutaneous coronary intervention. Infarct size after I/R was approx. 25% in control animals indicating relevant cardiac injury. Further, infarct size was reduced to approx. 16% in ∆FIRE mice 6 days after infarction, however, the difference did reach statistical significance. In line with this, the ejection fraction was numerically reduced on d6 after infarction in the control group, however with no statistical significance. In the chronic phase after infarction, the ejection fraction improved over time in the control group by approx. 5% and decreased in ∆FIRE mice by 4%, which resulted in a difference (delta) of 9% change of ejection fraction. This indicated adverse remodeling in ∆FIRE mice.

      We agree that the different impact of the absence of resident cardiac macrophages during the course of myocardial healing after injury is of great interest to the field. We discuss potential mechanisms of the differential effects of resident macrophage ablation in lines 290-314 in the revised manuscript. However, to decipher the influence of embryo-derived macrophages at different time points after infarction, an inducible model for specific depletion of this macrophage population would be necessary, which to our knowledge does not exist.

      In the revised manuscript, we now discuss the effects on cardiac healing in ∆FIRE and also the limitations more thoroughly.

      Other:

      • It is unclear why the authors performed RNAseq experiments 2 days after I/R (fig. 5/6), while the proposed functional phenotype occurred later. - A sample size of 2 animals per group appears very limited for RNAseq in ∆FIRE mice (fig.6).

      Response from the authors: We chose a time point in the “late early phase” of myocardial infarction (= day 2 post I/R) as we were also interested in the effect of resident macrophage depletion on other immune cell subsets (e.g. neutrophils) which could only be captured in this time period.

      We aimed to analyse 10000 cells per condition. The applied sample size allowed us to analyse 13452 CD45+cells from ∆FIRE mice and 9152 cells from control mice in infarct condition.

      Lines 299-324 "Ablation of resident macrophages altered macrophage crosstalk to non-macrophage immune cells, especially lymphocytes and neutrophils. This was characterized by a proinflammatory gene signature, such as neutrophil expression of inflammasome-related genes and a reduction in anti-inflammatory genes like Chil3 and Lcn2. Interestingly, inflammatory polarization of neutrophils have also been associated with poor outcome after ischemic brain injury (Cuartero et al, 2013). Clinical trials in myocardial infarction patients showed a correlation of inflammatory markers with the extent of myocardial damage {Sanchez, 2006 #2763} and with short- and long-term mortality {Mueller, 2002 #2780}.

      Our study provides evidence that the absence of resident macrophages negatively influences cardiac remodeling in the late postinfarction phase in ∆FIRE mice indicating their biological role in myocardial healing. In the early phase after I/R injury, absence of resident macrophages had no significant effect on infarct size or LV function. These observations potentially indicate a protective role in the chronic phase after myocardial infarction by modulating the inflammatory response, including adjacent immune cells like neutrophils or lymphocytes.

      Deciphering in detail the specific functions of resident macrophages is of considerable interest but requires both cell-specific and temporally-controlled depletion of respective immune cells in injury, which to our knowledge is not available at present. These experiments could be important to tailor immune-targeted treatments of myocardial inflammation and postinfarct remodelling."

      Reviewer #1 (Recommendations For The Authors):

      1) Fetal-derived macrophages are often involved in organ development and function during steady-state. The authors should show heart morphology/function before I/R injury to make sure that the cause for a worsened outcome in FIRE mice is not due to a developmental/functional defect.

      Response from the author: We conducted a gross analysis of cardiac morphology by histology, and did not determine differences to littermate controls. However, we have not conducted a detailed investigation of cardiac development since this was not the scope of this study. Further, our study mainly shows differences in cardiac healing between d6 and d30, which is unlikely influenced by developmental defects.

      2) Line 164: The authors state that they have analysed macrophages via flow cytometry, but Figure 4a only shows IF. Quantification of different macrophage subsets via flow cytometry should be included in this model.

      Response from the author: The sentence “To gain a deeper understanding of the inflammatory processes taking place in the infarcted heart, we quantified macrophage distribution by immunofluorescence and flow cytometry analysis of ischemic and remote areas after I/R.” beginning line 164 describes the entire figure 4 and not only 4a. Here we show IF as well as flow cytometry to describe numbers but also different subpopulations of macrophages (BM-derived vs. resident).

      3) Lines 254-255 (now starting 267): it is not entirely true that the heart does not harbor BM-derived macrophages under steady state. Of course, there are many more after I/R injury, but the authors should take also their own data into account (Figure 1c, e showing a clear reduction but not complete absence of macrophages) and not claim a "scarce" population. See also Dick et al (PMID: 30538339), where both, the Ccr2-Tim4- and Ccr2+ populations are (slowly) replaced by BM monocytes.

      Response from the author: We thank the reviewer for this comment. We changed “scarce population” to “small population”.

      4) Lines 269-273 (now starting line 283): The point that DT-mediated depletion of cells causes inflammation that may have an impact on macrophages is compelling. However, the approach of combining and correlating data from PLX diet and FIRE mice is not proof that the significant increase in infarct size and deterioration of left ventricular function after I/R injury is driven by monocyte-derived macrophages. The authors could use Ccr2KO mice or injection of Ly6C antibody to show the specific functions of recruited macrophages.

      Response from the author: In this study we combine a specific genetic depletion of resident macrophages (FIRE) with an pharmaceutical depletion of all macrophage populations (Csf1r-inhibiton with PLX5622). We did not aim to specifically deplete monocyte-derived macrophages, which has been addressed previously by Bajpai et al. (PMID: 30582448) using the CCR2-DTR mouse line. To address the functions of recruited macrophages would go beyond the scope of the manuscript.

      Along these lines: the authors discuss that neutrophils may have been targeted in the Ccr2-DTR model. However, the egress of neutrophils in the CCR2 KO model is not affected and should be a good model to look at the impact of monocyte-derived macrophages after I/R injury in the heart.

      Response from the author: We agree with the reviewer that CCR2 under steady state conditions might not be important for the egress of neutrophils. However, after ischemic injury CCR2-inhibition has been shown to impair neutrophil egress as well as neutrophil recruitment to ischemic tissue in an ischemia-reperfusion injury model (PMID: 28670376).

      5) Line 299 (now line 332): Reference is missing for Ccr2-DTR mice study

      Response from the author: We added the respective reference.

      6) Can the authors take also the timing of treatment/cell depletion into account in their discussion incoming monocytes may be required in the first days after injury to promote the regeneration process so that targeting them before the onset of the injury may be detrimental while targeting them during the chronic phase may be beneficial.

      Response from the author: We thank the reviewer for this comment. We added the following sentence to the manuscript (Lines 343-346):

      “An explanation of this controversy might be the timing and duration of macrophage depletion. Bajpai et al. depleted recruited macrophages only in the initial phase of myocardial infarction which improved cardiac healing (Bajpai et al., 2019), while depletion of macrophages over a longer period of time, as shown in our study, is detrimental for cardiac repair.”

      7) Figure 6E, F: Why are the outgoing signals pooled? The data has the strength of distinguishing between distinct populations. This data should be used and exploited to work out distinct pathways of distinct macrophage populations in more detail. From the representation, it remains unclear which pathways are active and distinct between Ctrl and FIRE mice besides the few chosen once (inflammasome). Also, legends are missing (what is red/blue?)

      Response from the author: We thank the reviewer for this comment. The aim of this analysis was to evaluate the effect of the FIRE ko on communication of immune cells in infarct conditions. To address changes in all populations which are affected by the FIRE ko we pooled the respective clusters (e.g. homeostatic, antigen-presenting and Ccr2loLy6clo Mø clusters). We provided the detailed analysis of the individual clusters in the new Supplemental Figure 9. Further, we added the respective legend to the Figure.

      8) The methods part mentioned CD169-DTR mice, however, there are no experiments shown in the manuscript. Further, how did the authors breed the FIRE mice? It is known in the field that they have big developmental issues and behavioural deficits if kept on a B6 background, which was likely the case in the study, at least for the fate-mapping approach.

      Response from the author: We removed the CD169-DTR reference from the methods part.<br /> FIRE mice were kept on a CBA/Ca background. As mentioned by the reviewer this was not the case for the experiment where reporter mice were bred with FIRE mice (Csf1rΔFIRE/+RankCreRosa26eYFP) as these mice are on a C57Bl6 background. All experiments evaluating cardiac function and outcome after infarction in FIRE mice were performed on mice kept with a CBA/Ca background.

      Reviewer #2 (Recommendations For The Authors):

      • Please provide the sample size for Fig. 5.

      We described the sample size in the methods part (lines 448-450: “Cell sorting was performed on a MoFlo Astrios (Beckman Coulter) to obtain cardiac macrophages from CD45.2; Mx1CreMybflox/flox after BM-transplantation of CD45.1 BM (n=3 for 2 days after I/R injury) for bulk sequencing,..“). We added the sample size also to the figure legend.

      • Please state in the methods how the normality of data was tested.

      We added the respective normality test to the methods part. “The Shapiro-Wilk test was used to test normality. “

      • How did the authors ensure a standardized infarct size?

      The authors ensured a standardized infarct size in mice following myocardial infarction through a carefully controlled experimental protocol. We employed the well-established I/R procedure for inducing myocardial infarction in mice by ligation of the LAD for 1h to mimic the transient blockage of blood flow to the anterior wall of the heart. Success of the ligation of the LAD and the induction of ischemia was confirmed by the pale color of the myocardium after ligation and the success of reperfusion by the return of color after removing the suture. The surgical technique was consistently performed by the same highly trained veterinarian in a blinded fashion to minimize variability.

    1. Author Response

      The following is the authors’ response to the original reviews.

      To the reviewers.

      We appreciate a detailed and deep review of our manuscript. Below are our comments and responses. Many requested data are present in the Supplementary figures of the manuscript. There seem to be two main concerns: one regarding the evidence of TLT2 expression in HFSCs; and second, regarding CEP/TLR2. As detailed below, we utilized 3 different methods to document TLR2 expression: TLR2-reporter mouse, staining for TLR2 and qPCR of isolated cells for TLR2. The source (the data are in Supplementary Fig. 5A, B and in references below) and nature of CEP (it is not a protein, but metabolic product of Polyunsaturated acid DHA oxidation by MPO amongst other ROS sources) are also explained below.

      1) “The expression analysis of TLR2 is questionable. Many of the conclusions about the level of target genes are based on quantifying fluorescence intensity in microscopy images (e.g., TLR2 level in young or aged mice, BMP7 levels in mice with/without TLR2 KO). This could be strengthened by using qPCR to measure gene expression levels in FACS-sorted HFSCs, which would provide more accurate quantification. Additionally, the authors should test if the TLR2 antibody used is valid.”

      In most instances we have used TLR2 reporter mouse, which presents an advantage over immunostaining. Fig.2 (A-H) shows expression of TLR2 reporter, not the staining with TLR2 abs. For selected experiments we utilized immunostaining with anti- TLR2 (Santa Cruz Biotechnology, sc-21759) antibody, which has been validated in our previous publication (see Michael G. McCoy and all. Endothelial TLR2 promotes proangiogenic immune cell recruitment and tumor angiogenesis. // Sci Signal. 2021 Jan 19; 14(666): eabc5371/doi: 10.1126/ scisignal.abc5371). In Fig.S2E of that manuscript we validated these abs using a knockout of TLR2. In the current paper, we further validate anti-TLR2 abs by showing its co-localization with the TLR2-GFP reporter (Fig. S1A).

      We then confirmed reporter and immunostaining data by qPCR showing Tlr2 expression in FACS-purified mouse HFSCs in anagen, telogen, and catagen (Fig.2J), in mouse epidermal cells and FACS-purified HFSCs (Fig.2K), and FACS-purified HFSCs isolated from Control and TLR2HFSC-KO mice (Fig.4E).

      As for the mechanistic link between TLR2 and BMP signaling was identified using RNAseq on FACS-purified HFSCs (supplementary Fig.4), then verified using qPCR (Fig.4E shows Bmp7,Bmp2, Bmpr1a ) and only then immunohistochemistry staining for BMP7 and phosphoSMAD1/5/9 was used (Fig.4A-D, F-H). Note that the large body of requested evidence is presented in Supplementary data. Other mechanistic links shown using qPCR include Nfkb2, Il1b, Il6, and Bmp7 in FACS-purified mouse HFSCs treated with BSA control or CEP (Fig.6Q,6R).

      “As the reviewers note, it is not clear whether the TLR2+ signal is located at the basal side of bulge stem cells, basement membrane underlying bulge stem cells, or dermal sheath cells encapsulating bulge structure. Co-staining with basement membrane markers such as collagen and laminin or HFSC basal side membrane markers such as Itga6, Itgb1, and Itgb4 will clarify this. In addition, showing the expression pattern of TLR2 in full skin including epidermis and dermis would be helpful. As TLR2 is highly expressed in immune cells or blood endothelial cells, if the antibody staining is valid, strong positive signals should present in the cells. Moreover, testing the TLR2 antibody in Tlr2 knock-out mouse tissues would be an appropriate control experiment.”

      Once again, in most instances we have used not the staining for TLR2 but TLP2 reporter mouse (Fig.2 legend). Anti-TLR2 abs have been verified in TLR2 KO as described above. Fig.2K shows comparison of Tlr2 mRNA expression in mouse epidermal cells to FACS-purified HFSCs by qPCR.

      TLR2 signal is detected in several cell types within the hair follicle as well as in dermal cells surrounding the hair follicles, such as lymphocytes, resident tissue macrophages, fibroblast, and fibroblast precursors, etc. (https://www.proteinatlas.org/ENSG00000137462-TLR2/single+cell+type). In Author response image 1 below, white arrows point to the TLR2-positive cells around the hair follicle. In our paper, we focus on HFSC TLR2 and use the respective inducible tissue specific TLR2 KO. The contribution of TLR2 on other cell types can be assessed by the comparison of the phenotypes of global TLR2 KO, TLR2 KO-WT bone marrow chimeras and HFSC-specific TLR2 KO. The results are presented in both, main and supplementary figures (Fig.5D-I and SFig.5I-K shows global TLR2 KO, Fig.6H-I, SFig.5G-h shows bone marrow chimeras and Figs.3,4, 5 (J-M), Fig.5 (J-N) shows the main focus, HFSC-TLR2 KO. Overall, the phenotype (delay of hair regeneration after wounding) seems to be the strongest in TLR2 KO, whereas bone marrow chimeras and HFSCs phenotypes are comparable. Thus, TLR2 on bone marrow derived cells complements the main role for TLR2 on HFSCs.

      Author response image 1.

      Staining for TRLR2 (white), DAPI (blue) and Keratin 17 (purple) is shown

      “The increase in expression of TLR2 during the hair follicle stem cell activation should be documented by FACS and/or qPCR. This is important because as noted by one of the reviewers.”

      While original observation was done using both, a TLR2 reporter mouse and immunostaining, the data were confirmed by qPCR showing Tlr2 mRNA expression in FACS-purified mouse HFSCs in anagen, telogen, and catagen (Fig.2J).

      “In Fig 1D, the authors mentioned that they re-analyzed published RNA-seq data (Greco et al., 2009) to show the increase of Tlr2 and Tlr6 expression in late telogen compared to early telogen. However, there is no RNA-seq data in that paper, but only microarray data of bulge vs HG comparison and dermal papillae cells (DP) in early, mid, late Telo. If the authors used DP data to show the increase of Tlr2 transcripts in late Telo, the analysis is completely wrong and has to be corrected. The problem is compounded by the fact that in other published HFSC RNA-seq datasets (Yang et al., Cell, 2017, Adam et al., Nature Cell Biology, 2020), the expression levels of Tlr2 and Tlr6 are very low (below 5 TPM). In Fig 1G, the authors also re-analyzed Morinaga et al., 2021 data to show the reduction of Tlr2 expression in HFSCs in high-fat diet mice. However, in the raw data of Morinaga et al., 2021 (GSE169173), Tlr2 expression FPKM values are below 1 in both normal diet and high-fat diet samples, which are too low to perform comparative analysis and are not statistically meaningful. Like Tlr2, the expressions of Tlr1 and Tlr6, which form heterodimer with TLR2, are almost 0. Thus, the authors should revisit the dataset and revise their analysis and conclusion.”

      To document the existence of Tlr2 and Tlr6 expression in HFSCs, the authors should perform RNR-seq-based gene expression analysis by themselves. Otherwise, the authors' TLR2 expression analyses in Fig 1 are not convincing. These are serious issues that the authors will want to rectify so that eLIFE readers will not discount their findings and importance.”

      It is correct, we analyzed a published array, not RNAseq data (Greco et al., 2009) using GEO2R tool which allowed us to compare the mRNA expression levels between early, middle, and late telogen in bulge CD34 positive cells. We changed the “RNA-seq” (the term was used incorrectly) to “RNA microarray” in the main text.

      In our manuscript, TLR2 expression is documented not only in Fig.1, but also in Fig.2 and S.Fig.1. We utilized 3 different methods to document TLR2 expression: TLR2-reporter mouse, staining for TLR2 and qPCR of isolated cells for TLR2. Fig.2K shows comparison of Tlr2 mRNA expression in mouse epidermal cells to FACS-purified HFSCs by qPCR to document increased TLR2 expression on HFSCs. Likewise, Fig.2J shows qPCR for TLR2 on HFSC during various phases of hair growth.

      “In Fig 2, to support the expression of Tlr2 in HFSCs, the authors utilized TLR2-GFP mice and showed the strong GFP expression in HFSCs, hair bulb, and ORS. However, as the expression data in Fig 1 are questionable, the GFP reporter data should be carefully analyzed with proper control experiments. For example, although TLRs are highly expressed in immune cells and endothelial cells, which are abundantly present in skin, Fig 2 data did show the GFP expression in these cells. Instead, the GFP signals looked very specific to epithelial compartments, which is odd. Again, to convince readers, the authors should provide more comprehensive analyses of expression patterns of TLR2-GFP mice in skin. Also, if the TLR2-GFP signals faithfully reflect the actual expression of Tlr2 mRNA, the GFP signals should increase in late telogen compared to early telogen. The authors should check whether TLR2-GFP expression follows this pattern.”

      The specificity of TLR reporter was characterized in Price et al. , 2018. A Map of Toll-like Receptor Expression in the Intestinal Epithelium Reveals Distinct Spatial, Cell Type-Specific, and Temporal Patterns. Immunity, 49. Thus, TLR2 reporter mouse is well characterized (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6152941/) and represents one of the best available tools to show TLR2 expression.

      Expression of TLR2 on endothelial cells and validation of anti-TLR2 abs was performed in McCoy et al, Science Signaling as mentioned above. Also as discussed above we show a strong correlation between TLR2-GFP reporter expression and TLR2 expression using coimmunostaining with GFP and TLR2 antibodies with appropriate isotype-match non-immune antibodies as negative controls.

      There is no doubt that TLR2 is expressed on immune, endothelial and epithelial cells. According to the Human Protein Atlas, TLR2 expression is identified in skin fibroblasts, keratinocytes, melanocytes, etc., so our findings are well supported by the literature (https://www.proteinatlas.org/ENSG00000137462-TLR2/single+cell+type). Indeed, we detected TLR2 in cells surrounding the hair follicle (see the pictures above). TLR2 signal was detected in nearly all niches of hair follicles including the CD34-positive cells.

      In Fig.S1 we demonstrated an increased level of TLR2 in the late (competent) telogen compared to the early (refractory) telogen using immunostaining for TLR2-GFP. The results mirrored published RNA-array data in Fig.1D. Again, reporter and immunostaining results have been validated by qPCR for TLR2.

      The levels of TLR2 might be heavily influences by the environment, i.e. pathogens availability. In this regard, note that mice for this study were kept in normal, not pathogen-free conditions.

      “Overall, the existence of Tlr2 expression in HFSCs is still questionable. Without resolving these, genetic deletion of Tlr2 in HFSCs cannot be rationalized.”

      In our manuscript, TLR2 expression is documented not only in Fig.1, but also in Fig.2 and S.Fig.1. We utilized 3 different methods to document TLR2 expression: TLR2-reporter mouse, staining for TLR2 and qPCR of isolated cells for TLR2. Besides these data, we show the functional responses to canonical TLR2 ligand, PAM3CSK4, and previously characterized endogenous ligand, CEP, using proliferation, western blotting and many other approaches. In numerous immunostainings we show co-localization of TLR2 and CD34 (Fig.2) using IMARIS surface rendering and colocalization tools. Our conclusions are further supported by published results as discussed above.

      2) “The central conclusion of this study is that the activation of TLR2 can suppress BMP signaling; however, the molecular link between TLR2 and BMP signaling is still missing. Given the importance of this finding, it would be intriguing to further investigate how TLR2 activation suppresses BMP signaling. A better characterization of the molecular-level interaction between TLR2 and BMP signaling can further enhance the impact of this study.

      -The published dataset should be re-analyzed, as some images and their quantification do not appear to be matched. Representative images should be used.”“In Fig 4, the authors propose that the activation of TLR2 pathway inhibits the BMP signaling pathway, which makes HFSCs quiescent. In TLR2-HFSC-KO, the authors showed that BMP7 is increased and pSMAD1/5/9 is sustained. The increase in BMP7 expression and SMAD activation should be demonstrated by additional assays. Are SMAD target genes activated in the cKO mice?”

      This mechanistic link between TLR2 and BMP was originally identified by RNAseq, confirmed by qPCR and then by immunostaining for both, BMP7 and BMP pathway activation based on phosphoSMAD1/5/9 levels. The connection to BMP pathway was also shown by western blotting (S.Fig.4B,C). The rescue experiments have been performed using Noggin injections. According to our data, numerous SMAD target genes are upregulated in TLR2-HFSC-KO, such as Kank2, Ptk2b, Scarf2, Camk1, Dpysl2, as well as BMP2 and BMP7, and these changes were confirmed by qPCR analysis in Fig.4E. Additional evidence is shown in Fig.6, which demonstrates that endogenous TLR2 ligand, CEP-carboxyethylpyrrole, acts by a similar, BMP-dependent pathway. Also, Supplemental Fig.4 adds more details to this link. SFig.4B,C shows that TLR2 activation by canonical ligand PAM3CSK4 inhibits pSMAD levels induced by BMP (western blot is shown). At the same time, as anticipated PAM3CSK4 upregulated NFkB, however, little of no effect of BMP stimulation on NFkB is observed. To summarize: TLR2 affects both, BMP7 production and BMP induced downstream signaling judged by PhosphoSMADs. The later connection appears to go in one direction: TLR2 signaling affects BMP-induced pSMADs, however, BMP signaling does not seem to substantially change TLR2-dependent NFkB. We plan to delve into the intersection of these important pathways in future.

      “Functionally, downregulation of BMP signaling by injecting Noggin, a BMP antagonist, in TLR2HFSC-KO mice induces HFSC proliferation. These functional data are solid. However, it is still curious how TLR2 signaling interact with BMP pathway molecularly. Is it transcriptional regulation or translational regulation? Perhaps, RNA-seq analysis of TLR2HFSC-KO could give some hints to answer this question. Furthermore, checking out other signaling pathways such as WNT/LEF1 and pCREB, which are important for hair cycle activation and NFkB, a downstream effector of TLR signaling would be helpful to interrogate mechanistic insights.”

      As discussed above, TLR2 affects both, BMP7 production and BMP-induced downstream signaling judged by PhosphoSMADs. The later connection appears to go in one direction: TLR2 signaling affects BMP-induced pSMADs, however, BMP signaling does not seem to substantially change TLR2-dependent NFkB.

      Indeed, in addition to BMP signaling, the Wnt signaling and β-catenin stabilization within HFSCs, known to trigger their activation (Deschene et al., 2014). However, this axis remained unchanged upon TLR2HFSC-KO (as shown in Supplementary Fig. 4J). There were several published reports on the crosstalk between TLR and BMP signaling such as (doi: 10.1089/scd.2013.0345. Epub 2013 Nov 7) showing that activation of TLR4 inhibits BMP-induced pSMAD1/5/8 and this connection requires NFkB. We probed NfkB activation, please, see the responses above.

      However, we were not able to detect substantial effect of NFkB inhibition on BMP signaling in hair follicles (not shown).

      3) “The function of CEP, a proposed endogenous ligand of TLR2, is still not clear. The authors imply that the decreased CEP level in aged mice could lead to deficient TLR2 signaling, which could further cause aging-associated hair regeneration defects. But this has not been demonstrated. What are the BMPs and pSmad1/5 levels in aged skin? Another important experiment to confirm the importance of this link during aging would be to inject CEP into the aged skin and examine whether this could restore hair regeneration in aged mice. Does CEP activate hair cycling during the endogenous pathway? What might be the source of CEP? Does CEP treatment activate BMP7 signaling? The authors should clarify these issues. The authors suggested that CEP is an endogenous ligand of TLR2, and administration of CEP induces hair cycle entry in a TLR2dependent manner. How potent is CEP in terms of HFSC activation? In Fig 6Q, CEP increases the expression of Nfkb2, Il1b, and Il6, but the fold changes are marginal. Also, if CEP is a critical ligand, the loss of CEP by a genetic deletion or a pharmacological inhibition should result in the delay of hair cycle entry. Furthermore, the source of CEP expression is curious. Is it expressed by HFSCs or dermal fibroblast or immune cells? Finally, comparing the effect of CEP to the effect of other bacterial origin Tlr2 ligands such as heat killed bacteria, purified microbial cell-wall components, and synthetic agonists (Pam3CSK4) would be helpful. It is curious if HFSC directly senses the bacterial materials and triggers hair follicle regeneration or are indirectly directed by immune cells and endothelial cells, which could be primary sensor.”

      CEP is not a protein, it is an oxidative stress-generated metabolite of polyunsaturated fatty acid, DHA (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5360178/), thus, it is impossible to generate a knockout of this molecule. As demonstrated in previous publications (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2990914/, https://pubmed.ncbi.nlm.nih.gov/34871763/) CEP serves as a critical endogenous ligand supporting TLR2 signaling in the absence of pathogens. While other TLR2 endogenous ligands, such as HMGBs or HSPs exist (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4373479/), CEP binds to TLR2 directly, and its generation is aided by MPO (myeloperoxidase) amongst other peroxidases and sources of reactive oxygen/nitrogen species. MPO (produced by immune cells amongst others) serves as an innate immunity response against pathogens, but it also generates CEP adducts (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6034644/) adducts in both protein and lipid form. The knockout of MPO diminishes CEP generation in skin (PMC6034644), thereby demonstrating the causative relationship between CEP and MPO.

      Author response image 2.

      Additional immunostaining of mouse skin for Keratin 17 (purple), CEP (green) and MPO (red). Similar staining is in S.Fig.5A and quantification is in S.Fig.5B.

      Also, the above-mentioned manuscripts show that CEP effects are milder but overall comparable with canonical TLR2 agonists, PAM3SCK4. As we mention in the present manuscript, normal young mice’s tissues are devoid of CEP (which is generated in response to inflammation) with an exception of hair follicles. This is likely attributed to the secretion of MPO by hair follicles (PMID: 36402231) especially in conditions of inflammation (PMID: 32893875). Supplementary Fig.5A,B show that MPO is present at the high level in sebaceous gland (as a part of anti-microbial mechanism). Again, MPO is a secreted enzyme and it is likely to be a source of continuous DHA oxidation into CEP in hair follicles. We also document that both, TLR2 and CEP levels in hair follicles (but not in other tissues-an important point for CEP) are reduced in aging. Likewise, SFig.5A,B shows that MPO secretion in hair follicle is reduced by more than 60% in aging mice. Thus, it is likely that reduced MPO levels in aging hair follicle produce less CEP. Together with reduced TLR2 levels, the lack of CEP might contribute to hair loss in aging.

      We show that similar to TLR2, CEP in hair follicles operates via a BMP-7 dependent pathway (see Fig.6). We also provide results using canonical bacterial ligand for TLR2, PAM3CSK4 whose effect on HFSCs proliferation is similar to CEP in a TLR2-dependent manner. TLR2 blocking approaches were used (Supp. Fig.4B, C, D, E, Supp. Fig.5D-5F). It remains to be seen whether CEP is required for the normal hair cycling and whether its administration might improve hair loss in aging subjects.

      “The impacts of CEP/TLR2 on proliferation of keratinocytes is still weak. How much of this effect is a result of NFkB activation, and how much is simply due to inhibiting BMP signaling?

      Impact of TLR2 on proliferation was demonstrated using a variety of mouse models, from global TLR2 KO to bone marrow chimeras to HFSCs-specific TLR2 KO, again using multiple approaches. The same applies to the effects of CEP as well as to canonical TLR2 ligand, PAM3CSK4, which were demonstrated both in vivo and in culture to be TLR2-dependent (Fig.6MO) and Supplementary Fig.4E-D). As for NFkB connection, see our responses above. It seems that the connection between TLR2 and BMP pathway occurs independently of NFkB activation.

      4) The links between TLR2 pathway and aging and obesity are only correlative. Although the authors suggest that the reduction of TLR2 expression in aging and obesity may diminish hair growth (Fig 1), there is no direct functional evidence that supports this possibility. If the authors wish to make this claim, they should test the roles of TLR2 and CEP in aging and obesity conditions.”

      We show that both, TLR2 and CEP are reduced in aging, and that this pathway contributes to hair cycling and regeneration upon wounding, we do not wish to claim more.

      5) More minor points:

      “Fig.4: The Noggin treatment in TLR2 KO mice is an important experiment. However, it is unclear why Noggin only enhances proliferation (Ki67 level) in HG but not in the bulge. This discrepancy should be addressed.”

      As we showed in Fig. 3B-3F, TLR2 HFSC-KO mice have prolonged first telogen. Noggin treatment at the first postnatal telogen promotes telogen to anagen transition in TLR2HFSC-KO characterized by the activation of HG cells prior to the bulge cells. According to the literature, the bulge cells remained silent during the late telogen, however, HGs became Ki67- positive and the proliferation of HG cells contributed to the telogen-to-anagen transition.

      (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2668200/

      https://www.sciencedirect.com/science/article/pii/S0022202X15404518?via%3Dihub

      https://journals.biologists.com/jcs/article/114/19/3419/34892/Hair-follicle-predetermination).

      “Fig.5: Does TLR2 cKO slow down wound healing, in addition to affecting pigmentation and the number of hair follicles?”

      In our previous publication, we demonstrated that deletion of TLR2 in HFSC does not affect wound healing process. Instead, endothelial TLR2 promotes wound vascularization and healing.

      (see Xiong and all. Timely Wound Healing Is Dependent on Endothelial but Not on Hair Follicle Stem Cell Toll-Like Receptor 2 Signaling.// Journal of Investigative Dermatology, Volume 142, Issue 11, November 2022, Pages 3082-3092.e1).

      “There is no panel B in Fig.4. There is no image in Fig 4D. Please correct this properly.”

      We corrected Fig.4

      “Discussion: The constant production of CEP in homeostatic skin and in the absence of inflammation should be further discussed. Additionally, the possible causes of reducing CEP levels during aging should also be further discussed.”

      We explained the sources of CEP generation, such as MPO as a one of the key enzyme, above.<br /> The data on MPO levels in hair follicles of young and old mice are presented in Supplementary Fig.5A,B. Since we previously shown that MPO produces CEP from DHA (PMC6034644), the reduction in MPO in aging is likely to contribute to reduced CEP levels.

    1. Author Response

      We are grateful to the three reviewers and the editors who have provided comments about our manuscript, "Formation of malignant, metastatic small cell lung cancers through overproduction of cMYC protein in TP53 and RB1 depleted pulmonary neuroendocrine cells derived from human embryonic stem cells.”

      We are pleased that the reviewers recognized the importance of the problem we have addressed – namely, the need for better models of small cell lung cancer, a relatively common and refractory cancer. We also appreciate their acknowledgement of the significance of our major finding: that addition of an efficiently expressed CMYC transgene to neuroendocrine cells derived from human embryonic stem cells in which the RB1 and TP53 genes have been suppressed serves to drive aggressive growth and metastatic spread, rendering this system an appealing one for future studies of this recalcitrant cancer. Further, we acknowledge that more work needs to be done to more fully characterize and better understand the mechanistic features of this model system and to exploit it for therapeutic purposes.

      More specifically, we agree with the reviewers that this manuscript would be stronger if it included: (i) tests of other oncogenes, especially other members of the MYC gene family, to serve as drivers of tumor growth and metastasis and tests of orthotropic implantation of cells into the lung; (ii) descriptions of how such tumors with various genotypes respond to therapeutic approaches, both established and novel; and (iii) a more complete assessment of the contribution of abundant MYC proteins to physiological changes in tumor cells, such as growth, apoptosis, and invasion.

      While we wish we could provide such information, it is unrealistic to believe that it will be generated by the current constellation of authors in the foreseeable future. Data in the present manuscript has been generated over nearly five years, mostly in the early phases of that interval. Since then, some of us have moved from one institution to another, and some have shifted the focus of our studies. Further delays in publishing the main messages in this paper will only delay the pursuit of further studies, most likely by others. Indeed, one of the strongest justifications for the novel publication policies at eLife is to return control of the time for dissemination of results to the hands of the authors. Our situation illustrates the wisdom of that approach.

      We also note that the reviewers have raised a few issues that we aim to clarify by revisions of the current manuscript, thereby creating an improved Version of Record, within the next few weeks. We acknowledge here the significance of those issues and the ambiguities noted by the reviewers.

      The issues include the following point noted by more than one reviewer: our claim that expression of the CMYC oncogene increases the neuroendocrine character of the tumors. We recognize that this observation may be influenced by the nature of the analysis (single cell or bulk RNA sequencing), the choice of lineage markers (eg, NEUROD1 or ASCL1 or others), and the statistical evaluation of the data. We will review these aspects of the problem and make appropriate changes in the text to be submitted as the Version of Record.

      Reviewer 1 also makes a good point about the possible effects of CMYC on the differentiation of hESC-derived lung progenitors (LPs). In this paper, we examine this issue only in LPs in which the tumor suppressor genes, RB1 and TP53, have been suppressed. Further studies of the effect of CMYC on differentiation of LPs with various combinations of functional tumor suppressor genes might well prove valuable in exploring the origins of SCLC.

      Finally, we wish to note that a topic discussed by Reviewer 1 (and by us) about the still poorly understood relationship between cancer genotypes and cell lineages has been partially addressed in a paper from our group that has been accepted for publication in Science.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      1) A single biomarker seems very unlikely to be of much help in the detection of glaucoma due to the etiological heterogeneity of the disease, the existence of different subtypes, and the genetic variability among patients. Rather, a panel of biomarkers may provide more useful information for clinical prediction, including better sensitivity and specificity. The inclusion of additional metabolites already identifying in the study, in combination, may provide more reliable and correct assignment results.

      The authors’ answer: Thank you for your comment. We recognize the constraints of using single biomarkers for diagnosis. In upcoming research, we aim to incorporate multiple biomarkers to improve diagnostic accuracy and will consider adding more metabolites as suggested.

      2) The number of samples in the supplementary phase is low, larger sample sizes are mandatory to confirm the diagnostic accuracy.

      The authors’ answer: Thank you for your comment. Collecting aqueous humor is invasive, making samples scarce. We acknowledge the small sample size limitation. In future studies, we plan to use larger samples to verify the biomarker's diagnostic accuracy. Your feedback emphasizes the need for thorough validation in our next research

      3) Cohorts from different populations are needed to verify the applicability of this candidate biomarker.

      The authors’ answer: Thank you for the suggestion. We agree on the need to test the biomarker's relevance across varied populations. Reports from other groups will help confirm and broaden our results.

      4) Sex hormones seem to be associated also with other types of glaucoma, such as primary open-angle glaucoma (POAG), although the molecular mechanisms are unclear (see doi:10.1167/iovs.17-22708). The inclusion of patients diagnosed with other subtypes of glaucoma, like POAG, may contribute to determining the sensitivity and specificity of the proposed biomarker. Androstenedione levels should be determined in POAG, NTG, or PEXG patients.

      The authors’ answer: I agree with your comment and thank you for your suggestion. PACG is a major cause of irreversible blindness in Asians. While this study centers on PACG, the link between sex hormones and other glaucoma subtypes, like POAG, merits investigation. Future studies will include POAG and other subtypes to further assess androstenedione's diagnostic relevance.

      5) In addition, the levels of androstenedione were found significantly altered during other diseases as described by the authors or by conditions like polycystic ovary syndrome, limiting the utility of the proposed biomarker.

      The authors’ answer: Thank you for your advice. Androstenedione levels also change in conditions like polycystic ovary syndrome, which could affect the biomarker's specificity. We plan to further study androstenedione's unique changes in glaucoma versus other conditions to clarify its diagnostic value.

      6) Uncertainty of the androstenedione levels compromises its usefulness in clinical practice.

      The authors’ answer: The uncertainty surrounding androstenedione levels and its impact on clinical applicability is a valid concern. We plan to delve deeper into understanding the variability and determinants of androstenedione levels to better assess its clinical relevance.

      Reviewer #2 (Public Review):

      The "predict" part is on much less solid ground. The visual field progression and association with serum androstenedione within the current experimental design eludes to a correlation. It truly cannot be stated as predictive. To predict one needs to put the substance when nothing is there and demonstrate that the desired endpoint is reached. Conversely, the substance (androstenedione) can be removed, and show that the condition regresses. None of these are possible without model system experiments, which have not been done. The authors could put some additional details in the methods, such as: 1) how much sample was collected, 2) whether equal serum volume for analysis had equal serum proteins (or cells). They have used a LC-MS/MS and a Chemiluminescence method, but another independent method such as GC-MS/MS or NMR to detect androstenedione for a subset of patients with different stages of visual field defect would be desirable.

      The authors’ answer: We acknowledge your constructive critique concerning our use of the term "predict". In the present study, we elucidated a discernible correlation between visual field progression and serum androstenedione concentrations. We are cognizant of the critical distinction between correlation and causation, and we concur that our application of the term “predict” may have been overly assertive in this context.

      Your emphasis on the imperative of employing model system experiments to unequivocally ascertain causative relationships is well-received. The experimental approach of modulating the substance, androstenedione in this case, to empirically observe its consequential impact on the condition, is a pivotal direction that warrants exploration in subsequent research endeavors. With regard to the variability of serum protein concentrations across participants, we adopted a methodological standardization by ensuring that the analyzed serum volume remained consistent across samples. This was implemented to enhance the reliability and generalizability of our findings.

      Your recommendation to consider alternative detection methodologies, specifically GC-MS/MS or NMR, is duly noted. Although our choice of LC-MS/MS and Chemiluminescence was predicated on available resources, we recognize the scientific merit in leveraging multiple analytical techniques. In future investigations, we endeavor to incorporate a broader spectrum of detection methodologies for androstenedione, particularly when assessing patients with varied visual field defect stages, thereby bolstering the robustness and validity of our conclusions.

      Reviewer #1 (Recommendations for The Authors):

      1) POAG is the leading cause of irreversible blindness worldwide (see reference #4). The prevalence of PACG is highest in Asia, but the major form of glaucoma is still POAG. The authors should modify the abstract and background sections accordingly (see line 30 and lines 61-62).

      The authors’ answer: Thank you for your suggestion, and we apologize for this mistake. The sentence” Primary angle closure glaucoma (PACG) is the leading cause of irreversible blindness worldwide” has been changed to” Primary angle closure glaucoma (PACG) is the leading cause of irreversible blindness in Asia”. (Page 2, lines 33; Page 3, lines 62-64)

      2) Line 69, please change the sentence "the He et al. taught us..." to the following "the He et al. study taught us.".

      The authors’ answer: Thank you for your comment. The sentence "the He et al. taught us..." has been changed to "the He et al. study taught us.". (Page 3, lines 72)

      3) I suggest including the name of the identified candidate biomarker in the title of the manuscript. The title must be straightforward.

      The authors’ answer: We agree with your comment and thank you for your suggestion. The sentence “Metabolomics Identifies and Validates Serum Novel Biomarker for Diagnosing Primary Angle Closure Glaucoma and Predicting the Visual Field Progression” has been changed to “Metabolomics Identifies and Validates Serum Androstenedione as Novel Biomarker for Diagnosing Primary Angle Closure Glaucoma and Predicting the Visual Field Progression”. (Page 1, lines 1)

      4) Line 88, please change "normal subjects" to "control individuals".

      The authors’ answer: Thank you for your comment. We have changed "normal subjects" to "control individuals”. (Page 4, lines 91)

      5) Line 95 and so on along the manuscript, avoid the term "normal controls" or "normal" and use only the term "controls".

      The authors’ answer: Thank you for your advice. "normal subjects" has been changed to "controls". (Page 4, lines 113; Page5, lines 118,120,124,128,133)

      6) In the participants section, indicate the ocular treatments of PACG patients. For example, on line 141, which "treatment" are you referring to?

      The authors’ answer: Thank you for your comment. We apologize to this vague statement. Treatment included medical treatment and surgical treatment. We have revised it in the manuscript. (Page 5, lines 142)

      7) The entire section 2.4 is confusing. According to Figure S2, untargeted metabolomics was conducted with a mixed sample containing "all" serum extracts in order to obtain an in-house database with molecular features present in serum by LCHRMS. Then, this database was used for targeted metabolomics in individual serum samples using LCQQQ. However, as it is described in the manuscripts, it seems that first, an untargeted metabolomics analysis was carried out to identify altered metabolites, then targeted metabolomics was carried out to validate the untargeted analysis and finally, a profiling analysis was carried out to construct the database. The workflow must be clearly discussed and amended to be understable.

      The authors’ answer: Thank you for your comment. We have revised the description of the experimental method section 2.4. (Page 7, lines 195-198)

      8) Please, briefly explain what widely-targeted metabolomics is and how it works in this study (see section 2.4).

      The authors’ answer: Thank you for your comment. For extensively targeted metabolome detection, a local database was first established by using the standard database, and ion pair information was obtained by scanning ion pairs of mixed samples (QC) with QTOF. A wide range of metabolites were qualitatively obtained by comparing with the local self-built database, and then the metabolites of each sample were qualitatively and quantitatively measured by MRM scanning mode of triple four-bar QQQ. This project combines the non-target public database scanning construction database and the wide target local database to build a new database, and then scans the database of the samples of this project with Q-TOF, and then carries out the qualitative and quantitative detection of metabolites of each sample in MRM mode. (Figure S2)

      9) On Table 1, indicate the number of patients and controls with cataracts.

      The authors’ answer: For the glaucoma group and the control group, we have excluded people with cataracts. This section is described in the inclusion and exclusion criteria for supplementary materials. (Inclusion and exclusion criteria)

      10) On "Sample processing" section, lines 152 and 153: Have you used cold methanol to ensure metabolic quenching? If not, how metabolite quenching was carried out?

      The authors’ answer: Thank you for your comment. We use cold methanol to extract metabolites, and the early blood samples have been stored in a -80°C refrigerator to ensure a low temperature process and ensure metabolic quenching. (Page 6, lines 196)

      11) On the same "Sample processing" section, have you used internal standards during metabolite extraction? If yes, ones? If not, why?

      The authors’ answer: Thank you for your comment. In the metabolite extraction process of each sample, the same internal standard was added, and the same volume of 50 μL serum samples were extracted. The specific internal label name has been added in "Sample processing" section. (Page 6, lines 153-155)

      12) Lines 161-163, I suggest including in the supplementary material the worklist of the entire experiment run by LC-MS, including analytical replicates and QCs.

      The authors’ answer: Thank you for your comment. Worklist for mass spectrometry can be found in supplementary sheet1. (Page 6, lines 165)

      13) The title of the section "Detection method" does not seem appropriate, please change it to "Analytical methods "or something similar.

      The authors’ answer: Thank you for your advice. "Detection method" has been changed to “Analytical methods “. (Page 6, lines 168)

      14) Section 2.4.1, I suggest changing "Untargeted detection conditions" to "Untargeted metabolomics analysis".

      The authors’ answer: Thank you for your comment. "Untargeted detection conditions" has been changed to "Untargeted metabolomics analysis". (Page 6, lines 169)

      15) Lines 170-172, the column used is compatible with 100% water, why start with 5% acetonitrile?

      The authors’ answer: Thank you for your comment. If the acetonitrile starting gradient is 0, it will cause a lot of water-soluble substances to elute and easily clog the column, so we want to use 5% organic phase.

      16) Section 2.4.1, the chromatographic conditions (mobiles phases) were the same in both positive and negative ion mode? It is desirable to change or adjust a basic pH when working in negative, so please amend and clarify it.

      The authors’ answer: Thank you for your comment. In the negative ion mode, the peak shape of the chromatogram under the acidic system is better than that under the alkaline system, so we choose the acidic system.

      17) I am not able to clearly understand what is "widely targeted conditions" (see section 2.4.2). What is the difference with the conventional targeted metabolomics analysis? In my view, widely-targeted metabolomics refers to the combination of untargeted metabolomics and targeted metabolomics. This must be clarified and simplified.

      The authors’ answer: Thank you for your syggestion. The characterization of metabolites in this study was conducted using a non-targeted database and a self-built database. Non-targeted metabolites were characterized with mixed samples, and then combined with the laboratory self-established database to form a new metabolome database for this study. 2.4.2 The broad targeting here refers to the use of the MWDB standard self-built database to characterize metabolites, and then the QQQ MRM model to quantify metabolites. In order to clearly describe the detection process, this part of the method has been modified. (Figure S2)

      18) Line 199, please, indicate the normalization carried out.

      The authors’ answer: We agree with your comment and thank you for your suggestion. The normalization description is missing from its data processing steps and has been corrected in the manuscript. (Page 7, lines 203)

      19) How many instrumental replicates have you carried out both in untargeted and targeted metabolomics? Please, indicate it.

      The authors’ answer: Thank you for your advice. In this project, all sample mixtures were used as QC samples, which were repeated several times in the testing process (one QC sample was inserted between every 10 samples), and the repeated correlation between repeated QC was more than 99% to ensure the stability of sample testing. (Sheet1)

      20) Line 267, why did you select a fold changes threshold greater than 1.15 (or lower 0.85)? In metabolomics, it would be desirable to have a minimum of 1.5-fold change considering the variability of data.

      The authors’ answer: Thank you for your comment. FC reduction is selected to expand potential candidate metabolites and can be repeated in three batches and refer to the literature "Blood metabolomics uncovers inflammation-associated mitochondrial dysfunction as a potential mechanism. underlying ACLF "method screening threshold.

      21) To include anywhere the molecular formula of androstenedione.

      The authors’ answer: I agree with your comment and thank you for your suggestion. We have added the molecular formula of androstenedione to the supplementary material. (Page 17, lines 475)

      22) Line 290 is not Figure 4B and 4C, you may refer to Figure 3B and 3C.

      The authors’ answer: Thank you for your advice. We apologize to this mistake. Figure 4B and 4C have been changed to Figure 3B and 3C.

      23) Figure S3 was lost from Supplementary material, please include it.

      The authors’ answer: Thank you for your comment. We apologize to this mistake. There is an error in the ordering of the supplementary graph. Figure 3 is redundant, and we have modified it in the supplementary materials.

      24) Figure 4 B, indicate in the text the average and uncertainty of androstenedione levels in both control and PACG groups.

      The authors’ answer: Thank you for your comment. In the manuscript, We have added descriptions of mean ± standard deviation of androstendione levels in the control group and the disease group. (Page 11, lines 311-312)

      25) Section 3.6. please include the average and uncertainty of androstenedione levels in males and females in both control and PACG groups.

      The authors’ answer: Thank you for your advice. For 3.6 section, we supplemented the mean ± standard deviation of androstenedione levels in the control and disease groups. (Page 13, lines 350-356)

      26) Figure S9 seems missing.

      The authors’ answer: Thank you for your comment. We apologize to this mistake. Figures S9 has been added in the Supplementary material.

      27) Lines 345-346, indicate the levels obtained for the metabolite in the compared groups.

      The authors’ answer: Thank you for your suggestion. The levels of androstenedione in each group are seen in “The results from both discovery set 1 (Figure S9A, Mild:32600±17011, Moderate:33215±17855, Severe:46060±21789) and discovery set 2 (Figure S9B, Mild:27866±19873, Moderate:27057±13166, Severe:43972±19234) indicated that the mean serum androstenedione levels were significantly higher in the severe PACG group compared to the moderate and mild PACG groups (P<0.001). These findings were further validated in both validation phase 1 (Figure S9C, Mild:75726±45719, Moderate:65798±30610, Severe:94348±30858) and validation phase 2 (Figure S9D, Mild:1.121±0.3143 ng/ml, Moderate:1.461±0.4391 ng/ml, Severe:2.147±0.6476 ng/ml).” and “Notably, the level of androstenedione was found to be significantly higher in PACG patients than in normal subjects in both discovery set 1 (Figure 4B, P=0.0081, Normal:33987±11113, PACG:42852±20767) and discovery set 2 (Figure 4C, P=0.0078, Normal:31559±10975, PACG:37934±18529).”

      28) Line 368, you don't need to indicate the PACG abbreviation again.

      The authors’ answer: Thank you for your comment. We apologize to this mistake. I have changed " patients with PACG " to "patients". (Page 13, lines 377)

      29) Figure 6, panels A and B are not labeled (i.e., commented) in the body text of the manuscript.

      The authors’ answer: Thank you for your suggestion. We’re very sorry for this mistake. Figure 6, panels A and B have been labeled in the manuscript. (Page 13, lines 377-379)

      30) Section 3.7., when you indicate "after therapy" are you referring to surgical treatment? Please, clarify.

      The authors’ answer: Thank you for your comment. We apologize to this vague statement. Blood samples were taken before and three months after surgery. “therapy” has been changed to “surgical treatment” in the manuscript. (Page 13, lines 377)

      31) Line 370, "97th patient" should be replaced by "nine patients"?

      The authors’ answer: Thank you for your advice. We apologize to this mistake. "97th patient" has been changed to “nine patients". (Page 13, lines 378-379)

      32) Lines 370-372, it difficult to understand, please clarify why these findings indicate that severity is related to increased PACG according to Figure 6B.

      The authors’ answer: Thank you for your comment. We’re very sorry for this vague statement. The sentence of “These findings showed that the levels of androstenedione that were tightly connected with PACG severity rose dramatically as PACG progressed.” Has been removed.

      33) Line 447, the word "corrected" should be changed to "correlated"?

      The authors’ answer: Thank you for your comment. "corrected" has been changed to "correlated". (Page 16, lines 453,456)

      34) According to the literature, the levels found in control subjects are within the range of the "normal" values, i.e., are they comparable?

      The authors’ answer: Thank you for your advice. Androstenedione ranges from 0.4 to 2 in the normal population. The mean standard deviation of androstenedione in the normal population was 1.552 ± 0.4859.

      35) Lines 471-474, why "steroid hormone biosynthesis appears to be the critical node to high-match PACG pathophysiological concepts" while the high enrichment was observed in the "metabolic pathways"?

      The authors’ answer: Metabolic pathways encompass a series of chemical reactions within a cell that enable the synthesis or breakdown of molecules to maintain the cell's energy balance. Steroid hormone biosynthesis is one of these metabolic pathways, and its products, steroid hormones, participate in a wide range of physiological processes, including metabolism, immune response, and the regulation of inflammation. In a different context, a study related to fatigue during Androgen Deprivation Therapy (ADT) showed a significant difference in metabolite levels within the steroid hormone biosynthesis pathways, emphasizing the role these pathways play in metabolic alterations. The mentioned findings suggest that steroid hormone biosynthesis and metabolic pathways are intertwined. (Page 17, lines 481-488)

      36) Figure S13 and Figure S14A are the same.

      The authors’ answer: Thank you for your comment. Figure S14A has been removed.

      37) On lines 476-485, it would be interesting to discuss whether alterations of this metabolite could be a cause or consequence of PACG.

      The authors’ answer: Based on the literature found, androstenedione is a naturally occurring steroid hormone produced by the gonads and adrenal glands, and serves as an intermediate in testosterone biosynthesis (Androstenedione (a Natural Steroid and a Drug Supplement): A Comprehensive Review of Its Consumption, Metabolism, Health Effects, and Toxicity with Sex Differences). Early events in the pathobiology of glaucoma involve oxidative, metabolic, or mechanical stress acting on retinal ganglion cells (RGCs), leading to their rapid release of danger signals such as extracellular ATP, thus triggering microglial and macroglial activation as well as neuroinflammation (Immune Responses in the Glaucomatous Retina: Regulation and Dynamics). However, one might speculate that since androstenedione is a steroid hormone, it could potentially impact the inflammatory and metabolic stress observed in the pathophysiological processes of glaucoma (Adaptive responses to neurodegenerative stress in glaucoma). Metabolic and anti-inflammatory avenues might be crucial in understanding the relationship between alterations in androstenedione levels and the severity of glaucoma. Nevertheless, more research and literature analysis would be necessary to better understand the precise relationship and its underlying mechanisms between these two entities.

      38) I suggest sending the MS and MS/MS into a publicly available repository.

      The authors’ answer: Thank you for your suggestion. Further research will necessitate the utilization of the raw mass spectrometry data. We anticipate making this raw data available in a public repository upon the conclusion of subsequent experiments.

      Reviewer #2 (Recommendations for The Authors):

      The authors should aim to describe methods in greater detail.

      The authors could improve the writing to accurately describe their results and their interpretation and state what else could be done to make the result truly "predictive".

      The authors’ answer: (1) Detail Enhancement in the Methods section: We expand the description of methods such as sample pre-processing, mass spectrometry detection, and result analysis in the study to provide more detailed information about the procedures, equipment, and materials used. (2) Improvement in Writing Quality: We have engaged a scientific editor to review our manuscript for clarity, coherence, and consistency to ensure that the results and interpretations are accurately and clearly conveyed. Terminologies and phrases have been revised to better reflect the findings and interpretations. (3) Limitation supplement: We have included a discussion on the limitations of our study and suggested additional studies and analyses that could be conducted to enhance the predictive value of our findings. We sincerely appreciate the constructive feedback from the reviewer, which has greatly contributed to improving the quality and rigor of our manuscript.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Issue 1: The relevance is somewhat unclear. High cysteine levels can be achieved in the laboratory, but, is this relevant in the life of C. elegans? Or is there physiological relevance in humans, e.g. a disease? The authors state "cells and animals fed excess cysteine and methionine", but is this more than a laboratory excess condition? SUOX nonfunctional conditions in humans don't appear to tie into this, since, in that context, the goal is to inactivate CDO or CTH to prevent sulfite production. The authors also mention cancer, but the link to cysteine levels is unclear. In that sense, then, the conditions studied here may not carry much physiological relevance.

      Response 1: We set out to answer a fundamental question: what pathways regulate the function of cysteine dioxygenase, a highly conserved enzyme in sulfur amino acid metabolism? In an unbiased genetic screen that sampled millions of EMS generated mutations across all ~20,000 C. elegans genes, we discovered loss of function/null mutations in egl-9 and rhy-1, two negative regulators of the hypoxia inducible transcription factor (hif-1). Genetic ablation of the egl-9 or rhy-1 loci are likely not relevant to the life of a C. elegans animal, i.e. this is not representative of a natural state. Yet, this extreme genetic intervention has taught us a new fundamental truth about the interaction between EGL-9/RHY-1, HIF-1, and the transcriptional activation of cdo1. Similarly, the high cysteine levels used in our assays may or may not be representative of a state in nature, we do not know (nor do we make any claims about the environmental relevance of our choice of cysteine concentrations). It seems very plausible that pathological states exist where cysteine concentrations may rise to comparable levels in our experimental system. More importantly, we have started with excess to physiology to elicit a clear response that we can study in the lab. Similar strategies established the cysteine-induction phenotype of CDO1 in mammalian systems. For instance, in Kwon and Stipanuk 2001, hepatocytes are cultured in media supplemented with 2mmol/L cysteine to promote a ~4-fold increase in CDO1 mRNA.

      Issue 2: The pathway is described as important for cysteine detoxification, which is described to act via H2S (Figure 6). Much of that pathway has already been previously established by the Roth, Miller, and Horvitz labs as critical for the H2S response. While the present manuscript adds some additional insight such as the additional role of RHY-1 downstream on HIF-1 in promoting toxicity, this study therefore mainly confirms the importance of a previously described signalling pathway, essentially adding a new downstream target rhy-1 -> cysl-1 -> egl-9 -> hif-1 -> sqrd-1/cdo-1. The impact of this finding is reduced by the fact that cdo-1 itself isn't actually required for survival in high cysteine, suggesting it is merely a maker of the activity of this previously described pathway.

      Response 2: We agree that the primary impact of our manuscript is the establishment of a novel intersection between the H2S-sensing pathway (largely worked out by Roth, Miller, and Horvitz) and our gene of interest, cysteine dioxygenase. We believe that the connection between these two pathways is exciting as it suggests a logical homeostatic circuit. High cysteine yields enzymatically produced H2S. This H2S may then act as a signal promoting HIF-1 activity (via RHY-1/CYSL-1/EGL-9). High HIF-1 activity increases cdo-1 transcription and activity promoting the degradation of the high-cysteine trigger. As pointed out by the reviewer, cdo-1(-) loss of function alone does not cause cysteine sensitivity at the concentrations tested. Given that cysl-1(-) and hif-1(-) mutants are exquisitely sensitive to high levels of cysteine, we propose that HIF-1 activates the transcription of additional genes that are required for high cysteine tolerance. However, our genetic data show that cdo-1 is more than simply a marker of HIF-1 transcription. Our genetic data in Table 1 demonstrate that HIF-1 activation (caused by egl-9(-)) is sufficient to cause severe sickness in a suox-1 hypomorphic mutant which cannot detoxify sulfites, a critical product of cysteine catabolism. This severe sickness can be reversed by inactivating hif-1, cth-2, or cdo-1. These data demonstrate a functional intersection between the established H2S-sensing pathway and cysteine catabolism governed by cdo-1.

      Reviewer #2 (Public Review):

      Issue 3: First, the authors show that the supplementation of exogenous cysteine activates cdo-1p::GFP. Rather than showing data for one dose, the author may consider presenting dose-dependency results and whether cysteine activation of cdo-1 also requires HIF-1 or CYSL-1, which would be important data given the focus and major novelty of the paper in cysteine homeostasis, not the cdo-1 regulatory gene pathway.

      Response 3: We agree with the reviewer and have performed the suggested dose-response curve for expression of Pcdo-1::GFP in wild-type C. elegans. We observe substantial activation of the Pcdo-1::GFP transcriptional reporter beginning at 100µM supplemental cysteine (Figure 3C). Higher doses of cysteine do not elicit a substantially stronger induction of the Pcdo-1::GFP reporter. Thus, we find that 100µM supplemental cysteine strikes the right balance between strongly inducing the Pcdo-1::GFP reporter while not inducing any toxicity or lethality in wild-type animals (Figure 3E).

      We further agree that testing for induction of the Pcdo-1::GFP reporter in a hif-1(-) or cysl-1(-) mutant background is a critical experiment. However, we have not been able to identify a cysteine concentration that induces Pcdo-1::GFP and is not 100% lethal for hif-1(-) or cysl-1(-) mutant C. elegans. The remarkable sensitivity of hif-1(-) or cysl-1(-) mutant C. elegans to supplemental cysteine demonstrates the critical role of these genes in promoting cysteine homeostasis. But because of this lethality, we could not assay the Pcdo1::GFP reporter in the hif-1(-) or cysl-1(-) mutant animals. But the lethality to excess cysteine demonstrates that this cysteine response is salient. To get at how cysteine might be interacting with the HIF-1-signaling pathway, we performed new additivity experiments by supplementing 100µM cysteine to wild type, egl-9(-), and rhy-1(-) mutant C. elegans expressing the Pcdo-1::GFP reporter. Surprisingly, we found that cysteine had no significant impact on Pcdo-1::GFP expression in an egl-9(-) mutant background but significantly increased the Pcdo-1::GFP expression in a rhy-1(-) background (Figure 3A,B). These data suggest that cysteine acts in a pathway with egl-9 and in parallel to rhy-1. These data have been incorporated into Figure 3A,B and are included in the Results section of the manuscript.

      Issue 4: While the genetic manipulation of cdo-1 regulators yields much more striking results, the effect size of exogenous cysteine is rather small. Does this reflect a lack of extensive condition optimization or robust buffering of exogenous/dietary cysteine? Would genetic manipulation to alter intracellular cysteine or its precursors yield similar or stronger effect sizes?

      Response 4: We agree that the induction of the Pcdo-1::GFP reporter by supplemental cysteine is not as dramatic as the induction caused by the egl-9 or rhy-1 null alleles. We believe our Response 3 and new Figure 3C demonstrate that this phenomenon is not due to lack of condition optimization, but likely reflects some biology. As pointed out by the reviewer, C. elegans likely buffers exogenous cysteine and this (perhaps) prevents the impressive Pcdo-1::GFP induction observed in the egl-9(-) and rhy-1(-) mutant animals. We have now mentioned this possible interpretation in the Results section. Furthermore, we like the idea of using genetic tricks to promote cysteine accumulation within C. elegans cells and tissues and will consider these approaches in future studies.

      Issue 5: Second, there remain several major questions regarding the interpretation of the cysteine homeostasis pathway. How much specificity is involved for the RHY-1/CYSL-1/EGL-9/HIF-1 pathway to control cysteine homeostasis? Is the pathway able to sense cysteine directly or indirectly through its metabolites or redox status in general? Given the very low and high physiological concentrations of intracellular cysteine and glutathione (GSH, a major reserve for cysteine), respectively, there is a surprising lack of mention and testing of GSH metabolism.

      Response 5: Future studies are required to determine the specificity of the RHY-1/CYSL-1/EGL-9/HIF-1 pathway for the control of cysteine homeostasis. Our proposed mechanism, that H2S activates the HIF-1 pathway is based largely on the work of the Horvitz lab (Ma et al. 2012). They demonstrate that H2S promotes a direct inhibitory interaction between CYSL-1 and EGL-9, leading to activation of HIF-1. These findings align nicely with our genetic and pharmacological data. However, our work does not provide direct evidence as to the cysteine-derived metabolite that activates HIF-1. We propose H2S as a likely candidate.

      We have added a note to the introduction regarding the role of GSH as a reservoir of excess cysteine and agree that future studies might find interesting links between CDO-1, GSH metabolism, and HIF-1.

      Issue 6: In addition, what are the major similarities and differences of cysteine homeostasis pathways between C. elegans and other systems (HIF dependency, transcription vs post-transcriptional control)? These questions could be better discussed and noted with novel findings of the current study that are likely C. elegans specific or broadly conserved.

      Response 6: We have included a new section in the Discussion highlighting the nature of mammalian CDO1 regulation. We propose the hypothesis that a homologous pathway to the C. elegans RHY-1/CYSL-1/EGL9/HIF-1 pathway might operate in mammalian cells to sense high cysteine and induce CDO1 transcription. Importantly, all proteins in the C. elegans pathway have homologous counterparts in mammals. However, this hypothesis remains to be tested in mammalian systems.

      Reviewer #3 (Public Review):

      Major weaknesses of the paper include:

      Issue 7: the over-reliance on genetic approaches.

      Response 7: This is a fair critique. Our expertise is genetics. Our philosophy, which the reviewers may not share, is that there is no such thing as too much genetics!

      Issue 8: the lack of novelty regarding prolyl hydroxylase-independent activities of EGL-9.

      Response 8: We believe the primary novelty of our work is establishing the intersection between the H2Ssensing HIF-1 pathway and cysteine catabolism governed by cysteine dioxygenase. Our demonstration that cdo-1 regulation operates largely independent of VHL-1 and EGL-9 prolyl hydroxylation is a mechanistic detail of this regulation and not the critical new finding. Although, we believe it does suggest where pathway analyses should be directed in the future. We also believe that our homeostatic feedback model for the regulation of HIF-1 (and cdo-1) by cysteine-derived H2S is new and exciting and provides insight into the logic of why HIF-1 might respond to H2S and promote the activity of cdo-1. Our work suggests that one reason for this intersection of hif-1 and cdo-1 is to sense and maintain cysteine homeostasis when cysteine is in excess.

      Issue 9: the lack of biochemical approaches to probe the underlying mechanism of the prolyl hydroxylaseindependent activity of EGL-9.

      Response 9: While not the primary focus of our current manuscript, we agree that this is an exciting area of future research. To uncover the prolyl hydroxylase-independent activity of EGL-9, we agree that a combination of approaches will be required including, biochemical, structure-function, and genetic.

      Major Issues We Feel the Authors Should Address:

      Issue 10: One particularly glaring concern is that the authors really do not know the extent to which the prolyl hydroxylase activity is (or is not) impacted by the H487A mutation in egl-9(rae276). If there is a fair amount of enzymatic activity left in this mutant, then it complicates interpretation. The paper would be strengthened if the authors could show that the egl-9(rae276) eliminates most if not all prolyl hydroxylase activity. In addition, the authors may want to consider doing RNAi for egl-9 in the egl-9(rae276) mutant as a control, as this would support the claim that whatever non-hydroxylase activity EGL-9 may have is indeed the causative agent for the elevation of CDO-1::GFP. Without such experiments, readers are left with the nagging concern that this allele is simply a hypomorph for the single biochemical activity of EGL-9 (i.e., the prolyl hydroxylase activity) rather than the more interesting, hypothesized scenario that EGL-9 has multiple biochemical activities, only one of which is the prolyl hydroxylase activity.

      Response 10: We have two lines of evidence that suggest the egl-9(rae276)-encoded H487A variant eliminates prolyl hydroxylase activity. First, Pan et al. 2007 (reference 57) demonstrate that when the equivalent histidine (H313) is mutated in human protein, that protein lacks detectible prolyl hydroxylase activity. Second, the phenotypic similarities caused by egl-9(rae276) and the vhl-1 null allele, ok161. Both alleles cause nearly identical activation of the Pcdo-1::GFP reporter transgene (Fig. 5C,D), and similarly impact the growth of the suox-1(gk738847) hypomorphic mutant (Table 1). This phenotypic overlap is highly relevant as the established role of VHL-1 is to recognize the hydroxyl mark conferred by the EGL-9 prolyl hydroxylase domain and promote the degradation of HIF-1. If EGL-9[H487A] had residual prolyl hydroxylase activity, we would expect the vhl-1(-) null mutant C. elegans to display more dramatic phenotypes than their egl-9(rae276) counterparts. This is not the case.

      Issue 11: The authors observed that EGL-9 can inhibit HIF-1 and the expression of the HIF-1 target cdo-1 through a combination of activities that are (1) dependent on its prolyl hydroxylase activity (and subsequent VHL-1 activity that acts on the resulting hydroxylated prolines on HIF-1), and (2) independent of that activity. This is not a novel finding, as the authors themselves carefully note in their Discussion section, as this odd phenomenon has been observed for many HIF-1 target genes in multiple publications. While this manuscript adds to the description of this phenomenon, it does not really probe the underlying mechanism or shed light on how EGL-9 has these dual activities. This limits the overall impact and novelty of the paper.

      Response 11: See response to Issues #8.

      Issue 12: Cysteine dioxygenases like CDO-1 operate in an oxygen-dependent manner to generate sulfites from cysteine. CDO-1 activity is dependent upon availability of molecular oxygen; this is an unexpected characteristic of a HIF-1 target, as its very activation is dependent on low molecular oxygen. Authors neither address this in the text nor experimentally, and it seems a glaring omission.

      Response 12: We agree this is an important point to raise within our manuscript. Although, despite its induction by HIF-1, there is no evidence that cdo-1 transcription is induced by hypoxia. In fact, in a genome wide transcriptomic study, cdo-1 was not found to be induced by hypoxia in C. elegans (Shen et al. 2005, reference 71).

      We have newly commented on the use of molecular oxygen as a substrate by both EGL-9 and CDO-1 in our Discussion section. The mammalian oxygen-sensing prolyl hydroxylase (EGLN1) has been demonstrated to have high a Km value for O2 (high µM range). This likely allows EGLN1 to be poised to respond to small decreases in cellular oxygen from normal oxygen tensions. Clearly, CDO-1 also requires oxygen as a substrate, however the Km of CDO-1 for O2 is likely to be much lower, preventing sensitivity of the cysteine catabolism to physiological decreases in O2 availability. Although, to our knowledge, the CDO1 Km value for O2 has not been experimentally determined. We have added a new Discussion section where we address the conundrum about low oxygen inducing HIF-1 but oxygen being needed by CDO-1/CDO1.

      Issue 13: The authors determined that the hypodermis is the site of the most prominent CDO-1::GFP expression, relevant to Figure 4. This claim would be strengthened if a negative control tissue, in the animal with the knockin allele, were shown. The hypodermal specific expression is a highlight of this paper, so it would make this article even stronger if they could further substantiate this claim.

      Response 13: Our claim that the hypodermis is the critical site of cdo-1 function is based on; i) our hands on experience looking at Pcdo-1::GFP, Pcdo-1::CDO-1::GFP, CDO-1::GFP (encoded by cdo-1(rae273)) and our reporting of these expression patterns in multiple figures throughout the manuscript and ii) the functional rescue of cdo-1(-) phenotypes by a cdo-1 rescue construct expressed by a hypodermal-specific promoter (col10). We agree that providing negative control tissues would modestly improve the manuscript. However, we do not think that adding these controls will substantially alter the conclusions of the paper. Importantly, we acknowledge this limitation of our work with the sentence, “However, we cannot exclude the possibility that CDO-1 also acts in other cells and tissues as well.”

      Minor issues to note:

      Issue 14: Mutants for hif-1 and cysl-1 are sensitive to exogenous cysteine levels, yet loss of CDO-1 expression is not sufficient to explain this phenomenon, suggesting other targets of HIF-1 are involved. Given the findings the authors (and others) have had showing a role for RHY-1 in sulfur amino acid metabolism, shouldn't the authors consider testing rhy-1 mutants for sensitivity to exogenous cysteine?

      Response 14: To test the hypothesis that rhy-1(-) C. elegans might be sensitive to supplemental cysteine, we cultured wild type and rhy-1(-) animals on 0, 100, and 1000µM supplemental cysteine. At 0 and 100µM supplemental cysteine, neither wild-type nor rhy-1(-) animals display any lethality suggesting rhy-1 is not required for survival in the face of excess cysteine (Fig. 3D,E). We also cultured these same strains on 1000µM supplemental cysteine, a concentration that is highly toxic to wild-type animals (100% lethality). rhy1(-) animals were resistant to 1000µM supplemental cysteine with a substantial fraction of the population surviving overnight exposure to this lethal dose of cysteine. Similarly, egl-9(-) mutant C. elegans were also resistant to 1000µM supplemental cysteine. We propose that loss of egl-9 or rhy-1 activates HIF-1-mediated transcription which is priming these mutants to cope with the lethal dose of cysteine. These data are now presented in Figure 3D-F and presented in the Results section.

      Issue 15: The cysteine exposure assay was performed by incubating nematodes overnight in liquid M9 media containing OP50 culture. The liquid culture approach adds two complications: (1) the worms are arguably starving or at least undernourished compared to animals grown on NGM plates, and (2) the worms are probably mildly hypoxic in the liquid cultures, which complicates the interpretation.

      Response 15: We agree that it is possible that animals growing overnight in liquid culture are undernourished and mildly hypoxic. However, we are confident in our data interpretation as all our experiments are appropriately controlled. Meaning, control and experimental groups were all grown under the same liquid culture conditions. Thus, these animals would all experience the same stressors that come with liquid culture. Importantly, we never make comparisons between groups that were grown under different culture conditions (i.e. solid media vs. liquid culture).

      Issue 16: An easily addressable concern is the wording of one of the main conclusions: that cdo-1 transcription is independent of the canonical prolyl hydroxylase function of EGL-9 and is instead dependent on one of EGL-9's non-canonical, non-characterized functions. There are several points in which the wording suggests that CDO-1 toxicity is independent of EGL-9. In their defense, the authors try to avoid this by saying, "EGL-9 PHD," to indicate that it is the prolyl hydroxylase function of EGL-9 that is not required for CDO-1 toxicity. However, this becomes confusing because much of the field uses PHD and EGL-9/EGLN as interchangeable protein names. The authors need to be clear about when they are describing the prolyl hydroxylase activity of EGL-9 rather than other (hypothesized) activities of EGL-9 that are independent of the prolyl hydroxylase activity.

      Response 16: We appreciate the reviewer alerting us to this practice within the field. To avoid confusion, we have removed the “PHD” abbreviation from our manuscript and explicitly referred to the “prolyl hydroxylase domain” where relevant.

      Issue 17: The authors state in the text, "the egl-9; suox-1 double mutants are extremely sick and slow growing." We appreciate that their "health" assay, based on the exhaustion of food from the plate, is qualitative. We also appreciate that it is a functional measure of many factors that contribute to how fast a population of worms can grow, reproduce, and consume that lawn of food. However, unless they do a lifespan assay and/or measure developmental timing and specifically determine that the double mutant animals themselves are developing and/or growing more slowly, we do not think it is appropriate to use the words "slow growing" to describe the population. As they point out, the rate of consumption of food on the plate in their health assay is determined by a multitude and indeed a confluence of factors; the growth rate is one specific one that is commonly measured and has an established meaning.

      Response 17: We see how the phrase ‘slow growing’ might imply a phenotype that we have not actually assessed with this assay. Therefore, we have removed all claims about “slow growth” of the strains presented in Table 1 and have highlighted the assay more overtly in the results section. For example; “While egl-9(-) and suox-1(gk738847) single mutant animals are healthy under standard culture conditions, the egl-9(-); suox1(gk738847) double mutant animals are extremely sick and require significantly more days to exhaust their E. coli food source under standard culture conditions (Table 1).”

      Reviewer #1 (Recommendations For The Authors):

      Issue 18: Relevance could be addressed further in the text.

      Response 18: We have added additional context for our work in the Discussion section. Please see our response to Issues #5, 6, 12, and 24.

      Issue 19: Better appreciation and integration of the manuscript's findings with published studies would be appropriate.

      Response 19: We have added additional context for our work in the Discussion section. Please see our response to Issues #5, 6, 12, and 24.

      Issue 20: It might be perhaps relevant to test whether cdo-1 is relevant for hypoxia resistance since it appears to be a key target for hif-1.

      Response 20: We agree that this is an interesting future direction, however given that cdo-1 mRNA is not induced by hypoxia (Shen et al. 2005) we have not prioritized these experiments for the current manuscript.

      Issue 21: "egl-9 inhibits cdo-1 transcription in a prolyl-hydroxylase and VHL-1-independent manner" should be tempered. vhl-1 mutants and egl-9 hydroxylase point mutant still have significant induction of the reporter.

      Response 21: Thank you for identifying this oversight. We have modified the Figure 5 legend title to read, “egl9 inhibits cdo-1 transcription in a largely prolyl-hydroxylase and VHL-1-independent manner.”

      Issue 22: Please use line numbers in the future for easier tracking of comments.

      Response 22: We shall.

      Issue 23: Abstract and elsewhere, "high cysteine activates...", should be rephrased to "high levels of cysteine".

      Response 23: We have made this change throughout the manuscript.

      Reviewer #3 (Recommendations For The Authors):

      Issue 24: The authors discuss CDO1 in the context of tumorigenesis, as well as the potential regulation between cysteine and the hypoxia response pathway. Thus, I was surprised that there was no mention of the foundational Bill Kaelin paper (Briggs et al 2016) showing how the accumulation of cysteine is related to tumorigenesis, and that cysteine is a direct activator of EglN1. Puzzling that CDO1 is a tumor suppressor: you lose it, cysteine can accumulate and activate EglN1, causing HIF1 turnover. How do the authors reconcile their results with this paper? I was also surprised that there was no mention in the Discussion of the role of hydrogen sulfide, cysteine metabolism, and CTH and CBS in oxygen sensation in the carotid body given the role they play there. Seems important to discuss this issue.

      Response 24: We have added new sections to our Discussion that consider the relationship between our work and Briggs et al. 2016 as well as mentioned the role of CTH and H2S in the mammalian carotid body.

      Issue 25: The abstract has a variety of contradictory statements. For example, the authors state that "HIF-1mediated induction of cdo-1 functions largely independent of EGL-9," but then go on to conclude in the final sentence that cysteine stimulates H2S production, which then activates EGL-9 signaling, which then increases HIF-1-mediated transcription of cdo-1. A quick reading of the abstract leaves the reader uncertain whether EGL-9 is or is not involved in this regulation of cdo-1 expression. In addition, the conclusion sentence implies that activation of the EGL-9 pathway increases HIF-1-mediated transcription, yet it is well established that EGL-9 is an inhibitor of HIF-1. The abstract fails to deliver a clear summary of the paper's conclusions. Perhaps consider this alternative (changes in capital letters):

      The amino acid cysteine is critical for many aspects of life, yet excess cysteine is toxic. Therefore, animals require pathways to maintain cysteine homeostasis. In mammals, high cysteine activates cysteine dioxygenase, a key enzyme in cysteine catabolism. The mechanism by which cysteine dioxygenase is regulated remains largely unknown. We discovered that C. elegans cysteine dioxygenase (cdo-1) is transcriptionally activated by high cysteine and the hypoxia inducible transcription factor (hif-1). hif-1- dependent activation of cdo-1 occurs downstream of an H2S-sensing pathway that includes rhy-1, cysl-1, and egl-9. cdo-1 transcription is primarily activated in the hypodermis where it is sufficient to drive sulfur amino acid metabolism. EGL-9 and HIF-1 are core members of the cellular hypoxia response. However, we demonstrate that the mechanism of HIF-1-mediated induction of cdo-1 IS largely independent of EGL-9 prolyl hydroxylASE ACTIVITY and the von Hippel-Lindau E3 ubiquitin ligase. We propose that the REGULATION OF cdo-1 BY HIF-1 reveals a negative feedback loop for maintaining cysteine homeostasis. High cysteine stimulates the production of an H2S signal. H2S then ACTS THROUGH the rhy-1/cysl-1/egl-9 signaling pathway DISTINCTLY FROM THEIR ROLE IN HYPOXIA RESPONSE TO INCREASE HIF-1-mediated transcription of cdo-1, promoting degradation of cysteine via CDO-1.

      Response 25: We agree that the abstract could be clearer. We believe this concern stems from the fact that we did not discuss our initial screen in the abstract. Thus, we failed to establish a role for egl-9 in the regulation of cdo-1. To remedy this, we have modified the abstract as suggested by the reviewer and added additional context. We believe that these changes improve the clarity of the Abstract substantially.

      Issue 26: An easily addressable concern involves the "dark" microscopy controls showing lack of fluorescence from a nematode. In these dark negative control micrographs, the authors should draw dotted outlines around where the worms are or include a brightfield image next to the fluorescence image. On a computer screen, it is in fact possible to make out the worms. Yet, when printed out, the reader must assume there are worms in the dark images. Additionally, we realize that adjusting fluorescence so that wild-type CDO-1 expression can be seen will result in oversaturation of the egl-9 and rhy-1; cdo-1 doubles; however, this would be a useful figure to add into the supplement to both provide a normal reference of CDO-1 low-level expression and a demonstration of just how bright it is in the mutant backgrounds. It would also be useful for you to please report your exposure settings for purposes of reproducibility.

      Response 26: As suggested, we have added dotted lines around the location of the C. elegans animals in all images where GFP expression is low or basal. We have also reported the exposure times for each image in the appropriate figure legends.

      Issue 27: This title is quite generic and doesn't even mention the main players (CDO-1 and sulfite metabolism).

      Response 27: We have updated our title to call attention to cysteine dioxygenase. The improved title is: “Hypoxia-inducible factor induces cysteine dioxygenase and promotes cysteine homeostasis in Caenorhabditis elegans”

      Issue 28: The authors mention two disorders in which CDO-1 plays a pathogenic role: MoCD and ISOD. We recommend switching the order in which the authors mention these, as the remainder of the paragraph is about MoCD. Also, they should write out the number "2" in the first sentence of that paragraph.

      Response 28: We have made the suggested changes.

      Issue 29: The authors state in the main text, "...to ubiquitinate HIF-1, targeting it for degradation by the proteosome." Here, they should refer to the pathway in Figure 5a.

      Response 29: We have made the suggested change.

      Issue 30: The authors state in the main text, "Elements of the HIF-1 pathway have emerged..." which is vague and confusingly worded. Change to, "Members of the HIF-1 pathway and its targets have emerged from C. elegans genetic studies."

      Response 30: We have made the suggested change.

      Issue 31: Clarify in the figure legends that supplemental cysteine did not affect the mortality of worms that were imaged.

      Response 31: We have added this note to Figure 3A and Figure S3A.

      Issue 32: Figure 1b. "the cdo-1 promoter is shown..." Add: "as a straight line" to the end of this phrase.

      Response 32: We have made the suggested change.

      Issue 33: The authors should consider changing the red text in Figure 1 to magenta, which tends to be more readable for people who have limited color vision.

      Response 33: We have adjusted the colors in Figure 1 as suggested.

      Issue 34: Figure 2, legend title. Consider changing "hif-1" to "HIF-1," as well as rhy-1, cysl-1, and egl-9. In this case, they are talking about proteins, not mutants or genes. This will make the paper easier to follow for readers who lack a C. elegans background.

      Response 34: We have made the suggested change.

      Issue 35: Figure 5, caption text. "...indicates weak similarity." Add, "amongst species compared."

      Response 35: We have made the suggested change.

      Issue 36: It is starting to become a standard for showing the datapoints in bar graphs. Although this is done in many graphs in the paper, it should also be done for Figure S1 and Figure 4C.

      Response 36: We have made the suggested change.

      Issue 37: An extensive ChIP-seq and RNA-seq analysis of C. elegans HIF-1 was recently published (Vora et al, 2022), which the authors should reference in support of the regulation of CDO-1 transcription by HIF-1 in their description of published expression studies of the pathway (Results section, page 4). Indeed, Vora et al were key generators of the ChIP-seq data cited in Warnhoff et al but not included as authors in the ModERN/ModENCODE publication: their contributions were published separately in Vora et al and should be acknowledged equivalently.

      Response 37: We appreciate the reviewer pointing this detail out and we have added the correct citation as indicated.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      Some suggestions:

      1) It's obviously concerning that your GWAS results are not at all robust to the approach used (Fig S3). Did you try something non-parametric, like a Kruskal-Wallis test?

      We used both GWAS and crosses (F2) to validate the presence of the QTL. So ,evidence is not only brought by GWAS. We did not use non parametric tests as we will have difficulty to account for population structure/relatedness with such approaches. Our GWAS approach is certainly a little underpowered associated with the number of individuals we used and certainly the polygenic nature of the root growth traits. But F2 crosses allow us to put more evidence weight on some region we identified with GWAS.

      2) You don't explain what you do with heterozygotes, nor discuss the level of inbreeding in general.

      We are dealing with inbred lines, but indeed there are not completely fixed inbred lines. For the remaining heterozygotes, they were randomly fixed in one or the other alleles. The median heterozygosity value was low at 5.6%. We clarified this point in the material and methods.

      3) The finding that over 30% of RNA-seq reads don't seem to have an annotated home should give you pause. Do they map anywhere? At least discuss what is going on. Also, note that you likely have enormous errors in SNP-calling due to cryptic structural variation - think about what this might do?

      We agree with reviewer #1. We added a few sentences in the result section to clarify this point: “When further analyzed, 15.15% of the unmapped reads (with no correspondence to predicted CDS) were found not to match the reference genome. These might correspond either to unsequenced regions or to genotype-specific genomic regions that are not present in the reference line. The remaining unmapped reads corresponded to either rRNA and tRNA genes (40.28% of the unmapped reads) or to non-annotated genes or non-coding RNAs (44.57% of the unmapped reads).” As we used the same reference genome for mapping the RNAseq reads, some genes might not being present in our analysis for the two lines we studied.

      4) Did you consider moving PgGRXC9 into Arabidopsis?

      This is a great suggestion. In fact, we plan to explore more how some GRXs regulate root growth and how this is conserved in plants in a follow up project. This is however beyond the scope of this manuscript.

      Minor suggestions:

      1) Why not calculate H^2 simply as line variance divided by total?

      Heritability estimated on single individuals in population, approaches generally used for human and animal breeding led directly to line variance divided by total phenotypic variance.

      But in plant breeding (or plant science), we generally work on replicated genotypes in different blocks/experimental repetition. So we estimate the heritability of the mean phenotype of genotypes. There is ample literature (Nyquist, 1991; Holland et al. 2003; for a very nice and smartly written explanation, on the introduction of this PhD: http://opus.uni-hohenheim.de/volltexte/2020/1720/pdf/20200221_PhD_Thesis_Publikationsversion.pdf). Calculation of heritability (of the mean phenotype) should take into account for the calculation of the phenotypic variance (denominator) the number of replicate genotypes (we do not have a single plant, but several clones when using inbred lines: n). The meaning of the formula is that the error in the model is inflated because we have n replicate plants per genotype. And so to estimate the heritability of the average genotype, we have to take into account this inflated variance in the errors.

      2) While the paper overall is well-written, the captions need further proof-reading.

      We corrected all the captions.

      Reviewer #2 (Recommendations For The Authors):

      Major suggestions:

      1) The experimental support for the mutant phenotype of roxy19 needs to be further substantiated. Current methods available for CRISPR mutagenesis make it relatively easy to generate additional alleles. Alternatively, the authors could complement the mutant with a wild-type copy of the gene. These approaches represent the standard of the field and should be used here as well.

      We agree with rev #2. We added some sentences in the discussion to stress out the limitations of our study to link the QTL to PgGRXC9.

      As stated above we’d like to explore more how some GRXs regulate root growth and how this is conserved in plants. We plan to generate new single and multiple mutants in ROXY19 and its closest homologues (using CRISPR). This is, however, beyond this manuscript.

      2) The authors may want to state more clearly what the hypothesis is for how redox levels might contribute to root length differences and more clearly state what the limits of their current study are.

      We modified the discussion to try to clearly indicate the limitations of our study.

      3) Differences in root growth can be the consequence of a number of different parameters that contribute to root elongation and the authors need to more clearly define which of these are likely affected in their different genotypes.

      We agree with Reviewer #2. However, as stated before, we plan to further explore the molecular and cellular mechanisms responsible for the phenotype we observe in Arabidopsis. This will need extra work and is beyond the scope of this manuscript.

      4) Page 13, first paragraph. The authors provide an overly strong statement that suggests they have determined the molecular basis for the difference in PgGRXC9: " Altogether, our results suggest that PgGRXC9 is a positive regulator of root growth and that a polymorphism in the promoter region of PgGRXC9 associated with changes in its expression level appeared responsible for a quantitative difference in root growth between the two lines."

      While their results suggest the PgGRXC9 locus is associated with root growth variation, they have not directly tested the effect of the polymorphisms in the promoter on gene expression and this statement needs to be weakened.

      We changed the text to: “Altogether, our results suggest that PgGRXC9 is a positive regulator of root growth and that a polymorphism in the promoter region of PgGRXC9 might led to changes in its expression level and ultimately to a quantitative difference in root growth between the two lines. However, the effect of the polymorphisms in the promoter on gene expression need to be tested to validate this hypothesis.”

      We also changed the title of the manuscript to better reflect our results.

      Minor suggestions:

      1) Page 4: "FTSW below 0.3 was considered a stressful condition." It was not specified how this threshold was determined.

      This value corresponds to the measured FTSW value at which pearl millet genotypes subjected to a dry down generally start to reduce their transpiration rate (see Fig. 1 of Kholová et al, 2010; https://doi.org/10.1093/jxb/erp314). At FTSW values above 0.3, transpiration is not affected. At FTSW values around 0.3, the water supply from pearl millet roots cannot fully support transpiration. The plant enters a drought stress responsive phase and progressively closes its stomata to reduce water losses and decrease plant productive functions to match water supply. We have clarified this in the manuscript.

      2) Page 6: Figure 1; footnote: at the end of the description of panel A, a comma is missing between "red" and "blue."

      Thanks for pointing that out. This was corrected.

      3) The root growth data determined by X-ray imaging is not significant (Fig S4B), yet the authors describe the result in the main text without qualification. The authors should clarify this in the text.

      We added some text to clarify this.

      4) Page 9: Figure 2C; It would be better to enlarge these images and annotate them to indicate what specific anatomical features have been measured. Currently, only an expert in the field would be able to interpret these images.

      While we understand the point made by Reviewer #2, Fig2C was meant to illustrate differences in the root tip of the two lines.

      5) Page 9: Figures 2D and E; the number of biological samples measured is not indicated (what is "n"?).

      Thanks again for pointing this out. This was added to the figure legend.

      6) Page 14: Figure 4B; scale bar needs to be included.

      Scale bars were added to the pictures.

      7) Page 14: Figure 4; I recommend adding confocal images or DIC of cleared root apex tissues to easily compare the RAM size and cell lengths in both WT and roxy19 mutant.

      Once again, we plan to have a follow up study on the molecular and cellular mechanisms of action of ROXY19 and its closest homologues on root development. We believe a thorough analysis of differences in phenotype could be illustrated in a future manuscript.

      8) Page 18: main text; "we propose that redox regulation in the root meristem is responsible for a root growth QTL in pearl millet." This statement is ambiguous in the description of the mechanism. The authors do not clarify if the role they propose for PgGRXC9 is in the meristematic or elongation zone. Likely the authors are not able to know precisely where the gene is acting at this point, and so the presented hypothesis needs to more clearly state what limitations there are in assigning a mode of action for the PgGRXC9 and ROXY19 genes in root growth.

      We rewrote this paragraph to clarify the current gap in our understanding of the putative PgGRXC9 function.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      The study is an important advancement to the consideration of antimalarial drug resistance: the authors make use of both modelling results and supporting empirical evidence to demonstrate the role of malaria strain diversity in explaining biogeographic patterns of drug resistance. The theoretical methods and the corresponding results are convincing, with the novel model presented moving beyond existing models to incorporate malaria strain diversity and antigen-specific immunity. This work is likely to be interesting to malaria researchers and others working with antigenically diverse infectious diseases.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The paper is an attempt to explain a geographic paradox between infection prevalence and antimalarial resistance emergence. The authors developed a compartmental model that importantly contains antigenic strain diversity and in turn antigen-specific immunity. They find a negative correlation between parasite prevalence and the frequency of resistance emergence and validate this result using empirical data on chloroquine-resistance. Overall, the authors conclude that strain diversity is a key player in explaining observed patterns of resistance evolution across different geographic regions.

      The authors pose and address the following specific questions:

      1. Does strain diversity modulate the equilibrium resistance frequency given different transmission intensities?

      2. Does strain diversity modulate the equilibrium resistance frequency and its changes following drug withdrawal?

      3. Does the model explain biogeographic patterns of drug resistance evolution?

      Strengths:

      The model built by the authors is novel. As emphasized in the manuscript, many factors (e.g., drug usage, vectorial capacity, population immunity) have been explored in models attempting to explain resistance emergence, but strain diversity (and strain-specific immunity) has not been explicitly included and thus explored. This is an interesting oversight in previous models, given the vast antigenic diversity of Plasmodium falciparum (the most common human malaria parasite) and its potential to "drive key differences in epidemiological features".

      The model also accounts for multiple infections, which is a key feature of malarial infections, with individuals often infected with either multiple Plasmodium species or multiple strains of the same species. Accounting for multiple infections is critical when considering resistance emergence, as with multiple infections there is within-host competition which will mediate the fitness of resistant genotypes. Overall, the model is an interesting combination of a classic epidemiological model (e.g., SIR) and a population genetics model.

      In terms of major model innovations, the model also directly links selection pressure via drug administration with local transmission dynamics. This is accomplished by the interaction between strain-specific immunity, generalized immunity, and host immune response.

      R: We thank the reviewer for his/her appreciation of the work.

      Weaknesses:

      In several places, the explanation of the results (i.e., why are we seeing this result?) is underdeveloped. For example, under the section "Response to drug policy change", it is stated that (according to the model) low diversity scenarios show the least decline in resistant genotype frequency after drug withdrawal; however, this result emerges mechanistically. Without an explicit connection to the workings of the model, it can be difficult to gauge whether the result(s) seen are specific to the model itself or likely to be more generalizable.

      R: We acknowledge that the explanation of certain results needs to be improved. We have now added the explanation of why low diversity scenarios show the least decline in resistance frequency after drug withdrawal: “Two processes are responsible for the observed trend: first, resistant genotypes have a much higher fitness advantage in low diversity regions even with reduced drug usage because infected hosts are still highly symptomatic; second, due to low transmission potential in low diversity scenarios (i.e., longer generation intervals between transmissions), the rate of change in parasite populations is slower.” (L243-247). We also compared the drug withdrawal response to that of the generalized-immunity-only model (L268-271). The medium transmission region has the fastest reduction in resistance frequency, followed by the high and low transmission regions, which differs from the full model that incorporates strain-specific diversity.

      In addition, to provide the context of different biogeographic transmission zones, we now include a new figure (now Fig. 3) that presents the parameter space of transmission potential and strain diversity of different continents, which demonstrates that PNG and South America have less strain diversity than expected by transmission potential (L179-184 and L198-202). Therefore, these two regions have low disease prevalence and high resistance frequency.

      The authors emphasize several model limitations, including the specification of resistance by a single locus (thus not addressing the importance of recombination should resistance be specified by more than one locus); the assumption that parasites are independently and randomly distributed among hosts (contrary to empirical evidence); and the assumption of a random association between the resistant genotype and antigenic diversity. However, each of these limitations is addressed in the discussion.

      R: As pointed out by the referee, our model presents several limitations that have all been addressed in the discussion and considered for future extensions.

      Did the authors achieve their goals? Did the results support their conclusion?

      Returning to the questions posed by the authors:

      1. Does strain diversity modulate the equilibrium resistance frequency given different transmission intensities? Yes. The authors demonstrate a negative relationship between prevalence/strain diversity and resistance frequency (Figure 2).

      2. Does strain diversity modulate the equilibrium resistance frequency and its changes following drug withdrawal? Yes. The authors find that, under resistance invasion and some level of drug treatment, resistance frequency decreased with the number of strains (Figure 4). The authors also find that lower strain diversity results in a slower decline in resistant genotypes after drug withdrawal and higher equilibrium resistance frequency (Figure 6).

      3. Does the model explain biogeographic patterns of drug resistance evolution? Yes. The authors find that their full model (which includes strain-specific immunity) produces the empirically observed negative relationship between resistance and prevalence/strain diversity, while a model only incorporating generalised immunity does not (Figure 8).

      Utility of work to others and relevance within and beyond the field?

      This work is important because antimalarial drug resistance has been an ongoing issue of concern for much of the 20th century and now 21st century. Further, this resistance emergence is not equitably distributed across biogeographic regions, with South America and Southeast Asia experiencing much of the burden of this resistance emergence. Not only can widespread resistant strains be traced back to these two relatively low-transmission regions, but these strains remain at high frequency even after drug treatment ceases.

      Reviewer #2 (Public Review):

      Summary:

      The evolution of resistance to antimalarial drugs follows a seemingly counterintuitive pattern, in which resistant strains typically originate in regions where malaria prevalence is relatively low. Previous investigations have suggested that frequent exposures in high-prevalence regions produce high levels of partial immunity in the host population, leading to subclinical infections that go untreated. These subclinical infections serve as refuges for sensitive strains, maintaining them in the population. Prior investigations have supported this hypothesis; however, many of them excluded important dynamics, and the results cannot be generalized. The authors have taken a novel approach using a deterministic model that includes both general and adaptive immunity. They find that high levels of population immunity produce refuges, maintaining the sensitive strains and allowing them to outcompete resistant strains. While general population immunity contributed, adaptive immunity is key to reproducing empirical patterns. These results are robust across a range of fitness costs, treatment rates, and resistance efficacies. They demonstrate that future investigations cannot overlook adaptive immunity and antigenic diversity.

      R: We thank the reviewer for his/her appreciation of the work.

      Strengths:

      Overall, this is a very nice paper that makes a significant contribution to the field. It is well-framed within the body of literature and achieves its goal of providing a generalizable, unifying explanation for otherwise disparate investigations. As such, this work will likely serve as a foundation for future investigations. The approach is elegant and rigorous, with results that are supported across a broad range of parameters.

      Weaknesses:

      Although the title states that the authors describe resistance invasion, they do not support or even explore this claim. As they state in the discussion (line 351), this work predicts the equilibrium state and doesn't address temporal patterns. While refuges in partially immune hosts may maintain resistance in a population, they do not account for the patterns of resistance spread, such as the rapid spread of chloroquine resistance in Africa once it was introduced from Asia.

      R: We do agree that resistance invasion is not the focus of our manuscript. Rather we mainly investigate the maintenance and decline after drug withdrawal. Therefore, we changed the title to “Antigenic strain diversity predicts different biogeographic patterns of maintenance and decline of anti-malarial drug resistance” (L1-4).

      We did, however, present a fast initial invasion phase for the introduction of resistant genotypes regardless of transmission scenarios in Fig. 5 (now Fig. 6). Even though the focus of the manuscript is to investigate long term persistence of resistant genotypes, we did emphasize that the initial invasion phase and how that changes the host immunity profile are key to the coexistence of resistant and wild-type genotypes (L228-239).

      As the authors state in the discussion, the evolution of compensatory mutations that negate the cost of resistance is possible, and in vitro experiments have found evidence of such. It appears that their results are dependent on there being a cost, but the lower range of the cost parameter space was not explored.

      R: It is true that compensatory mutations might mitigate the negative fitness consequences. We didn’t add a no-cost scenario because in general if there is no cost but only benefit (survival through drug usage), then resistant haplotypes will likely be fixed in the population. This is contingent on the assumption that these compensatory mutations are in perfect linkage with resistant alleles, which is unlikely in high-transmission scenarios. Our model does not incorporate recombination, but earlier models (Dye & Williams 1997, Hastings & D’Alessandro 2000) have demonstrated that recombination will delay the fixation of resistant alleles in high-transmission.

      As suggested, we ran our model with costs equal 0 and 0.01 (Fig. 2C and L189-191). We found that resistant alleles almost always fix except for when diversity is extremely high, treatment/resistance efficacy is low. In these cases, additional benefits brought by more transmission from resistant alleles do not bring many benefits (as lower GI classes have a very small number of hosts). This finding does not contradict a wider range of coexistence between wild-type and resistant alleles when the cost is higher. We therefore added these scenarios to our updated results.

      Author response image 1.

      The use of a deterministic, compartmental model may be a structural weakness. This means that selection alone guides the fixation of new mutations on a semi-homogenous adaptive landscape. In reality, there are two severe bottlenecks in the transmission cycle of Plasmodium spp., introducing a substantial force of stochasticity via genetic drift. The well-mixed nature of this type of model is also likely to have affected the results. In reality, within-host selection is highly heterogeneous, strains are not found with equal frequency either in the population or within hosts, and there will be some linkage between the strain and a resistance mutation, at least at first. Of course, there is no recourse for that at this stage, but it is something that should be considered in future investigations.

      R: We thank the reviewer for their insightful comments on the constraints of the deterministic modeling approach. We’ve added these points to discussion in the paragraph discussing the second limitation of the model (L359-364).

      The authors mention the observation that patterns of resistance in high-prevalence Papua New Guinea seem to be more similar to Southeast Asia, perhaps because of the low strain diversity in Papua New Guinea. However, they do not investigate that parameter space here. If they did and were able to replicate that observation, not only would that strengthen this work, it could profoundly shape research to come.

      R: We appreciate the suggestion to investigate the parameter space of Papua New Guinea. We now include a new figure (now Fig. 3) that presents the parameter space of transmission potential and strain diversity of different continents, which demonstrates that PNG and South America have less strain diversity than expected by transmission potential (L179-184 and L198-202). This translates to low infectivity for most mosquito bites, and most infections only occur in hosts with lower generalized immunity. Therefore resistant genotypes will help ensure disease transmission in these symptomatic hosts and be strongly selected to be maintained.

      Reviewer #1 (Recommendations For The Authors):

      1. I found lines 41-49 difficult to follow. Please rephrase (particularly punctuation) for clarity.

      R: We have edited the lines to improve the writing (L41-50)):

      “Various relationships between transmission intensity and stable frequencies of resistance were discovered, each of which has some empirical support: 1) transmission intensity does not influence the fate of resistant genotypes [Models: Koella and Antia (2003); Masserey et al. (2022); Empirical: Diallo et al. (2007); Shah et al. (2011, 2015)]; 2) resistance first increases in frequency and slowly decreases with increasing transmission rates [Models: Klein et al. (2008, 2012)]; and 3) Valley phenomenon: resistance can be fixed at both high and low end of transmission intensity [Model: Artzy-Randrup et al. (2010); Empirical: Talisuna et al. (2002)]. Other stochastic models predict that it is harder for resistance to spread in high transmission regions, but patterns are not systematically inspected across the parameter ranges [Model: Whitlock et al. (2021); Model and examples in Ariey and Robert (2003)].”

      1. Line 65: There should be a space after "recombination" and before the citation.

      R: Thank you for catching the error. We’ve added the space (L64).

      1. I'm interested in the dependency of the results on the assumption that there is a cost to resistance via lowered transmissibility (lines 142-145). I appreciate that variation in the cost(s) of resistance in single and mixed infections is explored; however, from what I can tell the case of zero cost is not explored.

      R: As suggested, we have now added the no-cost scenario. Please see the response to the Reviewer2 weaknesses paragraph 2.

      1. I felt the commentary/explanation of the response to drug policy change was a bit underdeveloped. I would have liked a walk-through of why in your model low diversity scenarios show the slowest decline in resistant genotypes after switching to different drugs.

      R: We acknowledge that the explanation of the response to drug policy change needs to be improved. We have now added the explanation of why we observe low diversity scenarios show the least decline in resistance frequency after drug withdrawal: “Two processes are responsible for the seen trend: first, resistant genotypes have a much higher fitness advantage in low diversity regions even with reduced drug usage because infected hosts are still highly symptomatic; second, due to low transmission potential in low diversity scenarios (i.e., longer generation intervals between transmissions), the rate of change in parasite populations is slower.” (L243-247). We also compared the drug withdrawal response to that of the generalized-immunity-only model. The medium transmission region has the fastest reduction in resistance frequency, followed by the high and low transmission regions, which differs from the full model that incorporates strain-specific diversity.

      1. Line 352: persistent drug usage?

      R: Yes, we meant persistent drug usage. We’ve clarified the writing (L389-391).

      1. The organisation of the manuscript would benefit from structuring around the focal questions so that the reader can easily find the answers to the focal questions within the results and discussion sections.

      R: This is a great suggestion. We modified the subheadings of results to provide answers to focal questions (L151, L179, L203-204, and L240).

      1. Line 353: Please remove either "shown" or "demonstrated".

      R: Thank you for catching the grammatical error, we’ve retained “shown” only for the sentence (L391-392).

      Reviewer #2 (Recommendations For The Authors):

      Overall, this was very nice work and a pleasure to read.

      Major:

      1. Please provide a much more thorough explanation of how resistance invasions are modeled. It is not clear from the text and could not be replicated.

      R: We have now added a section “drug treatment and resistance invasion” in Methods and Materials to explain how resistance invasions are modeled (L488-496):

      “Given each parameter set, we ran the ODE model six times until equilibrium with the following genotypic compositions: 1) wild-type only scenario with no drug treatment; 2) wild-type only scenario with 63.2% drug treatment (0.05 daily treatment rate); 3) wild-type only scenario with 98.2% drug treatment (0.2 daily treatment rate); 4) resistant-only scenario with no drug treatment; 5) resistance invasion with 63.2% drug treatment; 6) resistance invasion with 98.2% drug treatment. Runs 1-4 start with all hosts in G0,U compartment and ten parasites. Runs 5 and 6 (resistance invasion) start from the equilibrium state of 2 and 3, with ten resistant parasites introduced. We then followed the ODE dynamics till the next equilibrium.”

      1. Please make your raw data, code, and replicable examples that produce the figures in the manuscript available.

      R: We have added the data availability session, which provides the GitHub site with all the code for the model, data processing, and figures: All the ODE codes, numerically-simulated data, empirical data, and analyzing scripts are publicly available at https://github.itap.purdue.edu/HeLab/MalariaResistance.

      1. Regarding the limitations described in the paragraph about the model in the public response, these results would be strengthened if there were separate compartments for strains which could be further divided into sensitive and resistant. Could you explore this for at least a subset of the parameter space?

      R: In our model, sensitive and resistant pathogens are always modeled as separate compartments (Fig. S1B and Appendix 1). In Results/Model structure, L135-136, we stated the setup:

      “The population sizes of resistant (PR) or sensitive (wild-type; PW) parasites are tracked separately in host compartments of different G and drug status.”

      1. To what extent do these results rely on a cost to resistance? Were lower costs explored? This would be worth demonstrating. If this cannot be maintained without cost, do you think this is because there is no linkage between strain and resistance?

      R: As suggested, we have now added the no-cost scenario (Fig. 2C and L189-191). Please see the response to the Reviewer1 weaknesses paragraph 2. In sum, under a no-cost scenario, if treatment rate is low, then wild-type alleles will still be maintained in high transmission scenarios; when treatment rate is high, resistant alleles will always be fixed.

      Minor:

      1. "Plasmodium" should be italicized throughout. Ironically, italics aren't permitted in this form.

      R: We did italicize “Plasmodium” or “P. falciparum” throughout the text. If the reviewer is referring to “falciparum malaria”, the convention is not to italicize falciparum in this case.

      1. Fig 1A: the image is reversed for the non-infected host with prior exposure to strain A. Additionally, the difference between colors for WT and resistant is not visible in monochrome.

      R: Thank you for pointing out the problem of color choice in monochrome. We have modified the figure. The image in Fig 1A is not reversed for non-infected hosts with prior exposure to strain A. We now spell out “S” to be “specific immunity”, and explain it better in the figure legend.

      1. Fig 2B: add "compare to the pattern of prevalence shown in Fig 2A" or something similar to make the comparison immediately clear.

      R: We thank the reviewer’s suggestion. We’ve added a sentence to contrast Fig 2A and B in the Figure legend: “A comparison between the prevalence pattern in (A) and resistance frequency in (B) reveals that high prevalence regions usually correspond to low resistance frequency at the end of resistance invasion dynamics.”

      1. Figs 2B & C: Please thoroughly explain how you produced this data in the methods section and briefly describe it in the results sections.

      R: We agree that the modeling strategies need to be explained better. Since we explained the rationale for the parameter ranges and the prevalence patterns we observe in the results section “Appropriate pairing of strain diversity and vectorial capacity” (now “Impact of strain diversity and transmission potential on disease prevalence”), we added sentences in this section to explain how we run models until equilibrium for wild-only infections with or without drug treatment (L152-178). Then in the following section “Drug-resistance and disease prevalence” section, we explain how we obtained the resistance invasion data:

      “To investigate resistance invasion, we introduce ten resistant infections to the equilibrium states of drug treatment with wild-type only infections, and follow the ODE dynamics till the next equilibrium” (L180-181).

      1. Fig 3: The axis labels are not particularly clear. For the Y axis, please state in the label what it is the frequency of (either the mutation or the phenotype). In the X axis, it is better to spell that out in words, like "P. falciparum prevalence in children".

      R: Thank you for pointing this out. We’ve modified the axes labels of Fig. 3 (now Fig. 4): X-axis: “P. falciparum prevalence in children aged 2-10”; Y-axis: “Frequency of resistant genotypes (pfcrt 76T)”.

      1. Fig 4 and the rest of the figures of this nature: Showing an equilibrium-state timestep before treatment was introduced would improve the readers' understanding of the dynamics.

      R: We agree that the equilibrium state before treatment is important. In fact, we have those states in our figure 4 (now figure 5): the left panel- “Daily treatment rate 0” indicates the equilibrium-state timestep before treatment. We clarified this point in the caption.

      1. Fig 5 is very compelling, but the relationships in Fig 5 would be clearer if the Y axes were not all different. Consider using the same scale for the hosts, and the same scale for resistant parasites (both conditions) and WT parasites, 113 strains. It may be clearer to reference them if they are given as A-F instead of three figures each for A and B.

      R: We agree with the suggested changes and have modified figure 5 (now Fig. 6): we used one Y-axis scale for the hosts, and one Y-axis scale for the parasites. The wild-type one is very low for the low diversity scenario, thus we included one inset plot for that case.

      1. Fig 5 caption: High immune protection doesn't select against resistance. The higher relative fitness of the sensitive strain selects against resistance in a high-immunity environment.

      R: Thank you for pointing this out. Here we meant that a reduction in resistant population after the initial overshoot occurs in both diversity levels. We are not comparing resistant strains to sensitive ones. We’ve modified the sentence to: “The higher specific immunity reduces the infectivity of new strains, leading to a reduction of the resistant parasite population regardless of the diversity level”.

      1. Line 242: "keep" should be plural.

      R: We’ve corrected “keep” to “keeps” (L267).

      1. Line 360 and elsewhere: The strength of the results is somewhat overstated at times. This absolutely supports the importance of strain-specific immunity, but these results do not explain patterns of the origin of resistance and there are a number of factors that are not incorporated (a necessary evil of modeling to be sure).

      R: Thank you for pointing this out. We’ve modified discussion to remove the overstated strength of results:

      1) Original: “The inclusion of strain diversity in the model provides a new mechanistic explanation as to why Southeast Asia has been the original source of resistance to certain antimalarial drugs, including chloroquine.”

      Modified: “The inclusion of strain diversity in the model provides a new mechanistic explanation as to why Southeast Asia has persisting resistance to certain antimalarial drugs, including chloroquine, despite a lower transmission intensity than Africa. “ (L328-330)

      2) In sum, we show that strain diversity and associated strain-specific host immunity, dynamically tracked through the macroparasitic structure, can explainpredict the complex relationship between transmission intensity and drug-resistance frequencies.

      1. The color palettes are not discernible in grayscale, especially the orange/blue/gray in Fig 2. The heatmaps appear to be in turbo, the only viridis palette that isn't grayscale-friendly. Just something to keep in mind for the accessibility of individuals with achromatopsia and most people who print out papers.

      R: Thank you for the visualization suggestions. We updated all the figures with the “viridis:magma” palette. As for the orange/blue/gray scale used in Fig 2C, it is difficult to pick nine colors that are discernable in brightness in grayscale. Currently, the four colors correspond to clonal genotype cost (i.e. green, red, grey, and blue), and the three-level brightness maps to mixed genotype cost.

    1. Author Response

      eLife assessment

      This study presents a valuable method to visualize the location of the cell types discovered through single-cell RNA sequencing. The evidence supporting the claims is solid, but the inclusion of a larger number of samples would strengthen the study. It would also be helpful to have the methods explained in more detail. The work will be of interest to those seeking to identify new cell types from scRNA-seq and snRNA-seq data.

      Response: We are surprised about the editor’s assessment of our paper as a “valuable” method. This is the first Drosophila adult spatial transcriptomics paper. Hence, we would at least consider this being an “important” method. Spatial transcriptomics has thus far only been done in embryos, which are easy to process for FISH for many decades. Integration with single-cell data is also new. We are further surprised that this assessment does not mention the identification of subcellular mRNA patterns in adult muscles as an “important” biological finding of this paper. We are not aware that any localized mRNAs in Drosophila muscles were known prior to our study. This shows the advantage of spatial transcriptomics over single-cell techniques.

      The work indeed does not represent a full spatial fly adult atlas – however, a proof of principle study covering both the head and body that we consider at least “important”.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Janssens et al. addressed the challenge of mapping the location of transcriptionally unique cell types identified by single nuclei sequencing (snRNA-seq) data available through the Fly Cell Atlas. They identified 100 transcripts for head samples and 50 transcripts for fly body samples allowing the identification of every unique cell type discovered through the Fly Cell Atlas. To map all of these cell types, the authors divided the fly body into head and body samples and used the Molecular Cartography (Resolve Biosciences) method to visualize these transcripts. This approach allowed them to build spatial tissue atlases of the fly head and body, to identify the location of previously unknown cell types and the subcellular localization of different transcripts. By combining snRNA-seq data from the Fly Cell Atlas with their spatially resolved transcriptomics (SRT) data, they demonstrated an automated cell type annotation strategy to identify unknown clusters and infer their location in the fly body. This manuscript constitutes a proof-of-principle study to map the location of the cells identified by ever-growing single-cell transcriptomic datasets generated by others.

      Strengths:

      The authors used the Molecular Cartography (Resolve Biosciences) method to visualize 100 transcripts for head samples and 50 transcripts for fly body samples in high resolution. This method achieves high resolution by multiplexing a large number of transcript visualization steps and allows the authors to map the location of unique cell types identified by the Fly Cell Atlas.

      Response: We thank the reviewer for their comment, but are surprised that this assessment does not mention the identification of subcellular mRNA patterns in adult muscles as an important biological finding of this paper. This might be due to the visualization problem that this reviewer was facing with a greyscale version of the PDF as mentioned in the comments below. We do not know what caused the technical problem for this reviewer (the PDF figures are in color on the eLife website and on bioRxiv). We are surprised that the eLife discussion session did not resolve this issue.

      Weaknesses:

      Combining single-nuclei sequencing (snRNA-seq) data with spatially resolved transcriptomics (SRT) data is challenging, and the methods used by the authors in this study cannot reliably distinguish between cells, especially in brain regions where the processes of different neurons are clustered, such as in neuropils. This means that a grid that the authors mark as a unique cell may actually be composed of processes from multiple cells.

      Response: The size of the fly is one of the most challenging aspects of performing spatial transcriptomics. The small size of the samples led to detachment from the slides, which we solved by coating the slides with gelatin. While the resolution of Molecular Cartography is high (<200nm), in the brain challenges remain as noted by the reviewer. Drosophila neuronal nuclei are notoriously small and cannot be easily resolved with current techniques. We agree that for a full atlas either expansion microscopy, 3D techniques or even higher resolution will be required.

      Reviewer #2 (Public Review):

      Summary:

      The landmark publication of the "Fly Atlas" in 2022 provided a single cell/nuclear transcriptomic dataset from 15 individually dissected tissues, the entire head, and the body of male and female flies. These data led to the annotation of more than 250 cell types. While certainly a powerful and data-rich approach, a significant step forward relies on mapping these data back to the organism in time and space. The goal of this manuscript is to map 150 transcripts defined by the Fly Atlas by FISH and in doing so, provide, for the first time, a spatial transcriptomic dataset of the adult fly. Using this approach (Molecular Cartography with Resolve Biosciences), the authors, furthermore, distinguish different RNA localizations within a cell type. In addition, they seek to use this approach to define previously unannotated clusters found in the Fly Atlas. As a resource for the community at large interested in the computational aspects of their pipeline, the authors compare the strengths and weaknesses of their approach to others currently being performed in the field.

      Strengths:

      1. The authors use Resolve Biosciences and a novel bioinformatics approach to generate a FISH-based spatial transcriptomics map. To achieve this map, they selected 150 genes (50 body; 100 head) that were highly expressed in the single nuclear RNA sequencing dataset and were used in the 2022 paper to annotate specific cell types; moreover, the authors chose several highly expressed genes characteristic of unannotated cell types. Together, the approach and generated data are important next steps in translating the transcriptomic data to spatial data in the organism.

      Response: We thank the reviewer for this comment but would like to add that the statement that we selected “150 genes (50 body; 100 head) that were highly expressed in the single nuclear RNA sequencing dataset” is not correct. We have chosen genes with widely differing expression levels (log-scale range of 3.95 in body, 5.76 in head). Many of the chosen genes are also transcription factors. In fact, the here introduced method is more sensitive than the single cell atlas: the tinman positive cells were readily located (even non-heart cells were found to express tinman), whereas in the single cell FCA data tinman expression is often not detected in the cardiomyocytes (Tinman is detected in 273 cells in the entire FCA (mean expression of 1.44 UMI in positive cells), and in 71 cells out of 273 cardial cells (26%)).

      Author response image 1.

      Density plots for body (left) and head (right) showing levels of gene expression detected in scRNA-seq (body: Fly Cell Atlas, Li et al. 2022, head: Pech et al. (2023)). Blue: all genes, red: genes used in the spatial study.

      1. Working with Resolve, the authors developed a relatively high throughput approach to analyze the location of transcripts in Drosophila adults. This approach confirmed the identification of particular cell types suggested by the FlyAtlas as well as revealed interesting subcellular locations of the transcripts within the cell/tissue type. In addition, the authors used co-expression of different RNAs to unbiasedly identify "new cell types". This pipeline and data provide a roadmap for additional analyses of other time points, female flies, specific mutants, etc.

      2. The authors show that their approach reveals interesting patterns of mRNA distribution (e.g alpha- and beta-Trypsin in apical and basal regions of gut enterocytes or striped patterns of different sarcomeric proteins in body muscle). These observations are novel and reveal unexpected patterns. Likewise, the authors use their more extensive head database to identify the location of cells in the brain. They report the resolution of 23 clusters suggested by the single-cell sequencing data, given their unsupervised clustering approach. This identification supports the use of spatial cell transcriptomics to characterize cell types (or cell states).

      3. Lastly, the authors compare three different approaches --- their own described in this manuscript, Tangram, and SpaGE - which allow integration of single cell/nuclear RNA-seq data with spatial localization FISH. This was a very helpful section as the authors compared the advantages and disadvantages (including practical issues, like computational time).

      Weaknesses:

      1. Experimental setup. It is not clear how many and, for some of the data, the sex of the flies that were analyzed. It appears that for the body data, only one male was analyzed. For the heads, methods say male and female heads, but nothing is annotated in the figures. As such, it remains unclear how robust these data are, given such a limited sample from one sex. As such, the claims of a spatial atlas of the entire fly body and its head ("a rosetta stone") are overstated. Also, the authors should clearly state in the main text and figure legends the sex, the age, how many flies, and how many replicates contributed to the data presented (not just the methods). What also adds to the confusion is the use of "n" in para 2 of the results. " ... we performed coronal sections at different depths in the head (n=13)..." 13 sections in total from 1 head or sections from 13 heads? Based on the body and what is shown in the figure, one assumes 13 sections from one head. Please clarify.

      Response: While we agree that sex differences present indeed an interesting opportunity to study with spatial transcriptomics, our goal was not to define male/female differences but rather to establish the technology to go into this detail if wanted in the future. In the revised version, we will provide a more detailed description of the sections, including their sex/genotype/age. We would like to point out that we verified the specificity of our FISH method on all the body sections (Figure 2A, TpnC4 & Act88F) and not only on one. Furthermore, we also would like to state that the idea of “a rosetta stone” was mentioned as a future prospect. We will rewrite the discussion to make this more clear.

      1. Probes selected: Information from the methods section should be put into the main text so that it is clear what and why the gene lists were selected. The current main text is confusing. If the authors want others to use their approach, then some testing or, at the very least, some discussion of lower expressed genes should be added. How useful will this approach be if only highly expressed genes can be resolved? In addition, while it is understood that the company has a propriety design algorithm for the probes, the authors should comment on whether the probes for individual genes detect all isoforms or subsets (exons and introns?), given the high level of splicing in tissues such as muscle.

      Response: As stated above, while there is a slight bias to higher expressed genes (as expected for marker genes), we have also used very low expressed genes like tinman (body) or sens (head). This shows that our method is more sensitive than single-cell data, as ALL cardiomyocytes can be identified by tinman expression and not only some are positive, as is the case in the FCA data. In fact, the method can’t resolve too highly expressed genes due to optical crowding of the signal leading to a worse quantification. For this reason, ninaE was removed from the analysis (as mentioned in Spatial transcriptomics allows the localization of cell types in the head and brain and in Methods).

      As mentioned in the Methods, the probes are designed on gene level targeting all isoforms, but favoring principal isoforms (weighted by APPRIS level). The high level of splicing is indeed interesting and we expect that in the future spatial transcriptomics can help to generate more insight in this.

      1. Imaging: it isn't clear from the text whether the repeated rounds of imaging impacted data collection. In many of what appear to be "stitched" images, there are gradients of signal (eg, figure 2F); please comment. Also, since this a new technique, could a before and after comparison of the original images and the segmented images be shown in the supplemental data so that the reader can better appreciate how the authors assessed/chose/thresholded their data? More discussion of the accuracy of spot detection would be helpful.

      Response: Any high-resolution imaging (pixel size = 138 nm) of a large field of view (>1mm) uses a stitching method to combine several individual images to reconstruct a large field of view. This does not generate signal gradients, apart from lower signal at the extreme edges of each of the individual images. The spot detection algorithm was written and used by Resolve Biosciences and benchmarked for human (Hela) and mouse (NIH-3T3) cell lines in Groiss et al. 2021 (Highly resolved spatial transcriptomics for detection of rare events in cells, biorxiv). The specificity of the decoded probes was found to lie between 99.45 and 99.9% here, matching the results we found for TpnC4 and Act88F (99.4 and 99.8%). We will add their analysis to our discussion.

      1. The authors comment on how many RNAs they detected (first paragraph of results). How do these numbers compare to the total mRNA present as detected by single-cell or single-nuclear sequencing?

      Response: The total number of mRNAs detected per spatial transcriptomics experiment is much higher for the body samples compared to single-cell experiments (FCA data). In the head it is slightly lower, but here it is important to note that not all cell types are present in each slice in the head (while they are all present in the head scRNA experiments). A comparison on the cell-type level would be more meaningful, and we will investigate this for the revision.

      Author response image 2.

      Barplots showing total number of mRNA molecules detected in Molecular Cartography (Resolve, spatial spots) and in snRNA-seq data from the Fly Cell Atlas (10x Genomics, UMIs). Individual black dots show individual experiments, counts are only shown for the chosen gene panel for each sample. Bar shows the mean, with error bars representing the standard error.

      1. Using this higher throughput method of spatial transcriptomics, the authors discern different cell types and different localization patterns within a tissue/cell type.

      a. The authors should comment on the resolution provided by this approach, in terms of the detection of populations of mRNAs detected by low throughput methods, for example, in glia, motor neuron axons, and trachea that populate muscle tissue. Are these found in the images? Please show.

      Response: We did not add any markers for trachea in our gene panel, but we do detect sparse spots of repo (glia) and elav/VGlut in the muscle tissues (Gad1/VAChT are hardly detected in the muscle tissue). This is consistent with the glutamatergic nature of motor neurons in Drosophila as described previously (Schuster CM (2006) Glutamatergic synapses of Drosophila neuromuscular junctions: a high-resolution model for the analysis of experience-dependent potentiation. Cell Tissue Res 326: 287–299.)

      Author response image 3.

      Molecular Cartography zoomed in on indirect flight muscle. Segmented nuclei are shown in white (based on DAPI), scalebars represent 100 μm).

      b. The authors show interesting localization patterns in muscle tissue for different sarcomere protein-coding mRNAs, including enrichment of sls in muscle nuclei located near the muscle-tendon attachment sites. As this high throughput approach is newly being applied to the adult fly, it would increase confidence in these data, if the authors would confirm these data using a low throughput FISH technique. For example, do the authors detect such alternating "stripes" ( Act 88F, TpnC4, and Mhc) or enriched localization (sls) using FISH that doesn't rely on the repeated colorization, imaging, decolorization of the probes?

      Response: We thank the reviewer for their interest in the localization patterns in muscle tissue. We could confirm localized mRNA in all the sections analyzed, in flight muscles as well as in leg muscles. We furthermore show that Act 88F, TpnC4 are not detected outside of flight muscle cells (99.4% and 99.8% of the single molecular signal in flight muscles only). Hence, we already show the specificity test in a much more quantitative way compared to traditional FISH, which often includes amplification.

      1. The authors developed an unbiased method to identify "new cell types" which relies on co-expression of different transcripts. Are these new cell types or a cell state? While expression is a helpful first step, without any functional data, the significance of what the authors found is diminished. The authors need to soften their statements.

      Response: The term “new cell types” only appears in the title. We agree that with the current spatial map we cannot be sure to have found “new cell types”, instead we have shown where unannotated clusters from scRNA-seq map, based on gene expression. Therefore, we will tone down the title in the revised version and thank the reviewer for this valuable suggestion.

      Appraisal:

      The authors' goal is to map single cell/nuclear RNAseq data described in the 2022 Fly Atlas paper spatially within an organism to achieve a spatial transcriptomic map of the adult fly; no doubt, this is a critical next step in our use of 'omics approaches. While this manuscript does the hard work of trying to take this next step, including developing and testing a new pipeline for high throughput FISH and its analysis, it falls short, in its present form, in achieving this goal. The authors discuss creating a robust spatial map, based on one male fly. Moreover, they do not reveal principles of mRNA localization, as stated in the abstract; they show us patterns, but nothing about the logic or function of these patterns. This same criticism can be said of the identification of "new cell types, just based on RNA colocalization. In both cases (mRNA subcellular localization or cell type identification), further data in the form of validation with traditional low throughput FISH and genetic manipulations to assess the relation to cell function are required for the authors to make such claims.

      Response: We have indeed used one male fly for the adult male body data. This is mainly due to the cost of the sample processing. We used 12 individuals for the head samples (from 1 individual we acquired 2 sections, a total of 13 sections). We show that the body samples show a high correlation with each other, while the head samples cover multiple depths of the head. Still, even in the head, we find that sections at similar depths show a high similarity to each other in terms of gene-gene co-expression and expression patterns. Although obtaining more sections would be valuable, we don’t believe it to be necessary for the current goals. Additional replicates beyond the ones we already provide would require significant amounts of extra time and budget, while they would produce similar results as we already show. We are therefore reluctant to repeat the effort again.

      The usage of the term “new cell types” is indeed ambiguous and we will tone this down in the revised version. Instead, we meant that unannotated clusters could be mapped to their location. In the text, we further specify that this means that now we only have inferred the location of the nuclei and that for neurons their function/processes are still unknown. As such, our data provides a starting point to identify new cell types since their marker genes and nuclear location are inferred. The next step to identify “new cell types” would indeed be to acquire genetic access to the cell types and characterize them in more detail. This is currently beyond our goals, and therefore we will tone down the title in the revised version and thank the reviewer for this valuable suggestion.

      Discussion of likely impact:

      If revised, these data, and importantly the approach, would impact those working on Drosophila adults as well as those working in other model systems where single cell/nuclear sequencing is being translated to the spatial localization within the organism. The subcellular localization data - for example, the size of transcripts and how that relates to localization or the patterns of sarcomeric protein localization in muscle - are intriguing, and would likely impact our thinking on RNA localization, transport, etc if confirmed. Lastly, the authors compare their computational approaches to those available in the field; this is valuable as this is a rapidly evolving field and such considerations are critical for those wishing to use this type of approach.

      Response: We believe that our manuscript as it stands now is already an “important” paper that will strongly impact the Drosophila community (and beyond the spatial transcriptomics community). As it stands, it provides the groundwork for a full Drosophila adult spatial atlas, similar to how early scRNA-seq datasets provided a framework for the Fly Cell Atlas. In the manuscript we provide both experimental information on how to successfully perform spatial transcriptomics (treating slides for optimal attachment) and the data serves as a benchmark for future experiments to improve upon (similar to how early Drop-seq datasets were compared to later 10x datasets in single-cell transcriptomics). In addition, it also provides proof of principle methods on how to integrate the FCA data with these spatial data and it identifies localized mRNA species in large adult muscle cells, showing the complementarity of spatial techniques with single-cell RNA-seq. To conclude, this is the first spatial adult Drosophila transcriptomics paper, locating 150 mRNA species with easy data access in our user portal (https://spatialfly.aertslab.org/).

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      1. The most important concern that I have refers to the FDTD simulations to characterize the ZMW, as shown in Appendix 2, Figure 4. So far, the explanations given in the caption of Figure 4 are confusing and misleading: the authors should provide more detailed explanations on how the simulations were performed and the actual definition of the parameters used. In particular:

      a. lines 1330-1332: it is not clear to me how the fluorescence lifetime can be calculated from the detected signal S (z), and why they are horizontal, i.e., no z dependence? Which lifetimes are the authors referring to?

      b. lines 1333-1335: Where do these values come from? And how do they relate to panels D & E? From what I can see in these panels the lifetimes are highly dependent on z and show the expected reduction of lifetime inside the nanostructures.

      c. lines 1336-1337: Why the quantum yield of the dyes outside the ZMW differs from those reported in the literature? In particular the changes of quantum yield and lifetime for Alexa 488 are very large (also mentioned in the corresponding part of Materials & Methods but not explained in any detail).

      We thank the Reviewer for his detailed questions on the FDTD simulations. We have now added the missing equation related to the computation of signal-averaged fluorescence lifetimes from the FDTD simulations. Specifically to the three points raised:

      a) The fluorescence lifetime is indeed not calculated from the detected signal S(z), but from the radiative and non-radiative rates in the presence of the ZMW as given in eq. 9-10. However, we use the detected signal S(z) to compute the average fluorescence lifetime over the whole z-profile of the simulation box, which we relate to the experimentally measured fluorescence lifetimes as given in Appendix 7, Figure 1. We have now added the equation to compute the signal-weighted fluorescence lifetimes, which we denote as <𝜏>S , in eq. 13 in the methods. To clarify this point, we have added the symbol <𝜏>S to the plots in Appendix 2, Figure 4 D-E and Appendix 7, Figure 1 C-D.

      b) The estimated lifetimes were obtained as the signal-weighted average over the lifetime profiles, (<𝜏>S) as given in the new eq. 13. All plotted quantities, i.e., the detection efficiency η, quantum yield ϕ, detected signal S(z), and fluorescence lifetime, are computed from the radiative and loss rates obtained from the FDTD simulation according to eqs. 8-11. To make this clearer, we have now added the new Appendix 2 – Figure 5 which shows the z-profiles of the quantities (radiative and loss rates) used to derive the experimental observables.

      c) There are multiple reasons for the differences of the quantum yields of the two analytes used in this study compared to the literature values. For cyanine dyes such as Alexa647, it is well known that steric restriction (as e.g. caused by conjugation to a biomolecule) can lead to an increase of the quantum yield and fluorescence lifetime. We observe a minor increase of the fluorescence lifetime for Alexa647 from the literature value of 1.17 ns to a value of 1.37 ns when attached to Kap95, which is indicative of this effect. In the submitted manuscript, this was discussed in the methods in lines 936-938 (lines 938-945 in the revised manuscript). For the dye Alexa488, which is used to label the BSA protein, this effect is absent. Instead, we observe (as the Reviewer correctly notes) a quite drastic reduction of the fluorescence lifetime compared to the unconjugated dye from 4 ns to 2.3 ns. In cases where a single cysteine is labeled on a protein, such a drastic reduction of the quantum yield usually indicates the presence of a quenching moiety in proximity of the labeling site, such as tryptophane, which acts via the photo-induced electron transfer mechanism. Indeed, BSA contains two tryptophanes that could be responsible for the low quantum yield of the conjugated dyes. The situation is complicated by the fact that BSA contains 35 cysteines that can potentially be labeled (although 34 are involved in disulfide bridges). The labeled BSA was obtained commercially and the manufacturer lists the degree of labeling as ~6 dye molecules per protein, with a relative quantum yield of 0.2 compared to the standard fluorescein. This corresponds to an absolute quantum yield of ~0.16, which is low compared to the literature value for Alexa488 of ~0.8.

      Based on the measured fluorescence lifetime, we estimate a quantum yield of 0.46, which is higher than the photometrically obtained value of 0.16 reported by the manufacturer. Fully quenched, nonfluorescent dyes will not contribute to the lifetime measurement but are detected in the photometric quantum yield estimates. The difference between the lifetime and photometric based quantum yield estimates thus suggest that part of the fluorophores are almost fully quenched. While it is unknown where the dyes are attached to the protein, the low quantum yield could be indicative of dye-dye interactions via pi-pi stacking, which can often lead to non-fluorescent dimers. This is supported by the fact that the manufacturer reports color differences between batches of labeled protein, which indicate spectral shifts of the absorption spectrum when dye-dye adducts are formed by π-π stacking. We have now added a short discussion of this effect in lines 938-941. We note that the conclusions drawn on the quenching effect of the metal nanostructure remain valid despite the drastic reduction of the quantum yield for Alexa488, which leads to a further quantum yield reduction of the partly quenched reference state.

      2) A second important concern refers to Figure 3: Why is there so much variability on the burst intensities reported on panels C, D? They should correspond to single molecule translocation events and thus all having comparable intensity values. In particular, the data shown for BSA in panel D is highly puzzling, since it not only reflects a reduced number of bursts (which is the main finding) but also very low intensity values, suggesting a high degree of quenching of the fluorophore being proximal to the metal on the exit side of the pore. In fact, the count rates for BSA on the uncoated pore range form 50-100kcounts/s, while on the coated pores thy barely reach 30 kcounts/s, a clear indication of quenching. Importantly, and in direct relation to this, could the authors exclude the possibility that the low event rates measured on BSA are largely due to quenching of the dye by getting entangled in the Nsp mesh just underneath the pore but in close contact to the metal?

      The Reviewer raises a valid concern, but further analysis shows that this is unproblematic. Notably, the burst intensities are in fact not reduced, in contrast to the visual impression obtained from the time traces shown in the figure. The time trace of the BSA intensity is visually dominated by high-intensity bursts which mask the low-intensity bursts in the plot. In contrast, in Figure 3 the reduced number of BSA events results in a sparser distribution of the intensity spikes, which allows low-intensity events to be seen. Different to the visual inspection, the spike-detection algorithm does not exhibit any bias in terms of the duration or the number of photons of the detected events between the different conditions for both BSA and Kap95, as shown in the new Appendix 7 – Figure 1. Using FCS analysis it can be tested whether the event duration varies between the different conditions shown in Figure 3 C-D. This did not show a significant difference in the estimated diffusion time for BSA (Appendix 7 – Figure 1 C,D). Contrary to the suggestion of the Reviewer, we also do not observe any indication of quenching by the metal between uncoated and Nsp1-coated pores for BSA. Such quenching should result in differences of the fluorescence lifetimes, which however is not evident in our experimental data (Appendix 7 – Figure 1 F).

      3) Line 91: I suggest the authors remove the word "multiplexed" detection since it is misleading. Essentially the authors report on a two-color excitation/detection scheme which is far from being really multiplexing.

      We have changed the word to “simultaneous” now and hope this avoids further confusion.

      4) Line 121: why are the ZMW fabricated with palladium? Aluminum is the gold-standard to reduce light transmissivity. An explanation for the choice of this material would be appreciated by the community.

      In a previous study (Klughammer and Dekker, Nanotechnology, 2021), we established that palladium can have distinct advantages compared to other ZMW metals such as aluminum and gold, most prominently, an increased chemical stability and reduced photoluminescence. For this study, we chose palladium over aluminum as it allowed the use of simple thiol chemistry for surface modification. In the beginning of the project, we experimented with aluminum pores as well. We consistently found that the pores got closed after measuring their ionic conductance in chlorine-containing solutions such as KCl or PBS. This problem was avoided by choosing palladium.

      5) Lines 281-282: This statement is somewhat misleading, since it reads such that the molecules stay longer inside the pore. However, if I understand correctly, these results suggest that Kap95 stays closer to the metal on the exit side. This is because measurements are being performed on the exit side of the pore as the excitation field inside the pore is quite negligible.

      We thank the Reviewer for this comment and have clarified the text in lines 290-292 as suggested to: “(…) this indicates that, on the exit side, Kap95 diffuses closer to the pore walls compared to BSA due to interactions with the Nsp1 mesh”

      6) Lines 319-320: Although the MD simulations agree with the statement being written here, the variability could be also due to the fact that the proteins could interact in a rather heterogenous manner with the Nsp mesh on the exit side of the pore, transiently trapping molecules that then would stay longer and/or closer to the metal altering the emission rate of the fluorophores. Could the authors comment on this?

      The variation mentioned in the text refers to a pore-to-pore variation and thus needs to be due to a structural difference between individual pores. This effect would also need to be stable for the full course of an experiment, typically hours. We did not find any structural changes in the fluorescence lifetimes measured on individual pores such as suggested by the Reviewer. We think that the suggested mechanism would show up as distinct clusters in Appendix 7 – Figure 1 E,F where we found no trace of such a change to happen. If we understand correctly, the Reviewer suggests a mechanism, not based on changes in the Nup layer density, that would lead to a varying amount of trapping of proteins close to the surface. Such a behavior should show up in the diffusion time of each pore ( Appendix 7 – figure 1 C,D), where we however find no trace of such an effect.

      7) Lines 493-498: These claims are actually not supported by the experimental data shown in this contribution: a) No direct comparison in terms of signal-to-noise ratio between fluorescence-based and conductance-based readouts has been provided in the ms. b) I would change the word multiplexed by simultaneous since it is highly misleading. c) The results shown are performed sequentially and thus low throughput. d) Finally, the use of unlabeled components is dubious since the detection schemes relies on fluorescence and thus requiring labeling.

      We thank the Reviewer for pointing this out.

      a) We have now added a section in appendix 3 that discusses the signal-to-noise ratios. In brief, there are three observations that led us to conclude that ZMWs provide beneficial capabilities to resolve individual events from the background:

      1. The signal-to-background ratio was determined to be 67±53 for our ZMW data of Kap95 which is an order of magnitude higher compared to the ~5.6 value for a conductance-based readout.

      2. The detection efficiency for ZMWs is independent of the Kap95 occupancy within the pore. This is different from conductance based approaches that have reduced capability to resolve individual Kap95 translocations at high concentrations.

      3. The fraction of detected translocations is much higher for ZMWs than for conductance-based data (where lots of translocations occur undetected) and matches closer to the theoretical predictions.

      b) We have changed the wording accordingly.

      c) We agree with the Reviewer that our method is still low throughput. However, the throughput is markedly increased compared to previous conductance-based nanopore measurements. This is because we can test many (here up to 8, but potentially many more) pores per chip in one experiment, whereas conductance-based readouts are limited to a single pore. We have now changed the wording to “increased throughput” in line 507 to avoid confusion.

      d) We agree that only labeled components can be studied directly with our methods. However, the effect of unlabeled analytes can be assessed indirectly without any perturbation of the detection scheme due to the specificity of the fluorescent labeling. This is distinct from previous nanopore approaches using a conductance-based readout that lack specificity. In our study, we have for example used this advantage of our approach to access event rates at high concentrations (1000nM Kap95, 500nM BSA) and large pore diameters by reducing the fraction of labeled analyte in the sample. Finally, the dependence of the BSA leakage rate as a function of the concentration of Kap95 (Figure 6) relies on a specific readout of BSA events in the presence of large amounts of Kap95, which would be impossible in conductance-based experiments.

      8) Line 769: specify the NA of the objective. Using a very long working distance would also affect the detection efficiency. Have the authors considered the NA of the objective on the simulations of the detection efficiency? This information should be included and it is important as the authors are detecting single molecule events.

      We used an NA of 1.1 for the simulation of the Gaussian excitation field in the FDTD simulations, corresponding to the NA of the objective lens used in the experiments and as specified in the methods. The Reviewer is correct that the NA also affects the absolute detection efficiency of the fluorescence signal due to the finite opening angle of the collection cone of ~56˚. In our evaluation of the simulations, we have neglected this effect for simplicity, because the finite collection efficiency of the objective lens represents only an additional constant factor that does not depend on the parameters of the simulated system, such as the pore diameter. Instead, we focused solely the effect of the ZMW and defined the detection efficiency purely based on the fraction of the signal that is emitted towards the detection side and can potentially be detected in the experiment, which also provides the benefit that the discussed numbers are independent of the experimental setup used.

      To clarify this, we have now made this clearer in the method text on lines 917-920.

      9) Line 831: I guess that 1160ps is a mistake, right?

      This is not a mistake. We performed a tail fit of the fluorescence decay curves, meaning that the initial rise of the decay was excluded from the fit. The initial part of the fluorescence decay is dominated by the instrument response function (IRF) of the system, with an approximate width of ~500 ps. To minimize the influence of the IRF on the tail fit, we excluded the first ~1 ns of the fluorescence decay.

      10) Lines 913-917: Why are the quantum yield of Alexa 488 and lifetime so much reduced as compared to the published values in literature?

      See answer to point 1. We have added a short discussion at lines 938-941 where we speculate that the reduced quantum yield is most likely caused by dye-dye interactions due to the high degree of labeling of ~6 dyes per protein.

      11) Lines 1503-1509: The predicted lifetimes with the Nsp-1 coating have not been shown in Appendix 2 - Figure 4. How have they been estimated?

      We have not performed predictions of fluorescence lifetimes in the presence of an Nsp1 coating. Predictions of the fluorescence lifetime in the absence of the Nsp1 coating were obtained by assuming a uniform occupancy of the molecules over the simulation box. A prediction of the fluorescence lifetimes in the presence of the Nsp1 coating would require a precise knowledge of the spatial distribution of analytes, which depends, among other factors, on the extension of the Nsp1 brushes and the interaction strengths with the FG repeats. While simulations provide some insights on this, we consider a quantitative comparison of predicted and measured fluorescence lifetimes in the presence of the Nsp1 coating beyond the scope of the present study.

      12) Lines 1534-1539: I disagree with this comment, since the measurements reported here have been performed outside the nano-holes, and thus the argument of Kap95 translocating along the edges of the pore and being responsible for the reduced lifetime does not make sense to me.

      In accordance with our answer to point 5 above, we have now changed the interpretation to the proximity of Kap95 to the metal surface on the exit side, rather than speculating on the path that the protein takes through the pore (lines 1662-1664), as follows:

      “This indicates that, in the presence of Nsp1, Kap95 molecules diffuse closer to or spend more time in proximity of the metal nanoaperture on the exit side.”

      Reviewer #2:

      (Numbers indicate the line number.)

      48: should cite more recent work: Timney et al. 2016 Popken et al 2015

      59: should cite Zilman et al 2007, Zilman et al 2010

      62: should cite Zilman et al 2010

      We thank the Reviewer for the suggestions and have added them to the manuscript now.

      65: one should be careful in making statements that the "slow" phase is immobile, as it likely rapidly exchanging NTRs with the "fast" phase.

      We have removed this description and replaced it by “This 'slow phase' exhibits a reduced mobility due to the high affinity of NTRs to the FG-Nup mesh.” to avoid misunderstanding.

      67: Schleicher 2014 does not provide evidence of dedicated channels

      We agree with the Reviewer and therefore moved the reference to an earlier position in the sentence.

      74-75: must cite work by Lusk & Lin et al on origami nanochannels

      We thank the Reviewer for this suggestion. We have now added a reference to the nanotraps of Shen et al. 2021, JACS, in line 75. In addition, we now also refer to Shen et al. 2023, NSMB, in the discussion where viral transport is discussed.

      77: Probably Jovanovic- Talisman (2009)?

      We thank the Reviewer for pointing out this typo.

      93; should cite Auger&Montel et al, PRL 2014

      We thank the Reviewer for pointing out this reference. To give proper credit to previous ZMW, we have now incorporated a sentence in lines 100-102 citing this reference.

      111-112: there appears to be some internal inconsistency between this interpretation and the BSA transport mostly taking place through the "central hole" (as seems to be implied by Equation (3). Probably it should be specified explicitly that the "central hole" in large channels is a "void".

      We thank the Reviewer for this suggestion and have added a clarifying sentence.

      115-177: This competition was studied in Jovanovic-Talisman 2009 and theoretically analysed in Zilman et al Plos Comp Biol 2010. The differences in the results and the interpretation should be discussed.

      We agree, therefore it is discussed in the discussion section (around line 594) and now added the reference to Zilman et al.

      Figure 2 Caption: "A constant flow..." - is it clear that is flow does not generate hydrodynamic flow through the pore?

      The Reviewer raises an important point. Indeed, the pressure difference over the membrane generates a hydrodynamic flow through the pore that leads to a reduction of the event rate compared to when no pressure is applied. However, as all experiments were performed under identical pressures, one can expect a proportional reduction of the absolute event rates due to the hydrodynamic flow against the concentration gradient. In other words, this will not affect the conclusions drawn on the selectivity, as it is defined as a ratio of event rates.

      We have now added additional data on the influence of the hydrodynamic flow on the translocation rate in Appendix 3 – Figure 2, where we have measured the signal of free fluorophores at high concentration on the exit side of the pore as a function of the applied pressure. The data show a linear dependence of the signal reduction on the applied pressure. At the pressure values used for the experiments of 50 mbar, we see a ~5% reduction compared to the absence of pressure, implying that the reported absolute event rates are underestimated only by ~5%. Additionally we have added such data for Kap95 translocations that shows a similar effect (however less consistent). Measuring the event rate at zero flow is difficult, since this leads to an accumulation of fluorophores on the detection side.

      Figure 3: it would help to add how long is each translocation, and what is the lower detection limit. A short explanation of why the method detects actual translocations would be good

      With our method, unfortunately, we can not assess the duration of a translocation event since we only see the particle as it exists the pore. Instead, the measured event duration is determined by the time it takes for the particle to diffuse out of the laser focus. This is confirmed by FCS analysis of translocation events that show the same order of magnitude of diffusion times as for free diffusion (Appendix 7 – Figure 1 C,D) in contrast to a massively reduced diffusion time within a nanopore. In Figure 2D we show the detection efficiency at different locations around the ZMW as obtained from FDTD simulations and discuss the light blocking. This clearly shows that the big majority of the fluorescence signal comes from the laser illuminated side and therefore only particles that translocated through the ZMW are detected as presented between lines 170-190. In Yang et al. 2023, bioRxiv (https://doi.org/10.1101/2023.06.26.546504) a more detailed discussion about the optical properties of Pd nanopores is given.

      This point also explains why we see actual translocations: since the light is blocked by the ZMW, fluorophores can only be detected after they have translocated. On parts of the membrane without pores and upstream the amount of spikes found in a timetrace was found to be negligibly small. Additionally, if a significant part of the signal would be contributed by leaking fluorescence from the dark top side, there should no difference in BSA event rate found between small open and Nsp1 pores which we did not observe.

      With respect to the lower detection limit for events: In the burst search algorithm we require a false positive level rate of lower than 1 event in 100. Additionally, as described in Klughammer and Dekker, Nanotechnology (2021), we apply an empirical filtering to remove low signal to noise ratio events that contain less than 5 detected photons per event or a too low event rate. From the event detection algorithm there is no lower limit set on the duration of an event. Such a limit is then set by the instrument and the maximum frequency it which it can detect photons. This time is below 1μs. Practically we don’t find events shorter than 10μs as can be seen in the distribution of events where also the detection limits can be estimated (Appendix 7 – figure 1 A and B.)

      Equation (1): this is true only for passive diffusion without interactions (see eg Hoogenboom et al Physics Reports 2021 for review). Using it for pores with interactions would predict, for instance, that the inhibition of the BSA translocation comes from the decrease in D which is not correct.

      We agree with the Reviewer that this equation would not reproduce the measured data in a numerically correct way. We included it to justify why we subsequently fit a quadratic function to the data. As we write in line 260 we only used the quadratic equation “as a guide to the eye and for numerical comparison” and specifically don’t claim that this fully describes the translocation process. In this quadratic function, we introduced a scaling factor α that can be fitted to the data and thus incorporates deviations from the model. In appendix 5 we added a more elaborate way to fit the data including a confinement-based reduction of the diffusion coefficient (although not incorporating interactions). Given the variations of the measured translocation rates, the data is equally well described by both the simple and the more complex model function.

      Equation (1): This is not entirely exact, because the concentration at the entrance to the pore is lower than the bulk concentration, which might introduce corrections

      We agree with the Reviewer and have added that the concentration difference Δc is measured at the pore entrance and exit, and this may be lower than the bulk concentration. As described in our reaction to the Reviewer’s previous comment, equation (1) only serves as a justification to use the quadratic dependence and any deviations in Δc are absorbed into the prefactor α in equation (2).

      Equation (3): I don't understand how this is consistent with the further discussion of BSA translocation. Clearly BSA can translocate through the pore even if the crossection is covered by the FG nups (through the "voids" presumably?).

      The Reviewer raises an important point here. Equation 3 can only be used for a pore radius r > rprot + b. b was determined to be 11.5 nm and rprot is 3.4 nm for BSA, thus it needs to be that r > 15 nm. We would like to stress, however, that b does not directly give a height of a rigid Nsp1 ring but is related to the configuration of the Nsp1 inside the pore. Equation (3) (and equation (2)) were chosen because even these simple equations could fit the experimentally measured translocation rates well, and not because they would accurately model the setup in the pore. As we found from the simulations, the BSA translocations at low pore diameters presumably happen through transient openings of the mesh. The dynamics leading to the stochastic opening of voids on average leads to the observed translocation rate.

      296-297: is it also consistent with the simulations?

      We compare the experimentally and simulated b values in lines 387-388 and obtained b=9.9 ± 0.1 nm from the simulations (as obtained from fitting the translocation rates and not from measuring the extension of the Nsp1 molecules) and 11.5 ± 0.4 nm from the experiments – which we find in good agreement.

      331: has it been established that the FG nups equilibrate on the microsecond scale?

      As an example, we have analyzed the simulation trajectory of the most dense nanopore (diameter = 40 nm, grafting = 1/200 nm2). In Author response image 1 we show for each of the Nsp1-proteins how the radius of gyration (Rg) changes in time over the full trajectory (2 μs + 5 μs). As expected, the Rg values reached the average equilibrium values very well within 2 μs simulation time, showing that the FG-Nups indeed equilibrate on the (sub)microsecond scale.

      Author response image 1.

      334-347: the details of the method should be explained explicitly in the supplementary (how exactly voids distributions are estimated and the PMF are calculated etc)

      The void analysis was performed with the software obtained from the paper of Winogradoff et al. In our Methods we provide an overview of how this software calculates the void probability maps and how these are converted into PMFs. For a more detailed description of how exactly the analysis algorithm is implemented in the software, we refer the reader to the original work. The analysis codes with the input files that were used in this manuscript have been made public ( https://doi.org/10.4121/22059227.v1 ) along with the manuscript.

      Equation (4) is only an approximation (which works fine for high barriers but not the low ones). Please provide citations/derivation.

      To our knowledge, the Arrhenius relation is a valid approximation for our nanopore simulations. We are unaware of the fact that it should not work for low barriers and cannot find mention of this in the literature. It would be helpful if the Reviewer can point us to relevant literature.

      Figure 4: how was transport rate for Kaps calculated?

      As mentioned in lines 388-391, we assumed that the Kap95 translocation rate through Nsp1-coated pores is equal to that for open pores, as we did not observe any significant hindrance of Kap95 translocation by the Nsp1 mesh in the experiment (Figure 4 A,C).

      378: It's a bit strange to present the selectivity ratio as prediction of the model when only BSA translocation rate was simulated (indirectly).

      We agree with the Reviewer that ideally we should also simulate the Kap95 translocation rate to obtain an accurate selectivity measure of the simulated nanopores. However, as the experiments showed very similar Kap95 translocation rates for open pores and Nsp1-coated pores, we believe it is reasonable to take the Kap95 rates for open and Nsp1-pores to be equal.

      Figure 5C and lines 397: I am a bit confused how is this consistent with Figure 4D?

      Figure 5C and figure 4D both display the same experimental data, where 4D only focuses on a low diameter regime. In relation to line 397 (now 407), the Nsp1 mesh within the 60-nm pore dynamically switches between closed configurations and configurations with an open channel. When taking the temporal average of these configurations, we find that the translocation rate is higher than for a closed pore but lower than for a fully open pore. The stochastic opening and closing of the Nup mesh results in the continuous increase of the translocation rates with increasing diameter, which is in contrast to a step-wise increase that would be expected from an instantaneous collapse of the Nsp1 mesh at a certain pore diameter.

      428-439: Please discuss the differences from Jovanovic-Talisman 2009.

      How our results for a Kap95 induced change of the BSA translocation rate are related to previous literature is discussed extensively in the lines 598-620.

      440: How many Kaps are in the pore at different concentrations?

      This is a very interesting question that we were, unfortunately, not able to answer within the scope of this project. With our fluorescent based methods we could not determine this number because the excitation light does not reach well into the nanopore.

      In our previous work on Nsp1-coated SiN nanopores using conductance measurements, we quantified the drop in conductance at increasing concentrations of Kap95 (Fragasso et al., 2023, NanoResearch, http://dx.doi.org/10.1007/s12274-022-4647-1). From this, we estimated that on average ~20 Kap95 molecules are present in a pore with a diameter of 55 nm at a bulk concentration of 2 µM. In these experiments, however, the height of the pore was only ~20 nm, which is much lower compared to 100 nm long channel used here, and the grafting density of 1 per 21 nm2 was high compared to the grafting density here of 1 per 300 nm2. Assuming that the Kap95 occupancy scales linearly with the number of binding sites (FG repeats) in the vicinity of the pore, and hence the amount of Nsp1 molecules bound to the pore, we would expect approximately ~7 Kap95 molecules in a pore of similar diameter under saturating (> 1 µM) concentrations.

      On the other hand, the simulations showed that the density of Nsp1 within the pore is equal to the density within the 20-nm thick SiN pores (line 380). For the longer channel and lower grafting density used here, Nsp1 was also more constrained to the pore compared to thinner pores used in previous studies (Fragasso et al., 2023, NanoResearch), where the grafted protein spilled out from the nanopores. Thus assuming that the Kap95 occupancy depends on the protein density in the pore volume rather than the total protein amount grafted to the pore walls, we would estimate a number of 100 Kap95 molecules per pore.

      These varying numbers already show that we cannot accurately provide an estimate of the Kap95 occupancy within the pore from our data due to limitations of the ZMW approach.

      445: how is this related to the BSA translocation increase?

      For the calculation of the selectivity ratio, we assumed the normalized Kap95 translocation rate to be independent of the Kap95 concentration. Hence, the observed trends of the selectivity ratios at different concentrations of Kap95, as shown in Figure 6 D, are solely due to a change in the BSA translocation rate at different concentrations of Kap95, as given in Figure 6 B,C.

      462-481: it's a bit confusing how this interfaces with the "void" analysis ( see my previous comments)

      We agree that the phenomenological descriptions in terms of transient openings (small, dynamic voids) that for larger pores become a constantly opened channel (a single large, static void) might cause some confusion to the reader. In the last part of the results, we aimed to relate the loss of the BSA rate to a change of the Nsp1 mesh. We acknowledge that the model of a rim of Nsp1 and an open center described in Figure 5F is highly simplifying . We now explain this in the revised paper at lines 483-486 by referring to an effective layer thickness which holds true under the simplifying assumption of a central transport channel.

      Figure 6D: I think the illustration of the effect of kaps on the brush is somewhat misleading: at low pore diameters, it is possible that the opposite happens: the kaps concentrate the polymers towards the center of the pore. It should be also made clear that there are no kaps in simulations (if I understand correctly?)

      Indeed, at small pore diameters we think it would be possible to observe what the Reviewer describes. The illustration should only indicate what we think is happening for large pore diameters where we observed the opening of a central channel. To avoid confusion, we now shifted the sketches to panel G where the effective layer thickness is discussed.

      Indeed, as stated in lines 331-340 no Kap95 or BSA molecules were present in the simulations. We have now clarified this point in lines 872-876.

      518: Please provide more explanation on the role of hydrodynamics pressure.

      We have now performed additional experiments and quantified the effect of the pressure to be a ~5% reduction of the event rates, as described in the answer to a previous question above.  

      Reviewer #3 (Recommendations For The Authors):

      No experiments have been performed with the Ran-Mix regeneration system. It would be beneficial to add Ran-Mix to the trans compartment and see how this would affect Kap95 translocation events frequency and passive cargo diffusion. As the authors note in their outlook, this setup offers an advantage in using Ran-Mix and thus could also be considered here or in a future follow-up study.

      We thank the Reviewer for this suggestion. We think, however, that it is beyond the scope of this paper and an interesting subject for a follow-up study.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment:

      This important study represents a comprehensive computational analysis of Plasmodium falciparum gene expression, with a focus on var gene expression, in parasites isolated from patients; it assesses changes that occur as the parasites adapt to short-term in vitro culture conditions. The work provides technical advances to update a previously developed computational pipeline. Although the findings of the shifts in the expression of particular var genes have theoretical or practical implications beyond a single subfield, the results are incomplete and the main claims are only partially supported.

      The authors would like to thank the reviewers and editors for their insightful and constructive assessment. We particularly appreciate the statement that our work provides a technical advance of our computational pipeline given that this was one of our main aims. To address the editorial criticisms, we have rephrased and restructured the manuscript to ensure clarity of results and to support our main claims. For the same reason, we removed the var transcript differential expression analysis, as this led to confusion.

      Public Reviews:

      Reviewer #1:

      The authors took advantage of a large dataset of transcriptomic information obtained from parasites recovered from 35 patients. In addition, parasites from 13 of these patients were reared for 1 generation in vivo, 10 for 2 generations, and 1 for a third generation. This provided the authors with a remarkable resource for monitoring how parasites initially adapt to the environmental change of being grown in culture. They focused initially on var gene expression due to the importance of this gene family for parasite virulence, then subsequently assessed changes in the entire transcriptome. Their goal was to develop a more accurate and informative computational pipeline for assessing var gene expression and secondly, to document the adaptation process at the whole transcriptome level.

      Overall, the authors were largely successful in their aims. They provide convincing evidence that their new computational pipeline is better able to assemble var transcripts and assess the structure of the encoded PfEMP1s. They can also assess var gene switching as a tool for examining antigenic variation. They also documented potentially important changes in the overall transcriptome that will be important for researchers who employ ex vivo samples for assessing things like drug sensitivity profiles or metabolic states. These are likely to be important tools and insights for researchers working on field samples.

      One concern is that the abstract highlights "Unpredictable var gene switching..." and states that "Our results cast doubt on the validity of the common practice of using short-term cultured parasites...". This seems somewhat overly pessimistic with regard to var gene expression profiling and does not reflect the data described in the paper. In contrast, the main text of the paper repeatedly refers to "modest changes in var gene expression repertoire upon culture" or "relatively small changes in var expression from ex vivo to culture", and many additional similar assessments. On balance, it seems that transition to culture conditions causes relatively minor changes in var gene expression, at least in the initial generations. The authors do highlight that a few individuals in their analysis showed more pronounced and unpredictable changes, which certainly warrants caution for future studies but should not obscure the interesting observation that var gene expression remained relatively stable during transition to culture.

      Thank you for this comment. We were happy to modify the wording in the abstract to have consistency with the results presented by highlighting that modest but unpredictable var gene switching was observed while substantial changes were found in the core transcriptome. Moreover, any differences observed in core transcriptome between ex vivo samples from naïve and pre-exposed patients are diminished after one cycle of cultivation making inferences about parasite biology in vivo impossible.

      Therefore, – to our opinion – the statement in the last sentence is well supported by the data presented.

      Line 43–47: “Modest but unpredictable var gene switching and convergence towards var2csa were observed in culture, along with differential expression of 19% of the core transcriptome between paired ex vivo and generation 1 samples. Our results cast doubt on the validity of the common practice of using short-term cultured parasites to make inferences about in vivo phenotype and behaviour.” Nevertheless, we would like to note that this study was in a unique position to assess changes at the individual patient level as we had successive parasite generations. This comparison is not done in most cross-sectional studies and therefore these small, unpredictable changes in the var transcriptome are missed.

      Reviewer #2:

      In this study, the authors describe a pipeline to sequence expressed var genes from RNA sequencing that improves on a previous one that they had developed. Importantly, they use this approach to determine how var gene expression changes with short-term culture. Their finding of shifts in the expression of particular var genes is compelling and casts some doubt on the comparability of gene expression in short-term culture versus var expression at the time of participant sampling. The authors appear to overstate the novelty of their pipeline, which should be better situated within the context of existing pipelines described in the literature.

      Other studies have relied on short-term culture to understand var gene expression in clinical malaria studies. This study indicates the need for caution in over-interpreting findings from these studies.

      The novel method of var gene assembly described by the authors needs to be appropriately situated within the context of previous studies. They neglect to mention several recent studies that present transcript-level novel assembly of var genes from clinical samples. It is important for them to situate their work within this context and compare and contrast it accordingly. A table comparing all existing methods in terms of pros and cons would be helpful to evaluate their method.

      We are grateful for this suggestion and agree that a table comparing the pros and cons of all existing methods would be helpful for the general reader and also highlight the key advantages of our new approach. A table comparing previous methods for var gene and transcript characterisation has been added to the manuscript and is referenced in the introduction (line 107).

      Author response table 1.

      Comparison of previous var assembly approaches based on DNA- and RNA-sequencing.

      Reviewer #3:

      This work focuses on the important problem of how to access the highly polymorphic var gene family using short-read sequence data. The approach that was most successful, and utilized for all subsequent analyses, employed a different assembler from their prior pipeline, and impressively, more than doubles the N50 metric.

      The authors then endeavor to utilize these improved assemblies to assess differential RNA expression of ex vivo and short-term cultured samples, and conclude that their results "cast doubt on the validity" of using short-term cultured parasites to infer in vivo characteristics. Readers should be aware that the various approaches to assess differential expression lack statistical clarity and appear to be contradictory. Unfortunately, there is no attempt to describe the rationale for the different approaches and how they might inform one another.

      It is unclear whether adjusting for life-cycle stage as reported is appropriate for the var-only expression models. The methods do not appear to describe what type of correction variable (continuous/categorical) was used in each model, and there is no discussion of the impact on var vs. core transcriptome results.

      We agree with the reviewer that the different methods and results of the var transcriptome analysis can be difficult to reconcile. To address this, we have included a summary table with a brief description of the rationale and results of each approach in our analysis pipeline.

      Author response table 2.

      Summary of the different levels of analysis performed to assess the effect of short-term parasite culturing on var and core gene expression, their rational, method, results, and interpretation.

      Additionally, the var transcript differential expression analysis was removed from the manuscript, because this study was in a unique position to perform a more focused analysis of var transcriptional changes across paired samples, meaning the per-patient approach was more suitable. This allowed for changes in the var transcriptome to be identified that would have gone unnoticed in the traditional differential expression analysis.

      We thank the reviewer for his highly important comment about adjusting for life cycle stage. Var gene expression is highly stage-dependent, so any quantitative comparison between samples does need adjustment for developmental stage. All life cycle stage adjustments were done using the mixture model proportions to be consistent with the original paper, described in the results and methods sections:

      • Line 219–221: “Due to the potential confounding effect of differences in stage distribution on gene expression, we adjusted for developmental stage determined by the mixture model in all subsequent analyses.”

      • Line 722–725: “Var gene expression is highly stage dependent, so any quantitative comparison between samples needs adjustment for developmental stage. The life cycle stage proportions determined from the mixture model approach were used for adjustment.“

      The rank-expression analysis did not have adjustment for life cycle stage as the values were determined as a percentage contribution to the total var transcriptome. The var group level and the global var gene expression analyses were adjusted for life cycle stages, by including them as an independent variable, as described in the results and methods sections.

      Var group expression:

      • Line 321–326: “Due to these results, the expression of group A var genes vs. group B and C var genes was investigated using a paired analysis on all the DBLα (DBLα1 vs DBLα0 and DBLα2) and NTS (NTSA vs NTSB) sequences assembled from ex vivo samples and across multiple generations in culture. A linear model was created with group A expression as the response variable, the generation and life cycle stage as independent variables and the patient information included as a random effect. The same was performed using group B and C expression levels.“

      • Line 784–787: “DESeq2 normalisation was performed, with patient identity and life cycle stage proportions included as covariates and differences in the amounts of var transcripts of group A compared with groups B and C assessed (Love et al., 2014). A similar approach was repeated for NTS domains.”

      Gobal var gene expression:

      • Line 342–347: “A linear model was created (using only paired samples from ex vivo and generation 1) (Supplementary file 1) with proportion of total gene expression dedicated to var gene expression as the response variable, the generation and life cycle stage as independent variables and the patient information included as a random effect. This model showed no significant differences between generations, suggesting that differences observed in the raw data may be a consequence of small changes in developmental stage distribution in culture.”

      • Line 804–806: “Significant differences in total var gene expression were tested by constructing a linear model with the proportion of gene expression dedicated to var gene expression as the response variable, the generation and life cycle stage as an independent variables and the patient identity included as a random effect.“

      The analysis of the conserved var gene expression was adjusted for life cycle stage:

      • Line 766–768: “For each conserved gene, Salmon normalised read counts (adjusted for life cycle stage) were summed and expression compared across the generations using a pairwise Wilcoxon rank test.”

      And life cycle stage estimates were included as covariates in the design matrix for the domain differential expression analysis:

      • Line 771–773: “DESeq2 was used to test for differential domain expression, with five expected read counts in at least three patient isolates required, with life cycle stage and patient identity used as covariates.”

      Reviewer #1:

      1. In the legend to Figure 1, the authors cite "Deitsch and Hviid, 2004" for the classification of different var gene types. This is not the best reference for this work. Better citations would be Kraemer and Smith, Mol Micro, 2003 and Lavstsen et al, Malaria J, 2003.

      We agree and have updated the legend in Figure 1 with these references, consistent with the references cited in the introduction.

      1. In Figures 2 and 3, each of the boxes in the flow charts are largely filled with empty space while the text is nearly too small to read. Adjusting the size of the text would improve legibility.

      We have increased the size of the text in these figures.

      1. My understanding of the computational method for assessing global var gene expression indicates an initial step of identifying reads containing the amino acid sequence LARSFADIG. It is worth noting that VAR2CSA does not contain this motif. Will the pipeline therefore miss expression of this gene, and if so, how does this affect the assessment of global var gene assessment? This seems relevant given that the authors detect increased expression of var2csa during adaptation to culture.

      To address this question, we have added an explanation in the methods section to better explain our analysis. Var2csa was not captured in the global var gene expression analysis, but was analyzed separately because of its unique properties (conservation, proposed role in regulating var gene switching, slightly divergent timing of expression, translational repression).

      • Line 802/3: “Var2csa does not contain the LARSFADIG motif, hence this quantitative analysis of global var gene expression excluded var2csa (which was analysed separately).”
      1. In Figures 4 and 7, panels a and b display virtually identical PCA plots, with the exception that panel A displays more generations. Why are both panels included? There doesn't appear to be any additional information provided by panel B.

      We agree and have removed Figure 7b for the core transcriptome PCA as it did not provide any new information. The var transcript differential analysis (displayed in Figure 4) has been removed from the manuscript.

      1. On line 560-567, the authors state "However, the impact of short-term culture was the most apparent at the var transcript level and became less clear at higher levels." What are the high levels being referred to here?

      We have replaced this sentence to make it clearer what the different levels are (global var gene expression, var domain and var type).

      • Line 526/7: “However, the impact of short-term culture was the most apparent at the var transcript level and became less clear at the var domain, var type and global var gene expression level.”

      Reviewer #2:

      The authors make no mention or assessment of previously published var gene assembly methods from clinical samples that focus on genomic or transcriptomic approaches. These include:

      https://pubmed.ncbi.nlm.nih.gov/28351419/

      https://pubmed.ncbi.nlm.nih.gov/34846163/

      These methods should be compared to the method for var gene assembly outlined by the co-authors, especially as the authors say that their method "overcomes previous limitations and outperforms current methods" (128-129). The second reference above appears to be a method to measure var expression in clinical samples and so should be particularly compared to the approach outlined by the authors.

      Thank you for pointing this out. We have included the second reference in the introduction of our revised manuscript, where we refer to var assembly and quantification from RNA-sequencing data. We abstained from including the first paper in this paragraph (Dara et al., 2017) as it describes a var gene assembly pipeline and not a var transcript assembly pipeline.

      • Line 101–105: “While approaches for var assembly and quantification based on RNA-sequencing have recently been proposed (Wichers et al., 2021; Stucke et al., 2021; Andrade et al., 2020; TonkinHill et al., 2018, Duffy et al., 2016), these still produce inadequate assembly of the biologically important N-terminal domain region, have a relatively high number of misassemblies and do not provide an adequate solution for handling the conserved var variants (Table S1).”

      Additionally, we have updated the manuscript with a table (Table S1) comparing these two methods plus other previously used var transcript/gene assembly approaches (see comment to the public reviews).

      But to address this particular comment in more detail, the first paper (Dara et al., 2017) is a var gene assembly pipeline and not a var transcript assembly pipeline. It is based on assembling var exon 1 from unfished whole genome assemblies of clinical samples and requires a prior step for filtering out human DNA. The authors used two different assemblers, Celera for short reads (which is no longer maintained) and Sprai for long reads (>2000bp), but found that Celera performed worse than Sprai, and subsequently used Sprai assemblies. Therefore, this method does not appear to be suitable for assembling short reads from RNA-seq.

      The second paper (Stucke et al. 2021) focusses more on enriching for parasite RNA, which precedes assembly. The capture method they describe would complement downstream analysis of var transcript assembly with our pipeline. Their assembly pipeline is similar to our pipeline as they also performed de novo assembly on all P. falciparum mapping and non-human mapping reads and used the same assembler (but with different parameters). They clustered sequences using the same approach but at 90% sequence identity as opposed to 99% sequence identity using our approach. Then, Stucke et al. use 500nt as a cut-off as opposed to the more stringent filtering approach used in our approach. They annotated their de novo assembled transcripts with the known amino acid sequences used in their design of the capture array; our approach does not assume prior information on the var transcripts. Finally, their approach was validated only for its ability to recover the most highly expressed var transcript in 6 uncomplicated malaria samples, and they did not assess mis-assemblies in their approach.

      For the methods (619–621), were erythrocytes isolated by Ficoll gradient centrifugation at the time of collection or later?

      We have updated the methods section to clarify this.

      • Line 586–588: “Blood was drawn and either immediately processed (#1, #2, #3, #4, #11, #12, #14, #17, #21, #23, #28, #29, #30, #31, #32) or stored overnight at 4oC until processing (#5, #6, #7, #9, #10, #13, #15, #16, #18, #19, #20, #22, #24, #25, #26, #27, #33).”

      Was the current pipeline and assembly method assessed for var chimeras? This should be described.

      Yes, this was quantified in the Pf 3D7 dataset and also assessed in the German traveler dataset. For the 3D7 dataset it is described in the result section and Figure S1.

      • Line 168–174: “However, we found high accuracies (> 0.95) across all approaches, meaning the sequences we assembled were correct (Figure 2 – Figure supplement 1b). The whole transcript approach also performed the best when assembling the lower expressed var genes (Figure 2 – Figure supplement 1e) and produced the fewest var chimeras compared to the original approach on P. falciparum 3D7. Fourteen misassemblies were observed with the whole transcript approach compared to 19 with the original approach (Table S2). This reduction in misassemblies was particularly apparent in the ring-stage samples.” - Figure S1:

      Author response image 1.

      Performance of novel computational pipelines for var assembly on Plasmodium falciparum 3D7: The three approaches (whole transcript: blue, domain approach: orange, original approach: green) were applied to a public RNA-seq dataset (ENA: PRJEB31535) of the intra-erythrocytic life cycle stages of 3 biological replicates of cultured P. falciparum 3D7, sampled at 8-hour intervals up until 40hrs post infection (bpi) and then at 4-hour intervals up until 48 (Wichers al., 2019). Boxplots show the data from the 3 biological replicates for each time point in the intra-erythrocytic life cycle: a) alignment scores for the dominantly expressed var gene (PF3D7_07126m), b) accuracy scores for the dominantly var gene (PF3D7_0712600), c) number of contigs to assemble the dominant var gene (PF3D7_0712600), d) alignment scores for a middle ranking expressed vargene (PF3D7_0937800), e) alignment scores for the lowest expressed var gene (PF3D7_0200100). The first best blast hit (significance threshold = le-10) was chosen for each contig. The alignment score was used to evaluate the each method. The alignment score represents √accuracy* recovery. The accuracy is the proportion of bases that are correct in the assembled transcript and the recovery reflects what proportion of the true transcript was assembled. Assembly completeness of the dominant vargene (PF3D7 071200, length = 6648nt) for the three approaches was assessed for each biological f) biological replicate 1, g) biological replicate 2, h) biological replicate 3. Dotted lines represent the start and end of the contigs required to assemble the vargene. Red bars represent assembled sequences relative to the dominantly whole vargene sequence, where we know the true sequence (termed “reference transcript”).

      For the ex vivo samples, this has been discussed in the result section and now we also added this information to Table 1.

      • Line 182/3: “Remarkably, with the new whole transcript method, we observed a significant decrease (2 vs 336) in clearly misassembled transcripts with, for example, an N-terminal domain at an internal position.”

      • Table 1:

      Author response table 3.

      Statistics for the different approaches used to assemble the var transcripts. Var assembly approaches were applied to malaria patient ex vivo samples (n=32) from (Wichers et al., 2021) and statistics determined. Given are the total number of assembled var transcripts longer than 500 nt containing at least one significantly annotated var domain, the maximum length of the longest assembled var transcript in nucleotides and the N50 value, respectively. The N50 is defined as the sequence length of the shortest var contig, with all var contigs greater than or equal to this length together accounting for 50% of the total length of concatenated var transcript assemblies. Misassemblies represents the number of misassemblies for each approach. **Number of misassemblies were not determined for the domain approach due to its poor performance in other metrics.

      Line 432: "the core gene transcriptome underwent a greater change relative to the var transcriptome upon transition to culture." Can this be shown statistically? It's unclear whether the difference in the sizes of the respective pools of the core genome and the var genes may account for this observation.

      We found 19% of the core transcriptome to be differentially expressed. The per patient var transcript analysis revealed individually highly variable but generally rather subtle changes in the var transcriptome. The different methods for assessing this make it difficult to statistically compare these two different results.

      The feasibility of this approach for field samples should be discussed in the Discussion.

      In the original manuscript we reflected on this already several times in the discussion (e.g., line 465/6; line 471–475; line 555–568). We now have added another two sentences at the end of the paragraph starting in line 449 to address this point. It reads now:

      • Line 442–451: “Our new approach used the most geographically diverse reference of var gene sequences to date, which improved the identification of reads derived from var transcripts. This is crucial when analysing patient samples with low parasitaemia where var transcripts are hard to assemble due to their low abundancy (Guillochon et al., 2022). Our approach has wide utility due to stable performance on both laboratory-adapted and clinical samples. Concordance in the different var expression profiling approaches (RNA-sequencing and DBLα-tag) on ex vivo samples increased using the new approach by 13%, when compared to the original approach (96% in the whole transcript approach compared to 83% in Wichers et al., 2021. This suggests the new approach provides a more accurate method for characterising var genes, especially in samples collected directly from patients. Ultimately, this will allow a deeper understanding of relationships between var gene expression and clinical manifestations of malaria.”

      MINOR

      The plural form of PfEMP1 (PfEMP1s) is inconsistently used throughout the text.

      Corrected.

      404-405: statistical test for significance?

      Thank you for this suggestion. We have done two comparisons between the original analysis from Wichers et al., 2021 and our new whole transcript approach to test concordance of the RNAseq approaches with the DBLα-tag approach using paired Wilcoxon tests. These comparisons suggest that our new approach has significantly increased concordance with DBLα-tag data and might be better at capturing all expressed DBLα domains than the original analysis (and the DBLα-approach), although not statistically significant. We describe this now in the result section.

      • Line 352–361: “Overall, we found a high agreement between the detected DBLα-tag sequences and the de novo assembled var transcripts. A median of 96% (IQR: 93–100%) of all unique DBLα-tag sequences detected with >10 reads were found in the RNA-sequencing approach. This is a significant improvement on the original approach (p= 0.0077, paired Wilcoxon test), in which a median of 83% (IQR: 79–96%) was found (Wichers et al., 2021). To allow for a fair comparison of the >10 reads threshold used in the DBLα-tag approach, the upper 75th percentile of the RNA-sequencingassembled DBLα domains were analysed. A median of 77.4% (IQR: 61–88%) of the upper 75th percentile of the assembled DBLα domains were found in the DBLα-tag approach. This is a lower median percentage than the median of 81.3% (IQR: 73–98%) found in the original analysis (p= 0.28, paired Wilcoxon test) and suggests the new assembly approach is better at capturing all expressed DBLα domains.”

      Figure 4: The letters for the figure panels need to be added.

      The figure has been removed from the manuscript.

      Reviewer #3:

      It is difficult from Table S2 to determine how many unique var transcripts would have enough coverage to be potentially assembled from each sample. It seems unlikely that 455 distinct vars (~14 per sample) would be expressed at a detectable level for assembly. Why not DNA-sequence these samples to get the full repertoire for comparison to RNA? Why would so many distinct transcripts be yielded from fairly synchronous samples?

      We know from controlled human malaria infections of malaria-naive volunteers, that most var genes present in the genomic repertoire of the parasite strain are expressed at the onset of the human blood phase (heterogenous var gene expression) (Wang et al., 2009; Bachmann et al, 2016; Wichers-Misterek et al., 2023). This pattern shifts to a more restricted, homogeneous var expression pattern in semi-immune individuals (expression of few variants) depending on the degree of immunity (Bachmann et al., 2019).

      Author response image 2.

      In this cohort, 15 first-time infections are included, which should also possess a more heterogenous var gene expression in comparison to the pre-exposed individuals, and indeed such a trend is already seen in the number of different DBLa-tag clusters found in both patient groups (see figure panel from Wichers et al. 2021: blue-first-time infections; grey–pre-exposed). Moreover, Warimwe et al. 2013 have shown that asymptomatic infections have a more homogeneous var expression in comparison to symptomatic infections. Therefore, we expect that parasites from symptomatic infections have a heterogenous var expression pattern with multiple var gene variants expressed, which we could assemble due to our high read depth and our improved var assembly pipeline for even low expressed variants.

      Moreover, the distinct transcripts found in the RNA-seq approach were confirmed with the DBLα tag data. To our opinion, previous approaches may have underestimated the complexity of the var transcriptome in less immune individuals.

      Mapping reads to these 455 putative transcripts and using this count matrix for differential expression analysis seems very unlikely to produce reliable results. As acknowledged on line 327, many reads will be mis-mapped, and perhaps most challenging is that most vars will not be represented in most samples. In other words, even if mapping were somehow perfect, one would expect a sparse matrix that would not be suitable for statistical comparisons between groups. This is likely why the per-patient transcript analysis doesn't appear to be consistent. I would recommend the authors remove the DE sections utilizing this approach, or add convincing evidence that the count matrix is useable.

      We agree that this is a general issue of var differential expression analysis. Therefore, we have removed the var differential expression analysis from this manuscript as the per patient approach was more appropriate for the paired samples. We validated different mapping strategies (new Figure S6) and included a paragraph discussing the problem in the result section:

      • Line 237–255: “In the original approach of Wichers et al., 2021, the non-core reads of each sample used for var assembly were mapped against a pooled reference of assembled var transcripts from all samples, as a preliminary step towards differential var transcript expression analysis. This approach returned a small number of var transcripts which were expressed across multiple patient samples (Figure 3 – Figure supplement 2a). As genome sequencing was not available, it was not possible to know whether there was truly overlap in var genomic repertoires of the different patient samples, but substantial overlap was not expected. Stricter mapping approaches (for example, excluding transcripts shorter than 1500nt) changed the resulting var expression profiles and produced more realistic scenarios where similar var expression profiles were generated across paired samples, whilst there was decreasing overlap across different patient samples (Figure 3 – Figure supplement 2b,c). Given this limitation, we used the paired samples to analyse var gene expression at an individual subject level, where we confirmed the MSP1 genotypes and alleles were still present after short-term in vitro cultivation. The per patient approach showed consistent expression of var transcripts within samples from each patient but no overlap of var expression profiles across different patients (Figure 3 – Figure supplement 2d). Taken together, the per patient approach was better suited for assessing var transcriptional changes in longitudinal samples. It has been hypothesised that more conserved var genes in field isolates increase parasite fitness during chronic infections, necessitating the need to correctly identify them (Dimonte et al., 2020, Otto et al., 2019). Accordingly, further work is needed to optimise the pooled sample approach to identify truly conserved var transcripts across different parasite isolates in cross-sectional studies.” - Figure S6:

      Author response image 3.

      Var expression profiles across different mapping. Different mapping approaches Were used to quantify the Var expression profiles of each sample (ex Vivo (n=13), generation I (n=13), generation 2 (n=10) and generation 3 (n=l). The pooled sample approach in Which all significantly assembled van transcripts (1500nt and containing3 significantly annotated var domains) across samples were combined into a reference and redundancy was removed using cd-hit (at sequence identity = 99%) (a—c). The non-core reads of each sample were mapped to this pooled reference using a) Salmon, b) bowtie2 filtering for uniquely mapping paired reads with MAPQ and c) bowtie2 filtering for uniquely mapping paired reads with a MAPQ > 20. d) The per patient approach was applied. For each patient, the paired ex vivo and in vitro samples were analysed. The assembled var transcripts (at least 1500nt and containing3 significantly annotated var domains) across all the generations for a patient were combined into a reference, redundancy was removed using cd-hit (at sequence identity: 99%), and expression was quantified using Salmon. Pie charts show the var expression profile With the relative size of each slice representing the relative percentage of total var gene expression of each var transcript. Different colours represent different assembled var transcripts with the same colour code used across a-d.

      For future cross-sectional studies a per patient analysis that attempts to group per patient assemblies on some unifying structure (e.g., domain, homology blocks, domain cassettes etc) should be performed.

      Line 304. I don't understand the rationale for comparing naïve vs. prior-exposed individuals at ex-vivo and gen 1 timepoints to provide insights into how reliable cultured parasites are as a surrogate for var expression in vivo. Further, the next section (per patient) appears to confirm the significant limitation of the 'all sample analysis' approach. The conclusion on line 319 is not supported by the results reported in figures S9a and S9b, nor is the bold conclusion in the abstract about "casting doubt" on experiments utilizing culture adapted

      We have removed this comparison from the manuscript due to the inconsistencies with the var per patient approach. However, the conclusion in the abstract has been rephrased to reflect the fact we observed 19% of the core transcript differentially expressed within one cycle of cultivation.

      Line 372/391 (and for the other LMM descriptions). I believe you mean to say response variable, rather than explanatory variable. Explanatory variables are on the right hand side of the equation.

      Thank you for spotting this inaccuracy, we changed it to “response variable” (line 324, line 343, line 805).

      Line 467. Similar to line 304, why would comparisons of naïve vs. prior-exposed be informative about surrogates for in vivo studies? Without a gold-standard for what should be differentially expressed between naïve and prior-exposed in vivo, it doesn't seem prudent to interpret a drop in the number of DE genes for this comparison in generation 1 as evidence that biological signal for this comparison is lost. What if the generation 1 result is actually more reflective of the true difference in vivo, but the ex vivo samples are just noisy? How do we know? Why not just compare ex vivo vs generation 1/2 directly (as done in the first DE analysis), and then you can comment on the large number of changes as samples are less and less proximal to in vivo?

      In the original paper (Wichers et al., 2021), there were differences between the core transcriptome of naïve vs previously exposed patients. However, these differences appeared to diminish in vitro, suggesting the in vivo core transcriptome is not fully maintained in vitro.

      We have added a sentence explaining the reasoning behind this analysis in the results section:

      • Lines 414–423: “In the original analysis of ex vivo samples, hundreds of core genes were identified as significantly differentially expressed between pre-exposed and naïve malaria patients. We investigated whether these differences persisted after in vitro cultivation. We performed differential expression analysis comparing parasite isolates from naïve (n=6) vs pre-exposed (n=7) patients, first between their ex vivo samples, and then between the corresponding generation 1 samples. Interestingly, when using the ex vivo samples, we observed 206 core genes significantly upregulated in naïve patients compared to pre-exposed patients (Figure 7 – Figure supplement 3a). Conversely, we observed no differentially expressed genes in the naïve vs pre-exposed analysis of the paired generation 1 samples (Figure 7 – Figure supplement 3b). Taken together with the preceding findings, this suggests one cycle of cultivation shifts the core transcriptomes of parasites to be more alike each other, diminishing inferences about parasite biology in vivo.”

      Overall, I found the many DE approaches very frustrating to interpret coherently. If not dropped in revision, the reader would benefit from a substantial effort to clarify the rationale for each approach, and how each result fits together with the other approaches and builds to a concise conclusion.

      We agree that the manuscript contains many different complex layers of analysis and that it is therefore important to explain the rationale for each approach. Therefore, we now included the summary Table 3 (see comment to public review). Additionally, we have removed the var transcript differential expression due to its limitations, which we hope has already streamlined our manuscript.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We sincerely thank the reviewers for their in-depth consideration of our manuscript and their helpful reviews. Their efforts have made the paper much better. We have responded to each point. The previously provided public responses have been updated they are included after the private response for convenience.

      Reviewer #1 (Recommendations For The Authors):

      1. In general, the manuscript will benefit from copy editing and proof reading. Some obvious edits;

      2. Page 6 line 140. Do the authors mean Cholera toxin B?

      Response: We corrected this error and went through the entire paper carefully correcting for grammar and increased clarity.

      • Page 8 line 173. Methylbetacyclodextrin is misspelled.

      Response: Yes, corrected.

      • Figure 4c is missing representative traces for electrophysiology data.

      • Figure 4. Please check labeling ordering in figure legend as it does not match the panels in the figure.

      Thank you for the correction and we apologize for the confusion in figure 4. We uploaded an incomplete figure legend, and the old panel ‘e’ was not from an experiment that was still in the figure. It was removed and the figure legends are now corrected.

      • Please mention the statistical analysis used in all figure legends.

      Response: Thank you for pointing out this omission, statistics have been added.

      • Although the schematics in each figure helps guide readers, they are very inconsistent and sometimes confusing. For example, in Figure 5 the gating model is far-reaching without conclusive evidence, whereas in Figure 6 it is over simplified and unclear what the image is truly representing (granted that the downstream signaling mechanism and channel is not known).

      Response: Figure 5d is the summary figure for the entire paper. We have made this clearer in the figure legend and we deleted the title above the figure that gave the appearance that the panel relates to swell only. It is the proposed model based on what we show in the paper and what is known about the activation mechanism of TREK-1.

      Figure 6 is supposed to be simple. It is to help the reader understand that when PA is low mechanical sensitivity is high. Without the graphic, previous reviewers got confused about threshold going down and mechanosensitivity going up and how the levels of PA relate. Low PA= high sensitivity. We’ve added a downstream effector to the right side of the panel to avoid any biased to a putative downstream channel effector. The purpose of the experiment is to show PLD has a mechanosensitive phenotype in vivo.

      Reviewer #2 (Recommendations For The Authors):

      This manuscript outlines some really interesting findings demonstrating a mechanism by which mechanically driven alterations in molecular distributions can influence a) the activity of the PLD2 molecule and subsequently b) the activation of TREK-1 when mechanical inputs are applied to a cell or cell membrane.

      The results presented here suggest that this redistribution of molecules represents a modulatory mechanism that alters either the amplitude or the sensitivity of TREK-1 mediated currents evoked by membrane stretch. While the authors do present values for the pressure required to activate 50% of channels (P50), the data presented provides incomplete evidence to conclude a shift in threshold of the currents, given that many of the current traces provided in the supplemental material do not saturate within the stimulus range, thus limiting the application of a Boltzmann fit to determine the P50. I suggest adding additional context to enable readers to better assess the limitations of this use of the Boltzmann fit to generate a P50, or alternately repeating the experiments to apply stimuli up to lytic pressures to saturate the mechanically evoked currents, enabling use of the Boltzmann function to fit the data.

      Response: We thank the reviewer for pointing this out. We agree the currents did not reach saturation. Hence the term P50 could be misleading, so we have removed it from the paper. We now say “half maximal” current measured from non-saturating pressures of 0-60 mmHg. We also deleted the xPLD data in supplemental figure 3C since there is insufficient current to realistically estimate a half maximal response.

      In my opinion, the conclusions presented in this manuscript would be strengthened by an assessment of the amount of TREK-1 in the plasma membrane pre and post application of shear. While the authors do present imaging data in the supplementary materials, these data are insufficiently precise to comment on expression levels in the membrane. To strengthen this conclusion the authors could conduct cell surface biotinylation assays, as a more sensitive and quantitative measure of membrane localisation of the proteins of interest.

      1. Response: as mentioned previously, we do not have an antibody to the extracellular domain. Nonetheless to better address this concern we directly compared the levels of TREK-1, PIP2, and GM1; in xPLD2, mPLD2, enPLD2 with and without shear. The results are in supplemental figure 2. PLD2 is known to increase endocytosis1 and xPLD2 is known to block both agonist induced and constitutive endocytosis of µ-opioid receptor2. The receptor is trapped on the surface. This is true of many proteins including Rho3, ARF4, and ACE21 among others. In agreement with this mechanism, in Figure S2C,G we show that TREK increases with xPLD and the localization can clearly be seen at the plasma membrane just like in all of the other publications with xPLD overexpression. xPLD2 would be expected to inhibit the basal current but we presume the increased expression likely has compensated and there is sufficient PA and PG from other sources to allow for the basal current. It is in this state that we then conduct our ephys and monitor with a millisecond time resolution and see no activation. We are deriving conclusion from a very clear response—Figure 1b shows almost no current, even at 1-10 ms after applying pressure. There is little pressure current when we know the channel is present and capable of conducting ion (Figure 1d red bar). After shear there is a strong decrease in TREK-1 currents on the membrane in the presence of xPLD2. But it is not less than TREK-1 expression with mPLD2. And since mouse PLD2 has the highest basal current and pressure activation current. The amount of TREK-1 present is sufficient to conduct large current. To have almost no detective current would require at least a 10 fold reduction compared to mPLD2 levels before we would lack the sensitivity to see a channel open. Lasty endocytosis typically in on the order of seconds to minutes, no milliseconds.

      2. We have shown an addition 2 independent ways that TREK-1 is on the membrane during our stretch experiments. Figure 1d shows the current immediately prior to applying pressure for wt TREK-1. When catalytically dead PLD is present (xPLD2) there is almost normal basal current. The channel is clearly present. And then in figure 1a we show within a millisecond there is no pressure current. As a control we added a functionally dead TREK-1 truncation (xTREK). Compared to xPLD2 there is clearly normal basal current. If this is not strong evidence the channel was available on the surface for mechanical activation please help us understand why. And if you think within 2.1 ms 100% of the channel is gone by endocytosis please provide some evidence that this is possible so we can reconsider.

      3. We have TIRF super resolution imaging with ~20 nm x-y resolution and ~ 100nm z resolution and Figure 2b clearly shows the channel on the membrane. When we apply pressure in 1b, the channel is present.

      4. Lastly, In our previous studies we showed activation of PLD2 by anesthetics was responsible for all of TREK-1’s anesthetic sensitivity and this was through PLD2 binding to the C-terminus of TREK-15. We showed this was the case by transferring anesthetic sensitivity to an anesthetic insensitive homolog TRAAK. This established conclusively the basic premise of our mechanism. Here we show the same C-terminal region and PLD2 are responsible for the mechanical current observed by TREK-1. TRAAK is already mechanosensitive so the same chimera will not work for our purposes here. But anesthetic activation and mechanical activation are dramatically different stimuli, and the fact that the role of PLD is robustly observed in both should be considered.

      The authors discuss that the endogenous levels of TREK-1 and PLD2 are "well correlated: in C2C12 cells, that TREK-1 displayed little pair correlation with GM1 and that a "small amount of TREK-1 trafficked to PIP2". As such, these data suggest that the data outlined for HEK293T cells may be hampered by artefacts arising from overexpression. Can TREK-1 currents be activated by membrane stretch in these cells C2C12 cells and are they negatively impacted by the presence of xPLD2? Answering this question would provide more insight into the proposed mechanism of action of PLD2 outlined by the authors in this manuscript. If no differences are noted, the model would be called into question. It could be that there are additional cell-specific factors that further regulate this process.

      Response: The low pair correlation of TREK-1 and GM1 in C2C12 cells was due to insufficient levels of cholesterol in the cell membrane to allow for robust domain formation. In Figure 4b we loaded C2C12 cells with cholesterol using the endogenous cholesterol transport protein apoE and serum (an endogenous source of cholesterol). As can be seen in Fig. 4b, the pair correlation dramatically increased (purple line). This was also true in neuronal cells (N2a) (Fig 4d, purple bar). And shear (3 dynes/cm2) caused the TREK-1 that was in the GM1 domains to leave (red bar) reversing the effect of high cholesterol. This demonstrates our proposed mechanism is working as we expect with endogenously expressed proteins.

      There are many channels in C2C12 cells, it would be difficult to isolate TREK-1 currents, which is why we replicated the entire system (ephys and dSTORM) in HEK cells. Note, in figure 4c we also show that adding cholesterol inhibits TREK-1 whole cell currents in HEK293cells.

      As mentioned in the public review, the behavioural experiments in D. melanogaster can not solely be attributed to a change in threshold. While there may be a change in the threshold to drive a different behaviour, the writing is insufficiently precise to make clear that conclusions cannot be drawn from these experiments regarding the functional underpinnings of this outcome. Are there changes in resting membrane potential in the mutant flys? Alterations in Nav activity? Without controlling for these alternate explanations it is difficult to see what this last piece of data adds to the manuscript, particularly given the lack of TREK-1 in this organism. At the very least, some editing of the text to more clearly indicate that these data can only be used to draw conclusions on the change in threshold for driving the behaviour not the change in threshold of the actual mechanotransduction event (i.e. conversion of the mechanical stimulus into an electrochemical signal).

      Response: We agree; features other than PLDs direct mechanosensitivity are likely contributing. This was shown in figure 6g left side. We have an arrow going to ion channel and to other downstream effectors. We’ve added the putative alteration to downstream effectors to the right side of the panel. This should make it clear that we no more speculate the involvement of a channel than any of the other many potential downstream effectors. As mentioned above, the figure helps the reader coordinate low PA with increased mechanosensitivity. Without the graphic reviewers got confused that PA increased the threshold which corresponds to a decreased sensitivity to pain. Nonetheless we removed our conclusion about fly thresholds from the abstract and made clearer in the main text the lack of mechanism downstream of PLD in flies including endocytosis. Supplemental Figure S2H also helps emphasize this. .

      Nav channels are interesting, and since PLD contribute to endocytosis and Nav channels are also regulated by endocytosis there is likely a PLD specific effect using Nav channels. There are many ways PA likely regulates mechanosensitive thresholds, but we feel Nav is beyond the scope of our paper. Someone else will need to do those studies. We have amended a paragraph in the conclusion which clearly states we do not know the specific mechanism at work here with the suggestions for future research to discover the role of lipid and lipid-modifying enzymes in mechanosensitive neurons.

      There may be fundamental flaws in how the statistics have been conducted. The methods section indicates that all statistical testing was performed with a Student's t-test. A visual scan of many of the data sets in the figures suggests that they are not normally distributed, thus a parametric test such as a Student's t-test is not valid. The authors should assess if each data set is normally distributed, and if not, a non-parametric statistical test should be applied. I recommend assessing the robustness of the statistical analyses and adjusting as necessary.

      Response: We thank the reviewer for pointing this out, indeed there is some asymmetry in Figure 6C-d. The p values with Mann Whitney were slightly improved p=0.016 and p=0.0022 for 6c and 6d respectively. For reference, the students t-test had slightly worse statistics p=0.040 and p=0.0023. The score remained the same 1 and 2 stars respectively.

      The references provided for the statement regarding cascade activation of the TRPs are incredibly out of date. While it is clear that TRPV4 can be activated by a second messenger cascade downstream of osmotic swelling of cells, TRPV4 has also been shown to be activated by mechanical inputs at the cell-substrate interface, even when the second messenger cascade is inhibited. Recommend updating the references to reflect more current understanding of channel activation.

      Response: We thank the reviewer for pointing this out. We have updated the references and changed the comment to “can be” instead of “are”. The reference is more general to multiple ion channel types including KCNQ4. This should avoid any perceived conflict with the cellsubstrate interface mechanism which we very much agree is a correct mechanism for TRP channels.

      Minor comments re text editing etc:

      The central messages of the manuscript would benefit from extensive work to increase the precision of the writing of the manuscript and the presentation of data in the figures, such textual changes alone would help address a number of the concerns outlined in this review, by clarifying some ambiguities. There are numerous errors throughout, ranging from grammatical issues, ambiguities with definitions, lack of scale bars in images, lack of labels on graph axes, lack of clarity due to the mode of presentation of sample numbers (it would be far more precise to indicate specific numbers for each sample rather than a range, which is ambiguous and confusing), unnecessary and repeat information in the methods section. Below are some examples but this list is not exhaustive.

      Response: Thank you, reviewer # 1 also had many of these concerns. We have gone through the entire paper and improved the precision of the writing of the manuscript. We have also added the missing error bar to Figure 6. And axis labels have been added to the inset images. The redundancy in cell culture methods has been removed. Where a range is small and there are lots of values, the exact number of ‘n’ are graphically displayed in the dot plot for each condition.

      Text:

      I recommend considering how to discuss the various aspects of channel activation. A convention in the field is to use mechanical activation or mechanical gating to describe that process where the mechanical stimulus is directly coupled to the channel gating mechanism. This would be the case for the activation of TREK-1 by membrane stretch alone. The increase in activation by PLD2 activity then reflects a modulation of the mechanical activation of the channel, because the relevant gating stimulus is PA, rather than force/stretch. The sum of these events could be described as shear-evoked or mechanically-evoked, TREK-1 mediated currents (thus making it clear that the mechanical stimulus initiates the relevant cascade, but the gating stimulus may be other than direct mechanical input.) Given the interesting and compelling data offered in this manuscript regarding the sensitisation of TREK-1 dependent mechanicallyevoked currents by PLD2, an increase in the precision of the language would help convey the central message of this work.

      Response; We agree there needs to be convention. We have taken the suggestion of mechanically evoked and we suggest the following definitions:

      1. Mechanical activation of PLD2: direct force on the lipids releasing PLD2 from nonactivating lipids.

      2. Mechanical activation/gating of TREK1: direct force from lipids from either tension or hydrophobic mismatch that opens the channel.

      3. Mechanically evoked: a mechanical event that leads to a downstream effect. The effect is mechanically “evoked”.

      4. Spatial patterning/biochemistry: nanoscopic changes in the association of a protein with a nanoscopic lipid cluster or compartment.

      An example of where discussion of mechanical activation is ambiguous in the text is found at line 109: "channel could be mechanically activated by a movement from GM1 to PIP2 lipids." In this case, the sentence could be suggesting that the movement between lipids provides the mechanical input that activates the channel, which is not what the data suggest.

      Response: Were possible we have replaced “movement” with “spatial patterning” and “association” and “dissociation” from specific lipid compartment. This better reflects the data we have in this paper. However, we do think that a movement mechanically activates the channel, GM1 lipids are thick and PIP2 lipids are thin, so movement between the lipids could activate the channel through direct lipid interaction. We will address this aspect in a future paper.

      Inconsistencies with usage:

      • TREK1 versus TREK-1

      Response: corrected to TREK-1

      • mPLD2 versus PLD2

      Response: where PLD2 represents mouse this has been corrected.

      • K758R versus xPLD2

      Response: we replaced K758R in the methods with xPLD2.

      • HEK293T versus HEK293t Response: we have changed all instances to read HEK293T.

      • Drosophila melanogaster and D. melanogaster used inconsistently and in many places incorrectly

      Response: we have read all to read the common name Drosophila.

      Line 173: misspelled methylbetacyclodextrin

      Response corrected

      Line 174: degree symbol missing

      Response corrected

      Line 287: "the decrease in cholesterol likely evolved to further decrease the palmate order in the palmitate binding site"... no evidence, no support for this statement, falsely attributes intention to evolutionary processes .

      Response: we have removed the reference to evolution at the request of the reviewer, it is not necessary. But we do wish to note that to our knowledge, all biological function is scientifically attributed to evolution. The fact that cholesterol decreases in response to shear is evidence alone that the cell evolved to do it.

      Line 307: grammatical error

      Response: the redundant Lipid removed.

      Line 319: overinterpreted - how is the mechanosensitivy of GPCRs explained by this translocation?

      Response: all G-alpha subunits of the GPCR complex are palmitoylated. We showed PLD (which has the same lipidation) is mechanically activated. If the palmitate site is disrupted for PLD2, then it is likely disrupted for every G-alpha subunit as well.

      Line 582: what is the wild type referred to here?

      Response: human full length with a GFP tag.

      Methods:

      • Sincere apologies if I missed something but I do not recall seeing any experiments using purified TREK-1 or flux assays. These details should be removed from the methods section

      Response: Removed.

      • There is significant duplication of detail across the methods (three separate instances of electrophysiology details) these could definitely be consolidated.

      Response: Duplicates removed.

      Figures:

      • Figure 2- b box doesn't correspond to inset. Bottom panel should provide overview image for the cell that was assessed with shear. In bottom panel, circle outlines an empty space.

      Response: We have widened the box slightly to correspond so the non shear box corresponds to the middle panel. We have also added the picture for the whole cell to Fig S2g and outlined the zoom shown in the bottom panel of Fig 2b as requested. The figure is of the top of a cell. We also added the whole cell image of a second sheared cell.

      Author response image 1.

      • Figure 3 b+c: inset graph lacking axis labels

      Response; the inset y axis is the same as the main axis. We added “pair corr. (5nM)” and a description in the figure legend to make this clearer. The purpose of the inset is to show statistical significance at a single point. The contrast has been maximized but without zooming in points can be difficult to see.

      • Figure 5: replicate numbers missing and individual data points lacking in panels b + c, no labels of curve in b + c, insets, unclear what (5 nm) refers to in insets.

      Response: Thank you for pointing out these errors. The N values have been added. Similar to figure 3, the inset is a bar graph of the pair correlation data at 5 nm. A better explanation of the data has been added to the figure legend.

      • Figure 6: no scale bar, no clear membrane localization evident from images presented, panel g offers virtually nothing in terms of insight

      Response: We have added scale bars to figure 6b. Figure 6g is intentionally simplistic, we found that correlating decreased threshold with increased pain was confusing. A previous reviewer claimed our data was inconsistent. The graphic avoids this confusion. We also added negative effects of low PA on downstream effects to the right panel. This helps graphically show we don’t know the downstream effects.

      Reviewer #3 (Recommendations For The Authors):

      Minor suggestions:

      1. line 162, change 'heat' to 'temperature'.

      Response: changed.

      1. in figure 1, it would be helpful to keep the unit for current density consistent among different panels. 1e is a bit confusing: isn't the point of Figure 1 that most of TREK1 activation is not caused by direct force-sensing?

      Response: Yes, the point of figure 1 is to show that in a biological membrane over expressed TREK-1 is a downstream effector of PLD2 mechanosensation which is indirect. We agree the figure legend in the previous version of the paper is very confusing.

      There is almost no PLD2 independent current in our over expressed system, which is represented by no ions in the conduction pathway of the channel despite there being tension on the membrane.

      Purified TREK-1 is only mechanosensitive in a few select lipids, primarily crude Soy PC. It was always assumed that HEK293 and Cos cells had the correct lipids since over expressed TREK-1 responded to mechanical force in these lipids. But that does not appear to be correct, or at least only a small amount of TREK-1 is in the mechanosensitive lipids. Figure 1e graphically shows this. The arrows indicate tension, but the channel isn’t open with xPLD2 present. We added a few sentences to the discussion to further clarify.

      Panels c has different units because the area of the tip was measured whereas in d the resistance of the tip was measured. They are different ways for normalizing for small differences in tip size.

      1. line 178, ~45 of what?

      Response: Cells were fixed for ~30 sec.

      1. line 219 should be Figure 4f?

      Response: thank you, yes Figure 4f.

      Previous public reviews with minor updates.

      Reviewer #1 (Public Review):

      Force sensing and gating mechanisms of the mechanically activated ion channels is an area of broad interest in the field of mechanotransduction. These channels perform important biological functions by converting mechanical force into electrical signals. To understand their underlying physiological processes, it is important to determine gating mechanisms, especially those mediated by lipids. The authors in this manuscript describe a mechanism for mechanically induced activation of TREK-1 (TWIK-related K+ channel. They propose that force induced disruption of ganglioside (GM1) and cholesterol causes relocation of TREK-1 associated with phospholipase D2 (PLD2) to 4,5-bisphosphate (PIP2) clusters, where PLD2 catalytic activity produces phosphatidic acid that can activate the channel. To test their hypothesis, they use dSTORM to measure TREK-1 and PLD2 colocalization with either GM1 or PIP2. They find that shear stress decreases TREK-1/PLD2 colocalization with GM1 and relocates to cluster with PIP2. These movements are affected by TREK-1 C-terminal or PLD2 mutations suggesting that the interaction is important for channel re-location. The authors then draw a correlation to cholesterol suggesting that TREK-1 movement is cholesterol dependent. It is important to note that this is not the only method of channel activation and that one not involving PLD2 also exists. Overall, the authors conclude that force is sensed by ordered lipids and PLD2 associates with TREK-1 to selectively gate the channel. Although the proposed mechanism is solid, some concerns remain.

      1) Most conclusions in the paper heavily depend on the dSTORM data. But the images provided lack resolution. This makes it difficult for the readers to assess the representative images.

      Response: The images were provided are at 300 dpi. Perhaps the reviewer is referring to contrast in Figure 2? We are happy to increase the contrast or resolution.

      As a side note, we feel the main conclusion of the paper, mechanical activation of TREK-1 through PLD2, depended primarily on the electrophysiology in Figure 1b-c, not the dSTORM. But both complement each other.

      2) The experiments in Figure 6 are a bit puzzling. The entire premise of the paper is to establish gating mechanism of TREK-1 mediated by PLD2; however, the motivation behind using flies, which do not express TREK-1 is puzzling.

      Response: The fly experiment shows that PLD mechanosensitivity is more evolutionarily conserved than TREK-1 mechanosensitivity. We have added this observation to the paper.

      -Figure 6B, the image is too blown out and looks over saturated. Unclear whether the resolution in subcellular localization is obvious or not.

      Response: Figure 6B is a confocal image, it is not dSTORM. There is no dSTORM in Figure 6. We have added the error bars to make this more obvious. For reference, only a few cells would fit in the field of view with dSTORM.

      -Figure 6C-D, the differences in activity threshold is 1 or less than 1g. Is this physiologically relevant? How does this compare to other conditions in flies that can affect mechanosensitivity, for example?

      Response: Yes, 1g is physiologically relevant. It is almost the force needed to wake a fly from sleep (1.2-3.2g). See ref 33. Murphy Nature Pro. 2017.

      3) 70mOsm is a high degree of osmotic stress. How confident are the authors that a cell health is maintained under this condition and b. this does indeed induce membrane stretch? For example, does this stimulation activate TREK-1?

      Response: Yes, osmotic swell activates TREK1. This was shown in ref 19 (Patel et al 1998). We agree the 70 mOsm is a high degree of stress. This needs to be stated better in the paper.

      Reviewer #2 (Public Review):

      This manuscript by Petersen and colleagues investigates the mechanistic underpinnings of activation of the ion channel TREK-1 by mechanical inputs (fluid shear or membrane stretch) applied to cells. Using a combination of super-resolution microticopy, pair correlation analysis and electrophysiology, the authors show that the application of shear to a cell can lead to changes in the distribution of TREK-1 and the enzyme PhospholipaseD2 (PLD2), relative to lipid domains defined by either GM1 or PIP2. The activation of TREK-1 by mechanical stimuli was shown to be sensi>zed by the presence of PLD2, but not a catalytically dead xPLD2 mutant. In addition, the activity of PLD2 is increased when the molecule is more associated with PIP2, rather than GM1 defined lipid domains. The presented data do not exclude direct mechanical activation of TREK-1, rather suggest a modulation of TREK-1 activity, increasing sensitivity to mechanical inputs, through an inherent mechanosensitivity of PLD2 activity. The authors additionally claim that PLD2 can regulate transduction thresholds in vivo using Drosophila melanogaster behavioural assays. However, this section of the manuscript overstates the experimental findings, given that it is unclear how the disruption of PLD2 is leading to behavioural changes, given the lack of a TREK-1 homologue in this organism and the lack of supporting data on molecular function in the relevant cells.

      Response: We agree, the downstream effectors of PLD2 mechanosensitivity are not known in the fly. Other anionic lipids have been shown to mediate pain see ref 46 and 47. We do not wish to make any claim beyond PLD2 being an in vivo contributor to a fly’s response to mechanical force. We have removed the speculative conclusions about fly thresholds from the abstract.

      That said we do believe we have established a molecular function at the cellular level. We showed PLD is robustly mechanically activated in a cultured fly cell line (BG2-c2) Figure 6a of the manuscript. And our previous publication established mechanosensation of PLD (Petersen et. al. Nature Com 2016) through mechanical disruption of the lipids. At a minimum, the experiments show PLDs mechanosensitivity is evolutionarily better conserved across species than TREK1.

      This work will be of interest to the growing community of scientists investigating the myriad mechanisms that can tune mechanical sensitivity of cells, providing valuable insight into the role of functional PLD2 in sensi>zing TREK-1 activation in response to mechanical inputs, in some cellular systems.

      The authors convincingly demonstrate that, post application of shear, an alteration in the distribution of TREK-1 and mPLD2 (in HEK293T cells) from being correlated with GM1 defined domains (no shear) to increased correlation with PIP2 defined membrane domains (post shear). These data were generated using super-resolution microticopy to visualise, at sub diffraction resolution, the localisation of labelled protein, compared to labelled lipids. The use of super-resolution imaging enabled the authors to visualise changes in cluster association that would not have been achievable with diffraction limited microticopy. However, the conclusion that this change in association reflects TREK-1 leaving one cluster and moving to another overinterprets these data, as the data were generated from sta>c measurements of fixed cells, rather than dynamic measurements capturing molecular movements.

      When assessing molecular distribution of endogenous TREK-1 and PLD2, these molecules are described as "well correlated: in C2C12 cells" however it is challenging to assess what "well correlated" means, precisely in this context. This limitation is compounded by the conclusion that TREK-1 displayed little pair correlation with GM1 and the authors describe a "small amount of TREK-1 trafficked to PIP2". As such, these data may suggest that the findings outlined for HEK293T cells may be influenced by artefacts arising from overexpression.

      The changes in TREK-1 sensitivity to mechanical activation could also reflect changes in the amount of TREK-1 in the plasma membrane. The authors suggest that the presence of a leak currently accounts for the presence of TREK-1 in the plasma membrane, however they do not account for whether there are significant changes in the membrane localisation of the channel in the presence of mPLD2 versus xPLD2. The supplementary data provide some images of fluorescently labelled TREK-1 in cells, and the authors state that truncating the c-terminus has no effect on expression at the plasma membrane, however these data provide inadequate support for this conclusion. In addition, the data reporting the P50 should be noted with caution, given the lack of saturation of the current in response to the stimulus range.

      Response: We thank the reviewer for his/her concern about expression levels. We did test TREK-1 expression. mPLD decreases TREK-1 expression ~two-fold (see Author response image 2 below). We did not include the mPLD data since TREK-1 was mechanically activated with mPLD. For expression to account for the loss of TREK-1 stretch current (Figure 1b), xPLD would need to block surface expression of TREK-1 prior to stretch. The opposite was true, xPLD2 increased TREK-1 expression (see Figure S2c). Furthermore, we tested the leak current of TREK-1 at 0 mV and 0 mmHg of stretch. Basal leak current was no different with xPLD2 compared to endogenous PLD (Figure 1d; red vs grey bars respectively) suggesting TREK-1 is in the membrane and active when xPLD2 is present. If anything, the magnitude of the effect with xPLD would be larger if the expression levels were equal.

      Author response image 2.

      TREK expression at the plasma membrane. TREK-1 Fluorescence was measured by GFP at points along the plasma membrane. Over expression of mouse PLD2 (mPLD) decrease the amount of full-length TREK-1 (FL TREK) on the surface more than 2-fold compared to endogenously expressed PLD (enPLD) or truncated TREK (TREKtrunc) which is missing the PLD binding site in the C-terminus. Over expression of mPLD had no effect on TREKtrunc.

      Finally, by manipulating PLD2 in D. melanogaster, the authors show changes in behaviour when larvae are exposed to either mechanical or electrical inputs. The depletion of PLD2 is concluded to lead to a reduction in activation thresholds and to suggest an in vivo role for PA lipid signaling in setting thresholds for both mechanosensitivity and pain. However, while the data provided demonstrate convincing changes in behaviour and these changes could be explained by changes in transduction thresholds, these data only provide weak support for this specific conclusion. As the authors note, there is no TREK-1 in D. melanogaster, as such the reported findings could be accounted for by other explanations, not least including potential alterations in the activation threshold of Nav channels required for action potential generation. To conclude that the outcomes were in fact mediated by changes in mechanotransduction, the authors would need to demonstrate changes in receptor potential generation, rather than deriving conclusions from changes in behaviour that could arise from alterations in resting membrane potential, receptor potential generation or the activity of the voltage gated channels required for action potential generation.

      Response: We are willing to restrict the conclusion about the fly behavior as the reviewers see fit. We have shown PLD is mechanosensitivity in a fly cell line, and when we knock out PLD from a fly, the animal exhibits a mechanosensation phenotype. We tried to make it clear in the figure and in the text that we have no evidence of a particular mechanism downstream of PLD mechanosensation.

      This work provides further evidence of the astounding flexibility of mechanical sensing in cells. By outlining how mechanical activation of TREK-1 can be sensitised by mechanical regulation of PLD2 activity, the authors highlight a mechanism by which TREK-1 sensitivity could be regulated under distinct physiological conditions.

      Reviewer #3 (Public Review):

      The manuscript "Mechanical activation of TWIK-related potassium channel by nanoscopic movement and second messenger signaling" presents a new mechanism for the activation of TREK-1 channel. The mechanism suggests that TREK1 is activated by phosphatidic acids that are produced via a mechanosensitive motion of PLD2 to PIP2-enriched domains. Overall, I found the topic interesting, but several typos and unclarities reduced the readability of the manuscript. Additionally, I have several major concerns on the interpretation of the results. Therefore, the proposed mechanism is not fully supported by the presented data. Lastly, the mechanism is based on several previous studies from the Hansen lab, however, the novelty of the current manuscript is not clearly stated. For example, in the 2nd result section, the authors stated, "fluid shear causes PLD2 to move from cholesterol dependent GM1 clusters to PIP2 clusters and this activated the enzyme". However, this is also presented as a new finding in section 3 "Mechanism of PLD2 activation by shear."

      For PLD2 dependent TREK-1 activation. Overall, I found the results compelling. However, two key results are missing.

      1. Does HEK cells have endogenous PLD2? If so, it's hard to claim that the authors can measure PLD2-independent TREK1 activation.

      Response: yes, there is endogenous PLD (enPLD). We calculated the relative expression of xPLD2 vs enPLD. xPLD2 is >10x more abundant (Fig. S3d of Pavel et al PNAS 2020, ref 14 of the current manuscript). Hence, as with anesthetic sensitivity, we expect the xPLD to out compete the endogenous PLD, which is what we see. We added the following sentence and reference : “The xPLD2 expression is >10x the endogenous PLD2 (enPLD2) and out computes the TREK-1 binding site for PLD25.”

      1. Does the plasma membrane trafficking of TREK1 remain the same under different conditions (PLD2 overexpression, truncation)? From Figure S2, the truncated TREK1 seem to have very poor trafficking. The change of trafficking could significantly contribute to the interpretation of the data in Figure 1.

      Response: If the PLD2 binding site is removed (TREK-1trunc), yes, the trafficking to the plasma membrane is unaffected by the expression of xPLD and mPLD (Author response image 2 above). For full length TREK1 (FL-TREK-1), co-expression of mPLD decreases TREK expression (Author response image 2) and coexpression with xPLD increases TREK expression (Figure S2f). This is exactly opposite of what one would expect if surface expression accounted for the change in pressure currents. Hence, we conclude surface expression does not account for loss of TREK-1 mechanosensitivity with xPLD2. A few sentences was added to the discussion. We also performed dSTORM on the TREKtruncated using EGFP. TREK-truncated goes to PIP2 (see figure 2 of 6)

      Author response image 3.

      To better compare the levels of TREK-1 before and after shear, we added a supplemental figure S2f where the protein was compared simultaneously in all conditions. 15 min of shear significantly decreased TREK-1 except with mPLD2 where the levels before shear were already lowest of all the expression levels tested.

      For shear-induced movement of TREK1 between nanodomains. The section is convincing, however I'm not an expert on super-resolution imaging. Also, it would be helpful to clarify whether the shear stress was maintained during fixation. If not, what is the >me gap between reduced shear and the fixed state. lastly, it's unclear why shear flow changes the level of TREK1 and PIP2.

      Response: Shear was maintained during the fixing. xPLD2 blocks endocytosis, presumably endocytosis and or release of other lipid modifying enzymes affect the system. The change in TREK-1 levels appears to be directly through an interaction with PLD as TREK trunc is not affected by over expression of xPLD or mPLD.

      For the mechanism of PLD2 activation by shear. I found this section not convincing. Therefore, the question of how does PLD2 sense mechanical force on the membrane is not fully addressed. Par>cularly, it's hard to imagine an acute 25% decrease cholesterol level by shear - where did the cholesterol go? Details on the measurements of free cholesterol level is unclear and additional/alternative experiments are needed to prove the reduction in cholesterol by shear.

      Response: The question “how does PLD2 sense mechanical force on the membrane” we addressed and published in Nature Comm. In 2016. The title of that paper is “Kinetic disruption of lipid rafts is a mechanosensor for phospholipase D” see ref 13 Petersen et. al. PLD is a soluble protein associated to the membrane through palmitoylation. There is no transmembrane domain, which narrows the possible mechanism of its mechanosensation to disruption.

      The Nature Comm. reviewer identified as “an expert in PLD signaling” wrote the following of our data and the proposed mechanism:

      “This is a provocative report that identi0ies several unique properties of phospholipase D2 (PLD2). It explains in a novel way some long established observations including that the enzyme is largely regulated by substrate presentation which 0its nicely with the authors model of segregation of the two lipid raft domains (cholesterol ordered vs PIP2 containing). Although PLD has previously been reported to be involved in mechanosensory transduction processes (as cited by the authors) this is the 0irst such report associating the enzyme with this type of signaling... It presents a novel model that is internally consistent with previous literature as well as the data shown in this manuscript. It suggests a new role for PLD2 as a force transduction tied to the physical structure of lipid rafts and uses parallel methods of disrup0on to test the predic0ons of their model.”

      Regarding cholesterol. We use a fluorescent cholesterol oxidase assay which we described in the methods. This is an appropriate assay for determining cholesterol levels in a cell which we use routinely. We have published in multiple journals using this method, see references 28, 30, 31. Working out the metabolic fate of cholesterol after sheer is indeed interesting but well beyond the scope of this paper. Furthermore, we indirectly confirmed our finding using dSTORM cluster analysis (Figure 3d-e). The cluster analysis shows a decrease in GM1 cluster size consistent with our previous experiments where we chemically depleted cholesterol and saw a similar decrease in cluster size (see ref 13). All the data are internally consistent, and the cholesterol assay is properly done. We see no reason to reject the data.

      Importantly, there is no direct evidence for "shear thinning" of the membrane and the authors should avoid claiming shear thinning in the abstract and summary of the manuscript.

      Response: We previously established a kinetic model for PLD2 activation see ref 13 (Petersen et al Nature Comm 2016). In that publication we discussed both entropy and heat as mechanisms of disruption. Here we controlled for heat which narrowed that model to entropy (i.e., shear thinning) (see Figure 3c). We provide an overall justification below. But this is a small refinement of our previous paper, and we prefer not to complicate the current paper. We believe the proper rheological term is shear thinning. The following justification, which is largely adapted from ref 13, could be added to the supplement if the reviewer wishes.

      Justification: To establish shear thinning in a biological membrane, we initially used a soluble enzyme that has no transmembrane domain, phospholipase D2 (PLD2). PLD2 is a soluble enzyme and associated with the membrane by palmitate, a saturated 16 carbon lipid attached to the enzyme. In the absence of a transmembrane domain, mechanisms of mechanosensation involving hydrophobic mismatch, tension, midplane bending, and curvature can largely be excluded. Rather the mechanism appears to be a change in fluidity (i.e., kinetic in nature). GM1 domains are ordered, and the palmate forms van der Waals bonds with the GM1 lipids. The bonds must be broken for PLD to no longer associate with GM1 lipids. We established this in our 2016 paper, ref 13. In that paper we called it a kinetic effect, however we did not experimentally distinguish enthalpy (heat) vs. entropy (order). Heat is Newtonian and entropy (i.e., shear thinning) is non-Newtonian. In the current study we paid closer attention to the heat and ruled it out (see Figure 3c and methods). We could propose a mechanism based on kinetic disruption, but we know the disruption is not due to melting of the lipids (enthalpy), which leaves shear thinning (entropy) as the plausible mechanism.

      The authors should also be aware that hypotonic shock is a very dirty assay for stretching the cell membrane. Ouen, there is only a transient increase in membrane tension, accompanied by many biochemical changes in the cells (including acidification, changes of concentration etc). Therefore, I would not consider this as definitive proof that PLD2 can be activated by stretching membrane.

      Response: Comment noted. We trust the reviewer is correct. In 1998 osmotic shock was used to activate the channel. We only intended to show that the system is consistent with previous electrophysiologic experiments.

      References cited:

      1 Du G, Huang P, Liang BT, Frohman MA. Phospholipase D2 localizes to the plasma membrane and regulates angiotensin II receptor endocytosis. Mol Biol Cell 2004;15:1024–30. htps://doi.org/10.1091/mbc.E03-09-0673.

      2 Koch T, Wu DF, Yang LQ, Brandenburg LO, Höllt V. Role of phospholipase D2 in the agonist-induced and constistutive endocytosis of G-protein coupled receptors. J Neurochem 2006;97:365–72. htps://doi.org/10.1111/j.1471-4159.2006.03736.x.

      3 Wheeler DS, Underhill SM, Stolz DB, Murdoch GH, Thiels E, Romero G, et al. Amphetamine activates Rho GTPase signaling to mediate dopamine transporter internalization and acute behavioral effects of amphetamine. Proc Natl Acad Sci U S A 2015;112:E7138–47. htps://doi.org/10.1073/pnas.1511670112.

      4 Rankovic M, Jacob L, Rankovic V, Brandenburg L-OO, Schröder H, Höllt V, et al. ADP-ribosylation factor 6 regulates mu-opioid receptor trafficking and signaling via activation of phospholipase D2. Cell Signal 2009;21:1784–93. htps://doi.org/10.1016/j.cellsig.2009.07.014.

      5 Pavel MA, Petersen EN, Wang H, Lerner RA, Hansen SB. Studies on the mechanism of general anesthesia. Proc Natl Acad Sci U S A 2020;117:13757–66. htps://doi.org/10.1073/pnas.2004259117.

      6 Call IM, Bois JL, Hansen SB. Super-resolution imaging of potassium channels with genetically encoded EGFP. BioRxiv 2023. htps://doi.org/10.1101/2023.10.13.561998.

    2. Author Response:

      Reviewer #1 (Public Review):

      Force sensing and gating mechanisms of the mechanically activated ion channels is an area of broad interest in the field of mechanotransduction. These channels perform important biological functions by converting mechanical force into electrical signals. To understand their underlying physiological processes, it is important to determine gating mechanisms, especially those mediated by lipids. The authors in this manuscript describe a mechanism for mechanically induced activation of TREK-1 (TWIK-related K+ channel. They propose that force induced disruption of ganglioside (GM1) and cholesterol causes relocation of TREK-1 associated with phospholipase D2 (PLD2) to 4,5-bisphosphate (PIP2) clusters, where PLD2 catalytic activity produces phosphatidic acid that can activate the channel. To test their hypothesis, they use dSTORM to measure TREK-1 and PLD2 colocalization with either GM1 or PIP2. They find that shear stress decreases TREK-1/PLD2 colocalization with GM1 and relocates to cluster with PIP2. These movements are affected by TREK-1 C-terminal or PLD2 mutations suggesting that the interaction is important for channel re-location. The authors then draw a correlation to cholesterol suggesting that TREK-1 movement is cholesterol dependent. It is important to note that this is not the only method of channel activation and that one not involving PLD2 also exists. Overall, the authors conclude that force is sensed by ordered lipids and PLD2 associates with TREK-1 to selectively gate the channel. Although the proposed mechanism is solid, some concerns remain.

      1) Most conclusions in the paper heavily depend on the dSTORM data. But the images provided lack resolution. This makes it difficult for the readers to assess the representative images.

      The images were provided are at 300 dpi. Perhaps the reviewer is referring to contrast in Figure 2? We are happy to increase the contrast or resolution.

      As a side note, we feel the main conclusion of the paper, mechanical activation of TREK-1 through PLD2, depended primarily on the electrophysiology in Figure 1b-c, not the dSTORM. But both complement each other.

      2) The experiments in Figure 6 are a bit puzzling. The entire premise of the paper is to establish gating mechanism of TREK-1 mediated by PLD2; however, the motivation behind using flies, which do not express TREK-1 is puzzling.

      The fly experiment shows that PLD mechanosensitivity is more evolutionarily conserved than TREK-1 mechanosensitivity. We should have made this clearer.

      -Figure 6B, the image is too blown out and looks over saturated. Unclear whether the resolution in subcellular localization is obvious or not.

      Figure 6B is a confocal image, it is not dSTORM. There is no dSTORM in Figure 6. This should have been made clear in the figure legend. For reference, only a few cells would fit in the field of view with dSTORM.

      -Figure 6C-D, the differences in activity threshold is 1 or less than 1g. Is this physiologically relevant? How does this compare to other conditions in flies that can affect mechanosensitivity, for example?

      Yes, 1g is physiologically relevant. It is almost the force needed to wake a fly from sleep (1.2-3.2g). See ref 33. Murphy Nature Pro. 2017.

      3) 70mOsm is a high degree of osmotic stress. How confident are the authors that a. cell health is maintained under this condition and b. this does indeed induce membrane stretch? For example, does this stimulation activate TREK-1?

      Yes, osmotic swell activates TREK1. This was shown in ref 19 (Patel et al 1998). We agree the 70 mOsm is a high degree of stress. This needs to be stated better in the paper.

      Reviewer #2 (Public Review):

      This manuscript by Petersen and colleagues investigates the mechanistic underpinnings of activation of the ion channel TREK-1 by mechanical inputs (fluid shear or membrane stretch) applied to cells. Using a combination of super-resolution microscopy, pair correlation analysis and electrophysiology, the authors show that the application of shear to a cell can lead to changes in the distribution of TREK-1 and the enzyme PhospholipaseD2 (PLD2), relative to lipid domains defined by either GM1 or PIP2. The activation of TREK-1 by mechanical stimuli was shown to be sensitized by the presence of PLD2, but not a catalytically dead xPLD2 mutant. In addition, the activity of PLD2 is increased when the molecule is more associated with PIP2, rather than GM1 defined lipid domains. The presented data do not exclude direct mechanical activation of TREK-1, rather suggest a modulation of TREK-1 activity, increasing sensitivity to mechanical inputs, through an inherent mechanosensitivity of PLD2 activity. The authors additionally claim that PLD2 can regulate transduction thresholds in vivo using Drosophila melanogaster behavioural assays. However, this section of the manuscript overstates the experimental findings, given that it is unclear how the disruption of PLD2 is leading to behavioural changes, given the lack of a TREK-1 homologue in this organism and the lack of supporting data on molecular function in the relevant cells.

      We agree, the downstream effectors of PLD2 mechanosensitivity are not known in the fly. Other anionic lipids have been shown to mediate pain see ref 46 and 47. We do not wish to make any claim beyond PLD2 being an in vivo contributor to a fly’s response to mechanical force.

      That said we do believe we have established a molecular function at the cellular level. We showed PLD is robustly mechanically activated in a cultured fly cell line (BG2-c2) Figure 6a of the manuscript. And our previous publication established mechanosensation of PLD (Petersen et. al. Nature Com 2016) through mechanical disruption of the lipids. At a minimum, the experiments show PLDs mechanosensitivity is evolutionarily better conserved across species than TREK1.

      This work will be of interest to the growing community of scientists investigating the myriad mechanisms that can tune mechanical sensitivity of cells, providing valuable insight into the role of functional PLD2 in sensitizing TREK-1 activation in response to mechanical inputs, in some cellular systems.

      The authors convincingly demonstrate that, post application of shear, an alteration in the distribution of TREK-1 and mPLD2 (in HEK293T cells) from being correlated with GM1 defined domains (no shear) to increased correlation with PIP2 defined membrane domains (post shear). These data were generated using super-resolution microscopy to visualise, at sub diffraction resolution, the localisation of labelled protein, compared to labelled lipids. The use of super-resolution imaging enabled the authors to visualise changes in cluster association that would not have been achievable with diffraction limited microscopy. However, the conclusion that this change in association reflects TREK-1 leaving one cluster and moving to another overinterprets these data, as the data were generated from static measurements of fixed cells, rather than dynamic measurements capturing molecular movements.

      When assessing molecular distribution of endogenous TREK-1 and PLD2, these molecules are described as "well correlated: in C2C12 cells" however it is challenging to assess what "well correlated" means, precisely in this context. This limitation is compounded by the conclusion that TREK-1 displayed little pair correlation with GM1 and the authors describe a "small amount of TREK-1 trafficked to PIP2". As such, these data may suggest that the findings outlined for HEK293T cells may be influenced by artefacts arising from overexpression.

      The changes in TREK-1 sensitivity to mechanical activation could also reflect changes in the amount of TREK-1 in the plasma membrane. The authors suggest that the presence of a leak currently accounts for the presence of TREK-1 in the plasma membrane, however they do not account for whether there are significant changes in the membrane localisation of the channel in the presence of mPLD2 versus xPLD2. The supplementary data provide some images of fluorescently labelled TREK-1 in cells, and the authors state that truncating the c-terminus has no effect on expression at the plasma membrane, however these data provide inadequate support for this conclusion. In addition, the data reporting the P50 should be noted with caution, given the lack of saturation of the current in response to the stimulus range.

      We thank the reviewer for his/her concern about expression levels. We did test TREK-1 expression. mPLD decreases TREK-1 expression ~two-fold (see Author response image 1). We did not include the mPLD data since TREK-1 was mechanically activated with mPLD. For expression to account for the loss of TREK-1 stretch current (Figure 1b), xPLD would need to block surface expression of TREK-1. The opposite was true, xPLD2 increased TREK-1 expression increased (see Figure S2c). Furthermore, we tested the leak current of TREK-1 at 0 mV and 0 mmHg of stretch. Basal leak current was no different with xPLD2 compared to endogenous PLD (Figure 1d; red vs grey bars respectively) suggesting TREK-1 is in the membrane and active when xPLD2 is present. If anything, the magnitude of the effect with xPLD would be larger if the expression levels were equal.

      Author response image 1.<br /> TREK expression at the plasma membrane. TREK-1 Fluorescence was measured by GFP at points along the plasma membrane. Over expression of mouse PLD2 (mPLD) decrease the amount of full-length TREK-1 (FL TREK) on the surface more than 2-fold compared to endogenously expressed PLD (enPLD) or truncated TREK (TREKtrunc) which is missing the PLD binding site in the C-terminus. Over expression of mPLD had no effect on TREKtrunc.

      >

      Finally, by manipulating PLD2 in D. melanogaster, the authors show changes in behaviour when larvae are exposed to either mechanical or electrical inputs. The depletion of PLD2 is concluded to lead to a reduction in activation thresholds and to suggest an in vivo role for PA lipid signaling in setting thresholds for both mechanosensitivity and pain. However, while the data provided demonstrate convincing changes in behaviour and these changes could be explained by changes in transduction thresholds, these data only provide weak support for this specific conclusion. As the authors note, there is no TREK-1 in D. melanogaster, as such the reported findings could be accounted for by other explanations, not least including potential alterations in the activation threshold of Nav channels required for action potential generation. To conclude that the outcomes were in fact mediated by changes in mechanotransduction, the authors would need to demonstrate changes in receptor potential generation, rather than deriving conclusions from changes in behaviour that could arise from alterations in resting membrane potential, receptor potential generation or the activity of the voltage gated channels required for action potential generation.

      We are willing to restrict the conclusion about the fly behavior as the reviewers see fit. We have shown PLD is mechanosensitivity in a fly cell line, and when we knock out PLD from a fly, the animal exhibits a mechanosensation phenotype.

      This work provides further evidence of the astounding flexibility of mechanical sensing in cells. By outlining how mechanical activation of TREK-1 can be sensitised by mechanical regulation of PLD2 activity, the authors highlight a mechanism by which TREK-1 sensitivity could be regulated under distinct physiological conditions.

      Reviewer #3 (Public Review):

      The manuscript "Mechanical activation of TWIK-related potassium channel by nanoscopic movement and second messenger signaling" presents a new mechanism for the activation of TREK-1 channel. The mechanism suggests that TREK1 is activated by phosphatidic acids that are produced via a mechanosensitive motion of PLD2 to PIP2-enriched domains. Overall, I found the topic interesting, but several typos and unclarities reduced the readability of the manuscript. Additionally, I have several major concerns on the interpretation of the results. Therefore, the proposed mechanism is not fully supported by the presented data. Lastly, the mechanism is based on several previous studies from the Hansen lab, however, the novelty of the current manuscript is not clearly stated. For example, in the 2nd result section, the authors stated, "fluid shear causes PLD2 to move from cholesterol dependent GM1 clusters to PIP2 clusters and this activated the enzyme". However, this is also presented as a new finding in section 3 "Mechanism of PLD2 activation by shear."

      For PLD2 dependent TREK-1 activation. Overall, I found the results compelling. However, two key results are missing. 1. Does HEK cells have endogenous PLD2? If so, it's hard to claim that the authors can measure PLD2-independent TREK1 activation.

      Yes, there is endogenous PLD (enPLD). We calculated the relative expression of xPLD2 vs enPLD. xPLD2 is >10x more abundant (Fig. S3d of Pavel et al PNAS 2020, ref 14 of the current manuscript). Hence, as with anesthetic sensitivity, we expect the xPLD to out compete the endogenous PLD, which is what we see. This should have been described more carefully in this paper and the studies pointed out that establish this conclusion.

      1. Does the plasma membrane trafficking of TREK1 remain the same under different conditions (PLD2 overexpression, truncation)? From Figure S2, the truncated TREK1 seem to have very poor trafficking. The change of trafficking could significantly contribute to the interpretation of the data in Figure 1.

      If the PLD2 binding site is removed (TREK-1trunc), yes, the trafficking to the plasma membrane is unaffected by the expression of xPLD and mPLD (Figure R1 above). For full length TREK1 (FL-TREK-1), co-expression of mPLD decreases TREK expression (Figure R1) and co-expression with xPLD increases TREK expression (Figure S2). This is exactly opposite of what one would expect if surface expression accounted for the change in pressure currents. Hence, we conclude surface expression does not account for loss of TREK-1 mechanosensitivity with xPLD2.

      For shear-induced movement of TREK1 between nanodomains. The section is convincing, however I'm not an expert on super-resolution imaging. Also, it would be helpful to clarify whether the shear stress was maintained during fixation. If not, what is the time gap between reduced shear and the fixed state. lastly, it's unclear why shear flow changes the level of TREK1 and PIP2.

      Shear was maintained during the fixing. We do not know why shear changes PIP2 and TREK-1 levels. Presumably endocytosis and or release of other lipid modifying enzymes affect the system. The change in TREK-1 levels appears to be directly through an interaction with PLD as TREKtrunc is not affected by over expression of xPLD or mPLD.

      For the mechanism of PLD2 activation by shear. I found this section not convincing. Therefore, the question of how does PLD2 sense mechanical force on the membrane is not fully addressed. Particularly, it's hard to imagine an acute 25% decrease cholesterol level by shear - where did the cholesterol go? Details on the measurements of free cholesterol level is unclear and additional/alternative experiments are needed to prove the reduction in cholesterol by shear.

      The question “how does PLD2 sense mechanical force on the membrane” we addressed and published in Nature Comm. In 2016. The title of that paper is “Kinetic disruption of lipid rafts is a mechanosensor for phospholipase D” see ref 13 Petersen et. al. PLD is a soluble protein associated to the membrane through palmitoylation. There is no transmembrane domain, which narrows the possible mechanism of its mechanosensation to disruption.

      The Nature Comm. reviewer identified as “an expert in PLD signaling” wrote the following of our data and the proposed mechanism:

      "This is a provocative report that identifies several unique properties of phospholipase D2 (PLD2). It explains in a novel way some long established observations including that the enzyme is largely regulated by substrate presentation which fits nicely with the authors model of segregation of the two lipid raft domains (cholesterol ordered vs PIP2 containing). Although PLD has previously been reported to be involved in mechanosensory transduction processes (as cited by the authors) this is the first such report associating the enzyme with this type of signaling... It presents a novel model that is internally consistent with previous literature as well as the data shown in this manuscript. It suggests a new role for PLD2 as a force transduction tied to the physical structure of lipid rafts and uses parallel methods of disruption to test the predictions of their model."

      Regarding cholesterol. We use a fluorescent cholesterol oxidase assay which we described in the methods. This is an appropriate assay for determining cholesterol levels in a cell which we use routinely. We have published in multiple journals using this method, see references 28, 30, 31. Working out the metabolic fate of cholesterol after sheer is indeed interesting but well beyond the scope of this paper. Furthermore, we indirectly confirmed our finding using dSTORM cluster analysis (Figure 3d-e). The cluster analysis shows a decrease in GM1 cluster size consistent with our previous experiments where we chemically depleted cholesterol and saw a similar decrease in cluster size (see ref 13). All the data are internally consistent, and the cholesterol assay is properly done. We see no reason to reject the data.

      Importantly, there is no direct evidence for "shear thinning" of the membrane and the authors should avoid claiming shear thinning in the abstract and summary of the manuscript.

      We previously established a kinetic model for PLD2 activation see ref 13 (Petersen et al Nature Comm 2016). In that publication we discussed both entropy and heat as mechanisms of disruption. Here we controlled for heat which narrowed that model to entropy (i.e., shear thinning) (see Figure 3c). We provide an overall justification below. But this is a small refinement of our previous paper, and we prefer not to complicate the current paper. We believe the proper rheological term is shear thinning. The following justification, which is largely adapted from ref 13, could be added to the supplement if the reviewer wishes.

      Justification: To establish shear thinning in a biological membrane, we initially used a soluble enzyme that has no transmembrane domain, phospholipase D2 (PLD2). PLD2 is a soluble enzyme and associated with the membrane by palmitate, a saturated 16 carbon lipid attached to the enzyme. In the absence of a transmembrane domain, mechanisms of mechanosensation involving hydrophobic mismatch, tension, midplane bending, and curvature can largely be excluded. Rather the mechanism appears to be a change in fluidity (i.e., kinetic in nature). GM1 domains are ordered, and the palmate forms van der Waals bonds with the GM1 lipids. The bonds must be broken for PLD to no longer associate with GM1 lipids. We established this in our 2016 paper, ref 13. In that paper we called it a kinetic effect, however we did not experimentally distinguish enthalpy (heat) vs. entropy (order). Heat is Newtonian and entropy (i.e., shear thinning) is non-Newtonian. In the current study we paid closer attention to the heat and ruled it out (see Figure 3c and methods). We could propose a mechanism based on kinetic disruption, but we know the disruption is not due to melting of the lipids (enthalpy), which leaves shear thinning (entropy) as the plausible mechanism.

      The authors should also be aware that hypotonic shock is a very dirty assay for stretching the cell membrane. Often, there is only a transient increase in membrane tension, accompanied by many biochemical changes in the cells (including acidification, changes of concentration etc). Therefore, I would not consider this as definitive proof that PLD2 can be activated by stretching membrane.

      Comment noted. We trust the reviewer is correct. In 1998 osmotic shock was used to activate the channel. We only intended to show that the system is consistent with previous electrophysiologic experiments.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The present work establishes 14-3-3 proteins as binding partners of spastin and suggests that this binding is positively regulated by phosphorylation of spastin. The authors show evidence that 14-3-3 >- spastin binding prevents spastin ubiquitination and final proteasomal degradation, thus increasing the availability of spastin. The authors measured microtubule severing activity in cell lines and axon regeneration and outgrowth as a prompt to spastin activity. By using drugs and peptides that separately inhibit 14-3-3 binding or spastin activity, they show that both proteins are necessary for axon regeneration in cell culture and in vivo models in rats.

      The following is an account of the major strengths and weaknesses of the methods and results.

      Major strengths

      -The authors performed pulldown assays on spinal cord lysates using GST-spastin, then analyzed pulldowns via mass spectrometry and found 3 peptides common to various forms of 14-3-3 proteins. In co-expression experiments in cell lines, recombinant spastin co-precipitated with all 6 forms of 14-3-3 tested.

      -By protein truncation experiments they found that the Microtubule Binding Domain of spastin contained the binding capability to 14-3-3. This domain contained a putative phosphorylation site, and substitutions that cannot be phosphorylated cannot bind to spastin.

      -spastin overexpression increased neurite growth and branching, and so did the phospho null spastin. On the other hand, the phospho mimetic prevents all kinds of neurite development.

      -Overexpression of GFP-spastin shows a turn-over of about 12 hours when protein synthesis is inhibited by cycloheximide. When 14-3-3 is co-overexpressed, GFP-spastin does not show a decrease by 12 hours. When S233A is expressed, a turn-over of 9 hours is observed, indicating that the ability to be phosphorylated increases the stability of the protein.

      -In support of that notion, the phospho-mimetic S233D makes it more stable, lasting as much as the over-expression of 14-3-3.

      -Authors show that spastin can be ubiquitinated, and that in the presence of ubiquitin, spastin-MT severing activity is inhibited.

      -By combining FCA with Spastazoline, the authors claim that FCA increased regeneration is due to increased spastin Activity in various models of neurite outgrowth and regeneration in cell culture and in vivo, the authors show impressive results on the positive effect of FCA in regeneration, and that this is abolished when spastin is inhibited.

      Major weaknesses

      -However convincing the pull-downs of the expressed proteins, the evidence would be stronger if a co-immunoprecipitation of the endogenous proteins were included.

      We thank the reviewer for their succinct summary of the main results and strengths of our study. We acknowledge the reviewers' valuable suggestions and agree that performing endogenous co-immunoprecipitation (co-IP) experiments in neurons is crucial for supporting our conclusions. To address this question, cortical neurons were cultured in vitro for endogenous IP experiment. The cortical neurons were cultured using a neurobasal medium supplemented with 2% B27, and using cytarabine to inhibit the proliferation of glial cells. The proteins were then extracted and subjected to the immunoprecipitation experiments using antibodies against spastin. The results, as shown in Fig.1C in the revised manuscript, clearly demonstrate that 14-3-3 protein indeed interacts with spastin within neurons.

      -To better establish the impact of spastin phosphorylation in the interaction, there is no indication that the phosphomimetic (S233D) can better bind spastin, and this result is contradicting to the conclusion of the authors that spastin-14-3-3 interaction is necessary for (or increases) spastin function.

      Thank you for your valuable and constructive comments. We agree with your consideration. To reinforce the importance of phosphorylated spastin in this binding model, we conducted additional experiments by transfecting S233D into 293T cells and performed immunoprecipitation experiments (Fig.2H). The results clearly demonstrate that spastin (S233D) exhibits enhanced binding to spastin, indicating that phosphorylation at the S233 site is critical for this interaction. Additionally, we observed that spastin (S233D) maintains its binding to 14-3-3 even in the presence of staurosporine. This data further supports and strengthens our conclusions.

      -To fully support the authors' suggestion that 14-3-3 and spastin work in the same pathway to promote regeneration, I believe that some key observations are missing.

      1-There is no evidence showing that 14-3-3 overexpression increases the total levels of spastin, not only its turnover.

      Thank you for your consideration and valuable input. We have previously demonstrated that overexpression of 14-3-3 leads to an increase in the protein levels of spastin in the absence of CHX (Fig.3E&F). Furthermore, we also observed an upregulated protein levels of spastin S233D compared to the wild-type (Fig.3G). We have now included these results in the revised manuscript.

      2- There is no indication that increasing the ubiquitination of spastin decreases its levels. To suggest that proteasomal activity is affecting the levels of a protein, one would expect that proteasomal inhibition (with bortezomib or epoxomycin), would increase its levels.

      Thanks for your concern. We believe that this evidence is critical. Indeed, another study by our team is working to elucidate the ubiquitination degradation pathway of spastin. In addition, a previous study has shown that phosphorylation of the S233 site of spastin can affect its protein stability (Spastin recovery in hereditary spastic paraplegia by preventing neddylation-dependent degradation, doi:10.26508/lsa.202000799.). To better support our conclusions, we have supplemented the results in Fig.3L&M. The results showed that the proteasome inhibitor MG132 could significantly increase the protein level of spastin, whereas CHX could significantly decrease the protein level of spastin, and the degradation of spastin is significantly hindered in the presence of both CHX and MG132. This experiment also further showed that ubiquitination of spastin reduced its protein level.

      3- Authors show that S233D increases MT severing activity, and explain that it is related to increased binding to 14-3-3. An alternative explanation is that phosphorylation at S233 by itself could increase MT severing activity. The authors could test if purified spastin S233D alone could have more potent enzymatic activity.)

      We appreciate the reviewer’s consideration. After investigating the interaction between 14-3-3 and spastin, we first aimed to determine whether the S233 phosphorylation mutation of spastin influenced its microtubule-severing activity. We found that overexpression of both S233A and S233D mutants resulted in significant microtubule severing (as indicated by a significant decrease in microtubule fluorescence intensity) (Fig.S2). Furthermore, it is noteworthy that S233 is located outside the microtubule-binding domain (MTBD, 270-328 amino acids) and the AAA region (microtubule-severing region, 342-599 amino acids) of spastin. Based on our initial observations, we believe that the phosphorylation of the S233 residue in spastin does not impact its microtubule-severing function. Additionally, under the same experimental conditions, we observed that the green fluorescence intensity of GFP-spastin S233D was significantly higher than that of GFP-spastin S233A. Based on these phenomena, we speculated that phosphorylation of the S233 residue of spastin might affect its protein stability, leading us to conduct further experiments. Furthermore, we fully acknowledge the reviewer's concern; however, due to technical limitations, we were unable to perform an in vitro assay to test the microtubule-severing activity of spastin. We have provided an explanation for this consideration in the revised version.

      -Finally, I consider that there are simpler explanations for the combined effect of FC-A and spastazoline. FC-A mechanism of action can be very broad, since it will increase the binding of all 14-3-3 proteins with presumably all their substrates, hence the pathways affected can rise to the hundreds. The fact that spastazoline abolishes FC-A effect, may not be because of their direct interaction, but because spastin is a necessary component of the execution of the regeneration machinery further downstream, in line with the fact that spastizoline alone prevented outgrowth and regeneration, and in agreement with previous work showing that normal spastin activity is necessary for regeneration.

      We appreciate the considerations raised by the reviewer. It is evident that spastin is not the exclusive substrate protein for 14-3-3, and it is challenging to demonstrate that 14-3-3 promotes nerve regeneration and recovery of spinal cord injury directly through spastin in vivo. However, we have identified the importance of 14-3-3 and spastin in the process of nerve regeneration. Importantly, we have conducted supplementary experiments to support the stabalization of spastin by FC-A treatment within neurons (Fig.4M), as well as the repair process of spinal cord injury in vivo (Fig.5D). The results showed that FC-A treatment in cortical neurons could enhance the stability of spastin protein levels, and we also demonstrated a consistent trend of upregulated protein levels of spastin and 14-3-3 following spinal cord injury. Moreover, the protein levels were significantly elevated in the the FC-A group of mice. These results also support that 14-3-3 enhances spastin protein stability to promote spinal cord injury repair. The manuscript was revised accordingly.

      Reviewer #2 (Public Review):

      Summary:

      The idea of harnessing small molecules that may affect protein-protein interactions to promote axon regeneration is interesting and worthy of study. In this manuscript, Liu et al. explore a 14-3-3-spastin complex and its role in axon regeneration.

      Strengths:

      Some of the effects of FC-A on locomotor recovery after spinal cord contusion look interesting.

      Weaknesses:

      The manuscript falls short of establishing that a 14-3-3-spastin complex is important for any FC-A-dependent effects and there are several issues with data quality that make it difficult to interpret the results. Importantly, the effects of the spastin inhibitor have a major impact on neurite outgrowth suggesting that cells simply cannot grow in the presence of the inhibitor and raising serious questions about any selectivity for FC-A - dependent growth. Aspects of the histology following spinal cord injury were not convincing.

      We sincerely appreciate the reviewer for evaluating our manuscript. Given the multitude of substrates that interact with 14-3-3, and considering spastin's indispensable role in neuroregeneration, it is indeed challenging to experimentally establish that FC-A's neuroregenerative effect is directly mediated through spastin in vivo. Therefore, we have provided additional crucial evidence regarding the changes in spastin protein levels following spinal cord injury, as well as the application of FC-A after spinal cord injury. Furthermore, we have made relevant adjustments to the uploaded images to enhance the resolution of the presented figures, as detailed in the subsequent response.

      Reviewer #3 (Public Review):

      Summary: The current manuscript c laims that 14-3-3 interacts with spastin and that the 14-3-3/spastin interaction is important to regulate axon regeneration after spinal cord injury.

      Strengths:

      In its present form, this reviewer identified no clear strengths for this manuscript.

      Weaknesses:

      In general, most of the figures lack sufficient quality to allow analyses and support the author's claims (detailed below). The legends also fail to provide enough information on the figures which makes it hard to interpret some of them. Most of the quantifications were done based on pseudo-replication. The number of independent experiments (that should be defined as n) is not shown. The overall quality of the written text is also low and typos are too many to list. The original nature of the spinal cord injury-related experiments is unclear as the role of 14-3-3 (and spastin) in axon regeneration has been extensively explored in the past.

      We sincerely appreciate the careful consideration and rigorous evaluation provided by the reviewer. In the revised version, we have made effort to present high-resolution figures and provide more detailed figure legends. Furthermore, we have made relevant adjustments to the statistical methods in accordance with the reviewer's suggestions. The manuscript has also undergone a thorough review and correction process to eliminate any writing-related errors. Please refer to the following response.

      To the best of our knowledge, there has been no clear reports on the efficacy of 14-3-3 in the repair of spinal cord injury. Kaplan A et al. (doi: 10.1016/j.neuron.2017.02.018) reported a reduction in die-back of the corticospinal tract following spinal cord injury using FC-A as a filler in situ in the lesion site. However, the specific effects of FC-A on spinal cord injury, such as motor function and neural reactivity, as well as the expression characteristic of 14-3-3 after spinal cord injury, have not been extensively elucidated. Additionally, prior research on spastin's role in axon regeneration primarily focused on the effects in Drosophila, and its regenerative effects in the central nervous system of adult mammals after injury have not been reported. Therefore, our study provides crucial insights into the importance of 14-3-3 and spastin in the process of spinal cord injury repair in mammals.

      Reviewer #1 (Recommendations For The Authors):

      There are many spelling and grammar errors, please revise. Examples:

      -approach revealed14-3-3

      -We have detected different many 14-3-3 peptides

      -Line 1057 (D) 14-3-3 agnoist FC-A

      -There is a discrepancy between panel names and figure legend in Figure 4.

      -There is another discrepancy between the color coding of treatments in Figure 7. All panels show "injury" in red and FC-A in orange, but in panel E, these are swapped. This is confusing to readers.

      Thank you for the thorough and rigorous review. We have re-colored the relevant chart. The manuscript has also undergone a thorough review to eliminate any writing-related errors.

      Most images from confocal microscopy are blurred or low resolution. They should be sharper for the type of microscopy used.

      We have adjusted and re-uploaded the images with higher resolution. Additionally, we have enlarged the relevant images.

      The list of all peptides retrieved in the Mass-Spec analyses of the GST-spastin pulldown must be publicly available, according to eLife rules.

      Thank you for your suggestion. We have now uploaded the mass spectrometry data.

      To determine where the 14-3-3/spastin protein142 complex functions in neurons, we double stained hippocampal neurons with spastin143 and 14-3-3 antibody, and found that 14-3-3 was colocalized with spastin in the entire144 cell compartment (Figure 1C).

      Colocalization by confocal fluorescence microscopy is not evidence for protein complexes.

      While co-localization experiments may not directly demonstrate protein-protein interactions, they can still provide valuable insights into the cellular localization of the proteins and suggest potential interactions between them. Therefore, we adjusted the statement.

      Fig1F- Co-immunoprecipitation assay results confirmed that all 14-3-3 isoforms could form direct complexes with spastin.

      CoIP in cells overexpressing the proteins is not evidence that it is direct. That they can interact directly with each other can be extracted from the evidence in vitro with purified proteins.

      We agree with this and we have changed our statement accordingly.

      For a broad audience to have a better understanding, the authors have to explain their a.a. subtitucions of Serine233, one being mimicking phosphorylation (S233D) and the other rendering the protein not being able to be phosphorylated in that position (S233A).

      We appreciate the suggestion. We have provided a more detailed explanation in revised manuscript.

      The panel of neuronas in Fig2G is mislabeled, because it is twice spastin S233A, instead of S233D.

      We apologize for this mistake and we have corrected it in the panel.

      FCA may increase the interaction of 14-3-3 with any of its substrates, including spastin. One would appreciate evidence that FCA increases the MT-severing activity of spastin, as assumed by authors

      We appreciate the reviewer’s suggestion. In this study, we overexpressed spastin to investigate its microtubule severing activity. It is important to note that overexpressing spastin significantly exceeds the normal physiological concentration of the protein. Using excessive amounts of FC-A to enhance the interaction between 14-3-3 and spastin in cells can lead to cell toxicity. Therefore, we chose to overexpress 14-3-3 instead of employing excessive FC-A.

      In Fig2F, the interaction of 14-3-3 with Spas-S233D would have been very informative.

      Thank you for the constructive suggestions from the reviewer. We have supplemented the corresponding co-immunoprecipitation experiments (Fig.).

      The functional effect of S233A and S233D does not correlate with a function of 14-3-3 in neurite outgrowth. This is because S233A does not interact with 14-3-3, however, it is as good as WT spastin... meaning that binding of 14-3-3 with spastin is not necessary...

      We appreciate the reviewer's consideration. The observed phenomenon of spastin WT and S233A promoting axon growth do not align with the physiological state within neurons. This may mask the true effects of S233A or S233D on neuronal axon growth. It is documented that the proper dosage of spastin is essential for neuronal growth and regeneration, as excessive or insufficient amounts can hinder axon growth. Excessive spastin levels can disrupt the overall cellular MTs. Therefore, spastin were moderately expressed by adjusting the transfection dosage and duration. Nevertheless, we were unable to precisely control the expression levels of spastin for both WT and S233A, also resulting in an overexpression state compared to the physiological state. As a result, the crucial role of spastin S233 in neural growth under physiological conditions may be masked. We have addressed this issue in the revised version of our manuscript.

      In panels 3C and D it is not clear if it does contain 14-3-3.... it seems it does not... but clarify.

      We apologize for any confusion. Since there is endogenous 14-3-3 present in the cells, we utilized spastin S233A and S233D to mimic the binding pattern with 14-3-3 according to the established interaction model. This information has been clarified in the original manuscript.

      Line 217 should indicate Figure 3, not Figure 5

      We have made the corresponding corrections.

      In F3G, it is intriguing that the input blot shows a decrease in Ubiquitin proteins when there is expression of flag ubiquitin...

      We apologize for the error in our presentation. In the control group, we actually overexpressed Flag-ubiquitin and GFP instead of Flag and GFP-spastin. Additionally, to further elucidate the impact of different phosphorylation states on spastin ubiquitination and degradation, we have conducted additional ubiquitination experiments (Fig.3N), which are now included in the revised version of our manuscript.

      S233 mutations seem to affect the effective turnover of spastin, but does not seem to change the levels of the spastin protein...hence, the conclusion that 14-3-3 protects from degradation is overstated.

      We thank the reviewers for the careful review and we have revised the statement accordingly.

      The mode of action of R18 FCA should be introduced earlier in the text.

      Thank you for the reviewer's correction. We have provided a corresponding description of the effects of FC-A and R18 on the interaction between 14-3-3 and spastin in the ubiquitination experiments section of the manuscript.

      Line 296 reads: Our results revealed that levels of 14-3-3 protein remained high even at 30 DPI, indicating that 14-3-3 plays an important role in the recovery of spinal cord injury.

      This is overstated since it can well be that an upregulated protein is inhibitory. We thank the reviewers for their consideration and we have made adjustments accordingly.

      It is not clear if 14-3-3 prevents ubiquitination of spastin, then its levels should be higher... it is noteworthy that they did not measure its levels in nerve tissue after injury. For example, in experiments shown in Figure 5A, it would have been very useful the observation of the levels of spastin.

      We appreciate the reviewer's consideration. We have now included the assessment of spastin protein levels following spinal cord injury. Additionally, we have collected the injured spinal cord lysates in mice treated with FC-A for western blot analysis. The results revealed that the expression trend of 14-3-3 protein is largely consistent with spastin after spinal cord injury. Furthermore, the treatment with FC-A was found to enhance the expression of spastin after spinal cord injury (Fig. 5C&D)."

      Panel 5G reads "nerve regeneration across the lesion site", but it actually measured NF levels, according to the legend.

      Thanks to the reviewers for the critical review. We have revised the chart accordingly.

      361 "BMS" should be explained in the results section for a better understanding of the results by non-experts.

      Thank you to the reviewers for their suggestions. We have explained this in the results section accordingly.

      Reviewer #2 (Recommendations For The Authors):

      1. The results of the mass spec and co-IP in Figure 1 are unclear.

      a) Are all of the peptides in Fig. 1A from 14-3-3 and were there only 3 14-3-3 peptides that were identified?

      The mass spectrum results did identify only three 14-3-3 peptides, and these three peptides were highly conserved across all isoforms.

      b) The blot in panel B needs to show the input band for spastin and 14-3-3 from the same gel and not spliced so that the level of enrichment can be evaluated in the co-IP.

      Thanks to the reviewer's comments, we have presented the whole gel (Fig.1B)

      c) Further, does an IP for 14-3-3 co-precipitate spastin?

      Thank you for your concern. We appreciate your feedback. Our 14-3-3 antibody is capable of Western blot experiments and recognizes all subtypes (Pan 14-3-3, Cell Signaling Technology, Cat #8312). Unfortunately, it is not suitable for immunoprecipitation (IP) experiments. Therefore, we have employed additional approaches, namely immunoprecipitation and pull-down assays, to further investigate the interaction between 14-3-3 and spastin.

      1. It is difficult to say anything about 14-3-3 - spastin co-localization in hippocampal neurons (1c) since 14-3-3 labels the entire hippocampal neuron so any protein will co-localize.

      We appreciate the comments. The co-localization experiments have provided evidence of the relative expression of both 14-3-3 and spastin in neurons, suggesting their potential interaction within neuronal cells. We have made the necessary revisions to accurately describe the results of the co-localization experiments in the manuscript.

      To further investigate the interaction between 14-3-3 and spastin within neurons, we have conducted additional co-immunoprecipitation (Co-IP) experiments using cortical neuron lysates (Fig.1C).

      1. The molecular weight of 14-3-3 is 25-28 kDa but the band in panel 1B and in subsequent figures it is below 15 kDa. Fig. 1F - the spastin band also seems to be low compared to predicted molecular weight and other W. Blot reports in the literature so some indication of how the antibody was validated would be important.

      Apologies for the mistakes. We have carefully re-evaluated the western blot images (See Author response image 1). We have confirmed that the molecular weight of the 14-3-3 protein is approximately 33 kDa. In the case of spastin, its molecular weight is around 55-70 kDa. Additionally, the GFP-spastin fusion protein has an estimated molecular weight of approximately 90 kDa. We have conducted a thorough verification and made appropriate adjustments to the molecular weight labels in all western blot images.

      Author response image 1.

      1. Fig 1G is a co-immunoprecipitation and it is not clear what the authors mean by "direct complexes" as claimed in line 150 of the results since this does not show direct binding between 14-3-3 and spastin. None of the assays in Fig. 1 assess "direct" binding between the two proteins and the authors should be clear in their interpretation.

      We agree with the reviewer's comments and have removed the word "direct" from the text.

      1. Fig. 1D - there is no validation that staurosporine (protein kinase inhibitor, not protein kinase as per typo in Line 167) affects the phosphorylation levels of spastin.

      Thank you for your valuable comments. In our group, we have conducted another study that has confirmed the involvement of CAMKII in mediating spastin phosphorylation. Furthermore, we have found that the addition of staurosporine significantly reduces the phosphorylation levels of spastin (unpublished results). In response to the reviewer's comment, we are pleased to provide western blot experiments demonstrating the effect of staurosporine on reducing spastin phosphorylation. The phosphorylation levels of spastin were assessed using a Pan Phospho antibody (Fig.2D).

      1. Fig. 2F - it would be important to test if spastin S233D interacts more robustly with 14-3-3 and if this is insensitive to staurosporine.

      Thank you for your comments. The suggestion provided by the reviewer is highly significant for supporting our conclusion that "phosphorylation of spastin is a prerequisite for its interaction with 14-3-3." Therefore, we have conducted additional immunoprecipitation experiments to further supplement our findings (Fig.2H). The experimental results demonstrate that the binding affinity between spastin S233D and 14-3-3 is stronger compared to spastin WT.

      1. Line 179 "Next, we transfected Ser233 mutation of spastin (spastin S233A or spastin S233D) with flag tagged 14-3-3 and generated Pearson's correlation coefficients. Results revealed that spastin 181 S233D was markedly colocalized with 14-3-3, with minimal colocalization with spastin S233A (Figure 2A-B)." Assuming the authors are referring to supplemental Figure 2, the 14-3-3 covers the entire cell thus I think measures of co-localization are uninterpretable.

      We agree with the reviewer's comment. We realize that 14-3-3θ exhibits a ubiquitous cellular distribution, which renders the measurement of its co-localization coefficients inconclusive. Therefore, we have decided to remove Supplementary Figure 2 from the manuscript.

      1. Line 189 "Consistent with earlier results, spastin promoted neurite outgrowth, as evidenced by both the length and total branches of neurite." - It is unclear what earlier results the authors are referring to. The authors should clarify how they determined the "moderate" expression level.

      We thank the review’s suggestions. The "earlier results" mentioned here refers to previously published articles, we now have added relevant references. Existing literature indicates that an appropriate dosage of spastin is necessary for neuronal growth and regeneration. However, both excessive and insufficient amounts of spastin are detrimental to axonal growth. Excessive spastin disrupts the overall microtubule network within cells. We controlled plasmid transfection dosage and transfection durations to achieve moderate expression. We have provided an explanation of these details in the revised version.

      1. The effects of WT spastin and spastin S233A were similar in spite of the fact that S233A does not bind to 14-3-3, which is inconsistent with the author's model that spastin-14-3-3 binding promotes growth. Line 191 - the authors mention that spastin S233D was toxic but I do not see any cell death measurements. I assume the bottom right panel in Fig. 2G labelled as spastin S233A is mislabeled and should be S233D.

      In response to comment 8, the transfection of both wild-type (WT) spastin and S233A mutant failed to precisely control the expression levels around the physiological concentration. Consequently, we observed an overexpression of spastin in both cases, which obscured the critical role of S233 phosphorylation in neurite outgrowth. We have addressed this issue in the revised version of the manuscript.

      1. Fig. 3. Does spastin(S233D) bind constitutively to 14-3-3? Why is spastin S233A not less stable than WT spastin based on the author's model?

      We propose that 14-3-3 is more likely to interact with spastin S233D in a non-constitutive manner. The instability of the S233A protein is attributed to the disruption of its ubiquitination degradation process due to the absence of 14-3-3 binding.

      1. The ubiquitin blot in Fig. 3G is not convincing and not quantified.

      We acknowledge the mislabeling in our figures. In the control group, Flag-Ubiquitin was also overexpressed, and we transfected GFP as a control instead of GFP-spastin. To further enhance the reliability, we conducted additional ubiquitination experiments (Fig.3N), which revealed a significant increase in spastin (S233A) ubiquitination levels compared to the WT group, consistent with previous research findings (Spastin recovery in hereditary spastic paraplegia by preventing neddylation-dependent degradation, doi:10.26508/lsa.202000799). Additionally, we observed that the addition of R18 could partially enhance spastin ubiquitination levels, as quantitatively illustrated in the figure (Fig.3O). This result further underscores the inhibitory role of 14-3-3 in the ubiquitination degradation pathway of spastin.

      1. I do not understand how the glutamate injury fits with the narrative (Fig. 4C).

      Excessive glutamate exposure can induce severe intracellular oxidative stress reactions, leading to the disruption of physiological processes such as mitochondrial energy production. This, in turn, results in the swelling and lysis of neuronal processes, a phenomenon known as neuronal necrosis. During this state, neurite maintenance is obstructed, and neurites exhibit swelling and breakage (Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron. 1995 Oct;15(4):961-73). We have provided a more comprehensive explanation of this phenomenon in the revised version of our manuscript.

      1. Some commentary about the selectivity of spastazoline to inhibit spastin should be included - it would be helpful if the authors could explain that this is a spastin inhibitor in the manuscript. FC-A still seems to promote growth in the presence of spastazoline suggesting that the FC-A effects are not dependent on spastin (Fig. 4E). The statistical analysis section of the materials and methods indicates that multiple groups were analyzed by one-way ANOVA. This seems unusual since the controls for cellular transfection are different than for small molecules (FC-A) and for peptides such as R18. As such, there is no vehicle control for the FC-A condition and it is difficult to assess the FC-A vs Spastazoline vs FA-A + Spastoazoline. The authors should clarify (Fig. 4E-J)

      Thank you for the reviewer’s suggestions. In the revised version, we have provided a more detailed explanation of the specific inhibition of spastin's severing function by spastazoline.

      We observed that FC-A, in combination with spastazoline, still exhibited a certain degree of promotion in neurite growth compared to the injury group under the glutamate circumstances. Evidently, spastin is not the exclusive substrate for 14-3-3, and FC-A might delay cellular oxidative stress reactions by facilitating the interaction of 14-3-3 with other substrates, such as the FOXO transcription factors as mentioned in the introduction. Nevertheless, our results still demonstrate that the addition of spastazoline significantly diminishes the promoting effect of FC-A on neurite growth, indicating that FC-A affects neuronal growth by impacting spastin.

      Furthermore, in the drug-treated groups, we overexpressed GFP to trace the morphology of neurons. Culture media were exchanged following transfection, and during media exchange, drugs were added. And an equivalent amount of DMSO or ethanol were added as controls to rule out the influence of solvents on neurons.

      1. There is a good possibility that spastin is required for all axon regeneration and that there is no selectivity for the FC-A pathway and this is a major issue with the interpretation of the manuscript (Fig 4K-L).

      We acknowledge this point. Clearly, spastin is not the exclusive substrate for 14-3-3, and our experimental evidence does not establish that 14-3-3 solely promotes neuronal regeneration through spastin. Nevertheless, we have identified the significance of 14-3-3 and spastin in the process of neural regeneration. Furthermore, we conducted complementary experiments to support the stability of spastin by FC-A treatment both in vitro and in vivo. We found an enhanced protein expression in cortical neurons after FC-A treatment (Fig.4M). Also, the results indicate a consistent elevation trend in the protein levels of spastin and 14-3-3 following spinal cord injury (Fig.5C&H). Moreover, in the FC-A group of mice, there was a significant increase in spastin protein levels (Fig.5D&I). These results also support that 14-3-3 promotes spinal cord injury repair by enhancing spastin protein stability.

      1. Fig. 5C- it is unclear where the photomicrographs were taken relative to the lesion.

      We obtained tissue sections from the lesion core and the above segments for histological analysis. Given the scarcity of neural compartment at the injury center, we select tissue slices as close as possible to lesion core to illustrate the relationship between 14-3-3 and the injured neurons. We have provided an explanation of this in the revised version of the manuscript.

      1. The authors need to provide some evidence that the FC-A and spastazoline compounds are accessing the CNS following IP injection.

      We thank the review’s suggestion. Although direct visualization evidence of FC-A and spastazoline entering the CNS is challenging to obtain, several indicators suggest drug penetration into spinal cord tissue. Firstly, behavioral and electrophysiological experiments in vivo demonstrate that drug injections indeed affect the neural activity of mice. Secondly, following spinal cord injury, the blood-spinal cord barrier was disrupted at the injury site, combined with the fact that both FC-A (molecular weight: 680.82 Da) and spastazoline (molecular weight: 382.51 Da) are small molecule drugs, these increases the likelihood of these small molecules entering the injured spinal cord tissue. Furthermore, our microtubule staining results indicated that FC-A and spastazoline did influence the acetylation ratio of microtubules. These findings support the drug penetration into spinal cord tissue.

      1. Some quantification of Fig. 5D would be important to support the contention that the lesion site is impacted by FC-A treatment.

      Thank you for the suggestion. We have included quantitative analysis for Figure 5D (Figure) as recommended.

      1. The NF and 5-HT staining in Fig. 5D and in Fig. 7A and B does not clearly define fibers and is not convincing.

      We appreciate the concerns. While we did not present whole nerve fibers, we therefore employed NF and 5-HT immunoreactive fluorescence intensity as an indicator to assess the regeneration of nerve fibers as previously described, but not axons per square millimeter (Baltan S, et, al. J Neurosci. 2011 Mar 16;31(11):3990-9; Iwai M, et, al. Stroke. 2010 May;41(5):1032-7; Wang Y, et, al. Elife. 2018 Sep 12;7:e39016; Altmann C, et, al. Mol Neurodegeneration. 2016 Oct 22;11(1):69).

      Our results showed that in the spinal cord injury group, there was strongly decreased NF-positive stainning (with a slight increase in 5-HT). In contrast, the FC-A treatment group exhibited a significant higher abundance of NF-positive signals (or an increased 5-HT signal) in the lesion site, which also suggests the reparative effect of FC-A on nerves. We also intend to refine our immunohistochemical methods in future experiments.

      Minor Comments: 1. Line 80 -84. To my knowledge the only manuscripts examining the effects of spastin in axon regeneration models includes the analysis in drosophila (i.e. ref 15 and 16) and a study in sciatic nerve that reported an index of functional recovery but did not perform any histology to assess axon regeneration phenotypes. The literature should be more accurately reflected in the introduction.

      We appreciate the suggestions from the reviewer. In the revised version, we have provided further clarification on the novelty of spastin in the spinal cord injury repair process.

      1. Line 73: The meaning of the following statement needs to be clarified: "spastin has two major isoforms, namely M1 and M87, coded form different initial sites."

      We have provided additional elaboration for this statement in the revised version.

      1. Line 216: Results indicated that GFP-spastin could be ubiquitinated, while inhibiting the 217 binding of 14-3-3/spastin promoted spastin ubiquitination (Figure 5G)." - Should be Fig 3G

      Sorry about the mistake. We have made the corresponding changes in the revised version.

      1. Line 255: "Briefly, we established a neural injury model as previously described(31)" - the basics of the injury model need to be described in this manuscript.

      In the revised version, we have provided further elaboration on the glutamate-induced neuronal injury model.

      Reviewer #3 (Recommendations For The Authors):

      Figure 1: A- Both legend and text fail to provide detail on this specific panel.

      We have provided a more detailed and comprehensive description of the legend and results in this section.

      B- Is the contribution of non-neuronal cells for co-IPs relevant? Co-IP with isolated neuronal extracts (instead of spinal cord tissue) should be performed.

      We thank the review’s suggestion. To further elucidate their interaction within neurons, cortical neurons were cultured (Cultured in Neurobasal medium supplemented with 2%B27 and cytarabine was used to inhibit glial cell growth) and cells were lysed for co-IP experiments (Fig.1C), and the results demonstrated the interaction between 14-3-3 and spastin within neurons.

      C- Both spastin and 14-3-3 appear to label the entire neuron with similar intensities throughout the entire cell which is rather unusual. Conditions of immunofluorescence should be improved and z-projections should be provided to support co-localization.

      Thanks for the comment. Our dual-labeling experiments indicated that 14-3-3 exhibits a characteristic pattern of whole-cell distribution. Therefore, this result cannot confirm the interaction between 14-3-3 and spastin within neurons, but it does provide evidence regarding the intracellular distribution patterns of 14-3-3 and spastin. Consequently, we supplemented neuronal endogenous co-IP experiments to further demonstrate the direct interaction between 14-3-3 and spastin within neurons, and we have modified the wording in the revised version accordingly.

      D- xx and yy axis information is either lacking or incomplete.

      We have made the corrections to the figures.

      E- It would be useful to show the conservation between the different 14-3-3 isoforms.

      We appreciate the suggestions. We have included a conservation analysis of 14-3-3 to assist readers in better understanding these results (Fig.1F).

      Figure 2:

      D- The experiment using a general protein kinase inhibitor does not allow concluding that the specific phosphorylation of spastin is sufficient for binding to 14-3-3. An alternative phosphorylated protein might be involved in the process.

      We appreciate the reviewer's consideration. We believe this serves as a prerequisite condition to demonstrate that "14-3-3 binding to spastin requires spastin phosphorylation." In fact, another project in our group has confirmed that CAMK II can mediate spastin phosphorylation, and the addition of staurosporine significantly reduces spastin phosphorylation levels (unpublished results). Here, we provide the western blot experiment showing the decrease in spastin phosphorylation under staurosporine treatment, with phosphorylation levels detected using the Pan Phospho antibody (Fig.2D).

      H and I- Pseudo-replication. Only independent experiments should be plotted and not data on multiple cells obtained in the same experiment. Please indicate the number of independent experiments.

      We appreciate the reviewer's correction. We now have included the mean value of three independent experiments and we have made relevant revisions to the statistical charts.

      Figure 3:

      The rationale for the hypothesis that spastin S233D transfection might upregulate the expression of spastin relative to WT and spastin S233A is unclear.

      We appreciate the reviewer's consideration. We have supplemented the relevant results, as depicted in the Fig.3G, which demonstrates that 14-3-3 can enhance the protein levels of spastin, and phosphorylated spastin (S233D) exhibits a significantly increased protein level compared to wild-type spastin. These findings indicate that 14-3-3 not only inhibits the degradation of spastin but also increases its protein levels.

      I- pseudo-replication. Please plot and do statistical analysis of independent experiments.

      Thank you for the reviewer's corrections. We have made the necessary revisions.

      Figure 4: E-J: I- pseudo-replication. Please plot and do statistical analysis of independent experiments.

      Thank you for the reviewer's corrections. We have made the necessary revisions.

      Figure 5:

      B- Please show individual data points.

      Thank you for the reviewer's corrections. We have made the necessary revisions.

      D- Longitudinal images of spinal cords where spastazoline was used cannot correspond to contusion as there is a very sharp discontinuity between the rostral and caudal spinal cord tissue. A full transection seems to have occurred. Alternatively, technical problems with tissue collection/preservation might have occurred.

      Thank you for the reviewer's consideration. The sharp discontinuity observed in the spastazoline group is not due to modeling issues but rather a result of the drug's effects on the injury site. This is primarily because spastin plays a crucial role not only in neuronal development but also in mitosis. Since the highly active proliferation of stromal cells at the injury site, . spastazoline may inhibit the proliferation of injury site-related stormal cells, thereby impeding the wound healing process following spinal cord injury, resulting in the observed discontinuous injury gap. We have made the corresponding revision accordingly.

      E- Images do not have the quality to allow analysis. 5HT staining should not be considered as a clear axonal labeling is not seen. This is also the case for neurofilament staining.

      We appreciate the concerns. While we did not present whole nerve fibers, we therefore employed NF and 5-HT immunoreactive fluorescence intensity as an indicator to assess the regeneration of nerve fibers as previously described, but not axons per square millimeter (Baltan S, et, al. J Neurosci. 2011 Mar 16;31(11):3990-9; Iwai M, et, al. Stroke. 2010 May;41(5):1032-7; Wang Y, et, al. Elife. 2018 Sep 12;7:e39016; Altmann C, et, al. Mol Neurodegeneration. 2016 Oct 22;11(1):69).

      Our results showed that in the spinal cord injury group, there was strongly decreased NF-positive stainning (with a slight increase in 5-HT). In contrast, our FC-A treatment group exhibited a significant higher abundance of NF-positive signals (or an increased 5-HT signal) in the lesion site, which also suggests the reparative effect of FC-A on nerves. We also intend to refine our immunohistochemical methods in future experiments.

      F- Images do not allow analysis. Higher magnifications are needed.

      Thank you for the reviewer's consideration. We have now included higher-magnification images (Fig.5M) to address this concern.

      Figure 7:

      Same issues as in Figure 5.

      A- Images do not have the quality to allow analysis. 5HT staining should not be considered as a clear axonal labeling is not seen.

      B- Images do not have the quality to allow analysis. Neurofilament staining should not be considered as clear axonal labeling is not seen. MBP staining does not have a pattern consistent with myelin staining

      We appreciate the concerns. While we did not present whole nerve fibers, we therefore employed NF and 5-HT immunoreactive fluorescence intensity as an indicator to assess the regeneration of nerve fibers as previously described, but not axons per square millimeter (Baltan S, et, al. J Neurosci. 2011 Mar 16;31(11):3990-9; Iwai M, et, al. Stroke. 2010 May;41(5):1032-7; Wang Y, et, al. Elife. 2018 Sep 12;7:e39016; Altmann C, et, al. Mol Neurodegeneration. 2016 Oct 22;11(1):69). In this study, sagittal slices were used. MBP covers the axonal surface, indicating its co-localization with the axons. However, as we did not present intact nerve fibers, so we were unable to show the typical myelin staining of MBP.

    1. Author Response

      Reviewer 1 (Public Review):

      1. With respect to the predictions, the authors propose that the subjects, depending on their linguistic background and the length of the tone in a trial, can put forward one or two predictions. The first is a short-term prediction based on the statistics of the previous stimuli and identical for both groups (i.e. short tones are expected after long tones and vice versa). The second is a long-term prediction based on their linguistic background. According to the authors, after a short tone, Basque speakers will predict the beginning of a new phrasal chunk, and Spanish speakers will predict it after a long tone.

      In this way, when a short tone is omitted, Basque speakers would experience the violation of only one prediction (i.e. the short-term prediction), but Spanish speakers will experience the violation of two predictions (i.e. the short-term and long-term predictions), resulting in a higher amplitude MMN. The opposite would occur when a long tone is omitted. So, to recap, the authors propose that subjects will predict the alternation of tone durations (short-term predictions) and the beginning of new phrasal chunks (long-term predictions).

      The problem with this is that subjects are also likely to predict the completion of the current phrasal chunk. In speech, phrases are seldom left incomplete. In Spanish is very unlikely to hear a function-word that is not followed by a content-word (and the opposite happens in Basque). On the contrary, after the completion of a phrasal chunk, a speaker might stop talking and a silence might follow, instead of the beginning of a new phrasal chunk.

      Considering that the completion of a phrasal chunk is more likely than the beginning of a new one, the prior endowed to the participants by their linguistic background should make us expect a pattern of results actually opposite to the one reported here.

      Response: We acknowledge the plausibility of the hypothesis advanced by Reviewer #1. We would like to further clarify the rationale that led us to predict that the hypothesized long-term predictions should manifest at the onset of (and not within) a “phrasal chunk”. The hypothesis does not directly concern the probability of a short event to follow a long one (or the other way around), which to our knowledge has not been systematically quantified in previous cross-linguistic studies. Rather, it concerns how the auditory system forms higher-level auditory chunks based on the rhythmic properties of the native language, which is what the previous behavioral studies on perceptual grouping have addressed (e.g., Iversen 2008; Molnar et al. 2014; Molnar et al. 2016). When presented with sequences of two tones alternating in duration, Spanish speakers typically report perceiving the auditory stream as a repetition of short-long chunks separated by a pause, while speakers of Basque usually report the opposite long-short grouping bias. These results suggest that the auditory system performs a chunking operation by grouping pairs of tones into compressed, higher-level auditory units (often perceived as a single event). The way two constituent tones are combined depends on linguistic experience. Based on this background, we hypothesized the presence of (i) a short-term system that merely encodes a repetition of alternations rule and predicts transitions from one constituent tone to the other (a → b → a → b, etc.); (ii) a long-term system that encodes a repetition of concatenated alternations rule and predicts transitions from one high-level unit to the other (ab → ab, etc.). Under this view, we expect predictions based on the long-term system to be stronger at the onset of (rather than within) high-level units and therefore omissions of the first constituent tone to elicit larger responses than omissions of the second constituent tone.

      In other words, the omission of the onset tone would reflect the omission of the whole chunk. On the other hand, the omission of the internal tone would be better handled by the short-term system, involved in processing the low-level structure of our sequences.

      A similar concern was also raised by Reviewer #2. We will include the view proposed by Reviewer #1 and Reviewer #2 in the updated version of the manuscript.

      1. The authors report an interaction effect that modulates the amplitude of the omission response, but caveats make the interpretation of this effect somewhat uncertain. The authors report a widespread omission response, which resembles the classical mismatch response (in MEG) with strong activations in sensors over temporal regions. Instead, the interaction found is circumscribed to four sensors that do not overlap with the peaks of activation of the omission response.

      Response: We appreciate that all three reviewers agreed on the robustness of the data analysis pipeline. The approach employed to identify the presence of an interaction effect was indeed conservative, using a non-parametric test on combined gradiometers data, no a priori assumptions regarding the location of the effect, and small cluster thresholds (cfg.clusteralpha = 0.05) to enhance the likelihood of detecting highly localized clusters with large effect sizes. This approach led to the identification of the cluster illustrated in Figure 2c, where the interaction effect is evident. The fact that this interaction effect arises in a relatively small cluster of sensors does not alter its statistical robustness. The only partial overlap of the cluster with the activation peaks might simply reflect the fact that distinct sources contribute to the generation of the omission-MMN, which has been demonstrated in numerous prior studies (e.g., Zhang et al., 2018; Ross & Hamm, 2020).

      Furthermore, the boxplot in Figure 2E suggests that part of the interaction effect might be due to the presence of two outliers (if removed, the effect is no longer significant). Overall, it is possible that the reported interaction is driven by a main effect of omission type which the authors report, and find consistently only in the Basque group (showing a higher amplitude omission response for long tones than for short tones). Because of these points, it is difficult to interpret this interaction as a modulation of the omission response.

      Response: The two participants mentioned by Reviewer #1, despite being somewhat distant from the rest of the group, are not outliers according to the standard Tukey’s rule. As shown in Author response image 1 below, no participant fell outside the upper (Q3+1.5xIQR) and lower whiskers (Q1-1.5xIQR) of the boxplot.

      Author response image 1.

      The presence of a main effect of omission type does not impact the interpretation of the interaction, especially considering that these effects emerge over distinct clusters of channels.

      The code to generate Author response image 1 and the corresponding statistics have been added to the script “analysis_interaction_data.R” in the OSF folder (https://osf.io/6jep8/).

      It should also be noted that in the source analysis, the interaction only showed a trend in the left auditory cortex, but in its current version the manuscript does not report the statistics of such a trend.

      Response: Our interpretation of the results for the present study is mainly driven by the effect observed on sensor-level data, which is statistically robust. The source modeling analyses (in non-invasive electrophysiology) provide a possible model of the candidate brain sources driving the effect observed at the sensor level. The source showing the interactive effect in our study is the left auditory cortex. More details and statistics will be provided in the reviewed version of the manuscript.

      Reviewer #2 (Public Review):

      1. Despite the evidence provided on neural responses, the main conclusion of the study reflects a known behavioral effect on rhythmic sequence perceptual organization driven by linguistic background (Molnar et al. 2016, particularly). Also, the authors themselves provide a good review of the literature that evidences the influence of long-term priors in neural responses related to predictive activity. Thus, in my opinion, the strength of the statements the authors make on the novelty of the findings may be a bit far-fetched in some instances.

      Response: We will consider the suggestion of reviewer #2 for the new version of the manuscript. Overall, we believe that the novelty of the current study lies in bridging together findings from two research fields - basic auditory neuroscience and cross-linguistic research - to provide evidence for a predictive coding model in the auditory that uses long-term priors to make perceptual inferences.

      1. Albeit the paradigm is well designed, I fail to see the grounding of the hypotheses laid by the authors as framed under the predictive coding perspective. The study assumes that responses to an omission at the beginning of a perceptual rhythmic pattern will be stronger than at the end. I feel this is unjustified. If anything, omission responses should be larger when the gap occurs at the end of the pattern, as that would be where stronger expectations are placed: if in my language a short sound occurs after a long one, and I perceptually group tone sequences of alternating tone duration accordingly, when I hear a short sound I will expect a long one following; but after a long one, I don't necessarily need to expect a short one, as something else might occur.

      Response: A similar point was advanced by Reviewer #1. We tried to clarify our hypothesis (see above). We will consider including this interpretation in the updated version of the manuscript.

      1. In this regard, it is my opinion that what is reflected in the data may be better accounted for (or at least, additionally) by a different neural response to an omission depending on the phase of an underlying attentional rhythm (in terms of Large and Jones rhythmic attention theory, for instance) and putative underlying entrained oscillatory neural activity (in terms of Lakatos' studies, for instance). Certainly, the fact that the aligned phase may differ depending on linguistic background is very interesting and would reflect the known behavioral effect.

      Response: We thank the reviewer for this comment, which is indeed very pertinent. Below are some comments highlighting our thoughts on this.

      1) We will explore in more detail the possibility that the aligned phase may differ depending on linguistic background, which is indeed very interesting. However, we believe that even if a phase modulation by language experience is found, it would not negate the possibility that the group differences in the MMN are driven by different long-term predictions. Rather, since the hypothesized phase differences would be driven by long-term linguistic experience, phase entrainment may reflect a mechanism through which long-term predictions are carried. On this point, we agree with the Reviewer when says that “this view would not change the impact of the results but add depth to their interpretation”.

      2) Related to the point above: Despite evoked responses and oscillations are often considered distinct electrophysiological phenomena, current evidence suggests that these phenomena are interconnected (e.g., Studenova et al., 2023). In our view, the hypotheses that the MMN reflects differences in phase alignment and long-term prediction errors are not mutually exclusive.

      3) Despite the plausibility of the view proposed by reviewer #2, many studies in the auditory neuroscience literature putatively consider the MMN as an index of prediction error (e.g., Bendixen et al., 2012; Heilbron and Chait, 2018). There are good reasons to believe that also in our study the MMN reflects, at least in part, an error response.

      In the updated version of the manuscript, we will include a paragraph discussing the possibility that the reported group differences in the omission MMN might be partially accounted for by differences in neural entrainment to the rhythmic sound sequences.

      Reviewer #3 (Public Review):

      The main weaknesses are the strength of the effects and generalisability. The sample size is also relatively small by today's standards, with N=20 in each group. Furthermore, the crucial effects are all mostly in the .01>P<.05 range, such as the crucial interaction P=.03. It would be nice to see it replicated in the future, with more participants and other languages. It would also have been nice to see behavioural data that could be correlated with neural data to better understand the real-world consequences of the effect.

      Response: We appreciate the positive feedback from Reviewer #3. Concerning this weakness highlighted: we agree with Reviewer #3 that it would be nice to see this study replicated in the future with larger sample sizes and a behavioral counterpart. Overall, we hope this work will lead to more studies using cross-linguistic/cultural comparisons to assess the effect of experience on neural processing. In the context of the present study, we believe that the lack of behavioral data does not undermine the main findings of this study, given the careful selection of the participants and the well-known robustness of the perceptual grouping effect (e.g., Iversen 2008; Yoshida et al., 2010; Molnar et al. 2014; Molnar et al. 2016). As highlighted by Reviewer #2, having Spanish and Basque dominant “speakers as a sample equates that in Molnar et al. (2016), and thus overcomes the lack of direct behavioral evidence for a difference in rhythmic grouping across linguistic groups. Molnar et al. (2016)'s evidence on the behavioral effect is compelling, and the evidence on neural signatures provided by the present study aligns with it.”

      References

      1. Bendixen, A., SanMiguel, I., & Schröger, E. (2012). Early electrophysiological indicators for predictive processing in audition: a review. International Journal of Psychophysiology, 83(2), 120-131.

      2. Heilbron, M., & Chait, M. (2018). Great expectations: is there evidence for predictive coding in auditory cortex?. Neuroscience, 389, 54-73.

      3. Iversen, J. R., Patel, A. D., & Ohgushi, K. (2008). Perception of rhythmic grouping depends on auditory experience. The Journal of the Acoustical Society of America, 124(4), 2263-2271.

      4. Molnar, M., Lallier, M., & Carreiras, M. (2014). The amount of language exposure determines nonlinguistic tone grouping biases in infants from a bilingual environment. Language Learning, 64(s2), 45-64.

      5. Molnar, M., Carreiras, M., & Gervain, J. (2016). Language dominance shapes non-linguistic rhythmic grouping in bilinguals. Cognition, 152, 150-159.

      6. Ross, J. M., & Hamm, J. P. (2020). Cortical microcircuit mechanisms of mismatch negativity and its underlying subcomponents. Frontiers in Neural Circuits, 14, 13.

      7. Simon, J., Balla, V., & Winkler, I. (2019). Temporal boundary of auditory event formation: An electrophysiological marker. International Journal of Psychophysiology, 140, 53-61.

      8. Studenova, A. A., Forster, C., Engemann, D. A., Hensch, T., Sander, C., Mauche, N., ... & Nikulin, V. V. (2023). Event-related modulation of alpha rhythm explains the auditory P300 evoked response in EEG. bioRxiv, 2023-02.

      9. Yoshida, K. A., Iversen, J. R., Patel, A. D., Mazuka, R., Nito, H., Gervain, J., & Werker, J. F. (2010). The development of perceptual grouping biases in infancy: A Japanese-English cross-linguistic study. Cognition, 115(2), 356-361.

      10. Zhang, Y., Yan, F., Wang, L., Wang, Y., Wang, C., Wang, Q., & Huang, L. (2018). Cortical areas associated with mismatch negativity: A connectivity study using propofol anesthesia. Frontiers in Human Neuroscience, 12, 392.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      Watanuki et al used metabolomic tracing strategies of U-13C6-labeled glucose and 13C-MFA to quantitatively identify the metabolic programs of HSCs during steady-state, cell-cycling, and OXPHOS inhibition. They found that 5-FU administration in mice increased anaerobic glycolytic flux and decreased ATP concentration in HSCs, suggesting that HSC differentiation and cell cycle progression are closely related to intracellular metabolism and can be monitored by measuring ATP concentration. Using the GO-ATeam2 system to analyze ATP levels in single hematopoietic cells, they found that PFKFB3 can accelerate glycolytic ATP production during HSC cell cycling by activating the rate-limiting enzyme PFK of glycolysis. Additionally, by using Pfkfb3 knockout or overexpressing strategies and conducting experiments with cytokine stimulation or transplantation stress, they found that PFKFB3 governs cell cycle progression and promotes the production of differentiated cells from HSCs in proliferative environments by activating glycolysis. Overall, in their study, Watanuki et al combined metabolomic tracing to quantitatively identify metabolic programs of HSCs and found that PFKFB3 confers glycolytic dependence onto HSCs to help coordinate their response to stress. Even so, several important questions need to be addressed as below:

      We sincerely appreciate the constructive feedback from the reviewer. Additional experiments and textual improvements have been made to the manuscript based on your valuable suggestions. In particular, the major revisions are as follows: First, we investigated the extent to which other metabolites, not limited to the glycolytic system, affect metabolism in HSCs after 5-FU treatment. Second, the extent to which PFKFB3 contributes to the expansion of the HSPC pool in the bone marrow was adjusted to make the description more accurate based on the data. Finally, we overexpressed PFKFB3 in HSCs derived from GO-ATeam2 mice and confirmed that PRMT1 inhibition did not reduce the ATP concentration. We believe that the reviewer's valuable comments have further deepened our knowledge of the significance of glycolytic activation by PFKFB3 that we have demonstrated. Our response to the "Recommendations for Authors" is listed first, followed by our responses to all "Public Review" comments as follows:

      (Recommendations For The Authors):

      1. The methods used in key experiments should be described in more detail. For example, in the section on ‘Conversion of GO-ATeam2 fluorescence to ATP concentration’, the knock-in strategy for GO-ATeam2 should be described, as well as U-13C6 -glucose tracer assays.

      As per your recommendation, we have described the key experimental method in more detail in the revised manuscript: the GO-ATeam2 knock-in method was reported by Yamamoto et al. 1. Briefly, they used a CAG promoter-based knock-in strategy targeting the Rosa26 locus to generate GO-ATeam2 knock-in mice. A description of the method has been added to Methods and the reference has been added to the citation.

      For the U-13C6-glucose tracer analysis, the following points were added to describe the details of the analysis: First, a note was added that the number of cells used for the in vitro tracer analysis was the number of cells used for each sample. Second, we added the solution from which the cells were collected by sorting. We added that the incubation was performed under 1% O2 and 5% CO2.

      1. Confusing image label of Supplemental Figure 1H should be corrected in line 253.

      We have corrected the incorrect figure caption on line 217 in the revised manuscript to "Supplemental Figure 1N" as you suggested.

      1. The percentage of the indicated cell population should also be shown in Figure S1B.

      As you indicated, we have included the percentages for each population in Supplemental Figure 1B.

      Author response image 1.

      1. Please pay attention to the small size of the marks in the graph, such as in Figure S1F and so on.

      As you indicated, we have corrected the very small text contained in Figure S1F. Similar corrections have been made to Figures S1B and S5A.

      1. Please pay attention to the label of line in Figure S6A-D.

      Thank you very much for the advice. We have added line labels to the graph in the original Figures S6A–D.

      (Specific comments)

      1. Based on previous reports, the authors expanded the LSK gate to include as many HSCs as possible (Supplemental Figure 1B). However, while they showed the gating strategy on Day 6 after 5-FU treatment, results from other time-points should also be displayed to ensure the strict selection of time-points.

      Thank you for pointing this out. First, we did not enlarge the Sca-1 gating in this study. We apologize for any confusion caused by the incomplete description. The gating of c-Kit is based on that shown by Umemoto et al (Figure EV1A) 2, who used 250 mg/kg 5-FU, so their c-Kit reduction is more pronounced than ours.

      We followed this study and compared c-Kit expression in Lin-Sca-1+CD150+CD48-EPCR+ gates to BMMNCs on day 6 after 5-FU administration (150 mg/kg). The results are shown below.

      Author response image 2.

      >

      Since the MFI of c-Kit was downregulated, we used gating that extended the c-Kit gate to lower-expression regions on day 6 after 5-FU administration (revised Figure S1C). At other time points, LSK gating was the same as in the PBS-treated group, as noted in the Methods.

      1. In Figure 1, the authors examined the metabolite changes on Day 6 after 5-FU treatment. However, it is important to consider whether there are any dynamic adjustments to metabolism during the early and late stages of 5-FU treatment in HSCs compared to PBS treatment, in order to coordinate cell homeostasis despite no significant changes in cell cycle progression at other time-points.

      Thank you for pointing this out. Below are the results of the GO-ATeam2 analysis during the very early phase (day 3) and late phase (day 15) after 5-FU administration (revised Figures S7A–H).

      Author response image 3.

      In the very early phase, such as day 3 after 5-FU administration, cell cycle progression had not started (Figure S1C) and was not preceded by metabolic changes. Meanwhile, in the late phase, such as day 15 after 5-FU administration, the cell cycle and metabolism returned to a steady state. In summary, the timing of the metabolic changes coincided with that of cell cycle progression. This point is essential for discussing the cell cycle-dependent metabolic system of HSCs and has been newly included in the Results (page 11, lines 321-323).

      1. As is well known, ATP can be produced through various pathways, including glycolysis, the TCA cycle, the PPP, NAS, lipid metabolism, amino acid metabolism and so on. Therefore, it is important to investigate whether treatment with 5-FU or oligomycin affects these other metabolic pathways in HSCs.

      As the reviewer pointed out, ATP production by systems other than the glycolytic system of HSCs is also essential. In this revised manuscript, we examined the effects of the FAO inhibitor (Etomoxir, 100 µM) and the glutaminolysis inhibitor 6-diazo-5-oxo-L-norleucine (DON, 2mM) alone or in combination on the ATP concentration of HSCs after PBS or 5-FU treatment. As shown below, there was no apparent decrease in ATP concentration (revised Figures S7J–M).

      Author response image 4.

      Fatty acid β-oxidation activity was also measured in 5-FU-treated HSCs using the fluorescent probe FAOBlue and was unchanged compared to PBS-treated HSCs (revised Figure S7N).

      Author response image 5.

      Notably, the addition of 100 µM etomoxir plus glucose and Pfkfb3 inhibitors resulted in a rapid decrease in ATP concentration in HSCs (revised Figures S7O–P). This indicates that etomoxir partially mimics the effect of oligomycin, suggesting that at a steady state, OXPHOS is driven by FAO, but can be compensated by the acceleration of the glycolytic system by Pfkfb3. Meanwhile, the exposure of HSCs to Pfkfb3 inhibitors in addition to 2 mM DON, which is an extremely high dose considering that the Ki value of DON for glutaminase is 6 µM, did not reduce ATP (revised Figures S7O–P). This suggests that ATP production from glutaminolysis is limited in HSCs at a steady state.

      Author response image 6.

      These points suggest that OXPHOS is driven by fatty acids at a steady state, but unlike the glycolytic system, FAO is not further activated by HSCs after 5-FU treatment. The results of these analyses and related descriptions are included in the revised manuscript (page 11, lines 332-344).

      1. In part 2, they showed that oligomycin treatment of HSCs exhibited activation of the glycolytic system, but what about the changes in ATP concentration under oligomycin treatment? Are other metabolic systems affected by oligomycin treatment?

      Thank you for your thoughtful comments. The relevant results we have obtained so far with the GO-ATeam2 system are as follows: First, OXPHOS inhibition in the absence of glucose significantly decreases the ATP concentration of HSCs (Figure 4C). Meanwhile, OXPHOS inhibition in the presence of glucose maintains the ATP concentration of HSCs (Figure 5B). Since it is difficult to imagine a completely glucose-free environment in vivo, it is thought that ATP concentration is maintained by the acceleration of the glycolytic system even under hypoxic or other conditions that inhibit OXPHOS.

      Meanwhile, glucose tracer analysis shows that OXPHOS inhibition suppresses nucleic acid synthesis (NAS) except for the activation of the glycolytic system (Figures 2C–F). This is because phosphate groups derived from ATP are transferred to nucleotide mono-/di-phosphate in NAS, but OXPHOS, the main source of ATP production, is impaired, along with the enzyme conjugated with OXPHOS in the process of NAS (dihydroorotate dehydrogenase, DHODH). We have added a new paragraph in the Discussion section (page 17, lines 511-515) to provide more insight to the reader by summarizing and discussing these points.

      1. In Figure 5M, it would be helpful to include a control group that was not treated with 2-DG. Additionally, if Figure 5L is used as the control, it is unclear why the level of ATP does not show significant downregulation after 2-DG treatment. Similarly, in Figure 5O, a control group with no glucose addition should be included.

      Thank you for your advice. The experiments corresponding to the control groups in Figures 5M and O were in Figures 5L and N, respectively, but we have combined them into one graph (revised Figures 5L–M). The results more clearly show that PFKFB3 overexpression enhances sensitivity to 2-DG, but also enhances glycolytic activation upon oligomycin administration.

      Author response image 7.

      1. In this study, their findings suggest that PFKFB3 is required for glycolysis of HSCs under stress, including transplantation. In Figure 7B, the results showed that donor-derived chimerism in PB cells decreased relative to that in the WT control group during the early phase (1 month post-transplant) but recovered thereafter. Although the transplantation cell number is equal in two groups of donor cells, it is unclear why the donor-derived cell count decreased in the 2-week post-transplantation period and recovered thereafter in the Pfkgb3 KO group. Therefore, they should provide an explanation for this. Additionally, they only detected the percentage of donor-derived cells in PB but not from BM, which makes it difficult to support the argument for Increasing the HSPC pool.

      As pointed out by the reviewer, it is interesting to note that the decrease in peripheral blood chimerism in the PFKFB3 knockout is limited to immediately after transplantation and then catches up with the control group (Figure 7B). We attribute this to the fact that HSPC proliferation is delayed immediately after transplantation in PFKFB3 deficiency, but after a certain time, PB cells produced by the delayed proliferating HSPCs are supplied. In support of this, the PFKFB3 knockout HSPCs did not exhibit increased cell death after transplantation (Figure 7K), while a delayed cell cycle was observed (Figures 7G–J). A description of this point has been added to the Discussion (page 19, lines 573-579).

      In addition, the knockout efficiency in bone marrow cells could not be verified because the number of cells required for KO efficiency analysis was not available. Therefore, we have added a statement on this point and have toned down our overall claim regarding the extent to which PFKFB3 is involved in the expansion of the HSPC pool (page 15, lines 474-476).

      1. In Figure 7E, they collected the BM reconstructed with Pfkfb3- or Rosa-KO HSPCs two months after transplantation, and then tested their resistance to 5-FU. However, the short duration of the reconstruction period makes it difficult to draw conclusions about the effects on steady-state blood cell production.

      We agree that we cannot conclude from this experiment alone that PFKFB3 is completely unnecessary in steady state because, as you pointed out, the observation period of the experiment in Figure 7E is not long. We have toned down the claim by stating that PFKFB3 is only less necessary in steady-state HSCs compared to proliferative HSCs (page 15, lines 460-461).

      1. PFK is allosterically activated by PFKFB, and other members of the PFKFB family could also participate in the glycolytic program. Therefore, they should investigate their function in contributing to glycolytic plasticity in HSCs during proliferation. Additionally, they should also analyze the protein expression and modification levels of other members. Although PFKFB3 is the most favorable for PFK activation, the role of other members should also be explored in HSC cell cycling to provide sufficient reasoning for choosing PFKFB3.

      To further justify why we chose PFKFB3 among the PFKFB family members, we reviewed our data and the publicly available Gene Expression Commons (GEXC) 3. PFKFB3 is the most highly expressed member of the PFKFB family in HSCs (revised Figure 4F), and its expression increases with proliferation (Author response image 9). In addition to this, we have also cited the literature 4 indicating that AZ PFKFB3 26 is a Pfkfb3-specific inhibitor that we used in this paper, and added a note to this point (that it is specific) (page 11, lines 327-329). Through these revisions, we sought to strengthen the rationale for Pfkfb3 as the primary target of the analysis.

      Author response image 8.

      Author response image 9.

      1. In this study, the authors identified PRMT1 as the upstream regulator of PFKFB3 that is involved in the glycolysis activation of HSCs. However, PRMT1 is also known to participate in various transcriptional activations. Thus, it is important to determine whether PRMT1 affects glycolysis through transcriptional regulation or through its direct regulation of PFKFB3? Additionally, the authors should investigate whether PRMT1i inhibits ATP production in normal HSCs. Moreover, could we combine Figure 6I and 6J for analysis. Finally, the authors could conduct additional rescue experiments to demonstrate that the effect of PRMT1 inhibitors on ATP production can be rescued by overexpression of PFKFB3.

      Although PRMT1 inhibition reduced m-PFKFB3 levels in HSCs, 5-FU treatment also reduced or did not alter Pfkfb3 transcript levels (Figures 6B, G) and the expression of genes such as Hoxa7/9/10, Itga2b, and Nqo1, which are representative transcriptional targets of PRMT1, in proliferating HSCs after 5-FU treatment (revised Figure S9).

      Author response image 10.

      These results suggest that PRMT1 promotes PFKFB3 methylation, which increases independently of transcription in HSCs after 5-FU treatment.

      A summary analysis of the original Figures 6I and 6J is shown below (revised Figure 6I).

      Author response image 11.

      Finally, we tested whether the inhibition of the glycolytic system and the decrease in ATP concentration due to PRMT1 inhibition could be rescued by the retroviral overexpression of PFKFB3. We found that PFKFB3 overexpression did not decrease the ATP concentration in HSCs due to PRMT1 inhibition (revised Figure 6J). Therefore, PFKFB3 overexpression mitigated the decrease in ATP concentration caused by PRMT1 inhibition. These data and related statements have been added to the revised manuscript (page 14, lines 427-428).

      Author response image 12.

      Reviewer #2:

      In the manuscript Watanuki et al. want to define the metabolic profile of HSCs in stress/proliferative (myelosuppression with 5-FU), and mitochondrial inhibition and homeostatic conditions. Their conclusions are that during proliferation HSCs rely more on glycolysis (as other cell types) while HSCs in homeostatic conditions are mostly dependent on mitochondrial metabolism. Mitochondrial inhibition is used to demonstrate that blocking mitochondrial metabolism results in similar features of proliferative conditions.

      The authors used state-of-the-art technologies that allow metabolic readout in a limited number of cells like rare HSCs. These applications could be of help in the field since one of the major issues in studying HSCs metabolism is the limited sensitivity of the“"standard”" assays, which make them not suitable for HSC studies.

      However, the observations do not fully support the claims. There are no direct evidence/experiments tackling cell cycle state and metabolism in HSCs. Often the observations for their claims are indirect, while key points on cell cycle state-metabolism, OCR analysis should be addressed directly.

      We sincerely appreciate the reviewer's constructive comments. Thank you for highlighting the importance of the highly sensitive metabolic assay developed in this study and the findings based on it. Meanwhile, the reviewer's comments have made us aware of areas where we can further improve this manuscript. In particular, in the revised manuscript, we have performed further studies to demonstrate the link between the cell cycle and metabolic state. Specifically, we further subdivided HSCs by the uptake of in vivo-administered 2-NBDG and performed cell cycle analysis. Next, HSCs after PBS or 5-FU treatment were analyzed by a Mito Stress test using the Seahorse flux analyzer, including ECAR and OCR, and a more direct relationship between the cell cycle state and the metabolic system was found. We believe that the reviewer's valuable suggestions have helped us clarify more directly the importance of the metabolic state of HSCs in response to cell cycle and stress that we wanted to show and emphasize the usefulness of the GO-ATeam2 system. Our response to "Recommendations For The Authors" is listed first, followed by our responses to all comments in "Public Review" as follows:

      (Recommendations For The Authors):

      In general, I believe it would be important:

      1. to directly associate cell cycle state with metabolic state. For example, by sorting HSC (+/- 5FU) based on their cell cycle state (exploiting the mouse model presented in the manuscript or by defining G0/G1/G2-S-M via Pyronin/Hoechst staining which allow to sort live cells) and follow the fate of radiolabeled glucose.

      Thank you for raising these crucial points. Unfortunately, it was difficult to perform the glucose tracer analysis by preparing HSCs with different cell cycle states as you suggested due to the amount of work involved. In particular, in the 5-FU group, more than 60 mice per group were originally required for an experiment, and further cell cycle-based purification would require many times that number of mice, which we felt was unrealistic under current technical standards. As an alternative, we administered 2-NBDG to mice and fractionated HSCs at the 2-NBDG fluorescence level for cell cycle analysis. The results are shown below (revised Figure S1M). Notably, even in the PBS-treated group, HSCs with high 2-NBDG uptake were more proliferative than those with low 2-NBDG uptake and are comparable to HSCs after 5-FU treatment, although the overall population of HSCs exiting the G0 phase and entering the G1 phase increased after 5-FU treatment. In both PBS/5-FU-treated groups, these large differences in cell cycle glucose utilization suggest a direct link between HSC proliferation and glycolysis activation. If a more sensitive type of glucose tracer analysis becomes available in the future, it may be possible to directly address the reviewer's comments. We see this as a topic for the future. The descriptions of the above findings and perspectives have been added to the Results and Discussion section (page 7, lines 208-214, page 20, lines 607-610).

      Author response image 13.

      1. Use other radio labeled substrates (fatty acid, glutamate)

      Thank you very much for your suggestion. While this is an essential point for future studies, we believe it is not the primary focus of the paper. We are planning another research project on tracer analysis using labeled fatty acids and glutamates, which we will report on in the near future. We have clearly stated in the Abstract and Introduction of the revised manuscript, that the focus of this study is on changes in glucose metabolism when HSCs are stressed (page 3, line 75 and 87, page 5, lines 135).

      Instead, we added the following analyses of metabolic changes in fatty acids and glutamate using the GO-ATeam2 system. HSCs derived from GO-ATeam2 mice treated with PBS or 5-FU were used to measure changes in ATP concentrations after exposure to the fatty acid beta-oxidation (FAO) inhibitor etomoxir and the glutaminolysis inhibitor 6-diazo-5-oxo-L-norleucine (DON). Etomoxir was used at 100 µM, a concentration that inhibits FAO without inhibiting mitochondrial electron transfer complex I, as previously reported 5. DON was used at 2 mM, a concentration that sufficiently inhibits the enzyme as the Ki for glutaminase is 6 µM. In this experiment, etomoxir alone, DON alone, or etomoxir and DON in combination did not decrease the ATP concentration of HSCs in the PBS and 5-FU groups (revised Figures S7J–M), suggesting that FAO and glutaminolysis were not essential for ATP production in HSCs in the short term. Thus, according to the analysis using the GO-Ateam2 system, HSCs exposed to acute stresses change the efficiency of glucose utilization (accelerated glycolytic ATP production) rather than other energy sources. Since there are reports that FAO and glutaminolysis are required for HSC maintenance in the long term 5,6, compensatory pathways may be able to maintain ATP levels in the short term. A description of these points has been added to the Discussion (page 11, lines 332-344).

      Author response image 14.

      1. Include OCR analyses.

      In addition to the ECAR data of the Mito Stress test (original Figures 2G–H), OCR data were added to the revised manuscript (revised Figures 2H, S3D). Compared to c-Kit+ myeloid progenitors (LKS- cells), HSC showed a similar increase in ECAR, while the decrease in OCR was relatively limited. A possible explanation for this is that glycolytic and mitochondrial metabolism are coupled in c-Kit+ myeloid progenitors, whereas they are decoupled in HSCs. This is also suggested by the glucose plus oligomycin experiment in Figures 5B, C, and S6A–D (orange lines). In summary, in HSCs, glycolytic and mitochondrial ATP production are decoupled and can maintain ATP levels by glycolytic ATP production alone, whereas in progenitors including GMPs, the two ATP production systems are constantly coupled, and glycolysis alone cannot maintain ATP concentration. We have added descriptions of these points in the Results and Discussion section (page 8, lines 240-243, page 18, lines 558-561).

      Author response image 15.

      Next, a Mito Stress test was performed using HSCs derived from PBS- or 5-FU-treated mice in the presence or absence of oligomycin (revised Figures 1G–H, S3A–B). Without oligomycin treatment, ECAR in 5-FU-treated HSCs was higher than in PBS-treated HSCs, and OCR was unchanged. Oligomycin treatment increased ECAR in both PBS- and 5-FU-treated HSCs, whereas OCR was unchanged in PBS-treated HSCs, but significantly decreased in 5-FU-treated HSCs. Changes in ECAR in response to oligomycin differed between HSC proliferation or differentiation: ECAR increased in 5-FU-treated HSCs but not in LKS- progenitors (original Figures 2G–H). This suggests a metabolic feature of HSCs in which the coupling of OXPHOS with glycolysis seen in LKS- cells is not essential in HSCs even after cell cycle entry. The results and discussion of this experiment have been added to page 7, lines 194-201 and page 18, lines 558-561).

      Author response image 16.

      1. Correlate proliferation-mitochondrial inhibition-metabolic state

      We agree that it is important to clarify this point. First, OXPHOS inhibition and proliferation similarly accelerate glycolytic ATP production with PFKFB3 (Figures 4G, I, and 5F–I). Meanwhile, oligomycin treatment rapidly decreases ATP in HSCs with or without 5-FU administration (Figure 4C). These results suggest that OXPHOS is a major source of ATP production both at a steady state and during proliferation, even though the analysis medium is pre-saturated with hypoxia similar to that in vivo. This has been added to the Discussion section (page 17, lines 520-523).

      1. Tune down the claim on HSCs in homeostatic conditions since from the data it seems that HSCs rely more on anaerobic glycolysis.

      Thanks for the advice. The original Figures S2C, D, F, and G show that HSC is dependent on the anaerobic glycolytic system even at a steady state, so we have toned down our claims (page 7, lines 192-194).

      1. For proliferative HSCs mitochondrial are key. When you block mitochondria with oligomycin there's the biggest drop in ATP.

      In the revised manuscript, we have tried to highlight the key findings that you have pointed out. First, we mentioned in the Discussion (page 17, lines 523-525) that previous studies suggested the importance of mitochondria in proliferating HSCs. Meanwhile, the GO-ATeam2 and glucose tracer analyses in this study newly revealed that the glycolytic system activated by PFKFB3 is activated during the proliferative phase, as shown in Figure 4C. We also confirmed that mitochondrial ATP production is vital in proliferating HSCs, and we hope to clarify the balance between ATP-producing pathways and nutrient sources in future studies.

      1. To better clarify this point authors, authors should do experiments in hypoxic conditions and compare it to oligomycin treatment and showing that mito-inhibition acts differently on HSCs (considering that all these drugs are toxic for mitochondria and induce rapidly stress responses ex: mitophagy).

      We apologize for any confusion caused by not clearly describing the experimental conditions. As pointed out by the reviewer, we also recognize the importance of experiments in a hypoxic environment. All GO-ATeam2 analyses were performed in a medium saturated sufficiently under hypoxic conditions and analyzed within minutes, so we believe that the medium did not become oxygenated (page S5-S6, lines 160-163 in the Methods). Despite being conducted under such hypoxic conditions, the substantial decrease in ATP after oligomycin treatment is intriguing (original Figures 4C, 5B, 5C). The p50 value of mitochondria (the partial pressure of oxygen at which respiration is half maximal) is 0.1 kPa, which is less than 0.1% of the oxygen concentration at atmospheric pressure 7. Thus, biochemically, it is consistent that OXPHOS can maintain sufficient activity even in a hypoxic environment like the bone marrow. We are currently embarking on a study to determine ATP concentration in physiological hypoxic conditions using in vivo imaging within the bone marrow, which we hope to report in a separate project. We have discussed these points, technical limitations, and perspectives in the Discussion section (page 20, lines 610-612).

      • In Figure 1 C, D, E and F, the comparison should be done as unpaired t test and the control group should not be 1 as the cells comes from different individuals.

      Thank you very much for pointing this out. We have reanalyzed and revised the figures (revised Figures 1C–F)

      Author response image 17.

      • In Figure S2A, the post-sorting bar of 6PG, R5P and S7P are missing.

      Metabolites below the detection threshold (post-sorting samples of 6PG, R5P, and S7P) are now indicated as N.D. (not detected) (revised Figure S2A).

      Author response image 18.

      • In the 2NBDG experiments, authors should add the appropriate controls, since it has been shown that 2NBDG cellular uptake do not correctly reflect glucose uptake (Sinclair LV, Immunometabolism 2020) (a cell type dependent variations) thus inhibitors of glucose transporters should be added as controls (cytochalasin B; 4,6-O-ethylidene-a-D-glucose) it would be quite challenging to test it in vivo but it would be sufficient to show that in vitro in the different HSPCs analyzed.

      We appreciate the essential technical point raised by the reviewer. In the revised manuscript, we performed a 2-NBDG assay with cytochalasin B and phloretin as negative controls. After PBS treatment, 2-NBDG uptake was higher in 5-FU-treated HSCs compared to untreated HSCs. This increase was inhibited by both cytochalasin B and phloretin. In PBS-treated HSCs, cytochalasin B did not downregulate 2-NBDG uptake, whereas phloretin did. Although cytochalasin B inhibits glucose transporters (GLUTs), it is also an inhibitor of actin polymerization. Therefore, its inhibitory effect on GLUTs may be weaker than that of phloretin. We have revised the figure (revised Figure S1L) and added the corresponding description (page 7, lines 207-208).

      Author response image 19.

      • S5C: authors should show the cell number for each population. If there's a decreased in % in Lin- that will be reflected in all HSPCs. Comparing the proportion of the cells doesn't show the real impact on HSPCs.

      Thank you for your insightful point. In the revision, we compared the numbers, not percentages, of HSPCs and found no difference in the number of cells in the major HSPC fractions in Lin-. The figure has been revised (revised Figure S6C) and the corresponding description has been added (page 10, lines 296-299).

      Author response image 20.

      Minor:

      1. In S1 F-G is not indicated in which day post 5FU injection is done the analysis. I assume on day 6 but it should be indicated in the figure legend and/or text.

      Thank you for pointing this out. As you assumed, the analysis was performed on day 6. The description has been added to the legend of the revised Figure S1G.

      1. S1K is not described in the text. What are proliferative and quiescence-maintaining conditions? The analyses are done by flow using LKS SLAM markers after culture? How long was the culture?

      Thank you for your comments. First, the figure citation on line 250 was incorrect and has been corrected to Figure S1N. Regarding the proliferative and quiescence-maintaining conditions, we have previously reported on these 8. In brief, these are culture conditions that maintain HSC activity at a high level while allowing for the proliferation or maintenance of HSCs in quiescence, achieved by culturing under fatty acid-rich, hypoxic conditions with either high or low cytokine concentrations. Analysis was performed after one week of culture, with the HSC number determined by flow cytometry based on the LSK-SLAM marker. While these are mentioned in the Methods section, we have added a description in the main text to highlight these points for the reader (page 7, lines 214-217).

      1. In Figure 5G, why does the blue line (PFKFB3 inhibitor) go up in the end of the real-time monitoring? Does it mean that other compensatory pathway is turned on?

      As you have pointed out, we cannot rule out the possibility that other unknown compensatory ATP production pathways were activated. We have added a note in the Discussion section to address this (page 18, lines 555-556).

      1. In Figure S6H&J, the reduction is marginal. Does it mean that PKM2 is not important for ATP production in HSCs?

      The activity of the inhibitor is essential in the GO-ATeam2 analysis. The commercially available PKM2 inhibitors have a higher IC50 value (IC50 = 2.95 μM in this case). Nevertheless, the effect of reducing the ATP concentration was observed in progenitor cells, but not in HSCs. The report by Wang et al. 9 on the analysis using a PKM2-deficient model suggests a stronger effect on progenitor cells than on HSCs. Our results are similar to those of the previous report.

      (Specific comments)

      Specifically, there are several major points that rise concerns about the claims:

      1. The gating strategy to select HSCs with enlarged Sca1 gating is not convincing. I understand the rationale to have a sufficient number of cells to analyze, however this gating strategy should be applied also in the control group. From the FACS plot seems that there are more HSCs upon 5FU treatment (Figure S1b). How that is possible? Is it because of the 20% more of cycling cells at day 6? To prove that this gating strategy still represents a pure HSC population, authors should compare the blood reconstitution capability of this population with a "standard" gated population. If the starting population is highly heterogeneous then the metabolic readout could simply reflect cell heterogeneity.

      Thank you for pointing this out. First, we did not enlarge the Sca-1 gating in this study. We apologize for any confusion caused by the incomplete description. The gating of c-Kit is based on that shown by Umemoto et al (Figure EV1A) 2, who used 250 mg/kg 5-FU, so their c-Kit reduction is more pronounced than ours.

      We followed this study and compared c-Kit expression in the Lin-Sca-1+CD150+CD48-EPCR+ gates to BMMNCs on day 6 after 5-FU administration (150 mg/kg). The results are shown below.

      Author response image 21.

      Since the MFI of c-Kit was downregulated, we used gating that extended the c-Kit gate to lower expression regions on day 6 after 5-FU administration (revised Figure S1C).

      At other time points, LSK gating was the same as in the PBS-treated group, as noted in the Methods.

      The reason why the number of HSCs appears to be higher in the 5-FU group is because most of the differentiated blood cells were lost due to 5-FU administration and the same number of cells as in the PBS group were analyzed by FACS, resulting in a relatively higher number of HSCs. The legend of Figure S1 shows that the number of HSCs in both the PBS and 5-FU groups appeared to increase because the same number of BMMNCs was obtained at the time of analysis (page S22, lines 596-598).

      Regarding cellular heterogeneity, from a metabolic point of view, the heterogeneity in HSCs is rather reduced by 5-FU administration. As shown in Figure S3A–C, this is simulated under stress conditions, such as after 5-FU administration or during OXPHOS inhibition, where the flux variability in each enzymatic reaction is significantly reduced. GO-ATeam2 analysis after 5-FU treatment showed no increase in cell population variability. After 2-DG treatment, ATP concentrations in HSCs were widely distributed from 0 mM to 0.8 mM in the PBS group, while more than 80% of those in the 5-FU group were less than 0.4 mM (Figures 4B, D). HSCs may have a certain metabolic diversity at a steady state, but under stress conditions, they may switch to a more specialized metabolism with less cellular heterogeneity in order to adapt.

      1. S2 does not show major differences before and after sorting. However, a key metabolite like Lactate is decreased, which is also one of the most present. Wouldn't that mean that HSCs once they move out from the hypoxic niche, they decrease lactate production? Do they decrease anaerobic glycolysis? How can quiescent HSC mostly rely on OXPHOS being located in hypoxic niche?

      2. Since HSCs in the niche are located in hypoxic regions of the bone marrow, would that not mimic OxPhos inhibition (oligomycin)? Would that not mean that HSCs in the niche are more glycolytic (anaerobic glycolysis)?

      3. In Figure 5B, the orange line (Glucose+OXPHOS inhibition) remains stable, which means HSCs prefer to use glycolysis when OXPHOS is inhibited. Which metabolic pathway would HSCs use under hypoxic conditions? As HSCs resides in hypoxic niche, does it mean that these steady-state HSCs prefer to use glycolysis for ATP production? As mentioned before, mitochondrial inhibition can be comparable at the in vivo condition of the niche, where low pO2 will "inhibit" mitochondria metabolism.

      Thank you for the first half of comment 2 on the technical features of our approach. First, as you have pointed out, there is minimal variation and stable detection of many metabolites before and after sorting (Figure S2A), suggesting that isolation from the hypoxic niche and sorting stress do not significantly alter metabolite detection performance. This is consistent with a previous report by Jun et al. 10. Meanwhile, lactate levels decreased by sorting. Therefore, if the activity of anaerobic glycolysis was suppressed in stressed HSCs, it may be difficult to detect these metabolic changes with our tracer analysis. However, in this study, several glycolytic metabolites, including an increase in lactate, were detected in HSCs from 5-FU-treated mice compared with HSCs from PBS-treated mice that were similarly sorted and prepared, suggesting an increase in glycolytic activity. In other words, we may have been fortunate to detect the stress-induced activation of the glycolytic system beyond the characteristic of our analysis system that lactate levels tend to appear lower than they are. Given that damage to the bone marrow hematopoiesis tends to alleviate the low-oxygen status of the niche 11, we postulate that this upregulated aerobic glycolysis arises intrinsically in HSCs rather than from external conditions.

      The second half of comment 2, and comments 7 and 10, are essential and overlapping comments and will be answered together. Although genetic analyses have shown that HSCs produce ATP by anaerobic glycolysis in low-oxygen environments 9,12, our GO-ATeam2 analysis in this study confirmed that HSCs also generate ATP via mitochondria. This is also supported by Ansó's prior findings where the knockout of the Rieske iron–sulfur protein (RISP), a constituent of the mitochondrial electron transport chain, impairs adult HSC quiescence and bone marrow repopulation 13. Bone marrow is a physiologically hypoxic environment (9.9–32.0 mmHg 11). However, the p50 value of mitochondria (the partial pressure of oxygen at which respiration is half maximal) is below 0.1% oxygen concentration at atmospheric pressure (less than 1 mmHg) 7. This suggests that OXPHOS can retain sufficient activity even under physiologically hypoxic conditions. We are currently initiating efforts to discern ATP concentrations in vivo within the bone marrow under physiological hypoxia. This will be reported in a separate project in the future. Admittedly, when we began this research, we did not anticipate the significant mitochondrial reliance of HSCs. As we previously reported, the metabolic uncoupling of glycolysis and mitochondria 12 may enable HSCs to activate only glycolysis, and not mitochondria, under stress conditions such as post-5-FU administration, suggesting a unique metabolic trait of HSCs. We have included these technical limitations and perspectives in the Discussion section (page 17, lines 520-523).

      1. The authors performed challenging experiments to track radiolabeled glucose, which are quite remarkable. However, the data do not fully support the conclusions. Mitochondrial metabolism in HSCs can be supported by fatty acid and glutamate, thus authors should track the fate of other energy sources to fully discriminate the glycolysis vs mito-metabolism dependency. From the data on S2 and Fig1 1C-F, the authors can conclude that upon 5FU treatment HSCs increase glycolytic rate.

      2. FIG.2B-C: Increase of Glycolysis upon oligomycin treatment is common in many different cell types. As explained before, other radiolabeled substrates should be used to understand the real effect on mitochondria metabolism.

      Thank you for your suggestion. While this is essential for future studies, we believe it is not the primary focus of the paper. We are planning another research project on tracer analysis using labeled fatty acids and glutamates, which we will report on in the near future. We have clearly stated in the Abstract and Introduction of the revised manuscript that the focus of this study is on changes in glucose metabolism when HSCs are stressed (page 3, line 75 and 87, page 5, lines 135).

      Instead, we have added the following analyses of metabolic changes in fatty acids and glutamate using the GO-ATeam2 system: HSCs derived from GO-ATeam2 mice treated with PBS or 5-FU were used to measure changes in ATP concentrations after exposure to the fatty acid beta-oxidation (FAO) inhibitor etomoxir and the glutaminolysis inhibitor 6-diazo-5-oxo-L-norleucine (DON). Etomoxir was used at 100 µM, a concentration that inhibits FAO without inhibiting mitochondrial electron transfer complex I, as previously reported 5. DON was used at 2 mM, a concentration that sufficiently inhibits the enzyme as the Ki for glutaminase is 6 µM. In this experiment, etomoxir alone, DON alone, or etomoxir and DON in combination did not decrease the ATP concentration of HSCs in the PBS and 5-FU groups (revised Figures S7J–M), suggesting that FAO and glutaminolysis were not essential for ATP production in HSCs in the short term. Thus, according to the analysis using the GO-Ateam2 system, HSCs exposed to acute stresses change the efficiency of glucose utilization (accelerated glycolytic ATP production) rather than other energy sources. Since there are reports that FAO and glutaminolysis are required for HSC maintenance in the long term 5,6, compensatory pathways may be able to maintain ATP levels in the short term. A description of these points has been added to the Discussion (page 17, lines 525-527).

      Author response image 22.

      Fatty acid β-oxidation activity was also measured in 5-FU-treated HSCs using the fluorescent probe FAOBlue and was unchanged compared to PBS-treated HSCs (revised Figure S7N).

      Author response image 23.

      Notably, the addition of 100 µM etomoxir plus glucose and Pfkfb3 inhibitors resulted in a rapid decrease in ATP concentration in HSCs (revised Figures S7O–P). This indicates that etomoxir partially mimics the effect of oligomycin, suggesting that at a steady state, OXPHOS is driven by FAO, but can be compensated by the acceleration of the glycolytic system by Pfkfb3. Meanwhile, the exposure of HSCs to Pfkfb3 inhibitors in addition to 2 mM DON did not reduce ATP (revised Figures S7O–P). This suggests that ATP production from glutaminolysis is limited in HSCs at a steady state.

      Author response image 24.

      These points suggest that OXPHOS is driven by fatty acids at a steady state, but unlike the glycolytic system, FAO is not further activated by HSCs after 5-FU treatment. The results of these analyses and related descriptions are included in the revised manuscript (page 11, lines 332-344).

      1. In Figure S1, 5-FU leads to the induction of cycling HSCs and in figure 1, 5-FU results in higher activation of glycolysis. Would it be possible to correlate these two phenotypes together? For example, by sorting NBDG+ cells and checking the cell cycle status of these cells?

      We appreciate the reviewer’s insightful comments. We administered 2-NBDG to mice and fractionated HSCs at the 2-NBDG fluorescence level for cell cycle analysis. The results are shown below (revised Figure S1M). Notably, even in the PBS-treated group, HSCs with high 2-NBDG uptake were more proliferative than HSCs with low 2-NBDG uptake and were comparable to HSCs after 5-FU treatment, although the overall population of HSCs that exited the G0 phase and entered the G1 phase increased after 5-FU treatment. In both PBS/5-FU-treated groups, these profound differences in cell cycle glucose utilization suggest a direct link between HSC proliferation and glycolysis activation. Descriptions of the above findings and perspectives have been added to the Results and Discussion section (page 7, lines 208-214, page 20, lines 607-610).

      Author response image 25.

      1. Why are only ECAR measurements (and not OCR measurements) shown? In Fig.2G, why are HSCs compared with cKit+ myeloid progenitors, and not with MPP1? The ECAR increased observed in HSC upon oligomycin treatment is shared with many other types of cells. However, cKit+ cells have a weird behavior. Upon oligo treatment cKit+ cells decrease ECAR, which is quite unusual. The data of both HSCs and cKit+ cells could be clarified by adding OCR curves. Moreover, it is recommended to run glycolysis stress test profile to assess the dependency to glycolysis (Glucose, Oligomycin, 2DG).

      In addition to the ECAR data of the Mito Stress test (original Figures 2G–H), OCR data were added in the revised manuscript (revised Figures 2H, S3D). Compared to c-Kit+ myeloid progenitors (LKS- cells), HSC exhibited a similar increase in ECAR, while the decrease in OCR was relatively limited. This may be because glycolytic and mitochondrial metabolism are coupled in c-Kit+ myeloid progenitors, whereas they are decoupled in HSCs. This is also suggested by the glucose plus oligomycin experiment in Figures 5B, C, and S6A–D (orange lines). In summary, in HSCs, glycolytic and mitochondrial ATP production are decoupled and can maintain ATP levels by glycolytic ATP production alone, whereas in progenitors including GMPs, the two ATP production systems are constantly coupled, and glycolysis alone cannot maintain the ATP concentration. While we could not conduct a glycolysis stress test, we believe that Pfkfb3-dependent glycolytic activation, which is evident in the oligomycin+glucose+Pfkfb3i experiment, is only apparent in HSCs when subjected to glucose+oligomycin treatment (original Figures 5F–I). We have added descriptions of these points in the Results and Discussion section (page 8, lines 240-243, page 18, lines 558-561).

      Author response image 26.

      FIG.3 A-C. As mentioned previously, the flux analyses should be integrated with data using other energy sources. If cycling HSCs are less dependent to OXPHOS, what happen if you inhibit OXHPHOS in 5-FU condition? Since the authors are linking OXPHOS inhibition and upregulation of Glycolysis to increase proliferation, do HSCs proliferate more when treated with oligomycin?

      First, please see our response to comments 3 and 5 regarding the first part of this comment about the flux analysis of other energy sources. According to the analysis using the GO-Ateam2 system, stressed HSCs change the efficiency of glucose utilization (accelerated glycolytic ATP production) rather than other energy sources. The change in ATP concentration after OXPHOS inhibition for 5-FU-treated HSCs is shown in Figures 4C and E, suggesting that the activity of OXPHOS itself does not increase. HSCs after oligomycin treatment and HSCs after 5-FU treatment are similar in that they activate glycolytic ATP production. However, inhibition of OXPHOS did not induce the proliferation of HSCs (original Figure S1K). This suggests that proliferation activates glycolysis and not that activation of the glycolytic system induces proliferation. This similarity and dissimilarity of glycolytic activation upon proliferation and OXPHOS inhibition is discussed in the Discussion section (page 16-17, lines 505-515).

      1. FIG.4 shows that in vivo administration of radiolabeled glucose especially marks metabolites of TCA cycle and Glycolysis. The authors interpret enhanced anaerobic glycolysis, but I am not sure this is correct; if more glycolysis products go in the TCA cycle, it might mean that HSC start engaging mitochondrial metabolism. What do the authors think about that?

      Thank you for pointing this out. We believe that the data are due to two differences in the experimental features between in vivo (Figure S5) and in vitro (Figures 1 and S2) tracer analysis. The first difference is that in in vivo tracer analysis, unlike in vitro, all cells can metabolize U-13C6-glucose. Another difference is that after glucose labeling in vivo, it takes approximately 120–180 minutes to purify HSCs to extract metabolites, and processing on ice may result in a gradual progression of metabolic reactions within HSCs. As a result, in vivo tracer analysis may detect an increased influx of labeled carbon derived from U-13C6-glucose into the TCA cycle over an extended period. However, it is difficult to interpret whether this influx of labeled carbon is derived from the direct influx of glycolysis or the re-uptake by HSCs of metabolites that have been metabolized to other metabolites in other cells. Meanwhile, as shown in Figure 4C using the GO-ATeam2 system, ATP production from mitochondria is not upregulated by 5-FU treatment. This suggests that even if the direct influx from glycolysis into the TCA cycle is increased, the rate of ATP production does not exceed that of glycolysis. Despite these technical caveats in interpretation, the results of in vivo and in vitro tracer analyses are considered essential. In particular, we consider the increased labeling of metabolites involved in glycolysis and nucleotide synthesis to be crucial. We have added a discussion of these points, including experimental limitations (page 17-18, lines 530-545).

      1. FIG.4: the experimental design is not clear. Are BMNNCs stained and then put in culture? Is it 6-day culture or BMNNCs are purified at day 6 post 5FU? FIG-4B-C The difference between PBS vs 5FU conditions are the most significant; however, the effect of oligomycin in both conditions is the most dramatic one. From this readout, it seems that HSCs are more dependent on mitochondria for energy production both upon 5FU treatment and in PBS conditions.

      We apologize for the incomplete description of the experimental details. The experiment involved dispensing freshly stained BMMNC with surface antigens into the medium and immediately subjecting them to flow cytometry analysis. For post-5-FU treatment HSCs, mice were administered with 5-FU (day 1), and freshly obtained BMMNCs were analyzed on day 6. The analysis of HSCs and progenitors was performed by gating each fraction within the BMMNC (original Figure S5A). We have added these details to ensure that readers can grasp these aspects more clearly (page S5, lines 155-158).

      As pointed out by the reviewer, we understand that HSCs produce more ATP through OXPHOS. However, ATP production by glycolysis, although limited, is observed under steady-state conditions (post-PBS treatment HSC), and its reliance increases during the proliferation phase (post-5-FU treatment HSC) (original Figures 4B, D). Until now, discussions on energy production in HSCs have focused on either glycolysis or mitochondrial functions. However, with the GO-ATeam2 system, it has become possible for the first time to compare their contributions to ATP production and evaluate compensatory pathways. As a result, it became evident that while OXPHOS is the main source of ATP production, the reliance on glycolysis plastically increases in response to stress. This has led to a better understanding of HSC metabolism. These points are included in the Discussion as well (page 16, lines 479-488).

      1. FIG.6H should be extended with cell cycle analyses. There are no differences between 5FU and ctrl groups. If 5FU induces HSCs cycling and increases glycolysis I would expect higher 2-NBDG uptake in the 5FU group. How do the authors explain this?

      Thank you for your comments. In the original Figure 6H, we found that 2-NBDG uptake correlated with mPFKFB3 levels in both the 5-FU and PBS groups. mPfkfb3 levels remained low in the few HSCs with low 2-NBDG uptake in the 5-FU group.

      In the revised manuscript, to directly relate glucose utilization to the cell cycle, we administered 2-NBDG to mice and fractionated HSCs at the 2-NBDG fluorescence level for cell cycle analysis. The results are shown below (revised Figure S1M). Notably, even in the PBS-treated group, HSCs with high 2-NBDG uptake were more proliferative than those with low 2-NBDG uptake and are comparable to HSCs after 5-FU treatment, although the overall population of HSCs that exited the G0 phase and entered the G1 phase increased after 5-FU treatment. The large differences in glucose utilization per cell cycle observed in both PBS/5-FU-treated groups suggest a direct link between HSC proliferation and glycolysis activation. Descriptions of the above findings have been added to the Results and Discussion ((page 7, lines 208-214, page 20, lines 607-610).

      Author response image 27.

      1. In S7 the experimental design is not clear. What are quiescent vs proliferative conditions? What does it mean "cell number of HSC-derived colony"? Is it a CFU assay? Then you should show colony numbers. When HSCs proliferate, they need more energy thus inhibition of metabolism will impact proliferation. What happens if you inhibit mitochondrial metabolism with oligomycin?

      Regarding the proliferative and quiescence-maintaining conditions, we have previously reported on these 8. In brief, these are culture conditions that maintain HSC activity at a high level while allowing for the proliferation or maintenance of HSCs in quiescence, achieved by culturing under fatty acid-rich, hypoxic conditions with either high or low cytokine concentrations. Analysis was performed after one week of culture, with the HSC number determined by flow cytometry based on the LSK-SLAM marker. While these are mentioned in the Methods section, we have added a description in the main text to highlight these points for the reader (page 7, lines 214-217).

      In vitro experiments with the oligomycin treatment of HSCs showed that OXPHOS inhibition activates the glycolytic system, but does not induce HSC proliferation (original Figure S1K). This suggests that proliferation activates glycolysis and not that activation of the glycolytic system induces proliferation. This similarity and dissimilarity of glycolytic activation upon proliferation and OXPHOS inhibition is discussed in the Discussion (page 16-17, lines 505-515).

      1. In FIG 7 since homing of HSCs is influenced by the cell cycle state, should be important to show if in the genetic model for PFKFB3 in HSCs there's a difference in homing efficiency.

      In response to the reviewer's comments, we knocked out PFKFB3 in HSPCs derived from Ubc-GFP mice, transplanted 200,000 HSPCs into recipients (C57BL/6 mice) post-8.5Gy irradiation, and harvested the bone marrow of recipients after 16 h to compare homing efficiency (revised Figure S10H). Even with the knockout of PFKFB3, no significant difference in homing efficiency was detected compared to the control group (Rosa knockout group). These results suggest that the short-term reduction in chimerism due to PFKFB3 knockout is not due to decreased homing efficiency or cell death by apoptosis (Figure 7K) but a transient delay in cell cycle progression. We have added descriptions regarding these findings in the Results and Discussion sections (page 15, lines 470-471, page 19, lines 576-578).

      Author response image 28.

      1. Yamamoto M, Kim M, Imai H, Itakura Y, Ohtsuki G. Microglia-Triggered Plasticity of Intrinsic Excitability Modulates Psychomotor Behaviors in Acute Cerebellar Inflammation. Cell Rep. 2019;28(11):2923-2938 e2928.

      2. Umemoto T, Johansson A, Ahmad SAI, et al. ATP citrate lyase controls hematopoietic stem cell fate and supports bone marrow regeneration. EMBO J. 2022:e109463.

      3. Seita J, Sahoo D, Rossi DJ, et al. Gene Expression Commons: an open platform for absolute gene expression profiling. PLoS One. 2012;7(7):e40321.

      4. Boyd S, Brookfield JL, Critchlow SE, et al. Structure-Based Design of Potent and Selective Inhibitors of the Metabolic Kinase PFKFB3. J Med Chem. 2015;58(8):3611-3625.

      5. Ito K, Carracedo A, Weiss D, et al. A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat Med. 2012;18(9):1350-1358.

      6. Oburoglu L, Tardito S, Fritz V, et al. Glucose and glutamine metabolism regulate human hematopoietic stem cell lineage specification. Cell Stem Cell. 2014;15(2):169-184.

      7. Gnaiger E, Mendez G, Hand SC. High phosphorylation efficiency and depression of uncoupled respiration in mitochondria under hypoxia. Proc Natl Acad Sci U S A. 2000;97(20):11080-11085.

      8. Kobayashi H, Morikawa T, Okinaga A, et al. Environmental Optimization Enables Maintenance of Quiescent Hematopoietic Stem Cells Ex Vivo. Cell Rep. 2019;28(1):145-158 e149.

      9. Wang YH, Israelsen WJ, Lee D, et al. Cell-state-specific metabolic dependency in hematopoiesis and leukemogenesis. Cell. 2014;158(6):1309-1323.

      10. Jun S, Mahesula S, Mathews TP, et al. The requirement for pyruvate dehydrogenase in leukemogenesis depends on cell lineage. Cell Metab. 2021;33(9):1777-1792 e1778.

      11. Spencer JA, Ferraro F, Roussakis E, et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature. 2014;508(7495):269-273.

      12. Takubo K, Nagamatsu G, Kobayashi CI, et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell. 2013;12(1):49-61.

      13. Anso E, Weinberg SE, Diebold LP, et al. The mitochondrial respiratory chain is essential for haematopoietic stem cell function. Nat Cell Biol. 2017;19(6):614-625.

    1. Author Response

      We would like to thank the Editors and Reviewers for their comprehensive review of the manuscript. We appreciate your feedback, and we will carefully consider all your comments in the revision of the manuscript. Below are our provisional responses to your comments.

      eLife assessment

      This manuscript reveals important insights into the role of ipsilateral descending pathways in locomotion, especially following unilateral spinal cord injury. The study provides solid evidence that this method improves the injured side's ability to support weight, and as such the findings may lead to new treatments for stroke, spinal cord injuries, or unilateral cerebral injuries. However, the methods and results need to be better detailed, and some of the statistical analysis enhanced.

      Thank you for your assessment. We will incorporate various textual enhancements in the final version of the manuscript to address the weaknesses you have pointed out. The specific improvements are outlined below.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This manuscript provides potentially important new information about ipsilateral cortical impact on locomotion. A number of issues need to be addressed.

      Strengths:

      The primary appeal and contribution of this manuscript are that it provides a range of different measures of ipsilateral cortical impact on locomotion in the setting of impaired contralateral control. While the pathways and mechanisms underlying these various measures are not fully defined and their functional impacts remain uncertain, they comprise a rich body of results that can inform and guide future efforts to understand cortical control of locomotion and to develop more effective rehabilitation protocols.

      Weaknesses:

      1. The authors state that they used a cortical stimulation location that produced the largest ankle flexion response (lines 102-104). Did other stimulation locations always produce similar, but smaller responses (aside from the two rats that showed ipsilateral neuromodulation)? Was there any site-specific difference in response to stimulation location?

      We derived motor maps in each rat, akin to the representation depicted in Fig 6. In each rat, alternative cortical sites did, indeed, produce distal or proximal contralateral leg flexion responses. Distal responses were more likely to be evoked in the rostral portion of the array, similarly to proximal responses early after injury. This distribution in responses across different cortical sites is reported in this study (Fig. 6) and is consistent with our prior work. The Results section will be revised to provide additional clarification and context for the data presented in Figure 6.

      1. Figure 2: There does not appear to be a strong relationship between the percentage of spared tissue and the ladder score. For example, the animal with the mild injury (based on its ladder score) in the lower left corner of Figure 2A has less than 50% spared tissue, which is less spared tissue than in any animal other than the two severe injuries with the most tissue loss. Is it possible that the ladder test does not capture the deficits produced by this spinal cord injury? Have the authors looked for a region of the spinal cord that correlates better with the deficits that the ladder test produces? The extent of damage to the region at the base of the dorsal column containing the corticospinal tract would be an appropriate target area to quantify and compare with functional measures.

      In Fig. S6 of our 2021 publication "Bonizzato and Martinez, Science Translational Medicine", we investigated the predictive value of tissue sparing in specific sub-regions of the spinal cord for ladder performance. Specifically, we examined the correlation between the accuracy of left leg ladder performance in the acute state and the preservation of the corticospinal tract (CST). Our results indicated that dorsal CST sparing serves as a mild predictor for ladder deficits, confirming the results obtain in this study.

      1. Lines 219-221: The authors state that "phase-coherent stimulation reinstated the function of this muscle, leading to increased burst duration (90{plus minus}18% of the deficit, p=0.004, t-test, Fig. 4B) and total activation (56{plus minus}13% of the deficit, p=0.014, t-test, Fig. 3B). This way of expressing the data is unclear. For example, the previous sentence states that after SCI, burst duration decreased by 72%. Does this mean that the burst duration after stimulation was 90% higher than the -72% level seen with SCI alone, i.e., 90% + -72% = +18%? Or does it mean that the stimulation recovered 90% of the portion of the burst duration that had been lost after SCI, i.e., -72% * (100%-90%)= -7%? The data in Figure 4 suggests the latter. It would be clearer to express both these SCI alone and SCI plus stimulation results in the text as a percent of the pre-SCI results, as done in Figure 4.

      Your assessment is correct; we intended to report that the stimulation recovered 90% of the portion of the burst duration that had been lost after SCI. This point will be addressed in the revision of the manuscript.

      1. Lines 227-229: The authors claim that the phase-dependent stimulation effects in SCI rats are immediate, but they don't say how long it takes for these effects to be expressed. Are these effects evident in the response to the first stimulus train, or does it take seconds or minutes for the effects to be expressed? After the initial expression of these effects, are there any gradual changes in the responses over time, e.g., habituation or potentiation?

      The effects are immediately expressed at the very first occurrence of stimulation. We never tested a rat completely naïve to stimuli, as each treadmill session involves prior cortical mapping to identify a suitable active site for involvement in locomotor experiments. Yet, as demonstrated in Supplementary Video 1 accompanying our 2021 publication on contralateral effects of cortical stimulation, "Bonizzato and Martinez, Science Translational Medicine," the impact of phase-dependent cortical stimulation on movement modulation is instantaneous and ceases promptly upon discontinuation of the stimulation. We did not quantify potential gradual changes in responsiveness over time, but we cannot exclude that for long stimulation sessions (e.g., 30 min or more), stimulus amplitude may need to be slightly increased over time to compensate habituation.

      1. Awake motor maps (lines 250-277): The analysis of the motor maps appears to be based on measurements of the percentage of channels in which a response can be detected. This analytic approach seems incomplete in that it only assesses the spatial aspect of the cortical drive to the musculature. One channel could have a just-above-threshold response, while another could have a large response; in either case, the two channels would be treated as the same positive result. An additional analysis that takes response intensity into account would add further insight into the data, and might even correlate with the measures of functional recovery. Also, a single stimulation intensity was used; the results may have been different at different stimulus intensities.

      We confirm that maps of cortical stimulation responsiveness may vary at different stimulus amplitudes. To establish an objective metric of excitability, we identified 100µA as a reliable stimulation amplitude across rats and used this value to build the ipsilateral motor representation results in Figure 6. This choice allows direct comparison with Figure 6 of our 2021 article, related to contralateral motor representation. The comparison reveals a lack of correlation with functional recovery metrics in the ipsilateral case, in contrast to the successful correlation achieved in the contralateral case.

      Regarding the incorporation of stimulation amplitudes into the analysis, as detailed in the Method section (lines 770-771), we systematically tested various stimulation amplitudes to determine the minimal threshold required for eliciting a muscle twitch, identified as the threshold value. This process was conducted for each electrode site. Upon reviewing these data, we considered the possibility of presenting an additional assessment of ipsilateral cortical motor representation based on stimulation thresholds. However, the representation depicted in the figure did not differ significantly from the data presented in Figure 6A. Furthermore, this representation introduced an additional weakness, as it was unclear how to represent the absence of a response in the threshold scale. We chose to arbitrarily designate it as zero on the inverse logarithmic scale, where, for reference, 100 µA is positioned at 0.2 and 50 µA at 0.5.

      In conclusion, we believe that the conclusions drawn from this analysis align substantially with those in the text. The addition of the threshold analysis, in our assessment, would not contribute significantly to improving the manuscript.

      Author response image 1.

      Threshold analysis

      Author response image 2.

      Original occurrence probability analysis, for comparison.

      1. Lines 858-860: The authors state that "All tests were one-sided because all hypotheses were strictly defined in the direction of motor improvement." By using the one-sided test, the authors are using a lower standard for assessing statistical significance that the overwhelming majority of studies in this field use. More importantly, ipsilateral stimulation of particular kinds or particular sites might conceivably impair function, and that is ignored if the analysis is confined to detecting improvement. Thus, a two-sided analysis or comparable method should be used. This appropriate change would not greatly modify the authors' current conclusions about improvements.

      Our original hypothesis, drawn from previous studies involving cortical stimulation in rats and cats, as well as other neurostimulation research for movement restoration, posited a favorable impact of neurostimulation on movement. Consistent with this hypothesis, we designed our experiments with a focus on enhancing movement, emphasizing a strict direction of improvement.

      It's important to note that a one-sided test is the appropriate match for a one-sided hypothesis, and it is not a lower standard in statistics. Each experiment we conducted was constructed around a strictly one-sided hypothesis: the inclusion of an extensor-inducing stimulus would enhance extension, and the inclusion of a flexion-inducing stimulus would enhance flexion. This rationale guided our choice of the appropriate statistical test.

      We acknowledge your concern regarding the potential for ipsilateral stimulation to have negative effects on locomotion, which might not be captured when designing experiments based on one-sided hypotheses. This concern is valid, and we will explicitly mention it in the statistics section. Nonetheless, even if such observations were made, they could serve as the basis for triggering an ad-hoc follow-up study.

      Reviewer #2 (Public Review):

      Summary:

      The authors' long-term goals are to understand the utility of precisely phased cortex stimulation regimes on recovery of function after spinal cord injury (SCI). In prior work, the authors explored the effects of contralesion cortex stimulation. Here, they explore ipsilesion cortex stimulation in which the corticospinal fibers that cross at the pyramidal decussation are spared. The authors explore the effects of such stimulation in intact rats and rats with a hemisection lesion at the thoracic level ipsilateral to the stimulated cortex. The appropriately phased microstimulation enhances contralateral flexion and ipsilateral extension, presumably through lumbar spinal cord crossed-extension interneuron systems. This microstimulation improves weight bearing in the ipsilesion hindlimb soon after injury, before any normal recovery of function would be seen. The contralateral homologous cortex can be lesioned in intact rats without impacting the microstimulation effect on flexion and extension during gait. In two rats ipsilateral flexion responses are noted, but these are not clearly demonstrated to be independent of the contralateral homologous cortex remaining intact.

      Strengths:

      This paper adds to prior data on cortical microstimulation by the laboratory in interesting ways. First, the strong effects of the spared crossed fibers from the ipsi-lesional cortex in parts of the ipsi-lesion leg's step cycle and weight support function are solidly demonstrated. This raises the interesting possibility that stimulating the contra-lesion cortex as reported previously may execute some of its effects through callosal coordination with the ipsi-lesion cortex tested here. This is not fully discussed by the authors but may represent a significant aspect of these data. The authors demonstrate solidly that ablation of the contra-lesional cortex does not impede the effects reported here. I believe this has not been shown for the contra-lesional cortex microstimulation effects reported earlier, but I may be wrong. Effects and neuroprosthetic control of these effects are explored well in the ipsi-lesion cortex tests here.

      In the revised version of the manuscript, we will incorporate various text improvements to address the points you have highlighted below. Additionally, we will integrate the suggested discussion topic on callosal coordination related to contralateral cortical stimulation.

      Weaknesses:

      Some data is based on very few rats. For example (N=2) for ipsilateral flexion effects of microstimulation. N=3 for homologous cortex ablation, and only ipsi extension is tested it seems. There is no explicit demonstration that the ipsilateral flexion effects in only 2 rats reported can survive the contra-lateral cortex ablation. We agree with this assessment. The ipsilateral flexion representation is here reported as a rare but consistent phenomenon, which we believe to have robustly described with Figure 7 experiments. We will underline in the text that the ablation experiment did not conclude on the unilateral-cortical nature of ipsilateral flexion effects.

      Some improvements in clarity and precision of descriptions are needed, as well as fuller definitions of terms and algorithms.

      Likely Impacts: This data adds in significant ways to prior work by the authors, and an understanding of how phased stimulation in cortical neuroprosthetics may aid in recovery of function after SCI, especially if a few ambiguities in writing and interpretation are fully resolved.

      The manuscript text will be revised in its final version, and we seek to eliminate any ambiguity in writing, data interpretation and algorithms.

      Reviewer #3 (Public Review):

      Summary:

      This article aims to investigate the impact of neuroprosthesis (intracortical microstimulation) implanted unilaterally on the lesion side in the context of locomotor recovery following unilateral thoracic spinal cord injury.

      Strength:

      The study reveals that stimulating the left motor cortex, on the same side as the lesion, not only activates the expected right (contralateral) muscle activity but also influences unexpected muscle activity on the left (ipsilateral) side. These muscle activities resulted in a substantial enhancement in lift during the swing phase of the contralateral limb and improved trunk-limb support for the ipsilateral limb. They used different experimental and stimulation conditions to show the ipsilateral limb control evoked by the stimulation. This outcome holds significance, shedding light on the engagement of the "contralateral projecting" corticospinal tract in activating not only the contralateral but also the ipsilateral spinal network.

      The experimental design and findings align with the investigation of the stimulation effect of contralateral projecting corticospinal tracts. They carefully examined the recovery of ipsilateral limb control with motor maps. They also tested the effective sites of cortical stimulation. The study successfully demonstrates the impact of electrical stimulation on the contralateral projecting neurons on ipsilateral limb control during locomotion, as well as identifying important stimulation spots for such an effect. These results contribute to our understanding of how these neurons influence bilateral spinal circuitry. The study's findings contribute valuable insights to the broader neuroscience and rehabilitation communities.

      Thank you for your assessment of this manuscript. The final version of the manuscript will incorporate your suggestions for improving term clarity and will also enhance the discussion on the mechanism of spinal network engagement, as outlined below.

      Weakness:

      The term "ipsilateral" lacks a clear definition in the title, abstract, introduction, and discussion, potentially causing confusion for the reader. In the next revision of the manuscript, we will provide a clear definition of the term "ipsilateral."

      The unexpected ipsilateral (left) muscle activity is most likely due to the left corticospinal neurons recruiting not only the right spinal network but also the left spinal network. This is probably due to the joint efforts of the neuroprosthesis and activation of spinal motor networks which work bilaterally at the spinal level. However, in my opinion, readers can easily link the ipsilateral cortical network to the ipsilateral-projecting corticospinal tract, which is less likely to play a role in ipsilateral limb control in this study since this tract is disrupted by the thoracic spinal injury.

      We agree with your assessment. The discussion section paragraph presenting putative mechanisms of cortico-spinal transmission in the effects presented in the results will be enhanced to reflect these suggestions.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This paper reports valuable results regarding the potential role and time course of the prefrontal cortex in conscious perception. Although the sample size is small, the results are clear and convincing, and strengths include the use of several complementary analysis methods. The behavioral test includes subject report so the results do not allow for distinguishing between theories of consciousness; nevertheless, results do advance our understanding of the contribution of prefrontal cortex to conscious perception. We appreciate very much for editor and reviewers encouraged review opinion. Particularly, we thank three reviewers very much for their professional and constructive comments that help us to improve the manuscript substantially.

      Public Reviews:

      Reviewer #1 (Public Review):

      This is a clear and rigorous study of intracranial EEG signals in the prefrontal cortex during a visual awareness task. The results are convincing and worthwhile, and strengths include the use of several complementary analysis methods and clear results. The only methodological weakness is the relatively small sample size of only 6 participants compared to other studies in the field. Interpretation weaknesses that can easily be addressed are claims that their task removes the confound of report (it does not), and claims of primacy in showing early prefrontal cortical involvement in visual perception using intracranial EEG (several studies already have shown this). Also the shorter reaction times for perceived vs not perceived stimuli (confident vs not confident responses) has been described many times previously and is not a new result.

      We appreciate very much for the reviewer’s encouraged opinion. We are going to address reviewer’s specific questions and comments point-by-point in following.

      ‘The only methodological weakness is the relatively small sample size of only 6 participants compared to other studies in the field.’

      We agree that the sample size is relatively small in the present study. To compensate such shortcoming, we rigorously verified each result at both individual and population levels, resembling the data analysis method in non-human primate study.

      Interpretation weaknesses that can easily be addressed are claims that their task removes the confound of report (it does not),

      Thank you very much for your comment. We agree that our task does not remove the confound of report entirely. However, we believe that our task minimizes the motor confounds by dissociating the emergence of awareness from motor in time and balanced direction of motor between aware and unaware conditions. We have modified the text according to reviewer’s comment in the revised manuscript as following: “This task removes the confound of motor-related activity”.

      ..and claims of primacy in showing early prefrontal cortical involvement in visual perception using intracranial EEG (several studies already have shown this).

      We agree that several iEEG studies, including ERP and HFA, have shown the early involvement of prefrontal cortical in visual perception. However, in these studies, the differential activity between conscious and unconscious conditions was not investigated, thus, the activity in prefrontal cortex might be correlated with unconscious processing, rather than conscious processing. In present study, we compared the neural activity in PFC between conscious and unconscious trials, and found the correlation between PFC activity and conscious perception. Although one iEEG study(Gaillard et al., 2009) reported awareness-specific PFC activation, the awareness-related activity started 300 ms after the onset of visual stimuli, which was ~100 ms later than the early awareness related activity in our study. Also, due to the limited number of electrodes in the previous study (2 patients with 19 recording sites mostly in mesiofrontal and peri-insular regions), it was restricted while exploring the awareness-related activity in PFC. In the present study, the number of recording sites (245) were much more than previous study and covered multiple areas in PFC. Our results further show earlier awareness-related activity (~ 200 ms after visual stimuli onset), including ERP, HFA and PLV, which sheds new light on understanding of the role of PFC in conscious perception.

      We have added this discussion in the MS (lines 522-536);

      Also the shorter reaction times for perceived vs not perceived stimuli (confident vs not confident responses) has been described many times previously and is not a new result. Thank you very much for your comment. We agree that the reaction time is strongly modulated by the confident level, which has been described previously (Broggin, Savazzi, & Marzi, 2012; Marzi, Mancini, Metitieri, & Savazzi, 2006). However, in previous studies, the confident levels were usually induced by presenting stimulus with different physical property, such as spatial frequency, eccentricity and contrast. It is well known that the more salient stimuli will induce the faster process of visual information and speed up the process of visuomotor transformation, eventually shorten the reaction time (Corbetta & Shulman, 2002; Posner & Petersen, 1990). Therefore, the dependence of visual processing on the salience of visual stimulus confounds with the effect of visual awareness on the reaction time, which is hard to attribute the shorter reaction time in more salient condition purely to visual awareness. In contrast, we create a condition (near perceptual threshold) in the present study, in which the saliency (contrast) of visual stimulus is very similar in both aware and unaware conditions in order to eliminate the influence of stimulus saliency in reaction time. We think that the difference in reaction time in our study is mainly due to the modulation of awareness state, which was not reported previously.

      We have added the discussion in the MS (lines 497-507).

      Reviewer #1 (Recommendations For The Authors):

      Specific comments follow:

      Abstract: "we designed a visual awareness task that can minimize report-related confounding" and in the Introduction lines 112-115: "Such a paradigm can effectively dissociate awareness-related activity from report-related activity in terms of time... and report behavior"; Discussion lines 481-483 "even after eliminating the influence of the confounding variables related to subjective reports such as motion preparation" and other similar statements in the manuscript should be removed. The task involves report using eye movements with every single stimulus. The fact that there is report for both perceived and not perceived stimuli, that the direction of report is not determined until the time of report, and that there is delay between stimulus and report, does not remove the report-related post-perceptual processing that will inevitably occur in a task where overt report is required for every single trial. For example, brain activity related to planning to report perception will only occur after perceived trials, regardless of the direction of eye movement later decided upon. This preparation to respond is different for perceived and not perceived stimuli, but is not part of the perception itself. In this way the current task is not at all unique and does not substantially differ from many other report-based tasks used previously.

      The objective of present study is to assess whether PFC is involved in the emergence of visual awareness. To do so, it is crucial to determine the subjective awareness state as correct as possible. Considering the disadvantage of non-report paradigms in determining the subjective awareness state (Tsuchiya et al. TiCS, 2015; Mashour et al, Neuron, 2020), we employed a balanced report paradigm. It has been argued (Merten & Nieder, PNAS, 2011) that, in the balanced report paradigms, subjects could not prepare any motor response during the delay period because only the appearance of a rule cue (change color of fixation point at the end of delay period) informed subjects about the appropriate motor action. In this case, the post-perceptual processing during delay period might reflect the non-motor cognitive activity. Alternatively, as being mentioned by reviewer, the post-perceptual processing might relate to planning to report perception, which is different for perceived and not perceived stimuli. Therefore, up to date, the understanding of the post-perceptual processing remains controversial. According to reviewer’s comment, we have modified the description of our task as following: “we designed a visual awareness task that can minimize report-related motor confounding”. Also, have changed “report-related” to “motorrelated” in the text of manuscript.

      Figures 3, 4 changes in posterior middle frontal gyri suggest early frontal eye field involvement in perception. This should be interpreted in the context of many previous studies showing FEF involvement in signal detection. The authors claim that "earlier visual awareness related activities in the prefrontal cortex were not found in previous iEEG studies, especially in the HG band" on lines 501-502 of the Discussion. This statement is not true and should be removed. The following statement in the Discussion on lines 563-564 should be removed for the same reasons: "our study detected 'ignition' in the human PFC for the first time." Authors should review and cite the following studies as precedent among others:

      Blanke O, Morand S, Thut G, Michel CM, Spinelli L, Landis T, Seeck M (1999) Visual activity in the human frontal eye field. Neuroreport 10 (5):925-930. doi:10.1097/00001756-19990406000006

      Foxe JJ, Simpson GV (2002) Flow of activation from V1 to frontal cortex in humans. A framework for defining "early" visual processing. Exp Brain Res 142 (1):139-150. doi:10.1007/s00221-001-0906-7

      Gaillard R, Dehaene S, Adam C, Clemenceau S, Hasboun D, Baulac M, Cohen L, Naccache L (2009) Converging intracranial markers of conscious access. Plos Biology 7 (3):e61

      Gregoriou GG, Gotts SJ, Zhou H, Desimone R (2009) High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science 324:1207-1210

      Herman WX, Smith RE, Kronemer SI, Watsky RE, Chen WC, Gober LM, Touloumes GJ, Khosla M, Raja A, Horien CL, Morse EC, Botta KL, Hirsch LJ, Alkawadri R, Gerrard JL, Spencer DD, Blumenfeld H (2019) A Switch and Wave of Neuronal Activity in the Cerebral Cortex During the First Second of Conscious Perception. Cereb Cortex 29 (2):461-474.

      Khalaf A, Kronemer SI, Christison-Lagay K, Kwon H, Li J, Wu K, Blumenfeld H (2022) Early neural activity changes associated with stimulus detection during visual conscious perception. Cereb Cortex. doi:10.1093/cercor/bhac140

      Kwon H, Kronemer SI, Christison-Lagay KL, Khalaf A, Li J, Ding JZ, Freedman NC, Blumenfeld H (2021) Early cortical signals in visual stimulus detection. Neuroimage 244:118608.

      We agree that several iEEG studies, including ERP and HFA, have shown the early involvement of prefrontal cortical in visual perception. However, in these studies, the differential activity between conscious and unconscious conditions was not investigated, thus, the activity in prefrontal cortex might be correlated with unconscious processing, rather than conscious processing. In present study, we compared the neural activity in PFC between conscious and unconscious trials, and found the correlation between PFC activity and conscious perception. Although one iEEG study reported awareness-specific PFC activation, the awareness-related activity started 300 ms after the onset of visual stimuli, which was ~100 ms later than the early awareness related activity in our study. Also, due to the limited number of electrodes in the previous study (2 patients with 19 recording sites mostly in mesiofrontal and peri-insular regions), it was restricted while exploring the awareness-related activity in PFC. In the present study, the number of recording sites (245) were much more than previous study and covered multiple areas in PFC. Our results further show earlier awareness-related activity (~ 200 ms after visual stimuli onset), including ERP, HFA and PLV, which sheds new light on understanding of the role of PFC in conscious perception.

      We have added this discussion in the MS (lines 522-533);

      Minor weakness that should be mentioned in the Discussion: The intervals for the FP (fixation period) and Delay period were both fixed at 600 ms instead of randomly jittered, so that subjects likely had anticipatory activity predictably occurring with each grating and cue stimulus.

      Thank you very much for your comment. We agree that subjects might have anticipatory activity during experiment. Actually, the goal for us to design the task in this way is to try to balance the effect of attention and anticipation between aware and unaware conditions. We have added this discussion in the MS (lines 467-469);

      The faster reaction times for perceived/confident responses vs not perceived/unconfident responses has been reported many times previously in the literature and should be acknowledged rather than being claimed as a novel finding. Authors should modify p. 163 lines 160-162, first sentence of the Discussion lines 445-446 "reaction time.. shorter" claiming this was a novel finding; same for lines 464-467. Please see the following among others:

      Broggin E, Savazzi S, Marzi CA (2012) Similar effects of visual perception and imagery on simple reaction time. Q J Exp Psychol (Hove) 65 (1):151-164. doi:10.1080/17470218.2011.594896

      Chelazzi L, Marzi CA, Panozzo G, Pasqualini N, Tassinari G, Tomazzoli L (1988) Hemiretinal differences in speed of light detection in esotropic amblyopes. Vision Res 28 (1):95-104 Marzi CA, Mancini F, Metitieri T, Savazzi S (2006) Retinal eccentricity effects on reaction time to imagined stimuli. Neuropsychologia 44 (8):1489-1495. doi:10.1016/j.neuropsychologia.2005.11.012

      Posner MI (1994) Attention: the mechanisms of consciousness. Proceedings of the National Academy of Sciences of the United States of America 91 (16):7398-7403

      Sternberg S (1969) Memory-scanning: mental processes revealed by reaction-time experiments. Am Sci 57 (4):421-457

      Thanks. We have cited some of these papers in the revised manuscript due to the restricted number of citations.

      Methods lines 658-659: "results under LU and HA conditions were classified as the control group and were only used to verify and check the results during calculation." However the authors show these results in the figures and they are interesting. HA stimuli show earlier responses than NA stimuli. This is a valuable result which should be discussed and interpreted in light of the other findings.

      We thank very much for reviewer’s comment. We have made discussion accordingly in the revised MS (lines 535-536).

      General comment on figures: Many of the figure elements are tiny and the text labels and details can't be seen at all, especially single trial color plots, and the brain insets showing recording sites.

      We have modified the figures accordingly.

      Other minor comments: Typo: Figure 2 legend, line 169 "The contrast level resulted in an awareness percentage greater than 25%..." is missing a word and should say instead something like "The contrast level that resulted in an awareness percentage greater than 25%..."

      Thanks. We have corrected the typo accordingly.

      Figure 2 Table description in text line 190 says "proportions of recording sites" but the Table only shows number of recording sites and number of subjects, not "proportions." This should be corrected in the text.

      Thanks. We have corrected the error.

      Figure 3, and other figures, should always label the left and right hemispheres to avoid ambiguity.

      Thanks. We have made correction accordingly. In caption of Figure 2D (line 189), we modified the sentence as ‘In all brain images, right side of the image represents the right side of the brain’.

      Methods line 666. The saccadic latency calculations paragraph should have a separate heading before it, to separate it from the Behavioral data analysis section.

      Thanks. It has been corrected in line 725.

      Reviewer #2 (Public Review):

      The authors attempt to address a long-standing controversy in the study of the neural correlates of visual awareness, namely whether neurons in prefrontal cortex are necessarily involved in conscious perception. Several leading theories of consciousness propose a necessary role for (at least some sub-regions of) PFC in basic perceptual awareness (e.g., global neuronal workspace theory, higher order theories), while several other leading theories posit that much of the previously reported PFC contributions to perceptual awareness may have been confounded by task-based cognition that co-varied between the aware and unaware reports (e.g., recurrent processing theory, integrated information theory). By employing intracranial EEG in human patients and a threshold detection task on low-contrast visual stimuli, the authors assessed the timing and location of neural populations in PFC that are differentially activated by stimuli that are consciously perceived vs. not perceived. Overall, the reported results support the view that certain regions of PFC do contribute to visual awareness, but at time-points earlier than traditionally predicted by GNWT and HOTs.

      Reply: We appreciate very much for the reviewer’s encouraged opinion.

      Major strengths of this paper include the straightforward visual threshold detection task including the careful calibration of the stimuli and the separate set of healthy control subjects used for validation of the behavioral and eye tracking results, the high quality of the neural data in six epilepsy patients, the clear patterns of differential high gamma activity and temporal generalization of decoding for seen versus unseen stimuli, and the authors' interpretation of these results within the larger research literature on this topic. This study appears to have been carefully conducted, the data were analyzed appropriately, and the overall conclusions seem warranted given the main patterns of results.

      Reply: We appreciate very much for the reviewer’s encouraged opinion.

      Weaknesses include the saccadic reaction time results and the potential flaws in the design of the reporting task. This is not a "no report" paradigm, rather, it's a paradigm aimed at balancing the post-perceptual cognitive and motor requirements between the seen and unseen trials. On each trial, subjects/patients either perceived the stimulus or not, and had to briefly maintain this "yes/no" judgment until a fixation cross changed color, and the color change indicated how to respond (saccade to the left or right). Differences in saccadic RTs (measured from the time of the fixation color change to moving the eyes to the left or right response square) were evident between the seen and unseen trials (faster for seen). If the authors' design achieved what they claim on page 3, "the report behaviors were matched between the two awareness states ", then shouldn't we expect no differences in saccadic RTs between the aware and unaware conditions? The fact that there were such differences may indicate differences in post-perceptual cognition during the time between the stimulus and the response cue. Alternatively, the RT difference could reflect task-strategies used by subjects/patients to remember the response mapping rules between the perception and the color cue (e.g., if the YES+GREEN=RIGHT and YES+RED=LEFT rules were held in memory, while the NO mappings were inferred secondarily rather than being actively held in memory). This saccadic RT result should be better explained in the context of the goals of this particular reporting-task.

      The objective of present study is to assess whether PFC is involved in the emergence of visual awareness. To do so, it is crucial to determine the subjective awareness state as correct as possible. Considering the disadvantage of non-report paradigms in determining the subjective awareness state (Tsuchiya et al, TiCS, 2015; Mashour et al, Neuron, 2020), we employed a balanced report paradigm. It has been argued (Merten & Nieder, PNAS, 2011) that, in the balanced report paradigms, subjects could not prepare any motor response during the delay period because only after the appearance of a rule cue (change color of fixation point at the end of delay period) subjects were informed about the appropriate motor action. In this case, the post-perceptual processing during delay period might reflect the non-motor cognitive activity, such as working memory (Mashour et al. Neuron, 2020). Alternatively, as being mentioned by reviewer, the postperceptual processing might relate to planning to report perception, which is different for perceived and not perceived stimuli (Aru et al. Neurosci Biobehav Rev, 2012 ). Therefore, up to date, the understanding of the post-perceptual processing remains controversial. Considering reviewer’s comment together with other opinions, we have modified the description of our task as following: “we designed a visual awareness task that can minimize report-related motor confounding”. Also, we have changed “report-related” to “motor-related” in the rest of manuscript.

      Regarding the question whether the saccadic RT in our balanced response paradigm should be expected to be similar between aware and unaware condition, we think that the RT should be similar in case if the delay period is long enough for the decision of “no” to be completed. In fact, in a previous study (Merten & Nieder, PNAS, 2011), the neuronal encoding of “no” decision didn’t appear until 2s after the stimulus cue onset. However, in our task, the delay period lasted only 600 ms that was long enough to form the “yes” decision, but was not enough to form the “no” decision. It might be the reason that our data show shorter RT in aware condition than in unaware condition.

      We totally agree reviewer’s comment about the alternative interpretation for RT difference between aware and unaware condition in our study, i.e., reflecting task-strategies used by subjects/patients to remember the response mapping rules between the perception and the color cue (e.g., if the YES+GREEN=RIGHT and YES+RED=LEFT rules were held in memory, while the NO mappings were inferred secondarily rather than being actively held in memory). We have made additional discussion about these questions in the revised manuscript (lines 492496).

      Nevertheless, the current results do help advance our understanding of the contribution of PFC to visual awareness. These results, when situated within the larger context of the rapidly developing literature on this topic (using "no report" paradigms), e.g., the recent studies by Vishne et al. (2023) Cell Reports and the Cogitate consortium (2023) bioRxiv, provide converging evidence that some sub-regions of PFC contribute to visual awareness, but at latencies earlier than originally predicted by proponents of, especially, global neuronal workspace theory.

      We appreciate very much for the reviewer’s encouraged opinion.

      Reviewer #2 (Recommendations For The Authors):

      Abstract: "the spatiotemporal overlap between the awareness-related activity and the interregional connectivity in PFC suggested that conscious access and phenomenal awareness may be closely coupled." I strongly suggest revising this sentence. The current results cannot be used to make such a broad claim about p-consciousness vs. a-consciousness. This study used a balanced trial-by-trial report paradigm, which can only measure conscious access.

      We thank reviewer for this comment. We have withdrawn this sentence from the revised manuscript.

      Task design: A very similar task was used previously by Schröder et al. (2021) J Neurosci. See specifically, their Figure 1, and Figure 4B-C. Using almost the exact same "matching task", the authors of this previous study show that they get a P3b for both the perceived and not-perceived conditions, confirming that post-perceptual cognition/report confounds were not eliminated, but instead were present in (and balanced between) both the perceived/not-perceived trials due to the delayed matching aspect of the design. This previous paper should be cited and the P3b result should be considered when assessing whether cognition/report confounds were addressed in the current study.

      Thank you very much for your reminding about the study of Schröder et al. We are sorry for not citing this closely related study in our previous manuscript. Schröder et al. found while P3b showed significant difference between perceived and not-perceived trials in direct report task, the P3b was presented in both perceived/not-perceived trials and not significantly different in the matched task. Based on these findings, Schröder et al. argued that P3b represented the task specific post-perceptual cognition/report rather than the emergence of awareness per se. Considering the similarity of tasks between Schröder et al. and ours, we agree that our task is not able to totally eliminate the confound of post-perceptual cognition/report related activity with awareness related activity. Nevertheless, our task is able to minimize the confound of motorrelated activity with the emergence of awareness by separating them in time and balancing the direction of responsive movements. Therefore, we modified the term of “report-related” to “motor-related” in the text of revised manuscript.

      On page 2, lines 71-75, the authors' review of the Frassle et al. (2014) experiment should be revised for accuracy. In this study, all PFC activity did not disappear as the authors claim. Also, the main contrast in the Frassle et al. study was rivalry vs. replay. However, in both of these conditions, visual awareness was changing with the main difference being whether there was sensory conflict between the two eyes or not. Such a contrast would presumably subtract out the common activity patterns related to visual awareness changes, while isolating rivalry (and the resulting neural competition) vs. non-rivalry (and the lack of such competition) which is not broadly relevant for the goal of measuring neural correlates of visual awareness which are present in both sides of the contrast (rivalry and replay).

      Thank you very much for your suggestion. We agree that and revised in the MS (lines 71-76).

      ‘For instance, a functional magnetic resonance imaging (fMRI) study employing human binocular rivalry paradigms found that when subjects need to manually report the changing of their awareness between conflict visual stimuli, the frontal, parietal, and occipital lobes all exhibited awareness-related activity. However, when report was not required, awareness-related activation was largely diminished in the frontal lobe but remained in the occipital and parietal lobes’

      On page 2, lines 76-78, the authors write, "no-report paradigm may overestimate unconscious processing because it cannot directly measure the awareness state". This should be reworded for clarity, as report paradigms also do not "directly measure the awareness state". All measures of awareness are indirect, either via subjects verbal or manual reports, or via behaviors or other physiological measures like OKN, pupillometry, etc. It's also not clear as written why no-report paradigms might overestimate unconscious processing.

      Thank you very much for your suggestion. We agreed and modified the description. In lines 76-80:

      ‘Nevertheless, the no-report paradigm may overestimate the neural correlates of awareness by including unconscious processing, because it infers the awareness state through other relevant physiological indicators, such as optokinetic nystagmus and pupil size(Tsuchiya, Wilke, Frassle, & Lamme, 2015). In the absence of subjective reports, it remains controversial regarding whether the presented stimuli are truly seen or not.’

      However, the no-report paradigm may overestimate the neural correlates of awareness, because it infers the awareness state through other relevant physiological indicators, such as optokinetic nystagmus and pupil size(Tsuchiya et al., 2015) , in the absence of subjective reports and it remains controversial that whether the stimuli presented in such paradigm are truly seen as opposed to being merely potentially visible but unattended.

      On page 5, line 155, there is a typo. This should be Figure 2C, not 2B.

      Thanks. We have modified the description.

      On page 5, lines 160-162, the authors state, "The results showed that the saccadic reaction time in the aware trials was systematically shorter than that in the unaware trials. Such results demonstrate that visual awareness significantly affects the speed of information processing in the brain." I don't understand this. If subjects can never make a saccade until the fixation cross changes color, both for Y and N decisions, why would a difference in saccadic reaction times indicate anything about visual awareness affecting the speed of information processing in the brain? Doesn't this just show that the Red/Green x Left/Right response contingencies were easier to remember and execute for the Yes-I-did-see-it decisions compared to the No-I-didn't-see-it decisions?

      We agree and have made additional discussion about these questions in the revised manuscript (lines 492-496).

      ‘An alternative interpretation for RT difference between aware and unaware condition in our study is that the difference in task-strategies used by subjects/patients to remember the response mapping rules between the perception and the color cue (e.g., if the YES+GREEN=RIGHT and YES+RED=LEFT rules were held in memory, while the NO mappings were inferred secondarily rather than being actively held in memory).’

      In Figure 3B (and several other figures) due to the chosen view and particular brain visualization used, many readers will not know whether the front of brain is up and back of brain down or vise versa (there are no obvious landmarks like the cerebellum, temporal sulcus, etc.). I suggest specifying this in the caption or better yet on the figure itself.

      Thanks. We have added these descriptions in the caption of Figure 2D.

      Line 189 ‘In all brain images, right and up sides of each image represent the right and up sides of the brain’.

      In Figure 3B, the color scale may confuse some readers. When I first inspected this figure, I immediately thought the red meant positive voltage or activation, while the blue meant negative voltage or deactivation. Only later, I realized that any color here is meaningful. Not sure if an adjustment of the color scale might help, or perhaps not normalizing (and not taking absolute values of the voltage diffs, but maintaining the +/- diffs)?

      Thanks for reviewer’s comment. We are sorry for not clearly describing the reason why we normalized the activity in absolute value and chose the color scale from 0 to 20. The major reason is that it is not clearly understood so far regarding the biological characteristics of LFP polarity (Einevoll et al, Nat Rev Neurosci, 2013). To simplify such complex issue, we consider the change in magnitude of LFP during delay period in our task represents awareness related activity, regardless its actual value being positive or negative. Therefore, we first calculated the absolute value of activity difference between aware and unaware trials in individual recording site, then used Shepard's method (see Method for detailed information) to calculate the activity in each vertex and projected on the surface of brain template as shown in Fig. 3B.

      We have added the description in the MS (lines 794-800).

      We have tried to adjust the color scale from -20 to 20 according to reviewer’s suggestion. However, the topographic heatmap showed less distinguishable between brain regions with different strength of awareness related activity. Thus, we would like to keep the way as we used to analyze and present these results.

      Figure 3B: Why choose seemingly arbitrary time points in this figure? What's the significance of 247 and 314 and 381ms (why not show 200, 250, 300, etc.)? Also, are these single time-points or averages within a broader time window around this time-point, e.g., 225-275ms for the 250ms plot?

      Thank reviewer for this helpful comment. We are sorry for not clearly describing why we chose the 8 time points to demonstrate the spatiotemporal characteristics of awareness related activity in Fig. 3B. To identify the awareness related activity, we analyzed the activity difference between aware and unaware trials during delay period (180-650 ms after visual stimulus onset). The whole dynamic process has been presented in SI with a video (video S1). Here, we just sampled the activity at 8 time points (180 ms, 247 ms, 314 ms, etc.) that equally divided the 430 ms delay period.

      We have added the description in the MS (lines 213-215).

      Figure 3D: It's not clear how this figure panel is related to the data shown in Fig3A. In Fig3A, the positive amplitude diffs all end at around 400ms, but in Fig3D, these diffs extend out to 600+ms. I suggest adding clarity about the conversion being used here.

      Thanks for reviewer’s comment. We are sorry for not clearly describing the way to analyze the population activity (Fig. 3D) in the previous version of manuscript. Since it is not clearly understood so far regarding the biological characteristics of LFP polarity, to simplify such complex issue, we consider the change in magnitude of LFP during delay period in our task is awareness related activity, regardless its actual value being positive or negative. Therefore, while analyzing the awareness related population activity, we first calculate the absolute value of activity difference between aware and unaware trials in individual recording site, then pool the data of 43 recording sites together and calculate the mean and standard error of mean (SEM)(Fig. 3D). As you can see in Fig. 3A, the activity difference between aware (red) and unaware (blue) trials lasts until/after the end of delay period. Thus, the awareness related population activity in Fig 3D extends out to 600 ms.

      We have added the description in the MS (lines 769-777).

      Figure 6D could be improved by making the time labels much bigger, perhaps putting them on the time axis on the bottom rather than in tiny text above each brain.

      Thanks for reviewer’s comment. We have modified it accordingly.

      Page 18, line 480: "our results show that the prefrontal cortex still displays visual awareness-related activities even after eliminating the influence of the confounding variables related to subjective reports such as motion preparation" This is too strong of a statement. It's not at all clear whether confounding variables related to subjective reports (especially the cognition needed to hold in mind the Y/N decision about seeing the stimulus prior to the response cue) were eliminated with the design used here. In other places of the manuscript, the authors use "minimized" which is more accurate.

      Thanks for reviewer’s comment. We have modified it accordingly.

      Page 19, section starting on line 508: The authors should consider citing the study by Vishne et al. (2023), which was just accepted for publication recently, but has been posted on bioRxiv for almost a year now: https://www.biorxiv.org/content/10.1101/2022.08.02.502469v1 . And on page 20, line 563, the authors claim that to the best of their knowledge, they were the first to detect "ignition" in PFC in human subjects. Consider revising this statement, now that you know about the Vishne et al. paper.

      We agree.

      Thanks for your reminding about these papers. We have cited this study and made discussion in the revised manuscript (line 522-533). We agree that several iEEG studies have shown the early involvement of PFC in visual perception (Vishne et al. 2023; Khalaf et al. 2023; Kwon et al. 2021). However, in these studies, authors did not compare the neural activity between conscious and unconscious conditions, leaving the possibility that the ERP and HFA were correlated with the unconscious information processing rather than awareness-specific processing. In the present study, we compared the neural activity in PFC between conscious and unconscious trials, and found that the activity of PFC specifically correlated with conscious perception. As we mentioned in the previous version of manuscript, there is one iEEG study (Gaillard et al. 2009) that reported awareness-specific activity in PFC. However, the awareness related activity started more than 300 ms after the onset of visual stimuli, which was about 100 ms longer than the early awareness related activity in our study. Nevertheless, according to reviewer’s comment, we modified our argument as following in lines 621-623:

      ‘However, as discussed above, in contrast with previous studies, our study detected earlier awareness-specific ‘ignition’ in the human PFC, while minimizing the motor-related confounding.’

      Experimental task section of Methods: Were any strategies for learning the response cue matching task suggested to patients/subjects, and/or did any patients/subjects report which strategy they ended up using? For example, if I were a subject in this experiment, I would remember and mentally rehearse the rules: "YES+GREEN = RIGHT" and "YES+RED = LEFT". For trials in which I didn't see anything, I wouldn't need to hold 2 more rules in mind, as they can be inferred from the inverse of the YES rules (and it's much harder to hold 4 things in mind than 2). This extra inference needed to get to the NO+GREEN = LEFT and NO+RED = RIGHT rules would likely cause me to respond slightly slower to the NO trials compared to the YES trials, leading to saccadic RT effects in the same direction the authors found. More information about the task training and strategies used by patients/subjects would be helpful.

      We agree and discussed this in lines 492-496.

      Reviewer #3 (Public Review):

      The authors report a study in which they use intracranial recordings to dissociate subjectively aware and subjectively unaware stimuli, focusing mainly on prefrontal cortex. Although this paper reports some interesting findings (the videos are very nice and informative!) the interpretation of the data is unfortunately problematic for several reasons. I will detail my main comments below. If the authors address these comments well, I believe the paper may provide an interesting contribution to further specifying the neural mechanisms important for conscious access (in line with Gaillard et al., Plos Biology 2009).

      Reply: We appreciate very much for the reviewer’s encouraged opinion.

      The main problem with the interpretation of the data is that the authors have NOT used a so called "no-report paradigm". The idea of no report paradigms is that subjects passively view a certain stimulus without the instruction to "do something with it", e.g., detect the stimulus, immediately or later in time. Because of the confusion of this term, specifically being related to the "act of reporting", some have argued we should use the term no-cognition paradigm instead (Block, TiCS, 2019, see also Pitts et al., Phil Trans B 2018). The crucial aspect is that, in these types of paradigms, the critical stimulus should be task-irrelevant and thus not be associated with any task (immediately or later). Because in this experiment subjects were instructed to detect the gratings when cued 600 ms later in time, the stimuli are task relevant, they have to be reported about later and therefore trigger all kinds of (known and potentially unknown) cognitive processes at the moment the stimuli are detected in real-time (so stimulus-locked). You could argue that the setup of this delayed response task excludes some very specific report related processes (e.g., the preparation of an eye-movement), which is good, however this is usually not considered the main issue. For example when comparing masked versus unmasked stimuli (Gaillard et al., 2009 Plos Biology), these conditions usually also both contain responses but these response related processes are "averaged out" in the specific contrasts (unmasked > masked). In this paper, RT differences between conditions (that are present in this dataset) are taken care of by using this delayed response in this paper, which is a nice feature for that and is not the case for the above example set-up.

      Given the task instructions, and this being merely a delayed-response task, it is to be expected that prefrontal cortex shows stronger activity for subjectively aware versus subjectively unaware stimuli. Unfortunately, given the nature of this task, the novelty of the findings is severely reduced. The authors cannot claim that prefrontal cortex is associated with "visual awareness", or what people have called phenomenal consciousness (this is the goal of using no-cognition paradigms). The only conclusion that can be drawn is that prefrontal cortex activity is associated with accessing sensory input: and hence conscious access. This less novel observation has been shown many times before and there is also little disagreement about this issue between different theories of consciousness (e.g., global workspace theory and local recurrency theories both agree on this).

      We totally agree that the no-report/no-cognition paradigms contain less cognition within the post-perceptual processing than the report paradigms. We designed the balanced response task in order to minimize the motor related component from post-perceptual processing, even though this task does not eliminate the entire cognition from post-perceptual processing. Regarding reviewer’s comment that our task is not able to assess the involvement of PFC in the emergence of awareness, we have different opinion. As we mentioned in the manuscript, the findings of early awareness related activity (~200 ms) in PFC, which resemble the VAN activity in EEG studies, indicate the association of PFC with the emergence of visual awareness (phenomenal consciousness).

      The best solution at this point seems to rewrite the paper entirely in light of this. My advice would be to state in the introduction that the authors investigate conscious access using iEEG and then not refer too much to no-cognition paradigm or maybe highlight some different strategies about using task-irrelevant stimuli (see Canales-Johnson et al., Plos Biology 2023; Hesse et al., eLife 2020; Hatamimajoumerd et al Curr Bio 2022; Alilovic et al., Plos Biology 2023; Pitts et al., Frontiers 2014; Dwarakanth et al., Neuron 2023 and more). Obviously, the authors should then also not claim that their results solve debates about theories regarding visual awareness (in the "no-cognition" sense, or phenomenal consciousness), for example in relation to the debate about the "front or the back of the brain", because the data do not inform that discussion. Basically, the authors can just discuss their results in detail (related to timing, frequency, synchronization etc) and relate the different signatures that they have observed to conscious access.

      The objective of present study is to assess whether PFC is involved in the emergence of visual awareness (i.e., phenomenal consciousness). Interestingly, we found the early awareness related activity (~200 ms after visual stimulus onset), including ERP, high gamma activity and phase synchronization, in PFC, which indicate the association of PFC with the emergence of visual awareness. Therefore, we would like to keep the basic context of manuscript and make revision according to reviewers’ comments.

      On the other hand, we totally agree reviewer’s argument that the report paradigm is more suitable to study the access consciousness. Indeed, we have found that the awareness related activity in PFC could be separated into two subgroups, i.e., early activity with shorter latency (~200 ms after stimulus onset) and late activity with longer latency (> 350 ms after stimulus onset). In addition, the early activity was declined to the baseline level within ~200 ms during delay period, whereas the late activity lasted throughout the delay period and reached to the next stage of task (change color of the fixation point). Moreover, the early activity occurs primarily within the contralateral PFC of the visual stimulus, whereas the late activity occurs within both contralateral and ipsilateral PFC. While the early awareness related activity resembles the VAN activity in EEG studies (associating with p-consciousness), the late awareness related activity resembles the P3b activity (associating with a-consciousness). We are going to report these results in a separated paper soon.

      I think the authors have to discuss the Gaillard et al PLOS Biology 2009 paper in much more detail. Gaillard et al also report a study related to conscious access contrasting unmasked and masked stimuli using iEEG. In this paper they also report ERP, time frequency and phase synchronization results (and even Granger causality). Because of the similarities in approach, I think it would be important to directly compare the results presented in that paper with results presented here and highlight the commonalities and discrepancies in the Discussion.

      Thanks for reviewer’s comment. We have made additional analysis and detailed discussion accordingly. In addition, we also extended discussion with other relevant studies in the revised manuscript.

      In lines 528-549,

      ‘Although one iEEG study reported awareness-specific PFC activation, the awareness-related activity started 300 ms after the onset of visual stimuli, which was ~100 ms later than the early activity in our study. Also, due to the limited number of electrodes in PFC (2 patients with 19 recording sites mostly in mesiofrontal and peri-insular regions), their experiments were restricted while exploring the awareness-related activity in PFC. In the present study, the number of recording sites (245) were much more than previous study and covered more areas in PFC. Our results further show earlier awareness-related activity (~ 200 ms after visual stimuli onset), including ERP, HFA and PLV. These awareness-related activity in PFC occurred even earlier (~150 ms after stimulus onset) for the salient stimulus trials (Fig. 3A\D and Fig. 4A\D, HA condition).

      However, the proportions are much smaller than that reported by Gaillard et al, which peaked at ~60%. We think that one possibility for the difference may be due to the more sampled PFC subregions in present study and the uneven distribution of awareness-related activity in PFC. Meanwhile, we noticed that the peri-insula regions and middle frontal gyrus (MFG), which were similar with the regions reported by Gaillard et al, seemed to show more fraction of awarenessrelated sites than other subregions during the delay period (0-650 ms after stimulus onset). To test such possibility and make comparison with the study of Gaillard et al. we calculated the proportion of awareness-related site in peri-insula and MFG regions. We found although the proportion of awareness-related site was larger in peri-insula and MFG than in other subregions, it was much lower than the report of Gaillard et al. One alternative possibility for the difference between these two studies might be due to the more complex task in Gaillard et al. Nevertheless, we think these new results would contribute to our understanding of the neural mechanism underlying conscious perception, especially for the role of PFC.’ In lines 601-603:

      ‘The only human iEEG study reported that the phase synchronization of the beta band in the aware condition also occurred relatively late (> 300 ms) and mainly confined to posterior zones but not PFC.’

      As for the Granger Causality analysis between PFC and occipital lobe, while the aim of this study focused mainly on PFC and there were few recoding sites in occipital lobe, we would like to do this analysis in later studies after we collect more data.

      In the Gaillard paper they report a figure plotting the percentage of significant frontal electrodes across time (figure 4A) in which it can be seen that significant electrodes emerge after approximately 250 ms in PFC as well. It would be great if the authors could make a similar figure to compare results. In the current paper there are much more frontal electrode contacts than in the Gaillard paper, so that is interesting in itself.

      Thanks reviewer for this constructive comment. We made similar analysis as Gaillard et al. and plotted the results in the figure bellow. As you can see, the awareness related sites started to emerge about 200 ms after visual stimulus onset according to both ERP and HG activity. The proportion of awareness related sites reached peak at ~14% (8% for HG) in 300-400ms. However, the proportions are much smaller than that reported by Gaillard et al, which peaked at ~60%. We think that one possibility for the difference may be due to the more sampled PFC subregions in present study and the uneven distribution of awareness-related activity in PFC. Meanwhile, we noticed that the peri-insula regions and middle frontal gyrus (MFG), which were similar with the regions reported by Gaillard et al, seemed to show more fraction of awareness-related sites than other subregions during the delay period (0-650 ms after stimulus onset). To test such possibility and make comparison with the study of Gaillard et al. we calculated the proportion of awareness-related site in peri-insula and MFG regions. We found although the proportion of awareness-related site was larger in peri-insula and MFG than in other subregions, it was much lower than the report of Gaillard et al. One alternative possibility for the difference between these two studies might be due to the more complex task in Gaillard et al.

      We have added this figure and discussion to the revised manuscript as a new result (Figure 4E & S2 and lines 537-549).

      Author response image 1.

      Percentage of awareness-related sites in ERP and HG analysis. n, number of recording sites in PFC.

      Author response image 2.

      Percentage of awareness-related sites in ERP and HG analysis at parsopercularis and middle frontal gyrus (MFG). n, number of recording sites.

      In my opinion, some of the most interesting results are not highlighted: the findings that subjectively unaware stimuli show increased activations in the prefrontal cortex as compared to stimulus absent trials (e.g., Figure 4D). Previous work has shown PFC activations to masked stimuli (e.g., van Gaal et al., J Neuroscience 2008, 2010; Lau and Passigngham J Neurosci 2007) as well as PFC activations to subjectively unaware stimuli (e.g., King, Pescetelli, and Dehaene, Neuron 2016) and this is a very nice illustration of that with methods having more detailed spatial precision. Although potentially interesting, I wonder about the objective detection performance of the stimuli in this task. So please report objective detection performance for the patients and the healthy subjects, using signal detection theoretic d'. This gives the reader an idea of how good subjects were in detecting the presence/absence of the gratings. Likely, this reveals far above chance detection performance and in that case I would interpret these findings as "PFC activation to stimuli indicated as subjectively unaware" and not unconscious stimuli. See Stein et al., Plos Biology 2021 for a direct comparison of subjectively and objectively unaware stimuli.

      We gratefully appreciate for reviewer’s helpful and valuable comments. We do notice that the activity of PFC in subjectively unawareness condition (stimulus contrast near perceptual threshold) is significantly higher than stimulus absent condition. Such results, by using sEEG recordings with much higher spatial resolution than brain imaging and scalp EEG, support findings of previous studies (citations). Considering the question of neural correlation of unawareness processing is a hot and interesting topic, after carefully considering, we would like to report these results in a separate paper, rather than add these results in the current manuscript in order to avoid the distraction.

      According to reviewer’s comment about the objective detection performance of the stimuli in our task, we analyzed the signal detection theoretic d’. The values of d’ in patients and healthy subjects are similar (1.81±0.27 in patients and 2.12±0.37 in healthy subjects). Such results indicate that the objective detection performance of subjects in our task is well above the chance level. Since our task merely measures the subjective awareness, we agree reviewer’s comment about the interpretation of our results as “PFC activation to stimuli indicated the subjective unawareness rather than objective unawareness”. We will emphasize this point in our next paper.

      We have added the d prime in the MS (lines149-150).

      In Figure 7 of the paper the authors want to make the case that the contrast does not differ between subjectively aware stimuli and subjectively unaware stimuli. However so far they've done the majority of their analyses across subjects, and for this analysis the authors only performed within-subject tests, which is not a fair comparison imo. Because several P values are very close to significance I anticipate that a test across subjects will clearly show that the contrast level of the subjectively aware stimuli is higher than of the subjectively unaware stimuli, at the group level. A solution to this would be to sub-select trials from one condition (NA) to match the contrast of the other condition (NU), and thereby create two conditions that are matched in contrast levels of the stimuli included. Then do all the analyses on the matched conditions.

      Thank reviewer for the helpful comment. Regarding reviewer’s comment “However so far they've done the majority of their analyses across subjects, and for this analysis the authors only performed within-subject tests, which is not a fair comparison imo”, if we understand correctly, reviewer considered that it was fair if the analysis of neural activity in PFC was done across subjects but the stimulus contrast analysis between NA and NU was done individually. Actually, it is not the case. In neural activity analysis, the significant awareness-related sites were identified firstly in each individual subject (Fig. 3A and Fig 4A, and Methods), same as the analysis of stimulus contrast (see Methods). Only in the neural population activity analysis, the activity of awareness-related sites was pooled together and made further analysis.

      To further evidence the awareness related activity in PFC is not highly correlated with stimulus contrast, we compared the activity difference between two different stimulus contrast conditions, i.e., stimulus contrast difference between high-contrast aware (HA) and NA conditions (large difference, ~14%), and between NA and NU conditions (slight difference, ~0.2%). The working hypothesis is that, if PFC activity is closely correlated with the contrast of stimulus contrast, we expect to see the activity difference between HA and NA conditions is much larger than that between NA and NU conditions. To test this hypothesis, we analyzed data of two patients in which the previous analysis showed significant or near significant difference of stimulus contrast between NA and NU conditions (Author response image 1, below, patient #2 and 1). The results (Author response image 1) show that the averaged activity difference (0-650 ms after visual stimulus onset) between HA and NA was similar as the averaged activity difference between NA and NU trials, even though the stimulus contrast difference was much larger between HA and NA conditions than between NA and NU conditions. Such results indicate that the awareness-related activity in PFC cannot be solely explained by the contrast difference between NA and NU conditions. Based on these results, we think that it is not necessary to perform the analysis as reviewer’s comment “A solution to this would be to sub-select trials from one condition (NA) to match the contrast of the other condition (NU), and thereby create two conditions that are matched in contrast levels of the stimuli included. Then do all the analyses on the matched conditions”. Another reason that impedes us to do this analysis is due to the limited trial numbers in our dataset.

      Author response image 3.

      Relationship between stimulus contract and PFC activity. X axis represents the stimulus contrast difference between two paired conditions, i.e., aware versus unaware in near perceptual threshold conditions (NA – NU, red dots); aware in high contrast condition versus aware in near perceptual threshold condition (HA – NA, blue dots). Y axis represents the activity difference between paired stimulus conditions. The results show that activity difference is similar between two paired conditions regardless the remarkable contrast difference between two paired conditions. Such results indicate that the greater activity in NA trials than in NU trials (Fig. xx-xx) could not be interpreted by the slight difference in stimulus contrast between NA and NU trials.

      Related, Figure 7B is confusing and the results are puzzling. Why is there such a strong below chance decoding on the diagonal? (also even before stimulus onset) Please clarify the goal and approach of this analysis and also discuss/explain better what they mean.

      We have withdrawn Figure7B for the confusing decoding results on the diagonal.

      I was somewhat surprised by several statements in the paper and it felt that the authors may not be aware of several intricacies in the field of consciousness. For example, a statement like the following "Consciousness, as a high-level cognitive function of the brain, should have some similar effects as other cognitive functions on behavior (for example, saccadic reaction time). With this question in mind, we carefully searched the literature about the relationship between consciousness and behavior; surprisingly, we failed to find any relevant literature." This is rather problematic for at least two reasons. First, not everyone would agree that consciousness is a highlevel cognitive function and second there are many papers arguing for a certain relationship between consciousness and behavior (Dehaene and Naccache, 2001 Cognition; van Gaal et al., 2012, Frontiers in Neuroscience; Block 1995, BBS; Lamme, Frontiers in Psychology, 2020; Seth, 2008 and many more). Further, the explanation for the reaction time differences in this specific case is likely related to the fact that subjects' confidence in that decision is much higher in the aware trials than in the unaware trials, hence the speeded response for the first. This is a phenomenon that is often observed if one explores the "confidence literature". Although the authors have not measured confidence I would not make too much out of this RT difference.

      We agree that and modified accordingly in lines 492-507.

      ‘An alternative interpretation for RT difference between aware and unaware condition in our study, i.e., reflecting task-strategies used by subjects/patients to remember the response mapping rules between the perception and the color cue (e.g., if the YES+GREEN=RIGHT and YES+RED=LEFT rules were held in memory, while the NO mappings were inferred secondarily rather than being actively held in memory).

      Another possibility is that the reaction time is strongly modulated by the confident level, which has been described in previous studies(Broggin et al., 2012; Marzi et al., 2006). However, in previous studies, the confident levels were usually induced by presenting stimulus with different physical property, such as spatial frequency, eccentricity and contrast. However, the dependence of visual process on the salience of visual stimulus confounds with the effect of visual awareness on the reaction time of responsive movements, which is hard to attribute the shorter reaction time in more salient condition purely to visual awareness. In contrast, we create a condition (near aware threshold) in the present study, in which the saliency (contrast) of visual stimulus is very similar in both aware and unaware conditions in order to eliminate the influence of stimulus saliency in reaction time. We think that the difference in reaction time in our study is mainly due to the modulation of awareness state, which was not reported previously.’

      I would be interested in a lateralized analysis, in which the authors compare the PFC responses and connectivity profiles using PLV as a factor of stimulus location (thus comparing electrodes contralateral to the presented stimulus and electrodes ipsilateral to the presented stimulus). If possible this may give interesting insights in the mechanism of global ignition (global broadcasting), supposing that for contralateral electrodes information does not have to cross from one hemisphere to another, whereas for ipsilateral electrodes that is the case (which may take time). Gaillard et al refer to this issue as well in their paper, and this issue is sometimes discussed regarding to Global workspace theory. This would add novelty to the findings of the paper in my opinion.

      We gratefully appreciate reviewer’s helpful and available suggestions. We have made the analysis accordingly. We find that the awareness-related ERP activation in PFC occurs earlier only in the contralateral PFC with latency about 200 ms and then occurs in both contralateral and ipsilateral PFC about 100 ms later. In addition, the magnitude of awareness-related activity is stronger in the contralateral PFC than in ipsilateral PFC during the early phase (200-400 ms), then the activity becomes similar between contralateral and ipsilateral PFC. Moreover, the awareness related HG activity only appears in the contralateral PFC. Such results show the spatiotemporal characteristics of visual awareness related activity between two hemispheres. We are going to report these results in a separate paper soon.

      Reviewer #3 (Recommendations For The Authors):

      Some of the font sizes in the figures are too small.

      We have modified accordingly.

      To me, the abbreviations are confusing, (NA/NU etc). I would try to come up with easier ones or just not use abbreviations.

      We have modified accordingly and try to avoid to use the abbreviations.

      The data/scripts availability statement states "available upon reasonable request". I would suggest that the authors make the data openly available when possible, and I believe eLife requires that as well.

      Thanks for reviewer’s suggestions. Due to several ongoing studies based on this dataset, we would like to open our data after complete these studies if there is no restriction from national policy.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Many drugs have off-target effects on the gut microbiota but the downstream consequences for drug efficacy and side effect profiles remain unclear. Herein, Wang et al. use a mouse model of liver injury coupled to antibiotic and microbiota transplantation experiments. Their results suggest that metformin-induced shifts in gut microbial community structure and metabolite levels may contribute to drug efficacy. This study provides valuable mechanistic insights that could be dissected further in future studies, including efforts to identify which specific bacterial species, genes, and metabolites play a causal role in drug response. Importantly, although some pilot data from human subjects is shown, the clinical relevance of these findings for liver disease remain to be determined.

      Thank you for reviewing our manuscript. We appreciate your valuable feedback. We agree that the downstream consequences of off-target effects on the gut microbiota by various drugs remain unclear. Our study aimed to shed light on this aspect by utilizing a mouse model of liver injury and conducting antibiotic and microbiota transplantation experiments. Our findings suggest that shifts in the structure and metabolite levels of the gut microbial community induced by metformin play a role in the drug’s efficacy. We believe that these mechanistic insights provide a strong foundation for further investigations. Specifically, future studies could focus on identifying the specific bacterial species, genes, and metabolites that have a causal role in drug response. While we have included some pilot data from human subjects, we acknowledge that the clinical relevance of our findings in the context of liver disease still requires further determination. In fact, we focused on the alteration of microbiota and metabolism caused by metformin in human bodies, which could capture the characteristics of changes in a more composite clinical direction, elucidating the potential role of metformin. We appreciate your attention to this aspect and thank you again for your thoughtful review and valuable suggestions.

      The major strength of this work is its scope, including detailed mouse phenotyping, inter-disciplinary methods, and numerous complementary experiments. The antibiotic depletion and FMT experiments provide support for a role of the gut microbiota in this mouse model.

      A major limitation is the lack of studies narrowing down which microbes are responsible. Sequencing data is shown, but no follow-up studies are done with bacterial isolates or defined communities.

      We acknowledge the limitation of our study in not narrowing down the specific microbes responsible for the observed effects. We hold the opinion that metformin exerts its effects through modulation of specific metabolic pathways unique to the microbial community. Previous study has shown that metformin can inhibit microbial folate metabolism, leading to longevity-promoting effects that are not attributed to a single colony or strain[1]. Similarly, the impact of metformin on amino acid metabolism in the microbial community appears to be widespread. While further investigations with bacterial isolates or defined communities are needed, our findings suggest that metformin's effects on microbial metabolism are complex and involve multiple members of the microbial community.

      The link to GABA is also somewhat tenuous. While it does match the phenotypic data, there are no targeted experiments in which GABA producing microbial communities/strains are compared to a control community/strain. As such, it seems difficult to know how much of the effects in this model are due to GABA vs. other metabolites.

      We agree with your point regarding the tenuous link to GABA in our study. While we did observe an increase in GABA as the only amino acid following metformin treatment, and this finding has not been reported previously, we acknowledge the need for targeted experiments comparing GABA-producing microbial communities/strains to control communities/strains. Previous literatures suggest that metformin's modulation of the microbiota can vary significantly depending on the disease context, with different microbial populations exhibiting differential responses[2-4]. Given this complexity, we opted to study the overall microbial community response to metformin rather than focusing on specific strains. Additionally, our detection of key enzymes involved in GABA synthesis at the community level further supports our findings.

      My major recommendation would be to revise the title, abstract, and discussion to provide more qualification and to consider alternative interpretations.

      We appreciate your feedback and understand your concern regarding the need for more qualification and consideration of alternative interpretations. We hope to have more specific and detailed suggestions you may have to enhance the clarity and qualification of our title and abstract. Furthermore, we have tried to revise discussion in order to enhance the scientific rigor and logical coherence of our study. If you have any specific recommendations or insights, we would be more than willing to make further revisions to address those concerns.

      Some key controls are also missing, which could be addressed by repeat experiments in the mouse model.

      We appreciate your suggestion to include additional key controls in the mouse model experiments. We have conducted repeat experiments to test the effect of antibiotics in the absence of metformin to differentiate between the effects of the model itself and the interaction of metformin with antibiotics. As results of liver injury indicators shown, there were no significance among Control, Control+Met, Control+FMT and Control+Abx groups, revealing that metformin and its treated feces, and antibiotics had no effect on liver function in normal mice (Figure 1).

      Author response image 1.

      Figure1 a: Liver MDA detection; b: Serum ALT level; c: Serum AST level.

      The antibiotic depletion experiment would be improved by testing the effect of antibiotics in the absence of metformin, to see if the effect is just driven by the model itself as opposed to an interaction between metformin and antibiotics.

      For the antibiotic depletion experiment, we had used antibiotics (Abx) for the mice of modeling, and the survival rate and liver function detection suggested that Abx had no extra effect on liver, which demonstrated that the effect is just driven by the model itself as opposed to an interaction between metformin and antibiotics (Figure 2).

      Author response image 2.

      Figure2 a: Survival rate between IR and IR + Abx group; b: Serum ALT level; c: Serum AST level.

      References

      [1] CABREIRO F, AU C, LEUNG K Y, et al. Metformin Retards Aging in C. elegans by Altering Microbial Folate and Methionine Metabolism [J]. Cell, 2013, 153(1): 228-39.

      [2] LIANG H, SONG H, ZHANG X, et al. Metformin attenuated sepsis-related liver injury by modulating gut microbiota [J]. Emerg Microbes Infect, 2022, 11(1): 815-28.

      [3] SUN L, XIE C, WANG G, et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin [J]. Nat Med, 2018, 24(12): 1919-29.

      [4] ZHAO H Y, LYU Y J, ZHAI R Q, et al. Metformin Mitigates Sepsis-Related Neuroinflammation via Modulating Gut Microbiota and Metabolites [J]. Frontiers in Immunology, 2022, 13:797312.

      Reviewer #2 (Public Review):

      The authors examine the use of metformin in the treatment of hepatic ischemia/reperfusion injury (HIRI) and suggest the mechanism of action is mediated in part by the gut microbiota and changes in hepatic ferroptosis. While the concept is intriguing, the experimental approaches are inadequate to support these conclusions.

      The histological and imaging studies were considered a strength and reveal a significant impact of metformin post-HIRI.

      Thank you for reviewing our paper titled “Gut microbiota-derived gamma-aminobutyric acid from metformin treatment reduces hepatic ischemia/reperfusion injury through inhibiting ferroptosis”. We appreciate your insightful comments and suggestions, which have provided valuable insights into improving the quality and credibility of my research. We agree with your assessment that the experimental approaches used in this study may have limitations in supporting the conclusions drawn, and we appreciate your recognition of the strength of our histological and imaging studies, which clearly demonstrate the impact of metformin post-HIRI.

      Weaknesses largely stem from the experimental design. First, use of the iron chelator DFO would be strengthened using the ferroptosis inhibitor, liproxstatin.

      Your suggestion to employ the ferroptosis inhibitor, liproxstatin, in addition to the iron chelator DFO is well-taken. Incorporating liproxstatin into our experimental setup would provide a more comprehensive understanding of the involvement of hepatic ferroptosis in the mechanism of action of metformin. Therefore, we employed liproxstatin to inhibit HIRI and detected some core indicators of liver injury. As figure 3 shown, liproxstatin can reduce liver injury, restore liver GSH level and inhibit Fe accumulation, suggesting that ferroptosis plays an important role in HIRI. We hope this modification will enhance the credibility of our conclusions.

      Author response image 3.

      Figure3 a: Liver MDA detection; b: Serum ALT level; c: Serum AST level; d: Liver GSH level; e: Liver Fe level.

      Second, the impact of metformin on the microbiota is profound resulting in changes in bile acid, lipid, and glucose homeostasis. Throughout the manuscript no comparisons are made with metformin alone which would better capture the metformin-specific effects.

      Thank you for raising an important point regarding the impact of metformin on the microbiota and its potential effects on bile acid, lipid, and glucose homeostasis. It has well known that that the effects of metformin on normal blood glucose and lipid metabolism are minimal. Metformin primarily exerts its effects in cases of impaired glucose tolerance, which is why it is widely used for non-diabetic conditions. Regarding the changes in bile acid metabolism and chronic cholesterol and lipid elevation, these associations are typically observed in chronic liver disease models. Since our study focuses on an acute model of HIRI, we did not specifically investigate these changes.

      Lastly, the absence of proper controls including germ free mice, metformin treated mice, FMT treated mice, etc make it difficult to understand the outcomes and to properly reproduce the findings in other labs.

      Lastly, we acknowledge your concern regarding the absence of proper controls, including germ-free mice, metformin-treated mice, and FMT -treated mice. We understand that these controls are essential for robustly interpreting and reproducing our findings. Therefore, we have added a batch of experiments for verification. As results shown, there were no significance among Control, Control+Met, Control+FMT and Control+Abx groups, revealing that metformin and its treated feces, and antibiotics had no effect on liver function in normal mice (Figure 1). We hope the result of these controls could address your valid point and provide a more comprehensive framework for understanding the outcomes.

      Author response image 4.

      Figure1 a: Liver MDA detection; b: Serum ALT level; c: Serum AST level.

      Overall, while the concept is interesting and has the potential to better understand the pleiotropic functions of metformin, the limitations with the experimental design and lack of key controls make it challenging to support the conclusions.

      We genuinely appreciate your constructive criticism and the time you have taken to evaluate my work. Your feedback has shed light on the limitations of our experimental design and the need for key controls, which we have addressed in revised manuscript. If you have any further recommendations or concerns, we would be more than willing to incorporate them into my future work.

      Reviewer #3 (Public Review):

      The study presented in this paper explores the role of gut microbiota in the therapeutic effect of metformin on HIRI, as supported by fecal microbiota transplantation (FMT) experiments. Through high throughput sequencing and HPLC-MS/MS, the authors have successfully demonstrated that metformin administration leads to an increase in GABA-producing bacteria. Moreover, the study provides compelling evidence for the beneficial impact of GABA on HIRI.

      Thank you for your valuable feedback on our paper exploring the role of gut microbiota in the therapeutic effect of metformin on hepatic ischemia-reperfusion injury (HIRI). We appreciate your positive remarks and suggestions for improvement. In response to your comments, we have revised the manuscript accordingly. We have included additional details on the high throughput sequencing and HPLC-MS/MS methods used to analyze the gut microbiota and GABA levels. This should provide readers with a clearer understanding of our experimental approach and the evidence supporting our findings.

      Regarding your suggestion to further investigate the mechanisms underlying the beneficial impact of GABA on HIRI, we agree that this is an important direction for future research. We plan to conduct additional studies to explore the specific mechanisms by which GABA exerts its protective effects on HIRI in the future. We also supplemented discussion of potential therapeutic strategies targeting GABAergic pathways in the discussion section.

      Thank you once again for your insightful comments. We believe that these revisions have strengthened the manuscript and improved its scientific rigor. We hope that you find the revised version to be satisfactory and look forward to your further feedback.

      Reviewer #1 (Recommendations For The Authors):

      The writing could be improved. Multiple typos are found throughout and there is an overuse of adverbs like "expectedly". You should let the reader decide what is or is not expected. Try to avoid terms like "confirmed" or "validated", which only applies if you knew the result a priori. Remove underscores in species names. The Results section is also very difficult to interpret given the lack of explanation of experimental design. For example, the human study is only briefly mentioned within a larger paragraph on mouse data, without any explanation as to the study design. Similar issues are true for the transcriptomics and amplicon sequencing - it would help the reader to explain what samples were processed, the timepoints, etc.

      Thank you for your valuable feedback on our manuscript entitled “Gut microbiota-derived gamma-aminobutyric acid from metformin treatment reduces hepatic ischemia/reperfusion injury through inhibiting ferroptosis” We appreciate your constructive comments and insightful suggestions for improvement.

      We have carefully reviewed your comments and have made several revisions to enhance the clarity and readability of the manuscript. We have addressed the issue of multiple typos and have removed the overuse of adverbs, such as “expectedly,” to allow readers to draw their own conclusions from the results. Additionally, we have eliminated terms like “confirmed” or “validated” that may imply a priori knowledge of the results.

      We apologize for the lack of clarity regarding the experimental design in the Results section. We have now provided a more detailed explanation of the study design for the human study, transcriptomics, and amplicon sequencing experiments. This includes information on the samples processed, timepoints, and other relevant details, to aid readers in understanding the experimental procedures.

      In response to your comment about removing underscores in species names, we have revised the text accordingly to ensure consistency and accuracy in the species nomenclature used throughout the manuscript.

      Once again, we sincerely appreciate your valuable input, which has helped us improve the quality of our manuscript. We hope that the revised version now meets your expectations and look forward to any further feedback you may have.

      Thank you for your time and attention.

      Line 53 - prebiotics aren't "microbial agents"

      We apologize for this error, which we have corrected. (line 55: “Microbial agents, such as synbioticsprebiotics and probiotics…”)

      Line 88 - sequencing doesn't "verify the critical role of gut microbiota"

      We apologize for this error, which we have corrected. (line 90: “In order to verifyclarify the critical role of gut microbiota in the pleiotropic actions of metformin,22-24 fecal samples were collected from the mice to perform 16S rRNA sequencing.

      Line 92 - missing a citation for the "microbiota-gut-liver axis theory"

      We have corrected it in manuscript. (line 93: “Next, as the microbiota-gut-liver axis theory indicates,25 HIRI-induced dysfunction of the gut barrier may aggravate liver damage by disrupting the gut microbiota.”)

      Line 112 - it's very surprising to me that FMT led to lower alpha diversity, which seems impossible.

      We understand your surprise regarding the observed decrease in alpha diversity after FMT. Our findings indeed deviate from the commonly observed pattern of increased alpha diversity post-FMT. We have carefully re-examined our data and conducted additional analyses to ensure the accuracy of our results. After thorough investigation, we have identified a potential reason for this unexpected outcome, which we believe could shed light on this phenomenon. We hypothesize that the lower alpha diversity observed in our study might be attributed to the specific characteristics of the donor microbiota used for FMT. While the donor microbiota exhibited certain beneficial properties associated with the therapeutic effect on HIRI, it could have presented a limited diversity compared to the recipient’s original gut microbiota. This discrepancy in diversity could have contributed to the observed decrease in alpha diversity following FMT.

      To further support our hypothesis, we have included a discussion on this unexpected finding in the revised manuscript. We believe that this addition will provide a more comprehensive understanding of the results and help contextualize the observed decrease in alpha diversity following FMT.

      Line 117 - Antibiotics don't "identify the function of gut microbes." Need to specify which antibiotics were used and for how long.

      We have corrected it in manuscript. (line 119: “To further identify the function of gut microbes, experiments were designed, and combination treatment of antibiotics (1 mg/mL penicillin sulfate, 1 mg/mL neomycin sulfate, 1 mg/mL metronidazole and 0.16 mg/mL gentamicin) and metformin were employed for 1 week before IR treated.”)

      Line 120 - this experiment shows that the gut microbiota (or antibiotics more precisely) matters, not the "reshaped gut microbiota"

      We have corrected it in manuscript. (line 124: “The results confirmed that reshaped gut microbiota is critical for the effect of metformin against HIRI.”)

      Line 122 - need to reword this subheading and the concluding sentence. The main takeaway is that the FMT improved markers of ferroptosis, but no additional causal links are provided here.

      We have revised in manuscript. (line 125: “FMT alleviates HIRI-induced ferroptosis through reshaped fecal microbiota.”)

      Line 141 - need to explain what transcriptomics data was generated and how it was analyzed.

      We have revised in manuscript. (line 144: “To elucidate the molecular mechanisms through which pathway participates metformin-treated IR injury, we analysed gene expression profiles of each group mice. Transcriptome sequencing analysis revealed that 9697 genes were in common among four groups (Supplementary Figure 6). Therefore, we used these common genes for KEGG analysis, showing that The transcriptome analysis of liver tissues showed that similar mRNA changes between Met group and FMT group are mainly concentrated in the three top pathways: lipid metabolism, carbohydrate metabolism, and amino acid metabolism (Fig 4a).”)

      Line 150 - change to "16S rRNA gene sequencing". Typo: "mice microbes".

      We have revised in manuscript. (line 156: “Moreover, it was observed that the genus of Bacteroides had a significant increase based on the 16s rRNA gene sequencing of metformin-treated mice microbes.”)

      Line 152 - upregulated refers to gene expression, change to enriched.

      We have revised in manuscript. (line 171: “Detailedly, the species of Bacteroides containing Bacteroides thetaiotaomicron, Bacteroides unifomis, and Bacteroides salyersiae, were enriched in human gut after metformin administration (Fig. 4i).”)

      Line 159 - typo: "prokaryotes"

      We have revised in manuscript. (line 165: “In order to further identify the increased GABA originates from gut microbiota, two key enzymes of prokaryotes protokaryotic GABA synthesis, GAD and PAT, were detected on DNA level, finding that both of them are significantly increased in the feces from IR+Met and IR+FMT groups (Fig. 4h).”)

      Line 161 - the human study should be under a new sub-heading and provide more details.

      We have revised in manuscript. (line 168: In order to clarify the specific effects of metformin on microbiota, given the big safety margin, healthy volunteers were recruited for a 1 week of daily oral 500mg dose of metformin trial. Fecal samples were collected before and after oral administration of metformin for metagenomic analysis .”)

      Line 197 - It's unclear why the current study conflicts with prior literature. Is it due to the disease model, the starting microbiota, something else? Please add more discussion.

      Thank you for bringing this important point to our attention, and we appreciate your valuable input. We agree that it is important to discuss the potential reasons for the discrepancy between our findings and prior literature on metformin-reshaped microbiota. In our study, we used a disease model of HIRI, which may have unique characteristics compared to other disease models. It is possible that the specific disease model influenced the response of the gut microbiota. Additionally, the starting microbiota of the recipients and the characteristics of the donor microbiota used for FMT could also play a role in the disparity. We have expanded the discussion section of our revised manuscript to further address these potential factors and their implications. We hope that this additional information will provide a more comprehensive explanation for the discrepancy between our study and prior literature.

      Figure 1a - change to Kaplan Meier not ANOVA. Specify the contrast - which groups are being compared?

      We have revised in Figure 1a.

      Figure 1e, alpha diversity - relabel "sobs" with "observed OTUs". Change to 3 bars with error and add statistics.

      We have revised in Figure 1e.

      Figure 1e, PCA - this should be a separate panel (1f). Color of big red circle doesn't match the points. Add PERMANOVA p-value/R2. Change to OTUs not genera. Better yet, use amplicon sequence variants from DADA2.

      We have revised in Figure 1e..

      Figure 2a - Change to Kaplan Meier. Also, it's unclear if residual metformin could be in the donor samples.

      We have revised in Figure 2a.

      Figure 2f, alpha diversity - relabel "sobs" with "observed OTUs". Change to 3 bars with error and add statistics.

      We have revised in Figure 2f.

      Figure 2f, PCA - this should be a separate panel (2g). Color of big orange circle doesn't match the points. Add PERMANOVA p-value/R2. Change to OTUs not genera. Better yet, use amplicon sequence variants from DADA2.

      We have revised in Figure 2f.

      Figure 4b - check units, shouldn't this be ng/mg (i.e. weight not volume).

      We have revised in Figure 4b.

      Figure 4c,d - need more explanation in the legend and Results as to what is shown here.

      We have revised in Figure 4c,d.

      Figure 4d - unclear why only Bacteroides are shown here or if the p-values are adjusted for multiple comparisons.

      Thank you for your comment regarding Figure 4d in our manuscript. We apologize for the confusion caused. The reason why only Bacteroides is shown in Figure 4d is because we specifically wanted to investigate the changes in Bacteroides abundance following metformin treatment.

      In the mouse experiments, we observed a significant increase in Bacteroides after metformin treatment. To investigate if a similar change occurs in healthy volunteers, we examined the levels of Bacteroides in fecal samples before and after oral administration of metformin. We found that the abundance of Bacteroides also increased in the human gut after metformin administration, consistent with the results from the animal experiments. Regarding the p-values, we apologize for not mentioning whether they were adjusted for multiple comparisons in the figure legend. In our revised manuscript, we have provided a clarification stating that the p-values were adjusted using the appropriate method. We appreciate your feedback and hope that this explanation clarifies the rationale behind Figure 4d. Thank you for your valuable input.

      Reviewer #2 (Recommendations For The Authors):

      Below I've listed several suggestions to improve the paper.

      1. Controls - the authors should include metformin only treated mice, FMT only treated mice, etc. Additionally, germ free mice treated with metformin and HIRI would be helpful to better implicate the gut microbiome in these beneficial effects.

      Thank you for your suggestion regarding the inclusion of additional control groups in our study. We agree that including metformin only treated mice, FMT only treated mice, and germ-free mice treated with metformin and HIRI would provide valuable insights into the role of the gut microbiome in the observed beneficial effects.

      Therefore, we have included metformin only treated mice, FMT only treated mice and Abx only treated mice as supplement to better assess the specific contribution to the observed effects. As results shown, there were no significance among Control, Control+Met, Control+FMT and Control+Abx groups, revealing that metformin and its treated feces, and antibiotics had no effect on liver function in normal mice (figure1).

      We appreciate your input and believe that the inclusion of these additional control groups will strengthen our study and provide a more comprehensive understanding of the role of the gut microbiome in the therapeutic effects observed.

      Author response image 5.

      Figure1 a: Liver MDA detection; b: Serum ALT level; c: Serum AST level.

      1. More thorough characterization of metabolite pools. Metformin is known to influence many pathways including bile acids and lipids. These important molecules should be measures as they likely play a key role in the observed protective effect. In fact, many of the key changes displayed in Figure 3H are involved in lipid metabolism.

      Thank you for your valuable feedback regarding the characterization of metabolite pools in our study. We appreciate your suggestion to measure the influence of metformin on bile acids and lipid metabolism, as they are crucial pathways that may play a significant role in the observed protective effect.

      Regarding bile acids, we agree that they are important in the context of metformin’s influence on metabolic pathways. However, it is important to note that the impact of metformin on bile acids appears to be more prominent in chronic liver disease models. In our acute model, the changes in bile acids were not as significant. Instead, our results primarily indicate a close association between lipid changes and hepatic ferroptosis. Metformin significantly modulates lipid metabolism, thereby alleviating liver ferroptosis.

      Additionally, we have conducted metagenomic sequencing on the gut microbiota of healthy volunteers before and after oral administration of metformin. While analyzing the data, we did not observe significant changes in key genes involved in regulating bile acid variations. This might be attributed to the healthy volunteers used in our study, where significant changes in bile acids were not induced.

      We appreciate your insightful comments and suggestions, which have shed light on the importance of characterizing bile acids and lipid metabolism in our study. While the impact of bile acids may be more evident in chronic liver disease models, our findings highlight the significant influence of metformin on lipid metabolism, closely related to hepatic ferroptosis. We will take your suggestions into account for future studies to further explore the role of bile acids and their regulation by metformin.

      1. Imaging of lipid ROS is not quantitative. The authors should conduct more standard assays with BODIPY 581/591 C11 using cell lysates.

      We appreciate your suggestion to conduct more standard assays using BODIPY 581/591 C11 with cell lysates.

      We would like to clarify that we did indeed utilize assays with BODIPY 581/591 C11 to detect and measure lipid ROS in our study. The detailed description of these assays can be found in the Methods section of our paper. We followed established protocols and guidelines to ensure accurate and reliable measurements of lipid ROS levels.

      We acknowledge that imaging techniques may have limitations in providing quantitative data. However, we employed BODIPY 581/591 C11 assays as a widely accepted and commonly used method to assess lipid ROS levels. This allowed us to obtain qualitative and semi-quantitative information on the changes in lipid ROS levels in response to metformin treatment.

      1. Liproxstatin may be a better drug choice or at the very least should be used to compare with the DFO data

      Thank you for your suggestion. We have taken your advice into consideration and conducted an evaluation of Liproxstatin as a ferroptosis inhibitor. Our findings indicate that Liproxstatin significantly improves HIRI (Figure C). We believe that incorporating Liproxstatin in our research will provide valuable insights and allow for a comprehensive comparison with the DFO data.

      Author response image 6.

      Figure3 a: Liver MDA detection; b: Serum ALT level; c: Serum AST level; d: Liver GSH level; e: Liver Fe level.

      1. The rationale for how GABA was selected is not clear. I am surprised that there were not more significant metabolite changes. It might be better to show a volcano plot of heatmap of the significantly changed features.

      Thank you for raising an important question regarding the rationale for selecting GABA as the focus metabolite in our study. Initially, we also had concerns about the limited number of significant metabolite changes observed. However, through our comprehensive metabolomic profiling, we identified GABA as the most significantly altered metabolite following HIRI.

      It is worth noting that we specifically focused on the measurement of 22 essential amino acids in our analysis. While it is possible that changes in non-essential amino acids may have occurred, we did not examine them in this study. Nevertheless, we have since used additional methods to validate the upregulation of GABA levels, and the biological effects observed support the specific role of GABA in protecting against HIRI. Based on the fact that GABA was the only significant amino acid, the volcano plot was of little significance, so we did not supplement this plot.

      We appreciate your valuable input and thank you for bringing up this important issue.

      1. The manuscript needs to be proofread and edited. There are a variety of typos and grammar issues throughout.

      Thank you for your feedback. We acknowledge that the manuscript requires proofreading and editing, as we have identified several typos and grammar issues. We will try to ensure that the necessary revisions are made to improve the overall quality of the manuscript.

      Reviewer #3 (Recommendations For The Authors):

      However, I have some major concerns for the manuscript.

      1. Line 26 16S rRNA and metagenomic sequencing alone can't accurately confirm the improvement effect of GABA producing bacteria on HIRI. In fact, transcriptome analysis, HPLC-MS/MS and other methods were also used in this paper, so the language expression here is not appropriate

      Thank you for pointing out the language expression issue in line 26 of the manuscript. We apologize for any confusion caused. You are correct in stating that 16S rRNA and metagenomic sequencing alone may not accurately confirm the improvement effect of GABA-producing bacteria on HIRI. In our study, we employed a combination of multiple methods, including transcriptome analysis, HPLC-MS/MS, especially detection of bacteria GABA key synthetases, PAT and GAD, to comprehensively investigate the impact of GABA-producing bacteria on HIRI.

      We have revised the language in line 26 to reflect the broader range of methods used in our study to support the conclusions regarding the improvement effect of GABA-producing bacteria on HIRI.

      1. The Introduction section needs to add a description of the previous research on the association between HIRI and ferroptosis

      Thank you for your suggestion regarding the inclusion of a description of the association between HIRI and ferroptosis in the Introduction section. We agree that this is an important aspect to address. However, upon further consideration, we have decided to move the discussion of ferroptosis and its potential role in HIRI to the Discussion section, as it aligns better with the logical flow of the manuscript. This allows us to discuss the potential implications and future directions in a more organized and coherent manner.

      1. Authors should provide quantified figure or table next to the results of western blot that are more convenient to understand.

      We have revised in manuscript. (See sfigure 7)

      1. In this paper, FMT experiments are used to verify that metformin remodeled gut microbiota can play a role in improving HIRI. The operation steps of FMT should be described more specifically in the method part

      *What is the fecal donor information for FMT?

      *Line272 Did the IR + FMT group put the transplanted microbiota of FMT directly into the drinking water like the other treatment groups? Will such an operation affect the quality and quantification of the transplanted microbiota and lead to the loss of microbiota species? It is crucial for the authors to provide a clear and thorough clarification regarding these matters within the context of their FMT experiment.

      Thank you for your feedback regarding the need for a more detailed description of the fecal microbiota transplantation (FMT) procedure and clarification regarding the IR + FMT group in our manuscript. We appreciate your suggestions and we have taken them into consideration.

      In our study, the fecal donor for FMT was obtained from mice that had been orally administered metformin. The fecal microbiota was collected and processed to remove any residual metformin before transplantation. Specifically, the microbiota for the IR + FMT group was administered through gavage, as stated in line 272. This method does not affect the quality or quantity of the transplanted microbiota, nor does it lead to a loss of microbiota species. We understand the importance of providing clear and thorough clarification regarding these matters. Therefore, we have included additional specific details of the FMT procedure in the revised version of the manuscript. We hope that this clarification addresses your concerns and provides a more comprehensive understanding of our FMT experiment.

      1. The presentation of transcriptomic analysis results in the manuscript is insufficiently comprehensive and specific, as they are solely depicted through Fig 4a. Relying solely on Fig 4a is inadequate to establish the definitive roles of the met group and FMT group in ferroptosis compared to other groups. Therefore, the authors should provide additional transcriptomic analysis results to ascertain the specific effects of the met group and FMT group in ferroptosis, as well as their comparison with other groups.

      Thank you for your feedback regarding the comprehensiveness of our transcriptomic analysis results in the manuscript. We understand your concerns and appreciate your suggestion. In our study, we have provided additional data beyond Fig 4a to support the specific effects of the met group and FMT group in ferroptosis, as well as their comparison with other groups. Specifically, in Figure 3, we have included Western blot (WB) and quantitative real-time polymerase chain reaction (qRT-PCR) data to confirm the involvement of ferroptosis in HIRI and the role of metformin in attenuating ferroptosis. Moreover, we have presented transcriptomic analysis results in Figure 3h, which includes a heatmap of genes related to lipid metabolism. These findings can strengthen our conclusions regarding the importance of ferroptosis in HIRI and the protective effects of metformin against ferroptosis. We hope that these data address your concerns and provide a more comprehensive understanding of our research findings.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This fundamental study provides compelling evidence to explain how chemical variations within a set of kinase inhibitors drive the selection of specific Erk2 conformations. Conformational selection plays a critical role in targeting medically relevant kinases such as Erk2 and the findings reported here open new avenues for designing small molecule inhibitors that block the active site while also steering the population of the enzyme into active or inactive conformations. Since protein dynamics and conformational ensembles are essential for enzyme function, this work will be of broad interest to those working in drug development, signal transduction, and enzymology.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary: The authors set out to determine how chemical variation on kinase inhibitors determines the selection of Erk2 conformations and how inhibitor binding affects ERk2 structure and dynamics.

      Strengths: The study is beautifully presented both verbally and visually. The NMR experiments and the HDX experiments complement each other for the study of Erk2 solution dynamics. X-ray crystallography of Erk2 complexes with inhibitors shows small but distinct structural changes that support the proposed model for the impact of inhibitor binding.

      Weaknesses: A discussion of compound residence time for the different compounds and kinase constructs and how it could affect the very slow HDX rates might be helpful. For example, could any of the observed effects in Figure 4 be due to slow compound dissociation rather than slowed down kinase dynamics? What would be the implications?

      Response: Rate constants for kon and koff were estimated for three inhibitors using surface plasmon resonance:

      Author response table 1.

      SPR estimates of Kd for selected inhibitors ranged between 0.03-3 nM. All HDX time courses involved prebinding of 20 µM inhibitor and 17 µM ERK2 for 30 min (predicted occupancy 99.9%), followed by deuteration time courses with 20 µM inhibitor and 1.7 µM ERK2. Estimated rates of dissociation were ~0.0003-0.007 s-1 and rates of binding were 20-100 s-1 for the inhibitors tested. Because the binding rates are faster than the intrinsic H-D exchange rate at pD 7 (~1 s-1), we expect ligands to rebind and form the enzyme:ligand complex faster than the free enzyme undergoes exchange. Therefore, HDX rates should mostly reflect deuteration of the inhibitor-bound enzyme for all inhibitors.

      Reviewer #2 (Public Review):

      Erk2 is an essential element of the MAP kinase signaling cascade and directly controls cell proliferation, migration, and survival. Therefore, it is one of the most important drug targets for cancer therapy. The catalytic subunit of Erk2 has a bilobal architecture, with the small lobe harboring the nucleotide-binding pocket and the large lobe harboring the substrate-binding cleft. Several studies by the Ahn group revealed that the catalytic domain hops between (at least) two conformational states: active (R) and inactive (L), which exchange in the millisecond time scale based on the chemical shift mapping. The R state is a signature of the double phosphorylated Erk2 (2P-Erk2), while the L state has been associated with the unphosphorylated kinase (0P-Erk2). Interestingly, the X-ray structures reveal only minimal differences between these two states, a feature that led to the conclusion that active and inactive states are structurally similar but dynamically very different. The Ahn group also found that ATP-competitive inhibitors can steer the populations of Erk2 either toward the R or the L state, depending on their chemical nature. The latter opens up the possibility of modulating the activity of this kinase by changing the chemistry of the ATP-competitive inhibitor. To prove this point, the authors present a set of nineteen compounds with diverse chemical substituents. From their combined NMR and HDX-Mass Spec analyses, fourteen inhibitors drive the kinase toward the R state, while four compounds keep the kinase hopping between the R and L states. Based on these data, the authors rationalize the effects of these inhibitors and the importance of the nature of the substituents on the central scaffold to steer the kinase activity. While all these inhibitors target the ATP binding pocket, they display diverse structural and dynamic effects on the kinase, selecting a specific structural state. Although the inhibited kinase is no longer able to phosphorylate substrates, it can initiate signaling events functioning as scaffolds for other proteins. Therefore, by changing the chemistry of the inhibitors it may be possible to affect the MAP cascade in a predictable manner. This concept, recently introduced as proof of principle, finds here its significance and practical implications. The design of the next-generation inhibitors must be taken into account for these design principles. The research is well executed, and the data support the author's conclusions.

      Reviewer #3 (Public Review):

      Summary: Anderson et al utilize an array of orthogonal techniques to highlight the importance of protein dynamics for the function and inhibition of the kinase ERK2. ERK2 is important for a large variety of biological functions.

      Strengths: This is a thorough and detailed study that uses a variety of techniques to identify critical molecular/chemical parameters that drive ERK2 in specific states.

      Weaknesses: No details rules were identified so that novel inhibitors could be designed. Nevertheless, the mode of action of these existing inhibitors is much better defined.

      Response: As recommended we added a sentence to the Discussion suggesting that inhibitors that perturb the β1-β2-β3 sheet in such a way that moves helix αC and αL16 away from the binding site might confer R-state selection. We view this as a preliminary model for predicting conformation selection in ERK2.

      Reviewer #1 (Recommendations For The Authors):

      Maybe the authors can comment on how the HDX timescale and the NMR timescale relate to each other and how such different timescales can report on the same event. In particular, the HDX timescale appears to be on the scale on minutes to tens hours (e.g. 2P state). How would inhibitor dissociation and rebinding affect the observed HDX signal? Is it worth considering compound residence time for the different compounds/kinase states?

      Response: The HDX-MS and NMR experiments report different processes therefore their timescales do not necessarily match. For native state proteins at neutral pH, HDX-MS reports fluctuations that allow solvent exposure of backbone amide N-H, reflecting conformational mobility of the main chain. This is often modeled as a two-state interconversion between “closed” (HDX protected) and “open” (HDX accessible) states. Because the µs-ms timescale of main chain fluctuations is faster than the intrinsic rate of HDX (kexch, ~1 s-1), the observed HDX rate (kobs) can be approximated by the ratio of kopen/kclosed x kexch = Kop x kexch. Therefore, kobs can be considered a thermodynamic measurement that reflects Kop.

      The [methyl 13C,1H] NMR CPMG experiment that we used to identify global exchange behavior in Xiao et al (PNAS, 2014) modeled the 2P-ERK2 apoenzyme by a two-state equilibrium (L⇌R) between methyl-ILV conformers, yielding rate constants kL→R 240 s-1 and kR→L 60 s-1. Some methyls had large enough chemical shifts between L and R that they appeared as separate peaks in HMQC spectra that matched the L and R populations estimated by CPMG. In this study, the HMQC peaks shown in Figures 1, 6, and 9 are those that report shifts in L vs R populations and conformation selection for the R-state by VTX11e, BVD523 and triazolopyridine inhibitors.

      Where HDX and NMR agree is in their ability to report changes in populations of L and R in 2P-ERK2. This was first shown when both HDX and NMR measurements reported perturbations at the activation loop induced by inhibitors with differential selection for the R- vs L-states (Pegram et al. PNAS, 2019). CPMG measurements then confirmed that methyl probes in the activation loop are included in the global exchange process (Iverson et al., Biochemistry, 2020). Therefore, the HDX and NMR experiments reflect shifts in the equilibrium between L and R conformers, rather than motions with specific timescales.

      Reviewer #2 (Recommendations For The Authors):

      I believe the paper is suitable for the special issue of Elife dedicated to protein kinases after the authors address minor concerns/comments.

      a) Introduction, page 3: "[..] But within the ATP binding site, the conserved residues ...are largely overlapping." Do the authors mean that the residues are overlapping in the X-ray structures? If so, what is the rmsd among the X-ray structures?

      Response: The overlap between conserved residues K52, E69, D147, N152 and D165 in 2P- and 0P-ERK2 is presented in Fig. S1C, which shows an overlay between their apoenzyme crystal structures (PDBID: 2ERK, 5UMO). The RMSD of atoms in each residue are: K52 0.63 Å (9 atoms); E69 0.15 Å (9 atoms); D147 0.055 Å (8 atoms); D165 0.88 Å (8 atoms). As recommended, this information was added to the legend to Suppl. Fig. S1.

      b) Introduction, page 5: "[...] For example binding of VTX11 partially inhibits...[..]" Please provide a citation.

      Response: As recommended we added a citation at end of this sentence (Pegram et al. PNAS, 2019).

      c) Introduction, page 5: "[...] N-lobe deformities..." What do the authors mean by deformities? Are there frustrated conformations?

      Response: We used the term “deformities” to mean conformational differences, which may be but are not necessarily due to frustration. To avoid confusion, we removed the term “deformities” and replaced it with “conformational changes”.

      d) Supplementary Information. The authors report the chemical shift perturbations for several inhibitors. Does the extent of the chemical shift perturbation reflect the strength of the binding for each inhibitor? In other words, do the largest chemical shift perturbations correspond to the highest binding affinity?

      Response: The concentrations used in the NMR ligand binding experiments (150 µM ERK2, 180 µM inhibitor) allow 99.9+% complex formation over the 0.03 - 3 nM range of Ki for all inhibitors. Therefore, the chemical shifts report changes in electronic environment between bound and free enzyme. These can be ascribed to first or second sphere contacts with ligand or distal allosteric effects. But they are not likely to reflect differences in binding affinity.

      New Suppl. Fig. S3 now adds HMQC titrations of VTX11e and GDC0994 into 2P-ERK2, which confirm binding saturation based on the disappearance of free enzyme peaks.

      e) Do the authors have any evidence for the dynamic effects of the different inhibitors? Of course, a systematic analysis of the protein dynamics by NMR will require a significant amount of time and effort beyond this work. However, did the authors measure the effects of the inhibitors on the linewidths of the methyl groups distal from the binding site?<br /> Response: As recommended, we examined linewidths of selected peaks in the presence and absence of inhibitors. The results show no significant systematic differences between bound and free ERK2. Therefore dynamic effects of different inhibitors are not indicated by the available data.

      f) The authors identified the b3-aC loop as a critical element for the internal network of interactions. Can this structural element be targeted by small molecules as well?

      Response: Yes, in fact the X-ray structures of 0P-ERK2 bound to the inhibitor, SCH772984, and 2P-ERK2 bound to the related compound, SCHCPD336, both show inhibitor occupying a pocket between between strand β3 and helix αC, leading to disruption of β3-αC contacts (Chaikaud et al., NSMB 2014; Pegram et al., PNAS 2019). To the extent that β3-αC contacts are important for conformation selection to the R-state, this may explain why SCH772984 favors the L-state. We revised the Discussion to add this point.

      g) The authors should mention a recent paper suggesting that it is possible to control substrate-binding affinity by changing the nature of the ATP-binding inhibitors ((DOI: 10.1126/sciadv.abo0696).

      Response. As recommended we added this point and citation to the Discussion.

      Reviewer #3 (Recommendations For The Authors):

      3.1. The manuscript is well written, but very long and sometimes repetitive. Some parts of the introduction are repeated in the result section and parts of the result section are repeated in the discussion. It will be easy to shorten the work to make it easier to read.

      Response: As recommended we streamlined the Discussion to remove some of the repetitive elements, while trying to retain the main conclusions and rationale for readers who are not well versed in kinase structure.

      3.2. Only specific residues are shown for the NMR spectra figures - while this is helpful to understand the concept, full spectra need to be shown to allow for direct comparison of the data quality (i.e. in supplemental material). If statements are made that measurements are done under full saturation - it should be shown that saturation is achieved in the measurements. All relaxation data should be made available - similar to CSPs.

      Response: As recommended, new Suppl. Figs. S2 and S9 were added to show the full spectra of each inhibitor complex analyzed by NMR. New Suppl. Fig. S3 now adds titrations of 2P-ERK2 with VTX11e and GDC0994.The results confirm binding saturation based on the disappearance of free enzyme peaks.

      3.3. No validation report was provided, nor a PDB number - so it is unclear if the crystal structures have been submitted - they need to be submitted in order to also access an mtz file, which is critical to understanding the quality of the structure (especially the ligand). This makes it difficult to assess the quality of the structures.

      Response: Table S1 has been revised to show data collection and refinement parameters for PDBID: 8U8K (2PERK2:Inh#8, Fig. 8C) and 8U8J (2P-ERK2:Inh#16, Fig. 8D). RCSB validation reports are attached and PDB depositions have been approved and will be released upon VOR assignment.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      The manuscript by Goetz et al. takes a new perspective on sensory information processing in cells. In contrast to previous studies, which have used population data to build a response distribution and which estimate sensory information at about 1 bit, this work defines sensory information at the single cell level. To do so, the authors take two approaches. First, they estimate single cells' response distributions to various input levels from time-series data directly. Second, they infer these single-cell response distributions from the population data by assuming a biochemical model and extracting the cells' parameters with a maximum-entropy approach. In either case, they find, for two experimental examples, that single-cell sensory information is much higher than 1 bit, and that the reduction to 1 bit at the population level is due to the fact that cells' response functions are so different from each other. Finally, the authors identify examples of measurable cell properties that do or do not correlate with single-cell sensory information.

      The work brings an important and distinct new insight to a research direction that generated strong interest about a decade ago: measuring sensory information in cells and understanding why it is so low. The manuscript is clear, the results are compelling, and the conclusions are well supported by the findings. Several contributions should be of interest to the quantitative biology community (e.g., the demonstration that single cells' sensory information is considerably larger than previously implied, and the approach of inferring single-cell data from population data with the help of a model and a maximum-entropy assumption).

      We thank the reviewer for the excellent summary of our research.

      Reviewer #2 (Public Review):

      In this paper the authors present an existing information theoretic framework to assess the ability of single cells to encode external signals sensed through membrane receptors.

      The main point is to distinguish actual noise in the signaling pathway from cell-cell variability, which could be due to differences in their phenotypic state, and to formalize this difference using information theory.

      After correcting for this cellular variability, the authors find that cells may encode more information than one would estimate from ignoring it, which is expected. The authors show this using simple models of different complexities, and also by analyzing an imaging dataset of the IGF/FoxO pathway.

      The implications of the work are limited because the analysed data is not rich enough to draw clear conclusions. Specifically,

      • the authors do not distinguish what could be methodological noise inherent to microscopy techniques (segmentation etc), and actual intrinsic cell state. It's not clear that cell-cell variability in the analyzed dataset is not just a constant offset or normalization factor. Other authors (e.g. Gregor et al Cell 130, 153-164) have re-centered and re-normalized their data before further analysis, which is more or less equivalent to the idea of the conditional information in the sense that it aims to correct for this experimental noise.

      We thank the reviewer for the comment. However, we do not believe our analysis is a consequence of normalization artifacts. Prior to modeling the single cell data, we removed well-dependent background fluorescence. This should take care of technical variation related to overall offsets in the data. We agree with the reviewer that background subtraction may not fully account for technical variability. For example, some of the cell-to-cell variability may potentially be ascribed to issues such as incorrect segmentation. Unfortunately, however, attempting to remove this technical variability through cell-specific normalization as suggested by the reviewer1 will diminish to a very large extent the true biological effects related to extensivity (cell size, total protein abundance). We note that these effects are a direct function of cell state-variables (see for example Cohen-Saidon et al.2 who use cell-state specific normalization to improve signaling fidelity). Therefore, an increase in mutual information after normalization does not only reflect removal of technical noise but also accounts for effect of cell state variables.

      Nonetheless, as the reviewer suggested, we performed a cell-specific normalization wherein the mean nuclear FoxO levels in each cell (in the absence of IGF) were normalized to one. Then, for each ligand concentration, we collated FoxO response across all cells and computed the channel capacity corresponding to cell-state agnostic mutual information ICSA. As expected, ICSA increases from ∼0.9 bits to ∼1.3 bits when cell-specific normalization was performed (Author response image 1). However, this value is significantly lower than the average ∼1.95 of cell-state specific mutual information ⟨ICee⟩. Finally, we note that the cell specific normalization does not change the calculations of channel capacity at the single cell level as these calculations do not depend on linear transformations of the data (centering and normalization). Therefore, we do not think that our analysis of experimental data suffers from artifacts related to microscopy.

      Author response image 1.

      Author response image 1. Left: nuclear FoxO response averaged over all cells in the population across different ligand concentration. Right: nuclear FoxO response was first normalized at the single cell level and then averaged over all cells in the population across different ligand concentrations.

      • in the experiment, each condition is shown only once and sequentially. This means that the reproducibility of the response upon repeated exposures in a single cell was not tested, casting doubt on the estimate of the response fidelity (estimated as the variance over time in a single response).

      The reviewer raises an excellent question about persistence of cell states. To verify that cell states are indeed conserved at the time scale of the experiment, we reanalyzed data generated by Gross et al.3 wherein cells were perturbed with IGF (37.5 pM), followed by a washout which allowed the cells to reach pre-stimulation nuclear FoxO levels, followed by a re-perturbation with the same amount of IGF. Nuclear FoxO response was measured at the single cell level after 90 minutes with IGF exposure both these times. Since the response x to the same input u was measured twice in the same cell (x1 and x2), we could evaluate the intrinsic variability in response at the single cell level. We then compared this intrinsic variability to the extrinsic cell-state dependent variability in the population.

      To do so, we computed for each cell δ=x1-x2 the difference between the two responses. reviewer Figure 2 show the histogram p(δ) as computed from the data (pink) and the same computed from the model that was trained on the single cell data (blue). We also computed p(δ0) which represented the difference between responses of two different cells both from the data and from the model.

      As we see in Author response image 2, the distribution p(δ) is significantly narrower than p(δ0) suggesting that intracellular variability is significantly smaller than across-population variability and that cells’ response to the same stimuli are quite conserved, especially when compared to responses in randomly picked pairs of cells. This shows that cell states and the corresponding response to extracellular perturbations are conserved, at least at the time scale of the experiment. Therefore, our estimates of cell-to-cell variability signaling fidelity are stable and reliable. We have now incorporated this discussion in the manuscript (lines 275-281).

      Author response image 2.

      Author response image 2. Left: Cells were treated with 37.5 pM of IGF for 90 minutes, washed out for 120 minutes and again treated with 37.5 pM of IGF. Nuclear FoxO was measured during the treatment and the washout. The distributions on the left show the difference in FoxO levels in single cells after the two 90 minutes IGF stimulations (pink: data, blue: model). Right: Distribution of difference in FoxO levels in two randomly picked cells after 90 minutes of exposure to 37.5 pM IGF.

      • another dataset on the EGF/EGFR pathway is analyzed, but no conclusion can be drawn from it because single-cell information cannot be directly estimated from it. The authors instead use a maximum-entropy Ansatz, which cannot be validated for lack of data.

      We thank the reviewer for this comment. We agree with the reviewer that we have not verified our predictions for the EGF/EGFR pathway. That study was meant to show the potential generality of our analysis. We look forward to validating our predictions for the EGF/EGFR pathway in future studies.

      Reviewer #3 (Public Review):

      Goetz, Akl and Dixit investigated the heterogeneity in the fidelity of sensing the environment by individual cells in a population using computational modeling and analysis of experimental data for two important and well-studied mammalian signaling pathways: (insulin-like growth factor) IGF/FoxO and (epidermal growth factor) EFG/EFGR mammalian pathways. They quantified this heterogeneity using the conditional mutual information between the input (eg. level of IGF) and output (eg. level of FoxO in the nucleus), conditioned on the "state" variables which characterize the signaling pathway (such as abundances of key proteins, reaction rates, etc.) First, using a toy stochastic model of a receptor-ligand system - which constitutes the first step of both signaling pathways - they constructed the population average of the mutual information conditioned on the number of receptors and maximized over the input distribution and showed that it is always greater than or equal to the usual or "cell state agnostic" channel capacity. They constructed the probability distribution of cell state dependent mutual information for the two pathways, demonstrating agreement with experimental data in the case of the IGF/FoxO pathway using previously published data. Finally, for the IGF/FoxO pathway, they found the joint distribution of the cell state dependent mutual information and two experimentally accessible state variables: the response range of FoxO and total nuclear FoxO level prior to IGF stimulation. In both cases, the data approximately follow the contour lines of the joint distribution. Interestingly, high nuclear FoxO levels, and therefore lower associated noise in the number of output readout molecules, is not correlated with higher cell state dependent mutual information, as one might expect. This paper contributes to the vibrant body of work on information theoretic characterization of biochemical signaling pathways, using the distribution of cell state dependent mutual information as a metric to highlight the importance of heterogeneity in cell populations. The authors suggest that this metric can be used to infer "bottlenecks" in information transfer in signaling networks, where certain cell state variables have a lower joint distribution with the cell state dependent mutual information.

      The utility of a metric based on the conditional mutual information to quantify fidelity of sensing and its heterogeneity (distribution) in a cell population is supported in the comparison with data. Some aspects of the analysis and claims in the main body of the paper and SI need to be clarified and extended.

      1. The authors use their previously published (Ref. 32) maximum-entropy based method to extract the probability distribution of cell state variables, which is needed to construct their main result, namely p_CeeMI (I). The salient features of their method, and how it compares with other similar methods of parameter inference should be summarized in the section with this title. In SI 3.3, the Lagrangian, L, and Rm should be defined.

      We thank the reviewer for the comment and apologize for the omission. We have now rewritten the manuscript to include references to previous reviews of works that infer probability distributions4 of cell state variables (lines 156-168). Notably, as we argued in our previous work5, no current method can efficiently estimate the joint distribution over parameters that is consistent with measured single cell data and models of signaling networks. Therefore, we could not use multiple approaches to infer parameter distributions. We have now expanded our discussion of the method in the supplementary information sections.

      1. Throughout the text, the authors refer to "low" and "high" values of the channel capacity. For example, a value of 1-1.5 bits is claimed to be "low". The authors need to clarify the context in which this value is low: In some physically realistic cases, the signaling network may need to simply distinguish between the present or absence of a ligand, in which case this value would not be low.

      We agree with the reviewer that small values of channel capacities might be sufficient for cells to carry out some tasks, in which case a low channel capacity does not necessarily indicate a network not performing its task. Indeed, how much information is needed for a specific task is a related but distinct question from how much information is provided though a signaling network. Both questions are essential to understand a cell's signaling behavior, with the former being far less easy to answer in a way which is generalizable. In contrast, the latter can be quantitatively answered using the analysis presented in our manuscript.

      1. Related to (2), the authors should comment on why in Fig. 3A, I_Cee=3. Importantly, where does the fact that the network is able to distinguish between 23 ligand levels come from? Is this related to the choice (and binning) of the input ligand distribution (described in the SI)?

      We thank the reviewer for the comment. The network can distinguish between all inputs used in the in silico experiment precisely because the noise at the cellular level is small enough that there is negligible overlap between single cell response distributions. Indeed, the mutual information will not increase with the number of equally spaced inputs in a sub-linear manner, especially when the input number is very high.

      1. The authors should justify the choice of the gamma distribution in a number of cases (eg. distribution of ligand, distribution cell state parameters, such as number of receptors, receptor degradation rate, etc.).

      We thank the reviewer for the comment. We note that previous works in protein abundances and gene expression levels (e.g. see6) have reported distributions with positive skews that can be fit well with gamma distributions or log-normal distributions. Moreover, many stochastic models of protein abundance levels and signaling networks are also known to result in abundances that are distributed according to a negative binomial distribution, the discrete counterpart of gamma distribution. Therefore, we chose Gamma distributions in our study. We have now clarified this point in the Supplementary Information. At the same time, gamma distribution only serves as a regularization for the finite data and in principle, our analysis and conclusion do not depend on choice of gamma distribution for abundances of proteins, ligands, and cell parameters.

      1. Referring to SI Section 2, it is stated that the probability of the response (receptor binding occupancy) conditioned on the input ligand concentration and number of receptors is a Poisson distribution. Indeed this is nicely demonstrated in Fig. S2. Therefore it is the coefficient of variation (std/mean) that decreases with increasing R0, not the noise (which is strictly the standard deviation) as stated in the paper.

      We thank the reviewer of the comment. We have now corrected our text.

      1. In addition to explicitly stating what the input (IGF level) and the output (nuclear GFP-tagged FoxO level) are, it would be helpful if it is also stated what is the vector of state variables, theta, corresponding to the schematic diagram in Fig. 2C.

      We thank the reviewer of the comment. We have now corrected our text in the supplementary material as well as the main text (Figure 2 caption).

      1. Related to Fig. 2C, the statement in the caption: "Phosphorylated Akt leads to phosphorylation of FoxO which effectively shuttles it out of the nucleus." needs clarification: From the figure, it appears that pFoxO does not cross the nuclear membrane, in which case it would be less confusing to say that phosphorylation prevents reentry of FoxO into the nucleus.

      We thank the reviewer of the comment. We have now corrected our text (Figure 2 caption).

      1. The explanations for Fig. 2D, E and insets are sparse and therefore not clear. The authors should expand on what is meant by model and experimental I(theta). What is CC input dose? Also in Fig. 2E, the overlap between the blue and pink histograms means that the value of the blue histogram for the final bin - and therefore agreement or lack thereof with the experimental result - is not visible. Also, the significance of the values 3.25 bits and 3 bits in these plots should be discussed in connection with the input distributions.

      We thank the reviewer of the comment. We have now corrected our text (Figure 2 caption and lines 249-251).

      1. While the joint distribution of the cell state dependent mutual information and various biochemical parameters is given in Fig. S7, there is no explanation of what these results mean, either in the SI or main text. Related to this, while a central claim of the work is that establishing this joint distribution will allow determination of cell state variables that differentiate between high and low fidelity sensing, this claim would be stronger with more discussion of Figs. 3 and S7. The related central claim that cell state dependent mutual information leads to higher fidelity sensing at the population level would be made stronger if it can be demonstrated that in the limit of rapidly varying cell state variables, the I_CSA is retrieved.

      We thank the reviewer for this excellent comment. We have now added more discussion about interpreting the correlation between cell state variables and cell-state specific mutual information (lines 294-306). We also appreciate the suggestion about a toy model calculation to show that dynamics of cell state variables affects cell state specific mutual information. We have now performed a simple calculation to show how dynamics of cell state variables affects cells’ sensing ability (lines 325-363). Specifically, we constructed a model of a receptor binding to the ligand wherein the receptor levels themselves changed over time through a slow process of gene expression (Author response image 3, main text Figure 4). In this model, the timescales of fluctuations of ligand-free receptors on the cell surface can be tuned by speeding up/slowing down the degradation rate of the corresponding mRNA while keeping the total amount of steady state mRNA constant. As shown in Author response image 3, the dependence of cell-specific mutual information on cell state variable diminishes when the time scale of change of cell state variables is fast.

      Author response image 3.

      Author response image 3. Cell state dynamics governs cell state conditioned mutual information. A. In a simple stochastic model, receptor mRNA is produced at a constant rate from the DNA and the translated into ligand-free receptors. The number of ligand-bound receptors after a short exposure to ligands is considered the output. B. A schematic showing dynamics of receptor numbers when mRNA dynamics are slower compared to signaling time scales. C. Conditioning on receptor numbers leads to differing abilities in sensing the environment when the time scale of mRNA dynamics τ is slow. In contrast, when the mRNA dynamics are fast (large τ-1), conditioning on cell state variables does not lead to difference in sensing abilities.

      Reviewer #1 (Recommendations For The Authors):

      My major concerns are mainly conceptual, as described below. With proper attention to these concerns, I feel that this manuscript could be a good candidate for the eLife community.

      Major concerns:

      1. The manuscript convincingly demonstrates that cells good sensors after all, and that heterogeneity makes their input-output functions different from each other. This raises the question of what happens downstream of sensing. For single-celled organisms, where it may be natural to define behavioral consequences at the single-cell level, it may very well be relevant that single-cell information is high, even if cells respond differently to the environment. But for cells in multicellular organisms, like those studied here, I imagine that most behavioral consequences of sensing occur at the multicellular level. Thus, many cells' responses are combined into a larger response. Because their responses are different, their high-information individual responses may combine into a low-information collective response. In fact, one could argue that a decent indicator of the fidelity of this collective response is indeed the population-level information measure estimated in previous works. Thus, a fundamental question that the authors must address is: what is the ultimate utility of reliable, but heterogeneous, responses for a multicellular system? This question has an important bearing for the relevance of their findings.

      We thank the reviewer for this thought-provoking comment. We agree that the fidelity with which cells sense their environment, especially those in multicellular organisms, may not always need to be very high. We speculate that when the biological function of a collection of cells can be expressed as an average over the response of individual cells; high-information but heterogeneous cells can be considered equivalent to low-information homogeneous cells. An example of such a function is population differentiation to maintain relative proportions of different cell types in a tissue or producing a certain amount of extracellular enzyme.

      In contrast, we believe that when the biological function involves collective action, spatial patterning, or temporal memory, the difference between reliable but heterogeneous population and unreliable homogeneous population will become significant. We plan to explore this topic in future studies.

      1. The authors demonstrate that the agreement is good between their inference approach and the direct estimation of response distributions from single-cell time series data. In fact, the agreement is so good that it raises the question of why one would need the inference approach at all. Is it because single-cell time series data is not always available? Is that why the authors used it for one example and not the other? The validation is an asset, but I imagine that the inference approach is complicated and may make assumptions that are not always true. Thus, its utility and appropriate use must be clarified.

      We thank the reviewer for the comment. As the reviewer correctly pointed out, live cell imaging data is not always available and has limited scope. Specifically, optical resolution limits measurements of multiple targets. Moreover, typical live cell measurements measure total abundance or localization and not post-translational modification (phosphorylation, methylation, etc.) which are crucial to signaling dynamics. The most readily available single cell data such those measured using single cell RNA sequencing, immunofluorescence, or flow cytometry are necessarily snapshots. Therefore, computational models that can connect underlying signaling networks to snapshot data become essential when imputing single cell trajectories. In addition, the modeling also allows us to identify network parameters that correlate most strongly with cellular heterogeneity. We have now clarified this point in the manuscript (lines 366-380).

      Minor comments:

      1. I would point out that the maximum values in the single-cell mutual information distributions (Fig 2D and E) correspond to log2 of the number of inputs levels, corresponding to perfect distinguishability of each of the equally-weighted input states. It is clear that many of the mutual information values cluster toward this maximum, and it would help readers to point out why.

      We thank the reviewer for the comment. We have now included a discussion about the skew in the distribution in the text (lines 251-260).

      1. Line 216 references Fig 2C for the EGF/EGFR pathway, but Fig 2C shows the FoxO pathway. In fact, I did not see a schematic of the EGF/EGFR pathway. It may be helpful to include one, and for completeness perhaps also one for the toy model, and organize the figures accordingly.

      We thank the reviewer for the comment. We did not include three separate schematics because the schematics of the EGF/EGFR model and the toy model are subsets of the schematic of the IGF/FoxO model. We have now clarified this point in the manuscript (Figure 2 caption).

      Reviewer #2 (Recommendations For The Authors):

      • the simple model of Fig. 2A would gain from a small cartoon explaining the model and its parameters.

      We thank the reviewer for the comment. We did not include a schematic for the toy model as it is a subset of the schematic of the IGF/FoxO model. The schematic of the toy model is included in the supplementary information.

      • L should be called u, and B should be called x, to be consistent with the rest of the notations in the paper.

      We have decided to keep the notation originally presented in the manuscript.

      • legend of 2E and D should be clarified. "CC input dose" is cryptic. The x axis is the input dose, the y axis is its distribution at the argmax of I. CC is the max of I, not its argmax. Likewise "I" in the legend for the colors should not be used to describe the insets, which are input distributions.

      We have now changed this in the manuscript.

      • the data analysis of the IGF/FoxO pathway should be explained in the main text, not the SI. Otherwise it's impossible to understand how one arrives at, or how to intepret, figure 2E, which is central to the paper. For instance the fact that p(x|u,theta) is assumed to be Gaussian, and how the variance and mean are estimated from the actual data is very important to understand the significance of the results.

      While we have added more details in the manuscript in various places, for the sake of brevity and clarity, we have decided to keep the details of the calculations in the supplementary materials.

      • there's no Method's section. Most of the paper's theoretical work is hidden in the SI, while it should be described in the methods.

      We thank the review of the comment. However, we believe that adding a methods section will break the narrative of the paper. The methods are described in detail in the supplementary materials with sufficient detail to reproduce our results. Additionally, we also provide a link to the github page that has all scripts related to the manuscript.

      PS: please submit a PDF of the SI for review, so that people can read it on any platform (as opposed to a word document, especially with equations)

      We have now done this.

      Reviewer #3 (Recommendations For The Authors):

      1. Subplots in Fig. 1, inset in Fig. 3 are not legible due to small font.

      We have now increased the font.

      1. Mean absolute error in Fig. S5 and relative error in related text should be clarified.

      We have now clarified this in the manuscript.

      1. Acronyms (MACO, MERIDIAN) should be defined.

      We have now made these changes.

      References

      1. Gregor T, Tank DW, Wieschaus EF, Bialek W. Probing the limits to positional information. Cell. 2007;130(1):153-64. doi: 10.1016/j.cell.2007.05.025. PubMed PMID: WOS:000248587000018.

      2. Cohen-Saidon C, Cohen AA, Sigal A, Liron Y, Alon U. Dynamics and Variability of ERK2 Response to EGF in Individual Living Cells. Mol Cell. 2009;36(5):885-93. doi: 10.1016/j.molcel.2009.11.025. PubMed PMID: WOS:000272965400020.

      3. Gross SM, Dane MA, Bucher E, Heiser LM. Individual Cells Can Resolve Variations in Stimulus Intensity along the IGF-PI3K-AKT Signaling Axis. Cell Syst. 2019;9(6):580-8 e4.

      4. Loos C H, J. Mathematical modeling of variability in intracellular signaling. Current Opinion in Systems Biology. 2019;16:17-24.

      5. Dixit PD, Lyashenko E, Niepel M, Vitkup D. Maximum Entropy Framework for Predictive Inference of Cell Population Heterogeneity and Responses in Signaling Networks. Cell Syst. 2020;10(2):204-12 e8.

      6. Taniguchi Y, Choi PJ, Li GW, Chen H, Babu M, Hearn J, Emili A, Xie XS. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science. 2010;329(5991):533-8. doi: 10.1126/science.1188308. PubMed PMID: 20671182; PMCID: PMC2922915.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      The proposed study provides an innovative framework for the identification of muscle synergies taking into account their task relevance. State-of-the-art techniques for extracting muscle interactions use unsupervised machine-learning algorithms applied to the envelopes of the electromyographic signals without taking into account the information related to the task being performed. In this work, the authors suggest including the task parameters in extracting muscle synergies using a network information framework previously proposed. This allows the identification of muscle interactions that are relevant, irrelevant, or redundant to the parameters of the task executed.

      The proposed framework is a powerful tool to understand and identify muscle interactions for specific task parameters and it may be used to improve man-machine interfaces for the control of prostheses and robotic exoskeletons.

      With respect to the network information framework recently published, this work added an important part to estimate the relevance of specific muscle interactions to the parameters of the task executed. However, the authors should better explain what is the added value of this contribution with respect to the previous one, also in terms of computational methods.

      It is not clear how the well-known phenomenon of cross-talk during the recording of electromyographic muscle activity may affect the performance of the proposed technique and how it may bias the overall outcomes of the framework.

      We thank reviewer 1 for their useful commentary on this manuscript.

      Reviewer #2 (Public Review):

      This paper is an attempt to extend or augment muscle synergy and motor primitive ideas with task measures. The authors idea is to use information metrics (mutual information, co-information) in 'synergy' constraint creation that includes task information directly. By using task related information and muscle information sources and then sparsification, the methods construct task relevant network communities among muscles, together with task redundant communities, and task irrelevant communities. This process of creating network communities may then constrain and help to guide subsequent synergy identification using the authors published sNM3F algorithm to detect spatial and temporal synergies.

      The revised paper is much clearer and examples are helpful in various ways. However, figure 2 as presented does not convincingly show why task muscle mutual information helps in separating synergies, though it is helpful in defining the various network communities used in the toy example.

      The impact of the information theoretic constraints developed as network communities on subsequent synergy separation are posited to be benign and to improve over other methods (e.g., NNMF). However, not fully addressed are the possible impacts of the methods on compositionality links with physiological bases, and the possibility remains of the methods sometimes instead leading to modules that represent more descriptive ML frameworks that may not support physiological work easily. Accordingly, there is a caveat. This is recognized and acknowledged by the authors in their rebuttal of the prior review. It will remain for other work to explore this issue, likely through testing on detailed high degree of freedom artificial neuromechanical models and tasks. This possible issue with the strategy here likely needs to be fully acknowledged in the paper.

      The approach of the methods seeks to identify task relevant coordinative couplings. This is a meta problem for more classical synergy analyses. Classical analyses seek compositional elements stable across tasks. These elements may then be explored in causal experiments and generative simulations of coupling and control strategies. However, task-based understanding of synergy roles and functional uses is significant and is clearly likely to be aided by methods in this study.

      Information based separation has been used in muscle synergy analyses using infomax ICA, which is information based at core. Though linear mixing of sources is assumed in ICA, minimized mutual information among source (synergy) drives is the basis of the separation and detects low variance synergy contributions (e.g., see Yang, Logan, Giszter, 2019). In the work in this paper, instead, mutual information approaches are used to cluster muscles and task features into network communities preceding the SNM3F algorithm use for separation, rather than using minimized information in separation. This contrast of an accretive or agglomerative mutual information strategy here used to cluster into networks, versus a minimizing mutual information source separation used in infomax ICA epitomizes a key difference in approach here.

      Physiological causal testing of synergy ideas is neglected in the literature reviews in the paper. Although these are only in animal work (Hart and Giszter, 2010; Takei and Seki, 2017), the clear connection of muscle synergy analysis choices to physiology is important, and eventually these issues need to be better managed and understood in relation to the new methods proposed here, even if not in this paper.

      Analyses of synergies using the methods the paper has proposed will likely be very much dependent on the number and quality of task variables included and how these are managed, and the impacts of these on the ensuing sparsification and network communities used prior to SNM3F. The authors acknowledge this in their response. This caveat should likely be made very explicit in the paper.

      It would be useful in the future to explore the approach described with a range of simulated data to better understand the caveats, and optimizations for best practices in this approach.

      A key component of the reviewers’ arguments here is their reductionist view of muscle synergies vs the emergentist view presented in our work here. In the reductionist lens, muscle groupings are the units (‘building blocks’) of coordinated movement and thus the space of intermuscular interactions is of particular interest for understanding movement construction. On the other hand, the emergentist view suggests that muscle groupings emerge from interactions between constituent parts (as quantified here using information theory, synergistic information is the information found when both activities are observed together). This is in line with recent work in the field showing modular control at the intramuscular level, exemplifying a scale-free phenomena. Nonetheless, we consider these approaches to muscle synergy research as complementary and beneficial for the field overall going forward.

      Reviewer #3 (Public Review):

      In this study, the authors developed and tested a novel framework for extracting muscle synergies. The approach aims at removing some limitations and constraints typical of previous approaches used in the field. In particular, the authors propose a mathematical formulation that removes constraints of linearity and couples the synergies to their motor outcome, supporting the concept of functional synergies and distinguishing the task-related performance related to each synergy. While some concepts behind this work were already introduced in recent work in the field, the methodology provided here encapsulates all these features in an original formulation providing a step forward with respect to the currently available algorithms. The authors also successfully demonstrated the applicability of their method to previously available datasets of multi-joint movements.

      Preliminary results positively support the scientific soundness of the presented approach and its potential. The added values of the method should be documented more in future work to understand how the presented formulation relates to previous approaches and what novel insights can be achieved in practical scenarios and confirm/exploit the potential of the theoretical findings.

      In their revision, the authors have implemented major revisions and improved their paper. The work was already of good quality and now it has improved further. The authors were able to successfully:

      • improve the clarity of the writing (e.g.: better explaining the rationale and the aims of the paper);

      • extend the clarification of some of the key novel concepts introduced in their work, like the redundant synergies;

      • show a scenario in which their approach might be useful for increasing the understanding of motor control in patients with respect to traditional algorithms such as NMF. In particular, their example illustrates why considering the task space is a fundamental step forward when extracting muscle synergies, improving the practical and physiological interpretation of the results.

      We thank reviewer 3 for their constructive commentary on this manuscript.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Figure 3 should report the distances between reaching points in panel A and the actual length distances of the walking paths in panel C.

      The caption of fig.3 concerning the experimental setup of the datasets analysed has been updated with the following for dataset 1: “(A) Dataset 1 consisted of participants executing table-top point-to-point reaching movements (40cm distance from starting point P0) across four targets in forward (P1-P4) and backwards (P5-P8) directions at both fast and slow speeds (40 repetitions per task) [25]. The muscles recorded included the finger extensors (FE), brachioradialis (BR), biceps brachii (BI), medial-triceps (TM), lateral-triceps (TL), anterior deltoid (AD), posterior deltoid (PD), pectoralis major (PE), latissimus dorsi (LD) of the right, reaching arm.”. For dataset 3, to the best of the authors knowledge, this information was not given in the original paper.

      Figure 4, what is the unit of the data shown?

      The unit of bits is now mentioned in the toy example figure caption and in the caption of fig.5

      Figure 4, the characteristics of the interactions are not fully clear, and the graphical representation should be improved.

      We have made steps to improve the clarity of the figures presented.

      For dataset 3, τ was the movement kinematics, but it is not specified how the task parameters were formulated. Did the authors use the data from all 32 kinematic markers, 4 IMUs, and force plates? If yes, it should be specified why all these signals were used. For sure, there will be signals included that are not relevant to the specific task. Did the authors select specific signals based on their relevance to the task (e.g., ankle kinematics)?

      We have now clarified this in the text as follows: “For datasets 1 and 2, we determine the MI between vectors with respect to several discrete task parameters representing specific task attributes (e.g. reaching direction, speed etc.), while for dataset 3 we determined the task-relevant and -irrelevant muscles couplings in an unassuming way by quantifying them with respect to all available kinematic, dynamic and inertial motion unit (IMU) features.”

      How did the authors endure that crosstalk did not affect their analysis, particularly between, e.g., finger extensors and brachioradialis and posterior deltoid and anterior deltoid (dataset 1)?

      We have addressed this point in the previous round of reviews and made an explicit statement regarding cross-talk in the discussion section: “Although distinguishing task-irrelevant muscle couplings may capture artifacts such as EMG crosstalk, our results convey several physiological objectives of muscles including gross motor functions [66], the maintenance of internal joint mechanics and reciprocal inhibition of contralateral limbs [19,51].”

      It would be informative to add some examples of not trivial/obvious task-related synergistic muscle combinations that have been extracted in the three datasets. Most of the examples reported in the manuscript are well-known biomechanically and quite intuitive, so they do not improve our understanding of synergistic muscle control in humans.

      Our framework improves our understanding of synergistic motor control by enabling the formal quantification of synergistic muscle interactions, a capability not present among current approaches. Regarding the implications of this advance in terms of concrete examples, we have further clarified our examples presented in the results section, for example:

      “Across datasets, many the muscle networks could be characterised by the transmission of complementary task information between functionally specialised muscle groups, many of which identified among the task-redundant representations (Fig.9-10 and Supp. Fig.2). The most obvious example of this is the S3 synergist muscle network of dataset 2 (Fig.11), which captures the complementary interaction between task-redundant submodules identified previously (S3 (Fig.9)).”

      The description shows how our framework can extract the cross-module interactions that align with the higher-level objectives of the system, here the synergistic connectivity between the upper and lower body modules. Current approaches can only capture redundant and task-irrelevant interactions. Thus our framework provides additional insight into movement control.

      The number of participations in dataset 2 is very limited and should be increased. We appreciate the reviewer's comment and would like to point out that for dataset 2 our aim was to increase the number of muscles (30), tasks (72) and trials for each task (30) which produced a very large dataset for each participant. This came at the expense of low number of participants, however all our statistical analyses here can be performed at the single-participant level. Furthermore, dataset 3 includes 25 participants and it enables us to demonstrate the reliability of the findings across participants.

      Reviewer #2 (Recommendations For The Authors):

      I believe it is important in the future to explore the approach proposed with a range of simulation data and neuromechanical models, to explore the issues I have raised and that you have acknowledged, though I agree it is likely out of scope for the paper here.

      We agree with the reviewer that this would be valuable future work and indeed plan to do this in our future research.

      The Github code for this paper should likely include the various data sets used in the paper and figures, appropriately anonymized, in order to allow the data to be explored and analyses replicated and package demonstrated to be exercised fully by a new user.

      We thank the reviewer for this suggestion. Dataset3 is already available online at https://doi.org/10.1016/j.jbiomech.2021.110320. We will also make the other 2 datasets publicly available on our lab website very soon. Until then, as stated in the manuscript, we will make them available to anyone upon reasonable request.

      Reviewer #3 (Recommendations For The Authors):

      I have the following open points to suggest to the authors:

      First, I recommend improving the quality of the figures: in the pdf version I downloaded, some writings are impossible to read.

      We fully agree with the reviewer and note that in the pdf version of the paper, the figures are a lot worse than in the submitted word document submitted. Nevertheless, we will make further improvements on the figures as requested.

      Even though the manuscript has improved, I still feel that some points were not addressed or were only partially addressed. In particular:

      • The proposed comparison with NMF helps understanding why incorporating the task space is useful (and I fully agree with the authors about this point as the main reason to propose their contribution). However, the comparison does not help the reader to understand whether the synergies incorporating the task space are biased by the introduction of the task variables.

      This question can be also reformulated as: are muscle synergies modified when task space variables are incorporated? Is the "weight" on task coefficients affecting the composition of muscle synergies? If so, the added interpretational power is achieved at the cost of losing the information regarding the neural substrate of synergies? I understand this point is not immediate to show, but it would increase the quality of the work.

      • Reference to previous approaches that aimed at including task variables into synergy extraction are still missing in the paper. Even though it is not required to provide quantitative comparisons with other available approaches, there are at most 2-3 available algorithms in the literature (kinematics-EMG; force-EMG), that should not be neglected in this work. What did previous approaches achieve? What was improved with this approach? What was not improved?

      Previous attempts of extracting synergies with non-linear approaches could also be described more.

      In the latest version of the manuscript, we have referenced both the mixed NMF and autoencoders based algorithms. In both the introduction and discussion section of the manuscript, we also specify that our framework quantifies and decomposes muscle interactions in a novel way that cannot be done by other current approaches. In the results section we use examples from 3 different datasets to make this point clear, providing intuition on the use cases of our framework.

    2. Author Response

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      The proposed study provides an innovative framework for the identification of muscle synergies taking into account their task relevance. State-of-the-art techniques for extracting muscle interactions use unsupervised machine-learning algorithms applied to the envelopes of the electromyographic signals without taking into account the information related to the task being performed. In this work, the authors suggest including the task parameters in extracting muscle synergies using a network information framework previously proposed. This allows the identification of muscle interactions that are relevant, irrelevant, or redundant to the parameters of the task executed.

      The proposed framework is a powerful tool to understand and identify muscle interactions for specific task parameters and it may be used to improve man-machine interfaces for the control of prostheses and robotic exoskeletons.

      With respect to the network information framework recently published, this work added an important part to estimate the relevance of specific muscle interactions to the parameters of the task executed. However, the authors should better explain what is the added value of this contribution with respect to the previous one, also in terms of computational methods.

      It is not clear how the well-known phenomenon of cross-talk during the recording of electromyographic muscle activity may affect the performance of the proposed technique and how it may bias the overall outcomes of the framework.

      We thank reviewer 1 for their useful commentary on this manuscript.

      Reviewer #2 (Public Review):

      This paper is an attempt to extend or augment muscle synergy and motor primitive ideas with task measures. The authors idea is to use information metrics (mutual information, co-information) in 'synergy' constraint creation that includes task information directly. By using task related information and muscle information sources and then sparsification, the methods construct task relevant network communities among muscles, together with task redundant communities, and task irrelevant communities. This process of creating network communities may then constrain and help to guide subsequent synergy identification using the authors published sNM3F algorithm to detect spatial and temporal synergies.

      The revised paper is much clearer and examples are helpful in various ways. However, figure 2 as presented does not convincingly show why task muscle mutual information helps in separating synergies, though it is helpful in defining the various network communities used in the toy example.

      The impact of the information theoretic constraints developed as network communities on subsequent synergy separation are posited to be benign and to improve over other methods (e.g., NNMF). However, not fully addressed are the possible impacts of the methods on compositionality links with physiological bases, and the possibility remains of the methods sometimes instead leading to modules that represent more descriptive ML frameworks that may not support physiological work easily. Accordingly, there is a caveat. This is recognized and acknowledged by the authors in their rebuttal of the prior review. It will remain for other work to explore this issue, likely through testing on detailed high degree of freedom artificial neuromechanical models and tasks. This possible issue with the strategy here likely needs to be fully acknowledged in the paper.

      The approach of the methods seeks to identify task relevant coordinative couplings. This is a meta problem for more classical synergy analyses. Classical analyses seek compositional elements stable across tasks. These elements may then be explored in causal experiments and generative simulations of coupling and control strategies. However, task-based understanding of synergy roles and functional uses is significant and is clearly likely to be aided by methods in this study.

      Information based separation has been used in muscle synergy analyses using infomax ICA, which is information based at core. Though linear mixing of sources is assumed in ICA, minimized mutual information among source (synergy) drives is the basis of the separation and detects low variance synergy contributions (e.g., see Yang, Logan, Giszter, 2019). In the work in this paper, instead, mutual information approaches are used to cluster muscles and task features into network communities preceding the SNM3F algorithm use for separation, rather than using minimized information in separation. This contrast of an accretive or agglomerative mutual information strategy here used to cluster into networks, versus a minimizing mutual information source separation used in infomax ICA epitomizes a key difference in approach here.

      Physiological causal testing of synergy ideas is neglected in the literature reviews in the paper. Although these are only in animal work (Hart and Giszter, 2010; Takei and Seki, 2017), the clear connection of muscle synergy analysis choices to physiology is important, and eventually these issues need to be better managed and understood in relation to the new methods proposed here, even if not in this paper.

      Analyses of synergies using the methods the paper has proposed will likely be very much dependent on the number and quality of task variables included and how these are managed, and the impacts of these on the ensuing sparsification and network communities used prior to SNM3F. The authors acknowledge this in their response. This caveat should likely be made very explicit in the paper.

      It would be useful in the future to explore the approach described with a range of simulated data to better understand the caveats, and optimizations for best practices in this approach.

      A key component of the reviewers’ arguments here is their reductionist view of muscle synergies vs the emergentist view presented in our work here. In the reductionist lens, muscle groupings are the units (‘building blocks’) of coordinated movement and thus the space of intermuscular interactions is of particular interest for understanding movement construction. On the other hand, the emergentist view suggests that muscle groupings emerge from interactions between constituent parts (as quantified here using information theory, synergistic information is the information found when both activities are observed together). This is in line with recent work in the field showing modular control at the intramuscular level, exemplifying a scale-free phenomena. Nonetheless, we consider these approaches to muscle synergy research as complementary and beneficial for the field overall going forward.

      Reviewer #3 (Public Review):

      In this study, the authors developed and tested a novel framework for extracting muscle synergies. The approach aims at removing some limitations and constraints typical of previous approaches used in the field. In particular, the authors propose a mathematical formulation that removes constraints of linearity and couples the synergies to their motor outcome, supporting the concept of functional synergies and distinguishing the task-related performance related to each synergy. While some concepts behind this work were already introduced in recent work in the field, the methodology provided here encapsulates all these features in an original formulation providing a step forward with respect to the currently available algorithms. The authors also successfully demonstrated the applicability of their method to previously available datasets of multi-joint movements.

      Preliminary results positively support the scientific soundness of the presented approach and its potential. The added values of the method should be documented more in future work to understand how the presented formulation relates to previous approaches and what novel insights can be achieved in practical scenarios and confirm/exploit the potential of the theoretical findings.

      In their revision, the authors have implemented major revisions and improved their paper. The work was already of good quality and now it has improved further. The authors were able to successfully:

      • improve the clarity of the writing (e.g.: better explaining the rationale and the aims of the paper);

      • extend the clarification of some of the key novel concepts introduced in their work, like the redundant synergies;

      • show a scenario in which their approach might be useful for increasing the understanding of motor control in patients with respect to traditional algorithms such as NMF. In particular, their example illustrates why considering the task space is a fundamental step forward when extracting muscle synergies, improving the practical and physiological interpretation of the results.

      We thank reviewer 3 for their constructive commentary on this manuscript.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Figure 3 should report the distances between reaching points in panel A and the actual length distances of the walking paths in panel C.

      The caption of fig.3 concerning the experimental setup of the datasets analysed has been updated with the following for dataset 1: “(A) Dataset 1 consisted of participants executing table-top point-to-point reaching movements (40cm distance from starting point P0) across four targets in forward (P1-P4) and backwards (P5-P8) directions at both fast and slow speeds (40 repetitions per task) [25]. The muscles recorded included the finger extensors (FE), brachioradialis (BR), biceps brachii (BI), medial-triceps (TM), lateral-triceps (TL), anterior deltoid (AD), posterior deltoid (PD), pectoralis major (PE), latissimus dorsi (LD) of the right, reaching arm.”. For dataset 3, to the best of the authors knowledge, this information was not given in the original paper.

      Figure 4, what is the unit of the data shown?

      The unit of bits is now mentioned in the toy example figure caption and in the caption of fig.5

      Figure 4, the characteristics of the interactions are not fully clear, and the graphical representation should be improved.

      We have made steps to improve the clarity of the figures presented.

      For dataset 3, τ was the movement kinematics, but it is not specified how the task parameters were formulated. Did the authors use the data from all 32 kinematic markers, 4 IMUs, and force plates? If yes, it should be specified why all these signals were used. For sure, there will be signals included that are not relevant to the specific task. Did the authors select specific signals based on their relevance to the task (e.g., ankle kinematics)?

      We have now clarified this in the text as follows: “For datasets 1 and 2, we determine the MI between vectors with respect to several discrete task parameters representing specific task attributes (e.g. reaching direction, speed etc.), while for dataset 3 we determined the task-relevant and -irrelevant muscles couplings in an unassuming way by quantifying them with respect to all available kinematic, dynamic and inertial motion unit (IMU) features.”

      How did the authors endure that crosstalk did not affect their analysis, particularly between, e.g., finger extensors and brachioradialis and posterior deltoid and anterior deltoid (dataset 1)?

      We have addressed this point in the previous round of reviews and made an explicit statement regarding cross-talk in the discussion section: “Although distinguishing task-irrelevant muscle couplings may capture artifacts such as EMG crosstalk, our results convey several physiological objectives of muscles including gross motor functions [66], the maintenance of internal joint mechanics and reciprocal inhibition of contralateral limbs [19,51].”

      It would be informative to add some examples of not trivial/obvious task-related synergistic muscle combinations that have been extracted in the three datasets. Most of the examples reported in the manuscript are well-known biomechanically and quite intuitive, so they do not improve our understanding of synergistic muscle control in humans.

      Our framework improves our understanding of synergistic motor control by enabling the formal quantification of synergistic muscle interactions, a capability not present among current approaches. Regarding the implications of this advance in terms of concrete examples, we have further clarified our examples presented in the results section, for example:

      “Across datasets, many the muscle networks could be characterised by the transmission of complementary task information between functionally specialised muscle groups, many of which identified among the task-redundant representations (Fig.9-10 and Supp. Fig.2). The most obvious example of this is the S3 synergist muscle network of dataset 2 (Fig.11), which captures the complementary interaction between task-redundant submodules identified previously (S3 (Fig.9)).”

      The description shows how our framework can extract the cross-module interactions that align with the higher-level objectives of the system, here the synergistic connectivity between the upper and lower body modules. Current approaches can only capture redundant and task-irrelevant interactions. Thus our framework provides additional insight into movement control.

      The number of participations in dataset 2 is very limited and should be increased. We appreciate the reviewer's comment and would like to point out that for dataset 2 our aim was to increase the number of muscles (30), tasks (72) and trials for each task (30) which produced a very large dataset for each participant. This came at the expense of low number of participants, however all our statistical analyses here can be performed at the single-participant level. Furthermore, dataset 3 includes 25 participants and it enables us to demonstrate the reliability of the findings across participants.

      Reviewer #2 (Recommendations For The Authors):

      I believe it is important in the future to explore the approach proposed with a range of simulation data and neuromechanical models, to explore the issues I have raised and that you have acknowledged, though I agree it is likely out of scope for the paper here.

      We agree with the reviewer that this would be valuable future work and indeed plan to do this in our future research.

      The Github code for this paper should likely include the various data sets used in the paper and figures, appropriately anonymized, in order to allow the data to be explored and analyses replicated and package demonstrated to be exercised fully by a new user.

      We thank the reviewer for this suggestion. Dataset3 is already available online at https://doi.org/10.1016/j.jbiomech.2021.110320. We will also make the other 2 datasets publicly available on our lab website very soon. Until then, as stated in the manuscript, we will make them available to anyone upon reasonable request.

      Reviewer #3 (Recommendations For The Authors):

      I have the following open points to suggest to the authors:

      First, I recommend improving the quality of the figures: in the pdf version I downloaded, some writings are impossible to read.

      We fully agree with the reviewer and note that in the pdf version of the paper, the figures are a lot worse than in the submitted word document submitted. Nevertheless, we will make further improvements on the figures as requested.

      Even though the manuscript has improved, I still feel that some points were not addressed or were only partially addressed. In particular:

      • The proposed comparison with NMF helps understanding why incorporating the task space is useful (and I fully agree with the authors about this point as the main reason to propose their contribution). However, the comparison does not help the reader to understand whether the synergies incorporating the task space are biased by the introduction of the task variables.

      This question can be also reformulated as: are muscle synergies modified when task space variables are incorporated? Is the "weight" on task coefficients affecting the composition of muscle synergies? If so, the added interpretational power is achieved at the cost of losing the information regarding the neural substrate of synergies? I understand this point is not immediate to show, but it would increase the quality of the work.

      • Reference to previous approaches that aimed at including task variables into synergy extraction are still missing in the paper. Even though it is not required to provide quantitative comparisons with other available approaches, there are at most 2-3 available algorithms in the literature (kinematics-EMG; force-EMG), that should not be neglected in this work. What did previous approaches achieve? What was improved with this approach? What was not improved?

      Previous attempts of extracting synergies with non-linear approaches could also be described more.

      In the latest version of the manuscript, we have referenced both the mixed NMF and autoencoders based algorithms. In both the introduction and discussion section of the manuscript, we also specify that our framework quantifies and decomposes muscle interactions in a novel way that cannot be done by other current approaches. In the results section we use examples from 3 different datasets to make this point clear, providing intuition on the use cases of our framework.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Response to review.

      We thank the editors and reviewers for their time in assessing our manuscript. We changed the title to remove the word “all” because we realized that was hyperbolic. Corrections in response to review are in blue text throughout the manuscript document (other minor corrections are not highlighted).

      eLife assessment

      This study presents valuable insights into the evolution of the gasdermin family, making a strong case that a GSDMA-like gasdermin was already present in early land vertebrates and was activated by caspase-1 cleavage. Convincing biochemical evidence is provided that extant avian, reptile, and amphibian GSDMA proteins can still be activated by caspase-1 and upon cleavage induce pyroptosis-like cell death - at least in human cell lines. The caspase-1 cleavage site is only lost in mammals, which use the more recently evolved GSDMD as a caspase-1 cleavable pyroptosis inducer. The presented work will be of considerable interest to scientists working on the evolution of cell death pathways, or on cell death regulation in non-mammalian vertebrates.

      We thank the editor for their time in evaluating our manuscript. We agree with the eLife assessment and with the comments of the reviewers.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors start out by doing a time-calibrated gene/species tree analysis of the animal gasdermin family, resulting in a dendrogram showing the relationship of the individual gasdermin subfamilies and suggesting a series of gene duplication events (and gene losses) that lead to the gasdermin distribution in extant species. They observe that the GSDMA proteins from birds, reptiles, and amphibians do not form a clade with the mammalian GSDMAs and notice that the non-mammalian GSDMA proteins share a conserved caspase-1 cleavage motif at the predicted activation site. The authors provide several series of experiments showing that the non-mammalian GSDMA proteins can indeed be activated by caspase-1 and that this activation leads to cell death (in human cells). They also investigate the role of the caspase-1 recognition tetrapeptide for cleavage by caspase-1 and for the pathogen-derived protease SpeB.

      We thank the reviewer for their time in evaluating our manuscript.

      Strengths:

      The evolutionary analysis performed in this manuscript appears to use a broader data basis than what has been used in other published work. An interesting result of this analysis is the suggestion that GSDMA is evolutionarily older than the main mammalian pyroptotic GSDMD, and that birds, reptiles, and amphibians lack GSDMD but use GSDMA for the same purpose. The consequence that bird GSDMA should be activated by an inflammatory caspase (=caspase1) is convincingly supported by the experiments provided in the manuscript.

      We thank the reviewer for their assessment of the manuscript.

      Weaknesses:

      1. As a non-expert in phylogenetic tree reconstruction, I find the tree resulting from the authors' analysis surprising (in particular the polyphyly of GSDMA) and at odds with several other published trees of this family. The differences might be due to differences in the data being used or due to the tree construction method, but no explanation for this discrepancy is provided.

      We agree, and we have modified the text to add more context to explain why our analysis generated a different topology: “In comparison to previously published studies, we used different methods to construct our gasdermin phylogenetic tree, with the result that our tree has a different topology. The topology of our tree is likely to be affected by our increased sampling of gasdermin sequences; we included 1,256 gasdermin sequences in comparison to 300 or 97 sequences used in prior studies. Prior studies used maximum likelihood tree building techniques, whereas we used a more computationally intensive Bayesian method using BEAST with strict molecular clocks that allows us to provide divergence time estimates, which we calibrated using mammal fossil estimated ages. We think that this substantially increased sampling paired with time calibration allow us to produce a more accurate phylogeny of the gasdermin protein family.”

      To explain and further support our method in a more technical manner, in our phylogenetic tree, non-mammal GSDMAs are paralogous to mammals GSDMAs whereas others have found that non-mammal GSDMAs are orthologous to mammal GSDMAs. We obtained moderate support for the non-mammal GSDMA placement with Bayesian posterior 0.42 and with maximum likelihood bootstrap support of 0.96. Angosto-Bazarra et al. has for their placement a Bayesian posterior of 0.66 and maximum likelihood bootstrap support of 0.98. These are good results, but they arise from significantly fewer sequences than are included in our tree. However, in Fig S2 of Angosto-Bazarra et al. the support drops to 0.08. That the posteriors in both are not 1 indicate the presence of phylogenetic conflicts (i.e., a significant fraction of alternative trees), which means that the tree of our study or Angosto-Bazarra could be incorrect. That said, our tree is supported by biological support, and our dataset is substantially larger. To better characterize this node, further sampling with even more species would be required. We exhausted the current available sequences at the time our tree was generated.

      Differences between our study and previous studies:

      Author response table 1.

      1. While the cleavability of bird/reptile GSDMA by caspase-1 is well-supported by several experiments, the role of this cleavage for pyroptotic cell killing is addressed more superficially. One cell viability assay upon overexpression of GSDMA-NTD in human HEK293 cells is shown and one micrograph shows pyroptotic morphology upon expression in HeLa cells. It is not clear why these experiments were limited to human cells…

      We did include one more experiment in human cells which is Figure 4B, in which we express full length chicken GSDMA with dimerizable caspase-1, and show that LDH release requires the cleavage site aspartate, D244. That said, we agree that our use of only human cell lines is a weakness of the paper. We thought that the best way to definitively show the interaction of caspase-1 and GSDMA was to perform experiments in chicken macrophages. Therefore, we generated a custom-raised anti-chicken-GSDMA antibody. Unfortunately, the quality of the antibody was insufficient to detect endogenous GSDMA in chicken bone marrow-derived macrophages. Off target binding prevented the observation of chicken GSDMA bands. We added a section to the discussion acknowledge the need for further studies: “In future studies, the association of bird/amphibian/reptile GSDMA and caspase-1 should be confirmed in native cells from each of these animals.”

      …and why two different cell types were used for the two complementary results.

      In the paper we used 293T cells and HeLa cells as generic cell types that have distinct benefits. In general, we used 293T/17 cells for experiments where high transfection efficiency was most critical, as it is simple to achieve 90% or higher transfection efficiency in this line. However, 293T/17s have poor spreading in culture and thus are not as useful for morphologic studies. 293T/17 cells do display pyroptotic ballooning upon gasdermin activation, however, the images are less pronounced in comparison to other cell types that have more distinct morphology. Therefore, we used HeLa cells for the microscopy experiments because they are more adherent and larger than 293T/17s which make for easier visualization of pyroptotic ballooning. We have added the following statement to the text to make our rationale for the use of different cell line more apparent: “In these experiments, 293T/17s were used for their high transfection efficiency, and HeLas were used for microscopy studies for their larger size and improved adherence.”

      1. The introduction mentions as a motivation for this work our lack of knowledge of how human GSDMA is activated. This is indeed an interesting and pressing question, but it is not really addressed in the manuscript. This is particularly true when believing the authors' dendrogram results that the bird and mammalian GSDMA families do not form a clade.

      As a consequence, the significance of this finding is mostly limited to birds and reptiles.

      Our aspirations were to discover hidden facets of mammal GSDMA by using a molecular evolutionary analysis. bird/amphibian/reptile GSDMA. Although we did not learn the identity of a host protease that activates mammalian GSDMA, we serendipitously discovered the evolutionary history of the association of caspase-1 with the gasdermin family. We think this manuscript provides an important and interesting advance in the field to reveal the process of evolution at work in the gasdermin family, and that the association of caspase-1 with a gasdermin to cause pyroptosis is an unbroken pairing throughout evolution. It is surprising to us that the specific gasdermin partner has changed over time.

      Reviewer #2 (Public Review):

      Summary:

      The authors investigated the molecular evolution of members of the gasdermin (GSDM) family. By adding the evolutionary time axis of animals, they created a new molecular phylogenetic tree different from previous ones. The analyzed result verified that non-mammalian GSDMAs and mammalian GSDMAs have diverged into completely different and separate clades. Furthermore, by biochemical analyses, the authors demonstrated non-mammalian GSDMA proteins are cleaved by the host-encoded caspase-1. They also showed mammalian GSDMAs have lost the cleavage site recognized by caspase-1. Instead, the authors proposed that the newly appeared GSDMD is now cleaved by caspase-1.

      We thank the reviewer for their time in evaluating our manuscript.

      Through this study, we have been able to understand the changes in the molecular evolution of GSDMs, and by presenting the cleavage of GSDMAs through biochemical experiments, we have become able to grasp the comprehensive picture of this family of molecules. However, there are some parts where explanations are insufficient, so supplementary explanations and experiments seem to be necessary.

      Strengths:

      It has a strong impact in advancing ideas into the study of pyroptotic cell death and even inflammatory responses involving caspase-1.

      We thank the reviewer for the critical consideration of the phylogeny presented.

      Weaknesses:

      Based on the position of mammalian GSDMA shown in the molecular phylogenetic tree (Figure 1), it may be difficult to completely agree with the authors' explanation of the evolution of GSDMA.

      1. Focusing on mammalian GSDMA, this group, and mammalian GSDMD diverged into two clades, and before that, GSDMA/D groups and mammalian GSDMC separated into two, more before that, GSDMB, and further before that, non-mammalian GSDMA, when we checked Figure 1. In the molecular phylogenetic tree, it is impossible that GSDMA appears during evolution again. Mammalian GSDMAs are clearly paralogous molecules to non-mammalian GSDMAs in the figure. If they are bona fide orthologous, the mammalian GSDMA group should show a sub-clade in the non-mammalian GSDMA clade. It is better to describe the plausibility of the divergence in the molecular evolution of mammalian GSDMA in the Discussion section.

      We appreciate the reviewer’s careful consideration of our phylogeny. We agree that we did not make this clear enough in the discussion. Indeed, this is a confusing point, and is a critical concept in the paper. This is among our most important findings, so we have added a line addressing this finding to the abstract. We think about these concepts starting from the oldest common ancestor of a group, and then think about how genes duplicate over time. To the discussion we now begin with the following:

      We discovered that GSDMA in amphibians birds and reptiles are paralogs to mammal GSDMA. Surprisingly, the GSDMA genes in both the amphibians/reptiles/birds and mammal groups appear in the exact same locus. Therefore, this GSDMA gene was present in the common ancestor of all these animals. In mammals, this GSDMA duplicated to form GSDMB and GSDMC. Finally, a new gene duplicate, GSDMD, arose in a different chromosomal location. Then this GSDMD gene became a superior target for caspase-1 after developing the exosite. Once GSDMD had evolved, we speculate that the mammalian GSDMA became a pseudogene that was available to evolve a new function. This new function included a new promoter to express mammalian GSDMA primarily in the skin, and perhaps acquisition of a new host protease that has yet to be discovered.

      In further support of the topology of our Bayesian tree in Figure 1, we also performed a maximum likelihood analysis, which also placed the GSDMA genes into similarly distinct clades (Figure 1-S3). Finally, we have biological evidence to support this reasoning, where caspase-1 cleaves non-mammal GSDMAs and also mammal GSDMD (and no longer can cleave mammal GSDMA).

      1. Regarding (1), it is recommended that the authors reconsider the validity of estimates of divergence dates by focusing on mammalian species divergence. Because the validity of this estimation requires a recheck of the molecular phylogenetic tree, including alignment.

      Our reconstructed evolution of gasdermins is consistent with the mammal tree of life. We constrained Bayesian estimation of divergences using soft calibrations from mammal fossil estimated ages. We have included the fossil calibration of mammalian gasdermins to the results section and to our methods.

      1. If GSDMB and/or GSDMC between non-mammalian GSDMA and mammalian GSDMD as shown in the molecular phylogenetic tree would be cleaved by caspase-1, the story of this study becomes clearer. The authors should try that possibility.

      It is known that mammal GSDMB and GSDMC cannot be activated by caspase-1. We propose that GSDMA was cleaved by caspase-1 only in extinct mammals that had not yet associated GSDMD with caspase-1. Such an extinct mammal could have encoded a GSDMA cleaved by caspase-1, a GSDMB cleaved by granzyme A, and GDSMC cleaved by caspase-8. Later, the GSDMA gene was again duplicated to form GSDMD. After GSDMD was targeted by caspase-1, then GSDMA was free to gain its current function in barrier tissues.

      Reviewer #1 (Recommendations For The Authors):

      As a non-expert on phylogenetic tree construction, I found the "time-calibrated maximum clade credibility coalescent tree" hard to digest. I would have liked to see an explanation of how this method is different from what has been used before and why the authors consider it to be better. This is particularly important when considering that the resulting tree shown in Figure 1 is quite different from other published trees of the same family (e.g. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8742441 where the GSDMA family appears monophyletic).

      Please see response to Reviewer 1 weaknesses above. Also, we have moved the text “time-calibrated maximum clade credibility coalescent tree” to the figure legend.

      In the bioinformatical analysis of the conserved caspase-1 cleavage motif in bird GSDMA sequences, I would recommend also addressing the residue behind the cleavage site Asp, as this position has an unusually high conservation (mostly Gly) in bird GSDMA.

      This is a great observation. We suspect that this may reflect a need for flexibility in the secondary structure to allow the cleavage site to enter the enzymatic pocket of the caspase. This residue is also similarly enriched in mammal GSDMD, which is also cleaved by caspase-1. We also note high conservation of a P2' proline residue in birds with the FASD tetrapeptide, which could also be important for displaying the tetrapeptide to the caspase.

      This comment prompted us to search the literature for evidence of these residues in caspase-1 substrate preference studies. Remarkably, a P1' glycine and P2` proline are among the most enriched residues in human caspase-1 targets. This supports our hypothesis that caspase-1 cleaves GSDMA in non-mammals. We added the following to the results section: “Additionally, the P1' residue in amphibian, bird and reptile GSDMA was often a glycine, and the P2' residue was often a proline, especially in birds with FASD/FVSD tetrapeptides (Fig. 2B). A small P1' residue is preferred by all caspases. By using a peptide library, glycine has been determined to be the optimal P1' residue for caspase-1 and caspase-4. Further, in a review of the natural substrates of caspase-1, glycine was the second most common P1' residue, and proline was the most common P2' residue. These preferences were not observed for caspase-9.”

      Finally, I would like the authors to at least explain why the cell viability assays were done in 293T cells while the micrographs were done in HeLa cells. Why not show both experiments for both cell types?

      In the paper we used 293T cells and HeLa cells as generic cell types that have distinct benefits. In general, we used 293T/17 cells for experiments where high transfection efficiency was most critical, as it is simple to achieve 90% or higher transfection efficiency in this line. However, 293T cells have poor spreading in culture and thus are not as useful for morphologic studies. 293T/17 cells do display pyroptotic ballooning upon gasdermin activation, however, the images are less pronounced in comparison to other cell types that have more distinct morphology. Therefore, we used HeLa cells for the microscopy experiments because they are more adherent and larger than 293T/17s which make for easier visualization of pyroptotic ballooning. We have added the following statement to the text to make our rationale for the use of different cell line more apparent: “In these experiments, 293T/17s were used for their high transfection efficiency, and HeLas were used for microscopy studies for their larger size and improved adherence.”

      There are a number of minor points related to language and presentation:

      • the expressions "pathogens contaminate the cytosol", "mammals can encode..", "an outsized effect" are unusual and might be rephrased.

      We changed these to:

      “manipulate the host cell, sometimes contaminating the cytosol with pathogen associated molecular patterns, or disrupting aspects of normal cell physiology”,

      “Only mammals encode GSDMC and GSDMD alongside the other four gasdermins.”,

      and

      “greater effect”

      • in line 87 the abbreviation "GSDMEc" is first used without explanation (of the "c").

      This is an important distinction, as GSDMEc proteins were only recently uncovered. To remedy this, we have added the following text following line 87: “This gasdermin was recently identified as an ortholog of GSDMA.

      It was called GSDMEc, following the nomenclature of other duplications of GSDME in bony fish that have been named GSDMEa and GSDMEb.”

      • line 89 grammar problem.

      Corrected

      • line 186ff the sentence "We believe..." does not appear to make sense.

      We revised the text to make this clear, changing the text to now read “We hypothesized that activating pyroptosis using separate gasdermins for caspase-1 and caspase-3 is a useful adaptation and allows for fine-tuning of these separate pathways. In mammals, this separation depends on the activation of GSDMD by caspase-1 and the activation of GSDME by caspase-3.”

      • many figures use pictures rather than text to represent species groups. These pictures are not always intuitive. As an example, in Figure 6 the 'snake' represents amphibians. After reading the text, I understand that these should probably be the caecilian amphibians, but not every reader might know what these critters look like. In Figure 7, I have no idea what the black blob (2nd image from top) is supposed to be.

      In crafting the manuscript, we found the use of text to denote the various species to be cumbersome. The species silhouettes are a standard graphical depiction used in evolutionary biology, which we think aids readability to the figures. For example, in a paper cited in our manuscript, these same silhouettes were used to depict the evolution of GSDMs (https://doi.org/10.3389/fcell.2022.952015 Figure 1A, Figure 3D, Figure 4G). However, we agree that many readers will not know that caecilians are legless amphibians that resemble snakes in their body morphology, but are not close to snakes by phylogeny. We think it is important to use an image of a caecilian amphibian because the more iconic amphibians (frogs, salamanders) do not encode GSDMA. To increase clarity, we have mentioned the morphology of caecilians in the legend of Figure 2, Figure 6, and Figure 7 when caecilican amphibians are first introduced.

      In Figure 2: “Note, that caecilians morphologically are similar to snakes in their lack of legs and elongated body, however, this is an example of convergent evolution as caecilians are amphibians and are thus more closely related to frogs and salamanders than snakes.”

      In Figure 6: “M. unicolor is an amphibian despite sharing morphological similarity to a snake.”

      In Figure 7: “In caecilian amphibians, which are morphologically similar to snakes, birds, and reptiles, GSDMA is cleaved by caspase-1.”

      The black blob is the mollusk Lingula anatina, which unfortunately has an indistinct silhouette. To clarify this, we have added text to label the images in Figure 7.

      Reviewer #2 (Recommendations For The Authors):

      1. Line 214, in "(Fig. 3-S2) Human and mouse ..", it is necessary to type a period.

      2. Line 238, in the subtitle, GSMA should be amended to GSDMA.

      These have both been corrected.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their careful, critical, and insightful evaluation of our manuscript.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The preprint by Laganowsky and co-workers describes the use of mutant cycles to dissect the thermodynamic profile of specific lipid recognition by the ABC transporter MsbA. The authors use native mass spectrometry with a variable temperature source to monitor lipid binding to the native protein dimer solubilized in detergent. Analysis of the peak intensities (that is, relative abundance) of 1-3 bound lipids as a function of solution temperature and lipid concentration yields temperature-dependent Kds. The authors use these to then generate van't Hoff plots, from which they calculate the enthalpy and entropy contributions to binding of one, two, and in some cases, three lipids to MsbA.

      The authors then employ mutant cycles, in which basic residues involved in headgroup binding are mutated to alanine. By comparing the thermodynamic signatures of single and double (and in one instance triple) mutants, they aim to identify cooperativity between the different positions. They furthermore use inward and outward locking conditions which should control access to the different binding sites determined previously.

      The main conclusion is that lipid binding to MsbA is driven mainly by energetically favorable entropy increase upon binding, which stems from the release of ordered water molecules that normally coordinate the basic residues, which helps to overcome the enthalpic barrier of lipid binding. The authors also report an increase in lipid binding at higher temperatures which they attribute to a non-uniform heat capacity of the protein. Although they find that most residue pairs display some degree of cooperativity, particularly between the inner and outer lipid binding sites, they do not provide a structural interpretation of these results.

      Strengths:

      The use of double mutant cycles and mass spectrometry to dissect lipid binding is novel and interesting. For example, the observation that mutating a basic residue in the inner and one in the outer binding site abolishes lipid binding to a greater extent than the individual mutations is highly informative even without having to break it down into thermodynamic terms (see "weaknesses" section). In this sense, the method and data reported here opens new avenues for the structure/activity relationship of MsbA. The "mutant cycle" approach is in principle widely applicable to other membrane proteins with complex lipid interactions.

      Weaknesses:

      The use of double mutant cycles to dissect binding energies is well-established, and has, as the authors point out, been employed in combination with mass spectrometry to study protein-protein interactions. Its application to extract thermodynamic parameters is robust in cases where a single binding event is monitored, e.g. the formation of a complex with well-defined stoichiometry, where dissociation constants can be determined with high confidence. It is, however, complicated significantly by the fact that for MsbA-lipid interactions, we are not looking at a single binding event, but a stochastic distribution of lipids across different sites. Even if the protein is locked in a specific conformation, the observation of a single lipid adduct does not guarantee that the one lipid is always bound to a specific site. In some of the complexes detected by MS, the lipid is likely bound somewhere else. Lipid binding Kds from mass spectrometry, although helpful in some instances as a proxy for global binding affinities, should therefore be taken with a grain of salt.

      We agree with the reviewer in that while we will measure binding of lipid (mass shift) we do not know the binding location(s). Given this issue, we have added to the discussion section on this important point and elaborate more broadly on this problem in the context of membrane protein-lipid interactions. Tackling this issue represents a frontier challenge for the field.

      The authors analyze the difference in binding upon mutating binding sites (ddG etc). Here, another complicating factor comes into play, the fact that mutation of a binding site (which the authors show reduces lipid binding) may instead allow the lipid to bind to a lower-affinity site elsewhere. Unfortunately, the authors do not specify the protein concentration, but assuming it is in the single-digit micromolar range, as common for native MS experiments, lipid and protein concentrations are almost equal for most of the data points, resulting in competition between binding sites for free lipids. As a rule of thumb, for Kd measurements, the concentration of the constant component, the protein, should be far below the Kd, to avoid working in the "titration" regime rather than the "binding" regime (see Jarmoskaite et al, eLife 2020). I cannot determine whether this is the case here. The way I understand the double mutant cycle approach, reliable Kd measurements are required to accurately determine dH and TdS, so I would encourage the authors to confirm their Kd values using complementary methods before in-depth interpretations of the thermodynamic components.

      The reviewer references an article in eLife by Jarmoskaite and co-workers describing “titration” vs “binding” regimes. Below we paste a snippet from this article:

      Author response image 1.

      Equation 4a is an expression for the fraction of protein bound to ligand, which universally holds, i.e., if we know the concentration of molecules at equilibrium (including those unbound or free) then one can obtain the special ratio or equilibrium constant at a given temperature. Jarmoskaite et al. note that in practice (using traditional biophysical approaches) one cannot readily distinguish protein that is free or bound to ligand (see highlighted part above). While this assumption is basis of their eLife assessment, it does NOT apply to native mass spectrometry data. It is important to realize that the mole fraction (or concentration) of apo and each lipid bound states, i.e., [P], [PL], [PL2], …, [PLn+1], can readily be obtained directly from the deconvoluted mass spectrum. This is unlike other biophysical methods that are ensemble measurements, which measures the amount of heat or fraction of total ligand bound to protein. Since we can discern each lipid bound state, including the free protein and free ligand concentrations, the equilibrium binding constants can be directly calculated, and the protein and ligand concentration becomes irrelevant. In principle, equilibrium constants for protein-lipid interactions can be calculated from one mass spectrum. To increase transparency, we have updated the results section to highlight the important difference of the native MS approach compared to less robust traditional approaches that are riddled with underlying issues/assumptions.

      We appreciated the reviewer’s suggestion of using complementary methods to confirm Kd values. In our previous report [1], we determined binding thermodynamics for soluble protein-ligand interactions using native MS, surface plasmon resonance (SPR), and isothermal calorimetry (ITC) and found the techniques yield similar binding constants and thermodynamic parameters. The use of soluble proteins with defined ligand binding studies was rather straightforward to carry out a complementary study. We have also shown consistent findings for native MS and SPR of membrane protein interaction with a soluble, regulatory protein [2]. However, in the case of membrane proteins they can bind the first few lipids very specifically and, with the addition of more lipid, bind even more lipids that represent rather weak binding. Thus, traditional approaches would report on the ensemble of lipids bound to membranes and specific lipid binding sites (such as inner and outer LPS binding sites in MsbA) are saturable but also additional binding will be observed, i.e., doesn’t follow traditional soluble protein-ligand binding studies. In the past we have used a fluorescent-lipid competition binding assay [3] to corroborate native MS results for Kir3.2, which showed a direct correlation. The disadvantage of this complementary approach is using a non-natural, fluorescent-modified lipid. Unfortunately, there is no commercial source for a fluorophore modified KDL.

      It is somewhat counterintuitive that for many double mutants, and the triple mutant, the entropic component becomes more favorable compared to the WT protein. If the increase in entropy upon lipid binding comes from the release of ordered water molecules around the basic residues (a reasonable assumption) why does this apply even more in proteins where several basic residues have been changed to alanine, which coordinate far fewer water molecules?

      There are many factors that contribute to the change in entropy of the system, beyond solvation entropy, and deciphering the entropic contributions of the various components remains a challenging task. We have revised the manuscript to emphasize that solvation is one component of the entropic term and other components are likely at play.

      The authors could devote more attention to the fact that they use detergent micelles as a vehicle for lipid binding studies. To a limited extent, detergents compete with lipids for binding, and are present in extreme excess over the lipid. The micelle likely changes its behavior in response to temperature changes. For example, the packing around the protein loosens up upon heating, which may increase the chance for lipids to bind. In this case, the increase in binding at higher temperatures may not be related to a change in heat capacity. This question could be addressed by MD simulations, if it's not already in the literature.

      The detergent and its concentration are consistent for all the different MsbA proteins in this study. In fact, we observe linear van’t Hoff plots with positive and negative slopes as well as non-linear curves that are convex or concave. The MsbA protein (wt or mutant), trapped or not, all display unique temperature-dependent responses. The reviewers comment of increasing temperature to loosen packing of detergent to promote lipid binding is clearly NOT that simple. If detergent was significantly influencing lipid binding (as suggested by reviewer) then increasing its concentration should impact lipid binding. In a previous study, we found no difference in membrane protein-lipid thermodynamics even when the concentration of detergent was increased five-fold [1]. We repeated similar experiments for MsbA and find the increased detergent concentration does not impact the abundances of lipid bound states. The figure to the right shows MsbA in the presence of lipid in 2x CMC (panel a and b) and 10x CMC (panel c and d). As you will see, no appreciably difference in the lipid bound signal is observed.

      Author response image 2.

      We applaud the suggestion of MD simulation. However, it is far beyond the scope of this paper and its not clear what will really be learned.

      Reviewer #2 (Public Review):

      Summary:

      This is a solid study that dissects the thermodynamics of lipopolysaccharide (LPS) transporter MsbA and LPS. Native ESI-MS and the novel strategies developed by the authors were employed to quantify the affinities of LPS-MsbA interactions and its temperature dependence. Here, the equilibrium of lipid-protein interactions occurs in the micellar phase. The double-/triple-mutant cycle analysis and van't Hoff analysis allowed a full thermodynamic description of the lipid-protein interactions and the analysis of thermodynamic coupling between LPS binding sites. The most notable result would be that LPS-MsbA interaction is largely driven by entropy involving the negative heat capacity, a signature of the solvent reorganization effect (here authors attribute the solvent effect to "water" reorganization). The entropy driven lipid binding has been previously reported by the same authors for Kir1,2-PIP2 interactions.

      Strengths:

      1. This is overall a very thorough and rigorous study providing the detailed thermodynamic principles of LPS-MsbA interaction.

      2. The double and triple-mutant cycle approaches are newly applied to lipid-protein interactions, enabling detailed thermodynamics between LPS binding sites.

      3. The entropy-driven protein-lipid interaction is surprising. The binding seems to be mainly mediated by the electrostatic interaction between the positively charged residues on the protein and the negatively charged or polar headgroup of LPS, which could be thought of as "enthalpic" (making of a strong bond relative to that with solvent).

      Weaknesses:

      1. This study is a good contribution to the field, but it was difficult to find novel biological insights or methodological novelty from this study.

      1a. Thermodynamic analysis of lipid-protein interactions, an example of entropy-driven lipid-protein interactions, and the cooperativity between lipid binding sites have been reported by the author's group. Also, the cooperativity between binding sites in general have been reported from numerous studies of biomolecular interactions.

      We appreciate the reviewer for highlighting our previous work. Of course, a single study does not establish a pattern, such as entropy-driven lipid-protein interactions.

      While we agree with the reviewer that cooperativity in biomolecular interactions has been established for many soluble protein systems, by no means do we have a detailed understanding of membrane protein-lipid interactions. This work is an important contribution to expanding on classical work on soluble protein systems to more challenging membrane protein systems and their interactions with lipids.

      1b. It is not clear how this study provides new insights into the understanding of LPS transport mechanisms. Probably, authors could strengthen the Discussion by providing biological insights-how the residue coupling.

      The thermodynamics provides us with a deeper insight into the chemical principles that drive specific membrane protein-lipid interactions. We have revised the discussion to highlight the importance of thermodynamics and the implication of individual residues to KDL binding, and the inner and outer LPS binding sites appear to be coupled, something that is new.

      1. One to three LPS molecules bind to MsbA, but it is unclear whether bound KDL occupies inner or outer cavities, or both and how a specific mutation affects the affinity of specific LPS (i.e., to inner or to outer cavities). Based on the known structures, the maximal number of LPS is three. It is possible that the inner and outer cavities have different LPS affinities. Also, there can be multiple one-LPS-bound states, two-LPS-bound states if LPS strictly binds to the binding sites indicated by the structures. This aspect is beyond the scope of this study and difficult to address, but without this information, it seems hard to tell what is going on in the system.

      In our response above, we note that lipids will bind to membrane proteins at specific site(s) and weaker sites, often described as non-annular lipids. The revision includes this discussion point.

      1. If a single mutation is introduced to the inner cavity, its effect will be "doubled" because the inner cavity is shared by two identical subunits. This effect needs to be clarified in the result section.

      Great point. In addition, an outer mutant will also impact not one but both outer binding site(s)s. The revised manuscript makes note of this point.

      1. In the result section, "Mutant cycle analysis of KDL binding to vanadate-trapped MsbA.":

      4a. It seems necessary to show the mass spectra for Msb-ADP-vanadate complex as well as its lipid bound forms.

      In the original submission, the mass spectra of vanadate trapped MsbA with KDL binding was provided in Supplementary Figures 10 and 11.

      4b. The rationale of this section (i.e., what mechanistic insights can be obtained from this study) is unclear. For example, it is not sure what meaningful information can be obtained from a single type (ADP/vanadate) of the bound state regarding the ATP-driven function of MsbA.

      MsbA is a dynamic, populates different conformations. Trapping with vanadate locks the transporter in an outwardfacing state with NDB interacting. This provides the opportunity to characterize binding to the exterior site. We revised the manuscript to note this point.

      Reviewer #3 (Public Review):

      Summary:

      In this paper presented by Liu et al, native MS on the lipid A transporter MsbA was used to obtain thermodynamic insight into protein-lipid interactions. By performing the analyses at different lipid A concentrations and temperatures, dissociation constants for 2-3 lipid A binding sites were determined, as well as enthalpies were calculated using nonlinear van't Hoff fitting. Changes in free Gibb's energies were then calculated based on the determined dissociation constants, and together with the enthalpy values obtained via van' t Hoff analysis, the entropic contribution to lipid binding (DeltaS*T) was indirectly determined.

      Strengths:

      This is an extensive high quality native MS dataset that provides unique opportunities to gain insights into the thermodynamic parameters underlying lipid A binding. In addition, it provides coupling energies between mutations introduced into MsbA, that are implicated in lipid A binding.

      Weaknesses:

      The data all rely on the accuracy of determining KD values for lipid binding to MsbA. For the weaker binding sites, the range of lipid concentrations probed were in fact too low to generate highly accurate data. Another weakness is a lack of clear evidence, which KD values belong to which of the possible lipid A binding sites.

      See our detailed response to reviewer 1 regarding Kd determination using native MS compared to other techniques. We chose to focus on the first three lipid binding events and adjusted the concentrations accordingly to titrate these three. As noted above, the Kd values can be determined from one mass spectrum. For rigor, we include different titration points and fit sequential binding model to the data – the fits are shown in supplemental and quite reasonable.

      Regarding multiple lipids binding to different site(s), we have been able to distinguish high-affinity vs low-affinity PIP binding to Kir3.2 in a previous study [4]. This was apparent by the mole fraction curves for some lipid bound states not returning back to zero. We agree binding to multiple sites can be an issue. However, other techniques report on the ensemble of binding and, hence, no real useful information is obtained. Native MS enables one step in the right direction by dissecting the different lipid bound states. Future directions will need to further address this forefront question in the field, which we make point of now in discussion.

      Reviewer #1 (Recommendations For The Authors):

      Experiments/analysis: In short, there should be a proof of principle experiment that the thermodynamic constants determined by MS are accurate. Once that is done, the authors can add a more engaging structural interpretation of the results from the mutant cycles (which they seem to consciously avoid in the present manuscript?). How are cooperative residues coupled? Why?

      See our detailed response to reviewer 1 above.

      The manuscript is well-written, but Figures 3-5 are somewhat repetitive and require a lot of time to understand. Schematics of the main findings in each figure would help the uninitiated reader.

      We agree the illustrations are complex but there is rich data being shown.

      Figure 2 C contains an x-axis label error.

      Corrected.

      Reviewer #2 (Recommendations For The Authors):

      1. Lines 128-129: "Like other mutant cycle studies, we assume the single- and double-mutations do not disrupt binding at specific sites on MsbA."

      This statement is obscure and needs to be clarified. Does this mean that the mutations still allow binding of KDL, or the mutations do not disrupt the conformational integrity of the binding sites?

      This statement has been removed.

      1. Lines 137-139: "More specifically, R78 coordinates one of the characteristic phosphoglucosamine (P-GlcN) substituents of KDL whereas K299 interacts with a carboxylic acid group in the headgroup of KDL."

      Two identical subunits form a dimer interface that forms an LPS binding site. Thus, a single mutation on the inner cavity will disrupt two binding sites on LPS. One R78 to P-ClcN and the other to a sugar backbone. Also, one K299 interacts with a carboxylic acid group in the headgroup and the other to an unknown (not clear in the figure).

      Also noted above, mutation of the outer site will also impact the two outer sites. We have made note of this caveat.

      1. Lines 171-172: "leading to an increase in ΔG by ~4 kJ/mol (Fig. 2d)"

      Relative to what?

      Corrected.

      1. Lines 172-173: "Mutant cycle analysis indicates a coupling energy (ΔΔGint) of 1.7 (plus minus) 0.4 kJ/mol that contributes to the stability of KDL-MsbA complex."

      The sign of DDG (DDH,DDS)_int is a bit confusing. I recommend that authors define the meaning of negative or positive sign of DDG_int (DDH,DDS) at this point. Here, a positive sign means favorable cooperation between the two mutated residues. Sometimes, researchers designate a positive cooperativity as a negative sign.

      The literature on mutant cycles does not appear to follow a consensus on the sign. Here, we have revised the manuscript to note positive sign means favorable cooperation and follow the formalism recently described by Horovitz, Sharon, and co-workers [5].

      1. Lines 182-185: "Enthalpy and entropy for KDL binding MsbA R188A was largely similar to the wild-type protein (Fig 3a). However, the R243A mutation resulted in an increase in entropy, compensated for by an increase in positive enthalpy (Fig 3a)."

      The thermodynamic parameters for R243A mutation change in a similar manner to WT and R188A. It is R238A, not R243A, whose DH-DS interplay shows a distinct pattern from WT. Please, reword this sentence.

      The sentence has been revised.

      1. Lines 252-253: Solvation of polar groups in aqueous solvent has been ascribed to positive heat capacities whereas negative for apolar solvation.

      This statement is not precise. More precisely, the collapse of apolar molecules from their solvated state leads to the negative "change" in heat capacity.

      The sentence has been corrected.

      1. Line 262-267: "These hydrophilic patches will be highly solvated, which will be desolvated upon binding lipids contributing favorably to entropy. In the case of MsbA, the selected lysine and arginine residues (based alpha carbon position) are separated by about 9 to 18 Å (PDB 8DMM). This distance could result in overlap of solvation shells that collectively contribute to the positive coupling enthalpy observed for MsbA-KDL interactions."

      This statement is too speculative without presenting the degree of solvation of the residues targeted for mutation. More quantitative arguments seem to be needed.

      We have removed the speculative statement.

      Reviewer #3 (Recommendations For The Authors):

      In this paper presented by Liu et al, native MS on the lipid A transporter MsbA was used to obtain thermodynamic insight into protein-lipid interactions. By performing the analyses at different lipid A concentrations and temperatures, dissociation constants for 2-3 lipid A binding sites were determined, as well as enthalpies were calculated using nonlinear van't Hoff fitting.

      Changes in free Gibb's energies were then calculated based on the determined dissociation constants, and together with the enthalpy values obtained via van' t Hoff analysis the entropic contribution to lipid binding (DeltaS*T) was indirectly determined.

      Correction – In the case on linear van’t Hoff plots, dH and dS were determined directly from the plot. For the nonlinear form of the van’t Hoff equation, which does not include an entropy fitting parameter, we back calculated dS using dH and dG at a given temperature.

      The authors then included single, double and triple mutants of residues known based on cryo-EM and X-ray structures to interact with Lipid A either in the large inward-facing cavity or at a secondary binding site accessible at the surface of outward-facing MsbA, and determined the thermodynamic parameters of these mutants alone and combined to gain access to coupling energies of pairwise interactions. This method has its roots in studying pair-wise interactions of protein-protein interfaces, generally known as thermodynamic mutant cycle analysis.

      Having the main expertise in ABC transporter structure-function, I will judge the paper mostly from the standpoint of what I can learn as a transporter expert from this study and whether the insights are of value for researchers with average biophysical knowledge.

      My overall impression of the manuscript is that, while it contains a wealth of experimental data using the innovative and unique method of native mass spectrometry, it is hard to understand what one can learn from this analysis beyond their interesting key finding that entropy plays an important role in lipid binding (but only at certain temperatures). In particular, the lessons learned from the coupling energy analysis of the introduced mutations is hard to grasp/digest for me with regards to what I can learn from these numbers (other than learning that there are such coupling effects).

      We agree the thermodynamic data is rich. Often a ddGint of zero is reported as having no coupling/significance but here the value is due to compensating ddH and d-dTS terms. In our view, this work forms the foundation of additional studies to better understand the coupling energetic terms, beyond ddGint.

      In some instances, the text/figure legends are a bit unclear or contain some typos; but this part can easily be handled in a revision. The discussion is well written and embeds the main findings in the (still rather limited) literature on thermodynamic analyses of lipid binding of membrane proteins.

      Major points

      1. The authors may have clarified the following point in a previous paper; but at least in this paper, it is unclear to me how they purified MsbA without lipid A. The reason I am asking is that in our experience, if one purifies MsbA expressed from E. coli with standard detergents (e.g. beta-DDM) one will find a perfect density for Lipid A when determining an inward-facing structure by cryo-EM. According to the Methods, MsbA is purified initially in DDM, and rebuffered to C10E5 during size exclusion chromatography. When looking at Fig. 2b, the authors state (or assume?) that if no lipid A is added, MsbA has 0 % lipid A bound.

      We have previously reported details of MsbA sample prep and optimization [6]. The revised manuscript makes note of this previous work and refers the reader to the publication. Yes, we see no appreciable signal for lipid A bound to MsbA (see Fig 2b).

      We also note that samples of MsbA prepared using DDM is highly heterogenous, contaminated by a battery of small molecules (that we suspect are co-purified lipids). These contaminants will inadvertently impact biochemical studies.

      1. A second topic where further clarification is in my view needed is the question of the conformations that were probed and the lipid binding sites. If I get the experimental rationale correctly, most of the data were determined in the absence of nucleotides, and only a small subset (Fig. 5) of data were determined in the presence of ATP-vanadate. However, structural evidence for the cytosolic lipid A binding site has been only determined for outward-facing MsbA (PDB: 8DMM), but has thus far not been seen in any of the inward-facing cryo-EM structures of MsbA, including recent well-resolved cryo-EM structures showing excellent density for the lipid A bound to the inward-facing cavity (PDB: 7PH2). Further, there is only one lipid A molecule that can be accommodated by the inward-facing cavity, whereas (owing to the symmetry of the homodimer) two lipid A can be bound sideways to outward-facing MsbA. Now, my understanding problem is why one does see up to three lipid A molecules bound to inward-facing apo MsbA, e.g. Fig. 2b and elsewhere. Where are they expected to bind? And what is the evidence supporting these additional binding sites?

      See our detailed response to reviewer 1. If we add more lipid, we see more lipid binding to MsbA, like every other membrane protein we have studied. This data clearly indicates that there are more KDL binding site(s) – deciphering the affinity of these site(s) represents a problem on the horizon.

      A further question is which lipid A binding sites are present in vanadate-trapped MsbA. Here, there are two identical binding sites (at the surface of each MsbA molecule), and it is therefore surprising to see that the affinities for the first and the second binding site are so different (see e.g. Supplementary Fig. 13).

      Great point. A logical explanation (described for other biochemical systems) is the two exterior LPS binding sites display negative cooperativity i.e., binding at one site weakens the affinity at the other site.

      Finally, what is the evidence that in vanadate-trapped MsbA, all molecules have closed NBDs and thus assume the outward-facing conformation? It is not uncommon that vanadate trapping leads to NBD closure only in a subfraction of all transporters (hence not in 100 % of them).

      Yes, the native mass spectrum shows no appreciable signal for MsbA not trapped with vanadate/ADP. In our previous cryoEM study [6], using the vanadate-trapped transporter, we did not observe particles with NDBs dissociated in space. Regarding samples from other labs, a native mass spectrum could shed light into the population of untrapped protein – however, most studies use SDS-PAGE for quality control of their purified samples. This technology is not sufficient to address underlying biochemical issues.

      We do have a new report in preparation describing a new discovery regarding trapping efficiency of MsbA.

      1. The key parameter that is underlying the entire thermodynamic analysis of wt and mutant MsbA is the dissociation/association constant, which are used to calculate free Gibb's energy and, via van't Hoff analysis, enthalpy. Entropy is not determined directly, but in fact indirectly from these two numbers both depending on the measurement quality of dissociation/association constant. Now, when looking at the fitted curves as shown in Figure 2b (and in the supplement), determination of the dissociation constant for KDL1 (blue curves) look reasonable and the determined KDs are within the range of measured points. However, for KDL2 (red) and even more so KDL3 (yellow), the determined KD values (Supplementary Table 5), the measured KD values are typically higher than highest KDL conc used in the assay (1.5 uM). For this reason, and despite the fact that error bars of the fits look reasonably small, I still have doubts about the reliability of these KD values for KDL2 and KDL3.

      Hence, the surprisingly strong changes of enthalpy/entropy values for different mutants/temperatures may have their origin in incorrectly determined KD values.

      The increase in binding affinity of subsequent lipid binding events is consistent with many reports from our group [1, 2, 4, 6-9] and that of Prof. Robinson [10, 11] on this topic. As noted above, we indeed observe linear van’t Hoff plots with positive and negative slopes as well as non-linear curves that are convex or concave. The MsbA protein (wt or mutant), trapped or not, all display unique temperature-dependent responses. If the reviewer suggestion that the Kd values are incorrectly or randomly determined, then none of the binding data should follow thermodynamic van’t Hoff equations. This is simply not the case - the error bars and fits are reasonable. Backing up even further, looking the raw native mass spectra (see supplemental figure 1-3 and 10-11) one can see different temperature-dependence of lipid binding.

      Minor points

      1. Lines 116-131: this section reads as an extended introduction/aims, and does not contain any results.

      This section has been moved to introduction.

      1. Lines 137-139: suggested to check whether these interactions are also present in recently determined cryo-EM structures determined at fairly high resolution (PDB: 7PH2)

      The interactions of MsbA and LPS (bound at the interior site) are comparable for PDB 7PH2 and 6BPL.

      1. Lines 144-146: suggested to elude in more detail on the fitting procedure here, as the KD values determined in this way are the foundation of all quantitative assessments.

      Details of data analysis and the fitting procedure are provided in methods.

      1. Figure legend, Fig. 2: Technically, MsbA was solubilized and purified in DDM and detergent exchange was done on SEC to C10E5.

      Corrected.

      1. Figure legend, Fig. 4: description in a) on deconvoluted mass spec data is incorrect. Letter below needs to be adjusted accordingly.

      Corrected.

      1. Figure legend, Fig. 5: suggested to mention in Figure legend title that here we look at ADP-vanadate trapped MsbA.

      Corrected.

      References 1. Cong, X., et al., Determining Membrane Protein–Lipid Binding Thermodynamics Using Native Mass Spectrometry. Journal of the American Chemical Society, 2016. 138(13): p. 4346-4349.

      1. Cong, X., et al., Allosteric modulation of protein-protein interactions by individual lipid binding events. Nat Commun, 2017. 8(1): p. 2203.

      2. Qiao, P., et al., Insight into the Selectivity of Kir3.2 toward Phosphatidylinositides. Biochemistry, 2020. 59(22): p. 2089-2099.

      3. Qiao, P., et al., Entropy in the Molecular Recognition of Membrane Protein-Lipid Interactions. J Phys Chem Lett, 2021. 12(51): p. 12218-12224.

      4. Sokolovski, M., et al., Measuring inter-protein pairwise interaction energies from a single native mass spectrum by double-mutant cycle analysis. Nat Commun, 2017. 8(1): p. 212.

      5. Lyu, J., et al., Structural basis for lipid and copper regulation of the ABC transporter MsbA. Nat Commun, 2022. 13(1): p. 7291.

      6. Patrick, J.W., et al., Allostery revealed within lipid binding events to membrane proteins. Proc Natl Acad Sci U S A, 2018. 115(12): p. 2976-2981.

      7. Schrecke, S., et al., Selective regulation of human TRAAK channels by biologically active phospholipids. Nature Chemical Biology, 2021. 17(1): p. 89-95.

      8. Zhu, Y., et al., Cupric Ions Selectively Modulate TRAAK-Phosphatidylserine Interactions. J Am Chem Soc, 2022. 144(16): p. 7048-7053.

      9. Tang, H., et al., The solute carrier SPNS2 recruits PI(4,5)P(2) to synergistically regulate transport of sphingosine1-phosphate. Mol Cell, 2023. 83(15): p. 2739-2752 e5.

      10. Yen, H.Y., et al., PtdIns(4,5)P(2) stabilizes active states of GPCRs and enhances selectivity of G-protein coupling. Nature, 2018. 559(7714): p. 423-427.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      In this manuscript, Butkovic et al. perform a genome-wide association (GWA) study on Arabidopsis thaliana inoculated with the natural pathogen turnip mosaic virus (TuMV) in laboratory conditions, with the aim to identify genetic associations with virus infection-related parameters. For this purpose, they use a large panel of A. thaliana inbred lines and two strains of TuMV, one naïve and one pre-adapted through experimental evolution. A strong association is found between a region in chromosome 2 (1.5 Mb) and the risk of systemic necrosis upon viral infection, although the causative gene remains to be pinpointed.

      This project is a remarkable tour de force, but the conclusions that can be reached from the results obtained are unfortunately underwhelming. Some aspects of the work could be clarified, and presentation modified, to help the reader.

      (Recommendations For The Authors):

      • It is important to note that viral accumulation and symptom development do not necessarily correlate, and that only the former is a proxy for "virus performance". These concepts need to be clear throughout the text, so as not to mislead the reader.

      This has been explained better in line 118-120, “Virus performance has been removed.

      • Sadly, only indirect measures of the viral infection (symptoms) are used, and not viral accumulation. It is important to note that viral accumulation and symptom development do not necessarily correlate and that only the former is a proxy for "virus performance". These concepts need to be clear throughout the text, so as not to mislead the reader. The mention of "virus performance" in line 143 is therefore not appropriate, nor is the reference to viral replication and movement in the Discussion section.

      "Virus performance" was removed. Also, the reference to viral replication and movement in the Discussion section has been removed.

      Now we mention: “We did not measure viral accumulation, but note this is significantly correlated with intensity of symptoms within the Col-0 line (Corrêa et al. 2020), although it is not clear if this correlation occurs in all lines.”

      • Since symptoms are at the center of the screen, images representing the different scores in the arbitrary scales should ideally be shown.

      Different Arabidopsis lines would look different and this could mislead a reader not familiar with the lines. In order to make a representation of our criteria to stablish the symptoms, we believe that a schematic representation is clearer to interpret. Here are some pictures of different lines showing variating symptoms:

      Author response image 1.

      • Statistical analyses could be added to the figures, to ease interpretation of the data presented.

      Statistical analysis can be found in methods. We prefer to keep the figure legend as short as possible.

      • The authors could include a table with the summary of the phenotypes measured in the panel of screened lines (mean values, range across the panel, heritability, etc.).

      These data are plotted in Fig. 1. We believe that repeating this information in tabular form would not contribute to the main message of the work. Phenotype data and the code to reproduce figure 1 are available at GitHub (as stated in Data Availability), anyone interested can freely explore the phenotypes of the screened lines.

      • The definition of the association peak found in chromosome 2 could be explained further: is the whole region (1.5 Mb) in linkage disequilibrium? How many genes are found within this interval, and how were the five strong candidates the authors mention in line 161 selected? It is also not clear which are these 5 candidates, apart from AT2G14080 and DRP3B - and among those in Table 1 (which, by the way, is cited only in the Discussion and not in the Results section)? Why were AT2G14080 and DRP3B in particular chosen?

      We have replaced Table 1 with an updated Table S1 listing all genes found within the range of significant SNPs for each peak. We now highlight a subset of these genes as candidate genes if they have functions related to disease resistance or defence, and mentioned them explicitly in the text (lines 173-179. We have explicitly described how this table was constructed in the methods (lines 525-538).

      • Concerning the validation of the association found in chromosome 2 (line 169 and onward): the two approaches followed cannot be considered independent validations; wouldn't using independent accessions, or an independent population (generated by the cross between two parental lines, showing contrasting phenotypes, for example) have been more convincing?

      We aim to compare the hypothesis that the association is due to a causal locus to the null hypothesis that the observed association is a fluke due to, for example, the small number of lines showing necrosis. If this null hypothesis is true then we would not expect to see the association if we run the experiment again using the same lines. An alternative hypothesis is that the genotype at the QTL and disease phenotypes are not directly causally linked, but are both correlated with some other factor, such as another QTL, or maternal effects. We agree that an independent sample would be required to exclude the latter hypothesis, but argue that the former is the more pertinent. We have edited the text to be explicit about the hypothesis we are testing, and altered the language to shift the focus from ‘validation’ to ‘confirming the robustness’ of the association (line 182).

      • Regarding the identification of the transposon element in the genomic region of AT2G14080: is the complementation of the knock-out mutant with the two alleles (presence/absence of the transposon) possible to confirm its potential role in the observed phenotype?

      This could be feasible but we cannot do it as none of the researchers can continue this project.

      • On the comparison between naïve and evolved viral strains: is the evolved TuMV more virulent in those accessions closer to Col-0?

      This is not something we have looked at but would certainly be an interesting follow-up investigation.

      • The Copia-element polymorphism is identified in an intron; the potential functional consequences of this insertion could be discussed. In the example the authors provide, the transposable element is inserted into the protein-coding sequence instead.

      We now state explicitly that such insertions are expected to influence expression; beyond that we can only speculate. We have removed the reference to the insertion in the coding sequence.

      • The authors state in line 398 that "susceptibility is unquestionably deleterious" - is this really the case? Are the authors considering susceptibility as the capacity to be infected, or to develop symptoms? Viral infections in nature are frequently asymptomatic, and plant viruses can confer tolerance to other stresses.

      We have tone down the expression and clarify our wording: “Given that potyvirus outbreaks are common in nature (Pagán et al., 2010) and susceptibility to symptomatic infection can be deleterious”

      Additional minor comments:

      • In Table 1, Wu et al., 2018 should refer to DRP2A and 2B, not 3B.

      We have removed Table 1 altogether.

      • Line 126: a 23% increase in symptom severity is mentioned, but how is this calculated, considering that severity is measured in four different categories?

      This is the change in mean severity of symptoms between the two categories.

      • Figure 1F: "...symptoms"

      Fixed.

      • Line 179: "...suggesting an antiviral role..."

      Changed.

      • Lines 288-300: This paragraph does not fit into the narrative and could be omitted.

      It has been removed and some of the info moved to the last paragraph of the Intro, when the two TuMV variants were presented.

      • Lines 335-337: The rationale here is unclear since DRP2B will also be in the background - wouldn't DRPB2B and 3B be functionally redundant in the viral infection?

      Our results suggest that DRPB3B is redundant with DRPB2B for the ancestral virus but not for the evolved viral strain. We speculate that the evolved viral isolate may have acquired the capacity to recruit DRPB3B for its replication and hence it produces less symptoms when the plant protein is missing.

      We have spotted a mistake that may have add to the confusion. Originally the text said “In contrast, loss of function of DRP3B decreased symptoms relative to those in Col-0 in response to the ancestral, but not the evolved virus”. The correct statement is “In contrast, loss of function of DRP3B decreased symptoms relative to those in Col-0 in response to the evolved, but not the ancestral virus.”  

      Reviewer #2 (Public Review):

      The manuscript presents a valuable investigation of genetic associations related to plant resistance against the turnip mosaic virus (TuMV) using Arabidopsis thaliana as a model. The study infects over 1,000 A. thaliana inbred lines with both ancestral and evolved TuMV and assesses four disease-related traits: infectivity, disease progress, symptom severity, and necrosis. The findings reveal that plants infected with the evolved TuMV strain generally exhibited more severe disease symptoms than those infected with the ancestral strain. However, there was considerable variation among plant lines, highlighting the complexity of plant-virus interactions.

      A major genetic locus on chromosome 2 was identified, strongly associated with symptom severity and necrosis. This region contained several candidate genes involved in plant defense against viruses. The study also identified additional genetic loci associated with necrosis, some common to both viral isolates and others specific to individual isolates. Structural variations, including transposable element insertions, were observed in the genomic region linked to disease traits.

      Surprisingly, the minor allele associated with increased disease symptoms was geographically widespread among the studied plant lines, contrary to typical expectations of natural selection limiting the spread of deleterious alleles. Overall, this research provides valuable insights into the genetic basis of plant responses to TuMV, highlighting the complexity of these interactions and suggesting potential avenues for improving crop resilience against viral infections.

      Overall, the manuscript is well-written, and the data are generally high-quality. The study is generally well-executed and contributes to our understanding of plant-virus interactions. I suggest that the authors consider the following points in future versions of this manuscript:

      1. Major allele and minor allele definition: When these two concepts are mentioned in the figure, there is no clear definition of the two words in the text. Especially for major alleles, there is no clear definition in the whole text. It is recommended that the author further elaborate on these two concepts so that readers can more easily understand the text and figures.

      We agree that the distinction between major/minor alleles and major/minor associations in our previous manuscript may have been confusing. In the current manuscript we now define the minor allele at a locus as the less-common allele in the population (line 167). We have removed references to major/minor associations, and instead refer to strong/weak associations.

      1. Possible confusion caused by three words (Major focus / Major association and major allele): Because there is no explanation of the major allele in the text, it may cause readers to be confused with these two places in the text when trying to interpret the meaning of major allele: major locus (line 149)/ the major association with disease phenotypes (line 183).

      See our response to the previous comment.

      1. Discussion: The authors could provide a more detailed discussion of how the research findings might inform crop protection strategies or breeding programs.

      We would prefer to restrain speculating about future applications in breeding programs.

      (Recommendations For The Authors):

      1. Stacked bar chart for the Fig 1F. It is recommended that the author use the form of a stacked bar chart to display the results of Fig 1F. On the one hand, it can fit in with the format of Fig 1D/E/G, on the other hand, it can also display the content more clearly.

      We think the results are easier to interpret without the stacked bar chart.

      1. Language Clarity: While there are no apparent spelling errors, some sentences could be rewritten for greater clarity, especially when explaining the results in Figure 1 and Figure 2.

      We have reviewed these sections and attempted to improve clarity where that seemed appropriate.

      There are some possibilities to explore in the future. For example: clarity of mechanisms for the future. While the study identifies genetic associations, it lacks an in-depth exploration of the underlying molecular mechanisms. Elaborating on the mechanistic aspects would enhance the scientific rigor and practical applicability of the findings.

      Yes, digging into the molecular mechanisms is an ongoing task and will be published elsewhere. It was out of the scope of this already dense manuscript.  

      Reviewer #3 (Public Review):

      Summary of Work

      This paper conducts the largest GWAS study of A. thaliana in response to a viral infection. The paper identifies a 1.5 MB region in the chromosome associated with disease, including SNPs, structural variation, and transposon insertions. Studies further validate the association experimentally with a separate experimental infection procedure with several lines and specific T-DNA mutants. Finally, the paper presents a geographic analysis of the minor disease allele and the major association. The major take-home message of the paper is that structural variants and not only SNPs are important changes associated with disease susceptibility. The manuscript also makes a strong case for negative frequency-dependent selection maintaining a disease susceptibility locus at low frequency.

      Strengths and Weaknesses

      A major strength of this manuscript is the large sample sizes, careful experimental design, and rigor in the follow-up experiments. For instance, mentioning non-infected controls and using methods to determine if geographic locus associations were due to chance. The strong result of a GWAS-detected locus is impressive given the complex interaction between plant genotypes and strains noted in the results. In addition to the follow-up experiments, the geographic analysis added important context and broadened the scope of the study beyond typical lab-based GWAS studies. I find very few weaknesses in this manuscript.

      Support of Conclusions

      The support for the conclusions is exceptional. This is due to the massive amount of evidence for each statement and also due to the careful consideration of alternative explanations for the data.

      Significance of Work

      This manuscript will be of great significance in plant disease research, both for its findings and its experimental approach. The study has very important implications for genetic associations with disease beyond plants.

      (Recommendations For The Authors):

      Line 41 - Rephrase, not clear "being the magnitude and sign of the difference dependent on the degree of adaptation of the viral isolate to A. thaliana."

      Now it reads: “When inoculated with TuMV, loss-of-function mutant plants of this gene exhibited different symptoms than wild-type plants, where the scale of the difference and the direction of change between the symptomatology of mutant and wild-type plants depends on the degree of adaptation of the viral isolate to A. thaliana.”

      Line 236 - typo should read: "and 21-fold"

      Changed.

    1. Author Response

      The following is the authors’ response to the original reviews.

      In this manuscript, Xie et al report the development of SCA-seq, a multiOME mapping method that can obtain chromatin accessibility, methylation, and 3D genome information at the same time. This method is highly relevant to a few previously reported long read sequencing technologies. Specifically, NanoNome, SMAC-seq, and Fiber-seq have been reported to use m6A or GpC methyltransferase accessibility to map open chromatin, or open chromatin together with CpG methylation; Pore-C and MC-3C have been reported to use long read sequencing to map multiplex chromatin interactions, or together with CpG methylation. Therefore, as a combination of NanoNome/SMAC-seq/Fiber-seq and Pore-C/MC-3C, SCA-seq is one step forward. The authors tested SCA-seq in 293T cells and performed benchmark analyses testing the performance of SCA-seq in generating each data module (open chromatin and 3D genome). The QC metrics appear to be good and the methods, data and analyses broadly support the claims. However, there are some concerns regarding data analysis and conclusions, and some important information seems to be missing.

      1. The chromatin accessibility tracks from SCA-seq seem to be noisy, with higher background than DNase-seq and ATAC-seq (Fig. 2f, Fig. 4a and Fig. S5). Also, SCA-seq is much less sensitive than both DNase-seq and ATAC-seq (Figs. 2a and 2b). This and other limitations of SCA-seq (high background, high sequencing cost, requirement of specific equipment, etc) need to be carefully discussed.

      We thank the reviewer for the important comment about noisy GpC methylation signal in SCA-seq. We acknowledge that the SCA-seq signal presented in Fig. 2f, Fig. 4a, and Fig. S5 in our first draft was indeed noisy, as we present the raw 1D genomic signal. In this revision, we have taken steps to reduce the noise in GpC methylation signal by identifying the accessible regions on each segment of every single molecule. For each segment, we performed the sliding window analysis (50bp window sliding by a 10 bp step) with binomial test to identify accessible windows that significantly deviate from background GpC methylation ratio. The overlapping accessible windows (p < 0.05 for binomial test and contain at least two GpC sites) on the single fragments are merged as accessible region. Then we retain the GpC methylation signal inside the accessible region to reduce the background noise (Sfig 5ab). The details of the noise filtering steps are described in the Methods section (page 22 lines 13-23).

      Visually, we can observe from the updated exemplary view of 1D signal track that the noise is dramatically reduced in filtered SCA-seq GpC methylation signal compared to the raw signal (Sfig5c). The clean SCA-seq GpC methylation 1D signals were also updated (Fig2f and Fig4a). We have observed an increase in the TSS enrichment score, which is a commonly used metric for assessing the signal-to-noise ratios in ATAC-seq data quality control. Specifically, the TSS enrichment score increased to 2.74 when using the filtered signal, compared to 1.93 when using the raw signal (Sfig5d). After noise filtering, 80% of SCA-seq 1D peaks overlaps with peaks called by ATAC-seq and/or DNase-seq (Fig2ab), compared to 74% from the raw signal in the first draft.

      We thank the reviewer for raising up the concern about the sequencing cost and requirement of specific equipment. The sequencing cost is approximately 1300 USD per sample to sequence 30X depth human sample and obtain saturated GpC methylation signal (Sfig4d) as well as loop signal similar to the NGS-based Hi-C (Fig3gh). Considering that SCA-seq simultaneously provides higher-order chromatin structure and chromatin accessibility at single molecule resolution, we believe the cost is acceptable. However, it is worth noting that SCA-seq requires a regular Oxford nanopore sequencer with R9.4.1 chip, which is currently available but might be discontinued by Oxford Nanopore in the future. We have addressed all these concerns in the discussion section.

      1. In Fig. 2f, many smaller peaks are present besides the major peaks. Are they caused by baseline DNA methylation? How many of the small methylation signals are called peaks? In Fig. 4a, it seems that the authors define many more enhancers from SCA-seq data than what will be defined from ATAC-seq or DHS. Are those additional enhancers false positives? Also, it is difficult to distinguish the gray "inaccessible segments" from the light purple "accessible segments.

      We thank the reviewer for bringing up these concerns.

      Regarding the smaller peaks in the 1D genomic GpC methylation signal, we have addressed this issue by implementing the noise filtering in this revision, the small peaks on 1D tracks are greatly reduced (Fig2f, Sfig5c). It is important to note that SCA-seq generates accessibility signals specifically on ligation junctions, which differs from the one-dimensional (1D) signals obtained through ATAC-seq or DNase-seq. The presence of remaining small peaks in the SCA-seq data can be attributed to the varied sequencing depth, which is influenced by the enriched spatial interactions occurring in regions of the genome that are enriched with ligation junctions. In general, the SCA-seq 1D peaks are well correlated with the high confidence peaks from 1D track of ATAC-seq and DNase-seq (Fig2b).

      We apologize for the lack of clarity in our enhancer annotation. The enhancer regions were obtained from The Ensembl Regulatory Build (PMID: 25887522). We have now included this information in the method section (page 24 line 16).

      We thank the reviewer for pointing out this visualization problem. The color scheme has been revised, with purple now representing the inaccessible segments and yellow representing the accessible segments.

      1. For 3D genome analysis, it is important to provide information about data yield from SCA-seq. With 30X sequencing depth, how many contacts are obtained (with long-read sequencing, this should be the number of ligation junctions)? How is the number compared to Hi-C.

      We thank the reviewer for raising up this crucial point about the sequencing yield that we missed. We have now included this information in the revised result section (page 11, lines 11-14).

      We have checked the public data of a successful HEK293T Hi-C run (PMID: 34400762). The Hi-C experiment produced 699,464,541 reads (105G base), and we obtained 388,031,859 contacts.

      From 100G bases of HEK293T SCA-seq data, we obtained 81,229,369 ligation junctions and 378,848,187 virtual pairwise contacts (3.8M pairwise contacts per Gb). The SCA-seq performance of virtual pairwise contact number per Gb is similar to that of PORE-C (PMID: 35637420).

      1. Fig 3j. Because SCA-seq only do GpC methylation, the capability to detect the footprint at individual CTCF peaks depends on the density of GpC nearby. Have the authors taken GpC density into account when defining CTCF sites with or without footprint?

      We appreciate the reviewer for bringing up the concern about the GpC site density at CTCF site. We would like to highlight that Battaglia et al. have demonstrated the feasibility of identifying transcription factor binding events using GpC labeling (PMID: 36195755). In our study, we have implemented a high-resolution sliding window approach to enhance the sensitivity of CTCF binding detection. We have taken GpC density into account by performing a sliding window (50 bp window, 10 bp step) binomial test on every single molecule overlapping with CTCF site to call accessible region. The detailed steps to call accessible region has been described in the answer of the first question. Based on the pattern in Fig3j, we identify CTCF footprints if the accessible regions are called nearby the CTCF sites (at least 20 bp away from the center of CTCF sites) but not on the CTCF sites.

      To ensure that the GpC site density is sufficient for binomial test of each sliding window of the regions around CTCF site genome-wide, we examined the number of GpC sites in each window. Our analysis revealed that GpC sites are evenly distributed, and over 87% of the windows contain at least 2 GpC sites, which qualifies them for a binomial test (Author response image 1). This indicates that we are able to detect the CTCF footprint at most of the CTCF sites, taking into consideration the GpC density.

      Author response image 1.

      Genome wide GpC site density at CTCF site centered region. Distribution of the number of GpC sites (y-axis) at each 50 bp sliding window region (x-axis) was presented in violin plots.

      1. This study only performs higher resolution chromatin interaction analysis based on individual read concatenates. It is unclear to me if the data have enough depth to perform loop analysis with Hi-C pipelines.

      We thank the reviewer for highlighting this important concern about the depth of data for performing loop analysis. We have performed Aggregate peak analysis for SCA-seq and Hi-C side-by-side using hiccups function in Juicer (v1.9.9) (PMID: 27467249). We acknowledge that the level of loop signal enrichment is relatively weaker (one-fold less) in SCA-seq compared to Hi-C (Fig3h). This difference can be attributed to the lower sequencing yield per Gb in SCA-seq, which resulted in 4.93M pairwise contacts per Gb, compared to the 7M contacts per Gb in Hi-C. Despite this discrepancy, we were still able to observe the clear genome-wide loop enrichment pattern in SCA-seq (Fig3gh).

      1. It appears that SCA-seq is of low efficiency in detecting chromatin interactions. As shown in Fig. S7a, 65.4% of sequenced reads contained only one restriction enzyme (RE) fragment/segment (with no genomic contact), which is much higher than that reported in published PORE-C methods. In addition, Fig. S7g is very confusing and in conflict with Fig. S7a. For example, in Fig. S7g, 21.4% and 22.2% of CSA-seq concatemers contain one and two segments, whereas the numbers are 65.4% and 14.7% in Fig. S7a, respectively. Please explain.

      We apologize for the confusion in sfig7a and sfig7g.

      Sfig7a was intended to illustrate the cardinality count of concatemers with only chr7 segments included, representing the intra-chromosome cardinality instead of the genome-wide cardinality. We have revised sfig7a and its corresponding figure legend to clarify that the figure describes segments of intra-chromosome interactions.

      On the other hand, sfig7g shows the concatemers including both intra-chromosome and inter-chromosome segments, which explains the differences in the percentages of different cardinality ranges compared to Figure S7a. Moreover, the percentages reported in Figure S7g are similar to what is typically reported in PORE-C methods when considering both intra- and inter-chromosome interactions.

      To provide a comprehensive view of the genome-wide concatemer cardinality distribution, we have also included a histogram in Fig3k, which demonstrates the detailed distribution of cardinality for genome-wide concatemers.

      1. I disagree with the rationale of the entire Fig. S9. Biologically there is no evidence that chromatin accessibility will change due to genome interactions (the opposite is more likely), therefore the definition of "expected chromatin accessibility" is hard to believe. If the authors truly believe this is possible, they will need to test their hypothesis by deleting cohesin and check if the chromatin accessibility driven by "power center" are truly abolished. The math in Fig. S9 is also confusing. Firstly, the dimension of the contact matrix in Fig. S9 appears to be wrong, it should have 8 rows. Secondly, I don't understand why the interaction matrix is not symmetric. Third, if I understand correctly the diagonal of the matrix should be all 1, it is also hard to understand why the matrix only has 1, 0 or -1. It appears that the authors assume that the observed accessibility is a simple sum of the expected accessibility of all its interacting regions; this is wrong. In my opinion, the whole Fig. S9 should be deleted unless the authors can make sense of it and ideally also provide more evidence.

      I apologize for any confusion caused by the rationale and figures in Fig. S9. The purpose of the hypothesis presented in the figure is to explore the potential relationship between chromatin accessibility and genome interactions. While there is currently no direct biological evidence supporting this hypothesis, it is a possibility that warrants further investigation.

      Regarding the suggestion to delete Fig. S9 unless more evidence is provided, it is important to note that this paper primarily focuses on the methodology and theoretical framework. Experimental validation of the hypothesis falls outside the scope of this particular study.

      We have made corrections to the schematic matrix in Fig. S9 to accurately represent the dimensions and symmetry. The numbers in the matrix represent mean accessible values of the contacts. Specifically, accessible-accessible contacts are represented by 2, accessible-inaccessible contacts are represented by 0, and inaccessible-inaccessible contacts are represented by -2.

      Minor concerns:

      1. The authors may want to clearly demonstrate the specificity and sensitivity of the ATAC part and the efficiency of the Hi-C part of SCA-seq.

      We appreciate the reviewer’s suggestion to demonstrate the specificity and sensitivity of the ATAC-seq part and the efficiency of the Hi-C part in SCA-seq.

      We considered the non-peak region genomic bins shared by ATAC-seq and DNase-seq as true negatives and the overlapping peaks of ATAC-seq and DNase-seq as true positives. Based on these criteria, the specificity of SCA-seq 1D peaks is calculated as TN / N, where TN represents the number of true negatives (89107) and N represents the sum of true negatives and false positives (89107 + 9345). The resulting specificity is 0.91. The sensitivity of SCA-seq 1D peaks is calculated as TP / P, where TP represents the number of true positives (33190) and P represents the sum of true positives and false negatives (33190 + 11758). The resulting sensitivity is 0.73.

      We evaluate the efficiency of spatial interaction by the restriction enzyme digested fragments recovered in the pairwise contacts that contain ligation junctions. In SCA-seq, the efficiency is calculated as the number of dpnII digested fragments recovered by pairwise contacts (5625908) divided by the total number of in silico dpnII digested fragments (7127633). The resulting efficiency is 0.79.

      We have now included this information in the revised result section (page 8 lines 15-18)

      1. Fig 4g, colors with apparent differences might be used to clearly discriminate the three types of interactions (I-I, I-A and A-A).

      We appreciate the reviewer for bringing up the issue regarding the visualization in Fig 4g. The color scheme has been revised, with purple now representing I-I interactions, orange representing I-A interactions, and red representing A-A interactions. We believe that these modifications have significantly improved the clarity.

      1. Fig. 4c, when fitting an unknown curve, R-square becomes meaningless.

      We appreciate the reviewer for pointing out the issue regarding the interpretation of R-square. We have removed the R-square value from Fig. 4c.

      1. Fig 5a, "oCGIs comprised 65% CGIs that did not directly contact enhancers or promoters". Should it be "oCGIs comprised 65% of all CGIs"?

      We appreciate the reviewer for pointing out the clarification needed in Fig 5a. We have revised the phrase in the figure legend to accurately state that “oCGIs comprised 65% of all CGIs”. Thank you for bringing this to our attention.

      1. Page 15 lines 5-8, "By examining the methylation status on reads, as expected, these read segments demonstrated lower CpG methylation and higher chromatin accessibility (GpC methylation), which further supports their roles in gene activation (Fig 5b)". This statement seems to be inconsistent with the figure legend.

      We appreciate the reviewer for pointing out the inconsistency in the legend of Fig 5b. We have revised the legend of Fig 5b to accurately highlight the low CpG methylation on oCGI regions. Thank you for bringing this to our attention.

      1. Language editing and proof reading are needed.

      I apologize for any errors or mistakes in the language. We have carefully reviewed the manuscript and made the necessary language editing and proofreading revisions to ensure its quality for publication.

    2. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This paper reports the development of SCA-seq, a new method derived from PORE-C for simultaneously measuring chromatin accessibility, genome 3D and CpG DNA methylation. Most of the conclusions are supported by convincing data. SCA-seq has the potential to become a useful tool to the scientific communities to interrogate genome structure-function relationships.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this work, Xie et al. developed SCA-seq, which is a multiOME mapping method that can obtain chromatin accessibility, methylation, and 3D genome information at the same time. SCA-seq first uses M.CviPI DNA methyltransferase to treat chromatin, then perform proximity ligation followed by long-read sequencing. This method is highly relevant to a few previously reported long read sequencing technologies. Specifically, NanoNome, SMAC-seq, and Fiber-seq have been reported to use m6A or GpC methyltransferase accessibility to map open chromatin, or open chromatin together with CpG methylation; Pore-C and MC-3C have been reported to use long read sequencing to map multiplex chromatin interactions, or together with CpG methylation. Therefore, as a combination of NanoNome/SMAC-seq/Fiber-seq and Pore-C/MC-3C, SCA-seq is one step forward. The authors tested SCA-seq in 293T cells and performed benchmark analyses testing the performance of SCA-seq in generating each data module (open chromatin and 3D genome). The QC metrics appear to be good and I am convinced that this is a valuable addition to the toolsets of multi-OMIC long-read sequencing mapping.

      The revised manuscript addressed most of my questions except my concern about Fig. S9. This figure is about a theory that a chromatin region can become open due to interaction with other regions, and the author propose a mathematic model to compute such effects. I was concerned about the errors in the model of Fig. S9a, and I was also concerned about the lack of evidence or validation. In their responses, the authors admitted that they cannot provide biological evidence or validations but still chose to keep the figure and the text.

      The revised Fig. S9a now uses a symmetric genome interaction matrix as I suggested. But Figure S9a still have a lot of problems. Firstly, the diagonal of the matrix in Fig. S9a still has many 0's, which I asked in my previous comments without an answer. The legend mentioned that the contacts were defined as 2, 0 or -2 but the revised Fig. S9a only shows 1,0, or -1 values. Furthermore, Fig. S9b,9c,9d all added a panel of CTCF+/- but there is no explanation in text or figure legend about these newly added panels. Given many unaddressed problems, I would still suggest deleting this figure.

      In my opinion, this paper does not need Fig. S9 to support its major story. The model in this figure is independent of SCA-seq. I think it should be spinoff as an independent paper if the authors can provide more convincing analysis or experiments. I understand eLife lets authors to decide what to include in their paper. If the authors insist to include Fig. S9, I strongly suggest they should at least provide adequate explanation about all the figure panels. At this point, the Fig. S9 is not solid and clearly have many errors. The readers should ignore this part.

      We appreciate the reviewer for raising these concerns regarding Fig. S9. After careful consideration, we have decided to address your concerns by deleting Fig. S9 and the corresponding text from the manuscript. We understand your point that the model presented in Fig. S9 is independent of SCA-seq and may require additional evidence and validation to be presented in a separate paper.

      We agree that it is important to maintain the integrity and accuracy of the manuscript, and we appreciate your feedback in helping us make this decision.

      Reviewer #2 (Public Review):

      In this manuscript, Xie et al presented a new method derived from PORE-C, SCA-seq, for simultaneously measuring chromatin accessibility, genome 3D and CpG DNA methylation. SCA-seq provides a useful tool to the scientific communities to interrogate the genome structure-function relationship.

      The revised manuscript has clarified almost of the concerns raised in the previous round of review, though I still have two minor concerns,

      1. In fig 2a, there is no number presented in the Venn diagram (although the left panel indeed showed the numbers of the different categories, including the numbers in the right panel would be more straightforward).

      We appreciate the reviewer for pointing out the need for clarification in the Venn diagram in Fig 2a. We have added the numbers to Venn diagram.

      1. The authors clarified the discrepancy between sfig 7a and sfig 7g. However, the remaining question is, why is there a big difference in the percentage of the cardinality count of concatemers of the different groups between the chr7 and the whole genome?

      We apologize for the confusion regarding the difference in the percentage of the cardinality count of concatemers between chr7 and the whole genome in figures S7a and S7g. The difference arises because the chr7 cardinality count only considers the intra-chromosome segments that are adjacent to each other on a SCA-seq concatemer, while the whole genome cardinality count includes both intra-chromosome and inter-chromosome segments.

      In the case of a SCA-seq concatemer that contains both intra-chromosome junctions and inter-chromosome junctions, the whole genome cardinality count will be greater than the intra-chromosome cardinality count. This explains the difference in the percentages between chr7 and the whole genome in figures S7a and S7g.

      To better clarify the definition of intra-chromosome cardinality, we have added an illustrative graph in figure S7a. In the updated figure S7a, the given exemplary SCA-seq concatemer has a whole genome cardinality of 4 and a chr7 intra-chromosome cardinality of 3.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      We thank the reviewers for collectively highlighting our study as “interesting and timely” and as making significant advances regarding the functional role of Orai in the activity of central dopaminergic neurons underlying the development of Drosophila flight behaviour. We hope that based on the revisions detailed below the data supporting our findings will be considered complete.

      Reviewer 1:

      • In this revision, the authors have addressed most points using text changes but there is still one important issue that continues to be inadequately addressed. This relates to point 1.

      If Set2 is acting downstream of SOCE, it is not clear to me how STIM1 over expression rescues Set2-dependent downstream responses in flies that do not have Set2. It seems that if STIM1 over-expression, which would presumably enhance SOCE, largely rescues Set2-dependent effector responses in the Set2RNAi flies, then the proposed pathway cannot be true (because if Set2 is downstream of SOCE, it shouldn't matter whether SOCE is boosted in flies that lack Set2). This discrepancy is not explained. Does STIM1 over-expression somehow restore Set2 expression in the Set2RNAi flies?

      Ans: Based on the requirement of Orai-mediated Ca2+ entry for Set2 expression (THD’>OraiE180A neurons, Figure 2C) we had indeed proposed that rescue of flight in Set2RNAi flies by STIMOE is because Set2 expression in Set2RNAi flies is restored by STIMOE. However, we agree that this has not been tested experimentally. Since these data are supportive but not essential to our findings here, we have removed data demonstrating flight rescue of Set2RNAi by STIMOE from Figure 2 – supplement 5 and associated text from the revised manuscript. We plan to investigate the effect of STIMOE on Set2 in the context of Drosophila dopaminergic neurons in the future.

      Reviewer 2:

      The manuscript analyses the functional role of Orai in the excitability of central dopaminergic neurons in Drosophila. The authors answer the previous concerns, but several important issues have not been experimentally tested. Especially, the lack of characterization of SOCE or calcium release from the intracellular calcium stores limits considerably the impact of the study. They comment on a number of technical problems but, taking into account the nature of the study, based on Orai and SOCE, the lack of these experimental data reduces the relevance of the study. Below are some specific comments:

      1. The response to question 1 is unconvincing. The authors do not demonstrate experimentally that STIM over-expression enhances SOCE or how excess SOCE might overcome the loss of SET2.

      Ans: The reason we have not performed experiments in this manuscript to investigate SOCE in STIM overexpression condition is two-fold. Firstly, extensive characterisation of SOCE by STIM overexpression in Drosophila pupal neurons forms part of an earlier publication (Chakraborty and Hasan, Front. Mol. Neurosci, 2017). A graph from Chakraborty and Hasan, 2017 where SOCE was measured in primary cultures of pupal neurons from an IP3R mutant (S224F/G1891S) of Drosophila. Reduced SOCE in IP3R mutant neurons (red trace) was restored by overexpression of STIM (black trace). The green trace is of wild-type neurons with STIM overexpression and the grey trace with STIMRNAi. Similar experiments were performed with Orai+STIM overexpression and the rescue in SOCE was compared with STIM overexpression in pupal neurons of wild type and IP3R mutant S224F/G1891S. See Chakraborty and Hasan, 2017 (Front. Mol. Neurosci. 10:111. doi: 10.3389/fnmol.2017.00111)

      2) Secondly, rescue by STIMOE is supportive but not essential to the findings of this manuscript which relate primarily to the analysis of an Orai-dependent transcriptional feed-back mechanism acting via Trl and Set2 in flight promoting dopaminergic neurons (See Fig 2C where we demonstrate that OraiE180A expression in THD’ neurons brings down Set2 expression).

      We agree that we have not demonstrated how loss of Set2 can be compensated by STIM overexpression. Therefore, we have now removed the supplementary data relating to STIM rescue of Set2RNAi (THD’>Set2RNAi; STIMOE) flight phenotypes since as mentioned above it was supportive but not essential to the main theme of the manuscript. Consistent with this, we have also removed rescue of flight in TrlRNAi by STIMOE (Figure 4C).

      1. The authors do not present a characterization of SOCE in the cells investigated expressing native Orai or the dominant negative OraiE180A mutant yet. They comment on some technical problems for in situ determination or using culture cells but, apparently, in previous studies they have reported some results.

      Ans: We respectfully submit that characterisation of SOCE in cells expressing native Orai and OraiE180A from primary cultures of Drosophila pupal dopaminergic neurons, form part of an earlier publication (Pathak, T., et al., (2015). The Journal of Neuroscience, 35, 13784–13799. https://doi.org/10.1523/jneurosci.1680-15.2015). As mentioned in lines 80-84 the dopaminergic neurons studied here (THD’) are a subset of the dopaminergic neurons studied in the Pathak et al., 2015 publication (TH). As evident in Figure 2 panels B-D expression of OraiE180A in dopaminergic neurons abrogates SOCE.

      In this study we have focused on identifying the molecular mechanism by which OraiE180A expression and concomitant loss of cellular Ca2+ signals (Figure 3B, 3C) affects dopaminergic neuron function. In lines 270-274 (page 10) we have stated the technical reason why Ca2+ measurements made in this study from ex-vivo brain preps measure a composite of ER-Ca2+ release and SOCE. Our observation that the measured Ca2+ response is significantly attenuated in cells expressing OraiE180A leads us to the conclusion that we are indeed measuring an SOCE component in the ex-vivo brain preps. This is also explained in ‘Limitations of the study’.

      1. Concerning the question about the STIM:Orai stoichiometry the authors answer that "We agree that STIM-Orai stoichiometry is essential for SOCE, and propose that the rescue backgrounds possess sufficient WT Orai, which is recruited by the excess STIM to mediate the rescue"; however, again, this is not experimentally tested.

      Ans: To address this point we have now measured relative stoichiometries of STIM and Orai mRNA by qPCR under WT conditions in Drosophila THD’ neurons at 72 hr APF. The observed stoichiometry as per these measurements is STIM:Orai =1.6:1 (~8:5). These data are in relative agreement with the normalised read counts of STIM and Orai in THD’ neurons in the RNAseq performed and described in Fig 1F. The qPCR (A) and RNAseq (B) measures of STIM and Orai are appended below.

      Author response image 1.

      In comparison to the numerous studies investigating structural, biophysical and cellular characterisation of Orai channels in heterologous systems, there are fewer studies which have traced systemic implications of Orai function through multiple tiers of investigation including organismal behaviour. Leveraging the wealth of genetic resources available in Drosophila, we have attempted this here. While we respectfully agree that questions pertaining to the stoichiometries of STIM/Orai proteins are indeed relevant to cellular regulation of SOCE, we submit they may be better suited for investigation in heterologous systems involving cell culture, or with in-vitro systems with purified recombinant proteins, or indeed using computational and modelling approaches. None of these methods fall within the scope of our current investigation which is to understand how by Orai mediated Ca2+ entry regulates developmental maturation of Drosophila flight promoting dopaminergic neurons.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the Editor and the referees for their questions and remarks. In this document we provide a point-by-point response to revisions requested by the reviewers.

      Public Reviews:

      Reviewer #1 (Public Review):

      Jafarinia et al. have made an interesting contribution to unravelling the molecular mechanisms underlying pathological phenotypes of repeat expansion of the C9orf72 gene. The repeat expression leads to the expression of polyPR proteins. Using coarse-grained molecular dynamics simulations, the authors identify putative binding partners involved in nucleocytoplasmic transport (NCT), and that conjecture that polyPR affects essential processes by binding to NCT-related proteins. The results are well-reported, but only putative, and need experimental support to be more conclusive. Also, a comparison with results from all-atom MD simulations in explicit water could help verify the results. But even without these, the work is very useful as a first step to unravel the role of polyPR and related peptides.

      We greatly appreciate the reviewer's positive assessment of our work and the suggestions. We acknowledge the need for more experimental validation of the binding behavior of some of the transport components. Our results coincide with the experimental findings of Hutten et al. [1] ([16] in our paper) for example regarding the binding of polyPR to Kapβs and Impαs, but experimental validation of additional transport components, especially for RanGAP, would be valuable. We hope that our work will inspire colleagues from the field to actually perform such experiments.

      We also agree with the reviewer's suggestion that all-atom simulations can provide further details on the molecular conformations at the local NTR-PR binding regions. Nonetheless, such simulations for all transport components, particularly for interactions involving large conformational flexibility of longer polyPR chains such as PR50, would require significant computational expenses. In a recent publication (Jafarinia et al. [2]) we reported on the close resemblance in binding behavior between our coarse-grained MD data and the all-atom MD simulations of (Nanaura et al. [3]), both showing polyPR binding to a negatively-charged cavity of Kapβ2. We expect future MD simulations to elucidate more atomistic detail with the continuously increasing power of high-performance computing clusters.

      Reviewer #2 (Public Review):

      This study used coarse-grained molecular dynamics simulation to explain how the binding of polyPR might interfere with distinct stages of the transport cycle. This finding shows that the interaction between polyPR and transport components is driven by electrostatic interactions and is correlated with the salt concentration and the length of polyPR, providing an important basis for subsequent exploration of the impact of C9orf72 R-DPRs on NCT disruption.

      We appreciate the reviewer's positive feedback and the recognition of the significance of our work.

      Reviewer #3 (Public Review):

      Onck and co-workers present in this work the identification of binding partners and sites of polyPR on various nuclear transport components and elucidate how polyPR might potentially influence the transport process. It's interesting to note that some interaction sites on transport components also serve as their inherent/functional binding sites. The difference in the effects between short polyPR (PR7) and long polyPR (PR50) is also evident, although the authors might need to clarify the mechanisms better. Overall, the manuscript is well organized and concisely written, and it would greatly enhance our understanding of the toxicity induced by polyPR. In general, the 1-bead per atom force field model used in the study is well-tuned for studying the interactions between polyPR and proteins, as the essential cation-pi interactions (between Arg and Phe/Tyr/Trp) were included using an 8-6 LJ model.

      We thank the reviewer for recognizing the suitability of our 1-bead-per-amino-acid force field for studying R-DPRs' interactions with transport components and for acknowledging our work's contribution to understanding polyPR toxicity mechanisms. Below we comment on the mechanisms describing the difference between short and long polyPR molecules.

      Recommendations for the authors:

      1) Regarding Figure 2 (also see below for more specific comments), there is a major concern that the dipole moment is not included in Fig 2b (as the correlation is better with f=0), but the authors still conclude that this is generally important (lines 258-261). As a minimum, this needs to be discussed more carefully. Is f (i..e. the importance of dipole moment for binding) dependent on the specific binding partner, or what is going on? Maybe, there is a good explanation?

      Indeed, the significance of the dipole moment depends on the specific type of transport component involved. Our analysis reveals that for Kapβs, see figure 2b, the best-fit is obtained with f=0, indicating that the separation of charge within Kapβs has a relatively minor effect on their interaction with polyPR. Instead, the primary determinant for polyPR-Kapβ interaction appears to be the net charge per residue (NCPR), with a more negative NCPR leading to stronger interactions.

      We attribute this behavior to the structural characteristics of Kapβs, particularly the superhelical structure which features inner and outer surfaces with differing charge distributions. Importantly, this structural arrangement creates an inner surface characterized by a negative electrostatic potential. As demonstrated in our previous work, polyPR predominantly binds to this negatively charged cavity within Kapβs. Consequently, the separation of charges on the Kapβ surface becomes less influential compared to the overall charge. Other transport components, however, depicted in figure 2a, do not share this feature and the distribution of charges over the surface becomes a more critical factor in polyPR interactions. We have now added this explanation to page 6, and emphasized in the conclusion section that the effect of dipole moment is only observed for the transport components in figure 2a.

      2) Write out nucleoporin, Nup, at first appearance (line 51).

      We have changed it in line 51.

      3) Fig 1: a (representative) CG structure of polyPR (PR7,PR20 and PR70) would be very useful.

      We have added a CG representation of PR7 and PR20 to figure 1.

      4) Please use chi-square, not R-square, to evaluate the fit, as chi-square takes experimental errors into account.

      We use R-square as a standard measure to assess the quality of the fit in the simulations, as it considers the summation of residuals. This choice aligns with the methodology we have used in our previous publications and therefore prefer to use this measure here as well.

      5) Please use a dot (not a full stop) for multiplication in line 151 and Figure 2 legend.

      We made the adjustment in line 151, the caption of figure 2, and the y-axis label of figure S2.

      6) 330: it is very unconventional to plot half the std dev as an error bar. Please plot the std dev (standard error) of the mean.∙

      We made the suggested change and now the error bars in figure 2 are standard errors of the mean (SEM) calculated from block averaging with three blocks at equilibrium. We also amended the caption of figure 2 and the Methods section.

      7) Please write an explicit equation for the linear relation that is plotted in Figure 2. Something like: C_t = a(NCPR - fM/Rg)+b ? That would make it easier to read.

      We have now added the linear equation of the fit to a new table S4, and included a reference to it in the caption of figure 2.

      8) Fig 2: why is the fit to PR7 not reported/shown?

      The fits for PR7 resulted in R2 values of 0.89 (a) and 0.83 (b) for 200M and of 0.7 (a) and 0.59 (b) for 100 mM. Because of the low R2 values for 100 mM, the fits for PR7 are not shown. We have added this explanation to the caption of figure 2.

      9) Fig 4: isn't the blue shape KapB (and not importin)?

      We changed "importin" to "Kapβ Imp" for consistency.

      10) In the interest of reproducibility, a recommendation is to make the scripts for setting up, running, and analyzing the simulations freely available, e.g. at GitHub. This will increase reproducibility and transparency.

      At the moment we do not have the scripts available on GitHub. However, codes can be provided by the authors upon reasonable request, as also mentioned in the data availability statement in the paper.

      11) Can the authors explain the salient advances in this article versus the one published last year?

      In our previous work, we showed that polyPR binds to the Kapβ family of nuclear transport receptors (NTRs), consistent with experimental findings. While this provided valuable insights, it was essential to broaden our investigation as C9orf72 toxicity not only affects the Kapβ family of NTRs but also disrupts other key regulators of NCT. For instance, recent literature (see lines 87-91 in our paper) showed that Ran and its regulators RanGAP and RanGEF are mislocalized in cells expressing R-DPRs, and genetic screening studies have identified several nucleocytoplasmic transport genes as modifiers of R-DPR-mediated toxicity.

      In the present study, we therefore delved deeper into the underlying mechanisms of polyPR-modification of NCT. We focused on exploring whether polyPR directly interacts with Impα isomers, CAS/Cse1, RanGEF, RanGAP, Ran, and NTF2. By doing so, we unveiled a network of direct interactions between polyPR and a remarkably wide range of NCT components. This newfound insight is valuable for interpreting existing experimental findings, such as the mislocalization of RanGAP. We also demonstrate that polyPR binding is influenced not only by factors such as the net charge per residue and the polyPR chain length, as previously observed for Kapβs, but also by the spatial separation of charges, incorporated by an additional dependence on dipole moments in influencing the total number of contacts with polyPR. This sheds new light on how polyPR interacts with numerous targets within the cellular environment, providing a valuable reference for future (experimental) investigations of R-DPR-compromised nuclear transport. These points are explained in the last paragraph of the introduction and paragraphs 2,3 of the conclusion section. Paragraph 2 of the conclusion is also modified for clarification.

      12) In Figure 2(a), the vertical coordinates of the first graph do not match the others.

      We have now modified figure 2a left panel to match the others.

      13) When the polyPR length is large enough, it seems that the binding of polyPR to RanGEF and NTF2 is not significantly improved.

      The binding behavior depends on polyPR length, as well as on the net charge per residue and the dipole moment (expressed as NCPR-fM/R_g). We note that the number of contacts in figure 2 is normalized by the polyPR length so that for both NTF2 and RanGEF the total number of contacts increase with length (PR7 to PR20) when binding occurs. Specifically, for RanGEF, especially at lower ion concentrations (100 mM), PR7 and PR20 exhibit a similar number of contacts per unit length of polyPR. This implies that the absolute number of contacts between PR20 and RanGEF is higher than that of PR7. However, as we extend the polyPR length to PR50, there is a reduction in the number of contacts per unit length of polyPR. This phenomenon indicates that the more extended PR50 has regions that make little to no contact with RanGEF, resulting in a smaller number of contacts per unit length for PR50. Lines 188-195 are now modified to put more emphasis on the difference between number of contacts and number of contacts normalized by polyPR length.

      14) The representation of the mechanism in Figure 4 is not intuitive enough and the color scheme still needs to be improved.

      We have tried to improve clarity by including the names of each transport component next to their schematic representations.

      15) Figure 3 shows that the longer polyPR exhibits a higher contact probability with individual residues compared to a shorter polyPR, is this result in conflict with Figure 2?

      We re-iterate here that the number of contacts in figure 2 is normalized by the polyPR length, while the results in Fig. 3 are not.

      Figure 3 and figure S4 demonstrate that as the length of polyPR increases, the contact probability of individual residues of transport components for interaction with polyPR also increases.

      In figure 2, we have normalized the time-averaged number of contacts by the length of polyPR. For example, in the top-right panel of figure 2a, when comparing results for PR7 with PR50 interaction with RanGAP, a higher value for PR7 indicates that PR7 makes more contacts per unit of its length with RanGAP. In terms of absolute number of contacts, however, the PR50 chain makes more contacts with RanGAP, resulting in a higher contact probability. We now added a sentence (see lines 188-189) for clarification.

      In summary, when a short polyPR strongly binds to a transport component (evidenced by a relatively large number of contacts), it makes more contacts per unit length than a large poyPR. This occurs because for shorter polyPRs most of the residues come into contact with the target protein. In contrast, for longer polyPRs, only certain parts of the chain are in contact with the transport components, while other regions make fewer or no contacts. This is explained in lines 188-195.

      16) In S2 and S3, does the data require an error bar?

      NCPR, defined as total charge divided by sequence length of the transport components, is a constant and therefore figure S3 does not require an error bar.

      In figure S3 we have added error bars (standard deviation) for the dipole moment calculated from 2.5 us simulations of the isolated transport components.

      17) What is the physiological significance when the salt concentration is 100 mM?

      We conducted simulations at two different salt concentrations: 200 mM, which aligns with in vitro conditions as reported in Hutten et al. [1], and a lower 100 mM salt concentration. The inclusion of the 100 mM salt concentration enables us to assess the significance of salt concentration, and to confirm the dominance of electrostatic interactions in polyPR binding. We also note that this range of salt concentration is commonly used in in-vitro experiments [1, 4, 5].

      18) Please introduce abbreviation NLS in the abstract.

      We added the full name of NLS to the abstract.

      19) Given the high number of Arg residues in its sequence, polyPR should interact with many proteins. It would be beneficial to discuss the frequency of binding/non-binding interactions of polyPR with nuclear transport components in comparison to general proteins.

      We appreciate the reviewer's comment. While such a comparison is indeed interesting, our study primarily focused on elucidating the interactions between polyPR and crucial nuclear transport components, aiming to provide insights into potential defects in nucleocytoplasmic transport. The broader comparison of polyPR interactions with different protein classes in the proteome is indeed an interesting direction for future research, but out of the scope of the current manuscript.

      20) The authors should provide a convergence check to determine whether the 2.5 µs simulations are sufficient for sampling the interaction modes, particularly with the long PR50.

      We have included a new figure (figure S5) and additional text in the Methods section to verify that extending the simulation duration does not alter the contact probabilities (which are indicators of binding modes) presented in figure 3a, confirming convergence of our computations.

      21) In reference to Figure 4, the upper panel merely summarizes the known transport mechanisms, while the lower part (A-H) provides potential novel insights from this study. Unfortunately, these novel insights are not sufficiently detailed. It is recommended to include more details to make these relevant plots clearer by expanding the corresponding discussions (currently, only the last paragraph in the Results section addresses these). If possible, the authors should also carry out some CG simulations of the most relevant processes to further elucidate the interference caused by polyPR.

      We have taken the reviewer's feedback into consideration and made the suggested revisions. Specifically, we have expanded the last paragraph of the discussion to provide more detailed explanations of the insights derived from our computational model. For each mechanism, we begin by presenting the reader with the baseline understanding of normal function of the transport component. Subsequently, we discuss how the findings presented in figures 2 and 3 offer insights into polyPR's potential interference with the function of NCT components. Furthermore, we have made improvements to the schematic representation of mechanisms in figure 4 to enhance clarity.

      At the moment, accurately capturing the binding of NCT components to their native binding targets and the competition with polyPR are best resolved by all-atom molecular dynamics simulations, which come with significant computational demands. This level of detail and computation-intensive analyses is beyond the scope of the current study, but we hope that our results will provide the groundwork for future, more detailed investigations.

      References

      1. Hutten, S., et al., Nuclear Import Receptors Directly Bind to Arginine-Rich Dipeptide Repeat Proteins and Suppress Their Pathological Interactions. Cell Rep., 2020. 33(12): p. 108538.

      2. Jafarinia, H., E. Van der Giessen, and P.R. Onck, Molecular basis of C9orf72 poly-PR interference with the β-karyopherin family of nuclear transport receptors. Sci. Rep., 2022. 12(1): p. 21324.

      3. Nanaura, H., et al., C9orf72-derived arginine-rich poly-dipeptides impede phase modifiers. Nat Commun, 2021. 12(1): p. 5301.

      4. Brady, J.P., et al., Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation. Proceedings of the National Academy of Sciences, 2017. 114(39): p. E8194-E8203.

      5. Fisher, R.S. and S. Elbaum-Garfinkle, Tunable multiphase dynamics of arginine and lysine liquid condensates. Nat. Commun., 2020. 11(1): p. 4628.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      1. Experiments regarding the inducible expression of MukBEF: The authors should provide western blots or rt-qPCR for MukBEF expression at 40 min and 2H.

      We provide now a western blot of MukB in non-induced and induced conditions as Figure 1-figure supplement 1D.

      1. Experiments with RiTer and LiTer constructs:<br /> a. Authors compare the mukB deletion against wild type (Fig. 2C). It would be additionally informative if these comparisons are made for matP deletion and wild type as well. This will strengthen the conclusion that long-range interactions in ter do increase in the absence of matP.

      We agree that the matP mutant may help the reader to compare the effect of the translocation in different backgrounds and have added it to the figure. This strengthens the conclusion that longrange interactions in ter do increase in the absence of matP in a rearranged chromosome, as observed in the WT configuration (Lioy et al., 2018).

      b. Additionally, in Fig. 2C, it appears that there is some decrease in long-range interactions in the absence of mukB in ter1 (Riter). Is this a significant change?

      The change observed is not significant. The results shown in Fig. 2C have been obtained using a 3C approach, which generated slightly more variability than Hi-C. Furthermore, we measured the range of contacts for the segment corresponding to Ter1 in RiTer (matS12-matS28), in different genetic contexts and different configurations. The results show that this level of variation is not significant (see graph below reporting two independent experiments).

      Author response image 1.

      Range of interactions measured on the interval matS12-matS18 in different genetic contexts and different configurations (MG1655 WT(1 and 2), ∆mukB, RiTer, RiTer ∆mukB).

      1. Experiments with various matS organizations: These experiments are interesting and an important part of the paper. However, it is rather hard to visualize the chromosome conformations in the strains after transposition. To aid the reader (particularly with panel E), authors can provide schematics of the chromosome conformations and anticipated/ observed chromosomal interactions. Circular interaction plots would be useful here.

      We thank the reviewer for this interesting remark; we have tried in the past to represent these interactions using a circular representation (see for example the web site of Ivan Junier; https://treetimc.github.io/circhic/index.html). However, this representation is not trivial to apprehend for nonspecialists, especially in strains with a rearranged chromosome configuration. Nonetheless, we have added graphical circular representations of the chromosome configurations to help the reader.

      1. ChIP experiments:<br /> a. This section of the manuscript needs to be further strengthened. It is not clear whether the ChIP signal observed is significant (for example at T10 or T20 min, the peak value does not appear to go above 1.1 fold. Can the authors be sure that this small increase is not simply a consequence of increase in copy number of the loci around the origin, as replication has initiated?

      The basal value of the ChIP on the non-replicated sequences (between 0-3.5 Mb for 10 minutes and 0-3 Mb for 20 minutes) is 0.8 and 0.7, respectively, whereas the mean value of the replicated sequence is 1.6 and 1.45. So the enrichment observed for these two points is about 2-fold, not 1.1 and it is 4 fold for t40min. These values were obtained by dividing the number of normalized reads in the ChIP (the number of reads at each position divided by the total number of reads) by the normalized reads of the input. Therefore, the increase in copy number is considered in the calculation. Furthermore, we added a supplementary figure (Figure Sup9) in which we performed a ChIP without tags on synchronized cells, and in this case, we did not observe any enrichment triggered by replication.

      b. Authors make a conclusion that MukB loads behind the replication fork. However, the time resolution of the presented experiments is not sufficient to be certain of this. Authors would need to perform more time-resolved experiments for the same.

      Reviewer 1 is correct; we attempted to discriminate whether the observed enrichment is (i) associated with the replication fork since we observed a decrease in the center of the enrichment at oriC as the maximum enrichment moves away with the replication fork after 20 and 40 minutes, or (ii) associated with the newly replicated sequence. To investigate this, we attempted to induce a single round of replication by shifting the cells back to 40°C after 10 minutes at 30°C. Unfortunately, replication initiation is not immediately halted by shifting the cells to 40°C, and we were unable to induce a single round of replication. To clarify our conclusions, we modified our manuscript to

      “Altogether, these findings indicate that MukBEF is loaded into regions newly replicated either at the replication fork or even further behind it, except in the Ter region from which it would be excluded.”

      c. Authors conclude that in the LiTer7 strain, MukB signal is absent from Ter2. However, when compared with the ChIP profiles by eye across panels in A and B, this does not seem to be significant. In the same results sections, authors state that there is a 3-fold increase in MukB signal in other regions. The corresponding graph does not show the same.

      Rather than relying solely on the enrichment levels, which can be challenging to compare across different strains due to slight variations in replication levels, we believe there is a clear disruption in this profile that corresponds to the Ter2 sequence. Furthermore, this discontinuity in enrichment relative to the replication profile is also observable in the WT configuration. At T40min, MukB ChIPseq signals halt at the Ter boundary, even though Ter is actively undergoing replication, as evidenced by observations in the input data.

      Regarding the fold increase of MukB, Reviewer 1 is correct; we overestimated this enrichment in the text and have now corrected it.

      d. Authors should provide western blot of MukB-Flag.

      We have added Supplementary Figure 1 D, which contains a Western blot of MukB-Flag.

      1. The bioinformatic analysis of matS site distribution is interesting, but this is not followed upon. The figure (Fig 5) is better suited in the supplement and used only as a discussion point.

      We acknowledge the reviewer's point, but we used this section to attempt to extend our findings to other bacteria and emphasize the observation that even though a few matS sites are necessary to inhibit MukBEF, the Ter domains are large and centered on dif even in other bacteria.

      1. The discussion section is lacking many references and key papers have not been cited (paragraph 1 of discussion for example has no references).

      The possibility that SMC-ScpAB and MukBEF can act independent of replication has been suggested previously, but are not cited or discussed. Similarly, there is some evidence for SMC-ScpAB association with newly replicated DNA (PMID 21923769).

      We have added references to the suggested paragraph and highlighted the fact that MukBEF's activity independent of replication was already known. However, we believe that the situation is less clear for SMC-ScpAB in B. subtilis or C. crescentus. In a similar manner, we found no clear evidence that SMCScpAB is associated with newly replicated DNA in the referenced studies.

      To clarify and enrich the discussion section, we have added a paragraph that provides perspective on the loading mechanisms of SMC-ScpAB and MukBEF.

      1. There are minor typographical errors that should be corrected. Some are highlighted here:

      a. Abstract: L5: "preferentially 'on' instead of 'in'"

      b. Introduction: Para 1 L8: "features that determine"

      c. Introduction: Para 2 L1: please check the phrasing of this line

      d. Results section 2: L1: Ter "MD" needs to be explained

      e. Page 8: Para 2: L6: "shows that 'a'"

      g. Page 13: Para 2: "MukBEF activity...". This sentence needs to be fixed.

      i. Figure 4: "input" instead of "imput"

      We thank Reviewer 1 for pointing out all these grammatical or spelling mistakes. We have corrected them all.

      f. Page 12: Para 2: "Xer" instead of "XDS"? *We added a reference to clarify the term.

      h. Methods: ChIP analysis: Authors state "MatP peaks", however, reported data is for MukB

      This description pertains to the matP peak detection shown in Supplementary Figure 3. We have incorporated this clarification into the text.

      j. Supplementary figure legends need to be provided (currently main figure legends appear to be pasted twice)

      Supplementary figure legends are provided at the end of the manuscript, and we have edited the manuscript to remove one copy of the figure legends.

      k. Authors should ensure sequencing data are deposited in an appropriate online repository and an accession number is provided.

      We waited for the appropriate timing in the editing process to upload our data, which we have now done. Additionally, we have added a data availability section to the manuscript, including sequence references on the NCBI.

      Reviewer #2 (Recommendations For The Authors):

      The authors largely avoid speculation on what might be the physiological relevance of the exclusion of MukBEF (and Smc-ScpAB) from the replication termination region (and the coordination with DNA replication). At this stage it would be helpful to present possible scenarios even if not yet supported by data. The authors should for example consider the following scenario: loop extrusion of a dif site in a chromosome dimer followed by dimer resolution by dif recombination leads to two chromosomes that are linked together by MukBEF (equivalent to cohesin holding sister chromatids together in eukaryotes but without a separase). This configuration (while rare) will hamper chromosome segregation. Is MatP particularly important under conditions of elevated levels of chromosome dimers? Could this even be experimentally tested? Other scenarios might also be entertained.

      Even though we prefer to avoid speculations, we agree that we may attempt to propose some hypotheses to the reader. To do so, we have added a few sentences at the end of our discussion. “We may speculate, based on in vitro observations (Kumar et al., 2022), that MukBEF could interfere with TopIV activity and delay potential chromosome decatenation. Another possibility is that chromosome dimers resolved at the dif site may become trapped in loops formed by MukBEF, thus delaying segregation. But none of these possible scenarios are supported by data yet, and a major challenge for the future is to determine whether and how MukBEF may interfere with one or both of these processes.”

      The manuscript text is well written. However, the labeling of strains in figures and text is sometimes inconsistent which can be confusing (LiTer Liter liter; e.g Riter Fig 2C). For consistency, always denote the number of matS sites in LiTer strains and also in the RiTer strain. The scheme denoting LiTer and RiTer strains should indicate the orientation of DNA segments so it is clear that the engineering does not involve inversion (correct?). Similarly: Use uniform labelling for time points: see T40mn vs 40mn vs T2H vs 2H

      We have reviewed the manuscript to standardize our labeling. Additionally, we have included a schema in Figure 2, indicating the matS numbers at the Ter border to emphasize that the transposition events do not involve inversion.

      matS sites do not have identical sequences and bind different levels of MatP (suppl fig 3). Does this possibly affect the interpretation of some of the findings (when altering few or only a single matS site). Maybe a comment on this possibility can be added.

      We agree with the referee; we do not want to conclude too strongly about the impact of matS density, so we have added this sentence at the end of the section titled 'matS Determinants to Prevent MukBEF Activity':

      “Altogether, assuming that differences in the matS sequences do not modify MatP's ability to bind to the chromosome and affect its capacity to inhibit MukBEF, these results suggested that the density of matS sites in a small chromosomal region has a greater impact than dispersion of the same number of matS sites over a larger segment”

      Figure 5: show selected examples of matS site distribution in addition to the averaged distribution (as in supplemental figure)?

      Figure 5 shows the median of the matS distribution based on the matS positions of 16 species as displayed in the supplementary figure. We believe that this figure is interesting as it represents the overall matS distribution across the Enterobacterales, Pasteurellales, and Vibrionales.

      How do authors define 'background levels' (page 9)in their ChIP-Seq experiments? Please add a definition or reword.

      We agree that the term 'background level' here could be confusing, so we have modified it to 'basal level' to refer to the non-replicating sequence. The background level can be observed in Supplementary Figure 9 in the ChIP without tags, and, on average, the background level is 1 throughout the entire chromosome in these control experiments.

      This reviewer would naively expect the normalized ChIP-Seq signals to revolve around a ratio of 1 (Fig. 4)? They do in one panel (Figure 4B) but not in the others (Figure 4A). Please provide an explanation.

      We thank the referee for this pertinent observation. An error was made during the smoothing of the data in Figure 4A, which resulted in an underestimation of the input values. This mistake does not alter the profile of the ChIP (it's a division by a constant) and our conclusions. We provide a revised version of the figure.

      Inconsistent axis labelling: e.g Figure 4

      Enterobacterals should be Enterobacterales (?)

      KB should be kb

      MB should be Mb

      Imput should be Input

      FlaG should be Flag

      We have made the suggested modifications to the text.

      'These results unveiled that fluorescent MukBEF foci previously observed associated with the Ori region were probably not bound to DNA' Isn't the alternative scenario that MukBEF bound to distant DNA segments colocalize an equally likely scenario? Please rephrase.

      Since we lack evidence regarding what triggers the formation of a unique MukB focus associated with the origin and what this focus could represent, we have removed this sentence.

      Reviewer #3 (Recommendations For The Authors):

      The text is well-written and easy to follow, but I would suggest several improvements to make things clearer:

      1. Many plots are missing labels or legends. (I) All contact plots such as Fig. 1C should have a color legend. It is not clear how large the signal is and whether the plots are on the same scale. (II)<br /> Ratiometric contact plots such as in Fig. 1D should indicate what values are shown. Is this a log ratio?

      As indicated in the materials and methods section, the ratio presented on this manuscript was calculated for each point on the map by dividing the number of contacts in one condition by the number of contacts in the other condition. The Log2 of the ratio was then plotted using a Gaussian filter.

      1. Genotypes and strain names are often inconsistent. Sometimes ΔmukB, ΔmatP, ΔmatS is used, other times it is just mukB, matP, matS; There are various permutations of LiTer, Liter, liter etc.

      These inconsistencies have been corrected.

      1. The time notation is unconventional. I recommend using 0 min, 40 min, 120 min etc. instead of T0, T40mn, T2H.

      As requested, we have standardized and used conventional annotations.

      1. A supplemental strain table listing detailed genotypes would be helpful.

      A strain table has been added, along with a second table recapitulating the positions of matS in the different strains.

      1. Fig. 1A: Move the IPTG labels to the top? It took me a while to spot them.

      We have moved the labels to the top of the figure and increased the font size to make them more visible.

      1. Fig 1C: Have these plots been contrast adjusted? If so, this should be indicated. The background looks very white and the transitions from diagonal to background look quite sharp.

      No, these matrices haven't been contrast-adjusted. They were created in MATLAB, then exported as TIFF files and directly incorporated into the figure. Nevertheless, we noticed that the color code of the matrix in Figure 3 was different and subsequently adjusted it to achieve uniformity across all matrices.

      7, Fig 1C: What is the region around 3 Mb and 4 Mb? It looks like the contacts there are somewhat MukBEF-independent.

      The referee is right. In the presence of the plasmid pPSV38 (carrying the MukBEF operon or not), we repeatedly observed an increase of long range contacts around 3 Mb. The origin of these contacts is unknown.

      1. Fig 1D: Have the log ratios been clipped at -1 and 1 or was some smoothing filter applied? I would expect the division of small and noisy numbers in the background region to produce many extreme values. This does not appear to be the case.

      The referee is right, dividing two matrices generates a ratio with extreme values. To avoid this, the Log2 of the ratio is plotted with a Gaussian filter, as described before (Lioy et al., 2018).

      1. Fig 1E: I recommend including a wild-type reference trace as a point of reference.

      We have added the WT profile to the figure.

      1. Fig 2: I feel the side-by-side cartoon from Supplemental Fig. 2A could be included in the main figure to make things easier to grasp.

      We added a schematic representation of the chromosome configuration on top of the matrices to aid understanding.

      1. Fig. 2C: One could put both plots on the same y-axis scale to make them comparable.

      We have modified the axes as required.

      1. Fig. 3C: The LiTer4 ratio plot has two blue bands in the 3-4.5 Mb region. I was wondering what they might be. These long-range contacts seem to be transposition-dependent and suppressed by MatP, is that correct?

      The referee is right. This indicates that in the absence of MatP, one part of the Ter was able to interact with a distal region of the chromosome, albeit with a low frequency. The origin is not yet known.

      1. Fig. 3E: It is hard to understand what is a strain label and what is the analyzed region of interest. The plot heading and figure legend say Ter2 (but then, there are different Ter2 variants), some labels say Ter, others say Ter2, sometimes it doesn't say anything, some labels say ΔmatS or ΔmatP, others say matS or matP, and so on.

      We have unified our notation and add more description on the legend to clarify this figure :

      “Ter” corresponds to the range of contacts over the entire Ter region, in the WT strain (WT Ter) or in the ΔmatP strain (ΔmatP Ter). The column WT matSX-Y corresponds to the range of contacts between the designated matS sites in the WT configuration. This portion of the Ter can be compared with the same Ter segment in the transposed strain (Ter2). Additionally, the matS20-28 segment corresponds to Ter2 in LiTer9, just as matS22-28 corresponds to Ter2 in LiTer7, and matS25-28 to Ter2 in LiTer4. The range of contacts of this segment was also measured in a ΔmatP or ΔmatS background.”

      1. Fig. 4 and p.9: "Normalized ChIP-seq experiments were performed by normalizing the quantity of immuno-precipitated fragments to the input of MukB-Flag and then divide by the normalized ChIP signals at t0 to measure the enrichment trigger by replication."

      This statement and the ChIP plots in Fig. 4A are somewhat puzzling. If the data were divided by the ChIP signal at t0, as stated in the text, then I would expect the first plot (t0) to be a flat line at value 1. This is not the case. I assume that normalized ChIP is shown without the division by t0, as stated in the figure legend.

      The referee is right. This sentence has been corrected, and as described in the Methods section, Figure 4 shows the ChIP normalized by the input.

      If that's true and the numbers were obtained by dividing read-count adjusted immunoprecipitate by read-count adjusted input, then I would expect an average value of 1. This is also not the case. Why are the numbers so low? I think this needs some more details on how the data was prepared.

      The referee is right; we thank him for this remark. Our data are processed using the following method: the value of each read is divided by the total number of reads. A sliding window of 50 kb is applied to these normalized values to smooth the data. Then, the resulting signal from the ChIP is divided by the resulting signal from the input. This is what is shown in Figure 4. Unfortunately, for some of our results, the sliding window was not correctly applied to the input data. This did not alter the ChIP profile but did affect the absolute values. We have resolved this issue and corrected the figure.

      Another potential issue is that it's not clear what the background signal is and whether it is evenly distributed. The effect size is rather small. Negative controls (untagged MukB for each timepoint) would help to estimate the background distribution, and calibrator DNA could be used to estimate the signal-to-background ratio. There is the danger that the apparent enrichment of replicated DNA is due to increased "stickiness" rather than increased MukBEF binding. If any controls are available, I would strongly suggest to show them.

      To address this remark, a ChIP experiment with a non-tagged strain under comparable synchronization conditions has been performed. The results are presented as Supplementary Figure 9; they reveal that the enrichment shown in Figure 4 is not attributed to nonspecific antibody binding or 'stickiness’.

      1. Fig. 4A, B: The y-axes on the right are unlabeled and the figure legends mention immunoblot analysis, which is not shown.

      We labeled the y-axes as 'anti-Flag ChIP/input' and made corrections to the figure legend.

      1. Fig. 4B: This figure shows a dip in enrichment at the Ter2 region of LiTer7, which supports the authors' case. Having a side-by-side comparison with WT at 60 min would be good, as this time point is not shown in Fig. 4A.

      Cell synchronization can be somewhat challenging, and we have observed that the timing of replication restart can vary depending on the genetic background of the cells. This delay is evident in the case of LiTer7. To address this, we compared LiTer7 after 60 minutes to the wild type strain (WT) after 40 minutes of replication. Even though the duration of replication is 20 minutes longer in LiTer7, the replication profiles of these two strains under these two different conditions (40 minutes and 60 minutes) are comparable and provide a better representation of similar replication progression.

      1. Fig. 4C: Highlighting the position of the replication origin would help to interpret the data.

      We highlight oriC position with a red dash line

      1. Fig. 4C: One could include a range-of-contact plot that compares the three conditions (similar to Fig. 1E).

      We have added this quantification to Supplemental Figure 8

      1. Supplemental Fig. 2A: In the LiTer15 cartoon, the flanking attachment sites do not line up. Is this correct? I would also recommend indicating the direction of the Ter1 and Ter2 regions before and after recombination.

      In this configuration, attB and attR, as well as attL and attB', should be aligned but the remaining attR attL may not. We have corrected this misalignment. To clarify the question of sequence orientation, we have included in the figure legend that all transposed sequences maintain their original orientation.

      1. Supplemental Fig. 3: One could show where the deleted matS sites are.

      We added red asterisks to the ChIP representation to highlight the positions of the missing matS.

      1. Supplemental Fig. 3B: The plot legend is inconsistent with panel A (What is "WT2")?

      We have corrected it.

      1. Supplemental Fig. 3C: The E-value notation is unusual. Is this 8.9 x 10^-61?

      The value is 8.9 x 10-61; we modified the annotation.

      23) Abstract: "While different features for the activity of the bacterial canonical SMC complex, SmcScpAB, have been described in different bacteria, not much is known about the way chromosomes in enterobacteria interact with their SMC complex, MukBEF."

      Could this be more specific? What features are addressed in this manuscript that have been described for Smc-ScpAB but not MukBEF? Alternatively, one could summarize what MukBEF does to capture the interest of readers unfamiliar with the topic.

      We modified these first sentences.

      1. p.5 "was cloned onto a medium-copy number plasmid under control of a lacI promoter" Is "lacI promoter" correct? My understanding is that the promoter of the lacI gene is constitutive, whereas the promoter of the downstream lac operon is regulated by LacI. I would recommend providing an annotated plasmid sequence in supplemental material to make things clearer.

      We modified it and replaced “ lacI promoter” with the correct annotation, pLac.

      1. p. 5 heading "MukBEF activity does not initiate at a single locus" and p. 6 "Altogether, the results indicate that the increase in contact does not originate from a specific position on the chromosome but rather appears from numerous sites". Although this conclusion is supported by the follow-up experiments, I felt it is perhaps a bit too strong at this point in the text. Perhaps MukBEF loads slowly at a single site, but then moves away quickly? Would that not also lead to a flat increase in the contact plots? One could consider softening these statements (at least in the section header), and then be more confident later on.

      We used 'indicate' and 'suggesting' at the end of this results section, and we feel that we have not overreached in our conclusions at this point. While it's true that we can consider other hypotheses, we believe that, at this stage, our suggestion that MukBEF is loaded over the entire chromosome is the simplest and more likely explanation.

      1. p.7: "[these results] also reveal that MukBEF does not translocate from the Ori region to the terminus of the chromosome as observed with Smc-ScpAB in different bacteria."

      This isn't strictly true for single molecules, is it? Some molecules might translocate from Ori to Ter. Perhaps clarify that this is about the bulk flux of MukBEF?

      At this point, our conclusion that MukBEF does not travel from the ori to Ter is global and refers to the results described in this section. However, the referee is correct in pointing out that we cannot exclude the possibility that in a WT configuration (without a Ter in the middle of the right replicore), a specific MukBEF complex can be loaded near Ori and travel all along the chromosome until the Ter. To clarify our statement, we have revised it to 'reveal that MukBEF does not globally translocate from the Ori region to the terminus of the chromosome.' This change is intended to highlight the fact that we are drawing a general conclusion about the behavior of MukBEF and to facilitate its comparison with Smc-ScpAB in B. subtilis.

      1. p. 10: The section title "Long-range contacts correlate with MukBEF binding" and the concluding sentence "Altogether, these results indicate that MukBEF promotes long-range DNA contacts independently of the replication process even though it binds preferentially in newly replicated regions" seem to contradict each other. I would rephrase the title as "MukBEF promotes long-range contacts in the absence of replication" or similar.

      We agree with this suggestion and have used the proposed title.

      1. p. 13: I recommend reserving the name "condensin" for the eukaryotic condensin complex and using "MukBEF" throughout.

      We used MukBEF throughout.

    1. Author Response

      Reviewer #1 (Public Review):

      Summary:

      Zhang et al. provide valuable data for understanding molecular features of the human spinal cord. The authors made considerable efforts to acknowledge and objectively address the limitations of Visium while attempting to overcome them by utilizing single-nucleus RNA sequencing (snRNA-seq) from the same tissue. By mapping snRNA-seq clusters to Visium data, they offer spatial information, complemented by RNA-ISH and immunofluorescence (IF) validation. They also discuss gender-related differences and the similarities between human and mouse data, aiming to establish a crucial foundation for experimental research. However, I have some comments below.

      1) The observation of gender-related differences is interesting. The authors reported that SCN10A, associated with nociceptos, exhibited stronger expression in females. While they intend to validate this finding through IF, the quantitative difference is not clearly observed in the IF data (Figure 5f). It would be essential to provide validation through DAPI-based cell counts, demonstrating the difference in CHAT/SCNA10A co-expression.

      Thank you for this important question! We have added panel G in Figure 5, which provided the quantitative analysis of the percentage of CHAT neurons that expressing SCN10A in male and female spinal cord.

      2) It is meritorious that in novel features of the transcriptomic study, the authors considered gender-related differences and similarities between humans and mice. Nevertheless, despite the extensive bioinformatics-based analyses performed, the results mostly confirm what has been previously reported (Nguyen et al. 2021; Yadav et al. 2023; Jung et al. 2023).

      Thank you! In addition to confirming the findings from previous studies, our results also provided new information regarding the difference between human and mouse. For example, we found that PVALB and SST showed broader expression across human DRG neuronal clusters than in mice, suggesting that genes are more selectively expressed in mice than in human DRGs. Moreover, we identified several genes associated with pain that were differentially expressed in motor neurons between sexes.

      3) The study did not perform snRNA-seq in the DRG. The limitations of Visium in cell type separation are acknowledged, and the authors are aware that Visium alone has limitations in describing cell expression patterns. The authors need to validate their findings via analyses of public DRG snRNA-seq data (Jung et al. 2023 Ncom; Nguyen et al. 2021eLife) before drawing broad conclusions.

      Thank you for this critical question! It is right that snRNA-seq has a higher resolution in describing cell expression patterns compared to the spatial transcriptomics. We acknowledged the limitation that we only performed spatial transcriptomics in human DRG without snRNA-seq. Nevertheless, our results of spatial transcriptomics in human DRG were similar to previously public snRNA-seq data of human DRG, suggesting a feasibility of using spatial transcriptomics in human DRG.

      4) Figure 7's comparison between human Visium spot data and Renthal et al.'s mouse snRNA-seq may have limitations as Visium spot data could not provide a transcriptional profile at the single cell resolution. The authors need to clarify this point.

      Thank you! We have clarified this in the limitation section.

      5) Recent findings indicate that type 2 cytokines can directly stimulate sensory neurons. This includes the expression of IL-4RA, IL31RA, and IL13RA in DRG. These findings support the role of JAK kinase inhibitors in mediating chronic itch. Demonstrating the expression of these itch receptors in DRG would be valuable.

      We have provided the expression patterns of IL-4RA, IL31RA, and IL13RA in human and mouse DRG (Figure 7-figure supplement 4), and cited the relevant paper.

      6) Given that juxtacrine and paracrine signals operate from 0 to 200 um, spatial information is vital to understanding intercellular communication. The presentation of spatial information using Visium is meaningful, and more comprehensive analyses of potential interaction based on distance should be provided, beyond the top 10 interactions (Figure 8).

      Thank you for this good question! In this study, we focused on the putative projections from DRG to spinal neuronal types, which may be an important future direction for research on sensory transduction. It will be interesting to determine the intercellular communication in the spinal spot using the spatial transcriptomics data in future studies.

      7) The gender-related differences are interesting and, if possible, it would be interesting to explore whether age-related differences or degeneration-related factors exist. Using public data could allow the examination of age-related changes.

      We agree with the reviewer that it is of great importance to identify the age-related differences using spatial transcriptomics and scRNA-seq data of human spinal cord. However, it is currently difficult to obtain comprehensive results due to the limited human spinal cord datasets regarding different ages.

      Reviewer #2 (Public Review):

      Summary:

      In this paper, the authors generated a comprehensive dataset of human spinal cord transcriptome using single-cell RNA sequencing and the Visium spatial transcriptomics platform. They employed Visium data to determine the spatial orientation of each cell type. Using single-cell RNA sequencing data, they identified differentially expressed genes by comparing human and mouse samples, as well as male and female samples.

      Strengths:

      This study offers a thorough exploration of both cellular and spatial heterogeneity within the human spinal cord. The resulting atlas datasets and analysis findings represent valuable resources for the neuroscience community.

      Weaknesses:

      The analysis of spatial transcriptomics data was conducted as it is single-cell RNAseq data. However, there are established tools for effectively integrating these two types of data. The incorporation of deconvolution methods could enhance the characterization of each spot's cell type composition.

      Thank you very much for your positive comments and suggestions!Indeed, we have used deconvolution methods to incorporate the spinal snRNA-seq and spatial transcriptomics data.

      Reviewer #3 (Public Review):

      Summary:

      Zhang et al sought to use spatial transcriptomics and single-nucleus RNA sequencing to classify human spinal cord neurons. The authors reported 17 clusters on 10x

      Visium slides (6 donors) and 21 clusters by single-nucleus sequencing (9 donors). The authors tried to compare the results to those reported in mice and claimed similar patterns with some differing genes.

      Strengths:

      The manuscript provides a valuable database for the molecular and cellular organization of adult human spinal cords in addition to published datasets (Andersen, et al. 2023; Yadav, et al. 2023).

      Weaknesses:

      The results are largely observatory and lack quantitative analysis. Moreover, the assertions regarding the sex differences in motor neurons and the potential interactions between DRG and spinal cord neuronal subclusters appear preliminary and necessitate more rigorous validation.

      Thank you very much! We have provided the quantitative analysis of the differential expression of SCN10A in male and female spinal cord motor neurons. Our sequencing data revealed putative projections from DRG to spinal neuronal types, which may be an important future direction for research on sensory transduction. We did not use animal models to verify these interactions between DRG and spinal cord neuronal subclusters, which is a major limitation in our study. Nevertheless, our analysis results will provide an important resource for future research to investigate the molecular mechanism underlying spinal cord physiology and diseases.

    1. Author Response

      The following is the authors’ response to the current reviews.

      I greatly appreciate your time and attention on our manuscript. I have carefully considered the reviewers’ comments and made modifications. Below are my responses to each comment and the revisions I have made.

      Reviewer #2 (Recommendations for The Authors):

      1) The authors address well with most of my concerns. I am fine with most of the responses except question 8. Actin is also reported to be located in nuclear (PMID: 31481797). It would be better to utlize other markers, like GAPDH. Moreover, the author did not address the issue of LXRa. I strongly suggest that the authors repeat this experiment to get a more solid result.

      Thank you for the comment! Actin is frequently used as a negative control for nucleus protein in many publications, such as DOI:10.1038/s41419-018-0428-x. Beta-actin is rich in cytoplasm protein that it only takes few seconds to reveal the strong band when performing western blot with cytoplasm. However, actin does not reveal when exposing western- blot with nucleus for minutes in many studies, including in this study. Even though as mentioned actin is also located in the nuclear, such a tiny amount in the nucleus may not be revealed in western blot with exposure in seconds. However, if nucleus protein is contaminated with total cell lysate, the action is quite easy to reveal. As a result, the use of actin as the nagtive control of nucleus protein is well-accepted.

      Author response image 1.

      2) In addition, the authors mentioned IL-1b but present IL-6 in the figure of Figure. 2F. Please correct.

      We appreciate your attention on the detail. “IL-1b” is corrected to “IL-6”.


      The following is the authors’ response to the original reviews.

      I greatly appreciate the time you and the reviewers have taken to review my paper and provide detailed feedback and suggestions. I have carefully considered the reviewers’ comments and made thorough modifications to the paper. Below are my responses to each comment and the revisions I have made.

      Reviewer #1 (Recommendations for The Authors):

      Although the paper has strengths in understanding better the pathway of activation leading to polarization, the mechanisms contributing to cytokine storm are weak. In the context of cellular in vitro changes, it would be very interesting to map these molecular changes to strengthen the pathways affected in this model. In vivo, stronger evidence is required to bridge the gap between the in vitro model and mechanisms regulating in vivo disease development. Reporting of experiments needs to be considerably strengthened. Individual data points are shown, however, it is unclear whether these represent biological or technical, or how many experiments have been undertaken. The addition of this information is essential for uznderstanding the robustness and repeatability of findings. Currently, these cannot be assessed from the information provided. Furthermore, it is unclear whether the error bars represent s.e.m or s.d. which greatly impacts data interpretation.

      Answer: thank you for the valuable comments! We have added some in vivo experiments to strengthen the bridge between the in vitro and in vivo model. 1) The depletion of macrophage by clodronate-liposomes (CLL) i.v. injection was performed in endotoxemic mice with leucine. The alleviation of LPS-induced cytokine production by leucine was muted with macrophage depletion (Figure 2E, F), suggesting the anti-inflammatory effect of leucine was exerted via the regulation of macrophage. 2) The LXRα inhibitor, GSK2033, was applied to mice via i.v. injection prior to LPS-challenge. In GSK2033 treated mice, the effects of leucine on the serum levels of inflammatory cytokines were neutralized (Supplementary Figure 4), partially indicating the importance of LXRα in the regulation of cytokine release. We acknowledge the limitation of LXRα inhibition by GSK2033 in this study. In our future study, we plan to use monocyte specific LXRα knockout mice by LysM-cre to elucidate the importance of LXRα in the progression of CSS, and specifically focuse on the molecular mechanism how mTORC1 interacts with LXRα to modulate M2 macrophage polarization. Additionally, we made modifications in the manuscript to clarify that the error bars represented as the standard error of the mean (SEM) (line 416).

      Reviewer #2 (Recommendations for The Authors):

      1. The whole manuscript is based on the 2% leucine from feed and 5% leucine from water. Is there any rationale for using these two types of different concentrations in this study? Often, a dose-dependent treatment is utilized in vivo in pharmacological study. Therefore, the authors should at least test two different concentrations in each type to confirm the conclusion.

      Answer: thank you for your comment and suggestion. The 2% leucine in feed and 5% leucine in water in this study were based on the literatures. In those studies, leucine was reported to activate mTORC1 and regulate metabolism at such types of different concentration as shown below, although there is lack of leucine in the regulation of macrophage activation. In this study, we found leucine supplementation in such types significantly increased the average body weight gain of mice, suggesting growth promoting and no toxicity of leucine on mice.

      (1) Jiang X, Zhang Y, Hu W, Liang Y, Zheng L, Zheng J, Wang B, Guo X. 2021. Different Effects of Leucine Supplementation and/or Exercise on Systemic Insulin Sensitivity in Mice. Front Endocrinol (Lausanne) 12:651303. doi:10.3389/fendo.2021.651303

      (2) Holler M, Grottke A, Mueck K, Manes J, Jücker M, Rodemann HP, Toulany M. 2016. Dual Targeting of Akt and mTORC1 Impairs Repair of DNA Double-Strand Breaks and Increases Radiation Sensitivity of Human Tumor Cells. PLoS One 11: e0154745. doi:10.1371/ journal. pone.0154745

      1. The authors focus on macrophage polarization as the major cellular event affected by leucine treatment; however, they also report that the proportion of multiple immune cell types has been suppressed by leucine treatment. As some of these immune cells can also produce inflammatory cytokines, the authors should confirm the anti-inflammatory effects of leucine were mainly mediated by modulating macrophage polarization as they suggested in the manuscript. For example, the authors could utilize Anti-CSF1 or clodronate to deplete macrophage and observed whether leucine-reduced inflammatory cytokines production was largely diminished.

      Answer: thank you for your valuable suggestion! We used clodronate-liposome (CLL) i.v. injection to deplete macrophages to further validate the specific contribution of macrophage polarization to the anti-inflammatory effects of leucine. The results revealed that clodronate treatment decreased blood monocyte counts and eliminated the effect of leucine in lowering serum inflammatory factors IL-6, IFN-γ and TNF-α (Figure 2E-F), suggesting the importance of leucine-mediacted macrophage activation on the anti-inflammation.

      1. It would be important to examine whether 10 mM leucine would exhibit cytotoxicity to bone marrow derived monocytes/macrophages. This would confirm that leucine treatment directly suppresses inflammatory cytokines production or reduces cell viability to indirectly modulates inflammatory responses.

      Answer: thank you for your valuable suggestion! We performed cell viability assays after treating BMDM with 2 mM and 10 mM leucine for 6h or 24h (consistent with the timing of leucine treatment in article). The results showed that at 6h, 2 mM leucine significantly increased cell viability, while 10 mM leucine had no significant effect on cell viability. At 24h, both 2 mM and 10 mM leucine significantly increased cell viability. In conclusion, 2 mM and 10 mM leucine were not cytotoxic to BMDM, and the anti-inflammatory effect of leucine was not derived from the reduction in cell viability (Supplementary Figure 2).

      1. The authors found that leucine promotes mTORC1-LXRα for arginase-1 transcription and M2 polarization. The pathway the authors elucidated is not surprising, which has already been reported in other studies. What about the other M2 markers? The authors could examine whether arginiase-1 deficiency would deplete leucine-increased other M2 marker genes expression. Moreover, what about the molecular mechanism for leucine-reduced M1 polarization?

      Answer: Thank you for the valuable comments! To clarify that Arginase-1 activity, mRNA expression of Fizz1, Mgl1, Mgl2, and Ym1 were well established markers for M2 macrophage. Specifically, Arginase-1 activity is important to define M2 functionality. These markers were used to define the level of M2 macrophage polarization. Only a few studies indicated the involvement of mTORC1 in the M2 polarization as shown below; however, there is no molecular mechanism about how mTORC1 modulates this process. In this study, we provide the evidence that LXRα mediated the mTORC1 associated M2 polarization, and leucine regulated mTORC1-LXRα to promote M2 polarization, which was in dependent of IL-4-induced STAT6 signaling. In our future study, we are focusing on the molecular mechanism how mTORC1 interacts with LXRα to modulate M2 macrophage polarization.

      (1) Byles V, Covarrubias AJ, Ben-Sahra I, Lamming DW, Sabatini DM, Manning BD, Horng T. 2013. The TSC-mTOR pathway regulates macrophage polarization. Nat Commun 4:2834. doi:10.1038/ncomms3834

      (2) Kimura T, Nada S, Takegahara N, Okuno T, Nojima S, Kang S, Ito D, Morimoto K, Hosokawa T, Hayama Y, Mitsui Y, Sakurai N, Sarashina-Kida H, Nishide M, Maeda Y, Takamatsu H, Okuzaki D, Yamada M, Okada M, Kumanogoh A. 2016. Polarization of M2 macrophages requires Lamtor1 that integrates cytokine and amino-acid signals. Nat Commun 7:13130. doi:10.1038/ncomms13130

      1. In Fig. 1A, what's the P-value among these two groups? Moreover, what about the result with combination treatment as the authors performed in other panels?

      Answer: thank you for the valuable comments from the reviewer! In Figure 1A, the P-value between the LPS and LPS+2% Leucine groups is 0.0031, and the P-value between the LPS and LPS+5% Leucine groups is 0.0009. I have marked the significance in Figure 1A accordingly. Due to the limited number of mice, we only treated mice in two different ways respectively. Initially, we performed survival experiment and observed that the addition of leucine prolonged survive of mice at lethal dose. Based on these findings, we further investigated whether a combination of the two methods would yield better results on the regulation of inflammation, but the combination exhibited the similar effect on cytokines production, and it is not necessary to repeat the survival experiment with the combination.

      1. It seems not much difference could be observed between 2% leucine from feed and 5% leucine from water in the expression of inflammatory genes and anti-inflammation-related markers. However, it seems that 5% leucine from water would exhibit a better survival rate than 2% leucine from feed. The authors should explain potential reasons and at least examine it in vitro.

      Answer: we appreciate the valuable comments from the reviewer! There are two possible reasons: 1) When lethal dose of LPS applied, mice were too weak to eat but still drank a small amount of water; 2) the absorption of leucine from the water were much easier than from the feed, thus leucine from the water exhibited much better efficiency in a short period of survival experiment. On the other hand, the cytokine levels and expressions were measure in non-lethal experiments, in which mice were in much better condition for lecine absorption.

      1. In Fig. 4A, the authors examined the expression of p-mTOR. The authors should further examine the expression of p-AKT (S473, T308) and p-S6 to clarify whether mTORC1 or mTORC2 has been modulated. As reported, leucine should act on GATOR2 for mTORC1 activation. However, the authors reported that Torin, a mTORC1/mTORC2 inhibitor, inhibited M2 polarization more significantly compared to rapamycin, a mTORC1 inhibitor. These observations seem to indicate that leucine has other targets except mTORC1, such as mTORC2, which might raise novel mechanisms that have never been reported before.

      Answer: thank you for the valuable comments! Akt-mTORC1 signaling integrates metabolic inputs to control macrophage activation. Wortamannin inhibition of AKT was followed by inhibition of M2 polarization, suggesting that AKT signaling is involved in M2 polarization. Studies reported that mTORC1 activation inhibits pAkt (T308), inhibition of mTORC1 in turn activate Akt (1), promoting M2 polarization as a feed back to compensate the inhibition of mTORC1 induced suppression of M2 polarization. mTORC2, directly phosphrlate Akt at S473, and inhibition of mTORC2 inhibits p-Akt (S473) (2), further inhibiting M2 porlarization. Torin1 is the inhibitor for both, while rapamycin is specially for mTORC1 (3). The explanation was included in Line 252-262

      (1) Leontieva OV, Demidenko ZN, Blagosklonny MV. 2014. Rapamycin reverses insulin resistance (IR) in high-glucose medium without causing IR in normoglycemic medium. Cell Death Dis 5: e1214. doi:10.1038/cddis.2014. 178Byles.

      (2) Holler M, Grottke A, Mueck K, Manes J, Jücker M, Rodemann HP, Toulany M. 2016. Dual Targeting of Akt and mTORC1 Impairs Repair of DNA Double-Strand Breaks and Increases Radiation Sensitivity of Human Tumor Cells. PLoS One 11: e0154745. doi:10.1371/journal. pone .0154745

      (3) V, Covarrubias AJ, Ben-Sahra I, Lamming DW, Sabatini DM, Manning BD, Horng T. 2013. The TSC-mTOR pathway regulates macrophage polarization. Nat Commun 4:2834. doi:10.1038/ncomms3834.

      1. In Fig.5B, frankly speaking, I do not observe much difference in LXRα expression. Also, the actin band is too poor to get any conclusion.

      Answer: thank you for the valuable comments from the reviewer! In Fig. 5B, the extracted protein is specifically mentioned as nuclear protein in the text. It is stated that actin is expressed in the cytoplasm, while histone is expressed in the nucleus. The figure shows that actin expression is almost absent, which is mentioned to demonstrate the purity of the extracted nuclear protein.

      1. In Fig. 5C and 5D, it is amazing that GSK2033 would reduce urea production even largely greater than the basal condition (lane 1). As GSK2033 normalized IL-4 or IL-4 combination with Leucine raised urea production in cells, how GSK2033 could reduce urea in medium. The authors should explain this discrepancy.

      Answer: thank you for the valuable comments from the reviewer! In Fig. 5C, urea production was measured directly in the culture medium using a commercial assay kit, and GSK2033 indeed led to a significant decrease in urea production. In Fig. 5D, on the other hand, we assessed the activity of arginase-1 by lysing the cells, activating arginase-1, providing the substrate arginine, and then measuring urea production. In response to your question, the explanation is that in the assay measuring arginase-1 activity, we supplied a sufficient amount of substrate arginine, which may better reflect the enzyme’s activity and the results were consistent with our expectations. Additionally, when GSK2033 was used in combination with IL-4 or IL-4 plus leucine, it might interact with the IL-4 signaling pathway or leucine metabolism pathway, leading to an increase in urea production. This is just our preliminary explanation for the contradictory results, and we acknowledge that further research is needed to explore the mechanism of action of GSK2033 and its interactions with IL-4 or leucine.

      1. Line 98, "INF-gamma" should be IFN-gamma.

      Answer: We appreciate your attention to detail. We apologize for the error in line 98, where “INF-gamma” should indeed be corrected to “IFN-gamma (IFN-γ).” We will make the necessary correction in the revised version of the manuscript.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This work presents important findings for the field of Alzheimer's disease, especially for the electrophysiology subfield, by investigating the temporal evolution of different disease stages typically reported using M/EEG markers of resting-state brain activity. The evidence supporting the conclusions is solid and the methodology as well as the descriptions of the processes are of high quality, although a separation of individuals who are biomarker positive versus negative would have strengthened the interpretability of the results and the conclusions of the study.

      Response: Thank you for the positive assessment of the paper.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors aimed to infer the trajectories of long range and local neuronal synchrony across the Alzheimer's disease continuum, relative to neurodegeneration and cognitive decline. The trajectories are inferred using event-based models, which infer a set of data-driven disease stages from a given dataset. The authors develop an adapted event-based modelling approach, in which they characterise each stage as a particular biomarker increasing by a particular z-score deviation from controls. Fitting infers the optimal set of z-scores to use for each biomarker and the order in which each biomarker reaches each z-score. The authors apply this approach to data from 148 individuals (70 cognitively unimpaired older adults and 78 individual with mild cognitive impairment or Alzheimer's disease), identifying trajectories in which long-range (amplitude-envolope correlation) and local (regional spectral power) neuronal synchrony in the alpha and beta bands becomes abnormal prior to neurodegeneration (measured as the volume of the parahippocampal gyrus) and cognitive decline (measured using the mini-mental state examination).

      Strengths:

      • The main strength is that the authors assess two models. In the first they derive a staging system based only on the volume of the parahippocampal gyrus and mini-mental state examination score. They then investigate how neuronal synchrony metrics change compared to this staging system. In the second they derive a staging system that also includes an average (combined long-range and local) neuronal synchrony metric and investigate how long-range and local synchrony metrics change relative to this staging system. This is a strength as the first model provides confidence that there is not overfitting to the neuronal synchrony data, and the second provides more detailed insights into the dynamics of the early neuronal synchrony changes.

      • Another strength is that the authors automatically infer the optimal z-scores to choose, rather than having to pre-select them manually, as in previous approaches.

      Response: Thank you for the positive comments and a succinct summary of the paper and its strengths.

      Weaknesses:

      • The dataset is small and no external validation is performed.

      Response: We agree that future validation studies of the predictions are necessary. We now include the related sentences in the last paragraph of the limitations section in the revised manuscript.

      • A high proportion of the data is from controls (nearly 50%) with no biomarker evidence of Alzheimer's disease, and so the changes may be driven by aging or other non-Alzheimer's effects.

      Response: We would like to clarify that the z-scores of the metrics used in the EBMs were computed using age-adjusted values. All our controls were recruited from an ongoing longitudinal study of healthy aging. Amongst the 70 controls, 39 have confirmed A-beta negative PET scans and 8 were confirmed A-beta positive PET scans, and in the rest of the 23 we do not have any biomarker data available. However, in all the controls, we have conducted comprehensive neuropsychological assessment (see Appendix 1—table 1 in the revised supplementary file) and based on this data we can be quite confident about their lack of clinical deficits, and we have a very high degree of confidence that none of the controls have any neurodegeneration (AD-related or otherwise). Consistent with this assessment, in our EBM analyses, most of the control participants were indeed categorized to the preclinical stages.

      • Inferring the optimal z-scores is a strength, however as different sets of z-scores are allowed per biomarker, there is a concern that the changes reflected are mainly driven by the choice of z-score, rather than the markers themselves (e.g. if lower z-scores are selected for one marker than another, then changes in that marker will appear to be detected earlier, even if both markers change at the same time).

      Response: Indeed, the biomarker sequence depends on the choice of the z-scores per biomarker. However, please note that our choice of z-scores is based on maximizing the sequence likelihood. Therefore, other values of the z-scores will have by construction a smaller likelihood of sequence occurrence compared to the results shown.

      • In equation 2 it is unclear why the gaussian is measured based on a sum over I. The more obvious choice would be to use a multivariate gaussian with no covariance, which would mean taking the product rather than the sum over I.

      Response: We thank the reviewer for pointing this out and we now clarify this point. In this revision, we do not use the term ‘multivariate’. Indeed, the model likelihood assumes independence for each metric’s priors, and hence is the product of each metric’s univariate gaussian probability distribution. This can be seen in equations 1 and 2 of the revision manuscript (Section titled “Event-based sequencing modeling’). The assumption about independent priors is similar to the one used in the original event-based model (see equation (2) in A .L. Young et al., Nature Comm. 9.1 (2018): 4273).

      • In the original event-based model, k is a hidden variable. Presumably that is also the case here, however the notation k=stage(j) makes it seem like each subject is assigned a stage during the sequence optimisation.

      Response: We would like to clarify that the posterior probability of each stage for every subject is estimated during the sequence optimization. To clarify the notation, we have now deleted the term “stage” and use “tj” to denote stages for each subject j. The sequence optimization was performed with the assumption of a uniform prior distribution p(tj=k) = 1/(N+1) for each stage k. Then, the posterior probability p(tj=k|Zj,S), i.e., the probability that subject j belongs to stage k, given the metrics and the sequence, was computed during the sequence optimization procedure.

      • Typically for event-based modeling, positional variance diagrams are created from the markov chain monte carlo samples of the event sequence, enabling visualisation of the uncertainty in the sequence, but these are not included in the study.

      Response: In the revised supplementary file, we have now included positional uncertainty diagrams for the optimal set of z-score events that were created from 50,000 MCMC samples. Please see Appendix 1—figure 2 for the AC-EBM and Appendix 1—figure 9 for the SAC-EBMs.

      • Many of the figures in the manuscript (e.g. Figure 1E/G, Figure 2A/B, Figure 3A/B/E/F/I/J, Figure 4 A/B/E/F/I/J) are based on averages in both the x and the y axis. In the x dimension, individuals have a weighted contribution to the value on the y axis, depending on their stage probability. In the y dimension, the values are averages across those individuals, and the error bars represent the standard error rather than the standard deviation. Whilst the trajectories themselves are interesting, they may not be discriminative at the individual level and may be more heterogeneous than it appears.

      Response: In the current study, the predictions of trajectories are intended at the cohort level. Individual level investigations will be the topic of future investigations.

      • The bootstrapped statistical analyses comparing metrics between the stages do not consider the variability in the sequence.

      Response: Please see the response above. The positional uncertainty diagrams are included in the revised supplementary file.

      Reviewer #2 (Public Review):

      Summary:

      This work presented by Kudo and colleagues is of great importance to strengthen our understanding of electrophysiological changes in the course of AD. Although the main conclusions regarding functional connectivity and spectral power change through the course of the disease are not new and have been largely studied and theorised on, this article offers an innovative approach that certainly consolidates previous knowledge on the topic. Not only that, this article also broadens our knowledge presenting useful and important details on the specificity of frequency and cortical distribution of these early alterations. The main take-home message of this work is the early disruption of electrophysiological signatures that precedes detectable alterations in other more commonly used pathology markers (i.e. gray matter atrophy and cognitive impairment). More specifically, these signatures include long-range connectivity in the alpha and beta bands, and local synchrony (spectral power) in the same frequency bands.

      Response: Thank you for the positive comments and for providing a nice succinct summary.

      Strengths:

      The present work has some major strengths that make it paramount for the advance of our understanding of AD electrophysiology. It is a very well written manuscript that, despite the complexity of the analyses employed, runs the reader through the different steps of the analysis in a pedagogic and clever way, making the points raised by the results easy to grasp. The methodology itself is carefully chosen and appropriate to the nature of the question posed by the researchers, as event-based models are well-suited for cross-sectional data.

      The quality of the figures is outstanding; not only are they aesthetic but, more importantly, the figures convey information exceptionally well and facilitate comprehension of the main results.

      The conclusions of the paper are, in general, well described and discussed, and consider the state-of-the-art works of AD electrophysiology. Furthermore, even though the conclusions themselves are not groundbreaking at all (synaptic damage preceding structural and cognitive impairment is one of the epitomes of the pathological cascading model proposed by Jack in 2010), this article is innovative and groundbreaking in the way they address with clever analyses in a relatively large sample for neuroimaging standards.

      Response: Thank you for the positive comments of the strengths of the paper.

      Weaknesses:

      The main limitation of the work revolves around sample definition and inclusion criteria that are somewhat confusing obscuring some of the points of the analyses. Firstly it is not clear why the purely clinical approach is employed to diagnose the "probable Alzheimer´s Disease" for the 78 participants in the "AD group". In the same paragraph, it is stated that 67 out of the 78 participants show biomarker positivity, thus allowing a more biologically guided diagnosis that is preferred according to current NIA-AA criteria. This would avoid highly possible mixing of different subtypes of dementia etiologies. One might wonder, why would those 11 participants be included if we have strong indications that their symptoms are not due to AD? Furthermore, the real pathological status of the control group is somewhat questionable. The authors do not specify whether common AD biomarkers are available for this subgroup. In that case, it would have highly increased the clarity and interpretability of the results if this group was subdivided in a preclinical and completely healthy control group. This would be particularly interesting since a significant proportion of the control group is labeled as belonging to stages 2,3,4 (MCI) and even 5 (mild dementia). This raises the question of whether these participants are true healthy controls mislabeled by the EBM model, or actual cognitive controls with actual underlying AD pathology well identified by the model proposed.

      Response: Please see responses above to a similar comment from R1. To clarify, all our controls were recruited from an ongoing longitudinal study of healthy aging. Amongst the 70 controls, 39 have confirmed A-beta negative PET scans and 8 were confirmed A-beta positive PET scans, and in the rest of the 23 we do not have any biomarker data available. The biomarker positivity rates in our control cohort are completely consistent with the prevalence of A-beta positivity in cognitively healthy individuals and are within a normal biological continuum for amyloid beta (Jansen WJ et al. 2015). In all the controls, we have conducted comprehensive neuropsychological assessment (see Appendix 1—table 1 in the revised supplementary file) and based on this data we can be quite confident about their lack of clinical deficits, and we have a high degree of confidence that none of the controls have any neurodegeneration (AD-related or otherwise). We include these details in the revision (see the revised ‘Participants’ section in the Materials and methods.).

      Jansen WJ et al., 2015 JAMA; 667 313(19):1924-1938.

      On this note, Figure 2 (C and D) and Figure 3 (C, G and K) show a cortical surface depicting the mean difference of each stage vs the control group, which again, is formed by subjects that can be included (and in fact, are included) in all those stages, obscuring the meaning and interpretability of these cortical distributions.

      Response: We would like to clarify that these figures depict the regional maps of each metric for each stage of AD progression, not the contrast against a control group.

      Reviewer #1 (Recommendations For The Authors):

      • If possible, perform independent validation of the results.

      Response: This is something we indeed intend to examine in our future investigations.

      • Repeat the analysis in the subset of individuals that are amyloid positive.

      Response: Amongst the 78 AD patients, 20 had autopsy confirmed AD neuropathology, an additional 41 patients had molecular pathology identified by Abeta-PET, and another additional 9 had fluid biomarker (CSF) confirmation of amyloid and tau levels consistent with AD diagnosis. Eight remaining patients had a diagnosis of AD with high certainty, based on clinical presentation, neurological assessment, and cortical atrophy on MRI. Given that there are only eight patients who had clinical diagnosis of AD (with no biomarkers), and the comprehensive clinical characterization of all the AD patients in our cohort (Appendix 1—table 1), we do not believe that any subgroup analysis is warranted.

      • When inferring the optimal z-scores, select the same set of z-scores per biomarker, or include diagrams of stage vs z-score that include all of the markers so that it is easy to see how one marker changes relative to the others (overlay Figure 1G on Figure 2A and 2B).

      Response: How the neural synchrony metrics, PHG volume and MMSE scores change relative to each other is exactly what we show in Figures 3 B/F/J and 4 B/F/J. Since each EBM model optimizes the z-score thresholds, sequence likelihood and posterior probability of each stage for each subject, the EBM framework provides the most likely estimate for each metric at every stage. Therefore, the SAC-EBM model gives the most accurate description of the relative differences in these metrics over the AD progression stages. The reviewer’s suggestion to overlay Figure 1G (now figure 1F, based on optimized z-scores for PHG volume and MMSE scores) on Figures 2A and 2B will be inaccurate, as the neural synchrony measures plotted in figures 2A and 2B are not for optimized z-scores.

      • Change equation 2 to use a multivariate gaussian.

      Response: We now clarify that we use a factorized multivariate form that reflects independent priors for each metric which are Gaussian.

      • Clarify whether k is a hidden variable and possibly change the notation.

      Response: We now clarify that in our notation, k is a label for the stage [k=1,..,7 (when I=2) or k=1,...,10 (when I =3)] and is indeed a hidden variable and not observed (but inferred from the EBM). Specifically, the posterior probability for each subject j belonging to stage k was estimated as part of the sequence optimization procedure.

      • Generate positional variance diagrams of the MCMC samples.

      Response: We are doing the MCMC to obtain the most likely sequence. We have now included positional variance diagrams of the optimal set of z-score events in Appendix 1—figure 2 and Appendix 1—figure 9 in the revised supplementary file.

      • It would be interesting to study whether the stages are predictive of conversion or look at longitudinal data, if available.

      Response: This is something we indeed intend to examine in our future investigations.

      • Also look at statistics across MCMC samples of the sequence.

      Response: Thank you for this suggestion. In the Appendix 1—figure 10, we now include an example of the MCMC samples for an SAC-EBM including the alpha-band AEC. We then derived the positional variances for each metric that are now shown in Appendix 1—figure 2 and Appendix 1—figure 9.

      Reviewer #2 (Recommendations For The Authors):

      Some really minor changes are suggested on two specific points that somewhat confused me as a reader and got me stuck in the reading process to try to get the meaning of what I was seeing/reading:

      1. It is not specified (or at least I was unable to find it) what are you comparing exactly for the group comparison in the long-range synchrony metric (AEC) before creating your scalar metric. Are you comparing individual links (in which case you would have 93 link values for each ROI to compare)? Or are you comparing the strength for each ROI (thus, one value -the individual links sum- for each ROI)? I guess it should be the latter for what I see in the figures but it could be useful to specify it.

      Response: The reviewer is correct. We compare the strength of each ROI, i.e., averaging over edges of the symmetric AEC matrix of functional connectivity. We now clarify this in the Amplitude-envelope correlation section and the caption of the revised Appendix 1—figure 6.

      1. In Figure 1 (which, by the way, is exceptionally aesthetic, congratulations for that!) I got stuck for a relatively long time in a really small detail and I am not completely sure if I came to the right conclusion. It is regarding the X axis of the histograms in panels B and D. They are expressed as "PHG volume loss" and "MMSE decline". So I supposed those histograms were showing some kind of subtraction, (maybe from stage X to stage Y, or from group X to group Y). I was trying to understand the histogram and rereading methods to see if I overlooked any description of that graphic and then just realized they might be just the Z-score itself for each group (control and AD) with respect to the whole population. If that is the case I would suggest changing the X-label to "PHG z-score" and "MMSE z-score" avoiding the reference to "loss and "decline" as they are just reflecting the direct transformation to z-score.

      Response: Thank you. We would like to clarify that the z-score for PHG volume and MMSE scores were sign-inverted so that higher values denote “PHG Volume loss” and “MMSE decline”, respectively. We now clarify this point in the revised text and legend for the revised figure 1.

      Lastly, regarding the point I raised in the limitations section of the public review, I understand it might fall out of the scope of eLife reviewing process as it would require a more extensive change of the current manuscript, which is great as it is. But as a reader and researcher in the field, I would have recommended using biomarkers to divide the control group (if available) thus including in the models only those belonging to the AD continuum according to their biomarker status, and leaving those control without any biomarker positivity as the reference group for the figures I mention in that section (those showing differences for each stage in the cortical surface with respect to the control group).

      Response: Please see a similar comment from R1. Amongst the 70 controls, 39 have confirmed A-beta negative PET scans and only 8 were confirmed A-beta positive PET scans, and in the rest of the 23 we do not have any biomarker data available. In all the controls, we have conducted comprehensive neuropsychological assessment (see Appendix 1—table 1 in the revised supplementary file) and based on this data we can be quite confident about their lack of clinical deficits, and we have a high degree of confidence that none of the controls have any neurodegeneration (AD-related or otherwise). Since only 8 participants were confirmed as amyloid positive in the control group and this sample size is small, we do not conduct this recommended re-analysis in this manuscript.

    1. Author Response

      We appreciate your comments and also thanks to the reviewers for providing valuable feedback and recommendations. For most of the recommendations, we will respond in the revised version, which will provide more information for readers to understand and apply the study. For some of the recommendations, we can give quick responses as follows:

      Reviewer #2 (Public Review):

      The differences between passive and active immunolabeling, as well as photobleaching data, should be addressed for a comprehensive understanding.

      In passive immunolabeling, antibodies penetrate and achieve their targets merely via diffusion, without any additional force. In contrast, active immunolabeling utilizes an external force, such as pressure, electrophoresis, etc., to facilitate antibody penetration and therefore significantly speed up the staining process (i.e., one day vs. 2 months for a whole mouse brain). In our study, the samples we were dealing with were centimeter-sized; therefore, we employed only active electrophoretic immunolabeling (details provided in Materials and Methods). However, for laboratories that do not possess adequate devices or handle small specimens, they can employ passive immunolabeling instead. As for the photobleaching data, we will provide it in the revised version.

      The compatibility of MOCAT with genetically encoded fluorescent proteins remains unclear and warrants further investigation.

      We agree with the possibility that the encoded fluorescent proteins will be affected. Since there is evidence that fluorescence can be quenched by xylene and alcohol, which are two organic solvents used in paraffin processing, we think boost immunolabeling is necessary for observing genetically encoded fluorescent proteins. We also pointed out this limitation in the Discussion:

      “Fourth, endogenous fluorescence—such as GFP, YFP, and tdTomato—may be quenched during paraffin processing and thus need to be visualized by means of additional immunolabeling.”

      However, the extent to which endogenous fluorescence will be quenched during the paraffin processing and MOCAT procedure, and how much boost labeling can rescue, is worth investigating for broadening the application of MOCAT. We will provide it in the revised version.

      The composition of NFC1 and NFC2 solutions for refractive index matching should be provided.

      Since NFC1 and NFC2 are commercial products from Nebulem (Taiwan), the composition is non-disclosable. However, the refractive index of NFC1 and NFC2 is 1.47 and 1.52, respectively.

    1. Author Response:

      Update, January 11, 2024:

      During the course of our careful revising of the paper, we discovered an inconsistency in the way we presented data for figures 5 and 6. Specifically, we used optogenetics to induce ataxia in mice. However, "ataxia", as a phenotype, can be initiated by a spectrum of cell dysfunctions as revealed by previous studies. We systematically explored this with optogenetics in this current work. Our error is that we presented one stimulation paradigm to show ataxic cell firing (2 ms on / 11 ms off square wave) and then presented a slightly different paradigm to show ataxic animal behavior (10 ms on / 10 ms off square wave). We note that our ataxia paradigms do not affect the outcomes of the dystonia and tremor stimulations. Importantly, the choice of ataxia paradigm does not change the conclusions of the paper. Regardless, for clarity we are actively working to make the stimulation parameters that we present consistent between figures 5 and 6.

      October 10, 2023:

      We would like to thank all three reviewers for providing excellent suggestions that will enable us to strengthen our manuscript and enhance the impact of our findings. We plan on addressing the comments by altering the text, providing additional data, revising the figures as requested, and most importantly by providing an improved classifier model. Where relevant, we will also provide the reviewers with a response to specific questions that they raised. We will respond to the reviewer’s comments in a point-by-point manner when we submit a revised manuscript. Below, we include an outline of the main points that we intend to address.

      Although we will respond in full to all comments and suggestions in the revised documents, here we outline only the major areas in order provide context for our revisions. 1) The major point of concern raised by the reviewers is the strength of the classifier model. We agree with the reviewers that we should put forward the strongest model possible as this forms a core component of our paper. We are planning on retraining our model using the suggestions put forward by the reviewers in the public and author-directed comments. Importantly, given the healthy discussion about our model, our revised manuscript will now also include additional clarification about the choice of the model architecture and limitations of our data structure. Based on the reviewers’ comments, we will include a brief discussion about possible future ways of improving the model. 2) We will provide additional figures and updated figure panels to reflect the new data analyses. Ultimately, we agree that the major strength of our manuscript lies within the many mouse models tested and validation of the classification in different genetic, pharmacological, and optogenetic mouse models, a point raised by all three reviewers. We are confident that the revised images will reflect these strengths. 3) In addition to improving our classifier model, we are planning on making textual changes to clarify several parts of the text and propose a new title that better reflects the data put forth in our manuscript. 4) There are several minor but important comments that were raised by all three reviewers. We will also incorporate these changes as suggested.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      Reviewer #3 (Recommendations For The Authors):

      1. Fig. 2B: In their previous comment #6, I assume that Reviewer #2 was asking about peaks that were called as statistically significant above background, not just "higher" as assessed by eye. The authors have now marked peaks that are "higher" but still do not indicate that they were called as statistically significant by any software. I agree that they need to indicate in the figure which peaks were discovered by formal analysis.

      Response: Thank you for the professional suggestions. We used the Piranha (version 1.2.1) software to call peaks from CLIP-seq data, in which the P-value threshold for peaks (i.e., the -p parameter) was set as 0.05. And then any region above the IgG peak could be a binding region, and of course, the higher the peak, the more pre-mRNA SRSF1 binds in that region.

      1. Similar to the above comment, in Fig. 7G "visual analysis" of IGV tracks is not an assay. It is fine to show the tracks as an example of the differential expression called using DESeq2, but this should be described for what it is.

      Response: We thank the reviewer for the professional comments. Following this advice, we have corrected the text in this revised version (Page 11, Line 233).

      1. Fig 5C: TUNEL results are supported by a single image of only a few cells. It is important to include quantitation as has been done for other microscopy data.

      Response: Thank you for the professional suggestions. Following this advice, we have added the quantitative data in Figure 5C. Also, we have added specific quantification methods to the text (Page 23, Line 484-485).

      1. Legend to Fig 6C-E: I assume n=4 refers to the number of animals. It would be best to also know many cells/tubules were counted for each animal.

      Response: Thank you for the helpful comments. Following this advice, we have revised the legend for Figure 6D, E (Page 12, Line 246-249).

      1. There appears to be a mistake in line 285-287, which reads: "the overall analysis of aberrant AS events showed that SRSF1 effectively promotes the occurrence of SE and MXE events and inhibits the occurrence of RI events." The data in Fig 8C appears to show the opposite, with more SE and MXE, and fewer RI events, in the SRSF1 KO. This would imply that SRSF1 normally inhibits SE/MXE and promotes RI.

      Response: Thank you very much for the professional comments. Following this advice, we have corrected the text in this revised version (Page 14, Line 286-288).

      1. In Fig. 8E, an upper band is depleted in SRSF1 KO, but in Figure 8J, a much lower band is depleted. How is this explained?

      Response: Thank you for the professional suggestions. Since exon 7 of Tial1 is in the non-coding region, the lower band in Figure 8E does not correspond to the lower band in Figure 8J. For better understanding, we show the detailed information of Tial1 in the attached Figure S3.

      1. Line 81: As a very minor point, "AS" is defined as alternative splicing in the abstract, but should be re-defined again in the main text when first mentioned.

      Response: Thank you for the helpful comments. Following this advice, we have corrected the text in this revised version (Page 3, Line 81).

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the editor and the reviewers for their valuable and constructive feedback. In the revised manuscript, we have incorporated and addressed the suggestions provided by the reviewers.

      Reviewer #1 (Recommendations For The Authors):

      The primary recommendation is to provide additional language explaining how KinCytE will be updated.

      Response: We appreciate the reviewer’s insightful feedback regarding the KinCytE update. In response, we have included additional details in the “Development and use of KinCyte’ section as follows: “We welcome researchers to actively participate in advancing the development of KinCytE by sharing external screening data, especially data on new secreted factors and cell types that extend beyond macrophages. This collaborative effort promises to enhance our understanding of kinase-focused networks, opening new avenues for cutting-edge therapeutic approaches”. In addition, we explicitly state in the "Data, Software, and Availability" section, "To contribute data, kindly email the corresponding author and refer to Table S2 for guidance on the preferred file format."

      Reviewer #2 (Recommendations For The Authors):

      Would have been nice to see a validation of the regression models from outside of the training data. I would also consider removing statements like "We anticipate that KinCytE will be highly sought after by biologists... " , it reads like a grant application (and this is not)! Could tone the language down a bit. In the future, you might consider displaying your graphs as "biofabrics", they're much cleaner than "hairballs" (PMID: 23102059). Or potentially, show a hierarchical view where the selected cytokine (or other) is at the root, and you can immediately see what's connected. Anyway, the network display can be expanded. Consider maybe adding the nearest neighbors to the table on the right after selecting the node. Generally, though, I like how it works.

      There needs to be a button to download the graph as a .csv file. Maybe the subgraph after selecting a node (or set of nodes). Also, once you're at a graph view, it's hard to guess how to get back to the starting page. Maybe just one button with a "home" on it would fix that. On the Kinases Discovery, why are the gene symbols all lower case? Very cool!

      Response:: We greatly value the reviewer's constructive suggestions. To incorporate these, we have made the following changes:

      (1) "We anticipate that KinCytE will be highly sought after by biologists... " This sentence is removed.

      (2) A ‘SAVE CSV’ button is added to the bottom right of the Cytokine Explorer page, which allows the users to download the graph as a csv file.

      (3) A redesigned KinCyte logo now functions as the 'HOME' button, located at the top left of the webpage, ensuring that users can easily return to the homepage at any time.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      The manuscript describes the synergy among PI3Kbeta activators, providing compelling results concerning the mechanism of their activation. The particular strengths of the work arise to a great extent from the reconstitution system better mimicking the natural environment of the plasma membrane than previous setups have. The study will be a landmark contribution to the signaling field.

      Public Reviews:

      Reviewer #1 (Public Review):

      The manuscript aims to provide mechanistic insight into the activation of PI3Kbeta by its known regulators tyrosine phosphorylated peptides, GTP-loaded Rac1 and G-protein beta-gamma subunits. To achieve this the authors have used supported lipid bilayers, engineered recombinant peptides and proteins (often tagged with fluorophores) and TIRF microscopy to enable bulk (averages of many molecules) and single molecule quantitation. The great strength of this approach is the precision and clarity of mechanistic insight. Although the study does not use "in transfecto" or in vivo models the experiments are performed using "physiologically-based" conditions and provide a powerful insight into core regulatory principles that will be relevant in vivo.

      The results are beautiful, high quality, well controlled and internally consistent (and with other published work that overlaps on some points) and as a result are compelling. The primary conclusion is that the primary regulator of PI3Kbeta are tyrosine phosphorylated peptides (and by inference tyrosine phosphorylated receptors/adaptors) and that the other activators can synergise with that input but have relatively weak impacts on their own.

      Although the methodology is not easily imported, for reasons of both cost and the experience needed to execute them well, the results have broad importance for the field and reverse an impression that had built in large parts of the broader signalling and PI3K communities that all of the inputs to PI3Kbeta were relatively equivalent, however, these conclusions were based on "in cell" or in vivo studies that were very difficult to interpret clearly.

      Reviewer #2 (Public Review):

      The manuscript of Duewell et al has made critical observations that help to understand the mechanisms of activation of the class IA PI3Ks. By using single-molecule kinetic measurements, the authors have made outstanding progress toward understanding how PI3Kbeta is uniquely activated by phosphorylated tyrosine kinase receptors, Gbeta/gamma heterodimers and the small G protein Rac1. While previous studies have defined these as activators of PI3Kbeta, the current manuscript makes clear the quantitative limitations of these previous observations. Most previous quantitative in vitro studies of PI3Kbeta activation have used soluble peptides derived from bis-phosphorylated receptors to stimulate the enzyme. These soluble peptides stimulate the enzyme, and even stimulate membrane interaction. Although these previous studies showed that the release of p85-mediated autoinhibition unmasks an intrinsic affinity of the enzyme for lipid membranes, they ignored what would be the consequence of these peptide sequences being present in the context of intrinsic membrane proteins. The current manuscript shows that the effect of membrane-conjugated peptides on the enzyme activity is profound, in terms of recruiting the enzyme to membranes. In this context, the authors show that G proteins associated with the membranes have an important contribution to membrane recruitment, but they also have a profound allosteric effect on the activity on the membrane, These are observations that would not have been possible with bulk measurements, and they do not simply recapitulate observations that were made for other class IA PI3Ks.

      An important observation that the authors have made is that Gbeta/gamma heterodimers and RAc1 alone have almost no ability to recruit PI3Kbeta to the membranes that they are using, and this is central to one of the most profoundly novel activation mechanisms offered by the manuscript. The authors propose that the nSH2- and Gbeta/gamma binding sites partially overlap, so that Gbeta/gamma can only bind once the nSH2 domain releases the p110beta subunit. This mechanism would mean that once the nSH2 is engaged by membrane-conjugated pY, the Gbg heterodimer can bind and increase the association of the enzyme with membranes. Indeed, this increased membrane association is observed by the authors. However, the authors also show that this increased recruitment to membranes accounts for relatively little increase in activity, and that the far greater component of activation is due to an allosteric effect of the membrane association on the activity of the enzyme. The proposal for competition between Gbg binding and the nSH2 is consistent with the behavior of an nSH2 mutant that cannot bind to pY and which, consequently, does not vacate the Gbg-binding site. In addition to the outstanding contribution to understanding the kinetics of activation of PI3Kbeta, the authors have offered the first structural interpretation for the kinetics of Gbg activation in synergy with pY activation. The proposal for an overlapping nSH2/Gbg binding site is supported by predictions made by John Burke, using alphafold multimer. Although there is no experimental structure to support this structural model, it is consistent with HDX-MS analyses that were published previously.

      Reviewer #1 (Recommendations For The Authors):

      1. The approx relative concentrations (surface densities ) of Rac1-GTP, GBetagammas and PY-peptides used in experiments in Fig 1 are not easy to understand and useful to give an intuitive feel for the relative sensitivity of the PI3Kbeta reporter to those inputs.

      In our revised manuscript, we provide densities of the individual signaling inputs used to reconstitute Dy647-PI3Kβ membrane recruitment (see Figure legend 1). We provide a more detailed explanation about our quantification method in subsequent figures where the membrane surface density of signaling inputs is varied to modulate the strength of PI3Kβ membrane localization and activity.

      Building off the quantification of Rac1-GTP and pY membrane density measurements presented in our initial manuscript submission, we now include an estimate of the GβGγ membrane density. For these new measurements, we recombinantly expressed and purified additional SNAP-GβGγ protein, which we fluorescently labeled with AlexaFluor 555. The membrane surface density of GβGγ was quantified at equilibrium using a combination of AF488-SNAP-GβGγ (bulk signal) and dilute AF555-SNAP-GβGγ (0.0025%), which allowed us to resolve and count the single molecule density (Figure 3A). We calculate the total surface density of GβGγ based on the AF555-SNAP-GβGγ dilution factor. In the methods section titled, “surface density calibration,” we describe our protocol.

      1. The estimates of the PIP3 concentrations/densities measured using the BTK reporter seem good but its unclear (to me) how they were derived.

      The density of PI(3,4,5)P3 lipids in our supported lipid bilayers was calculated based on the incorporation of a define molar ratio of PI(3,4,5)P3 in our small unilamellar vesicles. Based on the average footprint of 0.72 nm2 for a single lipid, we calculated the density of lipids per µm2. In the methods section titled, “kinetic measurements of PI(3,4,5)P3 lipid production,” we include the following description:

      “Assuming an average footprint of 0.72 nm2 for phosphatidylcholine (Carnie et al., 1979; Hansen et al., 2019), we calculated a density of 2.8 × 104 PI(3,4,5)P3 lipids/μm2 for supported membranes that contain an initial concentrations of 2% PI(4,5)P2. We assume that the plateau fluorescence intensity of the AF488-SNAP-Btk sensor following reaction completion in the presence of PI3Kβ represents the production of 2% PI(3,4,5)P3. The bulk membrane intensity of AF488-SNAP-Btk was normalized from 0 to 1, and then multiplied times the total density of PI(3,4,5)P3 lipids to generate kinetic traces that report the kinetics of PI(3,4,5)P3 production.”

      Minor points

      l164; Rac1(GTP) AND GBeta gammas. In this context it should be OR. Or have I misunderstood?

      l1093; kineticS measurementS.

      Thank you for pointing out these typos. We made the appropriate edits.

      The paper of Suire etal (Suire, S., Lécureuil, C., Anderson, K. E., Damoulakis, G., Niewczas, I., Davidson, K., Guillou, H., Pan, D., Jonathan Clark, Phillip T Hawkins, & Stephens, L. (2012). GPCR activation of Ras and PI3Kc in neutrophils depends on PLCb2/b3 and the RasGEF RasGRP4. The EMBO journal, 31(14), 3118-3129. https://doi.org/10.1038/emboj.2012.167) make the point that in vivo it appears that although Ras-activation is required for full activation of PI3Kgamma (and can activate PI3Kgamma in vitro directly) if you use tools to activate Ras in the absence of receptor and Gbetagamma signalling, it has no affect on PIP3 . This directly supports the authors conclusions.

      Thank you for sharing this citation. We incorporated the reviewer’s insight into our discussion section to broaden the significance of our work.

      Reviewer #2 (Recommendations For The Authors):

      There are only a few relatively minor points that could be addressed to improve the paper:

      1. Why is the density still going up after 10 minutes in Figure 1 Figure supplement 2? Doesn't this seem like a very long time? Are we seeing fast on/off combined with fast on/slow off? Are the particles eventually becoming stuck in odd places or are they slowly denaturing?

      Our movies do not indicate a slow accumulation of immobilized or stuck Dy647-PI3Kβ particles on the membrane surface. On the long timescale, we believe that a small fraction of Dy647-PI3Kβ molecular do exhibit longer dwell times on membranes containing a high density of pY (>6,000 molecules/µm2). This is likely due to membrane hopping of Dy647-PI3Kβ. In other words, rather than Dy647-PI3Kβ dissociating from the membrane surface directly into the solution, the Dy647-PI3Kβ molecule immediately rebinds to another membrane conjugated pY peptide. This type of behavior of a peripheral membrane binding protein is generally correlated with there being a higher surface density of the binding partner (Yasui et al., 2014). Characterization of potential Dy647-PI3Kβ membrane hopping will require additional experimentation (e.g. PI3Kβ mutants) and quantitative analysis that goes beyond the scope of this study.

      1. Lines 188-189. "By quantifying the average number of Alexa488-pY particles per unit area of supported membrane we calculated the absolute density of pY per μm2 (Figure 2D). I think this should be Figure 2C, right hand y-axis.

      Thank you for identifying our typo. We’ve corrected the text for clarity.

      1. Lines 102-193. "When Dy647-PI3Kβ was flowed over a membrane containing a low density of {less than or equal to} 500 pY/μm2, we observed rapid equilibration kinetics consistent with a 1:1 binding stoichiometry (Figure 2E).” There is no density shown in Fig. 2E. There is only "membrane intensity." Perhaps it was their intent to include a right-hand axis with density (number of particles/area), as they did in Figure 2C. However, they did not, so Figure 2E does not support the text. The value of Intensity/#py/um**2 does not appear to be the same for Figure 2C as for Figure 2E, assuming that the statement in the text is correct. The authors should include the density as a right-hand axis in 2E.

      We have reworded this portion of the results section for clarity. In reading the reviewers comment, we recognize that a more convincing way to support our claim of a 1:1 binding stoichiometry would be to show that there are ~500 Dy647-PI3Kβ/μm2 membrane bound complexes when the pY surface density equals ~500 pY/μm2. For us to make this connection, we would need to perform experiments using a Dy647-PI3Kβ concentration that fully saturates all the binding pY binding sites. However, at this elevated Dy647-PI3Kβ solution concentration, individual Dy647-PI3Kβ complexes can start to bind to a single phosphotyrosine of the dually phosphorylated peptide due to competition for pY binding sites. As an alternative to performing the experiment described above, we can infer binding stoichiometry from the shape of the membrane absorption kinetic traces. For example, a simple bimolecular interaction exhibits rapid equilibration kinetics with a hyperbolic shaped kinetic trace. Systems that have more complex binding equilibria, however, generally take longer to equilibrate (due to the change in KOFF) and can often be broken down into 2 or 3 distinct dissociation constants (KD). This type of kinetic analysis has previously been used to describe multivalent membrane binding interactions for the Btk-PI(3,4,5)P3 (Chung et al., 2019) and PI3Kγ-GβGγ (Rathinaswamy et al., 2021) complexes. Considering that there are multiple interpretations of the Dy647-PI3Kβ membrane absorption traces show in Figure 2E, we refrain from saying that our results explicitly reveal a 1:1 binding stoichiometry. Instead, we provide several possible explanations for the results. Ultimately, additional experiments and kinetic modeling of wild type and mutant PI3Kβ is necessary to define the binding stoichiometry under different conditions.

      1. Table 1. The authors have analysed the data to extract two dwell times and two diffusion coefficients. The legend should make this clear, referring to D1 as the slow diffusion component and D2 as fast diffusion, similarly, there are short and long dell times. This should be stated in the legend. There are two columns labelled "alpha". This presumably should be alpha1 and alpha2, the fractions of particles with short and long dwell times. The table legend should clarify this.

      In our revision, additional text has been added to the figure legends and Table 1.

      Text from Table 1: “Alpha (α) equals the fraction of molecules with the characteristic dwell time, τ1 (DT = dwell time). The fraction of molecules with the characteristic dwell time, τ2, equals 1-α. Alpha (αD) equals the fraction of molecules with the characteristic diffusion coefficient, D1. The fraction of molecules with diffusion coefficient, D2, equals 1-αD.”

      1. In the legend for Figure 5 figure supplement 1, for part D, the "Cumulative membrane of binding events..." The "of" should be deleted.

      Thank you for identifying this typo.

      1. Lines 423-426: "We found that PI3Kβ kinase activity is also relatively insensitive to either Rac1(GTP) or GβGγ alone. This is in contrast to previous reports that showed Rho-GTPases (Fritsch et al. 2013) and GβGγ (Katada et al. 1999; Hashem A. Dbouk et al. 2012; Maier, Babich, and Nürnberg 1999) can activate PI3Kβ, albeit modest, compared to synergistic activation with pY peptides plus Rac1(GTP) or GβGγ." It is not clear what this statement means. On the surface, it might be interpreted as saying that these previous studies had some flaw that led the authors to conclude that there is some activation caused by Rac1 or Gbeta/gamma on their own. The current manuscript is an important contribution to understanding the mechanism of synergistic activation, but it is also true that the Hansen and his colleagues have not used the same membranes as were used previously. The authors state that they have used a wide range of membrane compositions, but the only ones that have appeared in the manuscript are nearly pure PC (with 2% PIP2) or PC with 20% PS. Extensive studies with varying membrane compositions are beyond the scope of the current study, since the current manuscript concisely makes important observations regarding mechanism. However, it would be helpful for readers if the authors at least mention the differences in membrane compositions among the studies.

      The reviewer raises an important point concerning our interpretation of PI3Kβ activation data in relationship to existing literature. In our original submission, we made conclusions concerning how individual signaling inputs modulate PI3Kβ activity, without showing all our data or providing sufficient explanation. In our revised manuscript, we include PI3Kβ kinase activity measurements performed in the presence of either pY, Rac1(GTP), or GβGγ alone (Figure 5B-5C). These experiments were reconstituted on supported membranes in the absence or presence of 20% PS lipids. We found that increasing the density of anionic lipids increased the overall activity of PI3Kβ in the presence of pY or GβGγ alone. This is consistent with a subtle increase in PI3Kβ membrane affinity due to the negatively charged PS lipids. Mutations that disrupt the direct interaction between PI3Kβ and GβGγ eliminated the observed lipid kinase activity. We were unable to detect PI3Kβ activity in the presence of Rac1(GTP) alone. In conclusion, we’re able to detect some PI3Kβ activity in the presence of GβGγ alone, which is consistent with previous reports (Dbouk et al., 2010; Katada et al., 1999; Maier et al., 2000). In the future, a more comprehensive analysis will be required to map the relationship between PI3Kβ activity, membrane localization, and lipid composition. For example, previous reconstitutions have revealed differential activation of PI3Kα that depends on the most abundant lipid being phosphatidylethanolamine (PE) rather than phosphatidylcholine (PC) (Hon et al., 2012; Ziemba et al., 2016). PE lipids comprise 25-30% of the cellular plasma membrane (Yang et al., 2018) and have been used in previous studies to measure PI3K lipid kinase activity on small unilamellar vesicles (Dbouk et al., 2010; Hon et al., 2012).

      In this study, we elected to use a simplified membrane composition that minimized non-specific membrane localization of fluorescently labeled PI3Kβ. This allowed us to more clearly define the strength of individual and combinations of protein-protein interactions that regulate PI3Kβ localization and kinase activity. When reconstituting amphiphilic molecules (i.e. lipids) in aqueous solution a variety of structures, including micelles, inverted micelles, and planar bilayers can form based on the lipid composition (Kulkarni, 2019). The organization of these membrane structures is related to the molecular packing parameter of the individual phospholipids (Israelachvili et al., 1976). The packing parameter (P=v⁄((a•l_c))) depends on the volume of the hydrocarbon (v), area of the lipid head group (a), and the lipid tail length (l_c). When generating supported lipid bilayers on a flat two-dimensional glass surface, we aim to create a fluid lamellar membrane. We find that phosphatidylcholine (PC) lipids are ideal for making supported lipid bilayers because they have a packing parameter of ~1 (Costigan et al., 2000). In other words, PC lipids are cylindrical like a paper towel roll. In contrast, cholesterol and phosphatidylethanolamine (PE) lipids have packing parameters of 1.22 and 1.11, respectively (Angelov et al., 1999; Carnie et al., 1979). This gives cholesterol and PE lipids an inverted truncated cone shape, which prefers to adopt a non-lamellar phase structure. Due to the intrinsic negative curvature of PE lipids, they can spontaneously form inverted micelles (i.e. hexagonal II phase) in aqueous solution when they are the predominant lipid species (Israelachvili et al., 1980; Kobierski et al., 2022; Wnętrzak et al., 2013). In the methods section of our manuscript, we note that from our experience incorporation of PE lipids dramatically reduces the protein-maleimide coupling efficiency, displayed more membrane defects, and resulted in a larger fraction of surface immobilized Dy647-PI3Kβ. This could be related to the intrinsic negative curvature of PE membranes. However, further investigation is needed to decipher these issues.

      Angelov B, Ollivon M, Angelova A. 1999. X-ray Diffraction Study of the Effect of the Detergent Octyl Glucoside on the Structure of Lamellar and Nonlamellar Lipid/Water Phases of Use for Membrane Protein Reconstitution. Langmuir 15:8225–8234. doi:10.1021/la9902338

      Carnie S, Israelachvili JN, Pailthorpe BA. 1979. Lipid packing and transbilayer asymmetries of mixed lipid vesicles. Biochim Biophys Acta 554:340–357. doi:10.1016/0005-2736(79)90375-4

      Chung JK, Nocka LM, Decker A, Wang Q, Kadlecek TA, Weiss A, Kuriyan J, Groves JT. 2019. Switch-like activation of Bruton’s tyrosine kinase by membrane-mediated dimerization. Proc Natl Acad Sci 116:10798–10803. doi:10.1073/pnas.1819309116

      Costigan SC, Booth PJ, Templer RH. 2000. Estimations of lipid bilayer geometry in fluid lamellar phases. Biochim Biophys Acta 1468:41–54. doi:10.1016/s0005-2736(00)00220-0

      Dbouk HA, Pang H, Fiser A, Backer JM. 2010. A biochemical mechanism for the oncogenic potential of the p110 catalytic subunit of phosphoinositide 3-kinase. Proc Natl Acad Sci 107:19897–19902. doi:10.1073/pnas.1008739107

      Hansen SD, Huang WYC, Lee YK, Bieling P, Christensen SM, Groves JT. 2019. Stochastic geometry sensing and polarization in a lipid kinase–phosphatase competitive reaction. Proc Natl Acad Sci 116:15013–15022. doi:10.1073/pnas.1901744116

      Hon W-C, Berndt A, Williams RL. 2012. Regulation of lipid binding underlies the activation mechanism of class IA PI3-kinases. Oncogene 31:3655–3666. doi:10.1038/onc.2011.532

      Israelachvili JN, Marcelja S, Horn RG. 1980. Physical principles of membrane organization. Q Rev Biophys 13:121–200. doi:10.1017/s0033583500001645

      Israelachvili JN, Mitchell DJ, Ninham BW. 1976. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 2 Mol Chem Phys 72:1525–1568. doi:10.1039/F29767201525

      Katada T, Kurosu H, Okada T, Suzuki T, Tsujimoto N, Takasuga S, Kontani K, Hazeki O, Ui M. 1999. Synergistic activation of a family of phosphoinositide 3-kinase via G-protein coupled and tyrosine kinase-related receptors. Chem Phys Lipids 98:79–86. doi:10.1016/S0009-3084(99)00020-1

      Kobierski J, Wnętrzak A, Chachaj-Brekiesz A, Dynarowicz-Latka P. 2022. Predicting the packing parameter for lipids in monolayers with the use of molecular dynamics. Colloids Surf B Biointerfaces 211:112298. doi:10.1016/j.colsurfb.2021.112298

      Kulkarni CV. 2019. Calculating the “chain splay” of amphiphilic molecules: Towards quantifying the molecular shapes. Chem Phys Lipids 218:16–21. doi:10.1016/j.chemphyslip.2018.11.004

      Maier U, Babich A, Macrez N, Leopoldt D, Gierschik P, Illenberger D, Nürnberg B. 2000. Gβ 5 γ 2 Is a Highly Selective Activator of Phospholipid-dependent Enzymes. J Biol Chem 275:13746–13754. doi:10.1074/jbc.275.18.13746

      Rathinaswamy MK, Dalwadi U, Fleming KD, Adams C, Stariha JTB, Pardon E, Baek M, Vadas O, DiMaio F, Steyaert J, Hansen SD, Yip CK, Burke JE. 2021. Structure of the phosphoinositide 3-kinase (PI3K) p110γ-p101 complex reveals molecular mechanism of GPCR activation. Sci Adv 7:eabj4282. doi:10.1126/sciadv.abj4282

      Wnętrzak A, Lątka K, Dynarowicz-Łątka P. 2013. Interactions of alkylphosphocholines with model membranes-the Langmuir monolayer study. J Membr Biol 246:453–466. doi:10.1007/s00232-013-9557-4

      Yang Y, Lee M, Fairn GD. 2018. Phospholipid subcellular localization and dynamics. J Biol Chem 293:6230–6240. doi:10.1074/jbc.R117.000582

      Yasui M, Matsuoka S, Ueda M. 2014. PTEN Hopping on the Cell Membrane Is Regulated via a Positively-Charged C2 Domain. PLoS Comput Biol 10:e1003817. doi:10.1371/journal.pcbi.1003817

      Ziemba BP, Burke JE, Masson G, Williams RL, Falke JJ. 2016. Regulation of PI3K by PKC and MARCKS: Single-Molecule Analysis of a Reconstituted Signaling Pathway. Biophys J 110:1811–1825. doi:10.1016/j.bpj.2016.03.001

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      We thank the referee for the positive review.

      Reviewer #2 (Public review):

      We thank the referee for his/her constructive comments

      1. The weakness of this work is the lack of clarification on the function of eIF2A in general. The novelty of this study was limited.

      We believe our study is valuable in providing strong evidence that eIF2A does not functionally substitute for eIF2 in tRNAi recruitment even when eIF2 function is impaired, and in showing that it does not contribute to translational control by uORFs or IRESs, thus ruling out the most likely possibilities for its function in yeast based on studies of the mammalian factor. We agree that the function of yeast eIF2A remains to be identified; however, we think this should be regarded as a limitation rather than a weakness in experimental design or data obtained in the current study.

      1. Related to this, it would be worth investigating common features in mRNAs selectively regulated (surveyed in Figure 3A).

      We did not embark on this because only 17 of the 32 transcripts showing TE reductions in Fig. 3A showed a pattern of TE changes consistent with a conditional requirement for eIF2A under conditions of reduced eIF2 function, exhibiting greater TE decreases when both eIF2 function was impaired by phosphorylation and eIF2A was eliminated from cells. Moreover, we could validate this conditional eIF2A dependence by LUC reporter for only a single mRNA, HKR1.

      Also, it would be worth analyzing the effect of eIF2A deletion on elongation (ribosome occupancy on each codon and/or global ribosome footprint distribution along CDS) and termination/recycling (footprint reads on stop codon and on 3′ UTR).

      We have analyzed the effects of deleting eIF2A on ribosome pausing at individual codons by calculating tri-peptide pause scores from our ribosome profiling data. The results shown in new Fig. 7 reveal that eIF2A plays no discernible role in stimulating the rate of decoding of any three-codon combinations.

      1. Regarding Figure 3D, the reporters were designed to include promoter and 5′ UTR of the target genes. Thus, it should be worth noting that reporter design was based on the assumption that eIF2A-dependency in translation regulation was not dependent on 3′ UTR or CDS region. The reason why the effects on ribosome profiling-supported mRNAs could not be recapitulated in reporter assay may originate from this design. This should be also discussed.

      We agree and included this stipulation in the DISCUSSION, while at the same time noting that the native mRNAs were examined in the orthogonal assay of polysome distributions.

      1. Related to the point above, the authors claimed that eIF2A affects "possibly only one" (HKR1) mRNA. However, this was due to the reporter assay which is technically variable and could not allow some of the constructs to pass the authors' threshold. Alternative wording for this point should be considered.

      We agree and revised text in the DISCUSSION to read: “A possible limitation of our LUC reporter analysis in Fig. 3D was the lack of 3’UTR sequences of the cognate transcripts, which might be required to observe eIF2A dependence. Given that native mRNAs were examined in the orthogonal assay of polysome profiling in Fig. 3E, the positive results obtained there for SAG1 and SVL3 in addition to HKR1 should be given greater weight. Nevertheless, our findings indicate a very limited role of yeast eIF2A in providing a back-up mechanism for Met-tRNAi recruitment when eIF2 function is diminished by phosphorylation of its α-subunit.”

      1. For Figure 3D, it would be worth considering testing the #-marked genes (in Figure 3C) in this set up.

      Actually, we did test 10 of the 17 mRNAs marked with “#”s in the reporter assays of Fig. 3C, which had been noted in the Fig. 3C legend.

      1. In box plots, the authors should provide the statistical tests, at least where the authors explained in the main text.

      At the first occurrence of a notched box plot (Fig. 2D), we explained in the main text that in all such plots, when the notches of different boxes do not overlap, their median values differ significantly with a 95% confidence level. In cases where overlaps between notches is difficult to assess by eye, we added the results of Mann-Whitney U tests with the p values indicated by asterisks, as explained in the legends. We added results of additional Mann-Whitney U tests to such box plots in Figs. 3B, 6A-C, and 6-supp. 1E & G and mentioned this in the corresponding legends.

      Reviewer #2 (Recommendations For The Authors):

      The first section of "Yeast eIF2A does not play a prominent role as a functional substitute for eIF2 in the presence or absence of amino acid starvation" can be subdivided into a couple of sections for better readability.

      Done.

      Although the authors have used SM to induce ISR in yeasts previously, the validation of eIF2alpha phosphorylation in Western blot would be helpful for readers. Also, it should be worth testing whether eIF2alpha phosphorylation was properly induced in eIF2A KO cells.

      The translational induction of GCN4 mRNA, which we have documented in WT and eIF2A∆ cells, provides a quantitative read-out of eIF2 functional attenuation superior to determining the proportion of eIF2α that is phosphorylated.

      For Figure 2B, the Venn diagram that shows the overlap between TE-changes genes in WT_SM/WT and those in eIF2A∆_SM/eIF2A∆ would be helpful (although a list was provided by the source data).

      The Venn diagram has been provided in a new figure, Figure 2-figure supplement 1B.

      For Figures 1C and 5A-B, the depiction of the positions of uORFs within the orange gene region would be helpful for readers.

      Done.

      For Figure 4A-C, the depiction of the IRES regions (if known) within the orange gene region would be helpful for readers.

      Done for the URE2 IRES, whose location is known.

      For Figures 1C, 4A-C, and 5A-B, the y-axis should have a label/scale.

      Added.

      For Figure 3C, the definition of #-marked genes should be concretely described (e.g., value range) in the legend.

      Added.

      For Figure 3D-E, the statistical test has been only shown in a couple of data. A full depiction of the statistical results for all the data sets may be helpful for readers.

      We explained that when notches in box plots do not overlap, their medians differ with 95% confidence. In cases where overlaps were difficult to discern, we added p values from Mann-Whitney U tests to the relevant box plots.

      For Figure 3E, it would be helpful if the authors could show the UV spectrum of the sucrose density gradient to show the regions isolated for the experiments.

      Added for a representative replicate gradient in the new figure, Figure 3-figure supplement 1.

      Reviewer #3 (Public Review):

      We thank the referee for his/her positive assessment of our study.

      Weaknesses:

      While no role of eIF2A in translation initiation is apparent, the authors do not determine what function eIF2A does play in yeast. Whether it plays a role in regulating translation in a different stress response is not determined.

      We agree that there are many additional possibilities to consider for functions of eIF2A in translation initiation, including different stress situations or mutant backgrounds; however, we regard this as a limitation rather than a weakness in the experimental design and data obtained in the current study in which we examined the most likely possibilities for eIF2A function in yeast based on studies of the mammalian factor.

      Reviewer #3 (Recommendations For The Authors):

      Curiously, the authors indicate that they could not replicate published results for eIF2A's repressor function for URE2, PAB1, or GIC1 translation. This is a little concerning and one wonders if the yeast strain used in the previous study is different in some way from the authors' strain. Did the authors obtain that strain to test it in their assays?

      The same WT and eIF2A∆ strains have been analyzed here and in the two cited studies on yeast IRESs.

      The authors do discuss the fact that eIF2A may function to regulate translation in response to different stresses. It would have been a strength to test an alternative stress in the current study. However, I also appreciate that this could be the subject of a future study.

      Agreed.

      One minor question I have is whether the yeast strains used possess L-A dsRNA virus? While it may not be that this virus would necessarily mask a role of eIF2A-dependent translation, do the authors have any specific thoughts on this? Would different results be obtained if cured strains were used?

      According to Ravoityte et al. (doi: 10.3390/jof8040381), the S. cerevisiae strain we employed, BY4741, harbors L-A-1 dsRNA; however, we have not explored whether curing the virus would alter the consequences of eliminating eIF2A.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Response to reviewers

      We thank the two reviewers for their constructive criticism, which helped to significantly improve our manuscript.

      During the revision process, we had to realize that the localization pattern reported for H. neptunium LmdCN-mCherry was an artifact caused by bleed-through of the BacA-YFP signal in the mCherry channel. More detailed studies showed that the fusion protein was detectable by Western blot analysis but, for unknown reasons, did not produce any fluorescence signal. Therefore, we have now removed the localization data shown in previous Figure 8B,C and Figure 8—figure supplement 1.

      To provide more evidence for a functional interaction between BacA and LmdC in H. neptunium, we have now established an inducible CRISPR interference system for this species and used it successfully to deplete LmdC (new Figure 9A-F). The loss of LmdC causes morphological defects very similar to those observed for the ΔbacA(D) mutant. In line with the physical interaction of BacA with the cytoplasmic region of LmdC observed in vitro, these findings support the hypothesis that the two proteins act in the same pathway. Consistent with the results obtained in H. neptunium, the absence of BacA leads to the delocalization of LmdC in R. rubrum. Moreover, we now provide in vivo evidence for a critical role of the cytoplasmic region of LmdC in the interaction of this protein with BacA in R. rubrum cells (new Figure 11). Together, these new findings strongly support the model that BacA and LmdC form a conserved morphogenetic module involved in the establishment of complex cell shapes in bacteria.

      Please see below for a more detailed explanation of our new results and for our response to the issues raised in the first round of review.

      Reviewer #1 (Public Review)

      In their study, Osorio-Valeriano and colleagues seek to understand how bacterial-specific polymerizing proteins called bactofilins contribute to morphogenesis. They do this primarily in the stalked budding bacterium Hyphomonas neptunium, with supporting work in a spiral-shaped bacterium, Rhodospirillum rubrum. Overall the study incorporates bacterial genetics and physiology, imaging, and biochemistry to explore the function of bactofilins and cell wall hydrolases that are frequently encoded together within an operon. They demonstrate an important, but not essential, function for BacA in morphogenesis of H. neptunium. Using biochemistry and imaging, they show that BacA can polymerize and that its localization in cells is dynamic and cell-cycle regulated. The authors then focus on lmdC, which encodes a putative M23 endopeptidase upstream of bacA in H. neptunium, and find that is essential for viability. The purified LmdC C-terminal domain could cleave E. coli peptidoglycan in vitro suggesting that it is a DD-endopeptidase. LmdC interacts directly with BacA in vitro and co-localizes with BacA in cells. To expand their observations, the authors then explore a related endopeptidase/ bactofilin pair in R. rubrum; those observations support a function for LmdC and BacA in R. rubrum morphogenesis as well.

      An overall strength of this study is the breadth and completeness of approaches used to assess bactofilin and endopeptidase function in cells and in vitro. The authors establish a clear function for BacA in morphogenesis in two bacterial systems, and demonstrate a physical relationship between BacA and the cell wall hydrolase LmdC that may be broadly conserved. The eventual model the authors favor for BacA regulation of morphogenesis in H. neptunium is that it serves as a diffusion barrier and limits movement of morphogenetic machinery like the elongasome into the elongating stalk and/or bud. However, there is no data presented here to address that model and the role of LmdC in H. neptunium morphogenesis remains unclear.

      We hypothesize that BacA establishes a barrier that prevents the movement of elongasome complexes into the stalk, either directly by sterical hindrance and/or indirectly by promoting the formation of an annular region of high positive inner cell curvature that cannot be passed by the elongasome. To test this model, we have now analyzed the localization dynamics of RodZ, a core structural component of the elongasome complex, in wild-type and ΔbacAD cells. We found that wild-type cells show dynamic YFP-RodZ foci whose movement is limited to the mother cell and the nascent bud, with no signal ob-served in the stalk. In ΔbacAD cells, by contrast, the fusion protein is consistently detected in all regions of the cell, including nascent stalks (new Figure 5). These results support the idea that BacA is required to confine the elongasome to the mother cell and bud regions and, thus, set the limits of the different growth zones in H. neptunium. We also attempted to follow the localization dynamics of other elongasome components, such as PBP2, MreC and MreD, but none of the corresponding fluorescent protein fusions was functional.

      In the past, we tried intensively to generate conditional mutants of lmdC, but all attempts to place the expression of this gene under the control of the copper- or zinc-inducible promoters available for H. neptunium were unsuccessful. To clarify the role of LmdC in H. neptunium morphogenesis, we have now established an inducible CRISPR interference system for this species and managed to block the ex-pression of lmdC using an sgRNA directed against the 5' region of its non-coding strand. We observed that cells lacking LmdC show a phenotype very similar to that of the ΔbacA mutant. Together with the finding that the N-terminal cytoplasmic region of LmdC physically interacts with BacA, this result strongly supports the hypothesis that BacA and LmdC act in the same pathway, forming a complex that ensures proper morphogenesis in H. neptunium (new Figure 9).

      The data presented illuminate aspects of bacterial morphogenesis and the physical and functional relationship between polymerizing proteins and cell wall enzymes in bacteria, a recurring theme in bacterial cell biology with a variety of underlying mechanisms. Bactofilins in particular are relatively recently discovered and any new insights into their functions and mechanisms of action are valuable. The findings presented here are likely to interest those studying bacterial morphogenesis, peptido-glycan, and cytoskeletal function.

      Reviewer #2 (Public Review):

      This is an excellent study. It starts with the identification of two bactofilins in H. neptunium, a demonstration of their important role for the determination of cell shape and discovery of an associated endopeptidase to provide a convincing model for how these two classes of proteins interact to control cell shape. This model is backed up by a quantitative characterisation of their properties using high-resolution imaging and image analysis methods.

      Overall, all evidence is very convincing and I do not have many recommendations on how to improve the manuscript.

      In my opinion, there are only two issues that I have with the paper:

      1. The single particle dynamics of BacA is presented as analysed and I would like to give some suggestions how to maybe extract even more information from the already acquired data:

      1.1. Presentation: Figure 5A is only showing projections of single particle time-lapse movies. To convince the reader that it was indeed possible to detect single molecules it would be helpful if the authors present individual snapshots and intensity traces. In case of single molecules these will show step wise bleaching.

      We have now added a supplementary video that shows both time series and intensity traces of individual BacA-YFP molecules (Figure 6—Video 1). It verifies the step-wise bleaching of the particles observed and thus shows that we observe the mobility of single molecules. Moreover, we have now included a supplementary figure that shows all trajectories identified within representative cells. This visualization provides a more comprehensive view of our data and further supports the notion that our analysis is based on the detection of single molecules.

      1.2. Analysis: Figure 5B and Supplement Figure 1 are showing the single particle tracking results, revealing that there are two populations of BacA-YFP in the cell. However, this data does not show if individual BacA particles transition between these two populations or not. A more detailed analysis of the existing data, where one can try to identify confinement events in single particle trajectories could be very revealing and help to understand the behaviour of BacA in more detail.

      We agree that an analysis of the single-molecule traces for transitions between the mobile and static states would help to achieve a more detailed understanding of the polymerization behavior of BacA. We believe that the dynamic formation, reorganization and disappearance of BacA-YFP foci observed by time-lapse analysis (Figure 4) indicates that BacA undergoes reversible polymerization in vivo. A deeper investigation of this aspect is beyond the scope of the present study and will be performed at a later point.

      1. The title of Fig. 3 says that BacA and BacD copolymerise, however, the data presented to confirm this conclusion is actually rather weak. First, the Alphafold prediction does not show the co-polymer, and second, the in vitro polymerisation experiments were only done with BacA in the absence of BacD. Accordingly, the only evidence that supports this is their colocalization in fluorescence microscopy. I suggest either weakening the statement or changing the title adds more evidence.

      To support the idea that BacA and BacD interact with each other, we have now added images of cells producing BacA-YFP or BacD-CFP individually (new Figure 3—figure supplement 1B,C). The results obtained show that Bac-YFP alone still forms filamentous structures, whereas BacD-CFP condenses into tight foci in the absence of its paralog. However, when produced together with BacA-YFP, the two proteins colocalize into filamentous structures, supporting the notion that they interact with each other. However, we agree that it is unclear whether BacA and BacD copolymerize into mixed protofilaments or whether they form distinct protofilaments that then interact laterally to form larger bundles. We have therefore replaced the term “co-polymerize” with “assemble” in the heading of this section.

      Finally, did the authors think about biochemical experiments to study the interaction between the cytoplasmic part of LmdC and the bactofilins? These could further support their model.

      We show the interaction between the cytoplasmic region of H. neptunium LmdC and BacA in Figure 9G,H (previously Figure 8D,E). For technical reasons, it was not possible to synthesize a peptide com-prising the corresponding region of R. rubrum LmdC, so that our in vitro analysis is limited to the H. neptunium proteins.

      To further support the notion that BacA interacts with the cytoplasmic region of LmdC, we have now analyzed the localization behavior of two LmdC variants with amino acid exchanges in the conserved cytoplasmic β-hairpin motif (new Figure 11). Both variants no longer colocalize with BacA and are no longer enriched at the inner cell curve. Interestingly, these exchanges also affect the enrichment of BacA at the inner cell curvature, suggesting that BacA needs to interact with LmdC for proper localization. It is tempting to speculate that BacA polymers have a preferred intrinsic curvature and that the activity of the BacA-LmdC complexes adjusts cell curvature in a manner that facilitates their association with the inner curve.

      Reviewer #1 (Recommendations for The Authors):

      We have the following specific recommendations for the improvement of the manuscript:

      1. Several places would benefit from additional quantitation of data:

      a. Figure 1 and supplements: can cell shape be quantified in a more specific way? (e.g. principle component analysis of shape as in https://onlinelibrary.wiley.com/doi/10.1111/mmi.13218). It looks as if BacD production may partially rescue the bacA shape phenotype?

      We have made considerable efforts to establish methods to quantify morphological changes and protein localization patterns in Hyphomonas neptunium. Since standard software packages, such as Oufti or MicrobeJ, are not able to reliably detect stalks and, thus, typically identify buds as separate cells, we have developed our own analysis software (BacStalk; Hartmann et al, 2020, Mol Microbiol), that is optimized for the detection of thin cellular extensions. However, while this software works very well with wild-type cells, it also fails to recognize amorphous cells with multiple, ill-defined extensions. Given these problems in cell segmentation, it is currently not possible to use principle component analysis to obtain a robust measure of the morphological defects of bactofilin mutants in H. neptunium.

      b. Figures 2-S2b, 7D and 9-S1b - can the area under the peaks be quantified and compared across strains? Visual examination of the spectra makes it difficult to discern differences.

      A direct comparison of the peak areas between strains is not possible, because the absolute values depend on the amount of peptidoglycan used in the muropeptide analyses. It is very difficult to precisely quantify peptidoglycan, which makes it challenging to use equal amounts of material from different strains in the reactions. However, the relative proportion of different muropeptide species, as provided in Figure 2—Dataset 1, faithfully reflects the composition of peptidoglycan and can easily compared between strains.

      c. Figure 9E,F, 9-S4d - BacA and LmdC localization in R. rubrum is very difficult to assess. It does not look linear/filamentous in most cells and is difficult to tell if it is associated with the inner curvature. Can you quantify the position of the signal along the short axis of the cell to better demonstrate that?

      We agree that a better quantification of the distribution of protein along the cell envelope of R. rubrum is required to support the conclusions drawn. To address this issue, we have now used line scans to measure the fluorescence intensities along the inner and outer curve of cells (n=200 per strain) and visualized the data in the form of demographs. The results clearly show an enrichment of BacA and LmdC at the inner curve in wild-type cells and a disruption of this pattern in various mutant backgrounds (new Figures 10F,G,J and 11D,E).

      1. Figure 2-S2A. Does ∆bacD grow better than wild-type? It would also be useful to add growth curves of the bacA complemented strains.

      In the case of H. neptunium growth curves are often misleading, because cells start to aggregate at the late exponential phase due to abundant EPS formation. The degree of cell aggregation also depends on the morphology of cells, because EPS production is limited to the mother cell body, which makes it challenging to compare morphologically distinct mutant strains. We have now performed growth assays for all H. neptunium deletion and complementation strains used in the study and limited the analysis of doubling times to the early and mid-exponential phase, in which cells do not yet form visible aggregates. The results obtained are now included in the new Figure 1F and Figure 1—figure supplement 2D. They show that the doubling times of the different bactofilin mutants are close to that of the wild-type strain.

      1. Figure 4BC: From the demographs provided, BacA and BacD appear to have different localization dynamics. BacD seems to stay at the base of the stalk, nearest the mother cell, whereas BacA migrates towards to bud? Also, "length" is misspelt in the panels.

      During the transition to bud formation, we indeed observe that the localization patterns of BacA and BacD are in many cases not fully superimposable, with BacD lagging behind BacA and forming transient additional clusters in the vicinity of the stalk base. Examples are now shown in Figure 4—figure supplement 4). This effect explains the distinct patterns in the demographs. We have now modified the text accordingly. We have also corrected the spelling of “length” in the figure.

      1. Can BacD polymerize on its own? It colocalizes with BacA in E. coli but that does not necessarily mean it co-polymerizes.

      Please see our response to a similar issue (point 2) raised by Reviewer #1.

      1. Lines 263-266. You use E. coli PG as a substrate for LmdC in vitro because "peptidoglycan from H. neptunium shows only a low degree of cross-linkage and hardly any pentapeptides." Does this not have relevance to the physiological significance of the observed activity? Or do you presume that LmdC activity (and/or that of other endopeptidases) is very high in H. neptunium so it is difficult to detect additional activity using HnPG as a substrate? It would be useful to clarify this logic in the text.

      DD-crosslinks are formed by all major peptidoglycan biosynthetic complexes, including the elongasome and the divisome, so that their general relevance to cell growth in H. neptunium is beyond doubt. The low degree of crosslinkage observed suggests that H. neptunium contains high endopeptidase activity, which cleaves crosslinks after their formation by DD-transpeptidases. We have now added the explanation “likely due to a high level of autolytic activity” to make this point clearer. Whether LmdC makes a major contribution to the low level of crosslinkage remains to be determined. However, our data suggest that it mostly acts in complex with BacA, so that it may only cleave peptidoglycan locally and not have a global effect global on cell wall composition. It would not possible to detect the DD-endopeptidase activity of LmdC using H. neptunium peptidoglycan as a substrate, because it has a low content of DD-linked peptide chains. To facilitate the in vitro activity assay, we therefore used highly crosslinked peptidoglycan from a mutant E. coli strain.

      1. Lines 268-269: Is there some explanation for why monomers do not increase on LmdC treatment? Here quantitation of peaks before and after treatment would allow the reader to more precisely interpret these data.

      The absolute peak sizes are not comparable, because there is some variation in the amount of peptido-glycan included in the assays (see also our comments on point 1b raised by Reviewer #1) and the integrated peak areas (which correspond to the amounts of muropeptide species produced) depend on both the height and the width of the peaks, which vary to some degree in different HPLC runs. The relevant measure to compare the muropeptide profiles is therefore the relative content of different muropeptide species in the different conditions. For clarification, we have now added the following sentence to the legend of Figure 8D: “A quantification of the relative abundance of different muropeptide species in each condition, based on a comparison of the relative integrated peak areas, is provided in Figure 8—Dataset 1.” The control reaction lacking LmdC only contains peptidoglycan diluted in buffer and thus provides insight into muropeptide composition of untreated peptidoglycan.

      1. Lines 280-283: It would be interesting to know if the transmembrane domain of LmdC is required for its localization since it is dispensable for binding BacA and since LmdC still localizes to foci without BacA.

      Given that it is currently not possible to localize LmdC in H. neptunium, we were not able to perform this analysis.

      1. Line 296: it is also possible that LmdC localizes with another protein and does not independently assemble into larger complexes.

      Since the localization pattern reported for LmdC in the ΔbacAD background is no longer valid, we have not discussed this aspect in the revised version of our manuscript. However, in general, we do not exclude the possibility that LmdC could interact with other peptidoglycan biosynthetic proteins.

      1. Line 304-306 and Fig 9: Is the domain organization of RrLmdC the same as for HnLmdC? It would be useful to include its domain organization as well. Also, please add amino acid numbering to Figure 9B.

      We have now added a schematic showing the domain organization of LmdC from R. rubrum (new Figure 10B). The protein is highly similar to its homolog from H. neptunium.

      1. Line 340-341: "In both cases, they functionally interact with LmdC-type DD-endopeptidases to promote local changes in the pattern of peptidoglycan biosynthesis." This conclusion is not experimentally supported. Since LmdC is essential and you could not make a depletion strain in H. neptunium, it was not shown that the interaction with LmdC is how BacA promotes changes in PG patterning. HADA/FDAA labeling was not performed in R. rubrum, and no global changes in PG chemistry were observed in bacA or lmdC mutants, so you cannot claim BacA or LmdC influences PG patterning there, either. Either soften this statement to a hypothesis or otherwise rephrase.

      To further corroborate a functional interaction between BacA and LmdC, we have now established an inducible CRISPRi system to deplete LmdC from H. neptunium cells (see also our comments on the public review of Reviewer #1). We observe that the loss of LmdC leads to a phenotype very similar to that observed for the ΔbacA(D) mutant, supporting the idea that BacA and LmdC act in the same path-way. We have now also performed localization studies of the elongasome component RodZ in H. nep-tunium, which demonstrate that the spatial distribution of elongasome complexes is affected in the absence of the bactofilin cytoskeleton in H. neptunium. Combined with the observation that LmdC is a catalytically active DD-endopeptidase and its absence leads to morphological defects, these results indicate that BacA, together with LmdC, induces local changes in pattern of peptidoglycan biosynthesis, both by affecting elongasome movement and, likely, by reducing peptidoglycan crosslinking in the cell envelope regions it occupies.

      1. Figure 9-S4: there is no panel C (change D to C).

      Corrected.

      1. Lines 344-355: No data is presented here to support the barrier model of bactofilin function. In addition, it is unclear why cells would take on amorphous shapes instead of extended rod shapes/filaments if elongasome function was not constrained on the longitudinal axis. It would be helpful to have more discussion of the potential mechanisms of LmdC function in H. neptunium in this section of the discussion since that is the emphasis of the results section.

      To support the barrier model, we have now compared the localization dynamics of the elongasome component RodZ in wild-type and ΔbacAD cells. The results show that RodZ is excluded from the stalk in the wild-type background, whereas it readily enters the stalk in the mutant cells, leading to the expansion of stalks into large, amorphous extensions. Consistent with these findings, HADA labeling is not observed within the stalks in wild-type cells, whereas it is readily observed in the enlarged stalk structures (pseudohyphae) formed in the mutant cells.

      The current model of MreB movement suggests that MreB filaments have an intrinsic curvature and thus preferentially align along regions of similar curvature, which is along the circumference of the cell in rod-shaped geometries. However, previous work has shown that MreB starts to move along randomly oriented trajectories as soon as cells lose their rod-shaped morphology and adopt more spherical shapes (Hussain et al, 2018, eLife). In line with these findings, our current and our previous work (Cserti et al, 2017, Mol Microbiol) indicate that the expansion of the ovoid H. neptunium mother cell prior to the onset of stalk biosynthesis as well as bud formation are mediated by the elongasome complex. Thus, the elongasome can clearly also give rise to shapes other than rods. Interestingly, however, the H. neptunium elongasome also appears to drive the formation of the rod-shaped stalk, possibly by moving around the circumference of the stalk base. Thus, species- or growth phase-dependent regulatory mechanisms or, potentially, differences in the spatial arrangement of the glycan strands within the peptido-glycan layer may result in different modes of elongasome movement and, thus, modulate the morphogenetic activity of elongasome complexes.

      1. Lines 395-397: It is also possible that LmdC positioning is dependent on cell morphology, rather than directly on BacA, since morphology is so distorted in bacA mutant cells.

      We provide several lines of evidence showing that LmdC and BacA functionally and physically interact (see above), making it highly unlikely that the two proteins are not associated with each other. How-ever, our previous (Figure 10I,J) and new (Figure 11) results suggest that the physical interaction with LmdC and/or or the cell shape-modulating activity of the complex are required for the proper localization of BacA at the inner curve of the cell. This finding may indicate the existence of a self-reinforcing cycle, in which the morphological changes induced by BacA-LmdC assemblies stimulate the recruitment of additional assemblies to their site of action.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      eLife assessment

      This study presents useful findings regarding the impact of forest cover and fragmentation on the prevalence of malaria in non-human primates. The evidence supporting the claims of the authors is, however, incomplete, as the sampling design cannot adequately address the geospatial issues that this study focuses on.

      Public Reviews:

      Reviewer #1 (Public Review):

      The study as a concept is well designed, although there is still one issue I see in the methodology.

      I still have concerns with their attempts to combine the different scales of data. While the use of point data is great, it limits the sample size, and they have included the district to country level data to try and increase the sample size. The problem is that although they try to get an overall estimate at the district/state/country by taking 10 random sample points, which could be a method to get an estimate for the district/state/country. It would be a suitable method if the primates were evenly distributed across the district/state/country. The reality is that the primates are not evenly distributed across the district/state/country therefore the random point sampling is not a reasonable method to get an estimate of the environmental variables in relation to the macaques. For example if you had a mountainous country and you took 10 random points to estimate altitude, you would end up with a large number, but if all the animals of interest lived on the coast, your average altitude is meaningless in relation to the animals of interest as they are all living at low altitude. The fact that the model relies less on highly variable components and places more reliance on less variable components, is really not relevant as the district/state/country measurements have no real meaning in relation to the distribution of masques.

      A simple possible way forward could be to run the model without the district/state/country samples and see what the outcome is. If the outcome is similar then the random point method may be viable (but if it gives the same outcome as ignoring those samples then you don't need the district/state/country samples). If you get a totally different outcome then it should raise concerns about using the district/state/country samples.

      This paper is a really nice piece of work and is a valuable contribution but the district/state/country sample issue really needs to be addressed.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      A simple possible way forward could be to run the model without the district/state/country samples and see what the outcome is. If the outcome is similar then the random point method may be viable (but if it gives the same outcome as ignoring those samples then you don't need the district/state/country samples). If you get a totally different outcome then it should raise concerns about using the district/state/country samples.

      Thank you for your comments, and for the suggestions to address the issues identified in your main commentary by running an analysis on exclusively GPS geolocated data points. This was the original plan for analysis, but the available data identified in the literature review includes only 14 data points (macaque P. knowlesi prevalence surveys) with associated GPS coordinates. This was found to be too limited to obtain meaningful results from a regression analysis, and hence we then explored methods for utilising all available data to identify trends whilst accounting for spatial uncertainty in the analysis. As the point location only represents the location of capture and not the extent of the home range of the NHPs, we additionally feel there is value in exploring methods to encompass the wider surrounding habitat.

      We do appreciate the concerns you raise with the random point method being used to represent macaque survey sites when species of interest are not necessarily evenly distributed across an area. To investigate this, we ran sensitivity analysis on a subset of the dataset according to whether the points fall in areas of >50%, >75% or >90% predicted probability of macaque occurrence, with maps derived from published models of macaque suitability in Southeast Asia. For each of these thresholds, points that fall outside these areas were removed – such that, if a random point is located on a mountain range where there is 0 likelihood of macaque occurrence, it is excluded from the analysis. We found that restricting analysis to areas with highly probably macaque habitat still shows a robust effect of forest cover on NHP prevalence, and additionally that for the most conservative (>90%) habitat threshold there remains an effect of forest fragmentation on prevalence (SI Table S17c, Figure S15c). Given that using the full data set increases the uncertainty, as there is more variation in covariates between the replicates, this can be considered a more conservative approach to detecting an effect of environment as reported in the main findings.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      1. A more thorough analysis of transition boundaries between different types of patterns would further strengthen the conclusions.

      We agree that the transition between different patterning regimes should be discussed more quantitatively in the manuscript. Specifically, we identified a highly sensitive parameter range where the disorder in the patterns rapidly increases as a function of the VEGF stimulus. We have improved our discussion of the transition between ‘orderedlike’ patterns and ‘disordered-like’ patterns in the main text as follows: “At relatively low VEGF levels, the patterns were mostly ordered, with small deviations from the expected ‘salt and paper’ geometry with a 25%-75% ratio of TipStalk (Fig. 2D). However, as the VEGF input increased, the fraction of Tips grew and the patterns became sharply more disordered over a relatively narrow range of magnitude of the VEGF input, which could be identified as a highly sensitive area separating more ‘ordered-like’ and ‘disordered-like’ patterns. Finally, increasing VEGF stimuli beyond the highly sensitive area further increased the disorder of the patterns, but with a lower VEGF sensitivity, over several more orders of magnitude of VEGF inputs”.

      Reviewer #2 (Recommendations For The Authors):

      Please refer to the Public Comments above for a broad review. Below, I provide specific concerns that could be addressed.

      Main comments

      1. Is the salt-and-pepper model observed for the case when there is no VEGF in the experiments? It would be good to confirm the same. If not, the analysis presented in Fig. 3 could be performed for this case and used as a baseline while referring to the data in Fig. 3.

      We thank the referee for the interesting suggestion. The pattern predicted by the model is not strictly salt-and-pepper in absence of VEGF, but the disorder quantified in terms of “incorrect” contacts between Tip cells is considerably lower (see for example the disorder quantification in supplementary figure 1C). We have included the Tip-Tip contact statistics for a case of VEGF=1 ng/ml (100-fold lower that the level used in Fig. 3 compare between model and experiment). In this case, there is clearly more spacing between Tip cells, thus demonstrating how high VEGF stimuli increase the probability of contacts between Tip cells. In the main text, we commented: “As a baseline comparison, the mathematical model with a 100-fold reduction of VEGF stimulus (1 ng/ml) exhibited a Tip-Tip distance statistics more closely comparable with the ‘salt-and-pepper’ model”.

      1. The authors mention in the Discussion (end of pg. 7) that ...a low level of exogeneous VEGF is essential to induce Delta-NOTCH signalling.. However, in the standard NOTCH signalling (Boareto et al.), we can get the salt-and-pepper pattern without any VEGF. Am I missing something? The authors may want to take a re-look.

      We appreciate the referee’s understanding of the mathematical model. The model used here still exhibits a bistable behavior between the low-Delta and high-Delta cell states even in the absence of VEGF input, as seen for example in the cell state distribution of Fig. 2B, and in agreement with the original model by Boareto et al. This behavior is reflective of the more general applicability of the model, as it describes Delta-NOTCH interactions in various systems. For endothelial cells, VEGF is indeed required to trigger this interaction, but this was not the primary focus of the paper, hence the original model was used. In the text referred to by the reviewer, we are discussing the role,of VEGF based in its known biological effects as well as modeling results. We anticipate that the future further adaptation of the model to,endothelial cells will refine its description of of cell interactions in the absence of VEGF.

      1. The size of cells (or spacing between cell nuclei) is highly variable (Fig. 3). Since it is known that the size of cell-cell junctions influences signalling, it would good to at least comment on the same, considering that the model in the paper consists of regular static hexagons. Similarly, it seems desirable to comment on expressing the distance between Tip cells (Fig. 3) in cell length units, when the cell lengths are so variable.

      We concur with the suggestion that our consideration of the cell-cell contact size in NOTCH signaling should be clarified in the manuscript.

      Sprinzak et al. reported in their 2017 article published in Developmental Cell that the cell-cell contact area does influence NOTCH Signaling. In this article, they found that NOTCH trans-endocytosis (TEC) for pairs with a larger contact width (25µm) is up to five times higher than for pairs with a smaller contact (2.5µm), as observed through the two-cell TEC assay. While TEC correlates with contact width across a range from 1 to 40µm, the values fluctuate significantly in the middle range, particularly when excluding extremely low cell-cell contact areas.

      In our experiments, we observed that the cell-cell contact area ranges from essentially infinitesimal corner-to-corner contact to roughly 50µm. We excluded the corner contacts, which might correspond to extremely low cell-cell contact areas, from the Tip-Tip distance measurements as depicted in Fig. 3B. We also made the assumption that variations in cell-cell contact size within tens of microns correlate weakly with the strength of NOTCH signaling. This assumption did not impede our effort to compare the overall trends with results from modeling using hexagonal cells, as shown in Figs 6 D&E. We have included this comment and the corresponding reference to elucidate our assumption in the results as follows: In our experiments, the observed cell-cell contact area varied, spanning from very low (cell corner-to-corner contact) up to approximately 50µm. Previous studies(14, 15) have clearly demonstrated the influence of the cell-cell contact area on NOTCH Signaling, but the values get nosy in the middle range, particularly when excluding extremely low cell-cell contact areas. Reflecting these findings, we excluded the corner contacts, which might correspond to extremely low cell-cell contact areas, from the Tip-Tip distance measurements as depicted in Fig. 3B. We also made an assumption that variations in cell-cell contact size within tens of microns correlate weakly with the strength of NOTCH signaling. This assumption did not impede our effort to compare the overall trends with results from modeling using hexagonal cells, as shown in Figs 3 D&E.

      1. The results presented in Fig. 6J are quite striking. However, the number of samples N = 10 and N = 11 seem somewhat low. How does one justify that the findings are not influenced by low number fluctuations?

      We acknowledge the reviewer's concerns regarding potential biases stemming from a limited number of samples. The analysis presented in Fig. 6J was specifically designed to complement and support the findings in Fig. 6H. In this context, the counts of sprout and mini-sprout dots correspond to the number of instances "including a sprout" and "including a mini-sprout."

      While the counts of sprouts and mini-sprouts in Fig. 6H might seem limited as highlighted by the reviewer, the statistical difference between the two groups was found to be significant. Nevertheless, we expanded our regions of interest to encompass neighboring cells, based on the rationale that the local environment might have closely interacting and similar features. The sample sizes in Figure 6J, represented as N=10 and N=11, equate to an examination of 70 cells and 77 cells, respectively. For instance, in the category "including a sprout," five out of ten groups indicated that all seven neighboring cells in a group exhibited fibronectin levels exceeding a given threshold, translating to 35 cells with fibronectin levels above this threshold. Given that the observed trends in distribution were consistently reasonable across the examinations of both 70 and 77 cells, we would like to state that we are confident in our results.

      1. It is written towards the end on pg. 5 that ... although all sprouts indeed formed from mini-sprouts, not all .... However, as can be seen from Fig. 4O, Sprouts can also be generated from Stalk cells. This should be corrected.

      Thank you for highlighting the discrepancy between our statement on page 5 and the observations in Fig. 4O. While all sprouts undergo a mini-sprout phase, the transition from Stalk to mini-sprout is not always be observed due to the limitations of our observational timeframe. We acknowledge this oversight and adjusted our statement to clarify that sprouts appearing to form directly from Stalks likely passed through an unobserved intermediate mini-sprout stage as follows: We found that all sprouts formed either directly from Stalks or from mini-sprouts, suggesting a non-observed transition from Stalk to mini-sprout due to observational timeframe limitations. Strikingly, however, not all minisprouts persisted and initiated sprout formation.

      1. No solid blue bars are shown in Fig. S2A as mentioned in the caption. Kindly correct.

      We apologize for the mistake. We have corrected the figure to show the blue bars depicting the experimental measurements for sprout distance probability.

      1. How are the high-Delta cells or high-NOTCH cells decided in experiments or simulations? Does it happen that Delta and NOTCH levels are comparable? In that case, what is done? This point could be clarified in the main manuscript or Materials and Methods.

      We agree with the reviewer that Tip cell definition should be clarified. In the model, we define a threshold level for cellular Delta to distinguish Tip and Stalk cells, which is now explained in the Methods section “Definition of Tip cells in the model”. As elaborated in the new section, Delta and NOTCH levels are never comparable due to the circuit’s bistable behavior. In experiments, Tip cells based on their key phenotypic characteristic — invasive migration into the surrounding collagen matrix rather than Delta or NOTCH levels. The details can be found in “Precise quantification of Tip cell spatial arrangement suggests disordered patterning in the engineered angiogenesis model” section and Figure 3A.

      Minor comments

      There are a good number of typos in the paper. The manuscript should be carefully checked and corrected for the same. Below, I provide a few instances.

      1. In the abstract towards the end, it should be "understanding" instead of "understating"

      2. On pg. 5, just before the beginning of the last paragraph, there is a typo "parodied" which should most likely be "provided"

      3. First paragraph on pg. 6 typo "spouts" instead of "Sprouts"

      4. Second paragraph on pg. 6, correctly write "testS"

      5. Near the beginning of pg. 8, should be "C. elegans" instead of "C. elegance"

      6. Figure 1 caption, towards the end, should be "Stalk" instead of "Salk"

      We sincerely appreciate your keen attention to detail. we have thoroughly reviewed the manuscript and made the necessary corrections, including those that you have highlighted.

      Reviewer #3 (Recommendations For The Authors):

      Major concern:

      The authors should discuss in more detail how their work can be used for a better understanding of the angiogenesis process in physiological conditions and in pathological conditions such as post-ischemic revascularization or tumor vascularization.

      We have included comments and the corresponding references to clarify the aspect the reviewer suggested: The results in this study can further inform our understanding of angiogenesis in physiological and pathophysiological conditions. In particular, in many circumstances, the levels of VEGF is determined by the degree of hypoxia, which can be highly elevated following oxygen supply interruption, e.g., in wound healing or ischemia, or due to progression of neoplastic growth. Our results suggest that in these cases, formation of sprouts can be dysregulated due to higher incidences of co-localizations of prospective Tip cells. In addition, since these conditions are frequently accompanied by altered synthesis of ECM, the sprout density can increase, which may lead to formation of denser and less developed vascular beds frequently observed as a result of tumor angiogenesis(42, 43). Our results thus suggest that the disorder and higher plasticity of the endothelial cell fate speciation at higher VEGF inputs can be a key contributor to some pathological states associated with persistently hypoxic conditions.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary

      This article by Zhai et al, investigates sterol transport in bacteria. Synthesis of sterols is rare in bacteria but occurs in some, such as M capsulatus where the sterols are found primarily in the outer membrane. In a previous paper the authors discovered an operon consisting of five genes, with two of these genes encoding demethylases involved in sterol demethylation. In this manuscript, the authors set out to investigate the functions of the other three genes in the operon. Interestingly, through a bioinformatic analysis, they show that they are an inner membrane transporter of the RND family, a periplasmic binding protein, and an outer membrane-associated protein, all potentially involved with lipid transport, so providing a means of transporting the lipids to the outer membrane. These proteins are then extensively investigated through lipid pulldowns, binding analysis on all three, and X-ray crystallography and docking of the latter two.

      Strengths

      The lipid pulldowns and associated MST binding analysis are convincing, clearly showing that sterols are able to bind to these proteins. The structures of BstB and BstC are high resolution with excellent maps that allow docking studies to be carried out. These structures are distinct from sterol-binding proteins in eukaryotes.

      We thank the reviewer for their favorable impression of this work.

      Weaknesses

      While the docking and molecular dynamics studies are consistent with the binding of sterols to BstB and BstC, this is not backed up particularly well. The MST results of mutants in the binding pocket of BstB have relatively little effect, and while I agree with the authors this may be because of the extensive hydrophobic interactions that the ligand makes with the protein, it is difficult to make any firm conclusions about binding.

      We agree with the reviewer that at this point, there is no experimental evidence to define the sterol binding site in BstB. While in the manuscript we allude to the extensive hydrophobic interactions as being especially stabilizing and difficult to eliminate with one or two mutations, we are now also aware that hydrogen-bonding interactions with the polar head of the sterols are quite important (see data on BstC, where disruption of that interaction significantly reduces the equilibrium affinity for sterols). Our MD simulations show that at least 3 protein amino acids can participate in H-bonding with the sterols. Moreover, recent work from our lab show that even ligand site waters can extend an H-bonding network around the polar head of the lipid (Zhai et al., ChemBioChem 2023, 24, e202300156), thereby enabling H-bonding with amino acids that are further away from the ligand site. It is therefore difficult to predict which mutations will sufficiently destabilize the binding. While this question is one we will tackle in future studies focused on obtaining high-resolution substrate-bound structures of BstB or homologs, the findings reported here are still relevant and timely, and we posit will spur the discovery of functional homologs, including some in organisms that are more tractable.

      The authors also discuss the possibility of a secondary binding site in BstB based on a slight cavity in domain B next to a flexible loop. This is not backed up in any way and seems unlikely.

      The reviewer is correct in that the evidence for this second binding site weak. While the crystallographic structure shows a highly hydrophobic region and the binding studies suggests cooperativity exists in the binding of the 4methylsterol substrate, the docking studies do not strongly support binding at that site. As such, we have clarified in the manuscript that a second hydrophobic cavity is observed, but that its role in ligand interaction remains unexplored.

      Reviewer #2 (Public Review):

      Summary:

      In eukaryotes, sterols are crucial for signaling and regulating membrane fluidity, however, the mechanism governing cholesterol production and transport across the cell membrane in bacteria remains enigmatic. The manuscript by Zhai et al. sheds light on this topic by uncovering three potential cholesterol transport proteins. Through comprehensive bioinformatics analysis, the authors identified three genes bstA, bstB, and bstC encoding proteins which share homology with transporters, periplasmic binding proteins, and periplasmic components superfamily, respectively. Furthermore, the authors confirmed the specific interaction between these three proteins and C-4 methylated sterols and determined the structures of BstB and BstC. Combining these structural insights with molecular dynamics simulation, they postulated several plausible substrate binding sites within each protein.

      Strengths:

      The authors have identified 3 proteins that seem likely to be involved in sterol transport between the inner and outer membrane. The structures are of high quality, and the sterol binding experiments support a role for these proteins in sterol transport.

      We thank the reviewer for this positive view of our work.

      Weaknesses:

      While the author's model is very plausible, direct evidence for a role of BstABC in transport, or that the 3 proteins function together in a single pathway, is limited.

      The reviewer is correct that we were unable to demonstrate that the three proteins work together to transport 4methylsterols. This is not for lack of trying. We first attempted gene deletion studies, and as mentioned in the manuscript (with more details now provided in the experimental section), this appeared to be lethal. We then attempted in vitro exchange experiments, in which the proteins would be used to transfer sterols from sterol-loaded “heavy” liposomes to a sterol-free “light” liposomes – such exchange assays are frequently performed with eukaryotic sterol transporters (see Chung et al., Science 2015, https://doi.org/10.1126/science.aab1370). These assays were not successful because 1) sterols incorporated poorly into liposomes made with E. coli polar lipids and yielded leaky liposomes; 2) use of liposomes prepared with the TLE of M. capsulatus proved more stable, but no appreciable exchange was observed; we reasoned that this might be due to the absence of an energy source for BstA, the RND component for which we have expressed and purified only the soluble periplasmic domain. Given the technical difficulty of these in vitro transport experiments, we will continue to pursue in vivo demonstration of function as new homologs are identified.

      Reviewer #3 (Public Review):

      Summary:

      The work in this manuscript builds on prior efforts by this team to understand how sterols are biosynthesized and utilized in bacteria. The study reports a new function for three genes encoded near sterol biosynthesis enzymes, suggesting the resulting proteins function as a sterol transport system. Biochemical and structural characterization of the two soluble components of the pathway establishes that both proteins can bind sterols, with a preference for 4methylated derivatives. High-resolution x-ray structures of the apoproteins reveal hydrophobic cavities of the appropriate size to accommodate these substrates. Docking and molecular dynamics simulations confirm this observation and provide specific insights into residues involved in substrate binding.

      Strengths:

      The manuscript is comprehensive and well-written. The annotation of a new function in a set of proteins related to bacterial sterol usage is exciting and likely to enable further study of this phenomenon - which is currently not well understood. The work also has implications for improving our understanding of lipid usage in general among bacterial organisms.

      We thank the reviewer for this synopsis of our work.

      Weaknesses:

      The authors might consider moving some of the bioinformatics figures to the main text, given how much space is devoted to this topic in the results section.

      We have taken this advice and moved Figure S1 to the main manuscript.

      Reviewer #1 (Recommendations For The Authors):

      1. In the analysis of the MST data, the authors quote Hill coefficients. How reliable are these numbers? For BstB, for instance, it seems unlikely that more than one molecule would bind. Can the analysis be done without needing to include Hill coefficients?

      We used fits that did and did not invoke cooperativity – see below. We are certain that both BstA and BstB are better fit with cooperativity invoked.

      Author response image 1.

      1. In looking at the maps associated with the structures, which were included in the review package, I see that two citric acid molecules fit beautifully into the density where currently PEG has been modelled. This needs to be fixed and some comments may be appropriate in the manuscript.

      We thank the reviewer for calling our attention to this. Citric acid has now been added to the model, and we reason that these are present in the structure because citric acid was used in the crystallization condition. The revised model is now present in the PDB.

      1. It is not necessary to show the two molecules in the asymmetric unit in Figure 4 given that it is not a dimer. This doesn't add anything to the manuscript.

      We now show a single molecule of BstC in Figure 4 (now Figure 5).

      1. I wouldn't consider the loops shown in Figure S4 as disordered. They have slightly higher B-values but are not completely mobile.

      We did not refer to these loops as disordered. In the text, we say they “exhibit poor electron densities, suggesting conformational sampling of more than one state (Fig. S4A).”

      Reviewer #2 (Recommendations For The Authors):

      pg 7, "hinting at an astounding distinction": I might suggest a word other than astounding that conveys how statistically unlikely, unusual, etc. this result is.

      Thank you – we have removed “astounding”.

      pg 7, paragraph 2: Here the authors show that in the SSN analysis, BstB proteins cluster separately and suggest this implies a distinction in function. However, they also show that PhnD homologs do not cluster separately (distributed across multiple clusters), yet presumably have similar functions. I am not familiar with SSN, but it seems to me that the second statement about PhnD implies that the first statement about BstB might not be valid, i.e., if PhnD doesn't cluster based on function, on what basis can we conclude that BstB does? On what basis does clustering occur in the SSN analysis? Might it be driven by things other than function? This comment also concerns the final paragraph of this section.

      The reviewer is correct in that PhnD homologs occupy separate clusters of the SSN. Many of these homologs were crystallized with phosphate-like compounds, but it is possible that they have non-overlapping substrate scopes and are therefore functionally distinct. As for the basis of clustering, the SSN is fully sequence-based. What has been observed is that proteins with highly similar sequences can have similar functions – but this is not always true.

      pg 8, paragraph 1: The authors suggest that BstABC may be essential. This is probably not a critical claim and it might be simplest to just remove it, but if it is mentioned, the authors should probably explain what was attempted that failed, so a reader can assess the strength of the evidence supporting essentiality. For example, I don't see anything in the methods about genetic manipulations of M. capsulatus, so currently, this falls within the realm of "Data not shown".

      We have provided additional information about the experimental techniques used to do this. This statement was included so that it is understood that the reason for the experimental failure is unlikely to be technical in nature, as we have successfully deleted some sterol related genes while others remain intractable.

      Fig. 2A: It is unclear to me what is being plotted here, perhaps more experimental detail is required in the form of labels and/or legend. Is this a quantification of each sterol in each fraction separated by GC? There are essentially no methods provided for the GC-MS experiments. A reference is provided, but I think providing detailed methods for these specific experiments will provide a higher degree of scientific rigor. I am not sure what is standard for GCMS, but perhaps showing spectra in the supplement that establish the identity of the bound molecules as species I and II would be appropriate?

      Additional experimental details have been provided and the figure legend changed to be more clear. Moreover, we now clearly state that the chromatograms shown were used to identify lipids due to retention times for spectra that were previously published in Wei et al., 2016.

      pg 10-11, comparison with PhnD structure: Perhaps it is worth mentioning a 3rd possible explanation for the relative opening/closing of the cleft is simply crystal packing? I don't think it necessarily has to imply anything about a difference in function. Also, the focus seems to be on this pairwise comparison, but perhaps more insights could be gleaned from an analysis that included a wider range of homologs, especially if any are thought to bind hydrophobic substrates.

      This could be true, and we have included a statement to that effect. We are unaware of homologs shown to bind to large, hydrophobic molecules.

      I think that BstB is shown upside-down in sup movies relative to other figures. If it isn't changed, perhaps adding some labels would help orient the reader.

      We have rotated the movies to be more consistent with the figures.

      Fig. S7: No units are indicated for Kds (uM?).

      Thank you – this has been fixed.

      pg 11, paragraph 2. "adjacent to three residues: Glu118, Tyr120 and Asn192": The residue number used in the text doesn't seem to match the numbering in the PDB file. I think these residues correspond to Glu98, Tyr100, and Asn172 in the PDB file.

      We regret this error. The correct numbering for both structures is now present in the deposited PDB files (7T1M for BstB and 7T1S for BstC).

      pg 12, final paragraph: The authors present binding data for BstB variants with mutations in the putative sterol binding pocket identified in the structural and MD analyses. However, these mutants had no effect on binding. The authors rationalize this in terms of the size of the interface and hydrophobic nature (which indeed, may be correct and is very plausible), and it is worth noting that many of their mutations are to Ala and would largely preserve the hydrophobic nature of the cleft. However, these mutants raise questions about where sterols actually bind. No experimental evidence is presented that substrates bind in the cleft, it is only hypothesized based on structural homology, MD simulations, etc. These mutations formally provide evidence against the hypothesis being tested; I think that has to be discussed a bit more directly, alongside the caveats the authors already discuss about hydrophobicity, etc.

      This is a valid point by the reviewer, and it is one we have attempted to address with our statement in the manuscript and in our response to reviewer 1. We have modified the relevant text to more clearly state that there is as of yet no experimental evidence for the binding of sterols to the cavity identified via molecular docking.

      pg 13: Presumably this is not the full-length lipoprotein, but has been truncated/mutated in some way? Some statement of roughly what was purified/crystallized should be stated.

      The SI methods on protein purification states that the genes of BstB and BstC without their respective signal peptides were obtained.

      pg 13, last paragraph "TN1 exhibits hybrid hydrophobicity, with the sides horizontal to cavities being hydrophobic while the vertical sides are more hydrophilic". I don't really follow the horizontal vs vertical sides. Perhaps this could be described in a different way.

      Noted and changed to “TN1 is closer to the N-terminal face of the structure, while CA1 and CA2 are proximal to the C-terminal face and form two open hydrophobic pockets; TN1 exhibits a mixture of hydrophobic and hydrophilic amino acids (Fig. 4B and Fig. S9B, Table S4).”

      pg 15-16, "Comparison to eukaryotic sterol transporters": Perhaps this would be better suited for the discussion section? Could also be streamlined; it is mostly discussing and comparing eukaryotic sterol binding domains to each other, not to BstABC.

      Given that BstB and BstC are the first identified proteins (and putative transporters) for bacterial sterol engagement, we thought a careful description of the existing sterol transporters (which are all eukaryotic) was warranted.

      Reviewer #3 (Recommendations For The Authors):

      I have just two minor suggestions for the authors if they wish to comment on or address them.

      1. Do the three proteins (BstA/B/C) form any sort of complex? Perhaps this property was not assessed - but it seemed possible that the B and C components might constitute a shuttle for the membrane-bound transporter?

      This is an important observation – the unliganded version of these proteins show no appreciable affinity for each other. However, BstB (which would be expected to engage both with BstA and BstC) belongs to a family of proteins known to undergo significant conformational change upon substrate binding. It is possible that with substrate present, complexes are formed – we have yet to investigate this.

      1. In Figure S1, panel C - it appears that the label for the BstC cluster may have migrated away from the intended location. In this figure, it might also be useful to indicate in the caption the meaning of the red coloring of the nodes?

      The label is now fixed – thank you for drawing our attention to this.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the three reviewers and the reviewing editor for their positive evaluation of our manuscript. We particularly appreciate that they unanimously consider our work as “important contributions to the understanding of how the CAF-1 complex works”, “The large amounts of data provided in the paper support the authors' conclusion very well” and “The paper effectively addresses its primary objective and is strong”. We also thank them for a careful reading and useful comments to improve the manuscript. We have built on these comments to provide an improved version of the manuscript, and address them point by point below .

      Reviewer #1 (Public Review):

      Summary:

      This paper makes important contributions to the structural analysis of the DNA replication-linked nucleosome assembly machine termed Chromatin Assembly Factor-1 (CAF-1). The authors focus on the interplay of domains that bind DNA, histones, and replication clamp protein PCNA.

      Strengths:

      The authors analyze soluble complexes containing full-length versions of all three fission yeast CAF-1 subunits, an important accomplishment given that many previous structural and biophysical studies have focused on truncated complexes. New data here supports previous experiments indicating that the KER domain is a long alpha helix that binds DNA. Via NMR, the authors discover structural changes at the histone binding site, defined here with high resolution. Most strikingly, the experiments here show that for the S. pombe CAF-1 complex, the WHD domain at the C-terminus of the large subunit lacks DNA binding activity observed in the human and budding yeast homologs, indicating a surprising divergence in the evolution of this complex. Together, these are important contributions to the understanding of how the CAF-1 complex works.

      Weaknesses:

      1. There are some aspects of the experimentation that are incompletely described: <br /> In the SEC data (Fig. S1C) it appears that Pcf1 in the absence of other proteins forms three major peaks. Two are labeled as "1a" (eluting at ~8 mL) and "1b" (~10-11 mL). It appears that Pcf1 alone or in complex with either or both of the other two subunits forms two different high molecular weight complexes (e.g. 4a/4b, 5a/5b, 6a/6b). There is also a third peak in the analysis of Pcf1 alone, which isn't named here, eluting at ~14 mL, overlapping the peaks labeled 2a, 4c, and 5c. The text describing these different macromolecular complexes seems incomplete (p. 3, lines 32-33): "When isolated, both Pcf2 and Pcf3 are monomeric while Pcf1 forms large soluble oligomers". Which of the three Pcf1-alone peaks are oligomers, and how do we know? What is the third peak? The gel analysis across these chromatograms should be shown.

      We thank the reviewer for his/her careful reading of the manuscript. Indeed, we plotted two curves in Figure S1C in a color that does not match the legend, leading to confusion. Curve 1, Pcf1 alone, depicted in red, should appear in pink as indicated in the legend and in the SDS-PAGE analysis below. Curve 1 exhibits two peaks, labeled as 1a and 1b. With an elution volume of 8.5mL close to the dead volume of the column, peak 1a corresponds to soluble oligomers, while peak 1b (10.4mL) likely corresponds to monomeric Pcf1. Curve 5 (Pcf1 + Pcf2 mixture) was in pink instead of purple as indicated in the legend. This curve consists of three distinct peaks (5a, 5b, and 5c). The SDS-PAGE analysis revealed the presence of oligomers of Pcf1-Pcf2 (5a, 8.3mL), the Pcf1-Pcf2 complex (5b, 9.8mL), and Pcf2 alone (5c, 13.6 mL).

      The color has now been corrected in the revised manuscript.

      More importantly, was a particular SEC peak of the three-subunit CAF-1 complex (i.e. 4a or 4b) characterized in the further experimentation, or were the data obtained from the input material prior to the separation of the different peaks? If the latter, how might this have affected the results? Do the forms inter-convert spontaneously?

      We conducted all structural analyses and DNA/PCNA interactions Figures (1-4, S1-S4) with freshly SECpurified samples corresponding to the 4b peak (9.7mL). Aliquots were flash-frozen with 50% glycerol for in vitro histone assembly assays (Figure 5).

      1. Given the strong structural predication about the roles of residues L359 and F380 (Fig. 2f), these should be mutated to determine effects on histone binding.

      We are pleased that our structural predictions are considered as strong. We agree that investigating the role of the L359 and F380 residues will be critical to further refine the binding interface between histone H3-H4 and CAF-1. An in vitro and in vivo analysis of such mutated forms, alongside the current Pcf1-ED mutant characterized in this article and additional potential mutated forms, has the potential to provide a better understanding of the dynamic of histone deposition by CAF-1. However, these additional approaches would require to reach another step in breaking this enigmatic dynamic.

      1. Could it be that the apparent lack of histone deposition by the delta-WHD mutant complex occurs because this mutant complex is unstable when added to the Xenopus extract?

      We cannot formally exclude this possibility, and this could potentially applies to all mutated forms tested. However, in the absence of available antibodies against the fission yeast CAF-1 complex, we cannot test this hypothesis for technical reasons. Nevertheless, we feel reassured by the fact that the in vitro assays of nucleosome assembly are overall consistent with the in vivo assays. Indeed, all mutated forms tested that abolished or weakened nucleosome assembly also exhibited synthetic lethality/growth defect in the absence of a functional HIRA pathway, including the delta WHD mutated form. This genetic synergy, that reflects a defective histone deposition by CAF-1, is not specific to the fission yeast S. pombe and was previously reported in S. cerevisiae (Kaufman et al. MCB 1998; Krawitz et al. MCB 2002). This further supports the evolutionary conservation based on genetic assay as a read out for defective histone deposition by CAF-1.

      Reviewer #1 (Recommendations For The Authors):

      • p. 4: "An experimental molecular weight of 179 kDa was calculated using Small Angle X-ray Scattering (SAXS), consistent with a 1:1:1 stoichiometry (Figure S1e). These data are in agreement with a globular complex with a significant flexibility (Figure S1f)." There needs to be more description of the precision of the molecular weight measurement, and what aspects of these data indicate the flexibility.

      The molecular weight was estimated using the correlation volume (Vc) defined by (Rambo & Tainer, Nature 2013, 496, 477-481). The estimated error with this method is around 10%. We added this information together with supporting arguments for the existence of flexibility: “An experimental molecular weight of 179 kDa was calculated using Small Angle X-ray Scattering (SAXS). Assuming an accuracy of around 10% with this method (Rambo and Tainer 2013), this value is consistent with a 1:1:1 stoichiometry for the CAF-1 complex (calculated MW 167kDa) (Figure S1e). In addition, the position of the maximum for the dimensionless Kratky plot was slightly shifted to higher values in the y and x axis compared to the position of the expected maximum of the curve for a fully globular protein (Figure S1f).

      This shows that the complex was globular with a significant flexibility.”

      • p. 6, lines 21-22: "In contrast, a large part of signals (338-396) did not vanish anymore upon addition of a histone complex preformed with two other histone chaperones known to compete with CAF-1 for histone binding..." Given the contrast made later with the 338-351 region which is insensitive to Asf1/Mcm2, it would be clearer for the reader to describe the Asf1/Mcm2-competed regions as residues 325-338 plus 352-396. Note that the numerical scale of residues doesn't line up perfectly with the data points in Figure 2d, and this should be fixed as well.

      We thank this reviewer for spotting this typographical error; we intended to write "In contrast, a large part of signals (348-396) did not vanish anymore… “. We modified paragraph as suggested by the reviewer because we agree it is clearer for the reader : “In contrast, only a shorter fragment (338-347) vanished upon addition of Asf1-H3-H4-Mcm2(69-138), a histone complex preformed with two other histone chaperones, Asf1 and Mcm2, known to compete with CAF-1 for histone binding (Sauer et al. 2017) and whose histone binding modes are well established (Figure 2e) (Huang et al. 2015, Richet et al. 2015). This finding underscores a direct competition between residues (325-338) and (349-396) within the ED domain and Asf1/Mcm2 for histone binding.”

      The slight shift in the numerical scale Figure 2d was also corrected.

      • p. 8. Lines 22-24: "EMSAs with a double-stranded 40bp DNA fragment confirmed the homogeneity of the bound complex. When increasing the SpCAF-1 concentration, additional mobility shifts suggest, a cooperative DNA binding (Figure 3a)." I agree that the migration of the population is further retarded upon the addition of more protein. However, doesn't this negate the first sentence? That is, if multiple CAF-1 complexes can bind each dsDNA molecule, can these complexes be described as homogeneous?

      We fully agree with the reviewer's comment and have removed the notion of homogeneity from the first sentence. “EMSAs with a double-stranded 40bp DNA fragment showed the formation of a bound complex.”

      • Figure S2b Legend: "1H-15N HSQC spectra of Pcf1_ED (425-496)." The residue numbers should read 325-396.

      The typo has been corrected.

      • Is the title for Figure 5 correct?: "Figure 5: Rescue using Y340 and W348 in the ED domain, the intact KER DNA binding domain and the C-terminal WHD of Pcf1 in SpCAF-1 mediated nucleosome assembly." I don't see that any point mutation rescue experiments are done here.

      The title of figure 5 has been modified for “Efficient nucleosome assembly by SpCAF-1 in vitro requires interactions with H3-H4, DNA and PCNA, and the C-terminal WHD domain”.

      • Figure S6C. I assume the top strain lacks the Pcf2-GFP but this should be stated explicitly.

      The following sentence “The top strain corresponds to a strain expressing wild-type and untagged Pcf2 as a negative control of GFP fluorescence” is now added to the figure legend. The figure S6C has been modified accordingly to mention “Pcf2 (untagged)” and state more explicitly.

      • Regarding point #3 in the public review, a simple initial test of this idea would be to determine if similar amounts of wt and mutant complexes can be immunoprecipitated at the endpoint of the assembly reactions.

      In the absence of available antibodies against the fission yeast CAF-1 complex, we cannot test this hypothesis for technical reasons. However, the in vitro assays of nucleosome assembly are overall consistent with the in vivo assays. Indeed, all mutated forms tested that abolished or weakened nucleosome assembly also exhibited synthetic lethality/growth defect in the absence of a functional HIRA pathway, including the delta WHD mutated form. This genetic synergy, reflecting defective histone deposition by CAF-1, is not specific to the fission yeast S. pombe, as it was previously reported in S. cerevisiae (Kaufman et al. MCB 1998; Krawitz et al. MCB 2002), further supporting the evolution conservation in the genetic assay as a read out for defective histone deposition by CAF-1.

      • Foundational findings that should be cited: The role of PCNA in CAF-1 activity was first recognized by pioneering studies in the Stillman laboratory (PMID: 10052459, 11089978). The earliest recombinant studies of CAF-1 showed that the large subunit is the binding platform for the other two, showed that the KER and ED domains were required for histone deposition activity, and roughly mapped the p60-binding site on the large subunit (PMID: 7600578). Another early study roughly mapped the binding site for the third subunit and showed that biological effects of impairing the PCNA binding synergized with defects in the HIR pathway (PMID: 11756556), a genetic synergy first demonstrated in budding yeast (PMID: 9671489).

      We thank the reviewer for providing these important references that are now cited in the manuscript. PMID: 10052459 and 11089978 are cited page 2 line 18 and 19, PMID: 7600578 page 19 line 5 and PMID: 11756556 and 9671489 page 18 line 2.

      Reviewer #2 (Public Review):

      Summary:

      The authors describe the structure-functional relationship of domains in S. pombe CAF-1, which promotes DNA replication-coupled deposition of histone H3-H4 dimer. The authors nicely showed that the ED domain with an intrinsically disordered structure binds to histone H3-H4, that the KER domain binds to DNA, and that, in addition to a PIP box, the KER domain also contributes to the PCNA binding. The ED and KER domains as well as the WHD domain are essential for nucleosome assembly in vitro. The ED, KER domains, and the PIP box are important for the maintenance of heterochromatin.

      Strengths:

      The combination of structural analysis using NMR and Alphafold2 modeling with biophysical and biochemical analysis provided strong evidence on the role of the different domain structures of the large subunit of SpCAF-1, spPCF-1 in the binding to histone H3-H4, DNA as well as PCNA. The conclusion was further supported by genetic analysis of the various pcf1 mutants. The large amounts of data provided in the paper support the authors' conclusion very well.

      Reviewer #2 (Recommendations For The Authors):

      The paper by Ochesenbein describes the structural and functional analysis of S. pombe CAF-1 complex critical for DNA replication-coupled histone H3/H4 deposition. By using structural, biophysical, and biochemical analyses combined with genetic methods, the authors nicely showed that a large subunit of SpCAF1, SpPCF-1, consists of 5 structured domains with four connecting IDR domains. The ED domain with IDR nature binds to histone H3-H4 dimer with the conformational change of the other domain(s). SpCAF-1 binds to dsDNA by using the KER domain, but not the WHD domain. The experiments have been done with great care and a large amount of the data are highly reliable. Moreover, the results are clearly presented and convincingly written. The conclusion in the paper is very solid and will be useful for researchers who work in the field of chromosome biology.

      Major points:

      1. DNA binding of the KER mutant shown in Figures S3h and S3i, which was measured by the EMSA, looks similar to that of wild-type control in Figure S3f, which is different from the data in Figures 3b and 3e measured by the MST. The authors need a more precise description of the EMSA result of the KER mutant shown in Figures 3 and S3. The quantification of the EMSA result would resolve the point (should be provided).

      A proposed by this reviewer, we performed quantification of all EMSA presented in Figure 3 and Figure S3. We quantified the signal of the free DNA band to calculate a percentage of bound DNA in each condition. All EMSA experiments were conducted in duplicate, allowing us to calculate an average value and standard deviation for each interaction. Representative curves and fitted values are reported below in the figure provided for the reviewer (panel a data for Pcf1_KER domain with two fitting models, panel b for the entire CAF-1 complexes and mutants, panel c for the isolated Pcf1_KER domains), all fitted values in panel d. Importantly, as illustrated in panel a, the complete model for a single interaction (complete KD model, dashed line curve) does not adequately fit the data. In contrast, a function incorporating cooperativity (Hill model) better accounts for the measured data (solid line curve). Consistently, we also used the Hill model to fit the binding curves measured with the MST technique. As also specified now in the text, the Hill model allows to determine an EC50 value (concentration of protein resulting in the disappearance of half of the free DNA band intensity) and a Hill coefficient value (representing cooperativity during the interaction) for each curve.

      We measure a value of 3.4 ± 0.4 μM for the EC50 of SpCAF-1 WT, which is higher than the value measured by MST (0.7 ± 0.1 μM). Higher values were also calculated for all mutants and isolated Pcf1_KER domains compared to MST. These discrepancies could raise from the fact that the DNA concentration used in the two techniques were very different (20nM for MST experiments and 1μM for EMSA). Unlike the complete KD model, which includes in the calculation the DNA concentration (considered here as the "receptor"), the Hill model is fitted independently of this value. This model assumes that the “receptor” concentration is low compared to the KD. Here we calculate EC50 values on the same order of magnitude as the DNA concentration (low micromolar), The quantification obtained by EMSA is thus challenging to interpret. In contrast, values fitted by the MST measurements are more reliable since this limitation of low “receptor” concentration is correct.

      Therefore, although measurements of EC50 and Hill coefficient from EMSA are reproducible, they may be confusing for quantifying apparent affinity values through EC50. Nevertheless, this quantitative analysis of EMSA, requested by the reviewer, has highlighted an interesting characteristic of the KER mutant that is consistent across both methods: even though the EMSA pointed by the reviewer (Figures S3h and S3i compared to the wild-type control in Figure 3d and Figure S3f) show similar EC50 values, the binding cooperativity is different. Binding curves for the KER mutants is no longer cooperative (Hill coefficient ~1), and this is observed for all KER curves (isolated Pcf1_KER domain and the entire SpCAF-1 complex) with both methods, EMSA and MST. We thus decided to emphasize this characteristic of the KER mutant in the text (page 9 line 30-32). “Importantly, this mutant also shows a lower binding cooperativity for DNA binding, as estimated by the Hill coefficient value close to 1, compared to values around 3 for the WT and other mutants.”

      Since EMSA quantifications did not show a loss of “affinity” (as measured by the EC50 value) for the KER* mutants, compared to the WT contrary to MST measurements and because the DNA concentration was close to the measured EC50, we consider that EC50 values calculated by EMSA do not represent a KD value. If we add this quantification, we should discuss this point in detail. Thus, for sake of clarity, we prefer to put in the manuscript EMSA measurements as illustrations and qualitative validations of the interaction but not to include the quantification.

      Author response image 1.

      Quantitative analysis of interaction with DNA by EMSA. a: quantification of the amount of bound DNA for the Pcf1_KER domain (blue points with error bars). The fit with a KD model is shown as a dashed line, and the fit with a Hill model with a solid line. b: Examples of quantifications and fits (Hill model) for reconstituted SpCAF-1 WT and mutants. c: Examples of quantifications and fits (Hill model) for Pcf1_KER domains WT and mutant. d: EC50 values and Hill coefficients obtained for all EMSA experiments presented in Figure 3 and S3.

      1. As with the cooperative DNA binding of CAF-1, it is very important to show the stoichiometry of CAF-1 to the DNA or the site size. Given a long alpha-helix of the KER domain with biased charges, it is also interesting to show a model of how the dsDNA binds to the long helix with a cooperative binding property (this is not essential but would be helpful if the authors discuss it).

      We agree that having a molecular model for the binding of the KER helix to DNA would be especially interesting, but at this point, considering the accuracy of the tools currently at our disposal for predicting DNA-protein interactions, such a model would remain highly speculative.

      1. Figure 5 shows nucleosome assembly by SpCAF-1. SpCAF-1-PIP* mutant produced a product with faster mobility than the control at 2 h incubation. How much amounts of SpCAF-1 was added in the reaction seems to be critical. At least a few different concentrations of proteins should be tested.

      The slightly faster migration of the SpCAF-1-PIPis not systematically reproduced and we observed in several experiments that the band corresponding to supercoiled DNA migrated slightly above or below the one for the complementation by the SpCAF-1-WT (see Author response image 2 below). Thus this indicates that after 2 hours incubation the supercoiling assay with the SpCAF-1-PIP mutant compared to those achieved with the SpCAF-1-WT. To further document whether the WT or the PIP mutant are similar or not, we monitored difference of their nucleosome assembly efficiency by testing their ability to produce supercoiled DNA over shorter time, after 45 minute incubation. Under these conditions, we reproducibly detected supercoiled forms at earlier times with SpCAF-1-WT when compared to the SpCAF-1-PIP* (see figure 5 and Author response image 2). These observations indicate that mutation in the PIP motif of Pcf1 affects the rate of supercoiling in a distinct manner when compared to the other mutations that dramatically impair SpCAF-1 capacity to promote supercoiling.

      Author response image 2.

      Minor points:

      1. Page 8, line 26 or Table 1 legend: Please explain what "EC50" is.

      The definition of EC50, together with a reference paper for the Hill model have been added in the text page 8 lines 23-26, “The curves were fitted with a Hill model (Tso et al. 2018) with a EC50 value of 0.7± 0.1µM (effective concentration at which a 50% signal is observed) and a cooperativity (Hill coefficient, h) of 2.7 ± 0.2, in line with a cooperative DNA binging of SpCAF-1.”, in the Table 1 figure legend and in the method section (page 26).

      1. Page 13, lines 9, 11: "Xenopus" should be italicized.

      This is corrected

      1. Page 14, second half: In S. pombe, the pcf1 deletion mutant is not lethal. It is helpful to mention the phenotype of the deletion mutant a bit more when the authors described the genetic analysis of various pcf1 mutants.

      This point has been added on page 15, line 1.

      1. Figure 1d and Figure S2a: Captions and labels on the X and Y axes are overlapped or misplaced.

      This is corrected

      1. Figure 5: Please add a schematic figure of the assay to explain how one can check the nucleosome assembly by looking at the form I, supercoiled DNAs.

      A new panel has been added to Figure 5. This scheme depicts the supercoiling assay where supercoiled DNA (form I) is used as an indication of efficient nucleosome assembly. The figure legend has also been modified accordingly.

      Reviewer #3 (Public Review):

      Summary:

      The study conducted by Ouasti et al. is an elegant investigation of fission yeast CAF-1, employing a diverse array of technologies to dissect its functions and their interdependence. These functions play a critical role in specifying interactions vital for DNA replication, heterochromatin maintenance, and DNA damage repair, and their dynamics involve multiple interactions. The authors have extensively utilized various in vitro and in vivo tools to validate their model and emphasize the dynamic nature of this complex.

      Strengths:

      Their work is supported by robust experimental data from multiple techniques, including NMR and SAXS, which validate their molecular model. They conducted in vitro interactions using EMSA and isothermal microcalorimetry, in vitro histone deposition using Xenopus high-speed egg extract, and systematically generated and tested various genetic mutants for functionality in in vivo assays. They successfully delineated domain-specific functions using in vitro assays and could validate their roles to large extent using genetic mutants. One significant revelation from this study is the unfolded nature of the acidic domain, observed to fold when binding to histones. Additionally, the authors also elucidated the role of the long KER helix in mediating DNA binding and enhancing the association of CAF-1 with PCNA. The paper effectively addresses its primary objective and is strong.

      Weaknesses:

      A few relatively minor unresolved aspects persist, which, if clarified or experimentally addressed by the authors, could further bolster the study.

      1. The precise function of the WHD domain remains elusive. Its deletion does not result in DNA damage accumulation or defects in heterochromatin maintenance. This raises questions about the biological significance of this domain and whether it is dispensable. While in vitro assays revealed defects in chromatin assembly using this mutant (Figure 5), confirming these phenotypes through in vivo assays would provide additional assurance that the lack of function is not simply due to the in vitro system lacking PTMs or other regulatory factors.

      Our work demonstrates that the WHD domain is important CAF-1 function during DNA replication. Indeed, the deletion of this domain lead to a synthetic lethality when combined with mutation of the HIRA complex, as observed for a null pcf1 mutant, indicating a severe loss of function in the absence of the WHD domain. We propose that these genetic interactions, previously reported in S. cerevisiae (Kaufman et al. MCB 1998; Krawitz et al. MCB 2002) are indicative of a defective histone deposition by CAF-1. Moreover, our work establishes that this domain is dispensable to prevent DNA damage accumulation and to maintain silencing at centromeric heterochromatin, indicating that the WHD domain specifies CAF-1 functions. Moreover, our work further demonstrates that, in contrast to the S. cerevisiae and human WHD domain, the S. pombe counterpart exhibits no DNA binding activity. We thus agree that the WHD domain may contribute to nucleosome assembly in vivo via PTMs or interactions with regulatory factors that may potentially lack in in vitro systems. However, addressing these aspects deserves further investigations beyond the scope of this article.

      1. The observation of increased Pcf2-gfp foci in pcf1-ED cells, particularly in mono-nucleated (G2phase) and bi-nucleated cells with septum marks (S-phase), might suggest the presence of replication stress. This could imply incomplete replication in specific regions, leading to the persistence of Caf1-ED-PCNA factories throughout the cell cycle. To further confirm this, detecting accumulated single-stranded DNA (ssDNA) regions outside of S-phase using RPA as an ssDNA marker could be informative.

      We cannot formally exclude that cells expressing the Pcf1-ED mutated form exhibit incomplete replication in specific regions, an aspect that would require careful investigations. However, the microscopy analysis (Fig. 6c and S6c) of this mutant showed no alteration in the cell morphology, including the absence of elongated cells compared to wild type, a hallmark of checkpoint activation caused by ssDNA (Enoch et al. Gene & Dev 1992). Therefore, investigating the consequences of the interplay between the binding of CAF-1 to PCNA and histones on the dynamic of DNA replication, is of particular interest but out of the scope of the current manuscript.

      1. Moreover, considering the authors' strong assertion of histone binding defects in ED through in vitro assays (Figure 2d and S2a), these claims could be further substantiated, especially considering that some degree of histone deposition might still persist in vivo in the ED mutant (Figure 7d, viable though growth defective double ED*+hip1D mutants). For example, the approach, akin to the one employed in Fig. 6a (FLAG-IPs of various Pcf1-FLAG-tagged mutants), could also enable a comparison of the association of different mutants with histones and PCNA, providing a more thorough validation of their findings.

      We have provided in the current manuscript data establishing how Pcf1 mutated forms interacted with PCNA (Fig. 6a, 6b). Regarding the interactions with histone H3-H4, the approach based on immunoprecipitation using various Pcf1-FLAG tagged mutants has been unsuccessful in our hands. Indeed, we were unable to obtain robust and reproducible interactions between Pcf1 or its various mutated form with H3-H4. This is likely because Co-IP approaches do not probe for direct interactions. Indirect interactions between Pcf1 and H3-H4 are potentially bridged by additional factors, including the two other subunits of CAF-1, Pcf2 and Pcf3, or Asf1. Therefore, we are not in a position to address in vivo the direct interactions between Pcf1 and histone H3-H4.

      1. It would be valuable for the authors to speculate on the necessity of having disordered regions in CAF1. Specifically, exploring the overall distribution of these domains within disordered/unfolded structures could provide insightful perspectives. Additionally, it's intriguing to note that the significant disparities observed among mutants (ED, PIP, and KER*) in in vitro assays seem to become more generic in vivo, except for the indispensability of the WHD-domain. Could these disordered regions potentially play a crucial role in the phase separation of replication factories? Considering these questions could offer valuable insights into the underlying mechanisms at play.

      We agree that the potential mechanistic role of partial disorder in CAF-1 is particularly interesting. Disordered regions of human CAF-1 have been reported to form nuclear bodies with liquid-liquid phase separation properties to maintain HIV latency (Ma et al EMBO J. 2021). As suggested, this raises the question of how disordered domains of Pcf1 could promote phase separation for replication factories, if such phenomenon happens in vivo. Moreover, numerous factors of the replisome also harbor disordered regions (Bedina, A. et al, 2013. Intrinsically Disordered Proteins in Replication Process. InTech. doi: 10.5772/51673), adding complexity in disentangling experimentally such questions. We have added these elements at the end of the discussion in the revised manuscript (page 20, lines 23-29). “Such plasticity and cross-talks provided by structurally disordered domains might be key for the multivalent CAF-1 functions. Human CAF-1 has been reported to form nuclear bodies with liquid-liquid phase separation properties to maintain HIV latency (Ma et al. 2021). This raises the question of a potential role of the disordered domains of Pcf1, together with other replisome factor harbouring such disordered regions (Bedina 2013), in promoting phase separation of replication factories, if such phenomenon happens in vivo. Further studies will be needed to tackle these questions.”

    2. Author Response

      The following is the authors’ response to the original reviews.

      We thank the three reviewers and the reviewing editor for their positive evaluation of our manuscript. We particularly appreciate that they unanimously consider our work as “important contributions to the understanding of how the CAF-1 complex works”, “The large amounts of data provided in the paper support the authors' conclusion very well” and “The paper effectively addresses its primary objective and is strong”. We also thank them for a careful reading and useful comments to improve the manuscript. We have built on these comments to provide an improved version of the manuscript, and address them point by point below .

      Reviewer #1 (Public Review):

      Summary:

      This paper makes important contributions to the structural analysis of the DNA replication-linked nucleosome assembly machine termed Chromatin Assembly Factor-1 (CAF-1). The authors focus on the interplay of domains that bind DNA, histones, and replication clamp protein PCNA.

      Strengths:

      The authors analyze soluble complexes containing full-length versions of all three fission yeast CAF-1 subunits, an important accomplishment given that many previous structural and biophysical studies have focused on truncated complexes. New data here supports previous experiments indicating that the KER domain is a long alpha helix that binds DNA. Via NMR, the authors discover structural changes at the histone binding site, defined here with high resolution. Most strikingly, the experiments here show that for the S. pombe CAF-1 complex, the WHD domain at the C-terminus of the large subunit lacks DNA binding activity observed in the human and budding yeast homologs, indicating a surprising divergence in the evolution of this complex. Together, these are important contributions to the understanding of how the CAF-1 complex works.

      Weaknesses:

      1. There are some aspects of the experimentation that are incompletely described: <br /> In the SEC data (Fig. S1C) it appears that Pcf1 in the absence of other proteins forms three major peaks. Two are labeled as "1a" (eluting at ~8 mL) and "1b" (~10-11 mL). It appears that Pcf1 alone or in complex with either or both of the other two subunits forms two different high molecular weight complexes (e.g. 4a/4b, 5a/5b, 6a/6b). There is also a third peak in the analysis of Pcf1 alone, which isn't named here, eluting at ~14 mL, overlapping the peaks labeled 2a, 4c, and 5c. The text describing these different macromolecular complexes seems incomplete (p. 3, lines 32-33): "When isolated, both Pcf2 and Pcf3 are monomeric while Pcf1 forms large soluble oligomers". Which of the three Pcf1-alone peaks are oligomers, and how do we know? What is the third peak? The gel analysis across these chromatograms should be shown.

      We thank the reviewer for his/her careful reading of the manuscript. Indeed, we plotted two curves in Figure S1C in a color that does not match the legend, leading to confusion. Curve 1, Pcf1 alone, depicted in red, should appear in pink as indicated in the legend and in the SDS-PAGE analysis below. Curve 1 exhibits two peaks, labeled as 1a and 1b. With an elution volume of 8.5mL close to the dead volume of the column, peak 1a corresponds to soluble oligomers, while peak 1b (10.4mL) likely corresponds to monomeric Pcf1. Curve 5 (Pcf1 + Pcf2 mixture) was in pink instead of purple as indicated in the legend. This curve consists of three distinct peaks (5a, 5b, and 5c). The SDS-PAGE analysis revealed the presence of oligomers of Pcf1-Pcf2 (5a, 8.3mL), the Pcf1-Pcf2 complex (5b, 9.8mL), and Pcf2 alone (5c, 13.6 mL).

      The color has now been corrected in the revised manuscript.

      More importantly, was a particular SEC peak of the three-subunit CAF-1 complex (i.e. 4a or 4b) characterized in the further experimentation, or were the data obtained from the input material prior to the separation of the different peaks? If the latter, how might this have affected the results? Do the forms inter-convert spontaneously?

      We conducted all structural analyses and DNA/PCNA interactions Figures (1-4, S1-S4) with freshly SECpurified samples corresponding to the 4b peak (9.7mL). Aliquots were flash-frozen with 50% glycerol for in vitro histone assembly assays (Figure 5).

      1. Given the strong structural predication about the roles of residues L359 and F380 (Fig. 2f), these should be mutated to determine effects on histone binding.

      We are pleased that our structural predictions are considered as strong. We agree that investigating the role of the L359 and F380 residues will be critical to further refine the binding interface between histone H3-H4 and CAF-1. An in vitro and in vivo analysis of such mutated forms, alongside the current Pcf1-ED mutant characterized in this article and additional potential mutated forms, has the potential to provide a better understanding of the dynamic of histone deposition by CAF-1. However, these additional approaches would require to reach another step in breaking this enigmatic dynamic.

      1. Could it be that the apparent lack of histone deposition by the delta-WHD mutant complex occurs because this mutant complex is unstable when added to the Xenopus extract?

      We cannot formally exclude this possibility, and this could potentially applies to all mutated forms tested. However, in the absence of available antibodies against the fission yeast CAF-1 complex, we cannot test this hypothesis for technical reasons. Nevertheless, we feel reassured by the fact that the in vitro assays of nucleosome assembly are overall consistent with the in vivo assays. Indeed, all mutated forms tested that abolished or weakened nucleosome assembly also exhibited synthetic lethality/growth defect in the absence of a functional HIRA pathway, including the delta WHD mutated form. This genetic synergy, that reflects a defective histone deposition by CAF-1, is not specific to the fission yeast S. pombe and was previously reported in S. cerevisiae (Kaufman et al. MCB 1998; Krawitz et al. MCB 2002). This further supports the evolutionary conservation based on genetic assay as a read out for defective histone deposition by CAF-1.

      Reviewer #1 (Recommendations For The Authors):

      • p. 4: "An experimental molecular weight of 179 kDa was calculated using Small Angle X-ray Scattering (SAXS), consistent with a 1:1:1 stoichiometry (Figure S1e). These data are in agreement with a globular complex with a significant flexibility (Figure S1f)." There needs to be more description of the precision of the molecular weight measurement, and what aspects of these data indicate the flexibility.

      The molecular weight was estimated using the correlation volume (Vc) defined by (Rambo & Tainer, Nature 2013, 496, 477-481). The estimated error with this method is around 10%. We added this information together with supporting arguments for the existence of flexibility: “An experimental molecular weight of 179 kDa was calculated using Small Angle X-ray Scattering (SAXS). Assuming an accuracy of around 10% with this method (Rambo and Tainer 2013), this value is consistent with a 1:1:1 stoichiometry for the CAF-1 complex (calculated MW 167kDa) (Figure S1e). In addition, the position of the maximum for the dimensionless Kratky plot was slightly shifted to higher values in the y and x axis compared to the position of the expected maximum of the curve for a fully globular protein (Figure S1f).

      This shows that the complex was globular with a significant flexibility.”

      • p. 6, lines 21-22: "In contrast, a large part of signals (338-396) did not vanish anymore upon addition of a histone complex preformed with two other histone chaperones known to compete with CAF-1 for histone binding..." Given the contrast made later with the 338-351 region which is insensitive to Asf1/Mcm2, it would be clearer for the reader to describe the Asf1/Mcm2-competed regions as residues 325-338 plus 352-396. Note that the numerical scale of residues doesn't line up perfectly with the data points in Figure 2d, and this should be fixed as well.

      We thank this reviewer for spotting this typographical error; we intended to write "In contrast, a large part of signals (348-396) did not vanish anymore… “. We modified paragraph as suggested by the reviewer because we agree it is clearer for the reader : “In contrast, only a shorter fragment (338-347) vanished upon addition of Asf1-H3-H4-Mcm2(69-138), a histone complex preformed with two other histone chaperones, Asf1 and Mcm2, known to compete with CAF-1 for histone binding (Sauer et al. 2017) and whose histone binding modes are well established (Figure 2e) (Huang et al. 2015, Richet et al. 2015). This finding underscores a direct competition between residues (325-338) and (349-396) within the ED domain and Asf1/Mcm2 for histone binding.”

      The slight shift in the numerical scale Figure 2d was also corrected.

      • p. 8. Lines 22-24: "EMSAs with a double-stranded 40bp DNA fragment confirmed the homogeneity of the bound complex. When increasing the SpCAF-1 concentration, additional mobility shifts suggest, a cooperative DNA binding (Figure 3a)." I agree that the migration of the population is further retarded upon the addition of more protein. However, doesn't this negate the first sentence? That is, if multiple CAF-1 complexes can bind each dsDNA molecule, can these complexes be described as homogeneous?

      We fully agree with the reviewer's comment and have removed the notion of homogeneity from the first sentence. “EMSAs with a double-stranded 40bp DNA fragment showed the formation of a bound complex.”

      • Figure S2b Legend: "1H-15N HSQC spectra of Pcf1_ED (425-496)." The residue numbers should read 325-396.

      The typo has been corrected.

      • Is the title for Figure 5 correct?: "Figure 5: Rescue using Y340 and W348 in the ED domain, the intact KER DNA binding domain and the C-terminal WHD of Pcf1 in SpCAF-1 mediated nucleosome assembly." I don't see that any point mutation rescue experiments are done here.

      The title of figure 5 has been modified for “Efficient nucleosome assembly by SpCAF-1 in vitro requires interactions with H3-H4, DNA and PCNA, and the C-terminal WHD domain”.

      • Figure S6C. I assume the top strain lacks the Pcf2-GFP but this should be stated explicitly.

      The following sentence “The top strain corresponds to a strain expressing wild-type and untagged Pcf2 as a negative control of GFP fluorescence” is now added to the figure legend. The figure S6C has been modified accordingly to mention “Pcf2 (untagged)” and state more explicitly.

      • Regarding point #3 in the public review, a simple initial test of this idea would be to determine if similar amounts of wt and mutant complexes can be immunoprecipitated at the endpoint of the assembly reactions.

      In the absence of available antibodies against the fission yeast CAF-1 complex, we cannot test this hypothesis for technical reasons. However, the in vitro assays of nucleosome assembly are overall consistent with the in vivo assays. Indeed, all mutated forms tested that abolished or weakened nucleosome assembly also exhibited synthetic lethality/growth defect in the absence of a functional HIRA pathway, including the delta WHD mutated form. This genetic synergy, reflecting defective histone deposition by CAF-1, is not specific to the fission yeast S. pombe, as it was previously reported in S. cerevisiae (Kaufman et al. MCB 1998; Krawitz et al. MCB 2002), further supporting the evolution conservation in the genetic assay as a read out for defective histone deposition by CAF-1.

      • Foundational findings that should be cited: The role of PCNA in CAF-1 activity was first recognized by pioneering studies in the Stillman laboratory (PMID: 10052459, 11089978). The earliest recombinant studies of CAF-1 showed that the large subunit is the binding platform for the other two, showed that the KER and ED domains were required for histone deposition activity, and roughly mapped the p60-binding site on the large subunit (PMID: 7600578). Another early study roughly mapped the binding site for the third subunit and showed that biological effects of impairing the PCNA binding synergized with defects in the HIR pathway (PMID: 11756556), a genetic synergy first demonstrated in budding yeast (PMID: 9671489).

      We thank the reviewer for providing these important references that are now cited in the manuscript. PMID: 10052459 and 11089978 are cited page 2 line 18 and 19, PMID: 7600578 page 19 line 5 and PMID: 11756556 and 9671489 page 18 line 2.

      Reviewer #2 (Public Review):

      Summary:

      The authors describe the structure-functional relationship of domains in S. pombe CAF-1, which promotes DNA replication-coupled deposition of histone H3-H4 dimer. The authors nicely showed that the ED domain with an intrinsically disordered structure binds to histone H3-H4, that the KER domain binds to DNA, and that, in addition to a PIP box, the KER domain also contributes to the PCNA binding. The ED and KER domains as well as the WHD domain are essential for nucleosome assembly in vitro. The ED, KER domains, and the PIP box are important for the maintenance of heterochromatin.

      Strengths:

      The combination of structural analysis using NMR and Alphafold2 modeling with biophysical and biochemical analysis provided strong evidence on the role of the different domain structures of the large subunit of SpCAF-1, spPCF-1 in the binding to histone H3-H4, DNA as well as PCNA. The conclusion was further supported by genetic analysis of the various pcf1 mutants. The large amounts of data provided in the paper support the authors' conclusion very well.

      Reviewer #2 (Recommendations For The Authors):

      The paper by Ochesenbein describes the structural and functional analysis of S. pombe CAF-1 complex critical for DNA replication-coupled histone H3/H4 deposition. By using structural, biophysical, and biochemical analyses combined with genetic methods, the authors nicely showed that a large subunit of SpCAF1, SpPCF-1, consists of 5 structured domains with four connecting IDR domains. The ED domain with IDR nature binds to histone H3-H4 dimer with the conformational change of the other domain(s). SpCAF-1 binds to dsDNA by using the KER domain, but not the WHD domain. The experiments have been done with great care and a large amount of the data are highly reliable. Moreover, the results are clearly presented and convincingly written. The conclusion in the paper is very solid and will be useful for researchers who work in the field of chromosome biology.

      Major points:

      1. DNA binding of the KER mutant shown in Figures S3h and S3i, which was measured by the EMSA, looks similar to that of wild-type control in Figure S3f, which is different from the data in Figures 3b and 3e measured by the MST. The authors need a more precise description of the EMSA result of the KER mutant shown in Figures 3 and S3. The quantification of the EMSA result would resolve the point (should be provided).

      A proposed by this reviewer, we performed quantification of all EMSA presented in Figure 3 and Figure S3. We quantified the signal of the free DNA band to calculate a percentage of bound DNA in each condition. All EMSA experiments were conducted in duplicate, allowing us to calculate an average value and standard deviation for each interaction. Representative curves and fitted values are reported below in the figure provided for the reviewer (panel a data for Pcf1_KER domain with two fitting models, panel b for the entire CAF-1 complexes and mutants, panel c for the isolated Pcf1_KER domains), all fitted values in panel d. Importantly, as illustrated in panel a, the complete model for a single interaction (complete KD model, dashed line curve) does not adequately fit the data. In contrast, a function incorporating cooperativity (Hill model) better accounts for the measured data (solid line curve). Consistently, we also used the Hill model to fit the binding curves measured with the MST technique. As also specified now in the text, the Hill model allows to determine an EC50 value (concentration of protein resulting in the disappearance of half of the free DNA band intensity) and a Hill coefficient value (representing cooperativity during the interaction) for each curve.

      We measure a value of 3.4 ± 0.4 μM for the EC50 of SpCAF-1 WT, which is higher than the value measured by MST (0.7 ± 0.1 μM). Higher values were also calculated for all mutants and isolated Pcf1_KER domains compared to MST. These discrepancies could raise from the fact that the DNA concentration used in the two techniques were very different (20nM for MST experiments and 1μM for EMSA). Unlike the complete KD model, which includes in the calculation the DNA concentration (considered here as the "receptor"), the Hill model is fitted independently of this value. This model assumes that the “receptor” concentration is low compared to the KD. Here we calculate EC50 values on the same order of magnitude as the DNA concentration (low micromolar), The quantification obtained by EMSA is thus challenging to interpret. In contrast, values fitted by the MST measurements are more reliable since this limitation of low “receptor” concentration is correct.

      Therefore, although measurements of EC50 and Hill coefficient from EMSA are reproducible, they may be confusing for quantifying apparent affinity values through EC50. Nevertheless, this quantitative analysis of EMSA, requested by the reviewer, has highlighted an interesting characteristic of the KER mutant that is consistent across both methods: even though the EMSA pointed by the reviewer (Figures S3h and S3i compared to the wild-type control in Figure 3d and Figure S3f) show similar EC50 values, the binding cooperativity is different. Binding curves for the KER mutants is no longer cooperative (Hill coefficient ~1), and this is observed for all KER curves (isolated Pcf1_KER domain and the entire SpCAF-1 complex) with both methods, EMSA and MST. We thus decided to emphasize this characteristic of the KER mutant in the text (page 9 line 30-32). “Importantly, this mutant also shows a lower binding cooperativity for DNA binding, as estimated by the Hill coefficient value close to 1, compared to values around 3 for the WT and other mutants.”

      Since EMSA quantifications did not show a loss of “affinity” (as measured by the EC50 value) for the KER* mutants, compared to the WT contrary to MST measurements and because the DNA concentration was close to the measured EC50, we consider that EC50 values calculated by EMSA do not represent a KD value. If we add this quantification, we should discuss this point in detail. Thus, for sake of clarity, we prefer to put in the manuscript EMSA measurements as illustrations and qualitative validations of the interaction but not to include the quantification.

      Author response image 1.

      Quantitative analysis of interaction with DNA by EMSA. a: quantification of the amount of bound DNA for the Pcf1_KER domain (blue points with error bars). The fit with a KD model is shown as a dashed line, and the fit with a Hill model with a solid line. b: Examples of quantifications and fits (Hill model) for reconstituted SpCAF-1 WT and mutants. c: Examples of quantifications and fits (Hill model) for Pcf1_KER domains WT and mutant. d: EC50 values and Hill coefficients obtained for all EMSA experiments presented in Figure 3 and S3.

      1. As with the cooperative DNA binding of CAF-1, it is very important to show the stoichiometry of CAF-1 to the DNA or the site size. Given a long alpha-helix of the KER domain with biased charges, it is also interesting to show a model of how the dsDNA binds to the long helix with a cooperative binding property (this is not essential but would be helpful if the authors discuss it).

      We agree that having a molecular model for the binding of the KER helix to DNA would be especially interesting, but at this point, considering the accuracy of the tools currently at our disposal for predicting DNA-protein interactions, such a model would remain highly speculative.

      1. Figure 5 shows nucleosome assembly by SpCAF-1. SpCAF-1-PIP* mutant produced a product with faster mobility than the control at 2 h incubation. How much amounts of SpCAF-1 was added in the reaction seems to be critical. At least a few different concentrations of proteins should be tested.

      The slightly faster migration of the SpCAF-1-PIPis not systematically reproduced and we observed in several experiments that the band corresponding to supercoiled DNA migrated slightly above or below the one for the complementation by the SpCAF-1-WT (see Author response image 2 below). Thus this indicates that after 2 hours incubation the supercoiling assay with the SpCAF-1-PIP mutant compared to those achieved with the SpCAF-1-WT. To further document whether the WT or the PIP mutant are similar or not, we monitored difference of their nucleosome assembly efficiency by testing their ability to produce supercoiled DNA over shorter time, after 45 minute incubation. Under these conditions, we reproducibly detected supercoiled forms at earlier times with SpCAF-1-WT when compared to the SpCAF-1-PIP* (see figure 5 and Author response image 2). These observations indicate that mutation in the PIP motif of Pcf1 affects the rate of supercoiling in a distinct manner when compared to the other mutations that dramatically impair SpCAF-1 capacity to promote supercoiling.

      Author response image 2.

      Minor points:

      1. Page 8, line 26 or Table 1 legend: Please explain what "EC50" is.

      The definition of EC50, together with a reference paper for the Hill model have been added in the text page 8 lines 23-26, “The curves were fitted with a Hill model (Tso et al. 2018) with a EC50 value of 0.7± 0.1µM (effective concentration at which a 50% signal is observed) and a cooperativity (Hill coefficient, h) of 2.7 ± 0.2, in line with a cooperative DNA binging of SpCAF-1.”, in the Table 1 figure legend and in the method section (page 26).

      1. Page 13, lines 9, 11: "Xenopus" should be italicized.

      This is corrected

      1. Page 14, second half: In S. pombe, the pcf1 deletion mutant is not lethal. It is helpful to mention the phenotype of the deletion mutant a bit more when the authors described the genetic analysis of various pcf1 mutants.

      This point has been added on page 15, line 1.

      1. Figure 1d and Figure S2a: Captions and labels on the X and Y axes are overlapped or misplaced.

      This is corrected

      1. Figure 5: Please add a schematic figure of the assay to explain how one can check the nucleosome assembly by looking at the form I, supercoiled DNAs.

      A new panel has been added to Figure 5. This scheme depicts the supercoiling assay where supercoiled DNA (form I) is used as an indication of efficient nucleosome assembly. The figure legend has also been modified accordingly.

      Reviewer #3 (Public Review):

      Summary:

      The study conducted by Ouasti et al. is an elegant investigation of fission yeast CAF-1, employing a diverse array of technologies to dissect its functions and their interdependence. These functions play a critical role in specifying interactions vital for DNA replication, heterochromatin maintenance, and DNA damage repair, and their dynamics involve multiple interactions. The authors have extensively utilized various in vitro and in vivo tools to validate their model and emphasize the dynamic nature of this complex.

      Strengths:

      Their work is supported by robust experimental data from multiple techniques, including NMR and SAXS, which validate their molecular model. They conducted in vitro interactions using EMSA and isothermal microcalorimetry, in vitro histone deposition using Xenopus high-speed egg extract, and systematically generated and tested various genetic mutants for functionality in in vivo assays. They successfully delineated domain-specific functions using in vitro assays and could validate their roles to large extent using genetic mutants. One significant revelation from this study is the unfolded nature of the acidic domain, observed to fold when binding to histones. Additionally, the authors also elucidated the role of the long KER helix in mediating DNA binding and enhancing the association of CAF-1 with PCNA. The paper effectively addresses its primary objective and is strong.

      Weaknesses:

      A few relatively minor unresolved aspects persist, which, if clarified or experimentally addressed by the authors, could further bolster the study.

      1. The precise function of the WHD domain remains elusive. Its deletion does not result in DNA damage accumulation or defects in heterochromatin maintenance. This raises questions about the biological significance of this domain and whether it is dispensable. While in vitro assays revealed defects in chromatin assembly using this mutant (Figure 5), confirming these phenotypes through in vivo assays would provide additional assurance that the lack of function is not simply due to the in vitro system lacking PTMs or other regulatory factors.

      Our work demonstrates that the WHD domain is important CAF-1 function during DNA replication. Indeed, the deletion of this domain lead to a synthetic lethality when combined with mutation of the HIRA complex, as observed for a null pcf1 mutant, indicating a severe loss of function in the absence of the WHD domain. We propose that these genetic interactions, previously reported in S. cerevisiae (Kaufman et al. MCB 1998; Krawitz et al. MCB 2002) are indicative of a defective histone deposition by CAF-1. Moreover, our work establishes that this domain is dispensable to prevent DNA damage accumulation and to maintain silencing at centromeric heterochromatin, indicating that the WHD domain specifies CAF-1 functions. Moreover, our work further demonstrates that, in contrast to the S. cerevisiae and human WHD domain, the S. pombe counterpart exhibits no DNA binding activity. We thus agree that the WHD domain may contribute to nucleosome assembly in vivo via PTMs or interactions with regulatory factors that may potentially lack in in vitro systems. However, addressing these aspects deserves further investigations beyond the scope of this article.

      1. The observation of increased Pcf2-gfp foci in pcf1-ED cells, particularly in mono-nucleated (G2phase) and bi-nucleated cells with septum marks (S-phase), might suggest the presence of replication stress. This could imply incomplete replication in specific regions, leading to the persistence of Caf1-ED-PCNA factories throughout the cell cycle. To further confirm this, detecting accumulated single-stranded DNA (ssDNA) regions outside of S-phase using RPA as an ssDNA marker could be informative.

      We cannot formally exclude that cells expressing the Pcf1-ED mutated form exhibit incomplete replication in specific regions, an aspect that would require careful investigations. However, the microscopy analysis (Fig. 6c and S6c) of this mutant showed no alteration in the cell morphology, including the absence of elongated cells compared to wild type, a hallmark of checkpoint activation caused by ssDNA (Enoch et al. Gene & Dev 1992). Therefore, investigating the consequences of the interplay between the binding of CAF-1 to PCNA and histones on the dynamic of DNA replication, is of particular interest but out of the scope of the current manuscript.

      1. Moreover, considering the authors' strong assertion of histone binding defects in ED through in vitro assays (Figure 2d and S2a), these claims could be further substantiated, especially considering that some degree of histone deposition might still persist in vivo in the ED mutant (Figure 7d, viable though growth defective double ED*+hip1D mutants). For example, the approach, akin to the one employed in Fig. 6a (FLAG-IPs of various Pcf1-FLAG-tagged mutants), could also enable a comparison of the association of different mutants with histones and PCNA, providing a more thorough validation of their findings.

      We have provided in the current manuscript data establishing how Pcf1 mutated forms interacted with PCNA (Fig. 6a, 6b). Regarding the interactions with histone H3-H4, the approach based on immunoprecipitation using various Pcf1-FLAG tagged mutants has been unsuccessful in our hands. Indeed, we were unable to obtain robust and reproducible interactions between Pcf1 or its various mutated form with H3-H4. This is likely because Co-IP approaches do not probe for direct interactions. Indirect interactions between Pcf1 and H3-H4 are potentially bridged by additional factors, including the two other subunits of CAF-1, Pcf2 and Pcf3, or Asf1. Therefore, we are not in a position to address in vivo the direct interactions between Pcf1 and histone H3-H4.

      1. It would be valuable for the authors to speculate on the necessity of having disordered regions in CAF1. Specifically, exploring the overall distribution of these domains within disordered/unfolded structures could provide insightful perspectives. Additionally, it's intriguing to note that the significant disparities observed among mutants (ED, PIP, and KER*) in in vitro assays seem to become more generic in vivo, except for the indispensability of the WHD-domain. Could these disordered regions potentially play a crucial role in the phase separation of replication factories? Considering these questions could offer valuable insights into the underlying mechanisms at play.

      We agree that the potential mechanistic role of partial disorder in CAF-1 is particularly interesting. Disordered regions of human CAF-1 have been reported to form nuclear bodies with liquid-liquid phase separation properties to maintain HIV latency (Ma et al EMBO J. 2021). As suggested, this raises the question of how disordered domains of Pcf1 could promote phase separation for replication factories, if such phenomenon happens in vivo. Moreover, numerous factors of the replisome also harbor disordered regions (Bedina, A. et al, 2013. Intrinsically Disordered Proteins in Replication Process. InTech. doi: 10.5772/51673), adding complexity in disentangling experimentally such questions. We have added these elements at the end of the discussion in the revised manuscript (page 20, lines 23-29). “Such plasticity and cross-talks provided by structurally disordered domains might be key for the multivalent CAF-1 functions. Human CAF-1 has been reported to form nuclear bodies with liquid-liquid phase separation properties to maintain HIV latency (Ma et al. 2021). This raises the question of a potential role of the disordered domains of Pcf1, together with other replisome factor harbouring such disordered regions (Bedina 2013), in promoting phase separation of replication factories, if such phenomenon happens in vivo. Further studies will be needed to tackle these questions.”

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1:

      Summary:

      Ngoune et al. present compelling evidence that Slender cells are challenged to infect tsetse flies. They explore the experimental context of a recent important paper in the field, Schuster et al., that presents evidence suggesting the proliferative Slender bloodstream T. brucei can infect juvenile tsetse flies. Schuster et al. were disruptive to the widely accepted paradigm that the Stumpy bloodstream-form is solely responsible for tsetse infection and T. brucei transmission potential. Evidence presented here shows that in all cases, Stumpy form parasites are exponentially more capable of infecting tsetse flies. They further show that Slender cells do not infect mature flies.

      However, they raise questions of immature tsetse immunological potential and field transmission potential that their experiments do not address. Specifically, they do not show that teneral tsetse flies are immunocompromised, that tsetse flies must be immunocompromised for Slender infection nor that younger teneral tsetse infection is not pertinent to field transmission.

      Strengths:

      Experimental Design is precise and elegant, outcomes are convincing. Discussion is compelling and important to the field. This is a timely piece that adds important data to a critical discussion of host: parasite interactions, of relevance to all parasite transmission.

      Thank you

      Weaknesses:

      As above, the authors dispute the biological relevance of teneral tsetse infection in the wild, without offering evidence to the contrary. Statements need to be softened for claims regarding immunological competence or relevance to field transmission.

      We have modified the revised version to soften these claims (l.156 and l.159). Please, note that the limited immunocompetence of teneral flies has been extensively studied by the labs of S. Aksoy at Yale and M. Lehane at Liverpool. In the discussion, we provide key references from these two labs 18-21. Our comment on the relevance to field transmission is simply based on field observations of the fly biology.

      Reviewer #2:

      Summary:

      Contrary to findings recently reported by Schuster S et al., this short paper shows evidence that the stumpy form of T. brucei is probably the most pre-adapted form to progress with the life cycle of this parasite in the tsetse vector.

      Strengths:

      One of the most important pieces of experimental evidence is that they conduct all fly infection experiments in the absence of metabolites like GlcNAc or S-glutathione; by doing so, the infection rates in flies infected with slender trypanosomes seem very low or non-existent. This, on its own, is a piece of important experimental evidence that the Schuster S et al findings may need to be revisited.

      Thank you

      Weaknesses:

      I consider that the authors should have included their own experiments demonstrating that the addition of these chemicals enhances the infection rates in flies receiving bloodmeals containing slender trypanosomes.

      The main purpose of this study is to assess the intrinsic infectivity of SL Vs. ST in teneral Vs. adult flies, not to reproduce the results obtained by Schuster et al.. We think that the suggested experiment is not necessary as L-Glutathion is well-known to enhance infection rates by reducing the fly immune response efficiency (Ref 24). Most of the experimental infections with procyclic or ST forms (even at low densities) published by our lab and others, especially for studying parasite stages in the salivary glands, were actually performed by complementing the infective meal with L-Glutathion for this reason.

      Reviewer #3:

      The dogma in the Trypanosome field is that transmission by Tsetse flies is ensured by stumpy forms. This has been recently challenged by the Engstler lab (Schuster et al.), which showed that slender forms can also be transmitted by teneral flies. In this work, the authors aimed to test whether transmission by slender forms is possible and frequent.

      For this, the authors repeated Tsetse transmission experiments but with some key critical differences relative to Schuster et al. First, they infected teneral and adult flies. Second, their infective meals lacked two components (N-acetylglucosamine and glutathione), which could have boosted the infection rates in the Schuster et al. work. In these conditions, the authors observed that most stumpy form infections with teneral and adult flies were successful while only 1 out of 24 slender-form infections was successful. Adult flies showed a lower infection rate, which is probably because their immune system is more developed.

      Given that in Tsetse-infested areas most transmission is likely ensured by adult flies, the authors conclude that the parasite stage that will have a significant epidemiologic impact on transmission is the stumpy form.

      Strengths:

      • This work tackles an important question in the field.

      • The Rotureau laboratory has well-known expertise in Tsetse fly transmission experiments.

      • Experimental setup is robust and data is solid.

      • The paper is concise and clearly written.

      Thank you

      Weaknesses:

      • The reason(s) for why this work has lower infection rates with slender forms than Schuster et al. remain unknown. The authors suggested it could be because of the absence of N-acetylglucosamine and/or glutathione, but this was not formally tested. Could another source of variation be the clone of EATRO1125 AnTat1.1 (Paris versus Munich origin)? To reduce the workload, such additional experiments could be done with just one dose of parasites.

      Differences between the strain clones, the cell culture conditions and/or the fly colony maintenance conditions could indeed explain the differences in infection rates observed in the two studies. However, the main purpose of this study is to assess the intrinsic infectivity of SL Vs. ST in teneral Vs. adult flies. Our study was designed to stand alone for providing a clear answer to this question, not to reproduce the results obtained by Schuster et al.. Hence, we don’t think that any additional experiments are required here.

      • The characterization of what is slender and stumpy is critical. The authors used PAD1 protein expression as the sole reporter. While this is a robust assay to confirm stumpy, an analysis of the cell cycle would have been helpful to confirm that slender forms have not initiated differentiation (Larcombe S et al. 2023, preprint).

      In this study, ST are indeed defined by their general morphology and by the expression of PAD1 proteins at the cell membrane as assessed by IFA. This is the simplest and most accurate ST proxy accessible by IFA. We do not think that monitoring in more details the cell cycle would provide key information here. If some SL forms had initiated differentiation in our experiments, then, the low infection rates observed with SL would have reinforced the fact that mostly mature PAD1+ ST are infectious for flies .

      • Statistical analysis is missing. Is the difference between adult and teneral infections statistically significant?

      An ANOVA statistical analysis was performed and a dedicated section was added to the revised version.

      For all conditions, MG infection rate comparisons between adult and teneral flies were statistically significant.

      Recommenda8ons for the authors:

      Reviewer #1:

      While some perceived outcomes pertaining to immunological competence and transmission relevance of teneral flies are overstated, the overall tone of the paper is inappropriately apologe7c. The authors obviously don't want to offend their colleagues but the current wri7ng style obscures meaning, making the paper a bit 'flowery' and difficult to read.

      Ngoune et al. have important outcomes that need to be stated more directly.

      Words such as 'unequivocally' are not appropriate to Schuster et al's outcomes. As your study shows, their findings are experimentally based, with inherent caveats, and are therefore sugges7ve, not demonstrated or proven.

      The word 'unequivocally' has been removed from the revision.

      Reviewer #3:

      The Engstler lab cul7vates AntTaT1.1 in methylcellulose (Munich clone, if I am not mistaken). The Rotureau lab uses the Paris AntTaT1.1 clone and uses no methylcellulose. Given that methylcellulose helps stumpy forma7on, it seems important to show that the results of this paper are reproducible with the Munich clone grown in the presence of methylcellulose.

      Differences between the strain clones and culture conditions could indeed explain the differences in infection rates observed in the two studies. However, the main purpose of this study is to assess the intrinsic infectivity of SL Vs. ST in teneral Vs. adult flies. Our study was designed to stand alone for providing a clear answer to this question, not to reproduce the results obtained by Schuster et al.. Hence, we don’t think that any additional experiments are required here.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Summary of the reviewers’ discussion:

      • The development of MSI-1 as a post-transcriptional regulator of gene expression in Escherichia coli represents a valuable addition to the synthetic biology toolkit. MSI-1 has advantages over transcriptional regulators because it has the potential to target single genes in operons. Allosteric control of MSI-1 by oleic acid increases its versatility.

      Authors’ response: We thank the reviewers and editor for this evaluation.

      • We recommend that authors add experiments to test the mechanism of regulation by MSI-1 or soften their claims about translational regulation. We also recommend that the authors expand their discussion of other natural and synthetic regulatory systems that target translation.

      Authors’ response: In this revision, we have added new experimental results from RT-qPCR, bulk fluorometry, and flow cytometry assays to further support our conclusions. We have also enlarged the Introduction and Discussion.

      • Adding an experiment to quantify the effect of oleic acid with the most strongly regulated reporter construct (i.e., flow cytometry with redesign-3) would substantially increase the impact of the work.

      Authors’ response: We have done this experimental quantification (see the new Fig. 5d).

      Reviewer #1 (Public Review):

      The authors develop reporter constructs in E. coli where gene expression, presumably translation, is repressed by MSI-1. This is a potentially useful tool for synthetic biologists, with the advantage over transcriptional regulation that one gene in an operon could be targeted. That being said, an important caveat of translational regulation that is not addressed in the manuscript is the potential for downstream effects on RNA stability and/or transcription termination. The authors' MSI-1-regulated reporter constructs could also be useful for mechanistic studies of MSI-1.

      Authors’ response: We thank the reviewer for such appreciation of our work. Regarding the potential effects on RNA stability or transcription termination, we would like to highlight our results with the sfGFP-mScarlet bicistron (Fig. 6c), showing the specific regulation of sfGFP by MSI-1* and not of mScarlet. Anyway, for this revision we have conducted an RT-qPCR experiment to quantify the mRNA level of sfGFP to further support our conclusions (see the new Fig. S2).

      The author's initial construct design led to only weak regulation by MSI-1, presumably because the MSI-1 binding sites were not suitably positioned to repress translation initiation. A more rationally designed construct led to considerably greater repression. One weakness of the paper is that the authors did not use their redesigned construct that is more strongly repressed to demonstrate allosteric regulation by oleic acid using a comparable assay (e.g., flow cytometry) to that used in other experiments. The potential for allosteric regulation is a major strength of the MSI-1 system, so this is a significant gap. Similarly, the authors use the weakly regulated constructs to assess the effect of MSI-1 binding site mutations and for their mathematical modeling; these experiments would be better suited to the more strongly regulated construct.

      Authors’ response: For this revision, we have performed the flow cytometric quantification of the allosteric regulation by oleic acid in the redesigned-3 system (see the new Fig. 5d). Regarding the kinetic study, we focused on the reporter system with just one recognition motif for simplicity. A reporter system with two recognition motifs, thereby recruiting two different proteins, increases the complexity to distill the effect of point mutations.

      Reviewer #1 (Recommendations For The Authors):

      1. Figure 5. Panels c-f look at colonies on plates, with numbers from these data being difficult to compare with either the bulk fluorescence or single-cell fluorescence values shown in other figures. Supplementary Figure 8 shows data for single cells; these data would be more appropriate in Figure 5, with the plate-based data moving to the supplement. Moreover, measuring the effect of oleic acid on the redesign-3 reporter using flow cytometry would assess the impact of oleic acid on the most strongly regulated reporter; this would be the most impactful analysis.

      Authors’ response: We have redone Fig. 5 to include flow cytometry data (also for the system implemented with the redesign-3 reporter).

      1. Paragraph starting line 438. The authors should briefly discuss the potential for translational repression leading to reduced RNA stability, and in the case of rapid repression that impacts transcription-coupled translation, its impact on Rho-dependent transcription termination. These factors could alter the expression of neighboring genes.

      Authors’ response: As we have shown with the RT-qPCR experiment, the mRNA level of the target gene does not change in response to protein binding. We agree that mRNA stability could potentially be changed by using other RNA-targeting proteins. But in our view, a reduction of RNA stability is not a regulation of translation. We have added the following sentence in the Discussion: “The additional use of RNA-binding proteins able to alter mRNA stability might lead to the implementation of more complex circuits at the posttranscriptional level.”

      1. Figure 1. It would be informative to include a control where cells have an empty plasmid rather than a plasmid expressing MSI-1, to address leakiness of MSI-1 expression.

      Authors’ response: We have constructed a void plasmid as suggested and performed new bulk fluorometry assays. The new Fig. S8 shows the tight control of MSI-1* expression with the PLlac promoter. No apparent leakage is observed.

      1. Line 132. Where were the two sequences positioned with respect to each other than the start codon? It would be helpful to show the sequence in Figure 1.

      Authors’ response: The precise sequence is shown in the inset of Fig. 1b. The motif is placed just after the start codon.

      1. Line 135. The authors envisioned repression mechanism isn't clear from the text, specifically the meaning of "block the progression" and "initial phase". As far as I know, there is no precedent for RNA-binding proteins repressing translation in bacteria by preventing translation elongation. Presumably, repression in the context described here would be due to MSI-1 binding over the ribosome-binding site, although the predicted hairpin may also occlude binding of initiating 30S ribosomes in the absence of MSI-1 binding.

      Authors’ response: It is difficult to know the exact mode of action. In page 7, we have rewritten a sentence to have: “In this way, MSI-1* can repress translation by blocking the binding of the ribosome, presumably by imposing a steric hindrance for the 30S ribosomal subunit.”

      1. Figure 1e is overly complicated and hence is difficult to interpret. The key result is that mScarlet expression is unchanged as a function of lactose concentration. It is sufficient to show the inset graph as a supplementary figure panel and to conclude that regulation of sfGFP is at a post-transcriptional level. Similarly, the inset in Figure 4b is unnecessary.

      Authors’ response: The inset of Fig. 1e shows that the growth rate of the cells is almost constant when lactose varies. A change in growth rate will affect protein expression. The use of a two-reporter system, one regulated translationally and the other not, is instrumental to extract from fluorescence data estimates of transcription and translation rates. Of course, showing that mScarlet expression is almost constant when lactose varies would be sufficient, but we believe that performing a fine treatment of the data helps to better understand the regulatory system from a mathematical and mechanistic point of view. Therefore, despite increasing the complexity of the figure, we prefer to keep the representation of the Crick spaces (following Alon’s terminology, see our ref. 32). We have tried to carefully explain Fig. 1e in the text.

      1. Figure 1f and Figure 4c would be easier to interpret as two-dimensional plots.

      Authors’ response: We decided to use 3D plots to have more compact representations of the data in the main figures. The accompanying insets show the percentage of cells above the threshold, which helps to understand the regulatory effects. In any case, we have provided the corresponding 2D plots in Fig. S10.

      1. I don't think Figure 2e is relevant. The key result is shown in Figure 2f, i.e., the effect of mutations on regulation by MSI-1.

      Authors’ response: We agree with the reviewer that the key result is shown in panel f. However, we prefer to keep panel e in Fig. 2 because, even if negative, this result may incite further research. In addition, we avoid the rearrangement of the whole figure.

      1. Lines 311-313. Without additional evidence that the mutants are toxic, I suggest removing this text.

      Authors’ response: As suggested, we have removed that claim.

      Reviewer #2 (Public Review):

      Summary:

      Dolcemascolo and colleagues describe the use of the mammalian RNA-binding protein Musashi-1 (MSI-1) to implement translational regulation systems in E. coli. They perform detailed in vitro studies of MSI-1 and its binding to different RNA sequences. They provide compelling evidence of the effectiveness of the regulatory system in multiple circuits using different mRNA sequence motifs. They harness allosteric inhibition of MSI-1 by omega-9 monounsaturated fatty acids to demonstrate a fatty-acid-responsive circuit in E. coli.

      Strengths:

      The experimental results are compelling and the characterization of the binding between MSI-1 and different RNA sequences is thorough and performed via multiple complementary techniques. Several new useful circuit components are demonstrated.

      Authors’ response: We thank the reviewer for such appreciation of our work.

      Weaknesses:

      MSI-1 provides 8.6-fold downregulation of sfGFP with an optimized mRNA sequence. In some applications, a larger degree of repression may be required.

      Authors’ response: We agree with the reviewer in this point. We expect to conduct further research in the future to optimize the dynamic range of the system. We have added the following sentence in the Discussion: “Further work should be conducted to enhance the fold change of the regulatory module and engineer complex circuits with it.”

      Reviewer #2 (Recommendations For The Authors):

      Overall, I think this paper is very well done and quite thorough. I only have minor suggestions:

      • For Figures 1f and 4c, it is quite hard to interpret the fraction of cells above the threshold with the 3d perspective. It would be clearer to use a more standard 2d plot where the histograms are offset along the y-axis and the threshold is indicated by a vertical line.

      Authors’ response: We decided to use 3D plots to have more compact representations of the data in the main figures. The accompanying insets show the percentage of cells above the threshold, which helps to understand the regulatory effects. In any case, we have provided the corresponding 2D plots in Fig. S10.

      • For Figure 4b, the highlighting of different sequence regions in red3 appears to be offset by one base (e.g. AAU is highlighted rather than AUG).

      Authors’ response: This has been corrected.

      • For line 504, it seems that MSI-1 is used for two different proteins. A different name should be assigned to this 200-residue protein to avoid confusion with the other MSI-1.

      Authors’ response: We now use the term MSI-1h* for the human version of the protein.

      • The note (Page S12) that A_0 + A_R = alpha/delta only applies in steady-state conditions, which should be stated.

      Authors’ response: We have specified that.

      • It seems that some authors work for the companies that sell some of the instruments/consumables used for the assays, specifically switchSENSE and LigandTracer. This may be something that should be declared under Competing Interests for the paper.

      Authors’ response: We are sorry for having missed this point. We have included a Competing Interests section to state that “RAHR and WFV work for Dynamic Biosensors. GPR and JB work for Ridgeview Instruments”.

      Reviewer #3 (Public Review):

      Summary:

      In this work, the authors co-opt the RRM-binding protein Musashi-1 to act as a translational repressor. The novelty of the work is in the adoption of the allosteric RRM protein Musashi-1 into a translational reporter and the demonstration that RRM proteins, which are ubiquitous in eukaryotic systems, but rare in prokaryotic ones, may act effectively as post-translational regulators in E. coli. The extent of repression achieved by the best design presented in this work is not substantially improved compared to other synthetic regulatory schemes developed for E. coli, even those that similarly regulate translation (eg. native PP7 repression is approximately 10-fold, Lim et al. J. Biol. Chem. 2001 276:22507-22513). Furthermore, the mechanism of regulation is not established due to missing key experiments. The work would be of broader interest if the allosteric properties of Musashi-1 were more effective in the context of regulation. Unfortunately, the authors do not demonstrate that fatty acids can completely de-repress expression in the experimental system used for most of their assays, nor do they use this ability in their provided application (NIMPLY gate).

      Authors’ response: For this revision, we have performed the flow cytometric quantification of the allosteric regulation by oleic acid in the redesigned-3 system, showing substantial de-repression of the system with the biochemical compound. We have redone Fig. 5 and modified the Results section accordingly. Aligned with the reviewers and editor, we believe that this new result helps to improve our manuscript.

      Strengths:

      The first major achievement of this work is the demonstration that a eukaryotic RRM protein may be used to posttranscriptionally regulate expression in bacteria. In my limited literature search, this appears to be the first engineering attempt to design an RBP to directly regulate translation in E. coli, although engineered control of translation via other approaches including alterations to RNA structure or via trans-acting sRNAs have been previously described (for review see Vigar and Wieden Biochim Biophys. Acta Gen. Subj. 2017, 1861:3060-3069). Additionally, several viral systems (e.g. MS2 and PP7) have been directly co-opted to work in a similar fashion in the past (utilized recently in Nguyen et al. ACS Synthetic Biol 2022, 11:1710-1718).

      Authors’ response: We thank the reviewer for such appreciation of our work.

      The second achievement of this work is the demonstration that the allosteric regulation of Musashi-1 binding can be utilized to modulate the regulatory activity. However, the liquid culture demonstration (Suppl. Fig 8) shows that this is not a very effective switch, with de-repressed reporter activity showing substantial change but not approaching un-repressed activity. This effect is stronger when colonies are grown on a solid medium (Fig. 5).

      Authors’ response: As we have previously indicated, the flow cytometric quantification of the allosteric regulation by oleic acid in the redesigned-3 system in liquid culture showed substantial de-repression with the biochemical compound. It is now stated in the text the following: “Nevertheless, the system implemented with the redesign-3 reporter displayed a better dynamic behavior in response to lactose and oleic acid. In particular, the percentage of cells in the ON state increased from 0 (with 1 mM lactose) to 71% upon addition of 20 mM oleic acid (Fig. 5d).” This new result helps to improve our manuscript.

      Weaknesses:

      In this work, the authors codon optimize the mouse Musashi-1 coding sequence for expression in E. coli and demonstrate using an sfGFP reporter that an engineered Musashi-1 binding site near the translational start site is sufficient to enable a modest reduction in reporter gene expression. The authors postulate that the reduction in expression due to inhibition of ribosome translocation along the transcript (lines 134/135), as an expression of a control transcript (mScarlet) driven by the same promoter (Plac) but without the Musashi-1 recognition site does not demonstrate the same repression. However, the situation could be more complex. Other possibilities include inhibition of translation initiation rather than elongation, as well as accelerated mRNA decay of transcripts that are not actively translated. The authors do not present any measurements of sfGFP mRNA levels.

      Authors’ response: In page 7, we have rewritten a sentence to have: “In this way, MSI-1* can repress translation by blocking the binding of the ribosome, presumably by imposing a steric hindrance for the 30S ribosomal subunit.” In addition, for this revision we have conducted an RT-qPCR experiment to quantify the mRNA level of sfGFP to further support our conclusions (see the new Fig. S2). As shown, there is no change in the mRNA level upon inducing the system with lactose.

      In subsequent sections of the work, the authors create a series of point mutations to assess RNA-protein binding and assess these via both a sfGFP reporter and in vitro binding assays (switchSENSE). Ultimately, it is difficult to fully rationalize and interpret the behavior of these mutants in the context provided. The authors do identify a relationship between equilibrium constant (1/KD) and fold-repression. However, it is not clear from the narrative why this relationship should exist. Fold-repression is one measure of regulator efficacy, but it is an indirect measure determined from unrepressed and repressed expression. It is not clear why unrepressed expression (in the absence of the protein) is expected to be a function of the equilibrium constant.

      Authors’ response: A mathematical derivation from mass action kinetics on why the fold change scales with 1/KD is provided in Note S2. It is the ratio between the unrepressed and repressed expression (i.e., fold change) what scales with 1/KD, but not the expression of a particular state. This kind of relationship has been previously established in the case of transcription regulation [see e.g. Garcia & Phillips, PNAS (2011), our ref. 39]. Our mathematical modeling results expand previous work by providing a single picture from which to analyze transcription and translation regulation.

      Subsequent rational redesign of the Musashi-1 binding sequence to produce three alternative designs shows that fold-repression may be improved to approximately 8.6-fold. However, the rationalization of why the best design (red3) achieves this increase based on either the extensive modelling or in vitro measured binding constants is not well articulated. Furthermore, this extent of regulation is approximately that which can be achieved from the PP7 system with its native components (Lim et al. J. Biol. Chem. 2001 276:22507-22513).

      Authors’ response: In the case of translation control, the regulation is more challenging because the target is quickly degraded, especially in bacteria (in contrast to transcription control, where the target is stable). This is acknowledged in the manuscript. Even though, it is possible to engineer synthetic circuits with sRNAs or RNA-binding proteins with sufficient dynamic range. We expect to conduct further research in the future to optimize the dynamic range of the system. We have added the following sentence in the Discussion: “Further work should be conducted to enhance the fold change of the regulatory module and engineer complex circuits with it.” Regarding the articulation of the results for the mutants and mathematical model, see our responses in the following questions.

      The application provided for this regulator (NIMPLY gate), is not an inherently novel regulatory paradigm, and it does not capitalize on the allosteric properties of Musashi-1, but rather treats Musashi-1 as a non-allosteric component of a regulatory circuit.

      Authors’ response: The NIMPLY gate refers to lactose and aTC as inputs. Considering oleic acid as an additional input will lead to a more complex logic. In the last Results section, we wanted to show that the post-transcriptional mechanism engineered with Musashi-1 can be useful specifically regulate a gene within an operon, to implement combinatorial regulation (i.e., coupling transcription and translation control), and to reduce protein expression noise. To these ends, the allosteric ability of the Musashi-1 was not so determinant. In this regard, it would be true that such fine regulatory effects might be achieved as well with non-allosteric RNA-binding proteins, such as MS2CP or PP7CP.

      Reviewer #3 (Recommendations For The Authors):

      1. In the introduction the authors should adequately address the native bacterial mechanisms that allow posttranscriptional regulation in bacteria as well as better discuss previous examples of translational repressors.

      Authors’ response: We have added the following paragraph in the Introduction: “Even though bacteria do not appear to exploit proteins to regulate translation in a gene-specific manner, it is worth noting that some bacteriophages do follow this mechanism to modulate their infection cycle. These are the cases, e.g., of the coat proteins of the phages MS2 (infecting Escherichia coli) or PP7 (infecting Pseudomonas aeruginosa), which regulate the expression of the cognate phage replicases through protein-RNA interactions [18]. However, one limitation for synthetic biology developments is that such phage proteins are not allosteric. At the post-transcriptional level, bacteria mostly rely on a large palette of cis- and trans-acting non-coding RNAs to either activate or repress protein expression, resulting in the regulation of translation initiation, mRNA stability, or transcription termination, and even allowing sensing small molecules [1,15]. Thus, there should be efforts to replicate this functional versatility with proteins in bacteria.”

      1. Given the location of the Musashi-1 binding site in the sfGFP reporter, it may be blocking translation initiation, rather than blocking the progression of the ribosome once attached (line 134/135). The schematic in Fig 1a. is also not overly clear in describing the differences in mechanisms between eukaryotic and prokaryotic systems described in the text.

      Authors’ response: In page 7, we have rewritten a sentence to have: “In this way, MSI-1 can repress translation by blocking the binding of the ribosome, presumably by imposing a steric hindrance for the 30S ribosomal subunit.” In page 14, we have added the following sentence: “In this way, MSI-1 can also block the RNA component of the 30S ribosomal subunit.”

      1. The authors did not directly examine mRNA levels of their reporter to establish translational regulation. In many cases, inhibition of translation is accompanied by an increased degradation rate in bacterial systems. The authors do not seem to recognize this as a possible amplifier in their system, relying exclusively on normalization via another transcript produced from the same promoter (mScarlet).

      Authors’ response: For this revision we have conducted an RT-qPCR experiment to quantify the mRNA level of sfGFP to further support our conclusions (see the new Fig. S2). As shown, there is no change in the mRNA level upon inducing the system with lactose.

      1. The results presented for mutations 1-5 are not consistent with the author's models for what is occurring. In particular, mutant 1 displays a reduction in reporter production in the absence of Musashi-1, but the production in the presence does not change from the unaltered sequence. The claim that mutation 1 (in the UAG binding site) results in less binding and ultimately in less regulation is not substantiated since this loss of regulation is due to a reduction in unrepressed expression rather than an increase in expression when Musashi-1 is present.

      Authors’ response: We respectfully disagree with this appreciation. In the case of mutant 1, if the Musashi protein recognized the target mRNA with the same affinity as in the original scenario, the red bar would be much lower. Because the Musashi protein hardly recognizes the mutant-1 mRNA, the blue and red bars are quite similar. To clarify this point, we have added the following text in the manuscript: “Despite that mutation substantially reduced sfGFP expression in absence of MSI-1*, the presumed repressed state upon addition of lactose did not change much, suggesting the difficulty of the protein for targeting the mutated mRNA.”

      1. Given point 5 above, it is not clear to me why one would expect the 1/KD to be predictive fold-repression in the presence and absence of the repressor. I would rather see the relationship described as predictive in Fig. 2f (fold change vs. 1/KD) rather than the non-linear relationship. It is difficult to qualitatively evaluate the fit quality with the way the data are currently presented.

      Authors’ response: Note S2 provides a mathematical derivation from mass action kinetics on why the fold change scales with 1/KD. The R2 value that we provide for the fitting corresponds to the linear regression between fold and 1/KD, as specified in the figure legend. However, we think that the representation of fold vs. KD in log scale is more illustrative in this case.

      1. It is not clear what conclusion is determined from the computational modeling, or how this work contributes to the narrative presented. It does not seem like what is learned from these experiments is utilized for novel designs. Furthermore, several of the assumptions within the model may be problematic including the high rate of "elongation leakage" described and the lack of justification for RNA degradation rates utilized.

      Authors’ response: The mathematical modeling was performed to rationalize our experimental data. Our idea was more to recapitulate the observed dynamics than to guide the design of new systems. Our model might be exploited to this end in further research, as the reviewer suggests. Besides, elongation leakage is a concept that applies to both transcription and translation regulation systems, and it is not more than the ability of the RNA polymerase or ribosome to elongate even if there is a protein bound to the nucleic acid. This parameter can be set to 0 in the model if appropriate. Moreover, we cite the paper by Bernstein et al., PNAS (2002), our ref. 38, to justify that in E. coli the average mRNA half-life is about 5 min (i.e., degradation rate of 0.14 min-1).

      1. The data presented in Figure 4 are not presented in a consistent way. While it would be somewhat redundant, including the 0 and 1 mM lactose data for red3 in Figure 4a would be helpful for comparison purposes.

      Authors’ response: We have added the requested bar plot in Fig. 4a.

      1. The presence of additional Musashi-1 sites upstream of the start codon in red3, and their impact on impact on the fold-repression may support an inhibition of the translation initiation model rather than an inhibition of elongation.

      Authors’ response: In page 7, we have rewritten a sentence to have: “In this way, MSI-1 can repress translation by blocking the binding of the ribosome, presumably by imposing a steric hindrance for the 30S ribosomal subunit.” In page 14, we have added the following sentence: “In this way, MSI-1 can also block the RNA component of the 30S ribosomal subunit.”

    1. Author Response

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors aim to address a critical challenge in the field of bioinformatics: the accurate and efficient identification of protein binding sites from sequences. Their work seeks to overcome the limitations of current methods, which largely depend on multiple sequence alignments or experimental protein structures, by introducing GPSite, a multi-task network designed to predict binding residues of various molecules on proteins using ESMFold.

      Strengths:

      1. Benchmarking. The authors provide a comprehensive benchmark against multiple methods, showcasing the performances of a large number of methods in various scenarios.

      2. Accessibility and Ease of Use. GPSite is highlighted as a freely accessible tool with user-friendly features on its website, enhancing its potential for widespread adoption in the research community.

      We thank the reviewer for acknowledging the contributions and strengths of our work! Weaknesses:

      1. Lack of Novelty. The method primarily combines existing approaches and lacks significant technical innovation. This raises concerns about the original contribution of the work in terms of methodological development. Moreover, the paper reproduces results and analyses already presented in previous literature, without providing novel analysis or interpretation. This further diminishes the contribution of this paper to advancing knowledge in the field.

      The novelty of this work is primarily manifested in four key aspects. Firstly, although we agree with the reviewer that we did employ several existing tools such as ProtTrans and ESMFold to extract sequence features and predict protein conformations, these techniques were hardly explored in the field of binding site prediction. We have successfully demonstrated the feasibility of substituting multiple sequence alignments with language model embeddings and training with “less accurate” predictive structures, providing a new solution to overcome the limitations of current methods for genome-wide applications. Secondly, though a few methods tend to capture geometric information based on protein surfaces or atom graphs, surface calculation and property mapping are usually time-consuming, while massage passing on full atom graphs is memory-consuming and thus challenging to process long sequences. Besides, these methods are sensitive towards details and errors in the predictive structures. To facilitate large-scale annotations, we have innovatively applied geometric deep learning to protein residue graphs for comprehensively capturing backbone and sidechain geometric contexts in an efficient and effective manner (Figure 1). Thirdly, we have not only exploited multi-task learning to integrate diverse ligands and enhance performance, but also shown its capability to easily extend to the binding site prediction of other unseen ligands (Figure 4 D-E). Last but not least, as a Tools and Resources article, we have provided a fast, accurate and user-friendly webserver, as well as constructed a large annotation database for the sequences in Swiss-Prot. Leveraging this database, we have conducted extensive analyses on the associations between binding sites and molecular functions, biological processes, and disease-causing mutations (Figure 5), indicating the potential of our tool to unveil unexplored biology underlying genomic data.

      1. Benchmark Discrepancies. The variation in benchmark results, especially between initial comparisons and those with PeSTo. GPSite achieves a PR AUC of 0.484 on the global benchmark but a PR AUC of 0.61 on the benchmark against PeSTo. For consistency, PeSTo should be included in the benchmark against all other methods. It suggests potential issues with the benchmark set or the stability of the method. This inconsistency needs to be addressed to validate the reliability of the results.

      We thank the reviewer for the constructive comments. Since our performance comparison experiments involved numerous competitive methods whose training sets were disparate, it was difficult to compare or rank all these methods fairly using a single test set. As described in the “GPSite outperforms state-of-the-art methods” section, 358 out of 375 proteins in our protein-protein binding site test set share >30% sequence identity with the training sequences of PeSTo. To address this, we meticulously re-split our entire protein-protein binding site dataset to generate a new test set that avoids any overlap with the training sets of both GPSite and PeSTo and performed a separate evaluation. This is quite common in this field. For instance, in the study of PeSTo [Nat Commun 2023], the comparisons of PeSTo with MaSIF-site, SPPIDER, and PSIVER were conducted using one test set, while the comparison with ScanNet was performed on a separate test set. Based on the reviewer’s suggestion, in the revised version of the manuscript, we intend to include other comparative methods alongside PeSTo on the new test set or retrain our model directly on PeSTo's training set for comparison, which should enhance the completeness of our results.

      1. Interface Definition Ambiguity. There is a lack of clarity in defining the interface for the binding site predictions. Different methods are trained using varying criteria (surfaces in MaSIF-site, distance thresholds in ScanNet). The authors do not adequately address how GPSite's definition aligns with or differs from these standards and how this issue was addressed. It could indicate that the comparison of those methods is unreliable and unfair.

      We thank the reviewer for the comments. The precise definition of ligand-binding sites is elucidated in the “Benchmark datasets” section. Specifically, the datasets of DNA, RNA, peptide, ATP, HEM and metal ions used to train GPSite were collected from the widely acknowledged BioLiP database [PMID: 23087378]. In BioLiP, a binding residue is defined if the smallest atomic distance between the target residue and the ligand is <0.5 Å plus the sum of the Van der Waal’s radius of the two nearest atoms. In the meanwhile, most comparative methods regarding these ligands were also trained on data from BioLiP, thereby ensuring fair comparisons.

      However, since BioLiP does not include data on protein-protein binding sites, studies for protein-protein binding site prediction may adopt slightly distinct label definitions, as the reviewer suggested. Here, we employed protein-protein binding site data from our previous study [PMID: 34498061], where a protein-binding residue was defined as a surface residue (relative solvent accessibility > 5%) that lost more than 1 Å2 absolute solvent accessibility after protein-protein complex formation. This definition was initially introduced in PSIVER [PMID: 20529890] and widely applied in various studies (e.g., PMID: 31593229, PMID: 32840562). SPPIDER [PMID: 17152079] and MaSIF-site [PMID: 31819266] have also adopted similar surface-based definitions as PSIVER. On the other hand, ScanNet [PMID: 35637310] employed an atom distance threshold of 4 Å to define contacts while PeSTo [PMID: 37072397] used a threshold of 5 Å. However, it is noteworthy that current methods in this field including ScanNet [Nat Methods 2022] and PeSTo [Nat Commun 2023] directly compared methods using different label definitions without any alignment in their benchmark studies, likely due to the subtle distinctions among these definitions. For instance, the study of PeSTo directly performed comparisons with ScanNet, MaSIF-site, SPPIDER, and PSIVER. Therefore, we followed these previous works, directly comparing GPSite with other protein-protein binding site predictors. In our revised manuscript, we will provide more details for the binding site definitions to avoid any potential ambiguity.

      While GPSite demonstrates the potential to surpass state-of-the-art methods in protein binding site prediction, the evidence supporting these claims seems incomplete. The lack of methodological novelty and the unresolved questions in benchmark consistency and interface definition somewhat undermine the confidence in the results. Therefore, it's not entirely clear if the authors have fully achieved their aims as outlined.

      The work is useful for the field, especially in disease mechanism elucidation and novel drug design. The availability of genome-scale binding residue annotations GPSite offers is a significant advancement. However, the utility of this tool could be hampered by the aforementioned weaknesses unless they are adequately addressed.

      We thank the reviewer for acknowledging the advancement and value of our work, as well as pointing out areas where improvements can be made. As discussed above, we will carry out the corresponding revisions in the next version of the manuscript to enhance the completeness and clearness of our work.

      Reviewer #2 (Public Review):

      Summary:

      This work provides a new framework, "GPsite" to predict DNA, RNA, peptide, protein, ATP, HEM, and metal ions binding sites on proteins. This framework comes with a webserver and a database of annotations. The core of the model is a Geometric featurizer neural network that predicts the binding sites of a protein. One major contribution of the authors is the fact that they feed this neural network with predicted structure from ESMFold for training and prediction (instead of native structure in similar works) and a high-quality protein Language Model representation. The other major contribution is that it provides the public with a new light framework to predict protein-ligand interactions for a broad range of ligands.

      The authors have demonstrated the interest of their framework with mostly two techniques: ablation and benchmark.

      Strengths:

      The performance of this framework as well as the provided dataset and web server make it useful to conduct studies.

      The ablations of some core elements of the method, such as the protein Language Model part, or the input structure are very insightful and can help convince the reader that every part of the framework is necessary. This could also guide further developments in the field. As such, the presentation of this part of the work can hold a more critical place in this work.

      We thank the reviewer for recognizing the contributions of our work and for noting that our experiments are thorough.

      Weaknesses:

      Overall, we can acknowledge the important effort of the authors to compare their work to other similar frameworks. Yet, the lack of homogeneity of training methods and data from one work to the other makes the comparison slightly unconvincing, as the authors pointed out. Overall, the paper puts significant effort into convincing the reader that the method is beating the state of the art. Maybe, there are other aspects that could be more interesting to insist on (usability, interest in protein engineering, and theoretical works).

      We sincerely appreciate the reviewer for the constructive and insightful comments. As to the concern of training data heterogeneity raised by the reviewer, it is noteworthy that current studies in this field, such as ScanNet [Nat Methods 2022] and PeSTo [Nat Commun 2023], tend to directly compare methods trained on different datasets in their benchmark experiments. Therefore, we have adhered to the paradigm in these previous works. According to the detailed recommendations by the reviewer, we will improve our manuscript by incorporating additional ablation studies regarding the effects of predicted structures and language model representations. Besides, we will refine the Discussion section to focus more on the achievements of this work and its potential applications including protein engineering. A comprehensive point-by-point response to the reviewer’s recommendations will be provided alongside the revised manuscript. This will ensure that all concerns and suggestions are adequately addressed.

      Reviewer #3 (Public Review):

      Summary

      The authors of this work aim to address the challenge of accurately and efficiently identifying protein binding sites from sequences. They recognize that the limitations of current methods, including reliance on multiple sequence alignments or experimental protein structure, and the under-explored geometry of the structure, which limit the performance and genome-scale applications. The authors have developed a multi-task network called GPSite that predicts binding residues for a range of biologically relevant molecules, including DNA, RNA, peptides, proteins, ATP, HEM, and metal ions, using a combination of sequence embeddings from protein language models and ESMFold-predicted structures. Their approach attempts to extract residual and relational geometric contexts in an end-to-end manner, surpassing current sequence-based and structure-based methods.

      Strengths

      1. The GPSite model's ability to predict binding sites for a wide variety of molecules, including DNA, RNA, peptides, and various metal ions.

      2. Based on the presented results, GPSite outperforms state-of-the-art methods in several benchmark datasets.

      3. GPSite adopts predicted structures instead of native structures as input, enabling the model to be applied to a wider range of scenarios where native structures are rare.

      4. The authors emphasize the low computational cost of GPSite, which enables rapid genome-scale binding residue annotations, indicating the model's potential for large-scale applications.

      We thank the reviewer for recognizing the significance and value of our work!

      Weaknesses

      1. One major advantage of GPSite, as claimed by the authors, is its efficiency. Although the manuscript mentioned that the inference takes about 5 hours for all datasets, it remains unclear how much improvement GPSite can offer compared with existing methods. A more detailed benchmark comparison of running time against other methods is recommended (including the running time of different components, since some methods like GPSite use predicted structures while some use native structures).

      We thank the reviewer for the valuable suggestion. Empirically, it takes about 30 min for existing MSA-based methods to make predictions for a protein with 500 residues, while it only takes less than 1 min for GPSite (including structure prediction). However, it is worth noting that some predictors in our benchmark study are solely available as webservers, and it is challenging to compare the runtime between a standalone program and a webserver due to the disparity in hardware configurations. Therefore, we will include comprehensive runtime comparisons between the GPSite webserver and other existing servers in the revision to illustrate the practicality and efficiency of our method.

      1. Since the model uses predicted protein structure, the authors have conducted some studies on the effect of the predicted structure's quality. However, only the 0.7 threshold was used. A more comprehensive analysis with several different thresholds is recommended.

      We thank the reviewer for the comment. We assessed the effect of the predicted structure's quality by evaluating GPSite’s performance on high-quality (TM-score > 0.7) and low-quality (TM-score ≤ 0.7) predicted structures. We did not employ multiple thresholds (e.g., 0.3, 0.5, and 0.7), as the majority of proteins in the test sets were accurately predicted by ESMFold. Specifically, as shown in Figure 3B, Appendix 3-figure 2 and Appendix 2-table 5, the numbers of proteins with TM-score ≤ 0.7 are small in most datasets. Consequently, there is insufficient data available for analysis with lower thresholds, except for the RNA test set. Notably, Figure 3C presents a detailed inspection of the proteins with TM-score < 0.5 in the RNA test set. Within this subset, GPSite consistently outperforms the state-of-the-art structure-based method GraphBind with predicted structures as input, regardless of the prediction quality of ESMFold. Only in cases where structures are predicted with extremely low quality (TM-score < 0.3) does GPSite fall behind GraphBind input with native structures. This result further demonstrates the robustness of GPSite.

      1. To demonstrate the robustness of GPSite, the authors performed a case study on human GR containing two zinc fingers, where the predicted structure is not perfect. The analysis could benefit from more a detailed explanation of why the model can still infer the binding site correctly even though the input structural information is slightly off.

      We thank the reviewer for the comment. We have actually explained the potential reason for the robustness of GPSite in the second paragraph of the “GPSite is robust for low-quality predicted structures” section. In summary, although the whole structure of this protein is not perfectly predicted, the binding domains of peptide, DNA and Zn2+ are actually predicted accurately as evidenced by the superpositions of the native and predicted structures in Figure 3D and 3E. Therefore, GPSite can still make reliable predictions.

      1. To analyze the relatively low AUC value for protein-protein interactions, the authors claimed that it is "due to the fact that protein-protein interactions are ubiquitous in living organisms while the Swiss-Prot function annotations are incomplete", which is unjustified. It is highly recommended to support this claim by showing at least one example where GPSite's prediction is a valid binding site that is not present in the current Swiss-Prot database or via other approaches.

      We thank the reviewer for the valuable recommendation. We will perform such analysis in the revised manuscript.

      1. The authors reported that many GPSite-predicted binding sites are associated with known biological functions. Notably, for RNA-binding sites, there is a significantly higher proportion of translation-related binding sites. The analysis could benefit from a further investigation into this observation, such as the analyzing the percentage of such interactions in the training site. In addition, if there is sufficient data, it would also be interesting to see the cross-interaction-type performance of the proposed model, e.g., train the model on a dataset excluding specific binding sites and test its performance on that class of interactions.

      We thank the reviewer for the suggestion. We would like to clarify that the analysis in Figure 5C was conducted at “protein-level” instead of “residue-level”. As described in the second paragraph of the “Large-scale binding site annotation for Swiss-Prot” section, a protein-level ligand-binding score was assigned to a protein by averaging the top k residue-level predictive binding scores. This protein-level score indicates the overall binding propensity of the protein to a specific ligand. We gathered the top 20,000 proteins with the highest protein-level binding scores for each ligand and found that their biological process annotations from Swiss-Prot were consistent with existing knowledge.

      As for the cross-interaction-type performance raised by the reviewer, we will include such analysis in the revised manuscript.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Response to reviewers

      We would like to thank the reviewers for their feedback. Below we address their comments and have indicated the associated changes in our point-by-point response (blue: answers, red: changes in manuscript).

      Reviewer #1:

      Overall, the hypotheses and results are clearly presented and supported by high quality figures. The study is presented in a didactic way, making it easy for a broad audience to understand the significance of the results. The study does present some weaknesses that could easily be addressed by the authors.

      We thank the reviewer for appreciating our work and providing useful suggestions for improvement.

      1) First, there are some anatomical inaccuracies: line 129 and fig1C, the authors omit m.dial septum projections to area CA1 (in addition to the entorhinal cortex). Moreover, in addition to CA1, CA3 also provides monosynaptic feedback projections to the medial septum CA3. Finally, an indirect projection from CA1/3 excitatory neurons to the lateral septum, which in turn sends inhibitory projections to the medial septum could be included or mentioned by the authors. This could be of particular relevance to support claims related to effects of neurostimulations, whereby minutious implementation of anatomical data could be key.

      If not updating their model, the authors could add this point to their limitation section, where they already do a good job of mentioning some limitations of using the EC as a sole oscillatory input to CA1.

      We acknowledge that our current model strongly simplifies the interconnections between the medial septum and the hippocampal formation, but including more anatomical details is beyond the scope of this manuscript and would be a topic for future work. Nevertheless, we followed the reviewer’s advice to stress this point in our manuscript. First, we moved a paragraph that was initially in the “methods” section to the “results” section (L.141-150 of the revised manuscript):

      “Biologically, GABAergic neurons from the medial septum project to the EC, CA3, and CA1 fields of the hippocampus (Toth et al., 1993; Hajós et al., 2004; Manseau et al., 2008; Hangya et al., 2009; Unal et al., 2015; Müller and Remy, 2018). Although the respective roles of these different projections are not fully understood, previous computational studies have suggested that the direct projection from the medial septum to CA1 is not essential for the production of theta in CA1 microcircuits (Mysin et al., 2019). Since our modeling of the medial septum is only used to generate a dynamic theta rhythm, we opted for a simplified representation where the medial septum projects only to the EC, which in turn drives the different fields of the hippocampus. In our model, Kuramoto oscillators are therefore connected to the EC neurons and they receive projections from CA1 neurons (see methods for more details).”

      Second, we expanded the corresponding paragraph in the limitation section to discuss this point further (L.398-415 of the revised manuscript):

      “We decided to model septal pacemaker neurons projecting to the EC as the main source of hippocampal theta as reported in multiple experimental studies (Buzsáki, 2002; Buzsáki et al., 2003; Hangya et al., 2009). However, experimental findings and previous models have also proposed that direct septal inputs are not essential for theta generation (Wang, 2002; Colgin et al., 2013; Mysin et al., 2019), but play an important role in phase synchronization of hippocampal neurons. Furthermore, the model does not account for the connections between the lateral and medial septum and the hippocampus (Takeuchi et al., 2021). These connections include the inhibitory projections from the lateral to the medial septum and the monosynaptic projections from the hippocampal CA3 field to the lateral septum. An experimental study has highlighted the importance of the lateral septum in regulating the hippocampal theta rhythm (Bender et al., 2015), an area that has not been included in the model. Specifically, theta-rhythmic optogenetic stimulation of the axonal projections from the lateral septum to the hippocampus was shown to entrain theta oscillations and lead to behavioral changes during exploration in transgenic mice. To account for these discrepancies, our model could be extended by considering more realistic connectivity patterns between the medial / lateral septum and the hippocampal formation, including glutamatergic, cholinergic, and GABAergic reciprocal connections (Müller and Remy, 2018), or by considering multiple sets of oscillators each representing one theta generator.”

      1. The authors test conditions of low theta inputs, which they liken to pathological states (line 112). It is not clear what pathology the authors are referring to, especially since a large amount of 'oscillopathies' in the septohippocampal system are associated with decreased gamma/PAC, but not theta oscillations (e.g. Alzheimer's disease conditions).

      In the manuscript, we referred to “oscillopathies” in a broad sense way as we did not want to overstate the biological implications of the model or the way we modeled pathological states. To our knowledge, several studies have yielded inconsistent results regarding the specific changes in theta or gamma power in Alzheimer’s disease, and the most convincing alteration seems to be the theta-gamma phase-amplitude coupling (PAC) (for review see e.g., Kitchigina, V. F. Alterations of Coherent Theta and Gamma Network Oscillations as an Early Biomarker of Temporal Lobe Epilepsy and Alzheimer’s Disease. Front Integr Neurosci 12, 36 (2018)), as also mentioned by the reviewer.

      In this study, the most straightforward way to reduce theta-gamma PAC was to reduce the amplitude of the oscillators’ gain, which affected theta power, gamma power, and theta-gamma PAC (Figure 5 of the revised manuscript). Affecting their synchronization level (i.e., the order parameter) did not affect any of these variables (Figure 5 – Figure Supplement 4).

      In order to alter theta-gamma PAC without affecting theta or gamma power, we believe that more complex changes should be performed in the model, likely at the level of individual neurons in the hippocampal formation. For example, cholinergic deprivation has been previously used in a multi-compartment model of the hippocampal CA3 to mimic Alzheimer’s disease and to draw functional implications on the slowing of theta oscillations and the storage of new information (Menschik, E. D. & Finkel, L. H. Neuromodulatory control of hippocampal function: towards a model of Alzheimer’s disease. Artif Intell Med 13, 99–121 (1998)).

      This has now been added to the limitations section (L.458-465 of the revised manuscript):

      “Finally, we likened conditions of low theta input to pathological states characteristic of oscillopathies such as Alzheimer’s disease, as these conditions disrupted all aspects of theta-gamma oscillations in our model: theta power, gamma power, and theta-gamma PAC (Figure 5). However, it should be noted that changes in theta or gamma power in these pathologies are often unclear, and that the most consistent alteration that has been reported in Alzheimer’s disease is a reduction of theta-gamma PAC (for review, see Kitchigina, 2018). Future work should explore the effects of cellular alterations intrinsic to the hippocampal formation and their impact on theta-gamma oscillations.”

      1. While relevant for the clinical field, there is overall a missed opportunity to explain many experimental accounts with this novel model. Although to this day, clinical use of DBS is mostly restricted to electrical (and thus cell-type agnostic) stimulation, recent studies focusing on mechanisms of neurostimulations have manipulated specific subtypes in the medial septum and observed effects on hippocampal oscillations (e.g. see Muller & Remy, 2017 for review). Focusing stimulations in CA1 is of course relevant for clinical studies but testing mechanistic hypotheses by focusing stimulation on specific cell types could be highly informative. For instance, could the author reproduce recent optogenetic studies (e.g. Bender et al. 2015 for stimulation of fornix fibers; Etter et al., 2019 & Zutshi et al. 2018 for stimulation of septal inhibitory neurons)? Cell specific manipulations should at least be discussed by the authors.

      We acknowledge the importance of cell-type-specific manipulation in the septo-hippocampal circuitry. However, our model was designed to study neurostimulation protocols that affect the hippocampal formation, not the medial septum, which is why only the hippocampal formation is composed of biophysically realistic (i.e., conductance-based) neuronal models. To replicate the various studies mentioned by the reviewer (which are all very relevant), we would need to implement a biophysical model of the medial septum, which would be an entirely new project.

      Nevertheless, we can use the existing model to replicate optogenetic studies that induced gamma oscillations in excitatory-inhibitory circuits, using either ramped photostimulation targeting excitatory neurons (Adesnik et al., 2010; Akam et al., 2012; Lu et al., 2015), or pulsed stimulation driving inhibitory cells in the gamma range (Cardin et al., 2009; Iaccarino et al., 2016). In fact, such approaches have been demonstrated not just in the hippocampus but also in the neocortex, and represent a hallmark of local excitatory-inhibitory circuits. To account for these experimental results and replicate them, we have added 4 new figures (Figure 2 and its 3 figure supplements) and an extensive section in the results part (L.151-217 of the revised manuscript):

      “From a conceptual point of view, our model is thus composed of excitatory-inhibitory (E-I) circuits connected in series, with a feedback loop going through a population of coupled phase oscillators. In the next sections, we first describe the generation of gamma oscillations by individual E-I circuits (Figure 2), and illustrate their behavior when driven by an oscillatory input such as theta oscillations (Figure 3). We then present a thorough characterization of the effects of theta input and stimulation amplitude on theta-nested gamma oscillations (Figure 4 and Figure 5). Finally, we present some results on the effects of neurostimulation protocols for restoring theta-nested gamma oscillations in pathological states (Figure 6 and Figure 7).

      Generation of gamma oscillations by E-I circuits

      It is well-established that a network of interconnected pyramidal neurons and interneurons can give rise to oscillations in the gamma range, a mechanism termed pyramidal-interneuronal network gamma (PING) (Traub et al., 2004; Onslow et al., 2014; Segneri et al., 2020;). This mechanism has been observed in several optogenetic studies with gradually increasing light intensity (i.e., under a ramp input) affecting multiple different circuits, such as layer 2-3 pyramidal neurons of the mouse somatosensory cortex (Adesnik et al., 2010), the CA3 field of the hippocampus in rat in vitro slices (Akam et al., 2012), and in the non-human primate motor cortex (Lu et al., 2015). In all cases, gamma oscillations emerged above a certain threshold in terms of photostimulation intensity, and the frequency of these oscillations was either stable or slightly increased when increasing the intensity further. We sought to replicate these findings with our elementary E-I circuits composed of single-compartment conductance-based neurons driven by a ramping input current (Figure 2 and Figure S2). As an example, all the results in this section will be shown for an E-I circuit that has similar connectivity parameters as the CA1 field of the hippocampus in our complete model (see section “Hippocampal formation: inputs and connectivity” in the methods).

      For low input currents provided to both neuronal populations, only the highly-excitable interneurons were activated (Figure 2A). For a sufficiently high input current (i.e., a strong input that could overcome the inhibition from the fast-spiking interneurons), the pyramidal neurons started spiking as well. As the amplitude of the input increased, the activity of the both neuronal populations became synchronized in the gamma range, asymptotically reaching a frequency of about 60 Hz (Figure 2A bottom panel). Decoupling the populations led to the abolition of gamma oscillations (Figure 2B), as neuronal activity was determined solely by the intrinsic properties of each cell. Interestingly, when the ramp input was provided solely to the excitatory population, we observed that the activity of the pyramidal neurons preceded the activity of the inhibitory neurons, while still preserving the emergence of gamma oscillations (Figure S2 A). As expected, decoupling the populations also abolished gamma oscillations, with the excitatory neurons spiking a frequency determined by their intrinsic properties and the inhibitory population remaining silent (Figure S2B).

      To further characterize the intrinsic properties of individual inhibitory and excitatory neurons, we derived their input-frequency (I-F) curves, which represent the firing rate of individual neurons in response to a tonic input (Figure S3A). We observed that for certain input amplitudes, the firing rates of both types of neurons was within the gamma range. Interestingly, in the absence of noise, each population could generate by itself gamma oscillations that were purely driven by the input and determined by the intrinsic properties of the neurons (Figure S3B). Adding stochastic Gaussian noise in the membrane potential disrupted these artificial oscillations in decoupled populations (Figure S3C). All subsequent simulations were run with similar noise levels to prevent the emergence of artificial gamma oscillations.

      Another potent way to induce gamma oscillations is to drive fast-spiking inhibitory neurons using pulsed optogenetic stimulation at gamma frequencies, a strategy that has been used both in the neocortex (Cardin et al., 2009) and hippocampal CA1 (Iaccarino et al., 2016). In particular, Cardin and colleagues systematically investigated the effect of driving either excitatory or fast-spiking inhibitory neocortical neurons at frequencies between 10 and 200 Hz (Cardin et al., 2009). They showed that fast-spiking interneurons are preferentially entrained around 40-50 Hz, while excitatory neurons respond better to lower frequencies. To verify the behavior of our model against these experimental data, we simulated pulsed optogenetic stimulation as an intracellular current provided to our reduced model of a single E-I circuit. Stimulation was applied at frequencies between 10 and 200 Hz to excitatory cells only, to inhibitory cells only, or to both at the same time (Figure S4). The population firing rates were used as a proxy for the local field potentials (LFP), and we computed the relative power in a 10-Hz band centered around the stimulation frequency, similarly to the method proposed in (Cardin et al., 2009). When presented with continuous stimulation across a range of frequencies in the gamma range, interneurons showed the greatest degree of gamma power modulation (Figure S4). Furthermore, when the stimulation was delivered to the excitatory population, the relative power around the stimulation frequency dropped significantly in frequencies above 10 Hz, similar to the reported experimental data (Cardin et al., 2009). The main difference between our simulation results and these experimental data is the specific frequencies at which fast-spiking interneurons showed resonance, which was slow gamma around 40 Hz in the mouse barrel cortex and fast gamma around 90 Hz in our model. This could be attributed to several factors, such as differences in the cellular properties between cortical and hippocampal fast-spiking interneurons, or the differences between the size of the populations and their relevant connectivity in the cortex and the hippocampus.”

      Author response image 1.

      Figure 2. Emergence of gamma oscillations in coupled excitatory-inhibitory populations under ramping input to both populations. A. Two coupled populations of excitatory pyramidal neurons (NE = 1000) and inhibitory interneurons (NI = 100) are driven by a ramping current input (0 nA to 1 nA) for 5 s. As the input becomes stronger, oscillations start to emerge (shaded green area), driven by the interactions between excitatory and inhibitory populations. The green inset shows the raster plot (neuronal spikes across time) of the two populations during the green shaded period (red for inhibitory; blue for excitatory). When the input becomes sufficiently strong (shaded magenta area), the populations become highly synchronized and produce oscillations in the gamma range (at approximately 50 Hz). The spectrogram (bottom panel) shows the power of the instantaneous firing rate of the pyramidal population as a function of time and frequency. It reveals the presence of gamma oscillations that emerge around 2s and increase in frequency until 4 s, when they settle at approximately 60 Hz. B. Similar depiction as in panel A. with the pyramidal-interneuronal populations decoupled. The absence of coupling leads to the abolition of gamma oscillations, each cell spiking activity being driven by its own inputs and intrinsic properties.

      Author response image 2.

      Figure S2 (Figure 2 – Figure Supplement 1). Emergence of gamma oscillations in coupled excitatoryinhibitory populations under ramping input to the excitatory population. Similar representation as in Figure 2, but with the input provided only to the excitatory population. All conclusions remain the same. In addition, the inhibitory population does not show any spiking activity in the decoupled case.

      Author response image 3.

      Figure S3 (Figure 2 – Figure Supplement 2). Cell-intrinsic spiking activity in decoupled excitatory and inhibitory populations under ramping input. A. Input-Frequency (I-F) curves for excitatory cells (left panel; pyramidal neurons with ICAN) and inhibitory cells (right panel; interneurons, fast-spiking) used in the model. Above a certain tonic input (around 0.35 nA for excitatory and 0.1 nA for inhibitory neurons), neurons can spike in the gamma range. B. Raster plot showing the spiking activity of excitatory (blue, NE = 1000) and inhibitory (red, NI = 100) neurons in decoupled populations under ramping input (top trace) and in the absence of noise in the membrane potential. Despite random initial conditions across neurons, oscillations emerge in both populations due to the intrinsic properties of the cells, with a frequency that is predicted by the respective I-F curves (panel A.). C. Similar representation as panel B. but with the addition of stochastic noise in the membrane potential of each neuron. The presence of noise disrupts the emergence of oscillations in these decoupled populations.

      Author response image 4.

      Figure S3 (Figure 2 – Figure Supplement 2). Cell-intrinsic spiking activity in decoupled excitatory and inhibitory populations under ramping input. A. Input-Frequency (I-F) curves for excitatory cells (left panel; pyramidal neurons with ICAN) and inhibitory cells (right panel; interneurons, fast-spiking) used in the model. Above a certain tonic input (around 0.35 nA for excitatory and 0.1 nA for inhibitory neurons), neurons can spike in the gamma range. B. Raster plot showing the spiking activity of excitatory (blue, NE = 1000) and inhibitory (red, NI = 100) neurons in decoupled populations under ramping input (top trace) and in the absence of noise in the membrane potential. Despite random initial conditions across neurons, oscillations emerge in both populations due to the intrinsic properties of the cells, with a frequency that is predicted by the respective I-F curves (panel A.). C. Similar representation as panel B. but with the addition of stochastic noise in the membrane potential of each neuron. The presence of noise disrupts the emergence of oscillations in these decoupled populations.

      Beyond these weaknesses, this study has a strong utility for researchers wanting to explore hypotheses in the field of neurostimulations. In particular, I see value in such models for exploring more intricate, phase specific effects of continuous, as well as close loop stimulations which are on the rise in systems neuroscience.

      We thank the reviewer for this appreciation of our work and its future perspectives.

      Recommendations For The Authors:

      Line 144, the authors mention that their MI values are erroneous in absence of additive noise - could this be due to the non-sinusoidal nature of the phase signal recorded, and be fixed by upscaling model size?

      We thank the reviewer for this question and suggestion. The main reason behind the errors in the computation of the MI lies in the complete absence of oscillations at specific frequencies. Filtered signals within specific bands produced a power of 0 (or extremely low values), as seen in the power spectral densities. In such cases, the phase signal was not mathematically defined, but the toolbox we used to compute it still returned a numerical result that was inaccurate (for more details on the computation of the MI see Tort et al., 2010). To mitigate this numerical artefact, we decided to add uniform noise in the computed firing rates. This strategy is illustrated on Figure S6 (Figure 3 – Figure Supplement 2), which we have copied below for reference. Alternative approaches could probably have been used, such as increasing the noise in the membrane potential so that neurons would start spiking with firing rates that show more realistic power spectra, even in the absence of external inputs.

      Author response image 5.

      Figure S6 (Figure 3 – Figure Supplement 2). Quantification of PAC with and without noise. A. Quantifying PAC in the absence of noise produced inaccurate identification of the coupled frequency bands, due to the complete absence of oscillations at some frequencies. All analyses are based on the CA1 firing rates (top traces) during a representative simulation. Power spectral densities of these firing rates (left) indicate that some frequencies have a power of 0. PAC of the excitatory population was assessed using two graphical representations, the polar plot (middle) and comodulogram (right), and quantified using the MI. The comodulogram was calculated by computing the MI across 80% overlapping 1-Hz frequency bands in the theta range and across 90% overlapping 10-Hz frequency bands in the gamma range and subsequently plotted as a heat map. In the absence of noise, a slow theta frequency centered around 5 Hz is found to modulate a broad range of gamma frequencies between 40 and 100 Hz. The value indicated on the comodulogram indicates the average MI in the 3-9 Hz theta range and 40-80 Hz gamma range. As in Figure 2, the polar plot represents the amplitude of gamma oscillations (averaged across all theta cycles) at each phase of theta (theta range: 3-9 Hz, phase indicated as angular coordinate) and for different gamma frequencies (radial coordinate, binned in 1-Hz ranges). B. Adding uniform noise to the firing rate (with an amplitude ranging between 15 and 25% of the maximum firing rate) improved the identification of the coupled frequency bands. In this case, the slower theta frequency centered around 5 Hz modulates a gamma band located between 45 and 75 Hz.

      Reviewer #2:

      The main strength of this model is its use of a fairly physiologically detailed model of the hippocampus. The cells are single-compartment models but do include multiple ion channels and are spatially arranged in accordance with the hippocampal structure. This allows the understanding of how ion channels (possibly modifiable by pharmacological agents) interact with system-level oscillations and neurostimulation. The model also includes all the main hippocampal subfields. The other strength is its attention to an important topic, which may be relevant for dementia treatment or prevention, which few modeling studies have addressed. The work has several weaknesses.

      We thank the reviewer for appreciating our detailed description of the hippocampal formation and the focus on neurostimulation applications that aim at treating oscillopathies, especially dementia.

      1. First, while investigations of hippocampal neurostimulation are important there are few experimental studies from which one could judge the validity of the model findings. All its findings are therefore predictions. It would be much more convincing to first show the model is able to reproduce some measured empirical neurostimulation effect before proceeding to make predictions.

      We acknowledge that the results presented in Figures 4-7 of the revised manuscript cannot be compared to existing experimental data, and are therefore purely predictive. Future experimental work is needed to verify these predictions.

      Yet, we would also like to stress that the motivation behind this project was the inadequacy of previous models of theta-nested gamma oscillations (Onslow et al., 2014; Aussel et al., 2018; Segneri et al., 2020) to account for the mechanism of theta phase reset that occurs during electrical stimulation of the fornix or perforant path (Williams and Givens, 2003). Since we could not use these previous models to study the effects of neurostimulation on theta-nested gamma oscillations, we had to modify them to account for a dynamical theta input, which is the main methodological novelty that is reported in our manuscript (Figures 1 and 3 of the revised manuscript).

      Despite the scarcity of experimental studies that could confirm the full model, we sought to replicate a few experimental findings that employed optogenetic stimulation to induce gamma oscillations in individual excitatory-inhibitory circuits. Although not specific to the hippocampus, these studies have shown that gamma oscillations can be induced using either ramped photostimulation targeting excitatory neurons (Adesnik et al., 2010; Akam et al., 2012; Lu et al., 2015), or pulsed stimulation driving inhibitory cells in the gamma range (Cardin et al., 2009; Iaccarino et al., 2016). To account for these experimental results and replicate them, we have added 4 new figures (Figure 2 and its 3 figure supplements) and an extensive section in the results part (L.141-217 of the revised manuscript). The added section and related figures are indicated in our response to reviewer 1, comment 3 (p 2-7).

      2.1. Second, the model is very specific. Or if its behavior is to be considered general it has not been explained why.

      Although the spatial organization and cellular details of the model are indeed very specific, its general behavior, i.e., the production of theta-nested gamma oscillations and theta phase reset, are common to any excitatory-inhibitory circuit interconnected with Kuramoto oscillators. To illustrate this point, we have generalized our approach to the neural mass model developed by Onslow and colleagues (Onslow ACE, Jones MW, Bogacz R. A Canonical Circuit for Generating Phase-Amplitude Coupling. PLoS ONE. 2014 Aug; 9(8):e102591). These results are represented in a new supplementary figure (Figure3 – Figure Supplement 4), and briefly described in a new paragraph of the results section (L.262-268 of the revised manuscript):

      “Importantly, our approach is generalizable and can be applied to other models producing theta-nested gamma oscillations. For instance, we adapted the neural mass model by Onslow and colleagues (Onslow et al., 2014), replaced the fixed theta input by a set of Kuramoto oscillators, and demonstrated that it could also generate theta phase reset in response to single-pulse stimulation (Figure S8). These results illustrate that the general behavior of our model is not specific to the tuning of individual parameters in the conductancebased neurons, but follows general rules that are captured by the level of abstraction of the Kuramoto formalism.”

      Author response image 6.

      Figure S8 (Figure 3 – Figure Supplement 4). A neural mass model of coupled excitatory and inhibitory neurons driven by Kuramoto oscillators generates theta-nested gamma oscillations and theta phase reset. A. Two coupled neural masses (one excitatory and one inhibitory) driven by Kuramoto oscillators, which represent a dynamical oscillatory drive in the theta range, were used to implement a neural mass equivalent to our conductance-based model represented in Figure 1. Neural masses were modeled using the WilsonCowan formalism, with parameters adapted from Onslow et al. (2014) (𝑊𝐸𝐸 = 4.8, 𝑊𝐸𝐼 = 𝑊𝐼𝐸 = 4, 𝑊𝐼𝐼 = 0). B. The normalized population firing rates exhibit theta-nested gamma oscillations (middle and bottom panels) in response to the dynamic theta rhythm (top panel). A stimulation pulse delivered at the descending phase of the rhythm to both populations (marked by the inverted red triangle) produces a robust theta phase reset, similarly to Figure 3A.

      This simplified model is described in more details in the methods (L.694-710 of the revised manuscript). Additionally, the generation of gamma oscillations by individual excitatory-inhibitory circuits is now described in details in the added section “Generation of gamma oscillations by E-I circuits” (L.159-217 of the revised manuscript), which has already been discussed in our response to reviewer 1, comment 3 (p 2-7).

      2.2. For example, the model shows bistability between quiescence and TNGO, however what aspect of the model underlies this, be it some particular network structure or particular ion channel, for example, is not addressed.

      We thank the reviewer for mentioning this point, which we have now addressed. The “bistable” behavior that we reported occurs for values of the theta input that are just below the threshold to induce selfsustained theta-gamma oscillations (Figure 5 of the revised manuscript, point B). Moreover, the presence of the Calcium-Activated-Nonspecific (CAN) cationic channel, which is expressed by pyramidal neurons in the entorhinal cortex, CA3, and CA1 fields of the hippocampus, is necessary for this behavior to occur. Indeed, abolishing CAN channels in all areas of the model suppresses this behavior. We have now addressed this point in a new supplementary figure (Figure 5 – Figure Supplement 4) and a short description in the text (L.287-303 of the revised manuscript).

      “In the presence of dynamic theta input, the effects of single-pulse stimulation depended both on theta input amplitude and stimulation amplitude, highlighting different regimes of network activity (Figure 5 and Figure S9, Figure S10, Figure S11). For low theta input, theta-nested gamma oscillations were initially absent and could not be induced by stimulation (Figure 5A). At most, the stimulation could only elicit a few bursts of spiking activity that faded away after approximately 250 ms, similar to the rebound of activity seen in the absence of theta drive. For increasing theta input, the network switched to an intermediate regime: upon initialization at a state with no spiking activity, it could be kicked to a state with self-sustained theta-nested gamma oscillations by a single stimulation pulse of sufficiently high amplitude (Figure 5B). This regime existed for a range of septal theta inputs located just below the threshold to induce self-sustained theta-gamma oscillations without additional stimulation, as characterized by the post-stimulation theta power, gamma power, and theta-gamma PAC (Figure 5D). Removing CAN currents from all areas of the model abolished this behavior (Figure S12), which is interesting given the role of this current in the multistability of EC neurons (Egorov et al., 2002; Fransen et al., 2006) and in the intrinsic ability of the hippocampus to generate thetanested gamma oscillations (Giovannini et al., 2017). For the highest theta input, the network became able to spontaneously generate theta-nested gamma oscillations, even when initialized at a state with no spiking activity and without additional neurostimulation (Figure 5C).”

      Author response image 7.

      Figure S12 (Figure 5 – Figure Supplement 4). CAN currents are necessary for the production of selfsustained theta-gamma oscillations in response to single-pulse stimulation. A. Same as Figure 5B. B. Similar simulation as panel A., but without the presence of CAN currents in the EC, CA3 and CA1 fields of the hippocampus. Removing CAN currents from the model abolishes self-sustained theta-nested gamma oscillations in response to a single stimulation pulse (for the parameters represented in Figure 5, point B).

      Furthermore, we realized that the terminology “bistable” may not be justified as we could not perform a systematic bifurcation analysis, which is typically carried out in simpler neural mass models (e.g., Onslow et al., 2014; Segneri et al., 2020). Therefore, we decided to rephrase the sentences about “bistability” to keep a more general terminology. The following sentences were revised:

      L.20-23: “We showed that, for theta inputs just below the threshold to induce self-sustained theta-nested gamma oscillations, a single stimulation pulse could switch the network behavior from non-oscillatory to a state producing sustained oscillations.”

      L.305-309: “Based on the above analyses, we considered two pathological states: one with a moderate theta input (i.e., moderately weak projections from the medial septum to the EC) that allowed the initiation of selfsustained oscillations by single stimulation pulses (Figure 5, point B), and one with a weaker theta input characterized by the complete absence of self-sustained oscillations even following transient stimulation (Figure 5, point A).”

      L.316-317: “In the case of a moderate theta input and in the presence of phase reset, delivering a pulse at either the peak or trough of theta could induce theta-nested gamma oscillations (Figure 6A and 6C).”

      L.353-357: “A very interesting finding concerns the behavior of the model in response to single-pulse stimulation for certain values of the theta amplitude (Figure5). For low theta amplitudes, a single stimulation pulse was capable of switching the network behavior from a state with no spiking activity to one with prominent theta-nested gamma oscillations. Whether such an effect can be induced in vivo in the context of memory processes remains an open question.”

      2.3. Similarly for the various phase reset behaviors that are found.

      We would like to clarify the fact that the observed phase reset curves (reported in Figure 3D) are a direct consequence of the choice of an appropriate phase response function for the Kuramoto oscillators representing the medial septum. This choice is inspired by experimentally measured phase response curves from CA3 neurons. These aspects are described briefly in the introduction and in more details in the methods, as indicated below:

      L.101: “This new hybrid dynamical model could generate both theta-nested gamma oscillations and theta phase reset, following a particular phase response curve (PRC) inspired by experimental literature (Lengyel et al., 2005; Akam et al., 2012; Torben-Nielsen et al., 2010).”

      L.528-537: “Hereafter, we call the term 𝑍(𝜃) the phase response function, to distinguish it from the PRC obtained from experimental data or simulations (see section below "Data Analysis", "Phase Response Curve"). Briefly, the PRC of an oscillatory system indicates the phase delay or advancement that follows a single pulse, as a function of the phase at which this input is delivered. The phase response function 𝑍(𝜃) was chosen to mimic as well as possible experimental PRCs reported in the literature (Lengyel et al., 2005; Kwag and Paulsen, 2009; Akam et al., 2012). These PRCs appear biphasic and show a phase advancement (respectively delay) for stimuli delivered in the ascending (respectively descending) slope of theta. To accurately model this behavior, we used the following equation for the phase response function, where 𝜃𝑝𝑒𝑎𝑘 represents the phase at which the theta rhythm reaches its maximum and the parameter 𝜙𝑜𝑓𝑓𝑠𝑒𝑡 controls the desired phase offset from the peak:

      Author response image 8.

      On the figure below, we illustrate the phase response curves of CA3 neurons measured by Lengyel et al., 2005 (panel A.), and compare it with our simulated phase response curves (panel B.). Note that the conventions for phase advance and phase delay are reversed between the two panels.

      Finally, we would like to acknowledge that the model “is not derived from experimental phase response curves of septal neurons of which there is no direct measurement”, as mentioned by the reviewer in their comment 4 below. Despite the lack of experimental data specific to medial septum neurons, we argue that this phase response function is the only one that mathematically supports the generation of self-sustained theta-nested gamma oscillations in our current model. This statement is illustrated by Figure S7 (Figure 3 – Figure Supplement 3) and is mentioned in the results (L.249-261 of the revised manuscript):

      We modeled this behavior by a specific term (which we called the phase response function) in the general equation of the Kuramoto oscillators (see methods, Equation 1). Importantly, introducing a phase offset in the phase response function disrupted theta-nested gamma oscillations (Figure S7), which suggests that the septohippocampal circuitry must be critically tuned to be able to generate such oscillations. The strength of phase reset could also be adjusted by a gain that was manually tuned. In the presence of the physiological phase response function and of a sufficiently high reset gain, a single stimulation pulse delivered to all excitatory and inhibitory CA1 neurons could reset the phase of theta to a value close to its peaks (Figure 3A). We computed the PRC of our simulated data for different stimulation amplitudes and validated that our neuronal network behaved according to the phase response function set in our Kuramoto oscillators (Figure 3D). It should be noted that including this phase reset mechanism affected the generated theta rhythm even in the absence of stimulation, extending the duration of the theta peak and thereby slowing down the frequency of the generated theta rhythm.

      Author response image 9.

      Figure S7 (Figure 3 – Figure Supplement 3). Network behavior generated by Kuramoto oscillators with nonphysiological phase response functions. Each panel is similar to Figure 3A, but with a different offset added to the phase response function of the Kuramoto oscillators (see methods, Equation 4). The center frequency was set to 6 Hz in all of these simulations. Overall, theta oscillations in these cases are less sinusoidal and show more abrupt phase changes than in the physiological case. A. A phase offset of −𝜋∕2 leads to an overall theta oscillation of 4 Hz, with a second peak following the main theta peak. B. A phase offset of +𝜋∕2 reduces the peak of theta, resetting the rhythm to the middle of the ascending phase. C. A phase offset of 𝜋 or -𝜋 leads to the CA1 output resetting the theta rhythm to the trough of theta.

      2.4. We may wonder whether a different hippocampal model of TNGO, of which there are many published (for example [1-6]) would show the same effect under neurostimulation. This seems very unlikely […]

      [1] Hyafil A, Giraud AL, Fontolan L, Gutkin B. Neural cross-frequency coupling: connecting architectures, mechanisms, and functions. Trends in neurosciences. 2015 Nov 1;38(11):725-40.

      [2] Tort AB, Rotstein HG, Dugladze T, Gloveli T, Kopell NJ. On the formation of gamma-coherent cell assemblies by oriens lacunosum-moleculare interneurons in the hippocampus. Proceedings of the National Academy of Sciences. 2007 Aug 14;104(33):13490-5.

      [3] Neymotin SA, Lazarewicz MT, Sherif M, Contreras D, Finkel LH, Lytton WW. Ketamine disrupts theta modulation of gamma in a computer model of hippocampus. Journal of Neuroscience. 2011 Aug 10;31(32):11733-43.

      [4] Ponzi A, Dura-Bernal S, Migliore M. Theta-gamma phase-amplitude coupling in a hippocampal CA1 microcircuit. PLOS Computational Biology. 2023 Mar 23;19(3):e1010942.

      [5] Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I. Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit. Elife. 2016 Dec 23;5:e18566.

      [6] Chatzikalymniou AP, Gumus M, Skinner FK. Linking minimal and detailed models of CA1 microcircuits reveals how theta rhythms emerge and their frequencies controlled. Hippocampus. 2021 Sep;31(9):982-1002.

      The highlighted publications, while very important in their findings regarding theta-gamma phase-amplitude coupling, focused on specific subfields of the hippocampus. In our work, we aimed to develop a model that includes the different anatomical divisions of the hippocampal formation, while still exhibiting theta-nested gamma oscillations, which is why we decided to expand the model by Aussel et al. (2018). Exploring the behavior of all these different hippocampal models under neurostimulation is beyond the scope of the current manuscript.

      Nevertheless, we have added a new figure (Figure 3 – Figure Supplement 4) showing an adaptation of our modeling approach to a generic neural mass model of theta-nested gamma oscillations (Onslow et al., 2014), which illustrates the generalizability of our findings and is described in details in our response to comment 2.1. Moreover, we have further addressed the comments of the reviewers regarding bistability and phase response curves in our responses to comments 2.2 and 2.3.

      Furthermore, we have added references to all 6 of these publications in the revised version of the manuscript:

      L.43-50: Moreover, the modulation of gamma oscillations by the phase of theta oscillations in hippocampal circuits, a phenomenon termed theta-gamma phase-amplitude coupling (PAC), correlates with the efficacy of memory encoding and retrieval (Jensen and Colgin, 2007; Tort et al., 2009; Canolty and Knight, 2010; Axmacher et al., 2010; Fell and Axmacher, 2011; Lisman and Jensen, 2013; Lega et al., 2016). Experimental and computational work on the coupling between oscillatory rhythms has indicated that it originates from different neural architectures and correlates with a range of behavioral and cognitive functions, enabling the long-range synchronization of cortical areas and facilitating multi-item encoding in the context of memory (Hyafil et al., 2015)."

      L.415-426: “In terms of neuronal cell types, we also made an important simplification by considering only basket cells as the main class of inhibitory interneuron in the whole hippocampal formation. However, it should be noted that many other types of interneurons exist in the hippocampus and have been modeled in various works with higher computational complexity (e.g., Bezaire et al., 2016; Chatzikalymniou et al., 2021). Among these various interneurons, oriens-lacunosum moleculare (OLM) neurons in the CA1 field have been shown to play a crucial role in synchronizing the activity of pyramidal neurons at gamma frequencies (Tort et al., 2007), and in generating theta-gamma PAC (e.g., Neymotin et al., 2011; Ponzi et al., 2023). Additionally, these cells may contribute to the formation of specific phase relationships within CA1 neuronal populations, through the integration between inputs from the medial septum, the EC, and CA3 (Mysin et al., 2019). Future work is needed to include more diverse cell types and detailed morphologies modeled through multiple compartments.”

      2.5. […] and indeed the quiescent state itself shown by this model seems quite artificial.

      We would like to clarify the fact that the “quiescent state” mentioned by the reviewer is a simply a state where the theta input is too low to induce theta-nested gamma oscillations. In this regime, neurons are active only due to the noise term in the membrane potential, which was adjusted based on Figure S3 (Figure 2 – Figure Supplement 2, shown below), at the minimal level needed to disrupt artificial synchronization in decoupled populations. For an input of 0 nA, we acknowledge that this network is indeed fully quiescent (i.e., does not show any spiking activity). However, as soon as the input increases, spontaneous spiking activity starts to appear with an average firing rate that depends on the input amplitude and is characterized by the input-frequency curves (panel A.). Please note that adding more noise could eliminate the observed quiescence in the absence of any input, but that it would not affect qualitatively the reported results.

      Author response image 10.

      Figure S3 (Figure 2 – Supplement 2). Cell-intrinsic spiking activity in decoupled excitatory and inhibitory populations under ramping input. A. Input-Frequency (I-F) curves for excitatory cells (left panel; pyramidal neurons with ICAN) and inhibitory cells (right panel; interneurons, fast-spiking) used in the model. Above a certain tonic input (around 0.35 nA for excitatory and 0.1 nA for inhibitory neurons), neurons can spike in the gamma range. B. Raster plot showing the spiking activity of excitatory (blue, NE = 1000) and inhibitory (red, NI = 100) neurons in decoupled populations under ramping input (top trace) and in the absence of noise in the membrane potential. Despite random initial conditions across neurons, oscillations emerge in both populations due to the intrinsic properties of the cells, with a frequency that is predicted by the respective IF curves (panel A.). C. Similar representation as panel B. but with the addition of stochastic noise in the membrane potential of each neuron. The presence of noise disrupts the emergence of oscillations in these decoupled populations.

      2.6. Some indication that particular ion channels, CAN and M are relevant is briefly provided and the work would be much improved by examining this aspect in more detail.

      We thank the reviewer for acknowledging the importance of these ion channels. We have now added a new supplementary figure (Figure 5 – Figure Supplement 4), which is described in more details in our response to comment 2.2 and illustrates the role of the CAN current in the generation of theta-nested gamma oscillations following a single stimulation pulse. Moreover, we would like to stress that the impact of CAN currents in the ability of the hippocampus to generate theta-nested gamma oscillations intrinsically, i.e., in the absence of persistent external input, has already been investigated in details by a previous computational study cited in our manuscript (Giovannini F, Knauer B, Yoshida M, Buhry L. The CAN-In network: A biologically inspired model for self-sustained theta oscillations and memory maintenance in the hippocampus. Hippocampus. 2017 Apr;809 27(4):450–463).

      2.7. In summary, the work would benefit from an intuitive analysis of the basic model ingredients underlying its neurostimulation response properties.

      We thank the reviewer for this suggestion. By addressing the reviewer’s previous comments (reviewer 2, comments 2.1 and 2.2), which overlap partly with the first reviewer (reviewer 1, comment 3), we believe we have improved the manuscript and have provided key information related to the way the model responds to neurostimulation.

      3..) Third, while the model is fairly realistic, considerable important factors are not included and in fact, there are much more detailed hippocampal models out there (for example [5,6]). In particular, it includes only excitatory cells and a single type of inhibitory cell. This is particularly important since there are many models and experimental studies where specific cell types, for example, OLM and VIP cells, are strongly implicated in TNGO.

      [5] Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I. Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit. Elife. 2016 Dec 23;5:e18566.

      [6] Chatzikalymniou AP, Gumus M, Skinner FK. Linking minimal and detailed models of CA1 microcircuits reveals how theta rhythms emerge and their frequencies controlled. Hippocampus. 2021 Sep;31(9):982-1002.

      We thank the reviewer for pointing out these interesting avenues for future studies. As indicated in previous responses (reviewer 1, comment 1; reviewer 2, comment 2.4), we have added several paragraphs to discuss these limitations, the rationale behind our simplifications, and potential improvements. In particular, we have added the following paragraphs to discuss our simplifications in terms of connectivity and cell types:

      Anatomical connectivity:

      L.141-150: “Biologically, GABAergic neurons from the medial septum project to the EC, CA3, and CA1 fields of the hippocampus (Toth et al., 1993; Hajós et al., 2004; Manseau et al., 2008; Hangya et al., 2009; Unal et al., 2015; Müller and Remy, 2018). Although the respective roles of these different projections are not fully understood, previous computational studies have suggested that the direct projection from the medial septum to CA1 is not essential for the production of theta in CA1 microcircuits (Mysin et al., 2019). Since our modeling of the medial septum is only used to generate a dynamic theta rhythm, we opted for a simplified representation where the medial septum projects only to the EC, which in turn drives the different subfields of the hippocampus. In our model, Kuramoto oscillators are therefore connected to the EC neurons and they receive projections from CA1 neurons (see methods for more details).”

      Cell types:

      L.415-426: “In terms of neuronal cell types, we also made an important simplification by considering only basket cells as the main class of inhibitory interneuron in the whole hippocampal formation. However, it should be noted that many other types of interneurons exist in the hippocampus and have been modeled in various works with higher computational complexity (e.g., Bezaire et al., 2016; Chatzikalymniou et al., 2021). Among these various interneurons, oriens-lacunosum moleculare (OLM) neurons in the CA1 field have been shown to play a crucial role in synchronizing the activity of pyramidal neurons at gamma frequencies (Tort et al., 2007), and in generating theta-gamma PAC (e.g., Neymotin et al., 2011; Ponzi et al., 2023). Additionally, these cells may contribute to the formation of specific phase relationships within CA1 neuronal populations, through the integration between inputs from the medial septum, the EC, and CA3 (Mysin et al., 2019). Future work is needed to include more diverse cell types and detailed morphologies modeled through multiple compartments.”

      3.2. Other missing ingredients one may think might have a strong impact on model response to neurostimulation (in particular stimulation trains) include the well-known short-term plasticity between different hippocampal cell types and active dendritic properties.

      We agree with the reviewer that plasticity mechanisms are important to include in future work, which we had already mentioned in the limitations section of the manuscript:

      L.436-443: “Importantly, we did not consider learning through synaptic plasticity, even though such mechanisms could drastically modify synaptic conduction for the whole network (Borges et al., 2017). Even more interestingly, the inclusion of spike-timing-dependent plasticity would enable the investigation of stimulation protocols aimed at promoting LTP, such as theta-burst stimulation (Larson et al., 2015). This aspect would be of uttermost importance to make a link with memory encoding and retrieval processes (Axmacher et al., 2006; Tsanov et al., 2009; Jutras et al., 2013) and with neurostimulation studies for memory improvement (Titiz et al., 2017; Solomon et al., 2021).”

      1. Fourth the MS model seems somewhat unsupported. It is modeled as a set of coupled oscillators that synchronize. However, there is also a phase reset mechanism included. This mechanism is important because it underlies several of the phase reset behaviors shown by the full model. However, it is not derived from experimental phase response curves of septal neurons of which there is no direct measurement. The work would benefit from the use of a more biologically validated MS model.

      We would like to confirm that the phase reset mechanism is indeed at the core of using Kuramoto oscillators to model a particular system. For more details about our choice of a phase response function and the obtained results in terms of phase response curves, we refer the reader to our response to comment 2.3.

      Generally speaking, we chose to use Kuramoto oscillators as it is the simplest model that can provide an oscillatory input to another system while including a phase reset mechanism. This set of oscillators was used to replace the fixed sinusoidal wave that represented theta inputs in previous models (Onslow et al., 2014; Aussel et al., 2018; Segneri et al., 2020). Kuramoto oscillators are a well-established model of synchronization in various fields of physics. They have also been used in neuroscience to model the phase reset of collective rhythms (Levnajić et al. 2010), and the effects of DBS on the basal ganglia network in Parkinson’s disease (Tass et al. 2003, Ebert et al. 2014, Weerasinghe et al. 2019).

      More detailed models of the medial septum exist in the literature (e.g., Wang et al. 2002, Hajós et al. 2004) and model the GABAergic effects of the septal projections onto the hippocampal formation. However, it is not trivial to infer the connectivity parameters and the degree of innervation between the hippocampus and the medial septum. Furthermore, the claims made in our study do not necessarily depend on the nature of the projections between the two areas. Therefore, we decided to represent the medial septum in a conceptual way and focus mostly on the effects of these projections rather than replicating them in detail.

      Aussel, Amélie, Laure Buhry, Louise Tyvaert, and Radu Ranta. “A Detailed Anatomical and Mathematical Model of the Hippocampal Formation for the Generation of Sharp-Wave Ripples and Theta-Nested Gamma Oscillations.” Journal of Computational Neuroscience 45, no. 3 (December 2018): 207–21. https://doi.org/10.1007/s10827-018-0704-x.

      Ebert, Martin, Christian Hauptmann, and Peter A. Tass. “Coordinated Reset Stimulation in a Large-Scale Model of the STN-GPe Circuit.” Frontiers in Computational Neuroscience 8 (2014): 154. https://doi.org/10.3389/fncom.2014.00154.

      Hajós, M., W.E. Hoffmann, G. Orbán, T. Kiss, and P. Érdi. “Modulation of Septo-Hippocampal θ Activity by GABAA Receptors: An Experimental and Computational Approach.” Neuroscience 126, no. 3 (January 2004): 599–610. https://doi.org/10.1016/j.neuroscience.2004.03.043.

      Levnajić, Zoran, and Arkady Pikovsky. “Phase Resetting of Collective Rhythm in Ensembles of Oscillators.” Physical Review E 82, no. 5 (November 3, 2010): 056202. https://doi.org/10.1103/PhysRevE.82.056202.

      Onslow, Angela C. E., Matthew W. Jones, and Rafal Bogacz. “A Canonical Circuit for Generating PhaseAmplitude Coupling.” Edited by Adriano B. L. Tort. PLoS ONE 9, no. 8 (August 19, 2014): e102591. https://doi.org/10.1371/journal.pone.0102591.

      Segneri, Marco, Hongjie Bi, Simona Olmi, and Alessandro Torcini. “Theta-Nested Gamma Oscillations in Next Generation Neural Mass Models.” Frontiers in Computational Neuroscience 14 (2020). https://doi.org/10.3389/fncom.2020.00047. T ass, Peter A. “A Model of Desynchronizing Deep Brain Stimulation with a Demand-Controlled Coordinated Reset of Neural Subpopulations.” Biological Cybernetics 89, no. 2 (August 1, 2003): 81–88. https://doi.org/10.1007/s00422-003-0425-7.

      Wang, Xiao-Jing. “Pacemaker Neurons for the Theta Rhythm and Their Synchronization in the Septohippocampal Reciprocal Loop.” Journal of Neurophysiology 87, no. 2 (February 1, 2002): 889–900. https://doi.org/10.1152/jn.00135.2001.

      Weerasinghe, Gihan, Benoit Duchet, Hayriye Cagnan, Peter Brown, Christian Bick, and Rafal Bogacz. “Predicting the Effects of Deep Brain Stimulation Using a Reduced Coupled Oscillator Model.” PLoS Computational Biology 15, no. 8 (August 8, 2019): e1006575. https://doi.org/10.1371/journal.pcbi.1006575.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The manuscript by Wagstyl et al. describes an extensive analysis of gene expression in the human cerebral cortex and the association with a large variety of maps capturing many of its microscopic and macroscopic properties. The core methodological contribution is the computation of continuous maps of gene expression for >20k genes, which are being shared with the community. The manuscript is a demonstration of several ways in which these maps can be used to relate gene expression with histological features of the human cortex, cytoarchitecture, folding, function, development and disease risk. The main scientific contribution is to provide data and tools to help substantiate the idea of the genetic regulation of multi-scale aspects of the organisation of the human brain. The manuscript is dense, but clearly written and beautifully illustrated.

      Main comments

      The starting point for the manuscript is the construction of continuous maps of gene expression for most human genes. These maps are based on the microarray data from 6 left human brain hemispheres made available by the Allen Brain Institute. By technological necessity, the microarray data is very sparse: only 1304 samples to map all the cortex after all subjects were combined (a single individual's hemisphere has ~400 samples). Sampling is also inhomogeneous due to the coronal slicing of the tissue. To obtain continuous maps on a mesh, the authors filled the gaps using nearest-neighbour interpolation followed by strong smoothing. This may have two potentially important consequences that the authors may want to discuss further: (a) the intrinsic geometry of the mesh used for smoothing will introduce structure in the expression map, and (b) strong smoothing will produce substantial, spatially heterogeneous, autocorrelations in the signal, which are known to lead to a significant increase in the false positive rate (FPR) in the spin tests they used.

      Many thanks to the reviewer for their considered feedback. We have addressed these primary concerns into point-by-point responses below. The key conclusions from our new analyses are: (i) while the intrinsic geometry of the mesh had not originally been accounted for in sufficient detail, the findings presented in this manuscript paper are not driven by mesh-induced structure, (ii) that the spin test null models used in this manuscript [(including a modified version introduced in response to (i)] are currently the most appropriate way to mitigate against inflated false positive rates when making statistical inferences on smooth, surface-based data.

      a. Structured smoothing

      A brain surface has intrinsic curvature (Gaussian curvature, which cannot be flattened away without tearing). The size of the neighbourhood around each surface vertex will be determined by this curvature. During surface smoothing, this will make that the weight of each vertex will be also modulated by the local curvature, i.e., by large geometric structures such as poles, fissures and folds. The article by Ciantar et al (2022, https://doi.org/10.1007/s00429-022-02536-4) provides a clear illustration of this effect: even the mapping of a volume of pure noise into a brain mesh will produce a pattern over the surface strikingly similar to that obtained by mapping resting state functional data or functional data related to a motor task.

      Comment 1

      It may be important to make the readers aware of this possible limitation, which is in large part a consequence of the sparsity of the microarray sampling and the necessity to map that to a mesh. This may confound the assessments of reproducibility (results, p4). Reproducibility was assessed by comparing pairs of subgroups split from the total 6. But if the mesh is introducing structure into the data, and if the same mesh was used for both groups, then what's being reproduced could be a combination of signal from the expression data and signal induced by the mesh structure.

      Response 1

      The reviewer raises an important question regarding the potential for interpolation and smoothing on a cortical mesh to induce a common/correlated signal due to the intrinsic mesh structure. We have now generated a new null model to test this idea which indicates that intrinsic mesh structure is not inflating reproducibility in interpolated expression maps. This new null model spins the original samples prior to interpolation, smoothing and comparison between triplet splits of the six donors, with independent spins shared across the triplet. For computational tractability we took one pair of triplets and regenerated the dataset for each triplet using 10 independent spins. We used these to estimate gene-gene null reproducibility for 90 independent pairwise combinations of these 10 spins. Across these 90 permutations, the average median gene-gene correlation was R=0.03, whereas in the unspun triplet comparisons this was R=0.36. These results indicate that the primary source of the gene-level triplet reproducibility is the underlying shared gene expression pattern rather than interpolation-induced structure.

      In Methods 2a: "An additional null dataset was generated to test whether intrinsic geometry of the cortical mesh and its impact on interpolation for benchmarking analyses of DEMs and gradients (Fig S1d, Fig S2d, Fig S3c). In these analyses, the original samples were rotated on the spherical surface prior to subsequent interpolation, smoothing and gradient calculation. Due to computational constraints the full dataset was recreated only for 10 independent spins. These are referred to as the “spun+interpolated null”.

      Author response image 1.

      Figure S1d, Gene predictability was higher across all triplet-triplet pairs than when compared to spun+interpolated null.

      Comment 2

      It's also possible that mesh-induced structure is responsible in part for the "signal boost" observed when comparing raw expression data and interpolated data (fig S1a). How do you explain the signal boost of the smooth data compared with the raw data otherwise?

      Response 2

      We thank the reviewer for highlighting this issue of mesh-induced structure. We first sought to quantify the impact of mesh-induced structure through the new null model, in which the data are spun prior to interpolation. New figure S1d, S2d and S3c all show that the main findings are not driven by interpolation over a common mesh structure, but rather originate in the underlying expression data.

      Specifically, for the original Figure S1a, the reviewer highlights a limitation that we compared intersubject predictability of raw-sample to raw-sample and interpolated-to-interpolated. In this original formulation improved prediction scores for interpolated-to-interpolated (the “signal boost”) could be driven by mesh-induced structure being applied to both the input and predicted maps. We have updated this so that we are now comparing raw-to-raw and interpolated-to-raw, i.e. whether interpolated values are better estimations of the measured expression values. The new Fig S1a&b (see below) shows a signal boost in gene-level and vertex level prediction scores (delta R = +0.05) and we attribute this to the minimisation of location and measurement noise in the raw data, improving the intersubject predictability of expression levels.

      In Methods 2b: "To assess the effect of data interpolation in DEM generation we compared gene-level and vertex-level reproducibility of DEMs against a “ground truth” estimate of these reproducibility metrics based on uninterpolated expression data. To achieve a strict comparison of gene expression values between different individuals at identical spatial locations we focused these analyses on the subset of AHBA samples where a sample from one subject was within 3 mm geodesic distance of another. This resulted in 1097 instances (spatial locations) with measures of raw gene expression of one donor, and predicted values from the second donor’s un-interpolated AHBA expression data and interpolated DEM. We computed gene-level and vertex-level reproducibility of expression using the paired donor data at each of these sample points for both DEM and uninterpolated AHBA expression values. By comparing DEM reproducibility estimates with those for uninterpolated AHBA expression data, we were able to quantify the combined effect of interpolation and smoothing steps in DEM generation. We used gene-level reproducibility values from DEMs and uninterpolated AHBA expression data to compute a gene-level difference in reproducibility, and we then visualized the distribution of these difference values across genes (Fig S1a). We used gene-rank correlation to compare vertex-level reproducibility values between DEMs and uninterpolated AHBA expression data (Fig S1b)."

      Author response image 2.

      Figure S1. Reproducibility of Dense Expression Maps (DEMs) interpolated from spatially sparse postmortem measures of cortical gene expression. a, Signal boost in the interpolated DEM dataset vs. spatially sparse expression data. Restricting to samples taken from approximately the same cortical location in pairs of individuals (within 3mm geodesic distance), there was an overall improvement in intersubject spatial predictability in the interpolated maps. Furthermore, genes with lower predictability in the interpolated maps were less predictable in the raw dataset, suggesting these regions exhibit higher underlying biological variability rather than methodologically introduced bias. b, Similarly at the paired sample locations, gene-rank predictability was generally improved in DEMs vs. sparse expression data (median change in R from sparse samples to interpolated for each pair of subjects, +0.5).

      1. How do you explain that despite the difference in absolute value the combined expression maps of genes with and without cortical expression look similar? (fig S1e: in both cases there's high values in the dorsal part of the central sulcus, in the occipital pole, in the temporal pole, and low values in the precuneus and close to the angular gyrus). Could this also reflect mesh-smoothing-induced structure?

      Response 3

      As with comment 1, this is an interesting perspective that we had not fully considered. We would first like to clarify that non-cortical expression is defined from the independent datasets including the “cortex” tissue class of the human protein atlas and genes identified as markers for cortical layers or cortical cells in previous studies. This is still likely an underestimate of true cortically expressed genes as some of these “non-cortical genes” had high intersubject reproducibility scores. Nevertheless we think it appropriate to use a measure of brain expression independent of anything included in other analyses for this paper. These considerations are part of the reason we provide all gene maps with accompanying uncertainty scores for user discretion rather than simply filtering them out.

      In terms of the spatially consistent pattern of the gene ranks of Fig S1f, this consistent spatial pattern mirrors Transcriptomic Distinctiveness (r=0.52 for non-cortical genes, r=0.75 for cortical genes), so we think that as the differences in expression signatures become more extreme, the relative ranks of genes in that region are more reproducible/easier to predict.

      To assess whether mesh-smoothing-induced structure is playing a role, we carried out an additional the new null model introduced in response to comment 1, and asked if the per-vertex gene rank reproducibility of independently spun subgroup triplets showed a similar structure to that in our original analyses. Across the 90 permutations, the median correlation between vertex reproducibility and TD was R=0.10. We also recalculated the TD maps for the 10 spun datasets and the mean correlation with the original TD did not significantly differ from zero (mean R = 0.01, p=0.2, nspins =10). These results indicate that folding morphology is not the major driver of local or large scale patterning in the dataset. We have included this as a new Figure S3c.

      We have updated the text as follows:

      In Methods 3a: "Third, to assess whether the covariance in spatial patterning across genes could be a result of mesh-associated structure introduced through interpolation and smoothing, TD maps were recomputed for the spun+interpolated null datasets and compared to the original TD map (Fig S3c)."

      In Results: "The TD map observed from the full DEMs library was highly stable between all disjoint triplets of donors (Methods, Fig S3a, median cross-vertex correlation in TD scores between triplets r=0.77) and across library subsets at all deciles of DEM reproducibility (Methods, Fig S3b, cross-vertex correlation in TD scores r>0.8 for the 3rd-10th deciles), but was not recapitulated in spun null datasets (Fig S3c)."

      Author response image 3.

      Figure S3c, Correlations between TD and TD maps regenerated on datasets spun using two independent nulls, one where the rotation is applied prior to interpolation and smoothing (spun+interpolated) and one where it is applied to the already-created DEMs. In each null, the same rotation matrix is applied to all genes.

      Comment 4

      Could you provide more information about the way in which the nearest-neighbours were identified (results p4). Were they nearest in Euclidean space? Geodesic? If geodesic, geodesic over the native brain surface? over the spherically deformed brain? (Methods cite Moresi & Mather's Stripy toolbox, which seems to be meant to be used on spheres). If the distance was geodesic over the sphere, could the distortions introduced by mapping (due to brain anatomy) influence the geometry of the expression maps?

      Response 4

      We have clarified in the Methods that the mapping is to nearest neighbors on the spherically-inflated surface.

      The new null model we have introduced in response to comments 1 & 3 preserves any mesh-induced structure alongside any smoothing-induced spatial autocorrelations, and the additional analyses above indicate that main results are not induced by systematic mesh-related interpolation signal. In response to an additional suggestion from the reviewer (Comment 13), we also assessed whether local distortions due to the mesh could be creating apparent border effects in the data, for instance at the V1-V2 boundary. At the V1-V2 border, which coincides anatomically with the calcarine sulcus, we computed the 10 genes with the highest expression gradient along this boundary in the actual dataset and the spun-interpolated null. The median test expression gradients along this border was higher than in any of the spun datasets, indicating that these boundary effects are not explained by the interpolation and cortical geometry effects on the data (new Fig S2d). The text has been updated as follows:

      In Methods 1: "For cortical vertices with no directly sampled expression, expression values were interpolated from their nearest sampled neighbor vertex on the spherical surface (Moresi and Mather, 2019) (Fig 1b)."

      In Methods 2: "We used the spun+interpolated null to test whether high gene gradients could be driven by non-uniform interpolation across cortical folds. We quantified the average gradient for all genes along the V1-V2 border in the atlas, as well as for 10 iterations of the atlas where the samples were spun prior to interpolation. We computed the median gradient magnitude for the 20 top-ranked genes for each (Fig S2d)."

      Author response image 4.

      Figure S2d Mean of gradient magnitudes for 20 genes with largest gradients along V1-V2 border, compared to values along the same boundary on the spun+interpolated null atlas. Gradients were higher in the actual dataset than in all spun version indicating this high gradient feature is not primarily due to the effects of calcarine sulcus morphology on interpolation

      Comment 5

      Could you provide more information about the smoothing algorithm? Volumetric, geodesic over the native mesh, geodesic over the sphere, averaging of values in neighbouring vertices, cotangent-weighted laplacian smoothing, something else?

      Response 5

      We are using surface-based geodesic over the white surface smoothing described in Glasser et al., 2013 and used in the HCP workbench toolbox (https://www.humanconnectome.org/software/connectome-workbench). We have updated the methods to clarify this.

      In Methods 1: "Surface expression maps were smoothed using the Connectome Workbench toolbox (Glasser et al. 2013) with a 20mm full-width at half maximum Gaussian kernel , selected to be consistent with this sampling density (Fig 1c)."

      Comment 6

      Could you provide more information about the method used for computing the gradient of the expression maps (p6)? The gradient and the laplacian operator are related (the laplacian is the divergence of the gradient), which could also be responsible in part for the relationships observed between expression transitions and brain geometry.

      Response 6

      We are using Connectome Workbench’s metric gradient command for this Glasser et al., 2013 and used in the HCP workbench pipeline. The source code for gradient calculation can be found here: https://github.com/Washington-University/workbench/blob/131e84f7b885d82af76e be21adf2fa97795e2484/src/Algorithms/AlgorithmMetricGradient.cxx

      In Methods 2: >For each of the resulting 20,781 gene-level expression maps, the orientation and magnitude of gene expression change at each vertex (i.e. the gradient) was calculated for folded, inflated, spherical and flattened mesh representations of the cortical sheet using Connectome Workbench’s metric gradient command (Glasser et al. 2013).

      b. Potentially inflated FPR for spin tests on autocorrelated data."

      Spin tests are extensively used in this work and it would be useful to make the readers aware of their limitations, which may confound some of the results presented. Spin tests aim at establishing if two brain maps are similar by comparing a measure of their similarity over a spherical deformation of the brains against a distribution of similarities obtained by randomly spinning one of the spheres. It is not clear which specific variety of spin test was used, but the original spin test has well known limitations, such as the violation of the assumption of spatial stationarity of the covariance structure (not all positions of the spinning sphere are equivalent, some are contracted, some are expanded), or the treatment of the medial wall (a big hole with no data is introduced when hemispheres are isolated).

      Another important limitation results from the comparison of maps showing autocorrelation. This problem has been extensively described by Markello & Misic (2021). The strong smoothing used to make a continuous map out of just ~1300 samples introduces large, geometry dependent autocorrelations. Indeed, the expression maps presented in the manuscript look similar to those with the highest degree of autocorrelation studied by Markello & Misic (alpha=3). In this case, naive permutations should lead to a false positive rate ~46% when comparing pairs of random maps, and even most sophisticated methods have FPR>10%.

      Comment 7 There's currently several researchers working on testing spatial similarity, and the readers would benefit from being made aware of the problem of the spin test and potential solutions. There's also packages providing alternative implementations of spin tests, such as BrainSMASH and BrainSpace, which could be mentioned.

      Response 7

      We thank the reviewer for raising the issue of null models. First, with reference to the false positive rate of 46% when maps exhibit spatial autocorrelation, we absolutely agree that this is an issue that must be accounted for and we address this using the spin test. We acknowledge there has been other work on nulls such as BrainSMASH and BrainSpace. Nevertheless in the Markello and Misic paper to which the reviewer refers, the BrainSmash null models perform worse with smoother maps (with false positive rates approaching 30% in panel e below), whereas the spin test maintains false positives rates below 10%.

      Author response image 5.

      We have added a brief description of the challenge and our use of the spin test.

      In Methods 2a: "Cortical maps exhibit spatial autocorrelation that can inflate the False Positive Rate, for which a number of methods have been proposed(Alexander-Bloch et al. 2018; Burt et al. 2020; Vos de Wael et al. 2020). At higher degrees of spatial smoothness, this high False Positive Rate is most effectively mitigated using the spin test(Alexander-Bloch et al. 2018; Markello and Misic 2021; Vos de Wael et al. 2020). In the following analyses when generating a test statistic comparing two spatial maps, to generate a null distribution, we computed 1000 independent spins of the cortical surface using https://netneurotools.readthedocs.io, and applied it to the first map whilst keeping the second map unchanged. The test statistic was then recomputed 1000 times to generate a null distribution for values one might observe by chance if the maps shared no common organizational features. This is referred to throughout as the “spin test” and the derived p-values as pspin."

      Comment 8

      Could it be possible to measure the degree of spatial autocorrelation?

      Response 8

      We agree this could be a useful metric to generate for spatial cortical maps. However, there are multiple potential metrics to choose from and each of the DEMs would have their own value. To address this properly would require the creation of a set of validated tools and it is not clear how we could summarize this variety of potential metrics for 20k genes. Moreover, as discussed above the spin method is an adequate null across a range of spatial autocorrelation degrees, thus while we agree that in general estimation of spatial smoothness could be a useful imaging metric to report, we consider that it is beyond the scope of the current manuscript.

      Comment 9

      Could you clarify which version of the spin test was used? Does the implementation come from a package or was it coded from scratch?

      Response 9

      As Markello & Misic note, at the vertex level, the various implementations of the spin test become roughly equivalent to the ‘original’ Alexander-Bloch et al., implementation. We used took the code for the ‘original’ version implemented in python here: https://netneurotools.readthedocs.io/en/latest/_modules/netneurotools/stats.html# gen_spinsamples.

      This has been updated in the methods (see Response 7).

      Comment 10

      Cortex and non-cortex vertex-level gene rank predictability maps (fig S1e) are strikingly similar. Would the spin test come up statistically significant? What would be the meaning of that, if the cortical map of genes not expressed in the cortex appeared to be statistically significantly similar to that of genes expressed in the cortex?

      Response 10

      Please see response to comment 3, which also addresses this observation.

      Reviewer #2 (Public Review):

      The authors convert the AHBA dataset into a dense cortical map and conduct an impressively large number of analyses demonstrating the value of having such data.

      I only have comments on the methodology.

      Comment 1

      First, the authors create dense maps by simply using nearest neighbour interpolation followed by smoothing. Since one of the main points of the paper is the use of a dense map, I find it quite light in assessing the validity of this dense map. The reproducibility values they calculate by taking subsets of subjects are hugely under-powered, given that there are only 6 brains, and they don't inform on local, vertex-wise uncertainties). I wonder if the authors would consider using Gaussian process interpolation. It is really tailored to this kind of problem and can give local estimates of uncertainty in the interpolated values. For hyperparameter tuning, they could use leave-one-brain-out for that.

      I know it is a lot to ask to change the base method, as that means re-doing all the analyses. But I think it would strengthen the paper if the authors put as much effort in the dense mapping as they did in their downstream analyses of the data.

      Response 1

      We thank the reviewer for the suggestion to explore Gaussian process interpolation. We have implemented this for our dataset and attempted to compare this with our original method with the 3 following tests: i) intertriplet reproducibility of individual gene maps, ii) microscale validations: area markers, iii) macroscale validations: bio patterns.

      Overall, compared to our original nearest-neighbor interpolation method, GP regression (i) did not substantially improve gene-level reproducibility of expression maps (median correlation increase of R=0.07 which was greater for genes without documented protein expression in cortex): ii) substantially worsened performance in predicting areal marker genes and iii) showed similar but slightly worse performance at predicting macroscale patterns from Figure 1.

      Given the significantly poorer performance on one of our key tests (ii) we have opted not to replace our original database, but we do now include code for the alternative GP regression methodology in the github repository so others can reproduce/further develop these methods.

      Author response image 6.

      ii) Genes ranked by mean expression gradient from current DEMs (left) and Gaussian process-derived interpolation maps (right). Established Human and macaque markers are consistently higher-ranked in DEM maps. iii) Figure 1 Interpolated vs GP regression

      Author response table 1.

      Comment 2

      It is nice that the authors share some code and a notebook, but I think it is rather light. It would be good if the code was better documented, and if the user could have access to the non-smoothed data, in case they was to produce their own dense maps. I was only wondering why the authors didn't share the code that reproduces the many analyses/results in the paper.

      Response 2

      We thank the reviewer for this suggestion. In response we have updated the shared github repository (https://github.com/kwagstyl/magicc). This now includes code and notebooks to reproduce the main analyses and figures.

      Reviewer #1 (Recommendations For The Authors):

      Minor comments

      Comment 11

      p4 mentions Fig S1h, but the supp figures only goes from S1a to S1g

      Response 11

      We thank the reviewer for capturing this error. It was in fact referring to what is now Fig S1h and has been updated.

      Comment 12

      It would be important that the authors share all the code used to produce the results in the paper in addition to the maps. The core methodological contribution of the work is a series of continuous maps of gene expression, which could become an important tool for annotation in neuroimaging research. Many arbitrary (reasonable) decisions were made, it would be important to enable users to evaluate their influence on the results.

      Response 12

      We thank both reviewers for this suggestion. We have updated the github to be able to reproduce the dense maps and key figures with our methods.

      Comment 13

      p5: Could the sharp border reflect the effect of the geometry of the calcarine sulcus on map smoothing? More generally, could there be an effect of folds on TD?

      Response 13

      Please see our response to Reviewer 1, Comment 1 above, where we introduce the new null models now analyzed to test for effects of mesh geometry on our findings. These new null models - where original source data were spun prior to interpolation suggest that neither the sharp V1/2 border or the TD map are effects of mesh geometry. Specifically: (i) , the magnitudes of gradients along the V1/2 boundary from null models were notably smaller than those in our original analyses (see new figure S2d), and (ii) TD maps computed from the new null models showed no correlation with TD maps from ur original analyses (new Figure S3c, mean R = 0.01, p=0.2, nspins =10).

      Comment 14

      p5: Similar for the matching with the areas in Glasser's parcellation: the definition of these areas involves alignment through folds (based on freesurfer 'sulc' map, see Glasser et al 2016). If folds influence the geometry of TDs, could that influence the match?

      Response 14

      We note that Fig S3c provided evidence that folding was not the primary driver of the TD patterning. However, it is true that Glasser et al. use both neuroanatomy (folding, thickness and myelin) and fMRI-derived maps to delineate their cortical areas. As such Figure 2 f & g aren’t fully independent assessments. Nevertheless the reason that these features are used is that many of the sulci in question have been shown to reliably delineate cytoarchitectonic boundaries (Fischl et al., 2008).

      In Results: "A similar alignment was seen when comparing gradients of transcriptional change with the spatial orientation of putative cortical areas defined by multimodal functional and structural in vivo neuroimaging(Glasser et al., 2016) (expression change running perpendicular to area long-axis, pspin<0.01, Fig 2g, Methods)."

      Comment 15

      p6: TD peaks are said to overlap with functionally-specialised regions. A comment on why audition is not there, nor language, but ba 9-46d is? Would that suggest a lesser genetic regulation of those functions?

      Response 15

      The reviewer raises a valid point and this was a result that we were also surprised by. The finding that the auditory cortex is not as microstructurally distinctive as, say V1, is consistent with other studies applying dimensionality-reduction techniques to multimodal microstructural receptor data (e.g. Zilles et al., 2017, Goulas et al., 2020). These studies found that the auditory microstructure is not as extreme as either visual and somatomotor areas. From a methodological view point, the primary auditory cortex is significantly smaller than both visual and somatomotor areas, and therefore is captured by fewer independent samples, which could reduce the detail in which its structure is being mapped in our dataset.

      For the frontal areas, we would note that i) the frontal peak is the smallest of all peaks found and was more strongly characterised by low z-score genes than high z-score. ii) the anatomical areas in the frontal cortex are much more highly variable with respect to folding morphology (e.g. Rajkowska 1995). The anatomical label of ba9-46d (and indeed all other labels) were automatically generated as localisers rather than strict area labels. We have clarified this in the text as follows:

      In Methods 3a: "Automated labels to localize TD peaks were generated based on their intersection with a reference multimodal neuroimaging parcellation of the human cortex(Glasser et al., 2016). Each TD was given the label of the multimodal parcel that showed greatest overlap (Fig 2b)."

      Comment 16.

      p7: The proposition that "there is a tendency for cortical sulci to run perpendicular to the direction of fastest transcriptional change", could also be "there is a tendency for the direction of fastest transcriptional change to run perpendicular to cortical sulci"? More pragmatically, this result from the geometry of transcriptional maps being influenced by sulcal geometry in their construction.

      Response 16

      Please see our response to Reviewer 1, Comment 1 above, where we introduce the new null models now analyzed to test for effects of mesh geometry on our findings. These models indicate that the topography of interpolated gene expression maps do not reflect influences of sulcal geometry on their construction.

      Comment 17

      p7: TD transitions are indicated to precede folding. This is based on a consideration of folding development based on the article by Chi et al 1977, which is quite an old reference. In that paper, the authors estimated the tempo of human folding development based on the inspection of photographs, which may not be sufficient for detecting the first changes in curvature leading to folds. The work of the Developing Human Connectome consortium may provide a more recent indication for timing. In their data, by PCW 21 there's already central sulcus, pre-central, post-central, intra-parietal, superior temporal, superior frontal which can be detected by computing the mean curvature of the pial surface (I can only provide a tweet for reference: https://twitter.com/R3RT0/status/1617119196617261056). Even by PCW 9-13 the callosal sulcus, sylvian fissure, parieto-occipital fissure, olfactory sulcus, cingulate sulcus and calcarine fissure have been reported to be present (Kostovic & Vasung 2009).

      Response 17

      Our field lacks the data necessary to provide a comprehensive empirical test for the temporal ordering of regional transcriptional profiles and emergence of folding. Our results show that transcriptional identities of V1 and TGd are - at least - present at the very earliest stages of sulcation in these regions. In response to the reviewers comment we have updated with a similar fetal mapping project which similarly shows evidence of the folds between weeks 17-21 and made the language around directionality more cautious.

      In Results: "The observed distribution of these angles across vertices was significantly skewed relative to a null based on random alignment between angles (pspin<0.01, Fig 2f, Methods) - indicating that there is indeed a tendency for cortical sulci and the direction of fastest transcriptional change to run perpendicular to each other (pspin<0.01, Fig 2f).

      As a preliminary probe for causality, we examined the developmental ordering of regional folding and regional transcriptional identity. Mapping the expression of high-ranking TD genes in fetal cortical laser dissection microarray data(Miller et al., 2014) from 21 PCW (Post Conception Weeks) (Methods) showed that the localized transcriptional identity of V1 and TGd regions in adulthood is apparent during the fetal periods when folding topology begins to emerge (Chi et al. 1977; Xu et al. 2022) (Fig " S2d).

      In Discussion: "By establishing that some of these cortical zones are evident at the time of cortical folding, we lend support to a “protomap”(Rakic 1988; O'Leary 1989; O'Leary et al. 2007; Rakic et al. 2009) like model where the placement of some cortical folds is set-up by rapid tangential changes in cyto-laminar composition of the developing cortex(Ronan et al., 2014; Toro and Burnod, 2005; Van Essen, 2020). The DEMs are derived from fully folded adult donors, and therefore some of the measured genetic-folding alignment might also be induced by mechanical distortion of the tissue during folding(Llinares-Benadero and Borrell 2019; Heuer and Toro 2019). However, no data currently exist to conclusively assess the directionality of this gene-folding relationship."

      Comment 18

      p7: In my supplemental figures (obtained from biorxiv, because I didn't find them among the files submitted to eLife) there's no S2j (only S2a-S2i).

      Response 18

      We apologize, this figure refers to S3k (formerly S3j), rather than S2j. We have updated the main text.

      Comment 19 p7: It is not clear from the methods (section 3b) how the adult and fetal brains were compared. Maybe using MSM (Robinson et al 2014)?

      Response 19

      We have now clarified this in Methods text as reproduced below.

      In Methods 3b: "We averaged scaled regional gene expression values between donors per gene, and filtered for genes in the fetal LDM dataset that were also represented in the adult DEM dataset - yielding a single final 20,476*235 gene-by-sample matrix of expression values for the human cortex at 21 PCW. Each TD peak region was then paired with the closest matching cortical label within the fetal regions. This matrix was then used to test if each TD expression signature discovered in the adult DEM dataset (Fig 2, Table 3) was already present in similar cortical regions at 21 PCW."

      Comment 20

      p7: WGCNA is used prominently, could you provide a brief introduction to its objectives? The gene coexpression networks are produced after adjusting the weight of the network edges to follow a scale-free topology, which is meant to reflect the nature of protein-protein interactions. Soft thresholding increases contrast, but doesn't this decrease a potential role of infinitesimal regulatory signals?

      Response 20

      We agree with the reviewer that the introduction to WGCNA needed additional details and have amended the Results (see below). One limitation of WGCNA-derived associations is that it will downweigh the role of smaller relationships including potentially important regulatory signals. WGCNA methods have been titrated to capture strong relationships. This is an inherent limitation of all co-expression driven methods which lead to an incomplete characterisation of the molecular biology. Nevertheless we feel these stronger relationships are still worth capturing and interrogating. We have updated the text to introduce WGCNA and acknowledge this potential weakness in the approach.

      In Results: "Briefly, WGCNA constructs a constructs a connectivity matrix by quantifying pairwise co-expression between genes, raising the correlations to a power (here 6) to emphasize strong correlations while penalizing weaker ones, and creating a Topological Overlap Matrix (TOM) to capture both pairwise similarities expression and connectivity. Modules of highly interconnected genes are identified through hierarchical clustering. The resultant WGCNA modules enable topographic and genetic integration because they each exist as both (i) a single expression map (eigenmap) for spatial comparison with neuroimaging data (Fig 3a,b, Methods) and, (ii) a unique gene set for enrichment analysis against marker genes systematically capturing multiple scales of cortical organization, namely: cortical layers, cell types, cell compartments, protein-protein interactions (PPI) and GO terms (Methods, Table S2 and S4)."

      Comment 21

      WGCNA modules look even more smooth than the gene expression maps. Are these maps comparable to low frequency eigenvectors? Autocorrelation in that case should be very strong?

      Response 21

      These modules are smooth as they are indeed eigenvectors which likely smooth out some of the more detailed but less common features seen in individual gene maps. These do exhibit high degrees of autocorrelation, nevertheless we are applying the spin test which is currently the appropriate null model for spatially autocorrelated cortical maps (Response 7).

      Comment 22

      If the WGCNA modules provide an orthogonal basis for surface data, is it completely unexpected that some of them will correlate with low-frequency patterns? What would happen if random low frequency patterns were generated? Would they also show correlations with some of the 16 WGCNA modules?

      Response 22

      We agree with the reviewer that if we used a generative model like BrainSMASH, we would likely see similar low frequency patterns. However, the inserted figure in Response 7 from Makello & Misic provide evidence that is not as conservative a null as the spin test when data exhibit high spatial autocorrelation. The spatial enrichment tests carried out on the WGCNA modules are all carried out using the spin test.

      Comment 23

      In part (a) I commented on the possibility that brain anatomy may introduce artifactual structure into the data that's being mapped. But what if the relationship between brain geometry and brain organisation were deeper than just the introduction of artefacts? The work of Lefebre et al (2014, https://doi.org/10.1109/ICPR.2014.107; 2018, https://doi.org/10.3389/fnins.2018.00354) shows that clustering based on the 3 lowest frequency eigenvectors of the Laplacian of a brain hemisphere mesh produce an almost perfect parcellation into lobes, with remarkable coincidences between parcel boundaries and primary folds and fissures. The work of Pang et al (https://doi.org/10.1101/2022.10.04.510897) suggests that the geometry of the brain plays a critical role in constraining its dynamics: they analyse >10k task-evoked brain maps and show that the eigenvectors of the brain laplacian parsimoniously explain the activity patterns. Could brain anatomy have a downward effect on brain organisation?

      Response 23

      The reviewer raises a fascinating extension of our work identifying spatial modes of gene expression. We agree that these are low frequency in nature, but would first like to note that the newly introduced null model indicates that the overlaps with salient neuroanatomical features are inherent in the expression data and not purely driven by anatomy in a methodological sense.

      Nevertheless we absolutely agree there is likely to be a complex multidirectional interplay between genetic expression patterns through development, developing morphology and the “final” adult topography of expression, neuroanatomical and functional patterns.

      We think that the current manuscript currently contains a lot of in depth analyses of these expression data, but agree that a more extensive modeling analysis of how expression might pattern or explain functional activation would be a fascinating follow on, especially in light of these studies from Pang and Lefebre. Nevertheless we think that this must be left for a future modeling paper integrating these modes of microscale, macroscale and functional anatomy.

      In Discussion: "Indeed, future work might find direct links between these module eigenvectors and similar low-frequency eigenvectors of cortical geometry have been used as basis functions to segment the cortex (Lefèvre et al. 2018) and explain complex functional activation patterns(Pang et al. 2023)."

      Comment 24

      On p11: ASD related to rare, deleterious mutations of strong effect is often associated with intellectual disability (where the social interaction component of ASD is more challenging to assess). Was there some indication of a relationship with that type of cognitive phenotype?

      Response 24

      Across the two ABIDE cohorts, the total number of those with ASD and IQ <70, which is the clinical threshold for intellectual disability was n=10, which unfortunately did not allow us to conduct a meaningful test of whether ID impacts the relationship between imaging changes in ASD and the expression maps of genes implicated in ASD by rare variants.

      Comment 25

      Could you clarify if the 6 donors were aligned using the folding-based method in freesurfer?

      Response 25

      The 6 donors were aligned using MSMsulc (Robinson et al., 2014), which is a folding based method from the HCP group. This is now clarified in the methods.

      In Methods 1: "Cortical surfaces were reconstructed for each AHBA donor MRI using FreeSurfer(Fischl, 2012), and coregistered between donors using surface matching of individuals’ folding morphology (MSMSulc) (Robinson et al., 2018)."

      Comment 26

      The authors make available a rich resource and a series of tools to facilitate their use. They have paid attention to encode their data in standard formats, and their code was made in Python using freely accessible packages instead of proprietary alternatives such as matlab. All this should greatly facilitate the adoption of the approach. I think it would be important to state more explicitly the conceptual assumptions that the methodology brings. In the same way that a GWAS approach relies on a Mendelian idea that individual alleles encode for phenotypes, what is the idea about the organisation of the brain implied by the orthogonal gene expression modules? Is it that phenotypes - micro and macro - are encoded by linear combinations of a reduced number of gene expression patterns? What would be the role of the environment? The role of non-genic regulatory regions? Some modalities of functional organisation do not seem to be encoded by the expression of any module. Is it just for lack of data or should this be seen as the sign for a different organisational principle? Likewise, what about the aspects of disorders that are not captured by expression modules? Would that hint, for example, to stronger environmental effects? What about linear combinations of modules? Nonlinear? Overall, the authors adopt implicitly, en passant, a gene-centric conceptual standpoint, which would benefit from being more clearly identified and articulated. There are citations to Rakic's protomap idea (I would also cite the original 1988 paper, and O'Leary's 1989 "protocortex" paper stressing the role of plasticity), which proposes that a basic version of brain cytoarchitecture is genetically determined and transposed from the proliferative ventricular zone regions to the cortical plate through radial migration. In p13 the authors indicate that their results support Rakic's protomap. Additionally, in p7 the authors suggest that their results support a causal arrow going from gene expression to sulcal anatomy. The reviews by O'leary et al (2007), Ronan & Fletcher (2014, already cited), Llinares-Benadero & Borrell (2019) could be considered, which also advocate for a similar perspective. For nuances on the idea that molecular signals provide positional information for brain development, the article by Sharpe (2019, DOI: 10.1242/dev.185967) is interesting. For nuances on the gene-centric approach of the paper the articles by Rockmann (2012, DOI: 10.1111/j.1558-5646.2011.01486.x) but also from the ENCODE consortium showing the importance of non-genic regions of the genome ("Perspectives on ENCODE" 2020 DOI: 10.1038/s41586-021-04213-8) could be considered. I wouldn't ask to cite ideas from the extended evolutionary synthesis about different inheritance systems (as reviewed by Jablonka & Lamb, DOI: 10.1017/9781108685412) or the idea of inherency (Newman 2017, DOI: 10.1007/978-3-319-33038-9_78-1), but the authors may find them interesting. Same goes for our own work on mechanical morphogenesis which expands on the idea of a downward causality (Heuer and Toro 2019, DOI: 10.1016/j.plrev.2019.01.012)

      Response 26

      We thank the reviewer for recommending these papers, which we enjoyed reading and have deepened our thinking on the topic. In addition to toning down some of the language with respect to causality that our data cannot directly address, we have included additional discussion and references as follows:

      In Discussion: "By establishing that some of these cortical zones are evident at the time of cortical folding, we lend support to a “protomap”(Rakic 1988; O'Leary 1989; O'Leary et al. 2007; Rakic et al. 2009) like model where the placement of some cortical folds is set-up by rapid tangential changes in cyto-laminar composition of the developing cortex(Ronan et al., 2014; Toro and Burnod, 2005; Van Essen, 2020). The DEMs are derived from fully folded adult donors, and therefore some of the measured genetic-folding alignment might also be induced by mechanical distortion of the tissue during folding(Llinares-Benadero and Borrell 2019; Heuer and Toro 2019). However, no data currently exist to conclusively assess the directionality of this gene-folding relationship.

      Overall, the manuscript is very interesting and a great contribution. The amount of work involved is impressive, and the presentation of the results very clear. My comments indicate some aspects that could be made more clear, for example, providing additional methodological information in the supplemental material. Also, making aware the readers and future users of MAGICC of the methodological and conceptual challenges that remain to be addressed in the future for this field of research.

      Reviewer #2 (Recommendations For The Authors):

      Comment 1

      The supplementary figures seem to be missing from the eLife submission (although I was able to find them on europepmc)

      Response 1

      We apologize that these were not included in the documents sent to reviewers. The up-to-date supplementary figures are included in this resubmission and again on biorxiv.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study combines genetically barcoded rabies viruses with spatial transcriptomics in vivo in the mouse brain to decode connectivity of neural circuits. The data generated by the combination of these approaches in this new way is mostly convincing as the authors provide validation and proof-of-concept that the approach can be successful. While this new combination of established techniques has promise for elucidating brain connectivity, there are still some nuances and caveats to the interpretations of the results that are lacking especially with regards to noting unexpected barcodes either due to unexpected/novel connections or unexpected rabies spread.

      In this revised manuscript, we added a new control experiment and additional analyses to address two main questions from the reviewers: (1) How the threshold of glycoprotein transcript counts used to identify source cells was determined, and (2) whether the limited long-range labeling was expected in the trans-synaptic experiment. The new experiments and analyses validated the distribution of source cells and presynaptic cells observed in the original barcoded transsynaptic tracing experiment and validated the choice of the threshold of glycoprotein transcripts. As the reviewers suggested, we also included additional discussion on how future experiments can improve upon this study, including strategies to improve source cell survival and minimizing viral infection caused by leaky expression of TVA. We also provided additional clarification on the analyses for both the retrograde labeling experiment and the trans-synaptic tracing experiment. We modified the Results and Discussion sections on the trans-synaptic tracing experiment to improve clarity to general readers. Detailed changes to address specific comments by reviewers are included below.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this preprint, Zhang et al. describe a new tool for mapping the connectivity of mouse neurons. Essentially, the tool leverages the known peculiar infection capabilities of Rabies virus: once injected into a specific site in the brain, this virus has the capability to "walk upstream" the neural circuits, both within cells and across cells: on one hand, the virus can enter from a nerve terminal and infect retrogradely the cell body of the same cell (retrograde transport). On the other hand, the virus can also spread to the presynaptic partners of the initial target cells, via retrograde viral transmission.

      Similarly to previously published approaches with other viruses, the authors engineer a complex library of viral variants, each carrying a unique sequence ('barcode'), so they can uniquely label and distinguish independent infection events and their specific presynaptic connections, and show that it is possible to read these barcodes in-situ, producing spatial connectivity maps. They also show that it is possible to read these barcodes together with endogenous mRNAs, and that this allows spatial mapping of cell types together with anatomical connectivity.

      The main novelty of this work lies in the combined use of rabies virus for retrograde labeling together with barcoding and in-situ readout. Previous studies had used rabies virus for retrograde labeling, albeit with low multiplexing capabilities, so only a handful of circuits could be traced at the same time. Other studies had instead used barcoded viral libraries for connectivity mapping, but mostly focused on the use of different viruses for labeling individual projections (anterograde tracing) and never used a retrograde-infective virus.

      The authors creatively merge these two bits of technology into a powerful genetic tool, and extensively and convincingly validate its performance against known anatomical knowledge. The authors also do a very good job at highlighting and discussing potential points of failure in the methods.

      We thank the reviewer for the enthusiastic comments.

      Unresolved questions, which more broadly affect also other viral-labeling methods, are for example how to deal with uneven tropism (ie. if the virus is unable or inefficient in infecting some specific parts of the brain), or how to prevent the cytotoxicity induced by the high levels of viral replication and expression, which will tend to produce "no source networks", neural circuits whose initial cell can't be identified because it's dead. This last point is particularly relevant for in-situ based approaches: while high expression levels are desirable for the particular barcode detection chemistry the authors chose to use (gap-filling), they are also potentially detrimental for cell survival, and risk producing extensive cell death (which indeed the authors single out as a detectable pitfall in their analysis). This is likely to be one of the major optimisation challenges for future implementations of these types of barcoding approaches.

      As the reviewer suggested, we included additional discussion about tropism and cytotoxicity in the revised Discussion. Our sensitivity for barcode detection is sufficient, since we estimated (based on manual proofreading) that most barcoded neurons had more than ten counts of a barcode in the trans-synaptic tracing experiment. The high sensitivity may potentially allow us to adapt next-generation rabies virus with low replication, such as the third generation ΔL rabies virus (Jin et al, 2022, biorxiv) in future optimizations.

      Overall the paper is well balanced, the data are well presented and the conclusions are strongly supported by the data. Impact-wise, the method is definitely going to be useful for the neurobiology research community.

      We thank the reviewer for her/his enthusiasm.

      Reviewer #2 (Public Review):

      Although the trans-synaptic tracing method mediated by the rabies virus (RV) has been widely utilized to infer input connectivity across the brain to a genetically defined population in mice, the analysis of labeled pre-synaptic neurons in terms of cell-type has been primarily reliant on classical low-throughput histochemical techniques. In this study, the authors made a significant advance toward high-throughput transcriptomic (TC) cell typing by both dissociated single-cell RNAseq and the spatial TC method known as BARseq to decode a vast array of molecularly labeled ("barcoded") RV vector library. First, they demonstrated that a barcoded-RV vector can be employed as a simple retrograde tracer akin to AAVretro. Second, they provided a theoretical classification of neural networks at the single-cell resolution that can be attained through barcoded-RV and concluded that the identification of the vast majority (ideally 100%) of starter cells (the origin of RV-based trans-synaptic tracing) is essential for the inference of single-cell resolution neural connectivity. Taking this into consideration, the authors opted for the BARseq-based spatial TC that could, in principle, capture all the starter cells. Finally, they demonstrated the proof-of-concept in the somatosensory cortex, including infrared connectivity from 381 putative pre-synaptic partners to 31 uniquely barcoded-starter cells, as well as many insightful estimations of input convergence at the cell-type resolution in vivo. While the manuscript encompasses significant technical and theoretical advances, it may be challenging for the general readers of eLife to comprehend. The following comments are offered to enhance the manuscript's clarity and readability.

      We modified the Results and Discussion sections on the trans-synaptic tracing experiment to improve clarity to general readers. We separated out the theoretical discussion about barcode sharing networks as a separate subsection, explicitly stated the rationale of how different barcode sharing networks are distinguished in the in situ trans-synaptic tracing experiment, and added additional discussion on future optimizations. Detailed descriptions are provided below.

      Major points:

      1. I find it difficult to comprehend the rationale behind labeling inhibitory neurons in the VISp through long-distance retrograde labeling from the VISal or Thalamus (Fig. 2F, I and Fig. S3) since long-distance projectors in the cortex are nearly 100% excitatory neurons. It is also unclear why such a large number of inhibitory neurons was labeled at a long distance through RV vector injections into the RSP/SC or VISal (Fig. 3K). Furthermore, a significant number of inhibitory starter cells in the somatosensory cortex was generated based on their projection to the striatum (Fig. 5H), which is unexpected given our current understanding of the cortico-striatum projections.

      The labeling of inhibitory neurons can be explained by several factors in the three different experiments.

      (1) In the scRNAseq-based retrograde labeling experiment (Fig. 2 and Fig. S3), the injection site VISal is adjacent to VISp. Because we dissected VISp for single-cell RNAseq, we may find labeled inhibitory neurons at the VISp border that extend short axons into VISal. We explained this in the revised Results.

      (2) In the in situ sequencing-based retrograde labeling experiment (Fig. 3,4), the proximity between the two injection sites VISal and RSP/SC, and the sequenced areas (which included not only VISp but also RSP) could also contribute to labeling through local axons of inhibitory neurons. Furthermore, because we also sequenced midbrain regions, inhibitory neurons in the superior colliculus could pick up the barcodes through local axons. We included an explanation of this in the revised Results.

      (3) In the trans-synaptic tracing experiment, we speculate that low level leaky expression from the TREtight promoter led to non-Cre-dependent expression in many neurons. To test this hypothesis, we first performed a control injection in which we saw that the fluorescent protein expression were indeed restricted to layer 5, as expected from corticostriatal labeling. Based on the labeling pattern, we estimated that about 12 copies of the glycoprotein transcript per cell would likely be needed to achieve fluorescent protein expression. Since many source cells in our experiment were below this threshold, these results support the hypothesis that the majority of source cells with low level expression of the glycoprotein were likely Cre-independent. Because these cells could still contribute to barcode sharing networks, we could not exclude them as in a conventional bulk trans-synaptic tracing experiment. In future experiments, we can potentially reduce this population by improving the helper AAV viruses used to express TVA and the glycoprotein. We included this explanation in Results and more detailed analysis in Supplementary Note 2, and discussed potential future optimizations in the Discussion. This new analysis in Supplementary Note 2 is also related to the Reviewer’s question regarding the threshold used for determining source cells (see below).

      1. It is unclear as to why the authors did not perform an analysis of the barcodes in Fig. 2. Given that the primary objective of this manuscript is to evaluate the effectiveness of multiplexing barcoded technology in RV vectors, I would strongly recommend that the authors provide a detailed description of the barcode data here, including any technical difficulties or limitations encountered, which will be of great value in the future design of RV-barcode technologies. In case the barcode data are not included in Fig. 2, I would suggest that the authors consider excluding Fig. 2 and Fig. S1-S3 in their entirety from the manuscript to enhance its readability for general readers.

      In the single-cell RNAseq-based retrograde tracing, all barcodes recovered matched to known barcodes in the corresponding library. We included a short description of these results in the revised manuscript.

      1. Regarding the trans-synaptic tracing utilizing a barcoded RV vector in conjunction with BARseq decoding (Fig. 5), which is the core of this manuscript, I have a few specific questions/comments. First, the rationale behind defining cells with only two rolonies counts of rabies glycoprotein (RG) as starter cells is unclear. Why did the authors not analyze the sample based on the colocalization of GFP (from the AAV) and mCherry (from the RV) proteins, which is a conventional method to define starter cells? If this approach is technically difficult, the authors could provide an independent histochemical assessment of the detection stringency of GFP positive cells based on two or more colonies of RG.

      In situ sequencing does not preserve fluorescent protein signals, so we used transcript counts to determine which cells expressed the glycoprotein. We have added new analyses in the Results and in Supplementary Note 2 to determine the transcript counts that were equivalent to cells that had detectable BFP expression. We found that BFP expression is equivalent to ~12 counts of the glycoprotein transcript per cell, which is much higher than the threshold we used. However, we could not solely rely on this estimate to define the source cells, because cells that had lower expression of the glycoprotein (possibly from leaky Cre-independent expression) may still pass the barcodes to presynaptic cells. This can lead to an underestimation of double-labeled and connected-source networks and an overestimation of single-source networks and can obscure synaptic connectivity at the cellular resolution. We thus used a very conservative threshold of two transcripts in the analysis. This conservative threshold will likely overestimate the number of source cells that shared barcodes and underestimate the number of single-source networks. Since this is a first study of barcoded transsynaptic tracing in vivo, we chose to err on the conservative side to make sure that the subsequent analysis has single-cell resolution. Future characterization and optimization may lead to a better threshold to fully utilize data.

      Second, it is difficult to interpret the proportion of the 2,914 barcoded cells that were linked to barcoded starter cells (single-source, double-labeled, or connected-source) and those that remained orphan (no-source or lost-source). A simple table or bar graph representation would be helpful. The abundance of the no-source network (resulting from Cre-independent initial infection of the RV vector) can be estimated in independent negative control experiments that omit either Cre injection or AAV-RG injection. The latter, if combined with BARseq decoding, can provide an experimental prediction of the frequency of double-labeled events since connected-source networks are not labeled in the absence of RG.

      We have added Table 2, which breaks down the 2,914 barcoded cells based on whether they are presynaptic or source cells, and which type of network they belong to. We agree with the reviewer that the additional Cre- or RG- control experiments in parallel would allow an independent estimate of the double labeled networks and the no-source networks. We have included added a discussion of possible controls to further optimize the trans-synaptic tracing approach in future studies in the Discussion.

      Third, I would appreciate more quantitative data on the putative single-source network (Fig. 5I and S6) in terms of the distribution of pre- and post-synaptic TC cell types. The majority of labeling appeared to occur locally, with only two thalamic neurons observed in sample 25311842 (Fig. S6). How many instances of long-distance labeling (for example, > 500 microns away from the injection site) were observed in total? Is this low efficiency of long-distance labeling expected based on the utilized combinations of AAVs and RV vectors? A simple independent RV tracing solely detecting mCherry would be useful for evaluating the labeling efficiency of the method. I have experienced similar "less jump" RV tracing when RV particles were prepared in a single step, as this study did, rather than multiple rounds of amplification in traditional protocols, such as Osakada F et al Nat Protocol 2013.

      We imaged an animal that was injected in parallel to assess labeling (now included in Supplementary Note 2 and Supp. Fig. S5). The labeling pattern in the newly imaged animal was largely consistent with the results from the barcoded experiment: most labeled neurons were seen in the vicinity of the injection site, and sparser labeling was seen in other cortical areas and the thalamus. We further found that most neurons that were labeled in the thalamus were about 1 mm posterior to the center of the injection site, and thus would not have been sequenced in the in situ sequencing experiment (in which we sequenced about 640 µm of tissue spanning the injection site).

      In addition, we found that the bulk of the cells that expressed mCherry from the rabies virus only partially overlapped with the area that contained cells co-expressing BFP with the rabies glycoprotein. Moreover, very few cells co-expressed mCherry and BFP, which would be considered source cells in a conventional mono-synaptic tracing experiment. The small numbers of source cells likely also contributed to the sparseness of long-range labeling in the barcoded experiment.

      These interpretations and comparisons to the barcoded experiment are now included in Supplementary Note 2.

      Reviewer #3 (Public Review):

      The manuscript by Zhang and colleagues attempts to combine genetically barcoded rabies viruses with spatial transcriptomics in order to genetically identify connected pairs. The major shortcoming with the application of a barcoded rabies virus, as reported by 2 groups prior, is that with the high dropout rate inherent in single cell procedures, it is difficult to definitively identify connected pairs. By combining the two methods, they are able to establish a platform for doing that, and provide insight into connectivity, as well as pros and cons of their method, which is well thought out and balanced.

      Overall the manuscript is well-done, but I have a few minor considerations about tone and accuracy of statements, as well as some limitations in how experiments were done. First, the idea of using rabies to obtain broader tropism than AAVs isn't really accurate - each virus has its own set of tropisms, and it isn't clear that rabies is broader (or can be made to be broader).

      As the reviewer suggested, we toned down this claim and stated that rabies virus has different tropism to complement AAV.

      Second, rabies does not label all neurons that project to a target site - it labels some fraction of them.

      We meant to say that retrograde labeling is not restricted to labeling neurons from a certain brain region. We have clarified in the text.

      Third, the high rate of rabies virus mutation should be considered - if it is, or is not a problem in detecting barcodes with high fidelity, this should be noted.

      Our analysis showed that sequencing 15 bases was sufficient to tolerate a small number of mismatches in the barcode sequences and could distinguish real barcodes from random sequences (Fig. 4A). Thus, we can tolerate mutations in the barcode sequence. We have clarified this in the text.

      Fourth, there are a number of implicit assumptions in this manuscript, not all of which are equally backed up by data. For example, it is not clear that all rabies virus transmission is synaptic specific; in fact, quite a few studies argue that it is not (e.g., detection of rabies transcripts in glial cells). Thus, arguments about lost-source networks and the idea that if a cell is lost from the network, that will stop synaptic transmission, is not clear. There is also the very real propensity that, the sicker a starter cell gets, the more non-specific spread of virus (e.g., via necrosis) occurs.

      We agree with the reviewer that how strictly virus transmission is restricted to synapses remains a hotly debated question in the field, and this question is relevant not only to techniques based on barcoded rabies tracing, but to all trans-synaptic tracing experiments. A barcoding-based approach can generate single-cell data that enable direct comparison to other data modalities that measure synaptic connectivity, such as multi-patch and EM. These future experiments may provide additional insights into the questions that the reviewer raised. We have included additional discussion about how non-synaptic transmission of barcodes because of the necrosis of source cells may affect the analysis in the Discussion.

      Regarding the scenario in which the source cell dies, we agree with the reviewer and have clarified in the revised manuscript.

      Fifth, in the experiments performed in Figure 5, the authors used a FLEx-TVA expressed via a retrograde Cre, and followed this by injection of their rabies virus library. The issue here is that there will be many (potentially thousands) of local infection events near the injection site that TVA-mediated but are Cre-dependent (=off-target expression of TVA in the absence of Cre). This is a major confound in interpreting the labeling of these cells. They may express very low levels of TVA, but still have infection be mediated by TVA. The authors did not clearly explore how expression of TVA related to rabies virus infection of cells near the rabies injection site. A modified version of TVA, such as 66T, should have been used to mitigate this issue. Otherwise, it is impossible to determine connectivity locally. The authors do not go to great lengths to interpret the findings of these observations, so I am not sure this is a critical issue, but it should be pointed out by the authors as a caveat to their dataset.

      We agree with the reviewer that this type of infection could potentially be a major contributor to no-source networks, which were abundant in our experiment. Because small no-source networks were excluded from our analyses, and large no-source networks were only included for barcodes with low frequency (i.e., it would be nearly impossible statistically to generate such large no-source networks from independent infections), we believe that the effect of independent infections on our analyses were minimized. We have added a control experiment in Fig S5 and Supplementary Note 2, which further supported the hypothesis that there were many independent infections. We also included additional discussion about how this can be assessed and optimized in future studies in the Discussion.

      Sixth, the authors are making estimates of rabies spread by comparison to a set of experiments that was performed quite differently. In the two studies cited (Liu et al., done the standard way, and Wertz et al., tracing from a single cell), the authors were likely infecting with a rabies virus using a high multiplicity of infection, which likely yields higher rates of viral expression in these starter cells and higher levels of input labeling. However, in these experiments, the authors need to infect with a low MOI, and explicitly exclude cells with >1 barcode. Having only a single virion trigger infection of starter cells will likely reduce the #s of inputs relative to starter neurons. Thus, the stringent criteria for excluding small networks may not be entirely warranted. If the authors wish to only explore larger networks, this caveat should be explicitly noted.

      In the trans-synaptic labeling experiment, we actually used high rabies titer (200 nL, 7.6e10 iu/mL) that was comparable to conventional rabies tracing experiments. We did not exclude cells with multiple barcodes (as opposed to barcodes in multiple source cells), because we could resolve multiple barcodes in the same cell and indeed found many cells with multiple barcodes. We have clarified this in the text.

      Overall, if the caveats above are noted and more nuance is added to some of the interpretation and discussion of results, this would greatly help the manuscript, as readers will be looking to the authors as the authority on how to use this technology.

      In addition to addressing the specific concerns of the reviewer as described above, we modified the Results and Discussion sections on the trans-synaptic tracing experiment to improve clarity to general readers and expanded the discussion on future optimizations.

      Reviewer #1 (Recommendations For The Authors):

      The scientific problem is clearly stated and well laid out, the data are clearly presented, and the experiments well justified and nicely discussed. It was overall a very enjoyable read. The figures are generally nice and clear, however, I find the legends excessively concise. A bit too often, they just sort of introduce the title of the panel rather than a proper explanation of what it is depicted. A clear case is for example visible in Fig 2, where the description of the panels is minimal, but this is a general trend of the manuscript. This makes the figures a bit hard to follow as self-contained entities, without having to continuously go back to the main text. I think this could be improved with longer and more helpful descriptions.

      We have revised all figure legends to make them more descriptive.

      Other minor things:

      In the cDNA synthesis step for in-situ sequencing, I believe the authors might have forgotten one detail: the addition of aminoallyl dUTP to the RT reaction. If I recall correctly this is done in BARseq. The fact that the authors crosslink with BS-PEG on day 2, makes me suspect they spike in these nucleotides during the RT but this is not specified in the relevant step. Perhaps this is a mistake that needs correction.

      The RT primers we used have an amine group at 5’, which directly allows crosslinking. Thus, we did not need to spike in aminoallyl dUTP in the RT reaction. We have clarified this in the Methods.

      Reviewer #2 (Recommendations For The Authors):

      Throughout the manuscript, there are frequent references to the "Methods" section for important details. However, it can be challenging to determine which specific section of the Methods the authors are referring to, and in some cases, a thorough examination of the entire Methods section fails to locate the exact information needed to support the authors' claims. Below are a few specific examples of this issue. The authors are encouraged to be more precise in their references to the Methods section.

      In the revised manuscript, we numbered each subsection of Methods and updated pointers and associated hyperlinks in the main text to the subsection numbers.

      • On page 7, line 14, it is unclear how the authors compared the cell marker gene expression with the marker gene expression in the reference cell type.

      We have clarified in the revised manuscript.

      • On page 7, line 33, the authors note that some barcodes may have been missed during the sequencing of the rabies virus libraries, but the Methods section lacked a convincing explanation on this issue (see my point 2 above).

      We included a separate subsection on the sequencing of rabies libraries and the analysis of the sequencing depth in the Methods. In this new subsection, we further clarified our reasoning for identifying the lack of sequencing depth as a reason for missing barcodes, especially in comparison to sequencing depth required for establishing exact molecule counts used in established MAPseq and BARseq techniques with Sindbis libraries.

      • On page 9, line 44, the authors state that they considered a barcode to be associated with a cell if they found at least six molecules of that barcode in a cell, as detailed in the Methods section. However, the rationale behind this level of stringency is not provided in the Methods.

      We initially chose this threshold based on visual inspection of the sequencing images of the barcoded cells. Because the labeled cell types were consistent with our expectations (Fig. 4E-G), we did not further optimize the threshold for detecting retrogradely labeled barcoded cells.

      • I have noticed that some important explanations of figure panels are missing in the legends, making it challenging to understand the figures. Below are typical examples of this issue.

      In addition to the examples that the reviewer mentioned below, we also revised many other figure panels to make them clear to the readers.

      • In Fig. 2, "RV into SC" in panel C does not make sense, as RV was injected into the thalamus. There is no explanation of the images in this panel C.

      We have corrected the typo in the revision.

      • In Fig. 3, information on the endogenous gene panel for cell type classification (Table S3) could be mentioned in the legend or corresponding text.

      We now cite Table S3 both in Fig 3 legend and in the main text. We also included a list of the 104 cell type marker genes we used in Table S3.

      • In panel J, it is unclear why the total number of BC cells is 2,752, and not 4,130 as mentioned in the text.

      This is a typo. We have corrected this in the revision. The correct number (3,746) refers to the number of cells that did not belong to either of the two categories at the bottom of the panel, and not the total number of neurons. To make this clear, we now also include the total number of barcoded cells at the top of the panel.

      • In Fig. 4, the definitions of "+" and "−" symbols in panels K and L are unclear. Also, it seems that the second left column of panel K should read "T −."

      We corrected the typo in K, further clarified the “Area” labels, and changed the “S” label in 4K to “−”. This change does not change the original meaning of the figure: when considering the variance explained in L4/5 IT neurons, considering the subclass compositional profile is equivalent to not using the compositional profiles of cell types, because L4/5 IT neurons all belong to the same subclass (L4/5 IT subclass). Although operationally we simply considered subclass-level compositional profiles when calculating the variance explained, we think that changing this to “−” is clearer for the readers.

      • In Fig. 5, panel E is uninterpretable.

      We revised the main text and the figure to clarify how we manually proofread cells to determine the QC thresholds for barcoded cells. These plots showed a summary of the proofreading. We also revised the figures to indicate that they showed the fraction of barcoded cells that were considered real after proofreading. In the revised version, we moved these plots to Fig. S5.

      • In Fig. S1, I do not understand the identity of the six samples on the X-axis of panel A (given that only two animals were described in the main text) and what panel B shows, including the definition of map_cluster_conf and map_cluster_corr.

      In the revised Fig. S1, we made it more explicit that the six animals include both animals used for retrograde tracing (2 animals) and those used for trans-synaptic tracing (4 animals). We updated the y axis labels to be more readable and cited the relevant Methods section for definitions.

      • In Fig. S2, please provide the definitions of blue and red dots and values in panel A, as well as the color codes and size of the circles in panel B. My overall impression from panel B is that there is no significant difference between RV-infected and non-infected cells. The authors should provide more quantitative and statistical support for the claim that "RV-infected cells had higher expression of immune response-related genes."

      We toned down the statement to “Consistent with previous studies […], some immune response related genes were up-regulated in virus-infected cells compared to non-infected cells.” Because the main point of the single-cell RNAseq analysis was that rabies did not affect the ability to distinguish transcriptomic types, the change in immune response-related genes was not essential to the main conclusions. We clarified the red and blue dots in panel A and changed panel B to show the top up-regulated immune response-related genes in the revised manuscript.

      • In Fig. S3, the definitions of the color code and circle size are missing.

      We have added the legends in Fig. S3.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      We appreciate the reviewers for their insightful feedback, which has substantially improved our manuscript. Following the suggestions of the reviewers, we have undertaken the following major revisions:

      a. Concerning data transformation, we have adjusted the methodology in Figures 2 and 3. Instead of normalizing c-Fos density to the whole brain c-Fos density as initially described, we now normalize to the c-Fos density of the corresponding brain region in the control group. b. We have substituted the PCA approach with hierarchical clustering in Figures 2 and 3.

      c. In the discussion section, we added a subsection on study limitations, focusing on the variations in drug administration routes and anesthesia depth.

      Enclosed are our detailed responses to each of the reviewer's comments.

      Reviewer #1:

      1a. The addition of the EEG/EMG is useful, however, this information is not discussed. For instance, there are differences in EEG/EMG between the two groups (only Ket significantly increased delta/theta power, and only ISO decreased EMG power). These results should be discussed as well as the limitation of not having physiological measures of anesthesia to control for the anesthesia depth.

      1b. The possibility that the differences in fos observed may be due to the doses used should be discussed.

      1c. The possibility that the differences in fos observed may be due kinetic of anesthetic used should be discussed.

      Thank you for your suggestions. We have now discussed EEG/EMG result, limitation of not having physiological measures of anesthesia to control for the anesthesia depth, The possibility that the differences in fos observed may be due to the doses, The possibility that the differences in Fos observed may be due kinetic of anesthetic in the revised manuscript (Lines 308-331, also shown below).

      Lines 308-331: "...Our findings indicate that c-Fos expression in the KET group is significantly elevated compared to the ISO group, and the saline group exhibits notably higher c-Fos expression than the home cage group, as seen in Supplementary Figures 2 and 3. Intraperitoneal saline injections in the saline group, despite pre-experiment acclimation with handling and injections for four days, may still evoke pain and stress responses in mice. Subtle yet measurable variations in brain states between the home cage and saline groups were observed, characterized by changes in normalized EEG delta/theta power (home cage: 0.05±0.09; saline: -0.03±0.11) and EMG power (home cage: -0.37±0.34; saline: 0.04±0.13), as shown in Supplementary Figure 1. These changes suggest a relative increase in overall brain activity in the saline group compared to the home cage group, potentially contributing to the higher c-Fos expression. Although the difference in EEG power between the ISO group and the home cage control was not significant, the increase in EEG power observed in the ISO group was similar to that of KET (0.47 ± 0.07 vs 0.59 ± 0.10), suggesting that both agents may induce loss of consciousness in mice. Regarding EMG power, ISO showed a significant decrease in EMG power compared to its control group. In contrast, the KET group showed a lesser reduction in EMG power (ISO: -1.815± 0.10; KET: -0.96 ± 0.21), which may partly explain the higher overall c-Fos expression levels in the KET group. This is consistent with previous studies where ketamine doses up to 150 mg/kg increase delta power while eliciting a wakefulness-like pattern of c-Fos expression across the brain [1]. Furthermore, the observed differences in c-Fos expression may arise in part from the dosages, routes of administration, and their distinct pharmacokinetic profiles. This variation is compounded by the lack of detailed physiological monitoring, such as blood pressure, heart rate, and respiration, affecting our ability to precisely assess anesthesia depth. Future studies incorporating comprehensive physiological monitoring and controlled dosing regimens are essential to further elucidate these relationships and refine our understanding of the effects of anesthetics on brain activity"

      1. Lu J, Nelson LE, Franks N, Maze M, Chamberlin NL, Saper CB: Role of endogenous sleep-wake and analgesic systems in anesthesia. J Comp Neurol 2008, 508(4):648-662.

      2b. I am confused because Fig 2C seems to show significant decrease in %fos in the hypothalamus, midbrain and cerebellum after KET, while the author responded that " in our analysis, we did not detect regions with significant downregulation when comparing anesthetized mice with controls." Moreover the new figure in the rebuttal in response to reviewer 2 suggests that Ket increases Fos in almost every single region (green vs blue) which is not the conclusion of the paper.

      Your concern regarding the apparent discrepancy is well-founded. The inconsistency arose due to an inappropriate data transformation, which affected the interpretation. We have now rectified this by adjusting the data transformation in Figures 2 and 3. Specifically, we have recalculated the log relative c-Fos density values relative to the control group for each brain region. This revision has resolved the issue, confirming that our analysis did not detect any regions with significant downregulation in the anesthetized mice compared to controls. We have also updated the results, discussion, and methods sections of Figures 2 and 3 to accurately reflect these changes and ensure consistency with our findings.

      Author response image 1.

      Figure 2. Whole-brain distributions of c-Fos+ cells induced by ISO and KET. (A) Hierarchical clustering was performed on the log relative c-Fos density data for ISO and KET using the complete linkage method based on the Euclidean distance matrix, with clusters identified by a dendrogram cut-off ratio of 0.5. Numerical labels correspond to distinct clusters within the dendrogram. (B) Silhouette values plotted against the ratio of tree height for ISO and KET, indicating relatively higher Silhouette values at 0.5 (dashed line), which is associated with optimal clustering. (C) The number of clusters identified in each treatment condition at different ratios of the dendrogram tree height, with a cut-off level of 0.5 corresponding to 4 clusters for both ISO and KET (indicated by the dashed line). (D) The bar graph depicts Z scores for clusters in ISO and KET conditions, represented with mean values and standard errors. One-way ANOVA with Tukey's post hoc multiple comparisons. ns: no significance; ***P < 0.001. (E) Z-scored log relative density of c-Fos expression in the clustered brain regions. The order and abbreviations of the brain regions and the numerical labels correspond to those in Figure 2A. The red box denotes the cluster with the highest mean Z score in comparison to other clusters. CTX: cortex; TH: thalamus; HY: hypothalamus; MB: midbrain; HB: hindbrain.

      Author response image 2.

      Figure 3. Similarities and differences in ISO and KET activated c-Fos brain areas. (A) Hierarchical clustering was performed on the log-transformed relative c-Fos density data for ISO and KET using the complete linkage method based on the Euclidean distance matrix, with clusters identified by a dendrogram cut-off ratio of 0.5. (B) Silhouette values are plotted against the ratio of tree height from the hierarchical clustered dendrogram in Figure 3A. (C) The relationship between the number of clusters and the tree height ratio of the dendrogram for ISO and KET, with a cut-off ratio of 0.5 resulting in 3 clusters for ISO and 5 for KET (indicated by the dashed line). (D) The bar graph depicts Z scores for clusters in ISO and KET conditions, represented with mean values and standard errors. One-way ANOVA with Tukey's post hoc multiple comparisons. ns: no significance; ***P < 0.001. (E) Z-scored log relative density of c-Fos expression within the identified brain region clusters. The arrangement, abbreviations of the brain regions, and the numerical labels are in accordance with Figure 3A. The red boxes highlight brain regions that rank within the top 10 percent of Z score values. The white boxes denote brain regions with an Z score less than -2.

      1. There are still critical misinterpretations of the PCA analysis. For instance, it is mentioned that " KET is associated with the activation of cortical regions (as evidenced by positive PC1 coefficients in MOB, AON, MO, ACA, and ORB) and the inhibition of subcortical areas (indicated by negative coefficients) " as well as " KET displays cortical activation and subcortical inhibition, whereas ISO shows a contrasting preference, activating the cerebral nucleus (CNU) and the hypothalamus while inhibiting cortical areas. To reduce inter-individual variability." These interpretations are in complete contradiction with the answer 2b above that there was no region that had decreased Fos by either anesthetic.

      Thank you for bringing this to our attention. In response to your concerns, we have made significant revisions to our data analysis. We have updated our input data to incorporate log-transformed relative c-Fos density values, normalized against the control group for each brain region, as illustrated in Figures 2 and 3. Instead of PCA, we have applied this updated data to hierarchical clustering analysis. The results of these analyses are consistent with our original observation that neither anesthetic led to a decrease in Fos expression in any region.

      1. I still do not understand the rationale for the use of that metric. The use of a % of total Fos makes the data for each region dependent on the data of the other regions which wrongly leads to the conclusion that some regions are inhibited while they are not when looking at the raw data. Moreover, the interdependence of the variable (relative density) may affect the covariance structure which the PCA relies upon. Why not using the PCA on the logarithm of the raw data or on a relative density compared to the control group on a region-per-region basis instead of the whole brain?

      Thank you for your insightful suggestion. Following your advice, we have revised our approach and now utilize the logarithm of the relative density compared to the control group on a region-by-region basis. We attempted PCA analyses using the logarithm of the raw data, the logarithm of the Z-score, and the logarithm of the relative density compared to control, but none yielded distinct clusters.

      Author response image 3.

      As a result, we employed hierarchical cluster analysis. We then examined the Z-scores of the log-transformed relative c-Fos densities (Figures 2E and 3E) to assess expression levels across clusters. Our analysis revealed that neither ISO nor KET treatments led to a significant suppression of c-Fos expression in the 53 brain regions examined. In the ISO group alone, there were 10 regions that demonstrated relative suppression (Z-score < -2, indicated by white boxes) as shown in Figure 3.

      Fig. 2B: it's unclear to me why the regions are connected by a line. Such representation is normally used for time series/within-subject series. What is the rationale for the order of the regions and the use of the line? The line connecting randomly organized regions is meaningless and confusing.

      Thank you for your suggestion. We have discontinued the use of PCA calculations and have removed this figure.

      Fig 6A. The correlation matrices are difficult to interpret because of the low resolution and arbitrary order of brain regions. I recommend using hierarchical clustering and/or a combination of hierarchical clustering and anatomical organization (e.g. PMID: 31937658). While it is difficult to add the name of the regions on the graph I recommend providing supplementary figures with large high-resolution figures with the name of each brain region so the reader can actually identify the correlation between specific brain regions and the whole brain, Rationale for Metric Choice: Note that I do not dispute the choice of the log which is appropriate, it is the choice of using the relative density that I am questioning.

      Thank you for your constructive feedback. In line with your suggestion, we have implemented hierarchical clustering combined with anatomical organization as per the referenced literature. Additionally, we have updated the vector diagrams in Figure 6A to present them with greater clarity.

      Furthermore, we have revised our network modular division method based on cited literature recommendations. We used hierarchical clustering with correlation coefficients to segment the network into modules, illustrated in Figure 6—figure supplement 1. Due to the singular module structure of the KET network and the sparsity of intermodular connections in the home cage and saline networks, the assessment of network hub nodes did not employ within-module degree Z-score and participation coefficients, as these measures predominantly underscore the importance of connections within and between modules. Instead, we used degree, betweenness centrality, and eigenvector centrality to detect the hub nodes, as detailed in Figure 6—figure supplement 2. With this new approach, the hub node for the KET condition changed from SS to TeA. Corresponding updates have been made to the results section for Figure 6, as well as to the related discussions and the abstract of our paper.

      Author response image 4.

      Figure 6. Generation of anesthetics-induced networks and identification of hub regions. (A) Heatmaps display the correlations of log c-Fos densities within brain regions (CTX, CNU, TH, HY, MB, and HB) for various states (home cage, ISO, saline, KET). Correlations are color-coded according to Pearson's coefficients. The brain regions within each anatomical category are organized by hierarchical clustering of their correlation coefficients. (B) Network diagrams illustrate significant positive correlations (P < 0.05) between regions, with Pearson’s r exceeding 0.82. Edge thickness indicates correlation magnitude, and node size reflects the number of connections (degree). Node color denotes betweenness centrality, with a spectrum ranging from dark blue (lowest) to dark red (highest). The networks are organized into modules consistent with the clustering depicted in Supplementary Figure 8. Figure 6—figure supplement 1

      Author response image 5.

      Figure 6—figure supplement 1. Hierarchical clustering of brain regions under various conditions: home cage, ISO, saline, and KET. (A) Heatmaps show the relative distances among brain regions assessed in naive mice. Modules were identified by sectioning each dendrogram at a 0.7 threshold. (B) Silhouette scores plotted against the dendrogram tree height ratio for each condition, with optimal cluster definition indicated by a dashed line at a 0.7 ratio. (C) The number of clusters formed at different cutoff levels. At a ratio of 0.7, ISO and saline treatments result in three clusters, whereas home cage and KET conditions yield two clusters. (D) The mean Pearson's correlation coefficient (r) was computed from interregional correlations displayed in Figure 6A. Data were analyzed using one-way ANOVA with Tukey’s post hoc test, ***P < 0.001.

      Author response image 6.

      Figure 6—figure supplement 2. Hub region characterization across different conditions: home cage (A), ISO (B), saline (C), and KET (D) treatments. Brain regions are sorted by degree, betweenness centrality, and eigenvector centrality, with each metric presented in separate bar graphs. Bars to the left of the dashed line indicate the top 20% of regions by rank, highlighting the most central nodes within the network. Red bars signify regions that consistently appear within the top rankings for both degree and betweenness centrality across the metrics.

      1. I am still having difficulties understanding Fig. 3.

      Panel A: The lack of identification for the dots in panel A makes it impossible to understand which regions are relevant.

      Panel B: what is the metric that the up/down arrow summarizes? Fos density? Relative density? PC1/2?

      Panel C: it's unclear to me why the regions are connected by a line. Such representation is normally used for time series/within-subject series. What is the rationale for the order of the regions?

      Thank you for your patience and for reiterating your concerns regarding Figure 3.

      a. In Panel A, we have substituted the original content with a display of hierarchical clustering results, which now clearly marks each brain region. This change aids readers in identifying regions with similar expression patterns and facilitates a more intuitive understanding of the data.

      a. Acknowledging that our analysis did not reveal any significantly inhibited brain regions, we have decided to remove the previous version of Panel B from the figure.

      b. We have discontinued the use of PCA calculations and have removed this figure to avoid any confusion it may have caused. Our revised analysis focuses on hierarchical clustering, which are presented in the updated figures.

      Reviewer #2:

      1. Aside from issues with their data transformation (see below), (a) I think they have some interesting Fos counts data in Figures 4B and 5B that indicate shared and distinct activation patterns after KET vs. ISO based anesthesia. These data are far closer to the raw data than PC analyses and need to be described and analyzed in the first figures long before figures with the more abstracted PC analyses. In other words, you need to show the concrete raw data before describing the highly transformed and abstracted PC analyses. (b) This gets to the main point that when selecting brain areas for follow up analyses, these should be chosen based on the concrete Fos counts data, not the highly transformed and abstracted PC analyses.

      Thank you for your suggestions.

      a. We have added the original c-Fos cell density distribution maps for Figures 2, 3, 4, and 5 in Supplementary Figures 2 and 3 (also shown below). To maintain consistency across the document, we have updated both the y-axis label and the corresponding data in Figures 4B and 5B from 'c-Fos cell count' to 'c-Fos density'.

      b. The analyses in Figures 2 and 3 include all brain regions. Figures 4 and 5 present the brain regions with significant differences as shown in Figure 3—figure supplement 1.

      Author response image 7.

      Figure 2—figure supplement 1. The c-Fos density in 53 brain areas for different conditions. (home cage, n = 6; ISO, n = 6 mice; saline, n = 8; KET, n = 6). Each point represents the c-Fos density in a specific brain region, denoted on the y-axis with both abbreviations and full names. Data are shown as mean ± SEM. Brain regions are categorized into 12 brain structures, as indicated on the right side of the graph.

      Author response image 8.

      Figure 3—figure supplement 1. c-Fos density visualization across 201 distinct brain regions under various conditions. The graph depicts the c-Fos density levels for each condition, with data presented as mean and standard error. Brain regions with statistically significant differences are featured in Figures 4 and 5. Brain regions are organized into major anatomical subdivisions, as indicated on the left side of the graph.

      1. Now, the choice of data transformation for Fos counts is the most significant problem. First, the authors show in the response letter that not using this transformation (region density/brain density) leads to no clustering. However, they also showed the region-densities without transformation (which we appreciate) and it looks like overall Fos levels in the control group Home (ISO) are a magnitude (~10-fold) higher than those in the control group Saline (KET) across all regions shown. This large difference seems unlikely to be due to a biologically driven effect and seems more likely to be due to a technical issue, such as differences in staining or imaging between experiments. Was the Homecage-ISO experiment or at least the Fos labeling and imaging performed at the same time as for the Saline-Ketamine experiment? Please state the answer to this question in the Results section one way or the other.

      a. “Home (ISO) are a magnitude (~10-fold) higher than those in the control group saline (KET) across all regions shown.” We believe you might be indicating that compared to the home cage group (gray), the saline group (blue) shows a 10-fold higher expression (Supplementary Figure 2/3). Indeed, we observed that the total number of c-Fos cells in the home cage group is significantly lower than in the saline group. This difference may be due to reduced sleep during the light-on period (ZT 6- ZT 7.5) in the saline mice or the pain and stress response caused by intraperitoneal injection of saline. We have explained this discrepancy in the discussion section.Line 308-317(also see below)

      “…Our findings indicate that c-Fos expression in the KET group is significantly elevated compared to the ISO group, and the saline group exhibits notably higher c-Fos expression than the home cage group, as seen in Supplementary Figures 2 and 3. Intraperitoneal saline injections in the saline group, despite pre-experiment acclimation with handling and injections for four days, may still evoke pain and stress responses in mice. Subtle yet measurable variations in brain states between the home cage and saline groups were observed, characterized by changes in normalized EEG delta/theta power (home cage: 0.05±0.09; saline: -0.03±0.11) and EMG power (home cage: -0.37±0.34; saline: 0.04±0.13), as shown in Figure 1—figure supplement 1. These changes suggest a relative increase in overall brain activity in the saline group compared to the home cage group, potentially contributing to the higher c-Fos expression…”

      b. Drug administration and tissue collection for both Homecage-ISO and Saline-Ketamine groups were consistently scheduled at 13:00 and 14:30, respectively. Four mice were administered drugs and had tissues collected each day, with two from the experimental group and two from the control group, to ensure consistent sampling. The 4% PFA fixation time, sucrose dehydration time, primary and secondary antibody concentrations and incubation times, staining, and imaging parameters and equipment (exposure time for VS120 imaging was fixed at 100ms) were all conducted according to a unified protocol.

      We have included the following statement in the results section: Line 81-83, “Sample collection for all mice was uniformly conducted at 14:30 (ZT7.5), and the c-Fos labeling and imaging were performed using consistent parameters throughout all experiments. ”

      1. Second, they need to deal with this large difference in overall staining or imaging for these two (Home/ISO and Saline/KET) experiments more directly; their current normalization choice does not really account for the large overall differences in mean values and variability in Fos counts (e.g. due to labeling and imaging differences).

      3a. I think one option (not perfect but I think better than the current normalization choice) could be z-scoring each treatment to its respective control. They can analyze these z-scored data first, and then in later figures show PC analyses of these data and assess whether the two treatments separate on PC1/2. And if they don't separate, then they don't separate, and you have to go with these results.

      3b. Alternatively, they need to figure out the overall intensity distributions from the different runs (if that the main reason of markedly different counts) and adjust their thresholds for Fos-positive cell detection based on this. I would expect that the saline and HC groups should have similar levels of activation, so they could use these as the 'control' group to determine a Fos-positive intensity threshold that gets applied to the corresponding 'treatment' group.

      3c. If neither 3a nor 3b is an option then they need to show the outcomes of their analysis when using the untransformed data in the main figures (the untransformed data plots in their responses to reviewer are currently not in the main or supplementary figs) and discuss these as well.

      a. Thank you very much for your valuable suggestion. We conducted PCA analysis on the ISO and KET data after Z-scoring them with their respective control groups and did not find any significant separation.

      Author response image 9.

      As mentioned in our response to reviewer #1, we have reprocessed the raw data. Firstly, we divided the ISO and KET data by their respective control brain regions and then performed a logarithmic transformation to obtain the log relative c-Fos density. The purpose of this is to eliminate the impact of baseline differences and reduce variability. We then performed hierarchical clustering, and finally, we Z-scored the log relative c-Fos density data. The aim is to facilitate comparison of ISO and KET on the same data dimension (Figure 2 and 3).

      b. We appreciate your concerns regarding the detection thresholds for Fos-positive cells. The enclosed images, extracted from supplementary figures for Figures 4 and 5, demonstrate notable differences in c-Fos expression between saline and home cage groups in specific brain regions. These regions exhibit a discernible difference in staining intensity, with the saline group showing enhanced c-Fos expression in the PVH and PVT regions compared to the home cage group. An examination of supplementary figures for Figures 4 and 5 shows that c-Fos expression in the home cage group is consistently lower than in the saline group. This comparative analysis confirms that the discrepancies in c-Fos levels are not due to varying detection thresholds.

      Author response image 10.

      b. We have added the corresponding original data graphs to Supplementary Figures 2 and 3, and discussed the potential reasons for the significant differences between these groups in the discussion section (also shown below).

      Lines 308-317: "...Our findings indicate that c-Fos expression in the KET group is significantly elevated compared to the ISO group, and the saline group exhibits notably higher c-Fos expression than the home cage group, as seen in Supplementary Figures 2 and 3. Intraperitoneal saline injections in the saline group, despite pre-experiment acclimation with handling and injections for four days, may still evoke pain and stress responses in mice. Subtle yet measurable variations in brain states between the home cage and saline groups were observed, characterized by changes in normalized EEG delta/theta power (home cage: 0.05±0.09; saline: -0.03±0.11) and EMG power (home cage: -0.37±0.34; saline: 0.04±0.13), as shown in Figure 3—figure supplement 1. These changes suggest a relative increase in overall brain activity in the saline group compared to the home cage group, potentially contributing to the higher c-Fos expression.…”

    1. Author Response

      We thank the reviewers for their detailed and constructive criticisms of our work. They raise many important questions (such as the issue of defining context) that we have also been thinking about extensively and they provide new and insightful avenues that have the potential to meaningfully improve the manuscript. We also appreciate that they commented on the novelty and importance of this work. Going forward, we will address the methodological concerns raised as best as we can and thereby hope to make the evidence for our conclusion more compelling

    1. Author Response

      eLife assessment

      This study provides direct evidence showing that Kv1.8 channels underly several potassium currents in the two types of sensory hair cells found in the mouse vestibular system. This is an important finding because the nature of the channels underpinning the unusual potassium conductance gK,L in type I hair cells has been under scrutiny for many years. Although most of the experimental evidence is compelling and the analysis is rigorous, the evidence supporting some of the claims related to Kv1.4 channels is incomplete. The study will be of interest to cell and molecular biologists and auditory neuroscientists.

      We are thankful to the editor and reviewers for their thorough assessment of our work and insightful feedback. Our responses to the comments and suggestions are below.

      Reviewer #1 (Public Review):

      Summary:

      In this paper, the authors provide a thorough demonstration of the role that one particular type of voltage-gated potassium channel, Kv1.8, plays in a low voltage-activated conductance found in type I vestibular hair cells. Along the way, they find that this same channel protein appears to function in type II vestibular hair cells as well, contributing to other macroscopic conductances. Overall, Kv1.8 may provide especially low input resistance and short time constants to facilitate encoding of more rapid head movements in animals that have necks. Combination with other channel proteins, in different ratios, may contribute to the diversified excitability of vestibular hair cells.

      Strengths:

      The experiments are comprehensive and clearly described, both in the text and in the figures. Statistical analyses are provided throughout.

      Weaknesses:

      None.

      Reviewer #2 (Public Review):

      The focus of this manuscript was to investigate whether Kv1.8 channels, which have previously been suggested to be expressed in type I hair cells of the mammalian vestibular system, are responsible for the potassium conductance gK,L. This is an important study because gK,L is known to be crucial for the function of type I hair cells, but the channel identity has been a matter of debate for the past 20 years. The authors have addressed this research topic by primarily investigating the electrophysiological properties of the vestibular hair cells from Kv1.8 knockout mice. Interestingly, gK,L was completely abolished in Kv1.8-deficient mice, in agreement with the hypothesis put forward by the authors based on the literature. The surprising observation was that in the absence of Kv1.8 potassium channels, the outward potassium current in type II hair cells was also largely reduced. Type II hair cells express the largely inactivating potassium conductance gK,A, but not gK,L. The authors concluded that heteromultimerization of non-inactivating Kv1.8 and the inactivating Kv1.4 subunits could be responsible for the inactivating gK,A. Overall, the manuscript is very well written and most of the conclusions are supported by the experimental work. The figures are well described, and the statistical analysis is robust.

      My only comment relates to the statement regarding the results providing "evidence" that Kv1.4 form heteromultimers with Kv1.8 channels (see Discussion). The only data I can see from the results is that Kv1.4 channels are expressed in the membrane of type II hair cells, which is not sufficient evidence for the above claim. Is the distribution of Kv1.8 and Kv1.4 overlapping in type II hair cells? Have the authors attempted to perform some pharmacological studies on Kv1.4? For example, would gK,A be completely blocked by a Kv1.4 antagonist? Addressing at least some of these questions would strengthen your argument.

      Author response: With respect to the “evidence” for heteromultimerization of Kv1.4 and Kv1.8: We agree that there is not conclusive evidence but have pulled together reasons to suggest that the fast inactivation of Kv1.8-dependent gA in type II hair cells reflects a contribution from Kv1.4 subunits. The reasons we note are mostly from other sources: 1) Kv1.4 subunits are the only Kv1 alpha subunits known to make channels with intrinsic rapid inactivation (Bertoli et al., 1994); 2) Kv1.4 is highly expressed in type II hair cells, but not type I hair cells, in mouse utricle (McInturff et al., Biol. Open., 2018; Jan et al., Cell Reports, 2021; Orvis et al., Nat. Methods, 2021); 3) previous work from M. Correia and colleagues suggested Kv1.4 as the likely source of A-current in pigeon vestibular hair cells; 4) some rat type II hair cells show comparatively strong Kv1.4-like immunoreactivity (our Fig. 5). While we consider heteromultimerization of Kv1.4 and Kv1.8 alpha subunits a plausible explanation consistent with available data from different sources, we agree that the question is not at all settled, and indeed raise the possibility that KV beta subunits, which are also differentially expressed by type I and II hair cells, play a role. Experiments to definitively advance or refute this hypothesis are beyond the scope of this paper.

      Reviewer #3 (Public Review):

      Summary:

      This paper by Martin et al. describes the contribution of a Kv channel subunit (Kv1.8, KCNA10) to voltage-dependent K+ conductances and membrane properties of type I and type II hair cells of the mouse utricle. Previous work has documented striking differences in K+ conductances between vestibular hair cell types. In particular, amniote type I hair cells are known to express a non-typical low-voltage-activated K+ conductance (GK,L) whose molecular identity has been elusive. K+ conductances in hair cells from 3 different mouse genotypes (wildtype, Kv1.8 homozygous knockouts, and heterozygotes) are examined here and whole-cell patch-clamp recordings indicate a prominent role for Kv1.8 subunits in generating GK,L. Results also interestingly support a role for Kv1.8 subunits in type II hair cell K+ conductances; inactivating conductances in null mice are reduced in type II hair cells from striola and extrastriola regions of the utricle. Kv1.8 is therefore proposed to contribute as a pore-forming subunit for 3 different K+ conductances in vestibular hair cells. The impact of these conductances on membrane responses to current steps is studied in the current clamp. Pharmacological experiments use XE991 to block some residual Kv7-mediated current in both hair cell types, but no other pharmacological blockers are used. In addition, immunostaining data are presented and raise some questions about Kv7 and Kv1.8 channel localization. Overall, the data present compelling evidence that the removal of Kv1.8 produces profound changes in hair cell membrane conductances and sensory capabilities. These changes at hair cell level suggest vestibular function would be compromised and further assessment in terms of balance behavior in the different mice would be interesting.

      Strengths:

      This study provides strong evidence that Kv1.8 subunits are major contributors to the unusual K+ conductance in type I hair cells of the utricle. It also indicates that Kv1.8 subunits are important for type II hair cell K+ conductances because Kv1.8-/- mice lacked an inactivating A conductance and had reduced delayed rectifier conductance compared to controls. A comprehensive and careful analysis of biophysical profiles is presented of expressed K+ conductances in 3 different mouse genotypes. Voltage-dependent K+ currents are rigorously characterized at a range of different ages and their impact on membrane voltage responses to current input is studied. Some pharmacological experiments are performed in addition to immunostaining to bolster the conclusions from the biophysical studies. The paper has a significant impact in showing the role of Kv1.8 in determining utricular hair cell electrophysiological phenotypes.

      Weaknesses:

      1. From previous work it is known that GK,L in type I hair cells has unusual ion permeation and pharmacological properties that differ greatly from type II hair cell conductances. Notably GK,L is highly permeable to Cs+ as well as K+ ions and is slightly permeable to Na+. It is blocked by 4-aminopyridine and divalent cations (Ba2+, Ca2+, Ni2+), enhanced by external K+, and modulated by cyclic GMP. The question arises, if Kv1.8 is a major player and pore-forming subunit in type I and type II cells (and cochlear inner hair cells as shown by Dierich et al. 2020) how are subunits modified to produce channels with very different properties? A role for Kv1.4 channels (gA) is proposed in type II hair cells based on previous findings in bird hair cells and immunostaining for Kv1.4 channels in rat utricle presented here in Fig. 6. However, hair cell-specific partner interactions with Kv1.8 that result in GK,L in type I hair cells and Cs+ impermeable, inactivating currents in type II hair cells remain for the most part unexplored.

      Author response: Our results raise the question of how Kv1.8/Kcna10 is regulated to produce gK,L in type I hair cells, which has different properties from the Kv1.8 conductance expressed heterologously (Lang et al., Am. J. Physiol. Renal Physiol., 2000; Ranjan et al., Front. Cell. Neurosci., 2019; Dierich et al., Cell Reports, 2020) and the Kv1.8 conductance inferred in inner hair cells (Dierich et al., 2020). We lay out several possibilities in the Discussion, but testing these suggestions is beyond the scope of the present paper.

      The relatively high Cs+ permeability of gK,L (0.31 pCs/pK, Rüsch & Eatock, J. Neurophysiol., 1996; Rennie & Correia, J. Membr. Biol., 2000) suggests there is something different about the selectivity filter and pore region of gK,L relative to most Kv1 family members. Although the intrinsic Cs+ permeability of heterologously expressed Kv1.8 is not reported. While we note that the pore region in Kv1.8 differs from other Kv1 subunits by a single amino acid (a glycine instead of alanine at position 411 – placed by AlphaFold in the pore helix of hKCNA10, Jumper et al., Nature, 2021), the effect of this difference is not known. A separate study is needed to determine why gK,L has a high Cs+ permeability relative to other Kv channels.

      For type II hair cells, the Cs+ permeability of Kv currents has not been fully characterized. Internal Cs+ does appear to reduce outward current more effectively in type II hair cells (Lang & Correia, J. Neurophysiol., 1989; Sokolowski et al., Dev. Biol., 1993) than in type I hair cells (Rüsch & Eatock, J. Neurophysiol., 1996; Rennie & Correia, J. Membr. Biol., 2000).

      With respect to cochlear inner hair cells, note that the assignment of Kv1.8 by Dierich et al. (2021) to a delayed rectifier in cochlear inner hair cells (IHCs) was based on inference – that is, existing inner ear expression databases show that Kv1.8 is expressed in IHCs, and heterologous Kv1.8 channels have a current resembling that observed in IHCs after block of multiple other K channels. We agree with Dierich et al. that Kv1.8 is an attractive candidate for the residual conductance in cochlear IHCs based on comparison with its properties in heterologous expression data. Together their study and our study suggest that Kv1.8 takes on quite different voltage dependence depending on the hair cell environment, and it will be an interesting challenge to sort out the reasons.

      1. Data from patch-clamp and immunocytochemistry experiments are not in close alignment. XE991 (Kv7 channel blocker) decreases remaining K+ conductance in type I and type II hair cells from null mice supporting the presence of Kv7 channels in hair cells (Fig. 7). Also, Holt et al. (2007) previously showed inhibition of GK,L in type I hair cells (but not delayed rectifier conductance in type II hair cells) using a dominant negative construct of Kv7.4 channels. However, immunolabelling indicates Kv7.4 channels on the inner face of calyx terminals adjacent to hair cells (Fig. 5). Some reconciliation of these findings is needed.

      Author response: Our pharmacology with XE991 suggests a small but significant population of Kv7 channels in type I and II hair cells (Fig 7). With the immunogold technique, Kharkovets et al. (PNAS, 2000) and Hurley et al. (J. Neurosci., 2006) counted significant Kv7.4 particles in type I hair cells, although the particles occurred at much greater density in the postsynaptic calyx membrane facing the hair cell. These results lead us to propose that the Kv7 channel we identified pharmacologically includes the Kv7.4 subunit, possibly in combination with other Kv7 subunits (Lysakowski et al., J. Neurosci., 2011). By this argument, the absence of clear hair cell staining in the confocal images of Fig. 5A is likely to reflect differences in methods, which include the use of different mouse strains, different sensitivities of immunogold vs. confocal imaging, and different antibodies.

      Holt et al. (J. Neurosci., 2007) indeed saw inhibition of gK,L in hair cells grown in organotypic cultures of the neonatal mouse utricle after viral expression of a dominant negative Kv7.4 construct. However, other studies show that Kv7 antagonists do not block gK,L (Hurley et al., J. Neurosci., 2006), and the Jentsch group, which first proposed Kv7.4 as a likely candidate for gK,L (Kharkovets et al., PNAS, 2000), ultimately showed that knocking out Kv7.4 and Kv7.5 expression failed to eliminate gK,L (Spitzmaul et al., J. Biol. Chem., 2013). Together, these results suggest that in Holt et al. (2007), the inhibition of gK,L by transfection with the dominant negative KCNQ4 construct may have occurred through unintended interactions with native gK,L channels. The young age of the neonatal cultured and transfected utricles raises the possibility of a developmental effect – that functional Kv7 channels are needed for the developmental transition to a Kv1.8 conductance. Consistent with this idea is the observation that Kv7 current is present in neonatal hair cells, where it is a relatively large proportion of Kv current in type I HCs before they acquire gK,L (Hurley et al., J. Neurosci., 2006). Alternatively, the overexpression of nonfunctional Kv7.4 channels in virally-transfected hair cells may have inhibited or delayed gK,L acquisition through a more general effect on membrane proteins.

      1. Strong immunosignal appears in the cuticle plates of hair cells in addition to signal in basal regions of hair cells and supporting cells. Please provide a possible explanation for this.

      Author response: There is significant non-specific staining of apical cell surfaces and supporting cell membranes in addition to specific staining of hair cell basolateral membranes. We infer non-specific staining when immunolabeling is present in the knockout tissue, as it is for the apical surfaces and supporting cell membranes—compare Fig. 5B.3 (control tissue) with Fig. 5B.4 (Kv1.8 null mutant). Non-specific immunostaining can occur with polyclonal antibodies (specific to several epitopes) if the antibodies are not affinity-purified, but we used an affinity-purified antibody. The apical surfaces are reputed to be “sticky” (susceptible to non-specific staining) but the non-specific labeling in the basal parts of supporting cells is more puzzling. One possibility is that the Kv1.8 antibody weakly recognized closely related Kv1.1 channels, which are more strongly expressed in supporting cells than hair cells (Scheffer et al., J. Neurosci., 2015).

      1. A previous paper reported that a vestibular evoked potential was abnormal in Kv1.8-/- mice (Lee et al. 2013) as briefly mentioned (lines 94-95). It would be very interesting to know if any vestibular-associated behaviors and/or hearing loss were observed in the mice populations. If responses are compromised at the sensory hair cell level across different zones, degradation of balance function would be anticipated and should be elucidated.

      Author response: We agree; some of these questions are the subject of another paper in preparation.

    1. Author Response

      Reviewer 1:

      Comment 1.1: The distinction of PIGS from nearby OPA, which has also been implied in navigation and ego-motion, is not as clear as it could be.

      Response1.1: The main functional distinction between TOS/OPA and PIGS is that TOS/OPA responds preferentially to moving vs. stationary stimuli (even concentric rings), likely due to its overlap with the retinotopic motion-selective visual area V3A, for which this is a defining functional property (e.g. Tootell et al., 1997, J Neurosci). In comparison, PIGS does not show such a motion-selectivity. Instead, PIGS responds preferentially to more complex forms of motion within scenes. In this revision, we tried to better highlight this point in the Discussion (see also the response to the first comment from Reviewer #2).

      Reviewer 2:

      Comment 2.1: First, the scene-selective region identified appears to overlap with regions that have previously been identified in terms of their retinotopic properties. In particular, it is unclear whether this region overlaps with V7/IPS0 and/or IPS1. This is particularly important since prior work has shown that OPA often overlaps with v7/IPS0 (Silson et al, 2016, Journal of Vision). The findings would be much stronger if the authors could show how the location of PIGS relates to retinotopic areas (other than V6, which they do currently consider). I wonder if the authors have retinotopic mapping data for any of the participants included in this study. If not, the authors could always show atlas-based definitions of these areas (e.g. Wang et al, 2015, Cerebral Cortex).

      Response 2.1: We thank the reviewers for reminding us to more clearly delineate this issue of possible overlap, including the information provided by Silson et al, 2016. The issue of possible overlap between area TOS/OPA and the retinotopic visual areas, both in humans and non-human primates, was also clarified by our team in 2011 (Nasr et al., 2011). As you can see in the enclosed figure, and consistent with those previous studies, TOS/OPA overlaps with visual areas V3A/B and V7. Whereas PIGS is located more dorsally close to IPS2-4. As shown here, there is no overlap between PIGS and TOS/OPA and there is no overlap between PIGS and areas V3A/B and V7. To more directly address the reviewer’s concern, in the next revision, we will show the relative position of PIGS and the retinotopic areas (at least) in one individual subject.

      Author response image 1.

      The relative location of PIGS, TOS/OPA and the retinotopic visual areas. The left panel showed the result of high-resolution (7T; voxel size = 1 mm; no spatial smoothing) polar angle mapping in one individual. The right panel shows the location of scene-selective areas PIGS and TOS/OPA in the same subject (7T; voxel size = 1 mm; no spatial smoothing). While area TOS/OPA shows some overlap with the retinotopic visual areas V3A/B and V7, PIGS shows partial overlap with area IPS2-4. In both panels, the activity maps are overlaid on the subjects’ own reconstructed brain surface.

      Comment 2.2: Second, recent studies have reported a region anterior to OPA that seems to be involved in scene memory (Steel et al, 2021, Nature Communications; Steel et al, 2023, The Journal of Neuroscience; Steel et al, 2023, biorXiv). Is this region distinct from PIGS? Based on the figures in those papers, the scene memory-related region is inferior to V7/IPS0, so characterizing the location of PIGS to V7/IPS0 as suggested above would be very helpful here as well. If PIGS overlaps with either of V7/IPS0 or the scene memory-related area described by Steel and colleagues, then arguably it is not a newly defined region (although the characterization provided here still provides new information).

      Response 2.2: The lateral-place memory area (LPMA) is located on the lateral brain surface, anterior relative to the IPS (see Figure 1 from Steel et al., 2021 and Figure 3 from Steel et al., 2023). In contrast, PIGS is located on the posterior brain surface, also posterior relative to the IPS. In other words, they are located on two different sides of a major brain sulcus. In this revision we have clarified this point, including the citations by Steel and colleagues.

      Comments 2.3: Another reason that it would be helpful to relate PIGS to this scene memory area is that this scene memory area has been shown to have activity related to the amount of visuospatial context (Steel et al, 2023, The Journal of Neuroscience). The conditions used to show the sensitivity of PIGS to ego-motion also differ in the visuospatial context that can be accessed from the stimuli. Even if PIGS appears distinct from the scene memory area, the degree of visuospatial context is an alternative account of what might be represented in PIGS.

      Response 2.3: The reviewer raises an interesting point. One minor confusion is that we may be inadvertently referring to two slightly different types of “visuospatial context”. Specifically, the stimuli used in the ego-motion experiment here (i.e. coherently vs. incoherently changing scenes) represent the same scenes, and the only difference between the two conditions is the sequence of images across the experimental blocks. In that sense, the two experimental conditions may be considered to have the same visuospatial context. However, it could be also argued that the coherently changing scenes provide more information about the environmental layout. In that case, considering the previous reports that PPA/TPA and RSC/MPA may also be involved in layout encoding (Epstein and Kanwisher 1998; Wolbers et al. 2011), we expected to see more activity within those regions in response to coherently compared incoherently changing scenes. These issues are now more explicitly discussed in the revised article.

      Reviewer 3:

      Comment 3.1: There are few weaknesses in this work. If pressed, I might say that the stimuli depicting ego-motion do not, strictly speaking, depict motion, but only apparent motion between 2s apart photographs. However, this choice was made to equate frame rates and motion contrast between the 'ego-motion' and a control condition, which is a useful and valid approach to the problem. Some choices for visualization of the results might be made differently; for example, outlines of the regions might be shown in more plots for easier comparison of activation locations, but this is a minor issue.

      Response 3.1: We thank the reviewer for these constructive suggestions, and we agree with their comment that the ego-motion stimuli are not smooth, even though they were refreshed every 100 ms. However, the stimuli were nevertheless coherent enough to activate areas V6 and MT, two major areas known to respond preferentially to coherent compared to incoherent motion.

      Epstein, R., and N. Kanwisher. 1998. 'A cortical representation of the local visual environment', Nature, 392: 598-601.

      Wolbers, T., R. L. Klatzky, J. M. Loomis, M. G. Wutte, and N. A. Giudice. 2011. 'Modality-independent coding of spatial layout in the human brain', Curr Biol, 21: 984-9.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      eLife assessment

      This study presents valuable findings about synaptic connectivity among subsets of unipolar brush cells (UBCs), a specialized interneuron primarily located in the vestibular lobules of the cerebellar cortex. The evidence supporting the claims are interesting although incomplete in some areas. The work will be of interest to cerebellar neuroscientists as well as those focussed on synaptic properties and mechanisms. Although several compelling pieces of data were presented, substantial work remains to be conducted in order for the hypothesis and predictions of the manuscript to confirm how these factors play out in the actual brain circuit and how it would impact the processing of feedback or feedforward activity that would be required to promote behavior.

      Public Reviews:

      Reviewer #1 (Public Review):

      The manuscript by Hariani et al. presents experiments designed to improve our understanding of the connectivity and computational role of Unipolar Brush Cells (UBCs) within the cerebellar cortex, primarily lobes IX and X. The authors develop and cross several genetic lines of mice that express distinct fluorophores in subsets of UBCs, combined with immunocytochemistry that also distinguishes subtypes of UBCs, and they use confocal microscopy and electrophysiology to characterize the electrical and synaptic properties of subsets of so-labelled cells, and their synaptic connectivity within the cerebellar cortex. The authors then generate a computer model to test possible computational functions of such interconnected UBCs.

      Using these approaches, the authors report that:

      1. GRP-driven TDtomato is expressed exclusively in a subset (20%) of ON-UBCs, defined electrophysiologically (excited by mossy fiber afferent stimulation via activation of UBC AMPA and mGluR1 receptors) and immunocytochemically by their expression of mGluR1.

      2. UBCs ID'd/tagged by mCitrine expression in Brainbow mouse line P079 is expressed in a similar minority subset of OFF-UBCs defined electrophysiologically (inhibited by mossy fiber afferent stimulation via activation of UBC mGluR2 receptors) and immunocytochemically by their expression of Calretinin. However, such mCitrine expression was also detected in some mGluR1 positive UBCs, which may not have shown up electrophysiologically because of the weaker fluorophore expression without antibody amplification.

      3. Confocal analysis of crossed lines of mice (GRP X P079) stained with antibodies to mGluR1 and calretinin documented the existence of all possible permutations of interconnectivity between cells (ON-ON, ON-OFF, OFF-OFF, OFF-ON), but their overall abundance was low, and neither their absolute or relative abundance was quantified.

      4. A computational model (NEURON ) indicated that the presence of an intermediary UBC (in a polysynaptic circuit from MF to UBC to UBC) could prolong bursts (MF-ON-ON), prolong pauses (MF-ON-OFF), cause a delayed burst (MF-OFF-OFF), cause a delayed pause (MF-OFF-ON) relative to solely MF to UBC synapses which would simply exhibit long bursts (MF-ON) or long pauses (MF-OFF).

      The authors thus conclude that the pattern of interconnected UBCs provides an extended and more nuanced pattern of firing within the cerebellar cortex that could mediate longer lasting sensorimotor responses.

      The cerebellum's long known role in motor skills and reflexes, and associated disorders, combined with our nascent understanding of its role in cognitive, emotional, and appetitive processing, makes understanding its circuitry and processing functions of broad interest to the neuroscience and biomedical community. The focus on UBCs, which are largely restricted to vestibular lobes of the cerebellum reduces the breadth of likely interest somewhat. The overall design of specific experiments is rigorous and the use of fluorophore expressing mouse lines is creative. The data that is presented and the writing are clear. However, despite some additional analysis in response to the initial review, the overall experimental design still has issues that reduce overall interpretation (please see specific issues for details), which combined with a lack of thorough analysis of the experimental outcomes undermines the value of the NEURON model results and the advance in our understanding of cerebellar processing in situ (again, please see specific issues for details).

      Specific issues:

      1. All data gathered with inhibition blocked. All of the UBC response data (Fig. 1) was gathered in the presence of GABAAR and Glycine R blockers. While such an approach is appropriate generally for isolating glutamatergic synaptic currents, and specifically for examining and characterizing monosynaptic responses to single stimuli, it becomes problematic in the context of assaying synaptic and action potential response durations for long lasting responses, and in particular for trains of stimuli, when feed-forward and feed-back inhibition modulates responses to afferent stimulation. I.e. even for single MF stimuli, given the >500ms duration of UBC synaptic currents, there is plenty of time for feedback inhibition from Golgi cells (or feedforward, from MF to Golgi cell excitation) to interrupt AP firing driven by the direct glutamatergic synaptic excitation. This issue is compounded further for all of the experiments examining trains of MF stimuli. Beyond the impact of feedback inhibition on the AP firing of any given UBC, it would also obviously reduce/alter/interrupt that UBC's synaptic drive of downstream UBCs. This issue fundamentally undermines our ability to interpret the simulation data of Vm and AP firing of both the modeled intermediate and downstream UBC, in terms of applying it to possible cerebellar cortical processing in situ.

      The goal of Figure 1 was to determine the cell types of labeled UBCs in transgenic mouse lines, which is determined entirely by their synaptic responses to glutamate (Borges-Merjane and Trussell, 2015). Thus, blocking inhibition was essential to produce clear results in the characterization of GRP and P079 UBCs. While GABAergic/glycinergic feedforward and feedback inhibition is certainly important in the intact circuit, it was not our intention, nor was it possible, to study its contribution in the present study. Leaving inhibition unblocked does not lead to a physiologically realistic stimulation pattern in acute brain slices, because electrical stimulation produces synchronous excitation and inhibition by directly exciting Golgi cells, rather than their synaptic inputs. The main inhibition that UBCs receive that are crucial to determining burst or pause durations is not via GABA/glycine, but instead through mGluR2, which lasts for 100-1000s of milliseconds. The main excitation that drives UBC firing is mGluR1 and AMPA, which both last 100-1000s of milliseconds. Thus, these large conductances are unlikely to be significantly shaped by 1-10 ms IPSCs from feedforward and feedback GABA/glycine inhibition. Recent studies that examined the duration of bursting or pausing in UBCs had inhibition blocked in their experiments, presumably for the reasons outlined above (Guo et al., 2021; Huson et al., 2023).

      Below is an example showing the synaptic currents and firing patterns in an ON UBC before and after blocking inhibition. The GABA/glycinergic inhibition is fast, occurs soon after the stimuli and has little to no effect on the slow inward current that develops after the end of stimulation, which is what drives firing for 100s of milliseconds.

      Author response image 1.

      Example showing small effect of GABAergic and glycinergic inhibition on excitatory currents and burst duration. A) Excitatory postsynaptic currents in response to train of 10 presynaptic stimuli at 50 Hz before (black) and after (Grey) blocking GABA and glycine receptors. The slow inward current that occurs at the end of stimulation is little affected. B) Expanded view of the synaptic currents evoked during the train of stimuli. GABA/glycine receptors mediate the fast outward currents that occur immediately after the first couple stimuli. C) Three examples of the bursts caused by the 50 Hz stimulation in the same cell without blocking GABA and glycine receptors. D) Three examples in the same cell after blocking GABA and glycine receptors.

      The authors' response to the initial concern is (to paraphrase), "its not possible to do and its not important", neither of which are soundly justified.

      As stated in the original review, it is fully understandable and appropriate to use GABAAR/GlycineR antagonists to isolate glutamatergic currents, to characterize their conductance kinetics. That was not the issue raised. The issue raised was that then using only such information to generate a model of in situ behavior becomes problematic, given that feedback and lateral inhibition will sculpt action potential output, which of course will then fundamentally shape their synaptic drive of secondary UBCs, which will be further sculpted by their own inhibitory inputs. This issue undermines interpretation of the NEURON model.

      The argument that taking inhibition into account is not possible because of assumed or possible direct electrical excitation of Golgi cells is confusing for two interacting reasons. First, one can certainly stimulate the mossy fiber bundle to get afferent excitation of UBCs (and polysynaptic feedback/lateral inhibitory inputs) without directly stimulating the Golgi cells that innervate any recorded UBC. Yes, one might be stimulating some Golgi cells near the stimulating electrode, but one can position the stimulating electrode far enough down the white matter track (away from the recorded UBC), such that mossy fiber inputs to the recorded UBC can be stimulated without affecting Golgi cells near or synaptically connected to the recorded UBC. Moreover, if the argument were true, then presumably the stimulation protocol would be just as likely to directly stimulate neighboring UBCs, which then drove the recorded UBC's responses. Thus, it is both doable and should be ensured that stimulation of the white matter is distant enough to not be directly activating relevant, connected neurons within the granule cell layer.

      Finally, the authors present three examples of UBC recordings with and without inhibitory inputs blocked, and state "Thus, these large conductances are unlikely to be significantly shaped by 1-10 ms IPSCs from feedforward and feedback GABA/glycine inhibition" and "GABA/glycinergic inhibition...has little to no effect on the slow inward current that develops after the end of stimulation". This response reflects on original concerns about lack of quantification or consideration of important parameters. In particular, while the traces with and without inhibition are qualitatively similar, quantitative considerations indicate otherwise. First, unquantified examples are not adequate to drive conclusions. Regardless, the main issue (how inhibition affects actual responses in situ) is actually highlighted by the authors current clamp recordings of UBC responses, before and after blocking inhibition. The output response is dramatically different, both at early and late time points, when inhibition is blocked. Again, a lack of quantification (of adequate n's) makes it hard to know exactly how important, but quick "eye ball" estimates of impact include: 1) a switch from only low frequency APs initially (without inhibition blocked) to immediate burst of high frequency APs (high enough to not discern individual APs with given figure resolution) when inhibition is blocked, 2) Slow rising to a peak EPSP, followed by symmetrical return to baseline (without inhibition blocked) versus immediate rise to peak, followed by prolonged decay to baseline (with inhibition blocked), 3) substantially shorter duration (~34% shorter) secondary high frequency burst (individual APs not discernible) of APs (with inhibition blocked versus without inhibition blocked), and 4) substantial reduction in number of long delayed APs (with inhibition blocked versus without inhibition blocked). Thus, clearly, feedback/lateral inhibition is actually sculpting AP output at all phases of the UBC response to trains of afferent stimulations. Importantly, the single voltage clamp trace showing little impact of transient IPSCs on the slow EPSC do not take into account likely IPSC influences on voltage-activated conductances that would not occur in voltage-clamp recordings but would be free to manifest in current clamp, and thereby influence AP output, as observed.

      So again, our ability to understand how interconnected UBCs behave in the intact system is undermined by the lack of consideration and quantification of the impact of inhibition, and it not being incorporated into the model. At the very least a strong proviso about lack of inclusion of such information, given the authors' data showing its importance in the few examples shown, should be added to the discussion.

      Thank you for this substantive explanation. Your points are well described and we agree that the single experiment shown is not strong evidence for a lack of importance of Golgi cell inhibition, especially on the temporal dynamics of spiking. Previous work has clearly shown that Golgi cells have several important roles in shaping the activity of the granular layer, including affecting the temporal dynamics of granule cell spikes. However, the work presented here focuses on the feedforward circuitry of UBCs and the large inward and large outward glutamatergic currents that drive spiking or pausing for 100s of milliseconds. Our model does not focus on the aspects that are most sensitive to Golgi cell inhibition, including timing of the first spikes in the UBC’s response. Nor does our model focus on short term plasticity, which we thought was reasonable because the slow currents in UBCs are quite insensitive to the temporal characteristics of glutamate release (See the example in the previous rebuttal). Our model does not include long term plasticity, which is also affected by Golgi cells. For these reasons we agree that the model presented does not explain how feedforward UBC circuits might “play out in the actual brain circuit and how it would impact the processing of feedback or feedforward activity that would be required to promote behavior.” We have included a new paragraph in the discussion clarifying the limitations of this study and the model, reproduced below.

      "Limitations of the model

      Here we addressed how feedforward glutamatergic excitation and inhibition is transformed from one UBC to the next depending on their subtype. The model focuses on AMPA receptor mediated excitation and mGluR2 mediated inhibition. One limitation of the model is that it does not consider feedforward and lateral inhibition from Golgi cells, which shape the spiking of UBCs in response to afferent stimulation. Golgi cells receive mossy fiber input and inhibit UBCs through their corelease of GABA and glycine (Dugue et al., 2005; Rousseau et al., 2012). Golgi cells control the temporal dynamics of the firing of granule cells as well as their gain (Rossi et al., 2003; Kanichay and Silver, 2008) and are critical to larger scale dynamics of the cerebellar cortical network (D‘Angelo, 2008). Purkinje cells provide additional inhibition to ON UBCs that could influence how UBC circuits transform signals (Guo et al., 2016). A more complex model that implements Golgi cells and other critical circuit elements will be needed to investigate the role of feedforward UBC circuits in cerebellar network dynamics and motor behaviors in vivo."

      1. No consideration for involvement of polysynaptic UBCs driving UBC responses to MF stimulation in electrophysiology experiments. Given the established existence (in this manuscript and Dino et al. 2000 Neurosci, Dino et al. 2000 ProgBrainRes, Nunzi and Mugnaini 2000 JCompNeurol, Nunzi et al. 2001 JCompNeurol) of polysynaptic connections from MFs to UBCs to UBCs, the MF evoked UBC responses established in this manuscript, especially responses to trains of stimuli could be mediated by direct MF inputs, or to polysynaptic UBC inputs, or possibly both (to my awareness not established either way). Thus the response durations could already include extension of duration by polysynaptic inputs, and so would overestimate the duration of monosynaptic inputs, and thus polysynaptic amplification/modulation, observed in the NEURON model.

      We are confident that the synaptic responses shown are monosynaptic for several reasons. UBCs receive a single mossy fiber input on their dendritic brush, and thus if our stimulation produces a reliable, short-latency response consistent with a monosynaptic input, then there is not likely to be a disynaptic input, because the main input is accounted for by the monosynaptic response. In all cells included in our data set, the fast AMPA receptor-mediated currents always occurred with short latency (1.24 ± 0.29 ms; mean ± SD; n = 13), high reliability (no failures to produce an EPSC in any of the 13 GRP UBCs in this data set), and low jitter (SD of latency; 0.074 ± 0.046 ms; mean ± SD; n = 13). These measurements have been added to the results section.

      In some rare cases, we did observe disynaptic currents, which were easily distinguishable because a single electrical stimulation produced a burst of EPSCs at variable latencies. Please see example below. These cases of disynaptic input, which have been reported by others (Diño et al., 2000; Nunzi and Mugnaini, 2000; van Dorp and De Zeeuw, 2015) support the conclusion that UBCs receive input from other UBCs.

      Author response image 2.

      Example of GRP UBC with disynaptic input. Three examples of the effect of a single presynaptic stimulus (triangle) in a GRP UBC with presumed disynaptic input. Note the variable latency of the first evoked EPSC, bursts of EPSCs, and spontaneous EPSCs.

      Author response: "UBCs receive a single mossy fiber input on their dendritic brush, and thus if our stimulation produces a reliable, short-latency response consistent with a monosynaptic input, then there is not likely to be a disynaptic input."

      This statement is not congruent with the literature, with early work by Mugnaini and colleagues (Mugnaini et al. 1994 Synapse; Mugnaini and Flores 1994 J. Comp. Neurol.) indicating that UBCs are innervated by 1-2 mossy fibers, which are as likely other UBC terminals as MFs. This leaves open the possibility that so called monosynaptic responses do, as originally suggested, already include polysynaptic feedforward amplification of duration. While the authors also indicate that isolated disynaptic currents can be observed when they occur in isolation, a careful examination and objective documentation of "monosynaptic" responses would address this issue. Presumably, if potential disynaptic UBC inputs occur during a monosynaptic MF response, it would be detected as an abrupt biphasic inward/outward current, due to additional AMPA receptor activation but further desensitization of those already active (as observed by Kinney et al. 1997 J. Neurophysiol: "The delivery of a second MF stimulus at the peak of the slow EPSC evoked a fast EPSC of reduced amplitude followed by an undershoot of the subsequent slow current"). If such polysynaptic inputs are truly absent and are "rare" in isolation, some estimation of how common or not such synaptic amplification is, would improve our understanding of the overall significance of these inputs.

      We are confident that these currents are monosynaptic, because, as suggested, we carefully analyzed the latency, jitter and reliability, which was added to the previous revision. The latency and jitter are strong (quantitative) evidence that the first EPSC evoked was monosynaptic. While some UBCs have been reported to have multiple brushes, or brushes that branch and may contact multiple mossy fibers, or receive synaptic input onto their somas, these cases are rare in our experience in this age of mouse and there is no evidence for them in this dataset. For every trace we made a careful examination and documented that no delayed EPSCs were present. The presence of delayed EPSCs (or ‘abrupt biphasic inward/outward currents’ as described in Kinney et al 1997) would indeed suggest the presence of disynaptic activity or multiple inputs to the UBC, but these would be easily identified, even during a stimulation train. For these reasons we feel that we have established that polysynaptic feedforward amplification of duration is not present

      We agree that the monosynaptic responses could be due to the stimulation of UBC axons. However, the absence of delayed EPSCs again suggests that if stimulation of a presynaptic UBC axon was producing the currents in the recorded UBC, then the axon was severed from the soma and AIS, because this region is necessary for the cell to produce more than a single spike per stimulation. We added a sentence describing the potential for the monosynaptic EPSCs to be due to the stimulation of presynaptic UBC axons.

      Your point is well taken that a discussion of how common or rare these UBC to UBC connections is necessary to more clearly explain how we interpret their significance and we have expanded the paragraph in the discussion that does so. Thank you for this suggestion.

      1. Lack of quantification of subtypes of UBC interconnectivity. Given that it is already established that UBCs synapse onto other UBCs (see refs above), the main potential advance of this manuscript in terms of connectivity is the establishment and quantification of ON-ON, ON-OFF, OFF-ON, and OFF-OFF subtypes of UBC interconnections. But, the authors only establish that each type exists, showing specific examples, but no quantification of the absolute or relative density was provided, and the authors' unquantified wording explicitly or implicitly states that they are not common. This lack of quantification and likely small number makes it difficult to know how important or what impact such synapses have on cerebellar processing, in the model and in situ.

      As noted by the reviewer, the connections between UBCs were rare to observe. We decided against attempting to quantify the absolute or relative density of connections for several reasons. A major reason for rare observations of anatomical connections between UBCs is likely due to the sparse labeling. First, the GRP mouse line only labels 20% of ON UBCs and we are unable to test whether postsynaptic connectivity of GRP ON UBCs is the same as that of the rest of the population of ON UBCs that are not labeled in the GRP mouse line. Second, the Brainbow reporter mouse only labels a small population of Cre expressing cells for unknown reasons. Third, the Brainbow reporter expression was so low that antibody amplification was necessary, which then limited the labeled cells to those close to the surface of the brain slices, because of known antibody penetration difficulties. Therefore, we refrained from estimating the density of these connections, because each of these variables reduced the labeling to unknown degrees and we reasoned that extrapolating our rare observations to the total population would be inaccurate.

      A paper that investigated UBC connectivity using organotypic slice cultures from P8 mice suggests that 2/3 of the UBC population receives UBC input, based on the observation that 2/3 of the mossy fibers did not degenerate as would be expected after 2 days in vitro if they were severed from a distant cell body (Nunzi and Mugnaini, 2000). It remains to be seen if this high proportion is due to the young age of these mice or is also the case in adult mice. Even if these connections are indeed rare, they are expected to have profound effects on the circuit, as each UBC has multiple mossy fiber terminals (Berthie and Axelrad, 1994), and mossy fiber terminals are estimated to contact 40 granule cells each (Jakab and Hamori, 1988). We have added a comment regarding this point to the discussion.

      To address this issue, the authors added the following text to the discussion section: "We did not estimate the density of these UBC to UBC connections, because the sparseness of labeling using these approaches made an accurate calculation impossible. Previous work using organotypic slice cultures from P8 mice estimated that 2/3 of the UBC population receives input from other UBCs (Nunzi & Mugnaini, 2000), although it is unclear whether this is the case in older mice."

      While accurate, the addition doesn't really address the situation, which is that apparently the reported connections are rare. Adding the information about 2/3 of UBCs having UBC inputs in culture, implies the opposite might be true (i.e. that they might be quite common), which is in contrast to the authors' data, so should be reworded for clarity, which should also incorporate the considerations covered in point #2 above. I.e. if the authors do establish that none of their recordings have polysynaptic inputs, and if they determine that the number of cells that showed isolated di-synaptic inputs is indeed rare, then it suggests that these specific polysynaptic connections are in fact rare.

      Thank you for pointing this out. We agree that adding this information is somewhat contradictory to our results and we have added more to this section in the discussion, provided below.

      Anatomically identifiable connections between UBCs were not present in all brain slices and finding them required a careful search. UBC labeling was sparse due to the highly specific genetic labeling techniques and further sparsification by the Brainbow reporter, which made it impossible to estimate the density of these UBC to UBC connections. Electrophysiological evidences suggest that UBC to UBC connections are not common, because spontaneous EPSCs that would indicate a spontaneously firing presynaptic UBC are only rarely observed in UBCs recorded in acute brain slices. In an analysis of feedforward excitation of granule layer neurons, only 4 out of 140 UBCs had this indirect evidence of a firing presynaptic UBC (van Dorp and De Zeeuw, 2015), which suggests that UBC to UBC connections may be rare. On the other hand, previous work using organotypic slice cultures from P8 mice estimated that 2/3 of the UBC population receives input from other UBCs (Nunzi & Mugnaini, 2000). This suggests a much higher density of UBC to UBC connections, but could be due to the young age of the brains used, which is before UBCs have matured (Morin et al., 2001), and also due to increased collateral sprouting that can occur in culture (Jaeger et al., 1988). Another study imaged 2-4 week old rat cerebellar slices at an electron microscopic level and found that 4 out of 14 UBC axon terminals contacted UBC brushes (Diño et al., 2000). Future work is necessary to accurately estimate the density and impact of these feedforward UBC circuits.

      1. Lack of critical parameters in NEURON model.

      A) The model uses # of molecules of glutamate released as the presumed quantal content, and this factor is constant.

      However, no consideration of changes in # of vesicles released from single versus trains of APs from MFs or UBCs is included. At most simple synapses, two sequential APs alters release probability, either up or down, and release probability changes dynamically with trains of APs. It is therefore reasonable to imagine UBC axon release probability is at least as complicated, and given the large surface area of contact between two UBCs, the number of vesicles released for any given AP is also likely more complex.

      B) the model does not include desensitization of AMPA receptors, which in the case of UBCs can paradoxically reduce response magnitude as vesicle release and consequent glutamate concentration in the cleft increases (Linney et al. 1997 JNeurophysiol, Lu et al. 2017 Neuron, Balmer et al. 2021 eLIFE), as would occur with trains of stimuli at MF to ON-UBCs.

      A) The model produces synaptic AMPA and mGluR2 currents that reproduce those we recorded in vitro. We did not find it necessary to implement changes in glutamate release during a train as the model was fit to UBC data with the assumption that the glutamate transient did not change during the train. If there is a change in neurotransmitter release during a train, it is therefore built into the model, which has the advantage of reducing its complexity. UBCs are a special case where the postsynaptic currents are mediated mostly by the total amount of transmitter released. Most of the evoked current occurs tens to hundreds of milliseconds after neurotransmitter release and is therefore much more sensitive to total release and less sensitive to how it is released during the train. The figure below shows the effect of reducing the amount of glutamate released by 10% on each stimulus in the model. Despite a significant change in the pattern of neurotransmitter release, as well as a reduction in the total amount of glutamate, the slow EPSC still decays over the course of hundreds of milliseconds.

      B) The detailed kinetic AMPA receptor model used here accurately reproduces desensitization, which in fact mediates that the slow ON UBC current. This AMPA receptor is a 13-state model, including 4 open states with 1-4 glutamates bound, 4 closed states with 1-4 glutamates bound, 4 desensitized states with 1-4 glutamates bound, and 5 closed states with 0-4 glutamates bound. The forward and reverse rates between different states in the model were fit to AMPA receptor currents recorded from dissociated UBCs and they accurately reproduced the ON UBC currents evoked by synaptic stimulation in our previous work (Balmer et al., 2021).

      Author response image 3.

      Effect of short-term depression of neurotransmitter release. A) The top trace shows the glutamate transient that drives the AMPA receptor model used in our study. No change in release is implemented, although the slow tail of the transient summates during the train. The bottom trace shows the modeled AMPA receptor mediated current. B) In this model the amount of glutamate released on each stimulus is reduced by 10%. The duration of the slow AMPA current is similar, despite a profound change in the pattern of neurotransmitter exposure.

      While the authors have not added the suggested additional parameters, their clarifications regarding the implications of existing parameters, and demonstration of reasonable fits to experimental data, and lack of substantial effect of simulating reduced vesicle release probability,

      1. Lack of quantification of various electrophysiological responses. UBCs are defined (ON or OFF) based on inward or outward synaptic response, but no information is provided about the range of the key parameter of duration across cells, which seems most critical to the current considerations. There is a similar lack of quantification across cells of AP duration in response to stimulation or current injections, or during baseline. The latter lack is particularly problematic because in agreement with previous publications, the raw data in Fig. 1 shows ON UBCs as quiescent until MF stimulation and OFF UBCs firing spontaneously until MF stimulation, but, for example, at least one ON UBC in the NEURON model is firing spontaneously until synaptically activated by an OFF UBC (Fig. 11A), and an OFF UBC is silent until stimulated by a presynaptic OFF UBC (Fig. 11C). This may be expected/explainable theoretically, but then such cells should be observed in the raw data.

      To address this reasonable concern of a general lack of quantification of electrophysiological responses we have added data characterizing the slow inward and outward currents evoked by synaptic stimulation in GRP and P079 UBCs in the results section and in new panels in Figure 1. We report the action potential pause lengths in P079 UBCs and burst lengths in ON UBCs in the results section. However, we favor the duration of the currents to the length of burst and pause, because the currents do not depend on a stable resting membrane potential, which is itself difficult to determine in intracellular recordings of these small cells. In a series of recent publications that focused on UBC firing, the authors argue that cell-attached recordings are necessary to determine accurately the burst and pause lengths, as well as spontaneous firing rates (Guo et al., 2021; Huson et al., 2023). (The trade-off of these extracellular recordings is that the monosynaptic nature of the input is nearly impossible to confirm.) Spontaneous firing rates were variable within both GRP and P079 UBCs from silent to firing regularly or in bursts, as previously reported (Kim et al., 2012; van Dorp and De Zeeuw, 2015). For clarity, we chose to model the GRP UBCs as silent unless receiving synaptic input and P079 UBCs as active unless receiving synaptic input. As the reviewer suggests, we have observed UBCs firing in the patterns similar to those shown in the model UBCs having input from spontaneous presynaptic UBCs. Below are some examples of spontaneous EPSCs and IPSCs in UBCs that suggest the presence of a presynaptic UBC.

      Author response image 4.

      Examples of UBCs that receive spontaneous input. A) Three ON UBCs that had spontaneous EPSCs, suggesting the presence of an active presynaptic UBC. B) Two OFF UBCs that had spontaneous outward currents.

      The authors have added additional analysis and discussion, which adequately addresses this concern.

      Reviewer #2 (Public Review):

      In this paper, the authors presented a compelling rationale for investigating the role of UBCs in prolonging and diversifying signals. Based on the two types of UBCs known as ON and OFF UBC subtypes, they have highlighted the existing gaps in understanding UBCs connectivity and the need to investigate whether UBCs target UBCs of the same subtype, different subtypes, or both. The importance of this knowledge is for understanding how sensory signals are extended and diversified in the granule cell layer.

      The authors designed very interesting approaches to study UBCs connectivity by utilizing transgenic mice expressing GFP and RFP in UBCs, Brainbow approach, immunohistochemical and electrophysiological analysis, and computational models to understand how the feed-forward circuits of interconnected UBCs transform their inputs.

      This study provided evidence for the existence of distinct ON and OFF UBC subtypes based on their electrophysiological properties, anatomical characteristics, and expression patterns of mGluR1 and calretinin in the cerebellum. The findings support the classification of GRP UBCs as ON UBCs and P079 UBCs as OFF UBCs and suggest the presence of synaptic connections between the ON and OFF UBC subtypes. In addition, they found that GRP and P079 UBCs form parallel and convergent pathways and have different membrane capacitance and excitability. Furthermore, they showed that UBCs of the same subtype provide input to one another and modify the input to granule cells, which could provide a circuit mechanism to diversify and extend the pattern of spiking produced by mossy fiber input. Accordingly, they suggested that these transformations could provide a circuit mechanism for maintaining a sensory representation of movement for seconds.

      Overall, the article is well written in a sound detailed format, very interesting with excellent discovery and suggested model.

      I believe the authors have provided appropriate responses and have consequently revised the manuscript in a convincing manner. Although I am not an expert in physiology, I find the explanations and clarifications to be acceptable.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer 1 (Public Review):

      1. The name of the new method "inter-haplotype distance" is more confusing than helpful, as the haplotype information is not critical for implementing this method. First, the mutation spectrum is aggregated genome-wide regardless of the haplotypes where the mutations are found. Second, the only critical haplotype information is that at the focal site (i.e., the locus that is tested for association): individuals are aggregated together when they belong to the same "haplotype group" at the focal site. However, for the classification step, haplotype information is not really necessary: individuals can be grouped based on their genotypes at the given locus (e.g., AA vs AB). As the authors mentioned, this method can be potentially applied to other mutation datasets, where haplotype information may well be unavailable. I hope the authors can reconsider the name and remove the term "haplotype" (perhaps something like "inter-genotype distance"?) to avoid giving the wrong impression that haplotype information is critical for applying this method.

      We appreciate the reviewer's concern about the name of our method. The reviewer is correct that haplotype information is not critical for our method to work, and as a result we've decided to simply rename the approach to "aggregate mutation spectrum distance" (abbreviated AMSD). For simplicity, we refer to the method as IHD throughout our responses to reviewers, but the revised manuscript now refers to AMSD.

      1. The biggest advantage of the IHD method over QTL mapping is alleviation of the multiple testing burden, as one comparison tests for any changes in the mutation spectrum, including simultaneous, small changes in the relative abundance of multiple mutation types. Based on this, the authors claim that IHD is more powerful to detect a mutator allele that affects multiple mutation types. Although logically plausible, it is unclear under what quantitative conditions IHD can actually have greater power over QTL. It will be helpful to support this claim by providing some simulation results.

      This comment prompted us to do a more detailed comparison of IHD vs. QTL power under conditions that are more similar to those observed in the BXD cohort. While preparing the original manuscript, we assumed that IHD might have greater power than QTL mapping in a population like the BXDs because some recombinant inbred lines have accumulated many more germline mutations than others (see Figure 1 in Sasani et al. 2022, Nature). In a quantitative trait locus scan (say, for the fraction of C>A mutations in each line) each BXD's mutation data would be weighted equally, even if a variable number of mutations was used to generate the phenotype point estimate in each line.

      To address this, we performed a new series of simulations in which the average number of mutations per haplotype was allowed to vary. At the low end, some BXDs accumulated as few as 100 total germline mutations, while others have accumulated as many as 2,000. Thus, instead of simulating a mean number of mutations on each simulated haplotype, we allowed the mean number of mutations per haplotype to vary from N to 20N. By simulating a variable count of mutations on each haplotype, we could more easily test the benefits of comparing aggregate, rather than individual, mutation spectra between BXDs.

      In these updated simulations, we find that IHD routinely outperforms QTL mapping under a range of parameter choices (see Author Response image 1). Since IHD aggregates the mutation spectra of all haplotypes with either B or D alleles at each locus in the genome, the method is much less sensitive to individual haplotypes with low mutation counts. We include a mention of these updated simulations on lines 135-138 and describe the updated simulations in greater detail in the Materials and Methods (lines 705-715).

      Author response image 1.

      Power of IHD and QTL mapping on simulated haplotypes with variable counts of mutations. We simulated germline mutations on the specified number of haplotypes (as described in the manuscript) but allowed the total number of mutations per haplotype to vary by a factor of 20.

      1. The flip side of this advantage of IHD is that, when a significant association is detected, it is not immediately clear which mutation type is driving the signal. Related to this, it is unclear how the authors reached the point that "...the C>A mutator phenotype associated with the locus on chromosome 6", when they only detected significant IHD signal at rs46276051 (on Chr6), when conditioning on D genotypes at the rs27509845 (on Chr4) and no significant signal for any 1-mer mutation type by traditional mapping. The authors need to explain how they deduced that C>A mutation is the major source of the signal. In addition, beyond C>A mutations, can mutation types other than C>A contribute to the IHD signal at rs46276051? More generally, I hope the authors can provide some guidelines on how to narrow a significant IHD signal to specific candidate mutation type(s) affected, which will make the method more useful to other researchers.

      We thank the reviewer for pointing out this gap in our logic. We omitted specific instructions for narrowing down an IHD signal to specific mutation type(s) for a few reasons. First, this can be addressed using mutational signature analysis methods that are in widespread use. For example, upon identifying one or more candidate mutator loci, we can enter the mutation spectra of samples with each possible mutator genotype into a program (e.g., SigProfilerExtractor) to determine which combinations of mutation types occur proportionally more often in the genomes that harbor mutators (see Figure 3c in our manuscript). A second approach for narrowing down an IHD signal, highlighted in Figure 3a (and now described in the text of the Results section at lines 256-261), is to simply test which mutation type proportion(s) differ significantly between groups of samples with and without a candidate mutator (for example, with a Chi-square test of independence for each mutation type).

      Although this second approach incurs a multiple testing burden, the burden is offset somewhat by using IHD to identify mutator loci, rather than performing association tests for every possible mutation type to begin with. Although Figure 3a only shows the significant difference in C>A fraction among BXDs with different mutator locus genotypes, Figure 3-figure supplement 1 shows the complete set of 1-mer spectrum comparisons. It is possible that this second approach would not prove very useful in the case of a mutator with a “flat” signature (i.e., a mutator that slightly perturbs the rates of many different mutation types), but in our case it clearly shows which mutation type is affected.

      1. To account for differential relatedness between the inbred lines, the authors regressed the cosine distance between the two aggregate mutation spectra on the genome-wide genetic similarity and took the residual as the adjusted test metric. What is the value of the slope from this regression? If significantly non-zero, this would support a polygenic architecture of the mutation spectrum phenotype, which could be interesting. If not, is this adjustment really necessary? In addition, is the intercept assumed to be zero for this regression, and does such an assumption matter? I would appreciate seeing a supplemental figure on this regression.

      The reviewer raises a good question. We find that the slope of the "distance vs. genetic similarity" regression is significantly non-zero, though the slope estimate itself is small. A plot of cosine distance vs. genome-wide genetic similarity (using all BXDs) is shown below in Author response image 2:

      Author response image 2.

      Relationship between cosine distance and genetic similarity in the BXDs. As described in the Materials and Methods, we computed two values at each marker in the BXDs: 1) the cosine distance between the aggregate mutation spectra of BXDs with either B or D genotypes at the marker, and 2) the correlation between genome-wide D allele frequencies in BXDs with either B or D genotypes at the marker. We then regressed these two values across all genome-wide markers.

      This result indicates that if two groups of BXDs (one with D genotypes and one with B genotypes at a given locus) are more genetically similar, their mutation spectra are also more similar. Since the regression slope estimate is significantly non-zero (p < 2.2e-16), we believe that it's still worth using residuals as opposed to raw cosine distance values. This result also suggests that there may be a polygenic effect on the mutation spectrum in the BXDs.

      We have also generated a plot showing the cosine distance between the mutation spectra of every possible pair of BXDs, regressed against the genetic similarity between each of those pairs (Author Response image 3). Here, the potential polygenic effects on mutation spectra similarity are perhaps more obvious.

      Author response image 3.

      Pairwise cosine distance between BXD mutation spectra as a function of genetic similarity. We computed two values for every possible pair of n = 117 BXDs: 1) the cosine distance between the samples' individual 1-mer mutation spectra and 2) the correlation coefficient between the samples' genome-wide counts of D alleles.

      Private Comments

      1. It will also be useful to see how the power of IHD and QTL mapping depend on the allele frequency of the mutator allele and the sample size, as mutator alleles are likely rare or semi-rare in natural populations (such as the human de novo mutation dataset that the authors mentioned).

      This is another good suggestion. In general, we'd expect the power of both IHD and QTL mapping to decrease as a function of mutator allele frequency. At the same time, we note that the power of these scans should mostly depend on the absolute number of carriers of the mutator allele and less on its frequency. In the BXD mouse study design, we observe high frequency mutators but also a relatively small sample size of just over 100 individuals. In natural human populations, mutator frequencies might be orders of magnitude smaller, but sample sizes may be orders of magnitude larger, especially as new cohorts of human genomes are routinely being sequenced. So, we expect to have similar power to detect a mutator segregating at, say, 0.5% frequency in a cohort of 20,000 individuals, as we would to detect a mutator segregating at 50% frequency in a dataset of 200 individuals.

      To more formally address the reviewer's concern, we performed a series of simulations in which we simulated a population of 100 haplotypes. We assigned the same average number of mutations to each haplotype but allowed the allele frequency of the mutator allele to vary between 0.1, 0.25, and 0.5. The results of these simulations are shown in Author response image 4 and reveal that AMSD tends to have greater power than QTL mapping at lower mutator allele frequencies. We now mention these simulations in the text at lines 135-138 and include the simulation results in Figure 1-figure supplement 4.

      Author response image 4.

      Power of AMSD and QTL mapping on simulated haplotypes with variable marker allele frequencies. We simulated germline mutations on the specified number of haplotypes (as described in the manuscript), but simulated genotypes at the mutator allele such that "A" alleles were at the specified allele frequency.

      1. In the Methods section of "testing for epistasis between the two mutator loci", it will be helpful to explicitly lay out the model and assumptions in mathematical formulae, in addition to the R scripts. For example, are the two loci considered independent when their effects on mutation rate is multiplicative or additive? Given the R scripts provided, it seems that the two loci are assumed to have multiplicative effects on the mutation rate, and that the mutation count follows a Poisson distribution with mean being the mutation rate times ADJ_AGE (i.e., the mutation opportunity times the number of generations of an inbred line). However, this is not easily understandable for readers who are not familiar with R language. In addition, I hope the authors can be more specific when discussing the epistatic interaction between the two loci by explicitly saying "synergistic effects beyond multiplicative effects on the C>A mutation rate".

      The reviewer raises a good point about the clarity of our descriptions of tests for epistasis. We have now added a more detailed description of these tests in the section of the Materials and Methods beginning at line 875. We have also added a statement to the text at lines 289-291: “the combined effects of D genotypes at both loci exceed the sum of marginal effects of D genotypes at either locus alone.” We hope that this will help clarify the results of our tests for statistical epistasis.

      Reviewer 2 (Public Review):

      1. The main limitation of the approach is that it is difficult to see how it might be applied beyond the context of mutation accumulation experiments using recombinant inbred lines. This is because the signal it detects, and hence its power, is based on the number of extra accumulated mutations linked to (i.e. on the same chromosome as) the mutator allele. In germline mutation studies of wild populations the number of generations involved (and hence the total number of mutations) is typically small, or else the mutator allele becomes unlinked from the mutations it has caused (due to recombination), or is lost from the population altogether (due to chance or perhaps selection against its deleterious consequences).

      The reviewer is correct that as it currently exists, IHD is mostly limited to applications in recombinant inbred lines (RILs) like the BXDs. This is due to the fact that IHD assumes that each diploid sample harbors one of two possible genotypes at a particular locus and ignores the possibility of heterozygous genotypes for simplicity. In natural, outbreeding populations, this assumption will obviously not hold. However, as we plan to further iterate on and improve the IHD method, we hope that it will be applicable to a wider variety of experimental systems in the future. We have added additional caveats about the applicability of our method to other systems in the text at lines 545-550.

      Private Comments

      1. On p. 8, perhaps I've misunderstood but it's not clear in what way the SVs identified were relevant to the samples used in this dataset - were the founder strains assembled? Is there any chance that additional SVs were present, e.g. de novo early in the accumulation line?

      Our description of this structural variation resource could have been clearer. The referenced SVs were identified in Ferraj et al. (2023) by generating high-quality long read assemblies of inbred laboratory mice. Both DBA/2J and C57BL/6J (the founder strains for the BXD resource) were included in the Ferraj et al. SV callset. We have clarified our description of the callset at lines 247-248.

      It is certainly possible that individual BXD lines have accumulated de novo structural variants during inbreeding. However, these "private" SVs are unlikely to produce a strong IHD association signal (via linkage to one of the ~7,000 markers) at either the chromosome 4 or chromosome 6 locus, since we only tested markers that were at approximately 50% D allele frequency among the BXDs.

      1. On p. 13, comparing the IHD and QTL approaches, regarding the advantage of the former in that it detects the combined effect of multiple k-mer mutation types, would it not be straightforward to aggregate counts for different types in a QTL setting as well?

      The mutation spectrum is a multi-dimensional phenotype (6-dimensional if using the 1-mer spectrum, 96-dimensional if using the 3-mer spectrum, etc.). Most QTL mapping methods use linear models to test for associations between genotypes and a 1-dimensional phenotype (e.g., body weight, litter size). In the past, we used QTL mapping to test for associations between genotypes and a single element of the mutation spectrum (e.g., the rate of C>A mutations), but there isn't a straightforward way to aggregate or collapse the mutation spectrum into a 1dimensional phenotype that retains the information contained within the full 1-mer or 3-mer spectrum. For that reason, we developed the "aggregate mutation spectrum" approach, as it preserves information about the complete mutation spectrum in each group of strains.

      The reviewer is correct that we could also aggregate counts of different mutation types to, say, perform a QTL scan for the load of a specific mutational signature. For example, we could first perform standard mutational signature analysis on our dataset and then test for QTLs associated with each signature that is discovered. However, this approach would not solve the second problem that our method is designed to solve: the appropriate weighting of samples based on how many mutations they contain.

      1. pp. 15-16: In the discussion of how you account for relatedness between strains, I found the second explanation (on p. 16) much clearer. It would be interesting to know how much variance was typically accounted for by this regression?

      As shown in the response to Reviewer 1, genotype similarity between genotype groups (i.e., those with either D or B genotypes at a marker) generally explains a small amount of variance in the cosine distance between those groups (R2 ~= 0.007). However, since the slope term in that regression is significantly non-zero, correcting for this relationship should still improve our power relative to using raw cosine distance values that are slightly confounded by this relationship.

      1. Similarly, in the section on Applying the IHD method to the BXDs (pp. 18-19), I think this description was very useful, and some or all of this description of the experiment (and how the DNMs in it arise) could profitably be moved to the introduction.

      We appreciate the reviewer’s feedback about the details of the BXD cohort. Overall, we feel the description of the BXDs in the Introduction (at lines 65-73) is sufficient to introduce the cohort, though we now add some additional detail about variability in BXD inbreeding duration (at lines 89-93) to the Introduction as well, since it is quite relevant to some of the new simulation results presented in the manuscript.

      1. A really minor one, not sure if this is for the journal or the authors, but it would be much better to include both page and line numbers in any version of an article for review. My pdf had neither!

      We apologize for the lack of page/line numbers in the submitted PDF. We have now added line numbers to the revised version of the manuscript.

      Reviewer 3 (Public Review):

      1. Under simulated scenarios, the authors' new IHD method is not appreciably more powerful than conventional QTL mapping methods. While this does not diminish the rigor or novelty of the authors findings, it does temper enthusiasm for the IHD method's potential to uncover new mutators in other populations or datasets. Further, adaptation of this methodology to other datasets, including human trios or multigenerational families, will require some modification, which could present a barrier to broader community uptake. Notably, BXD mice are (mostly) inbred, justifying the authors consideration of just two genotype states at each locus, but this decision prevents out-of-the-box application to outbred populations and human genomic datasets. Lastly, some details of the IHD method are not clearly spelled out in the paper. In particular, it is unclear whether differences in BXD strain relatedness due to the breeding epoch structure are fully accounted for in permutations. The method's name - inter-haplotype distance - is also somewhat misleading, as it seems to imply that de novo mutations are aggregated at the scale of sub-chromosomal haplotype blocks, rather than across the whole genome.

      The reviewer raises very fair concerns. As mentioned in response to a question from Reviewer 1, we performed additional simulation experiments that demonstrate the improved power of IHD (as compared to QTL mapping) in situations where mutation counts are variable across haplotypes or when mutator alleles are present at allele frequencies <50% (see Author response image 2 and 3, as well as new supplements to Figure 1 in the manuscript). However, the reviewer is correct that the IHD method is not applicable to collections of outbred individuals (that is, individuals with both heterozygous and homozygous genotypes), which will limit its current applications to datasets other than recombinant inbred lines. We have added a mention of these limitations to the Results at lines 138-141 and the Discussion at lines 545-550, but plan to iterate on the IHD method and introduce new features that enable its application to other datasets. We have also explicitly stated that we account for breeding epochs in our permutation tests in the Materials and Methods at lines 670-671. Both Reviewer 1 and Reviewer 3 raised concerns about the name of our method, and we have therefore changed “inter-haplotype distance” to “aggregate mutation spectrum distance” throughout the manuscript.

      1. Nominating candidates within the chr6 mutator locus requires an approach for defining a credible interval and excluding/including specific genes within that interval as candidates. Sasani et al. delimit their focal window to 5Mb on either side of the SNP with the most extreme P-value in their IHD scan. This strategy suffers from several weaknesses. First, no justification for using 10 Mb window, as opposed to, e.g., a 5 Mb window or a window size delimited by a specific threshold of P-value drop, is given, rendering the approach rather ad hoc. Second, within their focal 10Mb window, the authors prioritize genes with annotated functions in DNA repair that harbor protein coding variants between the B6 and D2 founder strains. While the logic for focusing on known DNA repair genes is sensible, this locus also houses an appreciable number of genes that are not functionally annotated, but could, conceivably, perform relevant biological roles. These genes should not be excluded outright, especially if they are expressed in the germline. Further, the vast majority of functional SNPs are non-coding, (including the likely causal variant at the chr4 mutator previously identified in the BXD population). Thus, the author's decision to focus most heavily on coding variants is not well-justified. Sasani et al. dedicate considerable speculation in the manuscript to the likely identity of the causal variant, ultimately favoring the conclusion that the causal variant is a predicted deleterious missense variant in Mbd4. However, using a 5Mb window centered on the peak IHD scan SNP, rather than a 10Mb window, Mbd4 would be excluded. Further, SNP functional prediction accuracy is modest [e.g., PMID 28511696], and exclusion of the missense variant in Ogg1 due its benign prediction is potentially premature, especially given the wealth of functional data implicating Ogg1 in C>A mutations in house mice. Finally, the DNA repair gene closest to the peak IHD SNP is Rad18, which the authors largely exclude as a candidate.

      We agree that the use of a 10 Mb window, rather than an empirically derived confidence interval, is a bit arbitrary and ad hoc. To address this concern, we have implemented a bootstrap resampling approach (Visscher et al. 1996, Genetics) to define confidence intervals surrounding IHD peaks. We have added a description of the approach to the Materials and Methods at lines 609-622, but a brief description follows. In each of N trials (here, N = 10,000), we take a bootstrap sample of the BXD phenotype and genotype data with replacement. We then perform an IHD scan on the chromosome of interest using the bootstrap sample and record the position of the marker with the largest cosine distance value (i.e., the "peak" marker). After N trials, we calculate the 90% confidence interval of bootstrapped peak marker locations; in other words, we identify the locations of two genotyped markers, between which 90% of all bootstrap trials produced an IHD peak. We note that bootstrap confidence intervals can exhibit poor "coverage" (a measure of how often the confidence intervals include the "true" QTL location) in QTL mapping studies (see Manichaikul et al. 2006, Genetics), but feel that the bootstrap is more reasonable than simply defining an ad hoc interval around an IHD peak.

      The new 90% confidence interval surrounding the IHD peak on chromosome 6 is larger than the original (ad hoc) 10 Mbp window, now extending from around 95 Mbp to 114 Mbp. Notably, the new empirical confidence interval excludes Mbd4. We have accordingly updated our Results and Discussion sections to acknowledge the fact that Mbd4 no longer resides within the confidence interval surrounding the IHD peak on chromosome 6 and have added additional descriptions of genes that are now implicated by the 90% confidence interval. Given the uncertainties associated with using bootstrap confidence intervals, we have retained a brief discussion of the evidence supporting Mbd4 in the Discussion but focus primarily on Ogg1 as the most plausible candidate.

      The reviewer raises a valid concern about our treatment of non-DNA repair genes within the interval surrounding the peak on chromosome 6. We have added more careful language to the text at lines 219-223 to acknowledge the fact that non-annotated genes in the confidence interval surrounding the chromosome 6 peak may play a role in the epistatic interaction we observed.

      The reviewer also raises a reasonable concern about our discussions of both Mbd4 and Ogg1 as candidate genes in the Discussion. Since Mbd4 does not reside within the new empirical bootstrap confidence interval on chromosome 6 and given the strong prior evidence that Ogg1 is involved in C>A mutator phenotypes (and is in the same gene network as Mutyh), we have reframed the Discussion to focus on Ogg1 as the most plausible candidate gene (see lines 357360).

      Using the GeneNetwork resource, we also more carefully explored the potential effects of noncoding variants on the C>A mutator phenotype we observed on chromosome 6. We have updated the Results at lines 240-246 and the Discussion at line 439-447 to provide more evidence for regulatory variants that may contribute to the C>A mutator phenotype. Specifically, we discovered a number of strong-effect cis-eQTLs for Ogg1 in a number of tissues, at which D genotypes are associated with decreased Ogg1 expression. Given new evidence that the original mutator locus we discovered on chromosome 4 harbors an intronic mobile element insertion that significantly affects Mutyh expression (see Ferraj et al. 2023, Cell Genomics), it is certainly possible that the mutator phenotype associated with genotypes on chromosome 6 may also be mediated by regulatory, rather than coding, variation.

      1. Additionally, some claims in the paper are not well-supported by the author's data. For example, in the Discussion, the authors assert that "multiple mutator alleles have spontaneously arisen during the evolutionary history of inbred laboratory mice" and that "... mutational pressure can cause mutation rates to rise in just a few generations of relaxed selection in captivity". However, these statements are undercut by data in this paper and the authors' prior publication demonstrating that a number of candidate variants are segregating in natural mouse populations. These variants almost certainly did not emerge de novo in laboratory colonies, but were inherited from their wild mouse ancestors. Further, the wild mouse population genomic dataset used by the authors falls far short of comprehensively sampling wild mouse diversity; variants in laboratory populations could derive from unsampled wild populations.

      The reviewer raises a good point. In our previous publication (Sasani et al. 2022, Nature), we hypothesized that Mutyh mutator alleles had arisen in wild, outbreeding populations of Mus musculus, and later became fixed in inbred strains like DBA/2J and C57BL/6J. However, in the current manuscript, we included a statement about mutator alleles "spontaneously arising during the evolutionary history of inbred laboratory mice" to reflect new evidence (from Ferraj et al. 2023, Cell Genomics) that the mutator allele we originally identified in Mutyh may not be wild derived after all. Instead, Ferraj et al. suggest that the C>A mutator phenotype we originally identified is caused by an intronic mobile element insertion (MEI) that is present in DBA/2J and a handful of other inbred laboratory strains. Although this MEI may have originally occurred in a wild population of mice, we wanted to acknowledge the possibility that both the original Mutyh mutator allele, as well as the new mutator allele(s) we discovered in this manuscript, could have arisen during the production and inbreeding of inbred laboratory lines. We have also added language to the Discussion at lines 325-327 to acknowledge that the 67 wild mice we analyzed do not comprise a comprehensive picture of the genetic diversity present in wild-derived samples.

      We have added additional language to the Discussion at lines 349-357 in which we acknowledge that the chromosome 6 mutator allele might have originated in either laboratory or wild mice and elaborate on the possibility that mutator alleles with deleterious fitness consequences may be more likely to persist in inbred laboratory colonies.

      1. Finally, the implications of a discovering a mutator whose expression is potentially conditional on the genotype at a second locus are not raised in the Discussion. While not a weakness per se, this omission is perceived to be a missed opportunity to emphasize what, to this reviewer, is one of the most exciting impacts of this work. The potential background dependence of mutator expression could partially shelter it from the action of selection, allowing the allele persist in populations. This finding bears on theoretical models of mutation rate evolution and may have important implications for efforts to map additional mutator loci. It seems unfortunate to not elevate these points.

      We agree and have added additional discussion of the possibility that the C>A mutator phenotypes in the BXDs are a result of interactions between the expression of two DNA repair genes in the same base-excision network to the Discussion section at lines 447-449.

      Private comments

      1. The criteria used to determine or specify haplotype size are not specified in the manuscript. I mention this above but reiterate here as this was a big point of confusion for me when reading the paper. Haplotype length is important consideration for overall power and for proper extension of this method to other systems/populations.

      We may not have been clear enough in our description of our method, and as suggested by Reviewer 1, the name "inter-haplotype distance" may also have been a source of confusion. At a given marker, we compute the aggregate mutation spectrum in BXDs with either B or D genotypes using all genome-wide de novo mutations observed in those BXDs. Since the BXDs were inbred for many generations, we expect that almost all de novo germline mutations observed in an RIL are in near-perfect linkage with the informative genotypes used for distance scans. Thus, the "haplotypes" used in the inter-haplotype distance scans are essentially the lengths of entire genomes.

      1. Results, first paragraph, final sentence. I found the language here confusing. I don't understand how one can compute the cosine distance at single markers, as stated. I'm assuming cosine distance is computed from variants residing on haplotypes delimited by some defined window surrounding the focal marker?

      As discussed above, we aggregate all genome-wide de novo mutations in each group of BXDs at a given marker, rather than only considering DNMs within a particular window surrounding the marker. The approach is discussed in greater detail in the caption of Figure 1.

      1. Nominating candidates for the chr6 locus, Table 1. It would be worth confirming that the three prioritized candidates (Setmar, Ogg1, and Mbd4) all show germline expression.

      Using the Mouse Genome Informatics online resource, we confirmed that all prioritized candidate genes (now including Setmar and Ogg1, but not Mbd4) are expressed in the male and female gonads, and mention this in the Results at lines 228 and 233-234.

      1. Does the chr6 peak on the C>A LOD plot (Figure 2- figure supplement 1) overlap the same peak identified in the IHD scan? And, does this peak rise to significance when using alpha = 0.05? Given that the goal of these QTL scans is to identify loci that interact with the C>A mutator on chr4, it is reasonable to hypothesize that the mutation impact of epistatic loci will also be restricted to C>A mutations. Therefore, I am not fully convinced that the conservative alpha = 0.05/7 threshold is necessary.

      The chromosome 6 peak in Figure 2-figure supplement 1 does, in fact, overlap the peak marker we identified on chromosome 6 using IHD. One reason we decided to use a more conservative alpha of (0.05 / 7) is that we wanted these results to be analogous to the ones we performed in a previous paper (Sasani et al. 2022, Nature), in which we first identified the mutator locus on chromosome 4. However, the C>A peak does not rise to genome-wide significance if we use a less conservative alpha value of 0.05 (see Author response image 5). As discussed in our response to Reviewer 1, we find that QTL mapping is not as powerful as IHD when haplotypes have accumulated variable numbers of germline mutations (as in the BXDs), which likely explains the fact that the peak on chromosome 6 is not genome-wide significant using QTL mapping.

      Author response image 5.

      QTL scan for the fraction of C>A mutations in BXDs harboring D alleles at the locus near Myth QTL scan was performed at a genome-wide significance alpha of 0.05, rather than 0.05/7.

      1. Is there significant LD between the IHD peaks on chr6 and chr4 across the BXD? If so, it could suggest that the signal is driven by cryptic population structure that is not fully accounted for in the author's regression based approach. If not, this point may merit an explicit mention in the text as an additional validation for the authenticity of the chr6 mutator finding.

      This is a good question. We used the scikit-allel Python package to calculate linkage disequilibrium (LD) between all pairs of genotyped markers in the BXD cohort, and found that the two peak loci (on chromosomes 4 and 6) exhibit weak LD (r2 = 4e-5). We have added a mention of this to the main text of the Results at lines 212-213. That being said, we do not think the chromosome 6 mutator association (or the apparent epistasis between the alleles on chromosomes 4 and 6) could be driven by cryptic population structure. Unlike in human GWAS and other association studies in natural populations, there is no heterogeneity in the environmental exposures experienced by different BXD subpopulations. In humans, population structure can create spurious associations (e.g., between height and variants that are in LD and are most common in Northern Europe), but this requires the existence of a phenotypic gradient caused by genetic or environmental heterogeneity that is not likely to exist in the context of inbred laboratory mice that are all the progeny of the same two founder strains.

      1. Discussion, last sentence of the "Possible causal alleles..." section: I don't understand how the absence of the Mariner-family domain leads the authors to this conclusion. Setmar is involved in NHEJ, which to my knowledge is not a repair process that is expected to have a specific C>A mutation bias. I think this is grounds enough for ruling out its potential contributions, in favor of focusing on other candidates, (e.g., Mbd4 and Ogg1).

      The reviewer raises a good point. Our main reason for mentioning the absence of the Marinerfamily domain is that even if NHEJ were responsible for the C>A mutator phenotype, it likely wouldn't be possible for Setmar to participate in NHEJ without the domain. However, the reviewer is correct that NHEJ is not expected to cause a C>A mutation bias, and we have added a mention of this to the text as well at lines 379-382.

      1. Discussion, second to last paragraph of section "Mbd4 may buffer...": The authors speculate that reduced activity of Mbd4 could modulate rates of apoptosis in response to DNA damage. This leads to the prediction that mice with mutator alleles at both Mutyh and Mbd4 should exhibit higher overall mutation rates compared to mice with other genotypes. This possibility could be tested with the authors' data.

      The reviewer raises a good question. As mentioned above, however, we implemented a new approach to calculate confidence intervals surrounding distance peaks and found that this empirical approach (rather than the ad hoc 10-Mbp window approach we used previously) excluded Mbd4 from the credible interval. Although we still mention Mbd4 as a possible candidate (since it still resides within the 10 Mbp window), we have refactored the Discussion section to focus primarily on the evidence for Ogg1 as a candidate gene on chromosome 6.

      In any case, we do not observe that mice with mutator alleles at both the chromosome 4 and chromosome 6 loci have higher overall mutation rates compared to mice with other genotype combinations. This may not be terribly surprising, however, since C>A mutations only comprise about 10% of all possible mutations. Thus, given the variance in other 1-mer mutation counts, even a substantial increase in the C>A mutation rate might not have a detectable effect on the overall mutation rate. Indeed, in our original paper describing the Mutyh mutator allele (Sasani et al. 2022, Nature), we did not identify any QTL for the overall mutation rate in the BXDs and found that mice with the chromosome 4 mutator allele only exhibited a 1.11X increase in their overall mutation rates relative to mice without the mutator allele.

      1. Methods, "Accounting for BXD population structure": An "epoch-aware" permutation strategy is described here, but it is not clear when (and whether) this strategy is used to determine significance of IHD P-values.

      We have added a more explicit mention of this to the Methods section at lines 670-671, as we do, in fact, use the epoch-aware permutation strategy when calculating empirical distance thresholds.

      1. The simulation scheme employed for power calculations is highly specific to the BXD population. This is not a weakness, and perfectly appropriate to the study population used here. However, it does limit the transferability of the power analyses presented in this manuscript to other populations. This limitation may merit an explicit cautionary mention to readers who may aspire to port the IHD method over to their study system.

      This is true. Our simulation strategy is relatively simple and makes a number of assumptions about the simulated population of haplotypes (allele frequencies normally distributed around 0.5, expected rates of each mutation type, etc.). In response to concerns from Reviewer 1, we performed an updated series of simulations in which we varied some of these parameters (mutator allele frequencies, mean numbers of mutations on haplotypes, etc.). However, we have added a mention of the simulation approach's limitations and specificity to the BXDs to the text at lines 545-550.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Author response:

      Reviewer #1:

      The main objective of this study is to achieve the development of a synthetic autotroph using adaptive laboratory evolution. To accomplish this, the authors conducted chemostat cultivation of engineered E. coli strains under xylose-limiting conditions and identified autotrophic growth and the causative mutations. Additionally, the mutational mechanisms underlying these causative mutations were also explored with drill down assays. Overall, the authors demonstrated that only a small number of genetic changes were sufficient (i.e., 3) to construct an autotrophic E. coli when additional heterologous genes were added. While natural autotrophic microorganisms typically exhibit low genetic tractability, numerous studies have focused on constructing synthetic autotrophs using platform microorganisms such as E. coli. Consequently, this research will be of interest to synthetic biologists and systems biologists working on the development of synthetic autotrophic microorganisms. The conclusions of this paper are mostly well supported by appropriate experimental methods and logical reasoning. However, further experimental validation of the mutational mechanisms involving rpoB and crp would enhance readers' understanding and provide clearer insights, despite acknowledgement that these genes impact a broad set of additional genes. Additionally, a similar study, 10.1371/journal.pgen.1001186, where pgi was deleted from the E. coli genome and evolved to reveal an rpoB mutation is relevant to this work and should be placed in the context of the presented findings.

      We thank the reviewer for pointing this study out. It is very interesting that a mutation in a similar region in RpoB was observed in a related context of Pgi loss of activity. We have added a reference to this study in our text (Page 11, line 21).

      he authors addressed rpoB and crp as one unit and performed validation. They cultivated the mutant strain and wild type in a minimal xylose medium with or without formate, comparing their growth and NADH levels. The authors argued that the increased NADH level in the mutant strain might facilitate autotrophic growth. Although these phenotypes appear to be closely related, their relationship cannot be definitively concluded based on the findings presented in this paper alone. Therefore, one recommendation is to explore investigating transcriptomic changes induced by the rpoB and crp mutations. Otherwise, conducting experimental verification to determine whether the NADH level directly causes autotrophic growth would provide further support for the authors' claim.

      We appreciate the valuable comment and agree that the work was lacking such an analysis. Due to various reasons we have opted to use a proteomic approach which we feel fulfills the same purpose as the transcriptomics suggestion. We found interesting evidence in up-regulation of the fdoGH operon (comprising the native formate dehydrogenase O enzyme complex) which could indicate why there is an increase in NADH/NAD+ levels. We also hypothesize that this upregulation might be important more generally by drawing comparisons to natural chemo-autotrophs.

      Further experimental work (which we were not able to include in the current study) could help validate this link by deleting fdoGH and observing a loss of phenotype and, on the flip side, directly overexpressing the fdoGH operon and observing an increase in the NADH/NAD+ ratio. Indeed, if this overexpression were to prove sufficient for achieving an autotrophic phenotype without the mutations in the global transcription regulators, it would be a much more transparent design.

      We have added a section titled "Proteomic analysis reveals up-regulation of rPP cycle and formate-associated genes alongside down-regulation of catabolic genes" to the Results based on this analysis.

      • It would be beneficial to provide a more detailed explanation of the genetic background before the evolution stage, specifically regarding the ∆pfk and ∆zwf mutations. Furthermore, it is suggested to include a figure that provides a comprehensive depiction of the reductive pentose phosphate pathway and the bypass pathway. These will help readers grasp the concept of the "metabolic scaffold" as proposed by the authors.

      We agree with the reviewer that this could be helpful and we added a reference to the original paper Gleizer et al. 2019 that reported this design and also includes the relevant figure. We feel that the figure should not be added to the current manuscript as we continue to show that this design is not relevant in the context of the three reported mutations and such a figure could distract the attention of the reader from the main takeaways of the current study.

      • Despite the essentiality of the rpoB mutation (A1245V) to the autotrophic phenotype in the final strain, the inclusion of this mutation in step C1 does not appear to be justified. According to line 37 on page 3, the authors chose to retain the unintended mutation in rpoB based on its essentiality to the phenotype observed in other evolved strains. However, it should be noted that the mutations found in the evolved strain I, II, and III (P552T or D866E) were entirely different from the unintended mutation (A1245V) during genetic engineering. This aspect should be revised to avoid confusion among readers.

      Thank you for pointing this issue out, we added a clarification in the text (page 4 line 7) to avoid such confusion. We believe this point is much clearer now.

      The rpoB mutation which was shown to be essential in the study is indeed known to be common in ALE experiments in E. coli. Thus, I searched the different rpoB mutations in ALEdb in E. coli and I was able to find a similar mutation in a study where pgi was knocked out and then evolved. https://doi.org/10.1371/journal.pgen.1001186 This study seems very relevant given that pgi was a key mutation in the compact set of this work and the section "Modulation of a metabolic branch-point activity increased the concentration of rPP metabolites" informs that loss of function mutations in pgi were also found. The findings of this study should thus be put in the context of the previous related ALE study. I would recommend a similar analysis of crp mutations from studies in ALEdb to see if there are similar mutations in this gene as well or if this a unique mutation.

      We thank the reviewer for bringing this publication to our attention. We have addressed this observation in the main text (page 11 , line 21). We agree that it could have some connection to the pgi mutation yet we would not want to overspeculate about this role, as we also found the exact same mutation (A1245V) as an adaptation to higher temperature in another E. coli study (Tenaillon et al. 2012). We would like to bring forward the fact that the two reported rpoB mutations are always accompanied by another mutation with pleiotropic effects, either in the transcription factor Crp or in another RNA polymerase subunit (e.g RpoC). As such many epistatic effects could occur, one of which we also report here in page 13, line 18. In conclusion, although there could be a connection between the rpoB and pgi mutations, it could be a mere coincidence and the two mutations could exhibit two distinct roles in two distinct phenotypes.

      We also would like to thank the reviewer for suggesting a similar analysis for crp and found another mutation at a nearby residue with strong adaptive effects and mentioned it in our main text.

      Can the typical number of mutations found in a given ALE experiment be directly compared to those found in this study? It seems like a retrospective analysis of other ALE studies to show how many mutations typically occur in an ALE study and sets which were found to be causal to reproduce the phenotype of interest (through similar reverse engineering in the starting strain) should be presented. Again, the authors cite ALEdb which should provide direct numbers of mutations found in similar ALE studies with E. coli and one could then examine them to find sets of clearly causal mutations which recreate phenotypes of interest. Such an analysis would go a long way in supporting the main finding of "small number" of mutations.

      Discussion, page 12, line 42. "This could serve as a promising strategy for achieving minimally perturbed genotypes in future metabolic engineering attempts". There is an entire body of work around growth-coupled production which can be predicted and evolved with a genome-scale metabolic model and ALE. Thus, if this statement is going to be made, relevant studies should be cited and placed in context.

      The reviewer raises an important point which could indeed yield an interesting perspective. However, it would be difficult to perform this comparison in practice since many of the studies published on ALEdb have not isolated essential mutations from other mutation incidents nor have they determined the role of each mutation in the reported phenotypes. For example, many ALE trajectories include a hypermutator that greatly increases the number of irrelevant mutations and it is nearly impossible to sieve through them to find an essential set.

      Moreover, it is hard to compare the “level of difficulty” of achieving one phenotype over another and therefore feel that even though such an analysis would be insightful, it requires an amount of work which is outside the scope of this study.

      Finally, we would like to highlight our approach of using the iterative approach, isolating the relevant consensus mutations and repeating this process until no evolution process is required, we are not aware of prior studies that used this approach.

      We now clarified what we mean by "promising strategy" in the discussion in order to avoid any false claims about novelty (page 16 line 32): "Using metabolic growth-coupling as a temporary 'metabolic scaffold' that can be removed, could serve as a promising strategy for achieving minimally perturbed genotypes in future metabolic engineering attempts."

      Reviewer #2:

      Synthetic autotrophy of biotechnologically relevant microorganisms offers exciting chances for CO2 neutral or even CO2 negative production of goods. The authors' lab has recently published an engineered and evolved Escherichia coli strain that can grow on CO2 as its only carbon source. Lab evolution was necessary to achieve growth. Evolved strains displayed tens of mutations, of which likely not all are necessary for the desired phenotype.

      In the present paper the authors identify the mutations that are necessary and sufficient to enable autotrophic growth of engineered E. coli. Three mutations were identified, and their phenotypic role in enhancing growth via the introduced Calvin-Benson-Bassham cycle were characterized. It was demonstrated that these mutations allow autotrophic growth of E. coli with the introduced CBB cycle without any further metabolic intervention. Autotrophic growth is demonstrated by 13C labelling with 13C CO2, measured in proteinogenic amino acids. In Figures 2B and S1, the labeling data are shown, with an interval of the "predicted range under 13CO2".

      Here, the authors should describe how this interval was derived.

      The methodology is clearly described and appropriate.

      The present results will allow other labs to engineer E. coli and other microorganisms further to assimilate CO2 efficiently into biomass and metabolic products. The importance is evident in the opportunity to employ such strain in CO2 based biotech processes for the production of food and feed protein or chemicals, to reduce atmospheric CO2 levels and the consumption of fossil resources.

      Please describe in the methodology how the interval of the predicted range of 13C labeling was derived for Figures 2B and S1. Was it calculated by the dilution factor during 4 generations, or did you predict the label incorporation individually with a metabolic model?

      The text needs careful editing, some sentences are incomplete and there are frequent inconsistencies in writing metabolites and enzymes.

      P2L6: unclear sentence (incomplete?)

      P2L19: pastoris with lower case "p"

      P2L40: incomplete sentence

      P2L42: here, and at many other places, the writing of RuBisCO needs to be aligned. It is an abbreviation and should begin with a capital letter. Most commonly it is written as RuBisCO which I would suggest - please unify throughout the text.

      P3L3: formate dehydrogenase ... metabolites and enzymes with lower case letter. And, no hyphen here.

      P5L4: delete the : after unintentionally

      P6L16: carboxylation of RuBP (it is not CO2 that is carboxylated - if any, CO2 is carboxylating)

      P7L25: phosphoglucoisomerase (lower case)

      P8L5: in line

      P8L9: part of glycolysis/ ...

      P10L4: pentose phosphates (lower case, no hyphen).

      P10L4: all metabolites lower case

      P12L28: incomplete sentence

      P18L4: Escherichia coli in italics P18L15: Pseudomonas sp. in italics P18L16: ... promoter and with a strong ...

      P20, chapter Metabolomics: put the numbers of 12C and 13C in superscript P23L9: pentose phosphates ; all metabolites in lower case (as above) P23: all 12C and 13C with superscript numbers.

      Response to reviewer #2:

      We thank the reviewer for their comments, and for pointing out the need to clarify how we derived the predicted range of 13C labeling. We edited the text accordingly, and added the relevant calculation to the methods section (under the “13C Isotopic labeling experiment”). We would like to also thank the reviewer for the required text improvements, which were implemented. 

      Reviewer #3:

      The authors previously showed that expressing formate dehydrogenase, rubisco, carbonic anhydrase, and phosphoribulokinase in Escherichia coli, followed by experimental evolution, led to the generation of strains that can metabolise CO2. Using two rounds of experimental evolution, the authors identify mutations in three genes - pgi, rpoB, and crp - that allow cells to metabolise CO2 in their engineered strain background. The authors make a strong case that mutations in pgi are loss-of-function mutations that prevent metabolic efflux from the reductive pentose phosphate autocatalytic cycle. The authors also argue that mutations in crp and rpoB lead to an increase in the NADH/NAD+ ratio, which would increase the concentration of the electron donor for carbon fixation. While this may explain the role of the crp and rpoB mutations, there is good reason to think that the two mutations have independent effects, and that the change in NADH/NAD+ ratio may not be the major reason for their importance in the CO2-metabolising strain.

      We thank the reviewer for their comments and constructive feedback.

      We agree that there is probably a broader effect caused by the rpoB and crp mutations, besides the change in the NADH/NAD+ ratio. Hence, we performed a proteomics analysis, comparing the rpoB and crp mutations on a WT background to an autotrophic E.coli, searching for a mutual change in both strains compared to their "ancestors". We found up-regulation of rPP cycle and formate-associated genes, and a down-regulation of catabolic genes. We added a section dedicated to this matter under the title "Proteomic analysis reveals up-regulation of rPP cycle and formate-associated genes alongside down-regulation of catabolic genes".

      Specific comments:

      1. Deleting pgi rather than using a point mutation would allow the authors to more rigorously test whether loss-off-function mutants are being selected for in their experimental evolution pipeline. The same argument applies to crp.

      We appreciate this recommendation and indeed tried to delete pgi, but the genetic manipulation caused a knockout of other genes along with pgi (pepE, rluF, yjbD, lysC) so in the time available to us we cannot confidently determine whether the deletion alone is sufficient and can replace the mutation.

      Regarding crp, we do not think there is a reason to believe the mutation is a loss-of-function. In any case, the proteomics-based characterization of the crp mutation is now included in the SI.

      1. Page 10, lines 10-11, the authors state "Since Crp and RpoB are known to physically interact in the cell (26-28), we address them as one unit, as it is hard to decouple the effect of one from the other". CRP and RpoB are connected, but the authors' description of them is misleading. CRP activates transcription by interacting with RNA polymerase holoenzyme, of which the Beta subunit (encoded by rpoB) is a part. The specific interaction of CRP is with a different RNA polymerase subunit. The functions of CRP and RpoB, while both related to transcription, are otherwise very different. The mutations in crp and rpoB are unlikely to be directly functionally connected. Hence, they should be considered separately.

      Indeed, the fact that the proteins are interacting in the cell does not necessarily mean that the mutations are functionally connected. We therefore added as further justification in the new section:

      "As far as we know, the mutations in the Crp and RpoB genes affect the binding of the RNA polymerase complex to DNA and/or its transcription rates. Depending on the transcribed gene target, the effect of the two mutations might be additive, antagonistic, or synergistic. Since each one of these mutations individually (in combination with the pgi mutation) is not sufficient to achieve autotrophic growth, it is reasonable to assume that only the target genes whose levels of expression change significantly in the double-mutant are the ones relevant for the autotrophic phenotype”.

      In our proteomics analysis we considered each mutation separately. We found that in some cases the two mutations together have an additive effect, but in other cases we found that the two mutations together affect differently on the proteome, compared to the effect of each mutation alone. Since both mutations are essential to the phenotype, we decided to go with the approach of addressing the two mutations as one unit for the physiological and metabolic experiments.

      1. A Beta-galactosidase assay would provide a very simple test of CRP H22N activity. There are also simple in vivo and in vitro assays for transcription activation (two different modes of activation) and DNA-binding. H22 is not near the DNA-binding domain, but may impact overall protein structure.

      The mutation is located in “Activating Region 2”, interacting with RNA polymerase. We tried an in-vivo assay to determine the CRP H22N activity and got inconclusive results, we believe the proteomics analysis serves as a good method for understanding the global effect of the mutation.

      1. There are many high-resolution structures of both CRP and RpoB (in the context of RNA polymerase). The authors should compare the position of the sites of mutation of these proteins to known functional regions, assuming H22N is not a loss-of-function mutation in crp.

      We added a supplementary figure regarding the structural location of the two mutations, where it is demonstrated that crp H22N is located in a region interacting with the RNA polymerase and rpoB A1245V is located in proximity to regions interacting with the DNA.

      1. RNA-seq would provide a simple assay for the effects of the crp and rpoB mutations. While the precise effect of the rpoB mutation on RNA polymerase function may be hard to discern, the overall impact on gene expression would likely be informative.

      Indeed we agree that an omics approach to infer the global effect of these mutations is beneficial, we opted to use a proteomics approach and think it serves the purpose of clarifying the final, down-stream, effect on the cell.

      1. Page 2, lines 40-45, the authors should more clearly explain that the deletion of pfkA, pfkB and zwf was part of the experimental evolution strategy in their earlier work (Gleizer et al., 2019), and not a new strategy in the current study.

      We thank you for pointing this out, and edited the text accordingly.

      1. Page 3, line 27. Why did the authors compare the newly acquired mutants to only two mutants from the earlier work, not all 6?

      The 6 clones that were isolated in Gleizer et al., had 2 distinct mutation profiles. During the isolation process the lineage split into two groups. Three out of the 6 clones (clones 1,2,6) came from the same ancestor, and the other three (clones 3,4,5) came from another ancestor. Hence, these two groups shared almost all of their mutations (see Venn diagram). We decided to use for our comparison the representative with the highest number of mutations from each group (clones 5 and 6).

      Author response image 1.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      Continuous attractor networks endowed with some sort of adaptation in the dynamics, whether that be through synaptic depression or firing rate adaptation, are fast becoming the leading candidate models to explain many aspects of hippocampal place cell dynamics, from hippocampal replay during immobility to theta sequences during run. Here, the authors show that a continuous attractor network endowed with spike frequency adaptation and subject to feedforward external inputs is able to account for several previously unaccounted aspects of theta sequences, including (1) sequences that move both forwards and backwards, (2) sequences that alternate between two arms of a T-maze, (3) speed modulation of place cell firing frequency, and (4) the persistence of phase information across hippocampal inactivations. I think the main result of the paper (findings (1) and (2)) are likely to be of interest to the hippocampal community, as well as to the wider community interested in mechanisms of neural sequences. In addition, the manuscript is generally well written, and the analytics are impressive. However, several issues should be addressed, which I outline below.

      Major comments:

      1. In real data, population firing rate is strongly modulated by theta (i.e., cells collectively prefer a certain phase of theta - see review paper Buzsaki, 2002) and largely oscillates at theta frequency during run. With respect to this cyclical firing rate, theta sweeps resemble "Nike" check marks, with the sweep backwards preceding the sweep forwards within each cycle before the activity is quenched at the end of the cycle. I am concerned that (1) the summed population firing rate of the model does not oscillate at theta frequency, and (2) as the authors state, the oscillatory tracking state must begin with a forward sweep. With regards to (1), can the authors show theta phase spike preference plots for the population to see if they match data? With regards to (2), can the authors show what happens if the bump is made to sweep backwards first, as it appears to do within each cycle?

      Thank you for raising these two important points. As the reviewer mentioned, experimental data does show that the population activity (e.g., calculated from the multiunit activity of tetrode recording) is strongly modulated by theta. While we mainly focused on sweeps of bump position, the populational activity also shows cyclical firing at the theta frequency (we added Fig. S7 to reflect this). This is also reflected in Fig. 4d where the bump height (representing the overall activity) oscillates at individual theta cycles. The underlying mechanism of cyclical population activity is as follows: the bump height is determined by the amount of input the neuron received (which located at the center of the bump). While the activity bump sweeps away from the external input, the center neuron receives less input from the external input, and hence the bump height is smaller. Therefore, not only the position sweeps around the external input, also the populational activity sweeps accordingly at the same frequency.

      For the “Nike” check marks: we first clarify that the reason for we observed a forward sweep preceding a backward sweep is that we always force the artificial animal runs from left to right on the track where we treated “right” as “forward”. At the beginning of simulation, the external input to the network moves towards right, and therefore the activity bump starts from a position behind the animals and sweeps towards right (forward). In general, this means that the bump will never do a backward sweep first in our model. However, this does not mean that the forward sweeps precede the backward sweeps in each theta cycle. Experimentally, to determine the “0” phase of theta cycles, the LFP signal in CA1 was first bandpass filtered and then Hilbert transformed to get the phase at each time point. Then, a phase histogram of multiunit activity in CA1 was calculated across locomotor periods; the phase of maximal CA1 firing on the histogram was then defined to be “0” phase. Since we didn’t model LFP oscillation in the attractor model, we cannot obtain a “0” phase reference like the experimental procedure. Instead, we define the “0” phase using the “population activity quenched time”, where phase “0” is defined as the minimum population activity during oscillation cycles, which happens when the activity bump is farthest from the animal position. In this way, we observed a “Nike” pattern where the activity bump begins with a backward sweep towards the external input and then followed up with a forward sweep. This was showed in Fig. 3b in the main text.

      1. I could not find the width of the external input mentioned anywhere in the text or in the table of parameters. The implication is that it is unclear to me whether, during the oscillatory tracking state, the external input is large compared to the size of the bump, so that the bump lives within a window circumscribed by the external input and so bounces off the interior walls of the input during the oscillatory tracking phase, or whether the bump is continuously pulled back and forth by the external input, in which case it could be comparable to the size of the bump. My guess based on Fig 2c is that it is the latter. Please clarify and comment.

      Thank you for your comment. We added the width of the external input to the text and table (see table 1). The bump is continuously pulled back and forth by the external input, as guessed by the reviewer. Experimentally, theta sweeps live roughly in the window of place field size. This is also true in our model, where theta sweep length depends on the strength of recurrent connections which determines the place field size. However, it also depends on the adaptation strength where large adaptation (more intrinsic mobility) leads to large sweep length. We presume that the reason for the reviewer had the guess that the bump may live within a window bounded by the external input is that we also set the width of external input comparable to the place field size (in fact, we don’t know how wide the external location input to the hippocampal circuits is in the biological brain, but it might be reasonable to set the external input width as comparable to the place field size, otherwise the location information conveyed to the hippocampus might be too dispersed). We added a plot in the SI (see Fig. S1) to show that when choosing a smaller external input width, but increasing the adaptation strength, the activity bump lives in a window exceeding the external input.

      We clarified this point by adding the following text to line 159

      “... It is noteworthy that the activity bump does not live within a window circumscribed by the external input bump (bouncing off the interior walls of the input during the oscillatory tracking state), but instead is continuously pulled back and forth by the external input (see Fig. S1)...”

      1. I would argue that the "constant cycling" of theta sweeps down the arms of a T-maze was roughly predicted by Romani & Tsodyks, 2015, Figure 7. While their cycling spans several theta cycles, it nonetheless alternates by a similar mechanism, in that adaptation (in this case synaptic depression) prevents the subsequent sweep of activity from taking the same arm as the previous sweep. I believe the authors should cite this model in this context and consider the fact that both synaptic depression and spike frequency adaptation are both possible mechanisms for this phenomenon. But I certainly give the authors credit for showing how this constant cycling can occur across individual theta cycles.

      Thank you for raising this point. We added the citation of Romani & Tsodyks’ model in the context (line 304). As the reviewer pointed out, STD can also act as a potential mechanism for this phenomenon. We also gave the Romani & Tsodyks’ model credit for showing how this “cycling spanning several theta cycles” can account for the phenomenon of slow (~1Hz) and deliberative behaviors, namely, head scanning (Johson and Redish, 2007). We commented this in line 302

      “... As the external input approaches the choice point, the network bump starts to sweep onto left and right arms alternatively in successive theta cycles (Fig. 5b and video 4; see also Romani and Tsodyks (2015) for a similar model of cyclical sweeps spanning several theta cycles) ...”

      1. The authors make an unsubstantiated claim in the paragraph beginning with line 413 that the Tsodyks and Romani (2015) model could not account for forwards and backwards sweeps. Both the firing rate adaptation and synaptic depression are symmetry breaking models that should in theory be able to push sweeps of activity in both directions, so it is far from obvious to me that both forward and backward sweeps are not possible in the Tsodyks and Romani model. The authors should either prove that this is the case (with theory or simulation) or excise this statement from the manuscript.

      Thank you for your comment. Our claim about the Tsodyks and Romani (2015) model's inability to account for both forward and backward sweeps was inappropriate. We made this claim based on our own implementation of the Tsodyks and Romani (2015) model and didn’t find a parameter region where the bump oscillation shows both forward and backward sweeps. It might be due to the limited parameter range we searched from. Additionally, we also note some difference in these two models, where the Romani & Tsodyks’ model has an external theta input to the attractor network which prevent the bump to move further. This termination may also prevent the activity bump to move backward as well. We didn’t consider external theta input in our model, and the bump oscillation is based on internal dynamics. We have deleted that claim from line 424 in the revised paper, and revised that portion of the manuscript by adding the following text to line 424:

      “…Different from these two models, our model considers firing rate adaptation to implement symmetry breaking and hence generates activity propagation. To prevent the activity bump from spreading away, their model considers an external theta input to reset the bump location at the end of each theta cycle, whereas our model generates an internal oscillatory state, where the activity bump travels back due to the attraction of external location input once it spreads too far away. Moreover, theoretical analysis of our model reveals how the adaptation strength affect the direction of theta sweeps, as well as offers a more detailed understanding of theta cycling in complex environments…”

      1. The section on the speed dependence of theta (starting with line 327) was very hard to understand. Can the authors show a more graphical explanation of the phenomenon? Perhaps a version of Fig 2f for slow and fast speeds, and point out that cells in the latter case fire with higher frequency than in the former?

      Thank you for raising this valuable point. There are two different frequencies showed in Fig. 6 a,c &d. One is the bump oscillation frequency, the other is the firing frequency of single cell. To help understanding, we included experimental results (from Geisler et al, 2007) in Fig. 6a. It showed that when the animal increases its running speed, the LFP theta only increases a bit (compare the blue curve and the green curve), while the single cell firing rate oscillation frequency increases more. In our model, we first demonstrated this result using unimodal cells which have only significant phase precession (Fig. 6c). While the animal runs through the firing field of a place cell, the firing phase will always precess for half a cycle in total. Therefore, faster running speed means that the half cycle will be accomplished faster, and hence single cell oscillation frequency will be higher. We also predicted the results on bimodal cells (Fig. 6d). To make this point clearer, we modified Fig. 6 by including experimental results, and rewrote the paragraph as follows (line 337):

      “…As we see from Fig. 3d and Fig. 4a&b, when the animal runs through the firing field of a place cell, its firing rate oscillates, since the activity bump sweeps around the firing field center of the cell. Therefore, the firing frequency of a place cell has a baseline theta frequency, which is the same as the bump oscillation frequency. Furthermore, due to phase precession, there will be a half cycle more than the baseline theta cycles as the animal runs over the firing field, and hence single cell oscillatory frequency will be higher than the baseline theta frequency (Fig. 6c). The faster the animal runs, the faster the extra half cycle is accomplished. Consequently, the firing frequency of single cells will increase more (a steeper slope in Fig. 6c red dots) than the baseline frequency.…”

      1. I had a hard time understanding how the Zugaro et al., (2005) hippocampal inactivation experiment was accounted for by the model. My intuition is that while the bump position is determined partially by the location of the external input, it is also determined by the immediate history of the bump dynamics as computed via the local dynamics within the hippocampus (recurrent dynamics and spike rate adaptation). So that if the hippocampus is inactivated for an arbitrary length of time, there is nothing to keep track of where the bump should be when the activity comes back online. Can the authors please explain more how the model accounts for this?

      Thank you for the comments. The easiest way to understand how the model account for the experimental result from Zugaro et al., (2005) is from Eq. 8:

      This equation says that the firing phase of a place cell is determined by the time the animal traveled through the place field, i.e., the location of the animal in the place field (with d0,c0 and vext all constant, and tf the only variable). No matter how long the hippocampus is inactivated (for an arbitrary length of time), once the external input is on, the new phase will continue from the new location of the animal in the place field. In other words, the peak firing phase keeps tracking the location of the animal. To make this point clearer, we modified Fig. 6 by including experimental results from Zugaro et al., (2005), and updated the description from line 356:

      “…Based on the theoretical analysis (Eq. 8), we see that the firing phase is determined by the location of the animal in the place field, i.e., vext tf. This means that the firing phase keeps tracking the animal's physical location. No matter how long the network is inactivated, the new firing phase will only be determined by the new location of the animal in the place field. Therefore, the firing phase in the first bump oscillation cycle after the network perturbation is more advanced than the firing phase in the last bump oscillation cycle right before the perturbation, and the amount of precession is similar to that in the case without perturbation (Fig. 6e) …”

      1. Can the authors comment on why the sweep lengths oscillate in the bottom panel of Fig 5b during starting at time 0.5 seconds before crossing the choice point of the T-maze? Is this oscillation in sweep length another prediction of the model? If so, it should definitely be remarked upon and included in the discussion section.

      We appreciate the reviewer’s valuable attention of this phenomenon. We thought it was a simulation artifact due to the parameter setting. However, we found that this phenomenon is quite robust to different parameter settings. While we haven’t found a theoretical explanation, we provide a qualitative explanation for it: this length oscillation frequency may be coupled with the time constant of the firing rate adaptation. Specifically, for a longer sweep, the neurons at the end of the sweep are adapted (inhibited), and hence the activity bump cannot travel that long in the next round. Therefore, the sweep length is shorter compared to the previous one. In the next round, the bump will sweep longer again because those neurons have recovered from the previous adaptation effect. We think this length oscillation is quite interesting and will check that in the experimental data in future works. We added this point in the main text as a prediction in line 321:

      “…We also note that there is a cyclical effect in the sweep lengths across oscillation cycles before the animal enters the left or right arm (see Fig. 5b lower panel), which may be interesting to check in the experimental data in future work (see Discussion for more details) …”

      And line 466:

      “…Our model of the T-maze environment showed an expected phenomenon that as the animal runs towards the decision point, the theta sweep length also shows cyclical patterns (Fig. 5b lower panel). An intuitive explanation is that, due to the slow dynamics in firing rate adaptation (with a large time constant compared to neural firing), a long sweep leads to an adaptation effect on the neurons at the end of the sweep path. Consequently, the activity bump cannot travel as far due to the adaptation effect on those neurons, resulting in a shorter sweep length compared to the previous one. In the next round, the activity bump exhibits a longer sweep again because those neurons have recovered from the previous adaptation effect. We plan to test this phenomenon in future experiments...”

      1. Perhaps I missed this, but I'm curious whether the authors have considered what factors might modulate the adaptation strength. In particular, might rat speed modulate adaptation strength? If so, would have interesting predictions for theta sequences at low vs high speeds.

      Thank you for raising up this important point. As we pointed out in line 279: “…the experimental data (Fernandez et al, 2017) has indicated that there is a laminar difference between unimodal cells and bimodal cells, with bimodal cells correlating more with the firing patterns of deep CA1 neurons and unimodal cells with the firing patterns of superficial CA1 neurons. Our model suggests that this difference may come from the different adaptation strengths in the two layers…”. Our guess is that the adaptation strength might reflect some physiological differences of place cells in difference pyramidal layers in the hippocampus. For example, place cells in superficial layer and deep layer receive different amount of input from MEC and sensory cortex, and such difference may contribute to a different effect of adaptation of the two populations of place cells.

      Our intuition is that animal’s running speed may not directly modulate the adaptation strength. Note that the effect of adaptation and adaptation strength are different. As the animal rapidly runs across the firing field, the place cell experiences a dense firing (in time), therefore the adaptation effect is large; as the animal slowly runs across the field, the place cell experiences sparse firing (in time), and hence the adaptation effect is small. In these two situations, the adaption strength is fixed, but the difference is due to the spike intervals.

      From Eq. 45-47, our theoretical analysis shows several predictions of theta sequences regarding to the parameters in the network. For example, how the sweep length varies when the running speed changes in the network. We simulated the network in both low running speed and high running speed (while kept all other parameters fixed), and found that the sweep length at low speed is larger than that at high speed. This is different from previously data, where they showed that the sweep length increases as the animal runs faster (Maurer et al, 2012). However, we are not sure how other parameters are changed in the biological brain as the animal runs faster, e.g., the external input strength and the place field width might also vary as confounds. We will explore this more in the future and investigate how the adaptation strength is modulated in the brain.

      1. I think the paper has a number of predictions that would be especially interesting to experimentalists but are sort of scattered throughout the manuscript. It would be beneficial to have them listed more prominently in a separate section in the discussion. This should include (1) a prediction that the bump height in the forward direction should be higher than in the backward direction, (2) predictions about bimodal and unimodal cells starting with line 366, (3) prediction of another possible kind of theta cycling, this time in the form of sweep length (see comment above), etc.

      Thank you for pointing this out. We updated the manuscript by including a paragraph in Discussion summarizing the prediction we made throughout the manuscript (from line 459):

      ‘’…Our model has several predictions which can be tested in future experiments. For instance, the height of the activity bump in the forward sweep window is higher than that in the backward sweep window (Fig. 4c) due to the asymmetric suppression effect from the adaptation. For bimodal cells, they will have two peaks in their firing frequency as the animal runs across the firing fields, with one corresponding to phase precession and the other corresponding to phase procession. Similar to unimodal cells, both the phase precession and procession of a bimodal cell after transient intrahippocampal perturbation will continue from the new location of the animal (Fig. S5). Interestingly, our model of the T-maze environment showed an expected phenomenon that as the animal runs towards the decision point, the theta sweep length also shows cyclical patterns (Fig. 5b lower panel). An intuitive explanation is that, due to the slow dynamics in firing rate adaptation (with a large time constant compared to neural firing), a long sweep leads to an adaptation effect on the neurons at the end of the sweep path. Consequently, the activity bump cannot travel as far due to the adaptation effect on those neurons, resulting in a shorter sweep length compared to the previous one. In the next round, the activity bump exhibits a longer sweep again because those neurons have recovered from the previous adaptation effect. We plan to test this phenomenon in future experiments…’

      Reviewer #2:

      In this work, the authors elaborate on an analytically tractable, continuous-attractor model to study an idealized neural network with realistic spiking phase precession/procession. The key ingredient of this analysis is the inclusion of a mechanism for slow firing-rate adaptation in addition to the otherwise fast continuous-attractor dynamics. The latter which continuous-attractor dynamics classically arises from a combination of translation invariance and nonlinear rate normalization. For strong adaptation/weak external input, the network naturally exhibits an internally generated, travelling-wave dynamics along the attractor with some characteristic speed. For small adaptation/strong external stimulus, the network recovers the classical externally driven continuous-attractor dynamics. Crucially, when both adaptation and external input are moderate, there is a competition with the internally generated and externally generated mechanism leading to oscillatory tracking regime. In this tracking regime, the population firing profile oscillates around the neural field tracking the position of the stimulus. The authors demonstrate by a combination of analytical and computational arguments that oscillatory tracking corresponds to realistic phase precession/procession. In particular the authors can account for the emergence of a unimodal and bimodal cells, as well as some other experimental observations with respect the dependence of phase precession/procession on the animal's locomotion. The strengths of this work are at least three-fold: 1) Given its simplicity, the proposed model has a surprisingly large explanatory power of the various experimental observations. 2) The mechanism responsible for the emergence of precession/procession can be understood as a simple yet rather illuminating competition between internally driven and externally driven dynamical trends. 3) Amazingly, and under some adequate simplifying assumptions, a great deal of analysis can be treated exactly, which allows for a detailed understanding of all parametric dependencies. This exact treatment culminates with a full characterization of the phase space of the network dynamics, as well as the computation of various quantities of interest, including characteristic speeds and oscillating frequencies.

      1. As mentioned by the authors themselves, the main limitation of this work is that it deals with a very idealized model and it remains to see how the proposed dynamical behaviors would persist in more realistic models. For example, the model is based on a continuous attractor model that assumes perfect translation-invariance of the network connectivity pattern. Would the oscillating tracking behavior persist in the presence of connection heterogeneities?

      Thank you for raising up this important point. Continuous attractor models have been widely used in modeling hippocampal neural circuits (see McNaughton et al, 2006 for a review), and researchers often assumed that there is a translation-invariance structure in these network models. The theta sweep state we presented in the current work is based on the property of the continuous attractor state. We do agree with the reviewer that the place cell circuit might not be a perfect continuous attractor network. For a simpler case where the connection weights are sampled from a Gaussian distribution around J_0, the theta sweep state still exhibit in the network (see Fig. S8 for an example). We also believe that the model can be extended to more complex cases where there exist over-representations of the “home” location and decision points in the real environment, i.e., the heterogeneity is not random, but has stronger connections near those locations, then the theta sweeps will be more biased to those location. However, if the heterogeneity breaks the continuous attractor state, the theta sweep state may not be presented in the network.

      1. Can the oscillating tracking behavior be observed in purely spiking models as opposed to rate models as considered in this work?

      Thank you for pointing this out. The short answer is yes. If the translation-invariance of the network connectivity pattern hold in the network, i.e., the spiking network is still a continuous attractor network (see the work from Tsodyks et al, 1996; and from Yu et al. "Spiking continuous attractor neural networks with spike frequency adaptation for anticipative tracking"), then the adaptation, which has the mathematical form of spike frequency adaptation (instead of firing rate adaptation), will still generate sweep state of the activity bump. We here chose the rate-based model because it is analytically tractable, which gives us a better understanding of the underlying dynamics. Many of the continuous attractor model related to spatial tuning cell populations are rate-based (see examples Zhang 1996; Burak & Fiete 2009). However, extending to spike-based model would be straightforward.

      1. Another important limitation is that the system needs to be tuned to exhibit oscillation within the theta range and that this tuning involves a priori variable parameters such as the external input strength. Is the oscillating-tracking behavior overtly sensitive to input strength variations?

      Thank you for pointing this out. In rodent studies, theta sequences are thought to result from the integration of both external inputs conveying sensory-motor information, and intrinsic network dynamics possibly related to memory processes (see Drieu and Zugaro 2019; Drieu at al, 2018). We clarified here that, in our modeling work, the generation of theta sweeps also depends on both the external input and the intrinsic dynamics (induced by the firing rate adaptation). Therefore, we don’t think the dependence of theta sweeps on the prior parameter – the external input strength – is a limitation here. We agreed with the reviewer that the system needs to be tuned to exhibit oscillation within the theta range. However, the parameter range of inducing oscillatory state is relatively large (see Fig. 2g in the main text). It will be interesting to investigate (and find experimental evidence) how the biological system adjusts the network configuration to implement the sweep state in network dynamics.

      1. The author mentioned that an external pacemaker can serve to drive oscillation within the desired theta band but there is no evidence presented supporting this.

      Thank you for pointing this out. We made this argument based on our initial simulation before but didn’t go into the details of that. We have deleted that argument in the discussion and rewrote that part. We will carry out more simulations in the future to verify if this is true. See our changes from line 418 to line 431:

      “... A representative model relying on neuronal recurrent interactions is the activation spreading model. This model produces phase precession via the propagation of neural activity along the movement direction, which relies on asymmetric synaptic connections. A later version of this model considers short-term synaptic plasticity (short-term depression) to implicitly implement asymmetric connections between place cells, and reproduces many other interesting phenomena, such as phase precession in different environments. Different from these two models, our model considers firing rate adaptation to implement symmetry breaking and hence generates activity propagation. To prevent the activity bump from spreading away, their model considers an external theta input to reset the bump location at the end of each theta cycle, whereas our model generates an internal oscillatory state, where the activity bump travels back due to the attraction of external location input once it spreads too far away. Moreover, theoretical analysis of our model reveals how the adaptation strength affect the direction of theta sweeps, as well as offers a more detailed understanding of theta cycling in complex environments...”

      1. A final and perhaps secondary limitation has to do with the choice of parameter, namely the time constant of neural firing which is chosen around 3ms. This seems rather short given that the fast time scale of rate models (excluding synaptic processes) is usually given by the membrane time constant, which is typically about 15ms. I suspect this latter point can easily be addressed.

      Thank you for pointing this out. The time constant we currently chose is relatively short as used in other studies. We conducted additional simulation by adjusting the time constant to 10ms, and the results reported in this paper remain consistent. Please refer to Fig S9 for the results obtained with a time constant of 10 ms.

      Reviewer #3:

      With a soft-spoken, matter-of-fact attitude and almost unwittingly, this brilliant study chisels away one of the pillars of hippocampal neuroscience: the special role(s) ascribed to theta oscillations. These oscillations are salient during specific behaviors in rodents but are often taken to be part of the intimate endowment of the hippocampus across all mammalian species, and to be a fundamental ingredient of its computations. The gradual anticipation or precession of the spikes of a cell as it traverses its place field, relative to the theta phase, is seen as enabling the prediction of the future - the short-term future position of the animal at least, possibly the future in a wider cognitive sense as well, in particular with humans. The present study shows that, under suitable conditions, place cell population activity "sweeps" to encode future positions, and sometimes past ones as well, even in the absence of theta, as a result of the interplay between firing rate adaptation and precise place coding in the afferent inputs, which tracks the real position of the animal. The core strength of the paper is the clarity afforded by the simple, elegant model. It allows the derivation (in a certain limit) of an analytical formula for the frequency of the sweeps, as a function of the various model parameters, such as the time constants for neuronal integration and for firing rate adaptation. The sweep frequency turns out to be inversely proportional to their geometric average. The authors note that, if theta oscillations are added to the model, they can entrain the sweeps, which thus may superficially appear to have been generated by the oscillations.

      1. The main weakness of the study is the other side of the simplicity coin. In its simple and neat formulation, the model envisages stereotyped single unit behavior regulated by a few parameters, like the two time constants above, or the "adaptation strength", the "width of the field" or the "input strength", which are all assumed to be constant across cells. In reality, not only assigning homogeneous values to those parameters seems implausible, but also describing e.g. adaptation with the simple equation included in the model may be an oversimplification. Therefore, it remains important to understand to what extent the mechanism envisaged in the model is robust to variability in the parameters or to eg less carefully tuned afferent inputs.

      Thank you for pointing out this important question. As the reviewer pointed out, there is an oversimplification in our model compared to the real hippocampal circuits (also see Q1 and Q3 from reviewer2). We also pointed out that in the main text line 504:

      “…Nevertheless, it is important to note that the CANN we adopt in the current study is an idealized model for the place cell population, where many biological details are missed. For instance, we have assumed that neuronal synaptic connections are translation-invariant in the space...”

      To investigate model robustness to parameter setting, we divided all the parameters into two groups. The first group of parameters determines the bump state, i.e., width of the field a, neuronal density ρ, global inhibition strength k, and connection strength J_0. The second group of parameters determines the bump sweep state (which based on the existence of the bump state), i.e., the input strength α and the adaptation strength m. For the first group of parameters, we refer the reviewer to the Method part: stability analysis of the bump state. This analysis tells us the condition when the continuous attractor state holds in the network (see Eq. 20, which guides us to perform parameter selection). For the second group of parameters, we refer the reviewer to Fig. 2g, which tells us when the bump sweep state occurs regarding to input strength and adaptation strength. When the input strength is small, the range of adaptation strength is also small (to get the bump sweep state). However, as the input strength increases, we can see from Fig. 2g that the range of adaptation strength (to get the bump sweep state) also linearly increases. Although there exists other two state in the network when the two parameters are set out of the colored area in Fig. 2g, the parameter range of getting sweep state is also large, especially when the input strength value is large, which is usually the case when the animal actively runs in the environment.

      To demonstrate how the variability affect the results, we added variability to the connection weights by sampling the connection weights from a Gaussian distribution around J_0 (this introduces heterogeneity in the connection structure). We found that the bump sweep state still holds in this condition (see Fig. S8 as well as Q1 from reviewer2). For the variability in other parameter values, the results will be similar. Although adding variability to these parameters will not bring us difficulty in numerical simulation, it will make the theoretical analysis much more difficult.

      1. The weak adaptation regime, when firing rate adaptation effectively moves the position encoded by population activity slightly ahead of the animal, is not novel - I discussed it, among others, in trying to understand the significance of the CA3-CA1 differentiation (2004). What is novel here, as far as I know, is the strong adaptation regime, when the adaptation strength m is at least larger than the ratio of time constants. Then population activity literally runs away, ahead of the animal, and oscillations set in, independent of any oscillatory inputs. Can this really occur in physiological conditions? A careful comparison with available experimental measures would greatly strengthen the significance of this study.

      Thank you for raising up this interesting question.

      Re: “…firing rate adaptation effectively moves the position encoded by population activity slightly ahead of the animal, is not novel…”, We added Treves, A (2004) as a citation when we introduce the firing rate adaptation in line 116

      To test if the case of “…the adaptation strength m is at least larger than the ratio of time constants…” could occur in physiological conditions, it requires a measure of the adaptation strength as well as the time constant of both neuron firing and adaptation effect. The most straightforward way would be in vivo patch clamp recording of hippocampal pyramidal neurons when the animal is navigating an environment. This will give us a direct measure of all these values. However, we don’t have these data to verify this hypothesis yet. Another possible way of measure these values is through a state-space model. Specifically, we can build a state space model (considering adaptation effect in spike release) by taking animal’s position as latent dynamics, and recorded spikes as observation, then infer the parameters such as adaptation strength and time constant in the slow dynamics. Previous work of state-space models (without firing rate adaptation) in analyzing theta sweeps and replay dynamics have been explored by Denovellis et al. (2021), as well as Krause and Drugowitsch (2022). We think it might be doable to infer the adaptation strength and adaptation time constant in a similar paradigm in future work. We thank the reviewer for pointing out that and hope our replies have clarified the concerns of the reviewer.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      The authors focused on genetic variability in relation to insulin resistance. They used genetically different lines of mice and exposed them to the same diet. They found that genetic predisposition impacts the overall outcome of metabolic disturbances. This work provides a fundamental novel view on the role of genetics and insulin resistance.

      Reviewer #2 (Public Review):

      Summary:

      In the present study, van Gerwen et al. perform deep phosphoproteomics on muscle from saline or insulin-injected mice from 5 distinct strains fed a chow or HF/HS diet. The authors follow these data by defining a variety of intriguing genetic, dietary, or gene-by-diet phosphor-sites that respond to insulin accomplished through the application of correlation analyses, linear mixed models, and a module-based approach (WGCNA). These findings are supported by validation experiments by intersecting results with a previous profile of insulin-responsive sites (Humphrey et al, 2013) and importantly, mechanistic validation of Pfkfb3 where overexpression in L6 myotubes was sufficient to alter fatty acid-induced impairments in insulin-stimulated glucose uptake. To my knowledge, this resource provides the most comprehensive quantification of muscle phospho-proteins which occur as a result of diet in strains of mice where genetic and dietary effects can be quantifiably attributed in an accurate manner. Utilization of this resource is strongly supported by the analyses provided highlighting the complexity of insulin signaling in muscle, exemplified by contrasts to the "classically-used" C57BL6/J strain. As it stands, I view this exceptional resource as comprehensive with compelling strength of evidence behind the mechanism explored. Therefore, most of my comments stem from curiosity about pathways within this resource, many of which are likely well beyond the scope of incorporation in the current manuscript. These include the integration of previous studies investigating these strains for changes in transcriptional or proteomic profiles and intersections with available human phospho-protein data, many of which have been generated by this group.

      Strengths:

      Generation of a novel resource to explore genetic and dietary interactions influencing the phospho-proteome in muscle. This is accompanied by the elegant application of in silico tools to highlight the utility.

      Weaknesses:

      Some specific aspects of integration with other data among the same fixed strains could be strengthened and/or discussed.

      Reviewer #3 (Public Review):

      Summary:

      The authors aimed to investigate how genetic and environmental factors influence the muscle insulin signaling network and its impact on metabolism. They utilized mass spectrometry-based phosphoproteomics to quantify phosphosites in the skeletal muscle of genetically distinct mouse strains in different dietary environments, with and without insulin stimulation. The results showed that genetic background and diet both affected insulin signaling, with almost half of the insulin-regulated phosphoproteome being modified by genetic background on an ordinary diet, and high-fat high-sugar feeding affecting insulin signaling in a strain-dependent manner.

      Strengths:

      The study uses state-of-the-art phosphoproteomics workflow allowing quantification of a large number of phosphosites in skeletal muscle, providing a comprehensive view of the muscle insulin signaling network. The study examined five genetically distinct mouse strains in two dietary environments, allowing for the investigation of the impact of genetic and environmental factors on insulin signaling. The identification of coregulated subnetworks within the insulin signaling pathway expanded our understanding of its organization and provided insights into potential regulatory mechanisms. The study associated diverse signaling responses with insulin-stimulated glucose uptake, uncovering regulators of muscle insulin responsiveness.

      Weaknesses:

      Different mouse strains have huge differences in body weight on normal and high-fat high-sugar diets, which makes comparison between the models challenging. The proteome of muscle across different strains is bound to be different but the changes in protein abundance on phosphosite changes were not assessed. Authors do get around this by calculating 'insulin response' because short insulin treatment should not affect protein abundance. The limitations acknowledged by the authors, such as the need for larger cohorts and the inclusion of female mice, suggest that further research is needed to validate and expand upon the findings.

      Reviewer #1 (Recommendations For The Authors):

      I would suggest further discussion of the potential differences between males and females of the various strains.

      In the revised manuscript we have included a more detailed discussion of the potential differences between male and female mice in the "Limitations of this study" section on lines 455-459. In particular, a landmark study of HFD-fed inbred mouse strains found that insulin sensitivity, as inferred from the proxy HOMA-IR, was affected by interactions between sex and strain despite generally being greater in female mice (10.1016/j.cmet.2015.01.002). Furthermore, a recent phosphoproteomics study of human induced pluripotent stem-cell derived myoblasts identified groups of insulin-regulated phosphosites affected by donor sex, and by interactions between sex and donor insulin sensitivity (10.1172/JCI151818). Based on these results, we anticipate that both soleus insulin sensitivity and phoshoproteomic insulin responses would differ between male and female mice through interactions with strain and diet, adding yet another layer of complexity to what we observed in this study. This will be an important avenue for future research to explore.

      Reviewer #2 (Recommendations For The Authors):

      The following are comments to authors - many, if not all are suggestions for extended discussion and beyond the scope of the current elegant study.

      In the discussion section (line 428) the authors make a key point in that the genetic, dietary, and interacting patterns of variation of Phospho-sites could be due to changes in total protein and/or transcript levels across strains. For example, given the increased expression of Pfkfb3 was sufficient to impact glucose uptake, suggesting that the transcript levels of the gene might also show a similar correlation with insulin responsiveness as in Fig 6b. Undoubtedly, phospho-proteomics analyses will provide unique information on top of more classical omics layers and uncover what would be an important future direction. Therefore, I would suggest adding to the discussion some guidance on performing similar applications to datasets from, at least some, of the strains used where RNA-seq and proteomics are available.

      We thank the reviewer for this suggestion. To address this, we mined recently published total proteomics data collected from soleus muscles of seven CHOW or HFD-fed inbred mouse strains, three of which were in common with our study (C57Bl6J, BXH9, BXD34; 10.1016/j.cmet.2021.12.013). In this study ex vivo soleus glucose uptake was measured and correlation analysis was performed, so we directly extracted the resulting glucose uptake-protein associations and compared them to the glucose uptake-phosphoprotein associations identified in our study. Indeed, we found that only a minority of proteins correlated at both the phosphosite and total protein levels, highlighting the utility of phosphoproteomics to provide orthogonal information to more classical omics layers. We have included this analysis in lines 303-311.

      Relevant to this, the authors might want to consider depositing scripts to analyze some aspects of the data (ex. WGCNA on P-protein data or insulin-regulated anova) in a repository such as github so that these can be applied easily to other datasets.

      We refer the reviewer to the section "Code availability" on lines 511-513, where we deposited all code used to analyse the data on github.

      In contrast to the points above, I feel that the short time-course of insulin stimulation was one important aspect of the experimental design that was not emphasized enough as a strength. It was mentioned as a limitation in that other time points could provide more info, yes. But given that the total abundance of proteins and transcripts likely doesn't shift tremendously in this time frame, this provides an important appeal to the analysis of phosphor-proteomic data. I would suggest highlighting the insulin-stimulated response analysis here as something that leverages the unique nature of phosphoproteomics.

      We are grateful for the reviewer's positivity regarding this aspect of our experimental design. We have reiterated the value of the 10min insulin stimulation - that it temporally segregates phosphoproteomic and total proteomic changes - in the "Limitations of this study" section on lines 477-481.

      While I recognize the WGCNA analysis as an instrumental way to highlight global patterns of phospo-peptide abundance co-regulation, the analysis currently seems somewhat underdeveloped. For example, Fig 5f-h shows a lot of overlap between kinase substrates and pathways among modules. Clearly, there are informative differences based on the intersection with Humphries 2013 and the correlation with Pfkbp3. To highlight the specific membership of these modules, most people rank-order module members by correlation with eigen-gene (or P-peptide) and then perform pathway enrichments on these. Alternatively, it looks like all data was used to generate modules across conditions. One consideration would be to perform WGCNA on relevant comparison data separately (ex. chow mice only and HFHS only) and then compare modules whose membership is retained or shift between the two. Or even look at module representation for genes that show large correlations with insulin-responsiveness. This might also be a good opportunity to suggest readers intersect module members with muscle eQTLs which colocalize to glucose or insulin to prioritize some potential key drivers.

      We thank the reviewer for their helpful suggestions, which we feel have substantially improved the WGCNA analysis. To probe specific functional differences between subnetworks, we performed rank-based enrichment using phosphopeptide module membership scores. Interestingly, this did reveal pathways that were enriched only in certain modules. However, we found that after p-value adjustment, virtually all enriched pathways lost statistical significance, hence we interpret these results as suggestive only. We have made this analysis available to readers in Fig S4b-d and lines 263-265: "To further probe functional differences we analysed phosphopeptide subnetwork membership scores, which revealed additional pathways enriched in individual subnetworks. However, these results were not significant after p-value adjustment and hence are suggestive only (Fig. S4b-d)". We also visualised module representation for glucose-uptake correlated phosphopeptides. This agreed with our existing analyis in Fig. 6f, where the eigenpeptides of modules V and I were correlated with glucose uptake (Fig. 6f). We have incorporated this new analysis in Fig. S6b-c and lines 324-325: "Examining the subnetwork membership scores for glucose-uptake correlated phosphopeptides also revealed a preference for clusters V and I, supporting this analysis (Fig. S6b-c)." Finally, in the discussion we have presented the integration of genetic data, such as muscle-specific eQTLs, as a future direction (lines 398-401): "Alternatively, one could overlap subnetworks with genetic information, such as genes associated with glucose homeostasis and other metabolic traits in human GWAS studies, or muscle-specific eQTLs or pQTLs genetically colocalised with similar traits, to further prioritise subnetwork-associated phenotypes and identify potential drivers within subnetworks."

      Have the authors considered using their heritability and GxE estimated for module eigenpeptides? To my knowledge, this has never been performed and might provide some informative information as the co-regulated P-protein structure occurs as a result of relevant contexts.

      In the revised manuscript we have now analysed eigenpeptides with the same statistical tests used to identify Strain and Diet effects in insulin-regulated phosphopeptides. We have displayed the statistical results in Fig. S4a, and have explicitly mentioned examples of StrainxDiet effects on lines 245-247: "For example, HFD-feeding attenuated the insulin response of subnetwork I in CAST and C57Bl6J strains (t-test adjusted p = 0.0256, 0.0365), while subnetwork II was affected by HFD-feeding only in CAST and NOD (Fig. 5e, Fig. S4a, t-test adjusted p = 0.00258, 0.0256)."

      The integration of modules with adipocyte phosphoproteomic data from the authors 2013 Cell metab paper seems like an important way to highlight the integration of this resource to define critical cellular signaling mechanisms. To assess the conservation of signaling mechanisms and relationships to additional key contexts (ex. exercise), the intersection of the insulin-stimulated P-peptides with human datasets generated by this group (ex. cell metab 2015, nature biotech 2022) seems like an obvious future direction to prioritize targets. Figure S3B shows a starting point for these types of integrations.

      To demonstrate the value of integrating our results with related phosphoproteomics data, we have incorporated the reviewer's advice of comparing insulin-regulated phosphosites to exercise-regulated phosphosites from Needham et. Nature Biotech 2022 and Hoffman et al. Cell Metabolism 2015. We identified a small subset of commonly regulated phosphosites (8 across all three studies). Given insulin and exercise both promote GLUT4 translocation, these sites may represent conserved regulatory mechanisms. This analysis is presented in Fig. S3d, Table S2, and lines 129-135: "In addition to insulin, exercise also promotes GLUT4 translocation in skeletal muscle. We identified a small subset of phosphosites regulated by insulin in this study that were also regulated by exercise in two separate human phosphoproteomics studies (Fig. S3d, Table S2, phosphosites: Eef2 T57 and T59, Mff S129 and S131, Larp1 S498, Tbc1d4 S324, Svil S300, Gys1 S645), providing a starting point for exploring conserved signalling regulators of GLUT4 translocation."

      For the Pfkfb3 overexpression system, are there specific P-peptides that are increased/decreased upon insulin stimulation? This might be an interesting future direction to mention in order to link signaling mechanisms.

      We assessed whether canonical insulin signalling was affected by Pfkfb3 overexpression by immunoblotting. Insulin-stimulated phosphorylation of Akt S473, Akt T308, Gsk3a/b S21/S9, and PRAS40 T246 differed little across conditions, with only a weak, statistically insignificant trend towards increased pT308 Akt, pS21/S9 Gsk3a/b, and pT246 PRAS40 in palmitate-treated Pfkfb3-overexpressing cells. Hence, as the reviewer has suggested, an interesting future direction will be to perform phosphoproteomics to characterise more deeply the effects of palmitate and Pfkfb3 overexpression on insulin signalling. We have modified the manuscript to reflect these findings and suggested future directions on lines 362-365: "immunoblotting of canonical insulin-responsive phosphosites on Akt and its substrates GSK3α/β and PRAS40 revealed minimal effect of palmitate treatment and Pfkfb3 overexpression (Fig. S7e-f), hence more detailed phosphoproteomics studies are needed to clarify whether Pfkfb3 overexpression restored insulin action by modulating insulin signalling."

      Reviewer #3 (Recommendations For The Authors):

      This remarkable contribution by the esteemed research group has significantly enriched the field of metabolism. The extensive dataset, intertwined with a sophisticated research design, promises to serve as an invaluable resource for the scientific community. I offer a series of suggestions aimed at potentially elevating the manuscript to an even higher standard.

      Mouse Weight Variation and Correlation Analysis: The pronounced variances in mouse body weights pose a challenge to meaningful comparisons (Fig S1). Could the disparities in the phosphoproteome between basal and insulin-stimulated conditions be attributed to differences in body weight? Consider performing a correlation analysis. Furthermore, does the phosphoproteome of these mouse strains evolve comparably over time? Do these mice age similarly? Kindly incorporate this information.

      We thank the reviewer for the suggested analysis. We found there was a significant correlation between the phosphopeptide insulin response and mouse body weight, either in CHOW-fed mice (Strain effects) or across both diets (Diet effects), for ~ 25% of phosphopeptides that exhibited a Strain or Diet effect. Hence, while there is a clear effect of body weight on insulin signalling, this influences only a small proportion of the entire insulin-responsive phosphoproteome. Notably, insulin was dosed according to mouse lean mass to ensure equivalent dosage received by the soleus muscle, hence any insulin signalling differences associated with body weight are unlikely due to differences in dosing. As the reviewer also alludes to, different strains could have different lifespans. This may result in mice having different biological ages at the time of experimentation, and this in turn could influence insulin signalling. This possibility is challenging to assess in a quantitative manner because lifespan data is not available for most strains used. However, it is worth noting that female CAST mice live 77% as long as C57Bl6J mice (median age of 671 vs 866 (10.1073/pnas.1121113109); data is not available for male mice nor the other three strains), and substantial differences in insulin signalling were observed between these two strains. Ultimately, regardless of whether body weight and/or lifespan altered insulin signalling, such differences would still have arisen solely from the distinct genetic backgrounds and diets of the mice, hence we believe they are meaningful results that should not be dismissed. We have added this analysis to the revised manuscript in the "Limitations of this study" section on lines 471-477: "We were also unable to determine the extent to which signalling changes arose from muscle-intrinsic or extrinsic factors. For instance, body weight varied substantially across mice and correlated significantly with 25% of Strain and Diet-affected phosphopeptides (Fig. S8c), suggesting obesity-related systemic factors likely impact a subset of the muscle insulin signalling network. Furthermore, genetic differences in lifespan could alter the “biological age” of different strains and their phosphoproteomes, though we could not assess this possibility since lifespan data are not available for most strains used. "

      Soleus Muscle Data and Bias Considerations: Were measurements taken for lean mass and soleus muscle weight? If so, please present the corresponding data.

      Measurements for lean mass and the mass of soleus muscle after grinding have been including in Supplementary Figure S1 (panels c-d)

      As outlined in the methods section, the variation in protein yield from the soleus muscle across each strain is substantial. Notably, the distinct peptide input for phospho enrichment introduces biases, given that muscles with lower input may exhibit reduced identification (Fig S2). This bias might also manifest in the PCA plot (S2C). Ideally, adopting a uniform protein/peptide input would have been advantageous. Address this concern and contemplate moving the PCA plot to the main figure. It's prudent to reconsider the sentence stating, "Samples from animals of the same strain and diet were highly correlated and generally clustered together, implying the data are highly reproducible (Fig. S2b-d)," particularly if the input and total IDs were not matched.

      The reviewer highlights an important point. As the reviewer comments, it would have been our preference to use the same amount of protein material for all samples. However, as there was a wide range in the mass of the soleus muscle across mouse strains (in particular much lower in CAST mice), it was not appropriate to use the same amount of material for all strains. This is indeed evident in the PCA plot (Figure S2c), whereby samples cluster in the second component (PC2) based on the amount of protein material. However, this clustering is not observed in the hierarchical clustering (Figure S2d), and nor are the number of phosphopeptides quantified in each sample substantially impacted by these differences (Figure S2a) as implied by the reviewer. Indeed, the number of phosphopeptides quantified did not noticeably vary when comparing BXH9/BXD34 to C57Bl6J/NOD despite 32.3% less material used, and there were only 12.4% fewer phosphopeptides (average #13891.56 vs 15851.29) in CAST compared to C57Bl6J/NOD strains, despite 51.8% less material used. To further emphasise the minimal effect that input material had on phosphopeptide quantification, we have additionally plotted the number of phosphopeptides quantified in each sample following the filtering steps we employed prior to statistical analysis of the dataset (i.e. ANOVA). This plot (Author response image 1) shows that there is even less variation in the number of quantified phosphopeptides between strains, with only 9.12% fewer phosphopeptides quantified and filtered on average in CAST compared to C57Bl6J/NOD (average #9026.722 vs 9932.711). From a quantitative perspective, in both the PCA (Principal Component 1) and hierarchical clustering analyses, samples are additionally clustered by individual strains, and in the latter they also cluster generally by diet, implying that biological variation between samples remains the primary variation captured in our data. We have modified the manuscript so that these observations are forefront (lines 103-106): "Furthermore, while different strains clustered by the amount of protein material used in the second component of the PCA (Figure S2c), samples from animals of the same strain and diet were highly correlated and generally clustered together, indicating that our data are highly reproducible". To ensure that readers are aware of our decision to alter protein starting material and its implications, we have moved the description of this from the methods to the results, and we have highlighted the impact on phosphopeptide quantification in CAST mice (lines 99-103): "Due to the range in soleus mass across strains (Fig. S1D) we altered the protein material used for EasyPhos (C57Bl6J and NOD: 755 µg, BXH9 and BXD34: 511 µg, CAST: 364 µg), though phosphopeptide quantification was minimally affected, with only 12.4% fewer phosphopeptides quantified on average in CAST compared to the C57lB6J/NOD (average 13891.56 vs 15851.29 Fig. S2a)."

      Author response image 1.

      Phosphopeptide quantification following filtering. a) The number of phosphopeptides quantified in each sample after filtering prior to statistical analysis.

      Phosphosite Quantification Filtering: The quantified phosphosites have been dropped from 23,000 to 10,000. Could you elucidate the criteria employed for filtering and provide a concise explanation in the main text?

      We thank the reviewer for drawing this ambiguity to our attention. Before testing for insulin regulation, we performed a filtering step requiring phosphopeptides to be quantified well enough for comparisons across strains and diets. Specifically, phosphopeptides were retained if they were quantified well enough to assess the effect of insulin in more than eight strain-diet combinations (≥ 3 insulin-stimulated values and ≥ 3 unstimulated values in each combination). We have now included this explanation of the filtering in the main text on lines 108-114.

      ANOVA Choice Clarification: In Figure 4, there's a transition from one-way ANOVA in B to two-way ANOVA in C. Could you expound on the rationale for selecting these distinct methods?

      In panel B, we first focussed on kinase regulation differences between strains in the absence of a dietary perturbation. Hence, we performed one-way ANOVAs only within the CHOW-fed mice. In panel C, we then consider the effect of perturbation with the HFD. We perform two-way ANOVAs, allowing us to identify effects of the HFD that are uniform across strains (Diet main effect) or variable across strains (Strain-by-diet interaction).

      Cell Line Selection for Functional Experiments: Could you elucidate the rationale behind opting for L6 cells of rat origin over C2C12 mouse cells for functional experiments?

      We acknowledge that C2C12 cells have the benefit of being of mouse origin, which aligns with our mouse-derived phosphoproteomics data. However, they are unsuitable for glucose uptake experiments as they lack an insulin-responsive vesicular compartment even upon GLUT4 overexpression, and undergo spontaneous contraction when differentiated resulting in confounding non-insulin dependent glucose uptake (10.1152/ajpendo.00092.2002, 10.1007/s11626-999-0030-8). In contrast, L6 cells readily express insulin-responsive GLUT4, and cannot contract (doi.org/10.1113/JP281352, 10.1007/s11626-999-0030-8). Therefore they are a superior model for studying insulin-dependent glucose transport. We have added a justification of L6 cells over C2C12 cells in the revised manuscript, on lines 352-354: "While L6 cells are of rat origin, they are preferable to the popular C2C12 mouse cell line since the latter lack an insulin-responsive vesicular compartment and undergo spontaneous contraction, resulting in confounding non-insulin dependent glucose uptake."

      It's intriguing that while a phosphosite was modulated on Pfkfb2, functional assays were conducted on a different isoform (Pfkfb3) wherein the phosphosite was not detected.

      The correlation between Pfkfb2 S469 phosphorylation and insulin-stimulated glucose uptake suggests that F2,6BP production, and subsequent glycolytic activation, positively regulate insulin responsiveness. There are several ways of testing this: 1) Knock down endogenous Pfkfb2, and re-express either wild-type protein or a S469A phosphomutant. If S469 phosphorylation positively regulates insulin responsiveness, then knockdown should decrease insulin responsiveness and re-expression of wild-type Pfkfb2, but not S469A, should restore it. 2) Induce insulin resistance (e.g. through palmitate treatment), and overexpress phosphomimetic S469D or S469E Pfkfb2 to enhance F2,6BP production. Under our hypothesis, this should reverse insulin resistance. 3) There is some evidence that dual phosphorylation of S469 and S486, another activating phosphosite on Pfkfb2, enhances F2,6BP production through 14-3-3 binding (10.1093/emboj/cdg363). Hence, we may expect that introduction of an R18 sequence into Pfkfb2, which causes constitutive 14-3-3 binding (10.1074/jbc.M603274200), would increase Pfkfb2-driven F2,6BP production, and under our hypothesis this should reverse insulin resistance. 4) The paralog Pfkfb3 lacks Akt regulatory sites and has substantially higher basal activity than Pfkfb2. Thus, overexpression of Pfkfb3 should mimic the effect of phosphorylated Pfkfb2, and hence reverse insulin resistance under our hypothesis. While approaches 1), 2), and 3) directly target Pfkfb2, they have drawbacks. For example, 1) may not work if Pfkfb2 knockdown is compensated for by other Pfkfb isoforms, 2) may not work since D/E phosphomimetics often do not recapitulate the molecular effects of S/T phosphorylation (10.1091/mbc.E12-09-0677), and 3) may not work if S469 phosphorylation does not operate through 14-3-3 binding. Hence we performed 4) as it seemed to be the most robust and cleanest experiment to test our hypothesis. We have revised the manuscript to further clarify the challenges of directly targeting Pfkfb2 and the benefits of targeting Pfkfb3 on lines 342-349: "Since Pfkfb2 requires phosphorylation by Akt to produce F2,6BP substantially, increasing F2,6BP production via Pfkfb2 would require enhanced activating site phosphorylation, which is difficult to achieve in a targeted fashion, or phosphomimetic mutation of activating sites to aspartate/glutamate, which often does not recapitulate the molecular effects of serine/threonine phosphorylation. By contrast, the paralog Pfkfb3 has high basal production rates and lacks an Akt motif at the corresponding phosphosites. We therefore rationalised that overexpressing Pfkfb3 would robustly increase F2,6BP production and enhance glycolysis regardless of insulin stimulation and Akt signalling."

      Insulin-Independent Action of Pfkfb3: The functionality of Pfkfb3 unfolds in an insulin-independent manner, yet it restores insulin action (Fig 6h). Could you shed light on the mechanism underpinning this phenomenon? Consider measuring F2,6BP concentrations or assessing kinase activity upon overexpression.

      Pfkfb3 overexpression increased the glycolytic capacity of L6 myotubes in the absence of insulin stimulation, as inferred by extracellular acidification rate (Fig. S7c). This is indeed consistent with Pfkfb3 enhancing glycolysis through increased F2,6BP concentration in an insulin-independent manner. To shed light on the mechanism connecting this to insulin action, we performed immunoblotting experiments to assess the kinase activity of Akt, a master regulator of the insulin response. Indeed, this experimental direction has precedent as we previously observed that Pfkfb3 overexpression enhanced insulin-stimulated Akt signalling in HEK293 cells, while small-molecule inhibition of Pfkfb kinase activity reduced Akt signalling in 3T3-L1 adipocytes (10.1074/jbc.M115.658815). However, insulin-stimulated phosphorylation of Akt S473, Akt T308, Gsk3a/b S21/S9, and PRAS40 T246 differed little across conditions, with only a weak, statistically insignificant trend towards increased pT308 Akt, pS21/S9 Gsk3a/b, and pT246 PRAS40 in palmitate-treated Pfkfb3-overexpressing cells. Hence, a more detailed phosphoproteomics study will be needed to assess whether Pfkfb3 restores insulin action by modulating insulin signalling. We have described these immunoblotting experiments in lines 361-365 and Fig. S7e-f. We also discussed potential mechanisms through which Pfkfb3-enhanced glycolysis could connect to insulin action in the discussion (lines 427-434).

      Figure 6h Statistical Analysis: For the 2DG uptake in Figure 6h, a conventional two-way ANOVA might be more appropriate than a repeated measures ANOVA.

      On reflection, we agree that a conventional ANOVA is more appropriate. Furthermore, for simplicity and conciseness we have decided to analyse and present only insulin-stimulated/unstimulated 2DG uptake fold change values in Figure 6h. We have presented all unstimulated and insulin-stimulated values in Figure S7d.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Thank you for overseeing the assessment of our manuscript, “Comprehensive mutagenesis maps the effect of all single codon mutations in the AAV2 rep gene on AAV production". We would also like to thank the reviewers for their feedback. We have carried out the suggested experiments that we feel are most central to our conclusions and summarized the revisions to the manuscript below.

      We appreciate the reviewers’ suggestion with regards to testing different rAAV genomes. We have measured the effect of Rep variants on the production of rAAV containing three additional genomes: a 4.4 kb single-stranded genome, a 3.9 kb single-stranded genome, and a 2.1 kb self-complementary genome (Figures 5C and 5D). The DNase-resistant particles titers - reported as a percent of wild-type Rep titers - are relatively consistent across these three constructs as well as the 5.0 kb single-stranded genome previously tested.

      We agree with the reviewers that measurement of the relative transduction efficiency of rAAV produced with different Rep variants is an important experiment to conduct. To address this, we transduced HEK293T cells with rAAVs, containing a luciferase genome, which were produced using two different Rep variants. When a constant volume of purified rAAV was used for transduction, we observed that the rAAV produced with the S110R Rep variant resulted in higher transduction than rAAV produced with wild-type Rep (as measured by luciferase signal). While we tested only a small number of variants, these results indicate that at least one of the Rep variants we identified can increase not only the viral genome titer but also the titer of transducing particles.

      To generate this transduction data, we produced additional rAAV preps using S110R and Q439T Rep variants. In the previous version of this manuscript, we used the Q439T variant to produce rAAV and noted a 10% increase in the ratio of viral genomes: capsids as determined by comparison of qPCR and capsid ELISA titers. However, a similar increase was not observed in the more recent experiment discussed above. We attribute this discrepancy to changes in the plasmid quantification methods used for transfection. Previously, we quantified plasmids using a fluorometric assay (Qubit); in our more recent experiments, we used qPCR to quantify plasmids for transfection. qPCR provides a more accurate measurement of plasmid concentration due to the specific nature of the primers and probes used, which may account for the subtle shift in quantification. While outside the scope of the current work, it will also be interesting to further investigate the proportion of full capsids using additional Rep variants and more direct methods, such as cryoEM or analytical ultracentrifugation.

      We agree with the reviewers’ observation that there are differences in the production fitness values for synonymous variants. However, the variation in production fitness values between synonymous variants is smaller than that between non-synonymous variants. We conducted the following analysis to clarify this point. We calculated two mean centered fitness values for each codon variant in the WT AAV2 library. The “positional mean centered fitness value” was determined using the production fitness values of all variants at a given amino acid position and describes how far a given fitness value diverges from the mean fitness value for that position. The “synonymous codon mean centered fitness value” was determined using the production fitness values of all synonymous variants at a given position and describes how far a given fitness value diverges from the mean fitness value for all its synonymous codon variants. We then plotted both mean centered fitness values versus amino acid position (Figure S8).

      The distribution of mean centered selection values is narrower when calculated at the synonymous codon level as opposed to the position level. This indicates that, in general, synonymous variants have more tightly distributed production fitness values than non-synonymous variants. This observation precludes us from conducting a more thorough analysis of the effects of synonymous codons on AAV production. (Although, there is at least one instance where clear differences between synonymous codons can be observed (Figure S9C and Figure S9D).) We agree with the reviewers that synonymous variants almost certainly influence aspects of AAV production, such as genome replication, transcriptional regulation, mRNA stability, and protein expression. However, our assay measures the aggregate effect of rep variants on all steps in the AAV production process and is likely unable to detect the effects of synonymous variants on specific steps in this process if those steps are not rate-limiting. We have updated the discussion section to include an explanation of the above.

      The X-axes in Figures 5B and 5D have been updated to plot s’ instead of percent WT titer. We have also added asterisks to indicate significance in Figures 5A and 5C. Thank you for these suggestions.

      We agree with Reviewer 3 that it would be interesting to sequence barcodes from the mRNA pool. The 20 bp barcodes are located upstream of the polyA site and should be present in mRNA transcripts. Something to consider is that AAV2 transcripts expressed from all three promoters (p5, p19, and p40) are polyadenylated at the same site (Stutika et al., 2016). As such, in our WT AAV2 library, barcode representation in the mRNA pool would indicate the aggregate effect of a rep variant on the levels of all AAV2 transcripts. In the pCMV-Rep78/68 library, only two AAV2 transcripts are generated - a spliced and unspliced version of the p5 product. Sequencing of barcodes present in the mRNA pool could be informative regarding the effect of rep variants on combined Rep78/68 expression levels. However, we feel that this experiment is outside the scope of the current work.

      We were also surprised at the number of novel functional Rep variants that were identified in our library. As the reviewer pointed out, optimal rAAV production likely does not equate to optimal fitness of naturally occurring AAV in the endogenous host. Naturally occurring AAV has both a latent and a lytic cycle and the Rep proteins play a role in both these processes (Pereira et al., 1997; Surosky et al., 1997). rAAV production, however, is primarily analogous to the lytic cycle of naturally occurring AAV. In their endogenous hosts, AAV must balance the effect of any mutations on fitness in both the lytic and latent contexts while we assay specifically for production fitness. We additionally attribute this finding to the relatively small number of AAV serotypes, for which rep sequences are available. We have added a discussion of the above to the manuscript.

      Finally, in response to feedback from other researchers, we determined which amino acid substitutions resulted in production fitness values that were significantly different from that of wild-type (Figure S4). These results further emphasized the importance of the origin-binding domain; most statistically significant beneficial substitutions clustered here. Additionally, we noted that the majority of substitutions in the zinc-finger domain resulted in production fitness changes that were not significant. This lines up with previous work indicating that the zinc-finger domain is dispensable for rAAV production. We have added a discussion of these results to the main text.

      We again thank the reviewers for their suggestions; we feel that incorporation of their suggestions has strengthened support for our conclusions and enhanced the utility of this work for others in the field.

      References Pereira, D. J., McCarty, D. M., & Muzyczka, N. (1997). The adeno-associated virus (AAV) Rep protein acts as both a repressor and an activator to regulate AAV transcription during a productive infection. Journal of Virology, 71(2), 1079–1088. https://doi.org/10.1128/jvi.71.2.1079-1088.1997

      Stutika, C., Gogol-Döring, A., Botschen, L., Mietzsch, M., Weger, S., Feldkamp, M., Chen, W., & Heilbronn, R. (2016). A Comprehensive RNA Sequencing Analysis of the Adeno-Associated Virus (AAV) Type 2 Transcriptome Reveals Novel AAV Transcripts, Splice Variants, and Derived Proteins. Journal of Virology, 90(3), 1278–1289. https://doi.org/10.1128/JVI.02750-15

      Surosky, R. T., Urabe, M., Godwin, S. G., McQuiston, S. A., Kurtzman, G. J., Ozawa, K., & Natsoulis, G. (1997). Adeno-associated virus Rep proteins target DNA sequences to a unique locus in the human genome. Journal of Virology, 71(10), 7951–7959. https://doi.org/10.1128/jvi.71.10.7951-7959.1997

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      The authors' finding that PARG hydrolase removal of polyADP-ribose (PAR) protein adducts generated in response to the presence of unligated Okazaki fragments is important for S-phase progression is potentially valuable, but the evidence is incomplete, and identification of relevant PARylated PARG substrates in S-phase is needed to understand the role of PARylation and dePARylation in S-phase progression. Their observation that human ovarian cancer cells with low levels of PARG are more sensitive to a PARG inhibitor, presumably due to the accumulation of high levels of protein PARylation, suggests that low PARG protein levels could serve as a criterion to select ovarian cancer patients for treatment with a PARG inhibitor drug.

      Thank you for the assessment and summary. Please see below for details as we have now addressed the deficiencies pointed out by the reviewers.

      We believe that PARP1 is one of the major relevant PARG substrates in S phase cells. Previous studies reported that PARP1 recognizes unligated Okazaki fragments and induces S phase PARylation, which recruits single-strand break repair proteins such as XRCC1 and LIG3 that acts as a backup pathway for Okazaki fragment maturation (Hanzlikova et al., 2018; Kumamoto et al., 2021). In this study, we revealed that accumulation of PARP1/2-dependent S phase PARylation eventually led to cell death (Fig. 2). Furthermore, we found that chromatin-bound PARP1 as well as PARylated PARP1 increased in PARG KO cells (Fig. S4A and Fig. 4A), suggesting that PARP1 is one of the key substrates of PARG in S phase cells. Of course, PARG may have additional substrates besides PARP1 which are required for its roles in S phase progression, as PARG is known to be recruited to DNA damage sites through pADPr- and PCNA-dependent mechanisms (Mortusewicz et al., 2011). Precisely how PARG regulates S phase progression warrants further investigation.

      Public Reviews:

      Reviewer #1 (Public Review):

      I have a major conceptual problem with this manuscript: How can the full deletion of a gene (PARG) sensitize a cell to further inhibition by its chemical inhibitor (PARGi) since the target protein is fully absent?

      Please see below for details about this point. Briefly, we found that PARG is an essential gene (Fig. 7). There was residual PARG activity in our PARG KO cells, although the loss of full-length PARG was confirmed by Western blotting and DNA sequencing (Fig. S9). The residual PARG activity in these cells can be further inhibited by PARG inhibitor, which eventually lead to cell death.

      The authors state in the discussion section: "The residual PARG dePARylation activity observed in PARG KO cells likely supports cell growth, which can be further inhibited by PARGi". What does this statement mean? Is the authors' conclusion that their PARG KOs are not true KOs but partial hypomorphic knockdowns? Were the authors working with KO clones or CRISPR deletion in populations of cells?

      The reviewer is correct that our PARG KOs are not true KOs. We were working with CRISPR edited KO clones. As shown in this manuscript, we validated our KO clones by Western blotting, DNA sequencing and MMS-induced PARylation. Despite these efforts and our inability to detect full-length PARG in our KO clones, we suspect that our PARG KO cells may still express one or more active fragments of PARG due to alternative splicing and/or alternative ATG usage.

      As shown in Fig. 7, we believe that PARG is essential for proliferation. Our initial KO cell lines are not complete PARG KO cells and residual PARG activity in these cells could support cell proliferation. Unfortunately, due to lack of appropriate reagents we could not draw solid conclusions regarding the isoforms or the truncated PARG expressed in these cells (Please see Western blots below).

      Are there splice variants of PARG that were not knocked down? Are there PARP paralogues that can complement the biochemical activity of PARG in the PARG KOs? The authors do not discuss these critical issues nor engage with this problem.

      There are five reviewed or potential PARG isoforms identified in the Uniprot database. The two sgRNAs (#1 and #2) used to generate initial PARG KO cells in this manuscript target all three catalytically active isoforms (isoforms 1, 2 and 3), and sgRNA#2 used in HeLa cells also targets isoforms 4 and 5, but these isoforms are considered catalytically inactive according to the Uniprot database. However, it is likely that sgRNA-mediated genome editing may lead to the creation of new alternatively spliced PARG mRNAs or the use of alternative ATG, which can produce catalytically active forms of PARG. Instead of searching for these putative spliced PARG RNAs, we used two independent antibodies that recognize the C-terminus of PARG for WB as shown below. Unfortunately, besides full-length PARG, these antibodies also recognized several other bands, some of them were reduced or absent in PARG KO cells, others were not. Thus, we could not draw a clear conclusion which functional isoform was expressed in our PARG KO cells. Nevertheless, we directly measured PARG activity in PARG KO cells (Fig. S9) and showed that we were still able to detect residual PARG activity in these PARG KO cells. These data clearly indicate that residual PARG activity are present and detected in our KO cells, but the precise nature of these truncated forms of PARG remains elusive.

      Author response image 1.

      These issues have to be dealt with upfront in the manuscript for the reader to make sense of their work.

      We thank this reviewer for his/her constructive comments and suggestions. We will include the data above and additional discussion upfront in our revised manuscript to avoid any further confusion by our readers.

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Nie et al investigate the effect of PARG KO and PARG inhibition (PARGi) on pADPR, DNA damage, cell viability, and synthetic lethal interactions in HEK293A and Hela cells. Surprisingly, the authors report that PARG KO cells are sensitive to PARGi and show higher pADPR levels than PARG KO cells, which are abrogated upon deletion or inhibition of PARP1/PARP2. The authors explain the sensitivity of PARG KO to PARGi through incomplete PARG depletion and demonstrate complete loss of PARG activity when incomplete PARG KO cells are transfected with additional gRNAs in the presence of PARPi. Furthermore, the authors show that the sensitivity of PARG KO cells to PARGi is not caused by NAD depletion but by S-phase accumulation of pADPR on chromatin coming from unligated Okazaki fragments, which are recognized and bound by PARP1. Consistently, PARG KO or PARG inhibition shows synthetic lethality with Pol beta, which is required for Okazaki fragment maturation. PARG expression levels in ovarian cancer cell lines correlate negatively with their sensitivity to PARGi.

      Thank you for your nice comments. The complete loss of PARG activity was observed in PARG complete/conditional KO (cKO) cells. These cKO clones were generated using wild-type cells transfected with sgRNAs targeting the catalytic domain of PARG in the presence of PARP inhibitor.

      Strengths:

      The authors show that PARG is essential for removing ADP-ribosylation in S-phase.

      Thanks!

      Weaknesses:

      1. This begs the question as to the relevant substrates of PARG in S-phase, which could be addressed, for example, by analysing PARylated proteins associated with replication forks in PARG-depleted cells (EdU pulldown and Af1521 enrichment followed by mass spectrometry).

      We believe that PARP1 is one of the major relevant PARG substrates in S phase cells. Previous studies reported that PARP1 recognizes unligated Okazaki fragments and induces S phase PARylation, which recruits single-strand break repair proteins such as XRCC1 and LIG3 that acts as a backup pathway for Okazaki fragment maturation (Hanzlikova et al., 2018; Kumamoto et al., 2021). In this study, we revealed that accumulation of PARP1/2-dependent S phase PARylation eventually led to cell death (Fig. 2). Furthermore, we found that chromatin-bound PARP1 as well as PARylated PARP1 increased in PARG KO cells (Fig. S4A and Fig. 4A), suggesting that PARP1 is one of the key substrates of PARG in S phase cells. Of course, PARG may have additional substrates besides PARP1 which are required for its roles in S phase progression, as PARG is known to be recruited to DNA damage sites through pADPr- and PCNA-dependent mechanisms (Mortusewicz et al., 2011). Precisely how PARG regulates S phase progression warrants further investigation.

      1. The results showing the generation of a full PARG KO should be moved to the beginning of the Results section, right after the first Results chapter (PARG depletion leads to drastic sensitivity to PARGi), otherwise, the reader is left to wonder how PARG KO cells can be sensitive to PARGi when there should be presumably no PARG present.

      Thank you for your suggestion! However, we would like to keep the complete PARG KO result at the end of the Results section, since this was how this project evolved. Initially, we did not know that PARG is an essential gene. Thus, we speculated that PARGi may target not only PARG but also a second target, which only becomes essential in the absence of PARG. To test this possibility, we performed FACS-based and cell survival-based whole-genome CRISPR screens (Fig. 5). However, this putative second target was not revealed by our CRISPR screening data (Fig. 5). We then tested the possibility that these cells may have residual PARG expression or activity and only cells with very low PARG expression are sensitive to PARGi, which turned out to be the case for ovarian cancer cells. Equipped with PARP inhibitor and sgRNAs targeting the catalytic domain of PARG, we finally generated cells with complete loss of PARG activity to prove that PARG is an essential gene (Fig. 7). This series of experiments underscore the challenge of validating any KO cell lines, i.e. the identification of frame-shift mutations, absence of full-length proteins, and phenotypic changes may still not be sufficient to validate KO clones. This is an important lesson we learned and we would like to share it with the scientific community.

      To avoid further misunderstanding, we will include additional statements/comments at the end of “PARG depletion leads to drastic sensitivity to PARGi” section and at the beginning of “CRISPR screens reveal genes responsible for regulating pADPr signaling and/or cell lethality in WT and PARG KO cells”. Hope that our revised manuscript will make it clear.

      1. Please indicate in the first figure which isoforms were targeted with gRNAs, given that there are 5 PARG isoforms. You should also highlight that the PARG antibody only recognizes the largest isoform, which is clearly absent in your PARG KO, but other isoforms may still be produced, depending on where the cleavage sites were located.

      The two sgRNAs (#1 and #2) used to generate initial PARG KO cells in this manuscript target all three catalytically active isoforms (isoforms 1, 2 and 3), and sgRNA#2 used in HeLa cells also targets isoforms 4 and 5, but these isoforms are considered catalytically inactive according to the Uniprot database. As suggested, we will modify Fig. S1D and the figure legends.

      The manufacturer instruction states that the Anti-PARG antibody (66564S) can only recognize isoform 1, this antibody could recognize isoforms 2 and 3 albeit weakly based on Western blot results with lysates prepared from PARG cKO cells reconstituted with different PARG isoforms, as shown below. As suggested, we will add a statement in the revised manuscript and provide the Western blotting data below.

      Author response image 2.

      To test whether other isoforms were expressed in 293A and/or HeLa cells, we used two independent antibodies that recognize the C-terminus of PARG for WB as shown below. Unfortunately, besides full-length PARG, these antibodies also recognized several other bands, some of them were reduced or absent in PARG KO cells, others were not. Thus, we could not draw a clear conclusion which functional isoforms or truncated forms were expressed in our PARG KO cells.

      Author response image 3.

      1. FACS data need to be quantified. Scatter plots can be moved to Supplementary while quantification histograms with statistical analysis should be placed in the main figures.

      We agree with this reviewer that quantification of FACS data may provide straightforward results in some of our data. However, it is challenging to quantify positive S phase pADPr signaling in some panels, for example in Fig. 3A and Fig. 4C. In both panels, pADPr signaling was detected throughout the cell cycle and therefore it is difficult to know the percentage of S phase pADPr signaling in these samples. Thus, we decide to keep the scatter plots to demonstrate the dramatic and S phase-specific pADPr signaling in PARG KO cells treated with PARGi. We hope that these data are clear and convincing even without any quantification.

      1. All colony formation assays should be quantified and sensitivity plots should be shown next to example plates.

      As suggested, we will include the sensitivity plot next to Fig. 3D. However, other colony formation assays in this study were performed with a single concentration of inhibitor and therefore we will not provide sensitivity plots for these experiments. Nevertheless, the results of these experiments are straightforward and easy to interpret.

      1. Please indicate how many times each experiment was performed independently and include statistical analysis.

      As suggested, we will add this information in the revised manuscript.

      Reviewer #3 (Public Review):

      Here the authors carried out a CRISPR/sgRNA screen with a DDR gene-targeted mini-library in HEK293A cells looking for genes whose loss increased sensitivity to treatment with the PARG inhibitor, PDD00017273 (PARGi). Surprisingly they found that PARG itself, which encodes the cellular poly(ADP-ribose) glycohydrolase (dePARylation) enzyme, was a major hit. Targeted PARG KO in 293A and HeLa cells also caused high sensitivity to PARGi. When PARG KO cells were reconstituted with catalytically-dead PARG, MMS treatment caused an increase in PARylation, not observed when cells were reconstituted with WT PARG or when the PARG KO was combined with PARP1/2 DKO, suggesting that loss of PARG leads to a strong PARP1/2-dependent increase in protein PARylation. The decrease in intracellular NADH+, the substrate for PARP-driven PARylation, observed in PARG KO cells was reversed by treatment with NMN or NAM, and this treatment partially rescued the PARG KO cell lethality. However, since NAD+ depletion with the FK868 nicotinamide phosphoribosyltransferase (NAMPT) inhibitor did not induce a similar lethality the authors concluded that NAD+ depletion/reduction was only partially responsible for the PARGi toxicity. Interestingly, PARylation was also observed in untreated PARG KO cells, specifically in S phase, without a significant rise in γH2AX signals. Using cells synchronized at G1/S by double thymidine blockade and release, they showed that entry into S phase was necessary for PARGi to induce PARylation in PARG KO cells. They found an increased association of PARP1 with a chromatin fraction in PARG KO cells independent of PARGi treatment, and suggested that PARP1 trapping on chromatin might account in part for the increased PARGi sensitivity. They also showed that prolonged PARGi treatment of PARG KO cells caused S phase accumulation of pADPr eventually leading to DNA damage, as evidenced by increased anti-γH2AX antibody signals and alkaline comet assays. Based on the use of emetine, they deduced that this response could be caused by unligated Okazaki fragments. Next, they carried out FACS-based CRISPR screens to identify genes that might be involved in cell lethality in WT and PARG KO cells, finding that loss of base excision repair (BER) and DNA repair genes led to increased PARylation and PARGi sensitivity, whereas loss of PARP1 had the opposite effects. They also found that BER pathway disruption exhibited synthetic lethality with PARGi treatment in both PARG KO cells and WT cells, and that loss of genes involved in Okazaki fragment ligation induced S phase pADPr signaling. In a panel of human ovarian cancer cell lines, PARGi sensitivity was found to correlate with low levels of PARG mRNA, and they showed that the PARGi sensitivity of cells could be reduced by PARPi treatment. Finally, they addressed the conundrum of why PARG KO cells should be sensitive to a specific PARG inhibitor if there is no PARG to inhibit and found that the PARG KO cells had significant residual PARG activity when measured in a lysate activity assay, which could be inhibited by PARGi, although the inhabited PARG activity levels remained higher than those of PARG cKO cells (see below). This led them to generate new, more complete PARG KO cells they called complete/conditional KO (cKO), whose survival required the inclusion of the olaparib PARPi in the growth medium. These PARG cKO cells exhibited extremely low levels of PARG activity in vitro, consistent with a true PARG KO phenotype.

      We thank this reviewer for his/her constructive comments and suggestions.

      The finding that human ovarian cancer cells with low levels of PARG are more sensitive to inhibition with a small molecule PARG inhibitor, presumably due to the accumulation of high levels of protein PARylation (pADPr) that are toxic to cells is quite interesting, and this could be useful in the future as a diagnostic marker for preselection of ovarian cancer patients for treatment with a PARG inhibitor drug. The finding that loss of base excision repair (BER) and DNA repair genes led to increased PARylation and PARGi sensitivity is in keeping with the conclusion that PARG activity is essential for cell fitness, because it prevents excessive protein PARylation. The observation that increased PARylation can be detected in an unperturbed S phase in PARG KO cells is also of interest. However, the functional importance of protein PARylation at the replication fork in the normal cell cycle was not fully investigated, and none of the key PARylation targets for PARG required for S phase progression were identified. Overall, there are some interesting findings in the paper, but their impact is significantly lessened by the confusing way in which the paper has been organized and written, and this needs to be rectified.

      We believe that PARP1 is one of the major relevant PARG substrates in S phase cells. Previous studies reported that PARP1 recognizes unligated Okazaki fragments and induces S phase PARylation, which recruits single-strand break repair proteins such as XRCC1 and LIG3 that acts as a backup pathway for Okazaki fragment maturation (Hanzlikova et al., 2018; Kumamoto et al., 2021). In this study, we revealed that accumulation of PARP1/2-dependent S phase PARylation eventually led to cell death (Fig. 2). Furthermore, we found that chromatin-bound PARP1 as well as PARylated PARP1 increased in PARG KO cells (Fig. S4A and Fig. 4A), suggesting that PARP1 is one of the key substrates of PARG in S phase cells. Of course, PARG may have additional substrates besides PARP1 which are required for its roles in S phase progression, as PARG is known to be recruited to DNA damage sites through pADPr- and PCNA-dependent mechanisms (Mortusewicz et al., 2011). Precisely how PARG regulates S phase progression warrants further investigation.

      As suggested, we will revise our manuscript accordingly and provide additional explanation/statement upfront to avoid any misunderstandings.  

      Reviewer #1 (Recommendations For The Authors):

      1. Figure 1c. Why does the viability of PARG KO cells improve at higher doses of PARGi? How do the authors explain this paradox?

      This phenomenon was observed in 293A PARG KO cells and happened in CellTiter-Glo assay, especially with the top three PARGi concentrations (100 µM, 33.33 µM and 11.11 µM). This may due to the low solubility of this PARGi in the medium, since we sometimes observed precipitation at high concentrations when PARGi stock was diluted in medium.

      1. Figure 2d. The authors show that PARGi reduced NAD+ level by 20%. This reduction in NAD+ probably does not explain the cell death phenotype observed by parthanatos cell death. What pathway is activated by PARGi to induce cell death?

      Since PARG KO cells treated with PARGi led to uncontrolled pADPr accumulation, it is possible that some of these cells may die due to parthanotos. However, we did not observe a dramatic reduction in NAD+ level. A previous study showed that Parg(-/-) mouse ES cells predominantly underwent caspase-dependent apoptosis (Shirai et al., 2013). Indeed, PARP1 cleavage was detected in PARG KO cells with prolonged PARGi treatment, indicating that at least some of these cells die due to apoptosis (Fig. 2A). Cytotoxicity of PARGi in PARG KO cells may due to several mechanisms including apoptosis, parthanatos and NAD+ reduction.

      1. The authors refer to FK866 in the text without explaining what this agent is. FK866 is a noncompetitive inhibitor of nicotinamide phosphoribosyltransferase (NAPRT), a key enzyme in the regulation of NAD+ biosynthesis from the natural precursor nicotinamide. The authors should explain experimental tools in the text as they use them for clarity to the reader.

      Thanks for the suggestion! We will include additional citations and discuss how FK866 works in our revised manuscript.

      1. In addition to these issues, there are significant formatting and textual problems, such that there are multiple gaps in the body of the text that make coherent reading of the manuscript impossible. Examples are: Page 3 line 10. Page 6 line 5 and line 15, Page 7 line 2, 3, and line 8. Page 8, line 1, and line 3 from bottom. Page 9 line 1, line 7 from bottom and line 9 from the bottom, Page 18 of the results in several places, etc. etc. etc. These formatting errors convey the impression that the submitting authors did not adequately review the manuscript for technical problems prior to submission. The authors need to correct these errors.

      Sorry, we will edit the text and remove these gaps as suggested.

      Reviewer #3 (Recommendations For The Authors):

      1. The major problem with this paper is conceptual - namely, how could PARG knockout cells be hypersensitive to a selective PARG small molecular inhibitor. The evidence in Figure 7 that there is measurable residual PARG activity in the so-called PARG KO 293A and HeLa cells provides a partial explanation for why PARG inhibitor treatment might be deleterious to the PARG KO cells, i.e., because PARGi blocks this residual PARG activity. However, although the authors characterized the PARG alleles in the 293A PARG KO cells by sequencing, the molecular origin of the significant level of residual PARG activity remains unclear (see points 7-9).

      Yes, in our study we showed that PARGi treatment inhibited the residual PARG activity in PARG KO cells, which mimics complete loss of PARG as PARG is an essential gene. These data agree with a previous study using Parg(-/-) mouse cells (Koh et al., 2004).We attempted to define the molecular origin of the residual PARG activity, unfortunately this was challenging (please see below for additional discussions). Nevertheless, we showed that residual PARG activity could be detected in PARG KO cells and more importantly cells with reduced PARG expression or activity are sensitive to PARGi. These results indicate that PARG expression and/or activity may be used as a biomarker for PARGi-based therapy.

      1. Although the most obvious explanation for the PARGi sensitivity data presented in Figures 1-4 is that the PARG KO cells have residual PARG activity, the authors wait until the discussion on page 26 to raise the possibility that the PARG KO cells might have residual PARG activity that renders them sensitive to PARGi. It would be more logical to move the PARG activity data in Figure 7 earlier in the paper as a supplementary figure, so that the reader is not left wondering how a PARG KO cell remains sensitive to a PARG inhibitor. For this reason, it is recommended that the whole paper be reorganized and rewritten to provide a more logical flow that allows the reader to understand what was done, and why it is hard to generate complete PARG KO cells because the accumulation of pADPR adducts is toxic to the cell.

      Thank you for your suggestion! However, we would like to keep the complete PARG KO result at the end of the Results section, since this was how this project evolved. Initially, we did not know that PARG is an essential gene. Thus, we speculated that PARGi may target not only PARG but also a second target, which only becomes essential in the absence of PARG. To test this possibility, we performed FACS-based and cell survival-based whole-genome CRISPR screens (Fig. 5). However, this putative second target was not revealed by our CRISPR screening data (Fig. 5). We then tested the possibility that these cells may have residual PARG expression or activity and only cells with very low PARG expression are sensitive to PARGi, which turned out to be the case for ovarian cancer cells. Equipped with PARP inhibitor and sgRNAs targeting the catalytic domain of PARG, we finally generated cells with complete loss of PARG activity to prove that PARG is an essential gene (Fig. 7). This series of experiments underscore the challenge of validating any KO cell lines, i.e. the identification of frame-shift mutations, absence of full-length proteins, and phenotypic changes may still not be sufficient to validate KO clones. This is an important lesson we learned and we would like to share it with the scientific community.

      To avoid further misunderstanding, we will include additional statements/comments at the end of “PARG depletion leads to drastic sensitivity to PARGi” section and at the beginning of “CRISPR screens reveal genes responsible for regulating pADPr signaling and/or cell lethality in WT and PARG KO cells”. Hope that our revised manuscript will make it clear.

      1. Exactly how PARG activity would be coordinated with PARP1/2 activity during normal S phase to ensure that PARylation can serve its required function, whatever that may be, and is then removed by PARG is unclear - how would this be orchestrated at the level of a replication fork?

      PARG is known to be recruited to sites of DNA damage through pADPr- and PCNA-dependent mechanisms (Mortusewicz et al., 2011). Our current hypothesis is that PARP1 is one of the major PARG substrates in S phase cells. Previous studies reported that PARP1 recognizes unligated Okazaki fragments and induces S phase PARylation, which recruits single-strand break repair proteins such as XRCC1 and LIG3 that acts as a backup pathway for Okazaki fragment maturation (Hanzlikova et al., 2018; Kumamoto et al., 2021). In this study, we revealed that accumulation of PARP1/2-dependent S phase PARylation eventually led to cell death (Fig. 2). Furthermore, we found that chromatin-bound PARP1 as well as PARylated PARP1 increased in PARG KO cells (Fig. S4A and Fig. 4A), suggesting that PARP1 is one of the key substrates of PARG in S phase cells. Of course, PARG may have additional substrates besides PARP1 which are required for its roles in S phase progression. Precisely how PARG regulates S phase progression warrants further investigation.

      1. Figure 2B: What gRNAs were used to generate the 293A and HeLa PARG knock clones, i.e., where are they located in the PARG gene? If they are not in the catalytic domain it might be possible to generate PARG proteins with N-terminal deletions that are still active (see points 8-10 below).

      The two sgRNAs (#1 and #2) used to generate initial PARG KO cells in this manuscript target all three catalytically active isoforms (isoforms 1, 2 and 3), and sgRNA#2 used in HeLa cells also targets isoforms 4 and 5, but these isoforms are considered catalytically inactive according to the Uniprot database. As suggested, we will modify Fig. S1D and the figure legends to show the localization of gRNAs.

      We agree with this reviewer that truncated but active forms of PARG exist in these KO cells. We attempted to identify these trunated forms of PARG by using two independent antibodies that recognize the C-terminus of PARG for WB as shown below. Unfortunately, besides full-length PARG, these antibodies also recognized several other bands, some of them were reduced or absent in PARG KO cells, others were not. Thus, we could not draw a clear conclusion which functional isoform/truncated form was expressed in our PARG KO cells. Nevertheless, we directly measured PARG activity in PARG KO cells (Fig. S9) and showed that we were still able to detect residual PARG activity in these PARG KO cells. Based on these results, we stated that the residual PARG activity was detected in our KO cells, but we were not able to specify the truncated variants of PARG in these cells.

      Author response image 4.

      1. Figure 3B/page 19: The authors state that "emetine, which diminishes Okazaki fragments, greatly inhibited S phase pADPr signaling in PARG KO cells", and from this deduced that Okazaki fragments on the lagging strand activate PARylation. However, emetine is not a specific lagging strand synthesis inhibitor, as implied here, but rather a protein synthesis inhibitor, which inhibits Okazaki fragment formation indirectly (see PMID: 36260751). The authors need to rewrite this section to explain how emetine works in this context.

      As suggested, we will cite this reference and discuss how emetine inhibits Okazaki fragment maturation in our revised manuscript. Additionally, we used three different POLA1 inhibitors to diminish Okazaki fragments. As shown in Fig. S3B, all three POLA1 inhibitors significantly abolished S-phase pADPr induced by PARGi in PARG KO cells. Furthermore, POLA1 inhibitors, adarotene and CD437, were able to rescue cell lethality caused by PARGi in PARG KO cells (Fig. 3E).

      1. Figure 7: It is not clear why these cells are called PARG complete/conditional KO cells (cKO). Generally, "conditional knockout" refers to a cell or animal in which a gene can be conditionally knocked out by inducible expression of Cre. Here, it appears that "conditional" refers to the fact that the PARG KO cells only grow in the presence of olaparib - is this the case?

      Yes, we used the name to separate these cells from our initial PARG KO cells. Moreover, we were only able to obtain and maintain these PARG cKO clones with complete loss of PARG activity in the presence of PARP inhibitor. Therefore, we called them PARG complete/conditional KO (cKO) cells.

      1. Figure 7B and D: The level of full-length PARG protein was much lower in the 293A and HeLa cKO cells compared to WT cells consistent with cKO cells representing a more complete PARG KO. The level of PARG protein in the 293A PARG cKO cells was apparently also lower than in the original PARG KO cells, but the KO and cKO samples should be run side by side to demonstrate this conclusively, and the bands need to be quantified. In panel B, it is not clear from the legend what cKO_3 and cKO_4 are, but presumably, they are different clones, and this should be stated.

      Full-length PARG was not detected in either PARG KO or PARG cKO cells by WB. The apparent lower level of endogenous PARG in Fig. 7D was due to the fact that reconstituted cells had high exogenous PARG expression and therefore we had to reduce exposure time for WB.

      As for cKO_3 and cKO_4 in Fig.7, they are different clones created by different sgRNAs. As suggested, we will include additional information in figure legends to clearly state which sgRNA was used to generate the respective KO and cKO clones.

      1. Figure S8: There is not enough information here or in the text to allow the reader to interpret these PARG allele sequences obtained from the PARG KO cells. From the Methods section, it appears that the PARG KO cells were clonal, with sequence data from one clone of each of the 293A and HeLa cell PARG KO cells being shown. If this is right, then in both cell types one out of four PARG alleles is wild type, and therefore one would expect the PARG protein signal to be ~25% of that in WT cells. However, based on the 293A PARG KO cells PARG immunoblot in Figure 2B the PARG protein signal is clearly much lower than 25% (these bands need to be quantified), and this discrepancy needs to be explained. What is the level of PARG protein in the PARG KO HeLa cells? If different PARG KO cell clones are analyzed by sequencing, do they all have an apparently intact PARG allele? Four different gRNA target sites in the PARG gene are shown in panel A in Figure 7, but the description in the text regarding how the four gRNAs were used is totally inadequate - were all four used simultaneously or only the two in the catalytic domain? Were pairs of gRNAs used in an attempt to generate a large intervening deletion - some Southern blots of the PARG gene region in the PARG cKO cells are needed to figure this out. The gRNAs are given numbers in Figure 7A, but it is unclear from the sequences shown in Figures S8 and S9 which gRNA sites are shown. All of this has to be clarified, so that the reader can understand the nature of the KO/cKO cells knockout alleles, and what PARG-related products, if any, they can express.

      Yes, all KO and cKO cells used in this study are single clones. As suggested, we will revise figure legends in Fig.7, S8 and S9 to include detailed information. To avoid any further misunderstanding, we will label the allele “WT” to “WT (reference)” in Fig. S8 and S9. We did not detect intact/wild-type PARG sequence in any single KO/cKO clone by DNA sequencing. Sequencing of single KO/cKO clones was performed by using TOP TA Cloning kit. Briefly, genomic DNA was extracted from each single KO/cKO clone. Approximately 300bp surrounding the sgRNA targeting sequence was amplified by PCR. The PCR product was cloned into the vector and approximately 10-15 bacteria clones were extracted and sent for sequencing. If any intact/wild-type PARG sequence was detected in these 10-15 bacteria clones, this KO/cKO clone was considered heterozygous clone and discarded.

      HEK293A and HeLa cells are not diploid cells and have complex karyotypes. PARG gene is located on chromosome 10. Karyotyping by M-FISH shows that HeLa cells have 3 copies of chromosome 10 (Landry et al., 2013). HEK293 cells predominantly have 3 copies of chromosome 10 and sometimes 4 copies can be detected by G-banding (Binz et al., 2019). Therefore, it is anticipated that 1 to 4 mutant alleles would be detected in each KO/cKO clone by sequencing.

      Only one sgRNA was transfected into cells for the selection of single clones. We did not use paired or multiple sgRNAs in any of these experiments. As shown in Fig. S1D and Fig. 7A, HEK293A derived and HeLa derived PARG KO single clones were generated with the use of different sgRNAs. In addition, the two PARG cKO single clones from HEK293A and HeLa cells were also generated by the use of two different sgRNAs, as shown in Fig. 7A-B. We will include all the information above in the revised manuscript, i.e. in Methods section as well as in figure legends.

      1. Figure S9A: The sequences of the 293A PARG alleles in the cKO cells suggest that these cells also have one intact PARG allele, which again does not fit with the very low level of intact PARG protein shown in Figure 7B. How do the authors explain this?

      Sorry, this is a misunderstanding. The allele “WT” in Fig. S8 and S9 is the reference sequence. We will change it to “Reference sequence” to avoid further confusion. As mentioned above, we did not detect any intact/wild-type PARG sequence in any of our single KO/cKO clones by sequencing.

      1. Figure S9B: These critical lysate activity data show that the PARG KO cells have ~50% of the PARG activity detected in WT cells. However, this is not consistent with the PARG protein level detected in PARG immunoblot in Figure 1B, which appears to be less than 5% of the PARG protein level in WT cells (with one intact PARG allele in these cells one would theoretically expect~ 25%, although this depends on whether all four alleles are expressed equally). One possibility is that active PARG fragments are generated from one or more of the PARG KO alleles in the PARG KO cells. Targeted sequencing of PARG mRNAs might reveal whether there are shorter RNAs that could encode a protein containing the C-terminal catalytic domain (aa 570-910). In addition, the authors need to show the entire immunoblot to determine if there are smaller proteins recognized by the anti-PARG antibodies that might represent shorter PARG gene products (for this we need to know where the epitope against which the PARG antibodies are directed are located within the PARG protein - ideally they authors need to use an antibody directed against an epitope near the C-terminus).

      As stated in the Methods section, we incubated cell lysates with substrates overnight to evaluate the maximum level of pADPr hydrolysis, i.e. PARG activity, we were able to detect in this assay. It is very likely that the PARG activity in PARG KO cells was much lower than 50%, due to saturation of signals for lysates isolated from wild-type cells. Thus, the data presented in our manuscript probably underestimate the reduction of PARG activity in PARG KO cells. Nevertheless, these data indicate that residual PARG activity was detected in PARG KO cells, however this activity was absent in PARG cKO cells.

      As aforementioned, we used two independent antibodies that recognize the C-terminus of PARG for WB. Unfortunately, we could not draw a clear conclusion which functional isoforms or truncated proteins were expressed in our PARG KO cells. The dePARylation assay used here may be the best way to test the residual PARG activity in our KO and cKO cells.

      1. Figure 7D: In this experiment, the level of re-expressed WT PARG protein was much higher than that of the endogenous PARG protein (quantification is needed) - how might this affect the interpretation of these experiments (N.B., WT and catalytically-dead PARG were also re-expressed for the experiments shown in Figure 1, but there are no PARG immunoblots to demonstrate how much the exogenous proteins were overexpressed, or activity measurements). If regulated pADPr signaling is important for a normal S phase, then one would have thought that expressing a very high level of active PARG would create problems.

      In Fig. S1E, we blotted endogenous PARG level in control cells and exogenous PARG level in reconstituted cells. The reviewer is correct that exogenous PARG expression was much higher (~10-fold) than that of endogenous PARG in WT control cells. Nevertheless, we did not observe any obvious phenotypes in PARG KO/cKO cells reconstituted with high level of exogeneous PARG, which may reflect excess PARG level/activity in wild-type control cells.

      References:

      Binz, R. L., Tian, E., Sadhukhan, R., Zhou, D., Hauer-Jensen, M., and Pathak, R. (2019). Identification of novel breakpoints for locus- and region-specific translocations in 293 cells by molecular cytogenetics before and after irradiation. Sci Rep 9, 10554.

      Hanzlikova, H., Kalasova, I., Demin, A. A., Pennicott, L. E., Cihlarova, Z., and Caldecott, K. W. (2018). The Importance of Poly(ADP-Ribose) Polymerase as a Sensor of Unligated Okazaki Fragments during DNA Replication. Mol Cell 71, 319-331 e313.

      Koh, D. W., Lawler, A. M., Poitras, M. F., Sasaki, M., Wattler, S., Nehls, M. C., Stoger, T., Poirier, G. G., Dawson, V. L., and Dawson, T. M. (2004). Failure to degrade poly(ADP-ribose) causes increased sensitivity to cytotoxicity and early embryonic lethality. Proc Natl Acad Sci U S A 101, 17699-17704.

      Kumamoto, S., Nishiyama, A., Chiba, Y., Miyashita, R., Konishi, C., Azuma, Y., and Nakanishi, M. (2021). HPF1-dependent PARP activation promotes LIG3-XRCC1-mediated backup pathway of Okazaki fragment ligation. Nucleic Acids Res 49, 5003-5016.

      Landry, J. J., Pyl, P. T., Rausch, T., Zichner, T., Tekkedil, M. M., Stutz, A. M., Jauch, A., Aiyar, R. S., Pau, G., Delhomme, N., et al. (2013). The genomic and transcriptomic landscape of a HeLa cell line. G3 (Bethesda) 3, 1213-1224.

      Mortusewicz, O., Fouquerel, E., Ame, J. C., Leonhardt, H., and Schreiber, V. (2011). PARG is recruited to DNA damage sites through poly(ADP-ribose)- and PCNA-dependent mechanisms. Nucleic Acids Res 39, 5045-5056.

      Shirai, H., Fujimori, H., Gunji, A., Maeda, D., Hirai, T., Poetsch, A. R., Harada, H., Yoshida, T., Sasai, K., Okayasu, R., and Masutani, M. (2013). Parg deficiency confers radio-sensitization through enhanced cell death in mouse ES cells exposed to various forms of ionizing radiation. Biochem Biophys Res Commun 435, 100-106.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      The authors were trying to investigate whether viral IBs are involved in antagonizing IFN-I production during EBOV trVLPs infection. They found that IRF3 is hijacked and sequestered into EBOV IBs after viral infection, thereby leading to the spatial isolation of IRF3 with TBK1 and IKKε. In such a progress, the activity of IRF3 is suppressed and downstream IFN-I induction is inhibited. The authors designed many experiments, such as the PLA that examined the colocalization, to support their conclusions. However, necessary negative controls were missed in several assays. More key index is needed to be examined in several assays.

      The paper is well organized and most data in this paper could support the conclusions, while there are several issues that need to be further solved.

      1. In Figure 2-4, authors should examine the expression of downstream IFNs as well as the phosphorylation and nuclear localization of IRF3 to further prove the suppression of IRF3 activity by infecting with trVLPs.

      Response: The inhibitory effect of trVLPs infection on the phosphorylation of IRF3 S396 and SeV-induced IRF3 nuclear localization was determined by immunoprecipitation (Figure 3D) and immunofluorescence (Figure 4A and 4B), respectively. In addition, we demonstrated that IFN-β transcription was inhibited more potently by EBOV viral inclusion bodies compared with VP35 alone (Figure 7B and 7C).

      Moreover, EBOV viral inclusion bodies were demonstrated to inhibit the transcription of IFN downstream genes (e.g., CXCL10, ISG15 and ISG56) more potently than VP35 alone (new Figure 7D-F).

      1. In Figure 5, to better prove the conclusion that EBOV NP and VP35 play an important role in sequestering IRF3 in IBS, authors should add the "NP+VP35+VP30" and "NP+VP35+VP24" groups to reperform the assay.

      Response: According to the reviewer’s suggestion, VP24 or VP30 was added to the “VP35+NP” group, and the results showed that the “NP+VP35+VP24” and “NP+VP35+VP30” groups exhibited little, if any, effect on the distribution of IRF3 compared with the “NP+VP35” group (new Figure 5 - figure supplement 2A-B).

      1. In Figure 6f, the expression of STING should be examined by immunostaining to show the knockdown efficiency in trVLPs-infected cells.

      Response: As suggested by the reviewer, immunostaining was performed to visually detect the effect of STING knockdown on the IRF3 distribution during trVLPs infection (new Figure 6F).

      Reviewer #2 (Public Review):

      The manuscript by Zhu et al explored molecular mechanisms by which Ebola virus (EBOV) evades host innate immune response. EBOV has a number of means to shut down the type I interferon induction (by viral VP35 protein) and block type I interferon action (by viral VP24 protein). This study reported a new mechanism that inclusion body (IB) used for viral replication sequesters IRF3, a key transcription factor involved in the interferon signaling, resulting in blockade of downstream type I interferon gene transcription. This finding is potentially interesting and may provide a new insight into EBOV's evasion of innate immunity. However, there are some flaws in the experimentations and analyses that need to be addressed.

      1. Most of experiments were performed by transfection of trVLP plasmids, which is very different from virus infection. The conclusions should be examined and verified in the context of virus infection.

      Response: As suggested by the reviewer, the effects of IRF3 depletion on live Ebola virus replication were examined as described in the revised manuscript. Consistent with the results obtained after trVLPs infection, IRF3 depletion exerted little, if any, effect on viral replication (new Figure 7H), which supports the notion that, upon EBOV infection and the formation of inclusion bodies, IRF3 has little, if any, transcription activation activity after sequestration by inclusion bodies.

      1. Fig 1 - VP35 displayed a classical IB staining only in Panel A, while much less so in Panel C and not in panel B. It seemed that the VP35 staining images were chosen in a way towards the authors' favor. The statistical analysis of co-localization of VP35 and IRF3, TBK1 or IKKe should be performed to draw the conclusion. Another concern is that IKKe is normally lowly expressed under a rest condition and becomes induced only when the interferon signaling is activated. It seemed to be expressed at a high level even when the interferon signaling is blocked in Panel C. The authors should comment on this discrepancy.

      Response: Ebola virus inclusion bodies show variations in both shape and size. According to the reviewer’s suggestion, the colocalization of TBK1 or IKKε and VP35 is shown in new figures (new Figure 1C and 1E), and quantitatively analyzed by the fluorescence intensity using ImageJ software (new Figure 1B, 1D and 1F).

      1. Fig 2 - Was this experiment done by transfection or infection? The description of result is not consistent with the figure legend. The labeling was also not consistent between panel A and B. I would suggest performing Western blot to analyze the expression level of IRF3.

      Response: We apologize for the incorrect description of the data. Ebola virus trVLPs were initially produced based on transfection but also involved the viral infection process. The use of “transfection” in the figure and figure legends has been changed to “infection” in the revised manuscript. As suggested by the reviewer, Western blotting was performed to analyze the IRF3 expression levels at different time points after trVLPs infection (new Figure 2D).

      1. Fig 3 and 4 - As VP35 is well known for its highly efficient blockade of type I interferon activation, how would the authors differentiate the effect of VP35 alone from the sequestration of IRF3 in IBs in these experiments?

      Response: Previous studies have found that VP35, rather than NP, inhibits the expression of interferon, and the “VP35+NP” treatment, which induces IRF3 sequestration, showed inhibited IFN-β luciferase activity much more potently than VP35 expression alone (Figure 7B).

      1. Fig 3 - PolyIC can activate both RLR and TLR signaling pathways. Can the author comment on which pathway it activates in this experiment?

      Response: In this study, the effect of poly(I:C) was consistent with the results observed with SeV, which indicated that poly(I:C) may mainly activate the RLR signaling pathway. A discussion was added to the revised manuscript.

      1. The authors demonstrated that VP35 interacts with STING and recruit the latter to IBs. How would this affect the function of STING given that STING plays essential roles in cGAS/cGAMP pathway?

      Response: This study unexpectedly showed that VP35 can recruit IRF3 into viral inclusion bodies through STING, but whether it regulates the cGAS-STING pathway remains to be further investigated. Related discussion was added to the revised manuscript.

      1. It is difficult to follow the logics of Fig 7. The expression level of each viral protein should be determined. Ideally, a mutation in VP35 that disrupts its ability to antagonize the interferon signaling but still allows for the IB formation can be used to assess the relative contribution of IB sequestering IRF3.

      Response: As suggested by the reviewer, a series of VP35 mutants were constructed, but we failed to obtain a VP35 mutant that contains a mutation that disrupts the ability of the protein to antagonize interferon signaling but still allows IB formation. Instead, coexpression of “NP+VP35+VP30+L”, which induces IBs formation, inhibited IFN-I more potently than the expression of VP35 alone (Figure 7B). IRF3 knockout inhibited poly(I:C)-induced IFN-I production but had little, if any, effect on poly(I:C)-induced IFN-I production in the “NP+VP35+VP30+L” group (Figure 7C). IRF3 knockout in the cells did not significantly affect viral replication, but overexpression of activated IRF3 (IRF3/5D), instead of wild-type IRF3, inhibited viral replication (new Figure 7G-H). These results collectively suggested that almost all IRF3 in cells was hijacked and sequestered into IBs in the Ebola virus-infected cells.

    1. Author Response

      The following is the authors’ response to the original reviews.

      RESPONSE TO REVIEWERS:

      Reviewer #1 (Recommendations For The Authors):

      I think the manuscript of this excellent work can be improved, especially in writing (including a suggestion in the title) and presentation (Figure 6); Also some additional specific experiments and analyses could be important, as I suggest below,

      1. For the title, perhaps a shorter "The acetylase activity of Cdu1 protects Chlamydia effectors from degradation" would be better to convey the major significance of this work. Of course, Cdu1 must regulate the function of InaC, IpaM and CTL0480. But perhaps it is speculative to think that egress is the major function of these effectors as their activity on other host cell processes during the cycle could eventually impact the extrusion process indirectly.

      Although we concur with the insights provided by reviewer 1, we wish to underscore that a significant breakthrough presented in our study revolves around the regulation of Chlamydia exit by Cdu1. Consequently, we believe that this noteworthy discovery should be incorporated into the title.

      1. For the writing:

      a. The description of ubiquitination and DUBs could be synthesized to the essential, so that space is gained to explain things that then come a bit out of the blue in the results (what are Incs, the specific functions of InaC, IpaM, and CTL0480 - at least place the citations in lines 110-112 next to the corresponding Incs -, Cdu2, etc - see specifics below)

      In lines 182-196 of the revised manuscript, we have incorporated additional contextual information concerning the roles of Incs, along with descriptions of the functions of InaC, IpaM, and CTL0480.

      b. In the Results, there is a lot of Chlamydia- and maybe lab-specific jargon that could be significantly simplified for the more general reader. I detail some suggestions below in the specific issues.

      We have improved the readability of our manuscript for a general audience by removing Chlamydia-specific terminology from the entire text and figures.

      1. For the figures:

      a. Figure 6, this figure could be reorganized: why two graphs in panel D? If detailed quantifications were done, perhaps in panel B just zoom on the examples of Golgi distributed/compacted? And again the labelling Rif-R L2, L2 pBOMB, M407 p2TK2, etc, simplify?

      Figure 6 has undergone restructuring. The representative images have been relocated to Supplemental Figures 5 and 6, while we have introduced sample images demonstrating F-actin assembly and Golgi repositioning. Furthermore, the quantification of Golgi dispersal has been streamlined into a single panel. Additionally, we have simplified the labeling of the strains utilized in the study.

      b. Figure 3, in the labelling, WT, inaC null, cdu1::GII wouldn't be enough? Leave the details to the legend and/or M&M.

      We have simplified the labeling of Ct strains in Figure 3.

      c. Figure 3C, these arrowheads should not be so symmetric (small arrows instead?) and it is unclear that the indicated cells do not show CTL0480.

      We have substituted arrowheads with small arrow symbols and have also revised the Figure to incorporate a new representative image that prominently illustrates the absence of CTL0480 at the inclusion membrane of some cdu1::GII inclusions within infected Hela cells at 36 hpi.

      1. Experiments:

      a. In Figure 7, at least extrusion should be analysed also with the Cdu1-deficient strain expressing Ac-deficient Cdu1 and the inaC and ipaM phenotypes should be complemented.

      We have conducted additional experiments to analyze extrusion production in Hela cells infected with a cdu1 null strain expressing the acetylase-deficient Cdu1 variant. We have incorporated the relevant data into revised Figure 7, where the impact of this strain on extrusion production and size is presented. Additionally, we updated Supplemental Figure 8 to include data illustrating the number of inclusions produced by this strain. We have also addressed these new results in the revised manuscript (lines 424-432). We are currently complementing inaC and ipaM mutant strains with various InaC and IpaM constructs that will be used in a follow up manuscript.

      b. Does overexpression of InaC, IpaM, or CTL0480 in a cdu1-null background prevent the degradation of these Incs and suppress the defects of cells infected by the cdu1 mutant (F-actin, Golgi, MYPT1)? This would show that the multiple phenotypes displayed by cells infected by the cdu1 null mutant are indeed related to the decreased levels of InaC, IpaM and CTL0480.

      We opted not to include data from the overexpression of these effectors in a cdu1-null background due to an unexpected decrease in shuttle plasmid load during overexpression. This development prompted concerns regarding the potential detrimental effects of overexpressing these effectors in the absence of Cdu1. Data supporting this observation are not included in this report.

      c. Figures 3A and 3B should be quantified (it says it is from 3 independent experiments). It would be important to have a relative perspective of how much Cdu1 protects these Incs over time (for InaC, it would also be nice to have the 36 and 48 hpi time-point). This is in contrast with the microscopy data in Figure 5, which illustrates very clear effects, and the quantification is a bit redundant.

      In Figure 3, we have incorporated a new Western Blot image showing endogenous InaC protein levels in Hela cells following infection with both WT Ct and cdu1::GII strains at 24, 36, and 48 hours post-infection (hpi). Additionally, we have quantified the Western Blot signals for both InaC and IpaM, and these results are also presented in Figure 3. The quantification of MYPT1 recruitment has been relocated to a supplementary figure. We have also included details regarding the methodology employed for the quantification of Western Blot signals in the Materials and Methods section.

      d. What is the subcellular localization of InaC, IpaM, CTL0480 and Cdu1 when analysed by transfection? Does Cdu1 bind to of InaC, IpaM, CTL0480 in infected cells? If this was attempted and unsuccessful it should be mentioned.

      In transfected HEK cells, InaC, IpaM, CTL0480, and Cdu1 all exhibit cytoplasmic localization with a diffuse pattern (data not shown). Despite our efforts, we encountered challenges in observing co-immunoprecipitation of Cdu1 with all three Incs in infected Hela cells at 24 hpi, We have duly acknowledged this limitation in our findings, as reflected in line 221-226 of the revised manuscript.

      1. Specific issues:

      2. Line 87, "propagule" is really needed to describe the EB?

      The EB is the infectious form of Chlamydia species that spreads within the host to renew its life cycle; thus, "propagule" is a suitable term to characterize the EB.

      • Exocytosis implies fusion with the plasma membrane so "inclusion is exocytosed" (line 91) is not entirely correct.

      In line 91 of the revised manuscript, we referred to extrusion as the exit of an intact inclusion from the host cell and omitted the use of "exocytosed" to describe this process.

      • Line 126, "a Ct L2 (LGV L2 434 Bu) background". Maybe "a Ct cdu1-null strain" would be enough and leave the detail for Materials and Methods.

      In line 128 of the revised manuscript, we omitted "(LGV L2 434 Bu)" to avoid using jargon that may be unfamiliar to readers not well-versed in Chlamydia terminology.

      • Line 138, in the previous Pruneda et al, Nature Microbiol 2018, the title of figure 4 is "ChlaDUB deubiquitinase activity is required for C. trachomatis Golgi fragmentation", so why raise this hypothesis? And why in the end is the acetylation activity of Cdu1 that promotes Golgi distribution? I think this related with infection vs transfection experiments but it deserved to be briefly explained/discussed.

      In lines 140-142 of the revised manuscript, we provide clarification that the DUB activity of Cdu1 is required for Golgi fragmentation in transfected cells. This observation supports our initial hypothesis suggesting that the DUB activity of Cdu1 is also required for Golgi distribution in infected cells, and our rationale for identifying targets of its DUB activity.

      • Lines 147-155, what is the relevance of this non-ubiquitinated proteins that come along? Couldn't this be synthesized?

      We have included a discussion on non-ubiquitinated proteins, as they could potentially encompass proteins that interact with those protected by Cdu1. This perspective provides supplementary insights into the roles of proteins targeted for ubiquitination in the absence of Cdu1. The results of this analysis have been succinctly summarized in a single paragraph within the initial manuscript (lines 151-159 of the revised manuscript).

      • Line 170, I think it is the first time that "Type 3 secretion"; perhaps explain in the introduction.

      Type 3 secretion systems have been extensively characterized and discussed in the literature, and we anticipate that the majority of our readers are well-acquainted with this secretory mechanism.

      • Line 184, I think it is the first time "microdomains" are mentioned; perhaps mention in the introduction.

      The definition of "microdomains" has been provided in line 191 of the revised manuscript.

      • Figure 2, as it stands the analysis with truncated Cdu1 proteins adds little to the work. Binding to the Incs seems to be affected when the TM domain is not present, but it still binds. And this is in a transfection context.

      The results depicted in Figure 2, involving truncated Cdu1 proteins, illustrates that Cdu1 is capable of interacting with InaC, IpaM, and CTL0480 even in the absence of infection. This finding serves as evidence suggesting that all three Incs could potentially serve as direct targets for Cdu1 activity. As a result, we prefer to keep these findings in the manuscript.

      • Line 219, "late stages of infection", this is shown (albeit not completely quantified) for IpaM and CTL0480, but not for InaC.

      In the revised Figure 3, we show InaC protein levels at 24, 36, and 48 hours post-infection, and we have incorporated quantitative data for both InaC and IpaM protein levels in the context of Hela cells infected with both WT L2 and cdu1::GII strains. This updated figure serves to emphasize the pivotal role of Cdu1 in safeguarding all three Incs during the late stages of infection.

      • Line 233, "pBOMB-MCI backbone" - is this needed in the Results section? And this refers to Figure 4 while pBOMB appear already in Fig. 3.

      We have removed “pBOMB-MCI backbone” in the revised manuscript.

      • Line 236, should be cdu1 endogenous promoter.

      In line 265 of the revised manuscript we have replaced Cdu1 with cdu1 (italicized).

      • Line 263, WT.

      In line 293 of the revised manuscript we replaced “wild type” with “WT”.

      • Line 277, IncA instead of "the Inc protein IncA".

      In the manuscript we wanted to emphasize that IncA is also an inclusion membrane protein, therefore we have included “the Inc protein IncA” in the revised manuscript to avoid any confusion.

      • How does the data in Figure 5 relates to the relatively few proteins ubiquitinated in cells infected with cdu1-mutant Ct? These Ub-labelling corresponds to ubiquitinated InaC, IpaM and CTL0480?

      The findings presented in Figure 5 demonstrate that the acetylase activity of Cdu1 plays a crucial role in enabling Ct to block all ubiquitination events taking place on or in proximity to the periphery of the inclusion membrane. This encompasses Cdu1 targets that might not have been identified through our proteomic analysis.

      • Lines 299-301, "M923 inclusions", there is certainly a clear way to write this.

      In lines 326-327 and 332-332 of the revised manuscript, we have clarified that “M923” is an incA null strain to provide clarification.

      • Line 309, is "peripheries" correct?

      We have changed “peripheries” with “periphery” in the revised manuscript (line 360).

      • Line 312, "Rif-R L2" and "M407" - can this be simplified?

      In the revised manuscript, "Rif-R L2" was substituted with "WT L2" in lines 363 and 382, while "M407" was exchanged with "an inaC null strain" in lines 311, 367, and 368. These same replacements were applied to the Figures and their corresponding legends for consistency.

      • Lines 308-321, and 326-335, these % are all approximate figures and this should be made clear.

      In lines 364-395 of the revised manuscript we have stated that all percentages are approximate values.

      • Fig. S1, kb and not k.b; what's the "+ control"; and is not really possible to have a PCR that works for the *? 3 kb is not that long.

      In the updated Figure S1, we have corrected "k.b" to "kb". In the legend of Figure S1, we have clarified that the + control corresponds to the cdu2 locus. Moreover, we could not cleanly amplify a 3 kb PCR product from bacteria in whole cell lysates of infected mammalian cells (Vero cells).

      • Fig. S2, kb and not k.b, bp and not b.p

      In the updated Figure S2, we have corrected “k.b” with “kb” and “b.p” with “bp”.

      Reviewer #2 (Recommendations For The Authors):

      Figure 1 describes an affinity-based purification and mass spectrometric identification of differentially ubiquitinated proteins (host and chlamydial). Through different permutations of combinations of infection (mock, wild type, and Cdu1 mutant), three effectors, IpaM, InaC, and CTL0480, were identified as putative targets of Cdu1. The authors used a high-stringency cutoff, which could explain identification of only three targets. Having said this, the localization of Cdu1 to the inclusion membrane would be expected to also narrow down the number of targets. Interestingly, Cdu2, another deubiquitinase remained active in these experiments, which could have affected identification of Cdu1 targets. The authors addressed this issue by referring to previously reported structural studies. A somewhat glaring omission is the lack of reference to NF-kB as a substrate of ChlaDub1/Cdu1. In experiments by Le Negrate et al., ChlaDub1 ectopic overexpression in cells led to the deubiquitination of IkB-alpha, thus inhibiting the nuclear translation of NF-kB. Based on the inclusion membrane localization of Cdu1 during infection, is the identification of IkB an artifact of overexpression of Cdu1, or is it still a bona fide Cdu1 target?

      We conducted experiments using our cdu1 null strain to investigate whether IκBα could be a target of Cdu1 activity. While our findings are intriguing and relevant, it is not feasible to determine, at this stage, whether our findings result from a direct or indirect consequence of Cdu1 localizing to the inclusion membrane. Consequently, these findings extend beyond the scope of the current manuscript. We plan to explore the implications of our observations more deeply in a subsequent manuscript, where we intend to provide a more comprehensive and mechanistic analysis based on these preliminary findings. Additionally, we have referenced the potential targeting of IκBα by Cdu1 in lines 100-101 and 166-171 of the revised manuscript.

      Figure 2 demonstrates the individual interaction of the identified effectors with Cdu1. Interaction at the inclusion membrane is inferred from colocalization studies, while protein-protein interaction is monitored using ectopic overexpression of tagged versions of Cdu1 and the individual effectors. This is somewhat of a weakness of the manuscript because the mechanism of action of Cdu1 towards its target hinges on protein-protein interaction.

      Despite our efforts, we encountered challenges in co-immunoprecipitating endogenous Cdu1 with all three Incs in infected Hela cells at 24 hpi. There are multiple technical reasons as to why these interactions, which are predicted to be transient, will not be captured by bulk affinity approaches such as immunoprecipitations, especially when the starting materials are present in very low abundance. We acknowledged these limitations in our findings, as reflected in lines 221-226 of the revised manuscript.

      Figure 3 provides the first evidence in this paper of the importance of the inferred interaction of Cdu1 with the three effectors. The authors show that the loss of cdu1 has stability consequences on the three effectors. This figure would benefit from quantifying InaC- or IpaM-positive inclusions in the same manner done with CTL0480. The timepoint-dependent effect of Cdu1 loss of function is intriguing. Do InaC and IpaM retention at the inclusion show the same timepoint-dependent characteristic?

      In the revised Figure 3, we have incorporated InaC protein levels at 24, 36, and 48 hours post-infection. Additionally, we have included quantitative data representing both InaC and IpaM protein levels in HeLa cells infected with both WT L2 and cdu1::GII strains. The quantification of CTL0480 localization to cdu1::GII inclusions has been moved to a supplementary figure.

      This updated figure illustrates that the absence of Cdu1 has a time-dependent impact on both InaC and IpaM. However, it is noteworthy that the kinetics of degradation for these two proteins diverge significantly.

      For Figure 7, the authors should consider monitoring timing of inclusion extrusion to gain additional insight into the functional interactions between the effectors. For example, the loss of CTL0480 leads to increased extrusion, implying a role in delaying or suppressing extrusion. In a time-course experiment, a CTL0480 mutant could exhibit an earlier occurrence of inclusion extrusion.

      One of the principal discoveries of this study is that Cdu1, InaC, IpaM, and CTL0480 collaborate to facilitate optimal extrusion of Ct from host cells. These findings represent a significant contribution to our understanding of how Chlamydia controls its exit from infected cells. We are currently in the process of expanding on these results. A forthcoming follow-up manuscript will provide more detailed and comprehensive exploration of these findings.

      Reviewer #3 (Recommendations For The Authors):

      Specific comments.

      a. I have some concerns related to the time point chosen for mass spec analysis and potential caveats and alternative interpretations. This work was done relatively early (24 hours) compared to the most convincing Cdu1 functions that occur later, thus this may limit the authors global understanding of protein changes. For example, the known substrate of Cdu1, Mcl-1 was not identified but this is altered relatively late during infection. Thus, the surprise that minimal host proteins are altered in ubiquitination may be partially driven by the timing of the assay. This should be more clearly discussed as a caveat.

      In the revised manuscript (lines 166-171), we have acknowledged that there might be additional targets of Cdu1 that remain unidentified, primarily due to the specific time point we utilized in our study.

      b. Another caveat to these studies is while the loss of Cdu1 alters different effectors stability and function and extrusion size, these changes do not modulate bacterial growth in cells. The authors speculate that regulating extrusion size may alter interactions with innate cells to drive dissemination. However, a previous study found defects in an animal model using a Cdu1 transposon mutant found decreased bacterial load in the genital tract. It is also possible that redundancy of effectors may mask importance in growth of Cdu1, but the authors strongly argue against redundancy of Cdu1 and Cdu2 so this weakens the authors argument here. These concepts and published data should be more directly discussed in the context of the authors proposed extrusion model and the role in driving Chlamydia growth and pathogenesis.

      In our revised manuscript (lines 460-466) we propose that while we do not observe any growth impairments during Ct growth in the absence of Cdu1 in HeLa cells, the reduction in bacterial loads observed in murine models of infection with an independent cdu1 mutant strain (cdu1::Tn) may potentially be linked to defects in extrusion production or alterations in Cdu1-dependent regulation of extrusion size.

      c. Recent studies have found that IFNg activation can result in dramatic changes in ubiquitination to pathogen containing vacuoles. While some of these are blocked by the newly found GarD, it seems possible that Cdu1 may also play a role (and perhaps use its deubiquinating activity) to further protect the inclusion. In light of published results showing that Cdu1 mutants have lower IFU burst size only in IFNg activated cells, this may be an important caveat in the current studies. This should be more directly addressed in the current manuscript.

      We have incorporated two experimental findings indicating that the presence of Cdu1 is not required for Ct to defend itself against IFN cellular immunity in human cells. These recent discoveries are now presented in the updated Figure 5 and detailed in lines 338-355 of the revised manuscript.

      d. On lines 433-434 the authors claim that Cdu1 is atypical since it is not encoded with the metaeffector/target pairs. However, this is an oversimplification of what is known about metaeffectors. For example, there are meta-effector/effector pairs that are not encoded together in Legionella (see table 1 DOI: https://doi.org/10.3390/pathogens10020108). Thus, the discussion should be adjusted. It seems Cdu1 is the first meta-effector found in Chlamydia, and maybe this should be highlighted more strongly rather than its uniqueness in this aspect of meta-effector/effector functions.

      In lines 488-489 of the revised manuscript, we have removed the assertion that Cdu1 functions as an atypical metaeffector and emphasized that it represents the initial discovery of a metaeffector within Ct.

    1. Author Response

      eLife assessment

      This important work describes the first high-resolution structure of HGSNAT, a lysosomal membrane protein required for the degradation of heparan sulfate (HS). Through careful structural analysis, this work proposes potential reasons why certain mutations in HGSNAT lead to lysosomal storage disorders and outlines the enzyme's catalytic mechanism. The experimental evidence presented provides incomplete support for the proposed molecular mechanism of the HS acetylation reaction and the impact of disease-causing mutations.

      We thank the editors and reviewers for taking the time to provide a critical assessment of our manuscript. We appreciate the input and suggestions to improve the analysis. Included here are only our provisional responses. We will address the concerns raised in more detail and incorporate them in the revised version of the manuscript.

      Reviewer #1 (Public Review):

      This article by Navratna et al. reports the first structure of human HGSNAT in an acetyl-CoAbound state. Through careful structural analysis, the authors propose potential reasons why certain human mutations lead to lysosomal storage disorders and outline a catalytic mechanism. The structural data are of good quality, and the manuscript is clearly written. This study represents an important step toward understanding the mechanism of HGSNAT and is valuable to the field. I have the following suggestions:

      We thank the reviewer for their encouraging and positive overall assessment of our work.

      1. The authors should characterize whether the purified protein is active. Otherwise, how does one know if the detergent used maintains the protein in a biologically relevant state? The authors should at least attempt to do so. If these prove to be challenging, at the very least, the authors should try a cell-based assay to demonstrate that the GFP tag does not interfere with the function.

      Thank you for highlighting this concern. The cryo-EM sample was prepared without the exogenous addition of ligand, as noted in the manuscript; the acetyl-CoA that we see in the structure was intrinsically bound to the protein, indicating the ability of GFP-tagged HGSNAT protein to bind the ligand. We purified the protein at a pH optimal for acetyl-CoA binding, as suggested by Bame, K. J. and Rome, L. H. (1985) and Meikle, P. J. et al., (1995). Because we see acetyl-CoA in a structure obtained using a GFP fusion, we argue that GFP does not interfere with protein stability and ability to bind to the co-substrate. As demonstrated by existing literature HGSNAT catalyzed reaction is compartmentalized spatially and conditionally. The binding of acetyl-CoA happens towards the cytosol and is optimal at pH 7-0.8.0, while the transfer of the acetyl group to heparan sulfate occurs towards the luminal side and is optimal at pH 5.0-6.0. We are working on establishing a robust assay to study this complicated and compartmentalized acetyl transfer assay.

      1. In Figure 5, the authors present a detailed schematic of the catalytic cycle, which I find to be too speculative. There is no evidence to suggest that this enzyme undergoes isomerization, like a transporter, between open-to-lumen and open-to-cytosol states. Could it not simply involve some movements of side chains to complete the acetyl transfer?

      The acetyl-CoA bound structure presented in the paper does not conclusively support a potential for isomerization and conformational dynamics. We agree with the reviewer that the reaction schematic presented in Figure 5 is speculative. We acknowledge in the discussion that our structure represents only a single step of the reaction, and defining the precise mechanism of acetyl transfer needs additional work. However, we will reword the discussion and change Figure 5 to address this concern raised by multiple reviewers.

      Reviewer #2 (Public Review):

      Summary:

      This work describes the structure of Heparan-alpha-glucosaminide N-acetyltransferase (HGSNAT), a lysosomal membrane protein that catalyzes the acetylation reaction of the terminal alpha-D-glucosamine group required for the degradation of heparan sulfate (HS). HS degradation takes place during the degradation of the extracellular matrix, a process required for restructuring tissue architecture, regulation of cellular function, and differentiation. During this process, HS is degraded into monosaccharides and free sulfate in lysosomes.

      HGSNAT catalyzes the transfer of the acetyl group from acetyl-CoA to the terminal non-reducing amino group of alpha-D-glucosamine. The molecular mechanism by which this process occurs has not been described so far. One of the main reasons to study the mechanism of HGSNAT is that multiple mutations spanning the entire sequence of the protein, such as nonsense mutations, splicesite variants, and missense mutations lead to dysfunction that causes abnormal accumulation of HS within the lysosomes. This accumulation is a cause of mucopolysaccharidosis IIIC (MPS IIIC), an autosomal recessive neurodegenerative lysosomal storage disorder, for which there are no approved drugs or treatment strategies.

      This paper provides a 3.26A structure of HGSNAT, determined by single-particle cryo-EM. The structure reveals that HGSNAT is a dimer in detergent micelles and a density assigned to acetylCoA. The authors speculate about the molecular mechanism of the acetylation reaction, map the mutations known to cause MPS IIIC on the structure and speculate about the nature of the HGSNAT disfunction caused by such mutations.

      Strengths:

      The description of the architecture of HGSNAT is the highlight of the paper since this corresponds to the first description of the structure of a member of the transmembrane acyl transferase (TmAT) superfamily. The high resolution of an HGSNAT bound to acetyl-CoA is an important leap in our understanding of the HGSNAT mechanism. The density map is of high quality, except for the luminal domain. The location of the acetyl-CoA allows speculation about the mechanistic role of multiple residues surrounding this molecule. The authors thoroughly describe the architecture of HGSNAT and map the mutations leading to MPS IIIC. The description of the dimeric interphase is a novel result, and future studies are left to confirm the importance of oligomerization for function.

      We thank the reviewer for their time and for highlighting both the quality and novelty of the structure presented in this work.

      Weaknesses:

      Apart from the cryo-EM structure, the article does not provide any other experimental evidence to support or explain a molecular mechanism. Due to the complete absence of functional assays, mutagenesis analysis, or other structures such as a ternary complex or an acetylated enzyme intermediate, the mechanistic model depicted in Figure 5 should be taken with caution.

      Thank you for pointing out this concern. The proposed mechanistic model in Figure 5 is a hypothesis based on previously reported biochemical characterization of HGSNAT by Rome & Crain (1981), Rome et al, (1983), Miekle et al., (1995) and Fan et al., (2011). However, we agree with the reviewer that this schematic is not experimentally proven and is speculative at best. Especially because our structure presents only a single step of the reaction, which does not conclusively support either ping-pong or random-order bi-substrate reactions. We will rephrase this section of our discussion and edit Figure 5 to address this concern.

      The authors discuss that H269 is an essential residue that participates in the acetylation reaction, possibly becoming acetylated during the process. However, there is no solid experimental evidence, e.g. mutagenesis analysis or structural analysis, in this or previous articles, that demonstrates this to be the case.

      H269, as a crucial catalytic residue, was suggested by monitoring the effect of chemical modifications of amino acids on acetylation of HGSNAT membranes by Bame, K. J. and Rome, L. H. (1986). We agree that mutagenesis, catalysis, and structural evidence for the same are not currently available. We are pursuing a more thorough exploration of the role of both H269 (previous studies) and N258 (from this study) on the stability and function of HGSNAT.

      In the discussion part, the authors mention previous studies in which it was postulated that the catalytic reaction can be described by a random order mechanistic model or a Ping Pong Bi Bi model. However, the authors leave open the question of which of these mechanisms best describes the acetylation reaction. The structure presented here does not provide evidence that could support one mechanism or the other.

      We agree with the reviewer’s observation that the structure doesn’t indeed support one reaction mechanism or another. We are pursuing the structural and kinetic characterization of HGSNAT in the presence of other co-substrates and multiple pHs that are required to address this concern thoroughly.

      Although the authors map the mutations leading to MPS IIIC on the structure and use FoldX software to predict the impact of these mutations on folding and fold stability, there is no experimental evidence to support FoldX's predictions.

      We are working on assessing the impact of specific mutations on the stability of HGSNAT and will add them to the revised version of the manuscript. We thank the reviewer for this suggestion.

      Reviewer #3 (Public Review):

      Summary:

      Navratna et al. have solved the first structure of a transmembrane N-acetyltransferase (TNAT), resolving the architecture of human heparan-alpha-glucosaminide N-acetyltransferase (HGSNAT) in the acetyl-CoA bound state using single particle cryo-electron microscopy (cryoEM). They show that the protein is a dimer and define the architecture of the alpha- and beta- GSNAT fragments, as well as convincingly characterizing the binding site of acetyl-CoA.

      Strengths:

      This is the first structure of any member of the transmembrane acyl transferase superfamily, and as such it provides important insights into the architecture and acetyl-CoA binding site of this class of enzymes.

      The structural data is of a high quality, with an isotropic cryoEM density map at 3.3Å facilitating the building of a high-confidence atomic model. Importantly, the density of the acetyl-CoA ligand is particularly well-defined, as are the contacting residues within the transmembrane domain.

      The open-to-lumen structure of HSGNAT presented here will undoubtedly lay the groundwork for future structural and functional characterization of the reaction cycle of this class of enzymes.

      We thank the reviewer for their positive assessment of the data presented in this work. We really appreciate and agree with the reviewer's comment that the “structure of HSGNAT presented here will undoubtedly lay the groundwork for future structural and functional studies.”

      Weaknesses:

      While the structural data for the open-to-lumen state presented in this work is very convincing, and clearly defines the binding site of acetyl-CoA, to get a complete picture of the enzymatic mechanism of this family, additional structures of other states will be required.

      We agree with the reviewers’ assessment and are heavily invested in pursuing the structures of all the steps of acetyl transfer by HGSNAT.

      A potentially significant weakness of the study is the lack of functional validation. The enzymatic activity of the enzyme characterized was not measured, and the enzyme lacks native proteolytic processing, so it is a little unclear whether the structure represents an active enzyme.

      We thank the reviewer for this comment. While the proteolytic cleavage of the protein remains debated, we find no evidence of such an event in our purification (SDS-PAGE and SEC). Studies like Durand et al., (2010) and Fan et al., (2011) suggest that even the ER retained monomeric HGSNAT is active. Because we see acetyl-CoA (co-substrate) bound to the protein in our structure, we surmise that proteolysis is not necessary for function, at least not for substrate binding. However, we are working towards the structural and kinetic characterization of recombinant α- and β-HGSNAT construct to explore the role of proteolysis on HGSNAT stability and function.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This valuable paper examines the Bithorax complex in several butterfly species, in which the complex is contiguous and not split, as it is in the well-studied fruit fly Drosophila. Based on genetic screens and genetic manipulations of a boundary element involved in segment-specific regulation of Ubx, the authors provide solid evidence for their conclusions, which could be further strengthened by additional data and analyses. The data presented are relevant for those interested in the evolution and function of Hox genes and of gene regulation in general.

      We are deeply grateful to the eLife editorial team and the two reviewers for their thoughtful and constructive feedback. We have used this feedback to improve our manuscript and have provided a point-by-point response below.

      Public Reviews:

      Reviewer #1 (Public Review):

      In their article, "Cis-regulatory modes of Ultrabithorax inactivation in butterfly forewings," Tendolkar and colleagues explore Ubx regulation in butterflies. The authors investigated how Ubx expression is restricted to the hindwing in butterflies through a series of genomic analyses and genetic perturbations. The authors provide evidence that a Topologically Associated Domain (TAD) maintains a hindwing-enriched profile of chromatin around Ubx, largely through an apparent boundary element. CRISPR mutations of this boundary element led to ectopic Ubx expression in forewings, resulting in homeotic transformation in the wings. The authors also explore the results of the mutation in two non-coding RNA regions as well as a possible enhancer module. Each of these induces homeotic phenotypes. Finally, the authors describe a number of homeotic phenotypes in butterflies, which they relate to their work.

      Together, this was an interesting paper with compelling initial data. That said, I have several items that I feel would warrant further discussion, presentation, or data.

      First, I would not state, "Little is known about how Hox genes are regulated outside of flies." They should add "in insects" since so much in known in vertebrates

      Corrected

      For Figure 1, it would aid the readers if the authors could show the number of RNAseq reads across the locus. This would allow the readership to evaluate the frequency of the lncRNAs, splice variants, etc.

      We have found it useful in the past to feature “Sashimi Plots”, as they provide a good overview of transcript splicing junctions and read support. Here we could not accommodate this in our Fig. 1A as this would require compiling the RNAseq reads from many tissues and stages to be meaningful, and we would lose the resolution on forewing vs hindwing tissues that is important in this article (only the Kallima inachus dataset allows this comparison, and was used in Fig 1B). More specifically, the wing transcriptomes available for J. coenia and V. cardui are not deep enough to provide a good visualization of Antp alternative promoter usage or on AS5’ transcription.

      How common are boundary elements within introns? Typically, boundary elements are outside gene bodies, so this could be explored further. This seems like an interesting bit of biology which, following from the above point, it would be interesting to, at a minimum, discuss, but also relate to how transcription occurs through a possible boundary element (are there splice variants, for example?).

      We do not see evidence of alternative splicing, and prefer to avoid speculating on transcriptional effects, but we agree that the intragenicity of the TAD boundary is interesting. We briefly highlighted this point in the revised Discussion:

      "Lastly, it is worth noting that the Antp/Ubx TAD boundary we identified is intragenic, within the last intron of Ubx. It is unclear if this feature affects Ubx transcription, but this configuration might be analogue to the Notch locus in Drosophila, which includes a functional TAD boundary in an intronic position (Arzate-Mejía et al. 2020)."

      The CRISPR experiments led to compelling phenotypes. However, as a Drosophila biologist, I found it hard to interpret the data from mosaic experiments. For example, in control experiments, how often do butterflies die? Are there offsite effects? It's striking that single-guide RNAs led to such strong effects. Is this common outside of this system? Is it possible to explore the function effects at the boundary element - are these generating large deletions (for example, like Mazo-Vargas et al., 2022)? For the mosaic experiments, how frequent are these effects in nature or captive stocks? Would it be possible to resequence these types of effects? At the moment, this data, while compelling, was hard to put into the context of the experiments above without understanding how common the effects are. Ideally, there would be resequencing of these tissues, which could be targeted, but it was not clear to me the general rates of these variants.

      We agree with this assessment completely: mosaics complicate the proper interpretation of CRISPR based perturbation assays in regulatory regions. Here, unlike in Mazo-Vargas et al. (2022), we were unable to breed homeotic effects to a G1 generation, possibly because the phenotypes are dominant and lethal at the embryonic stage (see also our reply to Reviewer 2). This means that mosaic mutants are often survivors with clones of restricted size in the wing, and they are probably rare, but we are unable to meaningfully measure a mutation spectrum frequency (e.g. how often large deletions are generated). As mentioned in the first paragraph of our Discussion, we think that many of the phenotypes we observed (besides the Ubx GOF effects from the BE targeting) were confounded by alleles that could include large SVs. We aim to address these questions in an upcoming manuscript, at a locus where regulatory perturbation does not impact survival, including using germline mutants and unbiased genotyping (whole genome resequencing).

      We elaborated on this issue in our Discussion:

      "It is crucial here to highlight the limitations of the method, in order to derive proper insights about the functionality of the regulatory regions we tested. In essence, butterfly CRISPR experiments generate random mutations by non-homologous end joining repair, that are usually deletions (Connahs et al. 2019; Mazo-Vargas et al. 2022; Van Belleghem et al. 2023). Ideally, regulatory CRISPR-induced alleles require genotyping in a second (G1) generation to be properly matched to a phenotype (Mazo-Vargas et al. 2022). Possibly because of lethal effects, we failed to pass G0 mutations to a G1 generation for genotyping, and were thus limited here to mosaic analysis. As adult wings have lost scale building cells that may underlie a given phenotype, we circumvented this issue by genotyping a pupal forewing displaying an homeotic phenotype in the more efficient Antp-Ubx_BE perturbation experiment (Fig. S4). In this case, PCR amplification of a 600 bp fragment followed by Sanger sequencing recovered signatures of indel variants, with mixed chromatograms starting at the targeted sites. But in all other experiments (CRM11, IT1, and AS5’ targets), we did not genotype mutant tissues, as they were only detected in adult stages and generally with small clone sizes. Some of these clones may have been the results of large structural variants, as data from other organisms suggests that Cas9 nuclease targeting can generate larger than expected mutations that evade common genotyping techniques (Shin et al. 2017; Adikusuma et al. 2018; Kosicki et al. 2018; Cullot et al. 2019; Owens et al. 2019). Even under the assumption that such mutations are relatively rare in butterfly embryos, the fact we injected >100 embryos in each experiment makes their occurrence likely (Fig. 9), and we are unable to assign a specific genotype to the homeotic effects we obtained in CRM11, IT1 and AS5’ perturbation assays."

      Our revision also includes a new Fig. S4 that features the mosaic genotyping of a G0 Antp-Ubx_BE mutant tissue. While this does not fully address the reviewer questions, it provides reasonable validation that the frequent GOF effects we observed upon perturbation at this target site are generated by on-target indels from DNA repair.

      Author response image 1.

      Validation of CRISPR-induced DNA Lesions in an Antp-Ubx_BE crispant pupat forewing. (A-A') Pupal forewing cuticle phenotype of an Antp-Ubx_BE J. coenia crispant, as in Fig. S3. (B-B") Aspect of the same forewing under trans-illumination following dissection out of the pupal case. Regions from mutant clones have a more transparent appearance. (C). Sanger sequencing of an amplicon targeting the Antp-Ubx_BE region in the mutant tissue shown in panel B", compared to a control wing tissue, showing mixed chromatogram around the expected CRISPR cutting site due to indel mutations from non-homologous end-joining.

      In sum, I enjoyed the extensive mosaic perturbations. However, I feel that more molecular descriptions would elevate the work and make a larger impact on the field.

      Reviewer #2 (Public Review):

      Summary:

      The existence of hox gene complexes conserved in animals with bilateral symmetry and in which the genes are arranged along the chromosome in the same order as the structures they specify along the anteroposterior axis of organisms is one of the most spectacular discoveries of recent developmental biology. In brief, homeotic mutations lead to the transformation of a given body segment of the fly into a copy of the next adjacent segment. For the sake of understanding the main observation of this work, it is important to know that in loss-of-function (LOF) alleles, a given segment develops like a copy of the segment immediately anterior to it, and in gain-of-function mutations (GOF), the affected segment develops like a copy of the immediately posterior segment. Over the last 30 years the molecular lesions associated with GOF alleles led to a model where the sequential activation of the hox genes along the chromosome result from the sequential opening of chromosomal domains. Most of these GOF alleles turned out to be deletions of boundary elements (BE) that define the extent of the segment-specific regulatory domains. The fruit fly Drosophila is a highly specialized insect with a very rapid mode of segmentation. Furthermore, the hox clusters in this lineage have split. Given these specificities it is legitimate to question whether the regulatory landscape of the BX-C we know of in D.melanogaster is the result of very high specialization in this lineage, or whether it reflects a more ancestral organization. In this article, the authors address this question by analyzing the continuous hox cluster in butterflies. They focus on the intergenic region between the Antennapedia and the Ubx gene, where the split occurred in D.melanogaster. Hi-C and ATAC-seq data suggest the existence of a boundary element between 2 Topologically-Associated-Domain (TAD) which is also characterized by the presence of CTCF binding sites. Butterflies have 2 pairs of wings originating from T2 (forewing) specified by Antp and T3 specified by Ubx (hindwing). Remarkably, CRISPR mutational perturbation of this boundary leads to the hatching of butterflies with homeotic clones of cells with hindwings identities in the forewing (a posteriorly oriented homeotic transformation). In agreement with this phenotype, the authors observe ectopic expression of Ubx in these clones of cells. In other words, CRISPR mutagenesis of this BE region identified by molecular tool give rise to homeotic transformations directed towards more posterior segment as the boundary mutations that had been 1st identified on the basis of their posterior oriented homeotic transformation in Drosophila. None of the mutant clones they observed affect the hindwing, indicating that their scheme did not affect the nearby Ubx transcription unit. This is reassuring and important first evidence that some of the regulatory paradigms that have been proposed in fruit flies are also at work in the common ancestor to Drosophilae and Lepidoptera.

      Given the large size of the Ubx transcription unit and its associated regulatory regions it is not surprising that the authors have identified ncRNA that are conserved in 4 species of Nymphalinae butterflies, some of which also present in D.melanogaster. Attempts to target the promoters by CRISPR give rise to clones of cells in both forewings and hindwings, suggesting the generation of regulatory mutations associated with both LOF and GOF transformations. The presence of clones with dual homeosis suggests the targeting of Ubx activator and repression CRMs. Unfortunately, these experiments do not allow us to make further conclusions on the role of these ncRNA or in the identification of specific regulatory elements. To the opinion of this reviewer, some recent papers addressing the role that these ncRNA may play in boundary function should be taken with caution, and evidence that ncRNA(s) regulate boundaries in the BX-C in a WT context is still lacking.

      Strengths:

      The convincing GOF phenotype resulting from the targeting of the Antp-Ubx_BE.

      Weaknesses:

      The lack of comparisons with the equivalent phenotypes obtained in D.melanogaster with for example the Fub mutation.

      We are grateful for this excellent contextualization of our findings and have incorporated some of the historical elements into our revision, as detailed below.

      Reviewer #2 (Recommendations For The Authors):

      In the whole paper, the authors bring the notion of boundaries through the angle of the existence of TADs and ignore almost entirely to explain the characteristics of boundary mutation in the BX-C. To my knowledge examples where targeted boundary deletions between TADs result in misregulation of the neighboring genes, and/or a phenotype, are extremely sparse (especially in the context of the mouse hox genes). Given the extensive litterature describing the boundary mutations and their associated GOF phenotypes, the paper would certainly gain strength if the authors justify their approach through this wealth of information. I must admit that this referee is surprised by the absence of any references to the founding work of the Karch and Bender laboratories on this topic. As a matter of fact, one of the founding members of the boundary class of regulatory elements was already brought in 1993 with the Fab-7 and Mcp elements of the BX-C. Based on gain-of-function homeotic phenotypes, additional Fab boundaries were added to the list. Finally, in 2013, Bender and Lucas (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606092/) identified the Fub boundary element that delimits the Ubx and abd-A domains in the BX-C. Fub fulfills the criterium of lying at the border of 2 neighboring TADs. Significantly, a deletion of Fub leads to a very penetrant and strong homeotic gain-of-function phenotype in which the flies hatch with a 1st abdominal segment transformed into the 2nd. In agreement with this, abd-A is expressed one parasegment too anterior in embryos. This is exactly the observation gathered from the targeted mutations in the Antp-Ubx_BE; a dominant transformation of anterior to posterior wing accompanied by an ectopic expression of Ubx in the forming primordia of the forwing where it is normally silenced. I believe the paper would gain credibility if the results were reported with the knowledge of the similarities with Fub.

      Line 53, I am not aware of the existence of TADs for each of the 9 regulatory domains. The insulators delimit the extent of the regulatory domains but certainly not of TADs.

      We thank the reviewer for these suggestions, as well as for the correction – we agree our previous text suggested that all BX-C boundaries are TAD boundaries, which was incorrect. We added a new introduction paragraph that combines classic literature on GOF mutations at boundary elements with recent evidence these are TAD insulators, including Fub (as suggested), and adding Fab-7 for breadth of scope.

      "For instance, the deletion of a small region situated between Ubx and abd-A produces the Front-ultraabdominal phenotype (Fub) where the first abdominal segment (A1) is transformed into a copy of the second abdominal segment A2, due to a gain-of-expression of abd-A in A1 where it is normally repressed (Bender and Lucas 2013). At the molecular level, the Fub boundary is enforced by insulating factors that separate Topologically Associating Domains (TADs) of open-chromatin, while also allowing interactions of Ubx and abd-A enhancers with their target promoters (Postika et al. 2018; Srinivasan and Mishra 2020). Likewise, the Fab-7 deletion, which removes a TAD boundary insulating abd-A and Abd–B (Moniot-Perron et al. 2023), transforms parasegment 11 into parasegment 12 due to an anterior gain-of-expression of Abd-B (Gyurkovics et al. 1990). By extrapolation, one may expect that if the Drosophila Hox locus was not dislocated into two complexes, Antp and Ubx 3D contact domains would be separated by a Boundary Element (BE), and that deletions similar with Fub and Fab-7 mutations would result in gain-of-function mutations of Ubx that could effectively transform T2 regions into T3 identities."

      A reference to the 1978 Nature article of Lewis should be added after line 42 of introduction.

      Added

      Line 56-57; the BX-C encoded miRNAs are known to regulate Ubx and abd-A, but not Abd-B.

      Corrected

      From lines 57 to 61, the authors mention reports aimed at demonstrating a role of ncRNA into Ubx regulation. To my eyes, these gathered evidences are rather weak. A reference to the work of Pease et al in Genetics in 2013 should be mentioned (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3832271/).

      Added. Our paragraph includes qualifier language about the functionality of the Ubx-related ncRNAs (“are thought to”, “appears to”), and updated references regarding bxd (Petruk et al. 2006; Ibragimov et al. 2023).

      Line 62 authors, should write "Little is known about how Hox genes are regulated outside of Drosophila" and not flies.

      Corrected

      Lines 110-112 could lncRNA:Ubx-IT1 correspond to PS4 antisense reported by Pease et al in 2023 (see URL above)? Lines 115-117, could lncRNA:UbxAS5' correspond to bxd antisense of Pease et al in 2023 (see above)?

      As we could not detect sequence similarities, we preferred to avoid drawing homology, and we intentionally avoided reference to the fly transcripts when we named IT1 and AS5’. This said, we agree it is important to clarify that further studies are needed to clarify this relationship. We elaborated on this point in our discussion:

      "Of note, a systematic in-situ survey (Pease et al. 2013) showed that Drosophila embryos express an antisense transcripts in its 5’ region (lncRNA:bxd), as well as within its first intron (lncRNA:PS4). It is thought that Drosophila bxd regulates Ubx, possibly by transcriptional interference or by facilitation of the Fub-1 boundary effect (Petruk et al. 2006; Ibragimov et al. 2023), while the possible regulatory roles of PS4 remain debated (Hermann et al. 2022). While these dipteran non-coding transcripts lack detectable sequence similarity with the lepidopteran IT1 and AS5’ transcripts, further comparative genomics analyses of the Ubx region across the holometabolan insect phylogeny should clarify the extent to which Hox cluster lncRNAs have been conserved or independently evolved."

      Lines 154-155: "This concordance between Hi-C profiling and CTCF motif prediction thus indicates that Antp-Ubx_BE region functions as an insulator between regulatory domains of Antp and Ubx ». This is only correlative, I would write "suggests" instead of "indicates" and add a "might function".

      Corrected as suggested.

      Line 254, I assume the authors wish to write Ubx-IT1 in V. cardui instead of Ubx-T1.

      Typo corrected

      Line 255 : Fig.5 is absent from the pdf file and replaced by table 1. I did not find a legend for Table 1.

      Corrected, with our sincere apologies for the loss of this image in our first submission.

      Line 293 "Individual with hindwing clones 2.75 times more common than...." "are" is missing?

      Corrected

      Lines 303-313, it is not entirely clear how many guide RNAs were injected. Would be useful to indicate the sites targeted in Fig.S8.

      We specify in the revised text : using a single guide RNA (Ubx11b9)

      Lines 323-337: it is not entirely clear to this referee (a drosophilist) if those spontaneous mutations can be inbred or whether these individuals are occasional mosaics. In general, did anyone try to derive lines from those mosaic animals? Is it possible to hit the germline at the syncitial stages at which the guides are injected? Are the individuals with wing phenotype fertile? Given the fact that the Antp-Ubx_BE mutations should be dominant, I wonder if this characteristic would not help in identifying germline transmission. Similar remark for the discussion where the authors explain at line 360, that genotyping can only be done in the progeny of the Go. I do not have the impression that the authors have performed this genotyping and if I am right, I do not understand why.

      We improved our discussion section on this topic (new text in orange):

      "It is crucial here to highlight the limitations of the method, in order to derive proper insights about the functionality of the regulatory regions we tested. In essence, butterfly CRISPR experiments generate random mutations by non-homologous end joining repair, that are usually deletions (Connahs et al. 2019; Mazo-Vargas et al. 2022; Van Belleghem et al. 2023). Ideally, regulatory CRISPR-induced alleles require genotyping in a second (G1) generation to be properly matched to a phenotype (Mazo-Vargas et al. 2022). Possibly because of lethal effects, we failed to pass G0 mutations to a G1 generation for genotyping, and were thus limited here to mosaic analysis. As adult wings have lost scale building cells that may underlie a given phenotype, we circumvented this issue by genotyping a pupal forewing displaying an homeotic phenotype in the more efficient Antp-Ubx_BE perturbation experiment (Fig. S4). In this case, PCR amplification of a 600 bp fragment followed by Sanger sequencing recovered signatures of indel variants, with mixed chromatograms starting at the targeted sites. But in all other experiments (CRM11, IT1, and AS5’ targets), we did not genotype mutant tissues, as they were only detected in adult stages and generally with small clone sizes. Some of these clones may have been the results of large structural variants, as data from other organisms suggests that Cas9 nuclease targeting can generate larger than expected mutations that evade common genotyping techniques (Shin et al. 2017; Adikusuma et al. 2018; Kosicki et al. 2018; Cullot et al. 2019; Owens et al. 2019). Even under the assumption that such mutations are relatively rare in butterfly embryos, the fact we injected >100 embryos in each experiment makes their occurrence likely (Fig. 9), and we are unable to assign a specific genotype to the homeotic effects we obtained in CRM11, IT1 and AS5’ perturbation assays."

      We agree that the work we conducted with mosaics has important caveats. So far, our attempts at breeding homeotic G0 mutants have not been fruitful at this locus, while less deleterious loci can yield viable alleles into further generations, such as WntA (published) and cortex (in prep.). We prefer to stay vague about negative data here, as it is difficult to disentangle if they were due to real mutational effects (e.g. the alleles can be dominant and lethal in the G1 generation) to failure to germline carriers of mutations as founders, or to health issues that are often amplified by inbreeding depression (including a possible iflavirus in our V. cardui cultures).

      We concur with the prediction that Antp-Ubx_BE mutations are probably dominant, and intend to follow up with similar GOF experiments in the Plodia pantry moth, a laboratory model for lepidopteran functional genomics that is more amenable than butterflies to inbreeding and long-term studies in mutant lines. In our experience (https://www.frontiersin.org/articles/10.3389/fevo.2021.643661/full), Ubx coding knock-out can be more extensive in Plodia than in butterflies, so we think these animals will also be more resilient to the deleterious effects of the GOF phenotype.

      Line 423, 425, I am not a fan of the term "de-insulating!!!!!

      We replaced this neologism by Similar deletion alleles resulting in a TAD fusion and misexpression effect (see below).

      Line 425, why bring the work on Notch while there are so many examples in the BX-C itself....

      Our revised sentence makes it more clear we are referring here to documented examples of deletion-mediated TAD fusion (ie. featuring a conformation capture assay such as HiC/micro-C):

      This suggests a possible loss of the TAD boundary in the crispant clones, resulting in a TAD fusion or in a long-range interaction between a T2-specific enhancer and Ubx promoter. Similar deletion alleles resulting in a TAD fusion and misexpression effect have been described at the Notch locus in Drosophila (Arzate-Mejía et al. 2020), in digit-patterning mutants in mice and humans (Lupiáñez et al. 2015; Anania et al. 2022), or at murine and fly Hox loci depleted of CTCF-mediated regulatory blocking (Narendra et al. 2015; Gambetta and Furlong 2018; Kyrchanova et al. 2020).

      Our revision also includes more emphasis on the Drosophila BX-C boundary elements Fub and Fab-7 (see above).

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      The manuscript is very well written, the data are clearly presented and the methodology is robust. I only have suggestions to improve the manuscript, to make the study more appealing or to discuss in more detail some questions raised by the work.

      1. In the study as it stands, PFG seems to come out of the blue. The authors apparently selected this protein based on sequence conservation between species but this is unlikely to be sufficient to identify novel TFs. Explaining in more detail the reasoning that led to PFG would make the story more appealing. Perhaps PFG was identified through a large reverse genetics screening?

      Response: Thank you for your suggestion. We identified this gene solely by the strategy we described in the manuscript. We decided on this strategy based on the findings of our previous study on AP2-Family TFs, whose DNA binding domains are highly conserved among Plasmodium orthologues. Using this screening strategy, we identified a novel AP2 family TF AP2-Z. The results of the present study demonstrated that this strategy is applicable to TFs other than those belonging to the AP2 family. We are aware that this strategy is not all-encompassing. In fact, we failed to identify HDP1 as a candidate TF when it was also in the target list of AP2-G. However, at present, this is our primary strategy for identifying novel TFs in the targetome.

      1. The authors propose that PFG and AP2-FG form a complex, but this is actually not shown. Did they try to document a physical interaction between the two proteins, for example using co-IP?

      Response: Even when the two molecules were identified to be at the same position by ChIPseq, it cannot be concluded that they form a physical complex because it is possible that they competitively occupy the region. However, in this study, we performed ChIP-seq in the absence of PFG and demonstrated that the cAP2-FG peaks disappeared while those of sAP2-FG remained. This result can only be explained by the two proteins forming a complex at this region, which excludes the possibility that AP2-FG binds the region independently.

      1. It is unclear how PFG can bind to DNA in the absence of DNA-binding domain. Did the authors search for unconventional domains in the protein? This should be at least discussed in the manuscript.

      Response: We speculate that the two highly conserved regions, region 1 and region 2, function as DNA-binding domains in PFG. However, this domain is not similar to any DNA binding domains reported thus far. A straightforward way to demonstrate this would be to perform in vitro binding assays using a recombinant protein. However, thus far, we have not succeeded in obtaining soluble recombinant proteins for these regions. We have added the following sentences to the results section.

      “At present, we speculate that PFG directly interacts with genomic DNA through two highly conserved regions; region 1 and region 2. However, these regions are not similar to any DNA binding domains reported thus far. In other apicomplexan orthologues, these two domains are located adjacent to one another in the protein (Fig. 1A). Therefore, these two regions may be separated by a long interval region but constitute a DNA binding domain of PFG as a result of protein folding.”

      1. How do the authors explain that PFG is still expressed in the absence of AP2-FG? Is AP2G alone sufficient to express sufficient levels of the protein? Is PFG down-regulated in the absence of AP2-FG?

      Response: Our previous ChIP-seq data indicate that PFG is a target of AP2-G. According to the study by Kent et al. (2018), this gene is up-regulated in the early period following conditional AP2-G induction. The results of the present study showed that PFG is capable of autoactivation through a transcriptional positive feed-back loop. These results suggest that PFG can maintain its expression to a certain level once activated by AP2-G, even in the absence of AP2-FG. In our previous microarray analysis, significant decreases in PFG expression were not observed in AP2-FG-diaruptedparasites.

      1. How do AP2-FG regulated genes (based on RNAseq) compare with the predicted cAP2FG/sAP2-FG predicted genes (based on ChIPseq)? Are the two subsets included in the genes that are actually down-regulated in AP2-FG(-)?

      Response: Disruption of the AP2-FG gene impairs gametocyte development. We considered that the direct effect of this disruption would be difficult to analyze in gametocyte-enriched blood, in which gametocytes are pooled during sulfadiazine treatment to deplete asexual stages. Therefore, in our previous paper, we performed microarray analysis between WT and KO parasites to detect the direct effect of AP2-FG disruption on target gene expression, using mice which were synchronously infected with parasites. According to our results, 206 genes were down-regulated in AP2-FG-disrupted parasites. Of these genes, 40 and 117 were targets of sAP2-FG and cAP2-FG, respectively. However, it is still possible that a significant proportion of genes were indirectly down-regulated by AP2-FG disruption, which may impair gametocyte development. Moreover, based on the results of the present study, expression of a significant proportion of AP2-FG target genes could be complemented by PFG transcription. We believe that it would be difficult to compare the direct effects of these TFs on gene expression via transcriptome analysis (therefore, targetome analysis is important). In this study, we compared the expression of target genes of sAP2-FG and cAP2FG between PFG(-) and WT parasites. We expected that down-regulation of PFG (cAP2FG) targets would be complemented with transcription by sAP2-FG.

      1. Minor points

      -Page 5 Line 10, remove "as"

      Response: We have corrected this.

      -Page 7 Lines 4-13: is it possible to perform the assay in PFG(-) parasites?

      Response: Thank you for your question. Even when the marker gene expression was decreased in PFG(-) parasites, we cannot conclude the reason to be a direct effect of the mutation. To determine the function of the motif, it is necessary to perform the assay using wild-type parasites.

      -Page 7 Line 45: Fig6C instead of 5C

      Response: Thank you for pointing this out. We have corrected this.

      -Page 8 Line 27: "decreases"

      Response: Thank you for pointing this out. We have corrected this.

      -Page 8 Line 36: PFG instead of PGP

      Response: We have corrected this.

      -Page 8 Line 39: remove "the fact"

      Response: We have removed this word.

      -Page 8 Line 42: Fig6G instead of 5G

      Response: We have corrected this.

      -Page 8 Line 43: PFG instead of PGP

      Response: We have corrected this.

      -Page 9 Line 23: "electroporation"

      Response: We have corrected this.

      -Page 9 Line 32: "BamHI"

      Response: We have corrected this.

      -Fig 2E: in the crosses did the authors check oocyst formation in the mosquito?

      Response: We did not check oocyst formation because abnormalities in males may not affect oocyst formation.

      -Page 17, legend Fig3, Line 14, there is probably an inversion between left and right for PFG versus AP2-FG (either in the legend or in the figure)

      Response: Thank you for pointing this out. PFG peaks are located in the center in both heat maps. The description “AP2-FG peaks” over the arrowhead in the left map was incorrect. We have corrected this to “PFG peaks”. The peaks in the left heat map must be located in the center; thus, this figure might be redundant.

      Reviewer #2 (Recommendations for the Authors):

      • Could the authors please state in the results section that PFG stands for partner of AP2FG.

      Response: Thank you for the comment. We have added the following to the results section:

      “Through this screening, a gene encoding a 2709 amino acid protein with two regions highly conserved among Plasmodium was identified (PBANKA0902300, designated as a partner of AP2-FG (PFG; Fig. 1A).”

      • Given that the transcriptional program is so dynamic, the timing of the ChIP-seq experiments is crucial. Could the authors clarify the timings of the different ChIP-seq experiments (AP2-FG, PFG, PFG in AP2-FG-, AP2-FG in PFG-, ...)

      Response: Thank you for the comment. To deplete any parasites in the asexual stages, all ChIP-seq experiments in this study were performed using blood from mice treated with sulfadiazine, namely, gametocyte-enriched blood. As the reviewer points out, timing is important, and samples from the period when TFs are maximally expressed are optimal for ChIP-seq. However, when parasites in the asexual stages are present, the background becomes higher. Thus we usually use gametocyte-enriched blood for ChIP-seq when expression of the TF is observed in mature gametocytes. The exception was our ChIP-seq analysis of AP2-G, because is not present in mature gametocytes.

      • Fig 4c is an example of great overlap of peaks, but it would be helpful if the authors could quantify the overlaps between experiments (and describe the overlap parameters used).

      Response: According to the comment, we have created a Venn diagram of overlapping peaks (attached below). However, the peaks used for this Venn diagram were selected after peakcalling via fold-enrichment values. Thus, even if the counterpart of a peak is absent in these selected peaks (non-overlapping peaks in the Venn diagram), it does not indicate that it is absent in the original read map. We believe the overlap of peaks would be estimated more correctly in the heat maps.

      Author response image 1.

      Legged: The Venn diagram shows the number of common peaks between these ChIP seq experiments (distance of peak summits < 150

      • Additionally, how were the promoter coordinates used for each gene when they associate ChIP peaks to a gene target. Did the authors choose 1-2kb? Or use a TSS/5utr dataset such as Adjalley 2016 or Chappell 2020?

      Response: We selected a 1.2 Kbp region for target prediction based on our previous studies. As the reviewer pointed out, target prediction using TSS information may be more accurate. However, reliable TSS information is not available for P. berghei to the best of our knowledge.

      The two papers are studies on P. falciparum.

      • In the absence of evidence of physical interaction, it remains unclear if AP2-FG and PFG actually interact directly or as part of the same complex. A more detailed characterisation with IPs/co-IPs followed by mass spectrometry of the GFP-tagged version of PFG in the presence and absence of AP2-FG would be highly informative.

      Response: Thank you for the comment. Even when these two TFs occupy the same genomic region, it cannot be conclusively said that they exist at the same time in the region: they might competitively occupy the region. However, we showed that the cAP2-FG peaks disappear from the region when PFG was disrupted, while sAP2-FG peaks remain. We believe that this is evidence that the two TFs physically interact with each other.

      • It was not clear if the assessment of motif binding using cytometry was performed using all the required controls and compensation. This section should be clarified.

      Response: Thank you for the comment. Condensation was performed using parasites expressing a single fluorescent protein. The results are attached below. The histogram of mCherry using control parasites expressing GFP under the control of the HSP70 promoter is also attached.

      Author response image 2.

      However, we found that descriptions of the filters for detecting red signals were not correct. This assay was performed using parasites which expressed GFP constitutively and mCherry under the control of the p28 promoter. These two fluorescent proteins were excited by independent lasers (488 and 561, respectively), and the emission spectra were detected using independent detectors (through 530/30 and 610/20 filters, respectively). We have revised the description regarding our FACS protocols as follows:

      “Flow cytometric analysis was performed using an LSR-II flow cytometer (BD Biosciences). In experiments using 820 parasites, the tail blood from infected mice was selected via gating with forward scatter and staining with Hoechst 33342 (excitation =355 nm, emission = 450/50). The gated population was then analyzed for GFP fluorescence (excitation = 488 nm, emission = 530/30) and RFP fluorescence (excitation = 561 nm, emission = 610/20). In the promoter assay (using parasites transfected with a centromere plasmid), the tail blood from infected mice was selected via gating with forward scatter and staining with Hoechst 33342 (excitation =355 nm, emission = 450/50), followed by GFP fluorescence (excitation = 488 nm, emission = 530/30). The gated population was analyzed for mCherry fluorescence (excitation = 561 nm, emission = 610/20). Analysis was performed using the DIVER program (BD Biosciences).”

      Minor points:

      • Page 4, line 37: The authors should specify the timing of expression of AP2-FG on the text.

      Response: We have added the following description to the text.

      “The timing of the expression was approximately four hours later than that of AP2-FG, which started at 16 hpi (9).” .

      • Ref 9 and 17 are repeated

      Response: Thank you for pointing this out. We have corrected this.

      • Fig 1D and 1F do not have scale bars

      Response: We have added scale bars to Fig. 1D.

      We have not changed Fig. 1F, because we believe that the scales can be estimated from the size of the erythrocyte.

      • Page 5, line 29-30. Could the authors specify how many and which of the de-regulated genes have a PFG in their promoter.

      Response: Thank you for the comment, As described in a later section (page 7; Impact of PFG disruption on the expression of AP2-FG target genes), among the 279 genes significantly downregulated in PFG(-) parasites, 165 genes were targets for PFG (unique for PFG or common for sAP2-FG and PFG). In contrast, only four genes were targets unique to sAP2-FG. Therefore, 165 genes harbor the upstream peaks of PFG. These genes are shown in Table S1.

      • Fig 5F. in the methods associated with this figure there seems to be a mixup with the description of the lasers. In addition, given the spillover of the red and green signal between detectors this experiment needs compensation parameters. The authors should provide the gating strategy before and after compensation as this is critical for the correct calculation of the number of red parasites. Indeed, the lowest red cloud on the gate shown could be green signal spill over.

      Response: Thank you for the comment. As described above, there were some incorrect descriptions about the conditions of our FACS protocols in the methods section. We have revised them.

      -Page 7, line 19. Could the authors explicitly say in the text that the 810 genes are those with 1 (or more?) PFG peaks in their promoter (out of a total of 1029) to best guide the reader. Additionally, it is important to define the maximum distance allowed between a peak and CDS for it to be associated with said CDS.

      Response: We have revised Table S2 by adding the nearest genes. The revised table shows the relationship between a PFG peak and its nearest genes, together with their distances.

      • Page 7, line 45: fig 6c, not 5c

      Response: Thank you for the comment. We have corrected this.

      • Page 7 last paragraph: This section is very hard to follow. For instance, on line 50 do the authors mean that the sAP2-FG unique targets are LESS de-regulated? On line 51: do the authors mean unique targets of cAP2-FG or unique targets of PFG? Line 53: do the authors mean that genes expressed in the "common" category are LESS de-regulated than the PFG unique targets?

      Response: We are sorry for the lack of clarity; after reviewing the manuscript, it appears to be unclear what the fold change means in this section. Here, fold change means the ratio of PFG(-)/wild type. Thus “High log2(fold change) value” means that the genes were less downregulated. We have revised the description as follows:

      “The log2 distribution (fold change = PFG(-)/wild type) in the three groups of target genes showed that the average value was significantly higher (i.e., less down-regulated) in targets unique to sAP2-FG than in the other two groups (targets unique to cAP2-FG or common targets for both), with p-values of 1.3 × 10-10 and 1.4 × 10-5, respectively, by two-tailed Student’s t-test (Fig. 6F). In addition, the average log2 (fold change) value of the common target genes was relatively higher (i.e., less down-regulated) than that of targets unique to PFG, suggesting that transcriptional activation by sAP2-FG partly complements the impact of PFG disruption on these common targets.”

      • Page 8, line 42: Fig 6G, not 5G

      Response: Thank you for pointing this out. We have corrected this.

      Reviewer #3 (Recommendations For The Authors):

      1. The gene at the center of this study (PBANKA_0902300) was identified in an earlier genetic screen by Russell et al. as being a female specific gene with essential role in transmission and named Fd2 (for female-defective 2). Since this name entered the literature first and is equally descriptive, the Fd2 name should be used instead of PFG to maintain clarity and avoid unnecessary confusion. Surprisingly, this study is neither cited nor acknowledged despite a preprint having been available since August of 2021. This should be remedied.

      Response: Thank you for the comment. We have added the paper by Russell et al. accordingly and mentioned the name FD2 in the revised manuscript. However, we have retained the use of PFG throughout the paper. We believe that this usage of PFG shouldn’t be confusing, as FD2 has only been used in one previous paper. We have added the following:

      “Through this screening, a gene encoding a 2709 amino acid protein with two regions highly conserved among Plasmodium was identified (PBANKA0902300, designated as a partner of AP2-FG (PFG; Fig. 1A). This gene is one of the P. berghei genes that were previously identified as genes involved in female gametocyte development (named FD2), based on mass screening combined with single cell RNA-seq (ref).”

      1. While it isn't really important how the authors came to arrive at studying the function of Fd2, the rationale/approach given in the first paragraph of the result section seems far too broad to lead to Fd2, given that it lacks identifiable domains and many other ortholog sets exist across these species.

      Response: We selected this gene from the list of AP2-G targets as a candidate for a sequence-specific TF based on the hypothesis that the amino acid sequences of DNAbinding domains are highly conserved. We successfully identified two TFs (including PFG) using this method. However, there may be TFs that do not fit this hypothesis which are also targets of AP2-G. In fact, we were unable to identify HDP1 as a TF candidate, despite being a AP2-G target.

      1. Fig. 1A-C: Gene IDs for the orthologs should be provided, as well as the methodology for generating the alignments.

      Response; We have added the gene IDs and method for alignment in the legend as follows:

      (A) Schematic diagram of PFG from P. berghei and its homologs in apicomplexan parasites. Regions homologous to Regions 1 and 2, which are highly conserved among Plasmodium species, are shown as yellow and blue rectangles, respectively. Nuclear localization signals were predicted using the cNLS mapper (http://nls-10 mapper.iab.keio.ac.jp/cgibin/NLS_Mapper_form.cgi). The gene IDs of P. berghei PFG, P. falciparum PFG, and their homologs in Toxoplasma gondii, Eimeria tenella and Vitrella brassicaformis are PBANKA_0902300, PF3D7_1146800, TGGT1_239670, ETH2_1252400, and Vbra_10234, respectively.

      (C) The amino acid sequences of Regions 1 and 2 from P. berghei PFG and its homologs from other apicomplexan parasites in (A) were aligned using the ClustalW program in MEGA X. The positions at which all these sequences have identical amino acids are indicated by two asterisks, and positions with amino acid residues possessing the same properties are indicated by one asterisk.

      1. Figure 2: The Phenotype of Fd2 knockout should be characterized more comprehensively.

      It remains unclear whether ∆Fd2 parasite generate the same number of females but these are defective upon fertilization or whether there is also a decrease in the number of female gametocytes. Is the defect just post-fertilization and zygotes lyse or are there fewer fertilization events? If so is activation of female GCs effected?

      The number of male and female gametocytes should be quantified using sex-specific markers not affected by Fd2 knockout rather than providing a single image of each. The ability of ∆Fd2 GCs should also be evaluated.

      This is also important for the interpretation of Fig 2G. Is the down-regulation of the genes due to fewer female GCs or are the down-regulated genes only a subset of female-specific genes.

      Response: In PFG(-) parasites, the rate of conversion into zygotes of female gametocytes decreased, and zygotes had lost capacity for developing into ookinetes. This indicates that gametocyte development (i.e., the ability to egress the erythrocyte and to fertilize) and zygote development were both impaired. This phenotype is consistent with the observation that genes expressed in female gametocytes are broadly downregulated. PFG is a TF, and its disruption led to decreased expression of hundreds of female genes. Thus, the observed phenotype may be derived from combined decreased expression of these genes. We believe further detailed phenotypic analyses will not generate much novel information on this TF. Instead, RNA-seq data in PFG(-) parasites and the targetome have promise in helping to characterize the functions of this TF.

      1. Figure 3: what fraction of down-regulated genes have the Fd2 10mer motif?

      Response: Thank you for the question. We investigated the upstream binding motifs of these genes. Of the 279 significantly down-regulated genes (containing 165 targets), 161 genes harbor the motif (including nine-base motifs that lack one lateral base which is likely not essential for binding) in their upstream regions (within 1,200 bp from the first methionine codon). However, this result has not been described in the revised manuscript because it is more important whether these regions harbor PFG peaks (upstream motifs can exist without being involved in the binding of PFG).

      1. sAP2-FG (single) vs cAP2-FG (complex) nomenclature is confusing and possibly misleading since few TFs function in isolation and sAP2-FG likely functions in a complex that doesn't contain Fd2, possibly with another DNA binding protein that binds the TGCACA hexamer. The name for the distinct peaks should refer to the presence or absence of Fd2 in the complex, or maybe simply refer to them as complex A & B.

      Response: As shown in the DIP-seq analysis results, AP2-FG can bind the motif by itself. In contrast, AP2-FG must form a complex with PFG to bind to the ten-base motif. The complex and single forms are named according to this difference (the presence or absence of PFG) and used solely in its relation with PFG. We wrote “In the following, we refer to the form with PFG as cAP2-FG or the complex form, and the form without PFG as sAP2-FG or the single form.” We believe that the nomenclature has sufficient clarity. However, we have partially (underlined) revised certain sentences in the discussion section as follows.

      “As the expression of PFG increases via this mechanism, AP2-FG recruited by PFG (cAP2FG) increases and eventually becomes predominant in the transcriptional regulation of female gametocytes.”

      “This suggests that the promoter of the CCP2 gene, which is a target of PFG only, is still active in AP2-FG(-)820 parasites.”

      We recently reported that the TGCACA motif is a cis-activation motif in early gametocytes and important for both male and female gametocyte development. Thus we speculate that sAP2-FG is not involved in cis-activation by the TGCACA motif. The p-value of the six-base motif is indeed comparable to that of the five-base motif. However, the pvalue (calculated by Fisher’s exact test) in six-base motifs tend to be lower than that calculated in five-base motifs, because the population is much large. We speculate that there is a sequence-specific TF that may be expressed in early gametocytes and bind this motif, independently of AP2-FG.

      1. I compared the overlap of peaks in the 4 ChIP-seq data sets:

      90% of the Fd2 peaks are shared with AP2-FG (binding 24% of shared peaks is lost in ∆AP2FG)

      10% are bound by Fd2 alone (binding at 35% of Fd2 is lost in ∆AP2-FG)

      75% of Fd2 peaks are bound independently of AP2-FG

      47% of AP2-FG peaks shared with Fd2 (binding at 71% of shared peaks is lost in ∆Fd2) 53% of AP2-FG peaks are bound only by AP2-FG (but binding at 82% of AP2-FG only peaks is still lost in the ∆Fd2)

      Binding at 78% of all AP2-FG peaks is lost in ∆Fd2

      This indicates that much of AP2-FG binding in regions even in regions devoid of Fd2 still depends on Fd2. What are possible explanations for this?

      https://elife-rp.msubmit.net/eliferp_files/2023/04/03/00117573/00/117573_0_attach_10_17936_convrt.pdf

      Response: In the ChIP-seq of AP2-FG in the absence of PFG, 441 peaks are still called. This means that at least 441 binding sites for AP2-FG independent of PFG exist. This is a straightforward conclusion from our ChIP-seq data. On the other hand, simple deduction of peaks between two ChIP-seq experiments (AP2-FG peaks minus PFG peaks) is not a precise method for determining sAP2-FG. Peak-calling is independently performed in each ChIP-seq experiment. Thus, peaks remaining after the deduction between two experiments can still contain peaks that are actually common, but which are differentially picked up through the process of peak calling. Even when using data obtained by the same ChIP-seq experiment, markedly different numbers of peaks are called according to the conditions for peak calling (in contrast, common peaks between two independent experiments increase the reliability of the data). If wanting to identify sAP2-FG peaks via comparisons between AP2-FG peaks and PFG peaks, the reviewer has to increase the number of PFG peaks by reducing the peak-calling threshold until the number of overlapping peaks between AP2-FG and PFG are saturated, and then deduce the overlapping peaks from the AP2-FG peaks. However, as described above, for the purposes of estimating the number of sAP2-FG, it would be better to perform ChIP-seq of AP2-FG in the absence of PFG.

      1. Possible explanations of why recombinant Fd2 doesn't bind the TGCACA hexamer. It would also be good to note that the GCTCA AP2-FG motif found in Fig4G is now perfect match for the motif identified by protein binding microarray in Campbell et al.

      Response: It is not known what sequence recombinant PFG binds. The TGCACA motif is not enriched in PFG peaks. If the reviewer is referring to AP2-FG, our findings that the recombinant AP2 domain binds the five-base motif strongly suggests that other TFs recognize this motif. As described in our response to comment 9, we recently reported that TGCACA is a cis-activating sequence important for the normal development of both male and female gametocytes. Therefore, we currently speculate that this motif is a binding motif of other TFs and is independent of AP2-FG.

      We have mentioned the protein binding microarray data in the Results section as follows.

      “The most enriched motif matched well with the binding sequence of the AP2 domain of P. falciparum AP2-FG, which was reported by Campbell et al.”

      1. What might explain the strong enrichment for TGCACA in ChIPseq but when pulled down by AP2-FG DBD: another binding partner? requires more of AP2-DF than just DBD?

      Response: As described above in our response to comment 6, we have recently submitted a preprint studying the roles of the remodeler subunit PbARID in gametocyte development. We reported that the remodeler subunit is recruited to the six-base motif and that the motif is a novel cis-activation element for early gametocyte development. We speculate that a proportion of AP2-FG targets are also targets of a TF that recognizes this motif and recruits the remodeler subunit. These two TFs may be involved in the regulation of early gametocyte genes but function independently.

      1. Calling DNA pulldown with recombinant AP2-FG DNA-binding domain DNAImmunoprecipitation sequencing (DIP-seq) is confusing since there are no antibodies involved. Describing it directly as a pulldown of fragmented DNA will be clearer to the reader.

      Response: Thank you for the comment. We have also recognized this discrepancy. However we called the method DIP-seq because the original paper reporting this method used this name, wherein it did not use antibodies to capture the MBP-fusion recombinant protein. Our experiment was performed using essentially the same methods, and thus we retained the name.

      1. The legends and methods are very sparse and should include substantially more detail.

      Response: Thank you for the comment. We have revised the description of the FACS experimental method for clarity.

      1. BigWig files for all ChIPseq enrichment used for analysis in this study need to be provided.

      (two replicates each of : Fd2 in WT, Fd2 in ∆AP2-GF, AP2-FG in WT, AP2-FG in ∆Fd2)

      Response: We have deposited the BigWig files to GEO (GSE.226028 and GSE114096).

      1. Tables of ChIP data need to have both summits and peaks and need to list nearest gene. Also the ChIPseq peaks for Fd2 are surprisingly broad (ChIP peaks are very large, e.g. 68% of Fd2 peaks (dataset2) are greater than 1000kb) give its specificity for a long motif. Why is this?

      Response: We have revised Table S2 to include the nearest genes. We are unsure why peaks in the over 1000-bp peak region exist in such high proportions. However, this proportion was also high in our previous ChIP-seq data. Therefore, we speculate that this is a tendency of peak-calling by MACS2. We did not use these values in this paper. For example, targets were predicted using peak summits, and binding motifs were calculated using the 100-base regions around peak summits.

      1. Figure 5E: The positions of the 10mer and 5mer motifs in the promoter should be indicated as well as the length of the promoter. Moreover, mutation of just the 5bp motifs would be valuable to understand if 10mer is sufficient for expression of the reporter.

      Response: Thank you for the comment. We have revised the figure accordingly. The majority of female-specific promoters only harbor ten-base motifs. Thus the ten-base motif is sufficient for evaluating reporter activity (i.e., it would function without five-base motifs).

      1. How is AP2-FG expression affected in ∆Fd2 and vice versa?

      Response: According to our previous microarray data, PFG expression was not significantly downregulated by disruption of AP2-FG. This may be because PFG transcriptionally activates itself through a positive feedback loop after being induced by AP2-G. Similarly, according to our present study, AP2-FG expression was not downregulated by PFG disruption. This may be because AP2-FG is transcriptionally activated by AP2-G.

      1. The single cell data in Russell et al. could easily be used to indicate the order of expression.

      Response: Determining the expression order of gametocyte TFs via the single cell RNA-seq data from Russel et al. is difficult, because only a small number of parasite cells were considered to be in the early gametocyte stage in this study. This is because the parasites were cultured for 24h before the analysis. The analysis suggested by the reviewer may be possible via single cell RNA-seq, but the experiments must be performed with more focus on the early gametocyte stage.

      1. A discussion of the implication of P. falciparum transmission would be appreciated.

      Response: Thank you for the comment. We have added the following to the Discussion section:

      “P. falciparum gametocytes require 9-12 days to mature, which is much longer than that of P. berghei. Meanwhile, it has been reported that the ten-base motif is highly enriched in the upstream regions of female-specific genes also in P. falciparum. Thus, despite the difference in maturation periods, PFG is likely to play an important role in the transcriptional regulation of female P. falciparum gametocyte development."

      1. The lack of identifiable DNA binding domains in Fd2 is intriguing given the strong sequence-specificity. Do the authors think they have identified a new DNA-binding fold ?

      Alphafold of the orthologs with contiguous regions 1&2 might offer insight.

      Response: We speculate that these regions function as DNA binding domains. We performed analysis using Alfafold2 according to the comment. However, the predicted structure of the region was not similar to any other canonical DNA-binding domains. Thus, it may be a novel DNA-binding fold as the reviewer mentioned. Further studies such as binding assays using recombinant proteins would be necessary to confirm this, but thus far we have not successfully obtained the soluble proteins of these regions.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment:

      This important study advances the understanding of physiological mechanisms in deep-sea Planctomycetes bacteria, revealing unique characteristics such as the only known Phycisphaerae using a budding mode of division, extensive involvement in nitrate assimilation and release phage particles without cell death. The study uses convincing evidence, based on experiments using growth assays, phylogenetics, transcriptomics, and gene expression data. The work will be of interest to bacteriologists and microbiologists in general.

      Response: Thanks for the Editor’s and Reviewers’ positive comments, which help us improve the quality of our manuscript entitled “Physiological and metabolic insights into the first cultured anaerobic representative of deep-sea Planctomycetes bacteria” (paper#eLife-RP-RA-2023-89874). The comments are all valuable, and we have studied the comments carefully and have made corresponding revisions according to the suggestions. Revised portions are marked in blue in the modified manuscript.

      Please find the detailed responses as following.

      Public Reviews:

      Reviewer #1 (Public Review):

      The authors of the manuscript cultivated a Planctomycetes strain affiliated with Phycisphaerae. The strain was one of the few Planctomycetes from deep-sea environments and demonstrated several unique characteristics, such as being the only known Phycisphaerae using a budding mode of division, extensive involvement in nitrate assimilation, and being able to release phage particles without cell death. The manuscript is generally well-written. However, a few issues need to be more clearly addressed, especially regarding the identification and characterization of the phage.

      Response: Thanks for your positive comments. Please find the detailed responses as following.

      Reviewer #1 (Recommendations For The Authors):

      • Line 75-77, add a reference for this statement.

      Response: Thanks for your suggestion. We have added a reference (Fuerst and Sagulenko, 2011) for this statement in the revised manuscript (Line 77).

      References related to this response:

      Fuerst, J.A., and Sagulenko, E. Beyond the bacterium: planctomycetes challenge our concepts of microbial structure and function. Nat Rev Microbiol. 2011;9:403-413.

      • Line 124-134, add key statistics (such as ANI) of strain ZRK32 and KS4 to this section.

      Response: Thanks for your suggestion. We added the key statistics of strain ZRK32 and KS4, and described as “Based on the 16S rRNA sequence of strain ZRK32, a sequence similarity calculation using the NCBI server indicated that the closest relatives of strain ZRK32 were Poriferisphaera corsica KS4T (98.06%), Algisphaera agarilytica 06SJR6-2T (88.04%), Phycisphaera mikurensis NBRC 102666T (85.28%), and Tepidisphaera mucosa 2842T (82.94%). Recently, the taxonomic threshold for species based on 16S rRNA gene sequence identity value was 98.65% (Kim et al., 2014). Based on these criteria, we proposed that strain ZRK32 might be a novel representative of the genus Poriferisphaera. In addition, to clarify the phylogenetic position of strain ZRK32, the genome relatedness values were calculated by the average nucleotide identity (ANI), the tetranucleotide signatures (Tetra), and in silico DNA-DNA similarity (isDDH), against the genomes of strains ZRK32 and KS4. The ANIb, ANIm, Tetra, and isDDH values were 72.89%, 85.34%, 0.97385, and 20.90%, respectively (Table S1). These results together demonstrated the strain ZRK32 genome to be obviously below established ‘cut-off’ values (ANIb: 95%, ANIm: 95%, Tetra: 0.99, isDDH: 70%) for defining bacterial species, suggesting strain ZRK32 represents a novel strain within the genus Poriferisphaera.” in the revised manuscript (Lines 124-139).

      • Fig. 2A missing description for figure key.

      Response: Thanks for your comments. We modified the Figure 2A, shown as below:

      Author response image 1.

      Figure. 2. Growth assay and transcriptomic analysis of P. heterotrophicis ZRK32 strains cultivated in basal medium and rich medium.

      • Regarding the page released, could this be a membrane vesicle-engulfed phage? I would recommend checking "Spontaneous Prophage Induction Contributes to the Production of Membrane Vesicles by the Gram-Positive Bacterium Lacticaseibacillus casei BL23" and "Chronic Release of Tailless Phage Particles from Lactococcus lactis" for further references.

      Response: Thanks for your valuable comments. We carefully read these two papers and found that phage ZRK32 is most likely a membrane vesicle-engulfed phage. We added the corresponding description as “Moreover, it has recently been reported that the tailless Caudoviricetes phage particles are enclosed in lipid membrane and are released from the host cells by a nonlytic mechanism (Liu et al., 2022), and the prophage induction contributes to the production of membrane vesicles by Lacticaseibacillus casei BL23 during cell growth (da Silva Barreira et al., 2022). Considering that strain ZRK32 has a large number of membrane vesicles during cell growth (Figure S9), we speculated that Phage-ZRK32 might be a membrane vesicle-engulfed phage and its release should be related to membrane vesicles.” in the revised manuscript (Lines 381-388).

      References related to this response:

      Liu Y, Alexeeva S, Bachmann H, Guerra Martníez J.A, Yeremenko N, Abee T et al. Chronic release of tailless phage particles from Lactococcus lactis. Appl Environ Microbiol. 2022; 88: e0148321.

      Silva Barreira, D., Lapaquette, P., Novion Ducassou, J., Couté, Y., Guzzo, J., and Rieu, A. Spontaneous prophage induction contributes to the production of membrane vesicles by the gram-positive bacterium Lacticaseibacillus casei BL23. mBio. 2022;13:e0237522.

      • How were the reference sequences for Fig. S10-S13 retrieved, was it by blasting the phage gene against the entire NCBI database, or only the virus sequence within the NCBI? Please clarify this.

      Response: Thanks for your comments. The reference sequences for Fig. S10-S13 were retrieved by blasting the phage gene against the entire NCBI database. We clarified this as “The reference sequences of four AMGs encoding amidoligase, glutamine amidotransferase, gamma-glutamylcyclotransferase, and glutathione synthase were retrieved by blasting the phage gene against the entire NCBI database, respectively.” in the revised manuscript (Lines 444-447).

      Reviewer #2 (Public Review):

      Summary:

      Planctomycetes encompass a group of bacteria with unique biological traits, the compartmentalized cells make them appear to be organisms in between prokaryotes and eukaryotes. However, only a few of the Planctomycetes bacteria are cultured thus far, and this hampers insight into the biological traits of these evolutionarily important organisms. This work reports the methodology details of how to isolate the deep-sea bacteria that could be recalcitrant to laboratory cultivation, and further reveals the distinct characteristics of the new species of a deep-sea Planctomycetes bacterium, such as the chronic phage release without breaking the host and promote the host and related bacteria in nitrogen utilization. Therefore, the finding of this work is of importance in extending our knowledge of bacteria.

      Response: Thanks for your positive comments.

      Strengths:

      Through the combination of microscopic, physiological, genomics, and molecular biological approaches, this reports the isolation and comprehensive investigation of the first anaerobic representative of the deep-sea Planctomycetes bacterium, in particular in that of the budding division, and release phage without lysis of the cells. Most of the results and conclusions are supported by the experimental evidence.

      Response: Thanks for your positive comments.

      Weaknesses:

      1. While EMP glycolysis is predicted to be involved in energy conservation, no experimental evidence indicated any sugar utilization by the bacterium.

      Response: Thanks for your comments. We have previously tested the sugar utilization of strain ZRK32, and now added this description as “Consistent with the presence of EMP glycolysis pathway in strain ZRK32, we found that it could use a variety of sugars including glucose, maltose, fructose, isomaltose, galactose, D-mannose, and rhamnose (Table S2).” in the revised manuscript (Lines 281-284).

      1. "anaerobic representative" is indicated in the Title, the contrary, TCA in energy metabolism is predicted by the bacterium.

      Response: Thanks for your valuable comments. Currently, anaerobic microorganisms can use other alternative electron acceptors (such as sulfate reducers, nitrate reducers, iron reducers, etc) in place of oxygen for the TCA cycle. For example, Proteus mirabilis uses the whole oxidative TCA cycle without using oxygen as the final electron acceptor when it performs multicellular swarming (Alteri et al., 2012). In this study, all the genes involved in the TCA cycle were present in anaerobic strain ZRK32 and most of them are upregulated, thus we speculate that it might function through the complete TCA metabolic pathway to obtain energy. We added the related description as “Notably, when growing in the rich medium, the expressions of most genes involved in the TCA cycle and EMP glycolysis pathway in strain ZRK32 were upregulated (Figure 2B-D, Figure S5B and Figure S6), suggesting that strain ZRK32 might function through the complete TCA metabolic pathway and EMP glycolysis pathway to obtain energy for growth (Figure S8) (Zheng et al., 2021b). Consistent with the presence of EMP glycolysis pathway in strain ZRK32, we found that it could use a variety of sugars including glucose, maltose, fructose, isomaltose, galactose, D-mannose, and rhamnose (Table S2). As for the presence of TCA cycle in the anaerobic strain ZRK32, we propose that it might use other alternative electron acceptors (such as sulfate reducers, nitrate reducers, iron reducers, etc) in place of oxygen for the TCA cycle, as shown in other anaerobic bacteria (Alteri et al., 2012).” in the revised manuscript (Lines 277-287).

      References related to this response:

      Alteri CJ, Himpsl SD, Engstrom MD, Mobley HL. Anaerobic respiration using a complete oxidative TCA cycle drives multicellular swarming in Proteus mirabilis. mBio. 2012; 3(6): e00365-12.

      1. The possible mechanisms of the chronic phage release without breaking the host are not discussed.

      Response: Thanks for your valuable comments. The possible mechanism of the chronic phage release without breaking the host might be that it was enclosed in lipid membrane and released from the host cells by a nonlytic mechanism. We added the corresponding description as “Moreover, it has recently been reported that the tailless Caudoviricetes phage particles are enclosed in lipid membrane and are released from the host cells by a nonlytic mechanism (Liu et al., 2022), and the prophage induction contributes to the production of membrane vesicles by Lacticaseibacillus casei BL23 during cell growth (da Silva Barreira et al., 2022). Considering that strain ZRK32 has a large number of membrane vesicles during cell growth (Figure S9), we speculated that Phage-ZRK32 might be a membrane vesicle-engulfed phage and its release should be related to membrane vesicles.” in the revised manuscript (Lines 381-388).

      References related to this response:

      Liu Y, Alexeeva S, Bachmann H, Guerra Martníez J.A, Yeremenko N, Abee T et al. Chronic release of tailless phage particles from Lactococcus lactis. Appl Environ Microbiol. 2022; 88: e0148321. da Silva Barreira, D., Lapaquette, P., Novion Ducassou, J., Couté, Y., Guzzo, J., and Rieu, A. Spontaneous prophage induction contributes to the production of membrane vesicles by the gram-positive bacterium Lacticaseibacillus casei BL23. mBio. 2022;13:e0237522.

      Reviewer #2 (Recommendations For The Authors):

      • Have you tested whether strain ZRK32 uses any sugars? If not, why it uses EMP pathway to obtain energy?

      Response: Thanks for your comments. We have previously tested the sugar utilization of strain ZRK32, and now added this description as “Consistent with the presence of EMP glycolysis pathway in strain ZRK32, we found that it could use a variety of sugars including glucose, maltose, fructose, isomaltose, galactose, D-mannose, and rhamnose (Table S2).” in the revised manuscript (Lines 281-284).

      • Further discussion on possible mechanisms of the chronic phage release without breaking the host is expected.

      Response: Thanks for your valuable comments. The possible mechanism of the chronic phage release without breaking the host might be that it was enclosed in lipid membrane and released from the host cells by a nonlytic mechanism. We added the corresponding description as “Moreover, it has recently been reported that the tailless Caudoviricetes phage particles are enclosed in lipid membrane and are released from the host cells by a nonlytic mechanism (Liu et al., 2022), and the prophage induction contributes to the production of membrane vesicles by Lacticaseibacillus casei BL23 during cell growth (da Silva Barreira et al., 2022). Considering that strain ZRK32 has a large number of membrane vesicles during cell growth (Figure S9), we speculated that Phage-ZRK32 might be a membrane vesicle-engulfed phage and its release should be related to membrane vesicles.” in the revised manuscript (Lines 381-388).

      References related to this response:

      Liu Y, Alexeeva S, Bachmann H, Guerra Martníez J.A, Yeremenko N, Abee T et al. Chronic release of tailless phage particles from Lactococcus lactis. Appl Environ Microbiol. 2022; 88: e0148321.

      da Silva Barreira, D., Lapaquette, P., Novion Ducassou, J., Couté, Y., Guzzo, J., and Rieu, A. Spontaneous prophage induction contributes to the production of membrane vesicles by the gram-positive bacterium Lacticaseibacillus casei BL23. mBio. 2022;13:e0237522.

      • It is recommended that the writing is improved, including presentation style and grammar.

      Response: Thanks for your comments. We have invited an English native speaker (Dr. Diana Walsh from Life Science Editors, USA) to revise our manuscript, which we hope to meet your approval.

    1. Author Response

      We are delighted that eLife has assessed our study as a valuable contribution as well as appreciating the importance of working on asymptomatic reservoirs of P. falciparum in high transmission where not just children, but adolescents and adults harbor multiclonal infections. The constructive public reviews will serve to improve our manuscript.

      Detailed responses to referees’ comments and a revised manuscript are forthcoming. Here we make a provisional response to three key areas addressed by the referees:

      (1) census population size

      Referee 1 raises important questions although we respectfully disagree on the terminology we have adopted (of “census”) and on the unclear utility of the proposed quantity.

      We consider the quantity a census in that it is a total enumeration or count of the infections in a given population sample and over a given time period. In this sense, it gives us a tangible notion of the size of the parasite population, in an ecological sense, distinct from the formal effective population size used in population genetics. Given the low overlap between var repertoires of parasites (as observed in monoclonal infections), the population size we have calculated translates to a diversity of strains or repertoires. But our focus here is in a measure of population size itself. The distinction between population size in terms of infection counts and effective population size from population genetics has been made before for pathogens (see for example Bedford et al. 2011 for the seasonal influenza virus and for the measles virus) and is a clear one in the ecological literature for non-pathogen populations (Palstra et al. 2012).

      Both referees 1 and 2 point out that census population size will be sensitive to sample size. We completely agree with the dependence of our quantity on sample size. We used it for comparisons across time of samples of the same depth, to describe the large population size characteristic of high transmission, and persistent across the IRS intervention. Of course, one would like to be able to use this notion across studies that differ in sampling depth.

      Here, referee 1 makes an insightful and useful suggestion. It is true that we can use mean MOI, and indeed there is a simple map between our population size and mean MOI (as we just need to divide or multiply by sample size). We can do even more, as with mean MOI we can presumably extrapolate to the full sample size of the host population, or the population size of another sample in another location. What is needed for this purpose is a stable mean MOI relative to sample size. We can show that indeed in our study mean MOI is stable in that way, by subsampling to different depths of our original sample. We will include in the revision discussion of this point and result, which allows an extrapolation of the census population size to the whole population of hosts in the local area. We’ll also clarify the time denominator, as given the typical duration of infections, we expect our population size to be representative of a per-generation measure.

      Referee 2 suggests we adopt the term “census count” but as a census in our mind is a count we prefer to use “census”.

      Referee 3 considers the genetic data tracking parasite MOI and census changes gives the same result as prevalence which tracks infected hosts. Respectfully, we disagree and will provide an expanded response.

      (2) the importance of lineages (in response to referee 2)

      We do not think that lineages moving exclusively through a given type of host or “patch” is a requirement for enumerating the size of the total infections in such a subset. It is true that what we have is a single parasite population, but we are enumerating for the season the respective size in host classes (children and adults). This is akin to enumerating subsets of a population in ecological settings.

      We are also not clear on the concept of lineage for these highly recombinant parasites as we struggle to find highly related repertoires. In fact, we see the use of the var fingerprinting methodology as a means to capture changes in strain or var repertoires dynamics as a result of changing transmission conditions.

      (3) var methodology

      Comments and queries were made by all three referees about aspects of var methodology, including the Bayesian approach. These will be addressed in our full response.

      Here we respond to a very good point made by referee 2: “Thinking about the applicability of this approach to other studies, I would be interested in a larger treatment of how overlapping DBLa repertoires would impact MOIvar estimates. Is there a definable upper bound above which the method is unreliable? Alternatively, can repertoire overlap be incorporated into the MOI estimator?”

      There is no predefined threshold one can present a priori. Intuitively, the approach to estimate MOI would appear to breakdown as overlap moves away from extremely low, and therefore, for locations with lower transmission intensity. Interestingly, we have observed that this is not the case in our paper by Labbé et al. 2023 where we used model simulations in a gradient of three transmission intensities, from high to low. The original varcoding method performed well across the gradient. This may arise from a nonlinear and fast transition from low overlap to high overlap that is accompanied by the MOI transitioning quickly from primarily multiclonal (MOI > 1) to monoclonal (MOI = 1). This issue needs to be investigated further, including ways to extend the estimation to explicitly include the distribution of DBL repertoire overlap.

      References: Bedford T, Cobey S, Pascual, M. 2011. Strength and tempo of selection revealed in viral gene genealogies. BMC Evol Biol 11, 220. https://doi.org/10.1186/1471-2148-11-220

      Labbé F, He Q, Zhan Q, Tiedje KE, Argyropoulos DC, Tan MH, Ghansah A, Day KP, Pascual M. 2023. Neutral vs . non-neutral genetic footprints of Plasmodium falciparum multiclonal infections. PLoS Comput Biol 19 :e1010816. doi:doi.org/10.1101/2022.06.27.49780

      Palstra FP, Fraser DJ. 2012. Effective/census population size ratio estimation: a compendium and appraisal. Ecol Evol. Sep;2(9):2357-65. doi:10.1002/ece3.329.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This research advance arctile describes a valuable image analysis method to identify individual cells (neurons) within a population of fluorescently labeled cells in the nematode C. elegans. The findings are solid and the method succeeds to identify cells with high precision. The method will be valuable to the C. elegans research community.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this paper, the authors developed an image analysis pipeline to automatically identify individual neurons within a population of fluorescently tagged neurons. This application is optimized to deal with multi-cell analysis and builds on a previous software version, developed by the same team, to resolve individual neurons from whole-brain imaging stacks. Using advanced statistical approaches and several heuristics tailored for C. elegans anatomy, the method successfully identifies individual neurons with a fairly high accuracy. Thus, while specific to C. elegans, this method can become instrumental for a variety of research directions such as in-vivo single-cell gene expression analysis and calcium-based neural activity studies.

      The analysis procedure depends on the availability of an accurate atlas that serves as a reference map for neural positions. Thus, when imaging a new reporter line without fair prior knowledge of the tagged cells, such an atlas may be very difficult to construct. Moreover, usage of available reference atlases, constructed based on other databases, is not very helpful (as shown by the authors in Fig 3), so for each new reporter line a de-novo atlas needs to be constructed.

      We thank the reviewer for pointing out a place where we can use some clarification. While in principle that every new reporter line would need fair prior knowledge, atlases are either already available or not difficult to construct. If one can make the assumption that the anatomy of a particular line is similar to existing atlases (Yemini 2021,Nejatbakhsh 2023,Toyoshima 2020), the cell ID can be immediately performed. Even in the case that one suspects the anatomy may have changes from existing atlases (e.g. in the case of examining mutants), existing atlases can serve as a starting point to provide a draft ID, which facilitates manual annotation. Once manual annotations on ~5 animals are available as we have shown in this work (which is a manageable number in practice), this new dataset can be used to build an updated atlas that can be used for future inferences. We have added this discussion in the manuscript: “If one determines that the anatomy of a particular animal strain is substantially different from existing atlases, new atlases can be easily constructed using existing atlases as starting points.” (page 18).

      I have a few comments that may help to better understand the potential of the tool to become handy.

      1. I wonder the degree by which strain mosaicism affects the analysis (Figs 1-4) as it was performed on a non-integrated reporter strain. As stated, for constructing the reference atlas, the authors used worms in which they could identify the complete set of tagged neurons. But how senstiive is the analysis when assaying worms with different levels of mosaicism? Are the results shown in the paper stem from animals with a full neural set expression? Could the authors add results for which the assayed worms show partial expression where only 80%, 70%, 50% of the cells population are observed, and how this will affect idenfication accuracy? This may be important as many non-integrated reporter lines show high mosaic patterns and may therefore not be suitable for using this analytic method. In that sense, could the authors describe the mosaic degree of their line used for validating the method.

      We appreciate the reviewer for this comment. We want to clarify that most of the worms used in the construction of the atlas are indeed affected by mosaicism and thus do not express the full set of candidate neurons. We have added such a plot as requested (Figure 3 – figure supplement 2, copied below). Our data show that there is no correlation between the fraction of cells expressed in a worm and neuron ID correspondence. We agree with the reviewer this additional insight may be helpful; we have modified the text to include this discussion: “Note that we observed no correlation between the degree of mosaicism and neuron ID correspondence (Figure 3- figure supplement 2).” (page 10).

      Author response image 1.

      No correlation between the degree of mosaicism (fraction of cells expressed in the worm) and neuron ID correspondence.

      1. For the gene expression analysis (Fig 5), where was the intensity of the GFP extracted from? As it has no nuclear tag, the protein should be cytoplasmic (as seen in Fig 5a), but in Fig 5c it is shown as if the region of interest to extract fluorescence was nuclear. If fluorescence was indeed extracted from the cytoplasm, then it will be helpful to include in the software and in the results description how this was done, as a huge hurdle in dissecting such multi-cell images is avoiding crossreads between adjacent/intersecting neurons.

      For this work, we used nuclear-localized RFP co-expressed in the animal, and the GFP intensities were extracted from the same region RFP intensities were extracted. If cytosolic reporters are used, one would imagine a membrane label would be necessary to discern the border of the cells. We clarified our reagents and approach in the text: “The segmentation was done on the nuclear-localized mCherry signals, and GFP intensities were extracted from the same region.” (page21).

      1. In the same mater: In the methods, it is specified that the strain expressing GCAMP was also used in the gene expression analysis shown in Figure 5. But the calcium indicator may show transient intensities depending on spontaneous neural activity during the imaging. This will introduce a significant variability that may affect the expression correlation analysis as depicted in Figure 5.

      We apologize for the error in text. The strain used in the gene expression analysis did not express GCaMP. We did not analyze GCaMP expression in figure 5. We have corrected the error in the methods.

      Reviewer #2 (Public Review):

      The authors succeed in generalizing the pre-alignment procedure for their cell idenfication method to allow it to work effectively on data with only small subsets of cells labeled. They convincingly show that their extension accurately identifies head angle, based on finding auto fluorescent tissue and looking for a symmetric l/r axis. They demonstrate that the method works to identify known subsets of neurons with varying accuracy depending on the nature of underlying atlas data. Their approach should be a useful one for researchers wishing to identify subsets of head neurons in C. elegans, for example in whole brain recording, and the ideas might be useful elsewhere.

      The authors also strive to give some general insights on what makes a good atlas. It is interesting and valuable to see (at least for this specific set of neurons) that 5-10 ideal examples are sufficient. However, some critical details would help in understanding how far their insights generalize. I believe the set of neurons in each atlas version are matched to the known set of cells in the sparse neuronal marker, however this critical detail isn't explicitly stated anywhere I can see.

      This is an important point. We have made text modifications to make it clear to the readers that for all atlases, the number of entities (candidate list) was kept consistent as listed in the methods. In the results section under “CRF_ID 2.0 for automatic cell annotation in multi-cell images,” we added the following sentence: “Note that a truncated candidate list can be used for subse-tspecific cell ID if the neuronal expression is known” (page 3). In the methods section, we added the following sentence: “For multi-cell neuron predictions on the glr-1 strain, a truncated atlas containing only the above 37 neurons was used to exclude neuron candidates that are irrelevant for prediction” (Page 20).

      In addition, it is stated that some neuron positions are missing in the neuropal data and replaced with the (single) position available from the open worm atlas. It should be stated how many neurons are missing and replaced in this way (providing weaker information).

      We modified the text in the result section as follows: “Eight out of 37 candidate neurons are missing in the neuroPAL atlas, which means 40% of the pairwise relationships of neurons expressing the glr-1p::NLS-mcherry transgene were not augmented with the NeuroPAL data but were assigned the default values from the OpenWorm atlas” (page 10).

      It also is not explicitly stated that the putative identities for the uncertain cells (designated with Greek letters) are used to sample the neuropal data. Large numbers of openworm single positions or if uncertain cells are misidentified forcing alignment against the positions of nearby but different cells would both handicap the neuropal atlas relative to the matched florescence atlas. This is an important question since sufficient performance from an ideal neuropal atlas (subsampled) would avoid the need for building custom atlases per strain.

      The putative identities are not used to sample the NeuroPAL data. They were used in the glr-1 multi-cell case to indicate low confidence in manual identification/annotation. For all steps of manual annotation and CRF_ID predictions, we used real neuron labels, and the Greek labels were used for reporting purposes only. It is true that the OpenWorm values (40% of the atlas) would be a handicap for the neuroPAL atlas. This is mainly due to the difficulty of obtaining NeuroPAL data as it requires 3-color fluorescence microscopy and significant time and labor to annotate the large set of neurons. This is one reason to take a complementary approach as we do in this paper.

      Reviewer #1 (Recommendations For The Authors):

      1. Figure 3, there is a confusion in the legend relating to panels c-e (e.g. panel c is neuron ID accuracy but it is described per panel e in the legend.

      We made the necessary changes.

      1. Figure 3, were statistical tests performed for panels d-e? if so, and the outcome was not significant, then it might be good to indicate this in the legend.

      We have added results of statistical tests in the legend as the following sentence: “All distributions in panel d and e had a p-value of less than 0.0001 for one sample t-test against zero.” One sample t-tests were performed because what is plotted already represents each atlas’ differences to the glr-1 25 dataset atlas, we didn’t think the statistical analyses between the other atlases would add significant value.

      1. Figure 4, no asterisks are shown in the figure so it is possible to remove the sentence in the legend describing what the asterisk stands for.

      Thank you. We made the necessary changes.

      Reviewer #2 (Recommendations For The Authors):

      Comparison with deep learning approaches could be more nuanced and structured, the authors (prior) approach extended here combines a specific set of comparative relationship measurements with a general optimization approach for matching based on comparative expectations. Other measurements could be used whether explicit (like neighbor expectations) or learned differences in embeddings. These alternate measurements would both need to be extensively re-calibrated for different sets of cells but might provide significant performance gains. In addition deep learning approaches don't solve the optimization part of the matching problem, so the authors approach seems to bring something strong to the table even if one is committed to learned methods (necessary I suspect for human level performance in denser cell sets than the relatively small number here). A more complete discussion of these themes might better frame the impact of the work and help readers think about the advantages and disadvantages or different methods for their own data.

      We thank the reviewer for bringing up this point. We apologize perhaps not making the point clearer in the original submission. This extension of the original work (Chaudhary et al) is not changing the CRF-based framework, but only augmenting the approach with a better defined set of axes (solely because in multicell and not whole-brain datasets, the sparsity of neurons degrades the axis definition and consequently the neuron ID predictions). We are not fundamentally changing the framework, and therefore all the advantages (over registration-based approaches for example) also apply here. The other purpose of this paper is to demonstrate a couple of use-cases for gene expression analysis, which is common in studies in C. elegans (and other organisms). We hope that by showing a use-case others can see how this approach is useful for their own applications.

      We have clarified these points in the paper (page 18). “The fundamental framework has not been changed from CRF_ID 1.0, and therefore the advantages of CRF_ID outlined in the original work apply for CRF_ID 2.0 as well.”

      The atribution of anatomical differences to strain is interesting, but seems purely speculative, and somewhat unlikely. I would suspect the fundamentally more difficult nature of aligning N items to M>>N items in an atlas accounts for the differences in using the neuroPAL vs custom atlas here. If this is what is meant, it could be stated more clearly.

      It is important to note that the same neuron candidate list (listed in methods) was used for all atlases, so there is no difference among the atlases in terms of the number of cells in the query vs. candidate list. In other words, the same values for M and for N are used regardless of the reference atlas used.

      We have preliminary data indicating differences between the NeuroPAL and custom atlas. For instance, the NeuroPAL atlas scales smaller than the custom glr-1 atlas. Since direct comparisons of the different atlases are beyond the scope of this paper, we will leave the exact comparisons for future work. We suspect that the differences are from a combination of differences in anatomy and imaging conditions. While NeuroPAL atlas may not be exactly fitting for the custom dataset, it can serve as a good starting point for guesses when no custom atlases are available, as we have discussed earlier (response to Public Comments from Reviewer 1 Point 1). As explained earlier, we have added these discussions in the paper (see page 18).

      I was also left wondering if the random removal of landmarks had to be adjusted in this work given it is (potentially) helping cope with not just occasional weak cells but the systematic loss of most of the cells in the atlas. If the parameters of this part of the algorithm don't influence the success for N to M>>N alignment (here when the neuroPAL or OpenWorm atlas is used) this seems interesting in itself and worth discussing. Conversely, if these parameters were opitmized for the matched atlas and used for the others, this would seem to bias performance results.

      We may have failed to make this clear in the main text. As we have stated in our responses in the public review section, we do systematically limit the neuron labels in the candidate list to neurons that are known to be expressed by the promotor. The candidate list, which is kept consistent for all atlases, has more neurons than cells in the query, so it is always an N-to-M matching where M>N. We did not use landmarks, but such usage is possible and will only improve the matching.

      We have attempted to clarify these points in the manuscript. In the results section under “CRF_ID 2.0 for automatic cell annotation in multi-cell images,” we added the following sentence: “Note that a truncated candidate list can be used for subset-specific cell ID if the neuronal expression is known” (page 3). In the methods section, we added the following sentence: “For multi-cell neuron predictions on the glr-1 strain, a truncated atlas containing only the above 37 neurons was used to exclude neuron candidates that are irrelevant for prediction” (Page 20).

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this study, the authors examined the putative functions of hypothalamic groups identifiable through Foxb1 expression, namely the parvofox Foxb1 of the LHA and the PMd Foxb1, with emphasis on innate defensive responses. First, they reported that chemogenetic activation of Foxb1hypothalamic cell groups led to tachypnea. The authors tend to attribute this effect to the activation of hM3Dq expressed in the parvofox Foxb1 but did not rule out the participation of the PMd Foxb1 cell group which may as well have expressed hM3Dq, particularly considering the large volume (200 nl) of the viral construct injected. It is also noteworthy that the activation of the Foxb1hypothalamic cell groups in this experiment did not alter the gross locomotor activity, such as time spent immobile state. Thus, contrasts with the authors finding on the optogenetic activation of the Foxb1hypothalamic fibers projecting to the dorsolateral PAG. In the second experiment, the authors applied optogenetic ChR2-mediated excitation of the Foxb1+ cell bodies' axonal endings in the dlPAG leading to freezing and, in a few cases, bradycardia as well. The effective site to evoke freezing was the rostral PAGdl, and fibers positioned either ventral or caudal to this target had no response. Considering the pattern of Foxb1hypothalamic cell groups projection to the PAG, the fibers projecting to the rostral PAGdl are likely to arise from the PMd Foxb1 cell group, and not from the parvofox Foxb1 of the LHA. Here it is important to consider that optogenetic ChR2-mediated excitation of the axonal endings is likely to have activated the cell bodies originating these fibers, and one cannot ascertain whether the behavioral effects are related to the activation of the terminals in the PAGdl or the cell bodies originating the projection.

      Authors’ reply: We acknowledge and agree about the possibility of backpropagation in ChR2mediated terminal stimulation experiments. We have introduced a paragraph in the discussion section discussing this issue. In short, the observation of an opposing phenotype in ArchT3.0 animals indicates, that the ChR2-mediated phenotype is indeed Foxb1PAG projection specific. This is due to the fact, that the use of light-activated proton pumps for terminal stimulation can not induce backpropagation of an inhibitory effect to the soma. Potential downsides of the use of proton pumps in small compartments as e.g. in the axon are also discussed.

      Moreover, activation of PMd CCK cell group, which consists of around 90% of the PMd cells, evokes escape, and not freezing. According to the present findings, a specific population of PMd Foxb1 cells may be involved in producing freezing. In addition, only a small number of the animals with correct fiber placement presented sudden onset of bradycardia in response to the photostimulation. Considering the authors' findings, the Foxb1+ hypothalamic groups are likely to mediate behavioral responses related to innate defensive responses, where the parvofox Foxb1 of the LHA would be involved in promoting tachypnea and the PMd Foxb1group in mediating freezing and bradycardia. These findings are very interesting, and, at this point, they need to be tested in a scenario of real exposure to a natural predator.

      Authors’ reply: We fully agree with the proposed experiments. Due to the previously mentioned retirement of Prof. Celio and the concomitant expiration of licenses for animal experimentation we are prevented from conducting these experiments on our own. We have integrated a statement in the discussion, regarding these potential future experiments.

      Reviewer #2 (Public Review):

      The authors aimed to examine the role of a group of neurons expressing Foxb1 in behaviors through projections to the dlPAG. Standard chemogenetic activation or inhibition and optogentic terminal activation or inhibition at local PAG were used and results suggested that, while activation led to reduced locomotion and breathing, inhibition led to a small degree of increased locomotion.

      The observed effects on breathing are evident and dramatic. However, this study needs significant improvements in terms of data analysis and presentation and some of studies seem incomplete; and therefore the data may not yet support the conclusion.

      1. Fig.1 has no experimental data and needs to be replaced with detailed pictures from the viral injected mice showing the projections diagrammed.

      Authors’ reply: We believe that this graphic illustration is helpful to the reader to comprehend the spatial relationship between the parvafoxFoxb1 nucleus, the mammillary nuclei, and the PAG. In a previous study we have characterized the projections of the parvafoxFoxb1 nucleus in detail (using the same Foxb1-Cre mouse line as in the present study) and, in this regard, would like to refer Reviewer #2 to this publication (https://onlinelibrary.wiley.com/doi/10.1002/cne.24057).

      1. Fig. 3 needs control pictures and statistical comparison with different conditions in c-Fos. Also expression in other nearby regions needs to be presented to demonstrate the specificity of the expression.

      Authors’ reply: We have modified the original Fig. 3 with more pictures across all three conditions used in the chemogenetic experiments. Since the new figure now takes up a whole page, and because the data in this figure is for validation purpose of the DREADD experiments, we have decided to rather put it into the supplementary files. The figure is now labelled as “Supplementary File S1”. All figure and file numberings throughout the text have been adjusted accordingly.

      1. Fig. 5, a great effort has been made to illustrate the point that CCK and Foxb1 are differentially expressed. Why not just perform a double in situ experiment to directly illustrate the point?

      Authors’ reply: We have addressed this comment in the initial release of the eLife manuscript. In short, we agree that a double ISH experiment would have been an alternative approach, but would like to state that scRNAseq is a well established and valid method for this purpose.

      1. Fig. 7 data on optogenetic stimulation on immobility and breathing, since not all mice showed the same phenotype, what is the criterion for allocating these mice to hit or no hit groups? Given the dramatically reduced breathing and locomotion, what is the temperature response? More data needs to be gathered to support that this is a defense behavior.

      Authors’ reply: The criteria for allocation of animals to the experimental groups is described in section “Optogenetic modulation of Foxb1 terminals in the dlPAG induces immobility” and is based on the stereotaxic coordinates of the tips of the glass fiber implants. We did not perform any experiments, in which we recorded body temperatures or temperature preferences in optogenetic animals. Such experiments were outside the scope of the study. As mentioned in a previous comment above, we have added an additional paragraph to the discussion section regarding future investigations of these hypothalamic Foxb1 neurons during exposure to natural predators. Such experiments would certainly allow more insight into the defensive nature of the described phenotype.

      1. The authors claim to target dlPAG. However, in the picture shown in Fig. 8C, almost all PAG contains ChR2 fibers and it is likely all the fibers will be activated by light. Thus, as presented, the data does not support the claim of the specificity on dlPAG. Also c-Fos data needs to be presented on the degree of activation of downstream PAG neurons after light exposure.

      Authors’ reply: We attach the original image 8c, without arrows and indications, in which the localization of ChR2-positive fibers in the dlPAG is better visible. They are located exactly under the tip of the fiberoptic fiber. We do not know the functional characteristics of the post-synaptic PAG neurons and have not determined experimentally their downstream targets. Investigating the downstream target was outside the scope of the current publication.

      Author response image 1.

      1. Fig. 9 only showed one case. A statistical comparison needs to be presented.

      Authors’ reply: Our cardiovascular experiments are of exploratory and descriptive nature (i.e. pilot experiments). It was a conscious decision to not perform hypothesis tests on these experiments. We did not have enough mice to perform statistical tests with sufficient statistical power. Providing results from hypothesis tests on these data would lead to statistically unjustified conclusions. To clarify this issue, we have added a paragraph to the relevant results section.

      1. Optogentic terminal activation in the PAG will likely elicit back-propagation and subsequent activation of additional downstream brain sites of Foxb1 neurons. More experiments need to be done to assess this and as presented, the data does not support the role of PAG necessarily.

      Authors’ reply: Please see our answer to Reviewer #1 regarding the same issue.

      1. The authors claim negative data from PVH-Cre mice. More data need to be presented to make this case.

      Authors’ reply: We would like to refer to our answer to point 6) that was raised by Reviewer #2

      The conclusion, even as presented, adds to the known evidence of the PAG in the defense behavior.

      Reviewer #1 (Recommendations For The Authors):

      In the pharmacogenetic experiments, the authors need to clarify which Foxb1hypothalamic presented the activation of hM3Dq. It is important to know whether this activation-producing tachypnea was restricted to the parvofoxFoxb1 or also included the PMd Foxb1 group. It would be important to isolate the effect of the pharmacogenetic activation of each one of these Foxb1 hypothalamic cell groups.

      After determining which cell group would be involved in mediating this respiratory effect, it would be nice to discuss the possible pathways involved in this effect.<br /> In the optogenetic experiments, the authors should differentiate between the effects of the PAG projecting fibers from the PMd and those from the parvofox groups. As it stands, it seems that the freezing and bradycardia depend on projection from the PMd Foxb1 group to the rostral PAGdl. However, considering the large volume (200 nl) of the viral construct injected, both groups were likely to express channelrhodopsin, and it would be important if the authors could restrict the viral injections to each one of the Foxb1 hypothalamic cell groups.

      Authors’ reply: We fully agree with the suggestion, but due to the recent retirement of Prof. Celio we unfortunately not allowed to conduct any further animal experiments.

      The authors also reported that photoactivation ventral to the PAGdl, possibly in the PAGl did not yield any clear behavioral response. However, as pointed out in the discussion, a recent publication found that the parvofox Foxb1 projection to the lateral PAG drives social avoidance, and we were wondering whether there was any avoidance behavior during the photoactivation of the PAGl fibers.

      Authors’ reply: We did not conduct any social avoidance experiments ourselves. However, we did perform ultrasonic vocalization experiments (unpublished data) in which we optogenetically stimulated Foxb1+ terminals in the PAG. Due to experimental issues related to the age of the tested mice, we did not obtain conclusive results regarding the ultrasonic vocalizations. By a purely observational account, we did not observe any active avoidance during optogenetic stimulation, but rather a cessation of interaction. We are unable to judge whether this was more pronounced in the PAGl targeted mice or not.

      Another important point is that optogenetic ChR2-mediated excitation of the axonal endings is likely to activate the cell bodies originating these fibers, and one cannot ascertain whether the behavioral effects depend on the activation of the terminals in the PAGdl or the activation of the cell bodies originating these terminals. Note, in the present case, PMd cell bodies may also project elsewhere, such as the cuneiform nucleus, known to mediate freezing responses. To circumvent this problem, during photoactivation of the PAGdl terminals, the authors should inhibit the cell bodies originating these terminals.

      Authors’ reply: We would like to refer to the answer we provided above regarding the issue of backpropagation or ChR2-mediated phenotypes and projection-specificity.

      Another important issue is related to the fact that around 90% of the PMd express CCK (Wang et al., 2021), and previous work showed that activation of these cells yielded escape and not freezing (Wang et al., 2021). Although the authors claim that the single-cell RNA sequencing dataset reveals distinct Foxb1 expression in the PMd, these results derive from tissues collected in the posterior hypothalamus, not exactly restricted to the PMd. Therefore, it would be desirable if the authors could show CCK and Foxb1doulbe labeled PMd sections to evaluate the exact percentage of cells expressing either one of these peptides.

      Authors’ reply: The tissues for the scRNAseq data were obtained from hypothalamic tissues between stereotaxic coordinates of AP-2.54 to AP-3.16 (please see Fig. 1b in Mickelsen et al. 2020) and not purely from the posterior hypothalamic nucleus. These tissues hence include a large proportion of the PMd neurons. We would like to point out that the expression profile of the PMd cluster matches well with the ISH data from the Allen Brain Atlas that we have put together in "Supplementary File S6” (originally “Supplementary File S5”)

      The authors should also explain why only a small number of animals that received PAGdl photoactivation presented bradycardia. Moreover, they should also discuss the possible pathways mediating this effect. Here, it is important to point out that the cuneiform nucleus, as suggested by the authors as one possible way to mediate this effect, promotes sympathetic vasomotor activity (Verbene, 1995).

      We have added the sentence: “The projections of the cuneiform nucleus to the rostral ventrolateral medulla promote sympathetic vasomotor activity (Verberne 1995).” to the Discussion section.

      Reviewer #2 (Recommendations For The Authors):

      In this reviewer's view, this study needs substantial improvement:

      1. The writing is very sloppy and difficult to follow. There is no clear logic flow in the main text and the figures need substantial realigning for panels, additions of labelling etc.

      We have added the sentence.

      1. Fig. 6 the hot plate data is out of place and should be placed in supplementary or removed completely.

      Authors’ reply: We and others have previously shown that the parvalbumin+ population of the Parvafox nucleus is involved in nociceptive behavior. Hence, we believe it is of interest to show, that we do not see the same phenotype with the stimulation of the Foxb+ population of the parvafox nucleus. This data shows that the nociceptive component of the parvafox nucleus is confined to its parvalbumin+ population.

      1. The authors discussed social behavior data in the Discussion, but no such data is presented, which is very confusing.

      Authors’ reply: Indeed we did not perform any experiments to investigate social behavior. However, we address that the observed locomotive phenotype of optogenetic Foxb1+-terminals could have lead to a bias in the interpretation of the social behavior experiments published elsewhere by others.

      1. The authors discussed a great deal on potential differences between parvafox and PMd Foxb1 neurons, however, no clear data was presented to show a functional difference between them, which is also confusing.

      Authors’ reply: Even though investigations on the functional differences of parvafox and PMd Foxb1 neurons would be highly interesting, it was outside the scope of the current study. Due to the recent retirement of Prof. Celio, we are not allowed to perform any additional animal experiments.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This is an important study that leverages a human-chimpanzee tetraploid iPSC model to test whether cis-regulatory divergence between species tends to be cell type-specific. The evidence supporting the study's primary conclusion--that species differences in gene regulation are enriched in cell type-specific genes and regulatory elements--is compelling, although attention to biases introduced by sequence conservation is merited, and the case that is made for cell type-specific changes reflecting adaptive evolution is incomplete. This work will be of broad interest in evolutionary and functional genomics.

      Public Reviews:

      Reviewer #1 (Public Review):

      This study aims to identify gene expression differences exclusively caused by cis-regulatory genetic changes by utilizing hybrid cell lines derived from human and chimpanzee. While previous attempts have focused on specific tissues, this study expands the comparison to six different tissues to investigate tissue specificity and derive insights into the evolution of gene expression.

      One notable strength of this work lies in the use of composite cell lines, enabling a comparison of gene expression between human and chimpanzee within the same nucleus and shared trans factors environment. However, a potential weakness of the methodology is the use of bulk RNA-seq in diverse tissues, which limits the ability to determine cell-type-specific gene expression and chromatin accessibility regions.

      We agree that profiling single cells could lead to additional exciting discoveries. Although heterogeneity in cell types within samples will indeed reduce our power to detect cell-type-specific divergence, thankfully any heterogeneity will not introduce false positives, since our use of interspecies hybrids controls for differences in cell-type abundance. As a result, we think that the molecular differences we identified in this study represent a subset of the true cell-type specific cis-regulatory differences that would be identified with deep single-cell profiling. We have included a new paragraph in the discussion on future directions, highlighting the utility of single-cell profiling as an exciting future direction (lines 482-490): “In addition to following up on our findings on GAD1 and FABP7, there are other exciting future directions for this work. First, additional bulk assays such as those that measure methylation, chromatin conformation, and translation rate could lead to a better understanding of what molecular features ultimately lead to cell type-specific changes in gene expression. Furthermore, the use of deep single cell profiling of hybrid lines derived from iPSCs from multiple individuals of each species during differentiation could enable the identification of many more highly context-specific changes in gene expression and chromatin accessibility such as the differences in GAD1 we highlighted here. Finally, integration with data from massively parallel reporter assays and deep learning models will help us link specific variants to the molecular differences we identified in this study.”

      Another concern is the use of two replicates derived from the same pair of individuals. While the authors produced cell lines from two pairs of individuals in a previous study (Agloglia et al., 2021), I wonder why only one pair was used in this study. Incorporating interindividual variation would enhance the robustness of the species differences identified here.

      We agree that additional replicates, especially from lines from other individuals, would have improved the robustness of the species differences we identified. In our experience with these hybrid cells (as well as related work from many other labs), inter-species differences typically have much larger magnitudes than intra-species differences, so we expect that the vast majority of differences we identified would be validated with data from additional individuals. Unfortunately, differentiating additional cells and generating these data for this study would be cost-prohibitive. We now mention the use of additional replicates in lines 485-488 of the discussion: “Furthermore, the use of deep single cell profiling of hybrid lines derived from iPSCs from multiple individuals of each species during differentiation could enable the identification of many more highly context-specific changes in gene expression and chromatin accessibility such as the differences in GAD1 we highlighted here.”

      Furthermore, the study offers the opportunity to relate inter-species differences to trends in molecular evolution. The authors discovered that expression variance and haploinsufficiency score do not fully account for the enrichment of divergence in cell-type-specific genes. The reviewer suggests exploring this further by incorporating external datasets that bin genes based on interindividual transcriptomics variation as a measure of extant transcriptomics constraint (e.g., GTEx reanalysis by Garcia-Perez et al., 2023 - PMID: 36777183). Additionally, stratifying sequence conservation on ASCA regions, which exhibit similar enrichment of cell-type-specific features, using the Zoonomia data mentioned also in the text (Andrews et al., 2023 -- PMID: 37104580) could provide valuable insights.

      To address this, we used PhastCons scores computed from a 470-way alignment of mammals as we could not find publicly available PhastCons data from Zoonomia. When stratifying by the median PhastCons score of all sites in a peak, we observe very similar results to those obtained when stratifying by the constraint metric from the gnomAD consortium (see below). The one potential difference is that peaks in the top two bins have slightly weaker enrichment relative to the other bins when using PhastCons, but this is not the case when using gnomAD’s metric. We have elected to include this in the public review but not the manuscript as we are reluctant to add to the complexity of what is already complex analysis.

      Author response image 1.

      Finally, we think that comparisons of the properties of gene expression variance computed from ASE (as done by Starr et al.) and total expression (as done by Garcia-Perez et al.) is a very interesting, potentially complex question that is beyond the scope of this paper but an exciting direction for future work.

      Another potential strength of this study is the identification of specific cases of paired allele-specific expression (ASE) and allele-specific chromatin accessibility (ASCA) with biological significance.

      Prioritizing specific variants remains a challenge, and the authors apply a machine-learning approach to identify potential causative variants that disrupt binding sites in two examples (FABP7 and GAD1 in motor neurons). However, additional work is needed to convincingly demonstrate the functionality of these selected variants. Strengthening this section with additional validation of ASE, ASCA, and the specific putative causal variants identified would enhance the overall robustness of the paper.

      We strongly agree with the reviewer that additional work validating our results would be of considerable interest. We hope to perform follow-up experiments in the future. For now, we have been careful to present these variants only as candidate causal variants.

      Additionally, the authors support the selected ASE-ASCA pairs by examining external datasets of adult brain comparative genomics (Ma et al., 2022) and organoids (Kanton et al., 2019). While these resources are valuable for comparing observed species biases, the analysis is not systematic, even for the two selected genes. For example, it would be beneficial to investigate if FABP7 exhibits species bias in any cell type in Kanton et al.'s organoids or if GAD1 is species-biased in adult primate brains from Ma et al. Comparing these datasets with the present study, along with the Agoglia et al. reference, would provide a more comprehensive perspective.

      We agree with the reviewer’s suggestion that investigating GAD1 and FABP7 expression in other datasets is worthwhile. Unfortunately, the difference in human vs. chimpanzee organoid maturation rates and effects of culture conditions in Kanton et al. makes it unsuitable for plotting the expression of FABP7 as its expression is highly dependent on neuronal maturation. We therefore plotted bulk RNAseq data from multiple cortical regions from Sousa et al. 2017 (see below). This corroborates our claim that FABP7 has human-biased expression in adult humans compared to chimpanzees and rhesus macaques. We also investigated expression of GAD1 in the Ma et al. data as the reviewer suggested.

      Author response image 2.

      While there are differences in GAD1 expression between adult humans and chimpanzees, they are unlikely to be linked to the HAR we highlight as it is likely a transiently active cis-regulatory element (see below). In addition, some cell types seem to have chimpanzee-derived changes in GAD1 expression (e.g. SST positive neurons) whereas others seem to have human-derived changes in GAD1 expression (e.g. LAMP5 positive neurons).

      Author response image 3.

      While these are potentially interesting observations, we think that their inclusion in the manuscript might distract from our emphasis on the cell type-specific and developmental stage-specific of the changes in FABP7 and GAD1 expression we observe so we have not included them in the manuscript.

      The use of the term "human-derived" in ASE and ASCA should be avoided since there is no outgroup in the analysis to provide a reference for the observed changes.

      We agree with the reviewer that the term human-derived should be used with care and have changed the phrasing of line 230 to “human-chimpanzee differences in expression”. With regard to FABP7 we think that our analysis of the Ma et al. data—which includes data from rhesus macaques as an outgroup—justifies our use of “human-derived” in lines 360 and 457. As chimpanzee and macaque expression of FABP7 are similar but human expression is quite different, the most parsimonious explanation for our observations is that FABP7 upregulation occurred in the human lineage.

      Finally, throughout the paper, the authors refer to "hybrid cell lines." It has been suggested to use the term "composite cell lines" instead to address potential societal concerns associated with the term "hybrid," which some may associate with reproductive relationships (Pavlovic et al., 2022 -- PMID: 35082442). It would be interesting to know the authors' perspective on these concerns and recommendations presented in Pavlovic et al., given their position as pioneers in this field.

      We appreciate this question. Whether to refer to our fused cells as “hybrids” or not was indeed a question we considered at great length, starting from the very beginning of this project in 2015. From consultations with multiple bioethicists-- both formal and informal-- we have long been aware of the possibility of misunderstanding based on the word “hybrid”. However, we felt this possibility was outweighed by the long and well-established history of other scientists referring to interspecies fused cells as hybrids. This convention-- which is based on hundreds of papers about heterokaryons, somatic cell hybrids, and radiation hybrids-- goes back over 50 years (e.g. Bolund et al, Exp Cell Res 1969). Soon after the establishment of this nomenclature, cell fusion became widespread and ever since then it has become commonplace to generate interspecies hybrid cells from animals, plants and fungi.

      It is also important to note that in over two years since we published the first two papers on humanchimpanzee fused cells, we have been unable to find any misunderstanding of our use of the term “hybrid”. We have searched blogs, media articles, and social media, all with no evidence of misunderstanding. Therefore, in the current manuscript, rather than creating confusion by renaming a well-established approach, we have opted to clearly and prominently define hybrid cells: in the abstract of our paper we introduce the hybrid cells as “the product of fusing induced pluripotent stem (iPS) cells of each species in vitro.”

      Reviewer #2 (Public Review):

      In this paper, Wang and colleagues build on previous technical and analytical achievements in establishing tetraploid human-chimpanzee hybrid iPSCs to investigate the cell type-specificity of allelespecific expression and allele-specific chromatin accessibility across six differentiated cell types (here, "allele-specific" indicates species differences with a cis-regulatory basis). The combined body of work is remarkable in its creativity and ambition and has real potential for overcoming major challenges in understanding the evolutionary genetics of between-species differences. The present paper contributes to these efforts by showing how differentiated cells can be used to test a long-standing hypothesis in evolutionary genetics: that cis-regulatory changes may be particularly important in divergence because of their potential for modularity.

      In my view, the paper succeeds in making this case: allele (species)-specific expression (ASE) and allelespecific chromatin accessibility (ASCA) are enriched in genes asymmetrically expressed in one cell type, and many cases of ASE/ASCA are cell type-specific. The authors do an excellent job showing that these results are robust across a set of possible analysis decisions. It is somewhat less clear whether these enrichments are primarily a product of relaxed constraint on cell type-specific genes or primarily result from positive selection in the human or chimp lineage. While the authors attempt to control for constraint using several variables (variance in ASE in humans and the sequence-based probability of haploinsufficiency score, pHI), these are imperfect proxies for constraint. For the pHI scores, enrichments for ASE also appear to be strongest in the least constrained genes. Overall, the relative role of relaxation of constraint versus positive selection is unresolved, although the manuscript's language leans in favor of an important role for selection.

      We agree with the reviewer and apologize for the wording that indeed focused more on positive selection than relaxed constraint. We have added language clarifying that our stance is that our analyses suggest some role for positive selection, but that we do not claim that positive selection plays a larger role than reduced constraint (lines 432-437): “Overall, this suggests that broad changes in expression in cell type-specifically expressed genes may be an important substrate for evolution but it remains unclear whether positive selection or lower constraint plays a larger role in driving the faster evolution of more cell type-specifically expressed genes. Future work will be required to more precisely quantify the relative roles of positive selection and evolutionary constraint in driving changes in gene expression.”

      The remainder of the manuscript draws on the cell type-specific ASE/ASCA data to nominate candidate genes and pathways that may have been important in differentiating humans and chimpanzees. Several approaches are used here, including comparing human-chimp ASE to the distribution of ASE observed in humans and investigating biases in the direction of ASE for genes in the same pathway. The authors also identify interesting candidate genes based on their role in development or their proximity to human accelerated regions (where many changes have arisen on the human lineage in otherwise deeply conserved sequence) and use a deep neural network to identify sequence changes that might be causally responsible for ASE/ASCA. These analyses have value and highlight potential strategies for using ASE/ASCA and hybrid cell line data as a hypothesis-generating tool. Of course, the functional follow-up that experimentally tested these hypotheses or linked sequence/expression changes in the candidate pathways to organismal phenotype would have strengthened the paper further- but this is a lot to ask in an already technically and analytically challenging piece of work.

      We thank the reviewer for the kind words and strongly agree that follow-up experiments and orthogonal analyses will be key in validating our results and establishing links to human-specific phenotypes.

      As a minor critique, the present paper is very closely integrated with other manuscripts that have used the hybrid human-chimp cell lines for biological insight or methods development. Although its contributions make it a strong stand-alone contribution, some aspects of the methods are not described in sufficient detail for readers to understand (even on a general conceptual level) without referencing that work, which may somewhat limit reader understanding.

      We agree with the points the reviewer raises regarding the clarity of our methods. We have amended several sections to provide more conceptual information while pointing the reader to other publications for the technical details. For convenience, we include the text here as well as in the new draft.

      Lines 207-214 now provide more intuition for the method used to detect lineage-specific selection: “Next, we sought to use our RNA-seq data to identify instances of lineage-specific selection. In the absence of positive selection, one would expect that an approximately equal number of genes in a pathway would have human-biased vs. chimpanzee-biased ASE. Significant deviation from this expectation (as determined by the binomial test) rejects the null hypothesis of neutral evolution, instead providing evidence of lineage-specific selection on this pathway. Using our previously published modification of this test that incorporates a tissue-specific measure of constraint on gene expression, we detected several signals of lineage-specific selection, some of which were cell type-specific (Starr et al., 2023, Additional file 2).” This is also reflected in the Methods in lines 729-731: “Positive selection on a gene set is only inferred if there is statistically significant human- or chimpanzee-biased ASE in that gene set (using an FDR-corrected p-value from the binomial test).”

      Reviewer #3 (Public Review):

      The authors utilize chimpanzee-human hybrid cell lines to assess cis-regulatory evolution. These hybrid cell lines offer a well-controlled environment, enabling clear differentiation between cis-regulatory effects and environmental or other trans effects.

      In their research, Wang et al. expand the range of chimpanzee-human hybrid cell lines to encompass six new developmental cell types derived from all three germ layers. This expansion allows them to discern cell type-specific cis-regulatory changes between species from more pleiotropic ones. Although the study investigates only two iPSC clones, the RNA- and ATAC-seq data produced for this paper is a valuable resource.

      The authors begin their analysis by examining the relationship between allele-specific expression (ASE) as a measure of species divergence and cell type specificity. They find that cell-type-specific genes exhibit more divergent expression. By integrating this data with measures of constraint within human populations, the authors conclude that the increased divergence of tissue-specific genes is, at least in part, attributable to positive selection. A similar pattern emerges when assessing allele-specific chromatin accessibility (ASCA) as a measure of divergence of cis-regulatory elements (CREs) in the same cell lines.

      By correlating these two measures, the authors identify 95 CRE-gene pairs where tissue-specific ASE aligns with tissue-specific ASCA. Among these pairs, the authors select two genes of interest for further investigation. Notably, the authors employ an intriguing machine-learning approach in which they compare the inferred chromatin state of the human sequence with that of the chimpanzee sequence to pinpoint putatively causal variants.

      Overall, this study delves into the examination of gene expression and chromatin accessibility within hybrid cell lines, showcasing how this data can be leveraged to identify potential causal sequence differences underlying between-species expression changes.

      We appreciate this assessment.

      I have three major concerns regarding this study:

      1. The only evidence that the cells are indeed differentiated in the right direction is the expression of one prominent marker gene per cell type. Especially for the comparison of conservation between the differentiated cell types, it would be beneficial to describe the cell type diversity and the differentiation success in more detail.

      We appreciate this assessment. We agree that evidence beyond a single marker gene is necessary to demonstrate that the differentiations were successful and that a discussion of the limitations of these differentiations in the manuscript is worthwhile. We included figures showing additional marker genes and a thorough discussion of the differentiations in the supplement. For convenience, we have copied the supplemental figure and text here:

      “Before continuing with the analysis, we tested whether the differentiations were successful and contained primarily our target cell types. The very low expression of NANOG, a marker for pluripotency, across all differentiations indicates that the samples contain very few iPSCs (Agoglia et al., 2021). For cardiomyocytes (CM), NKX2-5, MYBPC3, and TNNT2 definitively distinguish CM from other heart cell types and their high expression indicates successful differentiations (Burridge et al., 2014). For motor neurons, the high expression of ELAVL2, a pan-neuronal marker, indicates a high abundance of neurons in the sample (Mickelsen et al., 2019). The expression of ISL1 and OLIG2 further demonstrates that these are motor neurons and not other types of neurons (Maury et al., 2015). For retinal pigment epithelium (RPE), the combined expression of MITF, PAX6, and TYRP1 provides strong evidence that the differentiations were successful in producing RPE cells (Sharma et al., 2019). For skeletal muscle, the very high expression of MYL1, MYLPF, and MYOG indicates that these samples contain a high proportion of skeletal muscle cells (Chal et al., 2016). In general, all these populations of cells contain some proportion of progenitors as there is detectable expression of MKI67 in all samples.

      The low expression of ALB (a marker for mature hepatocytes) and the high expression of TTR and GPC3 (markers for hepatocyte progenitors) combined with the high expression of HNF1B indicate that the bulk of the cells in the HP samples are hepatocyte progenitors rather than mature hepatocytes or endoderm cells, although there are likely some endoderm cells and immature hepatocytes in the sample (Hay et al., 2008; Mallanna & Duncan, 2013). Similarly, the combined expression of PDX1 and NKX6-1 and the low expression of NEUROG3 (a marker of endocrine progenitors which differentiate from pancreatic progenitors) in the PP samples indicates that these primarily contain pancreatic progenitors but likely contain some endocrine progenitors and endoderm cells (Cogger et al., 2017; Korytnikov & Nostro, 2016).

      Notably, HP and PP are closely related cell types that are derived from the same lineage. Indeed, heterogeneous multipotent progenitors can contribute to both the adult liver and adult pancreas in mice (Willnow et al., 2021). Progenitors that express PDX1 (often used as a marker for the pancreatic lineage) can differentiate into hepatocytes (Willnow et al., 2021). As a result, some overlap in the transcriptomic signature of both cell types is expected and we cannot rule out that the HP samples contain cells that could differentiate into pancreatic cells or that the PP samples contain cells that could differentiate into hepatocytes. However, the expression of NKX6-1 and GP2, markers for pancreatic progenitors, in the PP samples but not the HP samples indicates that these two populations of cells are distinct. Overall, the similarity of PP and HP likely explains the lower number of cell type-specific genes and genes showing cell type-specific ASE for these cell types. This similarity does not alter the conclusions presented in the main text.”

      Author response image 4.

      Author response image 5.

      Marker gene expression in different cell types. In order, the panels show: a marker for pluripotency, a marker gene for dividing cells, marker genes for cardiomyocytes, marker genes for hepatocytes and hepatocyte progenitors, marker genes for motor neurons, marker genes for pancreatic progenitors and more mature pancreatic cell types, marker genes for retinal pigment epithelial cells, and marker genes for skeletal myocytes. Hepatocyte progenitors and pancreatic progenitors generally show similar gene expression profiles. TPM: transcript per million.

      1. Check for a potential confounding effect of sequence similarity on the power to detect ASE or ASCA.

      We agree that checking for confounding by power to detect ASE or ASCA would increase confidence in our results. We have added supplementary figures 29-33 to show the results as well as a discussion of these figures in the text (lines 318-326):

      “Finally, it is possible that CREs and genes that are less conserved will have more SNPs, and therefore more power to call ASCA and ASE, leading to systematically biased estimates. There is a weak positive correlation between the number of SNPs and the -log10(FDR) for ASE and a weak negative or no correlation for ASCA (Supp Fig. 29). Similarly, we observe a weak relationship between the number of SNPs in CREs or genes and absolute log fold-change estimates (Supp Fig. 30). Although the relationship between the number of SNPs and ASE/ASCA is weak, we confirmed that cell type-specific genes and peaks are still strongly enriched for ASE and ASCA when stratifying by number of SNPs (Supp Fig. 31-32). Overall, our analysis suggests that the result that more cell type-specific genes and CREs are more evolutionarily diverged is robust to a variety of possible confounders.”

      Author response image 6.

      Relationship between number of SNPs and -log10(FDR) in a) ASE and -log10(pvalue) b) ASCA. These scatter plots show the relationship between the number of SNPs in a gene or peak and the -log10(FDR) for ASE or ASCA. Genes with significant ASE (FDR < 0.05) and peaks with significant ASCA (binomial p-value < 0.05) were annotated as blue dots, and all other genes and peaks were annotated as gray dots. All genes in each cell type in RNA-seq are shown. For clarity, the few outlier peaks with more than 200 SNPs are excluded from these plots.

      Author response image 7.

      Relationship between number of SNPs and absolute log2 fold-change in a) ASE and b) ASCA. These scatter plots show the relationship between the number of SNPs in a gene or peak and the estimated absolute log2 fold-change for ASE or ASCA. Genes with significant ASE (FDR < 0.05) and peaks with significant ASCA (binomial p-value < 0.05) were annotated as blue dots, and all other genes and peaks were annotated as gray dots. All genes in each cell type in RNA-seq are shown. For clarity, the few outlier peaks with more than 200 SNPs are excluded from these plots.

      Author response image 8.

      Cell type-specifically expressed genes are enriched for genes with ASE when stratifying by the number of SNPs per gene. a) Results when SKM is included. Genes were put into five bins with an equal number of genes in each bin. Genes with the fewest SNPs are in the 0-20% bin and genes with the most SNPs are in the 80-100% bin. Significance (using the Wald test) is indicated by asterisks where *** indicates p < 0.005, ** indicates p < 0.01, and * indicates p < 0.05. b) The same as in (a) but excluding SKM.

      Author response image 9.

      Cell type-specific peaks are enriched for ASCA when stratifying by the number of SNPs per peak. a) Peaks with an absolute log2 fold-change greater than or equal to 0.5 were called as having ASCA. Peaks were put into five bins with an equal number of peaks in each bin. Peaks with the fewest SNPs are in the 0-20% bin and genes with the most SNPs are in the 80-100% bin. Significance (using the Wald test) is indicated by asterisks where *** indicates p < 0.005, ** indicates p < 0.01, and * indicates p < 0.05. b) The same as in (a) but peaks with a binomial p-value less than or equal to 0.05 were called as having ASCA.

      1. In the last part the authors showcase 2 examples for which the log2 fold changes in chromatin state scores as inferred by the machine learning model Sei are used. This is an interesting and creative approach, however, more sanity checks on this application are necessary.

      We agree with the reviewer about the importance of sanity checks and apologize for omitting these from the manuscript. Below we highlight several such checks from previous publications:

      In the original Sei paper (Chen et al. 2022), the authors included several tests of their model’s ability to predict the effects on individual genetic variants. Using eQTL data from GTEx, they found that variants predicted to increase enhancer activity were more likely to be up-regulating eQTLs, and those predicted to increase polycomb repression had the expected repressive effect. These relationships became stronger when restricting the analysis only to fine-mapped eQTLs with >95% posterior probabilities of causality. Chen et al. also found that previously known disease-causing noncoding variants from the Human Gene Mutation Database were far more likely to reduce predicted enhancer/promoter activity than matched variants not linked to any disease.

      In addition, we note that a similar approach to ours was recently used to analyze all HARs and included considerable efforts to validate the utility of the Sei predictions in identifying causal variants (Whalen et al. 2023 in Neuron). For example, Whalen et al. found that the Sei output correlated with the effects of genetic variants on expression in a massively parallel reporter assay. They also found that the effect sizes predicted by Sei were much higher for variants in HARs than polymorphic variants in the human population, which is consistent with the idea that variants in HARs lie in highly conserved bases that are more likely to disrupt cis-regulatory elements. Finally, Whalen et al. found that effects on chromatin state predicted by Sei were generally highly correlated across tissues, supporting our approach that leverages all Sei outputs regardless of which cell type or tissue they correspond to. Overall, we think that Sei is a potentially powerful way to prioritize causal variants and that improved machine learning models trained on more extensive and context-specific data will be even more powerful.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The study isolated extracellular vesicles (EV) from healthy controls (HCs) and Parkinson patients (PwP), using plasma from the venous blood of non-fasting people. Such EVs were characterized and validated by the presence of markers, their size, and their morphology. The main aim of the manuscript is to correlate the presence of synaptic proteins, namely SNAP-25, GAP-43, and SYNAPTOTAGMIN-1, normalized with HSP70, with the clinical progression of PwP. Changes in synaptic proteins have been documented in the CSF of Alzheimer's and Parkinson's patients. The demographics of participants are adequately presented.

      • One important limiting, as well as puzzling aspect, is the fact that authors did not find differences between groups at the beginning of the study nor after one year, after age and sex adjustment.

      Response: Thanks for your comments. We acknowledge your observation that the absence of a discernible difference in plasma EV synaptic protein levels between the PD and control subjects constitutes a significant limitation of our study. This outcome could be attributed to the fact that the controls were recruited from the neurology outpatient clinic, representing a group that could be considered "sub-healthy." Moreover, these individuals are not exempt from aging-related neurodegenerative processes. Considering that our PD subjects are in the early stages of the disease (with a mean disease duration of less than 3 years) and that synaptic dysfunction is a broader indicator rather than specific to PD, these factors could collectively contribute to the lack of distinction between the PD and control groups.

      However, our primary intention was also to explore the potential of plasma EV synaptic proteins as predictive markers for disease progression in PD. In this regard, we have identified their applicability within the current PD cohort. We are committed to conducting further follow-up with these study subjects over an extended duration to delve deeper into these findings.

      We revised the following statement in the discussion part to address this issue as following “Additionally, synaptic dysfunction is a frequently observed phenomenon in several neurological diseases, and it is not exclusive to PD. Consequently, the HC group in our current study may have included individuals with coexisting neurological conditions, potentially explaining the lack of a significant difference between the PD group and the HCs. However, this approach also illuminates the significance of synaptic dysfunction in the advancement of PD. This insight can be invaluable for monitoring disease progression, particularly in the context of clinical trials focused on disease modification.”

      • Tables in general are hard to follow. Specifically, Table 2 does not convey a clear message nor in the text of the Table itself, and the per 100% of change needs to be explained in the corresponding legend.

      Response: Thanks for your comment. In Table 2, our aim was to demonstrate the association between the change of plasma EV synaptic proteins with the change of clinical severity, and presented as coefficient (p value). We apologize for any prior ambiguity in the main text's description of these results and have since made revisions to enhance clarity.

      Regarding the "per 100% change," this is due to the quantification of plasma EV synaptic proteins being based on a semi-quantitative Western blot method. Each measurement was normalized by the average baseline plasma synaptic protein levels of healthy controls (HCs). The term "per 100% change" denotes the increase or decrease in plasma EV synaptic protein abundance relative to the average baseline levels observed in healthy controls. We apologize for any confusion caused and removed this term. In addition, we rephrased the statement to ensure better understanding and readability in the Table legend of revised manuscript as following “The association between the change of plasma EV synaptic proteins abundance (between baseline and follow-up) with the change of clinical severity in motor and cognitive domains (between baseline and follow-up) in people with Parkinson’s disease. A generalized linear model was employed and the data was presented as coefficient (p value).”

      • It is only when PwP were classified as a first quartile that a significantly greater deterioration was found. However, in the case of tremor, the top 25% had values going from 0.46-0.47 to 0.32-0.35, whereas the lower three quarters went from 0.33-0.34 to 0.27-0.28 depending on the protein analyzed. This needs to be clarified in the text.

      Response: Thanks for your comments. As per the unified Parkinson's disease rating score (UPDRS), a higher score indicates greater severity of symptoms. Regarding tremor, we observed a general trend of improvement in both groups. PwP with elevated baseline plasma EV proteins had a trendy of worse tremor score at baseline, and the improvement was significantly better than the rest of PwP. This improvement seems to contradict the progressive nature of PD, and one possible explanation could be the alleviation of symptoms due to medication usage. The assessment of motor symptoms took place within the hospital setting, where we refrained from requesting patients to withhold their anti-PD medications due to concerns about safety issues such as falls. Consequently, certain motor symptoms might have been effectively controlled by the anti-PD medication. Traditionally, symptoms like tremor and rigidity (as reflected by the akinetic rigidity score) respond well to medications, while postural instability and gait disturbance (PIGD) are less responsive. In our cohort, we noted an improvement in tremor scores and stability in akinetic rigidity (AR) scores. Conversely, PD patients with higher baseline plasma EV synaptic protein levels exhibited notable progression in PIGD scores. These findings have been documented in the results section and discussed comprehensively within the revised manuscript as following “On the other hand, the evaluation of motor symptoms occurred in a hospital setting where we did not ask patients to stop taking their anti- PD medications due to safety concerns like the risk of falls. As a result, specific motor symptoms, particularly tremor and AR, which are more sensitive to medication compared to PIGD, may have been effectively managed by the anti-PD medications. This could potentially explain the improvement in tremor observed between the baseline and one-year follow-up, especially among PwP with elevated baseline plasma EV synaptic proteins.”

      • Table 3 is hard to read and some of the values seem repetitive, especially for tremor, AR, and PIGD. It looks as if Figure 2 represents the same information as Table 3.

      Response: Thanks for your information. We have ensured the accuracy of the results presented in Table 2. While some of the entries may appear similar, they do indeed possess distinct differences.

      To enhance readability, we streamlined the information in Table 3 by removing the p-values from the intra-group comparisons between baseline and the 1-year follow-up within each domain. We retained the original p-values for trend related to the inter-group comparisons for changes. Detailed information has been relocated to the supplementary section of the revised manuscript. In Figure 2, we illustrated the relationship between baseline plasma extracellular vesicle (EV) synaptic protein levels and the clinical assessment parameters during follow-up in patients with Parkinson's disease (PwP). This portrayal is distinct from the information depicted in Table 3.

      If you had concerns about the resemblance between Table 3 and Figure 3, please note that the values in Table 3 represent raw scores, while the values in Figure 3, namely the estimated marginal means, are the "adjusted" scores for UPDRS-II and PIGD at baseline and follow-up. These adjustments encompass age, sex, and disease duration. We sincerely apologize for any lack of clarity in our previous description and have since revised it accordingly.

      • The text and figure legends are not helpful in guiding the reader to understand the presented information.

      Response: Thanks for your comments and we apologized for the unclear statement. We revised the figure legend and the main text for better understanding of the readers.

      Reviewer #2 (Public Review):

      Hong and collaborators investigated variations in the amount of synaptic proteins in plasma extracellular vesicles (EV) in Parkinson's Disease (PD) patients on one-year follow-up. Their findings suggest that plasma EV synaptic proteins may be used as clinical biomarkers of PD progression.

      • It is a preliminary study using semi-quantitative analysis of synaptic proteins.

      Response: Thanks for your comments. The present study represents the initial phase of our investigation into the role of plasma EV synaptic proteins within our PD cohort. Our findings have revealed the potential predictive significance of these synaptic proteins in relation to PD progression. We are committed to conducting further follow-up with these study subjects over an extended period.

      Furthermore, it's important to acknowledge that the semi-quantitative approach employed to assess protein abundance was a limitation of this study. This limitation stems from the low concentration of plasma EV synaptic proteins, which restricts the feasibility of utilizing techniques such as ELISA or other quantitative methods for protein assessment. We have duly acknowledged this limitation within the scope of the present study as following “Semiquantitative assessment of plasma EV synaptic protein (SNAP-25, GAP-43, and synaptotagmin-1) levels was performed using western blot analysis. The lack of absolute values limits further clinical application.”

      Moving forward, we intend to adopt alternative EV isolation methods that enable the extraction of a larger abundance of plasma EV proteins, facilitating more accurate quantitative assessments. In addition, a longer longitudinal follow-up is warranted to clearly assess the prognostic efficacy of plasma EV synaptic proteins in PwP, which we had mentioned in the manuscript.

      • The authors have a cohort of PD patients with clinical examination and a know-how on EV purification. Regarding this latter part, they may improve their description of EV purification. EV may be broken into smaller size EV after freezing. Does it explain the relatively small size in their EV preparation? Do the authors refer to the MISEV guidelines for EV purity?

      Response: Thanks for your comments. In the previous manuscript, we provided a relatively detailed account of the procedures related to EV isolation and validation (https://doi.org/10.1096/fj.202100787R). In the revised manuscript, we added some information about the principle of the EV isolation kit, and the validation antibody as following “Plasma EVs were isolated from 1 mL of plasma by exoEasy Maxi Kit (Qiagen, Valencia, CA, USA), a membrane-based affinity binding step to isolate exosomes and other EVs without relying on a particular epitope, in accordance with the manufacturer’s instructions and storaged in the −80。C freezer. The isolated plasma EVs were then eluted and stored. Usually, 400 μL of eluate is obtained per mL of plasma. The isolated plasma EVs were validated according to the International Society of Extracellular Vesicles guidelines, which include1.markers, including the presence of CD63 (ab59479, Abcam, Cambridge, UK), CD9(ab92726, Abcam, Cambridge, UK), tumor susceptibility gene 101 protein (GTX118736, GeneTex, CA, USA) and negative of cytochrome c (ab110325; Abcam, Cambridge, UK) 2. Physical characterization through the nanoparticle tracking analysis, which demonstrated the majority of the size of EV are mainly within 50-100nm 3. The morphology from the electron microscopy analysis. The validation had been described previously [29-31]. “

      It's important to note that our primary focus was on exosomes, the smallest subtype of EVs. Through nanoparticle tracking analysis, we observed that the majority of isolated EVs fell within the diameter range of 50-150nm, exhibiting significant surface marker (i.e. CD63 and CD9) expression. Moreover, electron microscopy confirmed their vesicular morphology. These meticulously validated EVs were promptly analysed post-isolation.

      However, we acknowledge that the plasma obtained from study participants might have undergone freezing prior to EV isolation. This freezing process has the potential to diminish the yield rate of EVs and result in some degree of fragmentation. We have duly included this issue as a limitation in our revised manuscript as following “The final technical issue in the present study was the relatively small size of the isolated EVs. Despite the primary focus on isolating exosomes, which are the smallest type of EVs, it's important to consider that the presence of small-sized EVs could potentially be attributed to EV fragmentation that occurs during the freezing and thawing processes.”

      • Regarding synaptic protein quantification, the choice of western blotting may not be the best one. ELISA and other multiplex arrays are available. How the authors do justify their choice?

      Response: Thanks for your comments. We appreciate your input regarding the semi-quantitative western blot analysis not being the most optimal approach. Owing to the limited quantity of isolated plasma EVs and the significant protein abundance of synaptic proteins within these EVs, we did explore the use of an ELISA assay. However, it's worth noting that for a specific subset of the samples, the readout obtained was lower than the lower limit of detection of the ELISA kit. In response, we have incorporated this point as limitation within the discussion section of the revised manuscript as following “Semiquantitative assessment of plasma EV synaptic protein (SNAP-25, GAP-43, and synaptotagmin-1) levels was performed using western blot analysis. The lack of absolute values, i.e. from the results of enzyme-linked immunosorbent assay, limits further clinical application.”

      • Do the authors try to sort plasma EV by membrane-associated neuronal EV markers using either vesicle sorting or immunoprecipitation?

      Response: Thanks for your comments. The current study did not specifically isolate neuron-derived extracellular vesicles (EVs), potentially introducing some bias to the results. However, it's important to note that synaptic proteins, such as SNAP-25, exhibit a high degree of neuron-specific expression, with a predominant presence in the brain (as indicated by https://www.proteinatlas.org/ENSG00000132639-SNAP25/tissue). Given this context, the limitation of not analyzing neuron-derived EVs could be mitigated to some extent. In response, we have incorporated this point as limitation within the discussion section of the revised manuscript as following “Furthermore, this study evaluated the overall plasma EVs rather than specifically focusing on neuron-derived exosomes, potentially introducing a bias towards somatic-origin EVs. Nonetheless, it is worth noting that synaptic proteins primarily originate from neurons. Even when considering neuron-derived exosomes, it's important to recognize that they are not exclusively derived from the brain, which can lead to contamination from the peripheral nervous system.”

      • Many technical aspects may be improved. Such technical questions weakened the authors' conclusions.

      Response: Thanks for your comments. We recognize that the aforementioned issues represent limitations of our current study. In response, we have incorporated these points as limitations, including the semi-quantitative assessments, the isolation of total but not neuron-derived exosomes in the plasma, and the short follow-up time within the discussion section of the revised manuscript.

      • The discussion is pretty long to justify the data. It may be shortened by adding some information in the introduction.

      Response: Thanks for your comments. We have repositioned a statement from the second paragraph of the discussion to the introduction. This adjustment serves to enrich the background understanding of the link between synaptic dysfunction and neurodegenerative diseases.

    1. Author Response

      Reviewer #1 (Public Review)

      The manuscript by Singh et al proposes a new theoretical model for the phenomenon of planar cell polarity (PCP). The new model is simulating the emergence of the subcellular polarity of the Fat-Ds pathway, based on the interactions of the protocadherins Fat and Ds at the boundary between cells and in response to external gradients. Several mathematical models for PCP have been previously developed focusing on different aspects of PCP, including non-autonomy domineering (Amonlirdviman et al.), the effect of stochasticity on polarity (Burak et al.), gradient sensing (Mani et al), formation of molecular bridges (Fisher et al.) to name a few. The current modeling approach suggests a new model, based on a relatively simple set of equations for membrane Fat and Ds and their interactions, both in 1D (line of cells) and in 2D (hexagonal array). The equations are relatively simple on one hand, allowing performing tractable computational analysis as well as analytical approximations, while on the other hand allowing tracking membrane protein levels, which is what is measured experimentally. It has been previously shown that achieving polarity requires local feedback that amplify complexes in one orientation at the expense of complexes in the opposite orientation (e.g. Mani et al.). Interestingly, the current manuscript shows that a simple assumption, that Fat-DS complexes are stabilized when bound is sufficient to induce PCP when concentrations are high enough. The authors use the model to show how it captures several experimental observations, as well as to analyze the sensitivity to noise, the response to gradients, and the response to local perturbations (mutant clones). The manuscript is clear and the analysis is mostly coherent and sensible (although some parts need to be clarified, see below). The main issue I have with the manuscript is that it mostly describes how it captures different features that were mostly explained in previous models. I do think the authors should do more with their model to explain features that were not explained by other models, and/or generate non-trivial predictions that can be tested experimentally.

      We thank the reviewer for the positive feedback and valuable comments We have comprehensively modified the manuscript by including new results and detailing the specific model prediction and their potential experimental tests to address the concerns.

      Reviewer #2 (Public Review):

      The setting of planar cell polarity in epithelial tissues involves a complex interplay of chemical interactions. While local interactions can spontaneously give rise to cell polarity, planar cell polarity also involves tissue scale gradients whose effects are not clear. To understand their role, the authors built a minimal mechanistic model in considering two atypical cadherins, Fat (Ft) and Dachsous (Ds) which can associate at cell-cell interfaces to form hetero-dimers in which monomers belong to adjacent cells. This association can be seen as a local interaction between cells and is also sensitive to overall concentration gradients. From their model which appears to capture diverse experimental observations, the authors conclude that tissue-scale gradients provide to planar cell polarity a directional cue and some robustness to cellular stochasticity. While this model comes after similar works reaching similar predictions, the quality of this model is in its simplicity, its convenience for experimental testing, and the diversity of experimental observations it recapitulates.

      A strength of this work is to recapitulate many experimental observations made on planar cell polarity. It, for example, seems to capture the response of tissues to perturbations such as local downregulation of some important proteins, and the polarity patterns observed in the presence of noise in synthesis or cell-to-cell heterogeneity. It also gives a mechanistic description of planar cell polarity, making its experimental interpretation simple. Finally, the simplicity of the model facilitates its exploration and makes it easily testable because of the reduced amount of free model parameters.

      A weakness of this work is that it comes after several models with similar hypotheses and similar predictions.

      Another weakness is that some conclusions of this work rely on visual appreciation rather than quantification. This is particularly true for what concerns 2D patterns. An argument of the authors is for example that their model reproduces a variety of known spatial patterns, but the comparison with experiments is only visual and would be more convincing in being more quantitative.

      We are grateful to the reviewer for a critical evaluation of the manuscript and for giving important suggestions. We have incorporated all the comments and revised the manuscript accordingly by including quantitative analysis of all the results presented.

      Reviewer #3 (Public Review):

      Using theory, the authors study mechanisms for establishing planar cell polarity (PCP) through local and global modules. These modules refer to the interaction between neighbouring cells and tissue-wide gradients, respectively. Whereas local interactions alone can lead to tissue-wide alignment PCP, a global gradient can set the direction of PCP and maintain the pattern in presence of noise. In contrast, the authors argue that a global gradient can only generate PCP to an extent that is proportional to the gradient magnitude.

      The authors formulate a discrete model in one and two spatial dimensions that describe the assembly dynamics of PCP proteins on membranes. The number of proteins per cell remains constant. Additive noise is introduced to account for stochasticity in the attachment/detachment kinetics of proteins. Furthermore, ’quenched’ noise is introduced to account for variations of protein numbers between cells. The authors perform simulations of the stochastic discrete model in various situations. In addition, they derive a continuum description to perform some analytical computations.

      The strength of this analysis relies clearly on showing that simple dynamics can lead to tissue-wide PCP even in absence of a gradient in protein expression. A number of phenomena observed in tissues are qualitatively reproduced. In two spatial dimensions, they find swirling patterns that resemble patterns found in tissues when a global gradient is absent. The model also captures qualitative effects due to the down-regulation of one of the PCP proteins in a certain region of the tissue.

      The main weak point is that, from a physical point of view, the findings are not particularly surprising. Furthermore, some assumptions underlying the model, need some more justification. This holds notably for the question, of why additive noise is appropriate to account for the effect of stochasticity in the attachment-detachment dynamics of the proteins. Finally, the authors consider a situation that they consider to be one of the most interesting features of PCP, namely, the formation of PCP in the presence of a region with a down-regulated PCP protein and in presence of a gradient. Unfortunately, the effect is not very clear and the data provided remains limited.

      We thank the reviewer for the valuable comments are critique of the work. We have considered all the concerns and revised the manuscript comprehensively. In particular, we have elaborated the sections on model assumptions and added new figures/figure-panels to quantitatively present the model predictions. We have also revised the details of the one-dimensional continuum theory for PCP which, we feel, presents a detailed quantitative picture of PCP and its dependence on model parameters.

    1. Author Response

      Reviewer #2 (Public Review):

      In this study, Leiba et al. aim at establishing the developing zebrafish embryo as a suitable infection model to study Salmonella persistence in vivo. Under environmental stress (ex: macrophage phagosomes) a proportion of bacteria switch to a slow/arrested growth state conferring increased resistance to antibiotic treatments. Persisters are getting increasingly linked to infection relapses. Understanding how persistent infections emerge and bacteria survive in an organism for long time without replicating before switching back to a replicative state is essential. Zebrafish represents an alternative model to mice offering the possibility to image the whole organism and capture persistency with an amazing spatio-temporal resolution.

      In this paper, the authors demonstrate that persistent infections of Salmonella can be reproduced in the developing zebrafish. The kinetics of infection have been well characterized and shows a very nice heterogeneity between animals demonstrating the complex host-pathogen interactions (Fig 1). From the perspective of persistence, the presence of Salmonella survivors to host clearing is reported until 14dpi demonstrating the possibility to induce persistent infection in this model. Through the manuscript, the authors have used a variety of state-of-the-art technics illustrating the flexibility of this model including microscopy and imaging of specific immune populations, various transgenic animals and selective depletion of macrophages or neutrophils to assess their relative contributions. Overall, the conclusions of the authors are well supported by the presented data. This said, the authors should strengthen the conclusions of the paper by providing a better characterization of the infection.

      Major comments:

      1) Figure 1: What is the general life-spam of the fish?

      The general life-span of the zebrafish is approximately 3 years on average. Persistent infection is determined by the existence of a fraction of bacteria that endure over an extended period (after 96 hpi). Further, we observed Salmonella persistence for 14 days. In figure 1, we don’t think that the information of the general life-span of the zebrafish is critical.

      2) Figure 2: It would be nice to clearly state what infection scenario we are looking at. Have the authors studied "high proliferation", "infected" or "cleared" zebrafish?

      In Figure 2 we have studied the "infected" group. Both "high proliferation" and "cleared" larvae were excluded from the analysis. This is now clearly stated in the legend of Figure 2.

      3) Figure 3 and 4: It would be very informative if the authors can tell us what proportion of Salmonella is associated with macrophages and neutrophils. From panel C and D (Figure 3) and Figure 4 C and D and Suppl Fig 1, it seems that a lot of bacteria are extracellular. Maybe an EM image of the tissue would help to understand if the bacteria is "all" intracellular or intracellular.

      We apologize for any misunderstanding regarding the presence of intra- and extracellular bacteria depicted in Figure 3 C and D, Figure 4 C and D and Figure 3 -Suppl Fig 1. These figures illustrate infection experiments conducted in single-reporter larvae, limiting our analysis to bacteria associated with a single cell type. Figure 3G and Figure 4E-G, the panels depict infection experiments carried out in dual-reporter larvae, showing bacteria associated or not with macrophages and neutrophils. The present study aimed to establish the role of neutrophils and macrophages in the control of early and persistent Salmonella infection but further studies will focus on the exact localization of Salmonella during the course of the infection and, despite being a challenging technique for zebrafish, electron microscopy could be of great interest, allowing to visualize any type of cells (to determine if all bacteria are intracellular) at high resolution.

      4) Figure 3 and 4: It would be very useful if the authors can tell us if the intracellular bacteria are mainly found individually (like in Figure 3C) or does host cells harbor many intracellular bacteria. Looking at figure 4G: it is not clear to me how many intracellular bacteria can be counted on this image.

      This is an interesting suggestion. At present, an accurate quantification of the intracellular bacteria on microscopy 3D-datasets is challenging because bacteria aggregate inside the cells. At 4 hpi, single bacteria can occasionally be observed outside leukocytes, while most of infected macrophages harbored several intracellular bacteria (bacteria aggregates). To compare the levels of intracellular bacterial between acute and persistent stages, we measured the size of E2Crimson-positive (E2Crimson+) events. At 5 hpi, the median volume of E2Crimson+ events was lower than that at 4 dpi. The size distribution analysis of E2Crimson+ events indicated a higher representation of smaller volumes (0.5-1.5 m3 and 1.5-10 m3) at 5 hpi compared to 4 dpi, a stage during which very large E2Crimson+ events were observed (between 100-1000 m3, with some exceeding 1000 m3). This observation suggests an elevated presence of intracellular bacteria within the cells during persistent stages and that intracellular bacteria are predominantly observed as multiple rather than as solitary entities. This analysis has been incorporated in new Figure 5.

      5) Figure 3 and 4: The authors should also perform an experiment with a Salmonella strain harboring a growth reporter to quantify the amount of replicating and non-replicating bacteria. This experiment is not absolutely necessary for the story, but if possible, it would provide a very nice add-up to the story and impact to the paper.

      We welcome the reviewers’ suggestion, which we have indeed considered and planning to carry on in the future, along with experimented more oriented on the bacterial side.

      6) Figure 6: The authors should provide in suppl. the flow cytometry scatter plots used to delineate the different subpopulations.

      We agree with the reviewer that the flow cytometry scatter plots used to delineate the different subpopulations were missing and are now incorporated in new Fig 7 - figure supplement 2.

      7) Figure 6: A specific characterization of macrophages harboring Salmonella persisters at 4dpi is missing. As shown by the authors in Figure 6, the tnfa- populations of macrophages at 4dpi are very similar for both infected and non-infected larvae. Persisters should indeed reside within tnfa- macrophages but they should also induce a specific signature through the actions of Salmonella effectors. Measuring this signature will allow a direct comparison with published data in mice and assess how accurately the zebrafish model recapitulates the manipulation of macrophages by Salmonella

      We agree with the reviewer that a specific characterization of macrophages harboring persistent Salmonella at 4 dpi is missing. However due to the technical limitation inherent to the model (limited recovery of infected cells following FACS sorting), we were not able to specifically sort infected macrophages at 4 dpi.

    1. Author Response

      Reviewer #1 (Public Review):

      This paper combines a number of cutting-edge approaches to explore the role of a specific mouse retinal ganglion cell type in visual function. The approaches used include calcium imaging to measure responses of RGC populations to a collection of visual stimuli and CNNs to predict the stimuli that maximally activate a given ganglion cell type. The predictions about feature selectivity are tested and used to generate a hypothesized role in visual function for the RGC type identified as interesting. The paper is impressive; my comments are all related to how the work is presented.

      We thank the reviewer for appreciating our study and for the interesting comments.

      Is the MEI approach needed to identify these cells?

      To briefly summarize the approach, the paper fits a CNN to the measured responses to a range of stimuli, extracts the stimulus (over time, space, and color) that is predicted to produce a maximal response for each RGC type, and then uses these MEIs to investigate coding. This reveals that G28 shows strong selectivity for its own MEI over those of other RGC types. The feature of the G28 responses that differentiate it appears to be its spatially-coextensive chromatic opponency. This distinguishing feature, however, should be relatively easy to discover using more standard approaches.

      The concern here is that the paper could be read as indicating that standard approaches to characterizing feature selectivity do not work and that the MEI/CNN approach is superior. There may be reasons why the latter is true that I missed or were not spelled out clearly. I do think the MEI/CNN approach as used in the paper provides a very nice way to compare feature selectivity across RGC types - and that it seems very well suited in this context. But it is less clear that it is needed for the initial identification of the distinguished response features of the different RGC types. What would be helpful for me, and I suspect for many readers, is a more nuanced and detailed description of where the challenges arise in standard feature identification approaches and where the MEI/CNN approaches help overcome those challenges.

      Thank you for the opportunity for clarification. In fact, the MEI (or an alternative nonlinear approach) is strictly necessary to discover this selectivity: as we show above (response #1 to editorial summary), the traditional linear filter approach does not reveal the color opponency. We realize that this fact was not made sufficiently clear in the initial submission. In the revised manuscript, we now include this analysis. Moreover, throughout the manuscript, we added explanations on the differences between MEIs and standard approaches and more intuitions about how to interpret MEIs. We also added a section to the discussion dedicated to explaining the advantages and limitations of the MEI approach.

      Interpretation of MEI temporal structure

      Some aspects of the extracted MEIs look quite close to those that would be expected from more standard measurements of spatial and temporal filtering. Others - most notably some of the temporal filters - do not. In many of the cells, the temporal filters oscillate much more than linear filters estimated from the same cells. In some instances, this temporal structure appears to vary considerably across cells of the same type (Fig. S2). These issues - both the unusual temporal properties of the MEIs and the heterogeneity across RGCs of the same type - need to be discussed in more detail. Related to this point, it would be nice to understand how much of the difference in responses to MEIs in Figure 4d is from differences in space, time, or chromatic properties. Can you mix and match MEI components to get an estimate of that? This is particularly relevant since G28 responds quite well to the G24 MEI.

      One advantage of the MEI approach is that it allows to distinguish between transient and sustained cells in a way that is not possible with the linear filter approach: Because we seek to maximize activity over an extended period of time, transient cells need to be repetitively stimulated whereas sustained cells will also respond in the absence of multiple contrast changes. In the revised manuscript, we add a section explaining this, together with Figure 3-supplement 2, illustrating this point by showing that oscillations disappear when we optimize the MEI for a short time window. The benefit of a longer time window lies in the increased discriminability between transient and sustained cells, which is also shown in the new supplementary figure.

      Regarding the heterogeneity of MEIs, this is most likely due to heterogeneity within the RGC group: “The mixed non-direction-selective groups G17 and G31 probably contain more than one type, as supported by multiple distinct morphologies and genetic identities (for example, G31,32, Extended Data Fig. 5) or response properties (for example, G17, see below)” (Baden et al. Nature 2016). We added a paragraph in the Results section.

      Concerning the reviewer’s last point: We agree that it is important to know whether the defining feature - i.e., the selectivity for chromatic contrast - is robust against variations in other stimulus properties. New electrophysiological data included in the manuscript (Fig. 6e,f) offers some insights here. We probed G28/tSbC cells with full-field flashed stimuli that varied in chromatic contrast. Despite not matching the cell’s preferred spatial and temporal properties, this stimulus still recovered the cell’s preference for chromatic contrast. While we think it is an interesting direction to systematically quantify the relative importance of temporal, spatial and chromatic MEI properties for an RGC type’s responses, we think this is beyond the scope of this manuscript.

      Explanation of RDM analysis

      I really struggled with the analysis in Figure 5b-c. After reading the text several times, this is what I think is happening. Starting with a given RGC type (#20 in Figure 5b), you take the response of each cell in that group to the MEI of each RGC type, and plot those responses in a space where the axes correspond to responses of each RGC of this type. Then you measure euclidean distance between the responses to a pair of MEIs and collect those distances in the RDM matrix. Whether correct or not, this took some time to arrive at and meant filling in some missing pieces in the text. That section should be expanded considerably.

      We appreciate the reviewer’s efforts to understand this analysis and confirm that they interpreted it correctly. However, we decided to remove the analysis. The point we were trying to make with this analysis is that the transformation implemented by G28/tSbC cells “warps” stimulus space and increases the discriminability of stimuli with similar characteristics like the cell’s MEI. We now make this point in a - we think - more accessible manner by the new analysis about the nonlinearity of G28/tSbC cell’s color opponency (see above).

      Centering of MEIs

      How important is the lack of precise centering of the MEIs when you present them? It would be helpful to have some idea about that - either from direct experiments or using a model.

      In the electrophysiological experiments, the MEIs were centered precisely (now Fig. 5 in revised manuscript) and these experiments yielded almost identical results to the 2P imaging experiments, where the MEIs were presented on a grid to approach the optimal position for the recorded cells. Additionally, all model simulations work with perfectly centered MEIs. We hence conclude that our grid-approach at presenting stimuli provided sufficient precision in stimulus positioning.

      We added this information to the revised manuscript.

      Reviewer #2 (Public Review):

      This paper uses two-photon imaging of mouse ganglion cells responding to chromatic natural scenes along with convolutional neural network (CNN) models fit to the responses of a large set of ganglion cells. The authors analyze CNN models to find the most effective input (MEI) for each ganglion cell as a novel approach to identifying ethological function. From these MEIs they identify chromatic opponent ganglion cells, and then further perform experiments with natural stimuli to interpret the ethological function of those cells. They conclude that a type of chromatic opponent ganglion cell is useful for the detection of the transition from the ground to the sky across the horizon. The experimental techniques, data, and fitting of CNN models are all high quality. However, there are conceptual difficulties with both the use of MEIs to draw conclusions about neural function and the ethological interpretations of experiments and data analyses, as well as a lack of comparison with standard approaches. These bear directly both on the primary conclusions of the paper and on the utility of the new approaches.

      We thank the reviewer for the detailed comments.

      1) Claim of feature detection.

      The color opponent cells are cast as a "feature detector" and the term 'detector' is in the title. However insufficient evidence is given for this, and it seems likely a mischaracterization. An example of a ganglion cell that might qualify as a feature detector is the W3 ganglion cell (Zhang et al., 2012). These cells are mostly silent and only fire if there is differential motion on a mostly featureless background. Although this previous work does not conduct a ROC analysis, the combination of strong nonlinearity and strong selectivity are important here, giving good qualitative support for these cells as participating in the function of detecting differential motion against the sky. In the present case, the color opponent cells respond to many stimuli, not just transitions across the horizon. In addition, for the receiver operator characteristic (ROC) analysis as to whether these cells can discriminate transitions across the horizon, the area under the curve (AUC) is on average 0.68. Although there is not a particular AUC threshold for a detector or diagnostic test to have good discrimination, a value of 0.5 is chance, and values between 0.5 and 0.7 are considered poor discrimination, 'not much better than a coin toss' (Applied Logistic Regression, Hosmer et al., 2013, p. 177). The data in Fig. 6F is also more consistent with a general chromatic opponent cell that is not highly selective. These cells may contribute information to the problem of discriminating sky from ground, but also to many other ethologically relevant visual determinations. Characterizing them as feature detectors seems inappropriate and may distract from other functional roles, although they may participate in feature detection performed at a higher level in the brain.

      The reviewer apparently uses a rather narrow definition of a feature detector. We, however, argue for a broader definition, which, in our view, better captures the selectivities described for RGCs in the literature. For example, while W3 cells have been quite extensively studied, one can probably agree on that so far only a fraction of the possible stimulus space has been explored. Therefore, it cannot be excluded that W3 cells respond also to other features than small dark moving dots, but we (like the reviewer) still refer to it as a feature detector. Or, for instance, direction-selective (DS) RGCs are commonly considered feature detectors (i.e., responsive to a specific motion direction), although they also respond to flashes and spike when null-direction motion is paused (Barlow & Levick J Physiol 1965).

      The G28/tSbC cells’ selectivity for full-field changes in chromatic contrast enables them to encode ground-sky horizon transitions reliably across stimulus parameters (e.g., see new Fig. 7i panel). This cell type is thus well-suited to contribute to detecting context changes, as elicited by ground-sky transitions.

      Therefore, we think that the G28/tSbC RGC can be considered a feature detector and as such, could be used at a higher level in the brain to quickly detect changes in visual context (see also Kerschensteiner Annu Rev Vis Sci 2022). Still, their signals may also be useful for other computations (e.g., defocus, as discussed in our manuscript).

      Regarding the ROC analysis, we acknowledge that an average AUC of .68 may seem comparatively low; however, this is based on the temporally downsampled information (i.e., by way of Ca2+ imaging) gathered from the activity of a single cell. A downstream area would have access to the activity of a local population of cells. This AUC value should therefore be considered a lower bound on the discrimination performance of a downstream area. We now comment on this in the manuscript.

      2) Appropriateness of MEI analysis for interpretations of the neural code.

      There is a fundamental incompatibility between the need to characterize a system with a complex nonlinear CNN and then characterizing cells with a single MEI. MEIs represent the peak in a complex landscape of a nonlinear function, and that peak may or may not occur under natural conditions. For example, MEIs do not account for On-Off cells, On-Off direction selectivity, nonlinear subunits, object motion sensitivity, and many other nonlinear cell properties where multiple visual features are combined. MEIs may be a useful tool for clustering and distinguishing cells, but there is not a compelling reason to think that they are representative of cell function. This is an open question, and thus it should not be assumed as a foundation for the study. This paper potentially speaks to this issue, but there is more work to support the usefulness of the approach. Neural networks enable a large set of analyses to understand complex nonlinear effects in a neural code, and it is well understood that the single-feature approach is inadequate for a full understanding of sensory coding. A great concern is that the message that the MEI is the most important representative statistic directs the field away from the primary promise of the analysis of neural networks and takes us back to the days when only a single sensory feature is appreciated, now the MEI instead of the linear receptive field. It is appropriate to use MEI analyses to create hypotheses for further experimental testing, and the paper does this (and states as much) but it further takes the point of view that the MEI is generally informative as the single best summary of the neural code. The representation similarity analysis (Fig. 5) acts on the unfounded assumption that MEIs are generally representative and conveys this point of view, but it is not clear whether anything useful can be drawn from this analysis, and therefore this analysis does not support the conclusions about changes in the representational space. Overall this figure detracts from the paper and can safely be removed. In addition, in going from MEI analysis to testing ethological function, it should be made much more clear that MEIs may not generally be representative of the neural code, especially when nonlinearities are present that require the use of more complex models such as CNNs, and thus testing with other stimuli are required.

      The reviewer correctly characterizes MEIs as representing the peak in a nonlinear loss landscape that, in this case, describes the neurons’ tuning. As such, the MEI approach is indeed capable of characterizing nonlinear neuronal feature selectivities that are captured by a nonlinear model, such as the CNN we used here. We therefore disagree with the suggestion that MEIs should not be used “when nonlinearities are present that require the use of more complex models such as CNNs”. It is unclear what other “analysis of neural networks” the reviewer refers to. One approach to analyze the predictive neural network are MEIs.

      We also want to clarify that, while the reviewer is correct in stating that the MEI approach as used here only identifies a single peak, this does not mean that it cannot capture neuronal selectivities for a combination of features, as long as this combination of features can be described as a point in high-dimensional stimulus space. In fact, this is demonstrated in our manuscript for the case of G28/tSbC cell’s selectivity for large or full-field, sustained changes in chromatic contrast (a combination of spatial, temporal, and chromatic features). While approaches similar to the one used here generate several diverse exciting inputs (Ding et al. bioRxiv 2023) and could therefore also fully capture On-Off selectivities, we pointed out the limitation of MEIs when describing On-Off cells in the manuscript (both original and revised).

      Regarding the reviewer’s concern that “[...] the message that the MEI is the most important representative statistic [...] takes us back to the days when only a single sensory feature is appreciated”. It was certainly not our intention to proclaim MEIs as the ultimate representation of a cell’s response features and we have clarified this in the revised manuscript. However, we also think that (i) in applying a nonlinear method to extract chromatic, temporal, and spatial response properties from natural movie responses, we go beyond many characterizations that use linear methods to extract spatial or temporal only, achromatic response properties from static, white-noise stimuli. This said, we agree that (ii) expanding around the peak is desirable, and we do that in an additional analysis (new Fig. 6); but that reducing complexity to a manageable degree (at least, at first) is useful and even necessary when discovering novel response properties.

      Concerning the representational similarity analysis (RSA): the point we were trying to make with this analysis is that the transformation implemented by G28 “warps” stimulus space and increases the discriminability of stimuli with similar characteristics like the cell’s MEI. We now made this point in a more accessible fashion through the above-mentioned analysis, where we extended the estimate around the peak. We therefore agree to remove the RSA from the paper.

      In the revised manuscript, we (a) discuss the advantages and limitations of the MEI approach in more detail (in Results and Discussion; see also our reply #1) and (b) replaced the RSA analysis.

      3) Usefulness of MEI approach over alternatives. It is claimed that analyzing the MEI is a useful approach to discovering novel neural coding properties, but to show the usefulness of a new tool, it is important to compare results to the traditional technique. The more standard approach would be to analyze the linear receptive field, which would usually come from the STA of white noise measurement, but here this could come from the linear (or linear-nonlinear) model fit to the natural scene response, or by computing an average linear filter from the natural scene model. It is important to assess whether the same conclusion about color opponency can come from this standard approach using the linear feature (average effective input), and whether the MEIs are qualitatively different from the linear feature. The linear feature should thus be compared to MEIs for Fig. 3 and 4, and the linear feature should be compared with the effects of natural stimuli in terms of chromatic contrast (Fig. 6b). With respect to the representation analysis (Fig. 5), although I don't believe this is meaningful for MEIs, if this analysis remains it should also be compared to a representation analysis using the linear feature. In fact, a representation analysis would be more meaningful when performed using the average linear feature as it summarizes a wider range of stimuli, although the most meaningful analysis would be directly on a broader range of responses, which is what is usually done.

      We agree that the comparison with a linear model is an important validation. Therefore, we performed an additional analysis (see also reply #1, as well as Fig. 6 and corresponding section in the manuscript) which demonstrates that an LN model does not recover the chromatic feature selectivity. This finding supports our claims about the usefulness of the MEI approach over linear approaches.

      Regarding the comment on the representation analysis, as mentioned above, we consider it replaced by the analysis comparing results from an LN model and a nonlinear CNN.

      4) Definition of ethological problem. The ethological problem posed here is the detection of the horizon. The stimuli used do not appear to relate to this problem as they do not include the horizon and only include transitions across the horizon. It is not clear whether these stimuli would ever occur with reasonable frequency, as they would only occur with large vertical saccades, which are less common in mice. More common would be smooth transitions across the horizon, or smaller movements with the horizon present in the image. In this case, cells which have a spatial chromatic opponency (which the authors claim are distinct from the ones studied here) would likely be more important for use in chromatic edge detection or discrimination. Therefore the ethological relevance of any of these analyses remains in question.

      It is further not clear if detection is even the correct problem to consider. The horizon is always present, but the problem is to determine its location, a conclusion that will likely come from a population of cells. This is a distinct problem from detecting a small object, such as a small object against the background of the sky, which may be a more relevant problem to consider.

      Thank you for giving us the opportunity to clear these things up. First, we would like to clarify that we propose that G28/tSbC cells contribute to detecting context changes, such as transitions across the horizon from ground to sky, not to detecting the horizon itself. We acknowledge that we were not clear enough about this in the manuscript and corrected this. To back-up our hypothesis that G28 RGCs contribute to detecting context changes, we performed an additional simulation analysis, which is described in our reply #3 (see above).

      5) Difference in cell type from those previously described. It is claimed that the chromatic opponent cells are different from those previously described based on the MEI analysis, but we cannot conclude this because previous work did not perform an MEI analysis. An analysis should be used that is comparable to previous work, the linear spatiotemporal receptive field should be sufficient. However, there is a concern that because linear features can change with stimulus statistics (Hosoya et al., 2005), a linear feature fit to natural scenes may be different than those from previous studies even for the same cell type. The best approach would likely be presenting a white noise stimulus to the natural scenes model to compute a linear feature, which still carries the assumption that this linear feature from the model fit to a natural stimulus would be comparable to previous studies. If the previous cells have spatial chromatic opponency and the current cells only have chromatic opponency in the center, there should be both types of cells in the current data set. One technical aspect relating to this is that MEIs were space-time separable. Because the center and surround have a different time course, enforcing this separability may suppress sensitivity in the surround. Therefore, it would likely be better if this separability were not enforced in determining whether the current cells are different than previously described cells. As to whether these cells are actually different than those previously described, the authors should consider the following uncited work; (Ekesten Gouras, 2005), which identified chromatic opponent cells in mice in approximate numbers to those here (~ 2%). In addition, (Yin et al., 2009) in guinea pigs and (Michael, 1968) in ground squirrels found color-opponent ganglion cells without effects of a spatial surround as described in the current study.

      First of all, we did not intend to claim to have discovered a completely new type of color-opponent tuning in general; what we were trying to say is that tSbC cells display spatially co-extensive color opponency, a feature selectivity previously not described in this mouse RGC type, and which may be used to signal context changes as elicited by ground-sky transitions.

      Concerning the reviewer’s first argument about a lack of comparability of our results to results previously obtained with a different approach: We think that this is now addressed by the new analysis (new Fig. 6), where we show why linear methods are limited in their capability to recover the type of color opponency that we discovered with the MEI approach.

      Regarding the argument about center-surround opponency, we agree that “if the previous cells have spatial chromatic opponency and the current cells only have chromatic opponency in the center, there should be both types of cells in the current data set”. We did not focus on analyzing center-surround opponency in the present study, but from the MEIs, it is visible that many cells have a stronger antagonistic surround in the green channel compared to the UV channel (see Fig. 4a, example RGCs of G21, G23, G24; Figure 3-supplement 1 example RGCs of G21, G23, G24, G31, G32). Importantly, the MEIs shown in Fig. 4a were also shown in the verification experiment, and had G28 RGCs preferred this kind of stimulus, they would have responded preferentially to these MEIs, which was not the case (Fig. 4f).

      It should also be noted here that, while the model’s filters were space-time separable, we did not impose a restriction on the MEIs to be space-time separable during optimization. However, we analyzed only the rank 1 components of the MEIs (see Methods section Validating MEIs experimentally). since our analysis focused on aspects of retinal processing not contingent on spatiotemporal interactions in the stimulus.

      In summary, we are convinced that our finding of center-opponency in G28 is not an artifact of the methodology.

      We discuss this in the manuscript and add the references mentioned by the reviewer to the respective part of the Discussion.

      Reviewer #3 (Public Review):

      This study aims to discover ethologically relevant feature selectivity of mouse retinal ganglion cells. The authors took an innovative approach that uses large-scale calcium imaging data from retinal ganglion cells stimulated with both artificial and natural visual stimuli to train a convolutional neural network (CNN) model. The resulting CNN model is able to predict stimuli that maximally excite individual ganglion cell types.

      The authors discovered that modeling suggests that the "transient suppressed-by-contrast" ganglion cells are selectively responsive to Green-Off, UV-On contrasts, a feature that signals the transition from the ground to the sky when the animal explores the visual environment. They tested this hypothesis by measuring the responses of these suppressed-by-contrast cells to natural movies, and showed that these cells are preferentially activated by frames containing ground-to-sky transitions and exhibit the highest selectivity of this feature among all ganglion cell types. They further verified this novel feature selectivity by single-cell patch clamp recording.

      This work is of high impact because it establishes a new paradigm for studying feature selectivity in visual neurons. The data and analysis are of high quality and rigor, and the results are convincing. Overall, this is a timely study that leverages rapidly developing AI tools to tackle the complexity of both natural stimuli and neuronal responses and provides new insights into sensory processing.

      We thank the reviewer for appreciating our study.

    1. Author Response

      Reviewer #3 (Public Review):

      This manuscript uses ASO to inhibit the self-cleaving ribozyme within CPEB intron 3 and test its effect on CPEB3 expression and memory consolidation. The authors conclude that the intronic ribozyme negatively affects CPEB3 mRNA splicing and expression, and suggests its implications for experience-induced gene expression underlying learning and memory.

      The strength of the manuscript is in its exploration of a potentially novel mechanism of regulating CPEB3 expression in learning and memory, a combination of both biochemical and behavioral approaches to gain a wide perspective of this regulatory mechanism, and the application of ASO in this context. The introduction is sufficiently detailed. Statistics are thorough and appropriate. If the results could be more robust, the mechanism would provide a novel target and venue to modify learning and memory paradigm.

      The weakness of the manuscript is that the magnitude of the activity-dependent regulation of ribozyme, the effects of ASOs on CPEB3 expression (mRNA and protein) and downstream target gene expression, in vitro and in vivo, are generally weak, raising concerns about the robustness of the result. This may have caused some of the inconsistencies between the data presentation (see below). Also unclear is whether the ribozyme activity is physiologically regulated by experience without ASO interference.

      While the statistics tests support corresponding figure panels and their conclusions. The manuscript can be significantly strengthened by additional evidence, clarification of some methodologies, and reconciling some inconsistent results.

      The premise of a comparable timescale between transcription and ribozyme activity as the foundation of the whole thesis was based on in vitro measurement of self-scission half-life and a broadly generalized transcription rate (which actually varies significantly between genes). This premise is weak and needs direct experimental support.

      The physiological relevance of the proposed mechanism has yet to be demonstrated without ASO interference.

      Fig2b: how were total and uncleaved Ribozymes measured by qRT-PCR? Where are the primers' locations? If the two products were amplified using different primers, their subtraction to derive % cleavage would not be appropriate.

      We thank the reviewer for the thoughtful review. We measured the levels of the total ribozyme by measuring a 220-bp amplicon that starts 18 nts downstream from the ribozyme cleavage site. The uncleaved ribozyme levels were measured using oligos that amplify a region of the intron that starts 45 nts upstream and ends 238 nts downstream of the ribozyme cleavage site. We added this information to the Table of primers in the manuscript. For all PCR oligos we established independent standard curves and calculated RNA levels independently of other amplicons, as noted in the Methods section and now specified in the Results section as well (Page 15). The measurements were thus appropriate for the calculation of the cleaved ribozyme fractions in the various experiments. The fraction ribozyme cleaved was calculated from the uncleaved fraction as the difference between uncleaved fraction and unity (1 – fraction uncleaved), now specified on page 16 of the manuscript. Fraction uncleaved was calculated as [uncleaved ribozyme]/[total ribozyme], as was done previously (see Salehi-Ashtiani et al. Science 313:1788-1792 or Webb et al. Science 326:953).

      Line 400-403: shouldn't ribozyme-blocking ASO prevent ribozyme self-cleavage, and as a result should further increase ribozyme levels? This would contradict the result in fig3a.

      We showed that the ribozyme is inhibited in vitro (Fig. 1F and 1G) and all our data are consistent with ASO inhibition of the ribozyme in cellulo and in vivo. However, we do not have direct evidence for this ribozyme inhibition in vivo, because such an experiment would require a single-molecule FRET-type sensitivity in cells and this assay has not been developed for ribozyme cleavage in cellulo or in vivo. We measured the ribozyme levels by RT-qPCR and observed lower ribozyme levels in presence of ASO in cultured neurons (Fig. 3A) as well as in vivo (Fig. 5B), which is nominally in contrast to the observations in vitro. However, in these situations we do not measure the co-transcriptional fate of the intron or the ribozyme; rather, we measure the levels of the intron after splicing (evidenced by the increased levels of spliced exons 2–3) when the intron is likely already being degraded. We also do not know what effect the ribozyme ASO has on the intron stability once splicing occurs. Understandably, this is a weakness of the study—and we are fully open about this result— however, given the abundance of evidence that the ribozyme ASO leads to increase of CPEB3 mRNA under all conditions tested, we feel that there is strong, if indirect, evidence that our model for the ribozyme function is correct. Future studies will examine this issue closer, but a definitive experimental investigation for the mechanism and timing of ribozyme inhibition and intron degradation is out of scope of this study.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer 1 (Public Review):

      Weakness: Although the cross-links stimulate ATP hydrolysis, further controls are needed to convince me that the TM1 conformations observed in the structures are physiologically relevant, since they have been trapped by "large" substrates covalently-tethered by crosslinks.

      Our response: Reviewer 1 raised concerns about the relatively large size of our covalently attached AAC substrate that would potentially distort TM1 in Pgp. We would like to clarify that AAC has a molecular weight of 462 Da, which, in comparison to many known Pgp substrates ranging from 250 to over 1,000 Da, is not a large compound. For instance, the few other Pgp substrates mentioned in our manuscript all have a comparable or larger size: verapamil, 455 Da; doxorubicin, 544 Da; FK506, 804 Da; valinomycin, 1,111 Da; cyclosporin A, 1,203 Da.

      Furthermore, AAC was strategically attached to a site distant from TM1 in the inwardfacing Pgp conformation. After it was exported to the outward-facing state, several TM helices accommodate the compound. The observation that only TM1 exhibited significant conformational changes suggests its potential role in the transport mechanism. This hypothesis is supported by our findings, where a conservative substitution (G72A) in TM1 resulted in a dramatic loss of transport function for various drug substrates and impaired verapamil-stimulated ATPase activity.

      Reviewer 1 (Recommendations for the Authors):

      I understand the need for an unconventional approach to understanding the translocation pathway. What would help to support this model is to cross-link a much smaller substrate, as the one used is quite large and could potentially distort TM1 in the outward-state when cross-linked.

      Our response: We thank the reviewer for this recommendation, and we have outlined plans for future experiments involving other substrates, including smaller ones, to further investigate our proposed model. However, it is important to acknowledge that conducting these studies will require a significant amount of effort and resources, which we believe extend beyond the scope of our current manuscript.

      In unbiased MD simulations starting from the IF state are there any simulations where the substrate follows the same path as proposed here?

      Our response: All our MD simulations were performed in the outward-facing state to focus on potential substrate release pathways. Starting MD simulations from the inwardfacing state would introduce complexities in capturing the necessary domain motions and nucleotide binding and hydrolysis required for substrate translocations. Therefore, we opted not to perform MD studies starting from the inward-facing state.

      Reviewer 2 (Public Review):

      Weakness: There is much to like about the experimental work here but I am less sanguine on the interpretation. The main idea is to covalently link via disulfide bonds a model tripeptide substrate under different conditions that mimic transport and then image the resulting conformations. The choice of the Pgp cysteine mutants here is critical but also poses questions regarding the interpretation. What seems to be missing, or not reported, is a series of control experiments for further cysteine mutations.

      Our response: Reviewer 2 raised concerns about the interpretation of our results and suggested the need for additional mutant designs to validate our proposed TM1 mechanism. Firstly, we believe that the observed TM1 conformational changes are valid in our cryoEM structures, despite the use of different conditions and several mutants to capture Pgp in the outward-facing state.

      Regarding the G72A mutant, we consider it conclusive that this single point mutation in the TM1 has a profound effect. Importantly, the G72A mutant was readily expressed and purifiable as a stable protein. We were able to resolve a high-resolution structure of the G72A mutant (without the substrate), confirming that the protein is not generally destabilized but properly folded.

      Above all, we appreciate the Reviewer’s suggestion to explore additional mutations and intend to do so in future studies.

      Reviewer 2 (Recommendations for the Authors):

      I am sold on the results regarding TM1 conformational changes as they are evident in the cryoEM structures. However, the set of states compared between mutants are not biochemically equivalent: for 335 and 978 they used an ATP-impaired Pgp whereas for 971 they used what appears to be WT, and the conformation was imaged presumably subsequent to ATP hydrolysis and Vanadate trapping. This is significant if the authors were unable to trap the OF in the impaired mutant background and should be highlighted. I have to believe that they tried that condition but I could be wrong.

      Our response: We acknowledge the point made by the Reviewer about the biochemical equivalence of mutant states and the potential significance of using an ATP-impaired mutant for trapping the outward-facing conformation of 971. We have not yet attempted to use the ATPase-deficient 971C mutant for crosslinking and intend to address this question in future studies.

      In our current approach, we used the ATPase-active 971C for two specific reasons:

      1) Our biochemistry data, as shown in Fig 1C, indicates that 971C only crosslinks in the presence of ATP hydrolysis conditions. Vanadate trapping was employed to stabilize the outward-facing conformation.

      2) Based on our experience, we have observed that the conformations of ATP-bound (mutant) and vanadate-trapped states of an ABC transporter are structurally equivalent at this resolution level of our study (see ref. 21: Hoffmann et al. NATURE 2019).

      The authors propose a new model for substrate translocation. It is based on three mutants and a number of structures. If the authors were not challenging the current dogma I would not have written the next comment. Considering the impact of the findings, I would have designed a couple more cysteine mutants based on their model. For instance, this pathway has a number of stabilizing interactions, can't they make a mutant that preserves conformational switching but eliminates substrate translocation? I like the G97A mutant result but I am worried that the effect could just be a general destabilization or misfolding as part of the cryoEM particles seem to suggest. The authors advance one interpretation of the disorder observed in this mutant but it could easily be my interpretation.

      Our response: We thank the reviewer for the suggestion to design additional mutants to further validate our proposed model for substrate translocation. We agree that this would be highly valuable, considering the potential impact of our findings. However, given the time-intensive nature of our approach, we believe that presenting these additional designs in a future study is a reasonable course of action.

      Regarding the G72A mutation, we believe that our current data fully supports our model and the role of TM1 in regulating the Pgp activity. Importantly, we would like to emphasize that the G72A mutant was readily expressed and purifiable as a stable protein. Additionally, our cryoEM structural determination of the G72A mutant at high resolution confirmed that the protein is not generally destabilized but properly folded.

      There are a couple of troubling methodological questions that I want the authors to address or clarify:

      1. In the methods they report that the final sample for cryoEM was prepared on a SEC devoid of detergent. It is obvious that the sample was folded but I was wondering why the detergent was removed? Was that critical for observing these structures with multiple ligands? Did they observe any lipids in their cryoEM?

      Our response: We avoid detergent in the buffer on final SEC purification. This step is to remove free detergent from the background which helps during cryoEM imaging. Of course, this cannot be done with every detergent but due to the very low CMC of LMNG it is possible. By now, we have verified this method for several other transporters with the same success. While this procedure helps us to obtain better images it is not necessary to obtain specific conformations or ligand bound states, nor does it affect these states or conformations.

      In our cryoEM structures , we did observe multiple cholesterol hemisuccinate (CHS) molecules on the outer transmembrane surface of Pgp.

      1. Can the authors comment on why labeling was carried out in the presence of ATP? Does it matter if the substrate was added prior to ATP and incubated for a few minutes?

      Our response: For every dataset, we first added the substrate to be cross-linked and afterwards added the ATP. In the cases of 335C and 978C, labeling was successful before ATP was added, as evidenced by the inward-facing structures with cross-linked substrate. However, for 971C, cross-linking only occurred after the addition of ATP. We interpret this data to suggest that the 971 site is inaccessible to the substrate in the inward-facing state, and cross-linking can only occur after the transporter transitions to outward-facing state. This is in line with our inward-facing structure which does not show a cross-linked substrate, and our biochemical data shown in Fig 1C, where 971C only crosslinked in the presence of ATP.

      1. I am not an expert on MD simulations and I understand that carrying out simulations at higher temperatures used to be a trick to accelerate the process. Is this still necessary? Why didn't the author use approaches such as WESTPA?

      Our response: Most so-called enhanced sampling methods, including WESTPA, explicitly define a reaction coordinate for the process of interest, usually based on intuition or prior studies. If this coordinate is chosen poorly, enhanced sampling usually fails, either because the sampling becomes inefficient or because the sampling biases the transition pathway (or both). Lacking reliable intuition or prior knowledge on which motions would result in substrate release, we chose temperature to speed up the process. High temperature largely avoids the introduction of an any bias through the definition of a progress coordinate. By contrast, the weighted ensemble method underlying WESTPA is a great method to simulate unbiased dynamics of a process with a known progress coordinate, but unfortunately requires to choose a progress coordinate prior to the simulation and will then mostly sample the process along this progress coordinate, because this is the only direction in which sampling is improved. High temperature MD on the other hand accelerates all processes in the system under study. Indeed, we have now confirmed that the pathway found at high temperature is also feasible at near-ambient conditions.

      In new simulations, we have now observed a similar release pathway at T=330 K. As the only difference, the substrate has not fully dissociated from the protein after 2.5 us, with weak interactions persisting at the top part of TM1 from the extracellular side. Importantly, this is a configuration observed also in higher temperature simulations but with much shorter lifetime.

      In response, we now included these new findings and a new Extended Data Fig. 15 in the revised manuscript.

      1. One way to show that the two substrates binding mode is biochemically relevant is to measure Vmax at different substrate concentrations. One would expect a cooperative transition if that interaction is mechanistically important.<br /> Our response: We have measured Vmax as a function of QZ-Ala concentration in a previous report (ref. 24), supporting positive cooperativity for binding to two sites.

      Reviewer 3 (Public Review):

      We thank Reviewer 3 for recommending the acceptance of our manuscript as is.

      Reviewer 3 (Recommendations for the Authors):

      Page 4, last line: Pgp302 should be Pgp1302. In addition, I can only encourage the authors to add an additional table to the manuscript. Here, the mutation, the obtained structure(s), IF or OF, the resolution, and the main message should be summarized.

      Our response: Following the reviewer’s suggestion, we have added Extended Data Table 2 summarizing the Pgp mutants and respective structural data in the revised manuscript.<br /> We verified that Pgp302 is the correct term on Page 4, last line.

      Pg. 5, section 'Covalent ligand design for Pgp labeling', it is mentioned that even in the presence of Mg2+ATP, Pgp302 could not react with AAC-DNPT. Maybe it would be worthwhile to add the data either in Supplementary Information or state 'data not shown'.

      Our response: We stated ‘data not shown’ in the text.

      Pg. 47, last line : A space is missing between M68, and M74.

      Our response: Space was added.

      Pg. 7, line 2: The authors mention that a single dataset of ATP-bound Pgp335 revealed three different OF conformations: ligand-free, single-ligand-bound, and double-ligandbound. However, the percentage fraction of each dataset sums up to be more than 100%. Would request the authors to recalculate the fraction size of each conformation.

      Our response: We have corrected the error in our calculation, based on the particle distribution in our dataset (OF335-nolig: 1,437,110 particles, 40.4%; OF335-1lig: 1,184,253 particles, 33.3%; and OF335-2lig: 939,924 particles, 26.4%).

      Pg 53, Figure legend of Extended Data Fig. 11: Please include the color coding for the helix TM1 and also the residues colored plum.

      Our response: We added the color coding for TM1 and other residues in the figure legend.

      Pg. 8, line 3: While referring to the structure of OF971-1lig, the authors nicely point towards the conserved residues M74 and F78 which coordinate the ligand. However, in Fig. 3b, residues M74 and F78 should also be indicated.

      Our response: We updated Fig. 3b by adding arrows pointing towards the residues M74 and F78.

      Pg. 54, Extended data Fig. 12: The authors should adopt a single writing style. In some places, Pgp is referred to as P-gp while in others as Pgp.

      Our response: We updated the protein labels in Extended Data Fig. 12.

      Pg. 54, Extended data Fig. 12: The authors should clearly mention which OF335 structure (1st panel) was used for visualizing the interactions.

      Our response: To clarify, we added the following sentences in the figure legend: “Pgp335 OF in the top panel refers to OF335-1lig. In the bottom panel describing OF335-2lig, the left and right diagrams refer to the binding positions of non-covalent and covalent ligand, respectively”.

      Pg. 18, section 'synthesis of dipeptide 8': In the text it is mentioned that for the synthesis of thiazole acid 6, compound 3 was dissolved in a mixture of THF/MeOH/H2O (3:1:1), while in the corresponding figure (Extended Data Fig. 1), the ratio is stated as 5:1:2.

      Our response: 3:1:1 ratio is correct. We made the correction in Extended Data Fig. 1.

      Pg. 19, section 'synthesis of linear tripeptide 10': Same as above for compounds 10 and 4, respectively.

      Our response: We corrected the conditions in the Extended Data Fig. 1 accordingly.

      Pg. 20, section 'Synthesis of cyclic peptide 11': There seems to be a discrepancy in the synthesis protocol between the text and the extended figure 1, especially regarding the use of THF/MeOH/H20, followed by NaOH and TFA or only NaOH and TFA.

      Our response: we further clarified the conditions of using NaOH in THF/MeOH/H2O (3:1:1) and TFA in DCM in the text for synthesis and Extend Data Fig. 1.

      Pg. 40, Extended Data Fig. 1: In the bottom last panel showing the synthesis of peptide 11, the authors have missed showing peptide 10 as the starting material for the reaction.

      Our response: Label for the peptide 10 was added following the suggestion.

      Pg. 26, third last line: 'o' is missing from the last word cry'o'

      Our response: We corrected the typo.

      Pg. 63 and 64, Extended Data Table 1: The Cryo-EM data collection, refinement, and validation statistics for OF971-1lig, IF971-1lig, OF978-1lig, and IF978-2lig are mentioned twice in the table.

      Our response: This was now corrected in the revision.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the Authors):

      The authors have addressed my recommendations in the previous review round in a satisfactory way. I only have one additional comment to the authors:

      In the manuscript abstract lines 31-32, the author state that: "Using NIH data for the period 2006-2022, we report that ~230 K99 awards were made every year, representing ~$25 million annually."-- The "~$25 million" is under-stating the actual funds spent because this sum is just money spent on the first year of some k99s while the NIH is paying years 2,3,4 etc for others for k99 awards (~90% conversion rate to R00) awarded in previous years for a given year. The NIH is actually spending ~$230-$250 million a year on the k99 award mechanism in a given year. so the authors need to amend the stated amount in the manuscript.

      Thank you for pointing this out. The reviewer is correct, that we had incorrectly only calculated the investment $ in new K99 awards made. We have corrected this in the revised manuscript. We appreciate your careful reading of our manuscript and the edits made based on your comments have improved the final version.

      Reviewer #2 (Recommendations for the Authors):

      Thank you for taking the time to revise this important work. I learned a lot reading this paper a second time, and appreciate the improvements you have made.

      My only major thought while re-reading this is that I wish you all had written two papers! I see two themes in this work: one looking at faculty hiring networks from the Wapman et al. dataset, and another at K99/R00 conversions by institution, gender, and researcher mobility and its impact on subsequent funding success. After reading, I felt like I had many follow-up questions about both analyses, but it would be impractical for me to suggest all these follow-up analyses without making your paper unreasonably long.

      Thank you for these comments. We agree that there are 2 general themes in this paper. While we feel that significantly expanding on both themes will be important in future research. Our hope is that this work continues to inspire others to critically examine funding practices and inequity in the same way that the work of Wapman, Pickett, etc. inspired the present work.

      For example, regarding the results that more R00 are activated at different institutions, and that moving institutions improves subsequent funding success, I wonder: Do proportionally more women or men move institutions? Do proportionally more K99 awardees at less-funded places move for their R00, or less? The Cox proportional hazard models illustrate the impact of various characteristics on subsequent funding success, but they do not illustrate disparate impacts of mobility on different groups (if I am understanding them correctly). (You sort of dive into these questions in the very interesting subsection, "K99/R00 awardee self-hires are more common at institutions with top NIH funding." I wanted to read more!)

      Thank you for these kind comments. These are fantastic follow-up questions. We do not feel that we can adequately address them within the present manuscript without potentially splitting it into 2 separate manuscripts. However, we may examine these in future analyses. We are particularly interested in examining additional aspects such as how the K99 MOSAIC funding mechanism may differ from the traditional K99 mechanism. Since the K99 MOSAIC mechanism is newer, there may not be enough K99 MOSAIC awards made for a thorough exploration.

      As another example, for your analysis on faculty hiring networks, the prevalence of self-hiring amongst institutions and regions was one finding. However, this finding seems somewhat at odds with the previous takeaway about how researcher mobility improves subsequent funding success. Are institutions doing themselves a disfavor by hiring their own, then? I suspect there is more to say here about this pattern... maybe there are important differences between PhD institution and postdoc institution and its impact on hiring/subsequent funding success? Or is this a story about upward mobility into the top 25 well-funded NIH institutions?

      Again, these are very insightful comments and follow-up questions. We hope to address these in potential future manuscripts. We also hope that others may become interested in finding answers to these questions by exploring our dataset as well as other publicly available datasets such as the Wapman et al. dataset.

      I can completely understand how combining the faculty hiring network analysis with the K99/R00 conversions would seem like a natural fit, but I personally feel - emphasis on this being a personal opinion - that there would have been benefits to giving more space to the details of both analyses separately. Perhaps this is a "hindsight is 20/20" issue. Or an issue with the current times in which ones' brain can only hold so many main takeaways from a single body of work. (For example, I struggled to summarize your paper in my public review because I find so many takeaways important.)

      I suppose this is all to say that I find your work important enough to warrant additional follow-up work! :)

      Thank you for these very kind remarks. This work evolved over 8-10 months as evidenced by the updates to the biorXiv preprint. With unlimited time and foresight, it would probably be best to have separated the 2 themes into separate manuscripts and expanded both. Given current constraints, we plan to make some changes/updates to the present manuscript and hopefully include more in-depth analyses on each theme in future works. Thank you again for the thoughtful reading and critique of both our original manuscript and the revised version.

      Minor comments/questions:

      "K99 to R00 conversions are increasing in time"

      • Assuming I am interpreting the figures correctly, in my opinion, the most important takeaway is that the number of R00 awards have increased, but only for awardees moving to another institution. This key result, best illustrated by panels A and C of Figure 1, is buried in the long paragraph in this section. The organization of content in this section could be improved and more focused. Consider renaming this subsection to be more declarative: "K99 tR00 conversions have increased, but only for awardees moving to another institution."

      This is a very concise interpretation of this data. We have edited the paragraph referenced by the reviewer, split it into 2 paragraphs, and changed the title to “K99 awardees increasingly move to other institutions for R00 awards from 2008 to 2022” and the final sentence to “Thus, the number of K99 to R00 conversions is consistent over time, but increasingly more R00 awardees have moved to other institutions since 2013”

      • Similarly, I personally found the current title of the subsection, "K99 to R00 conversions are increasing with time" is mildly confusing. An R00 award indicates a successful conversion, so why not simply call this an R00 award instead of saying K99-to-R00 conversion? Also, when I look at Figure 1B and exclude the conversion rates for 2007 and 2008 (because this is a 3 year rolling average), I see that conversion rates (or R00 awards) have remained stagnant. This comment is very much in-the-weeds and is mainly to do with clarity of language.

      Thank you for these comments. We had “K99 to R00 conversion” to highlight the unique nature of this award mechanism that a person can only receive an R00 if they previously had a K99 award. Nevertheless, we have edited the text to “R00 awards” and “R00 awardees” to simplify things. We also want to note that we did not compute a 3-year rolling average. The function we used was: (X/(Y -1))x100 where X is the number of R00 awards made in a year and Y is the number of K99 awards made in a year. We did note an error in our calculation in the previous version of the manuscript. Previously, we included all R00 awards and K99 awards for each year from the NIH Reporter dataset; however, this is a flawed methodology. NIH reporter includes only extramural K99 award data and extramural R00 awards, but intramural K99 awardees can receive extramural R00 awards and thus are only included in the R00 dataset. There were 141 R00 awardees in our dataset from NIH Reporter that did not have K99 data, so we assume these are intramural K99 awards since it is required to have a K99 to be eligible for the R00 award. Since we do not know the awarding year for intramural K99 awardees or have data on intramural K99 awardees that fail to activate the R00 award (or stay internal at NIH), we have excluded these 141 R00 awardees. In the previous version, this mis-calculation exaggerated rolling conversion rate (we had correctly calculated the 78% total conversion rate). We re-analyzed our rolling conversion rate and found the average is 81.8% (excluding the first 2 years of the K99 program and the last 2 years).

      This is a long explanation, but essentially, we overestimated the number of R00 awards which inadvertently increased the rolling conversion rate. We have corrected this and simplified the first 2 paragraphs of the Results section.

      • I was also mildly confused looking at Figure 1c. The caption says that the percentages represent the K99 awardees that stayed at the same institution for the R00 activation, but the percentages are next to the solid circles which the legend labels as "different institution." Perhaps another or different way to show this is a stacked bar chart, where one bar represents the percentage of R00 awards activated at the same institution and another bar represents the percentage of R00 awards activated at a different institution. The bars always add to 100% but the change in proportions illustrates that proportionally fewer awards are being made to those remaining at the same institution.

      Great idea. We have included a stacked bar chart here. Since the stacked bar chart is percentages, we felt it was important to also show the total numbers so we still included the previous chart also but removed the percentage numbers from it. We also changed the departmental analysis to stacked bar charts. This shows the stark difference between 2008-2012 and 2013 onward. These changes were made in the revised Fig. 1.

      • Minor question: I would love to see Table 3 and Table 4 as a time-series. Has the proportion of recipients at various institution types changed with time?

      This is a great suggestion and we felt it fit best in Figure 5, so we’ve added it there.

      • Table 3 is useful but only indirectly addresses my first "Recommendation to the Authors" from my previous review. I did some number crunching myself from the data provided. Assuming I did this correctly: If you're a K99 awardee at a private institute, you had a 76.3% change of getting an R00 compared to 80.4% for a K99 awardee at a public institution. If you're a K99 awardee at a top-funded institution, you had a 76.8% chance of R00 compared to 78.6% for a lower-funded institution. I would have liked to see more figures and tables to illustrate conversion rates by institution type in this way. Interestingly, to me, these data suggest that there are not enormous conversion rate differences by institution type (though looking at these now, I am confused at the 89% statistic in line 174 and where that comes form, since it is much higher than what I've calculated).

      Thank you for this suggestion and these comments. Please see above where we describe how we incorrectly overestimated the 89% statistic. This has been corrected. As the reviewer suggested, we now show yearly percent of grants to specific institution types in the revised Figure 5. We agree with the reviewer that showing the conversion rate by institution type is interesting; however, it is fairly obvious from the new panels in Figure 5 that there is not much difference in conversion rate. Thus, to avoid crowding too many panels into the figure, we opted to keep the stacked bar plot.

      Reviewer #3 (Recommendations for the Authors):

      -One minor change to Figure 1C would be to switch the color coding for the lines so that they match with 1D whereby "same institution" would be white circles, or whatever the authors decide would be best for consistency since they are similar comparisons.

      Thank you for this suggestion. We have corrected this to be consistent.

      -Minor note for lines 459-461: I would suggest changing the wording to "intersectional inequalities" as it is not that a scientist's identities impact their careers as much as how those identities are positioned within an unequal opportunity structure and differentially treated that produce varying career trajectories and experiences of marginalization and cumulative (dis)advantages.

      Thank you and we agree with you. We have made this correction.

      -To carry forward a suggestion for the authors in my previous review, future research that more fully explores the research infrastructure of institutions for how top NIH funded institutions continue to be top funded institutions year after year could help clarify some of the career mobility and same/similar institution hiring found in the data. Rather than hand coding institutions for some of the infrastructure, the National Center for Education Statistics' Integrated Postsecondary Education Data System (IPEDS) has data on colleges and universities including whether they operate a hospital, have a medical degree, and many other interesting data about student and faculty demographics, institutional expenditures (including research budgets), and degrees awarded in different fields of study (undergrad and grad) that may be helpful to the authors as they continue their research stream in this area.

      Thank you very much. We will look into this data set as we continue our investigations in this area.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      The discussion seems to imply that the ball-and-chain peptide is or is related to the common gate. (Although it isn't stated explicitly, it is implied based on the presentation of the gating model in Figure 8 immediately after the discussion of common gating, and the simultaneous opening of both pores in Figure 8). What does the asymmetric structure say about the relationship between the N-term peptide and common gating in ClC-2? It seems like this structure suggests that the CTDs can independently rotate, and independently bind N-terminal peptide, which might not be expected to impact both pores. Some additional clarification and/or discussion of these ideas could be helpful here.

      We thank the reviewer for raising these very important points. We agree we should have been more explicit and have now expanded our discussion on this topic, highlighting the independent movement of the N-term peptide and CTDs and clarifying that it is currently unknown whether CLC-2 has a common gate (lines 431484).

      Discussion of "Revised Framework for CLC-2 gating": I think this would be a little easier to follow if most of the legend from Figure 8 was in the main text at the end of that section. Also, additional labels in Figure 8 (of the glutamates, the N-terminal peptide, and what the CTD arrows represent).

      We have revised this section of the text and added labels to the (revised) Figure as suggested.

      Line 261: typo, misspelling of "hydrogen"

      Fixed. (Now line 279.)

      Figure 6 - supplement 2B: Looks like an error in numbering y-axis - should be 90/120/150, I think. Can you show the three data points for the WT initial current rectification? Can you clarify whether the 3 that you are analyzing are the ones where AK42 the AK42 "zero current" level is not more than the initial positive current?

      We apologize for this error, which arose from the Y-axis label overlapping the tick labels, so 90/120/150 showed as 90/20/50. We have fixed this error and have added a new panel (C) to show three data points for the WT initial current rectification. In the Figure legend to panel C, we clarify that the 3 experiments we analyzed are the ones where the AK-42 current level is not more than the initial current at 80 mV.

      Reviewer #2 (Recommendations For The Authors):

      1. It appears from a close inspection of Figure 2 that the TM dimer is not quite symmetric, but I couldn't tell for sure from the figures as presented. No comment is made in the methods about symmetry imposed, and the authors explicitly comment on asymmetry in the cytoplasmic domain. It would be useful to have an explicit discussion of the TM dimer symmetry.

      We have now explicitly stated that the TM dimer is symmetric, and we have clarified the wording in the Methods:

      Main text, line 81: "The TM region of CLC-2 displays a typical CLC family symmetric homodimeric structure, with each subunit containing an independent Cl– pathway (Figure 2A, B)."

      Methods (lines 557-558): "The following ab initio reconstruction and 3D refinement (for all structures presented in this paper) were performed with C1 symmetry (no symmetry imposed)."

      1. For the simulations in Figure 5 Supplement 2, the N terminus flexibility is shown, but this of course can't be compared to a control. However, given the structural results, one might expect the JK helix to show changes in flexibility/mobility in the apo vs inactivated structures. Is this observed?

      We agree that the structures strongly suggest the JK-helix is not as stable without the N-terminus bound. We did not perform comparative simulations on the JK helix in the apo vs inactivated structures. While we agree this could be of interest, we don’t think it is essential to our conclusions, and the simulations might need to be quite long to adequately capture dynamics of the JK helix. [In the simulation results shown in Figure 5 Supplement 2, our aim was to test the validity of the structure by determining whether the N-terminus remains bound to the channel in simulations. The plot shows that the N-terminus stays in the same binding pose with an average RMSD (to the initial structure) of less than 2 angstroms, which is generally considered to be relatively stable.]

      1. I find the section "revised framework for ClC-2 gating" to be wanting. The ideas are illustrated in the cartoon, but should also be laid out in the text. In what ways are you revising the framework, and in what aspects are you carrying through ideas already proposed?

      Thank you for raising this point, which was also raised by Reviewer 1. We have revised this section and the accompanying Figure (Figure 8 and Lines 431-484).

      1. The authors mention in passing the idea that the hairpin could contribute to inward rectification (lines 227/8), but also suggest a role for the gating glutamate in this process. They also mention the idea of a common gate, but don't flesh out its function very much. These possibilities are very interesting and should be substantially fleshed out in the "framework" section, even if they cannot be fully answered yet.

      We have expanded on these points in the “framework” section.

      1. Figure 6E. points representing individual experiments should be shown.

      We added points representing individual experiments for Delta N (normalized to WT) in the surface-expression experiments in Figure 6E. Individual data points for the electrophysiology experiments are in panel C; we did not replot these in panel E because some of the points would have been off scale.

      1. The density in Figure 2A is hard to see, is there a better way to display it? Also, the orientation of the rightmost panel in Figure 2C is difficult to interpret.

      We revised 2A to make the density easier to see. We revised Figure 2C so that the middle and rightmost panels have the same orientation.

      1. P6. Line 87. This sentence is a little confusing, and perhaps could be a little clearer-the density is consistent with a Cl- ion, but no experiments have been done to support this, no?

      We have clarified the wording as suggested (now line 89) and added references supporting Clˉ binding to the Sext site in CLCs (line 90).

      1. P6 lines 89-98. Two lines of evidence, the conformation of the gate and the pinch point, both point to the structure representing a closed state. The wording as presented is a little hard to follow.

      We have revised the wording in this paragraph (lines 92-111)

      1. It's hard to distinguish water protons and oxygens in the lower right panel (QQQ).

      We revised this panel (in Figure 3 – figure supplement 2) to better distinguish the water protons and oxygens.

      Reviewer #3 (Recommendations For The Authors):

      A few points to consider for improving the manuscript

      1. It is intriguing that in the AK-42 structure, there is no density for the hairpin loop even though the CTD is in a symmetrical conformation as the apo. The authors could perhaps comment on whether there is any difference in the rectification properties of currents (or run-up) upon unblocking of AK-42 which may suggest that the hairpin binding is prevented by AK-42.

      We have not yet performed the suggested experiment nor any experiments to examine state-dependence, though we agree such experiments would be informative. We have added a note on this point in the discussion, lines 334-337.

      1. Although the conformation-dependent placement of the hairpin loop is convincing based on the density, the sequence assigned to this region is not conclusive.

      To strengthen our conclusion concerning the hairpin assignment, we investigated fits of peptide segments from the disordered sections of the C-terminal cytoplasmic domain to the hairpin density. We found that these fits are not as good as that with the N-terminal peptide. This analysis is described in lines 179-181 and a new figure (Figure 5 – figure supplement 1). We appreciate the reviewer’s point that it is extremely difficult to conclusively assign residues that are not contiguous with the rest of the structure. Nevertheless, given the wide variety of evidence all pointing to the conclusion that the hairpin loop corresponds to residues 14-28, we think the assignment is on strong footing. We respectfully ask that you consider removing this criticism from the public review, as we think it will hinder the casual reader from recognizing the strength of the evidence: (1) of unresolved regions in CLC-2, residues 14-28 fit best; (2) residues 14-28 were previously identified as part of the ball blocking region (lines 158-161); (3) MD simulations support that the N-terminal residues stay stably bound (Figure 5 – figure supplement 4) (4) gain-of-function disease causing mutations map onto either the Nterminal residues or interacting residues on the TM domain (Figure 5 – figure supplement 6). Thank you for considering this request.

      1. The authors should comment on the physiological relevance of the CBS domain rearrangements during gating.

      We have added this sentence (lines 131-133): “The physiological relevance of C-terminal domain rearrangements is suggested by disease-causing mutations that alter channel gating (Estevez et al., 2004; Brenes et al., 2023).”

      1. For the figures with cryo-EM maps, indicate the contour levels.

      Contour levels are now indicated in the Figure legends.

      1. It will be useful to the electrostatic map of the N-terminal peptide and the docking site.

      This is now shown in Figure 5 – figure supplement 3 and Video 5.

      1. Include a comment on the recent CLC-2 /AK-42 structure and if there are any differences in the structural features.

      We added this text to lines 273-274: “The RMSD between our CLC2-TM-AK42 structure and that of Ma et al. is 0.655 Å, and the RMSD between the apo TM structures is 0.756 Å.”

    1. Author Response

      The following is the authors’ response to the previous reviews.

      eLife assessment

      The paper contains some useful analysis of existing data but there are concerns regarding the conclusion that there might be alternative mechanisms for determining the location of origins of DNA replication in human cells compared to the well known mechanism known from many eukaryotic systems, including yeast, Xenopus, C. elegans and Drosophila. The lack of overlap between binding sites for ORC1 and ORC2, which are known to form a complex in human cells, is a particular concern and points to the evidence for the accurate localization of their binding sites in the genome being incomplete.

      Public Reviews:

      Reviewer #1 (Public Review):

      In the best genetically and biochemically understood model of eukaryotic DNA replication, the budding yeast, Saccharomyces cerevisiae, the genomic locations at which DNA replication initiates are determined by a specific sequence motif. These motifs, or ARS elements, are bound by the origin recognition complex (ORC). ORC is required for loading of the initially inactive MCM helicase during origin licensing in G1. In human cells, ORC does not have a specific sequence binding domain and origin specification is not specified by a defined motif. There have thus been great efforts over many years to try to understand the determinants of DNA replication initiation in human cells using a variety of approaches, which have gradually become more refined over time.

      In this manuscript Tian et al. combine data from multiple previous studies using a range of techniques for identifying sites of replication initiation to identify conserved features of replication origins and to examine the relationship between origins and sites of ORC binding in the human genome. The authors identify a) conserved features of replication origins e.g. association with GC-rich sequences, open chromatin, promoters and CTCF binding sites. These associations have already been described in multiple earlier studies. They also examine the relationship of their determined origins and ORC binding sites and conclude that there is no relationship between sites of ORC binding and DNA replication initiation. While the conclusions concerning genomic features of origins are not novel, if true, a clear lack of colocalization of ORC and origins would be a striking finding. However, the majority of the datasets used do not report replication origins, but rather broad zones in which replication origins fire. Rather than refining the localisation of origins, the approach of combining diverse methods that monitor different objects related to DNA replication leads to a base dataset that is highly flawed and cannot support the conclusions that are drawn, as explained in more detail below.

      Response: We are using the narrowly defined SNS-seq peaks as the gold standard origins and making sure to focus in on those that fall within the initiation zones defined by other methods. The objective is to make a list of the most reproducible origins. Unlike what the reviewer states, this actually refines the dataset to focus on the SNS origins that have also been reproduced by the other methods in multiple cell lines. We have changed the last box of Fig. 1A to make this clearer: Shared origins = reproducible SNS-seq origins that are contained in initiation zones defined by Repli-seq, OK-seq and Bubble-seq. This and the Fig. 2B (as it is) will make our strategy clearer.

      Methods to determine sites at which DNA replication is initiated can be divided into two groups based on the genomic resolution at which they operate. Techniques such as bubble-seq, ok-seq can localise zones of replication initiation in the range ~50kb. Such zones may contain many replication origins. Conversely, techniques such as SNS-seq and ini-seq can localise replication origins down to less than 1kb. Indeed, the application of these different approaches has led to a degree of controversy in the field about whether human replication does indeed initiate at discrete sites (origins), or whether it initiates randomly in large zones with no recurrent sites being used. However, more recent work has shown that elements of both models are correct i.e. there are recurrent and efficient sites of replication initiation in the human genome, but these tend to be clustered and correspond to the demonstrated initiation zones (Guilbaud et al., 2022).

      These different scales and methodologies are important when considering the approach of Tian et al. The premise that combining all available data from five techniques will increase accuracy and confidence in identifying the most important origins is flawed for two principal reasons. First, as noted above, of the different techniques combined in this manuscript, only SNS-seq can actually identify origins rather than initiation zones. It is the former that matters when comparing sites of ORC binding with replication origin sites, if a conclusion is to be drawn that the two do not co-localise.

      Response: We agree. So the reviewer should agree that our method of finding SNS-seq peaks that fall within initiation zones actually refines the origins to find the most reproducible origins. We are not losing the spatial precision of the SNS-seq peaks.

      Second, the authors give equal weight to all datasets. Certainly, in the case of SNS-seq, this is not appropriate. The technique has evolved over the years and some earlier versions have significantly different technical designs that may impact the reliability and/or resolution of the results e.g. in Foulk et al. (Foulk et al., 2015), lambda exonuclease was added to single stranded DNA from a total genomic preparation rather than purified nascent strands), which may lead to significantly different digestion patterns (ie underdigestion). Curiously, the authors do not make the best use of the largest SNS-seq dataset (Akerman et al., 2020) by ignoring these authors separation of core and stochastic origins. By blending all data together any separation of signal and noise is lost. Further, I am surprised that the authors have chosen not to use data and analysis from a recent study that provides subsets of the most highly used and efficient origins in the human genome, at high resolution (Guilbaud et al., 2022).

      Response: 1) We are using the data from Akerman et al., 2020: Dataset GSE128477 in Supplemental Table 1. We have now separately examined the core origins defined by the authors to check its overlap with ORC binding (Supplementary Fig. S8b)

      2) To take into account the refinement of the SNS-seq methods through the years, we actually included in our study only those SNS-seq studies after 2018, well after the lambda exonuclease method was introduced. Indeed, all 66 of SNS-seq datasets we used were obtained after the lambda exonuclease digestion step. To reiterate, we recognize that there may be many false positives in the individual origin mapping datasets. Our focus is on the True positives, the SNS-seq peaks that have some support from multiple SNS-seq studies AND fall within the initiation zones defined by the independent means of origin mapping (described in Fig. 1A and 2B). These True positives are most likely to be real and reproducible origins and should be expected to be near ORC binding sites.

      We have changed the last box of Fig. 1A to make this clearer: Shared origins = reproducible SNS-seq origins that are contained in initiation zones defined by Repli-seq, OK-seq or Bubble-seq.

      Ini-seq by Torsten Krude and co-workers (Guillbaud, 2022) does NOT use Lambda exonuclease digestion. So using Ini-seq defined origins is at odds with the suggestion above that we focus only on SNS-seq datasets that use Lambda exonuclease. However, Ini-seq identifies a much smaller subset of SNS-seq origins, so, as requested, we have also done the analysis with just that smaller set of origins, and it does show a better proximity to ORC binding sites, though even then the ORC proximate origins account for only 30% of the Ini-seq2 origins (Supplementary Fig. S8d). Note Ini-seq2 identifies DNA replication initiation sites seen in vitro on isolated nuclei.

      Update in response to authors' comments on the original review:

      While the authors have clarified their approach to some aspects of their analysis, I believe they and I are just going to have to disagree about the methodology and conclusions of this work. I do not find the authors responses sufficiently compelling to change my mind about the significance of the study or veracity of the conclusions. In my opinion, the method for identification of strong origins is not robust and of insufficient resolution. In addition, the resolution and the overlap of the MCM Chip-seq datasets is poor. While the conclusion of the paper would indeed be striking and surprising if true, I am not at all persuaded that it is based on the presented data.

      Reviewer #2 (Public Review):

      Tian et al. performed a meta-analysis of 113 genome-wide origin profile datasets in humans to assess the reproducibility of experimental techniques and shared genomics features of origins. Techniques to map DNA replication sites have quickly evolved over the last decade, yet little is known about how these methods fare against each other (pros and cons), nor how consistent their maps are. The authors show that high-confidence origins recapitulate several known features of origins (e.g., correspondence with open chromatin, overlap with transcriptional promoters, CTCF binding sites). However, surprisingly, they find little overlap between ORC/MCM binding sites and origin locations.

      Overall, this meta-analysis provides the field with a good assessment of the current state of experimental techniques and their reproducibility, but I am worried about: (a) whether we've learned any new biology from this analysis; (b) how binding sites and origin locations can be so mismatched, in light of numerous studies that suggest otherwise; and (c) some methodological details described below.

      • I understand better the inclusion/exclusion logic for the samples. But I'm still not sure about the fragments. As the authors wrote, there is both noise and stochasticity; the former is not important but the latter is essential to include. How can these two be differentiated, and what may be the expected overlap as a function of different stochasticity rates?

      It is difficult to separate the effect of noise from the effect of stochastic firing of origins. We therefore took the simplest approach: focus only on the most reproducible origins (shared origins) and ignore the non-reproducible origins. At least the most reproducible origins can be used to test the hypotheses regarding origin firing.

      • Many of the major genomic features analyzed have already been found to be associated with origin sites. For example, the correspondence with TSS has been reported before:

      https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6320713/

      https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6547456/

      • Line 250: The most surprising finding is that there is little overlap between ORC/MCM binding sites and origin locations. The authors speculate that the overlap between ORC1 and ORC2 could be low because they come from different cell types. Equally concerning is the lack of overlap with MCM. If true, these are potentially major discoveries that butts heads with numerous other studies that have suggested otherwise.

      The key missing dataset is ORC1 and ORC2 CHiP-seq from the same cell type. This shouldn't be too expensive to perform, and I hope someone performs this test soon. Without this, I remain on the fence about how much existing datasets are "junk" vs how much the prevailing hypothesis about replication needs to be revisited. Nonetheless, the authors do perform a nice analysis showing that existing techniques should be carefully used and interpreted.

      We agree that a thorough set of ChIP-seq data (with multiple antibodies or with equivalent techniques that do not use antibodies) for all six subunits of ORC in mammalian cells will be very useful for the field. Note, though, that just by simple cell lysis, it is very easy to divide human ORC into at least three different parts: ORC1, ORC2-5, and ORC6. The subunits do not form as robust a complex as seen in the yeasts and in flies.

      Reviewer #3 (Public Review):

      Summary: The authors present a thought-provoking and comprehensive re-analysis of previously published human cell genomics data that seeks to understand the relationship between the sites where the Origin Recognition Complex (ORC) binds chromatin, where the replicative helicase (Mcm2-7) is loaded, and where DNA replication actually beings (origins). The view that these should coincide is influenced by studies in yeast where ORC binds site-specifically to dedicated nucleosome-free origins where Mcm2-7 can be loaded and remains stably positioned for subsequent replication initiation. However, this is most certainly not the case in metazoans where it has already been reported that chromatin bindings sites of ORC and Mcm2-7 do not necessarily overlap, nor do they always overlap with origins. This is likely due to Mcm2-7 possessing linear mobility on DNA (i.e., it can slide) such that other chromatin-contextualized processes can displace it from the site in which it was originally loaded. Additionally, Mcm2-7 is loaded in excess and thus only a fraction of Mcm2-7 would be predicted to coincide with replication start sites. This study reaches a very similar conclusion of these previous studies: they find a high degree of discordance between ORC, Mcm2-7, and origin positions in human cells.

      Strengths: The strength of this work is its comprehensive and unbiased analysis of all relevant genomics datasets. To my knowledge, this is the first attempt to integrate these observations. It also is an important cautionary tale to not confuse replication factor binding sites with the genomic loci where replication actually begins, although this point is already widely appreciated in the field. Response: Thank you for recognizing the comprehensive and unbiased nature of our analysis. Our findings will prevent the unwise adoption of ORC or MCM binding sites as surrogate markers of origins and will stimulate the field to try and improve methods of identifying ORC or MCM binding until the binding sites are found to be proximal to the most reproducible origins. The last possibility is that there are ORC- or MCM-independent modes of defining origins, but we have no evidence of that.

      Weaknesses: The major weakness of this paper is the lack of novel biological insight and that the comprehensive approach taken failed to provide any additional mechanistic insight regarding how and why ORC, Mcm2-7, and origin sites are selected or why they may not coincide.

      Response: we agree that we cannot provide a novel biological insight from this kind of meta-analysis. The importance of this study is in highlighting that there is either significant problems with the data collected till now (preventing the co-localization of ORC or MCM binding sites with the most reproducible origins) or ORC and MCM binding sites are often far away from where the most reproducible origins fire, which should make us consider ways in which origins could be activated kilobases away from ORC and MCM binding sites.

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      All suggestions and recommendations were described in a previous review.

      Reviewer #3 (Recommendations For The Authors):

      The most significant omission is a contextualization of the results in the discussion and an explanation of why these results matter for the biology of replication, disease, and/or our confidence in the genomic techniques reported on in this study. As written, the discussion simply restates the results without any interpretation towards novel insight. I suggest that the authors revise their discussion to fill this important gap.

      A second important, unresolved point is whether replication origins identified by the various methods differ due to technical reasons or because different cell types were analyzed. Given the correlation between TSS and origins (reported in this study but many others too), it is somewhat expected that origins will differ between cell types as each will have a distinct transcriptional program. This critique is partly addressed in Figure S1C. However, given the conclusion that the techniques are only rarely in agreement (only 0.27% origins reproducibly detected by the four techniques), a more in-depth analysis of cell type specific data is warranted. Specifically, I would suggest that cell type-specific data be reported wherever origins have been defined by at least two methods in the same cell type, specifically reporting the percent of shared origins amongst the datasets. This type of analysis may also inform on whether one or more techniques produces the highest (or lowest) quality list of true origins.

      We have done what has been suggested: used K562 cell type-specific data because here the origins have been defined by at least two methods in the same cell type and reported the percent of shared origins amongst the datasets (Supp. Fig. S4).

      Other MINOR comments include:

      • Line 215: the authors show that shared origins overlap with TF binding hotspots more often than union origins, which they claim suggests "that they are more likely to interact with transcription factors." As written, it sounds like the authors are proposing that ORC may have some direct physical interaction with transcription factors. Is this intended? If so, what support is there for this claim?

      The reviewer is correct. We have rephrased because we have no experimental support for this claim.

      • In the text, Figure 3G is discussed before Figure 3F. I suggest switching the order of these panels in Figure 3.

      Done.

      • It's not clear what Figure 5H to Figure 6 accomplishes. What specifically is added to the story by including these data? Is there something unique about the high confidence origins? If there is nothing noteworthy, I would suggest removing these data.

      We want to keep them to highlight the small number of origins that meet the hypothesis that ORC and MCM must bind at or near reproducible origins. These would be the origins that the field can focus in on for testing the hypothesis rigorously. They also show the danger of evaluating proximity between ORC or MCM binding sites with origins based on a few browser shots. If we only showed this figure, we could conclude that ORC and MCM binding sites are very close to reproducible origins.

      • Line 394: "Since ORC is an early factor for initiating DNA replication, we expected that shared human origins will be proximate to the reproducible ORC binding sites." This is only expected if one disbelieves the prior literature that shows that ORC and origins are not, in many cases, proximal. This statement should be revised, or the previous literature should be cited, and an explanation provided about why this prior work may have missed the mark.

      We do not know of any genome-wide study in mammalian cell lines where ORC binding sites and MCM binding have been compared to highly reproducible origins, or that show that these binding sites and highly reproducible origins are mostly not proximal to each other. Most studies cherry pick a few origins and show by ChIP-PCR that ORC and/or MCM bind near those sites. Alternatively, studies sometimes show a selected browser shot, without a quantitative measure of the overlap genome wide and without doing a permutation test to determine if the observed overlap or proximity is higher than what would be expected at random with similar numbers of sites of similar lengths. In the revised manuscript we have discussed Dellino, 2013; Kirstein, 2021; Wang, 2017; Mas, 2023. None of them have addressed what we are addressing, is the small subset of the most reproducible origins proximal to ORC or MCM binding sites?

      • Line 402-404: given the lack of agreement between ORC binding sites and origins the authors suggest as an explanation that "MCM2-7 loaded at the ORC binding sites move much further away to initiate origins far from the ORC binding sites, or that there are as yet unexplored mechanisms of origin specification in human cancer cells". The first part of this statement has been shown to be true (Mcm2-7 movement) and should be cited. But what do the authors mean by the second suggestion of "unexplored mechanisms"? Please expand.

      We have addressed this point in the revised manuscript.

      • The authors should better reference and discuss the previous literature that relates to their work, some of these include Gros et al., 2015 Mol Cell, Powell et al., 2015 EMBO J, Miotto et al., 2016 PNAS, but likely there are many others.

      We have addressed this point in the revised manuscript.

      Note for authors:

      Line 107: The introduction discusses the mechanism for yeast ORC recognizes specific origins and discusses the Orc4 contribution, but it is known that Orc2 also binds DNA on a base-specific manner (see PMID 33056978). Thus Lee et al. did not "humanize ORC" as stated.

      Done

      Lines 117-119: Two of the cited papers are on endo-reduplication and not on initiation in a normal cell cycle and this should be pointed out. Second, there is contradictory evidence that ORC is essential in human cells and this should be cited (PMID 33522487)

      Done

    1. Author Response

      The following is the authors’ response to the original reviews.

      Based on the reviewer comments (see below) and subsequent discussion between the reviewers and the Reviewing Editor, I would like to invite the authors to make major revisions, including new experiments. However, if major new experiments are not feasible, as may be the case, then at a minimum, I would urge the authors to:

      1. Tone down the language regarding a causative role for changes in GH/IGF-I signaling in mediating the effects of Tmem63 on the skeleton, and also be very open in acknowledging the lack of mechanistic insight into how Tmem regulates GH signaling.

      Response: We toned down the language as suggested and also acknowledged the lack of mechanistic insights into how Tmem263 regulates GH signaling.

      1. Revise/redo or if not possible, then delete the problematic experiment in Fig. 5E.

      Response: We have included additional Western blot data in Figure 5 from control WT and KO male mice without exogenous GH injection. In the absence of GH injection, we could not detect Jak2 and Stat5 phosphorylation in the liver of male WT and KO mice.

      1. Address the comments about liver feminization.

      Response: We have performed additional analysis as suggested by reviewer # 3. We have now included additional data to address the issue of liver feminization (new Fig. 6G-I and Figure 6-figure supplement 1). We plan to expand on this very topic in future studies as this is an interesting transcriptional phenomenon.

      1. Revise the manuscript to address as many of the recommendations for the authors as possible, many of which can be addressed by textual edits. Response: We have addressed as many of the textual changes as suggested in the revised manuscript.

      Reviewer #2 (Recommendations for The Authors):

      TMEM263 has been suggested to be associated with bone mineral density and growth in humans and mice, but the functional role of this transmembrane protein in the regulation of bone metabolism is unknown. With the knockout mouse approach, this manuscript demonstrates that Tmem263 is essential for longitudinal bone growth in the mouse as deletion of Tmem263 in knockout (KO) mice developed severe postnatal growth impairment and proportional dwarfism. It is determined that the dwarfism was caused by a substantial reduction in liver expression of growth hormone receptor (GHR), a slight increase in serum GH, and a reduction in serum IGF-I, which resulted in disruptive of GH/IGF-I regulatory axis of endochondral bone formation.

      The study was relatively well designed, and the results in general are supportive of the conclusions. While this study discloses new and intriguing functional information about a novel cytoplasmic membrane gene, there are a few minor issues that the authors may wish to address. These issues are listed in the following:

      1. One of the intriguing findings of this manuscript is that deletion of a gene encoding a small cytoplasmic membrane protein could cause a substantial reduction in the expression and protein levels of GHR. Inasmuch as a couple of potential explanations were offered in the Discussion section (first complete paragraph of page 10), there has been no attempt to test any of the suggested causes, since many of these potential mechanisms can readily be tested experimentally. Accordingly, the lack of mechanistic investigation into this intriguing effect renders the manuscript largely descriptive in nature.

      Response: The point made by the reviewer is well taken. We do plan to have follow up studies to establish which among the mechanisms we highlighted in the discussion is contributing to the reduction in GHR transcript and protein level. Our present study is the first functional characterization of this enigmatic novel membrane protein. We anticipate that multiple follow-up studies are needed to gain a deeper understanding of the biology of Tmem263. We believe that our present study represents an important first step.

      1. Because a major conclusion is that the bone phenotype of Tmem263 KO mice was caused by deficient hepatic expression and/or action of GHR, it would be helpful to (or strengthen) the conclusion if a brief comparison of the bone phenotype between GHR KO mice and Tmem263 KO mice is included in the Discussion section.

      Response: We have now included this information in the revised manuscript.

      1. In Figure 3, the cortical bone parameters (i.e., Tt.Ar, Ct.Ar, and Ct.Th), but none of the trabecular bone parameters (i.e., BV/TV, Tb.N, Tb.Th), were normalized against femur length. The authors did not provide a rationale for this differential treatment with the cortical bone parameters from the trabecular bone parameters. If the reason to normalize the cortical bone parameters against bone length was to demonstrate that the reduced cortical bone mass in mutants was related to the impaired longitudinal bone growth, then why did the authors not also assess whether the observed reduction in these trabecular bone parameters in KO mutants was proportional to reduced longitudinal bone growth?

      Response: We actually made the exact adjustments that the reviewer refers to, as stated in the methods section. Please see page 14. The regions of interest (ROIs) of both the trabecular bone analysis and the cortical analysis in the mutants was reduced proportional to the length of the bone (40% smaller). The normalization to Tt Ar to femur length in Figure 3I was only meant to show that the reduction in Tt Ar in the mutants was proportional. We have modified the text in our result section for clarity.

      1. Elements described in Fig. 5A have been well documented. Therefore, Fig. 5A is unnecessary and can be deleted.

      Response: We felt that Figure 5A should remain. It helps orient readers that are not familiar with the literature to be aware that both liver- and bone-derived IGF-1 contribute to longitudinal bone growth.

      1. Figure 6 was performed with male KO mice. Were the altered gene expression profiles in female KO mice any different from male KO mice?

      Response: We plan to perform RNA-seq in female mouse liver in our follow-up studies. We do not know, at present, whether and to what extent the liver transcriptomic profile would be different between male and female KO mice. As far as dwarfism and deficiency in skeletal acquisition, both male and female KO mice showed the same phenotypes.

      1. The number of animals (or samples) per group in some of the Figures (i.e., Fig. 2G, 2I, 2J, 3A to J, the entire Fig. 4, 5D, 5F, and Suppl Fig. 1) is needed to be provided in the legends.

      Response: We have included this information in the figure legends.

      Reviewer #3 (Recommendations for The Authors):

      1. Explain the discrepancy between the impact of KO on serum Igfbp3 (= decreased) vs. hepatic Igfbp3 (= unchanged).

      Response: We do not have a plausible mechanism, at present, that can explain the reduction in circulating serum Igfbp3 level without an apparent reduction in Igfbp3 transcript level in the liver. In human studies, typically only serum IGFBP3 levels are measured but not the hepatic IGFBP3 transcript level. Therefore, it is unclear whether the circulating levels of IGFBP3 is being regulated at the posttranscriptional level, an issue that can be explored in future studies.

      1. Line 215, 221, and elsewhere - Foxa1 does not show significant male-biased expression in mouse liver.

      Response: We have removed Foxa1 from the text.

      1. Line 225- According to the abstract of Ref. #45, Cux2 regulates a subset of sex-biased genes in the liver. The authors should compare the genes dysregulated by TMEM263-KO (Fig. 6) to those altered by Cux2 loss (Ref. #45) to ascertain whether the results of Fig. 6 are partially or entirely explained by Cux2 overexpression.

      Response: We agree that this is a great area of future study. We do feel this, however, would be better explored in a more in-depth follow-up article. We felt, given the current direction of the paper it made more sense to include differential expression comparisons of male vs female, hypophysectomized vs sham control, and Stat5b-KO vs WT mouse liver gene expression data. Our future work will explore the transcriptomes of male and female WT and Tmem263-KO liver gene expression in the context of the observed physiology.

      1. Line 262- "lower transcription of Ghr gene". A decrease in mRNA levels does NOT equate with a decrease in transcription per se. Altered mRNA splicing, poly A, export, cytoplasmic stability, etc. are all potential contributors.

      Response: We have included these possibilities highlighted by the reviewer in our revised Discussion section.

      1. Line 273, "TMEM263... most highly expressed in liver" Not correct - see Fig. 1C for TMEM263 RNA levels in mouse tissues.

      Response: We have corrected the text on page 11.

      1. Line 425 - Include GEO accession number.

      Response: We have already uploaded our RNA-seq data to the NCBI Sequence Read Archive (SRA), and the data can be accessed under accession number # PRJNA938158.

      1. Fig. 6 - Line 796 - Specify the age and sex of mice analyzed.

      Response: We have included the information in the revised figure 6 legend.

      1. Fig.2 - Suppl 1- Specify age of mice.

      Response: We have included the information in the revised Figure 2-figure supplement 2.

      1. Fig.2G -Specify the sex of the mice.

      Response: For the P1 to P21 pups’ data, we did not separate by sex, as gender determination of pups at P1 and P7 can be challenging. We now indicated this in the figure legend.

      1. Fig. 6A and 6C-6F: Which of these genes shows sex-dependent expression in wild-type liver? Use color to highlight gene names for genes that show male-biased or female-biased expression.

      Response: We agree with the reviewer that additional labels on Figure 6A and 6C-F would be helpful to show genes of sex-bias. However, this is not the primary point of the paper. This topic deserves a much more in-depth analysis in follow up studies focused on defining the exact type and degree of transcript feminization in the liver of Tmem263-KO mice, as well as, its physiologic consequences. For readers interested in this topic, we have included the subfigures G-I in Figure 6 and for greater transcript level detail, figure 6 supplement 1.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1

      Recommendation 1: The authors reasoned upon the presence of a differential basal hydraulic stress in waves' valleys vs hills at first from the observation of "domes" formation upon 48h cultivation. I suggest performing a quantification to support the statement as a good scientific practice. Furthermore, it would strengthen the concept when the formation of domes was compared between the waves' dimensions as a different grade of cell extrusion was quantified. i.e., 50, 100, and 200 µm.

      Response 1: Upon seeing the phenomenon (Author response image 1 A), we performed a count for domes on the 100 µm and saw a significant effect. We refrained from including the results as it is the subject of ongoing research in our lab. In response to the reviewer’s suggestion, we have included a graph (Author response image 1 B) showing the increasing number of domes over 48 hours from three 100 µm wave samples.

      We have updated Figure 2A and B in the manuscript to include the new graph.

      Author response image 1.

      (A) shows dome (white arrows) over a 100 µm wave substrate. (B) is the number of accumulated domes in valley and hill regions, for 3 independent samples, over 48 hours.

      Recommendation 2: Using RICM microscopy to quantify the cell basal separation with the substrate and hydraulic stress is very clever. Nevertheless, I am in doubt if the different intensity reported for the hills vs valley (Fig. 2G and H) is a result of the signal reduction at deeper Z levels. Since there is no difference in extrusion and forces between valleys and hills in the 200 µm waves but only in 50µm and 100µm, I would add this to the quantification. I would expect no intensity difference from RICM for the 200 µm sample if this is not an artefact of imaging.

      Response 2: We performed additional experiments on blank wave substrates (both 100 and 200 µm) to ascertain the extent of reflection intensity drop (Author response image 2A). And, as correctly pointed out by Reviewer #1, there was a drop in intensity even without cells. On the 100 µm waves, hill reflections are on average ~27 % dimmer than valley reflections. Whereas, on the 200 µm waves, hill reflections are on average ~39 % dimmer.

      Using this information, we performed a calibration on the RICM results obtained from both the 100 and 200 µm waves (Author response image 3B). The calibrated 100 µm data showed residual signatures of difference, whereas the calibrated 200 µm distributions appeared very similar. We noticed large cross- sample variations in the registered intensities, which will negatively impact effect size if not accounted for. To do this, we subsequently normalized both hill and valley intensities against planar region intensities for each sample. As shown by the final output (Author response image 3C), we were able to remove the skewness in the distributions. Moreover, 1-way ANOVA followed by a post hoc analysis with BH correction revealed a significant reduction in 100 µm hill/flat intensity ratio compared to 100 µm valley/flat intensity ratios (Δ~-23 %). Conversely, no significance was observed for the same comparison on the 200 µm waves.

      Author response image 2.

      (A). RICM from blank wave samples reveal a reduction in reflection intensity in hill regions compared to flat and valley regions.

      Author response image 3.

      (B) shows the RICM intensities after adjusting for the inherent reflection intensity drop shown in (A). (C) show the RICM intensities after normalization against planar region signals; this removes cross-sample variations and improve effect size of differences.

      We have updated the manuscript Figure 2I and text accordingly. The blank wave results are included in Figure 2-figure supplement 1 along with updated text and summary data table in Supplementary File 4.

      Recommendation 3: To measure 3D forces on top of the hills and valleys, the use of PAA gels is necessary. Since in Fig 3B, the authors show a difference in cell extrusion number between substrates and stiffnesses, I think it is necessary to confirm the presence of more extrusion in valleys vs hills on PAA gels. This would ensure the conclusion between normal forces and extrusion.

      Response 3: We do have time-lapse data with monolayers on the PAA waves. However, we felt results from the flat regions were sufficient in supporting the point being made in the text. Specifically, our original intention with PAA gels was to show that the extrusion reductions seen in osmotic perturbations were by virtue of removing basal stress and not some cryptic osmotic response. Hydrogels were chosen because they can effectively dilute basal solute concentration and thereby reduce the osmotically induced water transport. Moreover, as fluid could freely move within the gel, the fluid stress can quickly equilibrate across the basal surface. In contrast, poorly water/solute permeable substrates could lead to localized spikes in solute concentration and transient basal regions with high fluid stress.

      To get a sense of the potential difference in basal solute concentration between the two materials, we can do a quick hand-waving estimation. For monolayers on non-water/solute permeable PDMS of 20x20 mm and using the laser wavelength (640 nm) for RICM as an extreme estimate of basal separation, we should expect ~0.25 µl of total basal water content. On the other hand, we typically produce our PAM gel slabs using ~150 µl of precursor solutions. This means that, given similar amounts of solute, PAM gels will lead to monolayer basal osmolarity that is around 3 orders of magnitude lower than monolayers on PDMS, producing significantly lower osmotic potential. This implies from the outset that we should expect high survivability of cells on these substrates irrespective of curvature domains. Indeed, later immunoblotting experiments showed MDCKs exhibiting hyper activated FAK and Akt on PAM gels.

      In response to Reviewer #1’s suggestion then, we have added another supporting time-lapse (Video 19) showing typical response of MDCK monolayers on 100 µm PAA waves (Author response image 4). Evident from the time-lapses, like the planar regions, cell extrusions were very rare. This supports the idea that on PAM gels the effects of basal hydraulic stress and asymmetric forces are marginal against the strong survival signals. And the response is similar to hyper-osmotic perturbations; there, we did not see a significant difference between valley and hill extrusions.

      Author response image 4.

      Time-lapse snapshot showing negligible MDCK extrusions 24 hours after confluency over PAM gel wave substrates.

      Recommendation 4: Before proceeding with the FAK inhibitor experiment, the authors should better justify why the 4.1 wt % sucrose vs DMSO or NaCl is the most inert treatment. This can be done by citing relevant papers or showing time-lapses (as it is done for the higher FAKI14 dose).

      Response 4: Although some cells have recently been shown to be able to transport and utilize sucrose, mammalian cells generally cannot directly take up polysaccharides for metabolism and this is frequently mentioned in literature: see (Ref. R1) for example. Without special enzymes to break sucrose down into monosaccharides, such as sucrase found in the gut, the sugars should remain spectators in the culture medium, contributing only to osmotic effects.

      DMSO on the other hand, besides changing osmolarity, can also be integrated into cell membrane and pass through cells over time. It has been reported to chronically affect cell membrane properties and gene expressions (Ref. R2).

      Finally, it is well known that both sodium and chloride ions are readily taken up and transported by cells (Ref R3). They help to regulate the transmembrane potential, which in turn can affect membrane bound proteins and biochemical reactions within a cell.

      Hence, comparing the 3 hyper-osmotic perturbations, adding sucrose should have the least off- target effects on both the inhibitor study and the subsequent immunoblotting. And, in response to the reviewer’s recommendation, we have updated the text accordingly and included new references to support our statement.

      Ref R1. H. Meyer, O. Vitavska, H. Wieczorek; Identification of an animal sucrose transporter. Journal of Cell Science 124, 1984–1991 (2011). Doi: 10.1242/jcs.082024

      Ref R2. B. Gironi, Z. Kahveci, B. McGill, B.-D. Lechner, S. Pagliara, J. Metz, A. Morresi, F. Palombo, P. Sassi, P. G. Petrov; Effect of DMSO on the Mechanical and Structural Properties of Model and Biological Membranes. Biophysical Journal 119, 274-286 (2020). Doi: doi.org/10.1016/j.bpj.2020.05.037

      Ref R3. X. Zhang, H. Li; Interplay between the electrostatic membrane potential and conformational changes in membrane proteins. Protein Science 28, 502-512 (2019). Doi: 10.1002/pro.3563

      Recommendation 5: The data showing a FAK-dependent phosphorylation of AKT responsible for a higher cell survival rate in the hills is not yet completely convincing. Please show a reduced AKT phosphorylation level after FAK inhibition in high osmolarity levels. Furthermore, the levels of AKT activation seem to increase slightly upon substrate softening independently of FAK activation or osmotic pressure (i.e., Fig. 4E, Soft PDMS). The authors should comment on this in connection with the results shown for PAA gels.

      Response 5: For the additional immunoblotting experiments, work is currently underway. We could not, however, complete these experiments in time for this revision, as both Cheng-Kuang and Xianbin will shortly be taking on new jobs elsewhere. David will continue with the immunoblotting studies and should be able to include the results in an update in the coming months. As for the apparent elevated levels of AKT seen on soft silicones, we speculate that it is because we cannot immunoblot cells that have died and were inevitably washed out at the start of the procedure. Inferring from the higher extrusion rates on these soft substrates, we could be missing a significant portion of stats. Specifically, we are missing all the cells that would have lowered AKT activation but died, and had we been able to collect those statistics, perhaps both the FAK and AKT should have shown lower levels. We risk committing survival bias on the results if we read too much into the data as is.

      Alternatively, another explanation could be that, by virtue of survival of the fittest, we might have effectively selected a subpopulation of cells that were able to survive on lower FAK signals, or completely irrespectively of it.

      At any rate, to prove our foregoing hypothesis would require us to perform comprehensive immunoblotting and total transcriptome analysis over different duration conditions. Unfortunately, we do not have the time to do that for the current article, but it could be developed into a stand-alone molecular biology investigation in future. We have included similar discussion in the main text.

      Recommendation 6: In the discussion, the authors suggest the reported findings be especially relevant for epithelia that significantly separate compartments and regulate water and soluble transport. These are for example kidney epithelia (i.e., MDCK is the best experimental choice), retinal epithelium or intestinal epithelium. I would suggest that some proof-of-concept experiments could be done to support this concept. For example, I would expect keratinocytes (i.e., HaCaT) not to show a strong difference in extrusion rate between valleys and hills since the monolayer is not so sealed as kidney epithelium. In general, this kind of experiment would significantly strengthen the finding of this work.

      Response 6: As recommended, we tracked the behavior of retina pigment epithelial cells (hTERT RPE-1 from ATCC) which do not form tight monolayers like MDCKs (Ref. R4). We did not detect extrusion events occurring from monolayers of these cells (Author response image 5). This is true even for portions of monolayers over waved regions.

      Author response image 5.

      Time-lapse snapshot showing non-existent o cell extrusions from RPE monolayers confluent for over 21 hours.

      We have updated these findings in the main text discussions and included a new supporting time- lapse (Video 15) in our article.

      Ref R4 F. Liu, T. Xu, S. Peng, R. A. Adelman, L. I. Rizzolo; Claudins regulate gene and protein expression of the retinal pigment epithelium independent of their association with tight junctions. Experimental Eye Research 198, 108157 (2020). Doi: 10.1016/j.exer.2020.108157

      Recommendation 7 (minor point): Figure S1 needs to have clear notes indicating in each step what is what. i.e., where is glass, PDMS, NOA73, etc? A more detailed caption will help the figure's comprehension. Also "Cy52" should be changed to "soft silicone" to be consistent with the text (or Cy52 should be mentioned in the text).

      Response 7 (minor point): Changes were made to Figure 1-figure supplement 1 to improve comprehension accordingly. CY52 was added to the main-text, next to the first appearance of the word soft silicone, to be consistent with the figures.

      Recommendation 8 (minor point): The authors often mentioned that epithelial monolayers are denser on PAA gels. Please add a reference(s) to this statement.

      Response 8 (minor point): The statement is an inference from visually comparing monolayers on PAM gels and PDMS. The difference is quite evident (Author response image 6). The density difference is in spite of the fact that the substrates share similar starting cell numbers.

      To address the reviewer’s comment, we have combined time-lapses of monolayers on silicones and PAM gels side-by-side in Video 17 to facilitate convenient comparisons.

      Author response image 6.

      Time-lapse snapshot at 24 hours after confluence, showing conspicuously higher density of MDCK monolayers on PAM gel compared to those on silicon elastomer.

      Reviewer #2

      Recommendation 1: The sinusoidal wavy substrate that the authors use in their investigation is interesting and relevant, but it is important to realize that this is a single-curved surface (also known as a developable surface). This means that the Gaussian curvature is zero and that monolayers need to undergo (almost) no stretching to conform to the curvature. The authors should at least discuss other curved surfaces as an option for future research, and highlight how the observations might change. Convex and concave hemispherical surfaces, for example, might induce stronger differences than observed on the sinusoidal substrates, due to potentially higher vertical resultant forces that the monolayer would experience. The authors could discuss this geometry aspect more in their manuscript and potentially link it to some other papers exploring cell-curvature interactions in more complex environments (e.g. non-zero Gaussian curvature).

      Response 1: In response to reviewer #2’s recommendation we have highlighted in the discussion of our text that our waves constitute a developable surface and that cells will experience little stretching for the most part. Based on our knowledge of how curvature can modulate forces and thus osmotic effects, we included some rudimentary analysis of what one would expect on hemispherical surfaces of two types: one that is periodic and contiguous (Ref. R5), and another with delineating flat regions (Ref. R6).

      For epithelial monolayers in the first scenario, and on poorly solute/water permeable substrates, we should also expect to see a relatively higher likelihood of extrusions from concave regions compared to convex ones. Moreover, as the surfaces are now curved in both principal directions (producing larger out-of-plane forces), we should see the onset of differential extrusions seen in this study, but at larger length scales. For example, the effects seen on 100 µm hemicylindrical waves might now happen at larger feature size for hemispherical waves. Furthermore, as this kind of surface would invariably contain hyperbolic regions (saddle points), we might expect an intermediate response from these locations. If the forces in both principal directions offset each other, the extrusion response may parallel planar regions. On the other hand, if one dominates over the other, we may see extrusion responses tending to the dominating curvature (concave of convex).

      On the other hand, on curved landscapes with discrete convex or concave regions, we should expect, within the curved surface, extrusion behaviors paralleling findings in this study. What would be interesting would be to see what happens at the rims (or skirt regions) of the features. At these locations we effectively have hyperbolically curved surfaces, and like before, we should expect some sort of competing effect between the forces generated from the principal directions. So, for dome skirts, we should see fewer extrusions when the domes are small, and vice versa, when they are larger. Meanwhile, for pit rims, we should see a reversed behavior. It should also be noted that the transitioning curvature between convex/concave and planar regions would also modulate the effect.

      These effects might have interesting developmental implications. For instance, in developing pillar like tissues (e.g., villi) structures, the strong curvatures of nascent lumps would favor accumulation of cell numbers. However, once the size of the lumps reaches some critical value, epithelial cell extrusions might begin to appear at the roots of the developing structures, offsetting cell division, and eventually halting growth.

      Ref R5. L. Pieuchot, J. Marteau, A. Guignandon, T. Dos Santos, I. Brigaud, P. Chauvy, T. Cloatre, A. Ponche, T. Petithory, P. Rougerie, M. Vassaux, J. Milan, N. T. Wakhloo, A. Spangenberg, M. Bigerelle, K. Anselme, Curvotaxis directs cell migration through cell-scale curvature landscapes. Nature Communications 9, 3995 (2018). Doi: 10.1038/s41467-018-06494-6

      Ref R6. M. Werner, S. B.G. Blanquer, S. P. Haimi, G. Korus, J. W. C. Dunlop, G. N. Duda, D. W. Grijpma, A. Petersen, Surface curvature differentially regulates stem cell migration and differentiation via altered attachment morphology and nuclear deformation. Advanced Science 4, 1–11 (2017). Doi: 10.1002/advs.201600347

      Recommendation 2: The discussion of the experiments on PAM gels is rather limited. The authors describe that cells on the PAM gels experience fewer extrusions than on the PDMS substrates, but this is not discussed in sufficient detail (e.g. why is this the case). Additionally, the description of the 3D traction force microscopy and its validation is quite limited and should be extended to provide more convincing evidence that the measured force differences are not an artefact of the undulations of the surface.

      Response 2: We first saw a significant reduction in cell extrusions when we performed hyper-osmotic perturbations, and to eliminate possible off-target effects of the compounds used to increase osmolarity, we used three different compounds to be sure. In spite of this, we felt it would further support our argument, that basal accumulation of fluid stress was responsible for the extrusions, if we had some other independent means of removing fluid stress without directly tuning osmolarity through addition of extraneous solutes. We hence thought of culturing MDCK monolayers on hydrogels.

      Hydrogels were chosen because they can effectively dilute basal solute concentration (for reference ions (Na+) are continuously pumped out basally by the monolayer) and thereby reduce the associated osmotically induced water transport. Moreover, as fluid could freely move within the gel, the fluid stress can quickly equilibrate across the basal surface. In contrast, poorly water/solute permeable substrates will lead to localized spikes in solute concentration and transient basal regions with high fluid stress.

      To get a sense of the extent of difference in basal solute concentration between the two materials, we can do a quick hand-waving estimation. For monolayers on non-water-permeable PDMS of 20x20 mm, and using the laser wavelength (640 nm) for RICM as an extreme estimate of basal separation, we should expect ~0.25 µl of total basal water content. On the other hand, we typically produce our PAM gel slabs using ~150 µl of precursor solutions. This means that, given similar amounts of solute, PAM gels will lead to monolayer basal osmolarity that is around 3 orders of magnitude lower than monolayers on PDMS, producing significantly lower osmotic potential. This implies from the outset that we should expect high survivability of cells on these substrates. Indeed, later immunoblotting experiments showed MDCKs exhibiting hyper activated FAK and Akt on PAM gels.

      As for the 3D TFM used in this study, it is actually implemented from a well-established finite element method to solve inverse problems in engineering and has been repeatedly validated in larger scale engineering contexts (Ref. R7). The novelty and contribution of our article is in its adaptation to reconstruct cellular forces at microscopic scales.

      In brief, soft materials, such as hydrogels used in our case, are doped with fluorescent particles, coated with ECM, and then seeded with cells. The cells would exert forces that deform the soft substrate, thereby displacing the fluorescent particles from their equilibrium positions. This particle displacement can be extracted by producing an image pair with microscopy; first one with the cells, and subsequent one of relaxed gel after removal of cells with acutely cytotoxic reagents, such as SDS. There are several ways in which the displacement field can be extracted from the image pair. These include particle tracking velocimetry, particle image velocimetry, digital volume correlation, and optical flow.

      We employed 3D Farneback optical flow in our study for its superior computational performance. The method was validated using synthetically generated images from Sample 14 of the Society for Experimental Mechanics DIC challenge. The accuracy of the calculated displacements using the 3D Farneback optical flow was then compared to the provided ground truth displacements. For the highest frequency displacement image pairs, an x-component root-mean-square-error (RMSE) value of 0.0113 was observed. This was lower than the 0.0141 RMSE value for the Augmented Lagrangian Digital Volume Correlation method. This suggested that the 3D Farneback optical flow is capable of accurately calculating the displacement between two bead images.

      The displacement fields are then fed into a finite element suite (ANSYS in our case) along with the model and mesh of the underlying substrate structure to obtain node specific displacements. This is required because mech nodes do not typically align with voxel positions of displacements. With these node specific displacements, we subsequently solve the inverse problem for the forces using Tikhonov regularization (Ref. R8). The outcome is a vector of node specific forces.

      In light of the above, to physically validate the method in our context would require the generation of a known ground truth force on the scale of pico- to nano-newtons and subsequently image the particle displacements from this force using confocal microscopy. The force must then be released in situ in order for the relaxed gel to be imaged again. This is not a straightforward feat at this scale, and a method that immediately springs to mind is magnetic tweezers. Unfortunately, this is a tool that we cannot develop within reasonable timeframes, as the method will have to be seamlessly integrated with our spinning-disk confocal. However, as a compromise, we have included an in-silico validation with our revised manuscript.

      Specifically, given a finite element model with a predefined curvature, a known force was applied to the surface of the model (Author response image 7A). The resulting displacements were then calculated from the finite element solution. A 10% random noise is then added to the resulting displacement. The traction force recovery (Fig. R2-1 B) was then performed using the in-silico noisy displacements. To evaluate the accuracy of the recovery, the cosine similarity along with the mean norm of the force vectors were calculated. A value closer to 1 for both evaluation metrics indicates a more accurate reconstruction of the simulated traction force. The cosine similarity of the recovered traction forces to the original applied force was 0.977±0.056 while the norm of the recovered traction forces as a proportion of the original applied force was 1.016±0.165. As both values are close to 1 (i.e., identical), this suggested that the traction forces could be satisfactorily recovered using the finite-element based method.

      In response to the reviewer’s recommendations then, additional content has been included in the main text to explain the use of PAM gels and the workings of our 3D TFM pipeline.

      Ref R7. James F. Doyle, Modern Experimental Stress Analysis: Completing the Solution of Partially Specified Problems (John Wiley & Sons, Chichester, 2004).

      Ref R8. Per Christian Hansen, Discrete Inverse Problems: Insight and Algorithms (siam, Philadelphia, 2010).

      Author response image 7.

      (A) shows simulated force field to generate simulated displacements. (B) shows force field reconstructed from simulated displacements with noise.

      Recommendation 3: The authors show nuclear deformation on the hills and use this as evidence for a resultant downward-pointing force vector. This has, indeed, also been observed in other works referenced by the authors (e.g. Werner et al.), and could be interesting evidence to support the current observations, provided the authors also show a nuclear shape on the concave and flat regions. The authors could potentially also characterize this shape change better using higher-resolution data.

      Response 3: We characterized nucleus deformation using Hoechst-stained samples as per recommendation. The deformation is estimated by dividing segmented nuclei volumes by best-fit ellipsoid volumes of same objects. In this way, objects exhibiting minimal bending will lead to values close to 1.0. The obtained graph is shown in figure Author response image 8B (and manuscript Figure 3D).

      Author response image 8.

      (A) an example of deformed nuclei on 50 µm wave hill region. (B) a Violin plot of calculated nuclear deformations across dimensions and features using segmented volume normalized against best-fit ellipsoid volume.

      Our quantifications show a statistically significant difference in nuclei deformation measure medians between hill and valley cells on the 50 µm (0.973 vs 0.982) and 100 µm (0.971 vs 0.979) waves; this indicates that cells on the hills tend to have more deformed nuclei compared to cells in the valleys. Meanwhile, no significant difference was found for a similar comparison on 200 µm (0.978 vs 0.978) samples. For reference, the median found for cells pooled from planar regions was 0.975.

      In response to the reviewer’s suggestions Figure 3 of our manuscript has been updated to include the new results on nuclei deformation. The text has also been updated to account for the new information to support our claims. The statistics are included in a new summary data table in Supplementary File 6.

      Recommendation 4: The U-net for extrusion detection is a central tool used within this study, though the explanation and particularly validation of the tool are somewhat lacking. More clarity in the explanation and more examples of good (or bad) detections would help establish this tool as a more robust component of the data collection (on all geometries).

      Response 4: The architecture of the neural network used in this study is outlined in supplementary figure S5a. To validate the performance of the model, a test dataset consisting of 200 positive examples and 100 negative examples were fed into the network and the resulting prediction was obtained from model. The confusion matrix of the model is shown in supplementary figure S5c. The weighted precision and recall of the model are 0.958 and 0.953 respectively.

      Additionally, we have included examples of false positive and false negative detections in Figure 1-figure supplement 5 (Author response image 8). For false positive detections, these were typically observed to be extrusions that were labelled to have occurred the frame prior to the frame of interest (Author response image 9 bottom sequence). However, as the extrusion process is incomplete in the prior frame, there are still changes in the extruded cell body and the network falsely predicts this as a detection.

      Author response image 9.

      Examples of false negative and false positive extrusions registration.

      Recommendation 5: The authors study the involvement of FAK in the observed curvature-dependent and hydraulic stress-dependent spatial regulation of cell extrusion. In one of the experiments, the authors supplement the cell medium with FAK inhibitors, though only in a hyper-osmotic medium. They show that FAK inhibition counteracts the extrusion-suppressing effect of a hyper-osmotic medium. However, no data is shown on the effect of FAK inhibitors within the control medium. Would the extrusion rates be even higher then?

      Response 4: We proceeded, as suggested by the reviewer, to explore the effects of the FAK inhibitor on MDCK monolayers in our control medium. The results revealed that, at the 3 µM FAK concentration, where cells in sucrose media showed an elevated extrusion rate, monolayers in control medium quickly suffered massive cell death (Author response image 10) similar to what was seen when 6 µM FAK was introduced to sucrose medium.

      This finding suggests that osmolarity protects against FAK inhibitors in a dose dependent manner. Moreover, as cell extrusions require an intact monolayer, its rates cannot increase indefinitely: a point will be reached where an intact monolayer can no longer be maintained.

      We have updated the main text of our article to mention this observation, and also included a new time-lapse (Video 22) to demonstrate the effect.

      Author response image 10.

      Timelapse snapshot of MDCK monolayers over waves 4 hours after inclusion of focal adhesion kinase inhibitor.

      Recommendation 6: The supplementary videos show two fields of view next to each other, which is not immediately clear to the viewer. I strongly advise the authors to add a clear border between the two panels, so that it is clear that the cells from one panel are not migrating into the next panel.

      Response 6: A distinctive border has been added to the movies to separate panels showing different focal planes of the same stack.

      Recommendation 7: The general quality and layout of the figures could be improved. Some figures would benefit from higher-resolution or larger cell images (e.g. Figure 2A, C, D), and the organisation of subpanels could be improved (e.g. especially in Figure 2). The box plots and bar graphs are also not consistent throughout the manuscript in terms of colouring and style, which should be improved.

      Response 7: We have enlarged the figures in question accordingly, at the cost of reducing some information. However, the full scope of the sub-figures remains accessible in the supplementary movies. We have also tried to change the placement of the panels to improve readability. We have also adjusted the valley, hill, and flat coloring scheme for the extrusion boxplots in Figures 1 and 2 to make them consistent.

      Recommendation 8: The graphs in Figures 3E and F are confusing and difficult to interpret. The x-axis states "Position along curve in radians" but it is unclear how to relate this to the position on the wavy substrate. The graphs also have a second vertical axis on the right ("valley-interface-hill"), which adds to the confusion. I would recommend the authors provide more explanation and consider a different approach of plotting this.

      Response 8: We have removed the confusing plot of cross-sectional profile from the force graphs. To indicate positions on the waves, we have augmented radian values with Hill, Interface, and Valley accordingly.

      Recommendation 9: Specify which silicone was used for the low-stiffness silicone substrates in the methods and in the main text.

      Response 9: CY52 has been added to the main-text, next to the first appearance of the word soft silicone, to be consistent with the figures.

      Recommendation 10: The flow lines that are plotted over the RICM data make it difficult to see the underlying RICM images. I would advise to also show the RICM images without the flow lines.

      Response 10: The original movie S15 (now Video 16) showing the RICM overlapped with optical flow paths has now been replaced by a movie showing the same, but with the flow paths and RICM in separate panels.

      Recommendation 11: In the first paragraph of the discussion, the authors write: "And this difference was both dependent on the sense (positive or negative)...". This is superfluous since the authors already mentioned earlier in the paragraph that the convex and concave regions (i.e. different signs of curvature) show differences in extrusion rates.

      Response 11: The sentence has been changed to “And this difference was also dependent on the degree of curvature.”

      Recommendation 12: In the second paragraph of the discussion, the authors mention that "basal fluid spaces under monolayers in hill regions were found consistently smaller than those in valley regions". Is this data shown in the figures of the manuscript? If so, a reference should be made because it was unclear to me.

      Response 12: This statement is an inference from the comparison of the hill and valley RICM grey values. Specifically, RICM intensities are direct surrogates for basal separations (i.e., fluid space (as there cannot be a vacuum)) by virtue of the physics underlying the effect. To be more precise then, “inferred from RICM intensity differences (Figure 2I)” has been added to support the statement.

      Recommendation 13: On page 7 of the discussion, the authors talk about positively and negatively curved surfaces. This type of description should be avoided, as this depends on the definition of the surface normal (i.e. is positive convex or concave?). Rather use convex and concave in this context.

      Response 13: The wording has been changed accordingly.

      Recommendation 14: The label of Table 8 reads "Table 2".

      Response 14: The error has been corrected.

      Reviewer #3

      Recommendation 1: The central finding seems to be opposite to an earlier report (J Cell Sci (2019) 132, jcs222372), where MDCK cells in curved alginate tubes exhibit increased extrusion on a convex surface. I suggest that you comment on possible explanations for the different behaviors.

      Response 1: The article in question primarily reported the phenomenon of MDCK and J3B1A monolayers detaching from the concave alginate tube walls coated with Matrigel. The authors attributed this to the curvature induced out-of-plane forces towards the center of the tubes. Up to this point, the findings and interpretation are consistent with our current study where we also find a similar force trend in concave regions.

      To further lend support to the importance of curvature in inducing detachment, the authors cleverly bent the tubes to introduce asymmetry in curvature between outer and inner surfaces. Specifically, the outside bend is concave in both principal directions, whereas the inside bend is convex in one of its principal directions. As expected, the authors found that detachment rates from the outer surface were much larger compared to the inner one. Again, the observations and interpretations are consistent with our own findings; the convex direction will generate out-of-plane forces pointing into the surface, serving to stabilize the monolayer against the substrate. It should be noted however, since the inner-side tube is characterized by both convex and concave curvatures in its two principal directions, the resulting behavior of overlaying monolayers will depend on which of the two resulting forces become dominant. So, for gradual bends, one should expect the monolayers to still be able to detach from the inner tube surface. This is what was reported in their findings.

      For their extrusion observations, I am surprised. Because their whole material (hydrogels) is presumably both solute and water permeable, I would be more inclined to expect very few extrusions irrespective of curvature. This is indeed the case with our study of MDCKs on PAM hydrogels, where the hydrogel substrate effectively buffers against the quick build-up of solute concentration and basal hydraulic stress. Without the latter, concave monolayer forces alone are unlikely to be able to disrupt cell focal adhesions. Indeed, the detachments seen in their study are more likely by exfoliation of Matrigel rather than pulling cells off Matrigel matrix entirely.

      My guess is that the extrusions seen in their study are solely of the canonical crowding effect. If this was the case, then the detached monolayer on the outside bend could buffer against crowding pressure by buckling. Meanwhile, the monolayer on the inside bend, being attached to the surface, can only regulate crowding pressure by removing cells through extrusions. This phenomenon should be particular to soft matrices such as Matrigel. Using stiffer and covalently bonded ECM should be sufficient to prevent monolayers from detaching, leading to similar extrusion behaviors. In response to the reviewer’s recommendation then, we have included a short paragraph to state the points discussed in this response.

      Recommendation 2: Fig 3E, F: The quantities displayed on the panels are not forces, but have units of pressure (or stress).

      Response 2: we have changed “force” to “stress” according to the reviewer’s suggestion. The reason we kept the use of force in the original text was due to the fact that we were reconstructing forces. Due to discretization, the resulting forces will inevitably be assigned to element nodes. In between the nodes, in the faces, there will be no information. So, in order to have some form of continuity to plot, the face forces are obtained by averaging the 4 nodes around the element face. Unfortunately, element face areas are not typically of the same size, therefore the average forces obtained needs to be further normalized against the face area, leading to a quantity that has units of stress.

      Recommendation 3: Fig 2D: Asterisks are hard to see.

      Response 3: the color of the asterisks has been changed to green for better clarity against a B&W background.

      Recommendation 4: p 19, l 7: Word missing in "the of molding"

      Response 4: the typo has been amended to “the molding of”.

    1. Author response

      Reviewer #1 (Public Review):

      Loss of skeletal muscle tissue from traumatic injury is debilitating. Restoring muscle mass and function remains a challenge. Using a mouse model, the authors performed punch biopsy injuries of the tibialis anterior in which the volume of muscle loss was varied to result in either successful muscle regeneration with a smaller injury or the unsuccessful outcome of fibrosis with a larger injury. For both conditions, a novel lipidomic profiling approach was used to evaluate pro-inflammatory and anti-inflammatory lipids at key time points post-injury with respect to collagen deposition, macrophage infiltration, muscle fiber regeneration, and force produced during isometric contractions. A key finding was that while all lipids increased at 3 days post-injury (dpi) and then declined through 14 dpi, pro-inflammatory lipids remained elevated during recovery from greater muscle loss which led to fibrosis. Maresin 1 was identified as an anti-inflammatory lipid that, when injected into injured muscle, reduced fibrosis, improved muscle regeneration, and partially restored the strength of contraction.

      Strengths: The metabolipidomic profiling demonstrated here represents a novel approach to identifying pro-inflammatory and anti-inflammatory mediators of successful vs unsuccessful skeletal muscle regeneration. These findings may translate into a new therapeutic approach for promoting successful regeneration following volumetric muscle loss.

      Weaknesses: Certain aspects of the data are overinterpreted; while some measures appear to have an adequate sample size to make sound conclusions, other measures are likely to lack sufficient statistical power given their variability. Presentation of the results would be strengthened by adhering to consistent terminology and labeling of figures throughout; specific examples are identified in recommendations to the authors. Several of the images used to illustrate differences between treatments are unconvincing because differences are not readily.

      We agree with the reviewer and have scaled back some of the interpretation as well as clarified the sample sizes. We have also amended the text to maintain a consistent terminology.

      Reviewer #2 (Public Review):

      The study is novel and valuable to the field and provides new and important insights into the role of lipid mediators in VML injuries. By expanding our understanding of the mechanisms that regulate muscle regeneration following VML injuries, the study has the potential to guide the development of novel therapeutic interventions that promote tissue repair and recovery. The data presented in the manuscript is of good quality. The findings and conclusions are supported by a variety of different analyses (e.g., gene expression, histology, flow cytometry).

      Despite the strengths of the study, some limitations are identified. Specifically, the impact of maresin 1 on macrophage phenotypes (M1/M2) could have been explored in more detail using histological or protein expression analysis. Moreover, additional data are needed to substantiate the claims about increased muscle regeneration. Lastly, the study does not address myofiber innervation, myofiber-type transitions, or motor unit remodeling.

      We thank the reviewer for the suggestions and have performed a more in-depth exploration of macrophage phenotypes through additional scRNA-sequencing analysis. We have also included additional data describing how Maresin 1 impacts muscle stem cells through cyclic AMP. Respectfully, profiling myofiber innervation, motor unit remodeling and myofiber-type transitions are beyond the scope of this manuscript.

    1. Author Response

      Reviewer #1 (Public Review):

      In this work George et al. describe RatInABox, a software system for generating surrogate locomotion trajectories and neural data to simulate the effects of a rodent moving about an arena. This work is aimed at researchers that study rodent navigation and its neural machinery.

      Strengths:

      • The software contains several helpful features. It has the ability to import existing movement traces and interpolate data with lower sampling rates. It allows varying the degree to which rodents stay near the walls of the arena. It appears to be able to simulate place cells, grid cells, and some other features.

      • The architecture seems fine and the code is in a language that will be accessible to many labs.

      • There is convincing validation of velocity statistics. There are examples shown of position data, which seem to generally match between data and simulation.

      Weaknesses:

      • There is little analysis of position statistics. I am not sure this is needed, but the software might end up more powerful and the paper higher impact if some position analysis was done. Based on the traces shown, it seems possible that some additional parameters might be needed to simulate position/occupancy traces whose statistics match the data.

      Thank you for this suggestion. We have added a new panel to figure 2 showing a histogram of the time the agent spends at positions of increasing distance from the nearest wall. As you can see, RatInABox is a good fit to the real locomotion data: positions very near the wall are under-explored (in the real data this is probably because whiskers and physical body size block positions very close to the wall) and positions just away from but close to the wall are slightly over explored (an effect known as thigmotaxis, already discussed in the manuscript).

      As you correctly suspected, fitting this warranted a new parameter which controls the strength of the wall repulsion, we call this “wall_repel_strength”. The motion model hasn’t mathematically changed, all we did was take a parameter which was originally a fixed constant 1, unavailable to the user, and made it a variable which can be changed (see methods section 6.1.3 for maths). The curves fit best when wall_repel_strength ~= 2. Methods and parameters table have been updated accordingly. See Fig. 2e.

      • The overall impact of this work is somewhat limited. It is not completely clear how many labs might use this, or have a need for it. The introduction could have provided more specificity about examples of past work that would have been better done with this tool.

      At the point of publication we, like yourself, also didn’t know to what extent there would be a market for this toolkit however we were pleased to find that there was. In its initial 11 months RatInABox has accumulated a growing, global user base, over 120 stars on Github and north of 17,000 downloads through PyPI. We have accumulated a list of testimonials[5] from users of the package vouching for its utility and ease of use, four of which are abridged below. These testimonials come from a diverse group of 9 researchers spanning 6 countries across 4 continents and varying career stages from pre-doctoral researchers with little computational exposure to tenured PIs. Finally, not only does the community use RatInABox they are also building it: at the time of writing RatInABx has received logged 20 GitHub “Issues” and 28 “pull requests” from external users (i.e. those who aren’t authors on this manuscript) ranging from small discussions and bug-fixes to significant new features, demos and wrappers.

      Abridged testimonials:

      ● “As a medical graduate from Pakistan with little computational background…I found RatInABox to be a great learning and teaching tool, particularly for those who are underprivileged and new to computational neuroscience.” - Muhammad Kaleem, King Edward Medical University, Pakistan

      ● “RatInABox has been critical to the progress of my postdoctoral work. I believe it has the strong potential to become a cornerstone tool for realistic behavioural and neuronal modelling” - Dr. Colleen Gillon, Imperial College London, UK

      ● “As a student studying mathematics at the University of Ghana, I would recommend RatInABox to anyone looking to learn or teach concepts in computational neuroscience.” - Kojo Nketia, University of Ghana, Ghana

      ● “RatInABox has established a new foundation and common space for advances in cognitive mapping research.” - Dr. Quinn Lee, McGill, Canada

      The introduction continues to include the following sentence highlighting examples of past work which relied of generating artificial movement and/or neural dat and which, by implication could have been done better (or at least accelerated and standardised) using our toolbox.

      “Indeed, many past[13, 14, 15] and recent[16, 17, 18, 19, 6, 20, 21] models have relied on artificially generated movement trajectories and neural data.”

      • Presentation: Some discussion of case studies in Introduction might address the above point on impact. It would be useful to have more discussion of how general the software is, and why the current feature set was chosen. For example, how well does RatInABox deal with environments of arbitrary shape? T-mazes? It might help illustrate the tool's generality to move some of the examples in supplementary figure to main text - or just summarize them in a main text figure/panel.

      Thank you for this question. Since the initial submission of this manuscript RatInABox has been upgraded and environments have become substantially more “general”. Environments can now be of arbitrary shape (including T-mazes), boundaries can be curved, they can contain holes and can also contain objects (0-dimensional points which act as visual cues). A few examples are showcased in the updated figure 1 panel e.

      To further illustrate the tools generality beyond the structure of the environment we continue to summarise the reinforcement learning example (Fig. 3e) and neural decoding example in section 3.1. In addition to this we have added three new panels into figure 3 highlighting new features which, we hope you will agree, make RatInABox significantly more powerful and general and satisfy your suggestion of clarifying utility and generality in the manuscript directly.

      On the topic of generality, we wrote the manuscript in such a way as to demonstrate how the rich variety of ways RatInABox can be used without providing an exhaustive list of potential applications. For example, RatInABox can be used to study neural decoding and it can be used to study reinforcement learning but not because it was purpose built with these use-cases in mind. Rather because it contains a set of core tools designed to support spatial navigation and neural representations in general. For this reason we would rather keep the demonstrative examples as supplements and implement your suggestion of further raising attention to the large array of tutorials and demos provided on the GitHub repository by modifying the final paragraph of section 3.1 to read:

      “Additional tutorials, not described here but available online, demonstrate how RatInABox can be used to model splitter cells, conjunctive grid cells, biologically plausible path integration, successor features, deep actor-critic RL, whisker cells and more. Despite including these examples we stress that they are not exhaustive. RatInABox provides the framework and primitive classes/functions from which highly advanced simulations such as these can be built.”

      Reviewer #3 (Public Review):

      George et al. present a convincing new Python toolbox that allows researchers to generate synthetic behavior and neural data specifically focusing on hippocampal functional cell types (place cells, grid cells, boundary vector cells, head direction cells). This is highly useful for theory-driven research where synthetic benchmarks should be used. Beyond just navigation, it can be highly useful for novel tool development that requires jointly modeling behavior and neural data. The code is well organized and written and it was easy for us to test.

      We have a few constructive points that they might want to consider.

      • Right now the code only supports X,Y movements, but Z is also critical and opens new questions in 3D coding of space (such as grid cells in bats, etc). Many animals effectively navigate in 2D, as a whole, but they certainly make a large number of 3D head movements, and modeling this will become increasingly important and the authors should consider how to support this.

      Agents now have a dedicated head direction variable (before head direction was just assumed to be the normalised velocity vector). By default this just smoothes and normalises the velocity but, in theory, could be accessed and used to model more complex head direction dynamics. This is described in the updated methods section.

      In general, we try to tread a careful line. For example we embrace certain aspects of physical and biological realism (e.g. modelling environments as continuous, or fitting motion to real behaviour) and avoid others (such as the biophysics/biochemisty of individual neurons, or the mechanical complexities of joint/muscle modelling). It is hard to decide where to draw but we have a few guiding principles:

      1. RatInABox is most well suited for normative modelling and neuroAI-style probing questions at the level of behaviour and representations. We consciously avoid unnecessary complexities that do not directly contribute to these domains.

      2. Compute: To best accelerate research we think the package should remain fast and lightweight. Certain features are ignored if computational cost outweighs their benefit.

      3. Users: If, and as, users require complexities e.g. 3D head movements, we will consider adding them to the code base.

      For now we believe proper 3D motion is out of scope for RatInABox. Calculating motion near walls is already surprisingly complex and to do this in 3D would be challenging. Furthermore all cell classes would need to be rewritten too. This would be a large undertaking probably requiring rewriting the package from scratch, or making a new package RatInABox3D (BatInABox?) altogether, something which we don’t intend to undertake right now. One option, if users really needed 3D trajectory data they could quite straightforwardly simulate a 2D Environment (X,Y) and a 1D Environment (Z) independently. With this method (X,Y) and (Z) motion would be entirely independent which is of unrealistic but, depending on the use case, may well be sufficient.

      Alternatively, as you said that many agents effectively navigate in 2D but show complex 3D head and other body movements, RatInABox could interface with and feed data downstream to other softwares (for example Mujoco[11]) which specialise in joint/muscle modelling. This would be a very legitimate use-case for RatInABox.

      We’ve flagged all of these assumptions and limitations in a new body of text added to the discussion:

      “Our package is not the first to model neural data[37, 38, 39] or spatial behaviour[40, 41], yet it distinguishes itself by integrating these two aspects within a unified, lightweight framework. The modelling approach employed by RatInABox involves certain assumptions:

      1. It does not engage in the detailed exploration of biophysical[37, 39] or biochemical[38] aspects of neural modelling, nor does it delve into the mechanical intricacies of joint and muscle modelling[40, 41]. While these elements are crucial in specific scenarios, they demand substantial computational resources and become less pertinent in studies focused on higher-level questions about behaviour and neural representations.

      2. A focus of our package is modelling experimental paradigms commonly used to study spatially modulated neural activity and behaviour in rodents. Consequently, environments are currently restricted to being two-dimensional and planar, precluding the exploration of three-dimensional settings. However, in principle, these limitations can be relaxed in the future.

      3. RatInABox avoids the oversimplifications commonly found in discrete modelling, predominant in reinforcement learning[22, 23], which we believe impede its relevance to neuroscience.

      4. Currently, inputs from different sensory modalities, such as vision or olfaction, are not explicitly considered. Instead, sensory input is represented implicitly through efficient allocentric or egocentric representations. If necessary, one could use the RatInABox API in conjunction with a third-party computer graphics engine to circumvent this limitation.

      5. Finally, focus has been given to generating synthetic data from steady-state systems. Hence, by default, agents and neurons do not explicitly include learning, plasticity or adaptation. Nevertheless we have shown that a minimal set of features such as parameterised function-approximator neurons and policy control enable a variety of experience-driven changes in behaviour the cell responses[42, 43] to be modelled within the framework.

      • What about other environments that are not "Boxes" as in the name - can the environment only be a Box, what about a circular environment? Or Bat flight? This also has implications for the velocity of the agent, etc. What are the parameters for the motion model to simulate a bat, which likely has a higher velocity than a rat?

      Thank you for this question. Since the initial submission of this manuscript RatInABox has been upgraded and environments have become substantially more “general”. Environments can now be of arbitrary shape (including circular), boundaries can be curved, they can contain holes and can also contain objects (0-dimensional points which act as visual cues). A few examples are showcased in the updated figure 1 panel e.

      Whilst we don’t know the exact parameters for bat flight users could fairly straightforwardly figure these out themselves and set them using the motion parameters as shown in the table below. We would guess that bats have a higher average speed (speed_mean) and a longer decoherence time due to increased inertia (speed_coherence_time), so the following code might roughly simulate a bat flying around in a 10 x 10 m environment. Author response image 1 shows all Agent parameters which can be set to vary the random motion model.

      Author response image 1.

      • Semi-related, the name suggests limitations: why Rat? Why not Agent? (But its a personal choice)

      We came up with the name “RatInABox” when we developed this software to study hippocampal representations of an artificial rat moving around a closed 2D world (a box). We also fitted the random motion model to open-field exploration data from rats. You’re right that it is not limited to rodents but for better or for worse it’s probably too late for a rebrand!

      • A future extension (or now) could be the ability to interface with common trajectory estimation tools; for example, taking in the (X, Y, (Z), time) outputs of animal pose estimation tools (like DeepLabCut or such) would also allow experimentalists to generate neural synthetic data from other sources of real-behavior.

      This is actually already possible via our “Agent.import_trajectory()” method. Users can pass an array of time stamps and an array of positions into the Agent class which will be loaded and smoothly interpolated along as shown here in Fig. 3a or demonstrated in these two new papers[9,10] who used RatInABox by loading in behavioural trajectories.

      • What if a place cell is not encoding place but is influenced by reward or encodes a more abstract concept? Should a PlaceCell class inherit from an AbstractPlaceCell class, which could be used for encoding more conceptual spaces? How could their tool support this?

      In fact PlaceCells already inherit from a more abstract class (Neurons) which contains basic infrastructure for initialisation, saving data, and plotting data etc. We prefer the solution that users can write their own cell classes which inherit from Neurons (or PlaceCells if they wish). Then, users need only write a new get_state() method which can be as simple or as complicated as they like. Here are two examples we’ve already made which can be found on the GitHub:

      Author response image 2.

      Phase precession: PhasePrecessingPlaceCells(PlaceCells)[12] inherit from PlaceCells and modulate their firing rate by multiplying it by a phase dependent factor causing them to “phase precess”.

      Splitter cells: Perhaps users wish to model PlaceCells that are modulated by recent history of the Agent, for example which arm of a figure-8 maze it just came down. This is observed in hippocampal “splitter cell”. In this demo[1] SplitterCells(PlaceCells) inherit from PlaceCells and modulate their firing rate according to which arm was last travelled along.

      • This a bit odd in the Discussion: "If there is a small contribution you would like to make, please open a pull request. If there is a larger contribution you are considering, please contact the corresponding author3" This should be left to the repo contribution guide, which ideally shows people how to contribute and your expectations (code formatting guide, how to use git, etc). Also this can be very off-putting to new contributors: what is small? What is big? we suggest use more inclusive language.

      We’ve removed this line and left it to the GitHub repository to describe how contributions can be made.

      • Could you expand on the run time for BoundaryVectorCells, namely, for how long of an exploration period? We found it was on the order of 1 min to simulate 30 min of exploration (which is of course fast, but mentioning relative times would be useful).

      Absolutely. How long it takes to simulate BoundaryVectorCells will depend on the discretisation timestep and how many neurons you simulate. Assuming you used the default values (dt = 0.1, n = 10) then the motion model should dominate compute time. This is evident from our analysis in Figure 3f which shows that the update time for n = 100 BVCs is on par with the update time for the random motion model, therefore for only n = 10 BVCs, the motion model should dominate compute time.

      So how long should this take? Fig. 3f shows the motion model takes ~10-3 s per update. One hour of simulation equals this will be 3600/dt = 36,000 updates, which would therefore take about 72,000*10-3 s = 36 seconds. So your estimate of 1 minute seems to be in the right ballpark and consistent with the data we show in the paper.

      Interestingly this corroborates the results in a new inset panel where we calculated the total time for cell and motion model updates for a PlaceCell population of increasing size (from n = 10 to 1,000,000 cells). It shows that the motion model dominates compute time up to approximately n = 1000 PlaceCells (for BoundaryVectorCells it’s probably closer to n = 100) beyond which cell updates dominate and the time scales linearly.

      These are useful and non-trivial insights as they tell us that the RatInABox neuron models are quite efficient relative to the RatInABox random motion model (something we hope to optimise further down the line). We’ve added the following sentence to the results:

      “Our testing (Fig. 3f, inset) reveals that the combined time for updating the motion model and a population of PlaceCells scales sublinearly O(1) for small populations n > 1000 where updating the random motion model dominates compute time, and linearly for large populations n > 1000. PlaceCells, BoundaryVectorCells and the Agent motion model update times will be additionally affected by the number of walls/barriers in the Environment. 1D simulations are significantly quicker than 2D simulations due to the reduced computational load of the 1D geometry.”

      And this sentence to section 2:

      “RatInABox is fundamentally continuous in space and time. Position and velocity are never discretised but are instead stored as continuous values and used to determine cell activity online, as exploration occurs. This differs from other models which are either discrete (e.g. “gridworld” or Markov decision processes) or approximate continuous rate maps using a cached list of rates precalculated on a discretised grid of locations. Modelling time and space continuously more accurately reflects real-world physics, making simulations smooth and amenable to fast or dynamic neural processes which are not well accommodated by discretised motion simulators. Despite this, RatInABox is still fast; to simulate 100 PlaceCell for 10 minutes of random 2D motion (dt = 0.1 s) it takes about 2 seconds on a consumer grade CPU laptop (or 7 seconds for BoundaryVectorCells).”

      Whilst this would be very interesting it would likely represent quite a significant edit, requiring rewriting of almost all the geometry-handling code. We’re happy to consider changes like these according to (i) how simple they will be to implement, (ii) how disruptive they will be to the existing API, (iii) how many users would benefit from the change. If many users of the package request this we will consider ways to support it.

      • In general, the set of default parameters might want to be included in the main text (vs in the supplement).

      We also considered this but decided to leave them in the methods for now. The exact value of these parameters are subject to change in future versions of the software. Also, we’d prefer for the main text to provide a low-detail high-level description of the software and the methods to provide a place for keen readers to dive into the mathematical and coding specifics.

      • It still says you can only simulate 4 velocity or head directions, which might be limiting.

      Thanks for catching this. This constraint has been relaxed. Users can now simulate an arbitrary number of head direction cells with arbitrary tuning directions and tuning widths. The methods have been adjusted to reflect this (see section 6.3.4).

      • The code license should be mentioned in the Methods.

      We have added the following section to the methods:

      6.6 License RatInABox is currently distributed under an MIT License, meaning users are permitted to use, copy, modify, merge publish, distribute, sublicense and sell copies of the software.

    1. Author Response

      LD Score regression (LDSC) is a software tool widely used in the field of genome-wide association studies (GWAS) for estimating heritabilities, genetic correlations, the extent of confounding, and biological enrichment. LDSC is for the most part not regarded as an accurate estimator of \emph{absolute} heritability (although useful for relative comparisons). It is relied on primarily for its other uses (e.g., estimating genetic correlations). The authors propose a new method called \texttt{i-LDSC}, extending the original LDSC in order to estimate a component of genetic variance in addition to the narrow-sense heritability---epistatic genetic variance, although not necessarily all of it. Epistasis in quantitative genetics refers to the component of genetic variance that cannot be captured by a linear model regressing total genetic values on single-SNP genotypes. \texttt{i-LDSC} seems aimed at estimating that part of the epistatic variance residing in statistical interactions between pairs of SNPs. To simplify, the basic model of \texttt{i-LDSC} for two SNPs $X_1$ and $X_2$ is

      \begin{equation}\label{eq:twoX} Y = X_1 \beta_1 + X_2 \beta_2 + X_1 X_2 \theta + E, \end{equation}

      and estimation of the epistatic variance associated with the product term proceeds through a variant of the original LD Score that measures the extent to which a SNP tags products of genotypes (rather than genotypes themselves). The authors conducted simulations to test their method and then applied it to a number of traits in the UK Biobank and Biobank Japan. They found that for all traits the additive genetic variance was larger than the epistatic, but for height the absolute size of the epistatic component was estimated to be non-negligible. An interpretation of the authors' results that perhaps cannot be ruled out, however, is that pairwise epistasis overall does not make a detectable contribution to the variance of quantitative traits.

      We thank the reviewer for carefully reading of our manuscript and we appreciate the constructive comments. Our responses and edits to the specific major comments and minor issues are given below.

      Major Comments

      This paper has a lot of strong points, and I commend the authors for the effort and ingenuity expended in tackling the difficult problem of estimating epistatic (non-additive) genetic variance from GWAS summary statistics. The mere possibility of the estimated univariate regression coefficient containing a contribution from epistasis, as represented in the manuscript's Equation~3 and elsewhere, is intriguing in and of itself.

      Is \texttt{i-LDSC} Estimating Epistasis?

      Perhaps the issue that has given me the most pause is uncertainty over whether the paper's method is really estimating the non-additive genetic variance, as this has been traditionally defined in quantitative genetics with great consequences for the correlations between relatives and evolutionary theory (Fisher, 1930, 1941; Lynch & Walsh, 1998; Burger, 2000; Ewens, 2004).

      Let us call the expected phenotypic value of a given multiple-SNP genotype the \emph{total genetic value}. If we apply least-squares regression to obtain the coefficients of the SNPs in a simple linear model predicting the total genetic values, then the partial regression coefficients are the \emph{average effects of gene substitution} and the variance in the predicted values resulting from the model is called the \emph{additive genetic variance}. (This is all theoretical and definitional, not empirical. We do not actually perform this regression.) The variance in the residuals---the differences between the total genetic values and the additive predicted values---is the \emph{non-additive genetic variance}. Notice that this is an orthogonal decomposition of the variance in total genetic values. Thus, in order for the variance in $\mathbf{W}\bm{\theta}$ to qualify as the non-additive genetic variance, it must be orthogonal to $\mathbf{X} \bm{\beta}$.

      At first, I very much doubted whether this is generally true. And I was not reassured by the authors' reply to Reviewer~1 on this point, which did not seem to show any grasp of the issue at all. But to my surprise I discovered in elementary simulations of Equation~\ref{eq:twoX} above that for mean-centered $X_1$ and $X_2$, $(X_1 \beta_1 + X_2 \beta_2)$ is uncorrelated with $X_1 X_2 \theta$ for seemingly arbitrary correlation between $X_1$ and $X_2$. A partition of the outcome's variance between these two components is thus an orthogonal decomposition after all. Furthermore, the result seems general for any number of independent variables and their pairwise products. I am also encouraged by the report that standard and interaction LD Scores are ``lowly correlated' (line~179), meaning that the standard LDSC slope is scarcely affected by the inclusion of interaction LD Scores in the regression; this behavior is what we should expect from an orthogonal decomposition.

      I have therefore come to the view that the additional variance component estimated by \texttt{i-LDSC} has a close correspondence with the epistatic (non-additive) genetic variance after all.

      In order to make this point transparent to all readers, however, I think that the authors should put much more effort into placing their work into the traditional framework of the field. It was certainly not intuitive to multiple reviewers that $\mathbf{X}\bm{\beta}$ is orthogonal to $\mathbf{W}\bm{\theta}$. There are even contrary suggestions. For if $(\mathbf{X}\bm{\beta})^\intercal \mathbf{W} \bm{\theta} = \bm{\beta}^\intercal \mathbf{X}^\intercal \mathbf{W} \bm{\theta} $ is to equal zero, we know that we can't get there by $\mathbf{X}^\intercal \mathbf{W}$ equaling zero because then the method has nothing to go on (e.g., line~139). We thus have a quadratic form---each term being the weighted product of an average (additive) effect and an interaction coefficient---needing to cancel out to equal zero. I wonder if the authors can put forth a rigorous argument or compelling intuition for why this should be the case.

      In the case of two polymorphic sites, quantitative genetics has traditionally partitioned the total genetic variance into the following orthogonal components:

      \begin{itemize}

      \item additive genetic variance, $\sigma^2_A$, the numerator of the narrow-sense heritability;

      \item dominance genetic variance, $\sigma^2_D$;

      \item additive-by-additive genetic variance, $\sigma^2_{AA}$;

      \item additive-by-dominance genetic variance, $\sigma^2_{AD}$; and

      \item dominance-by-dominance genetic variance, $\sigma^2_{DD}$.

      \end{itemize}

      See Lynch and Walsh (1998, pp. 88-92) for a thorough numerical example. This decomposition is not arbitrary or trivial, since each component has a distinct coefficient in the correlations between relatives. Is it possible for the authors to relate the variance associated with their $\mathbf{W}\bm{\theta}$ to this traditional decomposition? Besides justifying the work in this paper, the establishment of a relationship can have the possible practical benefit of allowing \texttt{i-LDSC} estimates of non-additive genetic variance to be checked against empirical correlations between relatives. For example, if we know from other methods that $\sigma^2_D$ is negligible but that \texttt{i-LDSC} returns a sizable $\sigma^2_{AA}$, we might predict that the parent-offspring correlation should be equal to the sibling correlation; a sizable $\sigma^2_D$ would make the sibling correlation higher. Admittedly, however, such an exercise can get rather complicated for the variance contributed by pairs of SNPs that are close together (Lynch & Walsh, 1998, pp. 146-152).

      I would also like the authors to clarify whether LDSC consistently overestimates the narrow-sense heritability in the case that pairwise epistasis is present. The figures seem to show this. I have conflicting intuitions here. On the one hand, if GWAS summary statistics can be inflated by the tagging of epistasis, then it seems that LDSC should overestimate heritability (or at least this should be an upwardly biasing factor; other factors may lead the net bias to be different). On the other hand, if standard and interaction LD Scores are lowly correlated, then I feel that the inclusion of interaction LD Score in the regression should not strongly affect the coefficient of the standard LD Score. Relatedly, I find it rather curious that \texttt{i-LDSC} seems increasingly biased as the proportion of genetic variance that is non-additive goes up---but perhaps this is not too important, since such a high ratio of narrow-sense to broad-sense heritability is not realistic.

      We thank the reviewer for taking the time to thoughtfully offer more context on how we might situate the i-LDSC framework within the greater context of traditional quantitative genetics. We now formalize the interaction component used in the i-LDSC model as an estimate of the phenotypic variance explained by additive-by-additive interactions between genetic variants (which we denote by 𝜎" to follow the conventional notation). In the newly revised Material and Methods, we also show how the i-LDSC model can be formulated to include dominance effects in a more general framework. Our updated derivations provide two key takeaways.

      First, we assume that the additive and interaction effect sizes in the general model (𝜷,𝜽) are each normally distributed with variances proportional to their individual contributions to trait heritability: 𝛽& ∼ 𝒩(0, 𝜎"), 𝜃' ∼ 𝒩(0, 𝜎" ). This independence assumption implies that the additive and non- $ $$ additive components 𝑿𝜷 and 𝑾𝜽 are orthogonal where 𝔼[𝜷⊺𝑿⊺𝑾𝜽] = 𝔼[𝜷⊺]𝑿⊺𝑾𝔼[𝜽] = 𝟎. This is important because, as the reviewer points out, it means that there is a unique partitioning of genetic variance when studying a trait of interest. In the revised version of the manuscript, we show this derivation in the main text (see lines 129-143). We also extend this derivation in the Materials and Methods where we show the same result even after we include the presence of dominance effects in the generative model (see lines 415-417 and 438-457).

      Second, we show that the genotype matrix 𝑿 and the matrix of genetic interactions 𝑾 are not linearly dependent because the additive-by-additive effects between two SNPs are encoded as the Hadamard product of two genotypic vectors in the form 𝒘! = 𝒙" ∘ 𝒙# (which is a nonlinear function of the genotypes). Linear dependence would have implied that one could find a transformation between a SNP and an interaction term in the form 𝒘! = 𝑐 × 𝒙" for some constant 𝑐. However, despite their linear independence, 𝑿 and 𝑾 are themselves not orthogonal and still have a nonzero correlation. This implies that the inner product between genotypes and their interactions is nonzero 𝑿⊺𝑾 ≠ 𝟎. To see this, we focus on a focal SNP 𝒙& and consider three different types of interactions:

      • Scenario I: Interaction between a focal SNP with itself (𝒙" ∘ 𝒙").
      • Scenario II: Interaction between a focal SNP with a different SNP (𝒙" ∘ 𝒙#).
      • Scenario III: Interaction between a focal SNP with a pair of different SNPs (𝒙# ∘ 𝒙$).

      In the Materials and Methods of the revised manuscript, we now provide derivations showing when would expect nonzero correlation between 𝑿 and 𝑾 which rely on the fact that: (1) we assume that genotypes have been mean-centered and scaled to have unit variance, and (2) under Hardy-Weinberg equilibrium, SNPs marginally follow a binomial distribution 𝒙& ∼ 𝐵𝑖𝑛(2, 𝑝) where 𝑝 represents the minor allele frequency (MAF) (Wray et al. 2007, Genome Res; Lippert et al. 2013, Sci Rep). These new additions are given in new lines 460-485).

      Lastly, we agree with the reviewer that our results indicate that LDSC inflates estimates of SNP- based narrow-sense heritability. Our intuition for why this happens is largely consistent with the reviewer’s first point: since GWAS summary statistics can be inflated by the tagging of non- additive genetic variance, then it makes sense that LDSC should overestimate heritability. LDSC uses a univariate regression without the inclusion of cis-interaction scores. A simple consequence from “omitted variable bias” is likely happening where, since LDSC does not explicitly account for contributions from the tagged non-additive components which also contribute to the variance in the GWAS summary statistics, the estimate for the coefficient 𝜎" becomes slightly inflated.

      How Much Epistasis Is \texttt{i-LDSC} Detecting?

      I think the proper conclusion to be drawn from the authors' analyses is that statistically significant epistatic (non-additive) genetic variance was not detected. Specifically, I think that the analysis presented in Supplementary Table~S6 should be treated as a main analysis rather than a supplementary one, and the results here show no statistically significant epistasis. Let me explain.

      Most serious researchers, I think, treat LDSC as an unreliable estimator of narrow-sense heritability; it typically returns estimates that are too low. Not even the original LDSC paper pressed strongly to use the method for estimating $h^2$ (Bulik-Sullivan et al., 2015). As a practical matter, when researchers are focused on estimating absolute heritability with high accuracy, they usually turn to GCTA/GREML (Evans et al., 2018; Wainschtein et al., 2022).

      One reason for low estimates with LDSC is that if SNPs with higher LD Scores are less likely to be causal or to have large effect sizes, then the slope of univariate LDSC will not rise as much as it ``should' with increasing LD Score. This was a scenario actually simulated by the authors and displayed in their Supplementary Figure~S15. [Incidentally, the authors might have acknowledged earlier work in this vein. A simulation inducing a negative correlation between LD Scores and $\chi^2$ statistics was presented by Bulik-Sullivan et al. (2015, Supplementary Figure 7), and the potentially biasing effect of a correlation over SNPs between LD Scores and contributed genetic variance was a major theme of Lee et al. (2018).] A negative correlation between LD Score and contributed variance does seem to hold for a number of reasons, including the fact that regions of the genome with higher recombination rates tend to be more functional. In short, the authors did very well to carry out this simulation and to show in their Supplementary Figure~S15 that this flaw of LDSC in estimating narrow-sense heritability is also a flaw of \texttt{i-LDSC} in estimating broad-sense heritability. But they should have carried the investigation at least one step further, as I will explain below.

      Another reason for LDSC being a downwardly biased estimator of heritability is that it is often applied to meta-analyses of different cohorts, where heterogeneity (and possibly major but undetected errors by individual cohorts) lead to attenuation of the overall heritability (de Vlaming et al., 2017).

      The optimal case for using LDSC to estimate heritability, then, is incorporating the LD-related annotation introduced by Gazal et al. (2017) into a stratified-LDSC (s-LDSC) analysis of a single large cohort. This is analogous to the calculation of multiple GRMs defined by MAF and LD in the GCTA/GREML papers cited above. When this was done by Gazal et al. (2017, Supplementary Table 8b), the joint impact of the improvements was to increase the estimated narrow-sense heritability of height from 0.216 to 0.534.

      All of this has at least a few ramifications for \texttt{i-LDSC}. First, the authors do not consider whether a relationship between their interaction LD Scores and interaction effect sizes might bias their estimates. (This would be on top of any biasing relationship between standard LD Scores and linear effect sizes, as displayed in Supplementary Figure~S15.) I find some kind of statistical relationship over the whole genome, induced perhaps by evolutionary forces, between \emph{cis}-acting epistasis and interaction LD Scores to be plausible, albeit without intuition regarding the sign of any resulting bias. The authors should investigate this issue or at least mention it as a matter for future study. Second, it might be that the authors are comparing the estimates of broad-sense heritability in Table~1 to the wrong estimates of narrow-sense heritability. Although the estimates did come from single large cohorts, they seem to have been obtained with simple univariate LDSC rather than s-LDSC. When the estimate of $h^2$ obtained with LDSC is too low, some will suspect that the additional variance detected by \texttt{i-LDSC} is simply additive genetic variance missed by the downward bias of LDSC. Consider that the authors' own Supplementary Table~S6 gives s-LDSC heritability estimates that are consistently higher than the LDSC estimates in Table~1. E.g., the estimated $h^2$ of height goes from 0.37 to 0.43. The latter figure cuts quite a bit into the estimated broad-sense heritability of 0.48 obtained with \texttt{i-LDSC}.

      Here we come to a critical point. Lines 282--286 are not entirely clear, but I interpret them to mean that the manuscript's Equation~5 was expanded by stratifying $\ell$ into the components of s-LDSC and this was how the estimates in Supplementary Table~S6 were obtained. If that interpretation is correct, then the scenario of \texttt{i-LDSC} picking up missed additive genetic variance seems rather plausible. At the very least, the increases in broad-sense heritability reported in Supplementary Table~S6 are smaller in magnitude and \emph{not statistically significant}. Perhaps what this means is that the headline should be a \emph{negligible} contribution of pairwise epistasis revealed by this novel and ingenious method, analogous to what has been discovered with respect to dominance (Hivert et al., 2021; Pazokitoroudi et al., 2021; Okbay et al., 2022; Palmer et al., 2023).

      This is an excellent question raised by the reviewer and, again, we really appreciate such a thoughtful and thorough response. First, we completely agree with the reviewer that the s-LDSC estimates previously included in the Supplementary Material should instead be discussed in the main text of the manuscript. In the revision, we have now moved the old Supplemental Table S6 to be the new Table 2. Second, we also agree that the conclusions about the magnitude of additive-by-additive effects should be based upon variance explained when using the cis- interaction score in addition to scores specific to different biological annotations when available, per s-LDSC.

      However, we want to respectfully disagree that the results indicate a negligible contribution of additive-by-additive genetic variance to all the traits we analyzed (see Figure 4D). Although the additive-by-additive genetic variance component is not significant in any trait in the UK Biobank, there is little reason to expect that they would be given the inclusion of 97 other biological annotations from the s-LDSC model. Indeed, in the s-LDSC paper itself the authors look only for enrichment of heritability for a given annotation not a statistically significant test statistic. It also worth noting that jackknife approaches tend to be conservative and yield slightly larger standard errors for hypothesis testing. Taking all the great points that the reviewer mentioned into account, we believe that a moderate stance to the interpretation of our results is one that: (i) emphasizes the importance of using s-LDSC with the cis-interaction score to better assess the variance explained by additive-by-additive interaction effects and (ii) allows for the significance of the additive-by-additive component to not be the only factor when determining the importance of the role of non-additive effects in shaping trait architecture.

      In the revision, we now write the following in lines 331-343:

      Lastly, we performed an additional analysis in the UK Biobank where the cis-interaction scores are included as an annotation alongside 97 other functional categories in the stratified-LD score regression framework and its software s-LDSC (Materials and Methods). Here, s-LDSC heritability estimates still showed an increase with the interaction scores versus when the publicly available functional categories were analyzed alone, but albeit at a much smaller magnitude (Table 2). The contributions from the additive-by-additive component to the overall estimate of genetic variance ranged from 0.005 for MCHC (P = 0.373) to 0.055 for HDL (P = 0.575) (Figures 4C and 4D). Furthermore, in this analysis, the estimates of the additive-by-additive components were no longer statistically significant for any of the traits in the UK Biobank (Table 2). Despite this, these results highlight the ability of the i-LDSC framework to identify sources of “missing” phenotypic variance explained in heritability estimation. Importantly, moving forward, we suggest using the cis- interaction scores with additional annotations whenever they are available as it provides more conservative estimates of the role of additive-by-additive effects on trait architecture.

      Lastly, in the Discussion, we now mention an area of future work would be to explore how the relationship between cis-interaction LD scores and interaction effect sizes might bias heritability estimates from i-LDSC (e.g., similar to the relationship explored standard LD scores and linear effect sizes in Figure 3 – figure supplement 8). See new lines 364-367.

    1. Author Response

      The following is the authors’ response to the current reviews.

      We agree with Reviewer #1 that it is not typical to include primary data in a review, but this seems to be a very unusual situation and it is not unprecedented. We seriously believe that it will significantly dilute the impact of the message if we were to separate this into two papers. We intended initially to do a comprehensive review of the αC-β4 motif as we think it is an extremely important element of secondary structure that has been rather overlooked in the protein kinase field. It is the site where the nucleotide and peptide/protein binding sites converge in the C:PKI complex and also in the RIα holoenzyme, which is also a pseudo-substrate inhibitor. This stable element is highly conserved in all protein kinases, and we think it is an extremely important allosteric site where the kinases differ. Thus, it is highly relevant for this set of Elife papers on kinase allostery. In parallel, we have developed the Local Spatial Pattern (LSP) alignment method for identifying Protein Residue Networks (PRNs) into a robust tool. When the Veglia team, our long-time collaborators, did their NMR analysis of the F100A mutant, which is in the αC-β4 loop, we thus decided to do the LSP analysis. The LSP results were so interesting and striking that we decided immediately to explore the motif further and to specifically compare the various crystal structures that we had solved in the past to see if indeed we had missed some changes. In addition to looking at the backbone, we decided to also look at the side chains and to compare the structures with the simulations. The results proved to be extremely informative and defined a multi-pronged approach that could be used to screen any disease mutation or alternatively as an Ala scan for any residue in any protein. I consider this to be one of the most important papers that I have published in many years. It describes a process for exploring the potential dynamic impact of any disease mutation or any point mutation. We emphasize repeatedly that the hypotheses generated from the computational screen will need to be validated experimentally, but our LSP analysis is a rapid and relatively inexpensive way to screen a set of mutations and predict which will have the greatest impact on dynamics. It is an especially powerful and robust way to identify allosteric sites as the LSP approach maps global changes of a single mutation across the entire protein. These mutants would then be prioritized for experimental follow-up. We are indeed now implementing this more comprehensive strategy in two ways. We are specifically exploring three disease mutations in the αC-β4 loop and, in parallel, are also doing a computational Ala scan of the entire loop (L95-L106); however, this is part of a separate and more comprehensive study that will take much longer. It will be the "Proof-of-Principle” of the hypotheses that we propose in our Elife paper. In addition to the LSP method, the MD simulations provide new and complementary insights into side chain dynamics in contrast to the static crystal structures. We will also begin to compare the αC-β4 loop in other kinases, specifically PKCβ2 and LRRK2, but once again this is part of a separate study and is clearly beyond the scope of this Elife paper. This focus on the αC-β4 loop is an excellent strategy that can be applied to any protein kinase. The LSP approach, however, can obviously also be applied to any protein or any motif, so it is potentially very powerful tool. We think that the impact and potential importance of this paper will be lost if it is split into two papers.

      I went back to look at a recent review that we did for the Biochemical Journal on the PKA Cβ isoform, and there we also included some new primary data in the review. It was never questioned. We believe that our manuscript is so perfectly appropriate for this Elife series that is focus on allostery in kinases, and having our paper back-to-back with the Veglia NMR paper is especially important and relevant. We thus ask you will seriously consider keeping this as a single paper as part of this series on allostery.


      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this work Wu, J., et al., highlight the importance of a previously overlooked region on kinases: the αC-β4 loop. Using PKA as a model system, the authors extensively describe the conserved regulatory elements within a kinase and how the αC-β4 loop region integrates with these important regulatory elements. Previous biochemical work on a mutation within the αC-β4 loop region, F100A showed that this region is important for the synergistic high affinity binding of ATP and the pseudo substrate inhibitor PKI. In the current manuscript, the authors assess the importance of the αC-β4 loop region using computational methods such as Local Spatial Pattern Alignment (LSP) and MD simulations. LSP analysis of the F100A mutant showed decreased values for degree centrality and betweenness centrality for several key regulatory elements within the kinase which suggests a loss in stability/connectivity in the mutant protein as compared to the WT. Additionally, based on MD simulation data, the side chain of K105, another residue within the αC-β4 loop region had altered dynamics in the F100A mutant as compared to the WT protein. While these changes in the αC-β4 loop region seem to be consistent with the previous biochemical data, the results are preliminary and the manuscript can be strengthened (as the authors themselves acknowledge) with additional experiments. Specific comments/concerns are listed below.

      1. MD simulations were carried out using a binary complex of the catalytic subunit of PKA and ATP/Mg and not the ternary complex of PKA, ATP/Mg and PKI. MD simulations carried out using the ternary complex instead of the binary complex would be more informative, especially on the role of the αC-β3 loop region in the synergistic binding of ATP/Mg and PKI.

      Response 1. Thank you for your suggestion. We have included the data for the MD simulations of the ternary complex in the revised manuscript. This includes a new figure and was indeed informative (Figure 11). Text describing this simulation is also added on pages 15-17. All the changes in the revised manuscript are highlighted in red.

      1. The LSP analysis shows a decrease in degree centrality for the αC-β4 loop region in the F100A mutant compared to the WT protein which suggests a gain in stability in this region for the F100A mutant (Fig. 8A). These results seem to be contradictory to the MD simulation data which shows the side chain dynamics of K105 destabilizes the αC-β4 loop region in the F100A mutant (Fig. 10B). It would be helpful if the authors could clarify this apparent discrepancy.

      Response 2. In Figure 8A, the negative values of degree centrality for the αC-β4 loop region show that the value of DC is less in the WT compared to the mutant, suggesting that those regions are more stable in the mutant. This says that the mutation in the αC-β4 loop region both rigidifies the motif and alters the communication signaling networks between the two lobes.

      The betweenness centrality plots (Figure 8B) also show how the connectivity between the two lobes is altered upon mutation. In the mutant the major connectors become V104 and I150 in the C-lobe, whereas connectivity was primarily governed by K72 (N-lobe) and D184 (C-lobe) in the wt C-subunit. Overall, the mutation causes rigidification of the αC-β4 loop and this leads to loss of allosteric communication between the two lobes.

      The MD simulation results as shown in Figure 10B are not contradictory. This figure shows the overall dynamic profile of the protein, based on principal component analysis (PCA) using the parameter of the residual flexibility. It does not reflect a particular motif's stability or flexibility. Instead it shows that overall the protein upon mutation becomes more dynamic and can sample different conformational states, while, in contrast, the WT protein preferred a single global state of conformation. However, the LSP results showed that, compared to the other parts, the αC-β4 loop, especially V104 at the tip, becomes more stable following mutation, and this has an impact on the allosteric communication between the two lobes. We have added this information into the revised manuscript on page 14, also highlighted in red.

      1. The foundation for the experiments carried out in this paper are based on previous NMR and computational data for the F100A mutant. However, the specific results and conclusions from these previous experiments are not clearly described.

      Response 3. The NMR paper has been already accepted by eLIFE and here we are attaching the bioRxiv paper link, “https://www.biorxiv.org/content/10.1101/2023.09.12.557419v1.”

      Reviewer #1 (Recommendations For The Authors):

      In this work Wu, J., et al., draw attention to the αC-β4 loop, a previously neglected region within kinases. A comprehensive review on the important regulatory elements within the kinase along with how the αC-β4 loop (and the αE helix) integrates with these different regulatory elements is presented well. As the authors themselves acknowledge, the data presented here while promising is preliminary. Additional biochemical, NMR and computational experiments need to be carried out to assess the importance of F100, K105 and other residues in this region.

      1. The authors indicate that previous computational studies predict a flip in the αC-β4 loop in the apo state. It would be helpful to have a figure showing the predicted flip as well as an explanation for the significance of this predicted flip.

      Response 1. The NMR paper has been already accepted by eLIFE and here we are attaching the bioRxiv paper link, “https://www.biorxiv.org/content/10.1101/2023.09.12.557419v1.” The Figures 3 and 6 in that paper described the predicted flip in the αC-β4 loop in the apo state. We did not see a flip in any of our crystal structures, and the LSP analysis which is based on 200 ns simulations is not sufficient to see this major conformational change.

      1. The authors cite previous NMR and biochemical experiments (reference 62), work that has just been submitted to eLife. Access to this work was difficult as this manuscript could not be found on the eLife website.

      Response 2. The NMR paper has been already accepted by eLIFE and here we are attaching the bioRxiv paper link, “https://www.biorxiv.org/content/10.1101/2023.09.12.557419v1.”

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      Despite the importance of T follicular helper cells (Tfh cells) in vaccine-induced humoral responses, it is still unclear which type of Tfh cells (Tfh1, Tfh2, and Tfh17) is critical for generating protective humoral immunity. By using the rhesus macaques model (most similar to human), the authors have addressed this potentially important question and obtained suggestive data that Tfh1 is critical. Although being suggestive, the evidence for the importance of Tfh1 is incomplete.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Developing vaccination capable of inducing persistent antibody responses capable of broadly neutralizing HIV strains is of high importance. However, our ability to design vaccines to achieve this is limited by our relative lack of understanding of the role of T-follicular helper (Tfh) subtypes in the responses. In this report Verma et al investigate the effects of different prime and boost vaccination strategies to induce skewed Tfh responses and its relationship to antibody levels. They initially find that live-attenuated measles vaccine, known to be effective at inducing prolonged antibody responses has a significant minority of germinal center Tfh (GC-Tfh) with a Th1 phenotype (GC-Tfh1) and then explore whether a prime and boost vaccination strategy designed to induce GC-Tfh1 is effective in the context of anti-HIV vaccination. They conclude that a vaccine formulation referred to as MPLA before concluding that this is the case.

      Clarification: MPLA serves as the adjuvant, and the vaccine formulation is characterized as a Th1 formulation based on the properties of the adjuvant.

      Strengths:

      While there is a lot of literature on Tfh subtypes in blood, how this relates to the germinal centers is not always clear. The strength of this paper is that they use a relevant model to allow some longitudinal insight into the detailed events of the germinal center Tfh (GC-Tfh) compartment across time and how this related to antibody production.

      Weaknesses:

      The authors focus strongly on the numbers of GC-Tfh1 as a proportion of memory cells and their comparison to GC-Tfh17. There seems to be little consideration of the large proportion of GC-Tfh which express neither CCR6 and CXCR3 and currently no clear reasoning for excluding the majority of GC-Tfh from most analysis. There seems to be an assumption that since the MPLA vaccine has a higher number of GC-Tfh1 that this explains the higher levels of antibodies. There is not sufficient information to make it clear if the primary difference in vaccine efficacy is due to a greater proportion of GC-Tfh1 or an overall increase in GC-Tfh of which the percentage of GC-Tfh1 is relatively fixed.

      Response: We appreciate the reviewer's comment. Indeed, while there is substantial literature on Tfh subtypes in blood; the strength of our study lies in utilizing a relevant model to provide longitudinal insights into the dynamics of the germinal center Tfh (GC-Tfh) compartment over time and its relationship to antibody production. Regarding the concern about the comprehensive analysis of GC Tfh subsets, including GC-Tfh1, GC-Tfh17, and others not expressing CCR6 and/or CXCR3, we fully acknowledge its importance. To address this, we will conduct a detailed analysis of GC Tfh and GC Tfh1 frequencies, encompassing subsets without CCR6 and CXCR3 expression, to provide a more comprehensive view of the GC-Tfh population in our analysis.

      Reviewer #2 (Public Review):

      Summary:

      Anil Verma et al. have performed prime-boost HIV vaccination to enhance HIV-1 Env antibodies in the rhesus macaque model. The authors used two different adjuvants, a cationic liposome-based adjuvant (CAF01) and a monophosphoryl lipid A (MPLA)+QS-21 adjuvant. They demonstrated that these two adjuvants promote different transcriptomes in the GC-TFH subsets. The MPLA+QS-21 adjuvant induces abundant GC TFH1 cells expressing CXCR3 at first priming, while the CAF01 adjuvant predominantly induced GC TFH1/17 cells co-expressing CXCR3 and CCR6. Both adjuvants initiate comparable Env antibody responses. However, MPLA+QS-21 shows more significant IgG1 antibodies binding to gp140 even after 30 weeks.

      The enhancement of memory responses by MPLA+QS-21 consistently associates with the emergence of GC TFH1 cells that preferentially produce IFN-γ.

      Strengths:

      The strength of this manuscript is that all experiments have been done in the rhesus macaque model with great care. This manuscript beautifully indicated that MPLA+QS-21 would be a promising adjuvant to induce the memory B cell response in the HIV vaccine.

      Weaknesses:

      The authors did not provide clear evidence to indicate the functional relevance of GC TFH1 in IgG1 class-switch and B cell memory responses.

      Response. We appreciate the recognition of our meticulous work in the rhesus macaque model and the potential of MPLA+QS-21 as an adjuvant for HIV vaccine-induced humoral immunity. We acknowledge the need to provide clearer evidence of the functional relevance of GC Tfh1 in IgG1 class-switching and B cell memory responses. We will attempt to address this concern in our revisions.

      Recommendations for Authors:

      Reviewer #1:

      1. Is the proportion of GC-Tfh1 within GC-Tfh significantly increased in MPLA vs CAF01? The balance between Tfh1 and Tfh17 data is shown in 4C but appears quite a modest difference. Additionally, it excludes the majority of GC-Tfh since it only considers CCR6 and CXCR3 expressing cells.

      Response. We have now included a comparison of the relative proportions of GC Tfh cells expressing CCR6 and CXCR3, as well as those lacking these markers. Our data now demonstrate an increased presence of Tfh1 within the GC-Tfh population when MPLA is employed at P1w2, as depicted in Figure 4D.

      1. Is there any relationship between GC-Tfh17, 1/17 and non Th1/17 GC-Tfh and antibody levels? In Figure 5C only GC Tfh1 is examined making it impossible to judge if this is specific to GC-Tfh1 or a general relationship between higher total GC-Tfh and antibodies.

      Response. In our revised description of the results, we have mentioned that GC Tfh frequencies correlated with antibody levels (r = 0.6, p < 0.05). However, it is important to note that this correlation was specific to the GC Tfh1 subset and was not observed with other subsets.

      Other points:

      1. The authors make a number of statements that rather exaggerate differences such as stating in the abstract that CAF01 induces Tfh1/17 while MPLA predominantly induces Tfh1. As shown in Figure 4C the majority of CCR6-CXCR3- GC-Tfh induced by CAF01 are GC-Tfh1 i.e. both formulations predominantly induce GC-Tfh1. Also, it is difficult to judge since the data is never provided but the predominant group of GC-Tfh appears to be CCR6-CXCR3- in both cases.

      Response. We acknowledge the need for greater precision in our descriptions. In response, we have addressed this concern by providing the frequencies of CCR6-CXCR3- GC Tfh cells in Figure 4D. We have also included a comparison of the relative frequencies across the adjuvant groups in the Results section (Lines 331-338).

      1. The authors use the term peripheral Tfh (pTfh), it may be better to use the more common term circulating Tfh (cTfh) to avoid confusion with T peripheral helper cells (Tph).

      Response. We appreciate the reviewer's suggestion to use the more commonly accepted term "circulating Tfh (cTfh)" instead of "peripheral Tfh (pTfh)." We have incorporated this change into our manuscript to ensure clarity and avoid potential confusion with "peripheral helper cells (Tph).

      1. Some further labelling of the pie chart in Figure 1G to at least specify larger groups such as Tfh2, Tfh17, Tfh1/17 would be helpful.

      Response. We have incorporated the suggestion and identified cTfh2, cTfh17, and cTfh2/17 cells. We additionally now state in the legend that overlapping pie arcs correspond to specific polarized Tfh subsets denoted by arc color.

      1. A gating example of the CXCR3, CCR6, CCR4 patterns in the GC Tfh would be helpful. "up to 25% of GC Tfh cells expressed CCR6" I think it is better to state the average here since 25% appears an outlier.

      Response. We have now included a gating example of chemokine receptor expression, patterns in the GC Tfh. Additionally, we have revised the statement to mention the median (7%) of GC Tfh cells expressing CCR6 instead of specifying the upper limit.

      1. Figure 1I, does this graph exclude triple negative cells? It's not clear from the figure legend but the numbers do not seem to add up with the graphical proportions shown in figure 1H.

      Response. We have made the necessary clarification in both the results section, figure, and the figure legend to state that the Boolean analysis is based on cells expressing either CXCR3 or CCR6, thus explaining the exclusion of triple negative cells.

      1. Figure 3C. Some label should be added to make clear which violins are from the CD95- and CD95+ groups. There may be too much data in this panel for p values to be legible. Either less graphs or more space may be needed.

      Response. We have updated the Y axis labels in the figure to state that the violin plots show the differences in gene expression between CD95+ CD4 T cells and CD95- CD4 T cells (naive).

      1. Figure 4B. Numbers attached to the gates (1, 17 etc) should be more clearly labeled Tfh1, Tfh17 etc since normally they might be expected to be gate percentages in this format. Gate percentages should also be added.

      Response. We have clearly labeled the subsets as "Tfh1" and "Tfh17," making it easier for readers to interpret the figure. Additionally, we have included gate percentages in the flow plot. Furthermore, the percentages of GC Tfh subsets are now depicted in Figure 4D.

      1. Overlarge and indistinct datapoint symbols are often a problem e.g. Figure 4G most of the CAF01 datapoints are merged into a single blob with no indication of where one point ends or begins. Supplementary figure 5E. Datapoint sizes are large to the extent that the lines are difficult to see. Lines indicating central tendency are often lost.

      Response. We have reworked the graphs (including 4G, now 4I) to ensure clarity,

      1. Generally greater care is needed with graph layout e.g. the B indicating figure 6B is on the graph of figure 6A.

      Response. We have made the necessary adjustment to ensure that the letter "B" correctly corresponds to the graph in Figure 6B.

      1. Figure 6J, the text seems to indicate "higher avidity with MPLA against autologous Env including V1V2 loops." However, the graph seems to indicate lower avidity for V1V2 loops? Response. We appreciate the careful observation. We have rectified this by updating the description in the results section to accurately reflect the graph, which shows higher avidity for V1V2 loops with CAF01.

      2. Figure 6A. The authors state that significantly higher IgG1 was induced but Figure 6A seems to be the only graph lacking an indication of statistical significance.

      Response. We have made the necessary adjustment to ensure that significance symbol is depicted in Figure 6A.

      1. Brackets indicating significance are often unclear. e.g. in Figure 4B MPLA graph there are three groups and a single multipoint bracket with a single result making it unclear which groups are being compared.

      Response. We have added clarification to the legend. It now states that the temporal comparisons in GC Tfh subsets for each vaccine group are made in relation to frequencies at baseline. This revision provides a clear reference point for the significance comparisons and ensures that readers can easily understand which groups are being compared.

      Reviewer #2:

      Overall, the manuscript is well-written and addresses an important issue. However, further investigation is warranted to understand how the MPLA+QS-21 induced GC TFH1 influenced on memory B cell response. This manuscript only showed the correlation between GC TFH1 and antibody responses. If the authors explain adjuvant preference in memory B cell responses, this manuscript could be more considerable for publication.

      1. This reviewer recommends that the author provide more evidence to indicate the functional relevance of GC TFH1 in IgG1 class-switch and B cell memory responses. Some evidence supports that IFN-γ controls the antigen-specific IgG1 responses in humans, but it is still controversial. The author also suggests the involvement of IL-21, but this is also an open question even in the human system. This is also the case in the memory responses. There is no direct link between IFN-γ and memory B cell responses in the human system. The authors need more evidence of how GC TFH1 cell development has more advantages in IgG1 and memory responses than GC TFH1 /17 cells. I believe an antibody blockade of cytokines would be a possible strategy to prove these questions.

      Response. We appreciate the reviewer's valuable suggestion to provide more evidence regarding the functional relevance of GC Tfh1 cells in IgG1 class-switch and B cell memory responses. It is indeed important to establish a direct link between GC Tfh1 cells and these responses, particularly in the context of cytokine skewing. The suggestion of antibody blockade studies to mechanistically link the modulation of the inflammatory milieu to Tfh differentiation and subsequent antibody functions is important. However, we must acknowledge that these studies are currently beyond the scope of our work. We have included this as a limitation in our study, recognizing the need for further studies to address these important questions.

      1. In Fig.5, the authors use different scales to indicate the IgG antibody titer. A shows the log scale, while B shows the linear scale. Moreover, the differences are minimal, even though the authors indicated a significant difference. I am not sure this difference is meaningful.

      Response. To clarify, we used a log scale in Figure 5A to demonstrate temporal changes over the course of vaccination. In Figure 5B, where we are comparing differences across vaccine regimens at week 30, a linear scale was deemed more appropriate, as it allows for a clear representation of the approximately two-fold difference observed. We fully acknowledge that to establish the biological significance of the observed difference, challenge studies will be essential.

    1. Author Response

      Reviewer #1 (Public Review):

      This article proposes a new statistical approach to identify which of several experimenter-defined strategies best describes a biological agent's decisions when such strategies are not fully observable by choices made in a given trial. The statistical approach is described as Bayesian but can be understood instead as computing a smoothed running average (with decay) of the strategies' success at matching choices, with a winner-take-all inference across the rules. The article tests the validity of this statistical approach by applying it to both simulated agents and real data sets in mice and humans. It focuses on dynamically changing environments, where the strategy best describing a biological agent may change rapidly.

      The paper asks an important question, and the analysis is well conducted; the paper is well-written and easy to follow. However, there are several concerns that limit the strength of the contribution. Major concerns include the framing of the method, considerations around the strategy space, limitations in how useful the technique may be, and missing details in analyses.

      Reviewer #2 (Public Review):

      In this study, the goal is to leverage the power of Bayesian inference to estimate online the probability that any given arbitrarily chosen strategy is being used by the decision-maker. By computing the trial-by-trial MAP and variance of the posterior distribution for each candidate strategy, the authors can not only see which strategy is primarily being used at every given time during the task and when strategy changes occur but also detect when the target rule of a learning task becomes the front-running strategy, i.e., when successful learning occurs.

      Strengths:

      1) The proposed approach adds to recent methods for capturing the dynamics of decision-making at finer temporal resolution (trials) (Roy et al., 2021; Ashwood et al., 2022) but it is novel and differs from these in that it is suited especially well for analyzing when learning occurs, or when a rule switches and learning must recommence, and it does not necessitate large numbers of trials.

      2) The manuscript starts with a validation of the approach using synthetic data and then is applied to datasets of trial-based two-alternative forced choice tasks ranging from rodent to non-human primate to human, providing solid evidence of its utility.

      3) Compared to classic procedures for identifying when an animal has learned a contingency which typically needs to be conservative in favor of better accuracy, this method retrieves signs of learning happening earlier (~30 trials earlier on average). This is achieved by identifying the moment (trial) when the posterior probability of the correct "target" rule surpasses the probability of all other strategies. Having greater temporal precision in detecting when learning happens may have a very significant impact on studies of the neural mechanisms of learning.

      4) This approach seems amenable to testing many different strategies depending on the purpose of the analysis. In the manuscript, the authors test target versus non-target strategies (correct versus incorrect) and also in another version of the analysis, they test what they call "exploratory" strategies.

      5) One of the main appeals of this method is its apparent computational simplicity. It necessitates only updating on every trial the parameters of a beta distribution (prior distribution for a given strategy) with the evidence that the behavior on trial was either consistent or inconsistent with the strategy. Two scalars, the mode of the posterior (MAP) and the inverse of the variance, are all that are required for identifying the decision criterion (highest MAP and if tied lowest variance) and the learning criterion (first trial where MAP for target strategy is higher than chance).

      Weaknesses:

      1) It seems like a limitation of this approach is that the candidate strategies to arbitrate between must be known ex-ante. It is not clear how this approach could be applied to uncover latent strategies that are not mixtures of the strategies selected.

      2) Different strategies may be indistinguishable from each other and thus it may not be possible to distinguish between them. Similarly, the fact that two strategies seem to be competing for the highest MAP doesn't necessarily mean that those are correct strategies and perhaps interchangeable as the manuscript seems to suggest.

      3) The decay parameter is a necessary component to make the strategy selection non-stationary and accommodate data sets where the rules are changing throughout the task. However, the choice of the decay parameter value bounds does not seem very principled. Having this parameter as a free-parameter adds a flexibility that seems to have significant effects on when the strategy switch is detected and how stable the detected switch is.

      4) This method is a useful approach for arbitrating between strategies and describing the behavior with a temporal precision that may prove important for studies attempting to tie these precise events to changes in neural activity. However, it seems limited in its explanatory power. In its current form, this method does not provide a prediction of the probability to transition from one strategy to another. And, because the MAP of different strategies may be close at any given moment, it is hard to imagine using this approach to tease out the different "mental states" that represent each strategy being at play.

      The reviewers’ detailed comments, not shared here, helped us considerably to improve the paper, and we thank the reviewers for their time here. We are unsure of the merits of sharing public reviews of a paper that has now changed considerably from the version that these reviews address. Nonetheless we shall address some key points of potential misunderstanding here.

      “The statistical approach is described as Bayesian but can be understood instead as computing a smoothed running average (with decay) of the strategies' success at matching choices, with a winner-take-all inference across the rules.“

      This is inaccurate. The algorithm performs sequential Bayesian updates on the evidence for and against the use of each strategy considered; for a given strategy i, its output at each trial is a fully parameterised posterior distribution over the probability of that strategy being used by the subject.

      We are careful in the paper to separate the algorithm’s output from our further use of that output. To plot and analyse the output we often make use of the maximum a posteriori (MAP) estimate from each posterior. Other choices are of course possible, and we discuss them in the text.<br /> In one set of simulations we quantify the results using a decision rule that chooses the strategy with the highest MAP - this is presumably the “winner-takes-all inference” in the quoted text. We do not use this anywhere else in the paper, including the analyses of the 4 datasets, and so do not consider it as part of our method, but one possible use of the output of the algorithm.

      “Major concerns include the framing of the method, considerations around the strategy space, limitations in how useful the technique may be, and missing details in analyses”

      Our goal for this paper was to develop a computationally lightweight, trial-resolution, Bayesian approach to tracking the probability of user-specified strategies, so that we can capture the observer’s evidence for learning or for the features driving exploratory choice (e.g. whether subjects are responding to losses or wins; are they responding to cues or choice etc). The above quote reflects their detailed review comments, where we felt this reviewer wanted a solution to a different problem, that of a parameterised latent model of strategy use: while a perfectly valid research goal, this was not what we addressed here.

      “1) It seems like a limitation of this approach is that the candidate strategies to arbitrate between must be known ex-ante. It is not clear how this approach could be applied to uncover latent strategies that are not mixtures of the strategies selected.”

      The problem of knowing which strategies to analyse in advance only applies when running our algorithm in real-time. The fact that it could be run in real-time on modest computing hardware is to us one of its strengths, so we consider this a good problem to have.

      As noted above, rather than determine latent strategies, our goal was to build an observer model that allows users to specify whatever strategy they wanted in order to answer their scientific question(s) of their data. For example, to define when a particular rule has been learnt; or to look for changes in response to particular features of the environment, such as a cue, or to a drug treatment or other intervention.

      2) Different strategies may be indistinguishable from each other and thus it may not be possible to distinguish between them. Similarly, the fact that two strategies seem to be competing for the highest MAP doesn't necessarily mean that those are correct strategies and perhaps interchangeable as the manuscript seems to suggest.

      As noted above, this is an observer model, and it is thus necessarily true that there are strategies for which the observer does not have sufficient evidence to distinguish. For example, a subject who continually chooses the rewarded left-hand lever will be doing both a strategy of “go left” and of “win-stay” in response to their choice. The inability to distinguish strategies is a property of the data, not of the algorithm. Also as noted above, we do not here consider the competition between strategies.

      3) The decay parameter is a necessary component to make the strategy selection non-stationary and accommodate data sets where the rules are changing throughout the task. However, the choice of the decay parameter value bounds does not seem very principled. Having this parameter as a free-parameter adds a flexibility that seems to have significant effects on when the strategy switch is detected and how stable the detected switch is.

      The revised manuscript draws together the existing simulations and analysis of the method to directly address this point, showing that there is a principled range of the decay parameter in which the algorithm should operate. The Discussion also points out that this is no different to a free parameter than any frequentist approach to strategy analysis, which must choose some time windows over which to compute the frequentist probability.

      4) This method is a useful approach for arbitrating between strategies and describing the behavior with a temporal precision that may prove important for studies attempting to tie these precise events to changes in neural activity. However, it seems limited in its explanatory power. In its current form, this method does not provide a prediction of the probability to transition from one strategy to another. And, because the MAP of different strategies may be close at any given moment, it is hard to imagine using this approach to tease out the different "mental states" that represent each strategy being at play.

      As noted above, this is an observer model and does not intend to infer mental states. The goal is to make accurate statements about observable behaviour. We agree that an interesting extension to this approach would be to model the transitions between strategies, and had already outlined this in the Discussion.

    1. Author Response

      The following is the authors’ response to the original reviews.

      REVIEWER 1:

      Reviewer 1 stated: “The authors have provided strong evidence that high levels of auxin exposure perturb feeding behavior, survival rates, lipid metabolism, and gene expression patterns, providing a cautionary note for the field in using this technology. They also concluded that “overall, the experiments were suitably designed with appropriate sample size and data analysis methods.”

      Reviewer 1 provided the following recommendations for improvement, which are addressed below:

      Point 1: “Although authors showed that auxin causes gene expression changes including the possible alteration of Gal4 expression levels, no cell-type-specific data is provided. It would be informative to the Drosophila field if the authors could examine major Gal4 drivers in their expression levels, such as the ones used in studying metabolism and oogenesis.”

      We agree with the reviewer that cell-type specific Gal4 expression should be thoroughly analyzed by scientists in the community wishing to use the current auxin-inducible gene expression system (AGES) in their studies; however, those analyses are beyond the scope of our manuscript. There are many tissues and cell types that are used to study metabolism and oogenesis (e.g., muscle, adipocytes, oenocytes, multiple cell types in the gut, multiple cell types in the ovary), and Gal4 expression patterns could be different depending on age, sex, and diet. It is therefore impossible for us to pinpoint one or two key tissues important for regulating lipid levels and would be a significant investment of time. We believe that each researcher should thoroughly check the Gal4 expression pattern for their specific tissue of interest under their normal standard or altered food conditions. As this reviewer pointed out, our current study provides a cautionary note for the field in using this technology. Nevertheless, we have provided a reference to a recent micropub (Hawley et al; PMID: 37396791) which describes neuronal Gal4 expression patterns comparing the AGES and temporal and regional gene expression targeting (TARGET) systems and updated the text in lines 539-544 of the revised manuscript.

      Point 2: “Although the authors briefly mentioned aging research, feeding behavior, and lipid metabolism, RNA-seq data are provided only for short-term treatment (2 days). The ovary phenotype was examined with long-term treatment (15 days). It would be informative if the authors could also show other long-term treatment data.”

      We respectfully point out to the reviewer that a 5-day auxin feeding assay was provided in Figure S4H, which reproduces the data provided for the 2-day auxin treatment. In addition, the original AGES paper (McClure et al, PMID: 35363137) provided adult survival data that extended to 80 days. In our updated manuscript, we have provided data for a 10-day auxin treatment that also addresses Point #4 below regarding whether the decrease in lipid levels upon auxin feeding is reversible.

      Point 3: “The auxin used in this work is a more water-soluble version and at a high concentration (10 mM). In the C. elegans system, researchers are using a much lower concentration of auxin typically at 1 mM. Therefore, the discussion of their results in terms of potential impacts on other experimental systems should be done carefully. It would be helpful to know what impacts might be observed at a lower concentration of auxin. The recommendation would be that the authors add the 1 mM auxin data point to key elements of their analysis.”

      The concentration of 10 mM auxin used in our study is the recommended dose to use in Drosophila (see McClure et al) and has been used in at least one additional study (Hawley et al). We also would like to point out that other systems (e.g., C. elegans and mice) have many differences in physiology and therefore the concentration of auxin used to elicit a response are likely to be different (e.g., 71.4 mM final concentration is the recommended concentration used in mice; Macdonald et al; PMID: 35736539). We have merely suggested that researchers using auxin for protein degradation should carefully check whether lipid levels (or other physiological processes of interest) are altered upon auxin feeding (or soaking) alone compared to a 0 mM auxin control. The text in lines 467-470 has been altered to reflect this. In addition, the specific recommended dose for Drosophila is highlighted and referenced in multiple places (i.e., methods and results and discussion) throughout the updated text.

      Point 4: “Another related question is whether these detected changes are reversible or not after exposure to auxin at different concentrations. This would be informative for researchers to better design their temporally controlled experiments.”

      We thank the reviewer for this suggestion and have provided the data in Figure S4I. Briefly, we found that after a 5-day treatment of auxin, removal of auxin for an additional 5 days does not recover lipid levels to those of control animals never exposed to auxin.

      Point 5: “It would also be helpful to know whether spermatogenesis is affected or not.”

      Although this would be an interesting developmental process to determine if affected by auxin exposure, we believe that these analyses are beyond the scope of the current manuscript.

      Point 6: “A few other points include changing the nomenclature and validating some of the key genes shown in Figure 3 using quantitative RT-PCR experiments with the tissues where the affected genes are known to be expressed and functional.”

      We thank the reviewer for this suggestion. We have provided qRT-PCR analysis using whole body samples and this data is now provided in the new Figure S8. We used whole-body samples for the qRT-PCR analysis because it would be impossible to pinpoint the specific tissue the differentially regulated genes are required for eliciting the response to auxin exposure. For example, according to Flybase (flybase.org) GstE3 transcripts are moderately to highly expressed in 15 of the 23 cell types annotated by the Fly Cell Atlas project (Li et al; PMID: 35239393).

      REVIEWER 2:

      Reviewer 2 stated: “The authors provide evidence of several Auxin effects. Experiments are suitably designed with appropriate sample size and data analysis methods.”

      This reviewer expressed the following concerns, which are addressed below:

      Point 1: “The provided information is limited and not very helpful for many applications. For example, although authors briefly mentioned aging research, feeding behavior, and lipid data, RNA seq data are provided only for short-term (48 hours) treatment. Especially, since ovary phenotype was examined with long-term treatment (15 days), authors should also show other data for long-term treatment as well.”

      Please see our response to Point #2 of Reviewer 1 regarding long-term treatment experiments. Furthermore, although the ending timepoint for the ovarian analyses is 15 days, we also provide analysis at shorter time points (e.g., daily analysis for egg counts, 5 and 10 day timepoints for fixed sample analyses).

      Point 2: “Although the authors show that Auxin causes a change in gene expression patterns and suggests the possible alteration of Gal4 expression levels, no cell-type-specific data is provided. It would be informative if the authors could examine the expression level of major Gal4 drivers. Authors should discuss how severe these changes are by comparing them with other treatments or conditions, such as starvation or mutant data (ideally, comparing with reported data or their own data if any?).”

      Please see our response to Point #1 from Reviewer 1.

      REVIEWER 3:

      Reviewer 3 stated that they “found the study to be carefully done” and “this study will be of interest to researchers using the Drosophila system, especially those focusing on fatty acid metabolism or physiology.”

      Reviewer 3 also had the following minor points, which are addressed below:

      Point 1: “Auxin, actually 1-naphthaleneaceid acid here, which is a more water-soluble version of auxin (indole-3-acetic acid) is used at what I consider to be a high concentration-10 mM. The problem I have is that the authors are discussing their results in terms of potential impacts on other experimental systems. At least for C. elegans, I think this is not a reasonable extension of the current dataset. In the C. elegans system, researchers are using 1 mM auxin. The authors note that their RNA-seq results suggest a xenobiotic response. Could this apparent xenobiotic response be due to a metabolic byproduct following auxin administration at high concentrations? Figure S1A shows that there is quite a robust transcriptional response at 1 mM auxin. It would be helpful to know what impacts might be observed at this lower concentration in which the transcriptional induction could be used in the context of biologically meaningful experiments. The recommendation would be that the authors add the 1 mM auxin data point to key elements of their analysis.”

      Regarding the comparisons to other model organisms, we refer to our response to Point #3 from Reviewer 1. We also point out that although there is a robust response to 1 mM auxin using the 3.1Lsp2-Gal4 driver, 1 mM is not sufficient for a robust response using additional driver lines in Drosophila (see Hawley et al). It is possible that the xenobiotic response is due to using the recommended dose of auxin (McClure et al).

      However, given the fact that researchers are currently using the 10 mM dose for experiments in Drosophila, we believe that the 10 mM transcription dataset is the most relevant. Nevertheless, we do agree that researchers who choose to use lower concentrations of auxin in the future should carefully look at whether any transcriptional induction alters physiological processes of interest.

      Point 2: “This reviewer was confused by the genetic nomenclature the authors use. The authors have chosen to use the designation 3.1Lsp2-Gal4 (3.1Lsp2-Gal4AID). I think this is potentially confusing because a reader might think that it is the Gal4 transcription factor that is the direct target of auxin- and TIR1-mediated protein degradation, as I initially did. Rather, it is the Gal80 repressor protein that is the direct target. The authors might consider a nomenclature that is more reflective of how this system works. It would also be helpful if the full genotypes of strains were included in each figure legend.”

      We apologize for the nomenclature confusion in our original submission. We have changed our “AID” nomenclature throughout the manuscript to “AGES,” which is the nomenclature used in McClure et al. We respectfully note that the traditional nomenclature for using the temperature-sensitive Gal80 system is Gal80ts or adding the “ts” superscript to the Gal4 line used (e.g., 3.1Lsp2ts).

      Point 3: “The RNA-seq dataset does not appear to be validated by RT-PCR experiments. The authors should consider validating some of the key genes shown in Figure 3 using quantitative RT-PCR experiments, potentially adding a 1 mM auxin data point.”

      Please see our response to Point #6 to Reviewer 1.

      REVIEWER 4:

      Reviewer 4 stated: “Overall, the experiments were well-designed and carefully executed. The results were quantified with appropriate statistical analyses. The paper was also well-written and the results were presented logically.”

      RECOMMENDATIONS FOR THE AUTHORS:

      We have further addressed reviewer recommendations below. Thank you again, for your critique of our manuscript.

      REVIEWER 2:

      As I mentioned in my public review, long-term treatment data would be especially helpful. Examining changes in the expression level of major Gal4 lines is also informative.

      Please see our responses to Points #1 and #2 to Reviewer 1 in the “Public Reviews” section. Although examination of Gal4 expression patterns is extremely important, we believe that these analyses should be carefully performed on a case-by-case basis in the future for labs who wish to continue to use this methodology.

      REVIEWER 4:

      I feel addressing #2 would be a great addition to the current version, while #1 and #3 could be addressed in future studies or by researchers who are interested in these processes.

      Recommendation 1: “Both the metabolomics and transcriptome analyses were done using the whole animals, would it be more informative if these were done using specific tissue/organs such as the adult adipose tissue?”

      Please see our response to Points #1 and #6 to Reviewer 1 in the “Public Reviews” section.

      Recommendation 2: “Another related question is whether these detected changes are reversible or not after exposure to auxin? This would be informative for researchers to better design their temporally controlled experiments.”

      We thank the reviewer for this suggestion and the analysis for this experiment is now provided in Figure S4I.

      Recommendation 3: “Is spermatogenesis affected at all?”

      We respectfully point out that many processes in spermatogenesis (as well as other biological processes) are affected by feeding (e.g., starvation) and would be extremely time consuming to carefully perform the analyses with the rigor required. We agree with Reviewer 4 and believe that this would be best to be performed on a case-by-case examination in the future.

    1. Author Response

      Our responses to the reviewers to go into the published pre-print. We thank the reviewers for their encouraging and thoughtful comments. These are good points that we would like to comment on as follows:

      Reviewer 1:

      Some important and interesting data are missing. For example, whether the gene therapy can extend the life span of these mutants? The overall in vivo voiding function is missing. AAV9/HSPE2 expression in the bladder wall is not shown.

      A. Our study was not designed to determine whether gene therapy can improve life span of the Hpse2 mutant mice. We know that the mutant mice usually become ill after the first month of life and can die. However, we wanted to study the mice when they were generally well so that there would be no confounding effects on the bladder physiology caused by general ill health. Indeed, a recent study of Hpse2 inducible deletion in adult mice has shown evidence of exocrine pancreatic insufficiency (Kayal et al., PMID 37491420). We are currently exploring the status of the pancreas in our non-conditional juvenile Hpse2 mice, and whether gene transfer into the pancreas is possible.

      B. We strongly agree that in vivo voiding studies will be important it the future, and suggest in vivo cystometry is the gold standard for this but is currently beyond the remit of this study.

      C. It is correct that in this paper we have focussed on gene transduction into the pelvic ganglia, because the evidence is mounting that this is a neurogenic disease. Our ex vivo physiological studies show predominantly neurogenic defects that are corrected by the gene therapy. A detailed study of the bladder body is an interesting idea, in terms of possible transgene expression and detailed histology, and is something we will pursue in future studies.

      Review 2:

      Weaknesses include a lack of discussion of the basis for differences in carbachol sensitivity in Hpse2 mutant mice, limited discussion of bladder tissue morphology in Hpse2 mutant mice, some questions over the variability of the functional data, and a need for clarification on the presentation of statistical significance of functional data.

      A. Yes, it is interesting that untreated male mutant mice have an increased bladder body contraction to carbachol compared with WT males. In a previous paper (Manak et al., 2020) we performed quantitative western blots for the M2 and M3 receptors and found levels were similar in mutants to the WTs, thus the increased sensitivity probably lies post-receptor.

      B. A detailed study of the bladder body is an interesting idea, in terms of possible transgene expression and detailed histology, and is something we will pursue in future studies.

      C. We have reported in our physiology graphs what we find. We do find some variability, particularly at lower frequencies, but our conclusions depend on analyses of the whole curve, which depend on multiple frequencies and show the expected overall pattern of frequency-dependent relaxation.

      D. Thank you, the stats for Figure 8 will be corrected in the final version.

      Reviewer 3:

      Single-cell analysis of mutants versus control bladder, urethra including sphincter. This would be great also for the community.

      A. Yes, in future we are very interested in using a single cell sequencing approach to look at the mutant, WT and rescued pelvic ganglia. In relation to this, there is a recent proof-of-principle paper pre-print in WT mouse pelvic ganglia, which suggests this may be feasible (Sivori et al., 2023).

      Detailed tables showing data from each mouse examined.

      B. In theory, it would be very interesting to correlate the strength of human gene transduction into the pelvic ganglia, with, for example, the effect on a physiological parameter. However, in general we used different sets of mice for these techniques so at the present we don’t have this information.

      Use of measurements that are done in vivo (spot assay for example). This sounds relatively simple.

      C. We strongly agree that in vivo voiding studies will be important it the future, and suggest in vivo cystometry is the gold standard for this but is currently beyond the remit of this study.

      Assessment of viral integration in tissues besides the liver (could be done by QPCR).

      D. This is an important point, and suggest the pancreas is a particularly interesting target for future studies. a recent study of Hpse2 inducible deletion in adult mice has shown evidence of exocrine pancreatic insufficiency (Kayal et al., PMID 37491420). We are currently exploring the status of the pancreas in our non-conditional juvenile Hpse2 mice, and whether gene transfer into the pancreas is possible.

      Discuss subtypes of neurons that are present and targeted in the context of mutants and controls.

      E. The make-up of the pelvic ganglia in Hpse2 mutant mice is a fascinating question. Future analysis using scRNA-Seq may be the most effective way to answer this question and is a molecular approach we are looking to pursue in the future.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study reports investigation of the dynamics of PKA at the single-cell level in in vitro and in epithelia in vivo. Using different fluorescent biosensors and optogenetic actuators, the authors dissect the signaling pathway responsible for PKA waves, finding that PKA activation is a consequence of PGE2 release, which in turn is triggered by calcium pulses, requiring high ERK activity. The evidence supporting the claims is solid. At this stage the work is still partly descriptive in nature, and additional measurements would increase the strength of mechanistic insights and physiological relevance.

      We deeply appreciate Dr. Alejandro San Martín and Dr. Jonathan Cooper and the reviewers. Each comment is valuable and reasonable. We will revise our paper as much as possible.

      We have described what we will do for the reviewer’s comments one by one in the below section.

      Reviewer #1 (Recommendations For The Authors):

      1. Even though the phenomenon of PGE2 signal propagation is elegantly demonstrated and well described, the whole paper is mostly of descriptive nature - the PGE2 signal is propagated via intercellular communication and requires Ca transients as well as MAPK activity, however function of these RSPAs in dense epithelium is not taken into consideration. What is the function of these RSPAs in cellular crowding? - Does it promote cell survival or initiate apoptosis? Does it feed into epithelial reorganization during cellular crowding? Still something else? The authors discuss possible roles of this phenomenon in cell competition context, but show no experimental or statistical efforts to answer this question. I believe some additional analysis or simple experiment would help to shed some light on the functional aspect of RSPAs and increase the importance of all the elegant demonstrations and precise experimental setups that the manuscript is rich of. Monolayer experiments using some perturbations that challenge the steady state of epithelial homeostasis - drug treatments/ serum deprivation/ osmotic stress/ combined with live cell imaging and statistical methods that take into account local cell density might provide important answers to these questions. The authors could consider following some of these ideas to improve the overall value of the manuscript.

      We would like to thank the reviewer’s comment. Although we have intensively tried to identify the physiological relevance of RSPA, we could not detect the function at present.

      In the case of MDCK, the treatment of NSAIDs, which cancels RSPA, did not affect its cell growth, ERK wave propagation during collective migration, migration velocity, cell survival, or apoptosis. In mouse epidermis, the frequency of RSPA was NOT affected by inflammation and collective cell migration, evoked by TPA treatment and wound, respectively.

      Notably, RSPA also occurs in the normal epidermis, implying its relevance in homeostasis. However, at the current stage, we believe that the PGE2 dynamics and its regulation mechanism in the normal epidermis would be worth reporting to researchers in the field.

      1. In the line 82-84 the authors claim: "We found that the pattern of cAMP concentration change is very similar to the activity change of PKA, indicating that a Gs protein-coupled receptor (GsPCR) mediates RSPA". In our opinion, this conclusion is not well-supported by the results. The authors should at least show that some measurements of the two patterns show correlation. Are the patterns of cAMP of the same size as the pattern of PKA? Do they have the same size depending on cell density? Do they occur at the same frequency as the PKA patterns, depending on the cell density? Do they have an all or nothing activation as PKA or their activation is shading with the distance from the source?

      We have modified the text (line85)

      “Although the increment of the FRET ratio was not so remarkable as that of Booster-PKA, Wwe found that the pattern of cAMP concentration change is very similar to the activity change of PKA, indicating that a Gs protein-coupled receptor (GsPCR) mediates RSPA. This discrepancy may be partially explained by the difference in the dynamic ranges for cAMP signaling in each FRET biosensor (Watabe2020). “

      1. In general, the absolute radius of the waves is not a good measurement for single-cell biology studies, especially when comparing different densities or in vivo vs in vitro experiments. We suggest the authors add the measurement of the number of the cells involved in the waves (or the radius expressed in number of cells).

      We appreciate the reviewer’s comment. We have analyzed our results to demonstrate the number of cells as in Fig2E, which would be easy for readers to understand.

      1. In 6D, the authors should also show the single-cell trajectories to understand better the correlation between PKA and ERK peaks. Is the huger variability in ERK activity ratio dues to different peak time or different ERK activity levels in different cells? The authors should show both the variability in the time and intensity.

      We have added a few representative results as Fig. S4.

      1. In lines 130-132, the authors write, "This observation indicates that the amount of PGE2 secretion is predetermined and that there is a threshold of the cytoplasmic calcium concentration for the triggered PGE2 secretion". How could the author exclude that the amount of PGE2 is not regulated in its intensity as well? For sure, there is a threshold effect regarding calcium, but this doesn't mean that PGE2 secretion can be further regulated, e.g. by further increasing calcium concentration or by other mechanisms.

      We agree with the reviewer’s comment. We have modified the text.

      1. The manuscript shows that not all calcium transients are followed by RSPAs. Does the local cell density/crowding increase the probability of overlap between calcium transients and RSPAs?

      We appreciate the reviewer’s comment. We have also hypothesized the model. However, we did not see the correlation that the reviewer pointed out. Currently, the increment of the RSPA frequency at high density is partially caused by the increment of calcium transients.

      Reviewer #2 (Recommendations For The Authors):

      1. The work is hardly conclusive as to the actual biological significance of the phenomenon. It would be interesting to know more under which physiological and pathological conditions PGE2 triggers such radial PKA activity changes. It is not well explained in which tissues and organs and under what conditions this type of cell-to-cell communication could be particularly important.

      The greatest weakness of the study seems to be that the biological significance of the phenomenon is not clearly clarified. Although it can be deduced that PKA activation has many implications for cell signaling and metabolism, the work lacks the actual link to physiological or pathological significance.

      We deeply appreciate the reviewer’s comment. Similar to the reseponse of reviewer#1, although we have intensively tried to identify the physiological relevance of RSPA, we could not detect the function.

      On the other hand, we believe that the PGE2 dynamics and its regulation mechanism in the normal epidermis would be worth reporting to researchers in the field.

      1. The authors do not explain further why in certain cells of the cell clusters Ca2+ signals occur spontaneously and thus trigger the phenomenon. What triggers these Ca2+ changes? And why could this be linked to certain cell functions and functional changes?

      At this moment, we do not have a clear answer or model for the comment although the calcium transients have been reported in the epidermis (https://doi.org/10.1038/s41598-018-24899-7). Further studies are needed and we will pursue this issue as a next project.

      1. What explains the radius and the time span of the radial signal continuation? To what extent are these factors also related to the degradation of PGE2? The work could be stronger if such questions and their answers would be experimentally integrated and discussed.

      We agree with the reviewer’s comment. Although we have intensively studied that point, we have omitted the results because of its complications. In HeLa cells, but not MDCK cells, we demonstrate the meaning of the radius of RSPA (https://pubmed.ncbi.nlm.nih.gov/37813623/)

      1. The authors could consider whether they could investigate the subcellular translocation of cPLA2 in correlation with cytosolic Ca2+ signals using GFP technology and high-resolution fluorescence microscopy with their cell model.

      Actually, we tried to monitor the cPLA2 translocation using GFP-tagged cPLA2. However, the translocation of GFP-cPLA2 was detected, only when the cells were stimulated by calcium ionophore. At this point, we have concluded that the quantitative analysis of cPLA2 translocation would be difficult.  

      Reviewer #3 (Recommendations For The Authors):

      1. "The cell density in the basal layer is approximately 2x106 cells cm-2, which is markedly higher than that in MDCK cells (Fig. 2D). It is not clear whether this may be related to the lower frequency (~300 cm-2 h-1) and smaller radius of RSPA in the basal layer cells compared to MDCK cells (Fig. 2E)." Wasn't the relationship with cell density the opposite, higher density higher frequency? Isn't then this result contradicting the "cell density rule" that the authors argue is there in the in vitro system? The authors need to revise their interpretation of the data obtained.

      We agree with the reviewer’s comment. Currently, we do not find the "cell density rule" in mouse epidermis. It would be difficult to identify common rules between mouse epidermis and MDCK cells. However, although it is descriptive, we believe it is worth comparing the MDCK results at this moment.

      1. Similarly, the authors over conclude on the explanation of lack of change in the size of RSPA size when the change in fluorescence for the calcium reporter surpasses a threshold by saying that "This observation indicates that the amount of PGE2 secretion is predetermined and that there is a threshold of the cytoplasmic calcium concentration for the triggered PGE2 secretion." First, the study does not really measure directly PGE2 secretion. Hence, there is no way that they can argue that the level of PGE2 secreted is "predetermined". Instead, there could be an inhibitory mechanism that is triggered to limit further activation of PGE2 signaling/PKA in neighboring cells.

      We agree with the reviewer’s comment. We have omitted the context.

      1. To rule out a transcription-dependent mechanism in the apparent cell density-regulated sensitivity to PGE2, the authors need to inhibit transcription. We agree that our RNA-seq analysis would not 100% rule out the transcription-dependent mechanism. However, we believe that shutting down all transcription will show a severe off-target effect that indirectly affects the calcium transients and the PGE2-synthetase pathway. Therefore, our conclusion is limited.

      4) EGF is reported to increase the frequency of RSPA but the change shown in Fig. 6F is not statistically significant, hence, EGF does not increase RSPA frequency in their experiments.

      We have toned down the claim that EGF treatment increases the frequency (line172).

      "Accordingly, the addition of EGF faintly increased the frequency of RSPA in our experiments, while the MEK and EGFR inhibitors almost completely abrogated RSPA (Fig. 6F), representing that ERK activation or basal ERK activity is essential for RSPA.“

      1. The Discussion section is at times redundant with the results section. References to figures should be kept in the Results section.

      We would like to argue in opposition to this comment. For readers, we believe that the reference to figures would be helpful and kind. However, if eLife recommends removing the reference from the Discussion section, we will follow the publication policy.

      1. "Notably, the propagation of PKA activation, ~100 μm/min (Fig. 1H), is markedly faster than that of ERK activation, 2-4 μm/min (Hiratsuka et al., 2015)." The 2 kinase reporters are based on different molecular designs. Thus, it does not seem appropriate to compare the kinetics of both reporters as a proxy of the comparison of the kinetics of propagation of both kinases.

      We think that we should discuss the comparison of the activity propagation between ERK and PKA. First, among many protein kinases, only ERK and PKA activities have been shown to spread in the epithelial cells. Second, both pathways are considered to be intercellular communication. Finally, crosstalk between these two pathways has been reported in several cells and organs.

      1. In Figure 1E it is unclear what is significantly different from what. Statistical analysis should be added and reporting of the results should reflect the results from that analysis.

      2. In Figure 3F and G the color coding is confusing. In F pink is radius and black is GCaMP6 and in G is RSPA+ and - cells. The authors should change the color to avoid ambiguity in the code.

      We have amended the panels.

      1. In Fig. 5C, how do they normalize per cell density if they are measuring radius of the response?

      In Fig5C, we just measure the increment of FRET ratio in the view fields.

      1. In Fig. 5D, what is the point of having a label for PTGER3 if data were not determined (ND)?

      We have added what N.D. means.

      “N.D. represents Not Detected.”

      1. It is important to assess whether ERK activation depends of PGE2 signaling to better place ERK in the proposed signaling pathway. In fact, the authors argue that "ERK had a direct effect on the production of PGE2." But it could be that ERK is downstream PGE2 signaling instead.

      It could be possible in other experimental conditions via EP1 and/or EP3 pathways. However, we never detected an effect of RSPA on ERK activity by analyzing our imaging system. In addition, treatment with NSAIDs or COX-2 depletion, which completely abolishes RSPA, did not affect ERK wave propagation. Thus, in our context, we concluded that ERK is not downstream of PGE2. This notion is also supported by the NGS results in Fig. 5D.

      We have refrained from discussing the pathway of PGE2-dependent ERK activation because it would be redundant.

      1. The authors need to explain better what they mean by "AND gate" if they want to reach a broad readership like that of eLife

      We have modified the legend to explain the “AND gate” as much as possible (line639).

      “Figure 7: Models for PGE2 secretion.

      The frequency of calcium transients is cell density-dependent manner. While the ERK activation wave is there in both conditions. Because both calcium transient and ERK activation are required for RSPA, the probability for PGE2 secretion is regulated as “AND gate”. ”

      1. In Fig. 5D, "The average intensity of the whole view field of mKate2 or mKOκ, at 20 to 30 min after the addition of PGE2, was applied to calculate the mKate2/mKOκ ratio." But this means that overlapping/densely plated cells in high density will show stronger changes in fluorescence. This should be done per cell not per field of view. It is obvious that the higher density will have more dense/brighter signal in a given field of view.

      We are sorry for the confusion. The cell density does not affect the FRET ratio, although the brightness could be changed. A typical example is Fig1D. Thus, we are sure that our procedures represent the PKA activity in plated cells.

      1. In Fig. 6B the authors need to explain how were the "randomly set positions" determined.

      We have modified the legend section as below (line618).

      “The ERK activities within 10 µm from the center of RSPA and within 10 µm from randomly set positions with a random number table generated by Python are plotted in the left panel. Each colored dot represents an average value of an independent experiment.”

      1. Sentences 314-318 are repeated in 318-322.

      We deeply appreciate the reviewer’s comment and have amended

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Here, Boor et al focus on the regulation of daf-7 transcription in the ASJ chemosensory neurons, which has previously been shown to be sensitive to a variety of external and internal signals. Interestingly, they find that soluble (but not volatile) signals released by food activate daf-7 expression in ASJ, but that this is counteracted by signals from the ASIC channels del-3 and del-7, previously shown to detect the ingestion of food in the pharynx. Importantly, the authors find that ASJ-derived daf-7 can promote exploration, suggesting a feedback loop that influences locomotor states to promote feeding behavior. They also implicate signals known to regulate exploratory behavior (the neuropeptide receptor PDFR-1 and the neuromodulator serotonin) in the regulation of daf-7 expression in ASJ. Additionally, they identify a novel role for a pathway previously implicated in C. elegans sensory behavior, HEN1/SCD-2, in the regulation of daf-7 in ASJ, suggesting that the SCD-2 homolog ALK may have a conserved role in feeding and metabolism.

      Strengths:

      The studies reported here, particularly the quantitation of gene expression and the careful behavioral analysis, are rigorously done and interpreted appropriately. The results suggest that, with respect to food, DAF-7 expression encodes a state of "unmet need" - the availability of nearby food to animals that are not currently eating. This is an interesting finding that reinforces and extends our understanding of the neurobiological significance of this important signaling pathway. The identification of a role for ASJ-derived daf-7 in motor behavior is a valuable advance, as is the finding that SCD-2 acts in the AIA interneurons to influence daf-7 expression in ASJ.

      We appreciate the Reviewer 1’s thoughtful assessment of our work and inference that the expression of daf-7 encodes internal state corresponding to “unmet need.” Based on comments of Reviewer 1 and other reviewers, we have revised the title, abstract, and parts of the discussion to highlight not only the functional contribution of daf-7 expression in the ASJ neurons to behavioral state, but also the remarkable correlation between gene expression and internal state driving foraging behavior.

      Weaknesses:

      A limitation of the work is that some mechanistic relationships between the identified signaling pathways are not carefully examined, but this provides interesting opportunities for future work.

      To enable the reader to begin to infer the relative contributions of the identified signaling pathways to the circuitry coupling distinct bacterial cues to foraging behavior, we have added data for the analysis of DAF-7 expression in the ASJ neurons in the tph-1 and pdfr-1 mutants in the complete absence of food. Our current leaning is that multiple pathways, including those we have begun to characterize here, may function in parallel to influence DAF-7 expression and internal state driving foraging behavior. Future work to explore this further is certainly of interest.

      A minor weakness concerns the experiment in which daf-7 is conditionally deleted from ASJ. This is an ideal approach for probing the function of daf-7, but these experiments seem to be carried out in the well-fed, on-food condition in which control animals should express little or no daf-7 in ASJ. Thus, the experimental design does not allow an assessment of the role of daf-7 under conditions in which its expression is activated (e.g., in animals exposed to un-ingestible food).

      The interpretation of genetic analysis in the complete absence of food is complicated by what we think are multiple parallel pathways that function to strongly promote roaming, as indicated in the prior work of Ben Arous et al. Our observation that the conditional deletion of daf-7 from the ASJ pair of neurons confers altered roaming behavior on a lawn of bacterial food supports physiological ongoing role for dynamic daf-7 expression from the ASJ neurons even in the presence of bacterial food that may contribute to the control of transitions between foraging states and the persistence of roaming and dwelling states.

      To demonstrate the functional contribution of DAF-7 expression from the ASJ neuron pair during constitutive expression favoring roaming, we examined the roaming behavior of scd2(syb2455) animals that carry a gain-of-function mutation in scd-2 that promotes roaming and how the selective deletion of daf-7 from the ASJ neurons in the scd-2(syb2455) genetic background influences roaming behavior. This new experiment supports a model in which DAF-7 expression from the ASJ neurons contributes to the increased roaming behavior exhibited by scd-2(syb2455) animals. The new experiment is added as Figure 4I.

      An additional minor issue concerns the interpretation of the scd-2 experiments. The authors' findings do support a role for scd-2 signaling in the activation of daf-7 expression by un-ingestible food, but the data also suggest that scd-2 signaling is not essential for this effect, as there is still an effect in scd-2 mutants (Figure 4B).

      Considering that most of previous Figure 4B is redundant with previous Figure 4D, we removed previous Figure 4B. Our current Figure 4 has redesignated previous Figure 4D as 4B. We have also added qualification to the text to indicate that other pathways may modulate the daf-7 expression response to ingested food in parallel to SCD-2 signaling.

      Reviewer #2 (Public Review):

      Summary:

      In this work, Boor and colleagues explored the role of microbial food cues in the regulation of neuroendocrine-controlled foraging behavior. Consistent with previous reports, the authors find that C. elegans foraging behavior is regulated by the neuroendocrine TGFβ ligand encoded by daf-7. In addition to its known role in the neuroendocrine/sensory ASI neurons, Boot and colleagues show that daf-7 expression is dynamically regulated in the ASJ sensory neurons by microbial food cues - and that this regulation is important for exploration/exploitation balance during foraging. They identify at least two independent pathways by which microbial cues regulate daf-7 expression in ASJ: a likely gustatory pathway that promotes daf-7 expression and an opposing interoceptive pathway, also likely chemosensory in nature but which requires microbial ingestion to inhibit daf-7 expression. Two neuroendocrine pathways known to regulate foraging (serotonin and PDF-1) appear to act at least in part via daf-7 induction. They further identify a novel role for the C. elegans ALK orthologue encoded by scd-2, which acts in interneurons to regulate daf-7 expression and foraging behavior. These results together imply that distinct cues from microbial food are used to regulate the balance between exploration and exploitation via conserved signaling pathways.

      Strengths:

      The findings that gustatory and interoceptive inputs into foraging behavior are separable and opposing are novel and interesting, which they have shown clearly in Figure 1. It is also clear from their results that removal of the interoceptive cue (via transfer to non-digestible food) results in rapid induction of daf-7::gfp in ASJ, and that ASJ plays an important role in the regulation of foraging behavior.

      We thank Reviewer 2 for underscoring the modulation of neuroendocrine gene expression in the ASJ neuron pair by distinct gustatory and interoceptive inputs derived from bacterial food that we show in Figure 1.

      The role of the hen-1/scd-2 pathway in mediating the effects of ingested food is also compelling and well-interpreted. The use of precise gain-of-function alleles further supports their conclusions. This implies that important elements of this food-sensing pathway may be conserved in mammals.

      We thank Reviewer 2 for emphasizing the implications of our study on SCD-2/ALK as well as the generation and use of gain-of-function scd-2 alleles based on oncogenic mutations in ALK.

      Weaknesses:

      What is less clear to me from the work at this stage is how the gustatory input fits into this picture and to what extent can it be strongly concluded that the daf-7regulating pathways that they have identified (del-3/7, 5-HT, PDFR-1, scd-2) act via the interoceptive pathway as opposed to the gustatory pathway.

      It follows from the work of the Flavell lab that del-3/7 likely acts via the interoceptive pathway in this context as well but this isn't shown directly - e.g. comparing the effects of aztreonam-treated bacteria and complete food removal to controls. The roles of 5-HT and PDFR-1 are even a bit less clear. Are the authors proposing that these are entirely parallel pathways? This could be explained in better detail.

      We have added additional data regarding daf-7 expression from the ASJ neurons in the complete absence of food in the different mutant backgrounds noted by Reviewer 2. Data regarding daf-7 expression in the ASJ neurons under three distinct conditions—ingestible bacterial food, non-ingestible bacterial food, and the complete absence of food—enable the pairwise comparison of mutant data that allows for inference regarding the relative contributions of the genes to the interoceptive vs. gustatory pathways. In particular, effects on the interoceptive pathway can be inferred from the comparison of daf-7 expression on ingestible vs. non-ingestible food, whereas effects on the gustatory pathway can be inferred from the comparison of daf-7 expression on non-ingestible food vs. the absence of food (newly added).

      These additional data are most informative for del-3; del-7 (Figure 1H), where the added data corroborate a role for these genes in the interoceptive pathway, consistent with the findings of the Flavell lab. Specifically, the observation that daf-7 expression levels are equivalent between wild-type and del-3;del-7 animals when there is no ingestible food (either no food or non-ingestible food conditions) suggest that DEL-3 and DEL-7 are functioning specifically to sense ingested food.

      For pdfr-1, the analysis of the gain-of-function allele suggest that this pathway may have a greater relative effect on the gustatory pathway compared with the interoceptive pathway (Figure 3D). The robust upregulation seen in the pdfr-1(syb3826) animals between animals on ingestible and non-ingestible food, suggests that the interoceptive regulation is functional in these mutants, while the lack of upregulation between no-food and noningestible-food conditions suggests that the gustatory pathway is affected.

      The observations with the 5-HT biosynthesis mutant are most consistent with serotonin signaling affecting daf-7 expression in the ASJ neurons through a mechanism that is parallel to the gustatory and interoceptive inputs into daf-7 expression in the ASJ neurons, as tph1(n4622) animals appear to have an elevated baseline expression of daf-7 in the ASJ neurons while retaining sensitivity to both gustatory and interoceptive food cues (Figure 3B).

      The data with scd-2 are consistent with a role in the epistatic interoceptive pathway, considering the roughly equivalent levels of daf-7 expression in the ASJ neurons under all food conditions in scd-2(syb2455) animals (Figure 4B). However it is difficult to exclude the possibility that SCD-2 functions in both pathways or parallel to the gustatory and interoceptive inputs.

      While we agree that our genetic analysis alone cannot distinguish between genes acting in parallel or directly in serial with the gustatory or interoceptive inputs, our data do establish that signaling through SCD-2, 5-HT or PDFR-1-dependent pathways can act on the same gene expression and signaling node (i.e. daf-7 expression in the ASJ neurons) to modulate the effects of bacterial food inputs on foraging behavior, with the effects on daf-7 expression in the ASJ neurons in scd-2, tph-1 and pdfr-1 mutants correlating with their effects on roaming and dwelling behaviors.

      It would also be helpful to elaborate more on why the identified transcriptional positive feedback loop is predicted to extend roaming state duration - as opposed to some other mechanism of increasing roaming such as increased probability of roaming state initiation. This doesn't seem self-evident to me.

      Given that animals can exist in only two states, the increased probability of roaming state initiation would present as shorter dwelling states, which we do not see for daf-7 mutants. As described in Flavell, et al., 2013, a decreased fraction of time roaming can be attributed to longer dwelling states, shorter roaming states, or both. Our positive feedback loop is predicted to extend roaming states because of the predicted effect of DAF-7 on stabilizing the roaming state.

      Related to this point is the somewhat confusing conclusion that the effects of tph-1 and pdfr-1 mutations on daf-7 expression are due to changes in ingestion during roaming/dwelling. From my understanding (e.g. Cermak et al., 2020), pharyngeal pumping rate does not reliably decrease during roaming - so is it clear that there are in fact lower rates of ingestion during roaming in their experiments?

      This is an interesting point. Despite consistent pumping rates, we still believe that roaming animals ingest less food than dwelling animals. For instance, dwelling animals are localized to areas with bacterial food, while roaming animals might traverse patches with no food where pumping does not result in food ingestion.

      If so, why does increased roaming (via tph-1 mutation) result in further increases in daf-7 expression in animals fed aztreonam-treated food (Fig 3B)?

      This is possibly because although roaming animals are eating less, when animals are on non-ingestible food, they’re not eating at all, resulting in further daf-7 upregulation.

      Alternatively, there could be a direct signaling connection between the 5-HT/PDFR-1 pathways and daf-7 expression which could be acknowledged or explained.

      Yes, this is certainly possible. We do not propose that all of the difference in daf-7 expression is due to changes in foraging behavior, but rather we are highlighting further instances of the correlation between daf-7 expression in the ASJ neurons and roaming. For instance, in the case of our tph-1 mutants, we see a relatively modest effect on daf-7 expression in the ASJ neurons but a large difference in the fraction of time roaming. This suggests that the magnitude of change in one (daf-7 expression in ASJ or roaming) does not predict the magnitude of the change in the other, but rather that they trend in the same direc<on.

      Reviewer #3 (Public Review):

      Summary:

      In this interesting study, the authors examine the function of a C. elegans neuroendocrine TGF-beta ligand DAF-7 in regulating foraging movement in response to signals of food and ingestion. Building on their previous findings that demonstrate the critical role of daf-7 in a sensory neuron ASJ in behavioral response to pathogenic P. aeruginosa PA14 bacteria and different foraging behavior between hermaphrodite and male worms, the authors show, here, that ingestion of E. coli OP50, a common food for the worms, suppresses ASJ expression of daf-7 and secreted water-soluble cues of OP50 increases it. They further showed that the level of daf-7 expression in ASJ is positively associated with a higher level of roaming/exploration movement. Furthermore, the authors identify that a C. elegans ortholog of Anaplastic Lymphoma Kinase, scd-2, functions in an interneuron AIA to regulate ASJ expression of daf-7 in response to food ingestion and related cues. These findings place the DAF-7 TGF-beta ligand in the intersection of environmental food conditions, food intake, and foodsearching behavior to provide insights into how orchestrated neural functions and behaviors are generated under various internal and external conditions.

      Strengths:

      The study addresses an important question that appeals to a wide readership. The findings are demonstrated by generally strong results from carefully designed experiments.

      We thank Reviewer 3 for the comments and interest in the work.

      Weaknesses:

      However, a few questions remain to provide a complete picture of the regulatory pathways and some analyses need to be strengthened. Specifically,

      1. The authors show that diffusible cues of bacteria OP50 increase daf-7 expression in ASJ which is suppressed by ingestible food. Their results on del-3 and del-7 suggest that NSM neuron suppresses daf-7 ASJ expression. What sensory neurons respond to bacterial diffusible cues to increase daf-7 expression of ASJ? Since ASJ is able to respond to some bacterial metabolites, does it directly regulate daf-7 expression in response to diffusible cues of OP50 or does it depend on neurotransmission for the regulation? Some level of exploration in this question would provide more insights into the regulatory network of daf-7.

      The focus of our study has been on the modulation of daf-7 expression in the ASJ neurons by distinct bacterial food cues and the downstream neuroendocrine circuitry that is influenced. The question of whether bacterial cues are directly sensed by the ASJ neurons remains unresolved by our study. However, we have previously demonstrated that the daf-7 expression in the ASJ neurons induced by P. aeruginosa metabolites is likely the result of direct detection by the ASJ neurons. We would also note (and have added to the manuscript) the observation of Zaslaver et al. (2015), in which increased calcium transients were observed in the ASJ neurons in response to the withdrawal of E. coli OP50 supernatant, which is consistent with our observations of the effect of a soluble bacterial food signal on daf-7 expression in the ASJ neurons.

      1. The results including those in Figure 2 strongly support that daf-7 in ASJ is required for roaming. Meanwhile, authors also observe increased daf-7 expression in ASJ under several conditions, such as non-ingestible food. Does non-ingestible food induce more roaming?

      Yes, this has been published by Ben Arous, et al., 2009. Figure 3C shows increased roaming on aztreonam-treated food. We have added specific mention of this in the text.

      It would complete the regulatory loop by testing whether a higher (than wild type) level of daf-7 in ASJ could further increase roaming. The results in pdf-1 and scd-2 gain-of-function alleles support more ASJ leads to more roaming, but the effect of these gain-of-function alleles may not be ASJ-specific and it would be interesting to know whether ASJ-specific increase of daf-7 leads to a higher level of roaming. In my opinion, either outcome would be informative and strengthen our understanding of the critical function of daf-7 in ASJ demonstrated here.

      We looked at roaming in animals with a ptrx-1::daf-7 cDNA transgene in a wild-type background and did not see changes in the fraction of time animals roam. However, multiple experimental factors could contribute to our inability to detect an effect, including relative promoter strength and context of other variables that alter daf-7 expression. Nevertheless, our data confirmed that ASJ neuron-specific expression of daf-7 cDNA can increase roaming in a daf-7 mutant background (Figure 2B).

      We have also included an experiment (Figure 4I) looking at roaming in the scd-2(syb2455) gain-of-function animals in animals with daf-7 deleted from the ASJ neurons. These results suggest that part of the increased roaming seen in these scd-2(syb2455) animals is specifically due to increased daf-7 expression in the ASJ neurons.

      1. The analyses in Figure 4 cannot fully support "We further observed that the magnitude of upregulation of daf-7 expression in the ASJ neurons when animals were moved from ingestible food to non-ingestible food was reduced in scd-2(syb2455) to levels only about one-fourth of those seen in wild-type animals (Figure 4D)...", because the authors tested and found the difference in daf-7 expression between ingestible and non-ingestible food conditions in both wild type and the mutant worms. The authors did not analyze whether the induction was different between wild type and mutant. Under the ingestible food condition, ASJ expression of daf-7 already looks different in scd-2(syb2455).

      We appreciate the reviewer pointing out our lack of clarity in discussing our analysis of the data. The 4x difference represents the difference in fold change from ingested to noningested food in wild type and scd-2(syb2455) backgrounds. For wild-type animals, daf-7 expression in the ASJ neurons on non-ingestible food is 8.1-times higher on non-ingestible food than on ingestible food. In scd-2(syb2455) animals, this difference is 1.7 times. We have clarified this in the text.

      1. The authors used unpaired two-tailed t-tests for all the statistical analyses, including when there are multiple groups of data and more than one treatment. In their previous study Meisel et al 2014, the authors used one-way ANOVA, followed by Dunnett's or Tukey's multiple comparison test when they analyzed daf-7 expression or lawn leaving in different mutants or under different bacterial conditions. It is not clear why a two-tailed t-test was used in similar analyses in this study

      We have performed one-way ANOVAs for all comparisons included, and the results were largely consistent with what we found for t-tests. Ultimately, for our analysis we were most interested in pairwise comparisons and decided that t-tests would be most appropriate.

      *Reviewer #1 (Recommendations For The Authors):

      Line 170: For clarity, I suggest editing this to: "When animals are removed from edible food but are still exposed to soluble food signals, upregulation of daf-7..."

      We have edited this in the text and appreciate the suggestion.

      The authors report that pdfr-1(syb3826) was retrieved from "a screen done in parallel to this work." syb3826 is a Suny Biotech allele, suggesting that this screen may not have been done in the authors' lab but rather outsourced. Some additional details might be useful.

      This S325F allele was originally recovered as qd385 in an EMS screen performed in our lab. syb3826 is an independently generated Suny Biotech allele we ordered to confirm that the S325F substitution in PDFR-1 was responsible for our phenotypes. This has been clarified in the text.

      Line 210: Please provide a citation for the screen that identified hen-1(qd259).

      This is the first time the allele is being published. The screen is included in two theses from our lab, Meisel 2016 and Park 2019.

      Line 214: It would be useful here to also mention the previously identified role of scd2 in sensory integration.

      Yes, we have added this to the text. Additionally, we have included a couple of sentences in the discussion about how previous studies that have found a role for SCD-2 in sensory integration may instead be detecting the role for SCD-2 in food sensing, as many of the assays used for sensory integration are also sensitive to nutritional status of the animals.

      Line 271: Please provide a citation for the sex differences in food-leaving behavior (Lipton 2004 PMID 15329389 is the first careful characterization of this).<br /> We have added this to the text.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #2 (Recommendations For The Authors):

      The evidence provided in this study reflects important discoveries on language lateralisation and most of the conclusions of this paper are supported by evidence. However, there are several areas regarding the characteristics of participants tested, hypotheses/predictions and the type of analysis, that need to be clarified and/or corrected.

      1. There is a substantial disconnection between the introduction and the methods/results section.

      One reason is because of lack of consistency. One example refers to the fact that, in the introduction, only IFC is mentioned. However, the analyses carried out to examine neural activity in different groups focused on IFC as well as other brain regions related to inhibitory control. However, these areas were not mentioned at all in the introduction. Second and related to the above, the rationale for conducting certain types of analyses is not specified. Some brain analyses focus on IFC only. Instead, other analyses focus on several areas.

      Another weakness is that there is not sufficient detail regarding the hypotheses/predictions and the specific types of analyses chosen to test these hypotheses/predictions. For example, there is no mention of resting state fMRI data in the introduction, but later we discover that this type of data was collected and analyzed. Even a brief mention of the inclusion of resting state data in the introduction would be beneficial. Along the same lines, by reading the methods section we find out that VBM analyses were conducted. But it is unclear why. What was the purpose of this data analysis? This should be clarified briefly in the introduction and then in the methods section. It remains unclear why resting state results would be particularly informative for addressing the research question of this study. Task-related brain connectivity seems a more appropriate choice. Additionally, it is not explained what comparisons and outcomes would be informative/expected to distinguish between the two mentioned competing hypotheses. This should be made clear.

      Another aspect that lacks clarity is the authors' predictions when investigating the relationship "between the lateralization of both functions and inter-hemispheric structural-functional connectivity, as well as with behavioural markers of certain clinical conditions that have been related with atypical lateralization". The hypotheses are completely omitted in this section.

      Thank you for bringing this to our attention. We concur with Reviewer #2 that our introduction was somewhat lacking in detail and assumed too much prior knowledge on the part of the reader. This, together with a lack of a clear presentation of our tested hypotheses, made the introduction have a poor connection with both the results and discussion sections, which hindered the understanding of the paper.

      As a result, we have made some additions to enhance the exposition of the following areas: (1) the causal and statistical hypotheses of lateralization (Lines 55-65); and (2) the hypotheses regarding subclinical markers of neurological disorders and the corpus callosum (Lines 90-104).

      Furthermore, we have extensively revised the final paragraph of the introduction (Lines 105-121) to provide a clearer and more coherent linkage between the drivers presented during the introduction, our hypotheses, and the subsequent analyses.

      1. It is important to provide more information on the language background of the participants. Were the participants in this study Catalan-Spanish bilinguals? If so, it is crucial for the authors to mention this.

      Language background of the participants has been added to the corresponding section (Lines 138-145).

      In fact, previous studies, including several publications from the authors themselves (Garbin et al., 2010; Rodríguez-Pujadas et al., 2013; Anderson et al., 2018), have shown that there are qualitative differences between bilinguals and monolinguals in the neural circuitry underlying executive control. Across all these studies, it was consistently reported that bilingual individuals, when engaged in non-linguistic inhibitory control tasks, recruited a broader network of left-brain regions associated with language control, including the left IFC, in comparison to monolingual individuals. If the participants in this study were indeed bilinguals, it raises concern if the aim of the study is to generalize the conclusions on lateralization effects beyond the bilingual population.

      Rodríguez-Pujadas, A., Sanjuán, A., Ventura-Campos, N., Román, P., Martin, C., Barceló, F., … & Ávila, C. (2013). Bilinguals use language-control brain areas more than monolinguals to perform non-linguistic switching tasks. PLoS One, 8(9), e73028.

      Garbin, G., Sanjuan, A., Forn, C., Bustamante, J. C., Rodríguez-Pujadas, A., Belloch, V., ... & Ávila, C. (2010). Bridging language and attention: Brain basis of the impact of bilingualism on cognitive control. NeuroImage, 53(4), 1272-1278.

      Anderson, J. A., Chung-Fat-Yim, A., Bellana, B., Luk, G., & Bialystok, E. (2018). Language and cognitive control networks in bilinguals and monolinguals. Neuropsychologia, 117, 352-363.

      Indeed, we have thoroughly reported that, when compared to monolinguals, bilinguals exhibit a significant implication of left brain regions during switching and inhibition tasks. So, this is a legitimate concern. Unfortunately, the society from which our participants were drawn is primarily bilingual, encompassing both active and passive bilinguals. The monolingual sample in those previous studies consisted of university students originating from predominantly monolingual regions of Spain. Given this context, it is unsurprising that the current study has a rather limited number of monolinguals (n=8), with only 2 displaying atypical language lateralization. Thus, we cannot provide a reliable answer to the role of bilingualism status in our data. Consequently, we have included a comment on this limitation on the discussion (Lines 504-512).

      1. Regarding the methods section, I have the following specific queries. The first is about the control condition in the verb generation task. I find it puzzling that the 'task' and 'control' conditions differ in terms of the number of words uttered. Could the authors please provide further clarification on this?

      Thank you for raising this question. Regarding the control condition, it is important to note that the design of this task drew inspiration from previously published verb generation tasks for fMRI (Benson et al., 1999; Fitzgerald et al., 1997) and PET (Petersen et al., 1988). In the fMRI tasks, a fixation cross served as the control condition, while the PET study used word repetition as the control. We acknowledged that a mere fixation cross might not adequately control for the movement and visual-related activations inherent in the verb generation task. Conversely, word repetition could potentially engage the default mode network due to the repetition of the same simple task, which might not be suitable for a control condition, and it could be overly linguistic because it involves a word. Consequently, we aimed to strike a balance by employing a control condition that consisted of reading letters. This approach allowed us to control for movement and vision factors without invoking semantics. Thus, after careful consideration, we ultimately opted on the reading of two letters to equate the response to the vocalization length of generating a verb.

      Although we understand the concern of single vs. two vocalizations, it is worth emphasizing that this version of the verb generation task had undergone prior testing to assess its suitability for determining language lateralization in both healthy and clinical populations (Sanjuan et al., 2010). In fact, this task has been an integral component of our lab’s standard presurgical assessment protocol, which has been used for nearly two decades in individually evaluating language function in over 500 patients with central nervous system lesions.

      Benson, R. R., Fitzgerald, D. B., Lesueur, L. L., Kennedy, D. N., Kwong, K. K., Buchbinder, B. R., Davis, T. L., Weisskoff, R. M., Talavage, T. M., Logan, W. J., Cosgrove, G. R., Belliveau, J. W., & Rosen, B. R. (1999). Language dominance determined by whole brain functional MRI in patients with brain lesions. Neurology, 4(52), 798–809.

      Fitzgerald, D. B., Cosgrove, G. R., Ronner, S., Jiang, H., Buchbinder, B. R., Belliveau, J. W., Rosen, B. R., & Benson, R. R. (1997). Location of Language in the Cortex: A Comparison between Functional MR Imaging and Electrocortical Stimulation. AJNR Am J Neuroradiol, 18, 1529–1539.

      Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M., & Raichle, M. E. (1988). Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature, 331(18), 585–589.

      Sanjuán, A., Bustamante, J. C., Forn, C., Ventura-Campos, N., Barrós-Loscertales, A., Martínez, J. C., Villanueva, V., & Ávila, C. (2010). Comparison of two fMRI tasks for the evaluation of the expressive language function. Neuroradiology, 52(5), 407–415. https://doi.org/10.1007/s00234-010-0667-8

      Second, it is mentioned that some participants were excluded from different tasks due to technical issues or time constraints. It is important to ensure that all the results can be attributed to the exact same sample of participants across all tasks.

      We absolutely agree that excluding participants can be problematic when presenting the results of multiple sets of analyses. Therefore, we repeated all analyses while excluding the 7 participants that lacked resting-state data. All results remained virtually identical, with a few minor exceptions:

      1) Region-wise analysis of the stop-signal task: Hemisphere × Group effect in the preSMA region is significant (uncorrected P = 0.019), but it does not survive Bonferroni correction (corrected P = 0.076)

      2) Voxel-wise analysis of the stop-signal task: The Thalamus + STN and Caudate clusters are significant at the voxel level, but do not survive the cluster-based FWE correction. They do survive FDR correction, though.

      3) Correlation between SPQ score and LI of the stop-signal task: This correlation weakens just behind statistical significance, with a P value of 0.053.

      4) Correlation between reading variables and LIs of both tasks: Severe drops in P values are evident between both LIs and reading length accuracy (P = .111 and .133), as well as between verb generation LI and reading familiarity accuracy (P = .111). However, the association between the stop-signal LI and the reading length time is now significant (r = −.229, P = .042).

      According to this, we have included this statement in the methods section: (Lines 218-220).“It is important to highlight that the exclusion of these seven participants across all analyses does not notably impact the overall results.“

      It is unclear how the authors have estimated the RTs results from the practice trials. This requires more explanation. Also, why was the median used for the Go Reaction Time instead of the mean, when calculating the individual SSRT?

      We adapted the procedure used by Xue et al. (2008), implementing their approach to calculate SSRT. This has been elaborated further (Lines 227-230), together with the use of practice trials (Lines 233-236).

      Xue, G., Aron, A.R., and Poldrack, R.A. (2008). Common Neural Substrates for Inhibition of Spoken and Manual Responses. Cerebral Cortex 18, 1923–1932. 10.1093/CERCOR/BHM220.

      On a final note, information about the different types of pre-processing and data analysis is all reported in the same paragraph. I think using subsections would increase the intelligibility of the section.

      Thank you for this suggestion. We have added subsections in both the ‘image processing’ and ‘statistical analyses’ sections.

      1. Data analysis and Interpretation of the results. It is unclear how the mean BOLD signal was extracted to conduct ROI analysis (Marsbar?).

      Thank you for ponting this out. Indeed, we were not very accurate in the description of this procedure. We extracted the first eigenvariate via the VOI function within SPM12. This has been included in Lines 291-293.

      I feel uneasy about the way results are corrected for multiple comparisons. For instance, it is mentioned that in the ROI analysis, all p-values were FDR-corrected for four comparisons, but it is unclear why. The correct procedure for supporting conclusions about the effect of specific brain would be to have 'brain region' (n=4) as another within-subject factor. Furthermore, the one-tailed correlation is appropriate but only when testing for the possibility of a relationship in one direction and completely disregarding the possibility of a relationship in the other direction. However, this does not seem to be the case here (see Introduction), so a two-tailed correlation would be more appropriate.

      We agree with Reviewer #2 that presenting this analysis as a single MANOVA that includes a ‘Region’ factor is a more accurate approach. Consequently, we have made the aforementioned correction in the methods section (Lines 357-364) and the results section (Lines 395-406). The LI-LI one-tailed correlation was also changed to a two-tailed correlation in the methods section (Line 383), the results section (Line 417), and Figure 2 (Line 886).

      I am quite confused about using the term interhemispheric connectivity to refer to the volume of the genu, body and splenium of the corpus callosum. In fact, the volumes of genu, body and splenium of the corpus callosum do not reflect a measure of how strongly RH and LH IFC are connected to each other.

      We agree that using the term ‘interhemispheric connectivity’ when referring to callosal volume may be somewhat misleading. We have replaced every instance of this terminology throughout the paper.

      Furthermore, it is unclear why in a set of analyses (ROI and whole brain analyses) the authors focus on brain responses in different ROIs but instead, in connectivity measures the focus is only on IFC.

      Our initial rationale was to focus on regions that are prominently involved in language, particularly the IFC, for examining inter-hemispheric connectivity at rest.

      However, upon more careful consideration, it is true that the preSMA is also implicated in the language network (Labache et al., 2018), and certain studies have reported an impact of STN stimulation on specific language skills (for a review, see Vos et al., 2021). Consequently, we have incorporated these two regions into the resting-state analysis, along with subsequent correlations with LIs (Table 1 and Lines 118, 321-322 & 449-452).

      Labache, L., Joliot, M., Saracco, J., Jobard, G., Hesling, I., Zago, L., Mellet, E., Petit, L., Crivello, F., Mazoyer, B., & Tzourio-Mazoyer, N. (2018). A SENtence Supramodal Areas AtlaS (SENSAAS) based on multiple task-induced activation mapping and graph analysis of intrinsic connectivity in 144 healthy right-handers. Brain Structure and Function 2018 224:2, 224(2), 859–882. https://doi.org/10.1007/S00429-018-1810-2

      Vos, S. H., Kessels, R. P. C., Vinke, R. S., Esselink, R. A. J., & Piai, V. (2021). The Effect of Deep Brain Stimulation of the Subthalamic Nucleus on Language Function in Parkinson’s Disease: A Systematic Review. Journal of Speech, Language, and Hearing Research, 64(7), 2794–2810. https://doi.org/10.1044/2021_JSLHR-20-00515

      Minor corrections/comments:

      It is unclear why in figure caption 1, the conjunction maps are mentioned even if formal conjunction analysis was not conducted.

      This poor choosing of words has been replaced to ‘overlapping maps’.

      Line 382. VHMC should be VMHC.

      Fixed. Thank you.

      Line 334. This sentence and especially its relationship with the results is not clear at all. What do you mean by 'This finding is consistent with previous reports showing that cognitive deficits appear only in specific cognitive domains'?

      This has been clarified (Lines 521-525).

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Throughout the study, there is insufficient information about how experiments were performed and how often (imaging, pull-downs etc), how data was acquired, modified and analysed (especially imaging data, see below), how statistical analyses were done and what is presented in the figures (single planes or maximum intensity projections etc). This makes it difficult to evaluate the data and results.

      We have incorporated additional experimental details to the Materials and Methods section: "Recent advancements in optical and camera technologies permit the acquisition of Z-stacks without perturbing Q cell division or overall animal development. Z-stack images were acquired over a range of -1.6 to +1.6 μm from the focal plane, at intervals of 0.8 μm. The field-of-view spanned 160 μm × 160 μm, and the laser power, as measured at the optical fiber, was approximately 1 mW. ImageJ software (http://rsbweb.nih.gov/ij/) was used to perform image analysis and measurement. Image stacks were z-projected using the average projection for quantification and using the maximum projection for visual display. "

      The majority of our experimental procedures adhere to methodologies delineated in our prior publications and other scientific literature. We were pioneers in the development of fluorescence time-lapse live microscopy techniques for capturing Q cell migration and asymmetric division (Ou and Vale, Journal of Cell Biology, 2009; Ou et al., Science, 2010; Chai et al., Nature Protocols, 2012). Our innovative imaging protocol uncovered a novel mode of polarized, non-muscle myosin-II-dependent asymmetric cell division (Ou et al., Science, 2010). Subsequently, we unveiled another previously uncharacterized mechanism of asymmetric cell division dependent on polarized actin polymerization (Chai et al., Cell Discovery, 2022). In the present study, we have significantly refined our imaging and quantification protocols. Different from the single-focal-plane imaging employed in our earlier study by Ou et al. 2009, advancements in optical technologies and camera resolution now enable us to undertake time-lapse imaging across multiple focal planes and track signal differences between the anterior and posterior segments of dividing cells.

      There is insufficient information about tools and reporters used. This is misleading and impacts the conclusions that can be made from the results presented. To give an example, in Figure 1D-F, the authors present data that HDA-1::GFP and LIN-53::mNeonGreen (both components of the nucleosome remodeling and deacetylation complex) but not the histone acetyltransferase MYS-1::GFP are 'asymmetrically segregated' during QR.a division. However, the authors do not mention that HDA-1::GFP and LIN-53::mNeonGreen are expressed at endogenous levels (they are CRISPR alleles) whereas MYS-1::GFP is overexpressed (integration of a multi-copy extrachromosomal array). The difference in 'segregation' could therefore be a consequence of different levels of expression rather than different modes of segregation ('asymmetric' versus 'symmetric').

      Figure S2 shows overexpressed HDA-1, LIN-53 and CHD-3 are also asymmetrically segregated during ACD of QR.a, which indicates that different levels of expression do not affect the modes of segregation, at least for the NuRD subunits. In the main text, however, we presented the asymmetric segregation of HDA-1::GFP and LIN-53::mNeonGreen using their CRISPR KI alleles.

      There is insufficient information about the phenotypes of the animals used (RNAi knock-downs of hda-1, lin-53 RNAi, pig-1 etc). Again this is misleading and impacts the conclusions that can be made. To give some examples,

      1. In Figure 3A-G, control RNAi embryos are compared to hda-1 RNAi and lin-53 RNAi embryos. What the authors do not mention is that hda-1 RNAi and lin-53 RNAi embryos have severe developmental defects and essentially cannot be compared to control RNAi embryos. The differences between the embryos can be seen in Figure S7B where bright-field images of control RNAi, hda-1 RNAi and lin-53 RNAi embryos are shown. At the 350 min time point, a normal embryo is visible for the control, a 'ball of cells' embryo for hda-1 RNAi and an embryo that seems to have arrested at an earlier developmental stage (and therefore have much larger cells) for lin-53 RNAi. Because of these pleiotropic phenotypes, it is unclear whether differences seen for example in sAnxV::GFP positive cells (Figure 3A) are the result of a direct effect of hda-1(RNAi) on cell death or whether they are the result of global changes in development and cell fate induced by hda-1(RNAi). hda-1(RNAi) and lin-53(RNAi) embryos are also used for the data shown in Figures S6 and S7, raising the same concerns;

      In the submitted manuscript, we mentioned that hda-1 RNAi and lin-53 RNAi caused embryonic lethality and that we could track some of the apoptotic events in hda-1 RNAi embryos arrested between the late gastrulation stage and bean stage. We agree with the reviewers that because of the pleiotropic phenotypes, we cannot distinguish whether sAnxV::GFP positive cells (Figure 3A) are the result of a direct effect of hda-1 (RNAi) on cell death or whether they are the result of global changes in development and cell fate induced by hda-1 (RNAi). We added the sentence to page 9 line 26: “Considering the pleiotropic phenotypes caused by loss of HDA-1, we cannot exclude the possibility that ectopic cell death might result from global changes in development, even though HDA-1 may directly contribute to the life-versus-death fate determination.”

      1. The authors do not mention what the impact of Baf A1 treatment is on animals; however, the images provided in Figure 5E indicate that Baf A1 treatment causes pleiotropic effects in L1 larvae.

      We have carefully checked the BafA1 treated animals, but have not been able to detect any visible defect in Baf A1 treated animals under a 25× dissection microscope at the given dosage and duration of treatment. We also searched for the published images or literature and did not find pleiotropic effects on the animal level at this dosage and duration; however, we agree with the reviewers that perturbation of pH homeostasis in lysosomes by BafA1 will certainly generate pleiotropic cellular defects. We discussed the issue below:

      "Although BafA1-mediated disruption of lysosomal pH homeostasis is recognized to elicit a wide array of intracellular abnormalities, we found no evidence of such pleiotropic effects at the organismal level with the dosage and duration of treatment employed in this study."

      There is a lack of adequate controls. Because of this, some of the data presented must be considered as preliminary. To give some examples:

      1. Controls are lacking for the data shown in Figure 3D-G (i.e. genes other than egl-1). Since hda-1 RNAi has a pleiotropic effect and most likely affects H3K27 acetylation genome-wide, this is critical. Based on what is shown, it is unclear whether the results presented are specific to egl-1 or not;

      In figure 3F, we added F23B12.1 and sru-43 as the controls of egl-1. We added “while the H3K27ac level of genes adjacent to egl-1 showed no significant changes” to Page 10 line 22 in the revised text.

      1. The co-IP and mass spec data shown in Figure 4A, C and Figure S8 also lack a critical control, which is GFP only. Because of this, it is unclear whether subunits of the V-ATPase bind to HDA-1 or GFP. The co-IP and mass spec data forms the basis of Figures 5 and 6 as well as Figure S9. Data presented in these figures therefore has to be considered preliminary as well.

      In the co-IP and mass spec shown in Figure 4A, we used ACT-4::GFP as the negative control, which can preclude V-ATPase subunits that bind to GFP. In Figure 4C, we used anti-V1A (V-ATPase V1 domain A subunit) antibody to confirm the interaction between V1A and HDA-1. In Figure S8B, we also used ACT-4::GFP as a control, showing other NuRD subunits bind to HDA-1 rather than GFP.

      Inappropriate methods are used. For this reason, some of the data again must be considered preliminary. To give some examples:

      1. In Figure 5A, B, the authors used super-ecliptic pHluorin to look at changes in pH in the daughter cells. However, the authors used quenching of super-ecliptic pHluorin fluorescence rather than a ratio-metric method to 'measure' changes in pH. Because of this, it is unclear whether the changes in fluorescence observed are due to changes in pH or changes in the amount of pHluorin protein. Figure 5A, B forms the basis for the experiments presented in the remaining parts of Figure 5 as well as in Figure 6 and Figure S9;

      Bafilomycin A1 inhibits the activity of V-ATPase, presumably preventing the pumping of protons into the apoptotic daughter cell. It is more likely that the apoptotic daughter cell becomes less acidic and more neutral after the treatment of Baf1A, although we cannot exclude the possibility that the changes in fluorescence could be due to changes in the amount of pHluorin protein. A ratio-metric method to measure changes in pH will be further used to distinguish the two possibilities.

      We added “although we cannot exclude the possibility that the changes in fluorescence could be due to changes in the amount of pHluorin protein.” to Page 12 line 12 in the revised text.

      1. The authors' description of how some images were modified before quantitative analysis raises concerns. The figures of concern are particularly Figure 1 and Figure S4, where background subtraction with denoising and deconvolution was used. Background subtraction, with denoising and deconvolution is an image manipulation that enhances the contrast between background and what looks like foreground. Therefore, background subtraction should be applied primarily in experiments involving image segmentation not fluorescence intensity measurement. Not being provided any information by the authors about the kind of subtraction that was made, this processing could lead to an uneven subtraction across the image, which can easily lead to artefacts. Since the fluorescence intensity in the smaller daughter cell is lower, and thus closer to background, the algorithm the authors used may have misinterpreted the grey value information in the smaller daughter cell pixels. This could have led to an asymmetric subtraction of background in the two daughter cells, leading to a stronger subtraction in the smaller daughter cell. Ultimately, their processing could have artificially increased the intensity asymmetry between the two daughter cells in all their results.

      As mentioned earlier, the imaging and quantification methods of this manuscript have been routinely used in our previous publications or studies from many other labs (Gräbnitz F, et al., Cell Rep. 2023; Herrero E, et al., Genetics. 2020; Roubinet C, et al., Curr Biol. 2021). Background subtraction is a standard procedure to quantify cellular fluorescence intensities. The fluorescence intensity of the slide background was measured from a region without worm bodies, of the same size as the region of interest. We have added how we measured the background to page 19 Line 24: “The fluorescence intensity of the slide background was measured from a region without worm bodies, of the same size as the region of interest.”

      The imaging data is of low quality (for example Figures 1, 2, 5, 6; Figures S2, S3, S5, S6, S9). Since much of the study and the findings are based on imaging, this is a major concern. Critical parameters are not mentioned (number of sections in z-stack, size of the field-of-view, laser power used etc), which makes it difficult to understand what was done and what one is looking at.

      Fluorescence images of neuroblast asymmetric cell division in developing C. elegans larvae has historically presented considerable challenges. Our recent methodological advancements have facilitated live imaging in this intricate system with improved resolution. In the revised manuscript, we have elucidated the specific z-stack parameters, field-of-view dimensions, and laser power settings employed: "Z-stack images were acquired over a range of -1.6 to +1.6 μm from the focal plane, at intervals of 0.8 μm. The field-of-view spaned 160 μm × 160 μm, and the laser power, as measured at the optical fiber, was approximately 1 mW."

      To give some specific examples,

      1. The images shown in Figure 2B are of very low quality with severe background from neighbouring cells. In addition, the outline of the cells (plasma membrane) or the nuclei of the daughter cells is unknown. Based on this it is not clear how the authors could have measured 'Fluorescence intensity ratio between sister nuclei' in an accurate and unbiased way (what is clear from these images is that there is an increase in HDA-1::GFP signal in ALL surviving daughters (asymmetric and symmetric divisions) post cytokinesis but not in the daughter cell that is about to die (asymmetric and unequal division));

      We employed live-cell imaging in conjunction with automated cell lineage tracing algorithms (Du et al., Cell, 2014) to scrutinize NuRD asymmetry in embryos from the two- or four-cell stage up to the 350-cell stage. This sophisticated approach was initially pioneered by Dr. Zhirong Bao at Sloan Kettering and subsequently refined by Dr. Zhuo Du during Dr. Du's postdoctoral training in Dr. Bao's laboratory. This advanced imaging pipeline enables the scientific community to quantify cellular fluorescence intensity in an automated fashion, thereby substantially mitigating manual intervention and bias.

      1. The images in Figure 6A and Figure S9A on VHA-17 segregation and its colocalization to ER and lysosome segregation during QR.a division are of very low quality and it is unclear to the reviewer how such images were used to obtain the quantitative data shown.

      In some cases, there is a discrepancy between what is shown in figures and what the authors state in the text. To give some examples:

      1. On page 7, the authors state "..., we found that nuclear HDA-1 or LIN-53 asymmetry gradually increased from 1.1-fold at the onset of anaphase to 1.5 or 1.8-fold at cytokinesis, respectively (Figure 1D-E)." Looking at the images for HDA-1 and LIN-53 in Figure 1D, the increase in the ratio mainly occurs between 4 min and 6 min, which is post cytokinesis and NOT prior to cytokinesis;

      Thank the reviewer for pointing out this. The nuclear HDA-1 or LIN-53 asymmetry increased to 1.5 or 1.8-fold 6 min after the onset of anaphase, when QR.a just completes cytokinesis. Therefore, We change the sentence “we found that nuclear HDA-1 or LIN-53 asymmetry gradually increased from 1.1-fold at the onset of anaphase to 1.5 or 1.8-fold at cytokinesis, respectively (Figure 1D-E).” to “we found that nuclear HDA-1 or LIN-53 asymmetry gradually increased from 1.1-fold at the onset of anaphase to 1.5 or 1.8-fold upon the completion of cytokinesis, respectively (Figure 1D-E).”

      However, nuclear HDA-1 or LIN-53 asymmetry initiates prior to cytokinesis. We started to see the nuclear HDA-1 or LIN-53 asymmetry (1.4 fold for HDA-1 and 1.2 fold for LIN-53 ) 2 min after the onset of anaphase (Figure 1D).

      1. These images (Figure 1D) also show that there is an increase in the HDA-1 and LIN-53 signals in the larger daughter cells (QR.ap), which suggests that the increase in ratios (Figure 1E) is the result of increased HDA-1 and LIN-53 synthesis post cytokinesis. However, on top of page 8, the authors state "The total fluorescence of HDA-1, LIN-53 and MYS-1 remained constant during ACDs, suggesting that protein redistribution may establish NuRD asymmetry (Figure S4C)." In Figure S4C, the authors present straight lines for 'relative total fluorescence' for imaging (probably z-stacks) that was done every min over the course of 7 min. If there was no increase in material as the authors claim, they should have seen significant photobleaching over the course of the 7 min and therefore reduced level of 'relative total fluorescence' over time. How the data presented in Figure S4C was generated is therefore unclear. (Despite the fact that the authors claim that the asymmetry seen is not due to new synthesis in the larger daughter cell post cytokinesis, it would be more consistent with the first experiment presented in this study (Figure S1) that shows that there is more hda-1 mRNA in egl-1(-) cells compared to egl-1(+) cells);

      Regarding the concern of photo-bleaching, we have meticulously calibrated our imaging system over the past several years. Rigorous controls, qualification, and analyses were scrupulously undertaken during the development of our fluorescence time-lapse imaging system for the investigation of Q cell dynamics, initially established by Dr. Guangshuo Ou in Ron Vale's laboratory—a renowned hub for avant-garde imaging techniques (Ou & Vale, Journal of Cell Biology, 2009; Ou et al., Science, 2010). Remarkably, no discernible photobleaching was observed even during two to three-hour imaging.

      We agree that protein turnover, involving both degradation and synthesis, may occur. However, NuRD asymmetric distribution occurred within several minutes after metaphase and QR.a completes cytokinesis ~6min after the onset of anaphase, while GFP protein translation and maturation require ~ 30 min in Q neuroblast (Ou & Vale, Journal of Cell Biology, 2009). Even if hda-1::gfp mRNA is translated during cell division, the nascent GFP-tagged protein will mature long after the completion of cytokinesis. Consequently, we postulate that the influence of newly synthesized GFP-tagged protein during Q cell division is negligible for quantification purposes. It is plausible that the asymmetry in HAD-1 protein distribution is independent of hda-1 mRNA asymmetry.

      1. On page 12, the authors state "..., in Baf A1-treated animals, QRaa inherited similar levels of HDA-1::GFP as its sister cell,...". However, looking at the image provided in Figure 5E (0 min), there seems to be a similar ratio of HDA-1::GFP between the daughter cells in DMSO and Baf A1-treated animals.

      We have adjusted the images in Figure 5E to show the asymmetry in DMSO-treated control animals. We acknowledge variations among animals. Our quantifications from more than 10 animals show the HDA-1 asymmetry in DMSO-treated animals in Figure 5B.

      Recommendations for the authors:

      Conclusion 1

      "Here, we demonstrate that the nucleosome remodeling and deacetylase (NuRD) complex is asymmetrically segregated into the surviving daughter cell rather than the apoptotic one during ACDs in Caenorhabditis elegans" (Abstract)

      Results described on pages 6-9 ("NuRD asymmetric segregation during neuroblast ACDs" and "NuRD asymmetric segregation in embryonic cell lineages") and data shown in Figure S1, Figure 1, Figures S2, S3, S4, S5, Figure 2.

      Conclusion 1 is not supported by the results as numerous concerns exist about the data in many of these figures (see above, major weaknesses). A more likely explanation for the authors' observations is that there is synthesis of NuRD post cytokinesis and that asymmetries in the amounts of NuRD observed in the two daughter cells is a consequence of their different cell sizes (QR.ap is 3x as large as QR.aa). This is supported by the finding that the loss of pig-1, which causes 'equal' division resulting in two daughter cells of similar sizes, abolishes the differences in NuRD seen between the daughter cells.

      As discussed earlier, GFP protein translation and maturation require ~ 30 min in Q neuroblast (Ou & Vale, Journal of Cell Biology, 2009). Even if there is the synthesis of NuRD post cytokinesis, the nascent GFP-tagged protein will not mature within our imaging timeframe, Therefore, NuRD asymmetry is unlikely to be a result of the synthesis of NuRD post cytokinesis. In addition, We found that MYS-1::GFP was symmetrically segregated into the small apoptotic daughter cells and big surviving daughter cells, suggesting NuRD asymmetry may be irrelevant to cell size asymmetry.

      Interestingly, despite the fact that the loss of pig-1 causes 100% of the divisions to be equal by size and symmetric with respect to NuRD amounts, it only causes about 30% of QR.aa cells to inappropriately survive. This demonstrates that there is a correlation between NuRD asymmetry and daughter cell size asymmetry but NOT between NuRD asymmetry and cell death. This also demonstrates that loss of 'NuRD asymmetry' and presence of NuRD in the daughter that should die is NOT sufficient to block its death.

      Cordes et al. 2006 (DOI: 10.1242/dev.02447) reported that in pig-1 loss-of-function mutants, <40% of Q.p lineages produce extra neurons because Q.pp cells inappropriately survive. Noticeably, only 30% and 5% Q.p lineages produce extra neurons in ced-3 and egl-1 loss of function single mutant, respectively. pig-1 ced-3 double mutant or pig-1 egl-1 double mutants show a dramatically stronger phenotype than either single mutant, resulting in about 80% of Q.p lineages producing extra neurons. These results suggest that pig-1 functions in parallel to the EGL-1-CED-9-CED-4-CED-3 cell death pathway to promote Q cell apoptosis.

      We agree with the reviewer that “loss of 'NuRD asymmetry' and presence of NuRD in the daughter that should die is NOT sufficient to block its death” in pig-1 loss-of-function mutants. However, these results do not rule out the correlation between NuRD asymmetry and cell death. In the pig-1 mutant, the concentration of NuRD in Q.pp might not be high enough to completely block the death pathway. Alternatively, NuRD may be one but not the only factor blocking the cell death pathway.

      Lastly, it is imperative to underscore that cellular aberrations observed during early developmental stages frequently undergo compensatory correction during subsequent developmental stages or even initial aging stages. For example, in certain cell migration mutants exhibiting early migration defects, the initial penetrance exceeds 80%; however, the penetrance is mitigated to a mere 30% in adults. Such observations have been corroborated in our prior publications focusing on cell migration dynamics (Wang et al., PNAS, 2013; Zhu et al., Dev Cell, 2016). This appears to be a pervasive phenomenon, echoed by several laboratories specializing in neural development. Sengupta and Blacque’s labs has reported that early aging can ameliorate ciliary phenotypes in C. elegans mutants with compromised intraflagellar transport mechanisms. Accordingly, late developmental stages may act as a compensatory buffer for antecedent developmental abnormalities.

      Conclusion 2

      "The absence of NuRD triggers apoptosis via the EGL-1-CED-9-CED-4-CED-3 pathway, while an ectopic gain of NuRD enables apoptotic cells to survive." (Abstract) Results described on pages 8-10 ("Loss of the deacetylation activity of NuRD causes ectopic apoptosis" and "NuRD RNAi upregulates the egl-1 expression by increasing its H3K27 aceylation") and data shown in Figure S6, Figure 3, Figure S7 and data shown in Figure 5.

      Because of the various concerns raised above (major weaknesses) about the data presented in Figure S6, Figure 3, Figure S7 (pleiotropic phenotypes of hda-1 and lin-53 RNAi animals, lack of controls etc), there is no evidence that NuRD has a specific and/or direct effect on egl-1 expression in cells programmed to die or that loss of NuRD causes ectopic egl-1-dependent cell death. The claim that "ectopic gain of NuRD enables apoptotic cells to survive." is based on Figure 5E, where the authors show that Baf A1 treatment causes symmetric NuRD segregation in 11/12 animals and that QR.aa survives in 11/12 animals. However, those data are unconvincing. As mentioned above (major weaknesses), from the low-quality images provided, it is not clear whether there is 'symmetric NuRD segregation' in Baf A1 treated animals, and the conditions of the animals are a concern because of pleiotropic effects of blocking V-ATPase. (I am not convinced I am actually looking at the same region of an L1 larvae in the three animals because the HDA-1::GFP signal seems inconsistent across them.) One process that is affected by a block of V-ATPase is engulfment. The fact that the authors observe that 130 min post-cytokinesis, QR.aa still persists in Baf A1 treated animals could therefore be the result of a delay in engulfment rather than a block in cell death. In addition, the claim that ectopic gain of NuRD enables apoptotic cells to survive contradicts their findings on loss of pig-1 described about ('Conclusion 1').

      We acknowledge the limitations of our imaging system; however, as we pointed out earlier that we developed imaging methods and kept improving them. We have tried our best to obtain images from developing C. elegans larvae. On the other hand, we showed that hda-1 RNAi and lin-53 RNAi increase the expression of a subset of genes, including egl-1, either directly or indirectly (Fig. 3C). Figure 3B shows the ectopic cell death caused by loss of NuRD is dependent on EGL-1-CED-9-CED-4-CED-3 pathway. While we cannot exclude several other possibilities while addressing such a complex problem in such a challenging model system, these results provide some evidence supporting that our claim can be one of the possibilities.

      Conclusion(s) 3

      "We identified the vacuolar H+-adenosine triphosphatase (V-ATPase) complex as a crucial regulator of NuRD's asymmetric segregation. V-ATPase interacts with NuRD and is asymmetrically segregated into the surviving daughter cell. Inhibition of V-ATPase disrupts cytosolic pH asymmetry and NuRD asymmetry" (Abstract)

      Results described on pages 10-13 ("V-ATPase regulates asymmetric segregation of NuRD during somatic ACDs") and data shown in Figures 4, 5, 6, Figures S8, S9.

      As outlined above (major weaknesses), the evidence that HDA-1 interacts with the V-ATPase complex is preliminary (no GFP control), and I consider the imaging data showing that V-ATPase asymmetrically segregates very low quality and unconvincing (Figure 6). The data on pH changes are also preliminary as the experiment was not done the way it should have (quenching rather than ratiometric). Finally, there are concerns about the results that apparently demonstrate that inhibiting V-ATPase activity disrupts pH asymmetry and NuRD asymmetry (impact of Baf A1 treatment).

      As discussed earlier, Bafilomycin A1 inhibits the activity of V-ATPase, presumably preventing the pumping of protons into apoptotic daughter cells. It is more likely that the apoptotic daughter cell becomes less acidic and more neutral after the treatment of Baf1A, although we cannot exclude the possibility that the changes in fluorescence could be due to changes in the amount of pHluorin protein. A ratio-metric method to measure changes in pH will be further used to distinguish the two possibilities.

      We added “although we cannot exclude the possibility that the changes in fluorescence could be due to changes in the amount of pHluorin protein.” to Page 12 line 12 in the revised text.

      Conclusion 4

      "We suggest that asymmetric segregation of V-ATPase may cause distinct acidification levels in the two daughter cells, enabling asymmetric epigenetic inheritance that specifies their respective life-versus-death fates." (Abstract) Discussion and model Figure 6C.

      I consider the model premature and not based on any convincing data. In addition, the role of V-ATPase and acidification does not make sense. V-ATPase is involved in the acidification of the lysosomal system (lumen), and it is thought that cytosolic acidification in apoptotic cells is caused by lysosomal leakage. This is not consistent with the authors' model.

      This manuscript lacks a section describing details of statistical analyses and the rationale for the chosen test, sample sizes, exclusion criteria, and replication details. Although the sample size is relatively smaller (less than 30), the authors used "unpaired t-test" for most of the tests. They should describe which type of t-test they used (parametric or non-parametric test). They also should provide replication details for non-statistical data set, for example Fig 3F and Fig 4C.

      We used the Unpaired two-tailed parametric t-test. We have now added the information for statistic tests in the revised methods and figure legends.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Thank you for the thoughtful consideration of our work, including both reviewers’ constructive comments. Our apologies for taking some extra time for this revision, but we wanted to adress comments thoroughly with new analyses, not to mention a PhD defense, parental leave and my teaching ultimately being the bottleneck for the team’s work!

      Reviewer #1 (Public Review):

      The authors use a combination of structural and MD simulation approaches to characterize phospholipid interactions with the pentameric ligand-gated ion channel, GLIC. By analyzing the MD simulation data using clusters of closed and open states derived previously, the authors also seek to compare lipid interactions between putative functional states. The ultimate goal of this work is to understand how lipids shape the structure and function of this channel.

      The strengths of this article include the following:

      1) The MD simulation data provide extensive sampling of lipid interactions in GLIC, and these interactions were characterized in putative closed and open states of the channel. The extensive sampling permits confident delineation of 5-6 phospholipid interaction sites per subunit. The agreement in phospholipid binding poses between structures and the all-atom MD simulations supports the utility of MD simulations to examine lipid interactions.

      2) The study presents phospholipid binding sites/poses that agree with functionally-important lipid binding sites in other pLGICs, supporting the notion that these sites are conserved. For example, the authors identify interactions of POPC at an outer leaflet intersubunit site that is specific for the open state. This result is quite interesting as phospholipids or drugs that positively modulate other pLGICs are known to occupy this site. Also, the effect of mutating W217 in the inner leaflet intersubunit site suggests that this residue, which is highly conserved in pLGICs, is an important determinant of the strength of phospholipid interactions at this site. This residue has been shown to interact with phospholipids in other pLGICs and forms the binding site of potentiating neurosteroids in the GABA(A) receptor.

      Weaknesses of this article include the following:

      1) The authors describe in detail state-dependent lipid interactions from the MD simulations; however, the functional significance of these findings is unclear. GLIC function appears to be insensitive to lipids, although this understanding is based on experiments where GLIC proteoliposomes were fused to oocyte membranes, which may not be optimal to control the lipid environment. Without functional studies of GLIC in model membranes, the lipid dependence of GLIC function is not definitively known. Therefore, it is difficult to interpret the meaning of these state-dependent lipid interactions in GLIC.

      2) It is unlikely that the bound phospholipids in the GLIC structures, which are co-purified from e. coli membranes, are POPC. Rather, these are most like PE or PG lipids. While it is difficult to accommodate mixed phospholipid membranes in all-atom MD simulations, the choice of POPC for this model, while practically convenient, seems suboptimal, especially since it is not known if PE or PG lipids modulate GLIC function. Nevertheless, it is striking that the overall binding poses of POPC from the simulations agree with those identified in the structures. It is possible that the identity of the phospholipid headgroup will have more of an impact on the strength of interactions with GLIC rather than the interaction poses (see next point).

      3) The all-atom MD simulations provide limited insight into the strength of the POPC interactions at each site, which is important to interpret the significance of these interactions. It is unlikely that the system has equilibrated within the 1.7 microseconds of simulation for each replicate preventing a meaningful assessment of the lipid interaction times. Although the authors report exchange of up to 4 POPC interacting at certain residues in M4, this may not represent binding/unbinding events (depending on how binding/interaction is defined), since the 4 Å cutoff distance for lipid interactions is relatively small. This may instead be a result of small movements of POPC in and out of this cutoff. The ability to assess interaction times may have been strengthened if the authors performed a single extended replicate up to, for example, 10-20 microseconds instead of extending multiple replicates to 1.7 microseconds.

      Reviewer #2 (Public Review):

      The authors convincingly show multiple inner and outer leaflet non-protein (lipid) densities in a cryo-EM closed state structure of GLIC, a prokaryotic homologue of canonical pentameric ligand-gated ion channels, and observe lipids in similar sites during extensive simulations at both resting and activating pH. The simulations not only corroborate structural observations, but also suggest the existence of a state-dependent lipid intersubunit site only occupied in the open state. These important findings will be of considerable interest to the ion channel community and provide new hypotheses about lipid interactions in conjunction with channel gating.

      Recommendations for the authors: please note that you control which, if any, revisions, to undertake

      In particular, a discussion of whether the timescale of the simulations permit measurements of residence or interaction times of the lipids should be addressed.

      Reviewer #1 (Recommendations for the authors):

      Comment 1.1: The authors may consider expanding the discussion about the significance of state-dependent lipid interactions. On the one hand, they emphasize state-dependent interactions of POPC with closed and open states in the outer leaflet in the results. On the other hand, they state that GLIC is insensitive to its lipid environment. What is the significance of the state-dependent interactions of POPC in GLIC, if any? It is possible that GLIC agonist responses are sensitive to phospholipids (such as PE or PG found in e. coli)? The state-dependent differences in lipid interaction identified in this study support this possibility and suggest the need to better understand the effects of phospholipids on GLIC function.

      Response 1.1: We agree with the reviewer that this is an interesting question and we have therefore extended the discussion with additional references on the functional effects on GLIC of various lipid membranes:

      p. 11 (Discussion)

      “Sampling was further simplified by performing simulations in a uniform POPC membrane. Prior experiments have been conducted to assess the sensitivity of GLIC in varying lipid environments (Labriola et al., 2013; Carswell et al., 2015; Menny et al., 2017), indicating that GLIC remains fully functional in pure POPC bilayers. In our cryo-EM experiments, the protein was recombinantly expressed from E. coli, which means that the experimental density would likely represent phosphatidylglycerol or phosphatidylethanolamine lipids. However, as the molecular identities of bound lipids could not be precisely determined, POPC lipids were built for straightforward comparison with simulation poses. While it appears that GLIC is capable of gating in a pure POPC bilayer, it remains plausible that its function could be influenced by different lipid species, especially due to the presence of multiple charged residues around the TMD/ECD interface which might interact differently with different lipid head groups. Further experiments would be needed to confirm whether the state dependence observed in simulations is also lipid-dependent. It is possible that certain types of lipids bind in one but not the other state, or that certain states are stabilized by a particular lipid type.”

      Comment 1.2: It would be helpful to state in the discussion that the co-purified lipids from GLIC structures are likely PE or PG from e. coli membranes. Nevertheless, it is interesting that the phospholipid poses from the structures generally agree with those identified from the MD simulations using PC.

      Response 1.2: Good point. We have clarified in the discussion that the native lipids in the cryo-EM structure are likely PG or PE lipids, as quoted in the preceding Response.

      Comment 1.3: The authors describe a more deeply penetrating interaction of POPC in the outer intrasubunit cleft in the open state, but this is difficult to appreciate from the images in Fig. 4B, 4E or S3B. The same is true of the deep POPC interaction at the outer intersubunit site. It may be helpful to show these densities from a different perspective to appreciate the depth of these binding poses.

      Response 1.3: We have added Figure 4 – figure supplement 1 to better show the depth of lipid binding poses, especially the ones in the outer leaflet intrasubunit cleft and at the inner intersubunit site, and cited the figure on p. 7 (Results).

      Comment 1.4: The representation of the lipid densities in Fig. 4B is not easy to interpret. First, the meaning of resting versus activating conditions and closed versus open states can be easily missed for readers who are not familiar with the author's previous study. It may be helpful to describe this (i.e. how open and closed state clusters were generated from structures determined in resting and activating conditions) in greater detail in either the figure legend, results or methods. Second, the authors state that there are differences in lipid poses between the closed and open states but not resting and activating conditions. With the exception of the intersubunit density, this is difficult to appreciate from Fig. 4B. As stated in point #3, the difference, for example, in the complementary intrasubunit site may be better appreciated with an image from a different perspective.

      Response 1.4: Acknowledged - the distinction between resting and activating conditions v.s. open and closed states can be confusing. We have tried to clarify these differences at the beginning of the results section, the methods section, and in the caption of Figure 4. Regarding differences in lipid poses between open and closed states, we agree it is difficult to appreciate from Figure 4, but here we refer the reader to Figure 4 – figure supplement 2 for an overlay between open and closed densities. Additionally, we now added Figure 1 – figure supplement 1 which provides lipid densities for all five subunits and overlays with the build cryo-EM lipids, possibly making differences easier to appreciate. Regarding images from different perspectives, we trust the new figure supplement described in Response 1.3 provides a better perspective.

      p. 3 (Results)

      “For computational quantification of lipid interactions and binding sites, we used molecular simulations of GLIC conducted under either resting or activating conditions (Bergh et al., 2021a). As described in Methods, resting conditions corresponded to neutral pH with most acidic residues deprotonated; activating conditions corresponded to acidic pH with several acidic residues protonated. Both open and closed conformations were present in both conditions, albeit with different probabilities.”

      p. 8 (Figure 4)

      “Overlaid densities for each state represent simulations conducted under resting (dark shades) or activating (light shades) conditions, which were largely superimposable within each state.”

      p. 24 (Methods)

      “We analyzed previously published MSMs of GLIC gating under both resting and activating conditions (Bergh et al., 2021a). Resting conditions corresponded to pH 7, at which GLIC is nonconductive in functional experiments, with all acidic residues modeled as deprotonated. Activating conditions corresponded to pH 4.6, at which GLIC is conductive and has been crystallized in an open state (Bocquet et al., 2009). These conditions were modeled by protonating a group of acidic residues (E26, E35, E67, E75, E82, D86, D88, E177, E243; H277 doubly protonated) as previously described (Nury et al., 2011).”

      Comment 1.5: The new closed GLIC structure was obtained by merging multiple datasets. What were the conditions of the datasets used? Was it taken from samples in resting or also activating conditions?

      Response 1.5: We have updated the Results, Discussion, and Methods to clarify this important point, in particular by merging datasets and rerunning the classification:

      p. 3 (Results)

      “In our cryo-EM work, a new GLIC reconstruction was generated by merging previously reported datasets collected at pH 7, 5, and 3 (Rovšnik et al., 2021). The predominant class from the merged data corresponded to an apparently closed channel at an overall resolution of 2.9 Å, the highest resolution yet reported for GLIC in this state (Figure 1 – figure supplement 2, Table 1).”

      p. 11 (Discussion)

      “Interestingly, the occupational densities varied remarkably little between resting and activating conditions (Figure 1 – figure supplement 1), indicating state- rather than pH- dependence in lipid interactions, also further justifying the approach of merging closed- state GLIC cryo-EM datasets collected at different pH conditions to resolve lipids.”

      p. 14 (Methods)

      “After overnight thrombin digestion, GLIC was isolated from its fusion partner by size exclusion in buffer B at pH 7, or in buffer B with citrate at pH 5 or 3 substituted for Tris. The purified protein was concentrated to 3–5 mg/mL by centrifugation. [...] Data from three different grids, at pH 7, 5, and 3, were merged and processed together.”

      Comment 1.6: In Fig. 3D, do the spheres represent the double bond? If so, please state in the legend

      Response 1.6: We have clarified in the legend of Figure 3D that the yellow spheres on the lipid tails represent a double bond.

      Comment 1.7: In Fig. 3E, what is the scale of the color representation?

      Response 1.7: We have clarified in the legend of Figure 3E that colors span 0 (white) to 137015 contacts (dark red).

      Reviewer #2 (Recommendations For The Authors):

      Comment 2.1: I'm not sure I fully understand how the final lipids were modeled (built). Fig. 1 caption suggests they may have been manually built? I understand that the idea was to place them in the overlap of simulation densities and structure densities, but can the authors please clarify if there were any quantifiable conditions that were employed during this process or if this was entirely manual placement in a pose that looked good? Regardless, it would be helpful to see an overlay of the built lipids with both the cryo and simulation densities (e.g., overly of Fig. 1F/H and G/H) to better visualize how the final built lipids compare.

      Response 2.1: We thank the reviewer for pointing out unclarities regarding our methods. We have extended the methods section to clarify how the lipids were manually built in the cryo-EM structure. We have also added Figure 1 – figure supplement 1 showing overlays of the computational densities and built cryo-EM lipids.

      p. 15 (Methods)

      “Lipids were manually built in COOT by importing a canonical SMILES format of POPC (Kim et al., 2021) and adjusting it individually into the cryo-EM density in each of the sites associated with a single subunit, based in part on visual inspection of lipid densities from simulations, as described above. After building, 5-fold symmetry was applied to generate lipids at the same sites in the remaining four subunits.”

      Comment 2.2: Regarding the state-dependent lipid entry to the outer leaflet intersubunit site associated with channel opening, if the authors could include a movie depicting this process that would be great. The current short explanation does not do this justice. Also, what were the dynamics of this process? Beyond the correlation between site occupancy and the pore being open, how did the timing of lipid entry/exit and pore opening/closing correlate?

      Response 2.2: The point regarding the timing of state-dependent lipid binding at the subunit interface and pore opening is indeed an interesting one. We have added Figure 4 – figure supplement 3D showing that the state-dependent P250 lipid interaction precedes pore opening, as quantified by pore hydration levels, indicating a potential role in gating. The interaction between lipid binding and conformational change of the protein is also depicted in the newly added Figure 4 - video supplement 1, which we hope will be able to better communicate the conclusions regarding state-dependent interactions. We have also expanded the results and discussion to better explain these results:

      p. 9 (Results)

      “The lipid head made particularly close contacts with residue P250 on the M2-M3 loop, which undergoes substantial conformational change away from the pore upon channel opening, along with outer-leaflet regions of M1–M3 (Figure 4E, Figure 4—figure Supplement 3A,B,C, Figure 4—video 1). These conformational changes were accompanied by a flip of M1 residue F195, which blocked the site in the closed state but rotated inward to allow closer lipid interactions in the open state (Figure 4—figure Supplement 3C, Figure 4—video 1). Indeed, P250 was predominantly located within 3 Å of the nearest lipid atom in open- but not closed-state frames (Figure 4F). Despite being restricted to the open state, interactions with P250 were among the longest duration in all simulations (Figure 2C) and as these binding events preceded pore opening, it is plausible to infer a role for this state-dependent lipid interaction in the gating process (Figure 4 – figure supplement 3D).”

      p. 12 (Discussion)

      “The state-dependent binding event at this site preceded pore opening in MSMs, where lipid binding coincided with crossing a smaller energy barrier between closed and intermediate states, followed by pore opening at the main energy barrier between intermediate and open states (Figure 4 – figure supplement 3D). Further, since the P250- lipid interaction was characterized by relatively long residence times (Figure 2), it is possible this lipid interaction has a role to play in GLIC gating.”

      Comment 2.3: Although the interaction times are helpful, I didn't get a great sense of how mobile the lipids are during the simulations. Can the authors discuss this a bit more. For example, are interaction times dominated by lipids that jiggle a bit away from a residue and then back again, vs how often are lipids exchanging with other lipids initially further away from the protein?

      Response 2.3: We have now added various measures of lipid diffusion, both for initially interacting lipids and for bulk lipids, which are summarized in the new Figure 2 – figure supplement 1. We have further addressed the question of simulation timescales in Results, Discussion, and Methods. These numbers highlight that it is possible for lipids several nanometers away from the protein surface to exchange with lipids of the first lipid shell.

      p. 3,6 (Results)

      “Lateral lipid diffusion coefficients were estimated to 1.47 nm2/µs for bulk lipids and 0.68 nm2/µs for lipids of the first lipid shell (Figure 2 – figure supplement 1A), which is relatively slow compared to the timescales of each trajectory (1.7 µs). However, multiple residues throughout the M1, M3, and M4 helices exchanged contacts with 2-4 different lipid molecules in individual simulations (Figure 2C). Furthermore, 1.7-µs root mean square displacement of lipids originally in the first lipid shell was 2.15 nm, and 3.16 nm in the bulk bilayer, indicating such exchanges are not limited to nearby lipids (Figure 2 – figure supplement 1B). Thus, exchange events and diffusion estimates indicate that the duration of lipid contacts observed in this work can be at least partly attributed to interaction stabilities and not solely to sampling limitations.”

      p. 11 (Discussion)

      “Indeed, the unrestrained atomistic MD simulations studied here were not expected to capture the maximal duration of stable contacts, as indicated by some interaction times approaching the full 1.7-µs trajectory (Figure 2}). Nevertheless, simulations were of sufficient length to sample exchange of up to four lipids, particularly around the M4 helix. Calculation of lipid lateral diffusion coefficients resulted in average displacements at the end of simulations of 2.15 nm for lipids initially interacting with the protein surface, roughly corresponding to lipids diffusing out to the 4th lipid shell. Diffusion of bulk lipids was faster, allowing lipids originally 3.16 nm away from the protein surface to ingress the first lipid shell. This observation underscores the potential for lipid exchange events even among lipids initially distant from the protein surface. Of course, duration of exceptionally stable interactions, such as those involving T274 (Figure 2C), inevitably remain bounded by the length of our simulations. Still, diffusion metrics, supported by robust statistical analysis encompassing diverse starting conditions (500 trajectories), enable confident estimation of relative interaction times.“

      p. 13 (Methods)

      “Time-based measures of protein-lipid interactions, such as mean duration times and exchange of interactions, were calculated for the 100 x 1.7 µs-long simulations using prolintpy (Sejdiu and Tieleman, 2021) with a 4 Å interaction cutoff. Analysis of lateral lipid diffusion in individual simulations was carried out for two disjoint sets of lipids: the first lipid shell defined as lipids with any part within 4 Å of the protein surface (~90 lipids), and bulk lipids consisting of all other lipids (~280 lipids). Mean square displacements of each lipid set were calculated using GROMACS 2021.5 (Abraham et al., 2015b) with contributions from the protein center of mass removed. Diffusion coefficients for each set, DA, were calculated using the Einstein relation (Equation 1) by estimating the slope of the linear curve fit to the data.

      where ri(t) is the coordinate of the center of mass of lipid i of set A at time t and DA is the self-diffusion coefficient.”

      Comment 2.4: How symmetric or asymmetric are the cryo and simulation densities across subunits and was there subunit asymmetry in the final build lipids? I could not tell from any of the figures beyond the casual observation that they maybe look somewhat similar in Fig. 1?

      Response 2.4: We thank the reviewer for this useful remark. We have clarified in the methods that the cryo-EM lipids were built in C5-symmetry, and thus the positions are symmetric. The computational densities were calculated independently for each subunit and are thus not necessarily symmetric. We have added Figure 1 – figure supplement 1 showing densities for all five subunits, also serving as an indication of convergence of the results.

      p. 3 (Results) “Although the stochastic nature of simulations resulted in nonidentical lipid densities associated with the five GLIC subunits, patterns of lipid association were notably symmetric (Figure 1 – figure supplement 1).”

      p. 14-15 (Methods)

      “A smaller subset of particles was used to generate an initial model. All subsequent processing steps were done using 5-fold symmetry. […] A monomer of that model was fit to the reconstructed density and 5-fold symmetry was applied with PHENIX 1.19.2-4158 through NCS restraints detected from the reconstructed cryo-EM map, to generate a complete channel. […] After building, 5-fold symmetry was applied to generate lipids at the same sites in the remaining four subunits.”

      Minor comments:

      Comment 2.5: Fig. 1 is probably not easy to follow for the general reader and the caption is very brief. I suggest adding an additional explanation to the caption and/or additional annotations to the figure to help a general reader step through this.

      Response 2.5: We have expanded the caption of Figure 1 and clarified the meanings of colors, labels, and annotations.

      Comment 2.6: Fig. 1B - Caption is confusing. I would not call the state separation lines outlines as they are not closed loops. Also, I see red/orange and two shades of blue whereas the caption mentions orange and blue only. The caption should also explicitly say what the black lines are (other cluster separations).

      Response 2.6: We have edited the caption to better describe colors, annotations, and the meaning of the data:

      p. 4 (Figure 1)

      “(B) Markov state models were used to cluster simulations conducted under resting (R) or activating (A) conditions into five states, including closed (left of the light or dark orange lines) and open (right of the light or dark blue lines). Black lines mark edges of other state clusters derived from MSM eigenvectors. Experimental structures are highlighted as white circles.”

      Comment 2.7: Fig. 3F caption appears to conflict with data where interaction with W217A appears longer than W217. I think the authors want to suggest here that W217A reduces contact time with T274 as stated in the main text.

      Response 2.7: We have clarified in this legend that “Mutation of residue W217, lining this pocket, reveals shortened interactions at the T274 binding site” (p. 6, Figure 3).

      Comment 2.8: Ref 25 and 26 are the same.

      Response 2.8: Apologies; this mistake has been corrected.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      In this study, single neurons were recorded, using tetrodes, from the parahippocampal cortex of 5 rats navigating a double-Y maze (in which each arm of a Y-maze forks again). The goal was located at any one of the 4 branch terminations, and rats were given partial information in the form of a light cue that indicated whether the reward was on the right or left side of the maze. The second decision point was uncued and the rat had no way of knowing which of the two branches was correct, so this phase of the task was more akin to foraging. Following the outbound journey, with or without reward, the rat had to return (inbound journey) to the maze and start to begin again.

      Neuronal activity was assessed for correlations with multiple navigation-relevant variables including location, head direction, speed, reward side, and goal location. The main finding is that a high proportion of neurons showed an increase in firing rate when the animal made a wrong turn at the first branch point (the one in which the correct decision was signalled). This increase, which the authors call rate remapping, persisted throughout the inbound journey as well. It was also found that head direction neurons (assessed by recording in an open field arena) in the same location in the room were more likely to show the rate change. The overall conclusion is that "during goal-directed navigation, parahippocampal neurons encode error information reflective of an animal's behavioral performance" or are "nodes in the transmission of behaviorally relevant variables during goal-directed navigation."

      Overall I think this is a well-conducted study investigating an important class of neural representation: namely, the substrate for spatial orientation and navigation. The analyses are very sophisticated - possibly a little too much so, as the basic findings are relatively straightforward and the analyses take quite a bit of work to understand. A difficulty with the study is that it was exploratory (observational) rather than hypothesis-driven. Thus, the findings reveal correlations in the data but do not allow us to infer causal relationships.

      We would like to clarify that this report consists of hypothesis-driven experiments, with post-hoc exploratory analyses. We have now made hypotheses more explicit in the text, and pointed out that follow-up analyses were to understand how these effects came to be. We thank the reviewer for pointing out that our hypotheses were not explicit in the introduction. We believe our results open the door for investigating the causal role of these regions in the propagation or generation of error signals during navigational behavior. Those types of experiments are however, outside the scope of the current work.

      That said, the observation of increased firing in a subset of neurons following an erroneous choice is potentially interesting. However, the effect seems small. What were the actual firing rate values in Hz, and what was the effect size?

      We thank the reviewer for the opportunity to clarify the effect size question. As there are multiple neurons in the analyses, differences in firing rate need necessarily to be normalized by a neuron's mean activity. For example, a difference of 1 spk/s is less meaningful when a neuron's base rate is 50 spk/s than when it is 10spks/s. Furthermore, our reports are for population level analyses, at which point comparing raw firing rate values and differences becomes more challenging. Nonetheless, we are including these raw metrics in two new supplemental figures (Figure 2 - figure supplement 4,5), where differences in individual neurons change can be up to 15 spks/s. Additionally, the patterns and statistical results observed in the main text are preserved, with outbound Right Cue minus Left Cue showing a left>stem>right (indicating error coding), and RW minus NRW showing negative values across all segments, indicating NRW>RW or higher activity following on inbound unrewarded trials. Statistics follow the corresponding main text results (Cue: segment LRT = 71.70; RW: segment LRT=45.80).

      I also feel we are lacking information about the underlying behavior that accompanies these firing rate effects. The authors say "one possibility is that the head-direction signal in the parahippocampal region reflects a behavioral state related to the navigational choice or the lack of commitment to a particular navigational route" which is a good thought and raises the possibility that on error trials, rats are more uncertain and turn their heads more (vicarious trial and error) and thus sample the preferred firing direction more thoroughly. Another possibility is that they run more slowly, which is associated with a higher firing rate in these cells. I think we, therefore, need a better understanding of how behavior differed between error trials in terms of running speed, directional sampling, etc.

      In terms of running speed, there was a small effect of mean running speed between correct and incorrect trials (across subjects LMEM: Cue correct>incorrect Z=2.3, p=0.02; RW Z=2.15, p=0.03). In most neurons, increases in speed will be accompanied by increases in firing rate. Thus, the differences in running speed cannot explain the observed results, as higher speed during correct trials would predict higher activity, which is the opposite of what we found.

      A few good, convincing raw-data plots showing a remapping neuron on an error trial and a correct trial on the same arm would also be helpful (the spike plots were too tiny to get a good sense of this: fewer, larger ones would be more helpful).

      Additional plots for individual units have been added, Figure 2 - figure supplement 3.

      It would be useful to know at what point the elevated response returned to baseline, how - was it when the next trial began, and was the drop gradual (suggesting perhaps a more neurohumoral response) or sudden.

      Due to the experimental design, this question cannot be addressed fully. Concretely, error trials incur a time-penalty in which the rats need to wait an additional 10 seconds before the next trial, while a new trial would start immediately when the animal nose-poked the home well after a correct trial. Nonetheless, the data on Reward provides insight into this question. The magnitude of the responses on left and right segments of the maze were larger than on the stem for Unrewarded (NRW) vs Rewarded (RW) trials on inbound trajectories, Fig. 4c. This suggests that while activity is still elevated post-incorrect throughout the maze, across units, this effect is smaller on the stem segment. Additionally, the analyses indicate that in the transition between outbound vs inbound trajectories (Figure 4 - figure supplement 3), activity patterns are sustained (incorrect>correct). Together, these results indicate that elevated "error-like" signal are slow in returning to baseline.  

      Reviewer #2 (Public Review):

      This work recorded neurons in the parahippocampal regions of the medial entorhinal cortex (MEC) and pre- and para-subiculum (PrS, PaS) during a visually guided navigation task on a 'tree maze'. They found that many of the neurons reflected in their firing the visual cue (or the associated correct behavioral choice of the animal) and also the absence of reward in inbound passes (with increased firing rate). Rate remapping explained best these firing rate changes in both conditions for those cells that exhibited place-related firing. This work used a novel task, and the increased firing rate at error trials in these regions is also novel. The limitation is that cells in these regions were analyzed together.

      We acknowledge this limitation on our study, and we believe there might be interesting differences between these regions. Unfortunately, the post-mortem extraction of the recording implant micro-drive used for these experiments generated too much tissue damage for exact localization of the tetrodes. Nonetheless, given that the patterns were observed in all subjects, we are confident that at least the major findings of "error-like" signaling is present across the parahippocampal regions. At the same time, the distributions of functional cell types as defined in the open field are different across the PaS, PrS and MEC, leaving the possibility of a more nuanced error coding scheme by region.

      Reviewer #3 (Public Review):

      The authors set out to explore how neurons in the rodent parahippocampal area code for environmental and behavioral variables in a complex goal-directed task. The task required animals to learn the association between a cue and a spatial response and to use this information to guide behavior flexibly on a trial-by-trial basis. The authors then used a series of sophisticated analytical techniques to examine how neurons in this area encode spatial location, task-relevant cues, and correct vs. incorrect responding. While these questions have been addressed in studies of hippocampal place cells, these questions have not been addressed in these upstream parahippocampal areas.

      Strengths:

      1) The study presents data from ensembles of simultaneously recorded neurons in the parahippocampal region. The authors use a sophisticated method for ensuring they are not recording from the same neurons in multiple sessions and yet still report impressive sample sizes.

      2) The use of the complex behavioral task guards against stereotyped behavior as rats need to continually pay attention to the relevant cue to guide behavior. The task is also quite difficult ensuring rats do not reach a ceiling level of performance which allows the authors to examine correct and incorrect trials and how spatial representations differ between them.

      3) The authors take the unusual approach of not pre-processing the data to group neurons into categories based on the type of spatial information that they represent. This guards against preconceived assumptions as to how certain populations of neurons encode information.

      4) The sophisticated analytical tools used throughout the manuscript allow the authors to examine spatial representations relative to a series of models of information processing.

      5) The most interesting finding is that neurons in this region respond to situations where rewards are not received by increasing their firing rates. This error or mismatch signal is most commonly associated with regions of the basal ganglia and so this finding will be of particular interest to the field.

      Weaknesses:

      1) The histological verification of electrode position is poor and while this is acknowledged by the authors it does limit the ability to interpret these data. Recent advances have enabled researchers to look at very specific classes of neurons within traditionally defined anatomical regions and examine their interactions with well-defined targets in other parts of the brain. The lack of specificity here means that the authors have had to group MEC, PaS, and PrS into a functional group; the parahippocampus. Their primary aim is then to examine these neurons as a functional group. Given that we know that neurons in these areas differ in significant ways, there is not a strong argument for doing this.

      See response to Reviewer 2.

      2) The analytical/statistical tools used are very impressive but beyond the understanding of many readers. This limits the reader's ability to understand these data in reference to the rest of the literature. There are lots of places where this applies but I will describe one specific example. As noted above the authors use a complex method to examine whether neurons are recorded on multiple consecutive occasions. This is commendable as many studies in the field do not address this issue at all and it can have a major impact as analyses of multiple samples of the same neurons are often treated as if they were independent. However, there is no illustration of the outputs of this method. It would be good to see some examples of recordings that this method classifies as clearly different across days and those which are not. Some reference to previously used methods would also help the reader understand how this new method relates to those used previously.

      We have added an additional Supplemental Figure (Figure 7 - figure supplement 1, that showcases the matching waveform approach. In the original manuscript, Fig. 7a provided an example output of the method.

      3) The effects reported are often subtle, especially at the level of the single neuron. Examples in the figures do not support the interpretations from the population-level analysis very convincingly.

      Additional plots for individual units have been added, Figure 2 - figure supplement 3. However, the effects, though small by unit, are consistent across neurons and subjects.

      The authors largely achieve their aims with an interesting behavioral task that rats perform well but not too well. This allows them to examine memory on a trial-by-trial basis and have sufficient numbers of error trials to examine how spatial representations support memory-guided behavior. They report ensemble recordings from the parahippocampus which allows them to make conclusions about information processing within this region. This aim is relatively weak though given that this collection of areas would not usually be grouped together and treated as a single unitary area. They largely achieve their aim of examining the mechanisms underlying how these neurons code task-relevant factors such as spatial location, cue, and presence of reward. The mismatch or error-induced rate remapping will be a particularly interesting target for future research. It is also likely that the analytical tools used in this study could be used in future studies.

      Reviewer #1 (Recommendations For The Authors):

      1) Typo: "attempted to addresses these challenges"

      We thank the reviewer for pointing out, this has been fixed.

      2) "classified using tuning curve based metrics" - what does "tuning curve" mean in this context?

      We have clarified this sentence in the main text.

      3) "MEC neurons encode time-elapsed" should be "MEC neurons encode time elapsed" (no hyphen)

      We thank the reviewer for pointing out, this has been fixed.

      4) "a phenomenon referred to as 'global remapping'." - I dislike this term because it has two meanings in the literature. On the one hand, it is used to contrast with rate remapping: that is, it refers to a change in the location of place fields. On the other hand, it refers to the remapping of the whole population of cells at once, as contrasted with partial remapping. I suggest calling them location remapping (vs. rate) and complete remapping (vs. partial)

      We agree that this is an overloaded term in the field. We have added 'location remapping' in the intro as a more specific term for global remapping.

      5) " tasks with no trial-to-trial predictability or experimenter-controlled cues and goals in the same environment." - ambiguously worded as it isn't clear whether the "no" refers to one or both of what follows. Also needs a hyphen after experimenter.

      We thank the reviewer for pointing out, this sentence has been reworded for clarity.

      6) " neurons changed their firing activity as a function of cue identity" - this is confounded by behavior and reward contingency, both linked to cue identity, so the statement is slightly misleading.

      We thank the reviewer for pointing this out, however, we disagree that this wording is misleading. Neurons changed their activity as a function cue identity and reward contingencies. Why neurons change their activity in such a manner is a different, more nuanced question, that we addressed through our analyses by converging on the "error" like signal that these signals seem to carry.

      7) "remapping" - I am not fully comfortable with the use of this term in this context. It derives from the original reports of change in the firing location of place cells, and the proposal that these cells form a "map" with the change in activity reflecting recruitment of a new map. With observations of rate changes in some place cells, the new term "rate remapping" was introduced, and now the authors are using "rate remapping" to mean firing rate changes in non-spatial cells. The meaning is thus losing its value. "Re-coding" might be slightly better, although we can argue about whether "code" is much better than "map"

      While we agree with the reviewer that "remapping" has been coerced into a grab-all term, these are the accepted semantics in the field. Thus, we are disinclined to change the language.

      8) Figure 1 - it would be useful to indicate somehow that one of the decision points was cued and once free choice with the random outcome - it took me a while to work this out. Also, the choice of colors for the cues needs explaining - my understanding is that rats are very insensitive to these wavelengths. And what does Pse mean? I didn't understand those scatterplots at all.

      The section "Tree-Maze behavior and electrophysiological recordings" under Results go into the details of the task. A reference and additional context for the selection of cues is now included in the "Behavioral Training" methods section. Rats possess dichromatic vision systems. Caption of Figure 1, 2 includes what Pse means, the performance of a subject for a given session. The scatter plots relate remapping to performance.

      9) Also on Figure 1 - in the examples shown, it looks like the animals always checked the two end arms in the same order. Was this position habit typical?

      We have added additional context in "Behavioral Training" methods section. Well trained rats do exhibit stereotyped behaviors (eg. going to one well then the other).

      10) "...we hypothesized that the cue remapping score would be related to a subject's performance in the task." I am struggling to see why this doesn't follow trivially from the observation that remapping occurred on error trials.

      We thank the reviewer for pointing out that this could use further clarity. We have added that the magnitude of remapping is what should relate to performance. To further clarify, remapping does not occur on error trials, remapping as operationally defined in this work, is the difference of spatial maps as a function of Cue identity or Reward contingency. Thus, as a difference metric, remapping occurs because there is a difference in activity between correct and incorrect trials. The magnitude of that difference need not relate to how the subject performed on the task.

      11) "With this approach, found that incorrect coding units were more likely to overlap between cue and RW coding units than correct." Missing "we". I didn't understand this sentence - what does "overlap" mean?

      We have added a sentence to further clarify this point.

      12) "We found that incorrect>correct activity levels on outbound trajectories predicted incorrect>correct activity levels on inbound trajectories" - I don't understand how this can be the case given that many of these units were head direction tuned and therefore shouldn't even have been active in both directions.

      As seen in Figure 7b, we were able to match 217 units across tasks. Of those, "Cluster 0" with 98 units showed strong head-direction coding. While "Cluster 0" units showed strong remapping effects, there were a lot of other units that could have contributed to the "incorrect>correct" across (out/in)-bound segments. Further, head-direction coding is defined in the Open-field environment, and there's no constraint on what these neurons could do on the Tree Maze task.

      13). " Error or mismatch signals conform a fundamental computation" - should be "perform"

      Wording slightly changed, but "conform" as in "act in accordance to" is what we intend here.

      14) " provides it with the required stiffness and chemical resistivity"- what does "chemical resistivity" mean? To what chemicals?

      This is mostly in reference to rat waste and cleaning products (alcohol). We changed the wording to durability for simplicity.

      15) Supp Fig 1 shows that behavioral performance was very distinctly different for one of the animals. Was its neural data any different? What happens to the overall effect if this animal is removed from the analysis?

      Unless otherwise stated, all analyses are performed through linear mixed effects with "subject" as a random effect. Thus, the effects of individual subjects are accounted for.

      16) Histology - it would be useful to have a line drawing from the atlas alongside the micrographs to enable easier anatomical understanding.

      There was variability in the medial lateral location of the tetrodes across animals and in the histological images provided and thus, we felt this would not be useful information as a single line drawing will not encompass/apply to all histology photos.

      17) Supp. Fig. 5/6 I didn't understand what Left, Stem, and Right mean at the top. Also, the color keys are too tiny to be noticed

      An additional sentence has been added to the caption to clarify that left, stem, right refer to what segment was selected via the ranking of scores.

      Reviewer #2 (Recommendations For The Authors):

      Was there a particular reason why cells in these regions were analyzed together? Can some of the results be tested for cells of a particular region, especially the MEC? One major limitation of these results is that it is unclear which regions it applies to, e.g., one cannot be certain that data shows here that MEC cells have these firing properties.

      Damage due to the extraction of the recording tetrode bundle was extensive and we were not able to parcelate out individual regions. We have added additional details on this in the "Histology" section of the methods.

      It is unclear how many cells in each region are included in each analysis. There is supplementary fig 3 but not sure how many of these met the criteria to be included in a certain analysis and it does not differentiate regions. Also, was any of the MUA included in the analyses?

      Isolated single units were included in all analyses, but we did not differentiate from what region each unit came from. Analyses that include MUA are separate from the main findings, and are included in supplemental figures as reference.

      Was the error trial defined as a trial when the animal did not make the right light-guided choice or did it also include cases in which the light-related arm choice was correct, but the animal first went to the unrewarded end arm? Nomenclature in the results is not explained well - what is an unrewarded trial or unrewarded trajectory or an error trial?

      We have added a new paragraph in the methods under Behavioral Training that address trial nomenclature. This methods section is now referenced twice in the initial paragraphs of the results section.

      Were any grid cells included in the data, especially could any cross-matched across the open field and the maze runs?

      This was indeed a question of interest to us, however, the number of grid-cells recorded was not adequate for meaningful statistical inference. We further sought to avoid tuning curve based functional classifications of units.

      In general, the results section is difficult to read, and its accessibility could be improved.

      We thank the reviewer for this accessibility point. We hope that the small tweaks as a product of this revision will improve the readability of the manuscript. We tried to have major takeaways for each result, but the nature of the analyses necessarily make the text somewhat dense.

      Minor:

      One of the Figure 3f references should be Figure 3g and later, Figure 44 should be corrected.

      We thank the reviewer for noting this, it has been fixed.

      Reviewer #3 (Recommendations For The Authors):

      There are a number of issues that I think could be addressed to improve the manuscript:

      1) The figure could make it clearer where the LED panel is. Are the authors confident the rats see the cue on each trial?

      We have added a new supplemental figure to address this question (Figure 1 - figure supplement 1). The new figures show the 3D geometry of the maze and the location of the Cue panel. The rats were able to see the cue, otherwise task performance would have remained at chance levels.

      2) The same maze has been used in a series of studies of hippocampal place cells by Paul Dudchenko's group. They also went on to examine how these representations are affected in a very similar cued spatial response task. These studies should be acknowledged.

      We thank the reviewer for pointing out this oversight. We have added the Ainge et al. citation ( https://doi.org/10.1523/JNEUROSCI.2011-07.2007) when first introducing the maze and in the methods.

      3) In a number of supplementary figures, the authors present neurons that are selective for different properties such as segment, cue, reward, and direction. However, the number of spatially and cue-selective cells and the criteria by which cells are designated as selective are not reported. The analyses of spatial remapping and response to cues are done at the population level so I'm not sure how these cells are classified or selected for the figures.

      The procedure for selection is included in the figure captions. Each unit is ranked based on the Uz score by segment as originally shown in Figures 2 and 4.

      4) Related to this, the example cells on the figures do not clearly represent the effects presented. For example, given the title of Figure 2, I assume that the cells in 2B significantly remap. However, they don't look like they remap - the cells in the top row show rate remapping in one segment of the maze while the cells in the bottom do not show clear rate remapping responses. I suspect that traditional rate map-based analyses using maps based on consistently sized pixels rather than large segments would show only very modest changes in correlations or rates across these different types of trials. It is important to report the findings in this way as the authors interpret their data relative to the rate-remapping studies which have used these analyses. Readers who do not have the time or expertise to examine the methods in detail will conclude that the effects reported here are the same as previous rate remapping studies which the examples suggest is not the case.

      Additional plots for individual units have been added to the supplement, Figure 2 - figure supplement 3. However, the effects, though small by unit, are consistent across neurons and subjects (Figure 2 - figure supplement 5).

      5) Why is there a bias on the stem in 2C? This is of similar size to the effect on the right size and so deserves discussion.

      The analysis in question is the across unit level bias in cue-coding by maze segment. The left segment shows elevated Right Cue coding, while the right segment shows elevated Left Cue coding. There was one reported statistical result, the main effect of segment in the Linear Mixed Effects model. We expand this result in the following two ways:

      1. Individual statistical results by segment

      a. Left Segment (Uz Coef. Estimate = 0.5, CI95%=[0.26, 0.75; p<1e-4])

      b. Stem Segment (Uz Coef. Estimate = 0.22, CI95%=[-0.01, 0.47]; p=0.06)

      c. Right Segment (Uz Coef. Estimate = -0.27, CI95%=[-0.51, -0.03], p=0.03)

      1. Reporting the joint hypothesis test of left > stem > right by unit.

      a. X2=90.45, p=2.28e-20

      b. The comparison of left>stem by unit:

      i. coefficient estimate = 0.28, CI95%=[0.11, 0.44], p=0.0008

      Although the reviewer is correct in pointing out the effect size similarity, the appropriate statistical comparisons within and across units support the stated conclusions. In terms of systematic coding bias, there is a small bias across units (60% of units) and animals (4 out 5) for the Right Cue. Although interesting, this effect is orthogonal to the comparisons of interests (within unit differences). In order to highlight this point we have added the statistics of the joint hypothesis test of left>stem>right to the main manuscript.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Response to Reviewer 1 Comments (Public Review):

      Point 1: While the authors provided a large amount of data regarding the genes involved in the TOR pathway, it is highly descriptive and mostly confirmative data, as numerous papers have already shown that the TOR pathway plays essential roles in a myriad of biological processes in multiple fungi.

      Response 1: Thank you for your comment. The target of rapamycin (TOR) signal pathway plays critical roles in various eukaryotic organisms. However, its specific role in controlling the development and virulence of opportunistic pathogenic fungi like A. flavus has remained unclear. Additionally, the underlying mechanism of the TOR pathway remains elusive in the A. flavus. As such, our study provides a useful contribution, as it is the first to comprehensively investigate the majority of genes in the conserved TOR signaling pathway in A. flavus.

      Point 2: The authors seemed to perform a series of parallel studies in several genes involved in the TOR pathway in other fungi. However, their data are not properly interconnected to understand the TOR signaling pathway in this fungal pathogen. The authors frequently drew premature conclusions from basic phenotypic observations. For instance, based on their finding that sch9 mutant showed high calcium stress sensitivity, they concluded that Sch9 is the element of the calcineurin-CrzA pathway. Furthermore, based on their finding that the sch9 mutant show weak rapamycin sensitivity and increased Hog1 phosphorylation, they concluded that Sch9 is involved in TOR and HOG pathways. To make such conclusions, the authors should provide more detailed mechanistic data.

      Response 2: Yes, we agree with the reviewer's comment. We have carefully reviewed the manuscript and made necessary revisions to eliminate arbitrary conclusions. For example, we have removed the statement that "Sch9 is the element of the calcineurin-CrzA pathway". Furthermore, we have rephrased our conclusions to better reflect our findings. "these results reflected that Sch9 regulates osmotic stress response via the HOG pathway in A. flavus"(Lines 279-280, page 13). We appreciate the reviewer's input, which has contributed to the clarity and accuracy of our work.

      Point 3: In the section "Tor kinase plays important roles in A. flavus", some parts of their data are confusing. The authors said they identified a single Tor kinase ortholog, which is orthologous to S. cerevisiae Tor2. And then, they said failed to obtain a null mutant, but constructed a single copy deletion strain delta Tor1+/Tor2-. What does this mean? Does this mean A. flavus diploid strain? So is this heterozygous TOR/tor mutant? Otherwise, does the haploid A. flavus strain they used contain multiple copies of the TOR gene within its genome? What is the real name of A. flavus Tor kinase (Tor1 or Tor2?). "tor1+/tor2-" is the wrong genetic nomenclature. What is the identity of detalTor1+/Tor2-? Please provide detailed information on how all these mutants were generated. A similar issue was found in the analysis of TapA, which is speculated to be essential (what is the deltaTapA1+/TapA2-?). I couldn't find any detailed information even in Materials and Methods. The authors should provide southern blot data to validate all their mutants.

      Response 3: Thank you for your comments. We acknowledge the confusion in our presentation and will ensure that accurate genetic nomenclature is used consistently throughout the paper.

      In response to your queries, we have included a section in the Materials and Methods, titled "Detection of tor and tapA genes copy number in strains" (Lines 615-621, page 29), to provide details on how we determined the copy numbers of the tor and tapA genes in the strains. Our findings revealed that both the tor and tapA genes are present in double copies in our strains, which guided our decision to construct single-copy deletion strains using homologous recombination. We have verified these copy numbers using absolute quantification PCR (Table S1).

      The use of the abbreviation '+/-' for the single copy knockout strains, such as tor+/- and tapA+/-, is consistent with common fungal literature practice. We apologize for any confusion caused by this nomenclature.

      Although we did not employ southern blot data for validation, we conducted PCR and gene sequencing to confirm the mutants. We appreciate your comments to improve the clarity and accuracy of our manuscript.

      Point 4: How were the FRB domain deletion mutants constructed? If the FKBP12-rapamycin binding (FRB) domain is specifically deleted in the Tor kinase allele, should it be insensitive and resistant to rapamycin? However, the authors showed that the FRB domain deleted TOR allele was indeed non-functional.

      Response 4: We appreciate the reviewer's attention to the construction of the Fkbp12-rapamycin binding (FRB) domain deletion mutants and the discrepancy between the expected and observed results.

      For the knockout of the FRB domain, we used the homologous recombination method, but because tor genes are double-copy genes, there are also double copies in the FRB domain. Despite our efforts, we encountered challenges in precisely determining the location of the other copy of the tor gene.

      We speculate the common expectation that the deletion of the FRB domain should result in insensitivity and resistance to rapamycin, as it disrupts the binding site for Fkbp-rapamycin. However, we observed that the FRB domain-deleted mutant was more sensitive to rapamycin. This intriguing result suggests that there are additional factors or complexities involved in TOR signaling pathway regulation in A. flavus. We hypothesize that this result is related to the double copy of the tor gene. The reviewer's keen observation and comment have contributed to our efforts to better understand and explain this intriguing result.

      Point 5: In Figure 4C, the authors should monitor Hog1 phosphorylation patterns under stressed conditions, such as NaCl treatment, and provide quantitative measurements. Similar issues were found in the western blot analysis of Slt2 (Fig. 8D).

      Response 5: We agree with the reviewer that we should monitor Hog1 phosphorylation patterns under stressed conditions. In response to this valuable suggestion, we conducted additional experiments to examine Hog1 phosphorylation patterns under NaCl treatment for 30 minutes. The quantitative measurements of Hog1 phosphorylation levels under stress have been added to Figure 4E in the revised manuscript. Similarly, we have addressed the issue raised regarding Slt2 in Figure 8D.

      Point 6: For all the deletion mutants generated in this study, the authors should generate complemented strains to validate their data.

      Response 6: We appreciate the reviewer's suggestion to generate complemented strains for all the deletion mutants in our study to validate our data. However, due to the extensive number of genes involved in this research, it is hard to create complemented strains for each individual deletion mutant. As suggested by the reviewer, we have constructed complemented strains for several key deletion mutants, such as ΔsitA-C and Δppg1-C.

      Response to Reviewer 1 Comments (Recommendations For The Authors):

      Point 1: Overall, this manuscript was very poorly organized and not presented logically. It requires extensive English language editing.

      Response 1: We appreciate the reviewer's feedback regarding the organization and language quality of our manuscript. To address these concerns, we have restructured the manuscript to improve its logical flow and coherence. We thank the reviewer for their constructive criticism, which has been instrumental in the manuscript's refinement.

      Point 2: The authors did not present their figures in the order of description. For example, the authors suddenly described Figure 9A data in lines 128-130 in the middle of describing Figure 1. Furthermore, Figures 1D and 1F were described earlier than Figures 1B and 1C. In addition, Figure S2 was shown earlier than Figure S1. Please check this throughout the manuscript.

      Response 2: We thank the reviewer for their insightful observation. We acknowledge the importance of a logical and coherent figure sequence for reader comprehension. After careful review, we have rearranged the text and images throughout the entire document to enhance the reading experience. The revised manuscript now presents figures in a consistent and logical order, following the sequence of descriptions. We believe this improvement will enhance the overall readability and comprehension of our research.

      Point 3: The authors should follow the standard genetic nomenclature rules.

      Response 3: Thank you for your suggestion. We have revised our manuscript to ensure that we are following the standard genetic nomenclature rules throughout. This includes the correct naming of genes, proteins, and mutations, as well as the use of appropriate italicization and formatting. We follow the rules: gene symbols are typically composed of three lowercase italicized letters, while protein symbols are not italicized, with an initial capital letter followed by lowercase letters.

      Point 4: These are just a few examples. Besides the ones that I mentioned, I found numerous grammatically wrong or awkward sentences throughout the manuscript. So this manuscript requires extensive English proofreading.

      Response 4: We apologize for the problem of our manuscript. We have asked an English native speaker to enhance the overall language quality and readability of the text. We believe that these improvements will significantly enhance the manuscript's overall quality and make it more accessible to a broader audience.

      Response to Reviewer 2 Comments (Public Review):

      Point 1: However, findings have not been deeply explored and conclusions mostly are based on parallel phenotypic observations. In addition, there are some concerns that exist surrounding the conclusions.

      Response 1: We are grateful for the suggestion. We conduct additional experiments and analyses to delve more deeply into our findings and ensure a more robust basis for our conclusions.

      Response to Reviewer 2 Comments (Recommendations For The Authors):

      Point 1: Verification for mutants: a single copy deletion strain ΔTor1+/Tor2(containing one copy of the Tor gene), however, in the table of strain list, it seems like null mutants. There are no further verifications for relative genes' expression and no complementary strains.

      A. Flavus ΔTor: Δku70; ΔniaD; ΔTor::pyrG

      A. Flavus ΔTapA Δku70; ΔniaD; ΔTapA::pyrG

      As described in pp208, "While we failed to obtained a null mutant, we constructed a single copy deletion strain ΔTor1+/Tor2- (containing one copy of the Tor gene) constructed by homologous recombination)"? But the authors think there was only one Tor kinase ortholog (AFLA_044350). It is hard to understand for this mutant What is the evidence to verify phenotypes of the ΔTor1+/Tor2- strain resulted from deletion of Tor2, no detail for how to make ΔTor1+/Tor2- strain.

      Response 1: Thank you for your important comments and suggestion. We apologize for the confusion caused by genetic nomenclature. We make the necessary corrections in the table of strain lists to accurately reflect the genotypes of the strains (Table S3).

      Multicopy variation of genes has not been explored in detail in fungi, especially in A. flavus, but is a commonly known phenomenon in mammalian genomes[1-2]. In yeast, the presence of two tor genes, tor1 and tor2, whereas in higher eukaryotes such as plants, animals, and filamentous fungi, there is only one tor gene[3-4]. The homology comparison results show that the genome of A. flavus contains only one tor gene. However, the tor gene in A. flavus exhibited varying copy numbers, as was confirmed by absolute quantification PCR at the genome level (Table S1).

      In this study, we constructed a single copy deletion strain, tor+/-, through homologous recombination. This strain contains one copy of the tor gene. We provide a more detailed and explicit description of the methods used to detect of the genes copy number in strains (Lines 615-621, page 29). We thank the reviewer for pointing out these important issues.

      Point 2: For a point mutant strain TORS1904L, they found that the sensitivity to rapamycin is consistent with the WT strain, it could not tell anything. It should be moved to Suppl.

      Response 2: Thanks for your important comments. We acknowledge that these results may not provide significant insights. In response to this suggestion, we delete the data related to the TORS1904L point mutant strain and its sensitivity to rapamycin to ensure that the main manuscript focuses on the most pertinent and informative findings. Corresponding modifications have been made in the revised manuscript.

      Point 3: For subtitle "Sch9 is correlate with the HOG and TOR pathways "What is the meaning for "correlate" similarly?

      Response 3: Thank you for this comment. We apologize for the unclear wording. To enhance clarity, we revise the subtitle to more explicitly convey this conclusion, for example, "The Sch9 kinase is involved in aflatoxin biosynthesis and the HOG pathway". (Lines 242, page 12).

      Point 4:for the ΔTapA 1+/TapA 2- strain (containing one copy of the TapA gene). It should have the complementary strain to verify the specific role of TapA. In FigS1B, ΔTOR and ΔTapA it could not tell TOR gene has been edited. Did you test mRNA of TOR gene?

      Response 4: Thanks for your important comments. Due to the large number of genes involved, we did not perform a complementation experiment. However, we used PCR and sequencing to verify the editing of our gene. Additionally, we conducted copy number and mRNA analyses to verify its function. The transcriptional level of the tor gene in the tor+/- mutant was downregulated compared to the level in the wild-type strain (Fig. S6).

      Response to Reviewer 3 Comments (Public Review):

      Point 1: As for many results, I miss the re-complementation of the created mutants throughout the manuscript. This is standard praxis.

      Response 1: Thanks for your suggestions. We acknowledge that re-complementation is a standard practice for validating the effects of gene deletions. However, due to the large number of genes involved in our study, we have performed supplementary experiments on a selection of them, such as ΔsitA-C and Δppg1-C. We are grateful to the reviewer for your understanding of this practical consideration.

      Point 2: Fig. 1: cultures were grown for 48 h before measuring the transcript level. The authors show that brlA, abaA, and some sexual regulators are less expressed. In my opinion, this does not allow the conclusion that there is a direct control through rapamycin. Since the colonies grow very slowly in the presence of rapamycin, the authors should add rapamycin and follow gene expression after 15, 30, 60, 90 min. The figure legend needs to be more detailed. Which type of cultures were used, liquid, solid medium? Etc.

      Response 2: We deeply appreciate the reviewer’s suggestion. Since we found that there were no significant differences in gene expression changes following shorter treatment times, we extended the treatment duration. We conduct additional experiments to examine the gene expression levels at longer time intervals (3, 6, and 9 h) after the addition of rapamycin (Figure 1H-1J). These time points allow us to capture the dynamic changes in gene expression in response to rapamycin more effectively. Additionally, we enhance the figure legend to provide a more comprehensive description that specifies the type of cultures used in the experiments.

      Point 3: Why in chapter one Fig. 9 is already cited? Those data should then be included in Fig. 1 for the general phenotype.

      Response 3: Thank you for the suggestion. We have reordered the figures in the updated version of the manuscript to ensure that the data for consistent and clarity.

      Point 4: The authors wrote that radial growth and conidiation were gradually reduced with increasing rapamycin concentrations. This is not true. There is no gradient! However, it should be tested if there is a gradient if lower concentrations are used. The current data imply that there is a threshold concentration, so either there is 100 % growth or a reduction to 25 %. This looks strange.

      Response 4: Thank you for underlining this deficiency. We agree that a threshold concentration versus a gradient is an important distinction that needs to be clarified. Our results show that the addition of excessive quantities of rapamycin does not increase the inhibition of A. flavus growth. As the concentration of the FK506 drug increases, there is a gradual decrease in the growth and cell production of A. flavus. This phenomenon could potentially be attributed to varying mechanisms of action exhibited by the drugs. Therefore, we have revised these confused sentences. ( Lines 120-121, Page 5)

      Point 1: There are many wrong spellings:

      Fig. 1. Before washed, before washing; RelaTEtive gene expERSion should read relative gene expression. Sclerotial should be sclerotia. See also Fig. 5 F, H, Fig. 6 E. 6D colon diameter should be colony diameter.

      Fig. 4E. The expressED level... should read Expression level..... (also without article) Also in A, F, H.

      Fig. 6C. TLC detection of WT.... The authors mean AF detection in extracts of WT..... AF was extracted and analyzed by TLC.....

      Labelling of axes in one figure should be uniform.

      Response 1: Thank you for your reminder. We apologize for the oversights, and we carefully address and correct all the mentioned spelling issues to ensure the accuracy and clarity of the manuscript.

      Point 2: If the authors refer to the genes, I think they should be in small letters and italics, if it is the protein, the first letter should be capitalised tap1 (italics) and Tap1.

      Response 2: We appreciate this suggestion. We have carefully checked the entire manuscript and revised follow the standard genetic nomenclature rules. We follow the naming conventions for microbial genes and proteins, where gene symbols are typically composed of three lowercase italicized letters, and protein symbols are not italicized, with an initial capital letter followed by lowercase letters.

      Point 3: Very often articles are used where I would not use them.

      Response 3: Thanks for your careful checks. We are sorry for our carelessness. Based on your comments, we have made the corrections to make the articles harmonized within the whole manuscript. We value the reviewer's feedback, which will contribute to the overall quality of our writing.

      References:

      [1] Handsaker R, Van Doren, V, Berman, J. et al. Large multiallelic copy number variations in humans. Nat Genet 47, 296–303 (2015).

      [2] Wang Y, Wang S, Nie X. et al. Molecular and structural basis of nucleoside diphosphate kinase-mediated regulation of spore and sclerotia development in the fungus Aspergillus flavus. J Biol Chem. 2019 Aug 16;294(33):12415-12431.

      [3] Kim DH, Sarbassov DD, Ali SM, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002; 110(2): 163-75.

      [4] Fu L, Liu Y, Qin G, et al. The TOR-EIN2 axis mediates nuclear signalling to modulate plant growth. Nature. 2021; 591(7849): 288-292.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Thank you for submitting your article "New genetic tools for mushroom body output neurons in Drosophila" for consideration by eLife. Your article has been reviewed by 2 peer reviewers, and the assessment has been overseen by a Reviewing Editor and Albert Cardona as the Senior Editor.

      eLife assessment:

      This work advances on two Aso et al 2014 eLife papers to describe further resources valuable for the field. This paper adds more MBON split-Gal4s convincingly describing their anatomy, connectivity and function.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this manuscript Rubin and Aso provide important new tools for the study of learning and memory in Drosophila. In flies, olfactory learning and memory occurs at the Mushroom Body (MB) and is communicated to the rest of the brain through Mushroom Body Output Neurons (MBONs). Previously, typical MBONs were thoroughly studied. Here, atypical MBONs that have dendritic input both within the MB lobes and in adjacent brain regions are studied. The authors describe new cell-type-specific GAL4 drivers for the majority of atypical MBONs (and other MBONs) and using an optogenetic activation screen they examined their ability to drive behaviors and learning.

      The experiments in this manuscript were carefully performed and the results are clear. The tools provided in this manuscript are of great importance to the field.

      Reviewer #2 (Public Review):

      In this study, Aso and Rubin generated new split-GAL4 lines to label Drosophila mushroom body output neurons (MBONs) that previously lacked specific GAL4 drivers. The MBONs represent the output channels for the mushroom body (MB), a computational center in the fly brain. Prior research identified 21 types of typical MBONs whose dendrites exclusively innervate the MB and 14 types of atypical MBONs whose dendrites also innervate brain regions outside the MB. These MBONs transmit information from the MB to other brain areas and form recurrent connections to dopaminergic neurons whose axonal terminals innervate the MB. Investigating the functions of the MBONs is crucial to understanding how the MB processes information and regulates behavior. The authors previously established a collection of split-GAL4 lines for most of the typical MBONs and one atypical MBON. That split-GAL4 collection has been an invaluable tool for researchers studying the MB. This work extends their previous effort by generating additional driver lines labeling the MBON types not covered by the previous split-GAL4 collection. Using these new driver lines, the authors also activated the labeled MBONs using optogenetics and assessed their role in learning, locomotion, and valence coding. The expression patterns of the new split-GAL4 lines and the behavioral analysis presented in this manuscript are generally convincing. I believe that these new lines will be a valuable resource for the fly community.

      Recommendations for the authors:

      Minor additional suggestions:

      1. Please ensure that the FlyLight links are provided for the new splitGal4s in the methods as well as results.

      We added the requested link to the methods.

      1. Correct a typo in 'ethyl lactate in the learning assays section of methods

      corrected

      Reviewer #1 (Recommendations For The Authors):

      In the behavior assay, the authors use the same flies that were used for optogenetic olfactory conditioning and memory tests, to also examine the effects of activation in the absence of odors but with airflow. I think this may affect the interpretation of the results. If possible, it would be nice to show in the MBON types where a conditioning effect was found (i.e. MBON21, 29, 33) that performing the activation in the absence of odors but with airflow without previous conditioning yields the same results.

      We share the reviewers concern that behavioral phenotypes during the later 10s LED sessions may be compromised by early optogenetic olfactory conditioning. Therefore, prior to running the experiment shown in Figure 2, we confirmed that the activation phenotypes of three positive control lines (MB011B and SS40755) could be observed after olfactory conditioning sessions. We added this data as Figure 2-figure supplement 2. For SS75200 and SS77383, a split-GAL4 driver for MBON33, we observed a loss of activation phenotype in the second trial of LED ON/OFF binary choice assay (Figure 3H). Therefore, we reran the 10s LED activation experiments without a previous optogenetic olfactory conditioning assay; these data are now also included in Figure 2-figure supplement 2.

      Reviewer #2 (Recommendations For The Authors):

      Below, I list some comments and suggestions which I hope could help the authors further improve their manuscript.

      1. The authors identified 2 candidate lines for MBON28. It would be helpful if they could clarify how they determined whether a split-GAL4 correctly labels an MBON or is just a candidate line.

      We have added in the methods section an explanation of the criteria used.

      “The correspondence between the morphologies of EM skeletons and light microscopic images of GAL4 driver line expression patterns was used to assign GAL4 lines to particular cell types. This can be done with confidence when there are not multiple cell types with very similar morphology. However, in the case MBON28 we were not able to make a definitive assignment because of the similarity in the morphologies of MBON16, MBON17 and MBON28.”

      1. The authors have previously shown that the expression pattern of a GAL4 driver is strongly influenced by the reporter used. The expression patterns of the split-GAL4 lines in this study are based on 20XUAS-Chrimson-mVenus trafficked (attp18), the expression strength of which may differ from other reporters or effectors. I suggest that the authors discuss this potential caveat in their manuscript. This will allow readers to be more cautious and check the expression patterns with their own reporters/effectors when using these new split-GAL4 lines.

      We added the sentences below to address this concern.

      “The expression patterns shown in this paper were obtained using an antibody against GFP which visualizes expression from 20xUAS-CsChrimson-mVenus in attP18. Directly visualizing the optogenetic effector is important since expression intensity, the number of labeled MBONs and off-targeted expression can differ when other UAS-reporter/effectors are used (for an example, see Figure 2—figure supplement 1 of Aso et al., 2014a).”

      1. For the kinematic parameters in Fig. 2C, it is important to also show the baseline value of the parameters (i.e., the value before the light stimulation). For example, if a group of flies moves slower during the baseline period, their slower speed during the light-on period may not be due to MBON activation.

      Figure 2 has been revised to include the z-scores for the 2s period just before turning on LED. The source data includes the parameter values used to calculate z-scores.

      1. For Methods and Materials, the authors mostly refer to previous papers or websites for details. However, it would be helpful if they could include in this manuscript key information essential for repeating their experiments, such as the reporter/effector transgenes, empty-split controls, and antibodies and their working concentrations. It would also be helpful if they could provide the manufacturers and catalog numbers for the reagents used in this study.

      We have added Appendix 1- Key Resource Table to list all the key reagents.

      1. The original studies that identified the reward or punishment dopaminergic neurons mentioned in this manuscript should be cited.

      We have added the following citations:

      “Total number of synaptic connections from each MBON type to DANs and OANs. Based on the valence of memory when activation of DANs is used as unconditioned stimulus in olfactory conditioning (Aso et al., 2012, 2010; Aso and Rubin, 2016; Claridge-Chang et al., 2009; Huetteroth et al., 2015; Ichinose et al., 2015; Lin et al., 2014; Liu et al., 2012; Yamada et al., 2023; Yamagata et al., 2016, 2015)”

    1. Author Response

      The following is the authors’ response to the original reviews.

      Response to comments of editor/s:

      • With regard to the comments on nonavailability of representative images/videos for Figures 1 A and B, in the revised manuscript we have added a representative video of GFP (-) and GFP (+) tracks in Supplemental video 1.

      Response to comments of reviewer 2:

      • With respect to the concern on figure 1, we have changed ‘% CD4+ T cell Migration’ to ‘% Proportion CD4+ T cell migration’ in Figures 1D & 1E in the revised manuscript. We also labelled the upper and lower panels of Figure 1I as ‘Untreated’ and ‘SDF1α’ respectively.

      Response to comments of reviewer 1:

      • With regard to the concern that ‘The transfection alone with siRNA may cause the lack of polarity’, we have added comparison of 2D migration MSD between control EGFP siRNA and Piezo1 siRNA-transfected CD4+ T cells as Supplementary Figure 1E.

      • We have added new references as ref 42 and 43, with respect to PIEZO1 association with focal adhesions.

      • With regard to the concerns around co-localization of Piezo1 and focal adhesions, we have added a representative image of Piezo1 and pFAK co-localization upon treatment of chemokine in revised Supplementary Fig. 3C. We have also used an additional focal adhesion marker, paxillin, to show that focal adhesion formation is not affected by Piezo1 KD (Revised Fig. 3E-3H). Upon comparing the mean pFAK and paxillin intensities, we observed no difference in Control and Piezo1 KD CD4+ T cells (Supplementary Figs. 3A, B).

      • All the minor concerns and suggestions have been taken care of in the revised manuscript.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The manuscript is very-well written. Although the study is well-conducted the authors should be more convincing on how bacteria residing in tissues do not induce death. The association with IL-10 cytokine production appears weak and more experiments are needed to make it more robust

      Reviewer #2 (Public Review):

      Iske et al. provide experimental data that NAD+ lessens disease severity in bacterial sepsis without impacting on the host pathogen load. They show that in macrophages, NAD+ prevents Il1b secretion potentially mediated by Caspase11.

      While the in vivo and in vitro data is interesting and hints towards a crucial role of NAD+ to promote metabolic adaptation in sepsis, the manuscript has shortcomings and would profit from several changes and additional experiments that support the claims.

      Conceptually, the definition of sepsis is outdated. Sepsis is not SIRS, as in sepsis-2. Sepsis-3 defines sepsis as infection-associated organ dysfunction. This concept needs to be taken into account for the introduction and when describing the potential effects of NAD+ in sepsis. Also, LPS application cannot be considered a sepsis model, since it only recapitulates the consequence of TLR-4 activation. It is a model of endotoxemia. Also, the LPS data does not allow to draw conclusions about bacterial clearance (L135).

      The authors state that protective effects by NAD were independent of the host pathogen load. This clearly indicates that NAD confers protection via enhancing a disease tolerance mechanism, potentially via reducing immunopathology. This aspect is not considered by the authors. The authors should incorporate the concept of disease tolerance in their work, cite the relevant literature on the topic and discuss it their findings in light of the published evidence for metabolic alteration sand adaptations in sepsis.

      For the in vitro data, the manuscript would benefit from additional experiments using in vitro infection models.

      In the merge manuscript, the authors provide two different versions of the figures. In one, bar plots are shown without individual data and in the other with scatter blots. All bar plots need to be provided as scatter plots showing individual values.

      The authors should show further serology data for kidney and liver failure etc. as well as further cytokine data such as IL-6 and TNF to better characterize their models.

      Careful revision of the entire manuscript, the figure legends and figures is required. The figure legend should not repeat the methods and materials section. The nomenclature for mouse protein and genes needs to be thoroughly revised.

      L350. The authors write that they dissect the capacity of NAD+ to dampen auto- and alloimmunity. In this work, no data that supports this statement is shown and experiments with autoantigens or alloantigens are not performed.

      L163 The authors describe pyroptosis but in the figure legend call it apoptosis. Specific markers for each cell death should be measured and determined which cell death mechanisms is involved.

      Animal data comes from an infection model and LPS application. The RNAseq data is obtained from cells primed with Pam3CSK4 and subsequently subjected to LPS. It is unclear how the cell culture model reflects the animal model. As such the link between IFN signaling and the bacterial infection/LPS model are not convincing and need to be further elaborated.

      Figure 5: It is unclear how many independent survival experiments were done, how many mice per group were used and whether the difference between groups was statistical significant. This information should be added.

      Further experiments with primary cells from Il10 k.o. and Caspase11 k.o. animals should be provided that support the findings in macrophages.

      Author Response:

      Reviewer #1 (Public Review):

      “The manuscript is very-well written. Although the study is well-conducted the authors should be more convincing on how bacteria residing in tissues do not induce death. The association with IL-10 cytokine production appears weak and more experiments are needed to make it more robust.”

      Thank you very much for your thoughtful and constructive feedback on our manuscript. We appreciate your positive assessment of the writing quality and the acknowledgment of the wel-lconducted nature of the study.

      In regard to the reviewer's comment that "The association with IL-10 cytokine production appears weak," we would like to provide a comprehensive response based on the findings and insights presented in our study (Fig 5). We would like to emphasize several key points to further elucidate this association:

      The established knowledge underscores IL-10's capacity to hinder the activation and proliferation of macrophages, thereby safeguarding against an overly aggressive immune-inflammatory reaction (as referenced). In our earlier investigations, we demonstrated that NAD+ orchestrates a systemic generation of IL-10, which assumes a pivotal function in curtailing proinflammatory responses across various conditions, such as autoimmune diseases (as referenced), alloimmunity (as referenced), and bacterial infections (as referenced). In our latest research, we divulge that the introduction of NAD+ leads to an elevated occurrence of IL-10-producing CD4+ T cells, CD8+ T cells, and macrophages, although not dendritic cells (depicted in Figure 5B and C). Furthermore, our comprehensive analyses have substantiated that NAD+ administration thwarts pyroptosis by specifically targeting the non-canonical inflammasome pathway. Intriguingly, our in vitro outcomes suggest that the neutralization of the autocrine IL-10 signaling pathway through a neutralizing antibody and an IL-10 receptor antagonist partially reverses the NAD+-mediated blockage of pyroptosis. These in vitro results imply that NAD+ induces the production of IL-10 cytokines by macrophages, contributing to the suppression of pyroptosis. To corroborate our in vitro conclusions, we employed IL-10 knockout mice and wild-type mice, both treated with either NAD+ or a placebo solution. The wild-type mice treated with NAD+ displayed a survival rate exceeding 80%, whereas the IL-10 knockout mice exhibited a survival rate of "only" 40%. These in vivo findings align with our in vitro discoveries, underscoring the crucial role of NAD+mediated IL-10 cytokine production in impeding pyroptosis through NAD+ and shielding against septic shock. Drawing from our prior and current investigations, we respectfully disagree with the reviewer's characterization of our work as "weak."

      Recommendations for the authors

      ‘’I suggest that animals subject to E. coli infection need to be followed-up for longer and sacrificed at a later time points. It is too difficult to believe that mice are surviving with full resting bacteria in tissues. Do results suggest a full shut-down of the mechanism? What was the level of infiltration of the tissues by neutrophils?’’

      ‘’I have difficulty to agree with the survival results of the IL-10(-/-) mice of Figure 5E. Can the authors provide the p-values and follow-up for longer? Why the WT and the IL-10(-/-) mice survive the same?’’

      Thank you for your thoughtful and constructive comments on our manuscript. We appreciate your valuable insights, and we have carefully considered your suggestions.

      We thank the reviewers for this comment. We have indeed followed-up for a longer period of time mice subjected to E. Coli infection and LPS (54mg/kg). Mice infected and treated with NAD+ survived for several months and recovered fully after 10 days. Mice survived for at least a year following infection. We have now included a sentence regarding the long-term survival in the results section of Figure 1 entitled “NAD+ protects mice against septic shock not via bacterial clearance but via inflammasome blockade”. Figure illustrating the level of infiltration of the tissues by neutrophils was added in supplementary data as supplementary figure 4.

      In contrast, WT and IL-10-/- mice failed to withstand E. Coli or LPS (54mg/kg) administration when treated with a placebo solution. To our knowledge, our investigation represents the pioneering instance of successfully conferring protection against the lethal doses of E. Coli and LPS administered to animals. Considering the potent immunosuppressive nature of IL-10, our anticipation was that IL-10-/- mice would manifest an exacerbated inflammatory response subsequent to LPS administration, in contrast to WT mice. Our in vivo findings indeed corroborate this assumption, revealing that IL-10-/- mice succumbed more swiftly to LPS administration, displaying statistically significant disparities in survival rates compared to WT mice (p value of 0.0154). The pertinent p-value has been thoughtfully included in Figure 5E of our study.

      Reviewer #2 (Public Review):

      “Iske et al. provide experimental data that NAD+ lessens disease severity in bacterial sepsis without impacting on the host pathogen load. They show that in macrophages, NAD+ prevents Il1b secretion potentially mediated by Caspase11.

      While the in vivo and in vitro data is interesting and hints towards a crucial role of NAD+ to promote metabolic adaptation in sepsis, the manuscript has shortcomings and would profit from several changes and additional experiments that support the claims.

      Conceptually, the definition of sepsis is outdated. Sepsis is not SIRS, as in sepsis-2. Sepsis-3 defines sepsis as infection-associated organ dysfunction. This concept needs to be taken into account for the introduction and when describing the potential effects of NAD+ in sepsis. Also, LPS application cannot be considered a sepsis model, since it only recapitulates the consequence of TLR-4 activation. It is a model of endotoxemia. Also, the LPS data does not allow to draw conclusions about bacterial clearance (L135).

      The authors state that protective effects by NAD were independent of the host pathogen load. This clearly indicates that NAD confers protection via enhancing a disease tolerance mechanism, potentially via reducing immunopathology. This aspect is not considered by the authors. The authors should incorporate the concept of disease tolerance in their work, cite the relevant literature on the topic and discuss it their findings in light of the published evidence for metabolic alteration sand adaptations in sepsis.

      For the in vitro data, the manuscript would benefit from additional experiments using in vitro infection models.

      In the merge manuscript, the authors provide two different versions of the figures. In one, bar plots are shown without individual data and in the other with scatter blots. All bar plots need to be provided as scatter plots showing individual values.

      The authors should show further serology data for kidney and liver failure etc. as well as further cytokine data such as IL-6 and TNF to better characterize their models.

      Careful revision of the entire manuscript, the figure legends and figures is required. The figure legend should not repeat the methods and materials section. The nomenclature for mouse protein and genes needs to be thoroughly revised.

      L350. The authors write that they dissect the capacity of NAD+ to dampen auto- and alloimmunity. In this work, no data that supports this statement is shown and experiments with autoantigens or alloantigens are not performed.

      L163 The authors describe pyroptosis but in the figure legend call it apoptosis. Specific markers for each cell death should be measured and determined which cell death mechanisms is involved.

      Animal data comes from an infection model and LPS application. The RNAseq data is obtained from cells primed with Pam3CSK4 and subsequently subjected to LPS. It is unclear how the cell culture model reflects the animal model. As such the link between IFN signaling and the bacterial infection/LPS model are not convincing and need to be further elaborated.

      Figure 5: It is unclear how many independent survival experiments were done, how many mice per group were used and whether the difference between groups was statistical significant. This information should be added.

      Further experiments with primary cells from Il10 k.o. and Caspase11 k.o. animals should be provided that support the findings in macrophages.”

      Thank you for taking the time to review our manuscript. We appreciate your insightful comments and valuable feedback regarding our study on the role protective role and underlying mechanisms of NAD+ in septic shock.

      “While the in vivo and in vitro data is interesting and hints towards a crucial role of NAD+ to promote metabolic adaptation in sepsis, the manuscript has shortcomings and would profit from several changes and additional experiments that support the claims.”

      We would like to point out that our current study does not underscore a metabolic adaptation in sepsis but more an immune regulation and a specific blockade of the non-canonical inflammasome signaling machinery.

      “Conceptually, the definition of sepsis is outdated. Sepsis is not SIRS, as in sepsis-2. Sepsis-3 defines sepsis as infection-associated organ dysfunction. This concept needs to be taken into account for the introduction and when describing the potential effects of NAD+ in sepsis. Also, LPS application cannot be considered a sepsis model, since it only recapitulates the consequence of TLR-4 activation. It is a model of endotoxemia. Also, the LPS data does not allow to draw conclusions about bacterial clearance (L135).”

      Our study uses highly lethal doses of E. Coli or LPS. These doses have been shown to result in multiple organ failure (1, 2). For many decades until now an un-numerable number of studies have used LPS as a model of sepsis (3, 4, 5). We have used LPS animal model based on a study published in 2013 by Kayagaki et al. (1), where the authors reported a novel TLR4-independent mechanism but mediated via activate caspase-11. We used the same animal model to demonstrate the specific role of NAD+ in targeting this TLR4-independent mechanism but mediated via activate caspase-11 and underscore NAD+’s mode of protection.

      Moreover, we have not only used LPS but bacterial infection as well using E. Coli. We have also previously published an additional research article demonstrating the protective effect against Listeria Monocytogenes (6). The only model we currently did not use in our current study, is a cecal ligation puncture (CLP) model which is also another common animal model for sepsis.

      Our conclusions regarding bacterial clearance are based not only on LPS results but also based on the bacterial load measurement and survival (Figure 1B&C) following E. Coli administration in different tissues (kidney and liver) and not LPS.

      “The authors state that protective effects by NAD were independent of the host pathogen load. This clearly indicates that NAD confers protection via enhancing a disease tolerance mechanism, potentially via reducing immunopathology. This aspect is not considered by the authors. The authors should incorporate the concept of disease tolerance in their work, cite the relevant literature on the topic and discuss it their findings in light of the published evidence for metabolic alteration sand adaptations in sepsis.”

      We respectfully disagree with the reviewer’s comment and do not believe that NAD+ enhances disease tolerance. We have supporting data indicating that NAD+ mediates protection via a specific blockade of the non-canonical inflammasome pathway, which prevents an over-zealous immune response that results in organ damage and multiple organ failure (MOF). Moreover, we demonstrate that not only NAD+ mediates protection via a specific blockade of the non-canonical inflammasome pathway but prevents septic shock induced death by an additional immunosuppression mediated by the systemic production of IL-10.

      Both Caspase-11 and IL-10 pathways are crucial in NAD+ mediated protection against lethal doses of E. Coli and LPS administration. Figure 5A indicates that caspase-11-/- mice treated with PBS have a modest survival rate (~40% survival) when compared to the group of mice treated with NAD+ (>80% survival). These data indicate that NAD+ promotes survival via a caspase-11independent mechanism. Similarly, wild type mice subjected to NAD+ administration exhibited >80% survival, while NAD+ administration to IL-10-/- mice resulted only in a 40% survival rate. Based on these findings, we believe that NAD+ mediated protection against septic shock via a blockade of caspase-11 blockade and by IL-10 cytokine production that dampened the overzealous immune response rather than a disease tolerance.

      “For the in vitro data, the manuscript would benefit from additional experiments using in vitro infection models.”

      In the current study we have used two in vivo models using LPS and E. Coli a gram-negative bacterium. We have also previously reported the protective role of NAD+ in the context of Listeria Monocytogenes (6) a gram-positive bacterium. In the current study, our aim was to demonstrate the inhibitory role of NAD+ on the non-canonical pathway specifically. We believe that additional in vitro experiments for this study are out of scope.

      “In the merge manuscript, the authors provide two different versions of the figures. In one, bar plots are shown without individual data and in the other with scatter blots. All bar plots need to be provided as scatter plots showing individual values.”

      As requested by reviewer #2 all bar plots are now provided as scatter plots showing individual values.

      “The authors should show further serology data for kidney and liver failure etc. as well as further cytokine data such as IL-6 and TNF to better characterize their models.”

      We did not perform further serology analysis, but we did measure IL-6 and TNFα in mice treated with NAD+ or PBS. Mice treated with NAD+ had a reduced systemic level of both cytokines IL-6 and TNFα. We have now added the figures (Figure 1F). In addition, we performed a long-term survival, and all mice treated with NAD+ recovered fully after 10 days and survived over a year after infection. In addition, the mice that survived following NAD+ treatment died of old age.

      “Careful revision of the entire manuscript, the figure legends and figures is required. The figure legend should not repeat the methods and materials section. The nomenclature for mouse protein and genes needs to be thoroughly revised.”

      A Careful revision of the entire manuscript has been performed.

      “L350. The authors write that they dissect the capacity of NAD+ to dampen auto- and alloimmunity. In this work, no data that supports this statement is shown and experiments with autoantigens or alloantigens are not performed.”

      We thank the reviewer for this comment. We have now re-phrased our last sentence in the discussion and included references for our previous work. We have now stated:” We have previously reported that NAD+ administration can block auto- (7) and allo-immunity (8) via IL10 cytokine production. Here, we unveiled the capacity of NAD+ to protect against sepsisinduced death via a specific blockade of the non-canonical inflammasome pathway and a robust immunosuppression mediated by IL-10 cytokine production.

      L163 The authors describe pyroptosis but in the figure legend call it apoptosis. Specific markers for each cell death should be measured and determined which cell death mechanisms is involved.

      We thank the reviewer for this comment. We have focuses on pyoptosis-mediated cell death and not apoptosis. We have now replaced the term “apoptosis” by “pyroptosis-mediated to cell death”.

      “Animal data comes from an infection model and LPS application. The RNAseq data is obtained from cells primed with Pam3CSK4 and subsequently subjected to LPS. It is unclear how the cell culture model reflects the animal model. As such the link between IFN signaling and the bacterial infection/LPS model are not convincing and need to be further elaborated.”

      Our findings, depicted in Figure 3, pertain exclusively to in vitro investigations rather than in vivo examinations. Our research has demonstrated the selective inhibition of the non-canonical inflammasome pathway by NAD+, with a primary focus on unraveling the specific signaling pathway influenced by NAD+. Our in vitro outcomes indicate that the introduction of recombinant IFN-β counteracted the inhibitory effect of NAD+ on the non-canonical pathway. However, it's important to note that we have not evaluated the IFN-β pathway within our E. Coli and LPS in vivo models. Our primary intention was to exclusively decipher the roles of IFN-β and NAD+ in the context of inhibiting the non-canonical inflammasome, without extending our investigation to the broader in vivo scenarios.

      “Figure 5: It is unclear how many independent survival experiments were done, how many mice per group were used and whether the difference between groups was statistical significant. This information should be added.”

      We have now included the number of experiments, p values and number of animals used in Figure 5.

      “Further experiments with primary cells from Il10 k.o. and Caspase11 k.o. animals should be provided that support the findings in macrophages.”

      We concur with the reviewer's suggestion regarding the need for further experiments involving primary cells from IL-10-/- and Caspase-11-/- mice. However, we are uncertain about the potential contribution of these experiments in generating novel or supplementary findings to the existing study.

      Recommendations For The Authors:

      Besides the comments made in the public section, there are further issues that need to be considered by the authors.

      “It is unclear what signifies „impressive, L106" or „dramatic, L257"”

      “impressive” meant that we were surprised by the results since to the best of our knowledge prior this study there exists no report/study claiming such survival (>80%) following such high dose of E. Coli. In this aspect protective effects of NAD+ are unique. “dramatic” We (8) and others (9, 10) have previously used this term to describe a robust increase of cytokine production.

      “L116. The authors describe „symptoms". It should be clarified what symptoms they observed and the data should be shown. If only temperature is available, then this should be said. It would be interesting to see effects of NAD+ on the glucose levels of the animals during sepsis.”

      We thank the reviewer’s comment. We have measured only temperature. We believe that glucose level is beyond the scope of this study.

      “L29. Sepsis is not restricted to bacterial and viral pathogens. Also fungi and protozoa can cause sepsis.”

      We have now included fungi and protozoa.

      “Suppl.Fig.1. A scale should be added.”

      Scale has been added

      “L822. Lethal dose of LPS would mean that this was lethal for all mice. However, the data suggests that NAD+ treated animals would not have died. This should be clarified.”

      Here we meant lethal dose in absence of NAD+ treatment. Our study focuses on the protective role of NAD+ in a lethal context (bacterial and LPS).

      “L823/824. The part of the sentence: ... IHC was performed staining for H&E.. is incomplete.”

      We thank the reviewer’s comment. We have re-phrased our sentence.

      “L804. IL-10 is not a pathway. This should be revised.”

      We have replaced “pathway” by” mechanism”.

      “The graphical abstract should be the last figure summarizing all findings.”

      Figure 4 isn't the final illustration, as it doesn't encompass an overarching graphical summary of our discoveries. Instead, it exclusively highlights the findings related to NAD+'s impact on noncanonical inflammasome inhibition. Notably, this figure omits NAD+-mediated IL-10 cytokine generation and its crucial role in mitigating septic shock.

      “The authors report that they used a dosage of 54mg/kg LPS (l.502). This is a rather unusual concentration. How was this determined?”

      This was initially based on the first study reporting the role of casapase-11 in septic shock induced death published in 2013 by Kayagaki et al. (1). Many other have used this dosage for septic shock induced death animal model (11, 12, 13).

      References:

      1. Kayagaki N, et al. Noncanonical inflammasome activation by intracellular LPS independ ent of TLR4. Science 341, 1246‐1249 (2013).

      2. Qin, X., Jiang, X., Jiang, X. et al. Micheliolide inhibits LPS-induced inflammatory response and protects mice from LPS challenge. Sci Rep 6, 23240 (2016).

      3. Li Z, Qu W, Zhang D, Sun Y, Shang D. The antimicrobial peptide chensinin-1b alleviates the inflammatory response by targeting the TLR4/NF-κB signaling pathway and inhibits Pseudomonas aeruginosa infection and LPS-mediated sepsis. Biomed Pharmacother. 2023 Aug 1; 165:115227.

      4. Ramani V, Madhusoodhanan R, Kosanke S, Awasthi S. A TLR4-interacting SPA4 peptide inhibits LPS-induced lung inflammation. Innate Immun. 2013 Dec;19(6):596610.

      5. Zhang Y, Lu Y, Ma L, Cao X, Xiao J, Chen J, Jiao S, Gao Y, Liu C, Duan Z, Li D, He Y, Wei B, Wang H. Activation of vascular endothelial growth factor receptor-3 in macrophages restrains TLR4-NF-κB signaling and protects against endotoxin shock. Immunity. 2014 Apr 17;40(4):501-14.

      6. Rodriguez Cetina Biefer H, Heinbokel T, Uehara H, Camacho V, Minami K, Nian Y, Koduru S, El Fatimy R, Ghiran I, Trachtenberg AJ, de la Fuente MA, Azuma H, Akbari O, Tullius SG, Vasudevan A, Elkhal A. Mast cells regulate CD4+ T-cell differentiation in the absence of antigen presentation. J Allergy Clin Immunol. 2018 Dec;142(6):18941908.e7.

      7. Tullius SG, Biefer HR, Li S, Trachtenberg AJ, Edtinger K, Quante M, Krenzien F, Uehara H, Yang X, Kissick HT, Kuo WP, Ghiran I, de la Fuente MA, Arredouani MS, Camacho V, Tigges JC, Toxavidis V, El Fatimy R, Smith BD, Vasudevan A, ElKhal A. NAD+ protects against EAE by regulating CD4+ T-cell differentiation. Nat Commun. 2014 Oct 7;5:5101.

      8. Elkhal A, et al. NAD(+) regulates Treg cell fate and promotes allograft survival via a systemic IL‐10 production that is CD4(+) CD25(+) Foxp3(+) T cells independent. Sci Rep 6, 22325 (2016).

      9. Natalia Garcia-Becerra, Marco Ulises Aguila-Estrada, Luis Arturo Palafox-Mariscal, Georgina Hernandez-Flores, Adriana Aguilar-Lemarroy, Luis Felipe Jave-Suarez, FOXP3 Isoforms Expression in Cervical Cancer: Evidence about the Cancer-Related Properties of FOXP3Δ2Δ7 in Keratinocytes, Cancers, 15, 2, (347), (2023).

      10. Estelle Bettelli, Maryam Dastrange, Mohamed Oukka. Foxp3 interacts with nuclear factor of activated T cells and NF-κB to repress cytokine gene expression and effector functions of T helper cells. Proceedings of the National Academy of Sciences. 2005.102; 14; 5138-5143.

      11. Han Gyung Kim, Chaeyoung Lee, Ji Hye Yoon, Ji Hye Kim, Jae Youl Cho,BN82002 alleviated tissue damage of septic mice by reducing inflammatory response through inhibiting AKT2/NF-κB signaling pathway,Biomedicine & Pharmacotherapy,Volume 148,2022,112740.

      12. Tao Q, Zhang Z-D, Qin Z, Liu X-W, Li S-H, Bai L-X, Ge W-B, Li J-Y and Yang Y-J (2022) Aspirin eugenol ester alleviates lipopolysaccharide-induced acute lung injury in rats while stabilizing serum metabolites levels. Front. Immunol. 13:939106.

      13. Chen, N, Ou, Z, Zhang, W, Zhu, X, Li, P, Gong, J. Cathepsin B regulate non-canonical NLRP3 inflammasome pathway by modulating activation of caspase-11 in Kupffer cells. Cell Prolif. 2018; 51:e12487.

    1. Author Response:

      Reviewer #1:

      1. This is a complex paper and would benefit from a schematic depicting the key findings.

      This comment is appreciated. Unfortunately, due to time restraints, the authors were not able to graphically depict our findings.

      1. The paper would benefit from additional supporting evidence. Would it be possible to measure fatty acid oxidation by metabolic tracing here, in IRG-deficient cells or in response to 4-OI? Although changes in protein level for Cpt1A are seen, this is correlated with fatty acid oxidation rather than direct demonstration. This may be challenging but would strengthen the manuscript.

      This is a great comment. While we did not directly measure fatty acid flux in our manuscript, Weiss et al. Nature Metabolism 2023 did these studies in primary hepatocytes. They showed an increased palmitate incorporation into citrate.

      1. The aspect concerning body temperature regulation is confusing. Would Itaconate not promote fatty acid oxidation to increase or maintain body temperature? Itaconate must therefore not be involved in the hypothermic response? Bringing UCP1 into the finding is confusing and needs to be better explained. Again a diagram would help, but enhanced BAT fatty acid oxidation and UCP1 expression appear linked here, with both being affected by Itaconate. This needs clarifying.

      We appreciate this comment. The rationale is that if itaconate is stabilizing fatty acid oxidation, it would be necessary to fuel thermogenesis, a process dependent on fatty acid utilization. Our data support a role for itaconate in stabilizing body temperature following inflammation, potentially through enhanced fatty acid oxidation. This is evidenced by the hypothermic response to LPS in Acod1 KO mice. Furthermore, Mills et al. Nature 2018 show 4-OI injection boosts body temperature following LPS stimulation.

      Reviewer #2:

      Some conclusions involving the Irg1 knockout mice require important controls and clarifications to be fully convincing and some controls are missing.

      We appreciate the needs for appropriate controls. Negative controls were omitted when baseline phenotypes were not observed. Due to time and resource limitations we were unable to repeat the experiments.

  2. Dec 2023
    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors explored correlations between taste features of botanical drugs used in ancient times and therapeutic uses, finding some potentially interesting associations between intensity and complexity of flavors and therapeutic potential, plus some more specific associations described in the discussion sections. I believe the results could be of potential benefit to the drug discovery community, especially for those scientists working in the field of natural products.

      Strengths:

      Owing to its eclectic and somehow heterodox nature, I believe the article might be of interest to a general audience. In fact, I have enjoyed reading it and my curiosity was raised by the extensive discussion.

      The idea of revisiting a classical vademecum with new scientific perspectives is quite stimulating.

      The authors have undertaken a significant amount of work, collecting 700 botanical drugs and exploring their taste and association with known uses via eleven trained panelists.

      Weaknesses:

      I have some methodological concerns. Was subjective bias within the panel of participants explored or minimized in any manner?

      Yes, in all models we included ‘panellist’ as a random effect and therefore any biased perception by a single panellist across drugs or differences among panellists for an individual drug was accounted for. We now make this clearer in our methods.

      Were the panelists exposed to the drugs blindly and on several occasions to assess the robustness of their perceptions?

      The study was double blind, but blinding was not possible with the more well-known drugs (e.g., almonds, walnuts, thyme, mint). A random number generator was used to assign the drugs to the panellists, and according to the random distribution, some drugs were presented to the same panellist more than once. Robustness of panellists’ perception was not assessed specifically. We have added some text to the methods to clarify.

      Judging from the total number of taste assessments recorded and from Supplementary Material, it seems that not every panelist tasted every drug. Why?

      Because there were many drugs and panellists had time constraints. Overall, 3973 individual sensory trials were conducted, with an average of 361±153 trials per panellist and 5.7±1.3 trials per botanical drug.

      It may be a good idea to explore the similarity in the assessments of the same botanical drug by different volunteers. If a given descriptor was reported by a single volunteer, was it used anyway for the statistical analysis or filtered out?

      All responses were used as reported by the panellists, including potential ‘outliers’. As described above, the inclusion of ‘panellist’ as a random effect means that if one individual gave an unusual description of a particular drug in comparison to other individuals, this would be less impactful on any parameter estimates.

      The idea of "versatility" is repeatedly used in the manuscript, but the authors do not clearly define what they call "versatile".

      In line with suggestions made by reviewers, we have slightly adjusted the definition of therapeutic versatility and have now clearly defined the term on first use. Here, we define therapeutic versatility as the number of therapeutic ‘categories’ a drug is used for (the 25 broad categories are represented by shared iconography in Figure 1). Our revised results include analyses using this definition – which are qualitatively identical to our previous results which defined versatility using the 46 individual therapeutic uses.

      The introduction should be expanded. There are plenty of studies and articles out there exploring the evolution of bitter taste receptors, and associating it with a hypothetical evolutionary advantage since bitter plants are more likely to be poisonous.

      We agree. Bitter is arguably the most frequent chemosensory attribute of plants and botanical drugs perceived by humans. Our data shows that ‘poisons’ are not associated with bitterness but positively with ‘aromatic’, ‘sweet’ and ‘soapy’ – and negatively with ‘salty’ qualities.

      We have added this paragraph to the introduction:

      "The perception of taste and flavour (a combination of taste, smell and chemesthesis) here also referred to as chemosensation, has evolved to meet nutritional requirements and are particularly important in omnivores for seeking out nutrients and avoiding toxins (Rozin and Todd, 2016; Breslin, 2013; Glendinning, 2022). The rejection of bitter stimuli has generally been associated with the avoidance of toxins (Glendinning, 1994; Lindemann, 2001; Breslin, 2013) but to date no clear relationship between bitter compounds and toxicity at a nutritionally relevant dose could be established (Glendinning, 1994; Nissim et al., 2017). While bitter tasting metabolites occurring in fruits and vegetables have been linked with a lower risk for contracting cancer and cardiovascular diseases (Drewnoswski and Gomez-Carneros, 2000) the avoidance of pharmacologically active compounds is probably the reason why many medicines, including botanical drugs, taste bitter (Johns, 1990; Mennella et al., 2013)."

      And expanded in the discussion:

      "Though many bitter compounds are toxic, not all bitter plant metabolites are (Glendinning, 1994; Drewnoswski and Gomez-Carneros, 2000; e.g., iridoids, flavonoids, glucosinolates, bitter sugars). In part, this may be the outcome of an arms race between plant defence and herbivorous mammals’ bitter taste receptor sensitivities, resulting in the synthesis of metabolites capable of repelling herbivores and confounding the perception of potential nutrients by mimicking tastes of toxins. Here, poisons showed no association with bitter but positive associations with aromatic (px = 0.041), sweet (px = 0.022) and soapy (px = 0.025) as well as a negative association with salty (px = 0.046) qualities."

      Since plant secondary metabolites are one of the most important sources of therapeutic drugs and one of their main functions is to protect plants from environmental dangers (e.g., animals), this evolutionary interplay should be at least briefly discussed in the introductory section.

      This is now referred to in the introduction as well as in the discussion.

      Since the authors visit some classical authors, Parecelsus' famous quote "All things are poison and nothing is without poison. Solely the dose determines that a thing is not a poison" may be relevant here. Also note that some authors have explored the relationship between taste receptors and pharmacological targets (e.g., Bioorg Med Chem Lett. 2012 Jun 15;22(12):4072-4).

      We agree that pharmacologic action is determined by the dose. We now refer to the dose in the introduction: “…to date no clear relationship between bitter compounds and toxicity at a nutritionally relevant dose could be established (Glendinning, 1994; Nissim et al., 2017)”.

      We are aware of the fact that several authors have explored the relationship between taste receptors as targets and their similarity with other targets. We use many examples from the literature to explain our data. Our analysis did, however, not highlight any association between sweet tastes and epilepsy (as reported in Bioorg Med Chem Lett. 2012 Jun 15;22(12):4072-4)). We are not able to explain all associations, and we acknowledge that there may be more associations between chemosensory receptors and therapeutic effects than those found and discussed here.

      Reviewer #2 (Public Review):

      Summary:

      This is an unusual, but interesting approach to link the "taste" of plants and plant extracts to their therapeutic use in ancient Graeco-Roman culture. The authors used a panel of 11 trained tasters to test ~700 different medicinal plants and describe them in terms of 22 "taste" descriptors. They correlated these descriptors with the plant's medical use as reported in the De Materia Medica (DMM 1st Century, CE). Correcting for some of the plants' evolutionary phylogenetic relationships, the authors found that taste descriptors along with intensity measures were correlated with the "versatility" and/or specific therapeutic use of the medicine. For example, simple but intense tastes were correlated with the versatility of a medicine. Specific intense tastes were linked to versatility while others were not; intense bitter, starchy, musky, sweet, cooling, and soapy were associated with versatility, but sour and woody were negatively associated. Also, some specific tastes could be associated with specific uses - both positive and negative associations. Some of these findings make sense immediately, but others are somewhat surprising, and the authors propose some links between taste and medicinal use (both historical and modern use) in the discussion. The authors state that this study allows for a re-evaluation of pre-scientific knowledge, pointing toward a central role of taste in medicine.

      Strengths:

      The real strength of this study is the novelty of this approach - using modern-day tasters to evaluate ancient medicinal plants to understand the potential relationships between taste and therapeutic use, lending some support to the idea that the "taste" of a medicine is linked to its effectiveness as a treatment.

      Weaknesses:

      While I find this study very interesting and potentially insightful into the development and classification of certain botanical drugs for specific medicinal use, I would encourage the authors to revise the manuscript and the accompanying figures significantly to improve the reader's understanding of the methods, analyses, and findings. A more thorough discussion of the limitations of this particular study and this general type of approach would also be very important to include.

      Figures were revised, one deleted (former Fig. 3), and another one put to the supplementary (former Fig. 4, now Figure supplement 1). We now acknowledge limitations in the final paragraph.

      The metric of versatility seems somewhat arbitrary. It is not well explained why versatility is important and/or its relationship with taste complexity or intensity.

      We have modified the definition of versatility in line with reviewers’ comments. We have provided a detailed explanation of this in our response to reviewer #1 but for ease of reference, we paste this again here:

      Here, we define therapeutic versatility as the number of therapeutic ‘categories’ a drug is used for (the 25 broad categories are represented by shared iconography in Figure 1). Our revised results include analyses using this definition – which are qualitatively identical to our previous results which defined versatility using the 46 individual therapeutic uses.

      The importance of versatility was not the focus but the impact of taste intensity and complexity on versatility. We hypothesize that associations between perceived complexity and intensity of chemosensory qualities with versatility of botanical drug use provides insights into the development of empirical pharmacological knowledge and therapeutic behaviour (now included in the introduction).

      Similarly, the rationale for examining the relationships between individual therapeutic uses and taste intensity/complexity is not well explained, and given that a similar high intensity/low complexity relationship is common for most of the therapeutic uses, it restates the same concepts that were covered by the initial versatility comparison.

      The examination of the relationships between individual therapeutic uses and taste intensity/complexity fine-tunes the overall analysis and shows that this concept is applicable in general. However, in general, the reviewer is correct, and this is not our main focus. We therefore shifted the analysis including the figure to the supplementary material and state in the discussion: “We also detected nuances in significance, and complete absence of significance across the relationships between individual therapeutic uses and complexity/intensity magnitudes for which we lack, however, more specific explanations (Figure supplement 1).

      There are multiple issues with the figures - the use of icons is in many cases counterproductive and other representations are not clear or cause confusion (especially Figure 3).

      We have excluded former Fig. 3. Otherwise, the use of iconography is to facilitate graphical representation and cross-referencing between figures without over-cluttering. We provide all text and numeric values in the supporting information if individual detail is required.

      The phylogenetic information about the botanicals is missing. Also missing is any reference/discussion about how that analysis was able to disambiguate the confounding effects of shared uses and tastes of drugs from closely related species.

      This is explained in the methods (sections: ‘Phylogenetic tree’ and ‘statistical procedure’). We highlight that all models showed high heritability which means that shared ancestry has a statistical influence on the model. The trees themselves are now represented in our modified Figure 2.

      Reviewer #1 (Recommendations For The Authors):

      Besides the points already covered in my public review, I believe it would be interesting to assess and discuss the differences between the category "food" (how many drugs were allocated there?) and the drugs used for therapeutic purposes. In this manner, the food category could serve as a retrospective negative control to test the authors' hypotheses. Does the food category include drugs of weak flavor? Does it include drugs of complex flavor?

      All drugs in this database are associated with therapeutic uses. Only 96 are specifically mentioned to be also used as food while in total at least 152 are also used as food (many of the most obvious food drugs are not labelled as such in DMM). It is difficult to use the food category as a negative control (for testing whether food drugs have weaker tastes), because spices are included in the food category. If at all, only staples should be used for such an analysis. But this would be another study.

      In the context of the present analyses, we do agree that there is interest and so we have therefore added a small section to our manuscript: The 96 botanical drugs specifically mentioned also for food (though there are more than 150 edible drugs in our dataset; Supplementary file 1) show positive associations with starchy (px = 0.005), nutty (px = 0.002) and salty (px = 0.001) and negative associations with bitter (px = 0.007), woody (px = 0.001) and stinging (px = 0.033) tastes and flavours.

      Please replace "plant defence" with "plant defense".

      Currently the whole MS is formatted BE. We are happy to revise on the basis of editorial policy.

      Reviewer #2 (Recommendations For The Authors):

      1. I would encourage replacing "taste" with "flavor" throughout the manuscript and in the title because this paper addresses "taste here defined as a combination of taste, odour and chemesthesis" which essentially is the definition of flavor, and should not be simplified to taste. Flavor is the more precise word, and there is no need to confuse readers by defining "taste" in this way when taste means just the gustatory aspect of flavor.

      We now define flavour as a combination of taste, smell and chemesthesis and use ‘taste’ when referring to a specific taste quality. We use the term ‘chemosensory’ (perception, quality) and chemosensation for addressing the perception of both, taste and flavour qualities together. The abstract now reads: “The perception of taste and flavour (a combination of taste, smell and chemesthesis) here referred to as chemosensation, enables animals to find high-value foods and avoid toxins.”

      We prefer to leave the title as it is in accordance with standard books (e.g., “Pharmacology of Taste” by Palmer and Servant) which address all kinds of chemosensory interactions and the fact that we’ve conducted a ‘tasting panel’ (and not a ‘flavour panel’), and because flavour as a concept is only used in English (and also there not consistently, with ‘taste’ being the preferred term used by English native speakers for describing perception where in a strict sense, ‘flavour’ would be the correct term, see Rozin P. "Taste-smell confusions" and the duality of the olfactory sense. Percept Psychophys. 1982 Apr;31(4):397-401)) and maybe also in French.

      1. Methods - A much more detailed description of how the samples were prepared for the taste tests is needed. Were they sampled as a dry powder? No, they were sampled as dried pieces. We have added more information to our methods section to clarify.

      Why is there such a big range in the amount provided (.1 to 2 g)? Because certain drugs are highly toxic (aconitum, opium) we could only provide a relatively small amount (that still permitted the perception of taste qualities). For practical reasons, half a walnut was dispensed. We have added more information to our methods section to clarify.

      Also "Panelists were instructed to spit, rinse their mouth with drinking water and to take a break before tasting the next sample" This seems more likely that the samples were dissolved in a liquid if they were spitting and rinsing, but this is not clear. Also - take a break for how long between samples?

      Panellists were instructed to chew the amount of sample necessary for taste perception, to annotate their perception, and to spit out residues of samples and finally rinse their mouth with drinking water. The breaks between tasting different samples depended on chemosensory persistence. We have added more information to our methods section to clarify.

      How many samples were tested per day?

      The number of tasted samples was different from panelist to panelist and depending on available time frames. On average each panellist tasted 17,2 drugs per hour using 10.5 sessions (18 sessions in total) lasting approximately two hours each. We have added more information to our methods section to clarify.

      Did individual panelists get repeated samples?

      Random distribution permitted that individual panellists were challenged also with repeated samples. We have added more information to our methods section to clarify.

      1. Methods - Phylogenetic tree - Where is the output of this tree? It should be included in the figures and referred to in the results/discussion where the authors claim that they have been able to disambiguate phylogenetic closeness with taste and medicinal use.

      We did not ‘build’ a phylogenetic tree, rather we modified an existing one. Therefore, the wording of that section in the methods has been adjusted for clarity. We refer to the tree in the results pertaining to phylogenetic relatedness by explicitly quantifying the extent of phylogenetic signal using the widely used heritability (h2) statistic. This means that shared ancestry has a statistical influence on the model. We have also added to our Figure 2 representations of the phylogenetic tree we used in our analysis, limited to the species for which we have data, also displaying the data (in this case, intensity and complexity) at the tips.

      1. Taste intensity ratings should be better explained. Since the panelists are evaluating different amounts of samples (.1 to 2g) wouldn't the intensity of taste also depend on the amount of the substance?

      The panelists were not told to introduce all the sample into their mouth but just enough to perceive the taste qualities clearly (explanation given in methods). E.g.: one black pepper corn is normally enough to perceive the taste and flavour of pepper while the same amount of hazelnut would be insufficient.

      Or is this measure a relative value - "woodiness" vs "sourness" for example within the sample is strong/weak?

      Chemosensation and sensory perception in general is always relative. (For instance, currently I can hear the birds singing outside. Was there music playing in my room I wouldn’t be able to hear them).

      Because of this - are samples with strong tastes less likely to seem complex because the intensity of one stimulus masks the other?

      Yes, we argue that drugs with strong tastes/flavours are less likely be perceived as being complex (fewer individual qualities perceived), arguably because strong stimuli overshadow weaker ones. We currently address this in the discussion and have made some modifications in line with the below comment.

      This issue was presented briefly in the discussion when addressing the finding that samples with intense, but fewer tastes were more versatile, but this was highly confusing.

      The authors presented both sides of the problem without referring to any of their own experiments to resolve the issue, or to highlight this as a potential limitation of the study at hand.

      Yes, stronger tastes mask weaker tastes which addresses both sides of the problem.

      We have modified the first paragraph of the discussion to make this clearer.

      It now reads: "Unexpectedly, botanical drugs eliciting fewer but intense chemosensations were more versatile (Fig. 2). People often associate complexity with intensity, and taste complexity is popularly interpreted with a higher complexity of ingredients (Spence, and Wang, 2018). However, simple tastes can be associated with complex chemistry when intense tastes mask weaker tastes, or when tastants are blended (Breslin and Beauchamp, 1997; Green et al., 2010). For example, starchy flavours or sweet tastes can be sensed when bitter and astringent antifeedant compounds are present below a certain threshold while salts enhance overall flavour by suppressing the perception of bitter tastants (Breslin and Beauchamp, 1997; Johns, 1990). On the other hand, combinations of different tastants or olfactory stimuli do not necessarily result in increased perceived complexity (Spence and Wang, 2018; Weiss et al., 2012)."

      It would be useful to understand the parameters a bit more - a data visualization of the relationships of intensity and complexity across all samples would be a welcome addition to Figure 2.

      Shared ancestry has a statistical influence on the model. We have now also added to our Figure 2 representations of the phylogenetic tree we used in our analysis, limited to the species for which we have data, also displaying the data (in this case, intensity and complexity) at the tips.

      1. "Therapeutic Versatility" is a measure of how many different therapeutic uses a given botanic is listed in the DMM. This is one of the primary comparisons of this study, but the authors do not provide much of a rationale for using this metric. Also, there are 46 therapeutic uses, but many are interrelated such as gastric, gynecology, muscle, neurological, respiratory, skin, and kidney. It is not clear in my reading of the methods if this was also treated in some type of "phylogeny" as well or not. I would assume a real therapeutic versatility metric should be higher for something used for cough, ulcers, gout, and menses rather than something that was used for 4 different, but skin-related complaints.

      The reviewer is correct, and we appreciate this comment. We have modified the definition of versatility in line with the suggestions laid out here. We have provided a detailed explanation of this in our public responses but for ease of reference, we paste this again here:

      Here, we define therapeutic versatility as the number of therapeutic ‘categories’ a drug is used for (the 25 broad categories are represented by shared iconography in Figure 1). Our revised results include analyses using this definition – which are qualitatively identical to our previous results which defined versatility using the 46 individual therapeutic uses.

      We repeated our original ‘versatility’ analyses using the 25 broader categories rather than the 46 individual uses. The results remained largely the same.

      1. Use of icons/pictorial representations in figures. Overall, the use of icons is not necessary - words could be used, and then readers would not need to keep going back and forth to the key in Figure 1 to identify the taste/use. I am very confused by Figure 3. How is the strength of taste shown in this figure? The use of the balance is a confusing representation since I don't associate strength/intensity with weight. Also there are specific tastes that are used more, and others that are used less (but the numbers of those are also more/less). I do not think this figure accomplishes the goal of relaying these findings.

      Whilst we agree that iconography is not strictly necessary, we think it is a good way of graphically representing the results without over-crowding the figures or introducing text sizes too small to read in print. All values are provided in the supporting information if any individual detail is required.

      We have decided on the basis of these comments to exclude former Fig. 3 and (Figure supplement 1). We hope that the removal of this figure and clearer signposting towards the text and numerical tables in the supplementary information alleviates the reviewer’s concerns.

      1. Similarly, figure 4 is unclear. This could be better represented in a table with words and p values listed. But a larger issue is that this shows essentially the same overarching relationship across the therapeutic use cases - high intensity, low complexity. Only the pink kidney (other?) case differs from this pattern. In the discussion, several therapeutic uses are discussed that could need intense tasting medicine - but these are not related directly back to the relationships shown in Figure 4.

      Yes, we agree with the reviewer and have now moved Fig. 4 to the supplementary (Figure supplement 1)

    1. Author Response

      The following is the authors’ response to the original reviews.

      Note to all Reviewers

      We appreciate the reviewers’ comments and suggestions for improving the manuscript. Below is a summary of new data added and a brief description of the major new results. A detailed pointby-point response follows.

      New data:

      • Figure 1f

      • Figure 2b, f, g

      • Figure 4b

      • Figure S7 • Figure S8

      • Figure S9

      Summary of major new results/edits:

      • At the request of Reviewer #1 we have updated the name of the degradation tag to be more specific and we now call it the “LOVdeg” tag.

      • We have added new controls demonstrating that light stimulation does not cause photobleaching or toxicity issues (Fig. S7).

      • We now show that LOVdeg can function at various points in the growth cycle, demonstrating robust degradation (Fig. 1f, Fig. S8).

      • We have included relevant controls for the AcrB-LOVdeg efflux pump results (Fig. 2f-g).

      • We have included important benchmarking controls, such as an EL222-only control and SsrA tag control to provide a clearer view of how LOVdeg performance compares to other systems (Fig. S9, Fig. 4b).

      Additional note:

      • While repeating experiments during the revision process we found that the results for the combined action of EL222 and the LOVdeg tag were not as dramatic as in our original measurements, though the overall findings are consistent with our original results. Specifically, we still find that the combination of EL222 and the LOVdeg tag produces a lower signal than either on their own. We have updated these data in the revised manuscript (Fig. 4b).

      Reviewer #1:

      Public Review:

      Specifically controlling the level of proteins in bacteria is an important tool for many aspects of microbiology, from basic research to protein production. While there are several established methods for regulating transcription or translation of proteins with light, optogenetic protein degradation has so far not been established in bacteria. In this paper, the authors present a degradation sequence, which they name "LOVtag", based on iLID, a modified version of the blue-light-responsive LOV2 domain of Avena sativa phototropin I (AsLOV2). The authors reasoned that by removing the three C-terminal amino acids of iLID, the modified protein ends in "-E-A-A", similar to the "-L-A-A" C-terminus of the widely used SsrA degradation tag. The authors further speculated that, given the light-induced unfolding of the C-terminal domain of iLID and similar proteins, the "-E-A-A" C-terminus would become more accessible and, in turn, the protein would be more efficiently degraded in blue light than in the dark.

      Indeed, several tested proteins tagged with the "LOVtag" show clearly lower cellular levels in blue light than in the dark. While the system works efficiently with mCherry (10-20x lower levels upon illumination), the effect is rather modest (2-3x lower levels) in most other cases. Accordingly, the authors propose to use their system in combination with other light-controlled expression systems and provide data validating this approach. Unfortunately, despite the claim that the "LOVtag" should work faster than optogenetic systems controlling transcription or translation of protein, the degradation kinetics are not consistently shown; in the one case where this is done, the response time and overall efficiency are similar or slightly worse than for EL222, an optogenetic expression system.

      The manuscript and the figures are generally very well-composed and follow a clear structure. The schematics nicely explain the underlying principles. However, limitations of the method in its main proposed area of use, protein production, should be highlighted more clearly, e.g., (i) the need to attach a C-terminal tag of considerable size to the protein of interest, (ii) the limited efficiency (slightly less efficient and slower than EL222, a light-dependent transcriptional control mechanism), and (iii) the incompletely understood prerequisites for its application. In addition, several important controls and measurements of the characteristics of the systems, such as the degradation kinetics, would need to be shown to allow a comparison of the system with established approaches. The current version also contains several minor mistakes in the figures.

      We thank reviewer #1 for the feedback and suggestions to strengthen the manuscript. We have addressed these comments in the points that follow and now include important controls and benchmarks for our molecular tool.

      Major points

      1. The quite generic name "LOVtag" may be misleading, as there are many LOV-based tags for different purposes.

      We appreciate that it would be beneficial to have a more specific name. We have updated the name to “LOVdeg” tag, which captures both the inclusion of LOV and the degradation function of the tag.

      Updated throughout the manuscript and figures

      1. Throughout the manuscript, the authors use "expression levels". As protein degradation is a post-expression mechanism, "protein levels" should be used instead.

      We have transitioned to using “protein levels” at many points in the manuscript.

      Updated throughout the manuscript

      1. Degradation dynamics (time course experiments) should be shown. The only time this is done in the current version (in Fig. 4), degradation appears to be in the same range (even a bit slower) than for EL222, which does not support the claim that the "LOVtag" acts faster than other optogenetic systems controlling protein levels.

      In the revised manuscript, time course data are now shown at multiple points. These include new data in Fig. 1f and Fig. S8 that demonstrate degradation at various stages of growth. Fig. S4 also shows the dynamics of degradation when comparing to the addition of exogenously expressed ClpA. We have added text in the results section to point the reader to these data. In addition, we have made minor modifications to the text in the Introduction to avoid making claims about speed comparisons. Fig. 1f, Fig. S8, Fig. S4

      Results: Design and characterization of the AsLOV2-based degradation tag, Introduction

      1. "Frequency" is used incorrectly for Fig. 3. A series of 5 seconds on, 5 seconds off corresponds to a frequency of 0.1 Hz (1 illumination round / 10 s), not of 0.5 Hz. What the authors indicate as "frequency" is the fraction of illumination time. However, the (correct) frequency should be given, as this is likely the more important factor.

      We have changed how we calculate frequency to use the proposed definition of one pulse per time period. We updated the values in the text and in the figure. Fig. 3c

      Results: Tuning frequency response of the LOVdeg tag

      1. To properly evaluate the system, several additional controls are needed:

      a. To test for photobleaching of mCherry by blue light illumination, untagged controls should be shown for the mCherry-based experiments. Fluorescence always seems to be lower upon illumination, except for the AsLOV2*(546) data, where it cannot be excluded that fluorescence readings are saturated. Relatedly, the raw data for OD and fluorescence should be included. Showing a Western blot against mCherry in at least one case would allow to separate the effects of photobleaching and degradation.

      We appreciate the suggestion and have conducted these important controls. We now include new data demonstrating that light induction does not change fluorescence levels using an untagged mCherry control, nor does it significantly affect endpoint OD levels. Based on these results, we did not perform a Western blot because there were no effects to separate. Fig. S7

      b. In Fig. 2b, light + IPTG should be shown to estimate the activity of the system at higher expression levels.

      We have added these to the figure. Light + IPTG modestly increases expression compared to IPTG only, likely due to the saturating level of IPTG added, which achieves near full induction. Fig. 2b

      c. In Fig. 4, EL222 alone should be shown to allow a comparison with the LOVtag. From the data presented, it looks like EL222 is both slightly faster and more efficient than the LOVtag.

      We have added the EL222-only case for comparison with LOVdeg only and EL222 + LOVdeg. We note that Reviewer #3 raised a similar concern. Fig. 4b

      d. The effect of the used light on bacterial viability under exponential and stationary conditions should be shown.

      In this revision, we have added new data on light exposure at various points during exponential and stationary phase (Fig. 1f, Fig. S8). These OD data show that growth curves are similar for all cultures, regardless of the time light is applied during the growth phase. Additionally, we also now include ODs for the photobleaching experiments. These data also show that growth is not significantly altered under continuous light exposure. Figure 1f, Fig. S7b

      1. The claim that "Post-translational control of protein function typically requires extensive protein engineering for each use case" is not correct. The authors should discuss alternative options, e.g. based on dimerization, more extensively and in a less biased manner.

      We have toned down the language in this location and at other points in the manuscript. However, we maintain that other types of post-translational control, such as dimerization or LOV2 domain insertion, require more protein engineering than inserting a degradation tag. For example, we and others have directly demonstrated this in previous work (e.g. DOI: 10.1021/acssynbio.9b00395, 10.1101/2023.05.26.542511, 10.1038/s41467-023-38993-6), where numerous split site or insertion variants need to be screened and fine-tuned for successful light control. In contrast, a degradation mechanism has the potential to require less fine tuning to achieve a light response. We have included the above sources to clarify this point. Introduction, Results: Modularity of the LOVdeg tag

      Minor points

      1. In Suppl. Fig. 1, amino acid numbers seem to be off. Also, the alterations in iLID (compared to AsLOV2) that are not used in "LOVtag" appear to be missing and the iLID sequence incorrect, as a consequence.

      Thank you for catching this. The number indices in Fig. S1 have been corrected. We also realized we were reporting the iLID(C530M) variant in our amino acid sequence and have reverted the 530M back to C. Fig. S1

      1. Why is AsLOV2(543) more efficiently degraded than AsLOV2(543) (blue column in Fig. 1d) when the dark state should be stabilized in AsLOV2(543)?

      We are not sure of the exact reason for the increased degradation response in the AsLOV2*(543) variant. It may be that the dark-state stabilizing mutations introduced also have more favorable interactions with degradation machinery, although this is highly speculative.

      1. Why does the addition of EL222 reduce protein levels so strongly in the dark for CpFatB1* (Fig. 5)?

      We believe this effect stems from the EL222 responsive promoter (PEL222). With LOVdeg only, CpFatB1* is expressed from an IPTG inducible promoter (PlacUV5) whereas EL222 responsive constructs necessitate a promoter switch containing an EL222 binding site. We have clarified this point and expanded our discussion of these results.

      Results: Optogenetic control of octanoic acid production

      1. Fig. 2f / S10 are difficult to interpret. Why does illumination only lead to a significant effect at 2.5 and 5 µg/ml and not at lower concentrations, where the degradation system would be expected to be most efficient?

      We have expanded our discussion on these results to explain that this likely stems from basal protein levels of AcrB-LOVdeg in the light that can provide resistance at low antibiotic concentrations. We have also added new controls to this figure to show the chloramphenicol sensitivity of a ΔacrB strain and a ΔacrB strain with an IPTG-inducible version of acrB with no induction, demonstrating the lowest achievable chloramphenicol resistance from a standard inducible system.

      Results: Modularity of the LOVdeg tag, Fig. 2f-g

      1. Fig. 2f / S10 do not measure the MIC (which is a clearly defined value), but the sensitivity to Chloramphenicol.

      We have changed the text to use the term chloramphenicol sensitivity instead of MIC. Results: Modularity of the LOVdeg tag

      1. "***" in Fig. S1 should be explained.

      We have removed the ‘***’ to avoid confusion. Fig. S1

      1. The fold-change differences between light and dark, indicated in some selected cases, should be listed for all figures.

      We have added fold-change values where appropriate. Fig 1d, Fig. 2b

      Reviewer #2:

      Public Review:

      In this manuscript the authors present and characterize LOVtag, a modified version of the bluelight sensitive AsLOV2 protein, which functions as a light-inducible degron in Escherichia coli. Light has been shown to be a powerful inducer in biological systems as it is often orthogonal and can be controlled in both space and time. Many optogenetic systems target regulation of transcription, however in this manuscript the authors target protein degradation to control protein levels in bacteria. This is an important advance in bacteria, as inducible protein degradation systems in bacteria have lagged behind eukaryotic systems due to protein targeting in bacteria being primarily dependent on primary amino acid sequence and thus more difficult to engineer. In this manuscript, the authors exploit the fact that the J-alpha helix of AsLOV2, which unwinds into a disordered domain in response to blue light, contains an E-A-A amino acid sequence which is very similar to the C-terminal L-A-A sequence in the SsrA tag which is targeted by the unfoldases ClpA and ClpX. They truncate AsLOV2 to create AsLOV2(543) and combine this truncation with a mutation that stabilizes the dark state to generate AsLOV2*(543) which, when fused to the C-terminus of mCherry, confers light-induced degradation. The authors do not verify the mechanism of degradation due to LOVtag, but evidence from deletion mutants contained in the supplemental material hints that there is a ClpA dominated mechanism. They demonstrate modularity of this LOVtag by using it to degrade the LacI repressor, CRISPRa activation through degradation of MCP-SoxS, and the AcrB protein which is part of the AcrAB-TolC multidrug efflux pump. In all cases, measurement of the effect of the LOVtag is indirect as the authors measure reduction in LacI repression, reduction in CRISPRa activation, and drug resistance rather than directly measuring protein levels. Nevertheless the evidence is convincing, although seemingly less effective than in the case of mCherry degradation, although it is hard to compare due to the different endpoints being measured. The authors further modify LOVtag to contain a known photocycle mutation that slows its reversion time in the dark, so that LOVtag is more sensitive to short pulses of light which could be useful in low light conditions or for very light sensitive organisms. They also demonstrate that combining LOVtag with a blue-light transcriptional repression system (EL222) can decrease protein levels an additional 269-fold (relative to 15-fold with LOVtag alone). Finally, the authors apply LOVtag to a metabolic engineering task, namely reducing expression of octanoic acid by regulating the enzyme CpFatB1, an acyl-ACP thioesterase. The authors show that tagging CpFatB1 with LOVtag allows light induced reduction in octanoic acid titer over a 24 hour fermentation. In particular, by comparing control of CpFatB1 with EL222 transcriptional repression alone, LOVtag, or both the authors show that light-induced protein degradation is more effective than light-induced transcriptional repression. The authors suggest that this is because transcriptional repression is not effective when cells are at stationary phase (and thus there is no protein dilution due to cell division), however it is not clear from the available data that the cells were in stationary phase during light exposure. Overall, the authors have generated a modular, light-activated degron tag for use in Escherichia coli that is likely to be a useful tool in the synthetic biology and metabolic engineering toolkit.

      We thank Reviewer #2 for the constructive feedback. In the updated manuscript, we now include data demonstrating degradation at different growth stages and address other points brought up in the review to improve understanding of the degradation tag.

      Overall, the authors present a well written manuscript that characterizes an interesting and likely very useful tool for bacterial synthetic biology and metabolic engineering. I have a few suggestions that could improve the presentation of the material.

      Major Comments:

      • Could the authors clarify, perhaps through OD measurements, that the cultures in the octanoic acid experiment are actually in stationary phase during the relevant light induction. It isn't clear from the methods.

      We have updated the Methods to clarify that the cells are entering stationary phase (OD600 = 0.6) when light is either kept on or turned off for production experiments. Production is continued for the following 24 hours. Note that we now show OD measurements in a separate set of experiments (Fig. 1f, Fig. S8).

      Methods: Octanoic acid production experiment. Fig. 1f, Fig. S8

      • Can the authors clarify why there is an overall decrease in protein in the clpX deletion? And is it this initial reduction that is the source of the change in fold in 1C? Similarly, for hslU is it because overall protein levels are higher with the tag? In general, I feel that the interpretation of Supplemental Figures S6-S10 could be moved in more detail to the main text, or at least the main takeaway points. But this is a personal preference, and not necessary to the major flow of the story which is about the utility of the LOVtag tool.

      As shown in Fig. S5, expression of mCherry without any degradation tag is decreased in a clpX knockout strain compared to wild type. This difference may be the result of reduced cell health, and we now note this in the text. The strains shown in Fig. 1c are in wild type cells with normal expression, so this is not the source of the fold change. As for hslU, we agree it is interesting that expression seems to increase. However, the increase is modest and could stem from gene network regulation differences in that strain compared to wild type and may not be related to LOVdeg tag degradation. Each endogenous protease is involved in a wide range of functions within the cell, and it is unknown how global gene expression is impacted. We acknowledge the suggestion of moving the protease results to the main text, but we have ultimately elected to keep these data in the Supplementary Information to maintain the flow in the manuscript. However, we have added additional text pointing the reader to the Supplemental Text and include a brief summary of the findings in the main text.

      Results: Design and characterization of the AsLOV2-based degradation tag

      • What is the source of the poor repression in Figure 2D?

      Presumably, this stems from low levels of the CRISPRa MCP-SoxS activator, even in the presence of light. We have added this point to the text.

      Results: Modularity of the LOVdeg tag

      • In general, it would be nice to have light-only controls for many of the experiments to validate that light is not affecting the indicated proteins or their function.

      We thank the reviewer for this suggestion and note that Reviewer #1 raised a similar concern. We have now included light-only data for a strain containing IPTG-inducible mCherry without the LOVdeg tag (Fig. S7). These data show that light itself, at the levels used in this study, does not affect mCherry expression or cell growth. This strain serves as a direct control for data presented in Fig. 1 and Fig. 2b, as the systems are identical except for the addition of the LOVdeg tag onto either mCherry or the LacI repressor. Additionally, the control translates to other experiments since mCherry is used as a reporter for other systems in this study. Fig. S7

      • It would be nice to directly measure the function of the tool at different phases of E. coli growth to show directly that protein degradation works at stationary phase, rather than the more indirect measurements used in the octanoic acid experiment.

      We thank the reviewer for this suggestion, which significantly strengthens our results. We have added an experiment that tests the LOVdeg tag at different phases of growth (Fig. 1f, Fig. S8). In this experiment, cultures are growth from early exponential to stationary phase, and light is introduced at various points. Exposure windows of 4 hours, ranging from early exponential to stationary phase, all show functional light inducible degradation. Fig. 1f, Fig. S8.

      Results: Design and characterization of the AsLOV2-based degradation tag

      Minor Comments:

      • It would be nice to make clear that the data in S6d and S7 is repeated, but with the HslUV data in S7.

      We clarified this point in the caption of Fig. S4 (the former Fig. S7 in the original manuscript). Fig. S4 caption

      • Why was 5s picked for the frequency response in Figure 3

      We picked 5s because 1) it is a substantially shorter timescale than overall degradation dynamics seen for the LOVdeg tag, and 2) we found that shorter pulses could not be reliably achieved with the light stimulation hardware and software we used (Light Plate Apparatus with Iris software). To ensure high fidelity pulses, we opted for 5 second pulses that we empirically determined to be stable throughout long experiments. We have added text clarifying this. Results: Tuning frequency response of the LOVdeg tag

      Reviewer #3:

      Public Review:

      The authors present the mechanism, validation, and modular application of LOVtag, a light-responsive protein degradation tag that is processed by the native degradosome of Escherichia coli. Upon exposure to blue light, the c-terminal alpha helix unfolds, essentially marking the protein for degradation. The authors demonstrate the engineered tag is modular across multiple complex regulatory systems, which shows its potential widespread use throughout the synthetic biology field. The step-by-step rational design of identifying the protein that was most dark stabilized as well as most light-responsive for degradation, was useful in terms of understanding the key components of this system. The most compelling data shows that the engineered LOVTag can be fused to multiple proteins and achieve light-based degradation, without affecting the original function of the fused protein; however, results are not benchmarked against similar degradation tagging and optogenetic control constructs. Creating fusion proteins that do not alter either of the original functions, is often difficult to achieve, and the novelty of this should be expanded upon to drive further impact.

      We appreciate the feedback from Reviewer #3 to improve the manuscript. We have included important controls and benchmarking experiments to address the reviewer’s concerns, which are detailed in the points below.

      Benchmarking:

      The similarity between the L-A-A sequence of SsrA and the E-A-A sequence of LOVtag is one of the pieces of evidence that led the authors to their current protein design. The differences in degradation efficiency between the SsrA degradation tag and LOVtag are not shown, and benchmarking against SsrA would be a valuable way to demonstrate the utility of this construct relative to an established protein tagging tool.

      We thank the reviewer for suggesting an experiment to benchmark performance. We have added new experimental data where a full length SsrA tag is added to a fusion protein of nearly identical size (mCherry-iLID), allowing us to directly compare performance to mCherryLOVdeg (Fig. S9). These results show that light inducible control with LOVdeg tag decreases protein expression levels to near those achieved with the native SsrA tag. Fig. S9.

      Results: Design and characterization of the AsLOV2-based degradation tag

      Additionally, there is a lack of an EL222-only control presented in Figure 4b and in the results section beginning with "Integrating the LOVtag with EL222...". Without benchmarking against this control the claim that "EL222 and the LOVtag work coherently to decrease expression" is unsubstantiated. No assumptions of synergy can be made.

      We appreciate this comment and note that Reviewer #1 raised a similar concern. We have added data to Fig. 4b with an EL222-only control for comparison. Fig. 4b

      The dramatic change in dark octanoic acid titer between the EL222, LOVtag and combined conditions are surprising, especially in comparison to the lack of change in the dark mCherry expression shown in Figure 4b. This data is the only to suggest that LOVtag may perform better than EL222. However, the inconsistencies in dark state regulation presented in the two experiments, and between conditions in this experiment bring the latter claim to question. A recommendation is that the authors either repeat this experiment, or comment on the observed discrepancy in dark state octanoic acid titers in their discussion.

      First, a key difference between the data presented in Fig. 4 and Fig. 5 is that the production experiment is conducted over a long time period (24 hours) and the EL222/LOVdeg reporter experiment is conducted over 5 hours. Likely, performance differences between EL222 and the LOVdeg tag become more pronounced as protein accumulation occurs. Second, the LOVdeg only construct is expressed from a non-EL222 promoter which is able to achieve higher expression (see response to Reviewer #1, Minor point #3). Lastly, a convoluting factor is that the relationship between expression of CpFatB1 and octanoic acid production is not completely linear, and there are likely thresholds or expressions windows that result in similar endpoint titers. We agree a more detailed examination of how CpFatB1 changes over the course of the production period would be very interesting. However, this is beyond the scope of the present study, whose goal is to introduce and showcase the utility of the LOVdeg tag as a tool. We have added new discussion on this in the Results section to clarify some of these points. We have also repeated all experiments in Fig. 4 and consistently see the LOVdeg tag performing as well as or better than EL222. As noted in the remarks to all reviewers, these data have been updated in the revised manuscript.

      Results: Optogenetic control of octanoic acid production. Fig. 4d

      Based on the methodology presented, no change in the duration in light exposure was tested, even though this may be an important part of the system response. The on/off, for example in Figure 4b, is either all light or all dark, but they claim that their system is beneficial especially at stationary phase. The authors should consider showing the effects of shifting from dark to light at set intervals. (i.e. 1 hr dark then light, 2hr dark until light, etc.) This data would also aid in supporting the utility of this tag for controlling expression during different growth phases, where light may be used after the cells have reached a certain phase.

      We have added new data showing the effect of light stimulation at different times in the growth cycle (see response to Reviewer #2, bullet point #5). These data demonstrate that the LOVdeg tag performs well at various points in the growth cycle. Fig. 1f, Fig. S8.

      Results: Design and characterization of the AsLOV2-based degradation tag

      Minor Revisions Figures:

      • Figure 1:

      • More clarity is needed in the naming conventions for this figure and in the body of the text. For example, a different convention than 546 and 543 should be used to refer to the full and truncated lengths of the tag. It would greatly aid understanding for this to be made more clear. The authors could simply continue to use "full" and "truncated" to refer to them. In addition, the term "stabilizing mutations" in 1c could be changed to read "dark state stabilizing mutations" to aid in clarity.

      When describing the design of the LOVdeg tag, we opted towards a more technically accurate description over clarity in order to make our engineering process easily comparable to other LOV2 systems. As such, we kept the number-based nomenclature (543 or 546) to represent the domain within the phototropin 1 protein from Avena sativa (AsLOV2). The domain used in this study, and many other studies, are only amino acids 404-546, i.e. not the full sequence, thus saying simply ‘full’ or ‘truncated’ is not technically accurate. We believe the detailed nomenclature, which is limited to one section, is important to provide clarity on exactly what we used for protein engineering. In the revised version we introduce the nickname “LOVdeg” tag earlier and use it throughout the rest of the manuscript.

      Results: Design and characterization of the AsLOV2-based degradation tag

      • 1b It is not clear that this is the dark state stabilized structure in the figure, but is referred to as such only in the body of the text.

      We have added text in the manuscript to clarify this is AsLOV2, not iLID, and have labeled it in the figure caption as well.

      Results: Design and characterization of the AsLOV2-based degradation tag

      • 1d. Fold change is reported in Figure 2d, and may be relevant to include those values in 1d as well.

      Done. Fig. 1d

      • 1e. It is not clear which tag is being used in this bar plot. Please specify that this is the dark state stabilized, truncated tag.

      We have added a title to the plot and language to the caption, both of which clarify this point. Fig. 1e

      • In addition, the microscopy images provided in supplemental material should be included in the first figure as it adds a compelling observation of LOVtag activity.

      We are pleased to hear that the microscopy results are beneficial, however we elected to leave them in Supplementary to preserve the flow of the manuscript in the text surrounding Fig. 1.

      • Figure 2:

      • 2d. It is unclear what the 2.5x fold change is relative to (the baseline or the dark)

      We have added a line in the figure to clarify the comparison being made. Fig. 2d

      • 2f. More discussion can be added to describe what concentration of chloramphenicol is biologically/bioreactor relevant.

      Our previous studies on the relationship between AcrAB expression and mutation rate (cited in the text) were carried out at a concentration within the range in which the LOVdeg tag is effective (5 μg/ml), suggesting this range to be relevant to tolerance and resistance.

      • Figure 3:

      • We recommend that this data and discussion are better suited for supplementary figures. The results shown here essentially recapitulate the same findings of Zoltowski et al., 2009. In addition, the paper describing this mutation should be cited in this figure caption in addition to the body of the text

      Although these results are in line with previous findings, we believe this dataset is important for several reasons. First, the agreement with known mutations validates the unfolding-based mechanism for degradation control. Second, degradation that is contingent on unfolding of LOV2 offers a direct actuating mechanism of photocycle properties. Other systems, like that in Zoltowski et al., examine properties of purified proteins but lack the mechanism to translate its effect in live cells. This figure demonstrates how degradation can do so and lays the groundwork for degradation-based frequency processing circuits. Last, there are discrepancies between photocycle kinetics in situ, as reported by Li et al. (DOI: 10.1038/s41467-020-18816-8), and in cell-free studies such as in Zoltowski et al. The studies use different methods of measuring photocycle kinetics (in situ vs cell-free). This dataset substantiates relaxation times from Li et al. and suggests cell-free relaxation time constants are over estimated relative to our live cell results.

      • Figure 4:

      • There is a lack of an EL222-only control presented in Figure 4b. Without this data present, the claim that "EL222 and the LOVtag work coherently to decrease expression" is unsubstantiated. No assumptions of synergy can be made.

      We have added EL222-only data to the figure; we note that Reviewer #1 made a similar request. Figure 4b

      Manuscript

      Results

      • Design and characterization...

      • Due to the extensive discussion of ClpX at the beginning of this section, more of the results on evaluating the binding partners and mechanism of LOVtag degradation should be presented in the main body of the manuscript and not in supplementary materials.

      To maintain flow of the manuscript and focus on how the LOVdeg tag works as a synthetic biology tool, we have opted to keep this section in the Supplement Information, but have several lines in the text related to Fig. 1 that point the reader to this material. Results: Design and characterization of the AsLOV2-based degradation tag

      • In the second paragraph of this section, the authors theorize that the C-terminal truncated E-AA sequence will "remain caged as part of the folded helix". How did the authors determine this? Was there any evidence to suggest that the truncated state would be any more responsive than the full length sequence? More data or rationale may need to be introduced to support the overall hypothesis presented in this paragraph.

      We determined this by examining the crystal structure which shows that the E-A-A sequence is part of the folded helix. As seen in Fig. 1b, addition of amino acids after the EAAKEL sequence would not be part of the folded helix which ends prior to the terminal leucine. We added text to clarify our logic.

      Results: Design and characterization of the AsLOV2-based degradation tag

      • The similarity between the L-A-A sequence of SsrA and the E-A-A sequence of LOVtag is one of the pieces of evidence that brought the authors to their current protein design. The differences in degradation efficiency between the SsrA degradation tag and LOVtag are not clear, and benchmarking against SsrA would be a valuable way to demonstrate the utility of this construct relative to an established protein tagging tool.

      We added an SsrA comparison to benchmark the system. Fig. S9

      Results: Design and characterization of the AsLOV2-based degradation tag

      • Tuning frequency and response...

      • Overall the results presented in this section essentially recapitulate the effects that mutation presented in Zoltowski et. al., 2009 have on AsLOV2 dark state recovery and although this is a useful observation of LOVtag performance, a recommendation is to move this into a supplementary section.

      See above response to Fig. 3 comment.

      • Integrating the LOVtag with EL222...

      • The claim is made in this section that LOVtag and EL222 work synergistically, however the experiments presented do not test repression due to EL222 activity alone. Without benchmarking against this control, the claim of synergy is not supported and we recommend that the authors perform this experiment again with the EL222-only control.

      We have added this important control. Fig. 4b

      Discussion

      • The statement "the LOVtag can easily be integrated with existing optogenetic systems to enhance their function" is not substantiated without benchmarking LOVtag against an EL222- only control. As mentioned above this condition should be included in the experiments discussed in Figure 4 and in the section "Integrating the LOVtag with EL222.."

      We added EL222-only regulation to benchmark the LOVdeg tag and LOVdeg + EL222 experiments. Fig. 4b

      Experiments

      Applications:

      The application of this tag to the metabolic control of octanoic acid production could be more impactful. For instance, using the LOVtag with two different enzymes to change the composition of long/short chain fatty acids with light induction., Or possibly integrating the tag into a switch to activate production. However, the authors address that "decreasing titers is not the overall goal in metabolic engineering" in their discussion, and therefore the pursuit of this additional experiment is up to the authors' discretion.

      We appreciate the suggestions for further applications of the LOVdeg tag. We envision that follow up studies will focus on the application of the LOVdeg tag in metabolic engineering. However, this will require significant development of production systems. We believe this to be out of the scope of this work, where the goal is to present the design and function of the LOVdeg tag as a tool.

    1. Author Response

      We are very thankful to the reviewers for a thorough review of our manuscript, and we are confident that we can address all identified weaknesses in the revised version. At the current point, we believe that it is important to mention the following:

      1. The review by reviewer 1 contains factual errors. For example, the reviewer writes "There is much important information missing. For instance: how many animals were used per group and how was the breeding done?" Both animal numbers and the breeding scheme are described in detail in the manuscript.

      2. Reviewer 3 criticizes our choice of animal ages used for the analysis of sperm DNA methylation aging. The reviewer suggests that the sperm of our younger group may contain spermatozoa from the 1st wave of spermatogenesis, while our older group cannot be considered chronologically old mice. We have experimental data that demonstrate that DNA regions that undergo methylation change with age have a linear association between methylation levels and age across the mouse lifespan (including ages used in our study). Thus, age-dependent changes in DNA methylation may be analyzed using any two ages as soon as they are different enough to detect the changes. We will include this experimental data in our resubmitted manuscript.

    1. Author Response

      Reviewer #1 (Public Review):

      Question 1: The experiment that utilizes lactose or glucose supplementation to infer the importance of carbohydrate recognition by galectin-9 cannot be interpreted unequivocally owing to the growth-enhancing effect of lactose supplementation on Mtb during liquid culture in vitro.

      Response: Thanks for this very constructive comment. We will repeat this experiment and lower the concentration of lactose in order to attenuate its effect on Mtb growth, thereby highlighting the reversed mycobacterial growth inhibition by galectin-9.

      Question 2: Similar to the comment above, the apparent dose-independent effect of galectin-9 on Mtb growth in vitro is difficult to reconcile with the interpretation that galectin is functioning as claimed.

      Response: We thank the reviewer for the correction. Indeed, as the reviewer pointed out, galectin-9 inhibits Mtb growth in dose-independent manner. We will correct the claim in the revised manuscript.

      Question 3: The claimed differences in galectin-9 concentration in sera from tuberculin skin test (TST)-negative or TST-positive non-TB cases versus active TB patients are not immediately apparent from the data presented.

      Response: We appreciate the reviewer’s concern. We will perform the detection of galectin-9 in sera in another independent cohort of active TB patients and healthy donors in China.

      Question 4: Neither fluorescence microscopy nor electron microscopy analyses are supported by high-quality, interpretable images which, in the absence of supporting quantitative data, renders any claims of anti-AG mAb specificity (fluorescence microscopy) or putative mAb-mediated cell wall swelling (electron microscopy) highly speculative.

      Response: We appreciate the reviewer’s concern. We will improve the procedure of the immunofluorescence assay to obtain high-quality and interpretable images with quantitative data. As for electron microscopy analyses, we will add a more precise label indicating cell wall in revised manuscript.

      Question 5: Finally, the absence of any discussion of how anti-AG antibodies (similarly, galectin-9) gain access to the AG layer in the outer membrane of intact Mtb bacilli (which may additionally possess an extracellular capsule/coat) is a critical omission - situating these results in the context of current knowledge about Mtb cellular structure (especially the mycobacterial outer membrane) is essential for plausibility of the inferred galectin-9 and anti-AG mAb activities.

      Response: Exactly, AG is hidden by mycolic acids in the outer layer of Mtb cell wall. As we have discussed in the Discussion part of previous manuscript (line286), we speculate that during Mtb replication, cell wall synthesis is active and AG becomes exposed, thereby facilitating its binding to galectin-9 or AG antibody and leading to Mtb growth arrest. It’s highly possible that galectin-9 or AG antibody targets replicating Mtb. We will describe this point more comprehensibly.

      Reviewer #2 (Public Review):

      Question 1: In light of other observations that cleaved galectin-9 levels in the plasma is a biomarker for severe infection (Padilla A et al Biomolecules 2021 and Iwasaki-Hozumi H et al. Biomoleucles 2021) it is difficult to reconcile the author's interpretation that the elevated gal-9 in Active TB patients (Figure 1E) contributes to the maintenance of latent infection in humans. The authors should consider incorporating these observations in the interpretation of their own results.

      Response: Thank you for these very insightful comments. We observed elevated levels of galectin-9 in the serum of active TB patients, consistent with reports indicating that cleaved galectin-9 levels in the serum serve as a biomarker for severe infection (Iwasaki-Hozumi et al., 2021; Padilla et al., 2020). We interpret this to mean that elevated levels of galectin-9 in serum of active TB are an indicator of the host immune response to Mtb infection. However, the magnitude of elevated galectin-9 is insufficient to control Mtb infection thereby maintaining latent infection. This is comparable to other protective immune factors such as interferon gamma, which is considered protective and elevated in active TB, as well (El-Masry et al., 2007; Hasan et al., 2009).

      Question 2: The anti-AG titers were measured only in individuals with active TB (Figure 3C), generally thought to be a less protective immunological state. The speculation that individuals with anti-AG titers have some protection is not founded. Further only 2 mAbs were tested to demonstrate restriction of Mtb in culture. It is possible that clones of different affinities for AG present within a patient's polyclonal AG-antibody responses may or may not display a direct growth restriction pressure on Mtb in culture. The authors should soften the claims about the presence of AG-titers in TB patients being indicative of protection.

      Response: We appreciate the reviewer’s concern. As per the reviewer’s suggestion, we will soften the claim that anti-AG antibodies in the sera of TB patients indicate protection.

      References El-Masry, S., Lotfy, M., Nasif, W.A., El-Kady, I.M., and Al-Badrawy, M. (2007). Elevated serum level of interleukin (IL)-18, interferon (IFN)-gamma and soluble Fas in patients with pulmonary complications in tuberculosis. Acta microbiologica et immunologica Hungarica 54, 65-77.

      Hasan, Z., Jamil, B., Khan, J., Ali, R., Khan, M.A., Nasir, N., Yusuf, M.S., Jamil, S., Irfan, M., and Hussain, R. (2009). Relationship between circulating levels of IFN-gamma, IL-10, CXCL9 and CCL2 in pulmonary and extrapulmonary tuberculosis is dependent on disease severity. Scandinavian journal of immunology 69, 259-267.

      Iwasaki-Hozumi, H., Chagan-Yasutan, H., Ashino, Y., and Hattori, T. (2021). Blood Levels of Galectin-9, an Immuno-Regulating Molecule, Reflect the Severity for the Acute and Chronic Infectious Diseases. Biomolecules 11.

      Padilla, S.T., Niki, T., Furushima, D., Bai, G., Chagan-Yasutan, H., Telan, E.F., Tactacan-Abrenica, R.J., Maeda, Y., Solante, R., and Hattori, T. (2020). Plasma Levels of a Cleaved Form of Galectin-9 Are the Most Sensitive Biomarkers of Acquired Immune Deficiency Syndrome and Tuberculosis Coinfection. Biomolecules 10.

    1. Author Response

      We thank the reviewers for spending the time to read and provide reviews for our manuscript. The reviewers bring good points regarding the sample size, and the low exposure in the South Asian cohort owing to their unique cultural and social practices. We recognize these as limitations of the paper and will discuss these more extensively in the revised version. With respect to sample size, we are not attempting discovery but rather application of mDNA scores derived from external, large discovery samples. As such, though our sample sizes (n = 300–500) seem low for a typical EWAS, they are in a similar range as replication samples in other studies.

      We would also like to take this opportunity to emphasize there is no possible overfitting as the score was tested in studies (FAMILY and START) independent of the discovery set (Joubert et al., 2016; n > 5,000) and the LASSO validation (CHILD; n = 352). In other words, the same participants used for LASSO validation were not used in testing. This is precisely to leverage the larger sample size from external studies to select more plausible CpGs as candidates to include in the model. In fact, the discovery sample size in Reese et al., (2017) was only n = 1,057 in comparison.

      The validated score was then used for further testing in new datasets (FAMILY and START), where FAMILY achieved a more significant association than in the original validation sample (CHILD). At the same time, the mean squared error for the continuous smoking severity outcome (0 for no smoking, 1 for quit before pregnancy, 2 for quit during pregnancy, and 3 for current smoker) was 0.68 in CHILD and 1.43 in FAMILY, which indicate good fit; while the AUC for predicting current vs. non-smoker was 0.86 in CHILD and 0.9 in FAMILY. Taken together, these suggest the MRS constructed was not in violation of overfitting, or “failing to fit to additional data or predict future observations reliably”.

      In terms of value, our derived score contained 11 CpGs that only overlapped 2 out of the 28 CpGs in the score that was derived in the reference provided (Reese, EHP, 2017, PMID 27323799), but they shared four genes that contributed the most weight to the score (MYO1G, CYP1A1, AHRR, and GFI1). In fact, using the 7 CpGs of the score derived in Reese that were present in all cohorts, we obtained slightly worse performance in CHILD (validation cohort; ANOVA p = 4.1E-5, AUC 0.74), and it was not associated with smoking history in FAMILY (testing cohort; p = 0.13). However, we do agree with the reviewer that including more CpGs will improve the performance, using 24/28 CpGs available in CHILD (HM450K), we obtained slightly better results (ANOVA p = 3.8E-7, AUC 0.94), but these were mostly due to the 14/24 CpGs that showed evidence of association with maternal smoking according to EWAS catalog. In conclusion, we believe our score captures the core genes with robust evidence of association and is more parsimonious for applying to external data, but it can also benefit from a larger sample size to capture CpGs that are moderately associated with maternal smoking.

    1. Author Response

      Reviewer #1 (Public Review):

      Overall, the magnitude of the effect size due to FNDC5 deficiency in both male and female mice is rather modest. Looking at the data from a qualitative perspective, it is clear that knockout females still lose bone during lactation and on the low calcium diet (LCD). It is difficult to assess the physiologic consequence of the modest quantitative 'protection' seen in FNDC5 mutants since the mutants still show clear and robust effects of lactation and LCD on all parameters measured. Similarly, the magnitude of the 'increased' cortical bone loss in FNDC5 mutant males is also modest and perhaps could be related to the fact that these mice are starting with slightly more cortical bone. Since the authors do not provide a convincing molecular explanation for why FNDC5 deficiency causes these somewhat subtle changes, I would like to offer a suggestion for the authors to consider (below, point #2) which might de-emphasize the focus of the manuscript on FNDC5. If the authors chose not to follow this suggestion, the manuscript could be strengthened by addressing the consequences of the modest changes observed in WT versus FNDC5 KO mice.

      We agree that the magnitude of the effect size due to FNDC5 deficiency is modest with regards to the quantitative cortical bone parameters. However, if one examines the changes in osteocyte lacunar size and the mechanical properties of these bones, the differences are greater. As shown in Figure 3 E, the lacunar area of the WT females on a low calcium diet increases by over 30% and the KO by less than 20%, while in the males it is approximately 38% in WT compared to 46% in KO mice. According to Sims and Buenzli (PMID: 25708054) a potential total loss of ~16,000 mm3 (16 mL) of bone occurs through lactation in the human skeleton. This was based on our measurements in lactation-induced murine osteocytic osteolysis (Qing et al PMID: 22308018). They used our 2D section of tibiae from lactating mice showing an increase in lacunar size from 38 to 46 um2. In that paper we also showed that canalicular width is increased with lactation. Therefore, this would suggest a dramatic decrease in intracortical porosity due to the osteocyte lacunocanalicular system in female KO on a low calcium diet compared to WT females and a dramatic increase in KO males compared to WT males. Also, PTH was higher in the serum of female WT compared to female KO mice on a low calcium diet, the opposite for males in order to maintain normal calcium levels (See Table 1). Based on this data, using the FNDC5 null animals, we would speculate that the product of FNDC5, irisin, is having a highly significant effect on the ultrastructure of bone in both males and females challenged with a low calcium diet.

      2) The bone RNA-seq findings reported in Figures 4-6 are quite interesting. Although Youlten et al previously reported that the osteocyte transcriptome is sex-dependent, the work here certainly advances that notion to a considerable degree and likely will be of high interest to investigators studying skeletal biology and sexual dimorphism in general. To this end, one direction for the authors to consider might be to refocus their manuscript toward sexually-dimorphic gene expression patterns in osteocytes and the different effects of LCD on male versus female mice. This would allow the authors to better emphasize these major findings, and to then use FNDC5 deficiency as an illustrative example of how sexually-dimorphic osteocytic gene expression patterns might be affected by deletion of an osteocyte-acting endocrine factor. Ideally, the authors would confirm RNA-seq data comparing male versus female mice in osteocytes using in situ hybridization or immunostaining.

      Thank you for this suggestion. We have compared the different effects of LCD on male versus female mice in our revised version and have added a figure containing this information.

      3) Along the lines of point #2 (above), the presentation of the RNA-seq studies in Figures 4-6 is somewhat confusing in that the volcano plot titles seem to be reversed. For example, Figure 4A is titled "WT M: WT F", but the genes in the upper right quadrant appear to be up-regulated in female cortical bone RNA samples. Should this plot instead be titled "WT F: WT M"? If so, then all other volcano plots should be re-titled as well.

      We have now insured that the plots are appropriately labeled.

      4) Have the authors compared male versus female transcriptomes of LCD mice?

      We have now compared the male vs female transcriptomes of LCD mice and added an additional figure.

      5) It would be appreciated if the authors could provide additional serum parameters (if possible) to clarify incomplete data in both lactation and low-calcium diet models: RANKL/OPG ratio, Ctx, PTHrP, and 1,25-dihydroxyvitamin D levels.

      It is not possible to quantitate each of these as the serum has been exhausted. We have checked the RANKL/OPG ratio in the RNA seq and qPCR data using osteocyte enriched bone chips and found no difference.

      6) Lastly, the data that overexpressing irisin improved bone properties in Fig 2G was somewhat confusing. Based on Kim et al.'s (2018) work, irisin injection increased sclerostin gene expression and serum levels, thus reducing bone formation. Were sclerostin levels affected by irisin overexpression in this study? Was irisin's role in modulating sclerostin levels attenuated with additional calcium deficiency?

      We have not observed any differences in the osteocyte Sost mRNA expression between WT and KO normal and low-calcium-diet male and female mice in our RNAseq and qPCR data. As such, we did not check the Sost levels for the 2G experiment.

      Reviewer #2 (Public Review):

      Summary:

      The goal of this study was to examine the role of FNDC5 in the response of the murine skeleton to either lactation or a calcium-deficient diet. The authors find that female FNDC5 KO mice are somewhat protected from bone loss and osteocyte lacunar enlargement caused by either lactation or a calcium-deficient diet. In contrast, male FNDC5 KO mice lose more bone and have a greater enlargement of osteocyte lacunae than their wild-type controls. Based on these results, the authors conclude that in males irisin protects bone from calcium deficiency but that in females it promotes calcium removal from bone for lactation.

      While some of the conclusions of this study are supported by the results, it is not clear that the modest effects of FNDC5 deletion have an impact on calcium homeostasis or milk production.

      Specific comments:

      1) The authors sometimes refer to FNDC5 and other times to irisin when describing causes for a particular outcome. Because irisin was not measured in any of the experiments, the authors should not conclude that lack of irisin is responsible. Along these lines, is there any evidence that either lactation or a calcium-deficient diet increases the production of irisin in mice?

      The global FNDC5 KO mice used for our experiments do not produce or secrete irisin, therefore we have extrapolated that the observed effects are due to a lack of circulating irisin. However, this does not rule out that Fndc5 itself could have a function, but this would have to be most likely in muscle and not in the osteocyte as we do not detect significant levels of irisin in either primary osteoblasts nor primary osteocytes compared to muscle and C2C12 cells. As such, we concluded that the phenotypical differences we saw in our experiments are due to a lack of irisin. We now address the reviewer’s point in the discussion. The measurement of irisin in the circulation with lactation or with low calcium diet of normal mice has not been performed.

      2) The results of the irisin-rescue experiment shown in figure 2G cannot be appropriately interpreted without normal diet controls. In addition, some evidence that the AAV8-irisin virus actually increased irisin levels in the mice would strengthen the conclusion.

      We do not have the normal diet controls at this time. We have now added the quantitative data for tagged irisin in these mice showing highly significant expression

      3) There is insufficient evidence to support the idea that the effect of FNDC5 on bone resorption and osteocytic osteolysis is important for the transfer of calcium from bone to milk. Previous studies by others have shown that bone resorption is not required to maintain milk or serum calcium when dietary calcium is sufficient but is critical if dietary calcium is low (Endo. 156:2762-73, 2015). To support the conclusions of the current study, it would be necessary to determine whether FNDC5 is required to maintain calcium levels when lactating mice lack sufficient dietary calcium.

      We agree that it would be important to measure calcium levels in the milk to test the hypothesis that FNDC5 is important to maintain calcium levels in milk. However, as the calcium levels are normal in the serum, we are assuming they are normal in milk. This would require future experiments.

      4) The amount of cortical bone loss due to lactation is very similar in both WT and FNDC5 KO mice. The results of the statistical analysis of the data presented in figure 1B are surprising given the very similar effect size of lactation. The key result from the 2-way ANOVA is whether there is an effect of genotype on the effect size of lactation (genotype-lactation interaction). The interaction terms were not provided. Similar concerns are noted for the results shown in figure 1G and H.

      We agree, thanks. We will now add the interaction terms in the figure legends.

      5) It is not clear what justifies the term 'primed' or 'activated' for resorption. Is there evidence that a certain level of TRAP expression lowers the threshold for osteocytic osteolysis in response to a stimulus?

      The number of TRAP positive osteocytes in female KO mice are lower than in female WT. The number of TRAP positive osteocytes are lower in WT males compared to WT females. We propose that irisin plays a role in the number of TRAP positive osteocytes in normal, WT females by readying or preparing these cells to rapidly respond to low calcium. We will use the term ‘primed’ and will not use the term ‘activated’. We are open to any terminology or description as to why this is observed and what irisin could be doing to the osteocyte.

      Reviewer #3 (Public Review):

      Summary: Irisin has previously been demonstrated to be a muscle-secreted factor that affects skeletal homeostasis. Through the use of different experimental approaches, such as genetic knockout models, recombinant Irisin treatment, or different cell lines, the role of Irisin on skeletal homeostasis has been revealed to be more complex than previously thought and this warrants further examination of its role. Therefore, the current study sought to rigorously examine the effects of global Irisin knockout (KO) in male and female mouse bone. Authors demonstrated that in calcium-demanding settings, such as lactation or low-calcium diet, female Irisin KO mice lose less bone compared to wild-type (WT) female mice. Interestingly male Irisin KO mice exhibited worse skeletal deterioration compared to WT male mice when fed a low-calcium diet. When examined for transcriptomic profiles of osteocyte-enriched cortical bone, authors found that Irisin KO altered the expression of osteocytic osteolysis genes as well as steroid and fatty acid metabolism genes in males but not in females. These data support the authors' conclusion that Irisin regulates skeletal homeostasis in sex-dependent manner.

      Strengths: The major strength of the study is the rigorous examination of the effects of Irisin deletion in the settings of skeletal maturity and increased calcium demands in female and male mice. Since many of the common musculoskeletal disorders are dependent on sex, examining both sexes in the preclinical setting is crucial. Had the investigators only examined females or males in this study, the conclusions from each sex would have contradicted each other regarding the role of Irisin on bone. Also, the approaches are thorough and comprehensive that assess the functional (mechanical testing), morphological (microCT, BSEM, and histology), and cellular (RNA-seq) properties of bone.

      Weaknesses: One of the weaknesses of this study is a lack of detailed mechanistic analysis of why Irisin has a sex-dependent role on skeletal homeostasis. This absence is particularly notable in the osteocyte transcriptomic results where such data could have been used to further probe potential candidate pathways between LC females vs. LC males.

      Our future studies will focus on understanding the molecular mechanism behind the sex-dependent effects of irisin. Our RNA seq data shows a significant difference in the lipid, steroid, and fat metabolism pathways between male and female mice, as well as between WT and KO mice. Future studies will focus on these pathways.

      Another weakness is authors did not present data that convincingly demonstrate that Irisin secretion is altered in the skeletal muscle between female vs. male WT mice in response to calcium restriction. The supplement skeletal muscle data only present functional and electrophysiolgical outcomes. Since Itgav or Itgb5 were not different in any of the experimental groups, it is assumed that the changes in the level of Irisin is responsible for the phenotypes observed in WT mice. Assessing Irisin expression will further strengthen the conclusion based on observing skeletal changes that occur in Irisin KO male and female mice.

      The problem is that the commercial assays for irisin are not dependable, and results can differ widely across and beyond the physiologic range of 1-10 ng/ml. In part this is due to the nature of the polyclonal antibodies used and the resultant cross reactivity with other proteins. It was shown in Islam et al, 2021 (Nature Metabolism) that the commercial ELISAs were completely unreliable in mice and the only reliable method of measuring circulating irisin is mass spectrometry.

    1. Author Response

      Reviewer #1 (Public Review):

      Strengths:

      1. In my assessment, the data sufficiently demonstrates that a modified version of Pertuzamab can bind both the wild-type and S310 mutant forms of ERBB2.

      2. The engineering strategy employed is rational and effectively combines computational and experimental techniques.

      3. Given the clinical activity of HER2-targeting ADCs, antibodies unaffected by ERBB2 mutations would be desired.

      Weaknesses:

      1. There is no data showing that the engineered antibody is equally specific as Pertuzamab i.e. that it does not bind to other (non-ERBB2) proteins.

      Showing the specificity of the engineered antibodies is indeed important. We did not address it in the current ms, but it can be tested in the future.

      1. There is no data showing that the engineered antibody has the desired pharmacokinetics/pharmacodynamics properties or efficacy in vivo.

      In this ms we did not conduct in-vivo experiments. When moving forward, pharmacokinetics/pharmacodynamics properties and efficacy will be tested as well.

      1. Computational approaches are only used to design a phage-screen library, but not used to prioritize mutations that are likely to improve binding (e.g. based on predicted impact on the stability of the interaction). A demonstration of how computational pre-screening or lead optimization can improve the time-intensive process would be a welcome advance.

      Thank you for this important comment. In the present ms we indeed used a computational approach for prioritizing residues to be mutated, but we did not prioritize the mutations that are likely to improve binding. In the initial library design, we did prioritize the mutations. However, due to experimental approach limitations with codon’s selection for the library, we had decided to allow all possible residues in each position, knowing that the selection will remove non-binding variants.

      Context:

      The conflict of interest statement is inadequate. Most authors of the study (but not the first author) are employees of Biolojic, a company developing multi-specific antibodies, but the statements do not clarify whether the presented antibodies represent Biolojic IP, whether the company sponsored the research, and whether the company is further developing the specific antibodies presented.

      The Conflict-of-Interest statement will be revised as such: The Biolojic Design authors are employees of Biolojic Design and have stock options in Biolojic Design. The company did not sponsor the research, does not hold IP for the presented antibodies, and is not further developing the presented antibodies.

      Reviewer #2 (Public Review):

      Strengths:

      1. Deep computational analyses of large datasets of clinical data provide useful information about HER2 mutations and their potential relevance to antibody therapy resistance.

      2. There is valuable information analyzing the residues within or near the interface between the antigen HER2 and the Pertuzumab antibody (heavy chain). The experimental antibody library screening obtained 90+ clones from 3.86×1011 sequences for further functional validation.

      Weaknesses:

      1. There is a lack of assessment for antibody variant functions in cancer cell phenotypes in vitro (proliferation, cell death, motility) or in vivo (tumor growth and animal survival). The only assay was the western blotting of phosphopho-HER3 in Figure 4. However, HER2 levels and phosphor-HER2 were not analyzed.

      We indeed did not assess the engineered antibodies function in cancer cells. Regarding signaling assessment, previous works [1-3] also measured the signaling activation following HER2-HER3 dimerization by measuring pHER3, and we relied on them in this ms.

      1. There is a misleading impression from the title of computational engineering of a therapeutic antibody and the statement in the abstract "we designed a multi-specific version of Pertuzumab that retains original function while also bindings these HER2 variants" for a few reasons:

      a. The primary method used for variant antibody identification for HER2 mutant binding is rather traditional experimental screening based on yeast display instead of the computational design of a multi-specific version of Pertuzumab.

      b. There is insufficient or lack of computational power in the antibody design or prioritization in choosing variant residues for the library construction of 3.86×1011 sequences. It seems random combinations from 6 residues out of 4 groups with 20 amino acid options.

      c. The final version of the tri-binding variant is a combination of screened antibody clones instead of computation design from scratch.

      d. There is incomplete experimental evidence about the therapeutic values of newly obtained antibody clones.

      Thank you for this relevant comment. When addressing relevant residues to be mutated, the number of potential variants is enormous. The computational approach was aimed at identifying the most preferable residues, in which variation can improve binding and is not likely to harm important interactions. Although an initial smaller number of residues could be chosen, we decided to broaden our view and create a larger library, in the aim of combining the computational selection with an experimental selection. This indeed is not a computational design from scratch, but rather an intercourse between the computer and the lab, that yielded the presented results.

      1. Figures can be improved with better labeling and organization. Some essential pieces of data such as Supplementary Figure 1B on HER2 mutations in S310 that abrogated its binding to Pertuzumab should be placed in the main figures.

      Thank you for this comment, the relevant figures will be moved to the main text, and the labels will be revised.

      1. It is recommended to provide a clear rationale or flowchart overview into the main Figure 1. Figure 2A can be combined with Figure 1 to the list of targeted residues.

      Figures 1 and 2 will be divided differently, and the rationale will be detailed in the revised text.

      1. The quality of Figures such as Figure 2B-C flow data needs to be improved.

      This will be corrected in the revised text.

      1. Diwanji, D., et al., Structures of the HER2-HER3-NRG1β complex reveal a dynamic dimer interface. Nature, 2021. 600(7888): p. 339-343.

      2. Yamashita-Kashima, Y., et al., Mode of action of pertuzumab in combination with trastuzumab plus docetaxel therapy in a HER2-positive breast cancer xenograft model. Oncol Lett, 2017. 14(4): p. 4197-4205.

      3. Kang, J.C., et al., Engineering multivalent antibodies to target heregulin-induced HER3 signaling in breast cancer cells. MAbs, 2014. 6(2): p. 340-53.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      This reviewer found the paper of very high interest, well supported, and well written. I have only a few suggestions to the authors for further improvement:

      1. TRAIL mutants carrying individual mutations of basic residues R119, R122 and K125 were tested, but a TRAIL mutant lacking all three residues was not. This combined mutant protein would have allowed to test whether all heparin binding is abolished (e.g. that no other residues contribute to HS binding) and could have also been used as an independent control replacing heparin and heparinase treatment in binding/apoptosis studies. Given that the DR4/5 and heparin binding sites of TRAIL do not overlap, this form would be useful in determining the extent to which HS contributes to, or serves as a prerequisite for TRAIL binding to its receptor and cell death. Moreover, if bound to the receptor, this mutant TRAIL is expected to completely prevent HS-mediated receptor internalization. The added value of this experiment therefore is that it may provide an answer to the controversial debate on whether DR receptor internalization promotes or inhibits apoptosis.

      In Fig. 5C, we provided data showing that the binding of R115A mutant of hTRAIL (equivalent to murine R199A mutant) to MB-453 cells was very similar to the binding of WT hTRAIL to heparin lyase treated cells. This finding suggests that nearly all HS-dependent binding to cell surface HS was abolished by mutating R115. Since a single mutant is sufficient, we felt there is little point in combining multiple mutations. We also used R115A mutant as an independent control replacing heparin and heparinase treatment in apoptosis assay in Fig. 7E. With regard to using the mutant in the internalization assay, we thank the reviewer for this excellent suggestion and will incorporate it into our future study as we intend to perform more in-depth investigation on the exact mechanism of internalization.

      1. The domain data is interesting, but its physiological significance remains obscure and it also somewhat distracts from the main theme of the study. It may be removed from a revised manuscript.

      We partially agree with the reviewer’s assessment, but we felt that this discovery is of sufficient novelty and should be made known to the whole community.

      1. TUNEL data is shown as a picture in Figure 6, but quantification is lacking.

      We have included the statistics of the TUNEL data in the final version as Fig. 6D.

      1. Is the HS20 antibody a well-suited pan-anti-HS antibody? Why was this antibody used instead of heparinase digestion followed by the use of HS "stub" antibodies that were previously used as a reliable readout for overall sulfation?

      The HS20 mAb has been very well characterized by Dr. Mitchell Ho group (Gao et al., 2016). We have also done side-by-side comparison of HS20 and the most commonly used anti-HS mAb 10E4 by immunostaining and FACS. In nearly all tissues and cells tested, HS20 gave better sensitivity and lower background (after heparin lyase treatment) compared to 10E4. The staining pattern of the two mAbs are usually identical, but the signal/noise ratio of HS20 is much better than 10E4. The HS ”stub” antibody can be useful in certain applications, but it is used mainly as an indicator of the distribution/abundance of HSPGs, rather than a readout of overall sulfation.

      1. The discussion should be stripped from expressions such as interestingly, curiously, unexpectedly, certainly, undoubtedly and the like to improve readability. The manuscript should be checked for typos (for example surface plasma resonance line 473, was served line 481).

      We thank the reviewer for the suggestions and many of these expressions were removed in the final version.

      1. Last but not least: to test the physiological relevance of these findings, it would be of the highest interest to use a mouse model harboring a tumor cell line of choice and derived lines with impaired or increased HS expression, as outlined in my public comments, and to test tumor responsiveness to TRAIL treatment. If already planned, I wish you Good Luck with the experiments!

      We thank the reviewer for this excellent suggestion and we have indeed planned to do exactly that!

      Reviewer #2 (Recommendations For The Authors):

      1. The authors showed in Fig.2 that 12mer HS forms complex with TRAIL homotrimer. Please clarify if 12mer HS binding leads to the formation of the TRAIL homotrimer or TRAIL can form homotrimer in the absence of HS binding. Do the TRAIL mutations that affect HS binding, such as R115A, also impact the homotrimer formation?

      TRAIL automatically forms a homotrimer independent of HS. It is known that formation of the homotrimer critically depends on a zinc ion, which is located on the threefold axis of the trimer and is bound by cysteine 240. We have also verified that all TRAIL mutants remain homotrimeric by size exclusion chromatography.

      1. Does 12mer HS also suppress TRAIL-mediated apoptosis in MDA-MB-453 cells?

      We thank the reviewer for this question but felt performing this experiment will not add any more insight to the main conclusion. Most likely, the result will be similar to what we saw in Fig. 7D, where we found 12mer significantly inhibits TRAIL-induced apoptosis, but inhibits less efficiently compared to heparin.

      1. The authors nicely showed the correlation between surface HS level and sensitivity to TRAIL-induced apoptosis in MM cell lines and implicated that such correlation could be related with the difference in the expression level of SDC1. This is an interesting point worth further validation. Does ectopic SDC1 expression in IM-9 cells lead to increase cell surface HS and sensitivity to TRAIL treatment? On the other hand, will depletion of SDC1 expression in U266 or RPMI8226 cells decrease their sensitivity to TRAIL treatment?

      We agree that this would be an excellent experiment to try and have actually attempted to overexpress SDC1 in IM-9 cells. But we found IM-9 cells are very difficult to transfect and we only managed to convert a small percentage of SDC1 negative cells to positive cells. Also, the level of SDC1 expression on the SDC1-positive cells was not changed after overexpression. We have not tried depleting SDC1 expression in U266 and RPMI8226 cells because such an experiment might change the property of these cells in unexpected ways, which would make result interpretation impossible. A previous report has shown that knocking down SDC1 could enhance clustering of TRAIL receptors in H929 cells (Wu et al., J Immunol 2012;), which actually led to slightly increased apoptosis.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study extends insights on NAFLD and NASH regarding the role of plasma lactate levels using mice haplo-insufficient for the gene encoding lactate transporter MCT-1. While the evidence is largely convincing and the work significantly advances our understanding of the roles of distinct hepatic cell types in steatosis, a number of issues require attention and would best be solved by further experimentation.

      RESPONSE: We agree with this assessment by eLife, and appreciate the reviewers’ view that the study is important and extends insights into liver disease.

      Public Reviews:

      Reviewer #1 (Public Review):

      The authors put forth the hypothesis that hepatocyte and/or non-parenchymal liver MCT1 may be responsible for physiologic effects (lower body weight gain and less hepatic steatosis) in MCT1 global heterozygote mice. They generate multiple tools to test this hypothesis, which they combine with mouse diets that induce fatty liver, steatohepatitis and fibrosis. Novel findings include that deletion of hepatocyte MCT1 does not change liver lipid content, but increases liver fibrosis. Deletion of hepatic stellate cell (HSC) MCT1 does not substantially affect any liver parameter, but concomitant HSC MCT1 deletion does reverse fibrosis seen with hepatocyte MCT1 knockout or knockdown. In both models, plasma lactate levels do not change, suggesting that liver MCT1 does not substantially affect systemic lactate. In general, the data match the conclusions of the manuscript, and the studies are well-conducted and well-described. Further work would be necessary to dissect mechanism of fibrosis with hepatocyte MCT1, and whether this is due to changes in local lactate (as speculated by the authors) or another MCT1 substrate. This would be important to understand this novel potential cross-talk between hepatocytes and HSCs.

      A parallel and perhaps more important advance is the generation of new methodology to target HSC in mice, using modified siRNA and by transduction of AAV9-Lrat-Cre. Both methods would reduce the need to cross floxed mice with the Lrat-Cre allele, saving time and resources. These tools were validated to an extent by the authors, but not sufficiently to ensure that there is no cross-reactivity with other liver cell types. For example, AAV9-LratCre-transduced MCT1 floxed mice show compelling HSC but not hepatocyte Mct1 knockdown, but other liver cell types should be assessed to ensure specificity. This is particularly important as overall liver Mct1 decreased by ~30% in AAV9-Lrat-Cre-transduced mice, which may exceed HSC content of these mice, especially when considering a 60-70% knockdown efficiency. This same issue also affects Chol-MCT1-siRNA, which the authors demonstrate to affect hepatocytes and HSC, but likely affects other cell types not tested. As this is a new and potentially valuable tool, it would be important to assess Mct1 expression across more non-parenchymal cells (i.e. endothelial, cholangiocytes, immune cells) to determine penetration and efficacy.

      RESPONSE: We appreciate the reviewer’s view that the new methods we describe represent an important advance. To ensure the specificity of our novel AAV-Lrat-Cre construct, it would be fair to test its distribution among all possible hepatic cell types, including endothelial cells, cholangiocytes, and other immune cells, as suggested. Our efforts in this study were primarily focused on the major cell types thought to contribute to NASH, namely hepatocytes, Kupffer cells, and in particular hepatic stellate cells. The reasons for this focus were:

      1) Our primary goal was to investigate the role of MCT1 in hepatic fibrogenesis. According to Manderacke et al. (2013, Nature Comm), hepatic stellate cells account for the dominant proportion (82-96%) of myofibroblast progenitors, which produce collagen fibers. While there may be interesting roles of MCT1 in those other cell types, to elucidate MCT1's role in fibrogenesis, focusing on the dominant fibrogenic cell type, hepatic stellate cells, was the most appropriate approach for this goal.

      2) Considering the proportion of each hepatic cell type in the liver, hepatocytes constitute the majority (60-70%), followed by endothelial cells (15%), immune cells (10%), and stellate cells (5%), among others.

      3) The AAV-Cre system is highly specific to its promoter, in this case, Lrat, which has been well established in multiple previous studies to exhibit high specificity for hepatic stellate cells in the liver. We will certainly conduct more comprehensive biodistribution studies in the future, as we believe that our AAV-Lrat-Cre system could be a valuable tool in this field.

      Reviewer #2 (Public Review):

      In this study, the authors seek to answer two main questions: 1) Whether interfering with lactate availability in hepatocytes through depletion of hepatocyte specific MCT-1 depletion would reduce steatosis, and 2) Whether MCT-1 in stellate cells promote fibrogenesis. While the first question is based on the observation that haploinsufficiency of MCT-1 makes mice resistant to steatosis, the rationale behind how MCT-1 could impact fibrogenesis in stellate cells is not clear. A more detailed discussion regarding how lactate availability would regulate two different processes in two different cell types would be helpful. The authors employ several mouse models and in vitro systems to show that MCT1 inhibition in hepatic stellate cells reduces the expression of COL-1. The significance of the findings is moderately impacted due to the following considerations:

      RESPONSE: We have included additional in vitro data in order to provide a more comprehensive discussion of MCT1's potential role in regulating collagen production. Please refer to the new Figure 8, Supplementary Figure 6, and the results section (Potential Mechanism). Also note that our original hypothesis was that depleting MCT1 specifically in hepatocytes would protect mice with MCT1 haploinsufficiency from liver lactate overload and NAFLD. Furthermore, we postulated that this protection might prevent NASH progression since lipotoxicity-driven hepatocyte damage is a central factor in NASH pathogenesis. However, our findings did not support this hypothesis. We found only one brief article (2015, Z Gastroenterol et al., "Functional effects of monocarboxylate transporter 1 expression in activated hepatic stellate cells") that discussed the potential role of MCT1 depletion in hepatic stellate cells in regulating collagen production or fibrosis, as mentioned in their abstract. Unfortunately, the DOI for this article is not functional, and the data cannot be located. Moreover, when we attempted to replicate their results, we were unable to do so, leading us to report our own findings in the current paper.

      a. Fibrosis in human NAFLD is a significant problem as a predictor of liver related mortality and is associated with type 1 and type 3 collagen. However, the reduction in COL1 in stellate cells did not amount to a reduction in liver fibrosis even in cell specific KO (in Fig 7E, there is no indication of whether Sirius red staining was different between HSC KO and control mice- the authors mention a downward trend in the text). The authors postulate that type 1 COL may not be the more predominant form of fibrosis in the model. This does not seem likely, since the same ob/ob mouse model was used to determine that fibrosis was enhanced with hepatocyte specific MCT-1 KO and decreased with Chol MCT-1KO. Measurements of different types of collagens in their model and the effect of MCT-1 on different types could be more informative. In particular, although collagens are the structural building blocks for hepatic fibrosis, fibrosis can also be controlled by matrix remodeling factors such as Timp1, Serpine 1, PAI-1 and Lox.

      RESPONSE: We monitored the expression levels of matrix remodeling factors, such as Timp1 (Figure 5C, 5F). There was no change in expression upon Chol-MCT1-siRNA treatment, while a significant increase was observed upon GN-MCT1-siRNA treatment. This trend was similar to collagen expression in both cases. Regarding the different types of collagen, instead of measuring each individual type of collagen, we conducted Sirius red and trichrome staining, which enabled us to detect multiple types of collagen simultaneously (Figure 5G, Figure 7D).

      b. The authors use multiple animal models including cell specific KO to conclude that stellate cell MCT-1 inhibition decreases COL-1. However, the mechanisms behind this reduced expression of COL-1 are not discussed or explored, making it descriptive.

      RESPONSE: We agree that the mechanisms involved are not fully defined but have added new data (Figure 8, Supplement Figure 6) and text to discuss possibilities.

      c. Different types of diets are used in this study which could impact lactate availability. Choline deficiency diets are reported to cause weight loss, and importantly have none of the metabolic features of human NASH. Therefore, their utility is doubtful, especially for this study which proposes to investigate if metabolic dysregulation and substrate availability could be a tool for therapy.

      RESPONSE: Unfortunately, none of the rodent models used to study NASH completely replicate the condition in human patients, each having its own set of advantages and drawbacks. In line with the concern raised by reviewer #2, there has been a shift away from the use of severely detrimental methionine and choline-deficient diets in contemporary NASH research. Instead, diets that combine methionine and other amino acids with cholinedeficient diets, in conjunction with high-fat diets, have become more popular. The diet we employed in our study consists of high-fat diet combined with choline-deficient diets. We believe that our findings, which are consistent and established across two distinct NASH pathogenesis models and genetic backgrounds, lend additional robustness to our results.

      d. Hepatocyte specific MCT-1 KO mice seem to have increased COL-1 production, despite no noticeable difference in hepatocyte steatosis. The reasons for this are not discussed. Fibrosis in NASH is thought to be from stellate cell activation secondary to signals from hepatocellular damage. There is no evidence that there was a difference in either of these parameters in the mouse models used.

      RESPONSE: While lipotoxicity-driven liver damage remains a central aspect of NASH pathogenesis, the traditional two-hit theory has become less tractable, giving way to the multi-hit theory in the NASH field. The current debate revolves around whether steatosis is a decisive factor and requirement for NASH fibrogenesis. Our previous publication (Yenilmez et al., 2022, Mol Ther) demonstrated that nearly complete resolution of steatosis did not prevent other NASH features like inflammation and fibrosis, indicating the existence of multiple factors beyond steatosis in NASH pathogenesis. We believe that steatosis and fibrosis influence each other but can also develop independently.

      e. The authors report that serum lactate levels did not rise after MCT-1 silencing, but the reasons behind this are unclear. There is insufficient data about lactate production and utilization in this model, which would be useful to interpret data regarding steatosis and fibrosis development. For example, does the MCT-1 KO prevent hepatocyte and stellate cell net import or export of lactate? What is the downstream metabolic consequence in terms of pyruvate, acetylCoA and the NAD/NADH levels. Does the KO have downstream effects on mitochondrial TCA cycling?

      RESPONSE: Due to both biological and technical challenges (which are described in the new draft), conducting a comprehensive metabolomics study comparing hepatocyte MCT1 KO to hepatic stellate cell MCT1 KO was not feasible. It is important to note that MCT1 can also transport other substrates that are often overlooked, including pyruvate, short-chain fatty acids, and ketone bodies. Also, in addition to MCT1, there are at least two other functional isoforms of MCT: MCT2 and MCT4. Regrettably, due to these biological and technical complications, conducting a comprehensive metabolomic analysis is extremely complicated and difficult to interpret. Nevertheless, some insights are gained from a study involving MCT1 chaperone protein Basigin/CD147 knockout (KO) mice in a high-fat diet- induced hepatic steatosis model. Basigin acts as an auxiliary protein for MCT1, and its absence leads to improper localization and stabilization of MCT1, effectively simulating a state of MCT1 deficiency. In this context, hepatic lactate levels were reduced by half, and other metabolites such as pyruvate, citrate, α-ketoglutarate, fumarate, and malate were significantly decreased. While we must exercise caution when extrapolating these findings to our MCT1 study, they suggest that multiple metabolites, particularly pyruvate, may play a crucial role in the context of MCT1 deficiency.

      f. MCT-1 protein expression is measured only in the in vitro assay. Similar quantitation through western blot is not shown in the animal models.

      RESPONSE: We monitored MCT1 protein expression with either Western blot (Fig 2D, 2E (in vitro)) or immune-histology (Fig 4B, 4C (in vivo, ob/ob + GAN diet NASH model), Sup Fig 5F, 5G (in vivo, MCT1 f/f + CDHFD model)).

      Reviewer #3 (Public Review):

      A major finding of this work is that loss of monocarboxylate transporter 1 (MCT1), specifically in stellate cells, can decrease fibrosis in the liver. However, the underlying mechanism whereby MCT1 influences stellate cells is not addressed. It is unclear if upstream/downstream metabolic flux within different cell types leads to fibrotic outcomes. Ultimately, the paper opens more questions than it answers: why does decreasing MCT1 expression in hepatocytes exacerbate disease, while silencing MCT1 in fibroblasts seems to alleviate collagen deposition? Mechanistic studies in isolated hepatocytes and stellate cells could enhance the work further to show the disparate pathways that mediate these opposing effects. The work highlights the complexity of cellular behavior and metabolism within a disease environment but does little to mechanistically explain it.

      RESPONSE: Described above to Reviewer #2

      The observations presented are compelling and rigorous, but their impact is limited by the nearly complete lack of mechanistic insight presented in the manuscript. As also mentioned elsewhere, it is important to know whether lactate import or export (or the transport of another molecule-like ketone bodies, for example) is the decisive role of MCT1 for this phenotype. Beyond that, it would be interesting, albeit more difficult, to determine how that metabolic change leads to these fibrotic effects.

      RESPONSE: Described above to Reviewer #2

      Kuppfer cells are initially analyzed and targeted. These cells may play a major role in fibrotic response. It will be interesting to determine the effects of lactate metabolism in other cells within the microenvironment, like Kuppfer cells, to gain a complete understanding of how metabolism is altered during fibrotic change.

      RESPONSE: To address the potential involvement of inflammatory cells, we added new data to the manuscript (Supplement Figure 4). Given the distinct hepatic cellular distribution of Chol-MCT1-siRNA and GN-MCT1-siRNA, the opposite fibrogenic phenotype observed may be attributed to MCT1’s role in non-hepatocyte cell types such as the inflammatory Kupffer cells and the fibrogenic hepatic stellate cells. To determine which hepatic cell type drives the opposite fibrotic phenotypes, we first hypothesized that GN-MCT1-siRNA activates M2 pro-fibrogenic macrophages more than Chol-MCT1-siRNA does. The representative M1/ M2 macrophage polarization gene markers were monitored in Kupffer cells. However, GN-MCT1-siRNA treatment caused comparable M1/M2 macrophage activation levels to Chol-MCT1-siRNA treatment (Supplement Figure 4A, 4B). These data suggest that the opposite fibrotic phenotypes caused by the different siRNA constructs are not due to M1/M2 macrophage polarization.

      The timing of MCT1 depletion raises concern, as this is a largely prophylactic experiment, and it remains unclear if altering MCT1 would aid in the regression of established fibrosis. Given the proposal for translation to clinical practice, this will be an important question to answer.

      RESPONSE: Agree these are important experiments for future evaluation.

      Reviewer #1 (Recommendations For The Authors):

      As above, in general, the conclusions match the data presented. The one exception is the authors discussion point that these data show the importance of lactate flux in fibrosis. As MCT1 has other substrates, it does not seem this is definitively due to lactate flux. It would be helpful to have additional experiments to clarify mechanism by which loss of hepatocyte MCT1 leads to increased fibrosis, while loss of HSC MCT1 reverses this finding. This may aid in concluding that altered fibrosis is in fact due to lactate flux in these cell types.

      RESPONSE: Described above to Reviewer #2

      In addition, it is unclear why the authors switched NASH models for the two tools generated (GAN diet for siRNA, CDHFD for AAV). Similarly, methodology to assess fibrosis switched between these two experiments - i.e. Sirius Red staining for siRNA-treated GAN diet-fed mice vs. Trichrome staining for AAV-transduced CDHFD-fed mice. These changes make it difficult to perform cross-comparisons of the data, to explain (for example), why GN-siRNA to Mct1 reduced body weight but AAV8-TBG-Cre did not. Similarly, GN-siRNA increased liver Col1a1 protein but AAV8-TBG-Cre did not. These differences could be explained by model system, or tool efficacy/off-target effects.

      RESPONSE: We agree that different model systems can explain difference in results, but there is also an advantage of using different models and various methodologies as preclinical tests of consistency of data on NASH under different conditions. There are no perfect mouse models for human NASH.

      • Phenotyping is also incomplete for the latter experiment, in particular amount of liver lipid content –

      RESPONSE: We estimated lipid content by H&E (Fig 6E, F). In some experiments, we focused mostly on COL1 protein expression, as this rather than mRNA is the functional aspect of fibrosis.

      Reviewer #2 (Recommendations For The Authors):

      This study could benefit from standardization of the types of diet used across all animal models and a more comprehensive focus on the metabolic/substrate availability and utilization aspects of NAFLD and NASH affected in the mouse models with MCT-1 dependent lactate transport deficiency. Since hepatic fibrogenesis in NASH is impacted by signals following hepatocyte damage, the extent of cell death in these models could also be better characterized.

      RESPONSE: Our ALT data provides indirect insight into hepatocyte damage. Our histology images did not reveal significant changes in cell morphology or integrity and there were no notable changes in caspase protein levels.

      Other comments:

      In Fig 4G, there is an increase in the number of lipid droplets with Chol- MCT-1 siRNA compared to GN-MCT1-sirRNA, suggesting that the stellate cell component might be responsible for this finding. The possible reasons for this are not discussed.

      RESPONSE: The effects in Fig 4G were exceedingly small and there is no difference in total TG in these experiments, so it is hard to interpret these data and provide logical explanations.

      In Fig 5A. A western Blot for aSMA and COL 1 is shown but the sample labeling is unclear i.e, do the lanes belong to different mice of the same condition? HFD mice vs Ctr mice?

      RESPONSE: Both groups of ob/ob mice were fed a GAN diet. The graph in Fig 5 is a direct comparison between NTC-siRNA and MCT1-siRNA. To enhance clarity, this is indicated in the figure legends, and the data in Fig 5 is a continuation of the data presented in Fig 4

      In Fig 5E, COL1 densitometry data should also be provided for non-silenced mice on HFD and Chow diet for appropriate comparison

      RES\PONSE: Both groups of ob/ob mice were fed a GAN diet. The graph in Fig 5 represents a comparison between NTC-siRNA and MCT1-siRNA. It's important to note that, typically, ob/ob mice fed either a chow diet or a high-fat diet do not exhibit fibrogenic phenotypes within this time frame (3 weeks of dietary intervention).

      There are many mis-statements throughout the text.Page 6 - "MCT1 silencing significantly inhibited Tgf1β-stimulated ACTA2 mRNA expression as well as collagen 1 protein production" but it is not stated that CO1A1 mRNA is unchanged in Fig 1C.

      RESPONSE: We observed no change in CO1A1 mRNA levels (Fig 1C), so we focused on collagen 1 protein production (Fig 1B) on page 6. Given the consistent trend observed in Chol-MCT1-siRNA (Fig 5C), we proposed the possibility of MCT1's influence on collagen translation or protein turnover on page 11.

      Page 7- ".......our Chol-MCT1-siRNA does not require transfection reagents as it is fully chemically modified". What does fully chemically modified mean and why does this mean in terms of transfection efficiency.

      RESPONSE: One of the primary challenges in utilizing RNAi as a therapeutic approach has been the effective in vivo delivery strategy, particularly concerning stability and longevity against systemic nucleases. Recent developments in siRNA duplex chemical modification strategies, such as 2-Fluoro and 2-O-Methyl ribose substitutions, as well as phosphorothioate backbone replacements, have addressed these challenges (Please see Figure 3. In our current study, we employed 'chemically fully modified' siRNA, featuring several key modifications: (1) every single ribose is chemically modified to 2-F or 2-OMeribose, (2) phosphorothioate backbone replacement, (3) 5'-end of the antisense strand modification to (E)-Vinyl-phosphonate, and (4) 3'-end of the sense strand linkers such as Cholesterol or Tri-N-Acetyl-galactosamine. These chemical enhancements significantly improve transfection efficiency, longevity, and selectivity, setting it apart from traditional siRNA lacking such chemical modifications. A prior study from the Khvorova lab has demonstrated substantial efficiency differences between partially and fully modified siRNA in vivo.

      Page 7- the results present for Fig 2 ignores Fig, 2C, if this is important it needs to be described if not, please delete.

      RESPONSE: The dose-response potency results, crucial for identifying the most potent Chol-MCT1-siRNA compound, are depicted in Figure 2C. The wording "(Figure 2C)" has been inserted in the sentence as follows. “The silencing effect on Mct1 mRNA was monitored after 72 hours (Figure 2B). Several compounds elicited a silencing effect greater than 80% compared to the NTC-siRNA. The two most potent Chol-MCT1-siRNA, Chol- MCT1-2060 (IC50: 59.6nM, KD%: 87.2), and Chol-MCT1-3160 (IC50: 32.4nM, KD%: 87.7) (Figure 2C) were evaluated for their inhibitory effect on MCT1 protein levels (Figure 2D, 2E). Based on its IC50 value and silencing potency, Chol-MCT1-3160 construct was chosen for further studies in vivo (Table 2).”

      Supplement Fig 1A-F should be analyzed by multiple comparisons not by paired t-tests.

      RESPONSE: We performed t-tests for every comparison between two groups. However, for Sup Fig 1A-F, which involved a comparison among three different groups, we applied oneway ANOVA.

      The x-axis in supplement Fig 2A and B are not labeled, and I assume are in weeks. The Fig 2B x-axis numbers also mis-labeled and should also be 0-3 and not 10-13.

      RESPONSE: The x-axis is now appropriately labeled.

      Page 10 - the description of supplement Fig 4A is not accurate. Srebf1 mRNA is unchanged by the GN-MCT1-siRNA treatment and Mlxipl mRNA is unchanged by Chol-MCT1-siRNA treatment. Is this total Mlxipl mRNA or can you distinguish between the alpha and beta variants.

      RESPONSE: We adhered to NCBI nomenclature, where 'SREBP1' and 'ChREBP' represent proteins, not mRNA. The Mlxipl mRNA we tested pertains to total Mlxipl mRNA. Original draft shown below.

      “To investigate the underlying mechanism by which lipid droplet morphological dynamics change, we monitored the effect of hepatic MCT1 depletion on DNL-related gene expression. Both GN-MCT1-siRNA and Chol-MCT1-siRNA strongly decreased the mRNA and protein levels related to representative DNL genes (Supplement Figure 4A-4D). Intriguingly, both modes of hepatic MCT1 depletion also inhibited expression of the upstream regulatory transcription factors SREBP1 and ChREBP.”

      There are no molecular weight markers in supplement Fig 4C and D. Is the Srebp1c blot for the nuclear or precursor form?

      RESPONSE: The Srebp1c blot presented represents the precursor form. I have edited the figure legend accordingly. It's worth noting that the cleaved form of Srebp1c either exhibited significantly lower expression compared to its precursor form or displayed comparable expression between the control group and the MCT1 depletion group.

      Changes in mRNA and protein do not always reflect changes in activity (allosteric regulation). If you want to draw any conclusions about de novo lipogenesis you need to directly measure fatty acid synthesis rates from a carbohydrate precursor.

      RESPONSE: We completely agree. Therefore, in the current study, we emphasized two key points: (1) hepatic MCT1 depletion affects the expression levels of representative DNL genes, and (2) however, this regulation was insufficient to resolve the steatosis phenotypes in our NASH model. We have added the text “while recognizing that the decreased expression of DNL genes does not necessarily indicate inhibited fatty acid synthesis rate” on page 15.

      Reviewer #3 (Recommendations For The Authors):

      Figure 1 - Are there changes to fibroblast phenotype with TGF-beta stimulation and are these changes reversed with MCT1 siRNA-mediated silencing, or is this purely an expression phenomenon?

      RESPONSE: This study was designed to assess the preventative effect of MCT1 silencing on Tgf1β-induced fibrosis, rather than a reversal study. As detailed in the methods section, LX2 cells were initially cultured in DMEM/high glucose media with 2% FBS. The following day, we transfected the cells with either NTC-siRNA or MCT1-siRNA (IDT, cat 308915476) using Lipofectamine RNAi Max (ThermoFisher, cat 13778075) for 6 hours in serum-reduced Opti-MEM media (ThermoFisher, cat 31985062). Subsequently, the cells were maintained in serum-starved media, with or without 10ng/ml of recombinant human Tgf1β (R&D Systems, cat 240-B/CF), for 48 hours before harvesting.

      Is lactate import/export itself responsible for this phenotype? It is presumed that MCT1 depletion alters import/export of lactate and subsequently modulates this phenotype, but this is never shown experimentally. Does lactate accumulate in these cells or in the medium in culture? The foundation of the paper rests on this hypothesis, so we believe that this is critical to establish. This is particularly relevant as MCT1 has been proposed to function primarily as a lactate importer, so the availability of medium lactate could be easily modulated to determine whether that mimics MCT1 loss.

      RESPONSE: To address the underlying mechanism of MCT1/Lactate in stellate cells, we added a new figure to the manuscript (Figure 8). We had previously conducted an experiment to determine whether MCT1 depletion in LX2 cells in vitro influences extracellular lactate concentrations in DMEM/high glucose (25mM glucose) media supplemented with 1mM sodium pyruvate but without sodium lactate. Interestingly, we found no significant difference in extracellular glucose and lactate concentrations, which remained at 25mM and 5mM, respectively. These concentrations were comparable between groups, regardless of MCT1 loss. Additionally, we investigated the effects of MCT1 silencing in the presence of potent fibrogenic inducer TGF-β1. Intriguingly, MCT1 depletion effectively prevented TGF-β1-induced collagen production, irrespective of lactate (+/- pyruvate) supply in the media. LX2 cells with MCT1 depletion exhibited reduced collagen 1 production when lactate was solely generated by endogenous glycolysis (Figure 8F) and when exogenous lactate was supplied (Figure 8G).

      Figure 2 - It is compelling that the Chol-MCT1-siRNA compounds are effective at targeting MCT1. However, is it clear how specific the siRNA target is? Are other MCT genes affected as well (if the siRNAs target areas of homology, for example)? Given that this siRNA strategy is used going forward and proposed as a therapeutic, it would be important to discuss and perhaps characterize off-target effects. A simple BLAST search for homology for the chosen siRNAs could help answer this question.

      RESPONSE:

      1) We designed the siRNA to specifically avoid any potential off-target effects on MCT1's 14 isoforms, and this approach aligns with the results obtained from the NCBI-BLAST analysis.

      2) While there are 14 isoforms of MCTs, only the first four are functional. To assess the off-target effect of Chol-MCT1-siRNA on MCT2 and MCT4 (MCT3 was excluded due to its limited expression in retinal pigment epithelium), we conducted in vivo experiments in ob/ob mice, which demonstrated a highly selective MCT1 silencing effect. We have also included MCT1, MCT2, and MCT4 rt-qPCR data in the manuscript (Supplement Figure 2A, 2B).

      3) We plan to further optimize and validate the human MCT1-targeting siRNA sequence for use in humanized mouse studies. It's important to note that the MCT1-siRNA used in this study was designed for mice.

      Supplemental Figure 1 - brain would be one other highly metabolic tissue wherein it would be important to show lack of activity/accumulation.

      RESPONSE: Undoubtedly, the brain is one of the most metabolically active tissues, playing a pivotal role in regulating signaling pathways and metabolism in other tissues. However, it poses a significant challenge in terms of targeting due to the presence of the blood-brain barrier (BBB). Overcoming BBB penetration remains one of the foremost challenges in the field of therapeutic siRNA delivery. For many therapeutic oligonucleotides, including Cholesterol-conjugated siRNAs, systemic administration alone is normally insufficient to achieve BBB penetration. Direct local injection or transient disruption of the BBB is normally required.

      Figure 4 - The image shown for chol-MCT1-siRNA seems to show variation in lipid droplet size. Is this just this single image? The authors quantify smaller lipid droplets in this group, so the image may not be representative as there are many large droplets. Ultimately, additional mechanisms as to how alterations in lactate metabolism could mediate this phenotype are missing. This hypothesis also rests upon the assumption that MCT1 is modulating lactate, which is not shown experimentally, as discussed above.

      RESPONSE: We changed the representative images (Fig 4B). We agree this aspect of the study is not resolved, and we have related text in the manuscript on this point: “neither GNMCT1-siRNA nor Chol-MCT1-siRNA decreased total hepatic TG levels (Figure 4H), although quantitative analysis of H&E images showed a small decrease in mean lipid droplet size and increased number of lipid droplets upon MCT1 silencing (Figure 4F, 4G). These data suggest the possibility that hepatic MCT1 depletion either 1) inhibits formation or fusion of lipid droplets, or 2) enhances lipolysis to diminish lipid droplet size.”

      Figure 5 provides evidence that Chol-MCT1-siRNA expression decreases fibrosis but this is attributed to the effects on stellate cells. While GN-MCT1-siRNA and subsequent MCT1 silencing in hepatocytes has an opposite effect. The cell population that is not discussed, however, is the Kupffer cell. Could MCT1 silencing in this cell population be mediating part of the phenotype observed? How does MCT1 silencing affect Kupffer cell phenotype and activity?

      This extends into Figure 6 where Kupffer cells are not given consideration in targeted experiments.

      RESPONSE: Described above to Reviewer #3

      Figure 6 and 7 use a different model to show that stellate cell depletion of MCT1, specifically, decreases collagen 1 protein levels in NASH, which reinforces the authors claims. Given the cell specificity of this experiment, it is more compelling data. It would be nice to show that Kupffer cell depletion of MCT1 does not have any affect (or perhaps show that it does.

      RESPONSE: We agree, but Kupffer selective depletion is not possible to do with this siRNA technology. Please see the response above as our most recent attempt to address this question.

      Figure 7 shows that even with decreased collagen deposition, there is no effect on liver stiffness or chronic liver injury as measure by ALT. This may suggest that the decreased level of fibrosis is either not significant to overall clinical outcome or that there are other fibroinflammatory mechanisms compensating for lack of COL1 deposition. Is there increased reticulin fibrosis when MCT1 is knocked down? This could be assessed with IHC or monitoring type 3 collogen (COL3A1).

      RESPONSE: Reticulin fibrosis results from the excessive deposition of reticular fibers, primarily composed of type 3 collagen. However, based on our observation of trichrome staining in whole liver histology data (Fig 7D-E), which exhibited nearly identical trends to collagen type 1 expression (Fig 7A-C), it seems unlikely that type 3 collagen compensated for the decrease in type 1 collagen protein expression upon hepatic stellate cell MCT1 KO. We plan to perform detailed analysis of a more comprehensive list of ECM proteins including type 3 collagen in our humanized mouse model with engrafted human liver cells in future experiments.

      Additional considerations:

      It may be useful to know if inhibition of fibrosis affects survival/progression in these NASH models over a longer timeframe, although this may understandably be beyond the scope of the current work. The timing of MCT1 depletion is prophylactic and given the proposal to translate this research, it would be important to determine whether MCT1 inhibition reversed fibrosis, and if so, by what metabolic mechanism?

      RESPONSE: We have observed that extending the duration of the NASH model increases the likelihood of hepatocarcinoma development. Exploring the aim to include survival and disease progression as well as reversal of fibrosis would be important in future experiments.

      Summary of new Figures and Figures modified:

      • Fig 1B: added "and" (significance) between the first and the third group, and the second and the last group.

      • Fig 4B: replaced images with more representative ones as the mean lipid size was questioned by the reviewer.

      • Fig 7D: made the images bigger (original images cropped and enlarged → 5X)

      • Fig 8: newly created to explain the underlying pathway of lactate, and MCT1 regulating collagen production. Please find the results sections.

      • Sup fig 2A, B: newly added to show our compounds’ selective silencing effect. - Sup Fig 2C-D: Added missing x-axis (moved from previous Figure 2A, 2B) - Sup Fig 2E-F: moved from sup Fig 3 not to have too many sup figures.

      • Sup Fig 3C-D: showed both precursor and cleaved form of SREBP1 bands as requested (moved from previous sup Figure 4)

      • Sup Fig 4: newly created, as questioned many times for the effect on Kupffer cells or other inflammatory cells.

      • Sup Fig 6: newly created to explain the potential underlying mechanism of MCT1 depletion on collagen production.

      • Sup Fig 7: moved from previous sup Fig 6.

      • Sup Fig 8: moved from previous sup Fig 7.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      The authors have previously employed micrococcal nuclease tethered to various Mcm subunits to the cut DNA to which the Mcm2-7 double hexamers (DH) bind. Using this assay, they found that Mcm2-7 DH are located on many more sites in the S. cerevisiae genome than previously shown. They then demonstrated that these sites have characteristics consistent with origins of DNA replication, including the presence of ARS consensus sequences, the location of very inefficient sites of initiation of DNA replication in vivo, and for the most part are free of nucleosomes. They contain a G-C skew and they locate to intergenic regions of the genome. The authors suggest, consistent with published single molecule results, that there are many more potential origins in the S. cerevisiae genome than previously annotated, but also conclude that many of the newly discovered Mcm2-7 DH are very infrequently used as active origins of DNA replication.

      The results are convincing and are consistent with prior observations. The analysis of the origin associated features is informative.

      Specific Comments:

      1. Page 8. The addition of an estimate of the most active origins using Southern blotting is fine for highly active origins, but how was Southern blotting used to calculate that 1-2% of cells in the eight cohort have an Mcm complex loaded.

      We used a combination of Southern blotting and qPCR to measure licensing at the most active origins and then used our abundance curve to extrapolate these values to the less abundant cohorts. We expand on this point below, and we have changed the text to clarify this issue.

      Reviewer #3 (Public Review):

      By mapping the sites of the Mcm2-7 replicative helicase loading across the budding yeast genome using highresolution chromatin endogenous cleavage or ChEC, Bedalov and colleagues find that these markers for origins of DNA replication are much more broadly distributed than previously appreciated. Interestingly, this is consistent with early reconstituted biochemical studies that showed that the ACS was not essential for helicase loading in vitro (e.g. Remus et al., 2009, PMID: 19896182). To accomplish this, they combined the results of 12 independent assays to gain exceptionally deep coverage of Mcm2-7 binding sites. By comparing these sites to previous studies mapping ssDNA generated during replication initiation, they provide evidence that at least a fraction of the 1600 most robustly Mcm2-7-bound sequences act as origins. A weakness of the paper is that the group-based (as opposed to analyzing individual Mcm2-7 binding sites) nature of the analysis prevents the authors from concluding that all of the 1,600 sites mentioned in the title act as origins. The authors also show that the location of Mcm2-7 location after loading are highly similar in the top 500 binding sites, although the mobile nature of loaded Mcm2-7 double hexamers prevents any conclusions about the location of initial loading. Interestingly, by comparing subsets of the Mcm2-7 binding sites, they find that there is a propensity of at least a subset of these sites to be nucleosome depleted, to overlap with at least a partial match to the ACS sequence (found at all of the most well-characterized budding yeast origins), and a GC-skew centered around the site of Mcm loading. Each of these characteristics is related to previously characterized S. cerevisiae origins of replication.

      Overall, this manuscript greatly broadens the number of sites that are capable of loading Mcm2-7 in budding yeast cells and shows that a subset of these additional sites act as replication origins. Although these studies show that the sequence specificity of S. cerevisiae replication origins still sets it apart from metazoan origins, the ability to license and initiate replication from sites with increasing sequence divergence suggests a previously unappreciated versatility.

      Specific points:

      1. The authors need to come up with a consistent name for loaded Mcms at an origin. In the manuscript they variously use 'MCM'(page 3), 'Mcm complexes' (page 4), 'MCM double hexamer' (page 6), and 'double-helicase' (page 8) to describe the Mcm2-7 complexes detected in their ChEC experiments. They should pick one name (Mcm2-7 double hexamer or MCM double hexamer would be the most accurate and clear) and stick with it throughout the manuscript.

      We appreciate the criticism and agree that consistency is important for clarity, thus we tried using the term "Mcm2-7 double hexamer" in every instance in which we refer to Mcm loaded at an origin. However, upon reading the resulting manuscript, we felt that these changes hurt readability more than they helped with clarity, so we left the manuscript in its original form.

      1. The authors state that "It is notable that, when Mcm is present, it is present predominantly as a single doublehexamer (right panel of Figure 3A), and that this remains true across the entire range of abundance shown in Figure 3A." This statement would be improved by prefacing it with "Based on the size of the protected regions" or some other clarifying statement that lets the reader know what they should be looking for in the data in 3A.


      We thank the reviewer for the helpful suggestion. We have added the underlined words to the text to clarify this point.

      It is notable that, when Mcm is present, it is present predominantly as a single doublehexamer (based on the size of the protected region in the right panel of Figure 3A), and that this remains true across the enAre range of abundance shown in Figure 3A.

      1. The revised statements that "We have previously used Southern blotting to demonstrate that approximately 90% of the DNA at one of the most active known origins (ARS1103) is cut by Mcm-MNase (Foss et al., 2021), and to thereby infer that 90% of cells have a double- helicase loaded at this origin. Using this as a benchmark, we estimate that ~1-2% cells have an Mcm complex loaded at the Mcm binding sites in the eighth cohort (ranks 1401- 1600)." partially clarifies how the authors came to the 1-2% number, however, the calculation is still unclear. Based on Figure 1A, there are at least three logs (1,00 fold) difference in the number of CBMSs between the best origins (which is what they state the 90% comes from) to anywhere close to the 1400-1600 rank. Seems like the number should be at best 0.1% and probably less. Either way, the authors need to explain this calculation either in the text or in the text. This sort of number tends to get thrown around later and without a clear explanation readers cannot evaluate its credibility. 
<br /> We apologize for insufficiently clarifying how we arrived at our estimate of licensing. We believe that we have now remedied this, both by incorporating more measurements of licensing to improve our accuracy and by expanding the text to make our calculation unambiguous. We have added a supplemental figure showing the linear regression, based on 7 qPCR-based measurements of licensing, that we used to determine the median level of licensing of the first cohort of 200, and the altered text in the main text reads as follows:

      We have previously used Southern blotting to demonstrate that approximately 90% of the DNA at one of the most active known origins (ARS1103) is cut by Mcm-MNase (Foss et al. 2021), and to thereby infer that 90% of cells have a double-helicase loaded at this origin. Combining this measurement with 6 additional measurements of licensing in cohort 1, we used linear regression (r2=0.7) to infer a median value of 69% for cohort 1. Because the median abundance in the 8th cohort is 1.5% of that in the first cohort, we estimate that CMBSs in the 8th cohort are typically licensed in 1% of cells in the population (69% x 0.015 = 1.0%).

      1. The authors make the point in the introduction and discussion that recent single-molecule studies of replication origins indicate that as many as 20% of the origins identified are outside of known origins. This is very interesting but there seems to be a missed opportunity of comparing the location of these origins with the CBMSs. It would improve the manuscript to include some sort of comparison rather than using only the much older and less accurate ssDNA analysis.

      Unfortunately, coverage and resolution with nanopore-based single-molecule precludes such an analysis.

      1. The authors state at the end of the first paragraph on page 6 that the ChEC data is "very reproducible" which does seem to be the case but it is a little confusing for the knowledgeable reader since one would expect quite different results for an HU arrested strain versus a asynchronous or G1 arrested strain. This is hidden in the analysis in Figure S1 since 13 experiments are compared against one in each plot, however, if one x one comparisons were done there would certainly be substantial differences (or if there are not, there is a problem with the data - e.g. HU arrested cells should lack licensing at early firing origins).

      It may appear counterintuiAve that one could obtain high r2 values when comparing G1 and HU-arrested samples. However, HU arrest was performed by transferring log phase cultures to 200 mM HU and harvesting cells after just 50 minutes. In this situation, most cells will be in G1 or very early S phase. Presumably, increasing times of incubation in HU would cause r2 values to decline.

      1. On page 8 the authors state, "First, clear peaks of ssDNA extend down to the eighth cohort..." This seems to be stretching the data. There are clear peaks for the first five cohorts and then there is a notable change with any peak being much broader, extending over at least 10,000 bp. The authors should reconsider their statement here as it is not well supported by the data.

      We have softened our language to the following: First, peaks of ssDNA signal, as judged by higher signal at the midpoints than the edges, extend down to the eighth cohort (brown line), which corresponds to CMBSs ranked 1401-1600.

      1. There is one last missing reference. Wherever Eaton et al, 2010 is referenced Berbenetz, et al, 2010 (full ref below) should also be referenced as they come to very similar conclusions.

      Berbenetz, N. M., Nislow, C. & Brown, G. W. Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure. PLoS Genet 6, (2010).

      We have added this reference at all 4 instances in which we reference Eaton et al., 2010.

      Recommendations for the authors:

      Reviewer #3 (Recommendations For The Authors):

      There are missing references in several places:

      All references are included, and the references in point 3 have been split according to the reviewer's suggestion.

      1. "For example, 15 of the 56 genes that contained a high abundance site have been implicated in meiosis and sporulation and are not expressed during vegetative growth (~5 out of 56 expected from random sampling), consistent with previous observations (Mori and Shirahige, 2007)." Should include Blitzblau et al., 2012 (PMC3355065) which showed that Mcm2-7 loading was impacted by differences in meiotic and mitotic transcription.

      2. "In contrast to the low abundance sites, the most abundant 500 sites showed a preference for convergent over divergent transcription (left of vertical dotted line in Figure 4B), in agreement with a previous report (Li et al., 2014)." This preference was first pointed out in MacAlpine and Bell, 2005 (PMID: 15868424).

      3. "This sequence is recognized by the Origin Recognition Complex (Orc), a 6-protein complex that loads MCM (Broach et al., 1983; Deshpande and Newlon, 1992; Eaton et al., 2010; Kearsey, 1984; Newlon and Theis, 1993; Singh and Krishnamachari, 2016; Srienc et al., 1985)." This list should include a reference to Bell and Stillman, 1992 (PMID: 1579162), which first described ORC and showed that it recognized the ACS. It would also be more helpful to the reviewer to distinguish the references that identified that ACS from those concerning ORC binding to it.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      On behalf of all the authors, I'd like to thank you for your insightful comments and valuable suggestions, which fully reflect your high level of scientific thinking and point the direction of our research and help us and other future researchers in the field to more comprehensively study and interpret the toxic effects of imidacloprid on honey bee larvae and its potential mechanisms, as well as the mechanisms of larval resistance and adaptations to imidacloprid. We have addressed each of the questions and revised the manuscript point-by-point in response to your comments. Below are detailed point-by-point responses to each question.

      Public Review:

      This study provides evidence of the ability of sublethal imidacloprid doses to affect growth and development of honeybee larva. While checking the effect of doses that do not impact survival or food intake, the authors found changes in the expression of genes related to energy metabolism, antioxidant response, and metabolism of xenobiotics. The authors also identified cell death in the alimentary canal, and disturbances in levels of ROS markers, molting hormones, weight and growth ratio. The study strengths come from exploring different aspects and impacts of imidacloprid exposure on honeybee juvenile stages and for that it demonstrates potential for assessing the risks posed by pesticides. The study weaknesses come from the lack of in depth investigation and an incomplete methodological design. For instance, many of the study conclusions are based on RT-qPCR, which show only a partial snapshot of gene expression, which was performed at a single time point and using whole larvae. There is no understanding of how different organs/tissues might respond to exposure and how they change over time. That creates a problem to understand the mechanisms of damage caused by the pesticide in the situation studied here. There is no investigation of what happens after pupation. The authors show that the doses tested have no impact on survival, food consumption and time to pupation, and the growth index drops from ~0.96 to ~0.92 in exposed larvae, raising the question of its biological significance. The origin of ROS are not investigated, nor do the authors investigate if the larvae recover from the damage observed in the gut after pupation. That is important as it could affect the adult workers' health. One of the study's central claims is that the reduced growth index is due to the extra energy used to overexpress P450s and antioxidant enzymes, but that is based on RT-qPCR only. Other options are not well explored and whether the gut damage could be causing nutrient absorption problems, or the oxidative stress could be impairing mitochondrial energy production is not investigated. These alternatives may also affect the growth index. The authors also state that the honeybee larvae has 7 instars, which is an incorrect as Apis mellifera have 5 larval instars. It is not clear from methods which precise stage of larval development was used for gut preparations. That information is important because prior to pupation larvae defecate and undergo shedding of gut lining. That could profoundly affect some of the results in case gut preparations for microscopy were made close to this stage. A more in-depth investigation and more complete methodological design that investigates the mechanisms of damage and whether the exposures tested could affect adult bees may demonstrate the damage of low insecticide doses to a vital pollinator insect species.

      Recommendations for the authors:

      This study presents a useful investigation on changes in gene expression by real time PCR and some of the physiological consequences of sublethal exposures to the neonicotinoid insecticide imidacloprid in honeybee larvae. It offers preliminary evidence of imidacloprid impacts on the development of bee larvae by interfering with molting and metabolism. Whereas the study provides evidence that small doses of imidacloprid affect larval growth rate, there is no investigation on whether that could affect the overall colony health, and some of the results open the possibility that the larvae may overcome some of the impacts of the exposure. As the authors state, the doses tested show no impact on larvae survival, food consumption or time to pupation. The investigation and methodological design lack in depth to explain the findings and provide incomplete evidence to support the authors conclusions. The study would benefit from a more thorough mechanistic characterization to better sustain the findings and demonstrate their biological relevance.

      Response: I would like to express, on behalf of all the authors, our sincere appreciation for your insightful and insightful comments and suggestions, which significantly enhanced the quality of the manuscript. Your incisive insights point the way for future research in the field of bee biology on the mechanisms underlying imidacloprid-induced delays in larval development.

      In this study, we investigated the effects of imidacloprid on honey bee larval development, including macro and micro changes and possible causes. This is the first of its kind in the field of honeybee biology research. However, we found that the underlying mechanism is extremely complex. The effects of toxic substances on animals and their interactions with larval development are complex and far-reaching. They include oxidative stress and damage; disruption of nutrient metabolic homeostasis; inhibition of detoxification and immunity; adverse effects on the nervous, circulatory, and digestive systems; inflammation, disease, and even organ failure; and subsequent effects on physiological activities such as development, reproduction, and behavior, and even death. These toxic effects interact in complex ways with the development of young animals, with some effects directly or indirectly affecting development while others do not.

      Addressing this complex mechanistic issue based solely on the results of this study is a formidable challenge, which leads to some limitations of our study as pointed out by the reviewers. Although our study is not comprehensive enough in terms of mechanistic analysis and does not fully elucidate the mechanism, we believe it is an important and valuable first step in this area.

      In the future, we will follow the reviewers' suggestions and deliberately redesign the experiments to focus on further research on the issues they raised. These include examining the effects of larval developmental delay on adult and colony health, investigating the post-pupal situation, identifying the source of ROS, and determining whether the larval gut damage observed after pupalization recovers.

      In accordance with the reviewers' comments and suggestions, we have revised the manuscript to improve its rigor and scientific quality. We sincerely ask the reviewers to understand and accept this modification from us!

      Next is our response to each of the questions and valuable suggestions provided by reviewers:

      Recommendations For The Authors:

      1. The authors found a reduction in growth index and body mass, but document no impact on survival, food consumption or time to pupariation. How much exactly is the reduction in growth index? It seems to be from ~0.96 to ~0.93. Is this biologically relevant? Would that be enough to impact the colony health?

      Response: Thank you for your comments. In this study, we observed a gradual decrease in larval growth index from day 4, which stabilized by day 6. At the 4th, 5th and 6th instars, the growth index of the imidacloprid-treated groups were significantly lower than those of the control group by an average of 1.35%, 4.49% and 2.76%, respectively (Figure 1, source data 8). Statistical analysis confirmed the significance of the difference in these results. We have incorporated the above description into the red text on lines 148-152 of the Results section. Regarding the reviewer's inquiry on colony health, including imidacloprid-induced delayed larval development and some reduction in growth index and body weight with no effect on survival, food consumption, or time develop to pupation, because we do not currently have the technical capabilities to culture larvae to adulthood in laboratory incubators, this has resulted in a failure to further investigate the effects of imidacloprid-induced delayed larval development on adult colony health. However, this is a very important scientific question for future colony health. We will design experiments to address this issue in a follow-up study.

      1. The authors find that P450s can help in detoxifying mechanisms to mitigate imidacloprid impacts. That however is a well-known fact. What is new about this claim?

      Response: The point at which the ability to detoxify toxic substances is acquired during early development varies widely among animals. Although many studies have reported that the detoxification function of P450s helps mitigate the effects of imidacloprid in adult honey bees, there is no conclusive evidence as to whether or not honey bee larvae have acquired this ability at early stages of development. This ability is critical to the defense and health of honey bee larvae. Therefore, it is incumbent upon this study to clarify this issue, which is important in explaining the effects of imidacloprid on honey bee larvae.

      1. Some references are cited incorrectly. The first and last name are swapped, for instance Charles et al.

      Response: Thank you very much for pointing out this error, which we have corrected. Please see lines 92 and 889 in our revised version.

      1. I still encounter important methodological flaws. The authors acknowledge my previous suggestions but only address a small fraction of them. The most relevant points regarding the understanding of the mechanisms behind the delayed growth rate remain unexplored. The expression levels of other nAChRs target of imidacloprid in honeybees were not investigated. The expression analyses are still based on a single time point and using whole larvae, which only superficially explore the problem and may lead to misinterpretations. I do not understand the authors claim that a technological breakthrough is required to address these issues, when performing more PCRs and doing dissections should cover the matter.

      Response: Thank you very much for your important comment. You point out several unexplored issues related to understanding the mechanisms behind delayed growth rates. For example, The most relevant points regarding the understanding of the mechanisms behind the delayed growth rate remain unexplored. The expression levels of other nAChRs target of imidacloprid in honeybees were not investigated. The expression analyses are still based on a single time point and using whole larvae. Please allow me to explain. Honeybees (Apis mellifera) have nine different α-subunits, Amelα1-9, and two β-subunits, Amelβ1-2. Amelα5, Amelα7, and Amelα8 are expressed in MB Kenyon cells and AL neurons, and the Amelβ2 subunit is present in Kenyon cells. Amelα2, Amelα3, and Amelα7-2 are expressed in the optic lobes. The aim of this study was to investigate whether imidacloprid induces larval neurotoxicity. Based on the above information, we selected the two most representative nAChRs (Alph1 and Alph2) for analysis. The results showed that exposure to imidacloprid increased the expression of the Alph2 gene and inhibited AChE activity, indicating that imidacloprid is neurotoxic to larvae. This result answered our question of whether imidacloprid induces neurotoxicity in larvae. Therefore, we did not further analyze the expression levels of other nAChRs. We believe that this does not affect the understanding of the mechanism behind the delayed growth rate and that it is not necessarily necessary to analyze all 11 nAChRs to find an answer. We sincerely hope that the reviewers will understand and agree with this.

      Furthermore, regarding the expression analysis based on a single time point and whole larvae. In this study, 72 h after imidacloprid exposure Fig. 1J, 5 days of age) was chosen for sampling because this is when imidacloprid has the greatest and most representative effect on larval development. Therefore, analyzing samples at this time point did not interfere with our exploration of the mechanisms by which imidacloprid causes larval developmental retardation. We used whole larvae rather than individual tissues for sample selection, which is a shortcoming for us. This was mainly due to technical challenges where we were unable to obtain pure single tissues through dissection. Nevertheless, we will make technical breakthroughs in the future so that we can sample and compare different tissues and developmental stages to obtain more comprehensive and accurate data. Thank you again for raising this important issue and for your valuable suggestions.

      1. The authors could in many different ways explore what are the origin of ROS is. That is important to further develop their hypothesis on reduced energy levels.

      Response: Thank you very much for your insightful comment and suggestion, it gives us great insight. Mitochondria are the main producers of ATP for cellular metabolism, accounting for approximately 90% of the total. However, mitochondria are also involved in the generation of reactive oxygen species (ROS). Excessive accumulation of ROS in mitochondria leads to oxidative stress, which in turn damages mitochondria and further increases ROS levels, creating a vicious cycle (Boovarahan and Kurian, 2018). In the present study, it was found that imidacloprid exposure led to increased ROS and MDA levels in larvae (Figure 5A and Figure 5-source data 14), indicating that imidacloprid induced severe oxidative stress and lipid damage, which may damage mitochondria and in turn affect mitochondrial ATP production, resulting in insufficient energy supply for larval development. This factor may also be an important explanation for the larval developmental delay caused by imidacloprid. We have included the above text in our revised manuscript. Please see the lines 432-442 in the revised manuscript.

      1. If there is gut damage, is it restored in the adults? It is not clear from the methods which precise stage of larval development was used for gut preparations. That information is important because prior to pupation larvae defecate for the first time and undergo shedding of the gut lining. That could profoundly affect some of the results in case gut preparations for microscopy were made close to this stage. If no food residues are found in the gut of control larvae, does it mean that they are close to pupation? Could the apoptosis found in gut of exposed larvae be the natural shedding of gut lining prior to pupation? All these possibilities have to be discussed and authors should clarify the precise larval stage used in every assay.

      Response: Thank you for your important comments. In this study, all samples used for the assay were larvae that had developed to 5-day-old after oral administration imidacloprid at 2-day-old. This is described in detail in the Materials and Methods. See lines 507, 517-521 in the revised manuscript. In general, 6-day-old bee larvae cease feeding and begin their first defecation at approximately 7-day-old. However, in our study, intestinal sections were prepared from 5-day-old larvae that had not fasted or defecated, when the intestinal mucosa was normal and not undergoing shedding. In this case, we found that imidacloprid caused damage to intestinal structures, apoptosis of intestinal cells, incomplete formation of the peritrophic membrane, and undigested food residues in the intestine. We believe that these results are objective and reliable.

      1. Honeybee have 5 larval instars, not 7 (Figure 1). That creates confusion about which larval stage the authors used.

      Response: Thank you very much for pointing out this editorial error, which we have corrected, please see Figure 1.

      1. The Results section does not state the numbers by which parameters measures have changed, neither the values of significance. How much is the impact in growth index, body mass, gene fold change, etc?

      Response: Thank you very much for pointing out this important problem. We have revised the Results section according to your suggestions. Please see the revised manuscript.

      1. Mention figures in order (5c comes before 5b in the text)

      Response: Thank you very much for the comment. We have revised according to your suggestions. Please see the lines 208-212 in the revised manuscript.

      1. Paraquat is a herbicide not a pesticide

      Response: Thank you for pointing out the loose wording. We have revised according to your suggestions. Please see the lines 316-319 in the revised manuscript.

      1. What is the evidence that imidacloprid reduces growth index by inhibiting 20E? The authors provide real time data and discuss the data in terms of correlation. But correlation does not mean causation. Reduction in growth index could come from multitude of factors such as ROS affecting mitochondrial energy metabolism.

      Response: We deeply appreciate your insightful comments and valuable suggestions. In this study, although we conducted an in-depth analysis of ecdysone regulation, which is crucial for insect larval development, and found some clues, as you pointed out, this is not the sole reason for larval developmental delay. In fact, animal growth and development are collectively regulated by numerous physiological, biochemical, and genetic factors. The the decline in the growth index may be due to other factors as you mentioned, such as oxidative stress impairing mitochondria, dysregulated neuro-endocrine axis caused by imidacloprid targeting neurons, poor nutrient absorption, impaired movement, etc, as animal growth and development are collectively regulated by numerous physiological, biochemical, and genetic factors. We have incorporated this understanding into the revised manuscript. Please see the lines 389-394 in the revised manuscript.

      1. The authors state that "digestion and breakdown of nutrients is impaired by imidacloprid", the evidence discussed in the paragraph however supports only that imidacloprid impairs some of the genes involved in these processes.

      Response: Thank you for your comments and valuable insights. In this paragraph, a lack of clarity and completeness in our writing may have led to the misconception that the evidence discussed only demonstrates the effects of imidacloprid on specific genes in these processes. In fact, our intent in this paragraph was to analyze and discuss the effects of imidacloprid on nutrient digestion and breakdown in larvae and to explore the causes of larval developmental delay. We demonstrated this using tissue sections, qRT-PCR and correlation analysis, which showed that the intestinal structure was disrupted and the expression of genes involved in nutrient digestion and catabolism was suppressed, resulting in defects in the catabolic utilization of food and consequently the presence of many food residues. In addition, there was a positive correlation between these genes and larval developmental delay. All this may be another important factor contributing to imidacloprid-induced larval developmental delay. We have revised and incorporate the above logic into the revised manuscript. Please see the lines 407-431 in the revised manuscript.

      1. There is no evidence for the claim that overexpressing P450s and antioxidant enzymes cause a reduction in growth index. No transcriptome analysis was performed so it is unknown under the circumstances presented here how all the other P450s, antioxidant genes and overall gene profiles are responding. Surely, some genes will be repressed. Reduction in growth index could stem from, oxidative stress impairing mitochondria, dysregulated neuro-endocrine axis caused by imidacloprid targeting neurons, poor nutrient absorption, impaired movement, etc.

      Response: Thank you for your comments and valuable insights. Indeed, as you have pointed out, drawing the conclusion that antioxidants and detoxification are significant contributors to larval developmental retardation solely based on correlation analysis is inherently flawed and lacks critical support, especially in the absence of P450 and antioxidant enzyme overexpression and comprehensive transcriptome analysis of other P450s, antioxidant genes, and the entire gene map. We have revised and included in the revised manuscript. Please see lines 461-467 in the red text in the revised manuscript. We have revised and incorporate the above logic into the revised manuscript. Please see the lines 407-431 in the revised manuscript.

      1. How come the decreased ATP and glycogen levels have no effect on time to pupation? Extra time points for gene expression, measurements of gut damage, ATP levels, ROS, etc, are vital to answer how the exposed larvae eventually catch up with the unexposed group. Also, it is vital to understand whether these larval impacts translate to impacts on adults.

      Response: We sincerely thank you for your insightful comments and suggestions! These important scientific issues you've raised are a good example of your high-level scientific thinking, and they will help us and other future researchers in the field to more comprehensively study and interpret the toxic effects of imidacloprid on honey bee larvae and their potential mechanisms, as well as the mechanisms of larval resistance and adaptation to imidacloprid. According to your comments, we will adapt our experiments and conduct more thorough research in the future to address the above issues.

      1. I am confused about the author's definition of developmental rate; rate gives the notion of speed to achieve something. But the authors use developmental rate as a measure of viability (number of larvae that successfully pupated). There seems to be a significant decrease in their developmental rate plot (Fig 1i), but at the same time the authors show in Figure 1c (and mention throughout the manuscript) that there is no difference in probability of survival. This is quite confusing and the method section regarding these data is too concise and does little to help explain what the authors were trying to measure. The whole section on developmental traits would benefit of more details on how experiments were conducted and equipment used.

      Response: Thank you so much for your valuable comments. Yes, as you can see, there appears to be a significant decrease in developmental rate but no difference in survival probability, which is an intriguing finding of this study. This finding suggests that the 377 ppb imidacloprid dose is not as harmful to the larvae as previously thought. Imidacloprid appeared to limit the larval ability to molt and develop only to a certain extent, but had no effect on the developmental process, let alone survival. It's worth investigating the underlying mechanism. As a result, we have included this question in the design of future studies. In addition, following your suggestion, we have revised the description of the material and methods in this section, including the experimental method in more detail. For more information, please see the revised manuscript, lines 530-541.

      1. The authors should try to make it clear what percentage of exposed larvae become adults? I am confused because the plot called developmental rate might be trying to convey this message, but developmental rate and viability are very distinct traits. What is the difference, if any, in the time it takes for exposed larvae to become adults in comparison to non-exposed ones? Is there a difference in adult body weight? The answers to these last two questions are important to start understanding if the impacts of imidacloprid on larvae alimentation would still impact these same individuals once they become adults, i.e., would there be impacts for the colony and workers activity?

      Response: Thank you very much for your insightful comments. Unfortunately, this is where the research falls short. Culturing larvae to adulthood in 24-well cell culture plates is a significant technical challenge that we have yet to overcome. As a result, the important questions you raise, such as what percentage of exposed larvae become adults? How does the time to adulthood differ (if at all) for exposed larvae versus non-exposed larvae? Is there a difference in adult weight? Do the effects of imidacloprid on larval feeding persist after these individuals reach adulthood? Does imidacloprid damage to larvae affect colony and adult activity? We do not have answers at this time. We are aware that answers to the above questions will help people better understand how serious the effects of imidacloprid environmental residues on honey bee larvae and adults, as well as bee colonies as a whole, are, and will draw sufficient attention to them. We intend to break through this technological bottleneck of culture larvae to adulthood in future studies and incorporate the above scientific questions into our next research design. Thank you again for your insightful comments! This gives us new research ideas.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important paper builds on a method, previously conceptualized and validated, of genetic control for insect populations. The method, called pgSIT, uses integrated CRISPR-Cas9 based constructs to generate, in certain combinations of genotypes, mutations that cause both male sterility and female inviability. Release of such genotypes in sufficiently large numbers can lead to an inundation of a local insect population with sterile males and this can lead to localised population suppression, which represents an important method of control for problematic insect populations. The data are convincing and will be valuable to anyone working on vector control strategies.

      Public Reviews:

      Reviewer #1 (Public Review):

      Precision guided sterile insect technology (pgSIT) is a means of mosquito vector control that aims to simultaneously kill females while generating sterile males for field release. These sterile males are expected to mate with 'wild' females resulting in very few eggs being laid or low hatching rates. Repeated releases are expected to result in the suppression of the mosquito population. This method avoids cumbersome sex-sorting while generating the sterile males. Importantly, until release, the two genetic elements that bring about female lethality and male sterility - the Cas9 and the gRNA carrying mosquitoes - are maintained as separate lines. They are crossed only prior to release, and therefore, this approach is considered to be more safe than gene drives.

      The authors had made a version of this pgSIT in their 2021 paper where they targeted β-Tubulin 85D, which is only expressed in the male testes and its loss-of-function results in male sterility. In that pgSIT, they did not have female lethality, but generated flightless females by simultaneously targeted myosin heavy chain, which is expressed only in the female wings. Here the authors argue, that the survival of females is not ideal, and so modify their 2021 approach to achieve female lethality/sterility.

      To do this, they target two genes - the female specific isoform of Dsx and intersex. They use multiple gRNAs against these genes and validate their ability to cause female lethality/sterility. Having verified that these do indeed affect female fertility, they combine gRNAs against Dsx and ix to generate female lethality/sterility and use β-Tubulin 85D to generate male sterility (previously validated). When these gRNA mosquitoes are crossed to Cas9 and the progeny crossed to WT (the set-up for pgSIT), they find that very few eggs are laid, larval death is high, and what emerges are males or intersex progeny that are sterile.

      As this is the requirement for pgSIT, the authors then test if it is able to induce population suppression. To do this, they conduct cage trials and find that only when they use 20:1 or 40:1 ratio of pgSIT:WT cages, does the population crash in 4-5 generations. They model this pgSIT's ability to suppress a population in the wild. Unfortunately, I was not able to assess what parameters from their pgSIT were used in the model and therefore the predicted efficacy of their pgSIT, (though the range of 0-.1 is not great, given that the assessment is between 0-0.15).

      We express our sincere appreciation for the valuable comments received. A wide range of ♀ viability and ♂ fertility values were explored in the model. The results determined that: “Achieving a ≥90% probability of elimination places slightly tighter restrictions on ♀ viability and ♂ fertility - a safe ballpark being ♀ viability and ♂ fertility both in the range 0-0.10, given a release scheme of ~26 releases of 250 pgSIT eggs per wild adult (Fig. 4B). These results suggest a target product profile for pgSIT to be ♀ viability and ♂ fertility both in the range 0-0.10.” A subsequent sentence has been added pointing out how the described pgSIT strain falls within this range: “The pgSIT strain described here falls well within these bounds, with ♀ viability of 0 and ♂ fertility of ~0.01.” The parameters of the described pgSIT strain are also listed throughout the paper and quoted here: “Cas9 in combination with gRNAdsx,ix,βTub induces either the lethality or transformation of pgSIT ♀’s into sterile unfit ⚥’s.” And: “Firstly, we determined that pgSIT males were not 100% sterile, with an estimated ~1% still producing some progeny.”

      Finally, they also develop a SENSR with a rapid fluorescence read-out for detecting the transgene in the field. They show that this sensor is specific and sensitive, detecting low copy numbers of the transgene. This would be important for monitoring any release.

      Overall, the data are clear and well presented. The manuscript is well written (albeit likely dense for the uninitiated!). I had concerns about the efficacy of generating the pgSIT animals - the overall number of eggs hatched from the gRNA (X) Cas9 cross appears to be low, therefore, very large numbers of parental animals would have to be reared and crossed to obtain enough sterile males for the SIT. In addition to this, I was concerned about the intersex progeny that can blood-feed. These could potentially contribute to the population and it would be useful to see the data that suggest that these numbers are low and the animals will not be competent in the field.

      Reviewer #2 (Public Review):

      This is a thorough and convincing body of work that represents an incremental but significant improvement on iterations of this method of CRISPR-based Sterile Insect Technique ('pgSIT'). In this version, compared to previous, the authors target more genes than previously, in order to induce both female inviability (targeting the genes intersex and doublesex, compared to fem-myo previously) and male sterility (targeting a beta-tubulin, as previously in the release generation. The characterization of the lines is extensive and this data will be useful to the field. However, what is lacking is some context as to how this formulation compares to the previous iteration. Mention is made of the possible advantage of removing most females, compared to just making them flightless (as previously) but there is no direct comparison, either experimental, or theoretical i.e. imputing the life history traits into a model. For me this is a weakness, yet easily addressed. In a similar vein, much is made in alluding to the 'safety concerns of gene drive' and how this is a more palatable half-way house, just because it has CRISPR component within it; it is not. It would be much more sensible, and more informative, to compare this pgSIT technology to RIDL (release of insects carrying a dominant lethal), which is essentially a transgene-based version of the Sterile Insect Technique, as is the work presented here.

      We express our sincere appreciation for the valuable comments received. A wide range of ♀ viability and ♂ fertility values were explored in the model. Given the intricate nature of this study and taking into account the recommendations provided by multiple reviewers and the editor, we have eliminated superfluous comparisons among various methodologies.

      The authors achieve impressive results and show that these strains, under a scenario of high levels of release ratios compared to WT, could achieve significant local suppression of mosquito populations. The sensitivity analysis that examines the effect of changing different biological or release parameters is well performed and very informative.

      The authors are honest in acknowledging that there are still challenges in bringing this to field release, namely in developing sexing strains and optimizing release strategies - a question I have here is how to actually release eggs, and could variability in the efficiency of this aspect be modelled in the sensitivity analysis? It seems to me like this could be a challenge and inherently very variable.

      We really appreciate comments. Several approaches are available to release eggs - either in pre-existing breeding sites in the field, or in artificial breeding sites (e.g., cups). We have added a sentence in the Discussion section to highlight that this is an area requiring further research: “Secondly, studies are required to determine the survival and mating competitiveness of released pgSIT males under field conditions, and to optimize their release protocol.” Regarding the efficiency of egg releases, the following sentence in the modeling results section has been added: “We assume released eggs have the same survival probability as wild-laid eggs; however if released eggs do have higher mortality, this would be equivalent to considering a smaller release.” As stated in the modeling results (and depicted in Figure 4 and Supplementary Figure 5): “Suppression outcomes were found to be most sensitive to release schedule parameters (number, size and interval of releases), ♂ fertility and ♀ viability.” It follows that suppression outcomes are equivalently sensitive to the efficiency of an egg release.

      Reviewer #3 (Public Review):

      Summary and Strengths:

      The manuscript by Li et al. presents an elegant application of sterile insect technology (pgSIT) utilizing a CRISPR-Cas9 system to suppress mosquito vector populations. The pgSIT technique outlined in this paper employs a binary system where Cas9 and gRNA are conjoined in experimental crosses to yield sterile male mosquitoes. Employing a multiplexed strategy, the authors combine multiple gRNA to concurrently target various genes within a single locus. This approach successfully showcases the disruption of three distinct genes at different genomic positions, resulting in the creation of highly effective sterile mosquitoes for population control. The pioneering work of the Akbari lab has been instrumental in developing this technology, previously demonstrating its efficacy in Drosophila and Aedes aegypti. By targeting the female-specific splice isoform (exon-5) of doublesex in conjunction with intersex and β-tubulin, the researchers induce female lethality, leading to a predominance of sterile male mosquitoes. This innovation is particularly noteworthy as the deployment of sterile mosquitoes on a large scale typically requires substantial investment in sex sorting. However, this study circumvents this challenge through genetic manipulation.

      Weaknesses:

      One notable concern arising from this manuscript pertains to the absence of data regarding the potential off-target effects of the gRNA. Given the utilization of multiple gRNA, the risk of unintended mutations in non-target areas of the genome increases. With around 1% of males still capable of producing fertile offspring, understanding the frequency of unintended genome targeting becomes crucial. Such mutations could potentially become fixed within the natural population.

      We express our sincere appreciation for the valuable comments received and fully agree with the reviewer regarding the importance of understanding the frequency of unintended genome targeting. However, the likelihood of off-target effects becoming fixed within the population is exceedingly low. To mitigate potential negative impacts, we employed CHOPCHOP V3.0.0 (https://chopchop.cbu.uib.no) for the selection of gRNAs, which will specifically tminimize the occurrence of genomic off-target cleavage events. Furthermore, our releasing process will be carried out in multiple rounds. In the event that an undesired mutant is introduced into the local population, the mutated gene will either be quickly eradicated through subsequent rounds of releases or be naturally eliminated through the process of natural selection over time.

      The experiments are well-conceived, featuring suitable controls and repeated trials to yield statistically significant data. However, a primary issue with the manuscript lies in its data presentation. The authors' graphical representations are intricate and demand considerable attention to discern the nuances, especially due to the striking similarity between the symbols representing different genotypes. As it stands, the manuscript primarily caters to experts within the field, thereby warranting improvements in data visualization for broader comprehension.

      We appreciate the comment. However, as this work is indeed complex and intricate and as there is limitations imposed by the publisher on data visualizations (i.e. number of figures in the main text, etc.) we have tried our best for presenting our data in full.

      All three reviewers were appreciative of the work presented in this manuscript. There were some common concerns that we shared, that the authors could consider revising. They are listed below.

      Essential revisions:

      1. Formal comparison with the previous/other methods: The authors make many statements that compare this pgSIT with their previous method, gene drives, or with RIDL. We suggest that they focus their comparisons within the scope of data and avoid comparisons between RIDL, gene drive, and pgSIT that are based on perceptions of these methods. It would be useful if, for example, they could impute life history traits and demonstrate this pgSIT's efficacy over their previous versions.

      We express our sincere appreciation for the valuable comments received. We have removed the unnecessary comparisons between different methods, please review the revised version.

      1. Writing and presentation of figures: The authors should please take advantage of the eLife format and unpack each sentence/figure so that it's accessible to readers outside this field.

      We appreciate your comment, and we have implemented some necessary changes based on your suggestions.

      1. Data to support claims made in passing: There are many instances, such as detailed in the reviews (and the entire second paragraph in the discussion) that are not supported by data. The authors should either provide that data or not make these claims.

      Thank you for the comment. We have removed these claims.

      1. Off target effects: There is the formal possibility that off target effects that might get fixed in the population. Could the authors please address this in the discussion.

      We appreciate the comment and fully agree with the reviewer regarding the importance of understanding the frequency of unintended genome targeting. However, the likelihood of off-target effects becoming fixed within the population is exceedingly low. We have address this in the discussion.

      “Even though mutations could potentially become fixed within the natural population, the likelihood of off-target effects becoming fixed within the population is exceedingly low. To mitigate potential negative impacts, we employed CHOPCHOP V3.0.0 (https://chopchop.cbu.uib.no) for the selection of gRNAs, specifically to minimize the occurrence of genomic off-target cleavage events. Furthermore, our releasing process will be carried out in multiple rounds. Even in the event that an undesired mutant is introduced into the local population, it will either be completely eradicated through subsequent rounds of releases or be naturally eliminated through the process of natural selection over time.”

      Aside from this, we ask that the authors please pay attention to the detailed reviews.

      Reviewer #1 (Recommendations For The Authors):

      The writing: Each sentence is packed with information and while this is fine for those immersed in the field, it might be dense for those who are not. There are a lot of nuances in such an approach and clearly laying it out for the reader is important. The authors should unpack some of these sentences to make their work more accessible.

      Thank you for the comment. We have unpacked some of sentences, please review the revised version.

      It will help to have a schematic linked to the introduction about how these mosquitoes are designed to be used. Which strains would be scaled up in the lab, which ones (and what stage) could be released, and in which animal/generation they expect sterility or lethality. This would be useful while interpreting the schematics of the genetic crosses in the rest of the figures (1B, 2B). Li et al 2021 has something to this effect. I say this particularly because in the text, 'pgSIT' is used to refer to both the lab stocks and the F1s.

      We really appreciate the suggestion to incorporate a schematic into the introduction to clarify the intended use of these mosquitoes. Taking into account all the suggestions, we would like to keep textual descriptions and context provided within the manuscript, which, together with Figures 1B and 2B, illustrate our intentions. Nevertheless, we value your input and have taken other feedback into account to improve the overall quality of the content.

      Because Figure 1A depicts all the gRNAs I thought that's what they were testing in the first results section. But the legends seems to suggest that the individual gRNAs have been tested. Such issues will be sorted with attention to the writing. It would also be nice to have Figure 2A here.

      We apologize for any misunderstanding. Figure 1A displays two gRNA constructs: one for dsx (comprising 4 gRNAs) and another for ix (with 2 gRNAs). All of these gRNAs were tested in the initial results section. Subsequently, we engineered the final gRNA construct, denoted as gRNAdsx,ix,βTub, which combines the effective gRNAs described earlier (3 targeting dsx and 1 targeting ix, as illustrated in Supplementary Figure 2).

      It wasn't clear to me how egg laying percentages were calculated or what it means.

      We appreciate your comment. Female fecundity depends on the egg output (egg laying percentage) and the egg hatching rate, since insect female can lay unfertalized eggs that does not hatch. Egg laying percentages were calculated by dividing the numbers of laid eggs by a test female group by that of the control female group that laid the highest egg number. This procedure is called normalization and enable relative comparison of laid egg number.

      How is hatching at times more than laying?

      When a female group laid a small egg number but the high percentage of those eggs hatched.

      Calling something 'intersex': The authors are assessing intersex by malformed genitalia, maxillary palps and ovaries. But the genitalia defects in Fig1D were not clear to me. Can the authors show better images? While the MP snd ovary phenotypes were clear, it would be nice to see these quantified - what proportion of the females have each/some/all of these phenotypes? It would be nice to see this quantified. (They have some of this in the supplementary table).

      We express our gratitude for the comment received and acknowledge the issue regarding the clarity of the images. It is important to note that these photographs represent the highest level of clarity achieved thus far. We value your interest in the quantification of the observed phenotypes. However, due to certain constraints, we were unable to quantify the proportions for all the females, and we did not retain all the samples needed for this specific quantification.

      It's interesting that 50% of the intersex don't blood-feed - is this because they do not have appropriately formed stylets? It would be important to quantify the number of hatch-able eggs. This is particularly important in the context of field application and should ideally be included in the mathematical modelling. In the discussion, the authors mention that they are not able to host-seek and a variety of other behaviours - these data should be presented as it would be important for assessing the efficacy of the pgSIT.

      Thank you for the comment. We did not find the mutant stylets from these intersex mosquitoes. We agree with the reviewer that the number of hatchable eggs is particularly important in the context of field application. Indeed, the number of hatchable eggs is what was considered in the mathematical modeling. We did a blood feed assay (small cage and big cage) for host seeking behavior. Data were presented in Supplementary Table 5.

      At the end of the first results section, the authors state, "Taken together, these findings reveal that ♀-specific lethality and/or ⚥..." But I don't see data that show female-specific lethality until Figure 2C.

      Thank you for pointing out this. In order to describe our results clearly, we have deleted “♀-specific lethality and/or”

      In the combined gRNA mosquito (the pgSIT), they find that the cross between the gRNA and Cas9 results in very few eggs being laid, high larval death, and what emerges are males. This suggests that it would be a poor pgSIT, right? You'd have to set up huge crosses to get enough males emerging in the wild to mate with WT females to bring about population suppression. Could the authors comment on this?

      We appreciate the comment. Even in the presence of imperfections, such as reduced egg production resulting from the gRNA and Cas9 cross and the necessity of extensive mating to obtain an adequate number of males, population suppression is very promising with the pgSIT, both in terms of the potential to eliminate a mosquito population, or to suppress it to an extent that would largely interrupt disease transmission. It's worth noting that our current efforts serve as a validation of the system before its potential large-scale application, because we have demonstrated that removing females by disrupting sex determinate genes is possible with pgSIT, which can inform the development of such systems in other species in the future.

      If I'm reading Figure 2C right, the authors have combined the results from two types of crosses in the last two plots: 1) the Cas9 (X) gRNA mosquitoes and 2) the progeny from these crossed to WTs. This is not ideal. I would suggest the authors unpack the text around this data and plot it separately.

      We really appreciate the comment here, the panel 2C depicts the phenotypic data of the F1 progeny generated by the cross of the parents indicated below the X axis: egg-to-adult survival, larval death, sex ratios, and fertility. The fertility of F1 progeny is the major phenotypic feature for the project. To assess the fertility of the surviving F1 progeny, we had to cross the F1 females and males to WT males and females, respectively and assess the hatching rate of produced eggs before sacrificing emerged larvae and unhatched eggs. It's important to note that mosquito females can lay unfertilized eggs that fail to hatch.

      The text around 2F needs to be more explanatory. There are lots of labels in the figure that are not referred to, making it difficult to follow the data.

      We have gone through and expanded many of the figure legends and modified some figures to help make them more understandable.

      The supplementary figure numbering is off.

      We really appreciate the comment. The supplementary figure numbering have been fixed.

      I cannot comment on Figure 4 as this is outside my expertise. However, I do feel that some attention to the writing might help make the approach more accessible to the invested advanced lay-person.

      We appreciate the comment, and we re-wrote some of the sentences describing Figure 4.

      Reviewer #2 (Recommendations For The Authors):

      Line 49 'resistances' is a strange plural.

      Corrected. Thank you so much!

      the genitive, used with the sex symbols throughout, looks very weird e.eg line 60, 66 etc. Also the intersex symbol, on my copy at least, just prints as a square

      These have been fixed in the revised version. Thank you so much!

      Line 74 syntax (...: the spread of...") seems off

      Corrected. Thank you for pointing out this.

      Line 80-81 " to address some of the challenges with gene drives, pgSIT also leverages....." this is a straw man/red herring argument, and simply does not follow. It is this element that I raised above in the public review. See also line 84 'gene drive safety concerns'.

      Thank you, we have re-wrote the paragraph.

      Line 128 "the induced phenotypes were especially strong in intersex individuals" - this is a curious statement since, if intersex, they are by definition already showing a strongly induced phenotype

      We apologize for the lack of clarity and have updated the text, we have deleted “the induced phenotypes were especially strong in intersex individuals”, to be more explicit, now stating “These gRNAdsx/+; Cas9/+ ⚥ exhibited multiple malformed morphological features, such as mutant maxillary palps, abnormal genitalia, and malformed ovaries”

      The extent and completeness of the supplementary data is appreciated but there needs to be some statistical tests applied to back up statements like 'showed normal fertility' (line 138) or wind lengths 'were a bit larger'. None seem to have been applied.

      We appreciate the comment. We've removed these sentences in the new version.

      Supp Fig 4 - on left of panel C there is a small blue square at dsx locus that is unexplained. What is this?

      Thank you for pointing this. It was a mistake, we have removed the small blue square from Sup Fig4.

      Line 182 the reduction in flight activity in release genotype of pgSIT males - is it only those coming with the maternal source of Cas9 that are plotted (only pink dots)?

      We appreciate the comment. pgSIT males, regardless of whether they originate from a maternal or paternal source of Cas9, exhibit a similar reduction in flight activity compared to wild-type (WT) males.

      Figure 3A legend - I think there is a typo that says males were fed

      Corrected. Thank you for pointing this out.

      “♂’s” to “♀’s”

      On the window of protection (WOP) plots (e.g. supp fig 12) what is the unit on Y-axis for WOP? It goes from 0-1, as if it were probability, but I was expecting some duration.

      Thanks for the comment. The y-axis for WOP in Supp Fig 12 had been normalized unnecessarily. It has now been corrected to span from 0 to 5 years.

      Fig 4B blue (line) on blue(shading) is impossible to decipher on my copy

      Thank you for pointing this out. We have changed the colors of the traces (population dynamics), made the window of protection line thicker, and have made the shading less opaque to make the population dynamics in this figure clearer.

      Line 250 and 252: supp Fig 13 (not 12)

      Corrected. Thank you for pointing this out.

      Line 279 "potentially a more widespread effect of sex determination genes than previously expected" - I simply don't see how this is so, or why there is the need to make such a claim. Dsx is known to underpin almost of somatic determination of sex-specific morphologies, in a range of insects.

      We appreciate the comment. We have delete the sentence:

      “Taken together, these observations indicate a potentially more widespread effect of sex determination genes than previously expected, though regardless.”

      Line 320 "We would expect pgSIT to be regulated similarly to Oxitec's RIDL" because they are similar, which goes to my main point above about more appropriate context, and this warrants some direct attention to a comparison of the efficacy.

      We appreciate the comment. We have delete these sentences:

      “We would expect pgSIT to be regulated similarly to Oxitec's RIDL technology (Spinner et al., 2022), which has already been successfully deployed in numerous locations, including the United States.”

      Was there a minimal performance advantage with strain #1 with the triple locus g-RNA suite, over the other two strains? Am just curious as to why one was chosen over the other

      We appreciate the comment. There was no performance advantage with the strain #1 over the other two strains.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary

      In this manuscript, Hagihara et al. characterized the relationship between the changes in lactate and pH and the behavioral phenotypes in different animal models of neuropsychiatric disorders at a large-scale level. The authors have previously reported that increased lactate levels and decreased pH are commonly observed in the brains of five genetic mouse models of schizophrenia (SZ), bipolar disorder (BD), and autism spectrum disorder (ASD). In this study, they expanded the detection range to 109 strains or conditions of animal models, covering neuropsychiatric disorders and neurodegenerative disorders. Through statistical analysis of the first 65 strains/conditions of animal models which were set as exploratory cohort, the authors found that most strains showed decreased pH and increased lactate levels in the brains. There was a significant negative correlation between pH and lactate levels both at the strain/condition level and the individual animal level. Besides, only working memory was negatively correlated with brain lactate levels. These results were successfully duplicated by studying the confirmative cohort, including 44 strains/conditions of animal models. In all strains/conditions, the lactate levels were not correlated with age, sex, or storage duration of brain samples.

      Strengths

      1. The manuscript is well-written and structured. In particular, the discussion is really nice, covering many potential mechanisms for the altered lactate levels in these disease models.

      2. Tremendous efforts were made to recruit a huge number of various animal models, giving the conclusions sufficient power.

      We are grateful to Reviewer #1 for the positive evaluation of our manuscript. As indicated in the responses that follow, we have taken all the comments and suggestions made by the reviewer into account in the revised version of our paper.

      Weaknesses

      1. The biggest concern of this study is the limited novelty. The point of "altered pH and/or lactate levels in the brains from human and rodent animals of neuropsychiatric disorders" has been reported by the same lab and other groups in many previous papers.

      The previous study mentioned by the reviewer evaluated a small number of animal models of psychiatric disorders. The novelty of this study is underscored by two key findings: 1) the generality of changes in brain pH and lactate levels across a diverse range of disease models, and 2) the association of these phenomenon with specific behaviors. First, this large-scale animal model study revealed that alterations in brain pH/lactate levels can be found in approximately 30% of the animal models examined. This generality suggests a common basis in the neuropathophysiology of not only schizophrenia, bipolar disorder, and ASD, but also of Alzheimer’s disease (APP-J20 Tg mice), Down’s syndrome (Ts1Cje mice), Mowat–Wilson syndrome (Zeb2 KO mice), Dravet syndrome (Scn1a-A1783V KI mice), tuberous sclerosis complex (Tsc2 KO mice), Ehlers-Danlos syndrome (Tnxb KO mice), and comorbid depression in diabetes (streptozotocin-treated mice) and colitis (dextran sulfate sodium-treated mice). Secondly, this study demonstrated that these phenomenon in the brain are primarily associated with working memory impairment over depression- and anxiety-related behaviors. Importantly, developing these hypotheses in an exploratory cohort of animals and confirming them in an independent cohort within this study enhances the robustness and reliability of our hypotheses, which we believe are equally crucial as their novelty. Accordingly, we have revised the discussion section as follows (page 31, line 7):

      Original text

      "We performed a large-scale analysis of brain pH and lactate levels in 109 animal models of neuropsychiatric disorders, which revealed the diversity of brain energy metabolism among these animal models. Some strains of mice that were considered models of different diseases showed similar patterns of changes in pH and lactate levels. Specifically, the SZ/ID models (Ppp3r1 KO, Nrgn KO mice, and Hivep2 KO mice), BD/ID model (Camk2a KO mice), ASD model (Chd8 KO mice), depression models (mice exposed to social defeat stress, corticosterone-treated mice, and Sert KO mice), AD model (APP-J20 Tg mice), and DM model (Il18 KO and STZ-treated mice) commonly exhibited decreased brain pH and increased lactate levels."

      Revised text

      "We performed a large-scale analysis of brain pH and lactate levels in 109 animal models of neuropsychiatric disorders, which revealed the diversity of brain energy metabolism among these animal models. The key findings of this study are as follows: 1) the generality of changes in brain pH and lactate levels across a diverse range of disease models, and 2) the association of these phenomenon with specific behaviors. First, this large-scale animal model study revealed that alterations in brain pH/lactate levels can be found in approximately 30% of the animal models examined. This generality suggests a common basis in the neuropathophysiology of not only schizophrenia, bipolar disorder, and ASD, but also of Alzheimer’s disease (APP-J20 Tg mice), Down’s syndrome (Ts1Cje mice), Mowat–Wilson syndrome (Zeb2 KO mice), Dravet syndrome (Scn1a-A1783V KI mice), tuberous sclerosis complex (Tsc2 KO mice), Ehlers-Danlos syndrome (Tnxb KO mice), and comorbid depression in diabetes (streptozotocin-treated mice) and colitis (dextran sulfate sodium-treated mice). Secondly, this study demonstrated that these phenomenon in the brain are primarily associated with working memory impairment over depression- and anxiety-related behaviors. Importantly, developing these hypotheses in an exploratory cohort of animals and confirming them in an independent cohort within this study enhances the robustness and reliability of our hypotheses."

      1. This study is mostly descriptive, lacking functional investigations. Although a larger cohort of animal models were studied which makes the conclusion more solid, limited conceptual advance is contributed to the relevant field, as we are still not clear about what the altered levels of pH and lactate mean for the pathogenesis of neuropsychiatric disorders.

      We agree with the reviewer’s comment. To address this issue, it is necessary to comprehensively identify brain regions and cell types responsible for pH and lactate changes in each strain/condition of animals, as these may differ among them. Subsequently, based on such findings, we can then proceed with functional investigations that specifically target the identified brain regions/cell types. However, conducting such investigations would require a significant amount of time to complete, approximately 2–3 years, and is beyond the scope of this study. Therefore, we would like to conduct such studies in the future. We have mentioned this limitation by revising the discussion section of this study as follows (page 43, line 5):

      Original text

      "Because we used whole brain samples to measure pH and lactate levels, we could not determine whether the observed changes in pH and/or lactate levels occurred ubiquitously throughout the brain or selectively in specific brain region(s) in each strain/condition of the models. Indeed, brain region-specific increases in lactate levels were observed in human patients with ASD in an MRS study (Goh et al., 2014). Furthermore, while increased lactate levels were observed in whole-brain measurements in mice with chronic social defeat stress (Figure S7) (Hagihara et al., 2021a), decreased lactate levels were found in the dorsomedial prefrontal cortex (Yao et al., 2023). The brain region-specific changes may occur even in animal models in which undetectable changes were observed in the present study. This could be due to the masking of such changes in the analysis when using whole-brain samples. Further studies are needed to address this issue by measuring microdissected brain samples and performing in vivo analyses using pH- or lactate-sensitive biosensor electrodes (Marunaka et al., 2014; Newman et al., 2011) and MRS (Davidovic et al., 2011)."

      Revised text:

      "The major limitations of this study include the absence of analyses specific to brain regions or cell types and the lack of functional investigations. Because we used whole brain samples to measure pH and lactate levels, we could not determine whether the observed changes in pH and/or lactate levels occurred ubiquitously throughout the brain or selectively in specific brain region(s) in each strain/condition of the models. It is known that certain molecular expression profiles and signaling pathways display brain region-specific alterations, and in some cases, even exhibit opposing changes in neuropsychiatric disease models (Hosp et al., 2017; Floriou-Servou et al. 2018; Reim et al., 2017). Indeed, brain region-specific increases in lactate levels were observed in human patients with ASD in an MRS study (Goh et al., 2014). Furthermore, while increased lactate levels were observed in whole-brain measurements in mice with chronic social defeat stress (Figure S7) (Hagihara et al., 2021a), decreased lactate levels were found in the dorsomedial prefrontal cortex (Yao et al., 2023). Additionally, it has been reported that the basal intracellular pH differs between neurons and astrocytes (lower in astrocytes than in neurons), and their responsiveness to conditions simulating neural hyperexcitation and the metabolic acidosis in terms of intracellular pH also varies (Raimondo et al., 2016; Salameh et al., 2017). It would also be possible that the brain region/cell type-specific changes may occur even in animal models in which undetectable changes were observed in the present study. This could be due to the masking of such changes in the analysis when using whole-brain samples. Given the assumption that the brain regions and cell types responsible for pH and lactate changes vary across different strains/conditions, comprehensive studies are needed to thoroughly examine this issue for each animal model individually. This can be achieved through techniques such as evaluating microdissected brain samples, conducting in vivo analyses using pH- or lactate-sensitive biosensor electrodes (Marunaka et al., 2014; Newman et al., 2011), and MRS (Davidovic et al., 2011). Subsequently, based on such findings, it is also necessary to conduct functional analyses for each model animal by manipulating pH or lactate levels in specific brain regions/cell types and evaluating behavioral phenotypes relevant to neuropsychiatric disorders."

      1. The experiment procedure is also a concern. The brains from animal models were acutely collected without cardiac perfusion in this study, which suggests that resident blood may contaminate the brain samples. The lactate is enriched in the blood, making it a potential confounded factor to affect the lactate levels as well as pH in the brain samples.

      We thank the reviewer for pointing this out. We have discussed this issue as follows (page 45, line 4):

      We also note that there are several potential confounding factors in this study. The brain samples analyzed in this study contained cerebral blood. The cerebral blood volume is estimated to be approximately 20–50 μl/g in human and feline brains (Leenders et al., 1990; van Zijl et al., 1998). When we extrapolate these values to murine brains, it would imply that the proportion of blood contamination in the brain homogenates analyzed is 0.2–0.6%. Additionally, lactate concentrations in the blood are two to three times higher than those in the brains of mice (Béland-Millar et al., 2017). Therefore, even if there were differences in the amount of resident blood in the brains between control and experimental animals, the impact of such differences on the lactate measurements would likely be minimal.

      1. The lactate and pH levels may also be affected by other confounded factors, such as circadian period, and locomotor activity before the mice were sacrificed. This should also be discussed in the paper.

      Following the reviewer’s suggestion, we have discussed the matter as follows (page 45, line 12): Other confounding factors include circadian variation and locomotor activity before the brain sampling. Lactate levels are known to exhibit circadian rhythm in the rodent cortex, transitioning gradually from lower levels during the light period to higher levels during the dark period (Dash et al., 2012; Shram et al., 2002; Wallace et al., 2022). The variation in the times of sample collection during the day was basically kept minimized within each strain/condition of animals. However, the sample collection times were not explicitly matched across the different laboratories, which may contribute to variations in the baseline control levels of pH and lactate among different strains/conditions of animals (Table S3). In addition, motor activity and wake/sleep status immediately before brain sampling can also influence brain lactate levels (Neylor et al., 2012; Shram et al., 2002). These factors have the potential to act as confounding variables in the measurement of brain lactate and pH in animals.

      1. Another concern is the animal models. Although previous studies have demonstrated that dysfunctions of these genes could cause related phenotypes for certain disorders, many of them are not acknowledged by the field as reliable disease models. Besides, gene deficiency could also cause many known or unknown unrelated phenotypes, which may contribute to the altered levels of lactate and pH, too. In this circumstance, the conclusion "pH and lactate levels are transdiagnostic endophenotype of neuropsychiatric disorders" is somewhat overstated.

      We thank the reviewer for pointing this out. We should have taken this issue into consideration. Accordingly, we have discussed this issue as the limitation of this study in the discussion section as follows (page 34, line 14):

      "While we analyzed 109 strains/conditions of animals, we included both those that are widely recognized as animal models for specific neuropsychiatric disorders and those that are not. For example, while interleukin 18 (Il18) KO mice and mitofusin 2 (hMfn2-D210V) Tg mice exhibited changes in pH and lactate levels, the evidence that these genes are associated with specific neuropsychiatric disorders is limited. However, these strains of mice exhibited behavioral abnormalities related to neuropsychiatric disorders, such as depressive-like behaviors and impaired working memory (Ishikawa et al., 2019, 2021; Yamanishi et al., 2019). Furthermore, these mice showed maturation abnormality in the hippocampal dentate gyrus and neuronal degeneration due to mitochondrial dysfunction, respectively, suggesting conceptual validity for utilization as animal models for neuropsychiatric and neurodegenerative disorders (Cunnane, et al., 2021; Burté et al., 2015; Hagihara et al., 2013, 2019). In contrast, mice with heterozygous KO of the synaptic Ras GTPase-activating protein 1 (syngap1), whose mutations have been identified in human patients with ID and ASD, showed an array of behavioral abnormalities relevant to the disorders (Komiyama et al., 2002; Nakajima et al., 2019), but did not show changes in brain pH or lactate levels. Therefore, while changes in brain pH and lactate levels could be transdiagnostic endophenotypes of neuropsychiatric disorders, they might occur depending on the subpopulation due to the distinct genetic and environmental causes or specific disease states in certain disorders."

      Regarding the latter point suggested by the reviewer, we consider that alterations in brain pH and lactate levels occur, whether they are a direct and known consequence or indirect and unknown ones of genetic modifications. We have proposed that genetic modifications, along with environmental stimulations, may induce various changes, which subsequently converge toward specific endophenotypes in the brain, such as neuronal hyperexcitation, inflammation, and maturational abnormalities (Hagihara et al., 2013; Yamasaki et al., 2008). The findings of this study, demonstrating the commonality of alteration of brain pH and lactate levels, align with this concept, suggesting that these alterations could serve as brain endophenotypes in multiple neuropsychiatric disorders. We have revised the discussion section as follows (page 42, line 8):

      Original text

      "These findings suggest that the observed increase in lactate production and subsequent decrease in pH in whole-brain samples may be attributed to the hyperactivity of specific neural circuits in a subset of the examined animal models."

      Revised text

      "These findings suggest that neuronal hyperexcitation may be one of the common factors leading to increased lactate production and decreased pH in the brain. We consider that alterations in brain pH and lactate levels occur, whether they are a direct and known consequence or indirect and unknown ones of genetic modifications. We have proposed that genetic modifications, along with environmental stimulations, may induce various changes, which subsequently converge toward specific endophenotypes in the brain, such as neuronal hyperexcitation, inflammation, and maturational abnormalities (Hagihara et al., 2013; Yamasaki et al., 2008). The findings of this study, demonstrating the commonality of alterations in brain pH and lactate levels, align with this concept and suggest that these alterations could serve as brain endophenotypes in multiple neuropsychiatric disorders."

      1. The negative correlationship between pH and lactate is rather convincing. However, how much the contribution of lactate to pH is not tested. In addition, regarding pH and lactate, which factor contributes most to the pathogenesis of neuropsychiatric disorders is also unclear. These questions may need to be addressed in the future study.

      To estimate the degree of contribution of lactate to pH, we determined the contribution ratio using the regression coefficient within a linear regression model applied to a combined cohort. The results showed that 33.2% of changes in pH may be explained by changes in lactate level. We have added the following text in the Results section (page 28, line 7).

      The contribution ratio of lactate to pH, calculated based on the regression coefficient in a linear regression model, was 33.2% at the individual level, suggesting a moderate level of contribution.

      Regarding the latter suggestion, we would like to address the issue in the future study. Accordingly, we have added the following sentence in the discussion section (page 40, line 11):

      Original text

      "Further studies are needed to address these hypotheses by chronically inducing deficits in mitochondrial function to manipulate endogenous lactate levels in a brain region-specific manner and to analyze their effects on working memory."

      Revised text

      "Further studies are needed to address these hypotheses by chronically inducing deficits in mitochondrial function to manipulate endogenous lactate levels in a brain region-specific manner and to analyze their effects on working memory. It is also important to consider whether pH or lactate contributes more significantly to the observed behavioral abnormalities."

      1. The authorship is open to question. Most authors listed in this paper may only provide mice strains or brain samples. Maybe it is better just to acknowledge them in the acknowledgments section.

      In the light of the current circumstances, wherein there is no universally agreed definition of authorship (the Committee on Publication Ethics1), we acknowledge the reviewer’s concern. Collecting a comprehensive range of mouse strains and brain samples is a fundamental principle of this study. Maintaining mouse lines, breeding mice, genotyping, drug administration, and preparation of brain samples each require specialized expertise. Therefore, the scientific and technical contributions of individuals who only provided mouse strains or brain samples was also crucial for obtaining the data essential to this study. In accordance with the authorship guidelines outlined by the journal, which stipulate that “We recommend that all researchers who made substantial or important contributions to the design of a work, or the acquisition, analysis or interpretation of the data used in the paper, be included as authors.”, we would like to retain their authorship status. Furthermore, we ensured that all authors had read and approved the manuscript before submission, using Google Forms.

      1. GUIDELINES ON GOOD PUBLICATION PRACTICE, Committee on Publication Ethics (COPE), https://publicationethics.org/files/u7141/1999pdf13.pdf
      1. The last concern is about the significance of this study. Although the majority of strains showed increased lactate, some still showed decreased lactate levels in the brains. These results suggested that lactate or pH is an endophenotype for neuropsychiatric disorders, but it is hard to serve as a good diagnostic index as the change is not unidirectional in different disorders. In other words, the relationship between lactate level and neuropsychiatric disorders is not exclusive.

      As pointed out by the reviewer, whether brain pH and lactate levels increase or decrease could vary among animal models. Such variation may represent subpopulations of patients or specific disease states. Considering both increases and decreases in changes in pH and lactate levels could be important to achieve that goal. Accordingly, we have revised the text as follows:

      Added text (page 33, line 12)

      "Detecting changes in brain pH and lactate levels, whether resulting in an increase or decrease due to their potential bidirectional alterations, using techniques such as MRS may help the diagnosis, subcategorization, and identification of specific disease states of these biologically heterogeneous and spectrum disorders, as has been shown for mitochondrial diseases (Lin et al., 2003)."

      Added text (page 35, line 14)

      "Therefore, while changes in brain pH and lactate levels could be transdiagnostic endophenotypes of neuropsychiatric disorders, they might occur depending on the subpopulation due to the distinct genetic and environmental causes or specific disease states in certain disorders."

      Reviewer #2 (Public Review):

      Hagihara et al. conducted a study investigating the correlation between decreased brain pH, increased brain lactate, and poor working memory. They found altered brain pH and lactate levels in animal models of neuropsychiatric and neurodegenerative disorders. Their study suggests that poor working memory performance may predict higher brain lactate levels.

      However, the study has some significant limitations. One major concern is that the authors examined whole-brain pH and lactate levels, which might not fully represent the complexity of disease states. Different brain regions and cell types may have distinct protein and metabolite profiles, leading to diverse disease outcomes. For instance, certain brain regions like the hippocampus and nucleus accumbens exhibit opposite protein/signaling pathways in neuropsychiatric disease models.

      We want to thank the reviewer for the valuable suggestions. To address this issue, it is necessary to comprehensively identify brain regions and cell types responsible for pH and lactate changes in each strain/condition of animals, as these may differ among them. Subsequently, based on such findings, we can then proceed with functional investigations that specifically target the identified brain regions/cell types. However, conducting such investigations would require a significant amount of time to complete, approximately 2–3 years, and is beyond the scope of this study. Therefore, we would like to conduct such studies in the future. We have mentioned this limitation by revising the discussion section of this study as follows (page 43, line 5):

      Original text

      "Because we used whole brain samples to measure pH and lactate levels, we could not determine whether the observed changes in pH and/or lactate levels occurred ubiquitously throughout the brain or selectively in specific brain region(s) in each strain/condition of the models. Indeed, brain region-specific increases in lactate levels were observed in human patients with ASD in an MRS study (Goh et al., 2014). Furthermore, while increased lactate levels were observed in whole-brain measurements in mice with chronic social defeat stress (Figure S7) (Hagihara et al., 2021a), decreased lactate levels were found in the dorsomedial prefrontal cortex (Yao et al., 2023). The brain region-specific changes may occur even in animal models in which undetectable changes were observed in the present study. This could be due to the masking of such changes in the analysis when using whole-brain samples. Further studies are needed to address this issue by measuring microdissected brain samples and performing in vivo analyses using pH- or lactate-sensitive biosensor electrodes (Marunaka et al., 2014; Newman et al., 2011) and MRS (Davidovic et al., 2011)."

      Revised text

      "The major limitations of this study include the absence of analyses specific to brain regions or cell types and the lack of functional investigations. Because we used whole brain samples to measure pH and lactate levels, we could not determine whether the observed changes in pH and/or lactate levels occurred ubiquitously throughout the brain or selectively in specific brain region(s) in each strain/condition of the models. It is known that certain molecular expression profiles and signaling pathways display brain region-specific alterations, and in some cases, even exhibit opposing changes in neuropsychiatric disease models (Hosp et al., 2017; Floriou-Servou et al. 2018; Reim et al., 2017). Indeed, brain region-specific increases in lactate levels were observed in human patients with ASD in an MRS study (Goh et al., 2014). Furthermore, while increased lactate levels were observed in whole-brain measurements in mice with chronic social defeat stress (Figure S7) (Hagihara et al., 2021a), decreased lactate levels were found in the dorsomedial prefrontal cortex (Yao et al., 2023). Additionally, it has been reported that the basal intracellular pH differs between neurons and astrocytes (lower in astrocytes than in neurons), and their responsiveness to conditions simulating neural hyperexcitation and the metabolic acidosis in terms of intracellular pH also varies (Raimondo et al., 2016; Salameh et al., 2017). It would also be possible that the brain region/cell type-specific changes may occur even in animal models in which undetectable changes were observed in the present study. This could be due to the masking of such changes in the analysis when using whole-brain samples. Given the assumption that the brain regions and cell types responsible for pH and lactate changes vary across different strains/conditions, comprehensive studies are needed to thoroughly examine this issue for each animal model individually. This can be achieved through techniques such as evaluating microdissected brain samples, conducting in vivo analyses using pH- or lactate-sensitive biosensor electrodes (Marunaka et al., 2014; Newman et al., 2011), and MRS (Davidovic et al., 2011). Subsequently, based on such findings, it is also necessary to conduct functional analyses for each model animal by manipulating pH or lactate levels in specific brain regions/cell types and evaluating behavioral phenotypes relevant to neuropsychiatric disorders."

      Moreover, the memory tests used in the study are specific to certain brain regions, but the authors did not measure lactate levels in those regions. Without making lactate measurements in brain-regions and cell types involved in these diseases, any conclusions regarding the role of lactate in CNS diseases is premature.

      Regarding the point about “lactate measurements in brain-regions and cell types involved in these diseases,” please refer our responses provided above.

      Additionally, evidence suggests that exogenous treatment with lactate has positive effects, such as antidepressant effects in multiple disease models (Carrard et al., 2018, Carrard et al., 2021, Karnib et al., 2019, Shaif et al., 2018). It also promotes learning, memory formation, neurogenesis, and synaptic plasticity (Suzuki et al., 2011, Yang et al., 2014, Weitian et al., 2015, Dong et al., 2017, El Hayek et al. 2019, Wang et al., 2019, Lu et al., 2019, Lev-Vachnish et a.l, 2019, Descalzi G et al., 2019, Herrera-López et al., 2020, Ikeda et al., 2021, Zhou et al., 2021,Roumes et al., 2021, Frame et al., 2023, Akter et al., 2023).

      We thank the reviewer for pointing out many references regarding the effects of lactate that were not cited in our paper. We have since included these studies and discussed in more detail the effect of lactate at molecular, cellular, and behavioral levels (page 39, line 11).

      Original text

      "Moreover, increased lactate may have a positive or beneficial effect on memory function to compensate for its impairment, as lactate administration with an associated increase in brain lactate levels attenuates cognitive deficits in human patients (Bisri et al., 2016) and rodent models (Rice et al., 2002) of traumatic brain injury. In addition, lactate administration exerts antidepressant effects in a mouse model of depression (Carrard et al., 2016)."

      Revised text

      "Moreover, increased lactate may have a positive or beneficial effect on memory function to compensate for its impairment, as lactate administration with an associated increase in brain lactate levels attenuates cognitive deficits in human patients (Bisri et al., 2016) and rodent models (Rice et al., 2002) of traumatic brain injury. In addition, lactate administration exerts antidepressant effects in a mouse model of depression (Carrard et al., 2021, 2016; Karnib et al., 2019; Shaif et al., 2018). Lactate has also shown to promote learning and memory (Descalzi G et al., 2019; Dong et al., 2017; Hayek et al. 2019; Lu et al., 2019; Roumes et al., 2021; Suzuki et al., 2011), synaptic plasticity (Herrera-López et al., 2020; Yang et al., 2014; Zhou et al., 2021), adult hippocampal neurogenesis (Lev-Vachnish et al., 2019), and mitochondrial biogenesis and antioxidant defense (Akter et al., 2023), while its effects on adult hippocampal neurogenesis and learning and memory are controversial (Ikeda et al., 2021; Lev-Vachnish et al., 2019; Wang et al., 2019)."

      In conclusion, the relevance of total brain pH and lactate levels as indicators of the observed correlations is controversial, and evidence points towards lactate having more positive rather than negative effects. It is important that the authors perform studies looking at brain-region-specific concentrations of lactate and that they modulate lactate levels (decrease) in animal models of disease to validate their conclusions. it is also important to consider the above-mentioned studies before concluding that "altered brain pH and lactate levels are rather involved in the underlying pathophysiology of some patients with neuropsychiatric disorders" and that "lactate can serve as a potential therapeutic target for neuropsychiatric disorders".

      Regarding the points about positive effects of lactate, measurement of brain-region-specific lactate concentrations, and modulation of lactate levels, please refer to our responses provided earlier. The points raised by the reviewer are important and should be addressed in future studies.

      Reviewer #2 (Recommendations For The Authors):

      • Measure lactate in specific brain regions. The whole brain measurements are not relevant to the disease states.

      We thank the reviewer for pointing this out. We totally agree with the reviewer’s comment and recognize that the lack of investigations in specific brain regions is one of the major limitations of this study. To address this issue, it is necessary to comprehensively identify brain regions and cell types responsible for pH and lactate changes in each strain/condition of animals, as these may differ among them. Subsequently, based on such findings, we can then proceed with functional investigations that specifically target the identified brain regions/cell types. However, conducting such investigations would require a significant amount of time to complete, approximately 2–3 years, and is beyond the scope of this study. Therefore, we would like to conduct such studies in the future. We have mentioned this limitation by revising the discussion section of this study as follows (page 43, line 5):

      Original text

      "Because we used whole brain samples to measure pH and lactate levels, we could not determine whether the observed changes in pH and/or lactate levels occurred ubiquitously throughout the brain or selectively in specific brain region(s) in each strain/condition of the models. Indeed, brain region-specific increases in lactate levels were observed in human patients with ASD in an MRS study (Goh et al., 2014). Furthermore, while increased lactate levels were observed in whole-brain measurements in mice with chronic social defeat stress (Figure S7) (Hagihara et al., 2021a), decreased lactate levels were found in the dorsomedial prefrontal cortex (Yao et al., 2023). The brain region-specific changes may occur even in animal models in which undetectable changes were observed in the present study. This could be due to the masking of such changes in the analysis when using whole-brain samples. Further studies are needed to address this issue by measuring microdissected brain samples and performing in vivo analyses using pH- or lactate-sensitive biosensor electrodes (Marunaka et al., 2014; Newman et al., 2011) and MRS (Davidovic et al., 2011)."

      Revised text:

      "The major limitations of this study include the absence of analyses specific to brain regions or cell types and the lack of functional investigations. Because we used whole brain samples to measure pH and lactate levels, we could not determine whether the observed changes in pH and/or lactate levels occurred ubiquitously throughout the brain or selectively in specific brain region(s) in each strain/condition of the models. It is known that certain molecular expression profiles and signaling pathways display brain region-specific alterations, and in some cases, even exhibit opposing changes in neuropsychiatric disease models (Hosp et al., 2017; Floriou-Servou et al. 2018; Reim et al., 2017). Indeed, brain region-specific increases in lactate levels were observed in human patients with ASD in an MRS study (Goh et al., 2014). Furthermore, while increased lactate levels were observed in whole-brain measurements in mice with chronic social defeat stress (Figure S7) (Hagihara et al., 2021a), decreased lactate levels were found in the dorsomedial prefrontal cortex (Yao et al., 2023). Additionally, it has been reported that the basal intracellular pH differs between neurons and astrocytes (lower in astrocytes than in neurons), and their responsiveness to conditions simulating neural hyperexcitation and the metabolic acidosis in terms of intracellular pH also varies (Raimondo et al., 2016; Salameh et al., 2017). It would also be possible that the brain region/cell type-specific changes may occur even in animal models in which undetectable changes were observed in the present study. This could be due to the masking of such changes in the analysis when using whole-brain samples. Given the assumption that the brain regions and cell types responsible for pH and lactate changes vary across different strains/conditions, comprehensive studies are needed to thoroughly examine this issue for each animal model individually. This can be achieved through techniques such as evaluating microdissected brain samples, conducting in vivo analyses using pH- or lactate-sensitive biosensor electrodes (Marunaka et al., 2014; Newman et al., 2011), and MRS (Davidovic et al., 2011). Subsequently, based on such findings, it is also necessary to conduct functional analyses for each model animal by manipulating pH or lactate levels in specific brain regions/cell types and evaluating behavioral phenotypes relevant to neuropsychiatric disorders."

      • Discuss in detail the studies that show the neuroprotective effects of lactate and reconcile these with the authors' conclusions.

      As suggested by the reviewer, we have discussed in more detail the positive effect of lactate at molecular, cellular, and behavioral levels as below (page 39, line 11):

      Original text

      "Moreover, increased lactate may have a positive or beneficial effect on memory function to compensate for its impairment, as lactate administration with an associated increase in brain lactate levels attenuates cognitive deficits in human patients (Bisri et al., 2016) and rodent models (Rice et al., 2002) of traumatic brain injury. In addition, lactate administration exerts antidepressant effects in a mouse model of depression (Carrard et al., 2016)."

      Revised text

      "Moreover, increased lactate may have a positive or beneficial effect on memory function to compensate for its impairment, as lactate administration with an associated increase in brain lactate levels attenuates cognitive deficits in human patients (Bisri et al., 2016) and rodent models (Rice et al., 2002) of traumatic brain injury. In addition, lactate administration exerts antidepressant effects in a mouse model of depression (Carrard et al., 2021, 2016; Karnib et al., 2019; Shaif et al., 2018). Lactate has also shown to promote learning and memory (Descalzi G et al., 2019; Dong et al., 2017; Hayek et al. 2019; Lu et al., 2019; Roumes et al., 2021; Suzuki et al., 2011), synaptic plasticity (Herrera-López et al., 2020; Yang et al., 2014; Zhou et al., 2021), adult hippocampal neurogenesis (Lev-Vachnish et al., 2019), and mitochondrial biogenesis and antioxidant defense (Akter et al., 2023), while its effects on adult hippocampal neurogenesis and learning and memory are controversial (Ikeda et al., 2021; Lev-Vachnish et al., 2019; Wang et al., 2019)."

      • Conduct experiments whereby you decrease/deplete/modulate lactate levels in animal models and show that there is amelioration of the symptoms.

      Regarding this point, kindly refer to the responses we provided in the first comment from the reviewer. We have mentioned this limitation by revising the discussion section of this study as follows (page 43, line 5):

      Original text

      "Because we used whole brain samples to measure pH and lactate levels, we could not determine whether the observed changes in pH and/or lactate levels occurred ubiquitously throughout the brain or selectively in specific brain region(s) in each strain/condition of the models. Indeed, brain region-specific increases in lactate levels were observed in human patients with ASD in an MRS study (Goh et al., 2014). Furthermore, while increased lactate levels were observed in whole-brain measurements in mice with chronic social defeat stress (Figure S7) (Hagihara et al., 2021a), decreased lactate levels were found in the dorsomedial prefrontal cortex (Yao et al., 2023). The brain region-specific changes may occur even in animal models in which undetectable changes were observed in the present study. This could be due to the masking of such changes in the analysis when using whole-brain samples. Further studies are needed to address this issue by measuring microdissected brain samples and performing in vivo analyses using pH- or lactate-sensitive biosensor electrodes (Marunaka et al., 2014; Newman et al., 2011) and MRS (Davidovic et al., 2011)."

      Revised text:

      "The major limitations of this study include the absence of analyses specific to brain regions or cell types and the lack of functional investigations. Because we used whole brain samples to measure pH and lactate levels, we could not determine whether the observed changes in pH and/or lactate levels occurred ubiquitously throughout the brain or selectively in specific brain region(s) in each strain/condition of the models. It is known that certain molecular expression profiles and signaling pathways display brain region-specific alterations, and in some cases, even exhibit opposing changes in neuropsychiatric disease models (Hosp et al., 2017; Floriou-Servou et al. 2018; Reim et al., 2017). Indeed, brain region-specific increases in lactate levels were observed in human patients with ASD in an MRS study (Goh et al., 2014). Furthermore, while increased lactate levels were observed in whole-brain measurements in mice with chronic social defeat stress (Figure S7) (Hagihara et al., 2021a), decreased lactate levels were found in the dorsomedial prefrontal cortex (Yao et al., 2023). Additionally, it has been reported that the basal intracellular pH differs between neurons and astrocytes (lower in astrocytes than in neurons), and their responsiveness to conditions simulating neural hyperexcitation and the metabolic acidosis in terms of intracellular pH also varies (Raimondo et al., 2016; Salameh et al., 2017). It would also be possible that the brain region/cell type-specific changes may occur even in animal models in which undetectable changes were observed in the present study. This could be due to the masking of such changes in the analysis when using whole-brain samples. Given the assumption that the brain regions and cell types responsible for pH and lactate changes vary across different strains/conditions, comprehensive studies are needed to thoroughly examine this issue for each animal model individually. This can be achieved through techniques such as evaluating microdissected brain samples, conducting in vivo analyses using pH- or lactate-sensitive biosensor electrodes (Marunaka et al., 2014; Newman et al., 2011), and MRS (Davidovic et al., 2011). Subsequently, based on such findings, it is also necessary to conduct functional analyses for each model animal by manipulating pH or lactate levels in specific brain regions/cell types and evaluating behavioral phenotypes relevant to neuropsychiatric disorders."

      Other corrections

      Title page and Acknowledgements:

      We have revised the affiliation information for the following co-authors: Drs. Anja Urbach8, Mohamed Darwish19, 20, Keizo Takao20, 22, Bong-Kiun Kaang53, 54, Michihiro Igarashi74, 75, Rie Ohashi87-89, and Nobuyuki Shiina87-89.

      Page 56, line 12:

      The term ‘The International Brain pH Consortium’ has been corrected to ‘The International Brain pH Project Consortium’.

      Supplementary Table 1: Supplementary References:

      1. Oota-Ishigaki A, Takao K, Yamada D, Sekiguchi M, Itoh M, Koshidata Y, et al. (2022): Prolonged contextual fear memory in AMPA receptor palmitoylation-deficient mice. Neuropsychopharmacology 47: 2150–2159.

      We have updated the name of the mouse strain from “patDp” to “15q dup” throughout the manuscript.

      We have made the following revisions to enhance readability.

      Page 24, line 9: According to a simple correlation analysis, working memory measures (correct responses in the maze test) were significantly negatively correlated with brain lactate levels (r = -0.76, P = 1.93 × 10-5; Figure 1F).

      Page 27, line 1:

      Revised text

      "We found that working memory measures (correct responses in the maze test) were the most frequently selected behavioral measures for constructing a successful prediction model (Figure 2E), which is consistent with the results of the exploratory study (Figure 1E)."

      Figure 1 legend:

      Revised text

      "(F–H) Scatter plot showing correlations between actual brain lactate levels and measures of working memory (correct responses in the maze test) (F), the number of transitions in the light/dark transition test (G), and the percentage of immobility in the forced swim test (H)."

      Figure 2 legend:

      Revised text

      "(F–H) Scatter plots showing correlations between actual brain lactate levels and working memory measures (correct responses in the maze test) (F), the acoustic startle response at 120 dB (G), and the time spent in dark room in the light/dark transition test (H)."

      Page 30, line 2:

      Original text

      "The high to moderate-high pH/low to moderate-low lactate group included mouse models of ASD or developmental delay, such as Shank2 KO, Fmr1 KO, BTBR, Stxbp1 KO, Dyrk1 KO, Auts2 KO, and patDp mice (Table S1, Figure S7)."

      Revised text

      "The high pH/low lactate group and moderate-high pH/moderate-low lactate group included mouse models of ASD or developmental delay, such as Shank2 KO, Fmr1 KO, BTBR, Stxbp1 KO, Dyrk1 KO, Auts2 KO, and 15q dup mice (Table S1, Figure S7)."

      Page 40, line 7:

      Original text

      "Moreover, increased lactate levels may also be involved in behavioral changes other than memory deficits such as anxiety."

      Revised text

      "Moreover, increased lactate levels may also be involved in behavioral changes other than memory deficits, such as anxiety."

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The experimental design presented cannot clearly show that the effect of passive exposure was due to the specific exposure to task-relevant stimuli since there is no control group exposed to irrelevant stimuli.

      We acknowledge the possibility that exposure to task-irrelevant stimuli could result in improvements in learning. Testing this possibility would be a worthwhile goal of future experiments, but it is outside the scope of our current study. We have been careful in our paper to only draw conclusions about the effects of exposure to task-relevant stimuli compared to no exposure. We have added a discussion of this point and relevant references to the literature in the Discussion section of our manuscript.

      The conclusion that "passive exposure influences responses to sounds not used during training" (line 147) does not seem fully supported by the authors' analysis. The authors show that there is an increase in accuracy for intermediate sweep speeds despite the fact that this is the first time the animals encounter them in the active session. However, it seems impossible to exclude that this effect is not simply due to the increased accuracy of the extreme sounds that the animals had been trained on.

      We have modified this sentence to emphasize that it refers to “intermediate” sounds. Regarding the reviewer’s concern, the conclusion is drawn from Figure 3, in which we show that mice exhibit an improvement on non-extreme stimuli after training on extreme stimuli. Panel 3D illustrates that the observed improvements are not just changes in psychometric performance driven by the extreme sounds. In the context of this result, the conclusion relates to generalization in performance on task-relevant stimuli that are closely related to the training stimuli. In our view, it was not entirely obvious a priori that this result would have to occur, since it is possible that performance could improve at the extremes without improving at the intermediate stimuli.

      In the modelling section, the authors adjusted the hyper-parameters to maximize the difference between pure active and passive/active learning. This makes a comparison of learning rates between models somewhat confusing.

      We apologize for the confusion. None of our conclusions are based on comparisons of learning speed between models, but perhaps this was not pointed out sufficiently clearly. The relevant comparisons between conditions for each specific model are made using the same hyperparameters. We have clarified this point in the modeling section of our manuscript.

      The description of the sound does not state whether when reducing the slope of the sweeps the center or the onset frequency of the sounds is preserved.

      Frequency modulated sounds of different FM slopes were generated such that the center frequency was always the same. This is now clarified in the updated version of the manuscript.

      Reviewer #1 (Recommendations for the authors):

      As mentioned, the specificity of the stimuli presented during the passive period is not explicitly addressed in either modelling or behaviour. For modelling, this could be quite straightforward to assess by manipulating the input stimuli during passive episodes. For the behaviour, this would require repeating the experiment with passive sessions during which unrelated sounds are presented (for example varying in frequency or intensity instead of frequency slope). I mainly include this suggestion to clarify my previous comment because this would require a huge amount of work.

      We agree that varying the extent to which the presented passive stimuli are task-related to the task is an interesting point to study for future experiments. However, doing so for the experiments is outside the scope of the current study, and we believe exploring this only in the modeling part would add little value to the current study, because the outcome will highly depend on the details of the implementation.

      Reviewer #2 (Public Review):

      One limitation here is that the presented analysis is somewhat simplistic, does not include any detailed psychometric analysis (bias, lapse rates etc), and primarily focuses on learning speed.

      In our preliminary analyses of trials that included extreme and intermediate stimuli after animals had learned the task (Figure 3), we investigated some metrics of the type that the reviewer suggests here. However, since such additional psychometric analyses were somewhat tangential to our main results (which are about learning speed and responses to sounds not included during training), we did not include these in our manuscript. In agreement with the reviewer’s concern, a main limitation of our study is that the available data does not allow for an analysis of psychometrics during the initial learning stages, since only the extreme stimuli were presented during the task.

      Reviewer #2 (Recommendations for the authors):

      The International Brain Lab has shown quite nicely that psychometric curves continue to improve (increased slope, decreased bias) across learning. This was not really discussed or presented in your data - is this observed during the S4 training portion?

      We indeed saw improvements in the psychometric performance during stage S4, in particular for the active-only learners, as can be seen in Figure 3. We quantified these changes (now presented in the Results section), and added a discussion to the main text.

      Why use a linear fit to extract the various quantities of interest? All of these quantities could be extracted from the raw behavioral data itself.

      Because of the large variations in performance from day-to-day, a linear fit allowed us to extract a more reliable estimate of quantities like “Time to achieve 70%” and “Performance at 21 days” for each animal.

      The analysis presented was focussed primarily on the fast learners. What about the slow learners? Are the ANN models able to recapitulate different aspects of their behavior?

      We agree with the reviewer that the observation that the learners clustered into two groups calls for further investigation. In this study, we focused on the mice that learned more efficiently, because those allowed us to address our main research question about the influence of passive exposure. We believe, the slow learners could be modeled with ANNs that start with a less-easily discriminable input representation, which limits the performance that the trained network is ultimately able to achieve. This additional analysis is outside the scope of the current manuscript, but we hope to address these questions in the future.

      Although I appreciate the thoroughness of the modeling, I was not entirely convinced by the narrative underlying models 1-5, since none of these models were able to successfully recapitulate your core findings. Would it not make more sense to focus primarily on the final model?

      By starting with the simplest possible model that incorporates supervised and unsupervised learning, we were able to determine which ingredients were necessary to capture the behavioral data. We believe this could not have been clearly established by considering the final model alone.

      Reviewer #3 (Public Review):

      The first [major weakness] is that even Model 5 differs from their data. For example, the A+P (passive interleaved condition) learning curve in Figure 7 seems to be non-monotonic, and has some sort of complex eigenvalue in its decay to the steady state performance as trials increase. This wasn't present in their experimental data (Figure 2D), and implies a subtle but important difference. There also appear to be differences in how quickly the initial learning (during early trials) occurs for the A+P and A:P conditions. While both A+P and A:P conditions learn faster than A only in M5, A+P and A:P seem to learn in different ways, which isn't supported in their data.

      The reviewer is correct that there are subtle differences between the two learning curves produced by Model 5. Due to expected variability in the experimental data, however, it is difficult to conclude whether such subtle distinctions also appear in the learning curves of the mice. Further, the slight overshoot of the learning curve that the reviewer mentions is not constrained by the experimental data due to different mice reaching asymptotic performance at different times, and many of them not having even reached asymptotic performance by the end of the training period.

      However, even if there are minor discrepancies between the learning curves produced by the final version of the model and by the mice, we do not see this as being especially surprising or problematic. As in any model, there are a large number of potentially important features that are not included in any of our models–for example, realistic spectrotemporal neural responses, nonlinearity in neural activations, heterogeneity across mice, and many others. The aim of our modeling was to choose a space of possible models (which is inevitably restricted) and show which model version within that space best captures our experimental observations. Expanding the space of possible models that we considered to capture further nuances in the data will be a task for future work.

      The second major weakness is that the authors also don't generate any predictions with M5. Can they test this model of learning somehow in follow-up behavioural experiments in mice? ... Without follow-up experiments to test their mechanism of why passive exposure helps in a schedule-independent way, the impact of this paper will be limited.

      Although testing predictions from our models was beyond the scope of the current study, we do generate specific predictions with model M5 (in particular, about neural representations). Our model produces predictions about neural representations and the ways in which they evolve through learning, and we hope to test these predictions in future work.

      I believe the authors need to place this work in the context of a large amount of existing literature on passive (unsupervised) and active (supervised) learning interactions. This field is broad both experimentally and computationally. For example, there is an entire sub-field of machine learning, called semi-supervised learning that is not mentioned at all in this work.

      We thank the reviewer for pointing this out. The Discussion section of the updated manuscript now includes a discussion on how our results fit in with this literature.

      Reviewer #3 (Recommendations for the authors):

      All points made by the reviewer in their Recommendations For The Authors are associated with those presented in the Public Review and they are addressed in our response above.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      eLife assessment

      This is a valuable study of Eph-Ephrin signaling mechanisms generating pathological changes in amyotropic lateral sclerosis. There are exciting findings bearing on the role of glial cells in this pathology. The study emerges with solid evidence for a novel astrocyte-mediated mechanism for disease propagation. It may help identify potential therapeutic targets.

      Response to Editor’s decision letter: Drs. Huang and Zaidi: Thank you for considering this re-revision of our manuscript for potential publication in eLife. We have addressed the remaining comments of reviewer #2. We have included detailed response-to-reviewer comments below to address each of these remaining specific points from reviewer #2, and we have highlighted all the changes in the manuscript text (using a red font color) made in response to these comments. Based on the reviewers’ critiques, we feel our re-working of the manuscript has made for a greatly improved study.

      Reviewer #1 (Recommendations For The Authors):

      Reviewer comment: All questions/concerns have been addressed.

      Response: We thank Reviewer #1 for the previous helpful comments that we used to improve our manuscript. As Reviewer #1 has no new comments, we have provided no additional responses to address this reviewer’s input. Instead, we only focus (in this new “Response to Reviewer Comments” document) on the remaining points from Reviewer #2 below.

      Reviewer #2 (Recommendations For The Authors):

      Overall, the authors have addressed most concerns raised in the prior review. A couple of very minor points remain, which would improve the clarity of the report.

      Reviewer comment 1: The abstract has not been edited and still emphasizes that astrocyte-mediated upregulation in ephrinB2 signaling underlies pathogenicity in mutant SOD1-associated ALS. There is certainly sufficient evidence to suggest a large role for astrocytes, however, without a thorough investigation of other key cell types in the spinal cord, this cannot be concluded specifically. Especially given that a non-specific promoter (U6) was employed in the viral constructs.

      Response: We apoplogize for this mistake. In response to the reviewer’s previous comment in the first round of review, we made changes throughout the manuscript to address this issue; however, we failed to do this in the Abstract. In this re-revised manucript, we now also make the necessary changes to the Abstract.

      Reviewer comment 2: It is interesting to note that a non-specific promoter, U6, exhibited such large specificity to astrocytes in the cord as compared to neurons (Fig 2M). This is worth discussing briefly in the discussion and how this result compares to those in the literature.

      Response: We have now added a brief discussion of this issue to the Discussion section, including describing our previous studies that used the Gfa2 promotor to achieve astrocyte-specific transduction when employing viral vectors in the rodent spinal cord.

      Reviewer comment 3: I appreciate the authors including a supplemental figure on the expression of ephrinA4 receptors in the cervical ventral horn. Unfortunately, the quality of this image is very poor in conveying the receptor expression. The detailed discussion point on the expression of EphB receptors in the cervical ventral horn should be sufficient for readers to take into consideration.

      Response: We have now removed this supplemental figure and keep only the text from the rerevised manuscript.

      Reviewer comment 4: A few instances of motor neuron diameter being attributed to a 200μm2 size remain (e.g. pg 14).

      Response: We have corrected this issue throughout the re-revised manuscript. The correct information is: somal diameter greater than 20 μm.

      Reviewer comment 5: It is still a little unclear in the result text as to when assessment of lentiviral transduction was conducted following intraspinal injections.

      Response: We have now added this detail about the time point of assessing transduction to both the Results section and the Materials/Methods section.

      Reviewer comment 6: Some figures are missing markers of significance (e.g. Fig 2M).

      Response: Below are our comments about significance markers for each graph in all figures.

      Figure 1:

      Panel E: We have now added asterisks for any statistically-significant comparisons. In addition, we provide the details of this statistical analysis in the text of the re-revised manuscript.

      Figure 2:

      Panel M: We have now added asterisks for statistical comparisons, as well as details in the text.

      Panel N: The asterisk was already shown in the previous version of the figure.

      Figure 3:

      Panels B and G: The asterisks were already shown in the previous version of the figure.

      Figure 4:

      All panels: There are no significant differences; therefore, no asterisks are needed.

      Figure 5:

      Panel F and G: The asterisks were already shown in the previous version of the figure.

      Panel H: The difference is not statistically-signficant.

      Figure 6: No graphs are shown in this figure.

      Reviewer comment 7: Since a wild type mouse control has not been included in the quantification of diaphragm NMJ innervation with and without ephrin knock-down, it would be useful to include a description or discussion on the phenotype of NMJ denervation exhibited in the SOD1G93A mouse model of ALS.

      Response: We have now added description of diaphragm NMJ denervation that occurs in SOD1G93A mice, in particular at the age/time point of our NMJ analysis.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife Assessment

      This valuable manuscript investigates the roles of DKK3 in AD synapse integrity. Although previous work has identified the involvement of Wnt and DKK1 in synaptic physiology, this study provides compelling evidence that suppression of DKK3 rescues the changes in excitatory synapse numbers, as well as memory deficits in an established AD model mice. The authors provide both gain and loss of function data that support the main conclusion and advance our understanding of the mechanisms by which Wnt pathway mediates early synaptic dysfunction in AD models.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this study, Nuria Martin-Flores, Marina Podpolny and colleagues investigate the role of Dickkopf-3 (DKK3), a Wnt antagonist in synaptic dysfunction in Alzheimer's disease. Loss of synapses is a feature of Alzheimer's and other forms of dementia such as frontotemporal dementia and linked amyotrophic lateral sclerosis (FTD). The authors utilise a broad range of experimental approaches. They show that DKK3 levels are increased in Alzheimer's disease and that this occurs early in disease. This is an important finding since early disease changes are believed to be the most important. They also show increases in DKK3 in transgenic mouse models of Alzheimer's disease and that DKK3 knockdown restores synapse number and memory in one such model. Finally, they link these DKK3 increases to loss of excitatory synapses via the blockade of the Wnt pathway and subsequent activation of GSK3B; GSK3B is strongly linked to both Alzheimer's disease and FTD. The quality of the data is good and the conclusions well supported by these data. There are no major weaknesses. The findings support studies that target the Wnt pathway as a potential therapeutic for Alzheimer's disease.

      Reviewer #2 (Public Review):

      This manuscript by Martin-Flores et al., has examined the role of DKK3 in Alzheimer's disease, focusing on the regulation of synaptic numbers. By using human AD brain databases and tissue samples, the authors showed that DKK3 protein and mRNA levels are increased in the brains of AD patients. DKK3 is expressed in the excitatory neurons in WT mouse brains and accumulates at atrophic neurites around amyloid plaques in AD mouse brains. Interestingly, secretion of DKK3 appears to be regulated by NMDAR antagonist as well as chemical LTD. Through gain and loss of function studies, the authors showed that DKK3 regulates the number of excitatory as well as inhibitory synapses with distinct downstream pathways. Finally, the authors investigated the contribution of DKK3 to synaptic changes in AD and found that DKK3 loss of function rescues both the excitatory and inhibitory synaptic defects, resulting in the improvement of memory function in J20 mice.

      Overall, the data is clearly presented and deals with novel roles of DKK3 in controlling excitatory and inhibitory synapses. The finding that shRNA expression of DKK3 in AD model mice rescues synaptic phenotypes and memory impairment is potentially interesting and may provide a new strategy for AD treatment.

      We would like to thank the Editors and the Reviewers for their very insightful suggestions. We are delighted to receive very positive reviews of our manuscript. In response to the comments made by the reviewers, we have carried out an extensive revision of our manuscript. In the revised manuscript, we have addressed all the comments made by the reviewers.

      Recommendations for the authors:

      Reviewer #1:

      My only comment regards the role of GSK3B activation in synaptic dysfunction and its targets. GSK3B is a Tau kinase but is also involved in IP3 receptor delivery of Ca2+ to mitochondria. This delivery is major regulator of mitochondrial ATP production and synaptic function is heavily dependent on ATP. Both Alzheimer's disease and FTD insults have been linked to GSK3B activation -see for e.g. Szabo EMBO R 2023, Gomez-Suaga Aging Cell 2022. It might be valuable to readers for the authors to speculate briefly on potential GSK3B synaptic targets in the Discussion.

      We appreciate the reviewer for this suggestion. In the Discussion, we now included how GSK3β may contribute to synaptic dysfunction and loss in the context of increased DKK3 levels and in Alzheimer’s disease.

      Reviewer #2:

      1. In Fig 1B, the authors showed that soluble DKK3 levels were increased in Braak 1-3 patients, while no changes were observed in Braak 4-5. If the secretion of DKK3 is dependent on NMDAR activity, does this data imply that Braak 4-5 patients have reduced NMDAR activity in general, resulting in the reduced DKK3 release even with the increased mRNA levels? It would be interesting to test this hypothesis in a mouse AD model.

      In Figure 1B, we analyzed the levels of soluble and insoluble DKK3 in the hippocampus of AD patients at different disease stages based on their Braak stages. As the reviewer indicated, soluble levels of DKK3 were increased in patients with Braak I-III but not at later stages. Importantly, DKK3 levels were also elevated in Braak IV-VI patients, but only in the insoluble fraction (Figure 1C), suggesting that DKK3 could accumulate within Aβ aggregates. Based on these findings, we cannot conclude that DKK3 release is reduced at later stages of the disease in patients.

      To explore the underlying mechanisms regulating DKK3 levels, we used cultured hippocampal neurons and AD mouse brain slices. In mouse models, we have demonstrated that extracellular DKK3 levels (secreted DKK3 fraction) depends on NMDAR activation early in the disease progression (Figure 2E, F). Moreover, we also provide new data showing that antagonizing NMDAR partially blocks the increase of DKK3 extracellular levels induced by oligomeric Aβ (see response to question 4 of this reviewer and Figure S2G, H). It is well established that oligomeric Aβ promotes hyperexcitability through, in part, the aberrant activation of NMDAR (Li S et al., 2011, PMID: 21543591; Mucke L and Selkoe DJ et al., 2012, PMID: 22762015). In line with this, NMDAR blockers prevent Aβ-induced synapse loss and improve cognition in AD models (Hu NW et al., 2009, PMID: 19918059; Ye C et al., 2004, PMID: 15288443). In addition, an NMDAR antagonist is currently approved as a drug treatment for AD patients (Cumming J 2021, PMID: 33441154). Together, our findings in dissociated neurons, AD mouse brain and human samples indicate that soluble Aβ oligomers promote the release of DKK3 through NMDAR activation and suggest that this mechanism might also be occurring in the brain of AD patients.

      1. Recent work (Yuan et al., 2022, Nature) has shown that dystrophic neurites/axonal spheroids found around Aβ deposits are filled with neuronal endolysosomes. Are DKK3 in ThioS positive amyloid plaques located in endolysosomes of these axonal spheroids? If so, does this data mean that DKK3 in Fig 2B-D represents the entrapped DKK3 protein population that fails to be secreted from dystrophic neurites?

      The reviewer points an interesting question. Our results show that secretion of DKK3 is increased in two AD models before substantial plaque load. Later in the disease, DKK3 accumulates in dystrophic neurites (visualized as axonal spheroids) surrounding amyloid plaques. To address if DKK3 protein is located in vesicles of the endolysosomal pathway within axonal spheroids, we performed co-localization analyses of DKK3 and the endolysosomal marker LAMP1. We found that DKK3 colocalized with LAMP1 (Figure 2D) indicating the presence of DKK3 in axonal spheroids. These results indeed suggest that DKK3 is present in abnormally enlarged vesicles in dystrophic neurites around Aβ plaques. This could affect the axonal transport of DKK3. Given that proteins present in dystrophic neurites have been correlated with defects in bidirectional transport in the axon (Stokin GB et al., 2005, PMID: 15731448; Sadleir KR et al., 2016, PMID: 26993139), both DKK3 turnover and secretion could be affected.

      1. Why does only LTD induce DKK3 release? Why not general activation of neuronal activity? It would be important to test the relationship between DKK3 secretion and neuronal activity with optogenetics and chemogenetics.

      We tested whether neuronal activity triggered increased extracellular DKK3 levels by subjecting neurons to chemical long-term potentiation (cLTP) or long-term depression (cLTD). However, only cLTD increased extracellular DKK3, which we then confirmed in brain slices (Figure S3). This finding is not unexpected as it is well described that different patterns of activity can lead to different molecular outcomes. For example, high-frequency stimulation (HFS; an activity pattern that resembles LTP) and low-frequency stimulation (LFS; a different activity pattern resembling LTD) leads to opposing effects on surface levels of the Wnt receptor Frizzled-5 (Fz5) (Sahores M et al., 2010, PMID: 20530549). Furthermore, cLTP increases Fz5 s-acylation, an important post-translational modification that regulates the surface levels of Fz5, whereas cLTD decreases it (Teo S et al., 2023, PMID: 37557176). Another example is the BDNF receptor TrkB. Surface TrkB is increased by tetanic stimulation, which also induces LTP as HFS or cLTP, but not by LFS (Du J et al., 2000, PMID: 10995446). Our findings suggest that DKK3 might contribute to synaptic changes underlying cLTD. Future experiments using chemogenetics or optogenetics might elucidate the role of DKK3 in activity-induced synaptic changes.

      1. Are Abeta oligomer treatment-dependent increases in DKK3 protein levels in the cellular lysate and the extracellular fraction also suppressed by APV?

      Our results in AD mice indicate that increased DKK3 release is dependent on NMDAR activation. To investigate if amyloid-β oligomers (Aβo) increase DKK3 levels in the cell lysate and extracellular fractions through NMDAR, we blocked these receptors in hippocampal neurons using AP-V (Figure S2G, H). In these experiments, we use a lower concentration of Aβo (200nM of Aβ1-42) to avoid any potential cytotoxic effect. In line with our previous results using a higher concentration of Aβo, we observed that Aβo markedly increased DKK3 levels both in the cell lysate and in the extracellular fraction compared to the reverse Aβ42-1 control peptide. Kruskal-Wallis with Dunn’s test showed a trend to a reduced levels of DKK3 in the extracellular fraction when we compared neurons treated with Aβo and APV with those neurons treated with Aβ and vehicle (p = 0.0726). However, this reduced levels of DKK3 in the extracellular fraction reached statistical significance using a t-test (p = 0.0384). No differences were observed between the reverse control peptide and Aβo and APV conditions. These results suggest that blockade of the NMDAR partially occludes the ability of Aβo to increase DKK3 levels in the extracellular fraction.

      1. Why does DKK3 shRNA only downregulate inhibitory synapses but not excitatory synapses in the WT brain slice? Does this mean that in the WT brain, other DKK proteins (without changes in their expression as shown in Fig S6) are sufficiently expressed and compensate for the roles of DKK3 in excitatory synapse integrity?

      The reviewer points out an interesting result. In J20 mice, DKK3 knockdown affects both excitatory and inhibitory synapse density (Figure 6B, C). In Figure 3B, D, we show that in vivo downregulation of DKK3 leads to an increased number of inhibitory synapses without affecting excitatory ones in the brain of WT animals. These results indicate that in a healthy brain (WT), DKK3 is required for the maintenance of inhibitory synapses but not for excitatory synapses under our experimental conditions. Furthermore, DKK3 partially shares the mechanism of action with DKK1 as both DKK proteins promote excitatory synapse loss through the Wnt/GSK3β pathway (Figure 4A-C) (Marzo A et al., 2016, PMID: 27593374). Therefore, it is possible that endogenous DKK1 levels in the hippocampus could compensate for the reduced expression of DKK3 resulting in the lack of changes in excitatory synapse number when DKK3 is knockdown in WT animals.

      1. Manipulating DKK3 in WT brains only affects Gephyrin but not VGAT, but in J20, both Gephyrin and VGAT seem to be affected by DKK3 shRNA (Fig 6). The authors need to provide the pre vs post synapse number in Fig 6 and discuss the potential differences.

      We have now included the quantification of excitatory and inhibitory pre- and postsynaptic puncta for 4-months old (Figure S6B, C) and 9-months old (Figure S6D, E) WT and J20 mice. At 4-months old, the density of Homer1 puncta for excitatory synapses and both vGAT and Gephyrin for inhibitory synapses was increased and decreased respectively by knocking down DKK3 in the J20 mice. At 9-months, strong trends were observed in all the synaptic markers when downregulating DKK3, but significance was only reached for Homer1 puncta.

      1. Where are the Wnt receptors expressed? Are they exclusively expressed in neurons? Can the authors exclude the potential involvement of glial cells in this process?

      In neurons, Wnt receptors can be expressed in the synaptic terminals. For example, Wnt receptor Frizzled-5 is located at the presynaptic terminal and the dendritic shaft but not at spines (Sahores M et al., 2010, PMID: 20530549; McLeod F et al., 2018, PMID: 29694885), whereas Frizzled-7 is located at the dendritic shaft and spines (McLeod F et al., 2018, PMID: 29694885). In addition, the Wnt co-receptor LRP6 is present at both pre- and postsynaptic sites in excitatory synapses (Jones ME et al., 2023, PMID: 36638182). Kremen1, another receptor for Dkk proteins, is also highly expressed in the brain and our unpublished superresolution results show that this receptor is present in both pre- and postsynaptic sites of 53% of excitatory and 30% of inhibitory synapses. However, these receptors are not exclusively expressed in neurons and many of them are also highly expressed in astrocytes (Zhang Y et al., 2016, PMID: 25186741). Based on the literature and our findings, we cannot rule out the possibility that DKK3 may signal to other cell types such as astrocytes, which could also contribute to changes in synapse density. However, recombinant DKK3 induces structural and functional changes in excitatory and inhibitory synapses within 3-4h (Figure 3), suggesting that DKK3 acts on neurons leading to synaptic changes.

      1. Does the shRNA treatment of DKK3 affect the size and number of amyloid plaques in the AD mice?

      We thank the reviewer for raising this very important question. We have now evaluated the impact of DKK3 knockdown in Aβ pathology in the J20 mice. We did not observe differences in the Aβ coverage nor the averaged number and size of Aβ plaques when DKK3 was silenced in the CA3 (Figure S6F). Therefore, the changes we observe in excitatory and inhibitory synapse density around plaques after knocking down DKK3 are unlikely to be due to changes in Aβ plaques.

    1. Author Response

      eLife assessment

      This study presents a valuable finding on the distinct subpopulation of adipocytes during brown-to-white conversion in perirenal adipose tissue (PRAT) at different ages. The evidence supporting the claims of the authors is convincing, although specific lineage tracing of this subpopulation of cells and mechanistic studies would expand the work. The work will be of interest to scientists working on adipose and kidney biology.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors performed single nucleus RNA-seq for perirenal adipose tissue (PRAT) at different ages. They concluded a distinct subpopulation of adipocytes arises through brown-to-white conversion and can convert to a thermogenic phenotype upon cold exposure.

      Strengths:

      PRAT adipose tissue has been reported as an adipose tissue that undergoes browning. This study confirms that brown-to-white and white-to-beige conversions also exist in PRAT, as previously reported in the subcutaneous adipose tissue.

      We did not observe any white-to-beige conversion in PRAT under regular condition. The adipocyte population that arises from brown-to-white conversion (mPRAT-ad2) can respond to cold and restore their UCP1 expression. However, brown adipocytes that arise from the mPRAT-ad2 subpopulation after cold exposure have a distinct transcriptome to that of cold-induced beige adipocyte in iWAT (Figure S6K) and are more related to iBAT brown adipocytes (Figure 6E).

      Weaknesses:

      1. There is overall a disconnection between single nucleus RNA-seq data and the lineage chasing data. No specific markers of this population have been validated by staining.

      We are not sure what “this population” refers to. We suspect it is the Ucp1-&Cidea+ mPRAT-ad2 adipocyte subpopulation. If so, we did not identify specific markers for these adipocytes as shown in Figure 1H and statement in the Discussion. mPRAT-ad2 is negative for Ucp1 and Cyp2e1, which are markers for mPRAT-ad1 and mPRAT-ad3&4, respectively. Therefore, we plan to stain the mPRAT with Ucp1, Cyp2e1 and Perilipin (a pan adipocyte marker) antibodies. Cells that are Perilipin+&Ucp1-&Cyp2e1- will represent the mPRAT-ad2 subpopulation.

      1. It would be nice to provide more evidence to support the conclusion shown in lines 243 to 245 "These results indicated that new BAs induced by cold exposure were mainly derived from UCP1- adipocytes rather than de novo ASPC differentiation in puPRAT". Pdgfra-negative progenitor cells may also contribute to these new beige adipocytes.

      Our sequencing data and many previous studies (Angueira et al., 2021; Burl et al., 2022; Dong et al., 2022) have shown that Pdgfra is a marker for all ASPCs. We will also check adipocyte labelling pattern of mPRAT in the PdgfraCre;Ai14 mice. If all adipocytes are Tomato+, it suggests that adipocytes in mPRAT are all derived from Pdgfra-expressing cells. Also, the cold-induced adipocytes in mPRAT resemble more to the brown adipocytes of iBAT than the beige adipocytes of iWAT (Figure 6E and S6K).

      Angueira, A.R., Sakers, A.P., Holman, C.D., Cheng, L., Arbocco, M.N., Shamsi, F., Lynes, M.D., Shrestha, R., Okada, C., Batmanov, K., et al. (2021). Defining the lineage of thermogenic perivascular adipose tissue. Nat Metab 3, 469-484. 10.1038/s42255-021-00380-0.

      Burl, R.B., Rondini, E.A., Wei, H., Pique-Regi, R., and Granneman, J.G. (2022). Deconstructing cold-induced brown adipocyte neogenesis in mice. Elife 11. 10.7554/eLife.80167.

      Dong, H., Sun, W., Shen, Y., Balaz, M., Balazova, L., Ding, L., Loffler, M., Hamilton, B., Kloting, N., Bluher, M., et al. (2022). Identification of a regulatory pathway inhibiting adipogenesis via RSPO2. Nat Metab 4, 90-105. 10.1038/s42255-021-00509-1.

      1. The UCP1Cre-ERT2; Ai14 system should be validated by showing Tomato and UCP1 co-staining right after the Tamoxifen treatment.

      We will inject Ucp1CreERT2;Ai14 mice at 1- and 6-month-old of age with tamoxifen and collect one day after the last injection to check the overlap between the Tomato signal and UCP1 immunofluorescent staining.

      Reviewer #2 (Public Review):

      Summary:

      In the present manuscript, Zhang et al utilize single-nuclei RNA-Seq to investigate the heterogeneity of perirenal adipose tissue. The perirenal depot is interesting because it contains both brown and white adipocytes, a subset of which undergo functional "whitening" during early development. While adipocyte thermogenic transdifferentiation has been previously reported, there remain many unanswered questions regarding this phenomenon and the mechanisms by which it is regulated.

      Strengths:

      The combination of UCP1-lineage tracing with the single nuclei analysis allowed the authors to identify four populations of adipocytes with differing thermogenic potential, including a "whitened" adipocyte (mPRAT-ad2) that retains the capacity to rapidly revert to a brown phenotype upon cold exposure. They also identify two populations of white adipocytes that do not undergo browning with acute cold exposure.

      Anatomically distinct adipose depots display interesting functional differences, and this work contributes to our understanding of one of the few brown depots present in humans.

      Weaknesses:

      The most interesting aspect of this work is the identification of a highly plastic mature adipocyte population with the capacity to switch between a white and brown phenotype. The authors attempt to identify the transcriptional signature of this ad2 subpopulation, however, the limited sequencing depth of single nuclei somewhat lessens the impact of these findings. Furthermore, the lack of any form of mechanistic investigation into the regulation of mPRAT whitening limits the utility of this manuscript. However, the combination of well-executed lineage tracing with comprehensive cross-depot single-nuclei presented in this manuscript could still serve as a useful reference for the field.

      The sequencing depth of our data is comparable, if not better than previously published snRNA-seq studies on adipose tissue (Burl et al., 2022; Sarvari et al., 2021; Sun et al., 2020). Therefore, the depth of our data has reached the limit of the 3’ sequencing methods. Unfortunately, due to size limitation of the adipocytes, it is also not feasible to sort them for Smart-seq.

      Burl, R.B., Rondini, E.A., Wei, H., Pique-Regi, R., and Granneman, J.G. (2022). Deconstructing cold-induced brown adipocyte neogenesis in mice. Elife 11. 10.7554/eLife.80167.

      Sarvari, A.K., Van Hauwaert, E.L., Markussen, L.K., Gammelmark, E., Marcher, A.B., Ebbesen, M.F., Nielsen, R., Brewer, J.R., Madsen, J.G.S., and Mandrup, S. (2021). Plasticity of Epididymal Adipose Tissue in Response to Diet-Induced Obesity at Single-Nucleus Resolution. Cell Metab 33, 437-453 e435. 10.1016/j.cmet.2020.12.004.

      Sun, W., Dong, H., Balaz, M., Slyper, M., Drokhlyansky, E., Colleluori, G., Giordano, A., Kovanicova, Z., Stefanicka, P., Balazova, L., et al. (2020). snRNA-seq reveals a subpopulation of adipocytes that regulates thermogenesis. Nature 587, 98-102. 10.1038/s41586-020-2856-x.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      The study could also valuably explore what kinds of genes experienced what forms of expression evolution. A brief description of GO terms frequently represented in genes which showed strong patterns of expression evolution might be suggestive of which selective pressures led to the changes in expression in the C. bursa-pastoris lineage, and to what extent they related to adaptation to polyploidization (e.g. cell-cycle regulators), compensating for the initial pollen and seed inviability or adapting to selfing (endosperm- or pollen-specific genes), or adaptation to abiotic conditions. ”

      We did not include a gene ontology (GO) analysis in the first place as we did not have a clear expectation on the GO terms that would be enriched in the genes that are differentially expressed between resynthesized and natural allotetraploids. Even if we only consider adaptive changes, the modifications could occur in various aspects, such as stabilizing meiosis, adapting to the new cell size, reducing hybrid incompatibility and adapting to self-fertilization. And each of these modifications involves numerous biological processes and molecular functions. As we could make post-hoc stories for too many GO terms, extrapolating at this stage have limited implications and could be misleading.

      Nonetheless, we are not the only study that compared newly resynthesized and established allopolyploids. GO terms that were repeatedly revealed by this type of exploratory analysis may give a hint for future studies. For this reason, now we have reported the results of a simple GO analysis.

      Recommendations for the authors: please note that you control which, if any, revisions, to undertake

      The majority of concerns from reviewers and the reviewing editor are in regards to the presentation of the manuscript; that the framing of the manuscript does not help the general reader understand how this work advances our knowledge of allopolyploid evolution in the broad sense. The manuscript may be challenging to read for those who aren't familiar with the study system or the genetic basis of polyploidy/gene expression regulation. Further, it is difficult to understand from the introduction how this work is novel compared to the recently published work from Duan et al and compared to other systems. Because eLife is a journal that caters to a broad readership, re-writing the introduction to bring home the novelty for the reader will be key.

      Additionally, the writing is quite technical and contains many short-hands and acronyms that can be difficult to keep straight. Revising the full text for clarity (and additionally not using acronyms) would help highlight the findings for a larger audience.

      Reviewer #1 (Recommendations For The Authors):

      Most of my suggestions on this interesting and well-written study are minor changes to clarify the writing and the statistical approaches.

      The use of abbreviations throughout for both transcriptional phenomena and lines is logical because of word limits, but for me as a reader, it really added to the cognitive burden. Even though writing out "homoeolog expression bias" or "hybridization-first" every time would add length, I would find it easier to follow and suspect others would too.

      Thank you for this suggestion. Indeed, using less uncommon acronyms or short-hands should increase the readability of the text for broader audience. Now in most places, we refer to “Sd/Sh” and “Cbp” as “resynthesized allotetraploids” and “natural allotetraploids”, respectively. We have also replaced the most occurrences of the acronyms for transcriptional phenomena (ELD, HEB and TRE) with full phrases, unless there are extra attributes before them (such as “Cg-/Co-ELD” and “relic/Cbp-specific ELD”).

      It would be helpful to include complete sample sizes to either a slightly modified Figure 1 or the beginning of the methods, just to reduce mental arithmetic ("Each of the five groups was represented by six "lines", and each line had six individuals" so there were 180 total plants, of which 167 were phenotyped - presumably the other 13 died? - and 30 were sequenced).

      The number 167 only applied to floral morphorlogical traits (“Floral morphological traits were measured for all five groups on 167 plants…”), but the exact total sample size for other traits differed. Now the total sample sizes of other traits have also been added to beginning of the second paragraph of the methods.

      For this study 180 seedings have been transplanted from Petri dishes to soil, but 8 seedlings died right after transplanting, seemingly caused by mechanical damage and insufficient moistening. Later phenotyping (2020.02-2020.05) was also disrupted by the COVID-19 pandemic, and some individuals were not measured as we missed the right life stages. Specifically, 5 individuals were missing for floral morphological traits (sepal width, sepal length, petal width, petal length, pistil width, pistil length, and stamen length), 30 for pollen traits, 1 for stem length, and 2 for flowering time. As for seed traits, we only measured individuals with more than ten fruits, so apart from the reasons mentioned above, individuals that were self-incompatible and had insufficient hand-pollination were also excluded. We spotted another mistake during the revision: two individuals with floral morphological measurements had no positional information (tray ID). These measurements were likely mis-sampled or mislabeled, and were therefore excluded from analysis. We assumed most of these missing values resulted from random technical mistakes and were not directly related to the measured traits.

      In general, the methods did a thorough job of describing the genomics approaches but could have used more detail for the plant growth (were plants randomized in the growth chamber, can you rule out block/position effects) and basic statistics (what statistical software was used to perform which tests comparing groups in each section, after the categories were identified).

      When describing the methods, mention whether the plants; this should be straightforward as a linear model with position as a covariate.

      Data used in the present study and a previously published work (Duan et al., 2023) were different subsets of a single experiment. For this reason, we spent fewer words in describing shared methods in this manuscript but tried to summarize some methods that were essential for understanding the current paper. But as you have pointed out, we did miss many important details that should have been kept. Now we have added some description and a table (Supplementary file 1) in the “Plant material” section for explaining randomization, and added more information of the software used for performing statistic tests in the “Phenotyping” section.

      Although we did not mention in the present manuscript, we used a randomized block design for the experiment (Author response image 1).

      Author response image 1.

      Plant positions inside the growth chamber.

      Plants used in the present study and Duan et al. (2023) were different subsets of a single experiment. The entire experiment had eight plant groups, including the five plant groups used in the present study (diploid C. orientalis (Co2), diploid C. grandiflora (Cg2), “whole-genome-duplication-first” (Sd) and “hybridization-first”(Sh) resynthesized allotetraploids, and natural allotetraploids, C. bursa pastoris (Cbp), as well as three plant groups that were only used in Duan et al. (2023; tetraploid C. orientalis (Co4), tetraploid C. grandiflora (Cg4) and diploid hybrids (F)). Each of the eight plant groups had six lines and each line represented by six plants, resulting in 288 plants (8 groups x 6 lines x 6 individuals = 288 plants). The 288 plants were grown in 36 trays placed on six shelves inside the same growth chamber. Each tray had exactly one plant from each of the eight groups, and the position of the eight plants within each tray (A-H) were randomized with random.shuffle() method in Python (Supplementary file 1). The position of the 36 trays inside the growth room (1-36) was also random and the positions of all trays were shuffled once again 28 days after germination (randomized with RAND() and sorting in Microsoft Excel Spreadsheet). (a) Plant distribution; (b) An example of one tray; (c) A view inside the growth chamber, showing the six benches.

      With the randomized block design and one round of shuffling, positional effect is very unlikely to bias the comparison among the five plant groups. The main risk of not adding positions to the statistical model is increasing error variance and decreasing the statistical power for detecting group effect. As we had already observed significant among-group variation in all phenotypic traits (p-value <2.2e-16 for group effect in most tests), further increasing statistical power is not our primary concern. In addition, during the experiment we did not notice obvious difference in plant growth related to positions. Although we could have added more variables to account for potential positional effects (tray ID, shelf ID, positions in a tray etc.), adding variables with little effect may reduce statistical power due to the loss of degree of freedom.

      Due to one round of random shuffling, positions cannot be easily added as a single continuous variable. Now we have redone all the statistical tests on phenotypic traits and included tray ID as a categorical factor (Figure 2-Source Data 1). In general, the results were similar to the models without tray ID. The F-values of group effect was only slightly changed, and p-values were almost unchanged in most cases (still < 2.2e-16). The tray effect (df=35) was not significant in most tests and was only significant in petal length (p-value=0.0111), sepal length (p-value=0.0242) and the number of seeds in ten fruits (p-value=0.0367). As expected, positions (tray ID) had limited effect on phenotypic traits.

      Figure 2 - I assume the numbers at the top indicate sample sizes but perhaps add this to the figure caption.

      Statistical power depends on both the total sample size and the sample size of each group, especially the group with the fewest observations. We lost different number of measurements in each phenotypic trait, and for pollen traits we did have a notable loss, so we chose to show sample sizes above each group to increase transparency. Since we had five different sets of sample sizes (for floral morphological traits, stem length, days to flowering, pollen traits and seed traits, respectively), it would be cumbersome to introduce all 25 numbers in figure caption and could be hard for readers to match the sample sizes with results. For this reason, we would like to keep the sample sizes in the figure, and now we have modified the legend to clarify that the numbers above groups are sample sizes.

      ’The trend has been observed in a wide range of organisms, including ...’ - perhaps group Brassica and Raphanobrassica into one clause in the sentence, since separating them out undermines the diversity somewhat.

      Indeed, it is very strange to put “cotton” between two representatives from Brassicaceae. Now the sentence is changed to “… including Brassica (Wu et al., 2018; Li et al., 2020; Wei et al., 2021) and Raphanobrassica (Ye et al., 2016), cotton (Yoo et al., 2013)…”

      The diagrams under the graph in Figure 4B are particularly helpful for understanding the expression patterns under consideration! I appreciated them a lot!

      Thank you for the comment. We also feel the direction of expression level dominance is convoluted and hard to remember, so we adopted the convention of showing the directions with diagrams.

      Reviewer #2 (Recommendations For The Authors):

      The science is very interesting and thorough, so my comments are mostly meant to improve the clarity of the manuscript text:

      • I found it challenging to remember the acronyms for the different gene expression phenomena and had to consistently cross-reference different parts of the manuscript to remind myself. I think using the full phrase once or twice at the start of a paragraph to remind readers what the acronym stands for could improve readability.

      Thank you for this reasonable suggestion. Now we have replaced the most occurrence of acronyms with the full phrases.

      • There are some technical terms, such as "homoeologous synapsis" and "disomic inheritance", which I think are under-defined in the current text.

      Indeed these terms were not well-defined before using in the manuscript. Now we have added a brief explanation for each term.

      • Under the joint action of these forces, allopolyploid subgenomes are further coordinated and degenerated, and subgenomes are often biasedly fractionated" This sentence has some unclear terminology. Does "coordinated" mean co-adapted, co-inherited, or something else? Is "biasedly fractionated" referring to biased inheritance or evolution of one of the parental subgenomes?

      We apologize for not using accurate terms. With “coordinated” we emphasized the evolution of both homoeologs depends on the selection on total expression of both homoeologs, and on both relative and absolute dosages, which may have shifted away from optima after allopolyploidization. “Co-evolved” or “co-adapted” might be a better word.

      But the term "biasedly fractionation" has been commonly used for referring to the phenomenon that genes from one subgenome of polyploids are preferentially retained during diploidization (Woodhouse et al., 2014; Wendel, 2015). Instead of inventing a new term, we prefer to keep the same term for consistency, so readers could link our findings with numerous studies in this field. Now the sentence is changed to “Under the joint action of these forces, allopolyploid subgenomes are further co-adapted and degenerated, and subgenomes are often biasedly retained, termed biased fractionation”.

      • There are a series of paragraphs in the results, starting with "Resynthesized allotetraploids and the natural Cbp had distinct floral morphologies", which consistently reference Figure 1 where they should be referencing Figure 2.

      Thank you for spotting this mistake! Now the numbers have been corrected.

      • ‘The number of pollen grains per flower decreased in natural Cbp’ this wording implies it's the effect of some experimental treatment on Cbp, rather than just measured natural variation.

      Yes, it is not scientifically precise to say this in the Results section, especially when describing details of results. We meant that assuming resynthesized allopolyploids are good approximation of the initial state of natural allotetraploid C. bursa-pastoris, our results indicate that the number of pollen grains had decreased in natural C. bursa-pastoris. But this is an implication, rather than an observation, so the sentence is better rewritten as “Natural allotetraploids had less pollen grains per flower.”

      • ‘The percentage of genes showing complete ELD was altogether limited but doubled between resynthesized allotetraploid groups and natural allotetraploids’ for clarity, I would suggest revising this to something like "doubled in natural allotetraploids relative to resynthesized allotetraploids

      Thank you for the suggestion. The sentence has been revised as suggested.

      • I'm not sure I understand what the difference is between expression-level dominance and homeolog expression bias. It seems to me like the former falls under the umbrella of the latter.

      Expression-level dominance and homeolog expression bias are easily confused, but they are conceptually independent. One gene could have expression-level dominance without any homeolog expression bias, or strong homeolog expression bias without any expression-level dominance. The concepts were well explained in Grover et al., (2012) with nice figures.

      Expression level dominance compares the total expression level of both homoeologs in allopolyploids with the expression of the same gene in parental species, and judges whether the total expression level in allopolyploids is only similar to one of the parental species. The contributions from different homoeologs are not distinguished.

      While homoeolog expression bias compares the relative expression level of each homoeologs in allopolyploids, with no implication on the total expression of both homoeologs.

      Let the expression level of one gene in parental species X and Y be e(X) and e(Y), respectively. And let the expression level of x homoeolog (from species X) and y homoeolog (from species Y) in allopolyploids be e(x) and e(y), respectively.

      Then a (complete) expression level dominance toward species X means: e(x)+e(y)=e(X) and e(x)+e(y)≠e(Y);

      While a homoeolog expression bias toward species X means: e(x) > e(y), or e(x)/e(y) > e(X)/e(Y), depending on the definition of studies.

      Both expression-level dominance and homeolog expression bias have been widely studied in allopolyploids (Combes et al., 2013; Li et al., 2014; Yoo et al., 2014; Hu & Wendel, 2019). As the two phenomena could be in opposite directions, and may be caused by different mechanisms, we think adopting the definitions in Grover et al., (2012) and distinguishing the two concepts would facilitate communication.

      • Is it possible to split up the results in Figure 7 to show which of the two homeologs was lost (i.e. orientalis vs. grandiflora)? Or at least clarify in the legend that these scenarios are pooled together in the figure?

      Maybe using acronyms without explanation made the figure titles hard to understand, but in the original Figure 7 the loss of two homoeologs were shown separately. Figure 7a,c showed the loss of C. orientalis-homoeolog (“co-expession loss”), and Figure 7b,d showed the loss of C. grandiflora-homoeolog (“cg-expession loss”). Now the legends have been modified to explain the Figure.

      • The paragraph starting with "The extant diploid species" is too long, should probably be split into two paragraphs and edited for clarity.

      The whole paragraph was used to explain why the resynthesized allotetraploids could be a realistic approximation of the early stage of C. bursa-pastoris with two arguments:

      1) The further divergence between C. grandiflora and C. orientalis after the formation of C. bursa-pastoris should be small compared to the total divergence between the two parental species; 2) The mating systems of real parental populations were most likely the same as today. Now the two arguments were separated as two paragraphs, and the second paragraph has been shortened.

      • On the other hand, the number of seeds per fruit" implies this is evidence for an alternative hypothesis, when I think it's really just more support for the same idea.

      “On the other hand” was used to contrast the reduced number of pollen grains and the increased number of seeds in natural allotetraploids. As both changes are typical selfing syndrome, indeed the two support the same idea. We replaced the “On the other hand” with “Moreover”.

      • ‘has become self-compatible before the formation" "has become" should be "became".

      The tense of the word has been changed.

      • If natural C. bursa-pastoris indeed originated from the hybridization between C. grandiflora-like outcrossing plants and C. orientalis-like self-fertilizing plants, the selfing syndrome in C. bursa-pastoris does not reflect the instant dominance effect of the C. orientalis alleles, but evolved afterward.’ This sentence should be closer to the end of the paragraph, after the main morphological results are summarized.

      Thank you for the suggestion. The paragraph is indeed more coherent after moving the conclusion sentence.

      References

      Combes, M.C., Dereeper, A., Severac, D., Bertrand, B. & Lashermes, P. (2013) Contribution of subgenomes to the transcriptome and their intertwined regulation in the allopolyploid Coffea arabica grown at contrasted temperatures. New Phytologist, 200, 251–260.

      Grover, C.E., Gallagher, J.P., Szadkowski, E.P., Yoo, M.J., Flagel, L.E. & Wendel, J.F. (2012) Homoeolog expression bias and expression level dominance in allopolyploids. New Phytologist, 196, 966–971.

      Hu, G. & Wendel, J.F. (2019) Cis – trans controls and regulatory novelty accompanying allopolyploidization. New Phytologist, 221, 1691–1700.

      Li, A., Liu, D., Wu, J., Zhao, X., Hao, M., Geng, S., et al. (2014) mRNA and Small RNA Transcriptomes Reveal Insights into Dynamic Homoeolog Regulation of Allopolyploid Heterosis in

      Nascent Hexaploid Wheat. The Plant Cell, 26, 1878–1900. Wendel, J.F. (2015) The wondrous cycles of polyploidy in plants. American Journal of Botany, 102, 1753–1756.

      Woodhouse, M.R., Cheng, F., Pires, J.C., Lisch, D., Freeling, M. & Wang, X. (2014) Origin, inheritance, and gene regulatory consequences of genome dominance in polyploids. Proceedings of the National Academy of Sciences of the United States of America, 111, 5283–5288.

      Yoo, M.J., Liu, X., Pires, J.C., Soltis, P.S. & Soltis, D.E. (2014) Nonadditive Gene Expression in Polyploids. https://doi.org/10.1146/annurev-genet-120213-092159, 48, 485–517.

    1. Author Response

      Public Reviews:

      Roget et al. build on their previous work developing a simple theoretical model to examine whether ageing can be under natural selection, challenging the mainstream view that ageing is merely a byproduct of other biological and evolutionary processes. The authors propose an agent-based model to evaluate the adaptive dynamics of a haploid asexual population with two independent traits: fertility timespan and mortality onset. Through computational simulations, their model demonstrates that ageing can give populations an evolutionary advantage. Notably, this observation arises from the model without invoking any explicit energy tradeoffs, commonly used to explain this relationship.

      The model’s results are based on both numerical simulations and formal mathematical analysis.

      Additionally, the theoretical model developed here indicates that mortality onset is generally selected to start before the loss of fertility, irrespective of the initial values in the population. The selected relationship between the fertility timespan and mortality onset depends on the strength of fertility and mortality effects, with larger effects resulting in the loss of fertility and mortality onset being closer together. By allowing for a trans-generational effect on ageing in the model, the authors show that this can be advantageous as well, lowering the risk of collapse in the population despite an apparent fitness disadvantage in individuals. Upon closer examination, the authors reveal that this unexpected outcome is a consequence of the trans-generational effect on ageing increasing the evolvability of the population (i.e., allowing a more effective exploration of the parameter landscape), reaching the optimum state faster.

      The simplicity of the proposed theoretical model represents both the major strength and weakness of this work. On one hand, with an original and rigorous methodology, the logic of their conclusions can be easily grasped and generalised, yielding surprising results. Using just a handful of parameters and relying on direct competition simulations, the model qualitatively recapitulates the negative correlation between lifespan and fertility without requiring energy tradeoffs. This alone makes this work an important milestone for the rapidly growing field of adaptive dynamics, opening many new avenues of research, both theoretically and empirically.

      We thank the reviewers and editor for highlighting the importance of the work presented here.

      On the other hand, the simplicity of the model also makes its relationship with living organisms difficult to gauge, leaving open questions about how much the model represents the reality of actual evolution in a natural context.

      We presented both in results and discussion how the mathematical trade-offs between fertility and survival time give rise to (xb, xd) configuration representative of existing aging modes.

      In particular, a more explicit discussion of how the specifics of the model can impact the results and their interpretation is needed. For example, the lack of mechanistic details on the trans-generational effect on ageing makes the results difficult to interpret.

      We discussed the role of the transgenerational Lansing effect played to its function, there is no need for a particular mechanism beyond that function of transgenerational negative effect. We reinforce this in the discussion by adding the following sentence “Regarding the nature of the transgenerational effect, our model is agnostic and the mere transmission of any negative effect would be sufficient to exert the function. “

      Even if analytical results are obtained, most of the observations appear derived from simulations as they are currently presented. Also, the choice of parameters for the simulations shown in the paper and how they relate to our biological knowledge are not fully addressed by the authors.

      The long time limit of the system with and without the Lansing effect is based on analytical results later confirmed using numerical simulations. The choice of parameters is explained in the introduction as being the minimum ones for defining a living organism. As for the parameters’ values, our numerical analysis gives a solution for any ib, id, xb and xd on R+, making the choice of initial value a mere random decision.

      Finally, the conclusions of evolvability are insufficiently supported, as the authors do not show if the wider genotypic variability in populations with the ageing trans-generational effect is, in fact, selected.

      We do not show nor claim that evolvability per se is selected for but that the apparent advantage given by this transgenerational effect seems to be mediated by an increased genotypic/phenotypic variability conferred to the lineage that we interpreted as evolvability.

    1. Author Response

      Reviewer #1 (Public Review):

      De Seze et al. investigated the role of guanine exchange factors (GEFs) in controlling cell protrusion and retraction. In order to causally link protein activities to the switch between the opposing cell phenotypes, they employed optogenetic versions of GEFs which can be recruited to the plasma membrane upon light exposure and activate their downstream effectors. Particularly the RhoGEF PRG could elicit both protruding and retracting phenotypes. Interestingly, the phenotype depended on the basal expression level of the optoPRG. By assessing the activity of RhoA and Cdc42, the downstream effectors of PRG, the mechanism of this switch was elucidated: at low PRG levels, RhoA is predominantly activated and leads to cell retraction, whereas at high PRG levels, both RhoA and Cdc42 are activated but PRG also sequesters the active RhoA, therefore Cdc42 dominates and triggers cell protrusion. Finally, they create a minimal model that captures the key dynamics of this protein interaction network and the switch in cell behavior.

      We thank reviewer #1 for this assessment of our work.

      The conclusions of this study are strongly supported by data. Perhaps the manuscript could include some further discussion to for example address the low number of cells (3 out of 90) that can be switched between protrusion and retraction by varying the frequency of the light pulses to activate opto-PRG.

      The low number of cells being able to switch can be explained by two different reasons:

      1) first, we were looking for clear inversions of the phenotype, where we could see clear ruffles in the case of the protrusion, and clear retractions in the other case. Thus, we discarded cells that would show in-between phenotypes, because we had no quantitative parameter to compare how protrusive or retractile they were. This reduced the number of switching cells

      2) second, we had a limitation due to the dynamic of the optogenetic dimer used here. Indeed, the control of the frequency was limited by the dynamic of unbinding of the optogenetic dimer. This dynamic of recruitment (~20s) is comparable to the dynamics of the deactivation of RhoA and Cdc42. Thus, the differences in frequency are smoothed and we could not vary enough the frequency to increase the number of switches. Thanks to the model, we can predict that decreasing the unbinding rate of the optogenetic tool should allow us to increase the number of switching cells.

      We will add further discussion of this aspect to the manuscript.

      Also, the authors could further describe their "Cell finder" software solution that allows the identification of positive cells at low cell density, as this approach will be of interest for a wide range of applications.

      There is a detailed explanation of the ‘Cell finder’ in the method sections. It is also available on github at https://github.com/jdeseze/cellfinder and currently in development to be more user-friendly and properly commented.

      Reviewer #2 (Public Review):

      Summary:

      This manuscript builds from the interesting observation that local recruitment of the DHPH domain of the RhoGEF PRG can induce local retraction, protrusion, or neither. The authors convincingly show that these differential responses are tied to the level of expression of the PRG transgene. This response depends on the Rho-binding activity of the recruited PH domain and is associated with and requires (co?)-activation of Cdc42. This begs the question of why this switch in response occurs. They use a computational model to predict that the timing of protein recruitment can dictate the output of the response in cells expressing intermediate levels and found that, "While the majority of cells showed mixed phenotypes irrespectively of the activation pattern, in few cells (3 out of 90) we were able to alternate the phenotype between retraction and protrusion several times at different places of the cell by changing the frequency while keeping the same total integrated intensity (Figure 6F and Supp Movie)."

      Strengths:

      The experiments are well-performed and nicely documented. However, the molecular mechanism underlying the shift in response is not clear (or at least clearly described). In addition, it is not clear that a prediction that is observed in ~3% of cells should be interpreted as confirming a model, though the fit to the data in 6B is impressive.

      Overall, the main general biological significance of this work is that RhoGEF can have "off target effects". This finding is significant in that an orthologous GEF is widely used in optogenetic experiments in drosophila. It's possible that these findings may likewise involve phenotypes that reflect the (co-)activation of other Rho family GTPases.

      We thank reviewer #2 for having assessed our work. Indeed, the main finding of this work is the change in the GEF function upon its change in concentration, which could be explained with a simple model supported by quantitative data. We think that the mechanism of the switch is quite clear, supported by the data showing the double effect of the PH domain and the activation of Cdc42. The few cells that are able to switch phenotype have to be seen as an honest data confirming that 1) concentration is indeed the main determinant of the protein’s function, and the switch is hard to obtain (which is also predicted by the model) 2) the two underlying networks are being activated at different timescales, which leaves some space for differential activation in the same cell. We are here limited by the dynamic of the optogenetic tool, as explained in the response to reviewer #1, and the intrinsic cell-to-cell variability.

      Regarding the interpretation of our results as RhoGEF “off target effects”, we think that it might be too reductive. As said in the discussion, we proposed that the dual role of the RhoGEF could have physiological implications on the induction of front protrusions and rear retractions. While we do not demonstrate it here, it opens the door for further investigation.

      Weaknesses:

      The manuscript makes a number of untested assumptions and the underlying mechanism for this phenotypic shift is not clearly defined.

      We may not have been clear in our manuscript, but we think that the underlying mechanism for this phenotypic shift is clearly explained and backed up by the data and the literature. It relies on 1) the ability of PRG to activate both RhoA and Cdc42 and 2) the ability of the PH domain to directly bind to active RhoA (which is, as shown in the manuscript, necessary but not sufficient for protrusions to happen). The model succeeds in reproducing the data of RhoA with only one free parameter and two independently fitted ones. The fact that activation of RhoA and Cdc42 lead to retraction and protrusion respectively is known since a long time. Thus, we think that the switch is clearly and quantitatively explained.

      This manuscript is missing a direct phenotypic comparison of control cells to complement that of cells expressing RhoGEF2-DHPH at "low levels" (the cells that would respond to optogenetic stimulation by retracting); and cells expressing RhoGEF2-DHPH at "high levels" (the cells that would respond to optogenetic stimulation by protruding). In other words, the authors should examine cell area, the distribution of actin and myosin, etc in all three groups of cells (akin to the time zero data from figures 3 and 5, with a negative control). For example, does the basal expression meaningfully affect the PRG low-expressing cells before activation e.g. ectopic stress fibers? This need not be an optogenetic experiment, the authors could express RhoGEF2DHPH without SspB (as in Fig 4G).

      We thank reviewer #2 for this suggestion. PRG-DHPH is known to affect the phenotype of the cell as shown in Valon et al., 2017. Thus, we really focused on the change implied by the change in optoPRG expression, to understand the phenotype difference. However, we agree that this could be an interesting data to add and will do the experiments for the revised version of the manuscript.

      Relatedly, the authors seem to assume ("recruitment of the same DH-PH domain of PRG at the membrane, in the same cell line, which means in the same biochemical environment." supplement) that the only difference between the high and low expressors are the level of expression. Given the chronic overexpression and the fact that the capacity for this phenotypic shift is not recruitment-dependent, this is not necessarily a safe assumption. The expression of this GEF could well induce e.g. gene expression changes.

      We agree with reviewer #2 that there could be changes in gene expression. In the next point of this supplementary note, we had specified it, by saying « that overexpression has an influence on cell state, defined as protein basal activity or concentration before activation. » We are sorry if it was not clear and will change this sentence for the new version.

      One of the interests of the model is that it does not require any change in absolute concentrations, beside the GEF. The model is thought to be minimal and fits well and explains the data with very few parameters. We don’t show that there is no change in concentration but we show that it is not required to invoke it.

      We will add in the revised version of the manuscript a paragraph discussing this question.

      The third paragraph of the introduction, which begins with the sentence, "Yet, a large body of works on the regulation of GTPases has revealed a much more complex picture with numerous crosstalks and feedbacks allowing the fine spatiotemporal patterning of GTPase activities" is potentially confusing to readers. This paragraph suggests that an individual GTPase may have different functions whereas the evidence in this manuscript demonstrates, instead, that a particular GEF can have multiple activities because it can differentially activate two different GTPases depending on expression levels. It does not show that a particular GTPase has two distinct activities. The notion that a particular GEF can impact multiple GTPases is not particularly novel, though it is novel (to my knowledge) that the different activities depend on expression levels.

      We thank the reviewer for this remark and didn’t intended to confuse the readers. Indeed, we think that this manuscript confirms the canonical view on the GTPases (as most optogenetic experiments did in the past years). We show here that it is more complicated at the level of the GEF. We agree that this is not particularly novel. However, to our knowledge, there is no example of such clear phenotypic control, explained solely by the change in concentration.

      We think that the last paragraph of the introduction is quite clear in the fact that it is the GEF itself that switches its function, and not the Rho-GTPases, but we will reconsider the phrasing of this paragraph for the revised version.

      Concerning the overall model summarizing the authors' observations, they "hypothesized that the activity of RhoA was in competition with the activity of Cdc42"; "At low concentration of the GEF, both RhoA and Cdc42 are activated by optogenetic recruitment of optoPRG, but RhoA takes over. At high GEF concentration, recruitment of optoPRG lead to both activation of Cdc42 and inhibition of already present activated RhoA, which pushes the balance towards Cdc42."

      These descriptions are not precise. What is the nature of the competition between RhoA and Cdc42? Is this competition for activation by the GEFs? Is it a competition between the phenotypic output resulting from the effectors of the GEFs? Is it competition from the optogenetic probe and Rho effectors and the Rho biosensors? In all likelihood, all of these effects are involved, but the authors should more precisely explain the underlying nature of this phenotypic switch. Some of these points are clarified in the supplement, but should also be explicit in the main text.

      We are going to precise these descriptions for the revised version of the manuscript. The competition between RhoA and Cdc42 was thought as a competition between retraction due to the protein network triggered by RhoA (through ROCK-Myosin and mDia-bundled actin) and the protrusion triggered by Cdc42 (through PAK-Rac-ARP2/3-branched Actin). We will make it explicit in the main text.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      The findings of this study are valuable as they provide new insights into the role of acetylcholine in modulating sensory processing in the auditory cortex. This paper reports a systematic measurement of cell activity in the auditory cortex before and after applying ACh during an oddball and cascade sequence of auditory stimuli in anesthetized rats. The results presented are solid given the rigorous experimental design and statistical analysis. The conclusions are provocative and will interest researchers in auditory neuroscience and neuromodulation, as well as clinicians and individuals with auditory processing disorders. However, the findings support multiple interpretations, beyond that offered by the authors.

      Our reply: First and foremost, we would like to thank the editors and reviewers for their constructive criticisms, as well as their thoughtful and thorough evaluations of our manuscript. We greatly appreciate their assessment about the novelty and general significance in our study and have revised the manuscript according to their recommendations. In the following we include detailed responses and revisions based on the reviewer’s recommendations.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This study examined the impact of exogenous microapplication of acetylcholine (Ach) on metrics of novelty detection in the anesthetized rat auditory cortex. The authors found that the majority of units showed some degree of modulation of novelty detection, with roughly similar numbers showing enhanced novelty detection, suppressed novelty detection, or no change. Enhanced novelty responses were driven by increases in repetition suppression. Suppressed novelty responses were driven by deviance suppression. There were no compelling differences seen between auditory cortical subfields or layers, though there was heterogeneity in the Ach effects within subfields. Overall, these findings are important because they suggest that fluctuations in cortical Ach, which are known to occur during changes in arousal or attentional states, will likely influence the capacity of individual auditory cortical neurons to respond to novel stimuli.

      Strengths:

      The work addresses an important problem in auditory neuroscience. The main strengths of the study are that the work was systematically done with appropriate controls (cascaded stimuli) and utilizes a classical approach that ensures that drug application is isolated to the micro-environment of the recorded neuron. In addition, the authors do not isolate their study to only the primary auditory cortex, but examine the impact of Ach across all known auditory cortical subfields.

      Our reply: Thank you very much for these supportive comments and the appreciation of our work.

      Weaknesses:

      1. As acknowledged by the authors, this study explicitly examines a phenomenon of high relevance to active listening but is done in anesthetized animals, limiting its applicability to the waking state.

      Our reply: We agree; and indeed, this weakness was already recognized in the original manuscript but is now emphasized in the discussion.

      1. The authors do not make any attempt to determine, by spike shape/duration, if their units are excitatory or inhibitory, which may explain some of the variance of the data.

      Our reply: This is a very interesting question, and in fact, we have previously estimated whether neurons are excitatory or inhibitory based on the spike shape (Pérez-Gonzalez et al., 2021). Originally, we sought to implement a similar analysis here and tried to estimate if the recorded units were excitatory or inhibitory based on the spike shapes. But when we tried to perform this analysis, we found that in many cases the recordings had captured occasional spikes from other neurons. This caveat had introduced alterations in the average spike shape, and thus precluded an accurate categorization. Therefore, we decided to discard this analysis for the sake of correctness. This weakness is further commented on in the discussion.

      1. The application of exogenous Ach, potentially in supra-physiological amounts, makes this study hard to extrapolate to a behaving animal. A more compelling design would be to block Ach, particularly at particular receptor types, to determine the effect of endogenous Ach.

      Our reply: We agree again with the reviewer; this weakness was already acknowledged, but this is now further highlighted in discussion where we comment that future studies should analyze the effect of muscarinic- and nicotinic- receptors and blockade them to potentially observe more physiologically-comparable effects. Moreover, this issue is also related to a comment raised by reviewer#2 on a possible ‘dose-response relationship’ issue.

      Reviewer #2 (Public Review):

      Summary:

      In this study, the authors investigate the effect of ACh on neuronal responses in the auditory cortex of anesthetized rats during an auditory oddball task. The paradigm consisted of two pure tones (selected from the frequency responses at each recording site) presented in a pseudo-random sequence. One tone was presented frequently (the "standard" tone) and the other infrequently (the "deviant" tone). The authors found that ACh enhances the detection of unexpected stimuli in the auditory environment by increasing or decreasing the neuronal responses to deviant and standard tones.

      Strengths:

      The study includes the use of appropriate and validated methodology in line with the current state-of-the-art, rigorous statistical analysis, and the demonstration of the effects of acetylcholine on auditory processing.

      Our reply: Thank you very much for these supportive comments and the appreciation of our work.

      Weaknesses:

      The study was conducted in anesthetized rats, and further research is needed to determine the behavioral relevance of these findings.

      Our reply: We agree; and indeed, this weakness was already recognized but is now emphasized in discussion.

      Reviewer #1 (Recommendations For The Authors):

      As outlined above, breaking out the units into those that are putative excitatory or inhibitory cells would be helpful, if possible. Other critiques are minor:

      1. "Acetylcholine", "ACh" and "Ach" are used throughout the manuscript. Please define the chosen abbreviation at first use, and be consistent.

      2. Line 116, remove comma after "ACh".

      3. Line 123, I would add "in the rat at the end of the first sentence since the species was not mentioned up to this point.

      4. Fig 2 - it would be useful in the Figure (not just in the text) to label red as being the deviant tone and blue as being the standard.

      5. In many Figures (e.g., Fig 5), the term "effect" is found in the legend rather than "ACh". It would seem more intuitive to label these as "ACh".

      6. The AUC and MI interpretations are not clear. Both are metrics that quantify similarity but the authors state that when these values decrease the neurons are less able to discriminate between them (i.e., they are more similar). Some clarifying text would be useful.

      7. L276 - should "SI increase" be "SI decrease"?

      8. L285 - would replace "solely" with "primarily".

      9. Fig 7 - the authors may consider indicating with a label what the difference is between A and C compared to B and D.

      10. L634 - why were only females used?

      11. L646 - "bran" should be "brain".

      12. L649 - "homoeothermic" should be "homeothermic".

      13. L661 - "allowed to generate" should be "allowed the generation of".

      14. L670 - no need for both "about" and "approximately".

      15. L681 - please state what the search stimuli were.

      16. L688 - should be "closed-field".

      17. L754 - add a hyphen to "time-consuming".

      Our reply: Thanks so much for the detailed proofreading of the manuscript and suggestions. All them have been clarified or implemented and corrected in the text.

      Reviewer #2 (Recommendations For The Authors):

      The authors could investigate the effects of different doses of ACh on auditory processing to determine if there is a dose-response relationship.

      Our reply: We agree that this is an interesting question also relate to a matter raised by Reviewer#1 that could be linked to the issue of ‘exogenous Ach’.

      The study only investigated the effects of ACh on neuronal responses during an auditory oddball task. It would be interesting to investigate the effects of ACh on other aspects of auditory processing, such as sound localization or the discrimination of tones.

      Our reply: We agree that, while these aspects of auditory processing are very fascinating, they were outside the scope of the study, and not directly related to predictive coding and precision, so each one of these characteristics would be a full, future project in itself.

      The authors could provide more context on the significance of their findings for individuals with auditory processing disorders.

      Our reply: Thanks for the suggestion. It remains unclear how abnormal brainstem and cortical processing associated with auditory processing disorders arises (Moore, 2006, 2012). While we are not aware of any known direct connection between auditory processing disorders and acetylcholine, individuals with auditory processing disorders do have difficulties with auditory selective attention, so perhaps one could speculate that ACh, by modulating SSA/prediction error, could have some impact on encoding salient events, and if disrupted could lead to problems with selective attention. Moore (2012) speculated that auditory processing disorders may arise from unbalanced processing in bottom-up and top-down contributions.

      Since ACh has been implicated in some neurogenerative diseases and neurodevelopmental disorders, we have also added in the Discussion dialogue about a possible relationship between the modulatory effect of ACh on predictive coding (which involves bottom-up and top-down contributions) and auditory processing disorders. We also cite the recent work by Felix and colleagues (2019) which is the only study we have found on the effects of ACh on auditory processing disorders where they analyzed altered temporal processing at the level of the brainstem in α7-subunit of the nicotinic acetylcholine receptor (α7-nAChR)-deficient mice. After studying α7-nAChR knockout mice of both sexes and wild-type colony controls, they concluded that the malfunction of the CHRNA7 gene that encodes the α7-nAChR may contribute to degraded spike timing in the midbrain, which may underlie the observed timing delay in the ABR signals. These authors propose that their findings are consistent with a role for the α7-nAChR in types of neurodevelopmental and auditory processing disorders. There is also evidence on cholinergic system disfunction being related to the pathophysiology of Alzheimer’s disease (Pérez-González et al., 2022). For instance, disfunction of the synapses of cholinergic neurons in the hippocampus and nucleus basalis of Meynert, as well as decreased choline acetyltransferase activity, is associated to memory disorders in Alzheimer’s disease (Hampel et al., 2018). Also, A Alzheimer’s disease D patients show reduced amounts of the vesicular ACh transporter in some brain areas (Aghourian et al., 2017). Finally, cholinesterase inhibitors seem to have some favorable effect in the treatment of Alzheimer’s disease patients (Sharma, 2019).

      Aghourian M, Legault-Denis C, Soucy J-P, Rosa-Neto P, Gauthier S, Kostikov A, et al. 2017. Quantification of brain cholinergic denervation in Alzheimer’s disease using PET imaging with [18F]-FEOBV. Mol. Psychiatry 22:1531–1538. doi: 10.1038/mp.2017.183

      Felix RA 2nd, Chavez VA, Novicio DM, Morley BJ, Portfors CV. 2019. Nicotinic acetylcholine receptor subunit α7-knockout mice exhibit degraded auditory temporal processing. J Neurophysiol. 122(2):451-465. doi: 10.1152/jn.00170.2019.

      Hampel H, Mesulam M-M, Cuello AC, Khachaturian AS, Vergallo A, Farlow MR, et al. 2018. Revisiting the Cholinergic Hypothesis in Alzheimer’s Disease: emerging Evidence from Translational and Clinical Research. J. Prev. Alzheimers Dis. 6:1–14. doi:10.14283/jpad.2018.43

      Moore DR. 2006. Auditory processing disorder (APD)-potential contribution of mouse research. Brain Res. 1091:200–206.

      Moore DR. 2012. Listening difficulties in children: bottom-up and top-down contributions. J Commun Disord. ;45:411–418.

      Pérez-González D, Parras GG, Morado-Díaz CJ, Aedo-Sánchez C, Carbajal GV, Malmierca MS. 2021. Deviance detection in physiologically identified cell types in the rat auditory cortex. Hear Res. 2021 Jan;399:107997. doi: 10.1016/j.heares.2020.107997.

      Pérez-González D, Schreiner TG, Llano DA and Malmierca MS. 2022. Alzheimer’s Disease, Hearing Loss, and Deviance Detection. Front. Neurosci. 16:879480. doi: 10.3389/fnins.2022.879480

      Sharma K. 2019. Cholinesterase inhibitors as Alzheimer’s therapeutics. Mol. Med. Rep. 20:1479–1487. doi:10.3892/mmr.2019.1 0374

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The manuscript by Heyndrickx et al describes protein crystal formation and function that bears similarity to Charcot-Leyden crystals made of galectin 10, found in humans under similar conditions. Therefore, the authors set out to investigate CLP crystal formation and their immunological effects in the lung. The authors reveal the crystal structure of both Ym1 and Ym2 and show that Ym1 crystals trigger innate immunity, activated dendritic cells in the lymph node, enhancing antigen uptake and migration to the lung, ultimately leading to induction of type 2 immunity.

      Strengths:

      We know a lot about expression levels of CLPs in various settings in the mouse but still know very little about the functions of these proteins, especially in light of their ability to form crystal structures. As such data presented in this paper is a major advance to the field.

      Resolving the crystal structure of Ym2 and the comparison between native and recombinant CLP crystals is a strength of this manuscript that will be a very powerful tool for further evaluation and understanding of receptor, binding partner studies including the ability to aid mutant protein generation.

      The ability to recombinantly generate CLP crystals and study their function in vivo and ex vivo has provided a robust dataset whereby CLPs can activate innate immune responses, aid activation and trafficking of antigen presenting cells from the lymph node to the lung and further enhances type 2 immunity. By demonstrating these effects the authors directly address the aims for the study. A key point of this study is the generation of a model in which crystal formation/function an important feature of human eosinophilic diseases, can be studied utilising mouse models. Excitingly, using crystal structures combined with understanding the biochemistry of these proteins will provide a potential avenue whereby inhibitors could be used to dissolve or prevent crystal formation in vivo.

      The data presented flows logically and formulates a well constructed overall picture of exactly what CLP crystals could be doing in an inflammatory setting in vivo. This leaves open a clear and exciting future avenue (currently beyond the scope of this work) for determining whether targeting crystal formation in vivo could limit pathology.

      Weaknesses:

      Although resolving the crystal structure of Ym2 in particular is a strength of the authors work, the weaknesses are that further work or even discussion of Ym2 versus Ym1 has not been directly demonstrated. The authors suggest Ym2 crystals will likely function the same as Ym1, but there is insufficient discussion (or data) beyond sequence similarity as to why this is the case. If Ym1 and Ym2 crystals function the same way, from an evolutionary point, why do mice express two very similar proteins that are expressed under similar conditions that can both crystalise and as the authors suggest act in a similar way. Some discussion around these points would add further value.

      We agree with reviewer. We have further elaborated the discussion section including these points, stating clearly that more research needs to be done using Ym2 crystals before we can draw parallels in vivo.

      Additionally, the crystal structure for Ym1 has been previously resolved (Tsai et al 2004, PMID 15522777) and it is unclear whether the data from the authors represents an advance in the 3D structure from what is previously known.

      The crystal structure of Ym1 has indeed been previously solved, and we refer to that paper. In addition, we also provide the crystal structure of in vitro grown Ym1, ashowing biosimilarity. This, for the field of crystallography is a major finding, since it validates the concept that crystal structures generated in vitro can reflect in vivo grown structures. Moreover, the in vivo crystallization of Ym2 was unknown prior to this work, and is now clear as revealed by the ex vivo X-ray crystallography. The strength of our story is that we can now compare Ym1 and Ym2 crystals structures in detail.

      Whilst also generating a model to understand Charcot-Leyden crystals (CLCs), the authors fail to discuss whether crystal shape may be an important feature of crystal function. CLCs are typically needle like, and previous publications have shown using histology and TEM that Ym1 crystals are also needle like. However, the crystals presented in this paper show only formation of plate like structures. It is unclear whether these differences represent different methodologies (ie histology is 2D slides), or differences in CLP crystals that are intracellular versus extracellular. These findings highlight a key question over whether crystal shape could be important for function and has not been addressed by the authors.

      In contrast to the bipyramidal, needle-like CLC crystals formed by human galectin-10 protein (hexagonal space group P6522), the in vivo grown Ym1 and Ym2 crystals we were able to isolate for X-ray diffraction experiments had a plate-like morphology with identical crystallographic parameters as recombinant Ym1/Ym2 crystals (space group P21). We note that depending on the viewing orientation of the thin plate-like Ym1 crystals, they may appear needle-like in histology and TEM images. In addition, we can fully not exclude that both Ym1 or Ym2 may crystallize in vivo in different space groups (which could result in different crystal morphologies for Ym1/Ym2) but we have no data to support this. It is finally also a possibility that plate like structures can break up in vivo along a long axis as a result of mechanical forces, and end up as rod-or needle like shapes.

      Ym1/Ym2 crystals are often observed in conditions where strong eosinophilic inflammation is present. However, soluble Ym1 delivery in naïve mice shows crystal formation in the absence of a strong immune response. There is no clear discussion as to the conditions in which crystal formation occurs in vivo and how results presented in the paper in terms of priming or exacerbating an immune response align with what is known about situations where Ym1 and Ym2 crystals have been observed.

      Although Ym1 and Ym2 crystals are often observed in mice at sites of eosinophilic inflammation, they are not made by eosinophils, but mainly by macrophages and epithelial cells, respectively. In vitro, protein crystallization typically starts from supersaturated solutions that support crystal nucleation. Several factors such as temperature and pH can affect the solubility of Ym1 and Ym2 in vivo and thus affect the nucleation and crystallization process. For Ym1 and Ym2 we noticed in vitro that a small drop in pH facilitates the crystallization process. Although the physiological pH is 7.4, during inflammation, there is a drop in pH. This drop in pH is the result of the infiltration and activation of inflammatory cells in the tissue, which leads to an increased energy and oxygen demand, accelerated glucose consumption via glycolysis and thus increased lactic acid secretion. In addition, we cannot exclude that in vivo, the nucleation process for Ym1/Ym2 is facilitated by interaction with ligands in the extracellular space (e.g. polysaccharide ligands or other – yet to be identified – specific ligands to Ym1/Ym2).

      Reviewer #2 (Public Review):

      Summary:

      This interesting study addresses the ability of Ym1 protein crystals to promote pulmonary type 2 inflammation in vivo, in mice.

      Strengths:

      The data are extremely high quality, clearly presented, significantly extending previous work from this group on the type 2 immunogenicity of protein crystals.

      Weaknesses:

      There are no major weaknesses in this study. It would be interesting to see if Ym2 crystals behave similarly to Ym1 crystals in vivo. Some additional text in the Introduction and Discussion would enrich those sections.

      We agree that this would be interesting to investigate, however, we choose to not include recombinant Ym2 crystal data in this report. However, we have further elaborated the discussion section including this point.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Suggestions for improved experiments and to strengthen findings:

      I think additional data on the ability of Ym2 crystals to induce an immune response would be advantageous. I'm not by any means suggesting the authors repeat all the experiments with Ym2 crystals, but even just the ability to show that Ym2 could promote type 2 immunity in the acute OVA model, would help to strengthen the argument that these crystals in general function in a similar way. Alternatively, a discussion on whether these protein crystals may function in different scenarios/tissues or conditions could help in light of additional data

      We agree that this is an interesting point to investigate, however, we choose to not include recombinant Ym2 crystal data in this report. However, we have further elaborated the discussion section including this point.

      Measuring IL-33 in lung tissue is difficult to interpret as cells will express intracellular IL-33 that is not active and may explain why the results in Fig 2D are not overly convincing. It could just be that Ym1 crystals are changing the number of cells expressing IL-33 (e.g macrophages, or type 2 pneumocytes) Did the authors also measure active IL-33 release in the BAL fluid which may give a better indication of Ym1's ability to activate DAMPs?

      We also measured active IL-33 release in the BAL fluid, but due to the limited sample availability we could only measure this in one of the two repeat experiments, resulting in non-significant results for the BAL fluid. However, certainly for the 6h timepoint we saw a similar trend in the BAL fluid as in the lung tissue, meaning higher levels of IL-33 in the Ym1 crystal group compared to the PBS and soluble Ym1 group.

      Crystals in Fig 2F staining with Ym1 appear to be brighter in the soluble Ym1 group. Is this related to increased packing of Ym1 in the crystals formed in vivo as opposed to those formed in vitro? Aside from reduced amount of crystals that form when you give soluble Ym1, could the type of crystal also be influencing the ability of soluble Ym1 crystals to generate an immune response?

      Our X-ray diffraction experiments show that the packing of Ym1 is identical for in vivo and in vitro grown crystals. Possibly the apparent difference in brightness is caused by stochastic staining by the antibody. In this regard we note that the crystals formed from soluble Ym1 after 24h also can appear as less bright in a similar fashion as recombinant Ym1 crystals.

      Overall, the data and writing of the manuscript is presented to a very high standard

      A few minor points:

      • Fig 2F - a little unsure what the number in the left top corner of the images represented.

      These numbers represent the picture numbers generated by the software, but as they don’t have any added value for the story, we removed these numbers from the images.

      • Not clear why two different expression vectors were used - one for Ym1 and one for Ym2?

      Because we observed that recombinant Ym2 is more poorly secreted in the mammalian cell culture supernatant as compared to recombinant Ym1, we produced Ym2 with an N-terminal hexahistidine-tag followed by a Tobacco Etch Virus (TEV)-protease cleavage site to facilitate its purification.

      Reviewer #2 (Recommendations For The Authors):

      The authors briefly outline in their Introduction potential Sources of Ym1/2 in vivo, highlighting monocytes, M2 macrophages, alveolar macrophages, neutrophils and epithelial cells. Do DCs also make detectable/meaningful amounts of Ym1/2 in vivo, particularly in type 2 settings?

      In the introduction we only highlighted the main cellular sources of Ym1 and Ym2, but there is literature available stating/showing that Ym1/2 is not only expressed by macrophages, neutrophils, monocytes and epithelial cells, but can also be induced in DCs and mast cells. We added the word ‘mainly’ to this sentence in the introduction, to make clear that macrophages, neutrophils and monocytes are not the only sources of Ym1.

      Given the nicely demonstrated similarity of recombinant Ym1 and Ym2 crystals, I think it is important for the authors to include at least initial data on the outcome of recombinant Ym2 crystal admin to mice, in comparison to their Ym1 data.

      We agree that this is an interesting point to investigate, however, we choose to not include recombinant Ym2 crystal data in this report. However, we have further elaborated the discussion section including this point.

      Given the generation of crystals following in vivo administration of soluble Ym1, albeit at a lower level than when crystals were administered, it would be interesting to see if increased concentrations of soluble material show a dose dependent increase in lung inflammation readouts.

      We agree that this would be an interesting point to investigate. Alongside this we could also titrate down the crystal dose, to see if there is a dose dependent decrease in lung inflammation readouts. However, at this time, we choose to not investigate this further.

      I couldn't easily follow the authors' Discussion about potential ability of anti Ym-1/2 Abs to dissolve Ym1/2 crystals (similar to what they have demonstrated for Abs vs Gal10 crystals). Have they addressed this possibility experimentally? If so, addition of such data to the manuscript would be extremely interesting, given the obvious potential Ym1/2 crystal dissolving Abs for investigation of the role of these in a range of different murine models of type 2 inflammation.

      We agree that the phrasing of this part of the discussion can be unclear/confusing. We rephrased this part to make it clearer. However, we did not address the possibility of Ym1/2 crystal dissolving antibodies experimentally.

      In the Results section, the authors briefly comment on the pro-type 2 nature of Ym1 crystals in relation to their previous work with uric acid and Gal10 crystals, proposing that the pulmonary type 2 response may be a 'generic response to crystals of different chemical composition'. The Discussion would be enriched by deeper exploration of this comment.

      We have further elaborated the discussion section including this point.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their thorough reading of the manuscript and insightful comments. We have responded to both the “public review” and the “recommendations” and feel that the manuscript is now significantly strengthened.

      Public Review comments

      Reviewer #1:

      Weaknesses:

      1. The abstract does not discuss the reduction of E-gel consumption that occurs after multiple days of exposure to the THC formulation, but rather implies that a new model for chronic oral self-administration has been developed. Given that only two days of consumption was assessed, it is not clear if the model will be useful to determine THC effects beyond the acute measures presented here. The abstract should clarify that there was evidence of reduced consumption/aversive effects with repeated exposures.

      Thank you for your observation. We have added language to address this in the manuscript and the abstract. The model developed in the manuscript is an acute exposure model, with the intention of further chronic exposure adaptations to be developed separately (page 2, line 29).

      1. In the results section, the authors sometimes describe effects in terms of the concentration of gel as opposed to the dose consumed in mg/kg, which can make interpretation difficult. For example, the text describing Figure 1i states that significant effects on body temperature were achieved at 4 mg CTR-gel and 5 mg THC-gel, but were essentially equivalent doses consumed? It would be helpful to describe what average dose of THC produced effects given that consumption varied within each group of mice assigned to a particular concentration.

      We thank the reviewer for this comment and have edited our text to clarify our results. For example, this point is further emphasized by the correlation of the data in Figure1l-n showing the relationship between individual consumption and behavioral readouts (page 11, line 225-226).

      1. The description of the PK data in Figure 3 did not specify if sex differences were examined. Prior studies have found that males and females can exhibit stark differences in brain and plasma levels of THC and metabolites, even when behavioral effects are similar. However, this does depend on species, route, timing of tissue collection. It would be helpful to describe the PK profile of males and females separately.

      We did compare sex dependent effects and found no significant effects after THC E-gel consumption. We’ve added additional language to address this point in the discussion (Supplementary tables T1 and T2).

      1. In Figure 5, it is unclear how the predicted i.p. THC dose could be 30 mg/kg when 30 mg/kg was not tested by the i.p. route according to the figure, and if it had been it would have likely been almost zero acoustic startle, not the increased startle that was observed in the 2 hr gel group. It seems more likely that it would be equivalent to 3 mg/kg i.p. Could there be an error in the modeling, or was it based on the model used for the triad effects? This should be clarified.

      We apologize for the confusion created by that data, and it has now been updated for clarity. The original ~30mg/kg was not a predicted dose consumed, but rather an expected dose consumed based on individual male v. female consumption data in Supplemental Figure S1b. For clarity on the figure, we’ve instead placed dashed lines that draw attention only to the predicted startle response expected from our THC-E-gel model. We have also updated the text which hopefully makes this clearer.

      Reviewer #2:

      Weaknesses:

      Certainly, more THC mediated behavioral outcomes could have been tested, but the work presents a proof-of-concept study to investigate acute THC treatment.

      It would have been interesting if this application form is also possible for chronic treatment regimen

      We agree that a chronic treatment regimen and additional behavioral outcomes is the next, most exciting step for expanding this oral THC-E-gel consumption model, and something we are actively pursuing.

      Reviewer #3:

      Weaknesses:

      The main weaknesses of the manuscript revolve around clarification of the Methods section. All of these weaknesses are described in the "Recommendations to authors" section. Revising the manuscript would account for many of these weaknesses.

      Thank you for carefully reading through our methodology. We have made edits according to everything brought up in the recommendation section of reviewer comments.

      Recommendations for Authors

      Reviewer #1:

      Minor edits to the text:

      Abstract: "intraperitoneal contingent" should be "intraperitoneal noncontingent".

      Line 221, this sentence needs editing for clarity.

      Lines 249-250, incomplete sentence.

      Line 284, the word "activity" is missing from "locomotor between mice".

      Lines 299-301, incomplete sentence.

      Thank you for finding these mistakes. All these recommendations have been incorporated into the final publication.

      Reviewer #2:

      1. The typical THC tetrad includes catalepsy. Why was this behavioral outcome not monitored?

      We felt that locomotion, analgesia, and body temperature were robust behavioral readouts for monitoring cannabimimetic responses and that acoustic startle served as an additional, novel means of understanding THC-E-gel effects.

      1. Please specify the exact substrain of C57BL/6 (i.e., J or N or some other)

      C57BL/6J mice were used for the publication. This clarification has been made in the methods section.

      1. Figure S3 is not mentioned in the result part, but only in the discussion.

      Figure S3 is now referenced in the main body of the Results section.

      1. It might be interesting to follow up the issue that the individual THC consumption is considerable, as depicted in Fig. 1e (at high dose). This will presumably also lead to different behavioral responses. Or is there individual metabolism, also difference male vs. female?

      Thank you for the suggestion. We agree that the distribution of THC doses consumed (calculation based on weight) would be worth further investigating and have now included language about this (page 20, line 436). Please note that we did not find a sex difference (Supplemental Figure S1b), but it would be exciting to discover some biologically relevant cause such as individual absorption or metabolism

      Reviewer #3:

      Major

      1. Methods: Were the observers of experiments blinded to animal treatment? Why or why not?

      Multiple investigators performed the behavioral measurements and were not blinded to mouse treatments, but the dose consumed by each mouse remained blind. Thus, because animals consumed THC gelatin of their own volition while having ad libitum access, we performed the correlational analysis presented in Figure 1 l-n.

      1. Methods: The authors could consider relating their study design to the ARRIVE guidelines and providing a statement as to whether their study adheres to these guidelines. Related to this, were mice provided with any environmental enrichment during the study?

      We followed the ARRIVE guidelines with exception to investigator blinding (described above). Please note that mice were not provided with additional environmental enrichment during the study, a point that we specified in our methods (page 5, line 91).

      1. Methods / Results: In the Methods it is stated that the triad of cannabimimetic behaviors was measured 1 h post-injection or immediately after gelatin exposure. Why were these timepoints chosen? Perhaps this wording should be revised because measurements of cannabimimetic effects were taken several times after drug exposure. Peak i.p. drug may occur earlier than 1 h whereas peak oral drug effect is likely to occur over a longer time period (i.e., not immediately after) due to delays of absorption and first pass metabolism. Is it possible that the authors have underestimated oral drug effects by selecting these timepoints? Please discuss.

      We observed a reduction in locomotion activity starting 1 h following the beginning of exposure to the gelatin (Figure 2), suggesting initial cannabimimetic changes. Based on this observable response we chose to measure all cannabimimetic behaviors immediately following gelatin exposure. The exposure timeline for i.p. injection (1 h post-injection) was selected based on a standard published protocol (Metna-Laurent et al, 2017).

      a. Pharmacodynamics: Related to this and because the aim of this paper is to establish a rodent oral dose model, could the authors discuss the need for better characterization of the time course of drug effects? For example, how might anti-nociception or locomotor activity vary following THC E-gel consumption? This is somewhat addressed in the locomotion time course in Figure 2G but could be elaborated on or discussed in more detail.

      We agree that future studies should include additional time points measuring behavioral changes. This important point is now emphasized in the discussion (page 21, line 455).

      b. Pharmacokinetics: Related to this point above, have the authors considered collecting blood or tissue samples from their i.p.-injected animals to assess drug pharmacokinetics as they relate to drug effect and as compared to oral THC consumption? I am not suggesting the authors conduct a completely new study for this manuscript; however, this could be raised as a future study and/or as a weakness of the current study.

      We did not measure blood and tissue concentrations after i.p. administration due to the number of studies reporting these values by our co-author, Dr. Daniele Piomelli, that established these pharmacokinetic measures. Thus, we chose to reference these studies. Please note that repeating such measurements would be labor intensive, unnecessary use federal NIH resources and animals, while being very redundant to the existing literature.

      c. Minor, but related to these points: In the results, page 14 line 299: the first sentence of this paragraph is confusing as written. The Reviewer recognizes that the authors are relating the pharmacokinetic work to previously published findings, but still thinks that measuring and comparing THC levels from their cohort of i.p.-injected animals would have benefitted the present study.

      Thank you, this edit has been made in the manuscript.

      1. Methods, Histology: The methods as described do not contain sufficient detail regarding THC and THC metabolite quantification. In addition, it is not clear from this section what Histology was performed and how (no histology results appear in the manuscript). Please add more detail to this section of the Methods.

      We apologize for this typo and have corrected it in the methods section of the manuscript.

      1. Methods / Results: The statistics section requires additional detail regarding the rationale for tests being performed on different datasets. In addition, a description of the curve fitting used for data in figures 1H-J, 4B-D, and S4 would be helpful to the reader.

      Thank you, we have updated and provided more information regarding the curve fitting that was used in the methods and results section for the respective figure panels (page 9, line 183-184).

      Minor

      1. Throughout: The use of the phrase "high" dose is somewhat arbitrary and not defined relative to other doses of the THC formulation throughout the manuscript. The Reviewer suggests simply stating that THC was used, specifying the dose, or justifying in the Abstract and/or Introduction the classification of "high" based on relevant literature.

      Thank you for the observation. We have removed this ambiguity by specifically mentioning the dose that was consumed (e.g., abstract page 2, line 20).

      1. Abstract: define "CB1" in the abstract. Although this is a common abbreviation within the field, its use should be defined.

      We have added this definition in the abstract for clarification.

      1. Figure 2: why are the consumption panels B, C, and D given separate labels but the locomotor data are all labeled together as panel G?

      Thank you for the observation, we have adjusted the labeling, so it is equal for both sets of panels.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Thank you very much for forwarding these two important reviews on our paper. Please find hereby our point-by-point responses addressing the ideas, arguments and points of concern raised by the reviewers. We provide explanation of how these points have been incorporated in the paper.

      We feel the review process has been a useful exercise and that the paper has greatly benefited in terms of clarity and accessibility. It is our hope that our findings may ignite renewed interest on unexplored and “unexpected” aspects of great ape vocal communication, inspire novel research, and invite bold new advances on the long-standing puzzle of language origins and evolution. In several relevant sections, we have also sought to explicitly address the point of doubt raised in eLife’s editorial assessment, published alongside the reviewed preprint of our paper. The editorial assessment stated that “…However the evidence provided to support the major claims of the paper is currently incomplete. Specifically, it is not yet clear how the rhythmic structuring found in these long calls is more similar to human language recursion per se rather than isochrony as a broader, more common phenomenon.” To directly clarify this point, we provide now various examples of how recursion is distinct from repetition, using everyday objects for an intuitive understanding (e.g., lines 43-51). We have also expanded the discussion to better contextualise and clarify the implications of our findings on language evolution theory. We hope this will help addressing the implicit request for clarification in the previous editorial assessment.

      Thank you very much for your kind and dedicated attention in the processing of our study.

      Public Reviews:

      Reviewer #1 (Public Review):

      This study investigates the structuring of long calls in orangutans. The authors demonstrate long calls are structured around full pulses, repeated following a regular tempo (isochronic rhythm). These full pulses are themselves structured around different sub-pulses, themselves repeated following an isochronic rhythm. The authors argue this patterning is evidence for self-embedded, recursive structuring in orangutang long calls.

      The analyses conducted are robust and compelling and they support the rhythmicity the authors argue is present in the long calls. Furthermore, the authors went above and beyond and confirmed acoustically the sub-categories identified were accurate.

      We thank the reviewer for this important support regarding our methods and findings.

      However, I believe the manuscript would benefit from a formal analysis of the specific recursive patterning occurring in the long call. Indeed, as of now, it is difficult for the reader to identify what the authors argue to be recursion and distinguish it from simple repetitions of motifs, which is essential.

      We agree with the reviewer that the distinction between repetition and recursion is very important for the adequate interpretation of our findings. Following the reviewer’s point (and the Editorial Assessement), we have now rephrased several passages in the initial paragraph of the paper for added clarity, where recursion is introduced and explained. We now also provide various new examples of recursion in everyday life and popular culture to better illustrate in an easy and accessible way the fundamental nature of recursion. We then use two of these common examples (computer folders and Russian dolls) to specifically distinguish repetition from recursion.

      Although the authors already discuss briefly why linear patterning is unlikely, the reader would benefit from expanding on this discussion section and clarifying the argument here (a lay terminology might help).

      Corrected accordingly.

      I believe an illustration here might help. In the same logic, I believe a tree similar to the trees used in linguistics to illustrate hierarchical structuring would help the reader understand the recursive patterning in place here. This would also help get the "big picture", as Fig 1A is depicting a frustratingly small portion of the long call.

      We completely understand the reviewer’s concern here. As proposed by the reviewer, and in addition to changes in the Introduction (see above) and Discussion (see below), we have now added a new figure in the Discussion to help the reader get the “big picture” of our findings.

      We have also made revisions throughout the Introduction and Discussion to simplify the text, clarify our exposition and facilitate the reader better and intuitively understand the nature and relevance of our results.

      Notwithstanding these comments, this paper would provide crucial evidence for recursion in the vocal production of a non-human ape species. The implication it would have would represent a key shift in the field of language evolution. The study is very elegant and well-constructed. The paper is extremely well written, and the point of view adopted is original, well-argued and compelling.

      We are humbled by the reviewer’s words, and we thank the reviewer for attributing these qualities to our paper. This feedback reassures us of the disruptive potential that these and similar future findings may have on our understanding of language evolution.

      Reviewer #2 (Public Review):

      I am not qualified to judge the narrow claim that certain units of the long calls are isochronous at various levels of the pulse hierarchy. I will assume that the modelling was done properly. I can however say that the broad claims that (i) this constitutes evidence for recursion in non-human primates, (ii) this sheds light on the evolution of recursion and/or language in humans are, when not made trivially true by a semantic shift, unsupported by the narrow claims. In addition, this paper contains errors in the interpretation of previous literature.

      We report the first confirmed case of “vocal sequences within vocal sequences” in a wild nonhuman primate, namely a great ape. The currently prevailing models of language evolution often rest on the (purely theorical) premise that such structures do not exist in any animal bar humans. We find the discovery of such structures in a wild great ape exciting, remarkable, and promising. We regret that the reviewer does not share this sentiment with us. We feel that the statement that these findings are trivial and narrow is unfounded.

      In order to clarify and better communicate the significance of our findings, we now explain in more detail in the Introduction and Discussion how the discovery of nested isochrony in wild orangutans promises to stimulate new series of studies in nature and captivity. Our findings dovetail nicely with previous captive studies that have shown that animals can learn how to recognise recursive patterns and invite new research efforts for the investigation of recursive abilities in the wild and in the absence of human priming and in nonhuman primates.

      The main difficulty when making claims about recursion is to understand precisely what is meant by "recursion" (arguably a broader problem with the literature that the authors engage with). The authors offer some characterization of the concept which is vague enough that it can include anything from "celestial and planetary movement to the splitting of tree branches and river deltas, and the morphology of bacteria colonies". With this appropriately broad understanding, the authors are able to show "recursion" in orangutans' long calls. But they are, in fact, able to find it everywhere.

      The reviewer is correct in highlighting that recursion is ubiquitous in nature and this is something that we explicitly state in the paper. This only makes it the more surprising that, when it comes to vocal combinatorics, recursion has only been described in human language and music, but in no other animals. If studies providing such evidence are known to reviewer, we kindly request their corresponding references.

      In the new revised version, we have paid attention to this aspect raised by the reviewer, and we have sought to disambiguate that our observations pertain to temporal recursion. This clarification will hopefully allow a better understanding of our results.

      The sound of a plucked guitar string, which is a sum of self-similar periodic patterns, count as recursive under their definition as well.

      The example pointed out here by reviewer is factually correct; sound harmonics represent a recursive pattern of a fundamental frequency. (In fact, we explain this phenomenon in the Discussion.) The reviewer’s comment seems to offer an analogy to oscillatory phenomena in the physiology of the vocal folds, and so, it is misplaced with regards to our present study, which focused vocal sequences. Admittedly, this misinterpretation may have been implicitly caused by our wording and we apologise for this. We now refer to “vocal combinatorics” instead of “vocal production” throughout the paper to avoid the reader considering that our findings pertain to the physiology of the vocal folds.

      One can only pick one's definition of recursion, within the context of the question of interest: evolution of language in humans. One must try to name a property which is somewhat specific to human language, and not a ubiquitous feature of the universe we live in, like self-similarity. Only after having carved out a sufficiently distinctive feature of human language, can we start the work of trying to find it in a related species and tracing its evolutionary history. When linguists speak of recursion, they speak of in principle unbounded nested structure (as in e.g., "the doctor's mother's mother's mother's mother ..."). The author seems to acknowledge this in the first line of the introduction: "the capacity to iterate a signal within a self-similar signal" (emphasis added). In formal language theory, which provides a formal and precise definition of one notion of recursivity appropriate for human language, unbounded iteration makes a critical difference: bounded "nested structures" are regular (can be parsed and generated using finite-state machines), unbounded ones are (often) context-free (require more sophisticated automaton). The hierarchy of pulses and sub-pulses only has a fixed amount of layers, moreover the same in all productions; it does not "iterate".

      The reviewer explains here how recursion, in its fully fledged form in modern language(s), is defined by linguistics. We fully agree and do not contest such descriptions and definitions in any way. These descriptions and definitions aim to describe how recursion operates today, not how it evolved. Nor do these descriptions and definitions generate data-driven, testable predictions about precursors or proto-states of recursion as used by modern language-able humans. This is scientifically problematic and heuristically unsatisfying regarding the open question of language evolution.

      Following human-specific definitions for recursion, as proposed by the reviewer, cannot per se be used to undertake a comparative approach to evolution because they leave nothing to compare recursion with in other (wild) species. Using human-specific definitions unavoidably leads to black-and-white notions that language is always absolutely present in humans and always absolutely absent in other animals, regardless of their degree of relatedness to humans. It is unpreventable that these descriptions flout foundational principles of evolution, such as descent with modification and shared ancestry.

      This conceptual problem is not new. Less than a century ago, it was believed that humans were the only tool-user (thousands of examples are known today in nonhuman animals, including fish and invertebrates), and later, that humans were the only cultural animal (today it is known that migrating caribou and fruit flies can establish traditions based on social learning). We must follow in the footsteps of those who have helped redefine human nature in the past. As famously stated by Louis Leakey when presented with evidence for chimpanzee tool-use collected by Jane Goodall, “Now we must redefine tool, redefine man, or accept chimpanzees as human”. Therefore, as a matter of course, we must redefine recursion, embracing empirically (other than purely theoretically) definitions that allow recursion to take on forms and functions different from that of modern language-able humans.

      Another point is that the authors don't show that the constraints that govern the shape of orangutans long calls are due to cognitive processes.

      The reviewer is indeed correct. This does not, however, refute our findings. We do not directly show that cognitive processes govern recursion in orangutan long calls. Instead, we show that the observed patterns cannot be explained by simple bodily or motoric processes, excluding therefore low-level explanations. With more than 50 years of accumulated field experience in primatology, this was the only possible way that our team found to go about conducting research and analyses on natural behaviour, in the wild, with a critically endangered primate. We would be very interested in learning from the reviewer what ethical and non-invasive methods, specific locations in the wild, and type of behavioural or socio-ecological data could be otherwise viably used to demonstrate what the reviewer requests. If other scientists believe that the patterns observed in wild orangutan long calls – three independent, but simultaneously-occurring recursive motifs – can be generated based on low-level physiological mechanisms alone, the burden of proof resides with them.

      Any oscillating system will, by definition, exhibit isochrony.

      We disagree with this statement. The example provided above by the reviewer him/her-self disproves the statement: a guitar string when struck is an oscillating system but it is not isochronic nor is it combinatorial. Isochrony cannot be established with single events, only with event sequences (in practice, ideally >3).

      For instance, human trills produce isochronouns or near isochronous pulses. No cognitive process is needed to explain this; this is merely the physics of the articulators. Do we know that the rhythm of the pulses and sub-pulses in orangutans is dictated by cognition as opposed to the physics of the articulators?

      The reviewer seems to misinterpret our results here. Our focus is on vocal combinatorics, not vocal fold oscillation (see previous response). We have now reworded all instances where the text could be unclear.

      Even granting the authors' unjustified conclusion that wild orangutans have "recursive" structures and that these are the result of cognition, the conclusions drawn by the authors are too often fantastic leaps of induction. Here is a cherry-picked list of some of the far-fetched conclusions: - "our findings indicate that ancient vocal patterns organized across nested structural strata were likely present in ancestral hominids". Does finding "vocal patterns organized across nested structural strata" in wild orangutans suggest that the same were present in ancestral hominids?

      Following the reviewer’s comment, we have now rephrased and toned down this passage, stating that such structures “may have been present” in ancestral hominids. We are grateful to the reviewer for this comment.

      • "given that isochrony universally governs music and that recursion is a feature of music, findings (sic.) suggest a possible evolutionary link between great ape loud calls and vocal music". Isochrony is also a feature of the noise produced by cicadas. Does this suggest an evolutionary link between vocal music and the noise of cicadas?

      We apologise, but it is unclear what the reviewer is exactly suggesting or proposing here. It seems as though it is believed that cicadas are as phylogenetically related to humans as great apes are. Our last common ancestor with great apes diverged about 10mya, but with cicadas 600mya. The last common ancestor with great apes was a great ape (or hominid). The human-cicada last common ancestor would have looked like a worm (it is probable it would already have a nervous bulge at the head, or “brain”). In order to avoid similar misinterpretations, we have now clarified in several instances that our study and interpretation of results are based on shared ancestry within the Hominid family.

      It seems that the reviewer may be also misinterpreting our findings. We do not simply report isochrony in a wild great ape (multiple references for isochronous calls in primate are provided in the Discussion). We report isochrony within isochrony in three non-exclusive rhythmic arrangements. In case the reviewer knows of a study on cicadas, or any non-human species, showing recursive sound combinatorics of this nature, we kindly request the citation. We can only hope that such new cases may be gradually unveiled in wild animals to help propel our general understanding of possible ways of how insipient recursive vocal combinatorics in ancient hominids could have given rise to recursion as used today by language-able modern humans.

      Finally, some passages also reveal quite glaring misunderstandings of the cited literature. For instance:

      • "Therefore, the search for recursion can be made in the absence of meaning-base operations, such as Merge, and more generally, semantics and syntax". It is precisely Chomsky's (disputable) opinion that the main operation that govern syntax, Merge, has nothing to do with semantics. The latter is dealt within a putative conceptual-intentional performance system (in Chomsky's terminology), which is governed by different operations.

      Following the reviewer’s comment, we have now removed “meaning-base operations, such as Merge, and more generally” from the target sentence in order to avoid confusion. Thank you.

      • "Namely, experimental stimuli have consisted of artificial recursive signal sequences organized along a single temporal scale (though not structurally linear), similarly with how Merge and syntax operate". The minimalist view advocated by Chomsky assumes that mapping a hierarchichal structure to a linear order (a process called linearizarion) is part of the articulatory-perceptual system. This system is likewise not governed by Merge and is not part of "syntax" as conceived by the Chomskyan minimalists.

      Following the reviewer’s comment, we have not omitted the target sentence for added clarity.

      Reviewer #1 (Recommendations For The Authors):

      L55-67: I feel there is a step missing in the logic of the argumentation here. The studies cited by the authors here are mostly about syntactic-like structuring but not recursion. Hence when the authors mention in the next sentence that these studies investigate the perception of recursive signalling, it seems incorrect. I agree with the logic, but the references do not seem appropriate. I would further suggest that if there are no other references, that would make the introduction of the study here even easier: there is very little work investigating this capacity in non-human animals, let alone on a production perspective, therefore, the study conducted here is paramount and fills this important gap in the literature.

      We are grateful to Reviewer #1 for these comments, and we are honoured to hear that our findings are filling a literature gap. We have now carefully revised the manuscript, hopefully, streamlining our line of reasoning and improving the paper’s overall readability. We agree that there is very little work investigating the spontaneous “production” of recursion in nonhuman animals. We decided to better detail the logic of our paper by clarifying the difference between recursion and repetition and clarifying that the motifs that we identify in wild orangutan represent a case of "temporal recursion".

      L59: Johan J should be removed (same in discussion).

      Removed, thanks.

      L60: For example is repeated twice, here and L55.

      We have rephrased this part of the manuscript, thanks.

      L72-73: If we consider the Watson et al., 2020 study an example of recursive perception (which I do not think is true), this was conducted using a passive design - i.e. with no active training.

      We have rephrased this part of the manuscript, thanks.

      L240-241: Again, non-adjacent dependency processing does not equal recursion.

      We agree that non-adjacent dependency processing does not equal recursion. We have now clarified this section accordingly.

      L269: one of the most.

      Corrected, thanks.

      L296: add space after settings.

      Corrected, thanks.

      Reviewer #2 (Recommendations For The Authors):

      In addition to the public portion of the review, I advise the authors' to substantially alter their style of writing. The language used is not accurate and the intended meaning is often not clear. This makes it hard for any reader to follow the authors' reasoning fully. Below I list only a few of the egregious examples but the examples abound:

      • "this hints at a neuro-cognitive or neuro-computational transformation in the human brain" what meaning do the author assign to "neuro-cognitive" and "neuro-computational" ? what difference do they place between the two (so that they would be disjoined.) ? What "transformation" are we talking about ? From what to what ?

      • " However, recursive signal structures can also unfold in other manners, such as across nested temporal scales and in the absence of semantics (Fitch, 2017a), as in music." what is meant here by nested temporal scales ?

      • "The simultaneous occurrence of non-exclusive recursive patterns excludes the likelihood that orangutans concatenate long calls and their subunits in linear structure without any recursive processes": isn't there a more straightforward way to say "excludes the likelihood"? What is meant by "non-exclusive recursive patterns"?

      It seems that Reviewer #2 does not share our writing style. Nonetheless, we have tried to meet the reviewer halfway, clarifying throughout the new revised version our definitions, our line of argument, our motivations, our results, the context of our findings in what is known about recursion in animals, and the implication of our discovery for language evolution theory.

    1. Author Response

      The following is the authors’ response to the current reviews.

      We agree with the reviewer that the statistics are buried in a dense excel file without a read-me page. We will address this by making a summary excel page for p-values during the production process.


      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study uses genomically-engineered glypican alleles to demonstrate convincingly that Dally (not Dally-like protein [Dlp]) is the key contributor to formation of the Dpp/BMP morphogen gradient in the wing disc of Drosophila. The authors provide solid genetic evidence that, surprisingly, the core domain of Dally appears to suffice to trap Dpp at the cell surface. They conclude with a model according to which Dally modulates the range of Dpp signaling by interfering with Dpp's internalization by the Dpp receptor Thickveins.

      Public Reviews:

      Reviewer #1 (Public Review):

      How morphogens spread within tissues remains an important question in developmental biology. Here the authors revisit the role of glypicans in the formation of the Dpp gradient in wing imaginal discs of Drosophila. They first use sophisticated genome engineering to demonstrate that the two glypicans of Drosophila are not equivalent despite being redundant for viability. They show that Dally is the relevant glypican for Dpp gradient formation. They then provide genetic evidence that, surprisingly, the core domain of Dally suffices to trap Dpp at the cell surface (suggesting a minor role for GAGs). They conclude with a model that Dally modulates the range of Dpp signaling by interfering with Dpp's degradation by Tkv. These are important conclusions, but more independent (biochemical/cell biological) evidence is needed.

      As indicated above, the genetic evidence for the predominant role of Dally in Dpp protein/signalling gradient formation is strong. In passing, the authors could discuss why overexpressed Dlp has a negative effect on signaling, especially in the anterior compartment. The authors then move on to determine the role of GAG (=HS) chains of Dally. They find that in an overexpression assay, Dally lacking GAGs traps Dpp at the cell surface and, counterintuitively, suppresses signaling (fig 4 C, F). Both findings are unexpected and therefore require further validation and clarification, as outlined in a and b below.

      a. In loss of function experiments (dallyDeltaHS replacing endogenous dally), Dpp protein is markedly reduced (fig 4R), as much as in the KO (panel Q), suggesting that GAG chains do contribute to trapping Dpp at the cell surface. This is all the more significant that, according to the overexpression essays, DallyDeltaHS seems more stable than WT Dally (by the way, this difference should also be assessed in the knock-ins, which is possible since they are YFP-tagged). The authors acknowledge that HS chains of Dally are critical for Dpp distribution (and signaling) under physiological conditions. If this is true, one can wonder why overexpressed dally core 'binds' Dpp and whether this is a physiologically relevant activity.

      According to the overexpression assay, DallyDeltaHS seems more stable than WT Dally (Fig. 4B’, E’, 5A’, B’). As the reviewer suggested, we addressed the difference using the two knock-in alleles and found that DallyDeltaHS is more stable than WT Dally (Fig.4 L, M inset), further emphasizing the insufficient role of core protein of Dally for extracellular Dpp distribution.

      In summary, we showed that, although Dally interacts with Dpp mainly through its core protein from the overexpression assay (Fig. 4E, I), HS chains are essential for extracellular Dpp distribution (Fig. 4R). Thus, the core protein of Dally alone is not sufficient for extracellular Dpp distribution under physiological conditions. These results raise a question about whether the interaction of core protein of Dally with Dpp is physiologically relevant. Since the increase of HS upon dally expression but not upon dlp expression resulted in the accumulation of extracellular Dpp (Fig. 2) and this accumulation was mainly through the core protein of Dally (Fig. 4E, I), we speculate that the interaction of the core protein of Dally with Dpp gives ligand specificity to Dally under physiological conditions.

      To understand the importance of the interaction of core protein of Dally with Dpp under physiological conditions, it is important to identify a region responsible for the interaction. Our preliminary results overexpressing a dally mutant lacking the majority of core protein (but keeping the HS modified region intact) showed that HS chains modification was also lost. Although this is consistent with our results that enzymes adding HS chains also interact with the core protein of Dally (Fig. 4D), the dally mutant allele lacking the core protein would hamper us from distinguishing the role of core protein of Dally from HS chains.

      Nevertheless, we can infer the importance of the interaction of core protein of Dally with Dpp using dally[3xHA-dlp, attP] allele, where dlp is expressed in dally expressing cells. Since Dally-like is modified by HS chains but does not interact with Dpp (Fig. 2, 4), dally[3xHA-dlp, attP] allele mimics a dally allele where HS chains are properly added but interaction of core protein with Dpp is lost. As we showed in Fig.3O, S, the allele could not rescue dallyKO phenotypes, consistent with the idea that interaction of core protein of Dally with Dpp is essential for Dpp distribution and signaling and HS chain alone is not sufficient for Dpp distribution.

      b. Although the authors' inference that dallycore (at least if overexpressed) can bind Dpp. This assertion needs independent validation by a biochemical assay, ideally with surface plasmon resonance or similar so that an affinity can be estimated. I understand that this will require a method that is outside the authors' core expertise but there is no reason why they could not approach a collaborator for such a common technique. In vitro binding data is, in my view, essential.

      We agree with the reviewer that a biochemical assay such as SPR helps us characterize the interaction of core protein of Dally and Dpp (if the interaction is direct), although the biochemical assay also would not demonstrate the interaction under the physiological conditions.

      However, SPR has never been applied in the case of Dpp, probably because purifying functional refolded Dpp dimer from bacteria has previously been found to be stable only in low pH and be precipitated in normal pH buffer (Groppe J, et al., 1998)(Matsuda et al., 2021). As the reviewer suggests, collaborating with experts is an important step in the future.

      Nevertheless, SPR was applied for the interaction between BMP4 and Dally (Kirkpatrick et al., 2006), probably because BMP4 is more stable in the normal buffer. Although the binding affinity was not calculated, SPR showed that BMP4 directly binds to Dally and this interaction was only partially inhibited by molar excess of exogenous HS, suggesting that BMP4 can interact with core protein of Dally as well as its HS chains. In addition, the same study applied Co-IP experiments using lysis of S2 cells and showed that Dpp and core protein of Dally are co-immunoprecipitated, although it does not demonstrate if the interaction is direct.

      In a subsequent set of experiments, the authors assess the activity of a form of Dpp that is expected not to bind GAGs (DppDeltaN). Overexpression assays show that this protein is trapped by DallyWT but not dallyDeltaHS. This is a good first step validation of the deltaN mutation, although, as before, an invitro binding assay would be preferable.

      Our overexpression assays actually showed that DppDeltaN is trapped by DallyWT and by dallyDeltaHS at similar levels (Fig. 5C), indicating that interaction of DppDeltaN and HS chains of Dally is largely lost but DppDeltaN can still interact with core protein of Dally.

      We thank the reviewer for the suggesting the in vitro experiment. Although we decided not to develop biophysical experiments such as SPR for Dpp in this study due to the reasons discussed above, we would like to point out that our result is consistent with a previous Co-IP experiment using S2 cells showing that DppDeltaN loses interaction with heparin (Akiyama2008).

      However, in contrast to our results, the same study also proposed by Co-IP experiments using S2 cells that DppDeltaN loses interaction with Dally (Akiyama2008). Although it is hard to conclude since western blotting was too saturated without loading controls and normalization (Fig. 1C in Akiyama 2008), and negative in vitro experiments do not necessarily demonstrate the lack of interaction in vivo. One explanation why the interaction was missed in the previous study is that some factors required for the interaction of DppDeltaN with core protein of Dally are missing in S2 cells. In this case, in vivo interaction assay we used in this study has an advantage to robustly detect the interaction.

      Nevertheless, the authors show that DppDeltaN is surprisingly active in a knock-in strain. At face value (assuming that DeltaN fully abrogates binding to GAGs), this suggests that interaction of Dpp with the GAG chains of Dally is not required for signaling activity. This leads to authors to suggest (as shown in their final model) that GAG chains could be involved in mediating the interactions of Dally with Tkv (and not with Dpp. This is an interesting idea, which would need to be reconciled with the observation that the distribution of Dpp is affected in dallyDeltaHS knock-ins (item a above). It would also be strengthened by biochemical data (although more technically challenging than the experiments suggested above). In an attempt to determine the role of Dally (GAGs in particular) in the signaling gradient, the paper next addresses its relation to Tkv. They first show that reducing Tkv leads to Dpp accumulation at the cell surface, a clear indication that Tkv normally contributes to the degradation of Dpp. From this they suggest that Tkv could be required for Dpp internalisation although this is not shown directly. The authors then show that a Dpp gradient still forms upon double knockdown (Dally and Tkv). This intriguing observation shows that Dally is not strictly required for the spread of Dpp, an important conclusion that is compatible with early work by Lander suggesting that Dpp spreads by free diffusion. These result show that Dally is required for gradient formation only when Tkv is present. They suggest therefore that Dally prevents Tkv-mediated internalisation of Dpp. Although this is a reasonable inference, internalisation assays (e.g. with anti-Ollas or anti-HA Ab) would strengthen the authors' conclusions especially because they contradict a recent paper from the Gonzalez-Gaitan lab.

      Thanks for suggesting the internalization assay. As we discussed in the discussion, our results suggest that extracellular Dpp distribution is severely reduced in dally mutants due to Tkv mediated internalization of Dpp (Fig. 6). Thus, extracellular Dpp available for labelling with nanobody is severely reduced in dally mutants, which can explain the reduced internalization of Dpp in dally mutants in the internalization assay. Therefore, we think that the nanobody internalization assay would not distinguish the two contradicting possibilities.

      The paper ends with a model suggesting that HS chains have a dual function of suppressing Tkv internalisation and stimulating signaling. This constitutes a novel view of a glypican's mode of action and possibly an important contribution of this paper. As indicated above, further experiments could considerably strengthen the conclusion. Speculation on how the authors imagine that GAG chains have these activities would also be warranted.

      Thank you very much!

      Reviewer #2 (Public Review):

      The authors are trying to distinguish between four models of the role of glypicans (HSPGs) on the Dpp/BMP gradient in the Drosophila wing, schematized in Fig. 1: (1) "Restricted diffusion" (HSPGs transport Dpp via repetitive interaction of HS chains with Dpp); (2) "Hindered diffusion" (HSPGs hinder Dpp spreading via reversible interaction of HS chains with Dpp); (3) "Stabilization" (HSPGs stabilize Dpp on the cell surface via reversible interaction of HS chains with Dpp that antagonizes Tkv-mediated Dpp internalization); and (4) "Recycling" (HSPGs internalize and recycle Dpp).

      To distinguish between these models, the authors generate new alleles for the glypicans Dally and Dally-like protein (Dlp) and for Dpp: a Dally knock-out allele, a Dally YFP-tagged allele, a Dally knock-out allele with 3HA-Dlp, a Dlp knock-out allele, a Dlp allele containing 3-HA tags, and a Dpp lacking the HS-interacting domain. Additionally, they use an OLLAS-tag Dpp (OLLAS being an epitope tag against which extremely high affinity antibodies exist). They examine OLLAS-Dpp or HA-Dpp distribution, phospho-Mad staining, adult wing size.

      They find that over-expressed Dally - but not Dlp - expands Dpp distribution in the larval wing disc. They find that the Dally[KO] allele behaves like a Dally strong hypomorph Dally[MH32]. The Dally[KO] - but not the Dlp[KO] - caused reduced pMad in both anterior and posterior domains and reduced adult wing size (particularly in the Anterior-Posterior axis). These defects can be substantially corrected by supplying an endogenously tagged YFP-tagged Dally. By contrast, they were not rescued when a 3xHA Dlp was inserted in the Dally locus. These results support their conclusion that Dpp interacts with Dally but not Dlp.

      They next wanted to determine the relative contributions of the Dally core or the HS chains to the Dpp distribution. To test this, they over-expressed UAS-Dally or UAS-Dally[deltaHS] (lacking the HS chains) in the dorsal wing. Dally[deltaHS] over-expression increased the distribution of OLLAS-Dpp but caused a reduction in pMad. Then they write that after they normalize for expression levels, they find that Dally[deltaHS] only mildly reduces pMad and this result indicates a major contribution of the Dally core protein to Dpp stability.

      Thanks for the comments. We actually showed that compared with Dally overexpression, Dally[deltaHS] overexpression only mildly reduces extracellular Dpp accumulation (Fig. 4I). This indicates a major contribution of the Dally core protein to interaction with Dpp, although the interaction is not sufficient to sustain extracellular Dpp distribution and signaling gradient.

      The "normalization" is a key part of this model and is not mentioned how the normalization was done. When they do the critical experiment, making the Dally[deltaHS] allele, they find that loss of the HS chains is nearly as severe as total loss of Dally (i.e., Dally[KO]). Additionally, experimental approaches are needed here to prove the role of the Dally core.

      Since the expression level of Dally[deltaHS] is higher than Dally when overexpressed, we normalized extracellular Dpp distribution (a-Ollas staining) against GFP fluorescent signal (Dally or Dally[deltaHS]). To do this, we first extracted both signal along the A-P axis from the same ROI in the previous version. The ratio was calculated by dividing the intensity of a-Ollas staining with the intensity of GFP fluorescent signal at a given position x. The average profile from each normalized profile was generated and plotted using the script described in the method (wingdisc_comparison.py) as other pMad or extracellular staining profiles.

      Although this analysis provides normalized extracellular Dpp accumulation at different positions along the A-P axis, we are more interested in the total amount of Dpp or DppDeltaN accumulation upon Dally or dallyDeltaHS expression. Therefore, in the revised ms, we decided to normalize total amount of extracellular Dpp against the level of Dally or Dally[deltaHS] by dividing total signal intensity of extracellular Dpp staining (ExOllas staining) by total GFP fluorescent signal (Dally or Dally[deltaHS]) around the Dpp producing cells in each wing disc. Statistical analysis showed that accumulation of extracellular Dpp is only slightly reduced without HS chains (Fig.4I), indicating that Dally interacts with Dpp mainly through its core protein.

      We agree with the reviewer that additional experimental approaches are needed to address the role of the core protein of Dally. As we discussed in the response to the reviewer1, to understand the importance of the interaction of core protein of Dally with Dpp, it is important to identify a region responsible for the interaction. Our preliminary results overexpressing a dally mutant lacking the majority of core protein (but keeping the HS modified region intact) showed that HS chains modification was also lost. Although this is consistent with our results that enzymes adding HS chains also interact with the core protein of Dally (Fig. 4D), the dally mutant allele lacking the core protein would hamper us from distinguishing the role of the core protein of Dally from HS chains.

      Nevertheless, we can infer the importance of the interaction of core protein of Dally with Dpp using dally[3xHA-dlp, attP] allele, where dlp is expressed in dally expressing cells. Since Dally-like is modified by HS chains but does not interact with Dpp (Fig. 2, 4), dally[3xHA-dlp, attP] allele mimics a dally allele where HS chains are properly added but interaction of core protein with Dpp is lost. As we showed in Fig.3O, S, the allele could not rescue dallyKO phenotypes, consistent with the idea that interaction of core protein of Dally with Dpp is essential for Dpp distribution and signaling.

      Prior work has shown that a stretch of 7 amino acids in the Dpp N-terminal domain is required to interact with heparin but not with Dpp receptors (Akiyama, 2008). The authors generated an HA-tagged Dpp allele lacking these residues (HA-dpp[deltaN]). It is an embryonic lethal allele, but they can get some animals to survive to larval stages if they also supply a transgene called “JAX” containing dpp regulatory sequences. In the JAX; HA-dpp[deltaN] mutant background, they find that the distribution and signaling of this Dpp molecule is largely normal. While over-expressed Dally can increase the distribution of HA-dpp[deltaN], over-expression of Dally[deltaHS] cannot. These latter results support the model that the HS chains in Dally are required for Dpp function but not because of a direct interaction with Dpp.

      Our overexpression assays actually showed that both Dally and Dally[deltaHS] can accumulate Dpp upon overexpression and the accumulation of Dpp is comparable after normalization (Fig. 5C), consistent with the idea that interaction of DppdeltaN and HS chains are largely lost. As the reviewer pointed out, these results support the model that the HS chains in Dally are required for Dpp function but not because of a direct interaction with Dpp.

      In the last part of the results, they attempt to determine if the Dpp receptor Thickveins (Tkv) is required for Dally-HS chains interaction. The 2008 (Akiyama) model posits that Tkv activates pMad downstream of Dpp and also internalizes and degrades Dpp. A 2022 (Romanova-Michaelides) model proposes that Dally (not Tkv) internalizes Dpp.

      To distinguish between these models, the authors deplete Tkv from the dorsal compartment of the wing disc and found that extracellular Dpp increased and expanded in that domain. These results support the model that Tkv is required to internalize Dpp.

      They then tested the model that Dally antagonizes Tkv-mediated Dpp internalization by determining whether the defective extracellular Dpp distribution in Dally[KO] mutants could be rescued by depleting Tkv. Extracellular Dpp did increase in the D vs V compartment, potentially providing some support for their model. However, there are no statistics performed, which is needed for full confidence in the results. The lack of statistics is particularly problematic (1) when they state that extracellular Dpp does not rise in ap>tkv RNAi vs ap>tkv RNAi, dally[KO] wing discs (Fig. 6E) or (2) when they state that extracellular Dpp gradient expanded in the dorsal compartment when tkv was dorsally depleted in dally[deltaHS] mutants (Fig. 6I). These last two experiments are important for their model but the differences are assessed only visually. In fact, extracellular Dpp in ap>tkv RNAi, dally[KO] (Fig. 6B) appears to be lower than extracellular Dpp in ap>tkv RNAi (Fig. 6A) and the histogram of Dpp in ap>tkv RNAi, dally[KO] is actually a bit lower than Dpp in ap>tkv RNAi, But the author claim that there is no difference between the two. Their conclusion would be strengthened by statistical analyses of the two lines.

      We provided statistics for all the quantifications for pMad and extracellular Dpp distribution as supplementary data. In the previous version, we argued that extracellular Dpp level in ap>tkvRNAi, dallyKO (Fig.6B) does not increase compared with that in ap>tkvRNAi (Fig.6A). Statistical analysis (t-test) showed that the extracellular Dpp level in Fig. 6B is similar to or lower than that in Fig. 6A (Fig. 6E), confirming our conclusion. Statistical analysis (t-test) also confirmed that extracellular Dpp distribution expanded when tkv was knocked down in dallyHS mutants (Fig. 6I).

      Strengths:

      1. New genomically-engineered alleles

      A considerable strength of the study is the generation and characterization of new Dally, Dlp and Dpp alleles. These reagents will be of great use to the field.

      Thanks. We hope that these resources are indeed useful to the field.

      1. Surveying multiple phenotypes

      The authors survey numerous parameters (Dpp distribution, Dpp signaling (pMad) and adult wing phenotypes) which provides many points of analysis.

      Thanks!

      Weaknesses:

      1. Confusing discussion regarding the Dally core vs HS in Dpp stability. They don't provide any measurements or information on how they "normalize" for the level of Dally vs Dally[deltaHS]? This is important part of their model that currently is not supported by any measurements.

      We explained how we normalized in the above section and updated the method section in the revised ms.

      1. Lacking quantifications and statistical analyses:

      a. Why are statistical significance for histograms (pMad and Dpp distribution) not supplied? These histograms provide the key results supporting the authors' conclusions but no statistical tests/results are presented. This is a pervasive shortcoming in the current study.

      Thanks. We provided t-test analyses together with the raw data as supplementary data.

      b. dpp[deltaN] with JAX transgene - it would strengthen the study to supply quantitative data on the percent survival/lethal stage of dpp[deltaN] mutants with or without the JAK transgene

      In this study, we are interested in the role of dpp[deltaN] during the wing disc development. Therefore, we decided not to perform the detailed analysis on the percent survival/lethal stage of dpp[deltaN] mutants with or without the JAX transgene in the current study. Nevertheless, the fact that dpp[deltaN] allele is maintained with a balanced stock and JAX;dpp[deltaN] allele can be maintained as homozygous stock indicates that the lethality of dpp[deltaN] allele comes from the early stages. Indeed, our preliminary results showed that pMad signal is severely lost in the dpp[deltaN] embryo without JAX (data not shown), indicating that the allele is lethal at early embryonic stages.

      c. The graphs on wing size etc should start at zero.

      Thanks. We corrected this in the current ms.

      d. The sizes of histograms and graphs in each figure should be increased so that the reader can properly assess them. Currently, they are very small.

      Thanks. We changed the sizes in the current ms.

      The authors' model is that Dally (not Dlp) is required for Dpp distribution and signaling but that this is not due to a direct interaction with Dpp. Rather, they posit that Dally-HS antagonize Tkv-mediated Dpp internalization. Currently the results of the experiments could be considered consistent with their model, but as noted above, the lack of statistical analyses of some parameters is a weakness.

      Thanks. We now performed and provided the statistical analyses in the revised ms.

      One problematic part of their result for me is the role of the Dally core protein (Fig. 7B). There is a mis-match between the over-expression results and Dally allele lacking HS (but containing the core). Finally, their results support the idea that one or more as-yet unidentified proteins interact with Dally-HS chains to control Dpp distribution and signaling in the wing disc.

      Our results simply suggest that Dpp can interact with Dally mainly through core protein but this interaction is not sufficient to sustain extracellular Dpp gradient formation under physiological conditions (dallyDeltaHS) (Fig. 4Q). We find that the mis-match is not problematic if the role of Dally is not simply mediated through interaction with Dpp. We speculate that interaction of Dpp and core protein of Dally is transient and not sufficient to sustain the Dpp gradient without HS chains of Dally stabilizing extracellular Dpp distribution by blocking Tkv-mediated Dpp internalization.

      There is much debate and controversy in the Dpp morphogen field. The generation of new, high quality alleles in this study will be useful to Drosophila community, and the results of this study support the concept that Tkv but not Dally regulate Dpp internalization. Thus the work could be impactful and fuel new debates among morphogen researchers.

      Thanks.

      The manuscript is currently written in a manner that really is only accessible to researchers who work on the Dpp gradient. It would be very helpful for the authors to re-write the manuscript and carefully explain in each section of the results (1) the exact question that will be asked, (2) the prior work on the topic, (3) the precise experiment that will be done, and (4) the predicted results. This would make the study more accessible to developmental biologists outside of the morphogen gradient and Drosophila communities.

      Thanks. We modified texts and changed the order of Fig.5. We hope that the changes make this study more accessible to developmental biologists outside of the field.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their feedback. Our response and a summary of the changes made to the manuscript are shown below. In addition to the changes made in response to the reviewer’s comments, we made the following changes to improve the manuscript:

      • We updated figures 8 and 9 using data with improved preprocessing and source reconstruction. We now also include graphical network plots. This helps in the cross method (figure 8 vs 9) and cross dataset (figure 9 vs 10) comparison.

      • We added funding acknowledgments and a credit author statement.

      Reviewer #1 (Public Review):

      Summary:

      These types of analyses use many underlying assumptions about the data, which are not easy to verify. Hence, one way to test how the algorithm is performing in a task is to study its performance on synthetic data in which the properties of the variable of interest can be apriori fixed. For example, for burst detection, synthetic data can be generated by injected bursts of known durations, and checking if the algorithm is able to pick it up. Burst detection is difficult in the spectral domain since direct spectral estimators have high variance (see Subhash Chandran et al., 2018, J Neurophysiol). Therefore, detected burst lengths are typically much lower than injected burst lengths (see Figure 3). This problem can be solved by doing burst estimation in the time domain itself, for example, using Matching Pursuit (MP). I think the approach presented in this paper would also work since this model is also trained on data in the time domain. Indeed, the synthetic data can be made more "challenging" by injecting multiple oscillatory bursts that are overlapping in time, for which a greedy approach like MP may fail. It would be very interesting to test whether this method can "keep up" as the data is made more challenging. While showing results from brain signals directly (e.g., Figure 7) is nice, it will be even more impactful if it is backed up with results obtained from synthetic data with known properties.

      We completely agree with the reviewer that testing the methods using synthetic data is an important part of validating such an approach. Each of the original papers that apply these methods to a particular application do this. The focus of this manuscript is to present a toolbox for applying these methods rather than to introduce/validate the methods themselves. For a detailed validation of the methods, the reader should see the citations. For example, the following paper introduces the HMM as a method for oscillatory burst detection:

      • A.J. Quinn, et al. “Unpacking transient event dynamics in electrophysiological power spectra”. Brain topography 32.6 (2019): 1020-1034. See figures 2 and 3 for an evaluation of the HMM’s performance in detecting single-channel bursts using synthetic data.

      We have added text to paragraph 2 in section 2.5 to clarify this burst detection method has been validated using simulated data and added references.

      I was wondering about what kind of "synthetic data" could be used for the results shown in Figure 8-12 but could not come up with a good answer. Perhaps data in which different sensory systems are activated (visual versus auditory) or sensory versus movement epochs are compared to see if the activation maps change as expected. We see similarities between states across multiple runs (reproducibility analysis) and across tasks (e.g. Figure 8 vs 9) and even methods (Figure 8 vs 10), which is great. However, we should also expect the emergence of new modes specific to sensory activation (say auditory cortex for an auditory task). This will allow us to independently check the performance of this method.

      The following papers study the performance of the HMM and DyNeMo in detecting networks using synthetic data:

      • D. Vidaurre, et al. “Spectrally resolved fast transient brain states in electrophysiological data”. Neuroimage 126 (2016): 81-95. See figure 3 in this paper for an evaluation of the HMM’s performance in detecting oscillatory networks using simulation data.

      • C. Gohil, et al. “Mixtures of large-scale dynamic functional brain network modes”. Neuroimage 263 (2022): 119595. See figures 4 and 5 for an evaluation of DyNeMo performance in detecting overlapping networks and long-range temporal structure in the data.

      We have added text to paragraph 2 in section 2.5 to clarify these methods have been well tested on simulated data and added references.

      The authors should explain the reproducibility results (variational free energy and best run analysis) in the Results section itself, to better orient the reader on what to look for.

      Considering the second reviewer’s comments, we moved the reproducibility results to the supplementary information (SI). This means the reproducibility results are no longer part of the main figures/text. However, we have added some text to help the reader understand what aspects indicate the results are reproducible in section 2 of the SI.

      Page 15: the comparison across subjects is interesting, but it is not clear why sensory-motor areas show a difference and the mean lifetime of the visual network decreases. Can you please explain this better? The promised discussion in section 3.5 can be expanded as well.

      It is well known that the frequency and amplitude of neuronal oscillations changes with age. E.g. see the following review: Ishii, Ryouhei, et al. "Healthy and pathological brain aging: from the perspective of oscillations, functional connectivity, and signal complexity." Neuropsychobiology 75.4 (2018): 151-161. We observe older people have more beta activity and less alpha activity. These changes are seen in time-averaged calculations, i.e. the amplitude of oscillations are calculated using the entire time series for each subject.

      The dynamic analysis presented in the paper provides further insight into how changes in the time-averaged quantities can occur through changes in the dynamics of frequency-specific networks. The sensorimotor network, which is a network with high beta activity, has a higher fractional occupancy. This indicates the change we observe in time-average beta power may be due to a longer amount of time spent in the sensorimotor network. The visual network, which is a network with high alpha activity, shows reduced lifetimes, which can explain the reduced time-averaged alpha activity seen with ageing.

      We hope the improved text in the last paragraph of section 3.5 clarifies this. It should also be taken into account that the focus of this manuscript is the tools rather than an in-depth analysis of ageing. We use the age effect as an example of the potential analysis this toolbox enables.

      Reviewer #2 (Public Review):

      Summary:

      The authors have developed a comprehensive set of tools to describe dynamics within a single time-series or across multiple time-series. The motivation is to better understand interacting networks within the human brain. The time-series used here are from direct estimates of the brain's electrical activity; however, the tools have been used with other metrics of brain function and would be applicable to many other fields.

      Strengths:

      The methods described are principled, and based on generative probabilistic models.

      This makes them compact descriptors of the complex time-frequency data.

      Few initial assumptions are necessary in order to reveal this compact description.

      The methods are well described and demonstrated within multiple peer-reviewed articles.

      This toolbox will be a great asset to the brain imaging community.

      Weaknesses:

      The only question I had was how to objectively/quantitatively compare different network models. This is possibly easily addressed by the authors.

      We thank the reviewer for his/her comments. We address the weaknesses in our response in the “Recommendations For The Authors” section.

      Reviewer #1 (Recommendations For The Authors):

      Figure 2 legend: Please add the acronym for LCMV also.

      We have now done this.

      Section 2.5.1 page 8: the pipeline is shown in Figure 4, not 3.

      This has been fixed.

      Reviewer #2 (Recommendations For The Authors):

      This is a great paper outlining a resource that can be applied to many different fields. I have relatively minor comments apart from one.

      How does one quantitatively compare network descriptors (from DyNeMo and TDE-HMM for example)? At the moment the word 'cleaner' (P17) is used, but is there any non-subjective way? (eg Free energy/ cross validation etc). At the moment it is useful that one method gives a larger effect size (in a comparison between groups).. but could the authors say something about the use of these methods as more/less faithful descriptors of the data? Or in other words, do all methods generate datasets (from the latent space) that can be quantitatively compared with the original data?

      In principle, the variational free energy could be used to compare models. However, because we use an approximate variational free energy (an exact measure is not attainable) for DyNeMo and an exact free energy for the HMM, it is possible that any differences we see in the variational free energy between the HMM and Dynemo are caused by the errors in its approximation. This makes it unreliable for comparing across models. That said, we can still use the variational free energy to compare within models. Indeed, we use the variational free energy for quantitative model comparisons when we select the best run to analyse from a set of 10.

      One viable approach for comparing models is to assess their performance on downstream tasks. In this manuscript, examples of downstream tasks are the evoked network response and the young vs old group difference. We argue a better performance in the downstream task indicates a more useful model within that context. This performance is a quantitative measure. Note, there is no straightforward answer to which is the best model. It is likely different models will be useful for different downstream tasks.

      In terms of which model provides a more faithful description of the data. The more flexible generative model for DyNeMo means it will generate more realistic data. However, this doesn’t necessarily mean it’s the best model (for a particular downstream task). Both the HMM and DyNeMo provide complementary descriptions that can be useful.

      We have clarified the above in paragraph 5 of section 4.

      Other comments:

      • Footnote 6 - training on concatenated group data seems to be important. It could be more useful in the main manuscript where the limitations of this could be discussed.

      By concatenating the data across subjects, we learn a group-level model. By doing this, we pool information across all subjects to estimate the networks. This can lead to more robust estimates. We have moved this footnote to the main text in paragraph 1 of section 2.5 and added further information.

      • In the TDE burst detection section- please expand on why/how a specific number of states was chosen.

      As with the HMM dynamic network analysis, the number of states must be pre-specified. For burst detection, we are often interested in an on/off type segmentation, which can be achieved with a 2 state HMM. However, if there are multiple burst types, these will all be combined into a single ‘on’ state. Therefore, we might want to increase the number of states to model multiple burst types. 3 was chosen as a trade-off to stay close to the on/off description but allow the model to learn more than 1 burst type. We have added text discussing this in paragraph 4 of section 4.

      • Normally the value of free energy is just a function of the data - and only relative magnitude is important. I think figures (eg 7c) would be clearer if the offset could be removed.

      We agree only the relative magnitude is important. We added text clarifying this in section 2 of the SI. We think it would still be worthwhile to include the offset so that future users can be sure they have correctly trained a model and calculated the free energy.

      • Related to the above- there are large differences in model evidence shown between sets. Yet all sets are the same data, and all parameter estimates are more or less the same. Could the authors account for this please (i.e. is there some other parameter that differentiates the best model in one set from the other sets, or is the free energy estimate a bit variable).

      We would like to clarify only the model parameters for the best run are shown in the group-level analysis. This is the run with the lowest variational free energy, which is highlighted in red. We have now clarified this in the caption of each figure. The difference in free energy for the best runs (across sets) is relatively small compared to the variation across runs within a set. If we were to plot the model parameters for each of the 10 runs in a set, we would see more variability. We have now clarified this in section 2 of the SI.

      Also note, the group analysis usually involves taking an average. Small differences in the variational free energy could reflect small differences in subject-specific model parameters, which are then averaged out, giving virtually identical group effects.

      • And related once again, if the data are always the same, I wonder if the free-energy plots and identical parameter estimates could be removed to free up space in figures?

      The reproducibility results have now been moved to the supplementary information (SI).

      • When citing p-values please specify how they are corrected (and over what please eg over states, nodes, etc?). This would be useful didactically as I imagine most users will follow the format of the presentation in this paper.

      We now include in the caption further details of how the permutation significance testing was done.

      • Not sure of the value of tiny power maps in 9C. Would consider making it larger or removing it?

      The scale of these power maps is identical to part (A.I). We have moved the reproducibility analysis to the SI, enlarged the figure and added colour bars. We hope the values are now legible.

      • Figure 3. I think the embedding in the caption doesn't match the figure (+-5 vs +-7 lags). Would be useful to add in the units of covariance (cii).

      The number of embeddings in the caption has been fixed. Regarding the units for the covariances, as this is simulated data there aren’t really any units. Note, there is already a colour bar to indicate the values of each element.

      • Minimize variational free energy - it may be confusing for some readers that other groups maximize the negative free energy. Maybe a footnote?

      We thank the reviewer for their suggestion. We have added a footnote (1).

      • Final question- and related to the Magnetoencephalography (MEG) data presented. These data are projected into source space using a beamformer algorithm (with its own implicit assumptions and vulnerabilities). Would be interested in the authors' opinion on what is standing between this work and a complete generative model of the MEG data - i.e. starting with cortical electrical current sources with interactions modeled and a dynamic environmental noise model (i.e. packing all assumptions into one model)?

      In principle, there is nothing preventing us from including the forward model in the generative model and training on sensor level MEG data. This would be a generative model starting from the dipoles inside the brain to the MEG sensors. This is under active research. If the reviewer is referring to a biophysical model for brain activity, the main barrier for this is the inference of model parameters. However, note that the new inference framework presented in the DyNeMo paper (Gohil, et al. 2022) actually makes this more feasible. Given the scope of this manuscript is to present a toolbox for studying dynamics with existing methods, we leave this topic as future work.

    1. Author Response

      We are delighted that the reviewers found our work to have merit and we are thankful for their careful reviews and suggestions for experiments and changes to the text to further improve this study.