2,382 Matching Annotations
  1. Aug 2023
    1. Author Response

      Reviewer #1 (Public Review):

      The manuscript is very-well written. Although the study is well-conducted the authors should be more convincing on how bacteria residing in tissues do not induce death. The association with IL-10 cytokine production appears weak and more experiments are needed to make it more robust.

      Thank you very much for your thoughtful and constructive feedback on our manuscript. We appreciate your positive assessment of the writing quality and the acknowledgment of the wellconducted nature of the study.

      In regard to the reviewer's comment that "The association with IL-10 cytokine production appears weak," we would like to provide a comprehensive response based on the findings and insights presented in our study (Fig 5). We would like to emphasize several key points to further elucidate this association:

      The established knowledge underscores IL-10's capacity to hinder the activation and proliferation of macrophages, thereby safeguarding against an overly aggressive immune-inflammatory reaction (as referenced). In our earlier investigations, we demonstrated that NAD+ orchestrates a systemic generation of IL-10, which assumes a pivotal function in curtailing proinflammatory responses across various conditions, such as autoimmune diseases (as referenced), alloimmunity (as referenced), and bacterial infections (as referenced). In our latest research, we divulge that the introduction of NAD+ leads to an elevated occurrence of IL-10-producing CD4+ T cells, CD8+ T cells, and macrophages, although not dendritic cells (depicted in Figure 5B and C). Furthermore, our comprehensive analyses have substantiated that NAD+ administration thwarts pyroptosis by specifically targeting the non-canonical inflammasome pathway. Intriguingly, our in vitro outcomes suggest that the neutralization of the autocrine IL-10 signaling pathway through a neutralizing antibody and an IL-10 receptor antagonist partially reverses the NAD+-mediated blockage of pyroptosis. These in vitro results imply that NAD+ induces the production of IL-10 cytokines by macrophages, contributing to the suppression of pyroptosis. To corroborate our in vitro conclusions, we employed IL-10 knockout mice and wild-type mice, both treated with either NAD+ or a placebo solution. The wild-type mice treated with NAD+ displayed a survival rate exceeding 80%, whereas the IL-10 knockout mice exhibited a survival rate of "only" 40%. These in vivo findings align with our in vitro discoveries, underscoring the crucial role of NAD+mediated IL-10 cytokine production in impeding pyroptosis through NAD+ and shielding against septic shock. Drawing from our prior and current investigations, we respectfully disagree with the reviewer's characterization of our work as "weak."

      Reviewer #2 (Public Review):<br /> Iske et al. provide experimental data that NAD+ lessens disease severity in bacterial sepsis without impacting on the host pathogen load. They show that in macrophages, NAD+ prevents Il1b secretion potentially mediated by Caspase11.

      Thank you for taking the time to review our manuscript. We appreciate your insightful comments and valuable feedback regarding our study on the role protective role and underlying mechanisms of NAD+ in septic shock.

      While the in vivo and in vitro data is interesting and hints towards a crucial role of NAD+ to promote metabolic adaptation in sepsis, the manuscript has shortcomings and would profit from several changes and additional experiments that support the claims.

      We would like to point out that our current study does not underscore a metabolic adaptation in sepsis but more an immune regulation and a specific blockade of the non-canonical inflammasome signaling machinery.

      Conceptually, the definition of sepsis is outdated. Sepsis is not SIRS, as in sepsis-2. Sepsis-3 defines sepsis as infection-associated organ dysfunction. This concept needs to be taken into account for the introduction and when describing the potential effects of NAD+ in sepsis. Also, LPS application cannot be considered a sepsis model, since it only recapitulates the consequence of TLR-4 activation. It is a model of endotoxemia. Also, the LPS data does not allow to draw conclusions about bacterial clearance (L135).

      Our study uses highly lethal doses of E. Coli or LPS. These doses have been shown to result in multiple organ failure (1, 2). For many decades until now an un-numerable number of studies have used LPS as a model of sepsis (3, 4, 5). We have used LPS animal model based on a study published in 2013 by Kayagaki et al. (1), where the authors reported a novel TLR4-independent mechanism but mediated via activate caspase-11. We used the same animal model to demonstrate the specific role of NAD+ in targeting this TLR4-independent mechanism but mediated via activate caspase-11 and underscore NAD+’s mode of protection.

      Moreover, we have not only used LPS but bacterial infection as well using E. Coli. We have also previously published an additional research article demonstrating the protective effect against Listeria Monocytogenes (6). The only model we currently did not use in our current study, is a cecal ligation puncture (CLP) model which is also another common animal model for sepsis.

      Our conclusions regarding bacterial clearance are based not only on LPS results but also based on the bacterial load measurement and survival (Figure 1B&C) following E. Coli administration in different tissues (kidney and liver) and not LPS.

      The authors state that protective effects by NAD were independent of the host pathogen load. This clearly indicates that NAD confers protection via enhancing a disease tolerance mechanism, potentially via reducing immunopathology. This aspect is not considered by the authors. The authors should incorporate the concept of disease tolerance in their work, cite the relevant literature on the topic and discuss it their findings in light of the published evidence for metabolic alteration sand adaptations in sepsis.

      We respectfully disagree with the reviewer’s comment and do not believe that NAD+ enhances disease tolerance. We have supporting data indicating that NAD+ mediates protection via a specific blockade of the non-canonical inflammasome pathway, which prevents an over-zealous immune response that results in organ damage and multiple organ failure (MOF). Moreover, we demonstrate that not only NAD+ mediates protection via a specific blockade of the non-canonical inflammasome pathway but prevents septic shock induced death by an additional immunosuppression mediated by the systemic production of IL-10.

      Both Caspase-11 and IL-10 pathways are crucial in NAD+ mediated protection against lethal doses of E. Coli and LPS administration. Figure 5A indicates that caspase-11-/- mice treated with PBS have a modest survival rate (~40% survival) when compared to the group of mice treated with NAD+ (>80% survival). These data indicate that NAD+ promotes survival via a caspase-11independent mechanism. Similarly, wild type mice subjected to NAD+ administration exhibited >80% survival, while NAD+ administration to IL-10-/- mice resulted only in a 40% survival rate. Based on these findings, we believe that NAD+ mediated protection against septic shock via a blockade of caspase-11 blockade and by IL-10 cytokine production that dampened the overzealous immune response rather than a disease tolerance.

      For the in vitro data, the manuscript would benefit from additional experiments using in vitro infection models.

      In the current study we have used two in vivo models using LPS and E. Coli a gram-negative bacterium. We have also previously reported the protective role of NAD+ in the context of Listeria Monocytogenes (6) a gram-positive bacterium. In the current study, our aim was to demonstrate the inhibitory role of NAD+ on the non-canonical pathway specifically. We believe that additional in vitro experiments for this study are out of scope.

      In the merge manuscript, the authors provide two different versions of the figures. In one, bar plots are shown without individual data and in the other with scatter blots. All bar plots need to be provided as scatter plots showing individual values.

      As requested by reviewer #2 all bar plots are now provided as scatter plots showing individual values.

      The authors should show further serology data for kidney and liver failure etc. as well as further cytokine data such as IL-6 and TNF to better characterize their models.

      We did not perform further serology analysis, but we did measure IL-6 and TNFα in mice treated with NAD+ or PBS. Mice treated with NAD+ had a reduced systemic level of both cytokines IL-6 and TNFα. We have now added the figures (Figure 1F). In addition, we performed a long-term survival, and all mice treated with NAD+ recovered fully after 10 days and survived over a year after infection. In addition, the mice that survived following NAD+ treatment died of old age.

      Careful revision of the entire manuscript, the figure legends and figures is required. The figure legend should not repeat the methods and materials section. The nomenclature for mouse protein and genes needs to be thoroughly revised.

      A Careful revision of the entire manuscript has been performed.

      L350. The authors write that they dissect the capacity of NAD+ to dampen auto- and alloimmunity. In this work, no data that supports this statement is shown and experiments with autoantigens or alloantigens are not performed.

      We thank the reviewer for this comment. We have now re-phrased our last sentence in the discussion and included references for our previous work. We have now stated:” We have previously reported that NAD+ administration can block auto- (7) and allo-immunity (8) via IL10 cytokine production. Here, we unveiled the capacity of NAD+ to protect against sepsisinduced death via a specific blockade of the non-canonical inflammasome pathway and a robust immunosuppression mediated by IL-10 cytokine production.

      L163 The authors describe pyroptosis but in the figure legend call it apoptosis. Specific markers for each cell death should be measured and determined which cell death mechanisms is involved.

      We thank the reviewer for this comment. We have focuses on pyoptosis-mediated cell death and not apoptosis. We have now replaced the term “apoptosis” by “pyroptosis-mediated to cell death”.

      Animal data comes from an infection model and LPS application. The RNAseq data is obtained from cells primed with Pam3CSK4 and subsequently subjected to LPS. It is unclear how the cell culture model reflects the animal model. As such the link between IFN signaling and the bacterial infection/LPS model are not convincing and need to be further elaborated.

      Our findings, depicted in Figure 3, pertain exclusively to in vitro investigations rather than in vivo examinations. Our research has demonstrated the selective inhibition of the non-canonical inflammasome pathway by NAD+, with a primary focus on unraveling the specific signaling pathway influenced by NAD+. Our in vitro outcomes indicate that the introduction of recombinant IFN-β counteracted the inhibitory effect of NAD+ on the non-canonical pathway. However, it's important to note that we have not evaluated the IFN-β pathway within our E. Coli and LPS in vivo models. Our primary intention was to exclusively decipher the roles of IFN-β and NAD+ in the context of inhibiting the non-canonical inflammasome, without extending our investigation to the broader in vivo scenarios.

      Figure 5: It is unclear how many independent survival experiments were done, how many mice per group were used and whether the difference between groups was statistical significant. This information should be added.

      We have now included the number of experiments, p values and number of animals used in Figure 5.

      Further experiments with primary cells from Il10 k.o. and Caspase11 k.o. animals should be provided that support the findings in macrophages.”

      We concur with the reviewer's suggestion regarding the need for further experiments involving primary cells from IL-10-/- and Caspase-11-/- mice. However, we are uncertain about the potential contribution of these experiments in generating novel or supplementary findings to the existing study.

    1. Author Response

      Reviewer #1 (Public Review):

      The goal of this study is to understand the allosteric mechanism of overall activity regulation in an anaerobic ribonucleotide reductase (RNR) that contains an ATP-cone domain. Through cryo-EM structural analysis of various nucleotide-bound states of the RNR, the mechanism of dATP inhibition is found to involve order-disorder transitions in the active site. These effects appear to prevent substrate binding and a radical transfer needed to initiate the reaction.

      Strengths of the manuscript include the comprehensive nature of the work - including numerous structures of different forms of the RNR and detailed characterization of enzyme activity to establish the parameters of dATP inhibition. The manuscript could be improved, however, by performing additional experiments to establish that the mechanism of inhibition can be observed in other contexts and it is not an artifact of the structural approach. Additionally, some of the presentations of biochemical data could be improved to comply with standard best practices.

      The work is impactful because it reports initial observations about a potentially new mode of allosteric inhibition in this enzyme class. It also sets the stage for future work to understand the molecular basis for this phenomenon in more detail.

      We thank the editor and reviewers for their positive evaluation of the potential impact of our work. We completely agree that hypotheses based on structural data require orthogonal experimental verification. However, the number and consistency of the cryo-EM structures speak in favour of the data being representative of conditions in solution. We feel that in particular cryo-EM data should be relatively free of artefacts, e.g. biased or incorrect relative domain orientations or artificially reduced mobility, compared to crystallography, where crystal packing effects can affect these parameters. As we write in response to Reviewer #2, it has been difficult to propose a direct structural mechanism for transmission of the allosteric signal from the a-site in the ATP-cone to the active site and GRD given that the ATP-cones and linker are disordered in the dATP-bound dimers and only partly ordered in the dATP-bound tetramers. Further verification experiments will be performed in future but are outside the scope of the present article.

      We will improve the presentation of the biochemical data in a revised version.

      General comments:

      1) It would be ideal to perform an additional experiment of some type to confirm the order-disorder phenomena observed in the cryo-EM structures to rule out the possibility that it is an artifact of the structure determination approach. Circular dichroism might be a possibility?

      Circular dichroism reports only on the approximate relative proportions of helix, sheet and loop structure in a protein; thus we believe that it would not be a sensitive enough tool to distinguish between ordered and disordered states of the GRD. We are considering what alternative methods might be appropriate.

      2) Does the disordering phenomenon of one subunit in the ATP-bound structures have any significance - could it be related to half-of-sites activity? Does this RNR exhibit half-of-sites activity?

      Half-of-sites activity has not been biochemically proven in any ribonucleotide reductase although it was first suggested in 1987 (PMID: 3298261). However, a strong structural indication was recently published in the form of the holo-complex of the class Ia ribonucleotide reductase from Escherichia coli, which is highly asymmetrical and in which productive contacts forming an intact proton-coupled electron transfer pathway are only formed between one of two pairs of monomers (PMID: 32217749). We have not been able to prove half-of-sites activity for PcNrdD due to low overall radical content, but the structural results are indeed consistent with such an activity.

      3) Does the disordering of the GRD with dATP bound have any long-term impact on the stability of the Gly radical? I realize that the authors tested the ability to form the Gly radical in the presence of dATP in Fig. 4 of the manuscript. But it looks like they only analyzed the samples after 20 min of incubation. Were longer time points analyzed?

      Radical content was measured after 5 min and 20 min incubation; 5 min incubations (not included in the manuscript) consistently gave higher radical content compared to 20 min incubation. Longer time points were not analysed, as we assumed that the radical content would be even lower after 20 min.

      4) Did the authors establish whether the effect of dATP inhibition on substrate binding is reversible? If dATP is removed, can substrates rebind?

      This is an interesting question. We measured KDs for dATP in the micromolar range and are hence confident that dATP binding is reversible. Our measurements do not, however, directly prove that inhibition of the enzyme is reversible. Nevertheless, it is worth noting that the protein as purified contained significant amounts of dATP and purification conditions had to be optimised to remove dATP. This is evidence that PcNrdD that has “seen” dATP can subsequently bind substrate in the presence of ATP. We will describe the purification more clearly in a revision.

      5) In some figures (Fig. 6e, for example), the cryo-EM density map for the nucleotide component of the model is not continuous over the entire molecule. Can the authors comment on the significance of this phenomenon? Were the ligands validated in any way to ensure that the assignments were made correctly?

      Indeed, we sometimes saw discontinuous density for the nucleotides, both in the active site and in the specificity site. However, the break was almost always near the C5’ carbon atom, which is common to all nucleotides. While we cannot readily explain this phenomenon, the nucleotides refined well with full occupancy, giving B-factors similar to those of the surrounding protein atoms. The identity of the nucleotide could always be inferred from a) the size of the base (purine or pyrimidine); b) the known nucleotide combinations added to the protein before grid preparation; c) prior knowledge on the combinations of effector and substrate that have been found valid for all RNRs since the first studies of allosteric specificity regulation.

      Reviewer #2 (Public Review):

      This manuscript describes the functional and structural characterization of an anaerobic (Class III) ribonucleotide reductase (RNR) with an ATP cone domain from Prevotella copri (PcNrdD). Most significantly, the cryo-EM structural characterization revealed the presence of a flap domain that connects the ATP cone domain and the active site and provides structural insights about how nucleotides and deoxynucleotides bind to this enzyme. The authors also demonstrated the catalytic functions and the oligomeric states. However, many of the biochemical characterizations are incomplete, and it is difficult to make mechanistic conclusions from the reported structures. The reported nucleotide-binding constants may not be accurate because of the design of the assays, which complicates the interpretation of the effects of ATP and dATP on PcNrdD oligomeric states. Importantly, statistical information was missing in most of the biochemical data. Also, while the authors concluded that the dATP binding makes the GRD flexible based on the absence of cryo-EM density for GRD in the dATP-bound PcNrdD, no other supports were provided. There was also a concern about the relevance of the proposed GRD flexibility and the stability of Gly radical. Overall, the manuscript provides structural insights about Class III RNR with ATP cone domain and how it binds ATP and dATP allosteric effectors. However, ambiguity remains about the molecular mechanism by which the dATP binding to the ATP cone domain inhibits the Class III RNR activity.

      Strengths:

      1) The manuscript reports the first near-atomic resolution of the structures of Class III RNR with ATP domain in complex with ATP and dATP. These structures revealed the NxN flap domain proposed to form an interaction network between the substrate, the linker to the ATP cone domain, the GRD, and loop 2 important for substrate specificity. The structures also provided insights into how ATP and dATP bind to the ATP cone domain of Class III RNR. Also, the structures suggested that the ATP cone domain is directly involved in the tetramer formation by forming an interaction with the core domain in the presence of dATP. These observations serve as an important basis for future study on the mechanism of Allosteric regulation of Class III RNR.

      2) The authors used a wide range of methodologies including activity assays, nucleotide binding assays, oligomeric state determination, and cryo-EM structural characterization, which were impressive and necessary to understand the complex allosteric regulation of RNR.

      3) The activity assays demonstrated the catalytic function of PcNrdD and its ability to be activated by ATP and low-concentration dATP and inhibited by high-concentration dATP.

      4) ITC and MST were used to show the ability of PcNrdD to bind NTP and dATP.

      5) GEMMA was used successfully to determine the oligomeric state of PcNrdD, which suggested that PcNrdD exists in dimeric and tetrameric forms, whose ratio is affected by ATP and/or dATP.

      Weaknesses:

      1) Activity assays.

      The activity assays were performed under conditions that may not represent the nucleotide reduction activity. The authors initiated the Gly radical formation and nucleotide reduction simultaneously. The authors also showed that the amount of Gly radical formation was different in the presence of ATP vs dATP. Therefore, it is possible that the observed Vmax is affected by the amount of Gly radical. In fact, some of the data fit poorly into the kinetic model. Also, the number of biological and technical replicates was not described, and no statistical information was provided for the curve fitting.

      The highest turnover activity of PcNrdD measured in presence of ATP was 1.3 s-1 (470 nmol/min/mg), a kcat comparable to recently reported values for anaerobic and aerobic RNRs from Neisseria bacilliformis, Leeuwenhoekiella blandensis, Facklamia ignava, Thermus virus P74-23, and Aquifex aeolicus (PMID: 25157154, PMID: 29388911, PMID: 30166338, PMID: 34314684, PMID: 34941255). The general trend illustrated in Figure 1 is that ATP has an activating effect, whereas high concentrations of dATP have an inactivating effect, which cannot be explained by suboptimal assay conditions since our EPR results consistently show that more radical is formed in incubations with dATP compared to incubations with ATP. Curve fitting methods used are listed in Materials and Methods (as specified in the Figure 1 legend), and standard errors for all specified curve fitting results (from triplicate experiments) are shown in Figure 1.

      2) Binding assays.

      The interpretation of the binding assays is complicated by the fact that dATP binds both a- and s-sites and ATP binds a- and active sites. dATP may also bind the active site as the product. It is unknown if ATP binds s-site in PcNrdD. Despite this complexity, the binding assays were performed under the condition that all the binding sites were available. Therefore, it is not clear which event these assays are reporting.

      Both ITC and MST experiments involving ATP and dATP binding to the a-site were performed in the presence of at least 1 mM GTP substrate (5 mM in MST) to fill the active site, and 1 mM dTTP effector to fill the s-site (specified in the legend to Figure 2). These conditions enable binding of ATP or dATP only to the a-site in the ATP-cone.

      3) Oligomeric states.

      Due to the ambiguity in the kinetic parameters and the binding constants determined above, the effects of ATP and dATP on the oligomeric states are difficult to interpret. The concentrations of ATP used in these experiments (50 and 100 uM) were significantly lower than KL determined by the activity assays (780 uM), while it is close to the Kd values determined by ITC or MST (~25 uM). Since it is unclear what binding events ITC and MST are reporting, the data in Figure 3 does not provide support for the claimed effects of ATP binding. For the effects of dATP, the authors did not observe a significant difference in oligomeric states between 50 or 100 uM dATP alone vs 50 uM dATP and 100 uM CTP. The former condition has dATP ~ 2x higher than the Kd and KL (Figure 1b) and therefore could be considered as "inhibited". On the other hand, NrdD should be fully active under the latter condition. Therefore, these observations show no correlation between the oligomeric state and the catalytic activity.

      The results in Figure 3 show that at in presence of 100 µM ATP plus 100 µM CTP the oligomeric equilibrium is 64% dimers plus 36% tetramers, and in presence of 50-100 µM dATP the oligomeric equilibrium is 32% dimers and 68% tetramers. We agree that there is no clear and strong correlation between oligomeric state and inhibition. We will also try to make it clearer in a revised version. Meanwhile, to add some further clarity, SEC experiments at higher nucleotide concentrations will be included in the revision.

      4) Effects of dATP binding on GRD structure

      One of the key conclusions of this manuscript is that dATP binding induces the dissociation of GRD from the active site. However, the structures did not provide an explanation for how the dATP binding affects the conformation of GRD or whether the dissociation of GRD is a direct consequence of dATP binding or it is due to the absence of nucleotide substrate. Also, Gly radical is unlikely to be stable when it is not protected from the bulk solvent. Therefore, it is unlikely that the GRD dissociates from the active site unless the inhibition by dATP is irreversible. Further evidence is needed to support the proposed mechanism of inhibition by dATP.

      We admit that it has been difficult to propose a direct structural mechanism for transmission of the allosteric signal from the a-site in the ATP-cone to the active site and GRD given that the ATP-cones and linker are disordered in the dATP-bound dimers and that the linker can only be partly modelled in the dATP-bound tetramers. Most likely dATP binding causes a change in the dynamics of the linker region and NxN flap that directly affects substrate binding and simultaneously causes disorder of the GRD, given that all are part of a connected system (described as “nexus” in the manuscript). The structures determined in the presence of dATP and CTP show that CTP cannot bind in the absence of an ordered NxN flap.

      In any case a major conclusion of the work is that dATP does not inhibit the anaerobic RNR by prevention of glycyl radical formation but by prevention of its subsequent transfer. We agree that further evidence is required to support the proposed mechanism but, given the extent of the data already presented in the manuscript, we feel that such studies should be the subject of a future publication.

      5) Functional support for the observed structures.

      Evidence for connecting structural observations and mechanistic conclusions is largely missing. For example, the authors proposed that the interactions between the ATP cone domain and the core domain are responsible for tetramer formation. However, no biochemical evidence was provided to support this proposal. Similarly, the functional significance of the interaction through the NxN flap domain was not proved by mutagenesis experiments.

      We did actually make mutants to verify the observed interactions in the tetramer, but several of them did not behave well in our hands, e.g. with regard to protein stability. Since we have no evidence that oligomerisation is coupled to inhibition, and since we did not observe any conservation between protein sequences in the interaction area, we chose not to pursue this point further. The main merit of the tetramer structures is that they allowed a high-resolution view of dATP binding to the ATP-cone and a comparison to previously observed ATP-cones. Nevertheless, mutation experiments, also including the NxN flap, could be the subject of future work.

      Reviewer #3 (Public Review):

      The manuscript by Bimai et al describes a structural and functional characterization of an anaerobic ribonucleotide reductase (RNR) enzyme from the human microbe, P. copri. More specifically, the authors aimed to characterize the mechanism by how (d)ATP modulates nucleotide reduction in this anaerobic RNR, using a combination of enzyme kinetics, binding thermodynamics, and cryo-EM structural determination. One of the principal findings of this paper is the ordering of a NxN 'flap' in the presence of ATP that promotes RNR catalysis and the disordering of both this flap and the glycyl radical domain (GRD) when the inhibitory effector, dATP, binds. The latter is correlated with a loss of substrate binding, which is the likely mechanism for dATP inhibition. It is important to note that the GRD is remote (>30 Ang) from the binding site of the dATP molecule, suggesting long-range communication of the structural (dis)ordering. The authors also present evidence for a shift in oligomerization in the presence of dATP. The work does provide evidence for new insights/views into the subtle differences of nucleotide modulation (allostery) of RNR through long-range interactions.

      The strengths of the work are the impressive, in-depth structural analysis of the various regulated forms of PcRNR by (d)ATP using cryo-EM. The authors present seven different models in total, with striking differences in oligomerization and (dis)ordering of select structural features, including the GRD that is integral to catalysis. The authors present several, complementary biochemical experiments (ITC, MST, EPR, kinetics) aimed at resolving the binding and regulatory mechanism of the enzyme by various nucleotides. The authors present a good breadth of the literature in which the focus of allosteric regulation of RNRs has been on the aerobic orthologues.

      Given the resolution of some of the structures in the remote regions that appear to be of importance, the rigor of the work could have been improved by complementing this experimental studies with molecular dynamics (MD) simulations to reveal the dynamics of the GRD and loops/flaps at the active site.

      We will discuss this option with expert colleagues.

      The biochemical data supporting the loss of substrate binding with dATP association is compelling, but the binding studies of the (d)ATP regulatory molecules are not; the authors noted less-than-unity binding stoichiometries for the effectors.

      Most of the methods used measure only binding strength, not the number of binding sites (N), whereas ITC also measures number of sites. N is dependent on the integrity of the protein, i.e. the number of protein molecules in a preparation that are involved in binding, and quite often gives lower values than the theoretical number of binding sites.

      Also, the work would benefit from additional support for oligomerization changes using an additional biochemical/biophysical approach.

      SEC (chromatography), GEMMA (mass spectrometry) and cryo-EM were used to study oligomerization. Since each method has restrictions on nucleotide concentrations as well as protein concentrations that can be used, the results are not directly comparable, but all three methods indicate nucleotide dependent oligomerization changes. The SEC results will be included in a revised version.

      Overall, the authors have mostly achieved their overall aims of the manuscript. With focused modifications, including additional control experiments, the manuscript should be a welcomed addition to the RNR field.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Review 1

      Public Review

      The authors set out to develop an organoid model of the junction between early telencephalic and ocular tissues to model RGC development and pathfinding in a human model. The authors have succeeded in developing a robust model of optic stalk(OS) and optic disc(OD) tissue with innervating retinal ganglion cells. The OS and OD have a robust pattern with distinct developmental and functional borders that allow for a distinct pathway for pathfinding RGC neurites.

      This study falls short on a thorough analysis of their single cell transcriptomics (scRNAseq). From the scRNAseq it is unclear the quality and quantity of the targeted cell types that exist in the model. A comparative analysis of the scRNAseq profiles of their cell-types with existing organoid protocols, to determine a technical improvement, or with fetal tissue, to determine fidelity to target cells, would greatly improve the description of this model and determine its utility. This is especially necessary for the RGCs developed in this protocol as they recommend this as an improved model to study RGCs.

      Future work targeting RGC neurite outgrowth mechanisms will be exciting.

      We are grateful to Reviewer 1 for these constructive comments. We added plots for quality control in supp. Fig. S5 and quantification of cell clusters in Tab. 1. We compared the transcriptomes between CONCEPT organoids, Gabriel et al.’s brain/optic organoids (Gabriel et al., 2021; PMID: 34407456), and human fetal retinas HGW9 (Lu et al., 2020; PMID: 32386599), which strongly support our findings (Figs. 5, 6; see responses below for details). Besides FGFs/FGFR signaling, scRNA-seq identified additional candidate molecules that may provide axon guidance functions, and these candidate molecules are the focus of our future study.

      Recommendations For The Authors

      This study falls short on a thorough analysis of their single cell transcriptomics (scRNAseq).

      The scRNAseq figure needs to be better presented to allow for an adequate assessment of the model. As written the classification of the different clusters is hard to follow. A representative labeling of the suspected identity of the clusters in an infographic would aid the figure. Since it is hard to follow it is difficult to determine how well clusters correlate with designated cell types. PAX2 expression designating optic stalk seems to correlate well with the group 2 and the designation of the Optic disk, however PAX2 expression for the optic stalk is half in group 4 and half in group 9. what are group 4 and 9? It is also not clear how the thresholding for the given clusters was reached.

      To present the scRNA-seq dataset in a clearer way, we added dotted red lines in Fig. 4C to delineate eye (mostly retinal), telencephalic, and mixed cell populations. In Tab. 1, we showed assigned cell types, counts, and percentage for each cluster.

      PAX2+ VSX2- optic stalk cells were at edges of clusters 4, 8, 9 that had dorsal telencephalic identities. Clusters 4, 8, 9 were largely segregated along cell cycle phases (Fig. 4A, B, F), and these clusters differentially expressed gene markers SOX3, FGFR2, PRRX1, EDNRB, and FOXG1 (supp. Fig. S7A-S7D; Fig. 4C). In E14.5 mouse embryos, mouse orthologs of SOX3, FGFR2, PRRX1, and EDNRB were specifically expressed in dorsal telencephalon (Fig. S8AS8E); Foxg1 was specifically expressed in both dorsal and ventral telencephalon. Therefore, clusters 4, 8, and 9 have dorsal telencephalic identities, and PAX2+ VSX2- optic stalk cells are at edges of these telencephalic clusters. Lines 259-261; 297-298.

      Thresholding of cell clusters were determined by cell clustering parameters, which is described in Materials and Methods: FindVariableFeatures (selection.method = "vst", nfeatures = 2000), ScaleData, RunPCA, ElbowPlot, FindNeighbors (dims = 1:17), FindClusters (resolution = 0.5), and RunUMAP(dims = 1:17). Lines 717-721.

      The authors should make an attempt to calculate which different cell types are present and in what proportions. They should also discuss groups that are confounding. Since this is the first description of this technique it is critical to know how much of the model represents mature welldefined cells of interest.

      We assigned cell types to clusters and calculated cell counts and proportions of each cluster (Tab.1). The only undetermined cell cluster was cluster 13, which was the smallest one. We described top DEGs of cluster 13 and discussed the cluster. Lines 266-268.

      Concerning the focus on RGC isolation. It is interesting that CNTN2 can be used for an effective isolation however, there are many protocols for generating RGCs. Is CNTN2 expression unique to this protocol? If the authors claim that this protocol could be used for studying glaucoma, how does this protocol improve on the quality of RGCs compared to other protocols?

      RGC-specific CNTN2 expression was not unique to CONCEPT organoids. We isolated RGCs via CNTN2 from both CONCEPT organoids and 3-D retinal organoids in suspension. Indeed, isolated RGCs shown in the manuscript were from 3-D retinal organoids (see Materials and Methods for details). Importantly, our single cell RNA sequencing analysis demonstrated that CNTN2 was also differentially expressed in early RGCs from human fetal retinas (Fig. 5L, 5M). Therefore, isolation of human early RGCs via CNTN2 should be applicable widely.

      In CONCEPT organoids, RGC differentiation and directional axon growth were very efficient. Our study supports a model that FGFs from optic disc cells efficiently induce RGC differentiation and directional axon growth in adjacent retinal progenitor cells, as FGFR inhibitions drastically decreased the number of RGC somas and directional axon growth (Fig. 9). Therefore, CONCEPT organoids are useful in studying axon guidance cues in humans, which knowledge is much needed for axon regrowth from RGCs that are damaged in glaucoma. Notably, juvenile glaucoma gene CYP1B1 was found in assigned optic disc cells in both CONCEPT organoids and human fetal retinas (Fig. 4I, 5D), making CONCEPT organoids a testable model in studying the functions of CYP1B1 in human cells.

      A comparative analysis of the scRNAseq profiles of their model with existing organoid protocols, to determine a technical improvement, or with fetal tissue, to determine fidelity to target cells, would greatly improve the description of this model and determine its utility.

      In the revised manuscript, we compared the transcriptomes between CONCEPT organoids, Gabriel et al.’s brain/optic organoids (Gabriel et al., 2021; PMID: 34407456), and human fetal retinas HGW9 (Lu et al., 2020; PMID: 32386599). Gabriel et al. (2021) report “axon-like” projections in their “optic vesicle-containing brain organoids”. We found that PAX2+ optic disc, PAX2+ optic stalk, FOXG1+ telencephalic, and VSX2+ neuroretinal cell clusters that were found in CONCEPT organoids did not exist in Gabriel et al.’s organoids (supp. Fig. S12), indicating striking differences between Gabriel et al.’s organoids and our CONCEPT telencephalon-eye organoids.

      On the other hand, CONCEPT organoids and human fetal retinas HGW9 had similar expression signatures (Fig. 5). First, we identified a PAX2+ cell cluster in the human retinas HGW9. 64/113 DEGs in the PAX2+ cluster from human fetal retinas HGW9 were also DEGs of cluster 2 (assigned PAX2+ optic disc cells) from CONCEPT organoids. Second, CNTN2 was also differentially expressed in early RGCs of human fetal retinas. Third, when cells in cluster 18 and retinal progenitor clusters from the HGW9 dataset were combined with cells in clusters 2, 4, 5, 7 from the CONCEPT dataset for Seurat anchor-based clustering, cells in cluster 18 from HGW9 (H18) were grouped with cluster 2 from CONCEPT organoids (C2, assigned optic disc; N), and these cells expressed both PAX2 and VSX2 (arrowheads in Fig. 5N-5R). A small portion of H18 cells were grouped with cluster 4 from CONCEPT organoids (C4, assigned optic stalk; N), and these cells expressed PAX2 but not VSX2 (arrows in Fig. 5N-5R). Fourth, CONCEPT organoids and human fetal retinas shared many enriched GO terms in DEGs of assigned optic disc cells (Fig. 6).

      Collectively, transcriptomic comparisons support that our CONCEPT organoids are innovative and similar to human fetal retinas. Lines 325-392.

      Not clear what reporting on Lens cells in Figure 3 adds to the focus of the manuscript. The figure seems out of place with the flow of the manuscript.

      Lens cells were obvious in CONCEPT organoids. The presence of lens cells indicates that cysts have the developmental potential for both neural and non-neural anterior ectodermal cells. For a better flow, we added a transitional sentence at the beginning of the lens section. Lines 207208.

      Reviewer #2

      Public Review

      The study by Liu et al. reports on the establishment and characterization of telencephalon eye structures that spontaneously form from human pluripotent stem cells. The reported structures are generated from embryonic cysts that self-form concentric zones (centroids) of telencephaliclike cells surrounded by ocular cell types. Interestingly, the cells in the outer zone of these concentric structures give rise to retinal ganglion cells (RGCs) based on the expression of several markers, and their neuronal morphology and electrophysiological activity. Single-cell analysis of these brain-eye centroids provides detailed transcriptomic information on the different cell types within them. The single-cell analysis led to the identification of a unique cellsurface marker (CNTN2) for the human ganglion cells. Use of this marker allowed the team to isolate the stem cell-derived RGCs.

      Overall, the manuscript describes a method for generating self-forming structures of brain-eye lineages that mimic some of the early patterning events, possibly including the guidance cues that direct axonal growth of the RGCs. There are previous reports on brain-eye organoids with optic nerve-like connectivity; thus, the novel aspect of this study is the self-formation capacity of the centroids, including neurons with some RGC features. Notably, the manuscript further reports on cell-surface markers and an approach to generating and isolating human RGCs.

      Recommendations For The Authors

      The following significant issues, however, need to be addressed:

      The authors show RGC-like cells that grow axons toward the Pax2+ cells, suggesting that this is a model for RGC axon pathfinding. Is there support from transcriptomic data on the expression of guidance molecules? In addition, the authors need to characterize Pax2+ cells further. Do some give rise to astrocyte-like cells?

      We assessed the expression of known axon guidance genes in CONCEPT organoids. FGF8 and FGF9 trigger axon outgrowth in motor neuron column explants (Shirasaki et al., 2006). In CONCEPT organoids, FGF8 and FGF9 were differentially expressed in assigned optic disc cells; FGFR inhibition drastically decreased the number of RGC soma and directional axon growth (Fig. 9). In addition, SEMA5a and EFNB1 were expressed in both assigned optic disc and stalk cells, EFNB2 was highly expressed in assigned optic disc cells, and NTN1 was mostly expressed in assigned optic cells (supp. Fig. S12). Lines 307-310.

      We compared the transcriptomes between CONCEPT organoids, Gabriel et al.’s brain/optic organoids (Gabriel et al., 2021; PMID: 34407456), and human fetal retinas HGW9 (Lu et al., 2020; PMID: 32386599). Gabriel et al. (2021) report “axon-like” projections in their “optic vesicle-containing brain organoids”. We found that PAX2+ optic disc, PAX2+ optic stalk, FOXG1+ telencephalic, and VSX2+ neuroretinal cell clusters that were found in CONCEPT organoids did not exist in Gabriel et al.’s organoids (supp. Fig. S12), indicating striking differences between Gabriel et al.’s organoids and our CONCEPT telencephalon-eye organoids. Lines 327-345.

      To authenticate PAX2+ cells in CONCEPT organoids, we analyzed a single-cell RNA-seq dataset of human fetal retinas HGW9 and identified a similar PAX2+ cell population, cluster 18 (Fig. 5). Expression signatures of PAX2+ cells between CONCEPT organoids and human fetal retinas HGW9 were similar. Notably, cluster 18 differentially expressed PAX2, COL9A3, CYP1B1, SEMA5A, and FGF9 (Fig. 5B-5F), which were top DEGs of cluster 2 in CONCEPT organoids (Fig. 4F, 4G, 4I, 4K; SEMA5A was shown in supp. Fig. S12A). Overall, 64/113 DEGs of cluster 18 in human fetal retinas HGW9 were also DEGs of cluster 2 in CONCEPT organoids. In both HGW9 and CONCEPT organoids, expression of OLIG2, CD44, and GFAP was undetectable (supp. Fig. S14), indicating that astrocytes had not been generated yet at these stages.

      When cells in cluster 18 and retinal progenitor clusters from the HGW9 dataset were combined with cells in clusters 2, 4, 5, 7 from the CONCEPT dataset for Seurat anchor-based clustering, cells in cluster 18 from HGW9 (H18) were grouped with cluster 2 from CONCEPT organoids (C2, assigned optic disc; N), and these cells expressed both PAX2 and VSX2 (arrowheads in Fig. 5N-5R). A small portion of H18 cells were grouped with cluster 4 from CONCEPT organoids (C4, assigned optic stalk; N), and these cells expressed PAX2 but not VSX2 (arrows in Fig. 5N5R).

      We then compared functional annotations of DEGs (top 200 genes) of cluster 2 in CONCEPT organoids and DEGs (113 genes) of cluster 18 in human fetal retinas HGW9. Top GO terms in GO:MF, GO:CC, and GO:BP are shown (Fig. 6). For DEGs of cluster 2 in CONCEPT organoids, top enriched GO terms in GO:MF, GO:CC, and GO:BP were extracellular matrix structural constituent, collagen-containing extracellular matrix, and system development, respectively. Additional interesting GO:BP terms included axon development, astrocyte development, eye development, response to growth factor, cell adhesion, cell motility, neuron projection development, glial cell differentiation, and signal transduction. For DEGs of cluster 18 in human fetal retinas HGW9, top enriched GO terms in GO:MF, GO:CC, and GO:BP were cell adhesion molecule binding, extracellular space, and developmental process, respectively. Many GO terms were enriched in both samples, further indicating transcriptomic similarities in PAX2+ optic disc cells between CONCEPT organoids and human fetal retinas. Notably, GO terms astrocyte differentiation, neuron projection development, and glial cell differentiation were enriched in the DEGs of assigned optic disc cells for both CONCEPT organoids and human fetal retinas, consistent with expectations.

      Transcriptomic comparisons between CONCEPT organoids and human fetal retinas are found in lines 346-392.

      The Vsx2+Pax2+ population is not typically detected in vivo in the developing mouse eye. The authors claim that they detected them in vivo, but the data supporting this statement are lacking.

      We demonstrate that assigned optic disc cells expressed both VSX2 and PAX2, and this statement is trued for CONCEPT organoids and human fetal retinas HGW9 (Fig. 5N-5R). Please see the underlined sentence in the response to the comment above.

      Do the RGCs express subtype-specific markers? Do they detect markers of other retinal neurons typically born early in development-cones, amacrine cells, horizontal cells? The authors need to compare the transcriptome of different clusters to the published datasets from human and mouse retinae.

      The stage of CONCEPT organoids for scRNA-seq was at an early stage. In this dataset, subtypes of RGCs were undetectable. Isolated RGCs via CNTN2 were at more advanced stages. Distinct expression of POU4F2, ISL1, RBPMS, and SNCG indicate multiple subtypes of RGCs (Fig. 7L-7P).

      We did find other early retinal neurons in the scRNA-seq dataset: photoreceptor cells, amacrine/horizontal cells in CONCEPT organoids (Fig. 4U-4X), and these cells were also in cluster 11 in which RGCs were found.

      We performed transcriptomic comparisons between CONCEPT organoids, brain/optic organoids, and human fetal retinas. We found that PAX2+ optic disc, PAX2+ optic stalk, FOXG1+ telencephalic, and VSX2+ neuroretinal cell clusters that were found in CONCEPT organoids did not exist in Gabriel et al.’s organoids, indicating striking differences between Gabriel et al.’s organoids and our CONCEPT telencephalon-eye organoids (supp. Fig. S13). On the other hand, we found that expression signatures of CONCEPT organoids and human fetal retinas are similar (Figs. 5, 6).

      Transcriptomic comparisons are found in lines 325-392.

      Fig. 3: where are the "lens like" cells located? The structures in panels B and D look very different. Are these lens-cells toward the periphery or scattered throughout?

      Lens cells were dispersed in the zone in which neural retinal cells are located, which is shown in a low-magnification image (Fig. 3K). Panel B and D in Figure 3 were at different stages. At early stages, lens clusters were small (Fig. 3B). At later stages, lens clusters became bigger (Fig. 3D).

      Fig. 3K and L, TEM images: how do the authors know that these are lens cells?

      Western blot of these transparent cell clusters demonstrated that they were lens cells (Fig. 3L).

      Fig. 5: The authors claim that a reduced number of Pax2+ cells is associated with entry of the axons. It is not clear if this is just due to physical barriers or to active axon guidance.

      We believe that Reviewer 2 referred to the gap region of PAX2 expression in Fig. 7A, 7F. RGC axons grew toward and along adjacent PAX2+ VSX2+ cells. Since PAX2+ VSX2+ cells grossly formed a circular shape, RGC axons followed this circular shape. In a gap region of PAX2 expression, RGC axons exited the circle. The association of RGC axon growth with PAX2+ VSX2+ cells was very robust. Besides PAX2+ cell populations, we did not find any other cell populations that directed RGC axon growth.

      Fig. 5K: The authors refer to ALDH1A3 expression in the optic disk, but the presented section does not include the optic disk. In addition, ALDH1A3 is expressed in other regions of the developing retina (Fig. 5K, ref 71).

      We are sorry we did not make it clear. We referred to Li et al.’s (2000) paper (Mech Dev 95, 283-289) for Aldh1a3 expression in the optic stalk. Figure 7K was used to shown Aldh1a3 expression in peripheral retinas on sections.

      Line 263, Reference 68: The authors claim that col13A1 is specific to the human optic disk. However, col13A1 is expressed in many additional eye lineages (PMID: 10865988).

      We are sorry we did not make it clear. We meant that Col13A1 is prominently expressed in the optic disc, which is clearly shown in the referred paper (Figure 3D in the paper PMID: 10865988).

      The authors show that inhibiting FgfR results in fewer RGCs and loss of directed axonal growth. The number of cells is drastically reduced; thus, the relevance of the finding directly to axon guidance is not resolved.

      FGFR inhibitions drastically the number of RGC somas (Fig. 9F-9K). Additionally, remaining RGCs nearly did not grow directional axons (arrowheads in Fig. 9K), and a few remaining axons wandered around (arrow in Fig. 9K), indicating the role of FGF/FGFR signaling in RGC differentiation and directional axon growth.

      Fig. 1H and J: Vsx2 is outside the centroid in panels H and I, but inside the centroid in panels J and K. It is not clear what part of the centroid is shown. This needs to be clarified by adding a scheme.

      We are sorry we did not make it clear. We added separate-channel images showing VSX2 and PAX6 expression (supp. Figs. S1, S2) and a new diagram (left panel in Fig. 1B). Overall, FOXG1, VSX2, and PAX6 expression at days 15-17 formed three concentric zones spanning from the center to the periphery. At days 22-26, VSX2 expression expanded peripherally, largely overlapping PAX6 expression (supp. Figs. S1, S2).

      Pax6 should be in all cells, also on day 17. Show the separate channels, including DAPI.

      We added separate-channel images (supp. Figs. S1, S2). In cysts, PAX6 was expressed in all cells. After cysts attached to the culture surface and grew as colonies, distinct levels of PAX6 expression emerged in concentric zones. At days 17 and 26, PAX6 expression at the central zone (which cells expressed FOXG1) became lower, which is obvious in separate-channel images (supp. Figs. S1, S2). Consistently, PAX6 expression was low in FOXG1+ telencephalic cells in the scRNA-seq (Fig. 4C, 4D).

      Lines 27-30: this is a long and complex sentence which needs to be clarified.

      We broke it into a few sentences to make it clearer.

      Line 43: fix "Retina" to "Retinal"

      We fixed it.

      Lines 376-377: repeated "mechanisms of".

      We fixed it.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We are grateful for the comments from the reviewers, which helped us to strengthen our analyses and communicate more effectively the details of our findings and their significance. To address their criticisms, we have performed new analyses and revised the text and figures. We believe the manuscript was significantly improved. We provide the line number of important parts of the text that were changed, here in this letter. Below, we address the specific comments from the reviewers in detail.

      Reviewer #1 (Public Review):

      Gehr and colleagues used an elegant method, using neuropixels probes, to study retinal input integration by mouse superior collicular cells in vivo. Compared to a previous report of the same group, they opto-tagged inhibitory neurons and defined the differential integration onto each group. Through these experiments, the author concluded that overall, there is no clear difference between the retina connectivity to excitatory and inhibitory superior colliculus neurons. The exception to that rule is that excitatory neurons might be driven slightly stronger than inhibitory ones. Technically, this work is performed at a high level, and the plots are beautifully conceived, but I have doubts if the interpretation given by the authors is solid. I will elaborate below.

      Some thoughts about the interpretation of the results.

      My main concern is the "survivor bias" of this work, which can lead to skewed conclusions. From the data set acquired, 305 connections were measured, 1/3 inhibitory and 2/3 excitatory. These connections arise from 83 RGC onto 124 RGC (I'm interpreting the axis of Fig.2 C). Here it is worth mentioning that different RGC types have different axonal diameters (Perge et al., 2009). Here the diameter is also related to the way cells relay information (max frequencies, for example). It is possible that thicker axons are easier to measure, given the larger potential changes would likely occur, and thus, selectively being picked up by the neuropixels probe. If this is the case, we would have a clear case of "survival bias", which should be tested and discussed. One way to determine if the response properties of axonal termini are from an unbiased sample is to make a rough functional characterization as generally performed (see Baden et al. 2006). This is fundamental since all other conclusions are based on unbiased sampling.

      First of all, we want to thank the reviewer for the detailed and constructive comments based on which we refined the analysis and updated the figures. We hope that our changes adequately address the concerns of reviewer #1.

      We would like to clarify that Fig. 2C represents an example from a single experiment. In total, we recorded 326 RGCs and 680 SC neurons in total, with 161 individual RGCs making connections onto 183 individual SC neurons. Moreover, we thank the reviewer for bringing up that important point about the potential “survivor bias”. To address this concern, we would like to provide some clarifications (see below). In addition, we now added the point that different RGCs can have different axonal diameter as requested by the reviewers (line 605).

      It is important to note that our approach does not capture the total pool of retinal inputs. Moreover, we did not want to convey the impression that our approach equally captures all retinal inputs to a given SC neuron, as this is not the case. Likewise, it is important to note that our current method does not allow for the measurement of axonal diameters. To obtain an estimate of axonal thickness, complementary techniques such as imaging/staining or electron microscopy would be needed. Our study aimed at characterizing connected RGC-SC pairs and how excitatory and inhibitory neurons in the SC integrate retinal inputs, providing valuable insight on their wiring principles.

      We greatly appreciate the reviewer for highlighting this limitation and we now address these points in the discussion of the revised version of our manuscript (line 603).

      Regarding the suggested “rough functional characterization” of the RGCs. We have thought about this analysis and unfortunately, we did not present the necessary stimuli, e.g. chirp, in all experiments to be able to perform this analysis. Moreover, the dataset represented in this work contains only 326 RGC neurons, with 161 identified RGCs making connections to SC neurons. Thus, it is unlikely that our dataset uniformly covers all ~30 RGC types in the mouse. However, given that our dataset is the first measurement of RGC inputs to SC INs and SC EXNs in vivo, we believe it provides a first step and a foundation for future studies focusing on specific RGC types to refine our understanding of the RGC-SC circuitry. We discuss this point now in the revised manuscript (line 586).

      One aspect that is not clear to me is to measure of connectivity strength in Figure 2. Here it seems that connectivity strength is directly correlated with the baseline firing rate of the SC neuron (see example plots). If this is a general case, the synaptic strength can be assumed but would only differ in strength due to the excitability of the postsynaptic cell. This should be tested by plotting the correlation coefficient analysis against the baseline firing rate.

      We appreciate the reviewer for bringing up this important point. From the analysis perspective, we would like to clarify that the efficacy measure is independent of the baseline firing rate. It quantifies the probability of adding spikes on top of the baseline rate by subtracting the baseline firing rate before measuring the area of the peak (Usrey et al., 1999).

      Furthermore, we acknowledge the reviewer’s interesting and valuable observation about the relationship of the firing rate and the excitability of the SC neuron in the example plots. To test whether the efficacy is directly related to the mean firing rate, we conducted additional analyses to show the efficacy measure as a function of the mean firing rate (Author response image 1 and Figure 2G). To that end, we utilized two different measures of firing rate: the mean firing rate during spontaneous activity (gray screen) over a duration of 10 sec (across 30 trials), which was interleaved with the natural movie presentations, and the overall firing rate throughout the entire recording session. Our findings indeed reveal a positive correlation, as predicted by the reviewer (Author response image 1, gray screen: EXC r = 0.22721; p < 0.00081; INH: r = 0.34677, p= 0.00076; entire recording: EXC r = 0.42685; p < 0.0005; INH: r = 0.43543, p = 0.00002).

      Author response image 1.

      Efficacy measure of connected RGC-SC pairs as a function of the mean firing rate during different stimulus conditions: during spontaneous activity (gray screen, left) and throughout the entire recording session (right).

      However, it is important to note that although we observe a correlation on the population level, the relationship between postsynaptic firing and efficacy is diverse. We identify pairs with strong connections despite the firing rate of the postsynaptic SC cell being low. Likewise, we also find pairs with weak connections despite the firing rate of the SC neuron being high (Author response image 2). These observations suggest that factors beyond the postsynaptic firing contribute to the efficacy of the connection. This is exemplified by the fact that SC neurons can receive both strong and weak connections from their convergent presynaptic RGC pool.

      Author response image 2.

      RGC-SC connectivity. Cross-correlograms showing 4 connected RGC-SC pairs (top) with two RGCs connecting onto the same SC neuron. Raster plots of SC neuron spiking activity in response to firing of the presynaptically connected RGC. The same SC neuron can receive both strong and weak RGC inputs.

      In summary, we thank the reviewer for bringing up this important question, and we believe that our additional analyses shed light on the relationship between firing rate and efficacy. This result is very interesting, and we include these findings in the updated Figure 2 in the revised manuscript (panel 2G) in exchange with the panel of the peak latency. Moreover, we also address this point now in the results and discussion section of the revised manuscript (line 280 and line 525).

      My third concern is the assessment of functional similarity in Fig. 3. It is not clear to me why the similarity value was taken by the arithmetic mean. For example, even if the responses are identical for one connected pair that exclusively responds either to the ON or OFF sparse noise, the maximal value can only be 0.67. Perhaps I misunderstood something.

      We thank the reviewer for raising this point about the clarification regarding the calculation of the similarity index. We apologize for any confusion caused by our description on the similarity index calculation. To clarify, the similarity index was calculated specifically between the responses of the RGC and the responses of the postsynaptic SC neuron, rather than between the neurons and the visual stimulus. As a result, the similarity index reflects the degree of similarity in the responses of the connected pairs. Therefore, if the responses of the RGC and the connected postsynaptic neuron are identical, regardless of whether they respond exclusively to ON, only to OFF, or a mixture of ON-OFF, the similarity index will be one. We have updated the relevant part in the methods section to make this point clearer to the reader (line 917).

      Secondly, correlations in natural(istic) movies can differ dramatically depending on the frame rate that the movie was acquired and the way it is displayed to the animal. What looks natural to us will elicit several artifacts at a retinal level, e.g., due to big jumps between frames (no direction-selective response) or overall little modulation (large spatial correlations). I would rather opt for uniform stimuli, as suggested previously. Of course, these are also approximations but can be easily reproduced by different labs and are not subjected to the intricacies of the detailed naturalistic stimulus used.

      We agree with the reviewer that spatiotemporal correlations of naturalistic stimuli are complex. To address this point, we added two stimuli with little spatiotemporal correlations to the similarity analysis. The first stimulus we added is a phase scrambled version of the natural movie (PSM, also taken from Froudarakis et al. (2014)). The second is a binary white noise checkerboard stimulus. These stimuli were presented randomly interleaved with the natural movie, for 30 trials each. The similarity index analysis revealed that even with uniform stimuli included, the average similarity index is correlated to the efficacy. We show this data now in Figure 3.

      Fourth. It is important to control the proportion of inhibitory cells activated optogenetically across the recording probe. Currently, it is not possible to assess if there are false negatives. One way of controlling for this would be to show that the number of inhibitory interneurons doesn't vary across the probe.

      We thank the reviewer for highlighting this important aspect of the experiment and analysis. We are aware of this point and therefore took extra care to minimize the biases that could be introduced by our recording and stimulation method. Our approach to include recorded excitatory and inhibitory neurons was conservative, briefly:

      1. We included only excitatory and inhibitory neurons that were within the SC, defined by visually driven activity and continuous retinotopy (see method).

      2. We further restricted the included neurons to neurons that were located within the boundaries of the LED evoked responses, i.e. the recording channels with optogenetic evoked MUA responses within the SC (Figure 1 – figure supplement 1).

      3. Both excitatory and inhibitory SC neurons were selected in this way.

      These inclusion criteria were specifically designed to avoid sampling excitatory neurons from regions on the Neuropixels probe that lacked optogenetically evoked responses and thus to minimize the number of falsely labeled excitatory neurons.

      To illustrate these inclusion criteria and the resulting spatial distribution of the selected excitatory and inhibitory SC neurons along the 384 channels of the Neuropixels probe, we now added a supplementary figure (Figure 1 – figure supplement 1). This figure shows the multi- unit activity in response to optogenetic stimulation and the distribution of inhibitory and excitatory single units within the range of channels that are activated via LED stimulation for 3/11 selected experiments. This highlights that we employed stringent criteria for determining the boundaries and selecting which neurons to include in our study. The distribution of excitatory and inhibitory SC neurons is not significantly different for 9/11 experiments (Wilcoxon rank-sum test, p values = 0.307, 0.0115, 0.755, 0.834, 5.0110-6, 0.79, 0.80, 0.26, 0.33, 0.08, 0.13). Moreover, in the two significantly different experiments only 2 RGC-SC EXC pairs were located in the region without identified SC INs, and thus will not affect the results. We now address this point in the methods section (line 859).

      Fifth. In Fig. 4, the ISI had a minimal bound of 5 ms. Why? This would cap the firing rate at 200Hz, but we know that RGC in explants can fire at higher frequencies for evoked responses. I would set a lower bound since it should come naturally from the after-depolarization block.

      The chosen 5 ms minimal bound was in the range used in previous literature, e.g. 4-30 ms in Usrey et al. 1998 (Usrey et al., 1998). To address the question of the reviewer, we re-analyzed the data with a lower bound of 2 ms (2 – 30 ms) to include RGCs that fire at higher frequencies than 200Hz. However, we did not observe a clear difference between the 2-30 and 5-30 ms groups for inhibitory connections (SC IN: p = 0.604). Only the excitatory connections show a statistically significant difference (p = 0.011), however, the effect size is small (Cohen’s d = EXC = 0.063, INH = 0.030). Nonetheless we updated a panel in figure 4 to represent the 2-30 ms group (Figure 4F).

      Another aspect that remains unclear is to what extent the paired-spike ratio depends on the baseline firing rate. This would change the interpretation from the particular synaptic connection to the intrinsic properties of the cell and is plausible since the bassline firing rate varies tremendously.

      To address how the paired-spike ratio depends on the baseline firing rate we plotted the change of PSR depending on ISI as suggested by the reviewer.

      One related analysis would be to plot the change of PSR depending on the ISI. It would be intuitive to make a scatter plot for all paired spikes of all recorded neurons (separated into inhibitory and excitatory) of ISI vs. PSR.

      We appreciate the valuable suggestion from the reviewer. We have now separated the ISIs into distinct groups spanning 5 ms intervals represented in Author response image 3, right. These intervals range from 5-10 ms up to 25-30 ms. Notably, we observe a difference between the excitatory and inhibitory populations. The excitatory population exhibits a monotonic decrease in mean PSR across the intervals, while the inhibitory population shows a peak around 10/15 ms.

      Author response image 3.

      Change of mean paired-spike ratio (PSR) depending on ISI. Left) Comparison of PSR between two groups of different ISIs. The 2-30 ms group ensures to include high-firing RGCs (excitatory pairs 2-30 vs 5-30 ms p = 0.011; inhibitory pairs 2-30 vs 5-30 ms p = 0.604, Wilcoxon signed-rank). Right) PSR for groups of different ISI intervals. Mean PSR ± SEM for excitatory groups: 2.0±0.09, 1.75±0.09, 1.51±0.05, 1.31±0.05, 1.2±0.05; inhibitory groups: 1.35±0.06, 1.51±0.09, 1.5±0.1,1.22±0.06, 1.21±0.07. p E vs I (within group): 1.5510-5, 9.55±10-2, 4.21±10-1, 3.74±10-1, 6.22 ±10-1, Wilcoxon rank-sum test.

      Panel 4E is confusing to me. Here what is plotted is efficacy 1st against PSR (which is efficacy 2nd/efficacy 1st). Given that you have a linear relation between efficacy 1st and efficacy 2nd (panel 4C), you are essentially re-plotting the same information, which should necessarily have a hyperbolic relationship: [ f(x) = y/x ]. Thus, fitting this with a linear function makes no sense and it has to be decaying if efficacy 2nd > efficacy1st as shown in 4C.

      We thank the reviewer for raising this question which helped us to improve the representation and disruption of the results shown in figure 4. Panel 4E is intended to investigate whether there is a correlation between the efficacy strength (eff 1st) and the amount of facilitation (PSR). From panel 4C it is already evident that the data points for high efficacies lie closer to the unity line, as compared to the data points for low efficacies. This suggests that the PSR is stronger for connections with smaller efficacies 1st. To quantify this relationship, we have plotted the efficacy 1st vs the PSR in panel 4E, which thus adds new information to the figure. Importantly, this panel is shown in log-log scales, and therefore the decaying relationship is not evident. If we had shown the data on linear-linear scale, the decaying function would have been evident (Author response image 4). And indeed, as the reviewer pointed out, we cannot fit a hyperbolic relationship with a linear function. This is exactly the reason why we show the data in log-log scale and also estimate the Pearson correlation also from the logs of the efficacies and PSRs.

      In Author response image 4 we show the relationship plotted on linear scale using an approach to fit the hyperbolic relationship employing a hyperbolic cosecant function 𝑎/𝑠𝑖𝑛ℎ(𝑏 ∗ 𝑥) + 𝑐.

      Author response image 4.

      Relationship between efficacy to 1st RGC and PSR visualized on linear scale using a hyperbolic fitting approach 𝑎/𝑠𝑖𝑛ℎ(𝑏 ∗ 𝑥) + 𝑐.

      Finally, in Figure 5, the perspective is inverted, and the spike correlations are seen from the perspective of SC neurons. Here it would also be good to plot the cumulative histograms and not look at the averages.

      We added the cumulative histogram in Figure 5 (panel B), in addition to represent the raw data points and the mean.

      Regarding the similarity index and use of natural stats, please see my previous comments. Also, would it be possible to plot the contribution v/s the firing rate with the baseline firing rate with no stimulation or full-field stimulation? This is important since naturalistic movies have too many correlations and dependencies that make this plot difficult to interpret.

      We now show the contribution vs firing rates for different stimulus conditions in a new figure supplement (Figure 5- figure supplement 1). We added the correlations to the different stimuli for baseline firing rate with no stimulation (gray background), full-field stimulation (checkerboard) and phase scrambled natural movie.

      Overall, the paper only speaks from excitatory and inhibitory differences in the introduction and results. However, it is known that there are three clear morphologically distinct classes of excitatory neurons (wide-field, narrow-field, and stellate). This topic is touched in the discussion but not directly in the context of these results. Smaller cells might likely be driven much stronger. Wide-field cells would likely not be driven by one RGC input only and will probably integrate from many more cells than 6.

      We thank the reviewer for this comment. We agree with the reviewer that addressing how the different excitatory and inhibitory cell-types integrate RGC input is important to understand the visual processing mechanisms in the SC. The presented study aimed at comparing the excitatory and inhibitory population in general using the VGAT-ChR2 mouse line. Understanding how specific genetically defined cell-types integrate RGC inputs is clearly very interesting and should be done. Unfortunately, the mouse lines that would allow targeting genetically identified inhibitory cell-types are still limited and therefore we can only use functional measurements to assess different types of neurons in the SC. We now address this point about distinct SC cell-types in the discussion (line 643).

      One possible functional measurement is the size of the receptive field, which, to some degree, could be used as a proxy for different morphologies, i.e. small receptive fields could hint towards compact morphology while large receptive fields could indicate a wider morphology. It is known for example that narrow-field and stellate cells have small RF sizes, while wide-field cells have large RFs. We studied the relationship between the RF size and spike waveform duration but did not find a significant correlation (Figure R6). Moreover, the spike waveform duration, as discussed in the manuscript, is not a valid criterion to separate EXNs and INs in the SC, as it is common practice in the cortex. We now also looked into whether the connectivity strength is related to the RF size. Interestingly, while in the current dataset we do not find a significant correlation between the efficacy and the receptive field size for both EXN and IN (Author response image 5, left), we do find a significant negative correlation between contribution and receptive field size for the excitatory neurons (Author response image5, right). This result indicates that SC excitatory neurons with small receptive fields are more strongly coupled to the RGC input as compared to neurons with larger receptive fields.

      Author response image 5.

      Relationship between RF size and connectivity measures (efficacy and contribution) for RGC-SC EXN and RGC-SC IN pairs (two-sided Wilcoxon rank-sum test).

      Reviewer #2 (Public Review):

      This study follows up on a previous study by the group (Sibille et al Nature Communications 2022) in which high density Neuropixel probes were inserted tangentially through the superficial layers of the superior colliculus (SC) to record the activity of retinocollicular axons and postsynaptic collicular neurons in anesthetized mice. By correlating spike patterns, connected pairs could be identified which allowed the authors to demonstrate that functionally similar retinal axon-SC neuron pairs were strongly connected.

      In the current study, the authors use similar techniques in vGAT-ChR2 mice and add a fiber optic to identify light-activated GABAergic and non-light-activated nonGABAergic neurons. Using their previously verified techniques to identify connected pairs, within regions of optogenetic activation they identified 214 connected pairs of retinal axons and nonGABAergic neurons and 91 pairs of connected retinal axons and GABAergic neurons. The main conclusion is that retinal activity contributed more to the activity of postsynaptic nonGABAergic SC neurons than to the activity of postsynaptic GABAergic SC neurons.

      The study is very well done. The figures are well laid out and clearly establish the conclusions. My main comments are related to the comparison to other circuits and further questions that might be addressed in the SC.

      It is stated several times that the superior colliculus and the visual cortex are the two major brain areas for visual processing and these areas are compared throughout the manuscript. However, since both the dorsal lateral geniculate nucleus (dLGN) and SC include similar synaptic motifs, including triadic arrangements of retinal boutons with GABAergic and nonGABAergic neurons, it might be more relevant to compare and contrast retinal convergence and other features in these structures.

      Thank you for pointing out that crucial point. Indeed, the comparison to the thalamus is a valid argument, as both the SC and LGN are primary targets of RGC axon terminals. During the preparation of the manuscript, we extensively discussed whether to compare our new SC dataset with existing literature on the LGN or the primary visual cortex (V1) is the more appropriate. Ultimately, we decided on using the visual cortex as the main comparison because of the following reasons:

      1. The SC is widely recognized as an evolutionary conserved circuit for visual computation and visually guided behaviors, while the dLGN is generally regarded as a relay station for RGC information to the visual cortex (Steriade, McCormick, 1997). Thus, we believe it is more relevant to compare the evolutionary older visual circuit (SC) to the evolutionary newer visual circuit (visual cortex).

      2. In the mouse, the dLGN contains only a limited number of inhibitory interneurons and represent only approximately 6% of the total dLGN neuronal population (Butler, 2008; Evangelio et al., 2018). It has been suggested that the rodent somatosensory thalamus even lacks interneurons (Arcelli et al., 1997). Consequently, directly comparing inhibitory interneurons in the SC to those in the dLGN would pose challenges.

      3. Along the same line, the density and also the diversity of inhibitory neurons in the SC is high and likely more comparable to the density and diversity of inhibitory neurons in the visual cortex, than to the dLGN circuit. In the dLGN, TC projection neurons far outnumber inhibitory neurons (Arcelli et al., 1997; Evangelio et al., 2018) and the dLGN is inhabited by just 1-2 classes of GABAergic retinorecipient interneurons (Arcelli et al., 1997; Jaubert-Miazza et al., 2005; Krahe et al., 2011; Ling et al., 2012). Classification approaches (e.g. 3D reconstruction) so far have not revealed any subclasses except for distinctions in intrinsic membrane properties (Leist et al., 2016), suggesting low interneuron diversity in the dLGN. This is in contrast to the vLGN, where a recent study found a diversity of GABAergic neurons (Sabbagh et al., 2021).

      4. In the thalamo-cortical circuit, there exists a notable difference in how cortical excitatory and cortical inhibitory neurons are driven by their thalamic input (Alonso and Swadlow, 2005; Cruikshank et al., 2007). This discrepancy forms the basis for several models of visual processing in the visual cortex (Kremkow et al., 2016; Taylor et al., 2021). Which is why we wanted to assess whether the SC follows similar or different rules.

      That said, the reviewer is correct that the dLGN and the SC share certain wiring motifs, such as the triadic arrangements of retinal boutons. Unfortunately, the VGAT-ChR2 mouse line used in our study does not specifically label SC inhibitory neurons that are involved in the formation of triadic arrangements. Therefore, we are unable to draw specific conclusion regarding this point. To further investigate this aspect, the usage of GAD67 mice, which have been shown to selectively label intrinsic interneurons which receive RGC input and contact non-GABAergic dendrites (Whyland et al., 2020), would be necessary. Nonetheless, we acknowledge the question raised by the reviewer and in response, we have now provided a more in-depth comparison to the dLGN in the discussion section of the revised manuscript (line 565).

      The GABAergic and nonGABAergic neurons showed a wide range of firing rates. It might be interesting to sort the cells by firing rates to see if they exhibit different properties. For example, since the SC contains both GABAergic interneurons and projection neurons it would be interesting to examine whether GABAergic neurons with higher firing rates exhibit narrower spikes, similar to cortical fast spiking interneurons. Similarly, it might be of interest to sort the neurons by their receptive field sizes since this is associated with different SC neuron types.

      We thank the reviewer for the interesting suggestions of SC neurons classification into different categories. The relationship between connectivity measures and RF size has been addressed in Author response image 5. We have now studied the relationship of spike waveforms and several measures such as firing rate and RF size in more detail (Author response image 6).

      As the baseline firing is generally low in SC and our experiments are performed under anesthetized conditions, we used the evoked firing rates to sort the cells by firing rates or RF sizes. We have added an analysis showing the mean firing rate (calculated over the full recording duration) as a function of the spike width (peak-to-trough duration). We observe no significant relationship between the different groups of cell types. The same accounts if we sort the SC neurons by their RF size. RF sizes were calculated from PSTHs and summed RF for SL and SD. We do not see a relationship between neuron type and firing or RF size.

      Author response image 6.

      Mean firing rate (left) and RF size (right) as a function of peak-to-trough (PT) duration for excitatory and inhibitory SC neurons. Both measures are not correlated to the PT duration (Pearson correlation coefficient, two-sided Wilcoxon rank-sum test).

      The recording techniques allowed for the identification of the distance between connected retinocollicular fibers and postsynaptic neurons. It might also be interesting to compare the properties of connected pairs recorded at dorsal versus ventral locations since neurons with different genetic identities and response properties are located in different dorsal/ventral locations (e.g. Liu et al. Neuron 2023). Also, regarding the strength of connections, previous electron microscopy studies have shown that the retinocollicular terminals differ in density and size in the dorsal/ventral dimension (e.g Carter et al JCN 1991).

      We thank the reviewer for raising this interesting and relevant point to compare the properties of the connected pairs across the dorsal and ventral location. Unfortunately, our tangential recording approach is not ideally suited for comparing the properties of neurons across the different SC depths. For comparing dorsal versus ventral located neurons in the SC, as done in Liu et al., Neuron 2023, vertical recordings would be more appropriate. We now provide a discussion on this aspect (line 589).

      Was optogenetic activation of GABAergic neurons ever paired with visual activation? It would be interesting to examine the receptive fields of the nonGABAergic neurons before and after activation of the GABAergic neurons (as in Gale and Murphy J Neurosci 2016).

      This is an important point and indeed we have paired activation of GABAergic neurons with visual stimulation (checkerboard stimulus) to assess the impact of the GABAergic neurons on the firing of the excitatory neurons. We observed a diversity of effects, with some EXNs being strongly suppressed and others being only weakly suppressed. Thus, we predict that the receptive field of those EXN that are suppressed by optogenetically evoked IN firing, should be affected in some way. However, the checkerboard stimulus was only presented for a short duration (1 s) and for only a few trials (n = 30). Therefore, estimating the receptive fields of EXN before and after optogenetic activation of GABAergic neurons is unfortunately not possible with the existing dataset. We now mention this point in the discussion (line 668).

      Reviewer #3 (Public Review):

      This study performs in vivo recordings of neurons in the mouse superior colliculus and their afferents from the retina, retinal ganglion cells (RGCs). Building on a preparation they previously published, this study adds the use of optogenetic identification of inhibitory neurons (aka optotagging) to compare RGC connectivity to excitatory and inhibitory neurons in SC. Using this approach, the authors characterize connection probability, strength, and response correlation between RGCs and their target neurons in SC, finding several differences from what is observed in the retina-thalamus-visual cortex pathway. As such, this may be a useful dataset for efforts to understand retinocollicular connectivity and computations.

      Recommendations:

      Reviewer #1 (Recommendations For The Authors):

      Some minor points.

      Fig.1G shows a difference in mean firing rates between inhibitory and excitatory cells. Please plot the cumulative distribution of firing rates to be able to scrutinize the data better.

      We have addressed this issue and updated panel G in Figure 1.

      Fig. 2C. The black background color of this plot is black; it is not possible to decipher much, please change it to white

      We have now changed panel C in Figure 2 to a white background.

      Fig. 4D would be better represented as a histogram since most points overlap.

      We now represent panel D in Figure 4 as a histogram.

      Citations. I would cite some of the foundational work, in some instances, e.g., in the first sentence (SC receives input from the retina)

      We have now addressed this issue and cited more foundational studies (e.g. line 68)

      The discussion is a bit long; the last paragraph can be removed, mainly because the previous section conflates superficial SC with the entire SC, which is confusing (e.g., Ayupe et al.). In this way, there is more space to discuss the direct implication of the study within the context of known cell types.

      We now shortened the discussion and provide more background about different SC cell types in the discussion (line 643).

      Reviewer #2 (Recommendations For The Authors):

      Minor correction: Whyland et al 2020 did not identify V1 input to horizontal cells. A more appropriate reference is Zingg et al Neuron 2017.

      We thank the reviewer for this important point and have now corrected the citation in line 613 in the discussion to Zingg et al 2017.

      Reviewer #3 (Recommendations For The Authors):

      Regarding the degree of convergence from RGC to SC, the Crair lab (Furman 2013) performed a quantal analysis in slice that is worth citing.

      We included this citation in the revised version of the manuscript (line 501).

      I have lost track at this point, but many labs (Heimel, Meister, Farrow, Cang, Isa, maybe others?) have observed that neighboring SC neurons have similar tuning for direction/orientation, but the circuit mechanisms are not well understood. Given the relatively weak correlation between response tuning of RGC axons and their SC target neurons, a useful comparison might be that of SC neurons and their neighbors, and whether SC neurons that show weaker correlation to their RGC axons show stronger correlations with their SC neighbors, which could implicate local connectivity within SC.

      We thank the reviewer for providing this interesting comment. With our recording approach we could study locally connected SC neurons. However, the focus of our study was to first characterize the retinocolliculuar connectivity and therefore investigating the intracollicular connectivity is beyond the scope of the current study. We thank the reviewer for the valuable suggestion and will consider to tackle this aspect in a separate study in the future.

      Is it possible any of these measurements are biased by laminar targeting of their probe within superficial SC? Their schematic seems to suggest they targeted the deeper part of superficial SC. Do they know whether they recorded throughout superficial SC or targeted the deeper layers closer to stratum opticum?

      Our recordings are in between the deeper and upper visual SC layer depending on the recording site on the Neuropixels probe as we use an angled insertion approach. Besides DiI staining (Author response image 7), we can estimate the location of the probe using functional measurements, i.e. visually driven channels and retinotopic locations of the recording sites. If the Neuropixels probe is inserted too superficial, the number of recording site with visually driven activity is low. If the Neuropixels probe is inserted too deep in the visual layers we see two separated regions on the probe with visually driven activity in which the retinotopy is non-continues (please refer to Figure 2 in (Sibille et al., 2022)). In the recordings included in this study, the number of visually driven channels was generally high and the retinotopy continues, suggesting that we covered a region within the deeper and upper visual layers.

      Author response image 7.

      Functional estimation of probe location. DiI staining of Neuropixels probe (middle) and multi-unit activity across channels in response to visual stimulation (bottom). The white dashed lines in the middle and bottom panels mark the rough boundaries of the visual SC layers.

      In Fig. 4, the authors argue that firing in inhibitory neurons is less correlated with RGC input. Does their metric for contribution of retinal input control for the fact that inhibitory neurons have higher firing rates overall and, e.g., may be more depolarized at rest and likelier to fire spontaneous spikes but no less likely to be driven by retina? Or is the argument that their visual responses are more likely to be driven by V1 or local connections?

      We thank the reviewer for bringing up that point. The contribution measure estimates the fraction of SC spikes that were preceded by an RGC spike and it is thus, in theory, independent of the firing rate of the SC neuron. In practice, however, we agree that high firing SC neurons may be more likely to have a lower contribution value simply because a larger fraction of their spikes is not preceded by the activity of the presynaptic RGC. But this is exactly what we aimed at characterizing with this analysis. Where these non-RGC driven SC spikes originate from, whether from a more depolarized state of the neuron or by other sources such as V1 or local connections, we can only speculate about. That said, please note that despite SC INs having higher firing rates, not all of them show low contribution. Likewise, we also see SC neurons with low firing rates and low contribution values (new Supp Fig. 3).

      Minor point: The optotagging in the example cell doesn't cause the cell to fire for ~50 ms? That is odd. Typically, cells classified as optotagged fire within 5-10 ms of light onset. Is that a strange example cell or is there something different about the optotagging approach?

      Unfortunately, transient LED light onsets and offsets can induce light artifacts on Neuropixels probes (Jun et al., 2017; Steinmetz et al., 2021) and therefore it is challenging to use brief LED pulses for optotagging with Neuropixels probes. To avoid this overlap of artefacts and LED evoked spikes, we opted for a longer stimulus duration of 100 ms to activate VGAT neurons (Bennett et al., 2019; Siegle et al., 2019). Moreover, instead of a square pulse, we used a slow ramping for light onsets and offsets to minimize the magnitude of induced artifacts. In Author response image 8 we present examples of individual activated VGAT neurons responding to a 100 ms blue light pulse.

      Author response image 8.

      Optotagging approach. Example traces of a single stimulation pulse and protocol used for optogenetic stimulation. Evoked activity in response to LED stimulation (100ms, 100 trials) for six example SC IN neurons.

      References

      Alonso J-M, Swadlow HA. 2005. Thalamocortical specificity and the synthesis of sensory cortical receptive fields. J Neurophysiol 94:26–32. doi:10.1152/jn.01281.2004

      Arcelli P, Frassoni C, Regondi MC, De Biasi S, Spreafico R. 1997. GABAergic neurons in mammalian thalamus: a marker of thalamic complexity? Brain Res Bull 42:27–37. doi:10.1016/s0361- 9230(96)00107-4

      Bennett C, Gale SD, Garrett ME, Newton ML, Callaway EM, Murphy GJ, Olsen SR. 2019. Higher-Order Thalamic Circuits Channel Parallel Streams of Visual Information in Mice. Neuron 102:477- 492.e5. doi:10.1016/j.neuron.2019.02.010

      Butler AB. 2008. Evolution of the thalamus: a morphological and functional review. Thalamus & Related Systems 4:35–58. doi:10.1017/S1472928808000356

      Cruikshank SJ, Lewis TJ, Connors BW. 2007. Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex. Nat Neurosci 10:462–468. doi:10.1038/nn1861

      Evangelio M, García-Amado M, Clascá F. 2018. Thalamocortical Projection Neuron and Interneuron Numbers in the Visual Thalamic Nuclei of the Adult C57BL/6 Mouse. Frontiers in Neuroanatomy 12.

      Froudarakis E, Berens P, Ecker AS, Cotton RJ, Sinz FH, Yatsenko D, Saggau P, Bethge M, Tolias AS. 2014. Population code in mouse V1 facilitates readout of natural scenes through increased sparseness. Nat Neurosci 17:851–857. doi:10.1038/nn.3707

      Jaubert-Miazza L, Green E, Lo F-S, Bui K, Mills J, Guido W. 2005. Structural and functional composition of the developing retinogeniculate pathway in the mouse. Vis Neurosci 22:661–676. doi:10.1017/S0952523805225154

      Jun JJ, Steinmetz NA, Siegle JH, Denman DJ, Bauza M, Barbarits B, Lee AK, Anastassiou CA, Andrei A, Aydın Ç, Barbic M, Blanche TJ, Bonin V, Couto J, Dutta B, Gratiy SL, Gutnisky DA, Häusser M, Karsh B, Ledochowitsch P, Lopez CM, Mitelut C, Musa S, Okun M, Pachitariu M, Putzeys J, Rich PD, Rossant C, Sun W, Svoboda K, Carandini M, Harris KD, Koch C, O’Keefe J, Harris TD. 2017. Fully integrated silicon probes for high-density recording of neural activity. Nature 551:232–236. doi:10.1038/nature24636

      Krahe TE, El-Danaf RN, Dilger EK, Henderson SC, Guido W. 2011. Morphologically Distinct Classes of Relay Cells Exhibit Regional Preferences in the Dorsal Lateral Geniculate Nucleus of the Mouse. J Neurosci 31:17437–17448. doi:10.1523/JNEUROSCI.4370-11.2011

      Kremkow J, Perrinet LU, Monier C, Alonso J-M, Aertsen A, Frégnac Y, Masson GS. 2016. Push-Pull Receptive Field Organization and Synaptic Depression: Mechanisms for Reliably Encoding Naturalistic Stimuli in V1. Frontiers in Neural Circuits 10.

      Leist M, Datunashvilli M, Kanyshkova T, Zobeiri M, Aissaoui A, Cerina M, Romanelli MN, Pape H-C, Budde T. 2016. Two types of interneurons in the mouse lateral geniculate nucleus are characterized by different h-current density. Sci Rep 6:24904. doi:10.1038/srep24904

      Ling C, Hendrickson ML, Kalil RE. 2012. Morphology, Classification, and Distribution of the Projection Neurons in the Dorsal Lateral Geniculate Nucleus of the Rat. PLOS ONE 7:e49161. doi:10.1371/journal.pone.0049161

      Sabbagh U, Govindaiah G, Somaiya RD, Ha RV, Wei JC, Guido W, Fox MA. 2021. Diverse GABAergic neurons organize into subtype-specific sublaminae in the ventral lateral geniculate nucleus. J Neurochem 159:479–497. doi:10.1111/jnc.15101

      Sibille J, Gehr C, Teh KL, Kremkow J. 2022. Tangential high-density electrode insertions allow to simultaneously measure neuronal activity across an extended region of the visual field in mouse superior colliculus. J Neurosci Methods 376:109622. doi:10.1016/j.jneumeth.2022.109622

      Siegle JH, Jia X, Durand S, Gale S, Bennett C, Graddis N, Heller G, Ramirez TK, Choi H, Luviano JA, Groblewski PA, Ahmed R, Arkhipov A, Bernard A, Billeh YN, Brown D, Buice MA, Cain N, Caldejon S, Casal L, Cho A, Chvilicek M, Cox TC, Dai K, Denman DJ, de Vries SEJ, Dietzman R, Esposito L, Farrell C, Feng D, Galbraith J, Garrett M, Gelfand EC, Hancock N, Harris JA, Howard R, Hu B, Hytnen R, Iyer R, Jessett E, Johnson K, Kato I, Kiggins J, Lambert S, Lecoq J, Ledochowitsch P, Lee JH, Leon A, Li Y, Liang E, Long F, Mace K, Melchior J, Millman D, Mollenkopf T, Nayan C, Ng L, Ngo K, Nguyen T, Nicovich PR, North K, Ocker GK, Ollerenshaw D, Oliver M, Pachitariu M, Perkins J, Reding M, Reid D, Robertson M, Ronellenfitch K, Seid S, Slaughterbeck C, Stoecklin M, Sullivan D, Sutton B, Swapp J, Thompson C, Turner K, Wakeman W, Whitesell JD, Williams D, Williford A, Young R, Zeng H, Naylor S, Phillips JW, Reid RC, Mihalas S, Olsen SR, Koch C. 2019. A survey of spiking activity reveals a functional hierarchy of mouse corticothalamic visual areas (preprint). Neuroscience. doi:10.1101/805010

      Steinmetz NA, Aydin C, Lebedeva A, Okun M, Pachitariu M, Bauza M, Beau M, Bhagat J, Böhm C, Broux M, Chen S, Colonell J, Gardner RJ, Karsh B, Kloosterman F, Kostadinov D, Mora-Lopez C, O’Callaghan J, Park J, Putzeys J, Sauerbrei B, van Daal RJJ, Vollan AZ, Wang S, Welkenhuysen M, Ye Z, Dudman JT, Dutta B, Hantman AW, Harris KD, Lee AK, Moser EI, O’Keefe J, Renart A, Svoboda K, Häusser M, Haesler S, Carandini M, Harris TD. 2021. Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings. Science 372:eabf4588. doi:10.1126/science.abf4588

      Taylor MM, Contreras D, Destexhe A, Frégnac Y, Antolik J. 2021. An Anatomically Constrained Model of V1 Simple Cells Predicts the Coexistence of Push–Pull and Broad Inhibition. J Neurosci 41:7797–7812. doi:10.1523/JNEUROSCI.0928-20.2021

      Usrey WM, Reppas JB, Reid RC. 1999. Specificity and Strength of Retinogeniculate Connections. Journal of Neurophysiology 82:3527–3540. doi:10.1152/jn.1999.82.6.3527

      Usrey WM, Reppas JB, Reid RC. 1998. Paired-spike interactions and synaptic efficacy of retinal inputs to the thalamus. Nature 395:384–387. doi:10.1038/26487

      Whyland KL, Slusarczyk AS, Bickford ME. 2020. GABAergic cell types in the superficial layers of the mouse superior colliculus. J Comp Neurol 528:308–320. doi:10.1002/cne.24754

    1. Author Response

      The following is the authors’ response to the original reviews.

      We would like to thank the Reviewers for their careful reading and the many thoughtful suggestions to improve our manuscript, as well as both the Editors and Reviewers for the generally positive evaluations and encouraging statements.

      Editorial assessment:

      This important work presents an interesting perspective for the generation and interpretation of phase precession in the hippocampal formation. Through numerical simula- tions and comparison to experiments, the study provides solid evidence for the role of the DG-CA3 loop in generating theta-time scale correlations and sequences, which would be reinforced through the clarification of the concepts introduced in the study, in particular the notion of intrinsic and extrinsic sequences. This study will be of interest for the hippocampus and neural coding fields.

      We appreciate that our work has been considered important. In our revision we made a considerable effort to improve on the presentation of our results and the justification of our model assumptions. Particularly we aimed to clarify the meaning of intrinsic and extrinsic sequences by ad- ditional figure panels as well as fleshing out their definition via spike-timing correlations being independent or dependent on the direction of the running trajectory, respectively. To address all the requests, we added 3 new Fig- ures, multiple new Figure panels and simulated a new model variant.

      Reviewer #1 in their public review assessed ”The manuscript has the potential to contribute to the way we interpret hippocampal temporal coding for navigation and memory.”

      They criticized

      • The findings generally relate to network models of phase precession (re- viewed in e.g., Maurer and McNaughton, 2007, Jaramillo and Kempter, 2017). An important drawback of these models with respect to explaining specific experimentally observed features of phase precession, is that they cannot straightforwardly explain phase precession upon first exposure onto a novel track. This is because, specific connectivity in network models may re- quire experience-dependent plasticity, which would not be possible upon first exposure. This is essential, given that the manuscript addresses the possible origin of phase precession in terms of network models and at minimum, this weakness should be discussed.

      We agree with Reviewer # 1 (and also with Reviewer # 2, who brought up a similar point) that models based on recurrence struggle to ex- plain how the recurrent connectivity matrix should come about. While we feel that a full model of how the 2-d topology in the recurrent weights can be learned goes far beyond the scope of this paper (and to our knowledge has not been solved so far in any existing model), we added a new model variant (new Figure 6 and Supplementary Figure 1), which explains the ba- sic phenomenology of extrinsic and intrinsic sequences without the need of recurrent connections, only using feed-forward synaptic facilitation. Thus, assuming recurrent connection is not necessary for our main findings. How- ever, we would like to point out that this does not exclude the possibility that recurrent connections, if set up in an appropriate way, also contribute to phase precession and theta sequences.

      • An important and perhaps essential component of the manuscript, is the distinction between extrinsic and intrinsic models. However, the main con- cepts on which this hinges, namely extrinsic and intrinsic sequences (and the related extrinsicity and intrinsicity) could be better explained and illustrated. Along these lines, the result suggested by the title, namely, hippocampal theta correlations, may be important yet incidental in light of the new concepts (e.g., extrinsicity, intrinsicity) and computational models (e.g., DG-CA3 recurrent loop) that are put forward.

      We have added substantial new explanatory material to the figures, captions and text to more didactically introduce the concepts of in- trinsicity and extrinsicity. We have also completely rewritten the abstract and added a subtitle: ”extrinsic and intrinsic sequences”

      • The study seems to put forward novel computational ideas related to neural coding. However, assessing novelty is challenging as this manuscript builds on previous work from the authors, including published (Leibold, 2020, Yiu et al., 2022) and unpublished (Ahmadi et al., 2022. bioRxiv) work. For example, the interpretation of intrinsic sequences in terms of landmarks had been introduced in Leibold, 2020.

      We agree with the reviewer that this paper touches on many related ideas from previous papers (not only of our lab) and is supposed to tie loose ends. Thus, the novel contribution is a biologically plausible mechanistic model of how intrinsic sequences and 2-d place maps interact on the level of interconnected spiking neurons. Such a level of explanation has not yet been available in previous work. We have considerably extended the Discussion section in our revision detailing the bigger picture underlying this theory. Also our addition of the non-recurrent model variant (see above) adds considerable novelty, since it provides an account of phase precession and preplay in novel environments.

      • The significance of the readout tempotron neuron could be expanded on. In particular, there is room for interpretation of the output signal of that neuron (e.g., what is the significance of other neurons downstream? Why is the rationale for this output to being theta-modulated?)

      We have added an additional Figure 8 to better illustrate the inner workings of the tempotron. We also extended the discussion to better explain the potential use of the tempotron output (see above). In short, we consider the tempotron to signal a unique behaviorally important context that is independent of remapping induced by changes of sensory cues, which is a new prediction of the model. Since the context signal is resulting from DG loops it requires a stable code to also exits in the DG. Evidence for such long-term stability in DG has been found in Hainmu¨ller & Bartos (2018).

      Reviewer #2 in their public review find ”this research topic to be both important and interesting” and appreciates ”the clarity of the paper.”, com- mending our ”efforts to integrate previous theories into their model and con- duct a systematic comparison”.

      We are very happy about these positive remarks and sincerely would like to thank the reviewer!

      Reviewer #1 made the following specific recommendations for changes:

      The abstract is somewhat difficult to parse. I have identified some words and/or sections that could be improved.

      • ’ ....inherently 1 dimensional’. This statement seems to be related to an a priori interpretation of the authors. On the other hand, if offline sequences are trivially 1 dimensional because they are sequences (i.e., they constitute a vector), then online sequences would be 1-dimensional as well. What is the key difference between offline and online? Is it the omnidirectional place fields in two dimensions? Perhaps more importantly, how relevant is this fact with respect to the main results of the manuscript, which concern ex- trinsic and intrinsic sequences?

      We indeed meant that the sequences are trivially 1-dimensional. The main challenge that we would like to address in this paper is how a 2-d topology of place cells (and direction dependent theta sequences) and a 1-d sequence topology of intrinsic theta correlations and during (p)replay can be reconciled. We hope this has become clearer in the rewritten abstract.

      • The language in lines 36-38 is overly technical. I suggest modifying the language, the language was less technical and more understandable in the body of the manuscript, which should be also reflected in the Abstract.

      We would would like to apologize for making the abstract too technical. Also in response to Reviewer #2, we decided to rewrite the ab- stract entirely.

      The authors use a mixture of conductance based models and Izhikevich neurons, presumably for the spiking generating mechanism. The conductance component can be readily interpreted in terms of the underlying biophysics. The Izhikhevich neuron model, however, is phenomenological. I suggest you address i) the rationale for using Izhikevich model, 2) its biophysical inter- pretation, 3) and its combination with conductance-based currents.

      The reviewer is correct that spike generation is modelled using Izhikevich’s model whereas synaptic integration is included in a conductance- based manner. As suggested by the reviewer, we have added further expla- nation in the Methods part, explaining that the Izhikevich approach allows to adjust burst firing properties with only few parameters by efficiently em- ulating the bifurcation structure of spike generation in the full biophysical model (1&2) and otherwise has no effect on the integration of conductance- based synaptic currents in a subthreshold regime (3).

      Line 126: when you say preferred angle, do you mean preferred (heading) direction? If so, please maintain consistency throughout.

      We thank the reviewer for pointing out the inconsistency. We have added the word ”heading” throughout the manuscript whenever ap- propriate. To further improve the consistency, we have clarified the meanings of ”best” (or ”worst”) direction and reserved the use of it solely for cases when trajectory direction is compared with the preferred heading direction, namely, ”best” (”worst”) direction when trajectory is along (opposite) the preferred heading direction.

      Line 174: When discussing cross-correlation, sometimes you mean a cross-correlation function between two place fields and sometimes to the his- togram of all such correlations? Please clarify.

      We used histograms to empirically estimate the underlying cross-correlation function. For clarity, we have specified that it is a cross- correlation histogram in the revised manuscript whenever we refer to the empirical estimate.

      Figure 3:

      Understanding the difference between extrinsic and intrinsic sequences is fundamental for the manuscript. I suggest that in the section that refers to Figure 3 (or Figure 3 itself), you kindly provide an example depicting how extrinsic and intrinsic sequences can

      1) coexist yet be distinctly identified

      2) depend on trajectory

      3) depend on DG input

      By coexistence, we meant the heterogeneous population of ex- trinsic and intrinsic cell pairs and, hence, the extrinsic and intrinsic theta correlations, as shown in Figure 3J. To improve the clarity, we added the following sentence in the section that refers to Figure 3: ”In our simula- tion, extrinsically and intrinsically driven cell pairs are both present in the population (Figure 3J), indicating a coexistence of extrinsic and intrinsic sequences.”. To illustrate how extrinsic and intrinsic sequences depend on both tra- jectory and DG recurrence, we have also added annotations in Figure 3F to mark the extrinsic and intrinsic part of the sequence.

      Moreover, the caption of Figure 3 refers to the directionality of the theta sequences. How does this again relate to the extrinsic/intrinsic distinction?

      We hope the highlighting in panel F of Figure 3 has resolved this problem.

      Figure 5:

      • This is a crucial figure that should illustrate the differences between extrinsic and intrinsic sequences, as the figure caption suggests. Surprisingly, it is not at all clear where (i.e., in which panel) and how (i.e., methodologi- cally) should one distinguish one type of sequence from another. I suggest that at least one such panel is dedicated to illustrating the difference and/or detection of these sequences in time and/or from phase precession plots. Moreover, there is significant visual crowding that makes the interpretation challenging (e.g., insert a space between G and E)

      We would like to apologize that in the previous version of the manuscript, we seemed to have evoked the impression that the difference between intrinsic and extrinsic sequences should be mainly illustrated in Figure 5. We hope that our revisions of Figures 1 and 3 have made it sufficiently clear to this point. The main purpose of Figure 5 was (and is) to illustrate how intrinsic sequences can lead to out-of-field firing. We have modified the figure caption (and text) accordingly. To address the visual crowding problem in Figure 5, we have inserted a space between panels and also removed repeated labels.

      Tempotron neuron and Figure 6:

      From the reviewer’s questions on Figure 6, we feel that our presentation caused considerable confusion about the motivation and inter- pretation of the tempotron simulations. We therefore rewrote parts of the associated text and Figure caption. We hope that the revised presentation clarifies the issues. We therefore only briefly respond to the reviewer’s points here, because we think they largely resulted from misunderstandings.

      • Intuitively, and as the manuscript results suggest, late phases are asso- ciated to extrinsic mechanisms while early phases are associated to intrinsic. Why not construct a simpler classifier readout based on this fact? How does it compare to a tempotron?

      Opposite to the reviewer’s comment, extrinsic mechanisms are visible at early phases (late in the field), intrinsic mechanisms at late phases (early in the field). In fact, what the tempotron does is learning to identify the intrinsic (late phase) part and to disregard the extrinsic (early phase) part.

      • What is the significance of theta-modulated output of the tempotron (readout) neuron?

      The theta modulation of the tempotron output is a trivial re- sult of the theta-modulation of the input, i.e., the detection of the intrinsic sequence pattern is done once every cycle.

      Suggestion for Figure 6 related to Tempotron readout: Focus on ’with DG loop condition’, as the challenge and most important point here is to identify extrinsic and intrinsic sequences. The No-loop condition could be left as a supplementary figure or side panel.

      The no-loop condition is the essential control showing that the tempotron only responds to the previously learned intrinsic pattern and can- not identify spatial location based on the extrinsic pattern.

      Further work/predictions.

      Lines 196-198. ”Since intrinsic sequences can also propagate outside the trajectory (Figure 5) and activate place cells non-locally, our model predicts direction-dependent expansion of place fields.” If remote activation is ’suffi- ciently’ remote, wouldn’t this predict two separate place fields instead of an expansion?

      The reviewer is completely correct. Out of field spiking can be also affecting remote locations, if the intrinsic sequences link to remote place fields. This would lead to double fields, however, the intrinsic part would only be active at late theta phases. For simplicity, we have not added such a case in our paper, but we would like to thank the reviewer for this comment, since it leads to a nice prediction of the model, which can be experimentally tested and therefore was included to the discussion.

      Lines 556-558. ”In our model, firing rate is determined by both low-phase spiking from sensory input and high-phase spike arrivals of DG-CA3 loops, both producing opposing effects on the phase distribution.” Is it possible to make a differential prediction based on lesions here, e.g., along the lines of reduced range phase precession, for either high phases or for low phases?

      We thank the reviewer for this great suggestion. Lesion of DG in the model does indeed reduce the phase range and mean spike phase. This further corroborates the effect of DG-loop on theta compression and high-phase spiking. We have included a new panel D in Figure 4 and a corresponding mention in the result section.

      Line 570. ”We speculate that the functional roles of intrinsic sequences may not be limited to spatial memories.”. Is there any relationship to re- play and/or sleep-dependent memory consolidation? Some speculation in the Discussion section would be welcome and appropriate.

      We have added some further speculative ideas to the last section of the Discussion. We propose that replay and preplay reflects the intrinsic sequences that express the current expectation of the animal. We have not yet thought well enough about their relation to memory consolidation to phrase this in the manuscript, but would suggest that they could serve to signal multimodal context information to the neocortex where it can evoke retrieval of unimodal memory traces.

      The description of the results, as stated in the public review, can be im- proved. A key component is the definition and identification of extrinsic and intrinsic sequences.

      Some comments:

      • I think that the words ’extrinsic’ and ’intrinsic’ are problematic as both types of sequences/models rely on external (spatial) input, hence both are in some sense ’extrinsic’. On the other hand, both are network mechanisms, thus in some sense ’intrinsic’, where the asymmetry is either programmed directly onto the weights or due to synaptic depression. To add to the con- fusion, ’intrinsic’ mechanisms very often refer to cellular mechanisms in neurophysiology. I kindly ask you to, ideally, reconsider the terminology, or at the very least, be very thorough and precise when describing the mech- anisms. For example, sometimes extrinsic (intrinsic) ’models’ are referred to, sometimes ’sequences’, sometimes ’factors’, sometimes ’pairs’, etc.

      We understand and appreciate the reviewers argument, but would like to stick to the terminology, since it was already used in our prior publication. We have made considerable effort to improve the explanation and illustration of extrinsic vs. intrinsic pairs in the main text, Figure 1 and 3 to highlight our definition that is based on pair correlations: Extrin- sic pairs flip the correlation lag with reversal of running direction, intrinsic pairs don’t. This is simply a functional definition and should not be con- fused with potential microscopic mechanisms. One of those (DG-loops) is suggested in our paper.

      • As discussed in the public review, network mechanisms may require experience-dependent plasticity and hence cannot easily explain phase pre- cession on the first pass. Please discuss why and/or how your model fits with this observation.

      We agree that the two models under consideration both require the recurrent network be set up appropriately and there is no theory so far that would explain how. The reason we chose these two models is because they are well known in the community and relatively similar. We reasoned that comparison between an intrinsic model and an extrinsic model would make most sense if the two are a similar as possible. Nevertheless, we ex- tended the manuscript by a new set of simulations in which we do not use re- current CA3 connections and obtain phase precession solely be feed-forward synaptic facilitation (new Figure 6 and supplementary Figure S1). The new simulations show that the basic phenomenology can also be obtained with- out using recurrent CA3 connections, however, as expected when removing one mechanisms of phase precession, the range of phase range is somewhat reduced as compared to the full model.

      Along a similar vein, phase precession in Figure 1E only has a range of pi/2, which is about half of the typical range of phase precession for single runs. This should be characterized as a weakness of the intrinsic model.

      The precession range in spiking models is highly sensitive to a large number of parameters such that it is hard to make such definite claims (see also above response). In the original Tsodyks et al. 1996 paper the phase range went up to 270 degrees with a slightly different implementation to ours in terms of current vs. conductance-based synapses, an exponen- tial instead of a Gaussian recurrent weight function, and 1-d (original) vs 2-d (ours). We chose conductance-based synapses, and a Gaussian weight profile for better comparison with the Romani and Tsodyks (2015) model. In the original non-spiking implementation by Romani and Tsodyks (2015), the phase range was hardly 70 degrees. Our model implementation of the Romani and Tsodyks (2015) model fits the experimentally reported phase ranges of about 70 to 180 degrees in CA3 (Harris et al., 2001).

      Lines 282-284: ”...since phase precession properties change in relation to running directions, nor are they solely intrinsic since reversal of correlation is still observed in most of the sequences (Huxter et al., 2008; Yiu et al., 2022).”. To which extent is this a consequence of the phase precession model (extrinsic vs intrinsic) or the fact that place fields are sometimes directional?

      The reversal of sequences with reversed running direction is how we define extrinsic correlation. We hope our changes in relation to Figure 1 has clarified this point.

      Figure 2: Is it i) directional input or ii) short-term facilitation that gives rise to lower phase? (or perhaps both?) Please clarify.

      It’s both. This is now clarified in the revised version of the Re- sults sections related to Figure 2: higher depolarization always yields earlier phases in spiking models, however, pair correlations are not affected by ei- ther of the two mechanisms.

      Line 320. ”...onset of phase precession”. Do you mean in CA3/CA1/DG?

      Thank you for pointing this out. We have clarified that this statement refers to CA3.

      Line 323. ”....at a different location”. Please add rationale why it has to be at a different location and a reference to the appropriate equation.

      The sequence rationale as well as the equation number have been added.

      Line 384. ” ... predicting that loss of DG inputs is compensated for by the increase of release probability in the spared afferent synapses from the MEC.”. It wasn’t clear whether this was a ’homeostasis prediction’, or and implementation in the model. Please clarify.

      Since the model explained the experimental observations by implementing an increased probability of release, the model predicts that in animals with DG lesion the probability of release should be enhanced. We have modified the wording to avoid confusion.

      Line 428 ”...and near future locations) is obvious, the potential role of the lesser expressed intrinsic sequence contributions is not straightforward.”. Similar to my comments above regarding terminology, please clarify what are both contributions and why are intrinsic sequences ’lesser expressed’.

      We have rewritten this passage to avoid unclear wording.

      Line 474. ”...we showed that the trajectory-independent sequences”. Do you mean ’intrinsic sequences’?

      We thank the reviewer for careful reading! We have changed the wording ”intrinsic sequences” in the revision.

      Line 482. ”...field pairs being extrinsic”. Please clarify, as the usage of extrinsic now refers to field pairs.

      Thank you for pointing this out. We went through the whole manuscript and clarified the terms.

      Line 245 (heading). Consider rewriting as ’Dependence of theta se- quences on heading directions’. Extrinsic and Intrinsic models have not yet been introduced.

      Since the main purpose of the first Results section is to explain the difference between extrinsic and intrinsic sequences we kept these terms in the heading but modified it to ”Dependence of theta sequences on head- ing directions: Extrinsic and intrinsic sequences”. Additionally, we have put more emphasis on introducing the terms ”extrinsic” and ”intrinsic” in this section.

      Figure 1.

      • I suggest using the same font - C and D, and F and G are too close to each other, consider adding space. For example, the exponent, 10-2 makes reading cumbersome. Line 300. Phase tail means offset phase? Phase tail may be too informal. Line 325: DG loop. Do you mean CA3-DG projection?

      We thank the reviewer for the suggestions. In the revised manuscript, we have ensured that the same font is used in all of the fig- ures. To improve the readability of Figure 1, we have added space between panels as suggested, removed repeated axis label and downsized the text ”10-2”. Furthermore, we have rewritten the referenced line without using the word ”tail”, and also, clarified the meaning of DG loop as the short form of CA3-DG projection.

      Figure 4 caption: ”DG lesion reduces temporal correlations...”. It is more precise to say that the lesion reduces the slope of the fitted lag vs dis- tance. And how is this related to sequence compression?

      In the paragraph referring to Figure 4, we have elaborated on the meaning of theta compression and its relation with the the lag-distance plot. However, we argue that ”reduces the slope of the fitted curve” is not comprehensive enough to express our summarized conclusion in a caption title. We have modified the wording to be ”DG lesion reduces theta compression”.

      In addition, we have changed the slope unit to be radians per cm rather than radians per maximum pair distance, in conformity to unit standards.

      General comment about terminology with regards to tuning and connec- tivity: it is not formally correct to compare connectivity with trajectories (e.g., lines 388-395, caption of Figure 5A, etc). Perhaps compare tuning to particular directions/preference or receptive field?

      We have corrected the wording such that the direction of DG- loop projection is compared to the direction of trajectory.

      Line 470. ’...fixed recursive loop.” Sentence is not clear, do you mean recurrent loops?

      The reviewer is correct. We corrected the wording

      Reviewer #2 had the following recommendations.

      M1. The abstract focuses on the differences between online and offline hippocampal replays. However, the replay topic is not touched upon in the rest of the manuscript. I found this very confusing when I first read the pa- per. I suggest the authors reconsider the best way to approach the opening or at least discuss if and how their model would incorporate replay phenomena.

      Also in response to reviewer #1 we have rewritten the abstract focusing on the problem of how to generate 2-d topology from 1-d sequences. In addition, also in response to Reviewer#1 we added a paragraph in the discussion detailing a hypothesis on how er think replay and intrinsic se- quences work together.

      m2. On lines 89-91, the authors provide the selection of neuronal pa- rameters for excitatory pyramidal cells and inhibitory cells in the Izhikevich model. While the choice of model is reasonable, it would be helpful to clarify the source of these neuronal parameters, especially for readers who are not familiar with the model.

      Again, also in response to reviewer # 1, we have added more motivation for the Izhikevich model.

      M3. On lines 94-98, the model considers a 2D sheet of CA3 neurons. One of the most significant assumptions is that each 2x2 tile of place cells is considered a unit with four directional angles. What is the basis for this assumption? Is there any experimental result supporting this, or is it a completely artificial design for the model? This is important since the or- ganization of CA3 cells also affects the network architecture discussed later and impacts the realism of the model.

      This comment is related to Reviewer #1’s concern on experience- dependent plasticity: How is this connectivity pattern established? We fully agree that this is an open problem for the Tsodyks et al.-type networks. The main reason for choosing them (as argued in our response to reviewer #1) is to have two published models, representing one type of sequence each, that are similar enough for comparison. In addition, we added new simulations (new Figure 6 and Supplementary Figure S1), showing that the basic phe- nomenology can also be obtained in a model without recurrent connections (see also response to Reviewer # 1)

      m4. Similarly, on lines 111 and 140, the model uses 500 ms for the timescales of short facilitation and short-term synaptic depression. The choices of these two timescales are vital for producing directionality in extrin- sic and intrinsic sequences, yet their experimental sources are not clarified.

      In the Methods section of the revised manuscript, we have in- cluded the sources of previous experimental data and modelling work to support our choice of the time constants.

      M5. On line 126, the authors assume that the synaptic strengths be- tween CA3 cells, Wij, are given by the distances between neurons and the similarity between their directional preferences. While this assumption seems reasonable in the sensory cortex, I am unsure if this is also the case in the hippocampus, and the authors should clarify the basis for this assumption.

      The distance dependence simply reflects the original Romani and Tsodyks 2015 model (see response to M3) and we share the concern of the reviewers. The increased connectivity for neurons with the same di- rectional preference was necessary to recover the direction dependent phase precession properties (Figure 2) in the realm of the Romani and Tsodyks 2015 model. Please also see our new Figure 6 showing simulations without the recurrent matrix.

      More importantly, the existing connections within CA3 and DG cells completely determine the ”intrinsic” sequences. But wouldn’t this be fragile when place cells undergo global remapping, which can take place within only a few seconds? The author should comment on this in the discussion.

      We would like to thank the reviewer for bringing up this inter- esting point. In our thinking, the DG-CA3 connectivity is fixed (multiple 1-d trajectories, not necessarily requiring 2-d topology), i.e., the same in- trinsic sequence should show up in multiple environments (and should not remap), although it may just not be active in some environments). This is a prediction of our model and we have added it to the Discussion.

      M6. I found the setup of DG place cells unreasonable. DG place cells are found to be granule cells rather than pyramidal cells. Moreover, the model does not consider recurrent connections between DG cells (These setups are closer to CA1 place cells).

      We agree with the reviewer, DG granule cells should rather be modelled as high-input resistance EIF neurons. However, the feedback loop via the dentate is not a direct one. It involves hilar mossy cells plus multiple hierarchies of feedback inhibition (this is probably what the reviewer means with recurrent connections between DG neurons, because granule cells are not recurrently connected in the non-pathological state). To our knowledge a biologically realistic model of the hilar-DG network does not exist and it would be far beyond the scope of this paper to develop one. We therefore see our DG feedback model rather as phenomenological. The discussion paragraph on the anatomy of the dentate gyrus touches on these points.

      Therefore, a significant concern is: Why should it be the DG feedback projection to CA3 responsible for the ”intrinsic” sequences instead of pro- jections from other brain areas?

      The reviewer is generally correct, any brain structure which im- plements fixed sequences via a loop would do. The reason why we suggest the DG to be the best candidate is purely empirical referring to papers with dentate lesions: Sasaki et al. 2018 and Ahmadi et a. 2022. We have added a similar argument to the discussion.

      m7. On line 166, the authors claim that there are no connections between inhibitory cells at all. While I understand that this is for simplification of the model, the lack of recurrent inhibition between interneurons may have limited the model’s ability to produce gamma-band dynamics (referring to PING and ING mechanisms), which are robust rhythms produced in CA3. I am very curious if the model can incorporate theta-gamma coupling by in- troducing connections between CA3 inhibitory cells.

      We have omitted the gamma oscillation for simplicity, because we do not have a hypothesis for a functional role in the context of dis- tinguishing extrinsic from intrinsic sequences (Occam’s razor) and, as the reviewer correctly anticipates, they unavoidably show up when inhibitory in- terneurons connect to each other (e.g. Thurley et al. 2013). Of course, one could envision situations in which gamma for intrinsic sequences my have different frequency than for extrinsic ones, by differentially manipulating the CA3 and DG basket cell networks, but, as long as there is no experimental data, it would be pure speculation and thus we have not included it in the model.

      m8. The authors should clarify the source of parameters in Table 1, especially the synaptic strengths. These values are vital for extrinsic and intrinsic theta sequences.

      The weight values have been chosen to allow for large theta phase precession range, coexistence of extrinsic and intrinsic sequences, and stability of the network activity. A similar statement has been added to the manuscript.

      M9. I have another concern regarding the measurements of ”extrinsic- ity” and ”intrinsicity” defined on lines 185-196. Are they the best measures? To distinguish the cause of spike correlations, the ”extrinsicity” and ”intrin- sicity” of a pair of spikes should not be high at the same time. However, this is clearly not the case in the model, according to Figs 3 and 5. Moreover, in the data analysis carried out later, spike pairs are considered extrinsic or intrinsic merely by comparing the two measurements. I suggest the authors consider counterfactual methods in causal inference. For example, would a spike pair (cell1, cell2) still exist if we change the sensorimotor inputs or the DG-CA3 projections? If this is difficult to implement, the authors should at least discuss how different choices of measurements would impact the con- clusions of the paper.

      The problem the reviewer has identified arises from the funda- mental symmetry of theta phase quantification: if spikes of a pair of place fields have a phase difference of 180◦ one cannot say which cell leads and which cell follows, hence, the phase difference is both intrinsic (because the peak doesn’t flip) and extrinsic (because the peak flips and ends up at the same phase). The fact that in some cases extrinsicity as well as intrinsicity are high simply means that the field pair has a correlation peak lag close to 180◦. Since in the experimental data set in (Yiu et al. 2022) only field pairs were available, we have not been able to use a different quantification then and decided to apply the same quantification in our model for comparison. Moreover, Figure 5F nicely shows that the measures are able to retrieve the ground-truth intrinsic DG-loop structure when considered on the population level.

      In our model, though, we can go beyond 2-nd order statistics and derive sequence similarity measures including multiple cells, e.g., Chenani et al. 2019. However, since, we already know the ground truth by construction, we decided to not use these methods. We added a paragraph in the discus- sion elaborating on beyond 2nd order sequence quantification.

      m10. The authors begin discussing ”intrinsic sequences” from line 316. However, it is not defined before that (and in the rest of the paper as well), causing confusion when reading the paper. The exact definitions of extrinsic and intrinsic sequences should come earlier.

      We hope that our changes to the beginning of the results section (Figure 1), also asked for by Reviewer # 1 could clarify the confusion.

      m11. On lines 345-347, the authors claim that ”the intrinsic sequences are played out backward as determined by the direction of fixed recurrence (Figure 3F),” which is vague. If such sequences are present in that panel, it should be more explicitly indicated graphically.

      Also in response to Reviewer #1, we have graphically high- lighted the two types of sequences.

      M12. On lines 309, 356, 484, 495, 515, and possibly other instances, the authors repeatedly claim that the model simulations are in ”quantitative agreement” with their previous experimental paper. However, no experimen- tal data or comparison with the simulations are presented in this paper. The authors should at least create one figure to demonstrate the degree of consistency between them, instead of merely asking the reader to refer back to their previous paper.

      We agree with the reviewer that the experimental data of our previous paper should be presented in the manuscript. However, creating more panels or figures is likely to clutter the already crowded visuals and ob- scure our main message. We therefore decided to give numerical comparisons the previous findings in the main text whenever appropriate, specifically, in the sections referring to Figures 2, 3 and in the Discussion.

    1. Author Response

      We thank Dr. Carlos Isales and Dr. Jenny Tung as well as the peer Reviewers for their critiques and comments concerning this manuscript and respond here to their key concerns. Some of the Reviewers’ questions raised fascinating points about naked mole-rat biology and social habits, which we are also curious about, but which are too far afield from the central themes of the manuscript to warrant new work or revision. The Reviewers also raised some concerns about our methodological assessments and data interpretation which may warrant further discussion and explanation. We address those comments below. In no case do we feel that the concerns raised undermine our conclusions, so we have not undertaken new analyses nor revised the manuscript.

      Median survival and power.

      A recurring theme in these reviews is that our conclusion that naked mole-rats do not experience actuarial senescence is spurious, as it is “incomplete for younger animals and inadequate for older animals” due to Kaplan-Meier survival failing to reach median lifespan. We counter that premise, for median survival is an arbitrary threshold with no special bearing on when the Gompertzian hazard increase (onset of actuarial senescence) should become apparent. This point is well illustrated in Figure 5 of our original manuscript (Ruby et al., 2018). For demographic data from lab mice, humans, and horses (panels B, C, and D, respectively), the Gompertzian hazard increase is readily apparent by the time median survival (indicated by vertical dotted lines) is reached.

      Another concern raised in the reviews is uncertainty about the true increase in power for these updated data since our 2018 report. The Reviewers correctly point out that the distribution of those data, and not just their scale, are relevant to power. The distribution of all data, old and new, are clearly illustrated as a function of age in Figure 2A. The ~doubling of available observation data is consistent across age groups, with one exception: at ~8,000-10,000 days of age. However, we do not agree that is a shortcoming of the new data’s power for hazard calculation among older animals, given that the animals that formerly occupied that age bin have continued to age, without greater hazard, across the next five years. In other words, the lack of N increase in that particular age bin is balanced by the massive increase in available data at ~10,000-12,000 days of age - an advanced age bin that was previously almost empty.

      More surprisingly is the insinuation that for an approximately 40 gram rodent species, median survival on an order of 30+ years, with no sign of an increase in age-related mortality hazard, is considered a reasonable expectation. Both here and in our 2018 manuscript, we have conservatively used Tsex (180 days) as our benchmark for allometric scaling. Alternatively, one could scale this to the predicted lifespan based on average body weight for the species. According to the equation of de Magalhaes et al. (2007), the maximum lifespan of H.glaber is expected to be merely six years. Here, the Reviewers suggest that we are under-powered to make any statements about demographic aging because we have not reached median lifespan - despite the fact that our observations extend out to seven times the expected maximum lifespan. This is the precise nature of our argument that Gompertzian demographic aging is defied: that the onset of actuarial senescence is not apparent even at ages many-fold beyond when one would expect Gompertzian trends to have wiped out the entire population.

      Ironically, the Reviewers seem to have focused on the most striking manifestations of Gompertzian defiance - not reaching median lifespan after decades of population observation, or having few death events after tens of thousands of days of individual lifespan observation - as reasons to doubt the conclusions. Even if we quadrupled the number of sample points and included data for another 35 years, if we still did not detect the onset of actuarial senescence, the same critiques would still apply - and would be similarly illogical.

      The appropriateness of Kaplan-Meier, with left & right censorship

      Objections were raised about the appropriateness of Kaplan-Meier survival analysis for our data. Reviewer #3 asserts that “a Kaplan-Meier estimator can only take right-censored and uncensored records”, which is incorrect. This perhaps reflects a wider misunderstanding of Kaplan-Meier statistics that warrants further explanation.

      Reviewer #3 asserts that “left-censoring occurs when your event can be repeated and some events occur before the start of the study”. This is an oversimplified and far too-limited description of when left-censoring should be applied. We will further explain how left-censorship is applied in various analyses of our data, but for further reading on how this practice can produce unbiased estimates, we recommend the Reviewers consult (Cain et al 2011). We will discuss left and right truncation and censorship in terms of the diagram from Figure 2 of that manuscript, which illustrates a study in which the timing of event Y after event X in an individual’s life is being analyzed, given enrollment in a study at age A and exit from the study at age B. We also remind the Reviewers that methods used previously by us are in the papers (Ruby et al, 2018 & 2019) which were referenced and cited in our manuscript and should also be consulted for a full description.

      For our study, ages A and B from (Cain et al 2011) are akin to the edges of our hazard estimation windows: appropriate application of censorship and truncation allows us to accurately, unbiasedly estimate hazard within each age bin, allowing fair evaluation of changes (or lack thereof) as a function of age. For full Kaplan-Meier survival, age A is uniformly defined as Tsex (day 187), and B is not globally defined - rather, it is defined for each animal if observation ended due to exit from the collection (i.e., used in research studies (KFR), donated to another researcher, or continuing to be alive at the time of the study). Since none of the Reviewers seemed confused or concerned about our use of right-censorship in these cases, we will focus this discussion on left-censorship.

      In our original analysis (Ruby et al., 2018), we did not apply left-censorship because Dr. Buffenstein had maintained the animals since they were born, therefore no events occurred (i.e. observations of an animal being alive or dead on a day) prior to the beginning of the study. In the parlance of (Cain et al, 2011): we knew when the initiating event X had occurred (Tsex), and the animals had been continuously observed thereafter, up until either their death or rightcensorship point. Animals were right-censored if they were removed from the study, e.g. due to sacrifice for research or donation to other researchers. Doing so reduced the population size moving forward (to the right) without modifying the survival value, allowing the impact of individual death events to be appropriately amplified (i.e. Kaplan-Meier analysis).

      For left-censored data, the same operation occurs but in reverse order: for example, if an animal is left-censored at 457 days of age, then the population size is increased by one on that day, without modifying the survival value. In Kaplan-Meier survival estimation, for each observation period, the current survival value is multiplied by the fraction of animals surviving at that time interval divided by the number of animals in the population in that interval. Since the animal in question was not observed prior to 457 days of age, it would not be counted in the population size prior to that day: had it died, it would not have been in the study population at all. However, once it has entered the population, each day-of-age on which it is observed to be alive is included in the population size tally, since each day it could also perish and thereby impact the survival curve. If any of the Reviewers received animals from Dr. Buffenstein should they wish to extend this data set in the future using those animals, left-censoring them at their age when they were received (or after some acclimation period) would be the proper method to do so.

      As stated above: in our original analysis (Ruby et al., 2018), we did not generally apply leftcensorship because Dr. Buffenstein had maintained the animals since they were born (although beginning the analysis at Tsex qualifies as population-wide left-censorship). In their commentary, Dammann et al. (2019) pointed out that loss of records could modify the hazard distribution through bias towards longer-term survivors: in other words, counting long-lived animals as part of the population in early life is unfair because the death events from the truly larger population at that time had been lost (in that case: perhaps back in the 1980’s). In the parlance of (Cain et al, 2011): loss of records would have been the equivalent of left truncation, which if unchecked could produce bias. For our reply (Ruby et al., 2019), we address this problem by applying a drastic left-censoring of all animal data on a date where we could be highly confident that all records had been securely maintained, thus removing any potential bias introduced by old, lost records - as illustrated by (Cain et al, 2011). That re-analysis does not change our results, negating loss of decades-old records as a confounder of our conclusions. In this new manuscript, we used this technique again, only analyzing data collected since those data reported in our prior publications. Again, our original conclusions were confirmed: quoting Reviewer #3, “the main figures are virtually the same, with some minor changes due to the extended dataset”.

      Independence between studies

      In this new manuscript, with substantially more data, we applied left-censorship again in order to conduct an analysis of just the newly-provided data. Importantly, no datum - i.e. no day of observation of an animal being either alive or dead - overlapped between that analysis and those from our original reports (Ruby et al., 2018 & 19), and data were collected across nonoverlapping periods of time. Reviewer #2 questions the independence of this analysis from the original, correctly citing that it is still our own collection whose demographic data we are surveying. We reply that it is as independent of a dataset as we could possibly provide: greater independence would require the publication of substantial demographic data from other members of the H.glaber research community, which we would be happy to see. We also want to remind the Reviewers that Sherman and Jarvis (2002) also reported negligible demographic senescence for animals >15 years of age under their care: a fully-independent observation that concurs with our conclusions, albeit with substantially fewer animals and less statistical power.

      “Glossing over” reports of aging phenotypes

      Reviewer #1 suggests that our review of our own prior publications in this manuscript has “glossed over data that don’t support our main interpretations”, specifically mentioning the papers by Edrey et al., (2011) and Andziak et al., (2006). However, this is not an accurate reflection of the content of those published papers. The reviewer highlights data pertaining to case studies of two animals, aged 29 and 30 years, exhibiting pathologies that are commonly associated with aging in the Edrey et al., (2011) paper that was entitled “Successful aging and sustained good health in the naked mole-rat……”. But, as per the title of that paper, those were atypical cases. Indeed, we reported that the majority of animals maintained good health and activity well into their third decade. The Andziak et al., (2006) paper revealed that young (2y), healthy naked mole-rats have higher levels of oxidative damage to lipids, proteins and DNA than observed in young mice; but the follow up paper Andziak and Buffenstein (2006) reported that unlike that observed in mice, in naked mole-rats the levels of such damage do not further increase with advancing age, supporting the premise of sustained tissue homeostasis. Routine pathological assessments undertaken by our group and from zoological specimens in the 12 years since Edrey et al., (2011) have revealed many more instances of “aging phenotype pathologies” - but again, with similar frequency across all age groups (Delaney et al., 2021). We have not “glossed over data that don’t support our main interpretations”: in fact, the data brought up by the Reviewer support our conclusions. Like natural death, “age-associated disease phenotypes” occur stochastically across all age groups of H.glaber, rather than being exponentially enriched in elderly animals as in other species.

      Breeding status

      Reviewer #1 also states that “this study fails to fully represent the literature with respect to the divergence in aging rates between breeders and non-breeders” This section of our discussion (lines 326-367) addresses the survival advantage in many cooperative breeding mammals in the wild and in captivity including other mole-rats and meerkats (Sharp and Clutton-Brock, 2010; Dammann et al., 2011, Cram et al., 2018). The lower survival of subordinates in captivity may be due to chronic stress associated with bullying by the dominant animals and their inability to disperse and avoid such unpleasant activities; often being injured and dying after losing fights for a more dominant position in the social hierarchy. Braude et al., (2021) similarly report that compared to subordinates who undertake the more precarious activities of burrow extension, foraging or dispersal, the breeding females remain in their study site for far longer periods.

      In captivity, subordinates have two paths to becoming a breeder: If the breeding female dies, some subordinate females within the colony will fight to the death to establish breeding status and inherit the dominant role in the colony. This could imply that they are “higher-quality” individuals as suggested by Reviewer #1 with molecular and physiological mechanisms in place to outlive their “poorer- quality” conspecifics. However, the majority of breeding females in our colony arise through random pairing of a female and a male that has been isolated for a few days from their colony. As such there is no selection for “higher-quality” individuals with concomitant inheritance of better somatic maintenance mechanisms. Rather, breeding status appears to be accompanied by a phenoplastic switch, as suggested by the lower levels of DNA methylation in tissues of breeding females (Horvath et al., 2021) and altered growth patterns when a female changes her status to that of a breeder (O’Riain et al., 2000). This is possibly linked to moving up the dominance hierarchy with concomitant changes in stress, somatotropic, and reproductive hormones as well as augmented tissue repair pathways for the maintenance of homeostasis.

      We have not undertaken in depth studies on behavior and social habits and the effect of age, but agree these would be of interest in future studies.

      Analysis initiation at 6 months

      Mortality rates are highest in the first three months of life, in keeping with increased mortality during the developmental period. While it is true that in captivity most animals continue to grow for the first eighteen months to two years of life and some individuals may continue to gain weight well into their third decade, we and others have shown that animals can successfully breed at 6 months of age, if given the opportunity to do so. Other demographic studies similarly use the age at which animals can reproduce as the starting point for their analyses. Nevertheless, even if we were to use 2 years as the starting point, the same trends will be evident for there was no increase in mortality risk even at ages beyond 30 years.

      Colony size effects

      It is intriguing that smaller colonies had higher mortality risk than larger colonies. In many cases smaller colonies represent younger colonies with possibly less well established breeders and a higher degree of social instability. In other cases, the breeding female may not be very successful in raising her young, and possibly is not producing “high-quality” offspring. We agree with the Reviewer, behavioral assessments are needed to evaluate if there is more fighting and competition for dominance or if other social dynamics or ‘poorer-quality’ offspring are at play, nevertheless these findings are intriguing and we have speculated as to why this is the case. Further work is needed to definitively tease out why this is indeed the case.

      References cited here

      Andziak et al., (2006) doi: 10.1111/j.1474-9726.2006.00237

      Andziak and Buffenstein (2006) doi: 10.1111/j.1474-9726.2006.00246

      Braude et al., (2021) doi: 10.1111/brv.12660

      Cain et al (2011) doi: 10.1093/aje/kwq481

      Cram et al., (2018) doi: 10.1016/j.cub.2018.07.021

      Dammann et al., (2011) doi: 10.1371/journal.pone.0018757

      Dammann et al., (2019) doi:10.7554/eLife.45415

      Delaney et al., (2021) doi: 10.1007/978-3-030-65943-1_15

      De Magalhaes et al., (2007) doi: 10.1093/gerona/62.6.583

      Edrey et al., (2011) doi: 10.1093/ilar.52.1.41

      Horvath et al., (2022) doi:10.1038/s43587-021-00152-1

      O’Riain et al., (2000) doi: 10.1073/pnas.97.24.13194 Ruby et al., (2018) doi: 10.7554/eLife.31157

      Ruby et al., (2019) doi: 10.7554/eLife.47047.

      Sharp and Clutton-Brock,(2010) doi: 10.1111/j.1365-2656.2009.01616.

      Sherman and Jarvis (2002) doi: 10.1017/S0952836902001437

    1. Author Response

      Reviewer #2 (Public Review):

      The manuscript by Ramesh et al builds upon prior studies from the Sigrist group to examine synergistic interactions between the Spinophilin (Spn) and Syd-1 synaptic proteins and their role in regulating presynaptic homeostatic plasticity at Drosophila larval NMJs and adult olfactory memory in the Mushroom Body (MB). The authors show synergistic interactions between the two proteins in these processes, where late PHP and long-term memory are abolished in Spn mutants, but restored upon reduction of Syd-1 function in the mutants. The authors go on to show that Spn appears to act in PHP by regulating a late stage in AZ remodeling and longer-term increases in the readily releasable SV pool by controlling actin polymerization/dynamics through the Mical protein. Although key aspects of the overall bigger picture have been published before (Mical’s role in PHP, antagonism between Spn and Syd-1 in AZ development, AZ remodeling in MB-dependent memory), the current paper ties together many of these observations into a bigger picture of how PHP plasticity at the NMJ is established and provides support for a role for PHP-required proteins in promoting long-term memory in the adult MB through effects on AZ structure and AZ protein content/amount. The study also provides new links to the role of Spn in regulating local synaptic actin dynamics and how this alters the readily releasable pool and SV release. Some points of note are provided below.

      1) I’m a bit confused about the time course experiments the authors describe that seem to be contradictory in Figures 1 and 2. The authors indicate control animals transiently increase BRP AZ levels during PHP at 10 mins, but by 30 minutes this increase is gone, even though PHP remains. As such, the data in these early figures suggests increases in BRP AZ levels may support an early aspect of the PHP effect (though I note this appears controversial, as other data indicate blocking the rapid AZ remodeling by several manipulations such as Arl8 transport disruption, permits early PHP, but disrupts late PHP). In contrast, the authors show that Spn mutants do not display AZ BRP increase at 10 mins, and still show early PHP, but lack late PHP. I assume the early PHP does not require AZ remodeling or an increase in the RRP at this early time point?

      We thank the reviewer for this insightful question, which to a degree is reflected also in reviewer 1´s question concerning the variability of Spn mutants when tested for PHP at 10 min PhTx treatment and thus the temporally and likely functional entanglement of induction and maintenance mechanisms.

      Let us start by once again describing our findings: BRP increase is clear at 10 min PhTx treatment but is no longer measurable at 30 min PhTx treatment. Genetic elimination of BRP does not restrict PHP at 10 min PhTx (Bohme et al. 2019). However, BRP mutants are neither able to maintain PHP when PhTx treatment is extended to 30 minutes as described in Turrel et al (Turrel et al. 2022), nor in a chronic PHP paradigm of BRP, GluRIIA double mutant (Bohme et al. 2019). We suggest that the transient increase of BRP, also previously described specifically in the MB γ-neurons (Zhang et al. 2018), triggers other, longer lasting AZ changes. Indeed, we found that the increase of the critical release factor Unc13A is still present at 30 min PhTx treatment and is dependent on the “transient” BRP increase (Fig. S3B) (Turrel et al. 2022). Turrel et al also uncovered a more transient upregulation of BRP when compared to Unc13A in the MB. Here, specifically upon paired olfactory conditioning, 1 h after training, animals displayed BRP and Unc13A level increases. At 3 h post training, however, BRP levels had already plateaued, whereas Unc13A levels had increased further (Figure 1B, (Turrel et al. 2022)).

      We have now added to the discussion section: “We suggest that the transient increase of BRP, also previously described specifically in the MB γ-neurons (Zhang et al. 2018), triggers other, longer lasting AZ changes. Indeed, we found that the increase of the critical release factor Unc13A is still present at 30 min PhTx treatment and is dependent on the “transient” BRP increase (Fig. S3B) (Turrel et al. 2022). Turrel et al also uncovered a more transient upregulation of BRP when compared to Unc13A in the MB. Here, specifically upon paired olfactory conditioning, 1 h after training, animals displayed BRP and Unc13A level increases. At 3 h post training, however, BRP levels had already plateaued, whereas Unc13A levels had increased further (Fig. 1B, Turrel et al).” (Line 363)

      RRP increase has been shown at 10 min PhTx (Weyhersmuller et al. 2011) treatment and remains high after 30 minutes of PhTx treatment (this study).

      2) In relation to point 1 above, the time course seems different in MB neurons, where the AZ remodeling (noted by increases in AZ BRP) seems to take 2-3 hours. Do the authors have any ideas into why the time course of PHP AZ remodeling at larval NMJs can occur in 10 minutes, but MB neuron remodeling seems to take hours?

      We thank the reviewer for this question. We specifically probed the time intervals of 10 and 30 min at the NMJ due to established protocols and technical reasons; and 1hr and 3hr in the brain due to our interest in MTM. Zhang et al (Zhang et al. 2018) previously showed that indeed BRP levels in the γ-lobe were significantly increased already after 20 min after conditioning. We in the moment can only suspect that the following differences might be relevant in this point: the differences in the peripheral and central nervous system in terms of glutamatergic motoneuron presynapses (NMJ) versus cholinergic (KC presynapses) might change temporal dynamics of AZ remodeling. Furthermore, the plasticity induction protocol, using PhTx, is potentially a somewhat more “heavy-handed” approach compared to the more subtle conditioning involving the activation of dopaminergic neurons. The more complex circuitry of the central brain might also be involved in maintaining this BRP levels increase over longer timescales than at the NMJ, which may serve some yet unknown physiological purpose in maintaining memories.

      We use the NMJ PhTx assay to identify proteins involved in AZ remodeling that could also be involved in memory formation in adult flies. As of now, we have no experimental evidence of whether the AZ remodeling observed in the MB actually leads to synaptic depression or instead is a reaction to the initial short-term synaptic depression occurring. This study and Turrel et al. 2022 (Turrel et al. 2022) provide evidence for an overlap of the executory machinery involved in both mechanisms, NMJ PHP plasticity and MTM formation, as BRP, Spn, Arl8, IMAC and Aplip1 are involved specifically both in mid-term NMJ PHP (at 30 min after PhTx treatment) and in MTM.

      3) Could the lack of rapid BRP accumulation during early PHP in Spn mutants be secondary to the larger # of AZs in those mutants and a known rate-limiting amount of BRP available that might not be enough to go to the extra Azs?

      This per se might be a relevant concern. Notably, however, acute application of Latrunculin-B in Spn mutants allowed for an increase in BRP (Figure 5g-h). Thus, a limitation in the total pool of available BRP should not be responsible for Spn mutants’ inability to accumulate BRP under PhTx treatment.

      4) There isn't any validation of the Spn co-IP results shown in Figure 3 through other assays, and a lot of proteins are being pulled down. I can't see some of these being real (mitochondrial translation proteins? - how could Spn gain access to the inside of the mitochondria since it's a cytosolic protein?). As such, I don't know how to value that huge group of pull-down interactions without further validation, making it difficult to sort out how relevant these really are. The genetic validation of similar phenotypes in the Mical mutant, together with rescues, supports that interaction. Not sure about the rest of that list.

      We appreciate the opportunity to discuss our primary data and how we used them to generate testable hypotheses for our study. Firstly, the mitochondrial translation proteins which were identified in our Spn IPs are all nuclear encoded, means they are transcribed in the nucleus and translated in the cytoplasm. Interestingly, recent work indeed suggests that mitochondrial biogenesis in the synapse is supported by local translation (e.g. see (Kuzniewska et al. 2020)). As Spn IPs are also highly significantly enriched for cytosolic translation machinery, it is an appealing idea that Spn might be involved in coupling local translation, mitochondria and memory stabilization. As this clearly goes beyond the scope of this paper, we did not further discuss this point, and are prepared to remove these data if considered misleading.

      Concerning unspecific proteins being pulled down in our IPs, we would like to emphasize that these IPs are the result of an established out protocol, which entails laborious synaptosome preparations which our lab worked out previously (Depner et al. 2014). For each condition, 4 biological replicates were performed, and mitochondrial ribosomal proteins were enriched with p<10-30 significance, and never observed in our extensive systematic work on active zone biochemistry for any other active zone protein.

      In this study, we used the Spn IPs to identify putative interaction partners, with the intention to validate the physiological relevance of any positive hits through experiments, like we did in the case of Mical. We were also able to identify previously known interaction partners like Syd-1 and Nrx-1 (Muhammad et al. 2015). Obviously, we did not independently validate these findings for the large number of identified proteins, e.g. by using in vitro purified proteins (we do not consider Western probing of IPs to be independent proof of any complementary value to mass-spectrometry based quantification).

      We have now added this sentence to our manuscript:

      “As a validation of the list of proteins that were returned as interaction partners of Spn in this work, we were able to reconfirm previously known interactions (Muhammad et al. 2015), e.g., Syd-1 (Figure 3b) and Nrx-1 (not shown).” (Line 148)

      5) Are the authors worried about the fact that the Actin-GFP line they use to look at synaptic actin dynamics is driven by a GAL4, and the 2nd top hit of their Spn IP pull downs are translation regulators? Could the changes in actin-GFP they see between control and Spn mutants have anything to do with a different translation of the exogenous UAS-actin-GFP? Would have been helpful to do an endogenous stain for actin levels with an anti-actin antibody so no transcription/translation issues of a transgene would be at play. This would be easy to do for the quantification of total actin levels at the synapse.

      This is per se a fully justified concern, which is hard to be fully excluded. Indeed, when preparing this manuscript, we attempted to visualize and quantify the endogenous presynaptic actin through immunostaining. However, these attempts were unsuccessful, as the very bright muscle actin staining obscures the relatively low levels of actin present close to the presynaptic AZs, even when using super-resolution light microscopy. Still, we would like to emphasize that Spn and Syd-1 antagonized each others’ function concerning apparent F-actin level (using Gal4 expression of actin-GFP). Given the known connection of Spn operating as a compartment specific F-actin breaker (Chia, Patel, and Shen 2012; Ryan et al. 2005; Nakanishi et al. 1997), we are still rather confident about our finding and its interpretation.

      Concerning the FRAP analyses, we are fully confident of our findings, as the intensity of actin-GFP is internally normalized within each NMJ. Therefore, the differences in FRAP experiments should be independent of the starting amounts of actin in control and mutant animals. As we can show that the Spn/Syd-1 antagonism functions on actin dynamics as well (Figure 4j), we are sure concerning the physiological relevance of our observations.

      6) Are Mical levels normalized in the Spn, Syd1 double mutants, given PHP is recovered?

      We thank the reviewer for the comment and agree that Mical levels should be expected to normalize upon Syd-1 heterozygosity in Spn mutants. We have now immunostained for Mical in wildtype, Spn mutants and Spn mutants with Syd-1 heterozygosity to address this question. We found that Mical levels in Spn mutants were indeed normalized upon Syd-1 heterozygosity (Figure 5 - Figure supplement 1 c-d).

    1. Author response

      Reviewer #1 (Public Review):

      The usual strategy to combat antimicrobial drug resistance is to administer a combination of two drugs with distinct mechanisms. An alternative, however, would be to use two drugs that attack the same target, if resistance to one is incompatible with resistance to the other. The authors previously studied parasites resistant to the dihydroorotate dehydrogenase (DHODH) inhibitor DSM265 through an E182D mutation and found that resistance to another inhibitor, IDI-6273, resulted in a reversion to wild-type. Here, they screened various other inhibitors and found that TCMDC-125334 is more active on DSM265-resistant parasites than the wild-type. In this case, however, it was possible for the parasites to become resistant to both inhibitors, either by increasing the copy number of DSM-265-resistant DHODH genes (with a C276Y mutation) or by the emergence of a different mutation. The selection of wild-type parasites with both compounds resulted in resistance but this took considerably longer than for either compound alone. (The actual frequency of double resistance emergence was not measured.)

      Overall the results suggest that for DHODH, when pre-existing resistant parasites are selected with another inhibitor, the results will depend on both the initial mutation and the new inhibitor. The data are solid and convincing and suggest that DHODH has considerable scope for resistance development. The observations do have relevance for other inhibitors and/or enzyme drug targets. However from the data so far, the sweeping statements that the authors make concerning double resistance, in general, are not supported.

      The formatting of the Figures requires some improvement and in some cases, more details of the statistical analyses are needed.

      We thank Reviewer 1 for their kind and helpful comments. We have answered their specific concerns below. In particular, we have improved the formatting of the figures based on their recommendations. We have also edited the discussion based on reviewer 1’s comments.

      Reviewer #2 (Public Review):

      This article focuses on drug resistance acquired by Plasmodium falciparum malaria parasites that have been pressured with different inhibitors of the essential enzyme DHODH (dihydroorotate dehydrogenase). The study focuses on collateral sensitivity between DSM265, which has been evaluated in a human clinical trial and found to select for resistance via the point mutation C276Y (C276F and G181S were also implicated; PMID 29909069), and the GSK compound TMCDC-125334, against which a panel of DHODH mutant parasites (including C276Y) were found to have increased sensitivity. The authors herein explore this case of "collateral sensitivity" by examining whether these two inhibitors, when used simultaneously, might preclude the selection of resistant parasites. The answer, in this case, is no; collateral sensitivity did not prevent parasites from acquiring a novel mutation (V532A) that mediated resistance to both. Culture competition assays provide evidence that this mutant retains normal fitness. The authors conclude that for this target the idea of combining these inhibitors is not a viable therapeutic strategy. The authors also illustrate how TMCDC-125334 can select for resistance via a separate mutation (I263S) or amplification of a chromosomal segment containing dhodh. They also present modeling data to examine binding poses and how mutations could impact drug binding, which is allosteric to the enzyme's substrates (orotate and FMN). The data are thorough and provide convincing evidence that in this case collateral sensitization by distinct chemotypes does not translate into a viable strategy to inhibit DHODH in a way that can preclude mutations that confer cross-resistance.

      We thank the reviewer for their kind comments and helpful recommendations.

      Reviewer #3 (Public Review):

      'Collateral sensitivity' occurs when drug-resistance mutations render a drug target more sensitive to inhibition by another drug, which has been previously described in some detail for malaria parasite dihydroorotate dehydrogenase (DHODH - see refs 36, 46, and 47, for example). Although it has been suggested that combinations of such drugs could potentially suppress the emergence of resistance, cross-resistance-associated mutation (or copy-number variation, CNV) could render such combination strategies ineffective. In the current study, the authors assess a new pairing of DHODH-targeting drugs. Cross-resistant parasites with DHODH mutation or CNV arise following either sequential or combined drug selection, suggesting that the drug combination described would likely fail to effectively suppress the emergence of resistance.

      The strength of the study is that it describes, for a particular drug combination, different mutations associated either with collateral sensitivity or with cross-resistance, and the authors conclude that "combination treatment with DSM265 and TCMDC-125334 failed to suppress resistance". They go on to say that this "brings into question the usefulness of pursuing further DHODH inhibitors." More specific interpretations and implications of the study are as follows:

      a. Other combinations may also fail but there may be combinations that can effectively suppress resistance. A more exhaustive analysis of mutational space will likely be required to determine which combinations if any, would be predicted to succeed in a clinical setting.

      b. It was previously reported that "a combination of [DHODH] wild-type and mutant-type selective inhibitors led to resistance far less often than either drug alone. ... Comparative growth assays demonstrated that two mutant parasites grew less robustly than their wild-type parent, and the purified protein of those mutants showed a decrease in catalytic efficiency, thereby suggesting a reason for the diminished growth rate" (Ref 46). Also, "selection with a combination of Genz-669178, a wild-type PfDHODH inhibitor, and IDI-6273, a mutant-selective PfDHODH inhibitor, did not yield resistant parasites" (Ref 36). It is possible that these previously tested combinations would also yield cross-resistant mutants if selected further.

      c. Although increased DHODH copy number "confers only moderately reduced susceptibility" to the drug used for selection and although these clones were not assessed here for cross-resistance, it seems likely that CNV may represent a general mechanism that could undermine other collateral resistance strategies.

      We thank the reviewer for their kind and helpful comments.

    1. Author Response

      Reviewer #1 (Public Review):

      This study applies state-of-the-art single-cell transcriptome analysis to investigate the nature of drug tolerance, a phenomenon distinct from drug resistance, and a problem of considerable importance in the treatment of C. albicans infections. The authors first show that their transcriptomics platform can reveal sub-populations of untreated cells that display distinct transcription profiles related to metabolic and stress responses that are coupled with cell cycle regulation. They note the consistency of these findings with previous work indicating connections between cell cycle phase and expression of genes related to stress responses and metabolism and argue that this validates their experimental approach, which relies on a complex statistical analysis of sparse data from a relatively small number of single cells. They then proceed to analyze drug-treated cells, mostly focusing on fluconazole (FCZ; which targets ERG11, thus disrupting ergosterol biosynthesis and membrane integrity) and examining individual cells at 2-, 3-, and 6-days following treatment. Their primary finding is the identification of two major classes of cells, one of which they call the α response, characterized by high ribosomal protein (RP) gene expression and the absence of either heat shock or hyperosmotic stress gene expression as well as low expression of glycolytic, carbohydrate reserve pathway, and histone genes. The second survival state on day 2 (called the β response) instead displays low RP gene expression and high heat-shock stress response. Interestingly, the proportion of β cells clearly increases on day 3. In addition, responses to caspofungin (CSP) and rapamycin (RAPA) are examined and compared to FCZ or untreated cells. The main conclusion that the authors draw from their data is that the initial α response transitions to the β response, which is similar to a recently characterized ribosome assembly stress response (RASTR) in the budding yeast S. cerevisiae. They argue that the transcriptional state in α cells provokes the transition to the β state.

      This manuscript presents an enormous amount of complex data whose significance will be difficult to evaluate for those (e.g., this reviewer) not immersed in the specialized analytical techniques used here. Taken at face value, however, the experimental findings are consistent with the authors' main conclusions. Nevertheless, and consistent with the complexity of the responses observed, there are many findings that remain to be explored in mechanistic detail and for which conclusions are less precise.

      We thank Reviewer #1 for their excellent questions. The manuscript does have a large amount of complex data so this version of the manuscript has a tighter focus on the major findings (i.e. 𝛼/Rd versus β/Sd subpopulations in response to FCZ). We have tried to explore these subpopulations in greater depth with supporting data from complementary technologies and additional bioinformatic analyses. We agree that there still remains several observations in the manuscript that are not explored in mechanistic detail. We have tried our best to clearly delineate the evidence that we have for these findings in addition to their potential significance.

      Towards the simplification of the manuscript, we have moved the discussion regarding “comets” to Appendix 2 [Changes L837-897] along with the detailed analysis of the response of cells to rapamyacin and caspofungin [Changes L899-963]. We have also removed from the manuscript a paragraph (and associated Figure 2 - figure supplement 5 in the original manuscript) from the Discussion that described our inability to assign DNA level chromosomal aberrations to either the Rd or Sd subpopulations using whole genome sequencing. Figures 5 and 6 of the original manuscript depicted GO analysis that compared changes in the molecular processes between 𝛼/Rd and β/Sd subpopulations at day 3 and 6 respectively. Although interesting, the figures do not advance the main findings of the manuscript and have been removed from this version.

      Reviewer #2 (Public Review):

      In this manuscript, Dumeaux et al. assess the heterogeneous cellular response of the fungal pathogen Candida albicans to antifungal agents, using single-cell RNA sequencing. The researchers develop and optimized single-cell transcriptomics platform for C. albicans, and exploit this technique to monitor the cellular response to treatment with three distinct antifungal agents. Through this analysis, they identify two distinct subpopulations of cells that undergo differential transcriptomic responses to antifungal treatment: one involving upregulation of translation and respiration, and the other involving stress responses. This work monitors how different and prolonged antifungal exposure alters and shifts fungal cell populations between these responses. This is an innovative study that exploits novel single-cell transcriptomic techniques to address a very interesting question regarding the heterogeneous nature of the fungal response to antifungal drug treatment. This work optimizes a protocol for single-cell RNA sequencing, which is a significant contribution to the fungal research community and will bolster future research efforts in this area. The identification of two distinct subpopulations of fungal cells with differential responses to antifungal treatment is an exciting and novel finding. While there are aspects of this manuscript that are of significant interest, there are also limitations to this work.

      The research is framed as a method to study antifungal drug tolerance, but it is not clear how it does so, based on the methods. This work also compares very different populations of cells (rapidly growing untreated cells compared with cells grown in antifungal for several days), making it difficult to assess the role of antifungal treatment specifically in this analysis. This manuscript is also written with a great deal of highly technical language that makes it difficult to dissect the major findings and outcomes from the study.

      We sincerely thank the reviewer for these comments and for making the effort to evaluate the manuscript. We have tried to address these criticisms by improving the introduction to better explain fungal drug tolerance [Changes L53-61] and to explain how our experimental design allows us to investigate this phenomenon (for example for UT cells L184-187, L142-149). We have also re-written subsections of the results to more intuitively explain technical concepts (especially surrounding single cell technologies and analyses) [L250-257, L368-373, L699-707]. Some subsections of the results have been moved to the appendices in order to better emphasize the major findings and outcomes (e.g. comets L837-897 and in depth analysis of RAPA and CSP treatment L899-963). We address each of the specific concerns below. We have also removed some complicated analyses that did not directly advance the major findings of the manuscript including the GO analysis in Figures 5 and 6 of the original manuscript.

      Before proceeding, we would like to take this opportunity to underscore that these experiments were not primarily designed to investigate the differences between untreated (UT) and treated cells. The major findings (of the 𝛼/Rd and β/Sd subpopulations) are not dependent on the UT profiles. That is, the 𝛼/Rd and β/Sd subpopulations would be evident even if the UT profiles were removed from the manuscript entirely. Rather, the UT profiles/analyses are intended to contribute to the manuscript by helping establish the technical efficacy of the sc-profiling technique. For example, we might expect - a priori - that a large component of cell to cell heterogeneity in isogenic UT cells should correspond to differences in cell cycle, and, indeed, this is what we found.

      Indeed, we did embed (via UMAP) and cluster (via Leiden clustering) the UT data alongside data for the drug-treated cells (Figure 3), which reveals that UT cells largely cluster separately from drug-treated cells. The reviewer is absolutely correct to question the sources underlying this separation; in addition to differential cellular responses to the drug itself, some of the separation may be due to differences in the amount of growth media, for example. (The fact that different drugs (FCZ, RAPA and CSP) largely separate from UT cells and from each other may suggest that at least some of this separation could be due to differences in the mode of action of each drug rather than to issues related to, for example, media depletion. However, this difference is not a major finding of the manuscript. Rather, we agree with the reviewer that “The identification of two distinct subpopulations of fungal cells with differential responses to antifungal treatment is an exciting and novel finding”. As such, the major results begin with data in panels 3D and E that reveal the two distinct cell types within the FCZ-treated sample (a distinction that is not dependent on the status of the UT cells).

      Reviewer #3 (Public Review):

      The authors described their extensive single-cell analysis of Candida undergoing (sub-inhibitory) antibiotic treatment versus no treatment. To do so, the authors used a microfluidics platform they had previously developed, and they optimized, characterized, and validated it for this particular application. Their findings included: (a) the transcription of untreated cells is driven mostly by cell cycle phase, (b) treated cells can be clustered into several major groups and a few outlier groups that the authors termed comets, (c) cells undergoing FCZ treatment can adopt one of two different states (possibly bistability). I found the results interesting and the approach to be sound, and much of the results confirmed my prior expectations. The authors provide a detailed depiction of what is going on in the transcriptome during sub-inhibitory treatment, although this did not always lead to a mechanistic explanation. The clinical relevance was unclear to me beyond a proof of concept application for single-cell transcriptomics. In my opinion, an interesting follow-up would be to follow the transcriptional trajectory of lineages undergoing antimicrobial switching (on and off). The main issues I identified were the author's use of the term tolerance versus resistance, interpretation of "comets", clustering approach, description of fitness, and comparison between time points.

      We thank the reviewer for their time and effort with this manuscript. In the revised manuscript, we expanded the introduction to better delineate between resistance and tolerance, moved the “comets” section to the appendices, as it distracted from the major results and we provided more interpretive analysis of the findings. We also better defined the bioinformatic approaches. (Changes e.g. comets L837-897 and in depth analysis of RAPA and CSP treatment L899-963). With respect to comparisons between time points, we now address these concerns throughout the Response to Reviewer document. We have also moved a comparison of UT versus FCZ cells to Appendix 2 L828-836 as it was perhaps misleading readers of our intention. We only performed this comparison as a sort of “sanity” check to see if the single cell (sc)-profiling would detect differences between UT and drug treated cells.

    1. Author response

      Reviewer #1 (Public Review):

      This careful study reports the importance of Rab12 for Parkinson's disease associated LRRK2 kinase activity in cells. The authors carried out a targeted siRNA screen of Rab substrates and found lower pRab10 levels in cells depleted of Rab12. It has previously been reported that LLOMe treatment of cells breaks lysosomes and with time, leads to major activation of LRRK2 kinase. Here they show that LLOMe-induced kinase activation requires Rab12 and does not require Rab12 phosphorylation to show the effect.

      We thank the reviewer for their comments regarding the carefulness and importance of our work and for their specific feedback which has substantially improved our revised manuscript.

      1) Throughout the text, the authors claim that "Rab12 is required for LRRK2 dependent phosphorylation" (Page 4 line 78; Page 9 line 153; Page 22 line 421). This is not correct according to Figure 1 Figure Supp 1B - there is still pRab10. It is correct only in relation to the LLOMe activation. Please correct this error.

      We appreciate the reviewer’s comment around the requirement of Rab12 for LRRK2-dependent phosphorylation of Rab10 and question regarding whether this is relevant under baseline conditions or only in relation to LLOMe activation. Using our MSD-based assay to quantify pT73 Rab10 levels under basal conditions, we observed a similar reduction in Rab10 phosphorylation when we knockdown Rab12 as we also observed with LRRK2 knockdown (Figure 1A). Further, we see comparable reduction in Rab10 phosphorylation in RAB12 KO cells as that observed in LRRK2 KO cells using our MSD-based assay (Figure 2A and B). Based on this data, we believe Rab12 is a key regulator of LRRK2 activation under basal conditions without additional lysosomal damage. However, as the reviewer noted, we do observe some residual Rab10 phosphorylation upon Rab12 knockdown when assessed by western blot analysis (Figure 1D and Figure 1- figure supplement 1). A similar signal is observed upon LRRK2 knockdown, which may suggest that some small amount of Rab10 phosphorylation may be mediated by another kinase in this cell model. Nevertheless, we appreciate this reviewer’s point and have therefore modified the text to remove any reference to Rab12 being required for LRRK2-dependent Rab phosphorylation and now instead refer to Rab12 as a regulator of LRRK2 activity.

      As noted by the reviewer, our data does suggest that Rab12 is required for the increase in Rab10 phosphorylation observed following LLOMe treatment to elicit lysosomal damage, and we now refer to this appropriately throughout the text.

      2) The authors conclude that Rab12 recruitment precedes that of LRRK2 but the rate of recruitment (slopes of curves in 3F and G) is actually faster for LRRK2 than for Rab12 with no proof that Rab12 is faster-please modify the text-it looks more like coordinated recruitment.

      The reviewer raises an excellent point regarding our ability to delineate whether Rab12 recruitment precedes that of LRRK2 on lysosomes following LLOMe treatment. As noted by the reviewer, we do see both the recruitment of Rab12 and LRRK2 to lysosomes increase on a similar timescale, so we cannot truly resolve whether Rab12 recruitment precedes LRRK2 recruitment in our studies. Based on this, we have modified the text to emphasize that this data supports coordinated recruitment, as suggested, and we have further removed any mention of Rab12 preceding LRRK2. The specific change is as follows “Rab12 colocalization with LRRK2 increased over time following LLOMe treatment, supporting potential coordinated recruitment of these proteins to lysosomes upon damage (Figure 3I). Together, these data demonstrate that Rab12 and LRRK2 both associate with lysosomes following membrane rupture.” and can be found on lines 460-463 of the updated manuscript.

      3) The title is misleading because the authors do not show that Rab12 promotes LRRK2 membrane association. This would require Rab12 to be sufficient to localize LRRK2 to a mislocalized Rab12. The authors DO show that Rab12 is needed for the massive LLOME activation at lysosomes. Please re-word the title.

      To address the reviewer’s concern regarding the title of our manuscript, we have modified the title from “Rab12 regulates LRRK2 activity by promoting its localization to lysosomes” to “Rab12 regulates LRRK2 activity by facilitating its localization to lysosomes” to soften the language around the sufficiency of Rab12 in regulating the localization of LRRK2 to lysosomes. We show that Rab12 deletion significantly reduces LRRK2 activity (as assessed by Rab10 phosphorylation on lysosomes) and significantly increases the localization of LRRK2 to lysosomes upon lysosomal damage. The updated title better reflects the regulatory role of Rab12 in modulating LRRK2 activity, and we thank the reviewer for their suggestion to modify this accordingly.

      Reviewer #2 (Public Review):

      This study shows that rab12 has a role in the phosphorylation of rab10 by LRRK2. Many publications have previously focused on the phosphorylation targets of LRRK2 and the significance of many remains unclear, but the study of LRRK2 activation has mostly focused on the role of disease-associated mutations (in LRRK2 and VPS35) and rab29. The work is performed entirely in an alveolar lung cell line, limiting relevance for the nervous system. Nonetheless, the authors take advantage of this simplified system to explore the mechanism by which rab12 activates LRRK2. In general, the work is performed very carefully with appropriate controls, excluding trivial explanations for the results, but there are several serious problems with the experiments and in particular the interpretation.

      We appreciate the reviewer’s comments regarding the rigor of our work and the potential impact of our studies to address a key unanswered question in the field regarding the mechanisms by which LRRK2 activation is mediated. Our studies focused on the A549 cell model given its high endogenous expression of LRRK2 and Rab10, and this cell line provided a simple system to investigate the mechanism and impact of Rab12-dependent regulation of LRRK2 activity. We agree with the reviewer that future studies are warranted to understand whether similar Rab12-dependent regulation of LRRK2 occurs in relevant CNS cell types.

      First, the authors note that rab29 appears to have a smaller or no effect when knocked down in these cells. However, the quantitation (Fig1-S1A) shows a much less significant knockdown of rab29 than rab12, so it would be important to repeat this with better knockdown or preferably a KO (by CRISPR) before making this conclusion. And the relationship to rab29 is important, so if a better KD or KO shows an effect, it would be important to assess by knocking down rab12 in the rab29 KO background.

      The reviewer raises a good point regarding the importance of confirming that loss of Rab29 has no effect on Rab10 phosphorylation. To address potential concerns about insufficient Rab29 knockdown, we measured the levels of pT73 Rab10 in RAB29 KO A549 cells by MSD-based analysis. RAB29 deletion had no effect on Rab10 phosphorylation, confirming findings from our RAB siRNA screen and the observations of Dario Alessi’s group reported previously (Kalogeropulou et al Biochem J 2020; PMID: 33135724). We have included this new data into our updated manuscript in Figure 1- figure supplement 1 and comment on it on page 6 in the updated Results section.

      Secondly, the knockdown of rab12 generally has a strong effect on the phosphorylation of the LRRK2 substrate rab10 but I could not find an experiment that shows whether rab12 has any effect on the residual phosphorylation of rab10 in the LRRK2 KO. There is not much phosphorylation left in the absence of LRRK2 but maybe this depends on rab12 just as much as in cells with LRRK2 and rab12 is operating independently of LRRK2, either through a different kinase or simply by making rab10 more available for phosphorylation. The epistasis experiment is crucial to address this possibility. To establish the connection to LRRK2, it would also help to compare the effect of rab12 KD on the phosphorylation of selected rabs that do or do not depend on LRRK2.

      The reviewer raises an interesting question regarding whether Rab12 can further reduce Rab10 phosphorylation independently of LRRK2. Using our quantitative MSD-based assay, we observe that pRab10 levels are at the lower limits of detection of the assay in LRRK2 KO A549 cells. Unfortunately, this means that we are unable to detect whether there might be any additional minor reduction in Rab10 phosphorylation with Rab12 knockdown in LRRK2 KO cells. We cannot rule out that Rab12 may play a LRRK2-independent role in regulating Rab10 phosphorylation in other cell lines, and future studies are warranted to explore whether Rab12 knockdown can further reduce Rab10 phosphorylation in other systems, including in CNS cells.

      Regarding exploring the effects of RAB12 knockdown on the phosphorylation of other Rabs, we also assessed the impact of RAB12 KO on phosphorylation of another LRRK2-Rab substrate, Rab8a. We observed a strong reduction in pT72 Rab8a levels in RAB12 KO cells compared to wildtype cells, suggesting the impact of RAB12 deletion extends beyond Rab10 (see representative western blot in Author response image 1). Due to potential concerns with the selectivity of the pT72 Rab8a antibody (potentially detecting the phosphorylation of other LRRK2-Rabs), we cannot definitively demonstrate that Rab12 mediates the phosphorylation of other Rabs. This question should be revisited when additional phospho-Rab antibodies become available that enable us to selectively detect LRRK2-dependent phosphorylation of additional Rab substrates under endogenous expression conditions.

      Author response image 1.

      A strength of the work is the demonstration of p-rab10 recruitment to lysosomes by biochemistry and imaging. The demonstration that LRRK2 is required for this by biochemistry (Fig 4A) is very important but it would also be good to determine whether the requirement for LRRK2 extends to imaging. In support of a causal relationship, the authors also state that lysosomal accumulation of rab12 precedes LRRK2 but the data do not show this. Imaging with and without LRRK2 would provide more compelling evidence for a causative role.

      We thank the reviewer for their suggestion to assess Rab12 recruitment to damaged lysosomes with and without LRRK2 using imaging-based analyses to add confidence to our findings from biochemical approaches. To address this comment, we have imaged the recruitment of mCherry-tagged Rab12 to lysosomes (as assessed using an antibody against endogenous LAMP1) and observed a significant increase in Rab12 levels on lysosomes following LLOMe treatment. This occurs to a similar extent in LRRK2 KO A549 cells, suggesting that Rab12 is an upstream regulator of LRRK2 activity. This new data has been incorporated into the revised manuscript (Figure 3E) and is presented on page 20 of the updated manuscript.

      Our conclusions on this are further strengthened by new data assessing Rab12 recruitment to lysosomes using orthogonal analysis of isolated lysosomes biochemically. Using the Lyso-IP method, we observed a strong increase in the levels of Rab12 on lysosomes following LLOMe treatment that was maintained in LRRK2 KO cells. These data have been added to the updated manuscript (new data added to Figure 3- figure supplement 1).

      Together, these data support our hypothesis that Rab12 recruitment to damaged lysosomes is upstream, and independent, of LRRK2.

      The authors also touch base with PD mutations, showing that loss of rab12 reduces the phosphorylation of rab10. However, it is interesting that loss of rab12 has the same effect with R1441G LRRK2 and D620N VPS35 as it does in controls. This suggests that the effect of rab12 does not depend on the extent of LRRK2 activation. It is also surprising that R1441G LRRK2 does not increase p-rab10 phosphorylation (Fig 2G) as suggested in the literature and stated in the text.

      We agree with the reviewer that it is quite interesting that RAB12 knockdown significantly attenuates Rab10 phosphorylation in the context of PD-linked variants in addition to that observed in wildtype cells basally and after LLOMe treatment. As noted by the reviewer, we did not observe increased levels of phospho-Rab10 in LRRK2 R1441G KI A549 cells at the whole cell level (Figure 2G). However, we observed a significant increase in Rab10 phosphorylation on isolated lysosomes from LRRK2 R1441G KI cells compared to WT cells (Figure 4B). This may suggest that the LRRK2 R1441G variant leads to a more modest increase in LRRK2 activity in this cell model. Previous studies in MEFs from LRRK2 R1441G KI mice or neutrophils from human subjects that carry the LRRK2 R1441G variant showed a 3-4 fold increase in Rab10 phosphorylation (Fan et al Acta Neuropathol 2021 PMID: 34125248 and Karaye et al Mol Cell Proteomics 2020 PMID: 32601174), supporting that this variant does lead to increased Rab10 phosphorylation and that the extent of LRRK2 activation may vary across different cell types.

      Most important, the final figure suggests that PD-associated mutations in LRRK2 and VPS35 occlude the effect of lysosomal disruption on lysosomal recruitment of LRRK2 (Fig 4D) but do not impair the phosphorylation of rab10 also triggered by lysosomal disruption (4A-C). Phosphorylation of this target thus appears to be regulated independently of LRRK2 recruitment to the lysosome, suggesting another level of control (perhaps of kinase activity rather than localization) that has not been considered.

      The reviewer suggests an interesting hypothesis around the existence of additional levels of control beyond the lysosomal levels of LRRK2 to lead to increased Rab10 phosphorylation of lysosomes. Given the variability we have observed in measuring endogenous LRRK2 levels on lysosomes, we performed two additional replicates to assess lysosomal LRRK2 levels in LRRK2 R1441G KI and VPS35 D620N KI cells at baseline and after treatment with LLOMe. We observed a significant increase in LRRK2 levels on lysosomes in cells expressing either PD-linked variant and a trend toward a further increase in the levels of LRRK2 on lysosomes after LLOMe treatment in these cells (Figure 4D in the updated manuscript). We have updated the text on page 24 to reflect this change, suggesting that the PD-linked variants do not fully occlude the effect of lysosomal disruption on the lysosomal recruitment of LRRK2.

      LLOMe treatment leads to a stronger increase in Rab10 phosphorylation on lysosomes from LRRK2 R1441G and VPS35 D620N cells compared to the modest increase in LRRK2 levels observed. This could suggest that, as the reviewer noted, additional mechanisms beyond increased lysosomal localization of LRRK2 may be driving the robust increase in Rab10 phosphorylation observed. We have modified the results section on lines 548-551 to highlight this possibility: “Rab10 phosphorylation showed a more significant increase in response to LLOMe treatment than LRRK2 on lysosomes from LRRK2 R1441G and VPS35 D620N KI cells, suggesting that there may be more regulation beyond the enhanced proximity between LRRK2 and Rab that contribute to LRRK2 activation in response to lysosomal damage.”

      Reviewer #3 (Public Review):

      Increased LRRK2 kinase activity is known to confer Parkinson's disease risk. While much is known about disease-causing LRRK2 mutations that increase LRRK2 kinase activity, the normal cellular mechanisms of LRRK2 activation are less well understood. Rab GTPases are known to play a role in LRRK2 activation and to be substrates for the kinase activity of LRRK2. However, much of the data on Rabs in LRRK2 activation comes from over-expression studies and the contributions of endogenously expressed Rabs to LRRK2 activation are less clear. To address this problem, Bondar and colleagues tested the impact of systematically depleting candidate Rab GTPases on LRRK2 activity as measured by its ability to phosphorylate Rab10 in the human A549 type 2 pneumocyte cell line. This resulted in the identification of a major role for Rab12 in controlling LRRK2 activity towards Rab10 in this model system. Follow-up studies show that this role for Rab12 is of particular importance for the phosphorylation of Rab10 by LRRK2 at damaged lysosomes. Increases in LRRK2 activity in cells harboring disease-causing mutants of LRRK2 and VPS35 also depend (at least partially) on Rab12. Confidence in the role of Rab12 in supporting LRRK2 activity is strengthened by parallel experiments showing that either siRNA-mediated depletion of Rab12 or CRISPR-mediated Rab12 KO both have similar effects on LRRK2 activity. Collectively, these results demonstrate a novel role for Rab12 in supporting LRRK2 activation in A549 cells. It is likely that this effect is generalizable to other cell types. However, this remains to be established. It is also likely that lysosomes are the subcellular site where Rab12-dependent activation of LRRK2 occurs. Independent validation of these conclusions with additional experiments would strengthen this conclusion and help to address some concerns that much of the data supporting a lysosome localization for Rab12-dependent activation of LRRK2 comes from a single method (LysoIP). Furthermore, there is a discrepancy between panel 4A versus 4D in the effect of LLoMe-induced lysosome damage on LRRK2 recruitment to lysosomes that will need to be addressed to strengthen confidence in conclusions about lysosomes as sites of LRRK2 activation by Rab12.

      We thank the reviewer for their comments regarding our work that identifies Rab12 as a novel regulator of LRRK2 activation and the appreciation of the parallel approaches we employed to add confidence in this effect.

      As suggested by the reviewer, we have updated our manuscript to now include independent validation of our conclusions using imaging-based analyses to complement our data from biochemical analyses using the Lyso-IP method. Specifically, we have included new imaging data that confirms that Rab12 levels are increased on lysosomes following membrane permeabilization with LLOMe treatment and demonstrates that this occurs independent of LRRK2, providing additional support that Rab12 is an upstream regulator of LRRK2 activity (Figure 3E in the updated manuscript).

      Regarding the reviewer’s comment on a discrepancy between our findings in Figure 4A and Figure 4D, we have performed additional independent replicates in Figure 4D to assess the impact of lysosomal damage on the lysosomal levels of LRRK2 at baseline or upon the expression of genetic variants. We observed a significant increase in LRRK2 levels on lysosomes following LLOMe treatment in our set of experiments included in Figure 4A and a non-significant trend toward an increase in LRRK2 levels on isolates lysosomes in Figure 4D. As described in more detail below (in response to the second point raised by this reviewer), we think this variability arises because of a combination of low levels of LRRK2 on lysosomes with endogenous expression and variability across experiments in the efficiency of lysosomal isolation. Our observations of increased recruitment of LRRK2 to lysosomes upon damage are further supported by parallel imaging-based studies (Figure 3F-I) and are consistent with previous studies using overexpression systems.

      We thank the reviewer for all of the suggestions which have added further confidence to our conclusions and substantially improved the manuscript.

    1. Author Response

      Reviewer #1 (Public Review):

      This manuscript provides novel and intriguing experiments that aim to elucidate the mechanical properties of the Reissner fiber (RF) and to probe its interactions with the motile cilia in the central canal of the spinal cord. Using in vivo imaging in larval zebrafish, the authors show that the RF is under tension and oscillates dorsoventrally. Importantly, ablation of the RF triggered retraction and relaxation of the fiber cut ends. The retraction speed depends on where the fiber was ablated, with fastest retraction in the rostral side, indicating that tension in the RF builds up rostrally. The authors, based on observations from live imaging of intact and ablated RF and central canal, conjecture that numerous ependymal motile monocilia, that are tilted caudally and interact frequently with the RF, contribute to RF heterogenous tension via weak interactions.

      The work is important. The experiments are thorough and intricate. The findings are fascinating and open up the prospect for future investigations and models. I'm particularly curious as to what future experiments can be used to test the hypothesis put forward by the authors about the role of ciliafiber interactions in the RF mechanical properties and function.

      We thank Reviewer#1 for showing enthusiasm and support.

      Reviewer #2 (Public Review):

      The present manuscript by the Claire Wyart group analyses the behaviour of Reissner's fibre (RF) when it is cut, as well as the behaviour of cells touching RF when contact is interrupted. They show that RF is under tension that is higher in the rostral than in the caudal spinal cord. One of the proposed mechanisms is a caudally oriented movement of the cilia of ependymal radial glials cells (ERG) that is inherent rather than caused by the contact with RF. Kolmer Agduhr neurons that are also CSF contacting (CSF-cN), alter their activity when contact is lost through laser ablation of RF.

      This is an interesting paper - RF has long been proposed to be a source of signalling molecules in the development and physiological function of neural cells in the spinal cord. Cilia are the main centre of signalling activity in ciliated cells (e.g. for sonic hedgehog signalling) and the fact that ERG cilia are in direct contact with RF is intriguing. Presumably, signalling molecules could be directly transferred from RF to ERG at the contact points.

      Functionally, CSF-cN are augmenting spinal cord intrinsic sensory feedback on body curvature. This had been shown in vitro/ex vivo, but not clearly evaluated in the living animal. The data shown here demonstrate a possible mechanism for how the feedback can be mediated through contact with RF. This is of fundamental interest to understand the functioning of a locomotor network that is under evolutionary pressure to function early, since fish hatch at 3 days post fertilisation.

      We thank Reviewer#2 for the interest in our work.

      Interestingly, the authors propose (and discuss against the relevant literature) that the presence of RF in the central canal can influence the flow of the CSF, which should be investigated in further work.

      To bring readers back in the context of the existing literature:

      When using beads to track particles in the flow in the presence or in the absence of RF, we have not seen major difference in the bidirectional dorsoventral profile of the embryonic CSF flow (Cantaut-Belarif et al CB 2018 ; Sternberg et al., Nature Comm 2019 ; Thouvenin et al., eLife 2020).

      However, we cannot exclude that there could be a very local impact of the RF on CSF flow, due to the fact that the flow has to be null on the surface of the fiber (of 200 nm diameter). With our methods for tracking fluorescent particles in single planes at a time (Cantaut-Belarif et al CB 2018 ; Sternberg et al., Nature Comm 2019 ; Thouvenin et al., eLife 2020), we are likely missing the fiber in the plane and the fine analysis of the domain surrounding the fiber is not resolved. However, a null flow at the surface of the RF would impose a sharp gradient around the fiber.

      Note that our results estimating the effect of cutting the fiber on the beating frequency of motile cilia were not consistent across fish – half the cilia showing an increase while the rest show a decrease, making it hard to conclude. A finer analysis with higher temporal and spatial resolution in 3D will be necessary to decipher the role of the fiber on the beating of cilia and local CSF flow.

      Overall, the results are clearly presented, and methods are thoroughly given, including some indication on the reduction of bias (by blinding movies before analysis). The authors also clearly state the limitations of their work, mostly derived from optical limitation (size of the RF in the larval fish, and speed of the recording in the laser-equipped microscope). This doesn't affect the fundamental statements.

      Thank you again for your appreciation of our work.

      Reviewer #3 (Public Review):

      This manuscript by Bellegarda et al. examined the in vivo dynamic behavior of the Reissner fiber and its interactions with cilia and sensory neurons in the central canal of zebrafish larvae. The authors accomplished this by performing live imaging with a transgenic reporter zebrafish line in which the fiber is GFP-tagged and by finely tracking the movement of the fiber. Interestingly, they discovered that the fiber undergoes a dynamic vibratory-like movement along the dorsoventral axis. The authors then utilized a pulsed laser to precisely cut the fiber, which frequently resulted in a fast retraction behavior and a loss of calcium activity in sensory neurons in the central canal called CSFCNs. Mechanical modeling of the elastic properties of the fiber indicated that the fiber is a soft elastic rod with graded tension along the rostrocaudal axis. Finally, by performing live imaging of motile cilia and the fiber in the central canal, they found that the two interact in close proximity and that cilia motility is affected when the fiber was cut. The authors concluded that the Reissner fiber is a dynamic structure under tension that interacts with sensory neurons and cilia in the central canal.

      Strengths:

      1) The study utilizes state-of-the-art microscopy techniques and beautiful transgenic zebrafish tools to characterize the in vivo behavior of the Reissner fiber and found that it exhibits surprising dynamic movements along the dorsal-ventral axis. This observation has important implications for the physiology and function of the Reissner fiber.

      2) By performing a series of clever laser cutting experiments, the authors reveal that the Reissner fiber is under tension in the central canal of zebrafish. This finding provides direct experimental evidence to support the hypothesis that the Reissner fiber functions in a biomechanical manner during spinal cord development and body axis straightening.

      3) By developing a mechanical model of the Reissner fiber and its retraction behavior, the authors estimate the elastic properties of the fiber and found that it is more akin to an elastic polymer rather than a stiff rod. This is a useful finding that illuminates the biophysical properties of the fiber.

      4) Through calcium and cilia imaging studies, the authors demonstrate that the Reissner fiber likely interacts with motile cilia and regulates the activity of ciliated sensory neurons (CSF-CNs). The authors propose a model in which fiber-cilia interactions may occur via weak interactions or frictional forces. This model is plausible and opens several new doors for additional investigation.

      We thank Reviewer#3 for the support.

      Weaknesses:

      1) All the live imaging experiments appear to be performed with animals paralyzed via the injection of a chemical agent (bungarotoxin). Does paralysis and/or bungarotoxin negatively impact the behavior of the Reissner fiber? Some data from non-paralyzed animals would ameliorate this concern.

      We performed very few experiments on non paralyzed fish as the position of the Reissner fiber were difficult / impossible to analyze in 3D. In a movie added to our revision as Movie 3, it is obvious that skeletal muscle contractions result in very large jumps of the fiber that cannot be corrected for using single plane imaging. Without being able to monitor and correct for muscle contractions, an accurate estimation of the fiber motion in this context would be artefactual.

      2) Although the authors convincingly demonstrate that the Reissner fiber is under graded tension, it remains unclear what is the relevance and function of tension on this structure. The photoablation data presented do not delineate between the relevance of the fiber being intact or tension on the fiber as cutting the fiber impacts both. Is fiber tension required for body straightening? At the site of fiber photoablation, does a spinal curvature develop? If cultured, do the ablated animals exhibit a scoliotic phenotype?

      We thank Reviewer#3 for asking these important questions. We did ask ourselves the same questions, but had to restrain the ambition of our study as for technical reasons, the ablation experiments performed on an inverted microscope required to mount the fish closed to the bottom coverslip and were extremely difficult to perform while safely removing the animal from the imaging cuvette and not affecting the alignment of its body axis.

      3) One of the most potentially impactful conclusions of the paper is that the Reissner fiber interacts with cilia, but the evidence is insufficient to support this. Although some motile cilia are near the fiber (Figure 3A), many cilia are not near the fiber. The provided images and videos do not clearly demonstrate that cilia physically contact or influence the behavior of the Reissner fiber. Further, the data is lacking to conclude that the Reissner fiber directly impacts cilia motility as they did not observe an overall statistically significant difference before and after ablation (Supplemental Figure 1A). Higher magnification, higher resolution, higher acquisition rate and/or colocalization analyses of fiber-cilia interactions could alleviate this concern.

      We agree with the reviewer but could not yet perform for technical reasons more spatially- and temporally- resolutive experiments. Further analysis of cilia and RF translational motion is displayed on the Figure 4 - Supplemental Figure 2 and presented in the Results sections.. We observed that for 7 out of 15 dorsal cilia and 4 out of 9 ventral cilia, the preferred position of the cilium was correlated with a position of the fiber – suggesting that they could interact. However, our current dataset in 2 D is too incomplete to draw strong conclusions on the nature of interactions between fiber and cilia. A future study relying on 3D analysis of the fiber and cilia should resolve how collective interactions of cilia may determine the position of the fiber.

      4) Similarly, how does the Reissner fiber interact with CSF-CN sensory neurons? The authors suggest that the fiber interacts with CSF-CN sensory neurons by modulating their spontaneous calcium activity via weak interactions or frictional forces from motile ciliated ependymal radial glial cells. While the calcium imaging data of the CSF-CNs is convincing and sound, the exact nature of the fiber-neuron interaction is unclear. Do cilia or apical extensions on CSF-CN sensory neurons sense the fiber or forces through a mechanosensing or chemosensing mechanism?

      This question is of great interest to us and will be the topic of a future investigation, as it is very difficult to image CSF-cN motile cilium (see Bohm et al., Nature Comm 2016) and even more with the Reissner fiber.

      There is some additional confusion as the authors appear to focus their cilia experiments on ependymal radial glial cells in section 4, rather than CSF-CNs. The addition of an illustrative cartoon would add clarity.

      We agree and we added a schematic in the last figure (Figure 4A).

      Overall, the conclusions of the study are well supported by the data presented. However, the strength of the conclusions could be enhanced by additional controls, alternative experimental approaches and clarifications.

      This manuscript is an important contribution to the fields of spinal cord development and body axis development, which are fundamental questions in neurobiology, developmental biology, and musculoskeletal biology. In recent years, the Reissner fiber and motile cilia function have been linked to cerebrospinal fluid flow signaling and body straightening, but the precise form and function of the fiber remain unclear. This study provides new insight into the dynamic and biophysical properties of the Reissner fiber in vivo in zebrafish and proposes a model in which the fiber interacts with cilia and sensory neurons. This study provides novel insight into the cellular mechanisms that underlie the pathogenesis of disorders such as idiopathic scoliosis.

      We thank the Reviewer #3 and added further analysis of cilia and RF motion displayed on the figures below added as well as extended data figures in the main manuscript.

    1. Author response

      Reviewer #1 (Public Review):

      The potential role of the CaMKII holoenzyme in synaptic information processing, storage, and spread has fascinated neuroscientists ever since it has been described that self-phosphorylation of CaMKII at T286 (pT286) can maintain the kinase in an activated state beyond the initial Ca2+ stimulus that induced kinase activation and pT286. The current study by Lučić et al utilizes biochemical and biophysical methods to re-examine two pT286 mechanisms and finds:

      (1) that a previously proposed activation-induced subunit exchange within the holoenzyme can not provide pT286 maintenance or propagation; and

      (2) that pT286 can occur not only within a holoenzyme but also between two holoenzymes, at least at sufficiently high concentrations.

      For the observation regarding the subunit exchange, the authors go above and beyond to demonstrate that a previously proposed activation-induced subunit exchange does not actually occur in their hands and that the previous appearance of such a subunit exchange may instead be due to activation-induced interactions between the kinase domains of separate holoenzymes. This provides important clarification, as the imagination about the possible functions of this subunit exchange has been running wild in the literature.

      By contrast, pT286 between holoenzymes at sufficiently high concentrations was largely predicted by the previously reported concentration-dependence of pT286 between monomeric truncated CaMKII (although these previous experiments did not rule out that such pT286 could have been excluded for intact full-length holoenzymes). Notably, the reaction rate reported here for pT286 between two holoenzymes is more than two orders of magnitude slower compared to the previously described rate of the pT286 reaction within a holoenzyme.

      The only point on which we disagree (and we think it’s unarguable) is that the current consensus is that inter-holoenzyme phosphorylation simply doesn’t happen (whether or not monomers can phosphorylate each other). The reviewer is of course right that this view seems now less and less likely. We now performed new experiments to investigate this critical point further (see below).

      The probable reason for the discrepancy in reported half-time of phosphorylation measured in earlier reports and in our paper is the fact that earlier reports (for example Bradshaw et al., 2002) measured autophosphorylation rate of wild-type CaMKII holoenzymes, at catalytically-competent enzyme concentrations of 0.1-5 µM. We are reporting the phosphorylation rate of 4 µM kinase-dead CaMKII, which is only a substrate, by 10 nM catalytically competent enzyme (CaMKII wild-type). There is up to 500 times less catalytically competent enzyme in our reactions, which is probably the reason why the reaction itself is several orders of magnitude slower.

      In summary, this study contains two somewhat disparate parts: (1) one technical tour-de-force to provide evidence that argues against activation-induced subunit exchange, which was a tremendous effort that provides influential novel information, and (2) another set of experiments showing the somewhat predictable potential for pT286 between holoenzymes, but without indication for the functional relevance of this rather slow reaction. Unfortunately, in the current/initial title of the manuscript, the authors chose to emphasize the weaker part of their findings.

      We agree with the reviewer that the title should be modified to emphasize both findings of our study. We also hope that our new experiments do bolster our findings with regard to pT286 between holoenzymes, as the reviewer puts it.

      The seemingly slow inter-holoenzyme phosphorylation is only slow under conditions in which one of the proteins is kinase-dead. In situation in which all CaMKII holoenzymes are wild-type and therefore capable of performing phosphorylation (both intra- and inter-holoenzyme) the reaction rates for pT286 are expected to be orders of magnitudes faster, than those reported here for the phosphorylation of T286 on kinase-dead protein.

      Reviewer #2 (Public Review):

      This well-written manuscript provides a technical tour-de-force to provide a novel mechanism for sustaining CaMKII autophosphorylation through an interholoenzyme reaction mechanism the authors term inter-holoenzyme phosphorylation (IHP). The authors use molecular engineering to create designer molecules that permit detailed testing of the proposed interholoenzyme reaction mechanism. By catalytically inactivating one population of enzymes, they show using standard assays that the inactive enzyme can be phosphorylated by active holoenzymes. They go on to show that in cells, the inactive enzyme is phosphorylated only in the presence of co-expressed active CaMKII and that this does not appear to be due to active and inactive subunits mixing within the same holoenzyme. The authors suggest reasons for why previous experiments failed to expose IHP and in some experiments provide evidence that reproduces and then extends earlier studies. Some noted differences from earlier experiments are the reaction temperature, the time course of the reactions, and that significantly higher concentrations of the inactive (substrate) kinase in the present study amplify the IHP. These are plausible reasons for earlier studies not finding significant evidence for IHP and the presented data is well-controlled and of high quality.

      The authors then take on the idea of subunit exchange employing multiple strategies. Using genetic expansion, they engineer an unnatural amino acid into the hub domain of the kinase (residue 384). In the presence of the photoactivatable crosslinker BZF and UV illumination, a ladder of subunits was generated indicating intraholoenzyme crosslinks were established. Using this cross-linked enzyme, presumably incapable of subunit exchange, the authors show significant phosphorylation of the kinase-dead mutant. This further supports that IHP is the cause of phosphorylation and not subunit exchange. Extending these experiments, they could not find evidence when CaMKIIF394BZF was mixed with the kinase-dead mutant and exposed to UV light, that there was evidence of the kinasedead subunits exchanged into CaMKIIF394 (active) enzymes.

      Just a note, instead of residue 384, this should read 394.

      With an entirely different approach, the authors use isotopic labeling of different pools of wt CaMKII (N14 or N15) followed by bifunctional cross-linking and mass spec to assess potential intra- and interholoenzyme contacts. Several interesting findings came of these studies detailed in Figure 4, mapped in detail in Figure 5, and extensively documented in supplementary tables. Critically, numerous crosslinks were found between different domains of the enzyme (catalytic, regulatory, hub) that are themselves a nice database of proximity measurements, but critical to the hypothesis, no heterotypic cross-links were found in the hub domains at any activated state or time point of incubation. This data supports two findings, that catalytic domains come into close proximity between holoenzymes when activated, supporting the potential for IHP, but that no subunit exchange occurs.

      The authors then pursue the approach used originally to provide evidence of subunit mixing, single molecule-based fluorescence imaging. Using pools of CaMKII labeled with spectrally separable dyes, the authors reproduce the earlier findings (Stratton et al, 2016) showing that under activating conditions, but not basal conditions, colocalized spots were detected. Numerous controls were done that confirm the need for full activation (Ca2+/CaM + Mg2+/ATP) to visualize co-localized CaMKII holoenzymes. Extending these studies, the authors mix holoenzymes, fully activate them, and after sufficient time for subunit exchange (if it occurs), the reactions were quenched, and then samples were analyzed. The result was that no evidence of dual-colored holoenzymes was present; if subunits had mixed between holoenzymes, dual-colored spots should have been evident after quenching the reactions. This was not the case. Further, experiments repeated with pools of differentially labeled kinase dead enzymes produced no colocalization, as predicted, if activation of the catalytic domains is necessary to establish IHP.

      Finally, the authors employ mass photometry to investigate the potential for interholoenzyme interactions. At basal conditions, only a mass peak consistent with CaMKII dodecamers was evident. Upon activation, a small fraction of dimeric complexes was evident (with Ca2+/CaM bound) but the majority of the peak was a dodecamer with 12 associated CaM molecules, and importantly, a significant fraction of a mass population was found consistent with a pair of holoenzymes with associated CaM. As an aside, the holoenzyme population appeared to be modestly destabilized as evidence of a minor fraction of dimers appeared as the authors diluted the enzyme, but the pools of holoenzyme and pairs of holoenzymes (with CaM) remained the dominant species when activated under all three enzyme concentrations assessed. Supporting the importance of activation for interactions between holoenzymes, the catalytically dead kinase even under activating conditions, shows no evidence of dimers of holoenzymes.

      Each of the approaches is well-controlled, the data is of uniformly high quality, and the authors' interpretations are generally well-supported.

      We are very grateful for these supportive comments.

      Reviewer #3 (Public Review):

      CaMKII is a multimeric kinase of great biologic interest due to its crucial roles in long-term memory, cardiac pacemaking, and fertilization. CaMKII subunits organize into holoenzymes comprised of 1214 subunits, adopting a donut-like, double-ringed structure. In this manuscript, Lucic et al challenge two models in the CaMKII field, which are somewhat related. The first is a longstanding topic in the field about whether the autophosphorylation of a crucial residue, Thr286, can be phosphorylated between intact holoenzymes (inter-holoenzyme phosphorylation). The second is a more recent biochemical finding, which tested the long-running theory that CaMKII exchanges subunits between holoenzymes to create mixed oligomers. These two models are connected by the idea that subunit exchange could facilitate phosphorylation between subunits of different holoenzymes by allowing subunits to integrate into a different holoenzyme and driving transphosphorylation within the CaMKII ring. Here, the authors attempt to show that one intact holoenzyme phosphorylates another intact holoenzyme at Thr286. The authors also provide evidence suggesting that subunit exchange is not occurring under their conditions, and therefore not driving this phosphorylation event. The authors propose a model where instead of exchanging subunits, two holoenzymes interact via their kinase domains to enable transphosphorylation at Thr286 without integrating into the holoenzyme structure. In order for the authors to successfully convince readers of all three facets of this new model, they need to provide evidence that 1) transphosphorylation at Thr286 happens when subunit exchange is blocked, 2) subunit exchange does not occur under their conditions, and 3) there are interactions between kinases of different holoenzymes that lead to productive autophosphorylation at Thr286.

      Strengths:

      The authors have designed and performed a battery of cleverly designed and orthogonal experiments to test these models. Using mutagenesis, they mixed a kinase-dead mutant with an active kinase to ask whether transphosphorylation occurs. They observe phosphorylation of the kinase-dead variant in this experiment, which indicates that the active kinase must have phosphorylated it. A few key questions arise here: 1) whether this phosphorylation occurred within a single CaMKII holoenzyme ring (which is the canonical mechanism for Thr286 phosphorylation), 2) whether the phosphorylation occurred between two separate holoenzyme rings, and 3) why was this not observed in previous literature? To address questions 1 and 2, the authors implemented an innovative strategy introducing a geneticallyencoded photocrosslinker in the oligomerization domain, which when crosslinked using UV light, should lock the holoenzyme in place. The rate of phosphorylation was the same when comparing uncrosslinked and crosslinked CaMKII variants, indicating that phosphorylation is occurring between holoenzymes, rather than through a subunit exchange mechanism that would require some type of disassembly and reassembly (presumably blocked by crosslinking). The 3rd question remains as to why this has not been previously observed, as it has not been for lack of effort. The authors mention low temperature and low concentration as culprits, however, Bradshaw et al, JBC v. 277, 2002 carry out a series of careful experiments that indicated that autophosphorylation at T286 is not concentration-dependent (meaning that the majority of phosphorylation occurs via intra-holoenzyme), and this is done over a concentration and temperature range. It is possible that due to the mutants used in the current manuscript, it allows for the different behavior of the kinase-dead domains, which will have an empty nucleotide-binding pocket. Further studies will need to elucidate these details, and importantly, understand what physiological conditions facilitate this mechanism.

      We thank the reviewer for their assessment of our work.

      The paper cited by the reviewer (Bradshaw et al, JBC v. 277, 2002) is indeed a carefully designed biochemical investigation of CaMKII activity. As the reviewer pointed out, one of the conclusions of the paper is that the autophosphorylation of CaMKII is not concentration dependent, implying that it has to occur exclusively intra-holoenzyme. However, there are some limitations which colour the interpretation of this classic paper. Bradshaw and colleagues used only CaMKII wild-type protein, so the autophosphorylation which is taking place in their reactions is possible both within holoenzymes and between holoenzymes, but this is impossible to distinguish. The authors of the cited paper then used “Autonomous activity assay” (not any measurement of pT286 on CaMKII itself) in which they first stopped the initial autophosphorylation reaction at T286 by adding a quench solution which contained a mixture of EDTA and EGTA, and then measured phosphorylation of the peptide-substrate of CaMKII (autocamtide-2), in the absence of Calmodulin binding (autonomous activity). They also diluted the autophosphorylation reaction to 10 nM CaMKII before adding it to the “Autonomous activity assay”.

      As a side point, each reaction was quenched and diluted to the same final CaMKII concentration of 10 nM. They measured the activity of this dilution with phosphorylation of a peptide-substrate (autocamptide-2), in the absence of CaM binding. The authors contend that autonomous activity reported in this way reflects the amount of pT286, which is not impossible, but it is not a direct measure of pT286.

      All this adds up to allowing the autophosphorylation of wild-type CaMKII at various concentrations ranging from 0.1 to 4.6 µM in the presence of 10 µM Ca/CaM and 500 µM Mg/ATP. This is a very fast reaction, concentrations of enzyme (CaMKII wild-type), activator (Ca/CaM) and ATP/Mg are all high at the beginning of the autophosphorylation reaction and would expect to allow for maximal autophosphorylation in very short times (seconds). Most importantly, this experiment does not exclude a inter-holoenzyme reaction slower than the intra-holoenzyme one. It certainly could not detect it.

      In any case, to relate these concepts to our experiments and current understanding of CaMKII, we performed a new set of experiments modelled on the Bradshaw paper. Critically, we used CaMKII wild-type as the enzyme, and CaMKII kinase-dead, as the substrate. Intraholoenzyme phosphorylation cannot occur in this reaction, which was designed to detect a concentration-dependent phosphorylation reaction. We used a fixed concentration of the substrate kinase (4 µM), and 4 different concentrations of CaMKIIWT ranging from 0.5 -100 nM. In our assay, the level of phosphorylation on substrate CaMKII(CaMKIIKD) was dependent on concentration of enzyme CaMKII (CaMKIIWT) (Figure 1-figure supplement 3), adding more evidence to the hypothesis that CaMKII autophosphorylation can occur inter-holoenzyme.

      The possibility that empty nucleotide binding pocket is influencing the phosphorylation status of T286 in the regulatory domain of kinase-dead CaMKII is highly unlikely. One could maybe envision that empty nucleotide binding pocket might expose the regulatory domain in kinase-dead CaMKII for phosphorylation, which would be prevented in CaMKIIWT, but in all available structures of CaMKII (Chao et al, 2011; Myers et al., 2017, Buonarati et al., 2021), the regulatory domain is docked to the kinase domain of CaMKII, although the nucleotide binding pocket is empty (either by mutation of residue K42 and/or simply by not adding the ATP/Mg to reduce chemical dispersity of the sample). The only time the regulatory domain was not docked on the kinase domain is when CaMKII was in complex with Calmodulin (Rellos et al., 2010). Finally, in our crosslinking mass spectrometry experiments, we used both heavy and light forms of CaMKII wild-type, and there we can clearly see interactions between kinase/regulatory domains of two different species of CaMKIIWT, which are dependent on activation.

      The most convincing data that subunit exchange does not occur is from the crosslinking mass spectrometry experiment. The authors created mixtures of 'light' and 'heavy' CaMKII holoenzymes, either activated or not and then used a Lys-Lys crosslinker (DSS) to trap the enzyme in its final state. The results of this experiment indicate that subunit exchange is not occurring under their conditions. A caveat here is that there are not many lysines at hub-hub interfaces, which is the crux of this experiment. If there is no subunit exchange under their conditions, how does transphosphorylation occur between holoenzymes? The authors show very nice mass photometry data indicating that there are populations of 24-mers, which corresponds to a double-holoenzyme. Paired with the data from their crosslinking mass spectrometry which shows crosslinks between kinase domains of different holoenzymes, this indicates that perhaps kinases between holoenzymes do interact, and they do so in a competent manner to allow transphosphorylation to occur.

      It is true that there are “only” 6 Lysines in the hub domain of CaMKII. However, it is clear from our crosslinking mass spectrometry data that we can detect hub:hub peptides coming from the same holoenzymes (homocrosslinks, either 14N: 14N or 15N: 15N species), but never between holoenzymes (14N with 15N). The fact that peptides can be detected in the homocrosslinks speaks to the validity of using Lysine crosslinkers in this experiment.

      Weaknesses:

      The authors should be commended for performing three orthogonal experiments to test whether CaMKII holoenzymes exchange subunits to form heterooligomers. However, there are technical issues that dampen the strength of the results shown here. For simplicity, let's consider that CaMKII holoenzymes are comprised of two stacked hexameric rings. It has been proposed that the stable unit of CaMKII assembly and perhaps also disassembly and subunit exchange is a vertical dimer unit (comprised of one subunit from each hexameric ring). In the UV crosslinking data shown in this paper, the authors have a significant number of monomers, some crosslinked dimers (of which there are two populations), and fewer higher-order oligomers. To effectively block subunit exchange, robust crosslinking into hexamers is necessary, which the authors have not done. Incomplete crosslinking results in smaller species that can still exchange (and/or dissociate), confounding the results of this experiment. In addition, Figure 3 shows a trapping experiment, where if the exchange was occurring, there would be an oligomeric band in Lane 8, which is visible and highlighted with a blue arrow by the authors. This result is explained by nonspecific UV effects, however by eye it is not clear if there is an equivalent band in lane 10. The overall issue here is inefficient crosslinking.

      We agree with the reviewer that the robustness of the UV-induced crosslinking is not extremely high. However we do observe higher order oligomers on the gel (Figure 2 and Figure 3B, pT286 blot), which states that at least a portion of the holoenzymes is crosslinked. On the other hand, the UVinduced crosslinking is not slowing down the trans-phosphorylation reaction, which would be expected if the subunit exchange would be the prevailing mechanism for spread of kinase activity between holoenzymes.

      In figure 3, lanes 8 and 10 show a small portion of dimers (less than 5% by densitometry), and at the absolute limit of detection. This dimer band is most likely due to unspecific UV-induced disulfide bridging (we already lessened it by adding 50 mM TCEP prior to UV treatment (Figure 3-figure supplement 1B and C). Previous reviewers of this manuscript criticized the small dimer band in lane 8, and we wanted to address this transparently in the submission to eLife.

      Unfortunately, if we absolutely crank up the contrast to see this band in lane 10, we start to see other features in the noise as well. We have now edited the image in Figure 3B to highlight these minor bands more clearly, but this is also not ideal.

      With regard to the trapping experiment, the overall problem is not inefficient crosslinking, because we see that P-T286 signal is quite nicely represented in higher order bands from F394BzF protein, but kinase dead protein (Avi-tagged signal in Figure 3) is almost entirely absent. Any crosslinking of Avitagged protein (possibly corresponding to subunit exchange) is a minor process at the limit of detection on WB.

      Unfortunately we did not yet find any better crosslinking sites than the two we report (we have tried about 10). But the results we did obtain encouraged us to employ other techniques to probe subunit exchange (for example, the MS X-linking).

      The authors also employ a single-molecule TIRF experiment to further interrogate subunit exchange. Upon inspection of the TIRF images, it is not clear that the authors are achieving single molecule resolution (there are evident overlapping and distorted particles). The analysis employed here is Pearson's correlation coefficient, which is not sufficient for single molecule analysis and would not account for particle overlap, particles that are too bright, and/or particles that are too dim. For example, an alternative explanation for the authors' results is that activation results in aggregation (high correlation), and subsequent EGTA treatment leads to dissociation at these low concentrations (low correlation). However, further experimentation and analysis are necessary.

      In the manuscript we present raw images, not processed. As we wrote in the material and methods, we thresholded the images for further processing. All colocalization methods have drawbacks, but we found that our thresholding combined with the Pearson coefficient was highly reproducible. We did also look at Manders coefficients, but these are less straightforward to understand, whilst still giving in our hands the same answer. We agree, there are more experiments that can be done, with particular predictions based on our new mechanism. And we are doing them and will report them when they are ready.

      At the risk of repeating ourselves, the reversible loss of overlap of the two labelled populations is the key result and cannot be explained by spurious dim or bright particles, or by a few overlapping profiles.

      Taken together, the authors have provided important food for thought regarding inter-holoenzyme phosphorylation and subunit exchange. However, given the shortcomings discussed here, it remains unclear exactly what mechanisms are at play within and between CaMKII holoenzymes once activated.

      We thank the reviewer for their critical assessment of our manuscript. We will continue to investigate the relevant points and refine the overall picture of CaMKII, to better clarify the mechanisms.

    1. Author Response

      Reviewer #1 (Public Review):

      The Authors of this study have investigated the consequence of knocking out protein 4.1B on hippocampal interneurons. They observed that in 4.1B KO mice, the myelinization of axons of PV and SST interneurons was altered. In addition, the molecular organization of the nodal, heminodal, and juxtaparanodal parts of the interneuron axons was disrupted in 4.1B KO mice. Further, the authors found some changes in spiking features of SST, but not PV interneurons as well as synaptic inhibition recorded in CA1 pyramidal cells. Lastly, 4.1B KO mice showed some impairment in spatial memory.

      Strengths

      One of the strengths of this MS is the multilevel approach to the question of how myelinization of interneuron axons can contribute to hippocampal functions. Further, the cell biological results support the claim of the reorganization of channel distributions at axonal nodes.

      Weaknesses

      1) Although the authors acknowledge that SST is expressed in different GABAergic cell types in the hippocampus, they claim that OLM cells, which express SST are subject to changes in 4.1B KO mice. However, this claim is not supported by data. Both OLM cells and GABAergic projection cells expressing SST have many long-running axons in the stratum radiatum, where the investigations have been conducted (e.g. Gulyas et al., 2003; Jinno et al., 2007). Thus, the SST axons can originate from any of these cell types. In addition, both these GABAergic cells have a sag in their voltage responses upon negative current injections (e.g. Zemankovics et al., 2010), making it hard to separate these two SST inhibitory cell types based on the single-cell features. In summary, it would be more appropriate to name the sampled interneurons as SST interneurons. Alternatively, the authors may want to label intracellularly individual interneurons to visualize their dendrites and axons, which would allow them to verify that the de-myelinization occurs along the axons of OLM cells, but not SST GABAergic projection neurons.

      We agree and named the sampled interneurons as SST interneurons throughout the text. We acknowledge that SST GABAergic projection cells have long-running axons in the stratum radiatum (Gulyas et al., 2003; Jinno et al., 2007) that may be also dysmyelinated. See Results lanes 200 and 350.

      2) Although both the cellular part and the behavioral part are interesting, there is no link between them at present. The changes observed in spatial memory tests may not be caused by the changes in the axonal de-myelinization of hippocampal interneurons. Such a claim can be made only using rescue experiments, since changes in 4.1B KO mice leading to behavioral alterations may occur i) in other cell types and ii) in other regions, which have not been investigated.

      Alteration of spatial memory has not been previously reported in the 4.1B KO mice. Our results leave open the possibility that dysmyelination of inhibitory interneurons in the hippocampus may induce impaired cognitive ability (see preprint). We agree that future studies investigating a putative rescue of spatial memory by means of virus-mediated expression of 4.1B in hippocampal Lhx6 interneurons would be very informative.

      Reviewer #2 (Public Review):

      In this study, Pinatel et al. address the role of interneuron myelination in the hippocampus using a 4.1B protein mouse knockout model. They show that deficiency in 4.1B significantly reduces myelin in CA1 stratum radiatum, specifically myelin along axons of parvalbumin and somatostatin hippocampal interneurons. In addition, there are striking defects in the distribution of ion channels along myelinated axons, with misplacement of Na channel clusters along the nodes of Ranvier and the heminodes, and a pronounced decrease in potassium channels (Kv1) at juxtaparanodes. The axon initial segments of SST are also shorter. Because the majority of myelinated axons in the stratum radiatum of the hippocampus belong to PV and SST interneurons such profound changes in myelination are expected to affect interneuronal function. Interestingly, the authors show that PV basket cells' properties appear largely unaffected, while there are substantial changes in stratum oriens O-LM cells. Inhibitory inputs to pyramidal neurons are also changed. Behaviorally, the 4.1B KO mice exhibit deficits in spatial working memory, supporting the role of interneuronal myelination in hippocampal function. This study provides important insights into the role of myelination for the function of inhibitory interneurons, as well as in the mechanisms of axonal node development and ion channel clustering, and thus will be of interest to a broad audience of circuit and cellular neuroscientists. However, the claims of the specificity of the reported changes in myelination need to be better supported by evidence.

      Strengths:

      The authors combine a wide array of genetic, immunolabeling, optical, electrophysiological, and behavioral tools to address a still unresolved complex problem of the role of myelination of locally projecting inhibitory interneurons in the hippocampus. They convincingly show that changing myelination and ion channel distribution along nodes and heminodes significantly impairs the function of at least some interneuron types in the hippocampus and that this is accompanied by behavioral deficits in spatial memory.

      Regarding the organization of myelinated axons, the lack of 4.1B causes striking changes at the nodes of Ranvier that are convincingly and beautifully presented in the Figures. While the reduction in Kv1 in 4.1B KO mice has been previously reported, the mislocalization of sodium channels at the nodes and heminodes had only been observed in developing but not adult spinal cords. This difference in the dependence of the sodium channel distribution on 4.1B in adult hippocampus vs spinal cord may hold important clues for the varying role of myelin along axons of different neuronal types.

      The manuscript is very well written, the discussion is comprehensive, and provides detailed background and analysis of the current findings and their implications.

      Weaknesses:

      Because of the wide diversity of interneuron types in the hippocampus, and also the presence of myelinated axons from other neuron types as well, including pyramidal neurons, it is very difficult to disentangle the effects of the observed changes in the 4.1 B KO mouse model. While the authors have been careful to explore different possibilities, some of the claims of the specificity of the reported changes in myelination are not completely founded. For example, there is no compelling evidence that the myelination of axons other than the local interneurons is unchanged. The evidence strongly supports the claims of changes in interneuronal myelination, but it leaves open the question of whether 4.1B lack affects the myelination of hippocampal pyramidal neurons or of long-range projections.

      This is an important question also raised by Reviewer 1. We have now quantified the density of paranodes in the alveus as shown in Figure 1I. Paranode density was not affected in the alveus nor in the stratum lacunosum-moleculare suggesting that myelinated axons connecting extra-hippocampal areas may be preserved. In particular, this is an indication that the axons of pyramidal neurons that run into the alveus should be properly myelinated.

      To be able to better interpret the changes in the 4.1B KO mice, knowledge of the distribution of 4.1B in the hippocampus of control mice will be very helpful. The authors state that 4.1B is observed in PV neurons but not in pyramidal neurons, however, the evidence is not convincing. Thus, the lack of immunolabeling at the pyramidal neuron cell bodies does not indicate that 4.1B is missing at the axonal level. The analysis also leaves out the question of whether 4.1 B is seen in the axons of somatostatin neurons.

      We agree and do not exclude that 4.1B may be expressed along the axons of pyramidal neurons. We performed double-staining for SST and 4.1B to show that 4.1B is localized along the internode and enriched at the paranodes of SST axons as observed for PV axons (Figure 4F). The enrichment of 4.1B in GABAergic neurons was previously observed in premyelinated hippocampal cell culture (Bonetto et al. 2019).

      Reviewer #3 (Public Review):

      Pinatel and colleagues addressed a currently understudied topic in neurobiology, namely, the architecture and function of myelination in subsets of Parvalbumin (PV)- and Somatostatin (SST)-positive GABAergic hippocampal interneurons and its dependence on juxtaparanodal organizer proteins. In order to elucidate the structural and functional implications of interneuron myelination, the authors visualized inhibitory neurons by utilizing a Lhx2-Lhx6 tdTomato reporter line in combination with mutants for crucial membrane and cytoskeletal linker proteins such as Contactin2/TAG-1, Caspr2, and Protein 4.1B. They then applied a comprehensive set of histological, electrophysiological, and behavioral experiments to dissect the role these proteins play in proper myelination and function of PV- and SST-interneurons.

      The bulk of the study's data is based on immunofluorescence, which is presented in a number of figures comprised of high-quality images. As much as this is a strength of the study, the underlying image analysis as described in the methods falls short. All structural data rely on the measurements of physical parameters such as length of internodes, the distance between (juxta)paranode and node, the distance between node and myelin sheath, length of the axon initial segment (AIS), etc. In light of this, and considering the small physical dimensions of the nodal region in general, the methods remain unclear about the depth of 3D reconstruction/deconvolution applied to the samples. Measurements presented in the results show significant differences in sub-micrometer dimension, which at least according to the stated methods, are unlikely to be precise given that the confocal imaging parameters do not seem to reach Nyquist conditions. For a study in which a third of all data is aimed at elucidating (sub)micrometer changes, this is crucial and the study would benefit from a more rigorous method description by the authors.

      Another methodological weakness is the somewhat small n, and its incoherence across the experiments and therefore, the statistics performed in some of the experiments. Statistics are based on either n for animals, or n for individual data points from several animals. Why is not all data represented as mean/animal? Also, the sampling in general with n = 3 animals is borderline acceptable; in some cases, it seems that only 2 animals were used, and in others, no number is given at all (please refer to author comments for details). This needs to be addressed, either by explaining why so few animals were used, or by adding more data from individual animals.<br /> Assigning structures (AIS, nodes) as n results in overstating effects, since especially for AIS, there is significant heterogeneity in the length across neurons from the same type, and this is masked when 100 AIS are considered as individual n instead 100 AIS per animal, and the animal is (correctly) the n.

      Since the study seems to switch back and forth between these assignments, it would be helpful to level these data across all experiments unless there are specific reasons not to do so, which then need to be explained. As outlined in the methods, all values are given as means {plus minus} SEM; this needs to be corrected for those cases where the standard deviation is the appropriate choice (e.g. all graphs showing n = individual structure, and not the mean of an animal).

      As far as the analysis of geometrical AIS changes is concerned, the method section should be extended to address how, if at all, AIS length and position were analyzed in 3D, also considering the somewhat "spotty" immunosignal outlined in Fig. 8D.

      We agree with all these comments. We improved Fig.1 I and J by adding more data (n=4 mice). We would like to point out that the phenotype of the 4.1B KO mice is highly penetrant. The selective loss of myelin in the hippocampus was observed in the two different genetic background (4.1B-/- and 4.1B-/-;Lhx6;tdTomato mice) and at all the ages examined (P25P180).

      For the quantitative morphological analysis: We considered “n=number of animals” in Figure 1 to describe the massive and selective alteration of myelin in the hippocampus of 4.1B KO mice. In the following Figures, we considered n=ROIs (Figure 2, Figure 3, Figure 6) for the density of SST and PV interneurons or oligodendroglial cells and n=individual structures (Figure 4, Figure 5, Figure 8) for a more precise sampling of the structure heterogeneity (internode, node, AIS). Means ± SEM are indicated in the text corresponding to plot boxes and distribution plots in the Figures.

      Concerning AIS measurements, we considered “n” as individual AIS in a coherent manner with the electrophysiological recordings in which “n” is the individual cells. We hope that we have now better illustrated the AIS of SST cells in the stratum oriens in the new Figure 8 with single channel images. In contrast to the AIS of pyramidal neurons that display sinuous feature, the AIS of SST neurons (and especially O-LM cells which axons run straight across the stratum radiatum) show a rather straight organization.

      We improved our measurements of the AIS structural parameters (onset, length) of SST neurons of the stratum oriens using confocal imaging with a 20x objective, 0.54 µm steps, Nyquist conditions. Indeed, these new measurements confirmed that the AIS of SST neurons was significantly shorter in the 4.1B KO mice.

      The observed AIS length change is then discussed in the context of a study conducted in a pharmacological model of myelin loss, however, that particular study (Hamada & Kole, 2015) found not only a length change but a position change after cuprizone-induced AIS plasticity. The authors should therefore discuss this finding in a bit more detail than simply stating "Adaptation of the AIS has been reported in the cuprizone chemical model of demyelination" (p. 14, ll. 512).

      We added these sentences in the Discussion:

      Lane 527: Supporting this notion, previous studies have reported an adaptive response of the AIS of cortical pyramidal neurons in the cuprizone chemical model of demyelination. Specifically, it was observed that the length of the AIS is reduced together with a more proximal site of the onset. These changes reduce the AIS excitability suggesting a compensatory mechanism to ectopic action potentials generated in demyelinated axons (Hamada and Kole, 2015).

      Lane 556: Interestingly, in cortical pyramidal neurons, demyelination induced by cuprizone causes the restructuring of AIS and reduces excitability at this site. “Acute demyelination leads to a more proximal onset of AIS without a change in the length of ßIV spectrin expression. However, the AIS of these acutely demyelinated axons display a reduced length of Nav1.6 channel expression and extended Kv7.3 channel expression at the distal site (Hamada and Kole, 2015).”

      Similarly to the points made about structural data above, the data from electrophysiological recordings should be presented in such a way that e.g. the number of cells and/or animals is readily accessible from the graph or legend. In its current form, this information - while available - needs to be pieced together from in-text information supplemented by figure legends. Sometimes, the authors do not include the number of animals behind individual cell data (for details please see author comments). Please carefully review all figures and edit accordingly.

      The behavioral data presented in the study is interesting, but the conclusions drawn are not supported by the data presented, as many unknown factors remain in place that could contribute to the observed phenotype.

    1. Author Response

      Reviewer #3 (Public Review):

      Wernet et al. show that there are intrinsic protein oscillations at the hyphal tips of A. flagrans, a nematode trapping fungus, that become coordinated when two hyphae become close. They create a mathematical model of this synchronization phenomenon, and then go on to show that calcium is critical to the functioning of these oscillations and hyphal fusion. The concept of interhyphal communication through signal synchronization is fascinating, and the visual matching of the output of the model to the data is compelling. However, given that the authors already showed synchronized oscillations in the SofT protein in A. flagrans in Hammadeh et al. 2022 (Figure 4), this diminishes the novelty of the findings in this study. Additionally, as it also has been established that calcium drives other oscillatory communications, the characterization of calcium dependence is not especially novel or bringing new insights into the problem especially since it is unclear if the chelation is having effects due to loss of intracellular supplies and/or because it is the key signal in the dialogue. Right now the mathematical model feels a bit vague with discussion of hypothetical molecules, so the paper would be greatly strengthened if any key regulatory molecules that promote desychronization could be identified or there were some manipulations of the core known proteins that examined consequences of altering the oscillations. As it is, the reader is left intrigued but there are few concrete conceptual advancements.

      We thank Reviewer #3 for the thoughtful comments on our manuscript! We would like to emphasize that the main finding of this paper is the discovery of a monologue of individual hyphae before fusion and the transition into a dialogue. This had not been shown in any fungus, and it explains nicely the onset of the communication. During the revision process, we performed co-localization of SofT-GFP and MakB-mCherry in the same hyphae and observed that both proteins were oscillating in the same phase without other hyphae in vicinity, which is the opposite of the so far observed anti-phasic oscillations observed during the cell dialogue. Additionally, we observed that decoupling of the oscillations into the anti-phasic cell dialogue occurred during the transitory phase. We included our results in (L167) and updated the figures to create a new figure 3 and supplementary figure Fig. SS.

      We agree that it would be great to isolate the signaling molecule. However, this has been tried by several groups, so far without success. Therefore, we think that this one main finding is exactly the scope of short reports for eLife.

    1. Author Response

      Reviewer #1 (Public Review):

      The idea that because the hippocampal code generates responses that match the most needed variable for each task (time or distance) makes it a predictive code is not fully proved with the analyses provided in the manuscript. For example, in the elapsed time task, there are also place cells and in the fixed-distance travel there are also cells that encode other features. This, rather than a predictive code, can be a regular sample of the environment with an overrepresentation of the more salient variable that animals need to get in order to collect rewards.

      We concur with the Reviewer’s reservation. Claims about predictive coding were removed and the following possible account explanation for over-representation was suggested instead:

      "These results underscore the flexible coding capabilities of the hippocampus, which are shaped by over-representation of salient variables associated with reward conditions. " (page 1 line 23, page 4 line 27)

      In addition, the analysis provided in the manuscript are rather simple, and better controls could be provided. Improving the analytical quantification of the results is necessary to support the main claim.

      We improved the quantification, as suggested below by specific comments of the reviewer.

      What is the relationship of each type of cell with the speed of the animal?

      The cells were assigned to the different types according to their responses while running across all speeds. However, we checked how the speed of the animal affects the peak firing rate of the cells, for each type of cell. Results of this analysis are presented in Author response image 1. Bars represent maximum firing rate of all cells of a given type across runs with the specified speed range (𝒎𝒆𝒂𝒏 ± 𝑺𝑬𝑴).

      Author response image 1.

      We did not find a significant interaction effect of the speed and the cell-type over the max firing rate (2-way Anova p>0.98).

      What is the relationship with the n of trial that the animal has run (first 10 trials, last 10 trials..)?

      Some of the animals were subjected to only one type of session. Moreover, they were sometimes trained without recording. Therefore, to answer this question we restricted our analysis to recording sessions where the animal switched from fixed-time to fixed-distance or vice versa. We checked the 20 first runs vs. the last 20 runs (data from 10 runs is not powerful enough for analysis) in See the results in Author response table 1.

      Author response table 1.

      To assess the dynamics of the coding flexibility, we defined the Time-Distance index (TDI), quantifying the balance between the proportion of distance cells and of time cells at a given time. as (NDistanceCells/NTimeCells)/(NDistanceCells+NTimeCells). The is in the range of [0 ,1] if the majority of cells are classified as distance cells, and in the range of [-1, 0] if the majority of cells are classified as time cells. Chi-square testing for differences in proportions did not reveal significant differences (after correction for multiple comparisons).

      The shaded boxes in Author response table 1 indicate the sessions which followed a transition between session types

      What is the average firing rate of each neuron?

      This information was now added to the titles of the panels in Figure 2 and Figure 2-figure supplement 1.

      Is there any relationship between intrinsic firing rate and the type of coding that the cell develops in each task?

      In Author response image 2 is a comparison of the firing rates of the Time cells vs the Distance cells.

      The distributions are similar (p = 0.975 ,and p = 0.675 for peak firing rate and mean firing rate, respectively, Kolmogorov-Smirnov (KS) test).

      Author response image 2.

      This figure was added to the supplementary figures (figure 3 - figure supplement 3)

      What is the relation of the units of each type with LFP features (theta phase, ripple recruitment)?

      We had LFP recordings for 15 out of 18 sessions. A large proportion of the cells showed phase precession (see Author response table 2). An example is shown in Author response image 3. We could not find a significant relation between phase precession and the cell type or the trial type.

      The table on the left shows the total cells analyzed, and on the right we show the percentage of cells that had a significant linear fit of the theta phase within 80% of the field width, when analyzed per time (topright) or per distance (bottom-right). FDist/Ftime are Fixed-distance and fixed-time trials and Dist/Time are the cell type.

      We did not identify ripple events during treadmill runs.

      Author response table 2

      Author response image 3

      Reviewer #3 (Public Review):

      Weaknesses:

      The original study of Kraus et al. consisted of 3 rats for which all sessions, including both training and recording, were of one type. Another 3 rats had a hybrid mixture of distance and time sessions. This is mentioned very briefly in the main text.

      It would appear that the theory of reward might lead to different predictions that could be verified by comparing these animals session to session at a finer grain. For example, are there examples of cells switching or transforming their “predictive” representations when a large number of trials in on session type is followed by a large number of trials of the opposite type?

      For another example, the transition from training to recording could give similar opportunities. It seems at least possible that ignoring these issues could cause a loss of power.

      We could not compare a particular cell for switching between encodings since the different types of trial were performed on different days. As an alternative, we compared the populations of cells within the first 20 vs. last 20 trials in recording sessions where the animal switched from fixed-time to fixed-distance or vice versa (see table below). The “Time-Distance balance index” (TDI) is defined as (#DistanceCells#TimeCells)/(#DistanceCells+#TimeCells) and is ranges between 0 and 1 if the majority of cells are classified as distance cells while between -1 to 0 if the majority of cells are classified as time cells.

      In all three animals there seems to be a change between the first 20 runs and last 20 runs of the same session, following a switch between trial types. However, this change is significant and with the expected trend only in one of the animals (BK49, p=0.02, chi-square test).

      The grayed boxes in Author response table 1 indicate the sessions which followed a transition between session types

      Some circularities in the construction and interpretation of the time-cell and distance-cell classifiers are not clearly addressed. The classifiers currently appear to be fit to predict the type of session a cell’s response patterns are observed within. But it is tautological to use the session type to define the cell type. I sense this is ultimately reasonable because of how the classifier is built, but this concern is not addressed or explained.

      We regret that the term ‘classifiers’ was not sufficiently precise. We used this term to describe the metrics designed to express the relation between the firing-time and the velocity, in order to classify cells, rather than classifiers that are fit to predict the type of session. We believe this to be the source of the apparent circularity. To circumvent this confusion, we now replaced all places where the term “classifier” was mentioned, with the term “metric”

    1. Author Response

      Reviewer #1 (Public Review):

      The paper reports important work in which the Fub-1 boundary of the Drosophila bithorax complex is characterized in detail. Fub-1 separates the bxd/pbx regulatory domain, which is active in PS6/A1, from the abx/bx regulatory domain, which is active in PS5/T3. The work presented provides compelling evidence that Fub-1 consists of two key elements: an insulating boundary region called HS1, which is regulated by an adjacent region called HS2. HS2 contains a promoter that is activated in PS6/A1 by enhancers in the bxd/pbx region. Read-through of HS1 by transcripts from the HS2 promoter blocks the insulating activity of HS1, allowing the bxd/pbx regulatory regions to activate Ubx transcription in PS6/A1. It has long been appreciated that boundary elements within the BX-C are regulated in a segment-specific fashion. The work presented in the Ibragimov manuscript provides a very nice example of how this segment-specific regulation can take place. For the most part, the work is very thorough and the conclusions are well-supported. However, there are a few important issues that should be addressed.

      First, throughout the manuscript, it is stated that the read-through transcription of HS1 eliminates its blocking activity. Missing, however, is a test of whether the direction of transcription of HS1 is important. That is, no construct is tested in which HS1 is inverted so that RNAs from the HS2 promoter are transcribed from the opposite strand of HS1. If read-through transcription of HS1 is all that is required to abrogate its blocking activity, such a construct should behave identically to constructs in which HS1 is not inverted. However, if the structure of the F1HS2 RNA is critical to preventing the blocking activity of HS1, inversion of HS1 relative to HS2 may render it immune to inactivation by transcripts initiated at HS2.

      This is a good point. The sequence/structure of the transcript could be important—e.g., it recruits a factor that disrupts boundary activity.

      While we didn’t do such an experiment, this scenario seems unlikely. As noted above we have replaced Fub-1 with two other BX-C boundaries Mcp and Fab-8. Their sequences are different from other and from Fub-1. Both block bxd/pbx from regulating Ubx and give an A1 LOF phenotype. To test the effects of transcription on boundary activity, we placed a P-element promoter upstream of both boundaries (so transcripts from the P-element promoter would read through boundaries towards bxd/pbx. We found that inclusion of the P-element promoter rescued the LOF phenotypes.

      Second, the terminology used to designate the constructs tested is very hard to follow and needs simplification. Since the orientation of HS1 in isolation is unimportant, perhaps just HS1 HS2, HS1 Inv(HS2), HS2 HS1, and Inv(HS2) HS1 could be used.

      We wanted to keep the terminology consistent in so far as possible with publications on other BX-C boundaries.

      Third, in many places in the manuscript genotypes are shown in which the HS1 insulator is placed into F7attP50. For these genotypes, H1 is said to block the interaction between iab-6 and iab-7, but not to support bypass activity. Readers need some help here, as they will not understand why A5 and A6 tergites are black in these genotypes, as this implies that iab-5 is able to act over the HS1 element to activate Abd-B. One explanation may be that iab-5 can promote pigmentation by acting on abd-A.

      The likely explanation is that the Fab-6 boundary is able to "bypass" the intervening HS1 insulator and target iab-5 enhancers to Abd-B promoter. There are other Fab-7 replacements in which the iab-5 enhancers are also blocked. The likely explanation is that the Fab-6 boundary is able to "bypass" the intervening HS1 insulator and target iab-5 enhancers to Abd-B promoter. We added an explanation and a review article describing to the text.

      Fourth, a more complete description of the HS1248 HS2505R genotype is needed. In this genotype, the H1 insulator is constitutively active, as H2 is inverted. Do animals of this genotype show a bxd phenotype in the larval cuticle? Do adults show a transformation of the halteres like that shown by classical bxd mutations? Answers to these questions would shed light on when H1 is active as an insulator, and whether it is active throughout PS6/A1.

      Phenotype of larval cuticle indicates a LOF transformation towards T3. We added a supplementary Figure 6-figure supplement 5 showing this. The haltere shows evidence of an LOF phenotype (Figure 6-figure supplement 6).

    1. Author Response

      Reviewer 2 (Public Review):

      Weaknesses: The paper is largely written within the 'accidental virulence' framework, ref [2]. This is a valuable framework, but it is worth noting that the ideas overlap with the earlier concept of 'coincidental selection for virulence', first developed by Bruce Levin and C Svanborg-Eden (1990) Parasitology 100, S103-S115 (more recent experimental work in this thread is reviewed by ref [1]).

      We wholeheartedly agree. As noted above, the manuscript has been updated to reflect this omission.

      Missing this thread leads to a number of statements that are just not supported by the literature. Some examples -

      Summary: 'The existence of microbes that are not normally pathogenic, yet are well-suited to host exploitation, is an evolutionary paradox. ' - No, this is potentially explained by coincidental selection for virulence, which has been documented in several studies

      Summary: "Our results support the idea that selection in the environment for a trait unrelated to virulence can inadvertently generate opportunistic, "accidental" pathogens." - The trait is not unrelated to virulence, as they are correlated, likely shaped by adhesion behaviors. This correlation is not surprising as 'adhesins' are a classic category of virulence factor, presenting a potential common cause between sticking to a bead and killing an insect more rapidly.

      Line 26 "hypothesis has not been directly tested experimentally". - this is probably the main concern, as the paper currently does not address related prior experimental work that has been developed within the co-incidental selection tradition. Please see refs that are cited by paper [1] for a start, and then follow forward for more recent work. One recent study comes to mind as it looks at correlated effects of in vitro bead attachment -- https://www.nature.com/articles/s41396020-0652-0 (virulence was not directly assayed, but of interest also noted a shift in antibiotic resistance following bead-attachment selection without drugs or a host).

      We agree with these suggested edits and have updated the manuscript in the appropriate places.

      Turning to experimental choices, the use of a 'no bead' experimental control is an important point of comparison, to ensure that the evolutionary effects of interest are particular to the presence of the bead. But if there were no beads, how are you measuring 'cells on bead' (y-axis in Figure 1)? I assume this is an oversight and you're measuring cells per x volume.

      This is a good question. To be clear, Figure 1 does not represent measurements taken throughout the course of the experiment; rather, it represents a large phenotyping effort after the experiment ended. Ancestors and evolved populations from multiple timepoints (including the control populations) were started from cryopreserved stocks, then challenged to grow in the presence of a bead. As can be seen in the figure, both ancestors had some plastic adherence ability, which was maintained in the control populations.

      Moving into the key virulence assays, I was expecting a similar and simple design: compare the virulence of ancestor versus 'evolved with bead' versus 'evolved without bead'. This would allow answers to the key question of whether bead attachment leads to the evolution of increased virulence, with appropriate controls for adaptation to the general passaging environment. Why not use this simple and standard design?

      Instead, we get a more complex design, contrasting isolates that are filtered on the adhesionrelated traits (biofilm, etc), but sampled across timepoints. This does establish that less adhesive and less biofilmy isolates are less virulent so this remains useful information, but the motivation for only using this design is not well spelled out. In principle, you could do this purely on standing variation and not require an experimental evolution step.

      We understand and respect this criticism. Please see the response above (in the section responding to the editor’s summary).

      As for the question of using standing variation, it is true that a large part of the evolution observed in this experiment is from the sorting of standing genetic variation. We did not anticipate the evolved phenotypes we observed. Perhaps if we had known they were possible, we could have searched for them in the standing genetic variation in F1 offspring/segregants. Related to this idea, we have investigated 350+ segregants from each of these clinical backgrounds (that were generated in order to map the genetic basis of plastic adherence for a manuscript in preparation). The evolved populations occupy different phenotypic space than the mapping population, although there is obviously overlap. Thus, in order to get to the hypermulticellular phenotype observed in the experiment, either multiple rounds of recombination were required to get many high alleles into one background, or new mutations were required.

      Concerning the role of plastic, I would encourage caution in the interpretation, given the experimental design. Consider this line from the discussion "In this experiment, favoring the ability to adhere to plastic, a surface that is alarmingly common in industrial, medical, and domestic settings [69], led to a suite of aggregative phenotypes and increased virulence." - by bringing up applied consequences of plastic exposure, this really raises the stakes. At present, the data does not separate the role of bead attachment from the specific role of plastic as a material. What would happen if you repeated with glass beads? I suspect a similar pattern, again driven by adhesin changes. The data at present does not resolve this issue.

      We respect this note of caution, which is in opposition to Reviewer #1, who thinks we should add more information about the increase in microplastics. We agree that the results are likely due to selection for adherence, rather than specifically adherence to plastic. That being said, the experiment does show that plastic is a surface on which these yeast can be selected to adhere. And it is also true that this surface is increasingly common. As a compromise, we took out the word alarming and added references to the effect of microplastics on other microbes.

    1. Author Response

      Reviewer #1 (Public Review):

      Sučević and Schapiro investigated a neurobiologically inspired model of human hippocampal structure and computation in category learning. In three separate simulations, the model (CHORSE) is presented with learning tasks defined by various category structures from prior work and evaluated for its ability to learn the category structure, generalize categorization to novel stimuli, and accurately recognize previously encountered stimuli. Although originally conceived of as a computational model of associative memory, C-HORSE is demonstrated to quite naturally account for human-like learning of the three category tasks. Notably, the authors characterize the mechanisms underlying the model's learning by way of additional simulations in which "lesions" to the model's monosynaptic pathway (MSP; direct connections between ERC and CA1) are contrasted with lesions to its trisynaptic pathway (TSP; pathway connecting ERCDG-CA3-CA1). These in silico lesions offer key insight into the computational principles underlying theorized hippocampal functions in category learning: whereas MSP provides incremental learning of shared features diagnostic to category membership that are important for category generalization, TSP learns item-specific information that drives recognition behaviour. The authors propose that C-HORSE's successful account of a broad set of category learning datasets provides clear support for the role of complementary hippocampal functions mediated by MSP and TSP in category learning. This work adds compelling computational evidence to a growing literature linking hippocampus to a broader role in cognition that extends beyond declarative memory.

      The model simulations are clear and properly conducted. The three datasets examined offer a relatively broad set of findings from the category learning literature; that the models provide reasonable accounts of human performance in all three speaks to the model's generalizability. Overall, I find this work exciting and an important step in linking longstanding well-established formal learning theories of psychology with neurobiological mechanism. Several weaknesses dampen this excitement, each of which are detailed below:

      1) C-HORSE is presented as a new entry into a rich field of formal computational models of category learning. As noted above, the datasets examined span a broad range of learning contexts and structures and the model's ability to account for learning behaviour is compelling. However, no other models are leveraged to perform a direct evaluation. In other words, CHORSE's predictions are compelling, but is it better than other competing models in the literature? To be clear, C-HORSE offers a novel alternative with its fundamental mechanisms originating from anatomical structure and connectivity. As such, a proof-of-concept showing that such a neurobiologically inspired framework can account for category learning behaviour is a worthwhile contribution in its own right and a clear strength of this paper. However, how to consider this model relative to existing theoretical frameworks is not well described in the manuscript.

      We very much appreciate this point — see response to Editor summary point #3 above.

      2) Relatedly, C-HORSE is evaluated in terms of qualitative fit to behaviour measures from prior studies and in all three simulations restricted to measure of end of learning performance. Again, an appeal to the proof-of-concept nature of the current work may provide an appropriate context for this paper. But, a hallmark of well-established category learning models (e.g., SUSTAIN, DIVA, EBRW, SEA, etc.) is their ability to account for both end of learning generalization (and in some cases, recognition) and behaviour throughout the learning process. C-HORSE does provide predictions of how learning unfolds over time, but how well this compares to human measures is not considered in the current manuscript. Such comparisons would strengthen the support for C-HORSE as a viable model of category learning and help position it in the busy field of related formal models.

      We completely agree about the value of this, and we have added empirical timecourse data for comparison with all simulations, as described in response to Editor summary point #7, above.

      3) A consistent finding across all three simulations is that the TSP provides item-specific encoding. Evidence for this can be inferred by contrasting categorization and recognition performance across the TSP- and MSP-only model variants. In the discussion, the authors draw a parallel between exemplar theories of category learning and the TSP, which is a compelling theoretical position. However, as noted by the authors, unlike exemplar theories, the TSP-only model was notably impaired at categorization. The author's suggestions for extensions to CHORSE that would enable better TSP-based categorization are interesting. But, I think it would be helpful to understand something about the nature of the representations being formed in the TSP-only model. For example, are they truly item-specific, are the shared category features simply lost to heightened encoding of item-unique features, are category members organized similarly to the intact model just with more variability, and so on. Characterizing the nature of these representations to understand the limitations of the TSP-only model seems important to understanding the representational dynamics of C-HORSE, but are not included in the current manuscript.

      The RSA results, now included for Simulations 2 and 3 in addition to Simulation 1, provide the information needed to characterize the nature of the TSP representations. Generally speaking, they are truly item specific, meaning that each item is represented by its own distinct set of units. This is a demonstration of the classic pattern separation function of this pathway, taking similar inputs and projecting them to orthogonal populations of neurons. Simulation 1 is the clearest example of this, where there is virtually no similarity and very low variability in the item similarity structure in DG and CA3. The new Simulation 3 RSA shows us where the limit is to this pattern separation ability of the TSP, with highly typical items being represented by somewhat overlapping populations of neurons in DG and CA3. To the extent that the TSP can succeed in generalization, it seems to involve this pattern separation failure.

      We have made these points more explicit in new discussion of the RSA results:

      • Simulation 1: “In the initial response, there was no sensitivity at all to category structure in DG and CA3 — items were represented with distinct sets of units. This is a demonstration of the classic pattern separation function of the TSP, applied to this domain of category learning, where it is able to take overlapping inputs and project them to separate populations of units in DG and CA3.” • Simulation 3: “As in the prior simulations, DG and CA3 represented the items more distinctly than CA1, and settled activity after big-loop recurrence increased similarity, especially in CA1. This simulation was unique, however, in that DG and CA3 showed clear similarity structure for the prototype and highly prototypical items. There is a limit to the pattern separation abilities of the TSP, and these highly similar items exceeded that limit. This explains why, at high typicality levels, the TSP could be quite successful on its own in generalization (Figure 5e), and why it struggled with atypical feature recognition for these items (Figure 5f).”

      4) In general, a detailed description that links model mechanisms and analyses to the learning constructs of interest for the different simulations is lacking. For example, RSA results for simulation 1 are contrasted for initial and settled representations, but what is meaningful about these two timepoints is not directly stated (moreover, what initial and settled response mean in terms of the current model is not explained). The authors do briefly suggest that differences between initial and settled representations may reflect encoding dynamics before and after bigloop recurrence, but this is not established as a key metric for evaluating the nature of the model representations. In general, more motivation is needed to understand what the chosen analyses reveal about the nature of the model's learning process and representations.

      We have added more description of the motivation for our analyses. See response to Editor summary point #6 above.

      5) I appreciate the comparison in the discussion to extant models of categorization. Certainly, the exemplar and prototype models are fixtures of the category learning literature and they somewhat align with the type of learning that TSP and MSP, respectively, provide. REMERGE and SUSTAIN are also briefly mentioned, but their discussion is limited which is unfortunate as they are actually more functionally equivalent to C-HORSE. I think, however, that the authors are missing an opportunity to discuss how C-HORSE offers a means for bridging levels of analysis to connect neurobiological mechanisms with these notably successful psychological models of category learning. Rather than framing C-HORSE as a competitor to existing models, it should be viewed as an account existing on a different level of analysis. In this sense, it complements existing approaches and potentially extends a theoretical olive branch between the psychology and neuroscience of category learning.

      We love this point about bridging levels of analysis and have added it to our discussion of the model’s relationship to other models, see Editor summary point #3 above.

      6) The discussion takes a broad perspective on covering evidence concerning hippocampal contributions to category learning. Although comprehensive, some sections are not well connected back to the main thrust of the paper. For example, a section on neuropsychological accounts of the hippocampus and category learning summarizes central aspects of this literature but is never reflected on through the lens of the current findings. I do think this prior work is relevant, especially since it a central theme of the hippocampus not being necessary for category/concept learning, but its connection back to the current study is not well argued. Similarly, the section on consolidation and sleep is relevant, but in its current form does not seem to fit with the rest of the paper.

      We have implemented these suggestions through very significant revisions to the Discussion. We now better connect the sections to the main argument of the paper and made cuts throughout, including removing the section on consolidation and sleep.

      Reviewer #2 (Public Review):

      The authors present a model of the hippocampal region that incorporates both the (indirect) trisynaptic and (direct) mono-synaptic pathways from entorhinal cortex (EC) to CA1 - the former incorporating projections from EC to dentate gyrus (DG), DG to CA3, and CA3 to CA1, and exhibiting a higher learning rate. They demonstrate that exposing this network to stimuli consistent with standard empirical tests of category learning (e.g. where within-category exemplars share a set of common features) allows the network to reliably assign both novel and previously encountered stimuli to the correct category (e.g. the network can learn to classify stimuli and generalise this knowledge to new examples). They show that the tri-synaptic pathway (TSP) preferentially supports the encoding of individual exemplars (e.g. analogous to episodic memory) while the mono-synaptic pathway (MSP) preferentially supports category learning.

      The manuscript is well written, the simulation details appear sound, and the results are clearly and accurately presented. This model builds on a long tradition of computational modelling of hippocampal contributions to human memory function, strongly grounded in anatomical and electrophysiology data from both rodents and humans, and is therefore able to link phenomena at the level of individual cells and circuits to emergent behaviour - a major strength of this, and similar, work. However, I have two major concerns relating to the relationship between these findings and previously published work by the same and other authors.

      First, it is not clear to me - from the manuscript - whether these results represent a significant novel advance on previous publications from the same senior author. Figures 1 and 3D are almost identical to figures published in Schapiro et al. (2017) Phil Trans B, and the take-home message (that the MSP might support statistical learning) is the same. In brief, it seems that the authors have subjected an identical network to some new (but related) tasks and reached the same set of conclusions. I see no distinction between learning to extract 'statistical regularities' (in previous work) and learning 'the structure of new categories' (described here). As an aside, demonstrating that an autoencoder network can learn stimulus categories and generalise to new exemplars is also well established.

      We appreciate the opportunity to better articulate the novelty and importance of applying the model to the domain of category learning. There are crucial differences between statistical learning and category learning that make these simulations nontrivial (it did not have to be the case that the results would replicate for these category learning paradigms), and, importantly, many of the insights in the current work are category-learning specific (e.g., the effects of atypical features, trade-offs between generalization and recognition of exemplar-specific features). On the other hand, we of course agree that there are principles in common between statistical learning and category learning that are leading to the consistent findings. We added new material to the Introduction to explain the importance of these new simulations in the domain of category learning, and the value we see in demonstrating convergence across domains. See response to Editor point #1 above.

      Second, I have some concerns with the relationship between the properties of this hippocampal network model and well described properties of single cells in the rodent and human hippocampus. In particular, the CA1 units in this model (and to some extent, also the CA3 units) come to respond strongly to all exemplars from within each category (e.g. as shown in Figure 3D, bottom right panel). This appears to be at odds with the known properties of place and concept cells from the rodent and human hippocampus, respectively, which show little generalisation across related concepts (i.e. the Jennifer Aniston neuron does not fire in response to other actors from Friends, for example). If the emergent properties of this model are not consistent with existing data, then it is not a valid model.

      We appreciate the opportunity to discuss connections to the physiology literature. See response to Editor summary point #2 above.

      More generally, the authors are clear that this model is "a microcosm of [the] hippocampusneocortex relationship" and that the properties of the MSP "mirror those of neocortex". Why not assume that category learning is supported by an interaction between hippocampus and neocortex, then, as in the complementary learning systems (CLS) model? Aside from some correlational fMRI data and partial deficits in hippocampal amnesics - either of which could have a myriad of different explanations - what empirical data is better accounted for by this model than CLS? Put differently, what grounds are there for rejecting the CLS model? To some extent, this model appears to account for less empirical data than CLS, with the exception of a few recent neuroimaging studies (which are hard to interpret at the level of single cells)

      This is an important point for us to clarify, so we very much appreciate this comment. The crucial issue with CLS that motivated the microcosm theory is that the neocortex in the CLS framework learns far too slowly to support the kind of category learning studied in these paradigms, which unfolds over the course of minutes or hours. The neocortex in CLS was proposed to learn novel structure across days, months, and years.

      We have added the following to the Introduction:

      • “Despite its analogous properties, the MSP is not redundant with neocortex in this framework: the MSP allows rapid structure learning, on the timescale of minutes to hours, whereas the neocortex learns more slowly, across days, months, and years. The learning rate in the MSP is intermediate between the TSP (which operates as rapidly as one shot) and neocortex. The proposal is thus that the MSP is crucial to the extent that structure must be learned rapidly.”

      We also have this description in the Discussion:

      • “The MSP in our model has properties similar to the neocortex in that framework, with relatively more overlapping representations and a relatively slower learning rate, allowing it to behave as a miniature semantic memory system. The TSP and MSP in our model are thus a microcosm of the broader Complementary Learning Systems dynamic, with the MSP playing the role of a rapid learner of novel semantics, relative to the slower learning of neocortex.”

      Reviewer #3 (Public Review):

      The current work aimed to determine how the hippocampus may be able to detect regularities across experiences and how such a mechanism may serve to support category learning and generalization. Rapid learning in the hippocampus is critical for episodic memory and encoding of individual episodes. However, the rapid binding of arbitrary associations and one-shot learning was long thought suboptimal for finding regularities across experiences to support generalization, which were instead ascribed to other, slower-learning memory systems. More recent work has started to highlight hippocampal role in generalization, renewing the question of how generalization can be accomplished alongside memory for episodic details within a single memory structure. The current paper offers a reconciliation, presenting a biologically-inspired model of the hippocampus that is able to learn categories alongside stimulus-specific information comparably to human performance. The results convincingly demonstrate how distinct pathways within the hippocampus may differentially serve these complementary memory functions, enabling the single structure to support both episodic memory and categorization.

      Major strengths and contributions

      The paper includes simulation of three distinct categorization tasks, with a clear explanation of the unique aspects of each task. The key results are consistent across tasks, lending further support to the main conclusions of the role of distinct hippocampal pathways in learning specific details vs. regularities. Together with prior work on how the same architecture can support statistical learning in other types of tasks, this work provides important evidence of the broad role of the hippocampus in rapid integration of related information to serve many forms of cognition.

      Throughout the paper, the authors nicely explain in conceptual terms how the same underlying computations may serve all three categorization tasks as well as statistical learning and episodic inference tasks. Thus, the paper will be of broad interest, beyond researchers focused on modeling and/or categorization.

      On a conceptual level, this work provides a fruitful framework for understanding hippocampal functions, representations and computations. It provides a highly plausible mechanistic explanation of how category learning and generalization can be accomplished in the hippocampus and how distinct types of representations may emerge in distinct hippocampal subfields. The framework can be used to derive new testable predictions, some of which the authors themselves introduced. It also provides new insights into how the outputs of different pathways influence each other, providing a more nuanced view of the division of labor and interactions between hippocampal subfields. For example, the big loop recurrence would eventually lead to category influences even on the initially sparse, pattern separated representations in the CA3, which is an idea consistent with empirical observations.

      The presented computational model of the hippocampus is currently the most detailed and biologically plausible hippocampal model easily applicable in the area of cognitive neuroscience and behavioral simulations. The commonalities and differences with other related models (conceptual and computational) are well explained. Both the conceptual and technical descriptions of the model are exceptionally clear and detailed. The model is also publicly available for download for any researcher to use with their own task and data. All these aspects make it likely that other researchers may adopt the model in a wider range of tasks, stimulating new discoveries.

      The autoencoder nature of the model and the use of categorization tasks meant that some measures of interest, like recognition of exemplar-specific information, could not be evaluated by direct reading of the output layer to compare with some label (like old/new). The authors however came up with clever ways how to evaluate recognition performance in each task that was sensible and highlighted the multiple ways how one may think about information contained in neural representations in each layer. This approach can also be utilized by others for evaluating item-specific and category information in activation patterns, for example in analyses of fMRI.

      Finally, I thought the current paper and provided model may also serve as an excellent introduction to computational modeling for those new to this approach. The exceptional clarity of the conceptual and technical description of this model and the clear logic of how one may model a cognitive task and interpret results made this paper fairly accessible. Furthermore, the paper offered new insights and predictions based on analyzing the model's hidden layers, lesion performance, and/or noting some patterns of behavior unique to specific tasks. This was also instructive for highlighting the distinctive contributions that the computational modeling approach can have for furthering our understanding of cognition and the brain.

      We are extremely appreciative of the value the Reviewer sees in this work.

      Weaknesses

      The paper's strengths far outnumbered the weaknesses, that are minor. For one, the selected categorization tasks nicely complemented each other, but only covered stimuli with discretevalue dimensions (features like color, shape, symbol, etc). The degree to which the results generalize (or not) to continuous-value stimuli and different category structures (for instance information-integration or rule-based in COVIS framework) is not clear. How the model could be adjusted for continuous-value stimuli was not specified.

      We agree that the simulation of only discrete valued dimensions is a limitation. We chose to do this simply because it is easier to use discrete values in the model as currently implemented, but future work will certainly need to test whether the model can simulate the various paradigms that make use of continuous-valued dimensions. We have added an explicit acknowledgement of this issue in the Methods:

      • “The inhibition simulates the action of inhibitory interneurons and is implemented using a set-point inhibitory current with k-winner-take-all dynamics (O’Reilly, Munakata, Frank, Hazy, & Contributors, 2014). All simulations involved tasks with discrete-valued dimensions, as these are more easily amenable to implementation across input/output units whose activity tends to become binarized as a result of these inhibition dynamics. It will be important for future work to extend to implementations of category learning tasks with continuous-valued dimensions.”

      There is compelling evidence for the dissociation between different hippocampal pathways and subfields (CA1 vs. CA3) that the model is based on. As the authors noted, there is also compelling evidence for functional dissociations along the long hippocampal axis, with anterior portions more geared towards coarse, generalized representations while posterior towards more detailed, specific representations. The authors nicely pointed out that these proposals of withinhippocampus division of labor are less orthogonal than they may first appear, as there is greater proportion of CA1 in the anterior hippocampus. However, it is premature to imply that this resolves the CA1/CA3 vs. anterior/posterior question; the idea that existing anterior findings may be simply CA1 findings is currently only speculation. Furthermore, first studies indicating that anterior/posterior representational gradients may exist within each subfield are beginning to emerge.

      We completely agree that this is speculative at this point, which needed acknowledgment. See response to Editor summary point #2 above.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer 1

      Question 1: While the CTD human brain organoids show a decrease in Cr (in absence of Cr in the culture medium) as compared to control organoids (4 times less), they are not devoid of Cr. Do these organoids express the two enzymes allowing Cr synthesis (AGAT and GAMT), and in which brain cell types? If yes, how to explain the decrease in Cr in the CTD organoids?

      There is a lack of functional CRT in the CTD human brain organoids. The basal level of creatine in CTD human brain organoid is significantly lower than in healthy human brain organoids. The intracerebral creatine synthesis is due to different expression of the AGAT and GAMT enzymes and relies on functional CRT for the transport of the GAA intermediate. Literature pointed out that both enzymes are rarely co-expressed (Braissant et al., 2001, PMID: 11165387) meaning that GAA intermediate needs to be transported by CRT to neurons for complete creatine synthesis. Even if we evidenced a slight mRNA expression of AGAT and GAMT enzymes, the creatine synthesis is not effective since the GAA intermediate could not be transported in cell expressing GAMT due to the non-functional creatine transporter in the CTD human brain organoids.

      Question 2. The rescue experiment, re-establishing a functional Cr transporter (CRT or SLC6A8) in the CTD human brain organoids, is very interesting, as this may help the design and development of new treatments for CTD. However, authors claim that the functional CRT expressed in the rescued CTD organoids was expressed in each cell. This may be a difficulty in the development of new CTD treatments, as CRT should be expressed in neurons and oligodendrocytes, but not in astrocytes. Authors may want to comment on this point.

      As shown in Figure S2C, the whole brain organoid in the rescue experiment shows the expression of the GFP protein, thus also the co-expressed wild-type CRT. In these experiments, we did not make a detailed cellular characterization of the rescued organoids, and this may be the aim of a separate study that will carry out experiments for an exact characterization of the cell-specific CRT expression and function in the rescued brain organoids. Accordingly, we corrected in the revised version of manuscript the statement on page 6 to the following: “SLC6A8 expressing brain organoids showed GFP fluorescence in the whole area of the organoid (Fig S2C).”

      Reviewer #1 (Recommendations for The Authors):

      • Authors may cite the recent review by Fernandes-Pires (2022) exposing the challenges to treat CTD (introduction, lines 57-58 for example).

      Reference has been added, lines 57-58 of the revised version

      • Authors may precise in their introduction (lines 60-61) that, while creatine (Cr) supplementation is not effective to treat CTD male patients, a proportion of female CTD patients is responsive to Cr supplementation (due to the differential inactivation of one of the X chromosome depending on the cells).

      Treating CTD appears simple: transport creatine into the brain cells. In individuals with creatine synthesis disorders, increasing brain creatine levels thanks to oral supplementation of creatine monohydrate and/or precursors improves neurodevelopmental outcomes. This task has proven more daunting than expected in CTD since oral creatine supplementation does not increase brain creatine concentrations. Literature and more specially data reported by Van de Kamp “X-linked creatine transporter deficiency: clinical aspects and pathophysiology. J Inhert Metab Dis 37 (5):715-733) describes 3 females CTD patients without improvement of clinical outcomes. Bruun et al., 2018 “Treatment outcome of creatine transporter deficiency: international restrospective cohort study: Metab. Brain Dis: 33:875-884 reports 2/3 CTD females with improvement of clinical outcome. Taken together the sentence has been modified in the revised version of the manuscript as follows: “Several combinations of nutritional supplements or Cr precursors l-arginine and l-glycine, have been studied as therapeutic approaches for CTD, but they have shown limited success (Bruun et al., 2018, Valayannopoulos et al., 2013) (lines 61-63, Page 4)

      • When comparing their new in vitro CTD model of human brain organoids with existing in vivo rodent models, authors may add the citation of the rat model of Duran-Trio et al (2021 & 2022), in particular for its description of CNS tissue alterations (dendritic spines density for example).

      The reference Duran-Trio et al (2021) has been added (page 4, line 70). The reference Duran-Trio et al (2022) has been added (page 11) and the sentence has been modified in the revised version of the manuscript as follows: “Reduced cortical spine density and reductions in protein levels of several synaptic markers have been observed in the brains of Slc6a8-/y mice and rats (Chen et al., 2021; Duran-Trio et al., 2022)”.

      Reviewer #2 (Recommendations For The Authors):

      There are only minor suggestions for improvement in this manuscript. The authors strongly link creatine uptake, the GSK3β pathway, and intellectual disability. Enhancing this claim with data on phosphorylation differences between organoids derived from healthy individuals and those from CTD patients could solidify this foundation and facilitate a more holistic understanding of the disease. In addition, the in vitro model based on organoids might be closer than other experimental setups; however, proving that those differences are also present in vivo would greatly benefit the story.

      As shown in Fig 6A-B, GSK3β is less phosphorylated on Ser9 in CTD brain organoids compared to healthy organoids, indicating that GSK3β is more active in organoids with reduced creatine levels. Studying the level of GSK3β phosphorylation in the mouse brain could be part of next experiments and another story.

      There is also some uncertainty around the rescue experiment using the exogenous SLC6A8 gene. Could the difference in creatine uptake between the rescue iPSCs and the healthy control be due to CRT overexpression? Higher levels of the transporter may explain the elevated levels of intracellular creatine. Thus, a comparison using Western blotting experiments could be a valuable addition to evaluating the expression levels of this protein.

      For the rescue experiment, we used a vector where SLC6A8 and eGFP were connected by an IRES2 sequence, providing simultaneous, but independent expression of the two proteins. CTD-rescue iPSC clones were selected based on high eGFP fluorescence. These clones probably have several copies of transgene in their genome, which could result in a higher abundance of SLC6A8 compared with healthy iPSCs. The difference in creatine uptake between the CTD-rescue iPSCs and the healthy control is probably due to CRT overexpression. However, there are no satisfactory anti-SLC6A8 antibodies commercially available to quantify CRT by western-blot. We would like to add that, although creatine uptake is higher in CTD-rescue iPSCs than in healthy control, the basal level of creatine (which corresponds to culture conditions for the rest of the experiments) is similar.

      Overall, this study provides valuable insights into CTD and potential therapeutic targets. It enriches our understanding of CTD and opens up new avenues for future research in this field.

      We thank the reviewer for their kind words and hope this study will be useful for other researchers in the CTD field.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We appreciate the thoughtful feedback provided by the editor and the three reviewers and have addressed their comments, which we believe have results in significant improvements to the manuscript. A point-by-point response to the comments is included below.

      Reviewer #1

      Line 229: The wording of "highly valuable" seems slightly vague. Consider rephrasing to something more specific, such as: "...using individual animal recorders provide valuable new insight into locomotor behavior when ..."

      Thank you for your advice. The sentence was revised as you suggested.

      Lines 518-527: Consider adding quantitative details for the four conditions. It is apparent in Figure 4 (dashed lines associated with peaks of the distributions), but in the text it would be helpful to add the speeds and heights chosen to sort the data.

      Quantitative descriptions were added in the Materials and Methods section. We also moved detailed information about the curve fitting function from the Result section to Materials and Methods section.

      “Threshold values were decided based on the peak in the curve of the fitted probability density distribution (wind speed: 6.0 m/s, wave height 2.8 m). Weibull distribution and log normal distribution were used as the fitting function for wind speed and wave height, respectively (Ferreira and Guedes Soares, 2000; Carta et al., 2009).”

      Reviewer #2

      Line 51 - Climatic models - climatic model cannot, by definition, provide prediction of specific weather conditions as they focus on large and long-term values and trends. I suggest the authors to review their use of climatic conditions throughout the manuscript, and use instead weather conditions, where appropriate.

      Thank you for informing us the usage of terminology. Most of the phrases “climatic models” in the manuscript were replaced by “mathematical weather models”, for example, line 51, 226, 230, 312. We also checked that the phrase “climatic condition” never appears in the manuscript.

      Lines 59-61 require editing. It is true that take-off is associated with high rate of energy expenditure, but it is phrased in an unclear way. I suggest writing instead "Therefore, the high energy expenditure associated with take-off is strongly influencing the total energy expenditure of wandering albatross during the foraging trip, unlike the duration or distance of the flight (Shaffer et al., 2001).

      Thank you for your advice. As you suggested the phrasing was not proper to describe the previous study. The sentence was revised following your suggestion.

      “Therefore, the high energy expenditure associated with take-off strongly influences the total energy expenditure of wandering albatross during the foraging trip, unlike flight duration or distance (Shaffer et al., 2001a)”

      Line 213 - I suggest "Among the LMMS, models..."

      The sentence was revised as you suggested.

      Line 286 - I suggest using the word "difference" or "delta" AIC instead of variation which is confusing.

      The sentence was revised as follows.

      “For instance, the AIC difference in running speed between the best model and the second-lowest AIC model was only 0.27.”

      Line 385 - Please provide actual percentage even if it is < 1%.

      We added actual mass percentage of both small and large types of the recorders in line 385 and 386.

      “Small Ninja-scans weighed 28 g, which is 0.3 ~ 0.4% of wandering albatross body mass, and are expected to record for 7 h. Large Ninja-scans weighed 91 g, which corresponds to 0.8 ~ 1.3% of wandering albatross body mass, and are expected to record for 65 h.”

      Reviewer #3

      Thank you for the marked-up manuscript and a lot of comments on it. Most of your grammatical advises and rephrases are reflected in the new version and we double-checked the whole manuscript using English proofreading service. Please refer to the below for the answer to each major comments.

      Line 304 – not sure volume is best word choice.

      We changed the word “volume” to “amplitude”.

      Line 309 – Are you sure that Pennycuick 1982 didn’t document this?

      His article mainly focused on the morphology and steady flight mechanism of albatrosses and petrels. There were no descriptions on take-offs of seabirds.

      Line 320 – add after Weimerskirch citation, and similar to predicted best glide speeds (Shafer et al. 2001, Funct, Ecol 15)

      Thank you for the beneficial information. We added the phrase and the citation in the sentence.

      “The mean air speed of wandering albatrosses at the end of the running phase was close to the average flight speed (approximately 15 m/s) (Weimerskirch et al., 2002), and similar to predicted best glide speeds, (Shaffer et al., 2001b) indicating that wandering albatrosses gain sufficient lift at the end of the running phase and efficiently utilize ocean wind.”

      Line 684 – citation information incomplete.

      Thank you for finding the incomplete citation. Authors of the reference paper were corrected. “Weimerskirch H, Bonadonna F, Bailleul F, Mabille G, Dell’Omo G, Lipp H-P. 2002. GPS tracking of foraging albatrosses. Science 295:1259–1259. doi:10.1126/science.1068034”

      Fig.4. – In Part B, reorient the y-axis labels to match the other figures. Change the orientation of y-axis labels like shown in Figure 3.

      We rearranged the labels and ticks in Fig.4B to improve the readability and match the graphs with Fig3.

    1. Author Response

      Reviewer #1 (Public Review):

      [...] Based on these results, the authors support a model whereby kinetic regimes are encoded in the cis-regulatory sequences of a gene instead of imposed by an evolving trans-regulatory environment.

      The question asked in this manuscript is important and the eve locus represents an ideal paradigm to address it in a quantitative manner. Most of the results are correctly interpreted and well-presented. However, the main conclusion pointing towards a potential "unified theory" of burst regulation during Drosophila embryogenesis should be nuanced or cross-validated.

      We thank the reviewer for their careful and insightful assessment of our manuscript. The reviewer is right in that our claims should have been more nuanced. Indeed, our proposed unified strategy only concerns even-skipped transcription under the variable conditions that exist in ectopic and endogenous eve expression regions.

      Our results and those of others suggest that different developmental genes follow unified—yet different—transcriptional control strategies whereby different combinations of bursting parameters are regulated to modulate gene expression: burst frequency and amplitude for eve (Berrocal et al., 2020), and burst frequency and duration for gap genes (Zoller et al., 2018). In light of the aforementioned works, we can only claim that our results suggest a unified strategy for eve, our case of study, as we observe that eve regulatory strategies are robust to disruption of enhancers and binding sites. In the Discussion section of our revised manuscript, we will emphasize that the bursting control strategy we uncovered for eve does not necessarily apply to other genes, and speculate in more detail that genes that employ the same strategy of transcriptional bursting may be grouped in families that share a common molecular mechanism of transcription.

      In addition to the lack of novelty (some results concerning the fact that koff does not change along the A/P axis/the idea of a 'unified regime' were already obtained in Berrocal et al 2020),...

      Unfortunately, we believe there is a misunderstanding in terms of what we construe as novelty in our work. In our previous work (Berrocal et al., 2020), we observed that the seven stripes of even-skipped (eve) expression modulate transcriptional bursting through the same strategy—bursting frequency and amplitude are controlled to yield various levels of mRNA synthesis, while burst duration remains constant. We reproduce that result in our paper, and do not claim any novelty. However, what was unclear is whether the observed eve bursting control strategy would only exist in the wild-type stripes, whose expression—we reasoned—is under strong selection due to the dramatic phenotypic consequences of eve transcription, or if eve transcriptional bursting would follow the same strategy under trans-regulatory environments that are not under selection to deliver specific spatiotemporal dynamics of eve expression. Our results—and here lies the novelty of our work—support the second scenario, and point to a model where eve bursting strategies do not result from adaptation of eve activity to specific trans-regulatory environments. Instead, we speculate that a molecular mechanism constrains eve bursting strategy whenever and wherever the gene is active. This is something that we could not have known from our first study in (Berrocal et al., 2020) and constitutes the main novelty of our paper. To put this in other words, the novelty of our work does not rest on the fact that both burst frequency and amplitude are modulated in the endogenous eve pattern, but that this modulation remains quantitatively indistinguishable when we focus on ectopic areas of expression. We will make this point clearer in the Introduction and Discussion section of our revised manuscript.

      … note i) the limited manipulation of TF environment;...

      We acknowledge that additional genetic manipulations would make it possible to further test the model. However, we hope that the reviewer will agree with us that the manipulations that we did perform are sufficient to provide evidence for common bursting strategies under the diverse trans-regulatory environments present in wild-type and ectopic regions of gene expression. In the Discussion section of our revised manuscript, we will elaborate further on the kind of genetic manipulations (e.g., probing transcriptional strategies that result from swapping promoters in the context of eve-MS2 BAC; or quantifying the impact on eve transcriptional control after performing optogenetic perturbations of transcription factors and/or chromatin remodelers) that could shed further light on the currently undefined molecular mechanism that constrains eve bursting strategies, as a mean to motivate future work.

      … ii) the simplicity with which bursting is analyzed (only a two-state model is considered, and not cross-validated with an alternative approach than cpHMM) and…

      Based on our previous work (Lammers et al., 2020), and as described in the SI Section of the current manuscript: Inference of Bursting Parameters, we selected a three-state model (OFF, ON1, ON2) under the following rationale: transcription of even-skipped in pre-gastrulating embryos occurs after DNA replication, and promoters on both sister chromatids remain paired. Most of the time these paired loci cannot be resolved independently using conventional microscopy. As a result, when we image an MS2 spot, we are actually measuring the transcriptional dynamics of two promoters. Thus, each MS2-fluorescent spot may result from none (OFF), one (ON1) or two (ON2) sister promoters being in the active state. Following our previous work, we analyzed our data assuming the three-state model (OFF, ON1, ON2), and then, for ease of presentation, aggregated ON1 and ON2 into an effective single ON state. As for the lack of an alternative model, we chose the simplest model compatible with our data and our current understanding of transcription at the eve locus. With this in mind, we do not rule out the possibility that more complex processes—that are not captured by our model—shape MS2 fluorescence signals. For example, promoters may display more than two states of activity. However, as shown in (Lammers et al., 2020 - SI Section: G. cpHMM inference sensitivities), model selection schemes and cross-validation do not give consistent results on which model is more favorable; and for the time being, there is not a readily available alternative to HMM for inference of promoter states from MS2 signal. For example, orthogonal approaches to quantify transcriptional bursting, such as smFISH, are largely blind to temporal dynamics. As a result, we choose to entertain the simplest two-state model for each sister promoter. We appreciate these observations, as they point out the need of devoting a section in the supplemental material of our revised manuscript to clarify the motivations behind model selection.

      … iii) the lack of comparisons with published work.

      We thank the reviewer for pointing this out. In the current discussion of our manuscript, we compare our findings to recent articles that have addressed the question of the origin of bursting control strategies in Drosophila embryos (Pimmett et al., 2021; Yokoshi et al., 2022; Zoller et al., 2018). Nevertheless, we acknowledge that we failed to include references that are relevant to our study. Thus, our revised Discussion section must include recent results by (Syed et al., 2023), which showed that the disruption of Dorsal binding sites on the snail minimal distal enhancer results in decreased amplitude and duration of transcription bursts in fruit fly embryos. Additionally, we have to incorporate the study by (Hoppe et al., 2020), which reported that the Drosophila bone morphogenetic protein (BMP) gradient modulates the bursting frequency of BMP target genes. References to thorough studies of bursting control in other organisms, like Dictyostelium discoideum (Tunnacliffe et al., 2018), are due as well.

      Reviewer #2 (Public Review):

      The manuscript by Berrocal et al. asks if shared bursting kinetics, as observed for various developmental genes in animals, hint towards a shared molecular mechanism or result from natural selection favoring such a strategy. Transcription happens in bursts. While transcriptional output can be modulated by altering various properties of bursting, certain strategies are observed more widely. As the authors noted, recent experimental studies have found that even-skipped enhancers control transcriptional output by changing burst frequency and amplitude while burst duration remains largely constant. The authors compared the kinetics of transcriptional bursting between endogenous and ectopic gene expression patterns. It is argued that since enhancers act under different regulatory inputs in ectopically expressed genes, adaptation would lead to diverse bursting strategies as compared to endogenous gene expression patterns. To achieve this goal, the authors generated ectopic even-skipped transcription patterns in fruit fly embryos. The key finding is that bursting strategies are similar in endogenous and ectopic even-skipped expression. According to the authors, the findings favor the presence of a unified molecular mechanism shaping even-skipped bursting strategies. This is an important piece of work. Everything has been carried out in a systematic fashion. However, the key argument of the paper is not entirely convincing.

      We thank the reviewer, as these comments will enable us to improve the Discussion section and overall logic of our revised manuscript. We agree that the evidence provided in this work, while systematic and carefully analyzed, cannot conclusively rule out either of the two proposed models, but just provide evidence supporting the hypothesis for a specific molecular mechanism constraining eve bursting strategies. Our experimental evidence points to valuable insights about the mechanism of eve bursting control. For instance, had we observed quantitative differences in bursting strategies between ectopic and endogenous eve domains, we would have rejected the hypothesis that a common molecular mechanism constrains eve transcriptional bursting to the observed bursting control strategy of frequency and amplitude modulation. Thus, we consider that our proposition of a common molecular mechanism underlying unified eve bursting strategies despite changing trans-regulatory environments is more solid. On the other hand, while our model suggests that this undefined bursting control strategy is not subject to selection acting on specific trans-regulatory environments, it is not trivial to completely discard selection for specific bursting control strategies given our current lack of understanding of the molecular mechanisms that shape the aforesaid strategies. Indeed, we cannot rule out the hypothesis that the observed strategies are most optimal for the expression of eve endogenous stripes according to natural selection, and that these control strategies persist in ectopic regions as an evolutionary neutral “passenger phenotype” that does not impact fitness. We recognize the need to acknowledge this last hypothesis in the updated Introduction and Discussion sections of our manuscript. Further studies will be needed to determine the mechanistic and molecular basis of eve bursting strategies.

      Reviewer #3 (Public Review):

      In this manuscript by Berrocal and coworkers, the authors do a deep dive into the transcriptional regulation of the eve gene in both an endogenous and ectopic background. The idea is that by looking at eve expression under non-native conditions, one might infer how enhancers control transcriptional bursting. The main conclusion is that eve enhancers have not evolved to have specific behaviors in the eve stripes, but rather the same rates in the telegraph model are utilized as control rates even under ectopic or 'de novo' conditions. For example, they achieve ectopic expression (outside of the canonical eve stripes) through a BAC construct where the binding sites for the TF Giant are disrupted along with one of the eve enhancers. Perhaps the most general conclusion is that burst duration is largely constant throughout at ~ 1 - 2 min. This conclusion is consistent with work in human cell lines that enhancers mostly control frequency and that burst duration is largely conserved across genes, pointing to an underlying mechanistic basis that has yet to be determined.

      We thank the reviewer for the assessment of our work. Indeed, evidence from different groups (Berrocal et al., 2020; Fukaya et al., 2016; Hoppe et al., 2020; Pimmett et al., 2021; Senecal et al., 2014; Syed et al., 2023; Tunnacliffe et al., 2018; Yokoshi et al., 2022; Zoller et al., 2018) is coming together to uncover commonalities, discrepancies, and rules that constrain transcriptional bursting in Drosophila and other organisms.

    1. Author Response

      Reviewer #1 (Public Review):

      This article is interested in how butterfly, or more precisely, butterfly wing scale precursor cells, each make precisely patterned ultrastructures made of chitin.

      To do this, the authors sought to use the butterfly Parides eurimedes, a papilionid swallowtail, that carries interesting, unusual structures made of 1) vertical ridges, that lack a typical layered stacking arrangement; and 2) deep honeycomb-like pores. These two features make the organism chosen a good point of comparison with previous studies, including classic papers that relied on electronic microscopy (SEM/TEM), and more recent confocal microscopy studies.

      The article shows good microscopy data, including detailed, dense developmental series of staining in the Parides eurimedes model. The mix of cell membrane staining, chitin precursor, and F-actin staining is well utilized and appropriately documented with the help of 3D-SIM, a microscopy technique considered to provide super-resolution (here needed to visualize sub-cellular processes).

      The key message from this article is that F-actin filaments are later repurposed, in papilionid butterflies, to finish the patterning of the inter-ridge space, elaborating new structures (this was not observed so far in other studies and organisms). The model proposed in Figure 6 summarized these findings well, with F-actin reshaping it itself into a tulip that likely pulls down a chitin disk to form honeycombs. These interpretations of the microscopy data are interesting and novel.

      There are two other points of interest, that deserve future investigation:

      1) The authors performed immunolocalizations of Arp2 and pharmacological inhibitions of Arp2/3, and found some possible effect on honeycomb lattice development. The inter-ridge region of the butterfly Papilio polytes, which lacks these structures, did not seem to be affected by drug treatments. Effects where time-dependent, which makes sense. These data provide circumstantial evidence that Arp2/3 is involved in the late role of F-actin formation or re-organisation.

      2) The authors perform a comparative study in additional papilionids (Fig. 6 in particular). I find these data to be quite limited without a dense sampling, but they are nonetheless interesting and support a second-phase role of F-actin re-organisation.

      The article is dense, well produced and succinctly written. I believe this is an interesting and insightful study on a complex process of cell biology, that inspires us to look at basic phenomena in a broader set of organisms.

      We thank the reviewer for the positive appraisal.

      Reviewer #2 (Public Review):

      The manuscript by Seah and Saranathan investigates the cell-based growth mechanism of so called honeycomb-structures in the upper lamina of papilionid wing scales by investigating a number of different species. The authors chose Parides eurimedes as a focus species with the developmental pathway of five other papilionid as a comparative backup. Through state-of-the-art microscopy images of different developmental steps, the author find that the intricate f-actin filaments reorganise, support cuticular discs that template the air holes that form the honeycomb lattice. The manuscript is well written and easy to follow, yet based on a somewhat limited sample size for their focus species, limiting attempts to suppress expression and alter structure shape.

      The fact that the authors find a novel reorganisation mechanism is exciting and warrants further research, e.g. into the formation of other microscale features or smaller scale structures (e.g. the mentioned gyroid networks).

      We thank the reviewer for the positive appraisal.

      The authors place their results in the discussion in the light of current literature (although the references could be expanded further to include the breadth of the field). However, the mechanistic explanation completely ignores the mechanical properties of the membranes as an origin of some of the observed phenomena (see McDougal's work for example) and places the occurence of some features into Turing patterns and Ostwald ripening, which I find somewhat unlikely and I suggest that the authors discover this aspects further in the discussion.

      We thank the reviewer for these suggestions. We have added more references from the current literature to more accurately reflecting the breadth of the field. McDougal et al. 2021. discuss the nature of biomechanical forces (differential growth and buckling) on the membrane and deposited cuticle shaping the formation of longitudinal ridges. However, here it is the invagination of the plasma membrane bearing the deposited cuticle that is our main concern. Nevertheless, we agree future studies should indeed consider the mechanical properties of the membranes, in addition to explain some of the observed features. We have clarified this in our discussion.

      I have little concerns regarding the experimental approach beyond the somewhat limited sample size. One thing the authors should more clearly mention are the pupation periods for all investigated species as only the periods for two species are named.

      Yes, unfortunately, we were only able to obtain pupae with pupation dates for two species. We have clarified this point in the methods.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      This study by Sokač et al. entitled "GENIUS: GEnome traNsformatIon and spatial representation of mUltiomicS data" presents an integrative multi-omics approach which maps several genomic data sources onto an image structure on which established deep-learning methods are trained with the purpose of classifying samples by their metastatic disease progression signatures. Using published samples from the Cancer Genome Atlas the authors characterize the classification performance of their method which only seems to yield results when mapped onto one out of four tested image-layouts.

      Major recommendations:

      • In its current form, GENIUS analysis is neither computationally reproducible nor are the presented scripts on GitHub generic enough for varied applications with other data. The GENIUS GitHub repository provides a collection of analysis scripts and not a finished software solution (e.g. command line tool or other user interface) (the presented scripts do not even suffice for a software prototype). In detail, the README on their GitHub repository is largely incomplete and reads analogous to an incomplete and poorly documented analysis script and is far from serving as a manual for a generic software solution (this claim was made in the manuscript).

      We apologize for this oversight, and we have now invested considerable resources into making the documentation more detailed and accurate. We have created a new GitHub repository (https://github.com/mxs3203/GENIUS) that contains a small set of example data and all the necessary scripts to run GENIUS. The README file guides the user through each step of the GENIUS framework but it also contains a bash script that runs all the steps at once. When a user would like to use it on their own data, they need to replace the input data with their data but in the same format as the example input data. This is now fully documented in the README file. All scripts have arguments that can be used to point to custom data. The entire pipeline using example data can be run using run_genius.sh script. This script will produce CSV files and PNG files inside the ExtractWithIG folder containing attribution scores for every cancer type tested.

      The authors should invest substantially into adding more details on how data can be retrieved (with example code) from the cited databases and how such data should then be curated alongside the input genome to generically create the "genomic image".

      Data for analysis can be sourced from multiple locations, what we have used in our examples and for development was based on data from the TCGA. It can be retrieved from the official TCGA data hub or through Xena Browser (https://xenabrowser.net/). However, the data formats are generic, and similar data types (mutation, expression, methylation, copy number) can be obtained from multiple sources. We have added example data to demonstrate the layout, and we have a script included that creates the layout from standard mutation, expression, methylation and copy number data formats. We have substantially improved the annotations, including detailed descriptions of the data layout along with examples, and we have, as part of our validation, had an independent person test run the scripts using TCGA example data we provided on the new GitHub page.

      In addition, when looking at the source code, parameter configurations for training and running various modules of GENIUS were hard-coded into the source code and users would have to manually change them in the source code rather than as command line flags in the software call. Furthermore, file paths to the local machine of the author are hard-coded in the source code, suggesting that images are sourced from a local folder and won't work when other users wish to replicate the analysis with other data. I would strongly recommend building a comprehensive command line tool where parameter and threshold configurations can be generically altered by the user via command line flags.

      Apologies, we have changed the code and removed all hard-coded paths. All paths are now relative to the script using them. Furthermore, we made the config file more visible and easier to use. The example run can be found on the new github repository we linked in the previous comment.

      We also inserted the following text in the manuscript

      The GitHub repository contains example data and instructions on how to use the GENIUS framework.

      A comprehensive manual would need to be provided to ensure that users can easily run GENIUS with other types of input data (since this is the claim of the manuscript). Overall, due to the lack of documentation and hard-coded local-machine folder paths it was impossible to computationally reproduce this study or run GENIUS in general.

      Apologies, we have completely reworked the code base, and extensively annotated the code. We have also made highly detailed step-by-step instructions that should enable any user to run GENIUS on their own or public data.

      • In the Introduction the authors write: "To correct for such multiple hypothesis testing, drastic adjustments of p-values are often applied which ultimately leads to the rejection of all but the most significant results, likely eliminating a large number of weaker but true associations.". While this is surely true for any method attempting to separate noise from signal, their argument fails to substantiate how their data transformation will solve this issue. Data transformation and projection onto an image for deep-learning processing will only shift the noise-to-signal evaluation process to the postprocessing steps and won't "magically" solve it during training.

      The data transformation does not solve the problem of multiple hypothesis testing but it facilitates the use of computer vision algorithms and frameworks on rich multi-omics data. Importantly, transforming the data into genome images, training the model, and inspecting it with integrated gradients can be interpreted as running a single test on all of the data.

      Analyzing multiomics data using classical statistical methods typically means that we perform extensive filtering of the data, removing genes with poor expression/methylation/mutation scores, and then e.g. perform logistic regression against a desired outcome, or alternatively, perform multiple statistical tests comparing each genomic feature independently against a desired outcome. Either way, information is lost during initial filtering and we must correct the analysis for each statistical test performed. While this increases confidence in whichever observation remains significant, it also undoubtedly means that we discard true positives. Additionally, classical statistical methods such as those mentioned here do not assume a spatial connection between data points, thus any relevant information relating to spatial organization is lost.

      Instead, we propose the use of the GENIUS framework for multiomics analysis. The GENIUS framework is based on deep neural nets and relies on Convolutions and their ability to extract interactions between the data points. This particularly considers spatial information, which is not possible using classical statistical methods such as logistic regression where the most similar approach to this would include creating many models with many interactions.

      Furthermore, integrated gradients is a non-parametric approach that simply evaluates the trained model relative to input data and output label, resulting in attribution for each input with respect to the output label. In other words, integrated gradients represent the integral of gradients with respect to inputs along the path from a given baseline to input. The integral is described in Author response image 1:

      Author response image 1.

      More about integrated gradients can be read on the Captum webpage (https://captum.ai/docs/introduction) or in original paper https://arxiv.org/abs/1703.01365.

      Since we transformed the data into a data structure (genome image) that assumes a spatial connection between genes, trained the model using convolutional neural networks and analyzed the model using integrated gradients, we can treat the results without any parametric assumption. As a particular novelty, we can sort the list based on attribution score and take top N genes as our candidate biomarkers for the variable of interest and proceed with downstream analysis or potentially functional validation in an in vitro setting. In this manner, the reviewer is correct that the signal-to-noise evaluation is shifted to the post-processing steps. However, the benefit of the GENIUS framework is particularly that it enables integration of multiple data sources without any filtering, and with constructing a novel data structure that facilitates investigation of spatial dependency between data points, thus potentially revealing novel genes or biomarkers that were previously removed through filtering steps. However, further downstream validation of these hits remains critical.

      We added the following paragraph to make this more clear

      "Integrated Gradients is a non-parametric approach that evaluates the trained model relative to input data and output label, resulting in attribution scores for each input with respect to the output label. In other words, Integrated Gradients represent the integral of gradients with respect to inputs along the path from a given baseline. By using Integrated Gradients, we provide an alternative solution to the problem posed by performing multiple independent statistical tests. Here, instead of performing multiple tests, a single analysis is performed by transforming multiomics data into genome images, training a model, and inspecting it with Integrated Gradients. Integrated Gradients will output an attribution score for every gene included in the genome image and those can be ranked in order to retrieve a subset of the most associated genes relative to the output variable."

      In addition, multiple-testing correction is usually done based on one particular data source (e.g. expression data), while their approach claims to integrate five very different genomic data sources with different levels and structures of technical noise. How are these applications comparable and how is the training procedure able to account for these different structures of technical noise? Please provide sufficient evidence for making this claim (especially in the postprocessing steps after classification).

      The reviewer is correct that there will be different technical noise for each data source. However, each data source is already processed by standardized pipelines used for interpreting sequence-level data into gene expression, mutations, copy number alterations and methylation levels. Thus, sequence-level technical noise is not evaluated as part of the GENIUS analysis. Nevertheless, the reviewer is correct that sample-level technical noise, such as low tumor purity or poor quality sequencing, undoubtedly can affect the GENIUS predictions, as is true for all types of sequence analysis. As part of GENIUS, an initial data preprocessing step (which is performed automatically as part of the image generation), is that each data source is normalized within that source and linearly scaled in range zero to one (min-max scaling). This normalization step means that the impact of different events within and between data sources are comparable since the largest/smallest value from one data source will be comparable to the largest/smallest value from another data source.

      Additionally, deep neural networks, particularly convolutional networks, have been shown to be very robust to different levels of technical noise (Jang, McCormack, and Tong 2021; Du et al. 2022). In the manuscript we show the attribution scores for different cancer types in figure 3B of the paper. Here, the top genes include established cancer genes such as P53, VHL, PTEN, APC and PIK3CA, indicating that the attribution scores based on GENIUS analysis is a valid tool to identify potential genes of interest. Furthermore, when focusing the analysis on predicting metastatic bladder cancer, we were able to show that of the top 10 genes with the highest attribution scores, 7 showed significant association with poor outcome in an independent validation cohort of mostly metastatic patients (shown in figure 4).

      • I didn't find any computational benchmark of GENIUS. What are the computational run times, hardware requirements (e.g. memory usage) etc that a user will have to deal with when running an analogous experiment, but with different input data sources? What kind of hardware is required GPUs/CPUs/Cluster?

      We apologize for not including this information in the manuscript. We added the following section in to the manuscript:

      "Computational Requirements

      In order to train the model, we used the following hardware configuration: Nvidia RTX3090 GPU, AMD Ryzen 9 5950X 16 core CPU, and 32Gb of RAM memory. In our study, we used a batch size of 256, which occupied around 60% of GPU memory. Training of the model was dependent on the output variable. For metastatic disease prediction, we trained the model for approximately 4 hours. This could be changed since we used early stopping in order to prevent overfitting. By reducing the batch size to smaller numbers, the technical requirements are reduced making it possible to run GENIUS on most modern laptops."

      • A general comment about the Methods section: Models, training, and validation are very vaguely described and the source code on GitHub is very poorly documented so that parameter choices, model validation, test and validation frameworks and parameter choices are neither clear nor reproducible.

      Apologies, we have updated the methods section with more details on models, training and validation. Additionally, we have moved the section on evaluating model performance from the methods section to the results section, with more details on how training was performed.

      We also agree that the GitHub page is not sufficiently detailed and well structured. To remedy this, we have made a new GitHub page that only has the code needed for analysis, example input data, example runs, and environment file with all library versions. The GitHub repository is also updated in the manuscript.

      The new GitHub page can be found on: https://github.com/mxs3203/GENIUS

      Please provide a sufficient mathematical definition of the models, thresholds, training and testing frameworks.

      We sincerely apologize, but we do not entirely follow the reviewers request on this regard. The mathematical definitions of deep neural networks are extensive and not commonly included in research publications utilizing deep learning. We have used PyTorch to implement the deep neural net, a commonly used platform, which is now referenced in the methods. The design of the deep learning network used for GENIUS is described in figure 1, and the relevant parameters are described in methods. The hyper parameters are described in the methods section, and are as follows:

      "All models were trained with Adagrad optimizer with the following hyperparameters: starting learning rate = 9.9e-05 (including learning rate scheduler and early stopping), learning rate decay and weight decay = 1e-6, batch size = 256, except for memory-intensive chromosome images where the batch size of 240 was used."

      • In chapter "Latent representation of genome" the authors write: "After successful model training, we extracted the latent representations of each genome and performed the Uniform Manifold Approximation and Projection (UMAP) of the data. The UMAP projected latent representations into two dimensions which could then be visualized. In order to avoid modeling noise, this step was used to address model accuracy and inspect if the model is distinguishing between variables of interest.". In the recent light of criticism when using the first two dimensions of UMAP projections with omics data, what is the evidence in support of the author's claim that model accuracy can be quantified with such a 2D UMAP projection? How is 'model accuracy' objectively quantified in this visual projection?

      We apologize for not clarifying this. The UMAP was done on L, the latent vector, which by assumption should capture the most important information from the “genome image”. In order to confirm this, we plotted the first two dimensions of UMAP transformation and colored the points by the output variable. If the model was capturing noise, there should not be any patterns on the plot (randomized cancer-type panel). Since, in most cases, we do see an association between the first two UMAP dimensions and the output variable, we were confident that the model was not modeling (extracting) noise.

      To clarify this, we changed the sentence in the manuscript so it is more clear that this is not an estimation of accuracy but only an initial inspection of the models:

      The UMAP projected latent representations into two dimensions which could then be visualized. In order to avoid modeling noise, this step was used to inspect if the model is distinguishing between variables of interest.

      • In the same paragraph "Latent representation of genome" the authors write: "We observed that all training scenarios successfully utilized genome images to make predictions with the exception of Age and randomized cancer type (negative control), where the model performed poorly (Figure 2B).". Did I understand correctly that all negative controls performed poorly? How can the authors make any claims if the controls fail? In general, I was missing sufficient controls for any of their claims, but openly stating that even the most rudimentary controls fail to deliver sufficient signals raises substantial issues with their approach. A clarification would substantially improve this chapter combined with further controls.

      We apologize for not stating this more clearly. Randomized cancer type was used as a negative control since we expect that model would not be able to make sense of the data if predicting randomized cancer type. As expected, the model failed to predict the randomized cancer types. This can be seen in Figure 2C, where UMAP representations (based on the latent representation of the data, the vector L) are made for each output variable. Not seeing any patterns in UMAP shows that, as expected, the model does not know how to extract useful information from “genome image” when predicting randomized cancer type (as when randomly shuffling the labels there is no genomic information to decipher). Similar patterns were observed for Age, indicating that patient age cannot be determined from the multi-omics data. Conversely, when GENIUS was trained against wGII, TP53, metastatic status, and cancer type, we observed that samples clustered according to the output label.

      Reviewer #2 (Public Review):

      In this manuscript, Birkbak and colleagues use a novel approach to transform multi-omics datasets in images and apply Deep Learning methods for image analysis. Interestingly they find that the spatial representation of genes on chromosomes and the order of chromosomes based on 3D contacts leads to best performance. This supports that both 1D proximity and 3D proximity could be important for predicting different phenotypes. I appreciate that the code is made available as a github repository. The authors use their method to investigate different cancers and identify novel genes potentially involved in these cancers. Overall, I found this study important for the field.

      The major points of this manuscript could be grouped in three parts:

      1) While the authors have provided validation for their model, it is not always clear that best approaches have been used.

      a) In the methods there is no mention of a validation dataset. I would like to see the authors training on a cancer from one cohort and predict on the same cancer from a different cohort. This will convince the reader that their model can generalise. They do something along those lines for the bladder cancer, but no performance is reported. At the very least they should withhold a percentage of the data for validation. Maybe train on 100 and validate on the remaining 300 samples. They might have already done something along these lines, but it was not clear from the methods.

      Apologize for not being sufficiently clear in the manuscript. We did indeed validate the performance within the TCGA cohort, using holdout cross validation. Here, we trained the network on 75% of the cohort samples (N = 3825), and tested on the remaining 25% (N = 1276).

      To make this more clear, we have rewritten section “GENIUS classification identifies tumors likely to become metastatic” as such:

      "The omics data types included somatic mutations, gene expression, methylation, copy number gain and copy number loss. Using holdout type cross-validation, where we split the data into training (75%) and validation (25%), we observed a generally high performance of GENIUS, with a validation AUC of 0.83 for predicting metastatic disease (Figure 2B)."

      We also added the following sentence in the legend of Figure 2:

      "The x-axis represents epochs and y-axis represents AUC score of fixed 25% data we used for accuracy assessment within TCGA cohort."

      The accuracy of GENIUS could not be validated on the other two bladder cohorts since they do not contain all the data for the creation of five-dimensional genome images. However, we were able to investigate if the genes with the highest attribution scores towards metastatic bladder cancer obtained based on the TCGA samples also showed a significant association with poor outcome in the two independent bladder cancer cohorts. Here, we observed that of the top 10 genes with the highest attribution scores, 5 were associated with poor outcome in the early stage bladder cancer cohort, and 7 were associated with poor outcome in the late stage/metastatic bladder cancer cohort.

      b) It was not clear how they used "randomised cancer types as the negative control". Why not use normal tissue data or matched controls?

      In the study, we built six models, one for each variable of interest. One of them was cancer type which performed quite well. In order to assess the model on randomized data, we randomized the labels of cancer type and tried predicting that. This served as “negative control” since we expected the model to perform poorly in this scenario. To make this more clear in the manuscript, we have expanded the description in the main text. We have also added the description of this to each supplementary plot to clarify this further.

      While normal tissue and matched controls would have been an optimal solution, unfortunately, such data is not available.

      c) If Figure 2B, the authors claim they have used cross validation. Maybe I missed it, but what sort of cross validation did they use?

      We apologize for not being sufficiently clear. As described above, we used holdout cross-validation to train and evaluate the model. We clarified this in the text:

      "Using holdout type cross-validation, where we split the data into training (80%) and validation (20%), we observed a generally high performance of GENIUS, with a mean validation AUC of 0.83 (Figure 2B)"

      2) Potential improvement to the method

      a) It is very encouraging the use of HiC data, but the authors used a very coarse approach to integrate it (by computing the chromosome order based on interaction score). We know that genes that are located far away on the same chromosome can interact more in 3D space than genes that are relatively close in 1D space. Did the authors consider this aspect? Why not group genes based on them being located in the same TAD?

      We thank the reviewer for this suggestion and we will start looking into how to use TAD information to create another genome representation. In this study, we tried several genome transformations, which proved to be superior compared to a flat vector of features (no transformation). We are aware that squared genome transformation might not be optimal, so we designed the network that reconstructs the genome image during the training. This way, the genome image is optimized for the output variable of choice by the network itself. However, we note that the order of the genes themselves, while currently based on HiC, can be changed by the user. The order is determined by a simple input file which can be changed by the user with the argument “all_genes_included”. Thus, different orderings can be tested within the overall square layout. This is now detailed in the instructions on the new GitHub page.

      The convolutional neural network uses a kernel size of 3x3, which captures the patterns of genes positioned close to each other but also genes that are far away from each other (potentially on another chromosome). Once convolutions extract patterns from the image, the captured features are used in a feed-forward neural network that makes a final prediction using all extracted features/patterns regardless of their location in the genome image.

      We also inserted the following sentence in discussion:

      "Given that spatial organization improved the prediction, we recognize that there may exist a more optimal representation of multi-omics data which should be explored further in future work. Potential methods for organizing gene orientation in a 2D image could consider integrating topologically associating domains[39] along with the spatial information from HiC. This is already possible to explore with the current implementation of GENIUS, where gene layout can be set manually by the user."

      b) Authors claim that "given that methylation negatively correlates with gene expression, these were considered together". This is clearly not always the case. See for example https://genomebiology.biomedcentral.com/articles/10.1186/s13059-022-02728-5. What would happen if they were not considered together?

      We thank the reviewer for this insightful comment. We agree with the reviewer that methylation does not always result in lower expression, although methylation levels in most cases should correlate negatively to RNA expression, but with a gene-specific factor. Indeed, there are tools developed that infer RNA expression based on methylation, making use of gene-specific correction factors. E.g. Mattesen et al (Mattesen, Andersen, and Bramsen 2021).

      However, upon reflection we agree with the reviewer that we cannot assume for all genes that methylation equals low expression. Therefore, we have performed an analysis where we compared the methylation level to gene expression levels for all tested genes within bladder cancer. We computed Pearson’s correlation of 16,456 genes that have both methylation and expression scores. Of these, 8528 showed a negative correlation. After p-value correction, this resulted in 4774 genes where methylation was significantly negatively associated with expression. For these genes we performed the subsequent analysis in bladder cancer, where methylation and expression were considered together. This updated analysis has been included in supplementary figure 10, and the results section has been amended to reflect this. Overall, this analysis resulted in 4 of 10 genes being replaced in the downstream analysis. However, we note that the final results did not materially change, nor did the conclusions.

      Author response image 2.

      Correlation between gene-level methylation and gene expression in TCGA BLCA cohort

      3) Interesting results that were not explained.

      a) In Figure 3A methylation seems to be the most important omics data, but in 3B, mutations and expression are dominating. The authors need to explain why this is the case.

      We apologize for not explaining this in more detail. Figure 3B shows the attribution scores scaled within the cancer type, where Figure 3A shows raw attribution scores for each data source included. The reason for this is that methylation and expression have in general, smaller attribution scores but more events where a single mutation often is characterized with large attribution scores and the rest of them with very small attribution. In order to make those numbers comparable and take into account biological differences between the cancer type, we scaled the scores within each cancer type.

      To make this more clear we modified the first sentence in “Interpreting the GENIUS model classifying metastatic cancer biology” section:

      "Analysing raw attribution scores we concluded the most informative data type overall regarding the development of metastatic disease was methylation (Figure 3A). …We also noticed that mutation data often had a single mutation with large attribution score where expression and methylation showed multiple genes with high attribution scores… … The normalization step is crucial to make results comparable as underlying biology is different in each cancer type included in the study."  

      Reviewer #1 (Recommendations For The Authors):

      • While I appreciate the creative acronym of the presented software solution (GENIUS), it may easily be confused with the prominent software Geneious | Bioinformatics Software for Sequence Data Analysis which is often employed in molecular life science research. I would suggest renaming the tool.

      We appreciate the comment but prefer to keep the name. Given that the abbreviation is not exactly the same and the utility is different, we are confident that there will be no accidental mixup between these tools.

      • A huge red flag is the evaluation of the input image design which clearly shows that classification power after training is insufficient for three out of four image layouts (and even for the fourth AUC is between 0.70-0.84 depending on the pipeline step and application). Could the authors please clarify why this isn't cherry-picking (we use the one layout that gave some form of results)? In light of the poor transformation capacity of this multi-omics data onto images, why weren't other image layouts tried and their classification performance assessed? Why should a user assume that this image layout that worked for this particular input dataset will also work with other datasets if image transformation is performing poorly in most cases?

      We apologize for not describing this further in the manuscript. We wrote in the manuscript that we could not know what genome representation is optimal as it is difficult to know. A flat vector represents a simple (or no) transformation since we simply take all of the genes from all of the data sources and append them into a single list. Chromosome image and square image are two transformations we tried, and we focused on the square image since in our hands it showed superior performance relative to other transformations.

      Reviewer #2 (Recommendations For The Authors):

      Minor points:

      1) Legends of supplementary Figures are missing.

      We thank the reviewer for this comment and apologize for missing it. All legends have been added now.

      2) For some tests the authors use F1 score while for other AUC, they should be consistent. Report all metrics for all comparisons or report one and justify why that only metric.

      We apologize for not being sufficiently clear. AUC is a standard score used for binary classification, while the F1 score is used for multiclass classification. We have now described this in the methods section, and hope this is now sufficiently clear.

      "When predicting continuous values, the model used the output from the activation function with the mean squared error loss function. When predicting multi-class labels, the performance measure was defined by the F1 score, a standard measure for multiclass classification that combines the sensitivity and specificity scores and is defined as the harmonic mean of its precision and recall. To evaluate model performance against the binary outcome, ROC analysis was performed, and the area under the curve (AUC) was used as the performance metric."

      3) not sure how representation using UMAP in Figure 2C is helping understand the performance.

      Apologies for the poor wording in the results section. The purpose of the UMAP representation was to visually inspect if the model was distinguishing between variables of interest, not to estimate model performance. We have rephrased the text in the methods section to make this clear:

      "After successful model training, we extracted the latent representations of each genome and performed the Uniform Manifold Approximation and Projection (UMAP) of the data for the purpose of visual inspection of a model."

      And

      "In order to avoid modeling noise, this step was used to inspect if the model is distinguishing between variables of interest."

      And also in the results section:

      "In order to visually inspect patterns captured by the model, we extracted the latent representations of each genome and performed the Uniform Manifold Approximation and Projection (UMAP) of the data to project it into two dimensions."

      4) Instead of pie chart in 3A, the authors should plot stacked barplots (to 100%) so it would be easier to compare between the different cancer types.

      We thank the reviewer for the suggestion; however, since we wanted to compare the relative impact of each data source with each other, we used pie charts. Piecharts are often better for describing relative values, whereas bar plots are better for absolute values.

      References

      Du, Ruishan, Wenhao Liu, Xiaofei Fu, Lingdong Meng, and Zhigang Liu. 2022. “Random Noise Attenuation via Convolutional Neural Network in Seismic Datasets.” Alexandria Engineering Journal 61 (12): 9901–9.

      Jang, Hojin, Devin McCormack, and Frank Tong. 2021. “Noise-Trained Deep Neural Networks Effectively Predict Human Vision and Its Neural Responses to Challenging Images.” PLoS Biology 19 (12): e3001418.

      Mattesen, Trine B., Claus L. Andersen, and Jesper B. Bramsen. 2021. “MethCORR Infers Gene Expression from DNA Methylation and Allows Molecular Analysis of Ten Common Cancer Types Using Fresh-Frozen and Formalin-Fixed Paraffin-Embedded Tumor Samples.” Clinical Epigenetics 13 (1): 20.

    1. Author Response

      Joint Public Review

      “Using computational modeling, this manuscript explores the effect of growth feedback on the performance of gene networks capable of adaptation. The authors selected 425 hypothetical synthetic circuits that were shown to achieve nearly perfect adaptation in two earlier computational studies (see Ma et al. 2009, and Shi et al. 2017). They examined the effects of cell growth feedback by introducing additional terms to the ordinary differential equation-based models, and performed numerical simulations to check the retainment and the loss of the adaptation responses of the circuits in the presence of growth feedback. The authors show that growth feedback can disrupt the gene network adaptation dynamics in different ways, and report some exceptional core motifs which allow for robust performance in the presence of growth feedback. They also used a metric to establish a scaling law between a circuit robustness measure and the strength of growth feedback. These results have important implications in the field of synthetic biology, where unforeseen interactions between designed gene circuits and the host often disrupt the desired behavior. The paper’s conclusions are supported by their simulation results, although these are presented in their summary formats and it would be useful for the community if the detailed results for each topology were available as a supplementary file or through the authors’ GitHub repository.”

      We will update our GitHub repository with detailed results for each topology, along with other simulation details and results that might be of interest to the readers.

      Strengths: “This work included a detailed investigation of the reasons for adaptation failure upon introducing cell growth to the systems. The comprehensiveness of the analysis makes the work stand out among studies of functional screening of network topologies of gene regulation.” “The authors’ approaches for assessment of robustness, such as the survival ratio Q, can be useful for a wide range of topologies beyond adaptation. The scaling law obtained with those approaches is interesting.”

      We are grateful to the referees and editors for their positive assessment of our work.

      Weaknesses 1: “The title suggests that the work investigates the ’effects of growth feedback on gene circuits’. However, the performance of ’nearly perfect adaptation’ was chosen for the majority of the work, leaving the question of whether the authors’ conclusion regarding the effects of growth feedback is applicable to other functional networks.”

      We will change the title of the paper from “Effects of growth feedback on gene circuits: A dynamical understanding” to “Effects of growth feedback on adaptive gene circuits: A dynamical understanding,” because the focus of our current work was on gene circuits with adaptation. Our work provided a framework that can be readily generalized to investigate the effects of growth feedback in other functional networks such as bistable gene circuits.

      Weaknesses 2: “This work relies extensively on an earlier study, evaluating only a selected set of 425 topologies that were shown to give adaptive responses (Shi et al., 2017). This limited selection has two potential issues. First, as the authors mentioned in the introduction, growth feedback can also induce emerging dynamics even without existing function-enabling gene circuits, as an example of the ”effects of growth feedback on gene circuits”. Limiting the investigation to only successful circuits for adaptation makes it unclear whether growth feedback can turn the circuits that failed to produce adaptation by themselves into adaptation-enabling circuits. Secondly, as the Shi et al. (2017) study also used numerical experiments to achieve their conclusions about successful topologies, it is unclear whether the numerical experiments in the present study are compatible with the earlier work regarding the choice of equation forms and ranges of parameter values. The authors also assumed that all readers have sufficient understanding of the 425 topologies and their derivation before reading this paper.”

      We will make the following revisions.

      1. We will modify the title of the paper as discussed above. The reviewers/editors are insightful that growth feedback could turn a non-adaptive circuit into an adaptation-enabling one - an interesting possibility worth further study.

      2. We will provide details of all the pertinent numerical simulations, highlighting the differences from those in the previous work (Shi et al., 2017). Briefly, our adaptation criteria are stricter than those utilized in that work. As a result, out of the 425 topologies, random sampling based on our criteria identified adaptation in 414 topologies. For the remaining 11 topologies, either our more strict criteria have eliminated the possibility for the gene circuits to be adaptive, or the adaptive region in the high-dimensional parameter space is too small to be detected by random sampling.

      3. We will describe the 425 topologies utilized in our study and provide more detail in the GitHub repository, including the topological structures and the parameter sets leading to adaptation.

      Weaknesses 3: “The authors’ model does not describe the impact of growth via a biological mechanism: they model growth as an additional dilution rate and calculate growth rate based on a phenomenological description with growth rate occurring at a maximum (kg) scaled by the circuit ’burden’ b(t). Therefore, the authors’ model does not capture potential growth rate changes in parameter values (e.g., synthetic protein production falls with increasing growth rate; see Scott & Hwa, 2023).”

      We considered dilution due to cell growth as the dominant factor of growth feedback. In fact, we studied the adaptive circuits without growth and their ability to maintain their adaptive behaviors after dilution into a fresh medium, based on a recent work [Zhang, et al., Nature Chemical Biology 16.6 (2020): 695-701]. A higher growth rate can change synthetic protein production. However, the dynamic roles of the dilution and growth-affected production rate should be analogous, given that they both act as inhibitory factors arising from cell growth as mentioned by the reviewers/editors. Taking the growth effect on the production rate into account would require a more comprehensive study. We will elaborate on the limitation of our modeling framework and include the pertinent references (e.g., Scott & Hwa, 2023).

      Weaknesses 4: “The authors made several claims about the bifurcations (infinite-period, saddle-node, etc) underlying the abrupt changes leading to failures of adaptations. There is a lack of evidence supporting these claims. Both local and global bifurcations can be demonstrated with semi-analytic approaches such as numerical continuation along with investigations of eigenvalues of the Jacobian matrix. The claims based on ODE solutions alone are not sound.”

      We will add this material to our next version of the paper. A further semi-analytic analysis can better justify the numerically discovered bifurcations.

      Weaknesses 5: “The impact of biochemical noise is not evaluated in this work; the author’s analysis is only carried out in a deterministic regime.”

      Our work focused on uncovering the deterministic dynamical mechanisms underlying growthfeedback induced circuit failures in situations where all protein concentrations are high so that neglecting the effects of biochemical noises can be justified. Incorporating noises into our analysis will significantly complicate the study and likely prevent the dynamical origin of the failures from being unveiled. Nonetheless, the effects of biochemical noises are important and we will provide a discussion in the revised manuscript.

    1. Author Response

      We would like to express our sincere gratitude for the detailed examination of our manuscript titled "Specific Modulation of CRISPR Transcriptional Activators through RNA-Sensing Guide RNAs in Mammalian Cells and Zebrafish Embryos." We deeply appreciate the time and effort put into the review process, especially considering the unforeseen delays. Your insightful comments and recommendations have provided critical perspectives that we believe will significantly enhance the quality of our work. In this letter, we will address the reviewers' concerns and outline the revisions we will make in response to the feedback.

      eLife assessment

      The authors aim to develop a CRISPR system that can be activated upon sensing an RNA. As an initial step to this goal, they describe RNA-sensing guide RNAs for controlled activation of CRISPR modification. Many of the data look convincing and while several steps remain to achieve the stated goal in an in vivo setting and for robust activation by endogenous RNAs, the current work will be important for many in the field.

      We wish to acknowledge and thank you for the thoughtful eLife assessment, which succinctly summarizes our ambition to create a CRISPR system controlled by RNA sensing. The synopsis provided encapsulates the essence of our research, emphasizing both the progress we have made and the challenges that lie ahead. This assessment fully resonates with our views.

      Reviewer #1 (Public Review):

      This paper describes RNA-sensing guide RNAs for controlled activation of CRISPR modification. This works by having an extended guide RNA with a sequence that folds back onto the targeting sequence such that the guide RNA cannot hybridise to its genomic target. The CRISPR is "activated" by the introduction of another RNA, referred to as a trigger, that competes with this "back folding" to make the guide RNA available for genome targeting. The authors first confirm the efficacy of the approach using several RNA triggers and a GFP reporter that is activated by dCas9 fused to transcriptional activators. A major potential application of this technique is the activation of CRISPR in response to endogenous biomarkers. As these will typically be longer than the first generation triggers employed by the authors they test some extended triggers, which also work though not always to the same extent. They then introduce MODesign which may enable the design of bespoke or improved triggers. After that, they determine that the mode of activation by the RNA trigger involves cleavage of the RNA complexes. Finally, they test the potential for their system to work in a developmental setting - specifically zebrafish embryos. There is some encouraging evidence, though the effects appear more subtle than those originally obtained in cell culture.

      Overall, the potential of a CRISPR system that can be activated upon sensing an RNA is high and there are a myriad of opportunities and applications for it. This paper represents a reasonable starting point having developed such a system in principle.

      The weakness of the study is that it does not demonstrate that the system can be used in a completely natural setting. This would require an endogenous transcript as the RNA trigger with a clear readout. Such an experiment would clearly strengthen the paper and provide strong confidence that the method could be employed for one of the major applications discussed by the authors. The zebrafish data relied on exogenous RNA triggers whereas the major applications (as I understood them) would use endogenous triggers.

      Related, most endogenous RNAs are longer than the various triggers tested and may require extensive modification of the system to be detected or utilised effectively. While additional data would clearly be beneficial, there should nevertheless be a more detailed discussion of these caveats and/or the strengths and applications of the system as it is presented (i.e. utility with synthetic triggers).

      We would like to thank Reviewer #1 for the thoughtful and comprehensive analysis of our work as well as for the constructive feedback provided. We agree with the observation regarding the subtler effects in the zebrafish embryos and the reliance on exogenous RNA triggers. Indeed, the utilization of endogenous transcripts as triggers in a natural setting is a logical next step. We further acknowledge the need to delve deeper into the complexities and challenges of our system, particularly concerning the detection of endogenous RNA, thus offering valuable insights for researchers looking to adapt our system for various applications. In the final version of our paper, we will indeed discuss these challenges in detail and provide a clear path for future users who might be interested in employing this system. Our expanded discussion will encompass the considerations required for high-throughput screens, combining both quantitative and experimental approaches for identifying endogenous RNAs that could act as triggers. We will also elaborate on the potential biotech applications related to the detection of synthetic RNA triggers. This includes its use in Synthetic Biology circuit design and the implementation of logic gates for mammalian cell engineering.

      Reviewer #2 (Public Review):

      In this work, the authors describe engineering of sgRNAs that render Cas9 DNA binding controllable by a second RNA trigger. The authors introduce several iterations of their engineered sgRNAs, as well as a computational pipeline to identify designs for user-specified RNA triggers which offers a helpful alternative to purely rational design. Also included is an investigation of the fate of the engineered sgRNAs when introduced into cells, and the use of this information to inform installation of modified nucleotides to improve engineered sgRNA stability. Engineered sgRNAs are demonstrated to be activated by trigger RNAs in both cultured mammalian cells and zebrafish.

      The conclusions made by the authors in this work are predominantly supported by the data provided. However, some claims are not consistent with the data shown and some of the figures would benefit from revision or further clarification.

      Strengths:

      • The sgRNA engineering in this paper is performed and presented in a systematic and logical fashion. Inclusion of a computational method to predict iSBH-sgRNAs adds to the strength of the engineering.

      • Investigation into the cellular fate of the engineered sgRNAs and the use of this information to guide inclusion of chemically modified nucleotides is also a strength.

      • Demonstration of activity in both cultured mammalian cells and in zebrafish embryos increases the impact and utility of the technology reported in this work.

      Weaknesses:

      • While the methods here represent an important step forward in advancing the technology, they still fall short of the dynamic range and selectivity likely required for robust activation by endogenous RNA.

      • While the iSBH-sgRNAs where the RNA trigger overlaps with the spacer appear to function robustly, the modular iSBH-sgRNAs seem to perform quite a bit less well. The authors state that modular iSBH-sgRNAs show better activity without increasing background when the SAM system is added, but this is not supported by the data shown in Figure 3D, where in 3 out of 4 cases CRISPR activation in the absence of the RNA trigger is substantially increased.

      • There is very little discussion of how the performance of the technology reported in this work compares to previous iterations of RNA-triggered CRISPR systems, of which there are many examples.

      We are very grateful to the Reviewer #3 for the meticulous examination of our work, highlighting both the systematic approach in sgRNA engineering and areas for improvement. The insights offered in this review are extremely useful, and we are committed to addressing these points in the following sections of our response.

      Concerning the methods falling short of the dynamic range and selectivity required for robust activation by endogenous RNA, we acknowledge this limitation and recognize the need for improvement in this area. In the final version of our manuscript, we will provide a detailed discussion on how the selection of appropriate triggers might partially improve dynamic ranges and selectivity. This includes an exploration of various strategies and considerations that may enhance the robustness of our system. Regarding the inconsistent performance of the modular iSBH-sgRNAs, as observed in Figure 3D, we recognize this discrepancy and will clarify it in the following iteration. For the concern about the lack of comparison with previous iterations of RNA-triggered CRISPR systems, we recently published a comprehensive literature review on the existing systems for activation of CRISPR in response to RNA detection (doi/full/10.1089/crispr.2022.0052). In the final version of our manuscript, we will include a comparison between our system and existing technologies, thereby addressing this valid observation.

      Thank you once again to the entire review team for the meticulous examination and for your thoughtful and constructive feedback. Your insights are instrumental in refining our research, and we look forward to incorporating these changes as we finalize our manuscript.

    1. Author Response

      We are very grateful to the editors and reviewers for their valuable comments of our manuscript. We carefully consider all the comments and will provide a revised manuscript with our point-by-point responses as soon as possible. In the meantime, we will try our best to carry out additional experiments to bolster our conclusions. Here, we would like to respond provisionally to the public reviews.

      We appreciate the concerns raised by Reviewer 1 regarding the identification of cell types in our study. Specifically, they noted that the high proportion of NSCs within the astroglial lineage clusters is inconsistent with classic histology studies. We apologize for not clearly specifying in the text and figure legend that the data presented in Figure 2C were obtained from neonatal samples, which may explain the higher presence of NSCs. To rectify this issue, we will revise the text to ensure clarity regarding the age group from which the data in Figure 2C were obtained. Additionally, we commit to providing additional UMAP plots and quantitative analysis separately for different age groups to support our findings. This will allow a more accurate representation of the cell type composition, taking into consideration any potential variations that may occur with age.

      We appreciate Reviewer 2's acknowledgment that the finding of our study is interesting and relevant to a broader audience. However, he raised two major concerns that could weaken the conclusions drawn from our study. First, the reviewer noted that the number of sequenced nuclei in our study is lower than the calculated number required for detecting rare cell types. We noticed that according to the computational modeling conducted by Tosoni et al. (Neuron, 2023), at least 21 neuroblast cells (NBs) can be identified out of 30,000 granule cells (GCs) from a total of 180,000 dentate gyrus (DG) cells. In our dataset, we sequenced 24,671 GC nuclei and 92,966 total DG cell nuclei, which also includes neonatal samples. The number of nuclei we sequenced is 4.5 times higher than that of Wang et al. (Cell Research, 2022), who also detected NBs. Therefore, it is reasonable to conclude that we were able to detect NBs. Moreover, the presence of these rare cell types has been demonstrated in our study through immunostaining techniques, which provides further evidence. Secondly, Reviewer 2 raised concerns about the low number of donors included in some of the groups, with only one donor (n=1) being represented in certain cases. We acknowledge these limitations and understand that the inclusion of a larger number of donors would strengthen the statistical power and generalizability of our findings. However, due to the scarcity of stroke or neonatal human samples, it is not feasible to collect a larger sample size within the expected timeframe. Although one sample is not enough to show the precise changes in cells and molecular mechanisms caused by stroke, it can provide a typical example to demonstrate our hypothesis that neural stem cells could be activated under conditions of injury. The latter is what we really want to address in the manuscript. Regrading to the donor’s information, we will provide more details about the donors, including any clinical characteristics available, to enhance the transparency of our study. Importantly, we have implemented strict quality control measures to support the reliability of our sequencing data. These measures include: 1) Immediate collection of tissue samples after postmortem (3-4 hrs) to ensure the quality of isolated nuclei. 2) Only nuclei expressing more than 200 genes but fewer than 5000-8600 genes (depending on the peak of enrichment genes) were considered. On average, each cell detected around 3000 genes. 3) The average proportion of mitochondrial genes in each sample was approximately 1.8%, with no sample exceeding 5%.

    1. Author Response:

      Reviewer #1 (Public Review):

      Summary:<br /> In this study, the authors generate a Drosophila model to assess disease-linked allelic variants in the UBA5 gene. In humans, variants in UBA5 have been associated with DEE44, characterized by developmental delay, seizures, and encephalopathy. Here, the authors set out to characterize the relationship between 12 disease-linked variants in UBA5 using a variety of assays in their Drosophila Uba5 model. They first show that human UBA5 can substitute all essential functions of the Drosophila Uba5 ortholog, and then assess phenotypes in flies expressing the various disease variants. Using these assays, the authors classify the alleles into mild, intermediate, and severe loss-of-function alleles. Further, the authors establish several important in vitro assays to determine the impacts of the disease alleles on Uba5 stability and function. Together, they find a relatively close correlation between in vivo and in vitro relationships between Uba5 alleles and establish a new Drosophila model to probe the etiology of Uba5-related disorders.

      Strengths:<br /> Overall, this is a convincing and well-executed study. There is clearly a need to assess disease-associated allelic variants to better understand human disorders, particularly for rare diseases, and this humanized fly model of Uba5 is a powerful system to rapidly evaluate variants and relationships to various phenotypes. The manuscript is well written, and the experiments are appropriately controlled.

      Reviewer #2 (Public Review):

      Relative simplicity and genetic accessibility of the fly brain make it a premier model system for studying the function of genes linked to various diseases in humans. Here, Pan et al. show that human UBA5, whose mutations cause developmental and epileptic encephalopathy, can functionally replace the fly homolog Uba5. The authors then systematically express in flies the different versions of the gene carrying clinically relevant SNPs and perform extensive phenotypic characterization such as survival rate, developmental timing, lifespan, locomotor and seizure activity, as well as in vitro biochemical characterization (stability, ATP binding, UFM-1 activation) of the corresponding recombinant proteins. The biochemical effects are well predicted by (or at least consistent with) the location of affected amino acids in the previously described Uba5 protein structure. Most strikingly, the severity of biochemical defects appears to closely track the severity of phenotypic defects observed in vivo in flies. While the paper does not provide many novel insights into the function of Uba5, it convincingly establishes the fly nervous system as a powerful model for future mechanistic studies.

      One potential limitation is the design of the expression system in this work. Even though the authors state that "human cDNA is expressed under the control of the endogenous Uba5 enhancer and promoter", it is in fact the Gal4 gene that is expressed from the endogenous locus, meaning that the cDNA expression level would inevitably be amplified in comparison. The fact that different effects were observed when some experiments were performed at different temperatures (18 vs. 25) is also consistent with this. While I do not think this caveat weakens the conclusions of this paper, it may impact the interpretation of future experiments that use these tools, and thus should be clearly discussed in the paper. Especially considering the authors argue that most disease variants of UBA5 are partial loss-of-functions, the amplification effect could potentially mask the phenotypes of milder hypomorphic alleles. If the authors could also show that the T2A-Gal4 expression pattern in the brain matches well with that of endogenous RNA or protein (e.g. using HCR-FISH or antibody), it would help to alleviate this concern.

      We thank the reviewer for pointing out this limitation.

      Regarding the humanization strategy we used in the study, we agree that this is a binary system which may lead to overexpression of the target protein. However, as the

      reviewer also points out, this temperature-sensitive system also enables us to flexibly adjust the expression level of the target protein, which is especially useful to study

      partial LoF variants such as the UBA5 variants in this study. In our study we have successfully compared the relevant allelic strength of most of the variants, which

      supports the use of our system in future studies. However, we do agree that the gene dosage effect could vary widely, so it is difficult to directly predict the effects of one variant in humans based upon results obtained in a model organism.

      We agree with the reviewer that a masking effect may exist in our system due to its gene overexpression nature. However, we cannot conclude that this masking effect

      really affects the interpretation of Group IA variants in our tests. The three variants are mild LoF, which is also supported by the biochemical assays. Hence, the variants may not cause any phenotype even when they are expressed at a physiological level.

      Regarding the temporal and spatial expression pattern of the T2A-GAL4, the Bellen lab has generated T2A-GAL4 lines for more than 3,000 genes. The expression pattern of the vast majority of these GAL4 lines faithfully reflects the expression pattern of the endogenous genes, which has been documented in our previous publications (PMIDs 25824290, 29565247, 31674908, 35723254).

      Reviewer #3 (Public Review):

      Summary:<br /> Variants in the UBA5 gene are associated with rare developmental and epileptic encephalopathy, DEE44. This research developed a system to assess in vivo and in vitro genotype-phenotype relationships between UBA5 allele series by humanized UBA5 fly models and biochemical activity assays. This study provides a basis for evaluating current and future individuals afflicted with this rare disease.

      Strengths:<br /> The authors developed a method to measure the enzymatic reaction activity of UBA5 mutants over time by applying the UbiReal method, which can monitor each reaction step of ubiquitination in real time using fluorescence polarization. They also classified fruit fly carrying humanized UBA5 variants into groups based on phenotype. They found a correlation between biochemical UBA5 activity and phenotype severity.

      Weaknesses:<br /> In the case of human DEE44, compound heterozygotes with both loss-of-function and hypomorphic forms (e.g., p.Ala371Thr, p.Asp389Gly, p.Asp389Tyr) may cause disease states. The presented models have failed to evaluate such cases.

      We agree with the reviewer that our model did not reflect the situation of the individuals who are compound heterozygous for a Group IA variant (p.Ala371Thr, p.Asp389Gly, or p.Asp389Tyr) and a strong LoF variant. However, we argue that our results do show that the Group IA variants alone do not cause disease. As discussed in the manuscript, individuals homozygous for the p.Ala371Thr variant are healthy and do not present with obvious phenotype. This is consistent with our findings in flies, and shows that the p.Ala371Thr variant is a mild LoF variant.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We greatly appreciate the thoughtful suggestions made by the Reviewers. We have addressed all of their comments below, with our responses bulleted and in italics. We believe these changes have helped clarify the manuscript and strengthen it overall.

      Reviewer 1

      1) Figures 1B and Supp. Figure 1A: It would be worth mentioning that the wave-form in the 129 strain in response to QLA starts out like AJ and B6, but transitions to looking like the wild-derived strain. So, although not quite as drastic as the NZO and NOD strains, it is not quite like the other classical inbred strains.

      • We thank the reviewer for pointing this out. We have added further language to clarify the point:

      “Additionally, even with the clear separation between the clusters, inter-strain variation was still observed within the clusters (e.g. more 129 islets had plateau responses to 8G/QLA than the B6 or AJ).”

      2) The figures are generally excellent and really help to clarify the work in the paper. For Figure 2A, it would help even further if you could number the six different Ca++ parameters that are measured. They're all there, but it takes a bit of time to find them on the figure and numbering will make it easier on your reader.

      • We appreciate this suggestion and have implemented it in our revised Figure 2A. The Ca2+ parameters are now numbered, and the description of this figure has been adjusted accordingly in the results section.

      We added the revised text in the results section:

      “To elucidate strain differences in Ca2+ dynamics, we focused on six parameters of the Ca2+ waveform (Figure 2A): 1) peak Ca2+ (the top of each oscillation); 2) period (the length of time between two peaks); 3) active duration (the length of time for each Ca2+ oscillation measured at half of the peak height, also known the oxidative “secretory” phase, or “MitoOx” (8); 4) pulse duration (active duration plus extra time for Ca2+ extrusion); 5) silent duration (the electrically-silent “triggering” phase, also known as “MitoCat” (8), which culminates in KATP closure and membrane depolarization); and 6) plateau fraction (the active duration divided by the period, or the fraction of time spent in the active “secretory” phase).”

      3) Figure 4A, B: I was expecting to see Ca++ vs insulin parameters in the different strains/sexes. In addition to the heat maps, it would be useful to see the regression plots, showing where each strain and sex falls for the insulin and Ca++ parameters.

      • This is an excellent suggestion, and we have added a new Supplemental Figure 5 to provide examples of various strain/sex patterns that drive the correlations used for the heatmap and histogram in Figure 4A and B.

      We added text in the results section referring to this point:

      “Clustering the Ca2+ responses into distinct groups based on our observations of the waveforms (Figure 1B, Figure 4C-E, and Supplemental Figures 1 and 2) also occurs when correlating individual Ca2+ parameters to ex vivo secretion and clinical data (Supplemental Figure 5). For example, the anticorrelation between the 1st frequency component in 8G and percent insulin secreted in 8.3G/QLA (Supplemental Figure 5A) separates the classic inbred, wild-derived, and diabetes-susceptible strains into distinct groups despite the variability in the trait. Correlation between the silent duration in 8G/QLA to insulin secretion in 8.3G/QLA, likewise groups by strain (Supplemental Figure 5B). Finally, some correlations, such as that between 8G/QLA/GIP silent duration and plasma insulin at sacrifice (Supplemental Figure 5C), can be strongly influenced by outlier strains; e.g., NZO. Collectively, these data demonstrate that genetics has a profound influence on key parameters of islet Ca2+ oscillations.”

      4) Please include methods for the insulin measurements collected in Fig. 4.

      • Thank you for pointing out this missing information. We have clarified that prior insulin measurements (plasma insulin and ex vivo static insulin secretion that were used in Figure 4 for correlation analysis) were completed in another previously published cohort of mice (reference 17: Mitok KA, Freiberger EC, Schueler KL, Rabaglia ME, Stapleton DS, Kwiecien NW, et al. Islet proteomics reveals genetic variation in dopamine production resulting in altered insulin secretion. The Journal of biological chemistry. 2018;293(16):5860-77).

      We added this new text (highlighted) to the results section to help clarify this point:

      “Fasting blood glucose and insulin levels were measured in mice at 19 weeks of age, except for the NZO males which were measured at 12 weeks of age. Glucose was analyzed by the glucose oxidase method using a commercially available kit (TR15221, Thermo Fisher Scientific), and insulin was measured by radioimmunoassay (RIA; SRI13K, Millipore). This is the same assay that was used to measure plasma insulin for the previously published cohort used for the correlation analysis in Figure 4 (17).”

      5) In the methods, please include details on the four conditions used for Ca++ imaging of the islets, and the timing for each condition.

      • We appreciate this guidance in clarifying our manuscript, and we have now included the conditions and timing for each condition in the methods section.

      We added the following text to the results section to help clarify this:

      “The solutions included 8 mM glucose (8G), 8 mM glucose + 2 mM glutamine, 0.5 mM leucine, and 1.5 mM alanine (8G/QLA), 8G/QLA + 10 nM glucose-dependent insulinotropic polypeptide (8G/QLA/GIP), and 2 mM glucose (2G), each of which were kept in a 37°C water bath.”

      Reviewer 2

      One major critique is that the authors studied "the human orthologues of the correlated mouse proteins that are proximal to the glycemia-associated SNPs in human GWAS". This implies two assumptions - (1) human and mouse proteins do not differ in terms of islet physiology and calcium signaling; (2) the proteins proximal to the SNPs are the causal factors for functional differences, though the SNPs could affect protein/gene function distant from the SNPs.

      • Thank you very much for highlighting this limitation in our study. We think this is very important to address which we have done in our discussion section.

      We have added the following text to discuss this important issue:

      “Our approach to merge human GWAS with our findings in mouse assumes that the glycemic-related SNPs we nominated alter the abundance or function of the human orthologues. Most SNPs that are strongly associated with phenotypes in human GWAS are noncoding, residing within introns, promoters, 3’UTRs, or intergenic regions (e.g. Figure 6). Therefore, a limitation of our approach is the assumption that SNPs regulate the gene they are proximal to, which is not always accurate (76-78). To infer a more direct link between SNPs and potential target genes, we incorporated human islet chromatin data (37). Physical contact between a region containing SNPs and a distal gene supports a regulatory role, as for ACP1 (Figure 6B). Additionally, SNPs within regions of open chromatin (ATAC-seq) and actively transcribed regions (histone markers) suggest a higher likelihood of regulating transcription factor access. While this approach does not conclusively show a link between the SNPs and expression of the orthologue for our candidate proteins, these chromatin data more strongly suggest that the orthologue expression may be regulated by the candidates’ SNPs.”

    1. Author Response

      The following is the authors’ response to the original reviews.

      In response to the eLife assessment that “the analysis of the data is inadequate”, we strongly disagree and we to point out that in fact we follow the latest IUPHAR community guidelines on bias identification and quantification (Kolb et al, 2022). These protocols are not yet being used in the RTK and FGF fields, and thus the reviewer is not familiar with them, or with the concept of ligand bias. Our responses to the technical comments start at the bottom of page 7 of this document.

      We have edited the paper by adding a scaling step-by-step protocol in the Supplementary Data. We have also expanded the Discussion to help readers understand what is measured and how it is very novel. We have also changed the title of the manuscript. The edits in the Manuscript are marked in yellow. Our response to the reviewer is given below.

      Question/comment: 1. Previous studies have demonstrated that the variability of signal transduction stimulated by different FGF family members originates from their preferential activation of different members of the FGFR family (Ornitz et al., 1996). For example, it was previously shown that members of the FGF8 subfamily preferentially activate FGFR3c, whereas members of the FGF4 subfamily activate FGFR1c more potently than other FGFs. Moreover, it was shown that FGF18, a member of the FGF8 subfamily, preferentially binds to and activates the FGFR3c isoform. Indeed, this can be seen in the data shown in Figure 3 in this manuscript, where maximum levels of FGFR1 pY653/4 and pFRS2 are reached at different concentrations when stimulated with increasing concentrations of each ligand in HEK293T cells.

      The reviewer is correct that there are differences in the signaling of the different FGFRs, however these differences are not relevant for this work. This paper is only about FGFR1c, as this is the only FGF-receptor which is expressed in the mesenchyme of the developing limb bud (early limb bud stage, before the onset of mesenchymal condensations) and encounters different FGF ligands. In the article, we analyze the mechanism by which one FGFR recognizers and responds to three different FGFs.

      The reviewer also correctly points out that differences in our work “can be seen in the data shown in Figure 3 in this manuscript, where maximum levels of FGFR1 pY653/4 and pFRS2 are reached at different concentrations when stimulated with increasing concentrations of each ligand in HEK293T cells”. This is correct, but this is a statement about the potencies of the ligands, which is just one of three characteristics we explore here, namely potencies, efficacies, and bias. To determine if ligand bias exists or not, we need to compare two ligands and two responses (such as growth arrest and ECM degradation, or pY653/4 and pFRS2 phosphorylation). Ours is the first report of ligand bias in FGFR1 signaling, and the presence of bias goes far beyond simply differences in potencies (Kolb et al, 2022). Ligand bias in FGFR1 has never been demonstrated before. In part, this is because there have been no cell lines that give us the opportunity to compare two functional responses to FGF stimulus, via just one endogenously expressed FGFR variant. Notice that the paper that the reviewer is citing, (Ornitz et al., 1996), compares only 1 (one) type of response, when induced by different ligands, i.e. proliferation, and thus cannot answer the question if ligand bias exists or not. We have edited the Discussion to emphasize this fact. We have also changed the title.

      Two studies meant to characterize FGF binding to the FGFRs (Ornitz et al., 1996; Zhang et al., 2006) have defined the main rules of the FGF-FGFR interaction, such as exclusivity of the FGF3 subfamily (FGF3, FGF7, FGF10) for the ‘b’ variants of the FGFR1 and FGFR2. These studies however do not measure ligand binding. These studies were carried-out in BAF/3 cells, where the transfected FGFRs are treated with exogenous FGFs, to cause cell proliferation. As such, the studies have several limitations. In BAF/3 cells, the cell proliferation is used as a surrogate for FGF binding on FGFR. The FGFRs activate cell proliferation via RAS-ERK MAP kinase pathway. However, many other pathways of downstream signaling are initiated by FGFRs, regulating cell differentiation, migration, metabolism and apoptosis, in biological contexts. Using single cellular response (cell proliferation) as a surrogate for FGF binding to their receptors will favor FGF ligands causing cell proliferation. FGFs which have preference for other responses will incorrectly appear weakly binding and weakly activating in BAF/3 cells. Further, an FGF ligand binding with high affinity to the receptor but inducing a lower proliferative response will be recognized as a less ‘preferential’ for the particular receptor in the BAF/3 assay. Second, the significant diversity of signaling of 18 FGFs through seven FGFR variants in mammalian development suggests that many previously unappreciated nodules of FGF-FGFR signaling exist, including the recently discovered FGF signaling towards primary cilia, or interaction with insulin receptor system (Kunova Bosakova et al., 2019; Neugebauer et al., 2009; Nies et al., 2022). This diversity is not reflected in BAF/3 assay, which respond to FGFs with only one phenotype. This is why we have used the RCS cells in the manuscript. In RCS cells, at least two qualitatively different cell responses can be induced by the FGF signaling, making the cell model ideal for elucidating biased signaling.

      The so called ‘binding preferences’ based on the Ornitz articles are not binding measurements and should not be used universally to describe the FGF interactions with FGFRs, because we do not know what the term really means, nor what is it based on; the molecular basis of the FGFR signaling BAF/3 is poorly characterized. In our article, we model the processes occurring in every developing mammalian limb, where three FGF ligands (FGF4, FGF8, FGF9), released by the ectoderm at the surface of the limb bud, signal to the underlying mesenchymal cell expressing just one FGF-receptor, the FGFR1c (Mariani and Martin, 2003; Tabin and Wolpert, 2007). Unlike the BAF/3 cells engineered to ectopically express one FGFR and treated by recombinant FGFs in the lab, all three FGFs are recognized by cells expressing FGFR1c, and each of the three FGFs delivers unique morphogenetic information. The mechanisms underlying differential signaling of multiple FGFs via one FGFR are poorly defined, as the term ‘preferential signaling’ does not provide mechanistic explanation. Our article is a step towards understanding the complex processes of FGF ligand recognition and response. In our article, we evaluate the potency, the efficacy, the FGFinduced FGFR1c oligomerization and downregulation, and conformation of the active FGFR1c dimers in response to FGF4, FGF8 and FGF9. We show that FGF4, FGF8, and FGF9 are biased ligands, and that bias can explain differences in FGF4, FGF8 and FGF9-mediated cellular responses in development.

      References

      Kolb P, Kenakin T, Alexander SPH, Bermudez M, et al. Community guidelines for GPCR ligand bias: IUPHAR review 32. Br J Pharmacol. 2022;179, 3651-3674.

      Kunova Bosakova M, Nita A, Gregor T, Varecha M, et al. Fibroblast growth factor receptor influences primary cilium length through an interaction with intestinal cell kinase. Proc Natl Acad Sci U S A. 2019;116(10):4316-4325.

      Mariani FV, Martin GR. Deciphering skeletal patterning: clues from the limb. Nature. 2003;423(6937):319-25.

      Nies VJM, Struik D, Liu S, Liu W, et al. Autocrine FGF1 signaling promotes glucose uptake in adipocytes. Proc Natl Acad Sci U S A. 2022;119(40):e2122382119.

      Neugebauer JM, Amack JD, Peterson AG, Bisgrove BW, Yost HJ. FGF signalling during embryo development regulates cilia length in diverse epithelia. Nature. 2009;458(7238):651-4.

      Ornitz DM, Xu J, Colvin JS, McEwen DG, et al. Receptor specificity of the fibroblast growth factor family. J Biol Chem. 1996;271(25):15292-7.

      Tabin C, Wolpert L. Rethinking the proximodistal axis of the vertebrate limb in the molecular era. Genes Dev. 2007;21(12):1433-42.

      Zhang X, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem. 2006;281(23):15694-700.

      Question/comment: In order to be sure that the 'biased agonist' described in this manuscript for FGF8 binding is not caused by binding preference towards different FGFR members, the authors should present data comparing cell signaling via FGFR3c stimulated by FGF4, FGF8, and FGF9.

      Here, we study signaling by FGFR1, which is the only receptor that is expressed in the mesenchyme of the developing limb bud. FGFR3 is not expressed there, and thus we do not study FGFR3 in this paper. FGFR3 is important regulator of skeletal development, but is not involved in the early stages like FGFR1. When the bones are formed, FGFR3 regulates chondrocyte proliferation and differentiation in the growth plate cartilage (Colvin et al., 1996). In fact, we are currently performing experiments with FGFR3 and multiple FGF ligands, and we see that it also engages in biased signaling. However, these FGFR3 studies have no relevance to the current work and will be published separately.

      The so called ‘binding preferences towards different FGFR members’, based on the Ornitz articles (Ornitz et al., 1996; Zhang et al., 2006) provides no mechanistic explanation about differential FGF signaling via the activation of a single FGFR. Our article is a step forward towards the mechanism, by demonstration, for the first time, that ‘ligand bias’ may explain differential signaling by FGF4, FGF8 and FGF9 via FGFR1c.

      References

      Colvin JS, Bohne BA, Harding GW, McEwen DG, Ornitz DM. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet. 1996;12(4):390-7.

      Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, Coulier F, Gao G, Goldfarb M. Receptor specificity of the fibroblast growth factor family. J Biol Chem. 1996;271(25):15292-7.

      Zhang X, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem. 2006;281(23):15694-700.

      Question/comment: 2. It is well-established that FGFR signaling by canonical FGF family members including FGF4, FGF8, and FGF9 is dependent on interactions of heparin or heparan sulfate proteoglycans (HSPG) to the ligand the receptors. Differential contributions of heparin to cell signaling mediated by FGF4, FGF8, and FGF9 binding and activation of different FGFRs expressed in RCS cells as this cell express endogenous HSPG molecules. This question should be addressed by comparing cell signaling via FGFRs ectopically expressed in BAF/3 cells (which do not possess endogenous FGFRs and HSPG) stimulated by FGF4, FGF8, and FGF9 in the absence or presence of different heparin concentrations. This approach has been applied many times in the past to explore and establish the role of heparin in control of ligand induced FGFR activation.

      The work cannot be done with BAF/3 cells, since the topic of the study is ligand bias so we need to compare at least two measurable responses. In RCS cells, the two functional responses are growth arrest and extracellular matrix degradation. In BAF/3 cells, ligand stimulation leads to one single response: proliferation.

      The HSPG and other sulphated proteoglycans work as low affinity FGF co-receptors. They stabilize the FGF secondary structure, present the FGFs to the FGFRs, and participate in FGFFGFR interactions (Yayon et al., 1991; Schlessinger et al., 2000; Zakrzewska et al., 2009). In the FGF field, the FGF-FGFR interaction is commonly supported by addition of exogenous heparin, which is highly sulphated glycosaminoglycan capable of full substitution of the cell-bound HSPGs in their function as low affinity FGF co-receptors.

      Most cells produce proteoglycans, including BAF/3 cells. The analysis of expression of FGFR overexpressed in BAF/3 cells demonstrated that FGFR1, FGFR2 and FGFR3 migrate as proteins of approximately 130-150 kDa (Ornitz et al., 1996; Fig. 1A), which implies extensive glycosylation in Golgi. For instance, the full-length amino acid sequence for human FGFR3 is 806 residues, which on acrylamide gel migrates as a band of approximately 85 kDa; heavier FGFR3 variants are Golgi-glycosylated proteins. The treatment with de-glycosylation enzymes reduces the molecular weight to the one expected from the amino acid sequence.

      To carry-out the BAF/3 experiment with FGF4, FGF8, and FGF9 in the absence or presence of different heparin concentrations, as the referee suggests, makes no sense. In BAF/3 cells, all FGF stimulations were done in the presence of 2 g/ml heparin (Ornitz et al., 1996; Zhang et al., 2006), because without heparin there would be no signaling. Even if the BAF/3 cells produce ample HSPGs, the heparin would still have to be used, because without it many of the FGFs would likely cause no response, regardless of the FGFR variant expressed. We and other have demonstrated, that most of the FGFs require stabilization by heparin to elicit signaling in cells expressing abundant amounts of HSPG (Buchtova et al., 2015; Chen et al., 2012).

      Why should we compare the FGF signaling in BAF/3 transfected with FGFR1, with the RCS cells which express endogenous FGFR1? In RCS cells, several cellular phenotypes caused by FGF signaling can be easily detected and quantified, in comparison with BAF/3 cells, which only respond to the FGF signaling by proliferation. No bias in signaling can be established in cells with display only single type of response. The RCS cells used in our paper represent one of the most tractable cellular models of FGFR signaling. There are more than 40 articles exploring the mechanisms of FGF-FGFR signaling in RCS cells, including mechanisms of FGF signal transduction, FGF regulation of cell cycle, cell proliferation, differentiation, premature senescence, loss of extracellular matrix, interaction of FGF signaling with WNT, cytokine and natriuretic peptide signaling, and others (Raucci et al., 2004; Priore et al., 2006; Kamemura et al., 2017; Kolupaeva et al., 2013; Krejci et al., 2005; Krejci et al., 2007; Krejci et al., 2010; Dailey et al., 2003; Rozenblatt-Rosen et al., 2002; Fafilek et al., 2008). In addition, the three treatments to inhibit pathological FGFR signaling which are now in human trials (RBM007, meclozine) or FDAapproved (vosoritide), were initially developed in RCS cells, benefiting from the well characterized molecular mechanisms of FGF signaling (Krejci et al., 2005; Wendt et al., 2015; Kimura et al., 2021; Matsushita et al., 2013). In comparison with RCS cells, very little is known about the mechanisms of the FGF signaling in BAF/3 cells, as the BAF/3 proliferation assay is used mostly to evaluate FGFR agonists and antagonists (Yamada et al., 2020; Kamatkar et al., 2019; Motomura et al., 2008). We have edited this information to the revised Discussion.

      References

      Buchtova M, Oralova V, Aklian A, Masek J, et al. Fibroblast growth factor and canonical WNT/βcatenin signaling cooperate in suppression of chondrocyte differentiation in experimental models of FGFR signaling in cartilage. Biochim Biophys Acta. 2015 May;1852(5):839-50.

      Buchtova M, Chaloupkova R, Zakrzewska M, Vesela I, et al. Instability restricts signaling of multiple fibroblast growth factors. Cell Mol Life Sci. 2015 Jun;72(12):2445-59.

      Chen G, Gulbranson DR, Yu P, Hou Z, Thomson JA. Thermal stability of fibroblast growth factor protein is a determinant factor in regulating self-renewal, differentiation, and reprogramming in human pluripotent stem cells. Stem Cells. 2012 Apr;30(4):623-30.

      Fafilek B, Balek L, Bosakova MK, Varecha M, et al. The inositol phosphatase SHIP2 enables sustained ERK activation downstream of FGF receptors by recruiting Src kinases. Sci Signal. 2018 Sep 18;11(548):eaap8608.

      Kamemura N, Murakami S, Komatsu H, Sawanoi M, et al. Biochem Biophys Res Commun. 2017 Jan 29;483(1):82-87.

      Kamatkar N, Levy M, Hébert JM. Development of a Monomeric Inhibitory RNA Aptamer Specific for FGFR3 that Acts as an Activator When Dimerized. Mol Ther Nucleic Acids. 2019 Sep 6;17:530-539.

      Kimura T, Bosakova M, Nonaka Y, Hruba E, Yasuda K, et al. An RNA aptamer restores defective bone growth in FGFR3-related skeletal dysplasia in mice. Sci Transl Med. 2021 ;13(592):eaba4226.

      Kolupaeva V, Daempfling L, Basilico C. The B55α regulatory subunit of protein phosphatase 2A mediates fibroblast growth factor-induced p107 dephosphorylation and growth arrest in chondrocytes. Mol Cell Biol. 2013 Aug;33(15):2865-78.

      Krejci P, Masri B, Salazar L, Farrington-Rock C, et al. Bisindolylmaleimide I suppresses fibroblast growth factor-mediated activation of Erk MAP kinase in chondrocytes by preventing Shp2 association with the Frs2 and Gab1 adaptor proteins. J Biol Chem. 2007;282(5):2929-36.

      Krejci P, Masri B, Fontaine V, Mekikian PB, et al. Interaction of fibroblast growth factor and C-natriuretic peptide signaling in regulation of chondrocyte proliferation and extracellular matrix homeostasis. J Cell Sci. 2005 Nov 1;118(Pt 21):5089-100.

      Krejci P, Prochazkova J, Smutny J, Chlebova K, et al. FGFR3 signaling induces a reversible senescence phenotype in chondrocytes similar to oncogene-induced premature senescence. Bone. 2010;47(1):102-10.

      Matsushita M, Kitoh H, Ohkawara B, Mishima K, et al. Meclozine facilitates proliferation and differentiation of chondrocytes by attenuating abnormally activated FGFR3 signaling in achondroplasia. PLoS One. 2013;8(12):e81569.

      Motomura K, Hagiwara A, Komi-Kuramochi A, Hanyu Y, et al. An FGF1:FGF2 chimeric growth factor exhibits universal FGF receptor specificity, enhanced stability and augmented activity useful for epithelial proliferation and radioprotection. Biochim Biophys Acta. 2008 Dec;1780(12):1432-40.

      Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, Coulier F, Gao G, Goldfarb M. Receptor specificity of the fibroblast growth factor family. J Biol Chem. 1996;271(25):15292-7.

      Priore R, Dailey L, Basilico C. Downregulation of Akt activity contributes to the growth arrest induced by FGF in chondrocytes. J Cell Physiol. 2006 Jun;207(3):800-8.

      Raucci A, Laplantine E, Mansukhani A, Basilico C. Activation of the ERK1/2 and p38 mitogen-activated protein kinase pathways mediates fibroblast growth factor-induced growth arrest of chondrocytes. J Biol Chem. 2004;279(3):1747-56.

      Robinson JW, Egbert JR, Davydova J, Schmidt H, et al. Dephosphorylation is the mechanism of fibroblast growth factor inhibition of guanylyl cyclase-B. Cell Signal. 2017;40:222229.

      Rozenblatt-Rosen O, Mosonego-Ornan E, Sadot E, Madar-Shapiro L, et al. Induction of chondrocyte growth arrest by FGF: transcriptional and cytoskeletal alterations. J Cell Sci. 2002 Feb 1;115(Pt 3):553-62.

      Schlessinger J, Plotnikov AN, Ibrahimi OA, Eliseenkova AV, et al. Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol Cell. 2000 Sep;6(3):743-50.

      Wendt DJ, Dvorak-Ewell M, Bullens S, Lorget F, et al. Neutral endopeptidase-resistant Ctype natriuretic peptide variant represents a new therapeutic approach for treatment of fibroblast growth factor receptor 3-related dwarfism. J Pharmacol Exp Ther. 2015 Apr;353(1):132-49.

      Yamada R, Fukumoto R, Noyama C, Fujisawa A, et al. An epidermis-permeable dipeptide is a potential cosmetic ingredient with partial agonist/antagonist activity toward fibroblast growth factor receptors. J Cosmet Dermatol. 2020 Feb;19(2):477-484.

      Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell. 1991 Feb 22;64(4):841-8.

      Zakrzewska M, Wiedlocha A, Szlachcic A, Krowarsch D, et al. Increased protein stability of FGF1 can compensate for its reduced affinity for heparin. J Biol Chem. 2009 Sep 11;284(37):25388-403. doi: 10.1074/jbc.M109.001289.

      Zhang X, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem. 2006;281(23):15694-700.

      Question/comment: It is impossible to interpret the FGFR binding characteristics and cellular activates of FGF4, FGF8, and FGF9 in the absence of information about the role of heparin in their binding and activation.

      We do not measure ligand binding to FGFR1 in this study. We record biological responses when we treat with FGF different ligands, and thus we measure the efficacy and the potency of each ligand to induce a response, and then we compare 2 ligands and 2 responses to determine if bias exists or not. We do not ask questions about the role of heparin, as it is always there no matter if we treat with FGF4, FGF8, or FGF9.

      Why it is not possible to interpret our cellular data? In our article, the RCS cells were treated with FGFs in the presence of 1 g/ml heparin, as clearly stated in Methods section. Using heparin at 1 or more μg/ml, to stabilize FGFs and negate the effect of endogenous HSPG, is a standard approach in the FGF field. This includes the two articles, which the whole field have used for more than 20 years as a basic reference for FGF-FGFR interactions (Ornitz et al., 1996; Zhang et al., 2006). In these studies, 2 μg/ml of heparin along with FGFs was used to treat BAF/3 cells; no experiments were conducted without heparin, as is does not make sense. Most likely, without heparin the obtained FGF-FGFR ‘preferences’ would, in fact, be the differences in FGF thermal stability, as we clearly demonstrate in our previous study (Buchtova et al., 2015). The latter article gives a detailed information about the role of heparin in the signaling of multiple FGFs in RCS cells.

      References

      Buchtova M, Chaloupkova R, Zakrzewska M, Vesela I, Cela P, Barathova J, Gudernova I, Zajickova R, Trantirek L, Martin J, Kostas M, Otlewski J, Damborsky J, Kozubik A, Wiedlocha A, Krejci P. Instability restricts signaling of multiple fibroblast growth factors. Cell Mol Life Sci. 2015 Jun;72(12):2445-59.

      Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, Coulier F, Gao G, Goldfarb M. Receptor specificity of the fibroblast growth factor family. J Biol Chem. 1996;271(25):15292-7. <br /> Zhang X, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem. 2006;281(23):15694-700.

      Technical Comments/Answers

      Question/comment: 3. It is not clear how some of the experimental data were analyzed. Blots in Figures 3A and 3B should include controls (total FGFR1 for pY653/4 and total FRS for pFRS2). How are the data shown in Figure 3C normalized? It does look like the level of phosphorylation was all normalized against the strongest signals irrespective of which ligand was used. Each data representing each ligand should be separately normalized.

      The reviewer is correct that most often in the RTK literature “each data representing each ligand is separately normalized”. But this approach will eliminate all the information about ligand efficacies and about ligand bias; it will only yield information about the potencies. Here we are not only interested in the potencies, as we are also interested to determine if bias exists or not. As such, we follow scaling protocols that have been established and are currently recommended for ligand bias studies (Kolb et al, 2022).

      One way to explain why the scaling that the reviewer is recommending is not correct for this work is to look at equation 2. What the reviewer is suggestion is to set all values of Etop to 1. In this case, the bias coefficient will depend only on the measured potencies, EC50. But this contradicts the very definition of bias, as it is NOT a difference in potencies only. In the literature, differences in potencies are called “quantitative differences”, while ligand bias describes differences which are called “qualitative” or “fundamental” (Kenakin, 2019).

      To eliminate confusion, we have added a scaling protocol to the Supplement of the paper.

      References

      Kolb P, Kenakin T, Alexander SPH, Bermudez M, et al. Community guidelines for GPCR ligand bias: IUPHAR review 32. Br J Pharmacol. 2022;179, 3651-3674.

      Kenakin T. Biased Receptor Signaling in Drug Discovery. Pharmacol Rev 2019;71, 267315.

      Question/comment: 4. In page 6, authors used the plot shown in Figure 3 for 'FGFR downregulation' to conclude that "the effect of FGF4 on FGFR1 downregulation is smaller when compared to the effects of FGF8 and FGF9. However, it is unclear how the data shown in the plot was normalized - none of the data seem to reach "1.0". Moreover, the plot seems to suggest that FGF4 can strongly downregulate FGFR as it can downregulate FGFR with higher potency.

      The Western blots assessing FGFR1 expression are easy to scale, as the value in the absence of ligand is set to 1. The expression decreases as a function of the ligand concentration. We plot FGFR1 downregulation, so we subtract 1 from the scaled FGFR1 band intensities. The total amount of FGFR1 never becomes undetectable (i.e. zero), as the ligand concentration is increased. Thus, a value of 1 in the downregulation curve is never obtained.

      We have added a protocol for this scaling in the Supplement.

      Question/comment: 5. The structural basis of FGFR1 ligand bias and the different dimeric configurations and interactions between the kinase domain of FGFR1 dimers are not warranted (Figure 6). In the absence of any structural experimental data of different forms of FGFR dimers stimulated by FGF ligands the model presents in the manuscript is speculative and misleading.

      This statement about Figure 6 is not fully correct because Figure 6A and B show experimental data. These are FRET experiments which show that the biased ligand, FGF8, induces different FGFR1 transmembrane domain conformation, as compared to FGF4 and FGF9.

      The rest of the panels in Figure 6 show modeling using PyRosetta. These are indeed not experimental data, but to the best of our knowledge this is the very first time PyRosetta has been used to predict kinase-kinase interfaces.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The present study examined the physiological mechanisms through which impaired TG storage capacity in adipose tissues affects systemic energy homeostasis in mice. To accomplish this, the authors deleted DGAT1 and DGAT2, crucial enzymes for TG synthesis, in an adipocyte-specific manner. The authors found that ADGAT DKO mice substantially lost the adipose tissues and developed hypothermia when fasted; however, surprisingly, ADGAT KO mice were metabolically healthy on a high-fat diet. The authors found that it was accompanied by elevated energy expenditure, enhanced glucose uptake by the BAT, and enhanced browning of white adipose tissues. This unique animal model provided exciting opportunities to identify new mechanisms to maintain systemic energy homeostasis even in a compromised energy storage capacity. Overall, the data are compelling and well support the conclusion of this paper. The manuscript is clearly written.

      We thank the reviewer for the time invested to critically review our paper.

      Reviewer #2 (Public Review):

      Here, Chitraju et al have studied the phenotype of mice with an adipocyte-specific deletion of the diglycerol acyltransferases DGAT1 and DGAT2, the two enzymes catalyzing the last step in triglyceride biosynthesis. These mice display reduced WAT TG stores but contrary to their expectations, the TG loss in WAT is not complete and the mice are resistant to a high-fat diet intervention and display a metabolically healthier profile compared to control littermates. The mechanisms underlying this are not entirely clear, but the double knockout (DKO) animals have increased EE and a lower RQ suggesting that enhanced FA oxidation and WAT "browning" may be involved. Moreover, both adiponectin and leptin are expressed in WAT and are detectable in circulation. The authors propose that "the capacity to store energy in adipocytes is somehow sensed and triggers thermogenesis in adipose tissue. This phenotype likely requires an intact adipocyte endocrine system...." Overall, I find this to be an interesting notion.

      We thank the reviewer for the time invested to critically review our paper.

      Reviewer #3 (Public Review):

      In this study, the authors sought to test the hypothesis that blocking triglyceride storage in adipose tissue by knockout of DGAT1 and DGAT2 in adipocytes would lead to ectopic lipid deposition, lipodystrophy, and impaired glucose homeostasis. Surprisingly, the authors found the opposite result, with DGAT1/2 DKO in adipocytes leading to increased energy expenditure, minimal ectopic lipid deposition, and improved glucose homeostasis with HFD feeding. These metabolic improvements were largely attributed to increased beiging of the white fat and increased brown adipose tissue activity. This study provides an interesting new paradigm whereby impairing fat storage, the major function of adipose tissue, does not lead to severe metabolic disease, but rather improves it. The authors provide a comprehensive assessment of the metabolism of these DKO mice under chow and HFD conditions, which support their claims. The study lacks in mechanistic insight, which would strengthen the study, but does not detract from the authors' major conclusions.

      We thank the reviewer for the time invested to critically review our paper.

      The conclusions of this paper are mostly well-supported, but some aspects should be clarified and extended.

      1) The authors claim the beiging of WAT of ADGAT DKO mice is partially through the SNS; however, housing these mice at thermoneutrality did not block the beiging, which seems to negate that claim. Is there evidence of increased cAMP/PKA activation in the adipose tissues of ADGAT DKO to support the premise that the beiging is activated by the SNS, even at thermoneutrality? Alternatively, if the authors block beta-adrenergic receptors with antagonists, such as propranolol, does this block the beiging?

      We are currently unsure of the mechanism(s) for WAT beiging and whether it requires the SNS. We attempted denervation experiments to ablate SNS input; however, the results were consistent with partial denervation and not clearly interpretable, so we elected not to include them in the manuscript. Unfortunately, we did not measure cAMP/PKA activation or utilize beta blockers in attempt to block SNS activation. Due to a recent laboratory move, there are no study mice available to perform these experiments.

      2) It's been shown that autocrine FGF21 signaling is sufficient to promote beiging of iWAT (PMID 34192547). The authors show Fgf21 mRNA is increased in iWAT of chow-fed ADGAT DKO mice. Is Fgf21 also increased in iWAT of HFD-fed mice? This and measurement of local FGF21 secretion by adipocytes would strengthen this study.

      We thank the reviewer for this question. Unfortunately, we did not measure Fgf21 mRNA levels in iWAT of HFD-fed mice or FGF21 secretion by adipocytes and mice are not currently available. We agree, however, that FGF21 is a candidate for mediating this phenotype. Testing this idea would likely require crossing the ADGAT DKO mice with FGF21 KO mice. Arguing against FGF21 as contributing systemically, plasma levels were similar in HF-fed ADGAT DKO mice and controls.

      3) The primary adipocytes in Figure 5–figure supplement 2A do not appear to have any depletion in TG stores, suggesting this may not be an appropriate model to study the cell autonomous effects of ADGAT DKO on beiging. The authors should use DGAT inhibitors instead to corroborate or investigate this question.

      We agree with the reviewer that primary adipocytes from ADGAT DKO mice may not be the best model to study the cell autonomous effects of beiging, particularly since they are accumulating lipids. On the other hand, it’s not likely that DGAT inhibitors would be any better than the genetic deletions of the enzymes. Presumably, the neutral lipids are being synthesized by enzymes other than DGAT1 or DGAT2.

      4) Multiple studies have shown the importance of lipolysis for the activation of brown and beige thermogenic programs (PMID 35803907, 34048700) and can be potentiated by HFD feeding (PMID 34048700). In the absence of DGAT activity in ADGAT DKO mice, it seems plausible that free fatty acids could be elevated, especially in the context of HFD. Are free fatty acids elevated in the adipose tissues, which could promote thermogenic gene expression?

      We thank the reviewer for pointing this out. Although we cannot exclude this mechanism, arguing against it, we found lower levels of almost all free fatty acid species in iWAT of chow diet fed ADGAT DKO (Figure 5–figure supplement 1, metabolomics). Additionally, plasma FFA were reduced in these mice.

      5) The lack of ectopic lipid deposition in the ADGAT DKO mice is striking, especially under HFD conditions. Can the increased energy expenditure fully account for the difference in whole body fat accumulation between Control and DKO mice or have the mice activated other energy disposal mechanisms? Please discuss or include measurement of fat excretion in the feces to strengthen this study.

      Although decreased lipid absorption may conceivably contribute to energy loss, we would not expect this to occur in adipocyte-specific knockout mice, and we did not measure the lipid content in the feces. We have added a discussion point to the manuscript.

      Reviewer #1 (Recommendations for the Authors):

      The authors wish to clarify the following points to strengthen this exciting work further.

      1) The authors demonstrated that DKO mice exhibited enhanced browning of WAT even under a thermoneutral condition, and this occurred in a non-cell autonomous fashion. Accordingly, the authors suggested the possibility that SNS activity was enhanced in DKO mice. It would be intriguing to examine the extent to which lipolysis is indeed enhanced in DKO mice. For instance, do DKO mice have higher FFA and glycerol levels than controls in circulation? This could explain a part of the phenotype, as a recent work suggested that WAT lipolysis triggers beige progenitor cell proliferation in WAT.

      We thank the reviewer for this question. Although this is an interesting idea, we found that ADGAT DKO mice have lower levels of free fatty acids and glycerol in the circulation, indicating lipolysis not likely the underlying mechanism for increased beiging in ADGAT DKO mice. FFA were also reduced in the iWAT of the ADGAT DKO mice (as shown in supplemental data for Figure 5).

      2) The authors suggested the possibility that other candidates in the DGAT2 gene family might compensate for the lack of DGAT1 and DGAT2. It will be insightful if the authors elaborate on this part - e.g., discussing any transcriptional changes of DGAT2 family members in the WAT of DKO mice.

      We thank the reviewer for this question. Previous studies showed (Yen et al., 2005), monoacylglycerol acyl transferase (MGAT) enzymes also possess some TG synthesis activity. We found increased mRNA expression of MGAT1 and MGAT2 enzymes in white adipose tissue of ADGAT DKO mice. We now included this data in Figure 1–figure supplement 1G.

      3) Minor: Statistics of the AUC for the GTT and ITT (Fig. 3G and 3H).

      We thank the reviewer for this point. We have now updated the figures with statistics of the AUC for GTT and ITT.

      Reviewer #2 (Recommendations for the Authors):

      1) The authors suggest that the DKOs are protected against a high-fat diet due to an intact endocrine function combined with increased FA oxidation and WAT browning. This phenotype is interesting but as the authors write, the underlying mechanisms remain unclear. Furthermore, how important is retained endocrine function, in relation to WAT browning, in explaining the resistance to a high-fat diet in the DKOs? As these mice are born with the double DGAT KO and it is possible that compensatory mechanisms explain some of the observed effects. What happens with the endocrine function/browning effect if DGAT1/2 is inhibited in cells that already contain full TG stores? While I understand that studies in an inducible KO model are outside the scope of this study, data in cells where the effects of DGAT inhibition are studied early and late during differentiation would be interesting and could at least be discussed.

      We thank the reviewer for this interesting question. It is possible that ADGAT DKO have adipose tissue-derived factors that act in endocrine or paracrine manner to induce beiging. Unfortunately, we do not have data addressing this point, but added discussion of this point to the revised manuscript.

      2) While the possibility to dissociate TG storage from the endocrine function of WAT is attractive, the authors have only studied two adipokines. Do they have data on any other adipokine(-s) supporting the claim that the secretory function is intact?

      We thank the reviewer for this question. Regrettably we did not measure additional adipokines, and the mice are no longer available for study due to a recent lab move.

      Reviewer #3 (Recommendations for the Authors):

      Minor comments/suggestions:

      1) The authors show multiple phospholipid species were increased by ADGAT DKO. Cardiolipin has been shown to promote brown fat thermogenesis (PMID 29861389). Were cardiolipin levels changed by ADGAT DKO?

      We thank the reviewer for this question. We found cardiolipin levels were increased in iWAT of ADGAT DKO mice. However, we have not measured cardiolipin levels in brown fat.

      2) A recent study (PMID 36914626) has shown that inhibition of lipogenesis in adipose tissue impairs autophagy and also causes beiging of white adipose tissue. Is autophagy affected by ADGAT DKO? Are de novo lipogenesis enzymes affected by the DKO?

      We thank the reviewer for this interesting suggestion. We did find that mRNA levels of genes involved in de novo lipogenesis (Srebp1c, Acc, Fas) were decreased in iWAT of ADGAT DKO mice, as expected from some of our other studies involving DGAT inactivation. Unfortunately, we did not measured autophagy per se in iWAT of ADGAT DKO mice.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the editors and reviewers for their thoughtful consideration of our manuscript. Here, we addressed the reviewers’ points.

      Reviewer #1 (Public Review):

      Tomasi et al. performed a combination of bioinformatic, next-generation tRNA sequencing experiments to predict the set of tRNA modifications and their corresponding genes in the tRNAs of the pathogenic bacteria Mycobacterium tuberculosis. Long known to be important for translation accuracy and efficiency, tRNA modifications are now emerging as having regulatory roles. However, the basic knowledge of the position and nature of the modifications present in a given organism is very sparse beyond a handful of model organisms. Studies that can generate the tRNA modification maps in different organisms along the tree of life are good starting points for further studies. The focus here on a major human pathogen that is studied by a large community raises the general interest of the study. Finally, deletion of the gene mnmA responsible for the insertion of s2U at position 34 revealed defects in in growth in macrophage but in test tubes suggesting regulatory roles that will warrant further studies. The conclusions of the paper are mostly supported by the data but the partial nature of the bioinformatic analysis and absence of Mass-Spectrometry data make it incomplete. The authors do not take advantage of the Mass spec data that is published for Mycobacterium bovis (PMID: 27834374) to discuss what they find.

      1) The authors say they took a list of proteins involved in tRNA modifications from Modomics and added manually a few but we do not know the exact set of proteins that were used to search the M. mycobacterium genome.

      Thank you for pointing out this issue. We added the complete list of proteins used for the BLAST query as Supplemental Table 1.

      2) The absence of mnmGE genes in TB suggested that the xcm5U derivatives are absent. These are present in M. bovis (PMID: 27834374). Are the MnmEG gene found in M. bovis? If yes, then the authors should perform a phylogenetic distribution analysis in the Mycobacterial clade to see when they disappeared. If they are not present in M. bovis then maybe a non-orthologous set of enzymes do the same reaction and then the authors really do not know what modification is present or not at U34 without LC-MS. The exact same argument can be given for the xmo5U derivatives that are also found in M.bovis but not predicted by the authors in M. tuberculosis.

      The reviewer raises a valid point. In M. bovis mnm5U and cmo5U derivatives were observed in LC-MS analysis. However, we did not identify candidate genes known to be involved in the biogenesis of mnm5U and cmo5U in the Mycobacteriaceae, including M. bovis and Mtb, suggesting that if these modifications are indeed present, they are not synthesized through canonical biogenesis pathways in this family. There are several examples where the same modification is generated by distinct modification enzymes (Kimura, 2021). These observations raise the interesting possibility that in the Mycobacteriaceae and most species in actinomycetota (except for Bifidobacterium, Corynebacterium and Rhodococcus species), major wobble modifications are generated by biosynthesis pathways that are distinct from those employed by well-characterized organisms. Future studies will examine this hypothesis.

      3) Why is the Psi32 predicted by the authors because of the presence of the Rv3300c/Psu9 gene not detected by CMC-treated tRNA seq while the other Psi residues are? Members of this family can modify both rRNA and tRNA. So the presence of the gene does not guarantee the presence of the modification in tRNAs

      Thank you very much for the careful read. We did not include RluA in the list of query proteins because it is not classified as a tRNA modification enzyme in Modomics. Additionally, the CMC-coupled tRNA-seq is imperfect for detection of all pseudouridylated positions. Due to this limitation, we only assigned modifications that are both predicted by the presence of putative biosynthetic enzymes and RT-derived signatures. As the reviewer points out, we cannot rule out that this homolog targets only rRNAs. We clarified this possibility in the revised manuscript by adding the following sentence: “Additionally, CMC treatment may not identify  at all positions, thus, the targets of Rv3300 and Rv1540 remain unclear. Since these genes are similar to E. coli rluA, which also targets rRNA, these genes may target rRNAs instead of tRNAs” (lines 298-300)

      In the revised manuscript, RluA was added to the BLAST query for creating Fig. 2. Interestingly, Rv3300c is more similar to Pus9 than RluA, while Rv1540 is the Mtb gene most similar to E. coli RluA suggesting that these two genes encode pseudouridylases that target different species of tRNAs/rRNAs.

      4) What are tsaBED not essential but tsaC (called sua5 by the authors) essential?

      Thank you for pointing out this interesting observation. We are also curious about differences in the essentiality among t6A biogenesis genes. We speculate that TsaC has critical roles in cell viability other than t6A synthesis. TsaC synthesizes threonylcarbamoyl-AMP as an intermediate for t6A biogenesis. Thus, it is possible that this intermediate has a role in other essential cellular activities besides t6A biogenesis. Further study of these factors in Mtb could reveal interesting crosstalk between modification synthesis and other cellular activities.

      Reviewer #2 (Public Review):

      In this study, Tomasi et al identify a series of tRNA modifying enzymes from Mtb, show their function in the relevant tRNA modifications and by using at least one deleted strain for MnmA, they show the relevance of tRNA modification in intra-host survival and postulate their potential role in pathogenesis.

      Conceptually it is a wonderful study, given that tRNA modifications are so fundamental to all life forms, showing their role in Mtb growth in the host is significant. However, the authors have not thoroughly analyzed the phenotype. The growth defect aspect or impact on pathogenesis needs to be adequately addressed.

      • The authors show that ΔmnmA grows equally well in the in vitro cultures as the WT. However, they show attenuated growth in the macrophages. Is it because Glu1_TTC and Gln1-TTG tRNAs are not the preferred tRNAs for incorporation of Glu and Gln, respectively? And for some reason, they get preferred over the alternate tRNAs during infection? What dictates this selectivity?

      Thank you very much for raising this excellent point. As the reviewer suggests, the attenuation of ΔmnmA Mtb growth inside of macrophages could be caused by disparate codon usage between genes required for in vitro growth and intracellular growth. Among multiple codons encoding Glu, Gln, or Lys, s2U modification-dependent codons might be preferentially distributed in genes associated with intracellular growth. For example, Mtb has two tRNA isoacceptors, Glu1_TTC and Glu2_CTC, to decipher two Glu codons, GAA and GAG. According to the wobble pairing rule, GAA is only decoded by Glu1_TTC, whereas GAG is decoded by both Glu1_TTC and Glu2_CTC; i.e., GAG can be deciphered by an s2U-independent tRNA. Thus, genes required for intracellular growth might be enriched with GAA, an s2U-dependent codon. Similar codon usage differences could be present in Gln and Lys codons deciphered by s2U-containing tRNAs. In the revised manuscript, we included a new paragraph in the discussion explaining the possibility that differences in codon usage could contribute to the intracellular fitness defect of the ΔmnmA Mtb mutant (lines 323-332).

      • As such the growth defect shown in macrophages would be more convincing if the authors also show the phenotype of complementation with WT mnmA.

      The reviewer raises a valid point. We note however, that Rv3023c, a putative transposase, is downstream of MnmA and unlike MnmA, Rv3023c appears to be dispensable for in vivo growth, according to the Tn-seq database (reference 44 and 45). Therefore, it is likely that the intracellular growth defect is caused by loss of mnmA.

      An important consideration here is the universal nature of these modifications across the life forms. Any strategy to utilize these enzymes as the potential therapeutic candidate would have to factor in this important aspect.

      This is a valid point. Targeting a pathogen-specific system enables avoidance of the adverse side effects caused by many therapeutic reagents. There are a couple of Mtb modification enzymes that are specific to bacteria and critical for Mtb fitness (e.g., TilS). These enzymes represent ideal potential therapeutic targets to impede Mtb intracellular growth.

      Reviewer #3 (Public Review):

      The work presented in the manuscript tries to identify tRNA modifications present in Mycobacterium tuberculosis (Mtb) using reverse transcription-derived error signatures with tRNA-seq. The study identified enzyme homologs and correlates them with presence of respective tRNA modifications in Mtb. The study used several chemical treatments (IAA and alkali treatment) to further enhance the reverse transcription signals and confirms the presence of modifications in the bases. tRNA modifications by two enzymes TruB and MnmA were established by doing tRNA-seq of respective deletion mutants. Ultimately, authors show that MnmA-dependent tRNA modification is important for intracellular growth of Mtb. Overall, this report identifies multiple tRNA modifications and discuss their implication in Mtb infection.

      Important points to be considered:

      • The presence of tRNA-based modifications is well characterised across life forms including genus Mycobacterium (Mycobacterium tuberculosis: Varshney et al, NAR, 2004; Mycobacterium bovis: Chionh et al, Nat Commun, 2016; Mycobacterium abscessus: Thomas et al, NAR, 2020). These modifications are shown to be essential for pathogenesis of multiple organisms. A comparison of tRNA modification and their respective enzymes with host organism as well as other mycobacterium strains is required. This can be discussed in detail to understand the role of common as well as specific tRNA modifications implicated in pathogenesis.

      The reviewer raises a fair point. However, with the exception of Chionh et al., the other studies cited here are not genome-wide characterization of tRNA modification. Re-analysis showed that the distribution of the tRNA modifying enzymes are very similar across mycobacterium strains, e.g., Mycobacterium smegmatis, Mycobacterium tuberculosis, and Mycobacterium abscessus, suggesting that modifications related to pathogenesis in Mtb may have different physiological roles in other Mycobacterium species. We included the distribution of tRNA modification enzymes across multiple mycobacterium species in a revised Fig. 1.

      • Authors state in line 293 "Several strong signatures were detected in Mtb tRNAs but not in E. coli". Authors can elaborate more on the unique features identified and their relevance in Mtb infection in the discussion or result section.

      Thank you for the suggestion. However, the identity of these RT signatures and the relevance of these modifications for Mtb pathogenicity remains speculative at this point.

      • Deletion of MnmA is shown to be essential for E. coli growth under oxidative stress (Zhao et al, NAR, 2021). In similar lines, MnmA deleted Mtb suffers to grow in macrophage. Is oxidative stress in macrophage responsible for slow Mtb growth?

      This is an excellent hypothesis which we have added to the revised manuscript (lines 320-322). “In fact, the absence of mnmA is reported to sensitize E. coli to oxidative stress, raising the possibility that s2U modification promotes Mtb growth under oxidative stress elicited by the host.”

      • Authors state in line 311-312 "Mtb does not contain apparent homologs of the tRNA modifying enzymes that introduce the additional modifications to s2U". This can be characterised further to rule out the possibility of other enzyme specifically employed by Mtb to introduce additional modification.

      The reviewer raises a valid point. As discussed above (Reviewer #1, pt 2), Mtb may employ distinct enzymes to generate certain tRNA modifications. Future mass spec-based analyses of Mtb tRNAs will be carried out to identify the precise chemical structure of the sulfurated uridine, and subsequent studies will attempt to determine the enzymes that account for the biogenesis of these modifications.

      Kimura, S. (2021). Distinct evolutionary pathways for the synthesis and function of tRNA modifications. Brief Funct Genomics, 20(2), 125-134. doi:10.1093/bfgp/elaa027

      Reviewer #1 (Recommendations For The Authors):

      Additional data and Analyses

      The Modomics database is far from complete so it would be more rigorous to give the full set of genes that was used to do the searches as supplemental data.

      Thank you for the suggestion. We added the list of the query genes as Supplemental Table 1. Minor points to be fixed

      1) The authors name the psi32 synthase Rv3300c Pus9 when it is a member of the RluA family. It is not clear why the yeast/eukaryotic name was used.

      We included enzymes from diverse species in our query, including eukaryotic genes. Indeed, we found that Rv3300c showed the lowest E-value among our query genes, therefore, we name Rv3300c as Pus9.

      2) The sua5 gene name was used it should be tsaC to follow the accepted nomenclature.

      We renamed Sua5 to TsaC2.

      3) The statement lines 203-296 was totally unclear. I did not understand what the authors were trying to say at all.

      This paragraph described how sequence context can result in different reverse transcription-derived signatures from dihydrouridine (D). We added a schematics describing this paragraph as Supplemental Fig. 6.

      4) In reference, names with special characters should be fixed such as Börk.

      We fixed the names with special characters.

      Reviewer #2 (Recommendations For The Authors):

      The authors state that at least some of tRNA modifying enzymes, while redundant for growth in vitro, may play a role during growth inside the macrophages, mostly due to the diverse stresses they could encounter.

      We added a sentence, “In fact, the absence of mnmA is reported to sensitize E. coli to oxidative stress, suggesting that s2U modification is required for Mtb growth under oxidative stress elicited by the host” in the discussion.

      • Ideally, authors could have tested the impact of diverse intracellular stresses that Mtb encounters, like redox stress, nitrosative, pH or nutritional stress, to check whether any of these stresses cause in vitro growth defects in ΔmnmA strain.

      Thank you for the suggestion. This point will be addressed in future experiments.

      This would be a wonderful way to show that under stress, the essentiality of tRNA modification enzymes changes.

      Reviewer #3 (Recommendations For The Authors):

      • In general, the clarity of the presentation can be improved.

      • Authors state that "MiaA, is non-essential in E. coli, but apparently essential in Mtb". While MiaA is shown to be critical for the fitness and virulence of extraintestinal pathogenic E. coli (Fleming et al, NAR, 2022). This can be clarified.

      We rephrase as follows: “Unexpectedly, one modifying enzyme, MiaA, is non-essential in E. coli grown in nutrient-rich medium, but apparently …”

      • Line numbers 130-132 is a repetition of line numbers 103-105

      We repeated these sentences because the same claim was deduced from different experiments, i.e., BLAST search and tRNAseq.

      • Line number 228: The presence of U at position 55 in the tRNAs can be included in the text for a better understanding.

      We changed the text as following: “… Termination signatures derived from position 55, which is exclusively uridine in all tRNA species, increased in most tRNA species, suggesting …”

      • A detailed pictorial depiction on comparing the modifications and enzymes from E. coli and Mtb can be included for easy understanding.

      We created an E. coli tRNA modification map in the same format as Figure 2C and added it to the revised manuscript as a new Supplementary Fig. 1.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      “First, I agree with the authors of this manuscript that conformational changes in the XFEL structures with 2.8 A resolution are not reliable enough for demonstrating the subtle changes in the electron transfer events in this bacterial photosynthesis system. Actually, the data statistics in the paper by Dods et al. showed that the high-resolution range of some of the XFEL datasets may include pretty high noise (low CC1/2 and high Rsplit) so the comparison of the subtle conformational changes of the structures is problematic.

      The manuscript by Gai Nishikawa investigated time-dependent changes in the energetics of the electron transfer pathway based on the structures by Dods et al. by calculating redox potential of the active and inactive branches in the structures and found no clear link between the time-dependent structural changes and the electron transfer events in the XFEL structures published by Dods, R.et al. (2021). This study provided validation for the interpretation of the structures of those electron-transferring proteins.

      The paper was well prepared.”

      Thank you very much for your positive and insightful comment. We greatly appreciate your suggestion regarding the high noise levels of the XFEL structures, as indicated by the low CC1/2 and high Rsplit values reported by Dods et al. Including this information in the Introduction section will draw readers’ attention to the concerns about the reliability of these XFEL structures. We have incorporated the following sentences into the Introduction section:

      “Furthermore, the data statistics provided by Dods et al. indicate that the high-resolution range of some XFEL datasets exhibit high levels of noise, as evidenced by low CC1/2 and high Rsplit values. These observations raise concerns about the reliable comparison of subtle conformational changes among these structures. Hence, caution must be exercised when interpreting these XFEL structures in terms of their ability to accurately capture relevant conformational changes.”

      The following sentences have also been added to the Conclusions section:

      “Hence, it is crucial to exercise caution when interpreting time-dependent XFEL structures, especially in the absence of comprehensive evaluations of the energetics and accompanying structural changes. This cautionary note should serve as a counterargument in the future, highlighting the potential pitfalls associated with presenting time-dependent XFEL structures of insufficient quality and drawing conclusive interpretations of protein structural changes that may not be distinguishable from significant experimental errors.”

      Recommendations for the authors

      “Figure 1 needs clear labels or detailed notes in the figure legend for the labels such as M, L, Pm, Pl, etc.”

      In Figure 1, we have increased the size of the labels to improve visibility. Additionally, we have expanded the figure legend to include detailed explanations of the abbreviations used, such as M, L, PM, PL, etc. We believe that these modifications have significantly improved the clarity and comprehensibility of Figure 1.

      Reviewer #2 (Public Review):

      “The manuscript by Nishikawa et al. addresses time-dependent changes in the electron transfer energetics in the photosynthetic reaction center from Blastochloris viridis, whose time-dependent structural changes upon light illumination were recently demonstrated by time-resolved serial femtosecond crystallography (SFX) using X-ray free-electron laser (XFEL) (Dods et al., Nature, 2021). Based on the redox potential Em values of bacteriopheophytin in the electron transfer active branch (BL) by solving the linear Poisson-Boltzmann equation, the authors found that Em(HL) values in the charge-separated 5-ps structure obtained by XFEL are not clearly changed, suggesting that the P+HL- state is not stabilized owing to protein reorganization. Furthermore, chlorin ring deformation upon HL- formation, which was expected from their QM/MM calculation, is not recognized in the 5-ps XFEL structure. Then the authors concluded that the structural changes in the XFEL structures are not related to the actual time course of charge separation. They argued that their calculated changes in Em and chlorin ring deformations using the XEFL structures may reflect the experimental errors rather than the real structural changes; they mentioned this problem is due to the fact that the XFEL structures were obtained at not high resolutions (mostly at 2.8 Å). I consider that their systematic calculations may suggest a useful theoretical interpretation of the XFEL study. However, the present manuscript insists as a whole negatively that the experimental errors may hamper to provide the actual structural changes relevant to the electron transfer events. My concerns are the following two points:

      Is the premise of the authors for the electron transfer energetics obviously valid?

      Could the authors find any positive aspect(s) in the XFEL study?

      The authors' argument is certainly due to their premise "Em(HL) is expected to be exclusively higher in the 5-ps and 20-ps structures than in the other XFEL structures due to the stabilization of the [PLPM]•+HL•- state by protein reorganization" as noted in the Results and Discussion (p. 12, lines 180-182); however, it is unknown whether this premise can be applied to the ps-timescale electron transfer events. The above premise is surely based on the Marcus theory, as the authors also noted in the Introduction "The anionic state formation induces not only reorganization of the protein environment (ref. 5: Marcus and Sutin, 1985) but also out-of-plane distortion of the chlorin ring (ref. 6: two of the authors, Saito and Ishikita, co-authored, 2012)"; however, it is unknown whether protein reorganization can follow the ps-timescale electron transfer events. Indeed, Dods et al. mentioned in the Nature paper (2021) "The primary electron-transfer step from SP (special pair PLPM) to BPhL (HL) occurs in 2.8 {plus minus} 0.2 ps across a distance of 10 Å by means of a two-step hopping mechanism via the monomeric BChL molecule and is more rapid than conventional Marcus theory". It was also mentioned, "By contrast, the 9 Å electron-transfer step from BPhL to QA has a single exponential decay time of 230 {plus minus} 30 ps, which is consistent with conventional Marcus theory". As for the primary electron-transfer step from PLPM to HL, Wang et al. (2007, Science 316, 747; cited as ref. 8 in the Nature paper 2021) reported, by monitoring tryptophan absorbance changes in various reaction centers in which the driving forces (namely, the Em gaps between PLPM and HL) are different, that the protein relaxation kinetics is independent of the charge separation kinetics on the picosecond timescale. On the other hand, in the EPR study cited by the authors as ref. 7 (Muh et al. (1998) Biochemistry 37, 13066), although the authors described "two distinct conformations of HL- were reported in spectroscopic studies" (p. 3, lines 44-45), it should be noted that conformation of HL- was formed by 1 or 45 s illumination prior to freezing, and hence the second-order reorganized conformations may differ from picosecond-order conformations observed by the XFEL study (Nature, 2021) and/or the transient absorption spectroscopy (Science, 2007).

      Therefore, I consider there is a possibility that the authors' findings may reflect not experimental errors but the actual ps-timescale phenomena presented by the first-time XFEL study on the timescale of the primary charge-separation reactions of photosynthesis. Thus I would like to suggest that the authors reconsider the premise for the electron transfer energetics on the picosecond timescale.

      In any case, to discuss the experimental errors in the XFEL study, it is better to calculate the Em(QA) changes in the 300-ps and 8-us XFEL structures, which showed distinctive structural changes even at the 2.8 Å resolution as discussed by Dods et al. Then, if the Em(QA) values are changed as expected from theoretical calculations, such calculated results may suggest a useful theoretical interpretation of the XFEL study as a positive aspect. If the Em(QA) values are not higher in the 300-ps and 8-us structures than in the other structures, it may be argued that the experimental errors would be so large that the XFEL structures are irrelevant to the electron transfer events expected from theoretical calculations.”

      We appreciate the reviewer's constructive suggestions, which significantly contributed to the improvement of our manuscript. We have performed additional calculations to address the reviewer's suggestion. We calculated the changes in Em(QA) in the XFEL structures. The Em(QA) values in the 300-ps and 8-μs structures were not significantly higher than those in the other structures (Figure 8).

      These findings align with the scenario proposed by the reviewer, suggesting that the experimental errors are substantial, rendering the XFEL structures irrelevant to the electron transfer events. The results further reinforce our argument that the observed structural changes in the XFEL structures are not directly linked to the expected changes in electron transfer events.

      We have incorporated these important points into the revised version as follows:

      “One might argue that the loss of the link between the formation of the charge-separated state and the Em(HL) change (Figure 5) is not due to experimental errors but rather represents the actual ps-timescale phenomena during the primary charge-separation reactions (e.g., Dods et al. noted that “the primary electron-transfer step to HL is more rapid than conventional Marcus theory” 8). However, even if this were the case, this hypothesis regarding the relevance of the XFEL structures to the electron-transfer events can be further explored by examining the changes in Em(QA) among the XFEL structures, considering the relatively slow electron-transfer step to QA that allows sufficient protein relaxation to occur (e.g., Dods et al. stated that “the electron-transfer step to QA has a single exponential decay time of 230 ± 30 ps, consistent with conventional Marcus theory” 8). That is, if the Em(QA) values are not higher in the 300-ps and 8-μs structures than in the other structures, it suggests that significant experimental errors exist, rendering the XFEL structures irrelevant to the electron transfer events. Consistent with this perspective, the present results demonstrate that the Em(QA) values in the 300-ps and 8-μs structures are not significantly higher than those in the other structures, including the dark state structure (Figure 8). Consequently, the lack of a clear relationship between the charge separated state and the changes in Em(QA) at 300 ps and 8-μs further strengthens the argument that the XFEL structures are irrelevant to the electron transfer events.”

      Recommendations for the authors

      “In addition to my main concerns, the following points should also be taken into consideration:

      The authors presented from QM/MM calculations out-plane distortion of HL (and HM) induced upon the reduction using the dark structure for dataset a (Table 5). However, to compare with the XFEL structures corresponding to the charge-separated state [PLPM]+HL-, positive charge should be located at the special pair (or, either PL or PM). In the present work, it is noted that counter ions were added to neutralize the entire system (in Methods: p. 6, lines104-105), but the location(s) of the positive charge is unclear.”

      We appreciate the valuable suggestion provided by the reviewer. To address this concern, we have calculated out-of-plane distortion of HL•– in the presence of PL•+. The results have been included in Table 5. Note that the results obtained in the presence of PL•+ are substantially the same as those obtained in PL0 (Table 5).

      For clarity, we have rephrased the sentence referring to counter ions as follows:

      “To neutralize the entire system, counter ions were added randomly around the protein using the Autoionize plugin in VMD 22.”

      “In relation to the calculations, the authors showed the induced out-plane distortion of HM for dataset a; however, the results for HM seem not to be mentioned anywhere. Instead, the calculations for HL of the dark structure for dataset b should be useful, especially for comparing with the time-dependent changes in the dataset b XFEL structures as shown in Figure 7.”

      We have made Table 6 to present the results for dataset b. The results are consistent with those for dataset a (Table 5).

    1. Author Response

      We express our gratitude to the editors for acknowledging the significance of our findings and facilitating the review process. We would also like to thank the reviewers for dedicating their time to thoroughly read the manuscript and provide valuable insights.

      During the revision process, we will address the raised issues and concerns, confident that our revisions will enhance the clarity and strength of the paper.

      In response to the reviewers' feedback, we acknowledge that some of the relevant information was previously presented in our published papers (Meng, Dev Cell. 2017; Xia, Elife. 2021). However, we recognize that in the current version of the manuscript, we may not have expounded on these details as clearly as needed. We will rectify this shortcoming in the revised version to provide a more comprehensive account of our research.

      We also explain our perspective on why the discovery of MYRF controlling lin-4 upregulation is crucial in addressing unanswered key questions in developmental biology.

      The Loss of Function Characteristics of myrf-1(ju1121 G274R)

      We would like to present the evidence supporting the characteristics of myrf-1(ju1121) as a loss-of-function mutation affecting both myrf-1 and myrf-2. In our initial paper (Meng, Dev Cell. 2017), the nature of this mutation was a significant focus of our research.

      Our investigation involved analyzing multiple alleles (tm, ok, gk alleles from CGC, and indel alleles made in-house) of myrf-1 and myrf-2, as well as their double mutants. Here is a summary of our current understanding based on these analyses:

      1. myrf-1 single loss-of-function (l.f.) mutants exhibit penetrant arrest at the end of L1 or early L2 stages. However, they only display very mild deficiency in DD synpatic remodeling at 21 hours, primarily caused by a delay.

      2. myrf-2 single l.f. mutants behave similarly to the wild type, exhibiting no significant developmental abnormalities, including synpatic remodeling.

      3. myrf-1 and myrf-2 double l.f. mutants exhibit penetrant arrest during L2, occurring approximately half a stage later than in myrf-1 single mutants.

      4. Remarkably, myrf-1 and myrf-2 double l.f. mutants exhibit severe blockage in synaptic remodeling, indicating that both genes act collaboratively to drive this essential process (Meng, Figure 5).

      5. The myrf-1(ju1121 G274R) mutation exhibits severe synaptic remodeling blockage and arrest during L2, closely resembling myrf-1 myrf-2 double mutants (Meng, Figure 1 and 2).

      Therefore, despite myrf-1's more significant role in development based on the arrest phenotype, synaptic remodeling requires the combined function of myrf-1 and myrf-2. This redundancy is further supported by the analysis of the new set of specific myrf-1 mutants (Xia, Figure 6).

      Both myrf-1 and myrf-2 are broadly expressed (Meng, Figure 3 and S5), and they undergo developmentally regulated cell-membrane to nucleus translocation (Xia, Figure 4 and Supplement 1). Overexpressing N-MYRF-1 and full-length MYRF-2 in DD neurons leads to precocious synaptic remodeling (Meng, Figure 4 and 5). Interestingly, overexpressing full-length myrf-1 does not have the same effect, indicating potential regulatory differences between these two factors.

      The myrf-1(ju1121 G274R) mutation is located in the N-terminal region of the Ig-fold type DNA-binding domain, specifically within the loop between a and b Ig-fold strands. This site is conserved across all metazoan MYRFs (Meng, Figure 1D and 6A). The mutant myrf-1(G274R) loses its DNA binding ability, as demonstrated by a gel mobility shift assay using the counterpart residue mutation in mammalian MYRF (Meng, Figure 6B).

      MYRF-1(ju1121 G274R) mutant interfering with normal MYRF’s function has been supported by molecular genetics experiments (Meng, Figure 6C-E) and biochemical analysis. In essence, the MYRF-1(G274R) mutant does not impact MYRF trimerization or MYRF-1-MYRF-2 interaction, but blocks DNA binding. Substantial evidence has confirmed the physical binding of MYRF-1 and MYRF-2 both in vitro and in vivo (Meng, Figure 5G and S6; Xia, Figure 1A). Importantly, MYRF- 1(ju1121 G274R) is still able to bind to MYRF-2, as supported by coIP analysis (Meng, Figure S7), indicating that the G274R mutation does not disrupt the MYRF-1-MYRF-2 interaction. This observation is consistent with the characteristics of the MYRF structure (PMID: 28160598; PMID: 34345217). The critical interface of the MYRF trimer is located in the alpha-helix upstream of the ICE domain, the beta sheets of the ICE, and the beta-helix of the bridge region between ICE and DBD. Therefore, since MYRF-1(ju1121 G274R) is not situated in this critical interface of the MYRF trimer, it is unlikely that the mutation affects MYRF trimerization.

      With all available evidence, we propose a reasonable model where myrf-1(ju1121) has two effects: rendering myrf-1 defective in DNA binding and negatively interfering with MYRF-2 by forming a non-functional trimer consisting of monomer MYRF-1(ju1121) and wild-type MYRF-2.

      Regarding the potential neomorphic function of myrf-1(ju1121), the myrf-1(ju1121)/+ individuals appear superficially wild type and show no defects in synaptic remodeling. Furthermore, we have generated a myrf-1 minigene array that results in a complete rescue of the developmental phenotype in myrf-1(ju1121) (Meng, Figure 3A-D). Notably, the transgene is expected to be low copy numbered, as it was generated by injecting at a very low concentration of 0.1 ng/μl. The complete rescue of the phenotype strongly suggests that any potential aberrant effects caused by myrf-1(ju1121) mutants are minimal.

      In summary, myrf-1(ju1121) behaves similarly to myrf-1 myrf-2 double mutants, and we utilized this allele for the convenience of analysis.

      Due to the essential role of MYRF-controlled processes in larval development and the lack of detectable phenotypic effects in myrf-2 single loss-of-function mutants, it is evident that myrf-2 plays a minor role in these developmental events. Considering that development regulation rarely follows a simple linear or accumulative fashion, deciphering the relative contributions of each myrf-1 and myrf-2 in specific developmental events may not be straightforward. Consequently, our primary focus remains on investigating the functions of myrf-1.

      Nevertheless, we concur that providing a clear description of the impact of myrf-1 and myrf-2 single mutants on lin-4 expression is crucial. We are actively conducting ongoing analyses, and the new findings will be incorporated in the revised version of our manuscript.

      Characterizing myrf-1(syb1313, 1-700) as a Hyperactive Allele of myrf-1

      The cleavage and release of N-MYRF are developmentally regulated and occur in late L1. We have substantial evidence supporting the interaction between the non-cytoplasmic region of MYRF and another transmembrane protein, PAN-1, which is crucial for delivering MYRF onto the cell membrane (Xia, Figure 1, 7, 8, 10, 11 and 13). The myrf-1(syb1313, 1-700) mutant lacks the non-cytoplasmic region of MYRF, which is the interaction site for PAN-1. Initial analyses revealed that in the mutants, MYRF-1(syb1313) remains in the cytoplasmic, ER-like structure, resulting in larval arrest during L2 (Xia, Figure 8).

      However, a more careful analysis unveiled that a small amount of N-MYRF is processed and enters the nucleus, but this process is not dependent on the normal developmental timing and may take place during early-mid L1. Consequently, this leads to precocious yet discordant DD synaptic remodeling and M-cell lineage division (Xia, Figure 6 and 9). Considering the precocious development, the low quantity of nuclear N-MYRF, and the overall larval arrest phenotype observed in the mutants, we conclude that myrf-1(syb1313) represents an inconsistent, weak hyperactive form of MYRF-1. Moreover, the hyperactive function may be context-dependent, for instance, presence of myrf-1(syb1313) may be sufficient for certain needs in neurons but insufficient for epidermis. Our ongoing research to identify the downstream targets of MYRF also supports this notion.

      Given that the myrf-1(syb1313) mutant has been thoroughly characterized and published, it is the most suitable option for use in our current investigations on lin-4 expression.

      Furthermore, we employed the MYRF-1(delete 601-650) deletion mutant construct, which is a significantly more effective hyperactive MYRF-1 mutant when overexpressed. This reagent stems from our ongoing study, which is dedicated to identifying the self-inhibitory mechanisms of MYRF cleavage. The extensive volume of data that led to this discovery makes it impractical to include in the current manuscript. However, we are eager to share the substantial effects of MYRF-1(delete 601-650) mutants in activating lin-4 expression, which strengthens the role of MYRF in regulating lin-4. We will take care to revise this section to provide clearer references.

      The lin-4p::nls::mScarlet(umn84) knock-in reporter is loss-of-function for lin-4; however, lin-4 mature microRNA does not affect lin-4 expression.

      Indeed, the lin-4 knock-in reporter umn84 removes lin-4 coding sequence. As a result, the homozygous reporter strain is also lin-4 null mutants. Since both lin-4 and myrf-1 are located on Chr II and are less than 4 m.u. apart, the constructed strain is myrf-1 lin-4(umn84) / mIn1 (balanced by mIn1). Consequently, the myrf-1 homozygous animal is also lin-4 reporter homozygous.

      Regarding the endogenous function of the "auto-regulating element," we are aware of the follow-up paper by Frank Slack's group, in which they concluded that the previously reported sequence is dispensable for lin-4 expression, and the loss of lin-4 does not affect the expression of its primary transcript (PMID: 29324872). To avoid confusion, we will remove or revise the introductory sentences as necessary to accurately reflect this information.

      Additionally, besides analyzing the expression of the knock-in reporter of lin-4 (umn84), we also conducted a thorough analysis of mature microRNA expression using targeted qPCR and genomic analysis via microRNA sequencing. Both sets of results indicate severely defective upregulation of lin-4 mature microRNA in myrf-1(ju1121).

      No evidence indicates that the 2.4 kb reporter of Plin-4-gfp (maIs134) is an inappropriate reporter for lin-4 transcription.

      maIs134 is originated from the Ambros lab, and to date, there is no single evidence demonstrating that maIs134 cannot be regarded as a reliable transcription reporter for lin-4 expression. The Stec et al. (Curr Biol 2021. PMID: 33357451) paper suggests that the PCE or CEA site (at ~ -2.8 kb) outside the 2.4 kb region confers enhancing effects for lin-4 transcription, but no other published paper has studied lin-4 transcription and cited this finding.

      While the Stec et al. paper provides elaborate mechanistic descriptions, the basic characterization of the importance of CE-A and blmp-1 to lin-4 expression is lacking. Deletion of CE-A in the lin-4 promoter reporter using an Ex array transgene resulted in highly variable reporter expression (Stec, Figure 4D). Notably, two high expression data points indicated that a transgene reporter without CE-A can be highly expressed, suggesting that CE-A is unnecessary for lin-4 transcription. Only when both CE-A and CE-D (within 2.4 kb) were deleted, the reporter expression was significantly decreased. Moreover, deletion of CE-C (proximal region) alone caused severe loss of reporter activity, supporting that proximal CE-C is the essential element, while CE-A is not.

      It is important to note that the effect of CE-A on lin-4 expression has not been analyzed using stable transgenes or genetic deletions in the endogenous lin-4 region. Furthermore, there is no data on how blmp-1 mutants affect the expression of the wild-type lin-4 promoter reporter, CEA deletion reporter, or lin-4 mature microRNA, despite the paper’s main claim that blmp-1 boosts lin-4 expression. While CE-A can confer an enhancing effect in epidermal expression when fused to the gst-5 promoter, there is no data showing that CE-A is sufficient to drive lin-4 transcription by itself.

      In summary, there is currently insufficient evidence to establish whether CE-A is necessary or sufficient for regulating lin-4 expression. In fact, the data presented in Stec et al. (Curr Biol 2021) suggest that CE-A is unnecessary for lin-4 expression. As such, I do not see any reason to consider the 2.4 kb reporter in maIs134 as inappropriate for analyzing lin-4 transcription. Furthermore, our presented data using the knock-in reporter of lin-4 (umn84) demonstrated that its regulation by myrf is essentially consistent with the observations drawn from the maIs134 analysis.

      The Significance of the Finding: MYRF Regulating lin-4 Upregulation

      We are grateful that the editors find our results valuable for those interested in lin-4 expression. However, we acknowledge that the editors may not share the same enthusiasm as we do, seeing this as a landmark discovery in understanding postembryonic development, a fundamental question in the field of developmental biology.

      Importance of Understanding lin-4 Upregulation in Development

      The foundation of developmental biology has been built on the principles derived from studying embryonic development in model organisms like Drosophila, exemplified by the Nobel laureates Lewis, Nusslein-Volhard, and Wieschaus. These principles explain what occurs during embryonic development, including patern formation, morphogenesis, and differentiation. However, these existing principles do not fully explain the phenomena of postembryonic development, including growth. For instance, during C. elegans development in L1, it remains unclear what controls the initiation of P cell division. If we may exclude dividing cells from the discussion, numerous stage-specific changes occur in non-dividing cells, including neurons. The extensive, systematic expression studies of transcription factors in C. elegans have failed to provide evidence that such developmental progression is driven by sequential activation of transcriptional cascades, as commonly observed during embryonic differentiation. A different approach to ask a similar question is to inquire how developmental timing is controlled, e.g., "why does it take a boy 12 years to reach adolescence?" This perspective highlights the need to identify potential unidentified checkpoints that control postembryonic stages (An example of insightful review: The Systemic Control of Growth. Cold Spring Harb Perspect Biol. 2015. PMID: 26261282)

      The upregulation of lin-4 represents a system’s checkpoint during postembryonic development. Deciphering the mechanism controlling lin-4 expression is instrumental in understanding the principles of postembryonic development, even extending to adult development, including life span control.

      Importance of the Finding: MYRF's Control of lin-4 Upregulation

      To date, no other essential, positive regulator of lin-4 transcription has been identified, although several negative regulators have been reported. A landmark paper by Victor Ambros identified FLYWCH as a repressor of lin-4 expression during embryogenesis (PMID: 18794349). FLYWCH mutants fail to progress to normal hatched larvae, implying that FLYWCH is crucial. The paper indeed suggested that FLYWCH has additional functions beyond suppressing lin-4, although these functions have not been thoroughly characterized. The significance of the FLYWCH finding lies in the elaborate control during the transition from embryo to larval development, where lin- 4 is actively suppressed. This control may ensure the robustness of subsequent lin-4 activation. The process during the embryo-to-larvae transition, as well as the counterpart process in mammalian development perinatally, remains poorly understood.

      Another negative regulator of lin-4 is lin-42, as reported in three papers in 2014 (PMID: 25319259; PMID: 24699545; PMID: 25032706). Lin-42 negatively regulates lin-4 expression, despite the main focus of the papers being lin-42's repression of let-7. However, the precise mechanisms by which this repression is achieved are not fully understood.

      Amy Pasquinelli's lab conducted a genome-wide screen to identify factors responsible for driving lin-4 upregulation but did not identify a critical factor that promotes lin-4 transcription (PMID: 20937268).

      In the recent paper by Stec et al. (Curr Biol 2021. PMID: 33357451), they reported blmp-1's role in enhancing lin-4 expression. However, the significance of blmp-1 in regulating lin-4 remains vaguely described, despite a large amount of data describing elaborate epigenetic controls. The paper did not provide data on how endogenous lin-4 expression is affected in blmp-1 mutants, nor did it demonstrate how full-length reporter expression is affected in blmp-1 mutants. The only relevant data appears to be on the CE-A-gst-5 promoter reporter in blmp-1 mutants. As a result, it remains unclear how blmp-1 affects lin-4 transcription.

      In summary, no single factor has been identified, the loss of which leads to significant deficiencies in lin-4 upregulation. MYRF is the first and a critical factor identified in this context. This finding represents a significant advancement in our understanding of lin-4 regulation and its crucial role in development.

    1. Author Response:

      We thank eLife for carrying out the peer review of our preprint. In this letter, we will provide a response to the eLife assessment, and the editor’s public review, and will also address the major points raised in the peer-review of our study.

      First, we wish to inform the readers that including this review, our manuscript has now been reviewed 5 times. These have included three reviews at an earlier journal, a review at eLife under the older model, and the current review at eLife under the new model. In an effort to provide transparency and increase the reader’s confidence in our study, all the prior reviews and our rebuttals to them have been uploaded to Biorxiv and are publicly available for all readers to peruse [1]. These reviews will show that we have responded comprehensively with additional data, and analyses over the last 3 years. Of the current reviewers, Reviewer #1 (who was also Reviewer #1 at the earlier journal) has reviewed our manuscript all 5 times. At the prior journal, an additional Reviewer (#2) carried out 3 cycles of review – and we responded fully and comprehensively to all the issues and comments of that Reviewer. It is our understanding that the prior Reviewer #2 did not respond to the review request from eLife, after which eLife recruited two new Reviewers (current Reviewers #2 and #3), who have now reviewed our work twice – once under the older model and now again under the newer model.

      Next, to ease readability, we will respond to the review in three parts. Part A will be dedicated to the editors’ public review. Part B will be dedicated to the response to eLife assessment, and we will respond to the reviewers’ comments in Part C.

      Part A: Response to editor’s public review: We thank the editor for his nuanced and fair read of our data and our inferences, and of the multiple back-and-forth cycles of reviews and rebuttals. The editor’s public review highlights key points put forth in our data, and succinctly discusses the evidence provided for our claims. Here, we respond to each of these highlights.

      (i) The editor agrees that subject to the broader limits of lineage fate-mapping experiments, which are universal for every prior and current study of vertebrate development, we have provided sufficient evidence for the presence of a population of cells within the myenteric ganglia, which shows mesodermal and not neural crest derivation, and which expresses the pan-neuronal marker Hu among other neuronal and mesenchymal/mesodermal markers.

      Given that the current accepted annotation for enteric neurons depends on their expression of pan-neuronal markers (which we show are expressed by MENs), expression of neurotransmitter-encoding genes and proteins (such as CGRP, NOS1, ChAT, etc, which we show are expressed by MENs), and their localization within the enteric plexuses (we show evidence of intra-ganglionic localization of MENs in the myenteric plexus), our data suggests that in describing MENs, ours is the first report describing the presence of a mesoderm-derived neuronal population in a significant neural tissue. By virtue of the continual expansion of the MENs population with maturation and aging, we show evidence that MENs contributes to the post-natal maturation and aging of the enteric nervous system (ENS), and by reducing the proportions of MENs in aging tissue, we can rejuvenate the ENS to normalize gut function in aging mice.

      (ii) The editor comments on whether beyond the accepted norm of their intraganglionic localization and expression of pan-neuronal markers, MENs can be described as functional neurons. We agree that in our manuscript, we did not test how MENs function. This is expressly because the current report is the first step in the study of MENs and does not aim to understand how MENs regulate various gut functions. In this response however, we wish to put forth a few arguments that would clarify some of the existing evidence on the functional nature of MENs as well as the current state of knowledge on ENS functions. These would help the readers understand the current evidence on the functional nature of MENs, and in addition, why it would be premature to expect MENs to exhibit canonical neuronal behavior.

      a. MENs generate neurotransmitters and neuropeptides: Enteric neurons release various neurotransmitters, and their ability to generate important neurotransmitters such as nitric oxide (NO) and acetylcholine depends on their expression of enzymes Nitric Oxide Synthase 1 (NOS1) and choline acetyltransferase (ChAT). Our work shows that sub-populations of MENs express these important neurotransmitter-generating enzymes (Fig 3). Further, our data also shows that MENs express CGRP, which is an important neuropeptide for regulating various gut functions (Fig 3). These important data show that at the protein level, many MENs have the same cellular machinery as that of NENs that can help carry out regulation of important gut functions.

      b. MENs have been shown to be functional in a prior study: Recently, enteric neurons have been shown to carry out significant immunomodulatory functions. These have included the expression of cytokines such as IL-18, which regulates intestinal barrier (as shown by Jarret et al. [2]), and CSF1, which regulates macrophage recruitment [3]. Jarret et al shows that the enteric neuron-derived IL-18 regulates immunity at the mucosal barrier. We show that the IL-18 – expressing enteric neurons are MENS (Fig 4), and thus, the data from Jarret et al [2] provides evidence that MENs are indeed functional in the in vivo environment.

      c. We do not quite know how many enteric neurons work at the electrophysiological level: Canonical vertebrate neurons exhibit resting membrane potentials (RMP) in the range of -70 to -80 mV, and during neuronal activation, an increase in membrane potential beyond the threshold of -55 mV activates their action potential [4]. By contrast, past and recent studies have shown that the average RMP of rodent and human enteric neurons is significantly more positive than -70 mV (for human ENS: -48 ± 8 mV, for mouse ENS: -46 ± 6 mV for S neurons, -56 ± 5 mV for AH neurons) [5, 6]. These data suggest that enteric neurons show significant departures from canonical neuronal behaviors and thus, expecting MENs to adhere to canonical neuronal behavior – when most of the ENS does not adhere to expected norms - would be incorrect.

      d. A neuron is not defined by its ability to generate an action potential: Neuronal behavior does not require the presence of action potentials, as observed in the neurons in C. elegans [7], much in the same way that the presence of action potentials is not restricted to neurons as it occurs in nonneuronal cells, including in enteroendocrine cells of the mammalian gut [8]. Thus, the presence or absence of action potentials cannot be the basis for adjudicating whether or not a neurotransmitter-expressing cell in a neural tissue is a functional neuron.

      (iii) The Editor, after reading the extensive prior and recent correspondence between the authors and the reviewers on whether the cells analyzed in the transcriptomic experiments are the same as those observed in tissues (called tissue MENs by a reviewer), opined that he found “the authors' assertions that they have described a cluster of cells that express both neuronal and mesodermal genes, and that this cluster corresponds to the tissue MENs described in lineage tracing, to be broadly sound”.

      We are enthused by the Editor’s opinion, as we had previously argued that our data connecting the transcriptomic data to tissue MENs is robust on the basis of extensive immunohistochemical validations of marker genes found in our single cell transcriptomic analyses. The Editor notes some confusion on why some marker genes not specific to MENs were used for the analyses and further points to the prior rebuttals we have posted on Biorxiv [1], where detailed clarifications on the choice of marker genes have been made. In the interest of readability, we direct the readers to these prior rebuttals at Biorxiv for more details. Succinctly, we initially tested canonical neuronal genes by immunolabeling (such as NOS1, ChAT, CGRP, etc) in NENs and MENs before performing single cell transcriptomic experiments. After performing the transcriptomic experiment, we next chose to validate neuronal and mesenchymal genes that were found expressed in the MENs cluster (such as DCN, SLPI, IL-18, NT-3, etc). Finally, in previous cycles of review, on the reviewer’s insistence, we included data on the expression of a host of neuronal genes and their encoded proteins (including Vsnl1, Pde10a, etc) to provide further evidence of neuronal identity of MENs.

      While without a significantly large cluster of NENs, it is impossible to know in our transcriptomic data, whether a gene expressed by MENs would be similarly expressed by NENs, it is important to note that lack of detection of a gene in the single cell experiments cannot be inferred as lack of its expression in those cells, and hence, our inferences on whether any marker gene was exclusively expressed by neurons of a particular lineage were determined by immunohistochemistry. Additionally, we wish to reiterate and inform the readers that our study provides detailed analysis of prior work by May-Zhang et al [9], where they have described a small cluster of Phox2b-expressing cells from the murine myenteric plexus that shows the expression of neuronal and mesenchymal markers. Our analyses shows that the transcriptomic profile of MENs matches the molecular signature of these cells. In the longitudinal muscle – myenteric plexus layer, only glial cells and neurons express Phox2b [10], suggesting that this cluster sequenced by May-Zhang et al are cells of the myenteric plexus. We provide evidence that the majority of the MENs were left unsequenced by MayZhang et al and that this minimized the representation of MENs in their data (Fig 5). These data together provide important confirmation of our argument that the transcriptomic MENs point to no other cell type but the tissue MENs.

      (iv) The Editor opines that a weakness in our current data is the significant overrepresentation of MENs in the single cell experiment, while also noting that our “explanation - that some cells are more sensitive to manipulations required to prepare cells for sequencing - is certainly well-represented in the literature and is therefore plausible….But it isn't fully satisfactory”. In our prior arguments (as well as in Part C), we have provided explanations based on prior observations that the issues of disproportionate representation of cell types are a technical limitation of the single cell transcriptomic methodology, which is prevalent in other experimental conditions for ENS (including the gut cell atlas study by Elmentaite et al [11]), and for other cell types in various organs. Due to this limitation, proportions of cells in the single cell space should not be inferred as their proportions in tissues. We also agree with the Editor that owing to the low representation of NENs, our data does not allow for a detailed comparison of the similarities and differences between the neurons of the two lineages, and that “an ideal analysis would have more cells, deeper sequencing, and comprehensive validation of the identity of each cluster of cells.” While in this study our aim was to describe the existence of MENs and not to perform an in-depth characterization of their sub-populations, we agree that this is the logical next step in creating a better understanding of the true diversity of ENS neurons. To that, we are currently evolving the methodologies to allow for a deeper and a more comprehensive analyses and validation of the various MENs populations, and study how they differ from NENs. We aim to publish these data in our next study.

      (v) We agree with the Editor’s assessment on our transcriptomic data that “these data and analyses bolster the authors' claims, without conclusively establishing them. That is, these data should neither be dismissed nor, on their own, considered definitive.” We have only used our single cell transcriptomic data to provide additional support for our claims (which are based on extensive lineage fate mapping and immunohistochemical analyses) and are not using these as a stand-alone definitive proof of a mesodermal origin. The data from the transcriptomic experiments were used to learn additional molecular markers, whose expression in MENs in tissue could be tested by immunohistochemistry. With this methodology, we provide data on the coexpression of neuronal and mesenchymal markers by MENs, and test by computational analyses whether similar neuronal population exists in other murine and human transcriptomic datasets.

      In addition, we completely agree with the Editor that “at this stage in the history of single-cell analysis, the criteria for using single cell sequencing data to establish cell type and cell origin is are not well established, and that neither the presence nor absence of specific sets of genes in single cells should not, for both technical and biological reasons, be considered dispositive as to identity.” We are very mindful of this limitation of these analyses and hence have continually ensured that our study only uses transcriptomic data of postnatal MENs to define a preliminary molecular signature of MENs, and not to infer developmental origins of MENs.

      (vi) We thank the Editor for his summary and for highlighting that despite using multiple lines of evidence to support our hypothesis, the current reviewers are not yet convinced of the mesodermal origin of MENs. Our study utilizes well established tools for lineage fate-mapping (which are the only tools that currently are widely disseminated and accepted in the field of developmental biology) to show that MENs are not derived from the (Wnt1-cre, Pax3-cre -expressing) neural crest and instead are derived from the (Mesp1-cre, Tek-cre -expressing) mesoderm. The reviewers agree that by using multiple lines of evidence, we have established that our results of lineage fate-mapping are real and not due to any artifact. With this rationale, the reviewers would agree that MENs observed in tissue do not show evidence of derivation from neural crest while showing evidence of derivation from the mesoderm. Despite this, we cannot ascertain the scientific rationale for why despite agreeing with our lineage fate-mapping methods and analyses, the reviewers remain unconvinced as to the developmental origins of MENs. We do not know what other experiment would pass the reviewers’ muster to definitively annotate the mesodermal origins of MENs.

      We wish to highlight that a recent study in ctenophores, where the investigators show evidence of a syncytial neural net [12], shows that much of the dogmatic view of how neurons are supposed to work is being overturned and newer paradigms that support broader interpretations for the definitions of neurons and how they regulate functions are being established. Our work on the developmental origins of a large population of neurons of the ENS, which is regarded as a primordial and conserved neural tissue, should be viewed in a similar vein.

      Part B: Response to eLife assessment: Ours is the first report on the mesodermal derivation of a large population of neurons in a significant nervous system in mammals. We show that this population of neurons, called MENs, is molecularly distinct from the canonical neural crest-derived lineage of neurons, and that the post-natal ENS shows evidence of increasing presence of MENs in the maturing and aging ENS. We show that the two neuronal lineages are sensitive to their own growth factors, which can be used to manipulate their proportions in tissue, and thereby provide a potential rejuvenating therapy for age-associated intestinal dysmotility. We also show that on the basis of MENs’ marker expression, MENs maybe present in the human ENS, and that disproportionate changes in their proportions are associated with chronic gut dysmotility disorders. Our work has profound implications in the multiple fields, including those of enteric and peripheral neurobiology, developmental biology, medicine, and aging. We are thankful that the eLife assessment found that we provide sufficient evidence for this important work.

      Part C: Response to Reviewers: Here, we wish to note that all the comments of the reviewers have been sufficiently addressed in prior reviews. All prior reviews, and our extensive rebuttals are available at our preprint for the readers’ perusal [1]. In this response, we wish to succinctly address some comments that have continued to emerge in this round of peer-review.

      (i) We wish to highlight that the Reviewers 1 and 2 agree that our lineage-fate mapping experiments are correct and the results are not a result of any artifact. In addition to the additional reviewer in the prior reviews at an earlier journal, whose comments were addressed in full, we have a total of three reviewers who agree that our results on lineage fate-mapping are robust. Reviewer 3 comments on the possibility of ‘cre mosaicism’ or the deleterious issues with long-term expression of cre. Our prior rebuttals have dealt with this comment at length, but succinctly, our results are (a) based on extensive cre and floxed reporter controls for both the lineages, and (b) replicate observations made by other labs – including the Pachnis, the Heuckeroth, and the Southard-Smith labs to provide confidence that these are not due to any artifacts in cre or reporter gene expression. Finally, cre in the two lineage fate mapping systems (Wnt1-cre and Mesp1-cre) is only developmentally expressed and thus, there is no reasonable possibility that our results would be impacted by long-term expression of cre. Thus, our results and inferences on lineage fate mapping, which is central to our annotation of the two distinct developmental lineages, correctly describe the developmental origin of MENs.

      (ii) By using extensive immunolabeling for (~21) markers that were learnt from our transcriptomic experiments, we provide evidence of the firm connection between the cluster of cells we annotated as MENs in the single cell transcriptomic experiments and the MENs we observe in tissues. Thus, we have performed more validation for these neurons than any other studies that have traditionally used 2 - 3 markers to validate a cell cluster in the ENS.

      In addition, by providing evidence of the expression of pan-neuronal marker Hu and other ENS markers that include NOS1, ChAT, CGRP, etc and ~40 neuronally significant genes, we have established the neuronal nature of MENs. With regards to annotation of MENs as neurons, we expected and understand the confusion in the field with our discovery of mesoderm-derived neurons that coexpress neuronal and mesenchymal markers. We wish to put forth the following arguments for the readers to consider.

      a. The annotation of Hu-expressing cells within the myenteric ganglia has been traditionally accepted as an enteric neuron. In those terms, by virtue of their intra-ganglionic presence and expression of Hu (and our data shows that Hu antibodies do not discriminate between the three neuronal isoforms of Hu) and other neuronal markers such as NOS1, ChAT, and CGRP, MENs should be annotated as neurons. We had addressed the semantic nature of this question in our last rebuttal (review #3, reviewer 1), which is available on the preprint [1].

      b. As the molecular data on MENs suggests that they have significantly different biology, it would not be unreasonable to expect that their neuronal behavior may be quite different. This is underscored by the fact that we observe many MENs to lack the expression the protein SNAP25, whose presence is thought to be central to canonical neuronal behavior. We also cite evidence that neurons without SNAP-25 expression occur in the CNS neurons as well. In light of these discoveries, gauging the biology and neuronal behavior of MENs is a significant undertaking as it cannot be assumed that the behavior of MENs will be similar to that of NENs.

      c. It is not logical to say that “Expressing one of the Hu proteins (Elavl2) probably isn't enough to call these "neurons" especially when neurons usually express Elavl3-4 (HuC/D)” especially when there are currently no antibodies to discriminate between the three neuronal gene products.

      d. While at the outset it maybe an easy proposition to suggest that we provide evidence of neuronal activity in MENs by calcium flux or by electrophysiological means, it is important to know that calcium flux exists in all cells of the gut wall, including in smooth muscles, enteric glia, neurons and thus studying calcium flux will not provide definitive proof of neuronal behavior in MENs. Further, we reiterate from Part A of this response letter that “neuronal behavior does not require the presence of action potentials, as observed in the neurons in C. elegans [7], much in the same way that the presence of action potentials is not restricted to neurons as it occurs in non-neuronal cells, including in enteroendocrine cells of the mammalian gut [8]. Thus, the presence or absence of action potentials cannot be the basis for adjudicating whether or not a neurotransmitter-expressing cell in a neural tissue is a functional neuron.”

      (iii) Our identification and validation of the molecular identity MENs using single cell transcriptomic experiments helps us establish the congruency of our cell cluster with a similar cluster enteric neurons previously observed by the SouthardSmith lab in their analyses. Thus, similar to our observations on the lineage-fate mapping models, observations on our transcriptomic data are also in-line with the observations made by other labs in the field.

      (iv) To address any remaining confusion in the minds of the reviewers and of the readers about the correct methodology for interpreting single cell transcriptomic data and the limitations of this technique, we wish to reiterate that:<br /> a. Single cell or nucleus RNA sequencing methods are biased towards sequencing transcripts that are abundant relative to all other transcripts for that individual cell (detection and amplification bias). Thus, while the same transcript may be equally expressed at an absolute level in two different cells, it will be more readily sequenced and detected in the cell where the transcript is relatively more abundant.

      b. Correct interpretation of single cell/nucleus transcriptomic data relies on an understanding that not all transcripts of a cell can be sequenced and detected, and thus absence of the expression of transcripts in a cell does not imply absent gene expression. Together this shows the fallacy of an argument often put-forth by the reviewers that a lack of detection of a gene transcript (for e.g. Phox2b) in MENs in a scRNAseq experiment should be inferred as a lack of expression of this transcript, even though we provide evidence of the expression of PHOX2B protein in MENs, and the expression of this transcript in the MENs in the data from the Southard-Smith lab.

      c. scRNAseq is not a technique where annotation of a previously unknown cluster should be biased by the detection of expression of one or two genes, and instead establishing identity or conferring novel annotation of that cluster is defined by co-expression of several genes which must be validated in tissue.

      d. It is well known that enzyme-based dissociation methods are unequally tolerated by diverse cell types, which is known to cause over- or underrepresentation of several cell types in scRNAseq (Uniken Venema et al.[13], who showed that dissociation method drives detection and abundance of cells sequenced; Wu et al.[14], showed the existence of similar dissociation bias in the kidney; Tiklova et al.[15] showed that specific subpopulations of Dat-expressing neurons in the developing mammalian brain were underrepresented in scRNAseq). The Gut Cell Atlas study (Elmentaite et al.[16]) was not able to detect NENs in the adult intestinal tissue. The lack of detectable canonical enteric neurons (NENs) in the adult tissue in their study should not be viewed as an absence of NENs in those tissues, and with the same logic, a restricted abundance of NENs and a larger abundance of MENs in our dataset cannot and should not be viewed as a reliable indicator of their actual proportions in tissues. The aim of our study is not to provide a comprehensive molecular atlas for all cells that reside in the LM-MP tissue layer, but to use the information in this atlas to identify a cell cluster that best describes MENs, and then use additional tools to validate this information.

      e. Without extensive validation by immunohistochemical or other means, detection of transcripts of a particular gene ‘Z’ (which is known to be expressed in cell type ‘X’) in a particular cell cluster ‘A’ of a single cell transcriptomic dataset does not directly imply that cell cluster ‘A’ points to cell type ‘X’. Thus, the detection of transcripts of the gene Wt1 (which is known to be expressed in mesothelial cells) in MENs, in itself does not mean that the MENs cluster comprises of mesothelial cells. It simply suggests that in addition to its expression in mesothelial cells, Wt1 gene is also expressed by MENs – an inference which is supported by data that show the expression of LacZ in myenteric ganglia cells in the WT1-cre transgenic mouse (Wilms et al 2005 [17]).

      (v) Our study has performed two scRNAseq studies, first to establish the distinct molecular signature of MENs, and second to provide transcriptomic evidence of MENs-genesis. In the last and current review, Reviewer 2 opines that we should perform an additional single cell RNA sequencing experiment just to show that the MENs cluster is represented in the mesoderm-enriched transcriptomic data. There is no doubt that owing to the expression of various mesodermal-markers that we show are expressed by MENS (both transcriptomically in scRNAseq and at the level of proteins in tissues), the cluster of MENs is mesodermal in origin. Thus, we have already provided evidence and met a higher burden of proof on the mesodermal identity of MENs, and thus, we do not consider the costly scRNAseq experiment proposed by the reviewer a definitive experiment that would justify the time or the cost.

      (vi) Our prior rebuttals have provided the reviewers with evidence that shows that our study has used standard bioinformatic pipelines to analyze our data, and our inferences of the transcriptomic data are sound and well validated by additional methods.

      (vii) Many comments of the reviewers that required textual edits were already carried out after the prior review at eLife. While a revised version of our manuscript was submitted to eLife for the current review, it is unfortunate that the reviewers have not updated many of their comments. For the sake of brevity, we will not be responding further to the comments that we have already addressed at length in prior rebuttals or in form of textual edits.  

      References

      1. Kulkarni, S., et al., Age-associated changes in lineage composition of the enteric nervous system regulate gut health and disease. bioRxiv, 2022: p. 2020.08.25.262832.
      2. Jarret, A., et al., Enteric Nervous System-Derived IL-18 Orchestrates Mucosal Barrier Immunity. Cell, 2020. 180(1): p. 50-63 e12.
      3. Muller, P.A., et al., Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell, 2014. 158(2): p. 300--13.
      4. Chrysafides, S.M., S.J. Bordes, and S. Sharma, Physiology, Resting Potential, in StatPearls. 2023: Treasure Island (FL) ineligible companies. Disclosure: Stephen Bordes declares no relevant financial relationships with ineligible companies. Disclosure: Sandeep Sharma declares no relevant financial relationships with ineligible companies.
      5. Yew, W.P., et al., Electrophysiological and morphological features of myenteric neurons of human colon revealed by intracellular recording and dye fills. Neurogastroenterol Motil, 2023. 35(4): p. e14538.
      6. Furukawa, K., G.S. Taylor, and R.A. Bywater, An intracellular study of myenteric neurons in the mouse colon. J Neurophysiol, 1986. 55(6): p. 1395-406.
      7. Liu, Q., G. Hollopeter, and E.M. Jorgensen, Graded synaptic transmission at the Caenorhabditis elegans neuromuscular junction. Proc Natl Acad Sci U S A, 2009. 106(26): p. 10823-8.
      8. Gribble, F.M. and F. Reimann, Enteroendocrine Cells: Chemosensors in the Intestinal Epithelium. Annu Rev Physiol, 2016. 78: p. 277-99.
      9. May-Zhang, A.A., et al., Combinatorial Transcriptional Profiling of Mouse and Human Enteric Neurons Identifies Shared and Disparate Subtypes In Situ. Gastroenterology, 2021. 160(3): p. 755-770 e26.
      10. Corpening, J.C., et al., A Histone2BCerulean BAC transgene identifies differential expression of Phox2b in migrating enteric neural crest derivatives and enteric glia. Dev Dyn, 2008. 237(4): p. 1119-32.
      11. Elmentaite, R., et al., Cells of the human intestinal tract mapped across space and time. Nature, 2021. 597(7875): p. 250-255.
      12. Burkhardt, P., et al., Syncytial nerve net in a ctenophore adds insights on the evolution of nervous systems. Science, 2023. 380(6642): p. 293-297.
      13. Uniken Venema, W.T.C., et al., Gut mucosa dissociation protocols influence cell type proportions and single-cell gene expression levels. Sci Rep, 2022. 12(1): p. 9897.
      14. Wu, H., et al., Comparative Analysis and Refinement of Human PSC-Derived Kidney Organoid Differentiation with Single-Cell Transcriptomics. Cell Stem Cell, 2018. 23(6): p. 869-881 e8.
      15. Tiklova, K., et al., Single-cell RNA sequencing reveals midbrain dopamine neuron diversity emerging during mouse brain development. Nat Commun, 2019. 10(1): p. 581.
      16. Elmentaite, R., et al., Single-Cell Sequencing of Developing Human Gut Reveals Transcriptional Links to Childhood Crohn's Disease. Dev Cell, 2020. 55(6): p. 771783 e5.
      17. Wilm, B., et al., The serosal mesothelium is a major source of smooth muscle cells of the gut vasculature. Development, 2005. 132(23): p. 5317-28.
    1. Author Response

      Many thanks for the detailed and sometimes sharp, yet appropriate criticism of our study. It was an incentive for us to carry out additional analyses and to devote more effort to an elaboration of concepts. The outcome is that the results have changed slightly and that we now give more space to a discussion of concepts. We first address here the points raised by more than one reviewer before responding to comments contributed by individual reviewers.

      The points raised can be divided into three thematic groups, 1) conceptual issues, 2) experimental and analytical questions, and 3) comments challenging the novelty of our results. On the first theme, we think it is essential to make a clear distinction between the conceptual and observational domains. As such, the criteria defining a “mirror neuron” and what is meant by the term "mirror mechanism" belong to the conceptual domain. This understanding of terms requires agreement among scientists, but is not experimentally testable. Unfortunately, there is no agreement on how to define a “mirror neuron” and what is meant by “mirror mechanism”. Thus, for the present work, the only option is to refer to specific definitions or to use our own, definitions which try to capture what others, and here most importantly Rizzolatti and colleagues, probably meant. We have adjusted the introduction in an attempt to convey our understanding and usage of the two terms in a hopefully comprehensible manner. Briefly, we use a definition for "mirror neuron" that we take from the first paragraph of the results section of Gallese et al. (Brain, 1996). We do not consider the "properties of mirror neurons" described in that paper as defining a mirror neuron (MN). Classifying neurons as MNs only on the basis of the presence of a modulation of discharge rate during an executed and an observed action compared with a baseline is a common practice also in other single neuron studies on MNs, consistent with this definition. Regarding "mirror mechanism", we refer to Rizzolatti and Sinigaglia (2016) and make a distinction between a broad and a strict definition. Given our finding that there are almost no F5 MNs whose activity during observation is a motor representation according to our strict definition of a mirror mechanism, and also given the problem that the term “mirror mechanism” itself is not uniformly understood, the question arises whether and how the term "mirror neuron" should be used in the future. The answer to this may vary and belongs to the conceptual domain. We briefly address this question at the end of the discussion of the revised manuscript.

      From that understanding of terms, conceptual hypotheses are to be distinguished, which of course must allow experimental predictions, i.e., must be falsifiable. We now distinguish more clearly between a "representation hypothesis" and an "understanding hypothesis". Both hypotheses focus on F5 MNs and are based on the strictly defined mirror mechanism. We test the “representation hypothesis” in our study, and just because it is the basis for the “understanding hypothesis”, falsifying the “representation hypothesis” would allow us to conclude that the “understanding hypothesis” is not valid. In contrast, confirmation of the “representation hypothesis” would not, of course, allow us to conclude that the “understanding hypothesis” holds. That would really be circular reasoning (this conclusion was drawn by some and rightly criticized). However, support for the “representation hypothesis” would be the necessary prerequisite for the “understanding hypothesis” to be true. These two hypotheses take up the original argument that a certain understanding of observed actions could follow from an equality of action-specific F5 MN activity during execution and observation. Because we considered the data on equality of action- specific F5 MN activity to be insufficient, we designed this study. Since our result largely argues against the "representation hypothesis" and thus against the "understanding hypothesis," we now discuss alternative concepts for the function of F5 MNs in more detail. It should be noted here that our fourth concept ("goal-pursuit-by-actor") could well represent the observed action without contradiction to our broad definition of a mirror mechanism, which in principle could also serve a subjective experience (which could be conceived as a kind of understanding). The way we structure the concepts in the discussion of this revised manuscript is, in our opinion, a useful overview of the concepts. The third concept is new in this context. We would like to emphasize that we focus on F5 MNs and intentionally avoid a discussion of mirror neurons beyond F5 in this paper. With the data from this study, we cannot say anything about MNs outside of F5.

      Regarding the key question of how the "understanding hypothesis" is testable, or whether it may not be testable at all, we agree, of course, that for the conclusion of whether F5 MNs contribute to perception, only a manipulation of F5 MNs can clarify it. We now say that explicitly in the introduction. We agree with reviewer #2 that "understanding" here is not limited to "action recognition" or "action categorization”, which in principle could be implemented by purely sensory processing. Therefore, we also do not believe that the approach proposed by reviewer #3, which builds on the distinction of actions, would allow for a critical examination of the "understanding hypothesis”. But we disagree that the "understanding hypothesis" is not testable at all. Operationalization is necessary. If we accept that we can measure certain visual or auditory perceptions of an animal by operationalization (e.g., the subjective visual vertical, see for example Khazali et al., PNAS, 2020), then we must also accept that we can, in principle, measure other subjective experiences by operationalization, such as pain or aiming at a goal or even the co- experience of pain. An example of how to approach this is the study by Carrillo et al. (Curr Biol, 2019), which reviewer #2 and colleagues discussed in a recent review article (Bonini et al., TCS, 2022).

      With regard to the second theme, experimental and analytical questions, we noticed while reading the comments that in our first version we did not distinguish clearly enough between statements about single neurons and statements about populations of neurons. Therefore, we now clearly separate single neuron analysis and population code analysis in the structure of the article. In view of the fact that statements about mirror neurons in the literature mostly refer to single neurons, we added extensive single neuron analyses, so that only now statistically reliable statements about single neurons are possible. This has led to the realization that the number of neurons with exclusively shared code is so small that these neurons should be considered a rare exception. Given the small number of time periods with shared code, we additionally tested against a hypothesis already rightly proposed as an alternative explanation by G. Csibra in 2005 (Mirror neurons and action observation: Is simulation involved? In: What do mirror neurons mean? Interdisciplines Web Forum 2005). We were able to reject this hypothesis based on two of three methods for testing for a shared code. This is the second piece of evidence besides the clustering of time periods with shared code already described in the first version that time periods with shared code cannot be considered random.

      We discuss in more detail the question of whether neurons that exhibit a shared code at least at times support the representation hypothesis. To this end, we additionally examined whether certain action segments are more frequently represented with a shared than with a non-shared code, whether neurons with shared code differ from those with non-shared code in anatomical location, and whether an accuracy can be achieved with a time bin-wise selection of neurons with shared code by population cross-task classifiers as with within-task classifiers in the whole population.

      Another issue was how to test for shared code and how to decide if a code has enough sharing. To answer the question, the exact hypothesis we intended to test here is crucial. The representation hypothesis states that the representation of the observed actions in F5 MNs corresponds to the representation as it occurs during the execution of the same actions. Therefore, the relationship between discharge rate and actions that holds during execution should also hold during observation, which is measurable with a classifier trained on execution trials and tested on observation trials. Moreover, the actions should not be more distinguishable during observation with a classifier other than the execution-trained classifier, because if that were so, it would mean that the representation of observed actions is different from that of executed actions. The detection of a cluster of time bins for which both conditions are satisfied confirms that it is possible to discover in this way the shared codes postulated by the representation hypothesis.

      With respect to concerns that the monkey may not have used the cue at all when the action was executed, we added a comparison with control trials with a non-informative cue and also compared the duration of the approach phase between the three actions. Regarding oculomotor behavior, we verified that the monkey had actually directed his gaze toward the action during action observation for all three actions.

      On the third issue, concerning the novelty of our results, we have now explained in more detail in the introduction why we felt it necessary to conduct a study we considered fundamental. As a result of our study, it can be clearly stated now that representations of observed actions as predicted by the strictly defined mirror mechanism are rare in F5 MNs, but nevertheless cannot be dismissed as random. This dispels the objection rightly raised by Csibra in 2005 and contradicts the currently prevailing view that such a representation can only be found at a population level. Even if these representations are ultimately explained by a concept other than the strictly defined mirror mechanism, their existence must be accounted for by any theory of the function of F5 neurons. Moreover, it is also shown that the observed actions are well discriminated with a non- shared code, at times even optimally. This contradicts the notion – which has been widespread for a long time since the work of Gallese et al. (Brain, 1996) – that mapping to motor representations in terms of broad congruence is simply not perfect. The applied cross-task decoding approach seems promising to test also in the future for a shared action code. Finally, reconsideration of alternative concepts has led us to highlight the possibility of a representation of a goal pursuit by the observer.

      Reviewer #1 (Public Review):

      The authors set out to investigate the hypothesis that mirror neurons in ventral premotor area F5 code actions in a common motor representation framework. To achieve this, they trained a linear discriminant classifier on the neural discharge of three types of action trials and test whether the thus trained classifier could decode the same categories of actions when observed. They showed that codes were fully matched for a small subset of neurons during the action epoch, while a wider set of "mirror neurons" showed only poorly matched codes for different epochs.

      This is one of the descriptions of our results, where we realized that in our first version we did not distinguish clearly enough between statements about single neurons and statements about populations of neurons. This prompted us to perform a detailed single neuron analysis.

      The authors controlled for potential visual object confounds by having identical objects be manipulated in three different ways and by having the animal carry out the motor execution in the dark. The main strength of the study lies in the clever decoding approach testing the matched tuning to behavioural categories in a model-free way. The central result is in the identification of the small sub-group of mirror neurons that show true matching during the execution epoch, which can dissociate the three types of action almost perfectly. This aligns well with some previous work while offering a novel avenue to identify and investigate those neurons. The underlying neuronal mechanism and behavioural relevance of these neurons remain an open question. It would have been interesting to understand better whether the specific motor representations at a recording site, for instance identified through microstimulation prior to recording (see Methods), the reaction times on individual trials or the specific gaze targets (object/hand) had a bearing on the decoding performance for a neuron/trial.

      We agree that these are interesting questions.

      In this study, the focus is on testing for a shared code according to a strictly defined mirror mechanism. We have now compared the anatomical locations of neurons with only time bins in which observed actions were discriminated with a shared code (according to one of the methods) to the locations of neurons with only time bins with non-shared code (see last paragraph in Results). We did not find any relevant difference and this is why one cannot expect topographically specific effects of microstimulation.

      We do not expect the reaction time (i.e., the time interval between LED onset and start button release, or the duration of the approach epoch) during execution or observation to have any effect on our results on shared coding as the analysis was based on relative time bins. The observed actions were predominantly distinguished late in the approach epoch, but especially in the manipulation epoch. At this time, reaction time is not expected to have a relevant influence.

      The relationship between gaze/eye position and the activity of mirror neurons, during execution or observation, is an interesting topic in itself. However, for testing for a shared code according to a strictly defined mirror mechanism, it is only relevant that the observing monkey actually observes the action. We have ensured this in our experiment by a fixation window and have now also confirmed that the monkey actually looked into the area of the object during all three actions (see Results, lines 209-219 in the manuscript with tracked changes).

      Ultimately, the uncovered matched mirror representations should in future experiments be tested with causal interventions and linked trial-by-trial to action selection performance.

      The authors put the focus of their discussion on the wider, less well-matched neuronal pool to support an action selection framework, which is of course a valid view and well established in motor representations. From a sensory perspective, sparse coding, as suggested by the small group of "true" mirror neurons identified with the decoding approach, should also be considered as the basis for a possible neuronal mechanism. A particular strength of the paper is that it could give new data and impetus to the important discussion about how motor and sensory coding frameworks come together in cortical processing.

      We have expanded the discussion considerably and also address the possibility of sparse coding.  

      Reviewer #2 (Public Review):

      The paper by Pomper and coworkers is an elegant neurophysiological study, generally sound from a methodological point of view, which presents extremely relevant data of considerable interest for a broad audience of neuroscientists. Indeed, they shed new light on the mirror mechanism in the primate brain, trying to approach its study with a novel paradigm that successfully controls for some important factors that are known to impact mirror neuron response, particularly the target object. In this work, a rotating device is used to present the very same object to the monkey or the experimenter, in different trials, and neurons are recorded while the monkey (motor response) or the experimenter (visual response) performed a different action (twist, shift, lift) cued by a colored LED.

      The results show that there is a small set of neurons with congruent visual and motor selectivity for the observed actions, in line with classical mirror neuron studies, whereas many more cells showed temporally unstable matched or even completely non-matched tuning for the observed and executed actions. Importantly, the population codes allow to accurately decode both executed and observed actions and, to some extent, even to cross-decode observed actions based on the coding principles of the executed ones.

      In my view, however, the original hypothesis that an observer understands the actions of others by the activation of his/her motor representations of the observed actions constitutes circular reasoning that cannot be challenged or falsified, as the author may want to claim. Indeed, 1) there is no causal evidence in the paper favoring or ruling out this hypothesis (and there couldn't be), 2) there is no independent definition (neither in this paper nor in the literature) of what "action understanding" should mean (or how it should be measured). Instead, the findings provide important and compelling evidence to the recently proposed hypothesis that observed actions are remapped onto (rather than matched with) motor substrates, and this recruitment may primarily serve, as coherently hypothesized by the authors, to select behavioral responses to others (at least in monkeys).

      1) One of the main problems of this manuscript is, in my view, a theoretical one. The authors follow a misleading, though very influential, proposal, advanced since the discovery of mirror neurons: if there are (mirror) neurons in the brain of a subject with an action tuning that is matched between observation and execution contexts, then the subject "understands" the observed action. This is clearly circular reasoning because the "understanding" hypothesis uniquely derives from the neuron firing features, which are what the hypothesis should explain. In fact, there is no independent, operational definition of the term "understanding". Not surprisingly there is no causal evidence about the role of mirror neurons in the monkey, and the human studies that have claimed to provide causal evidence of "action understanding" ended up using, practically, operational definitions of "recognition", "match-to-sample", "categorization", etc. Thus, "action understanding" is a theoretical flaw, and there is no way "to challenge" a theoretical flaw with any methodologically sound experiment, especially when the flaw consists of circular reasoning. It cannot be falsified, by definition: it must simply be abandoned. On these bases, I strongly encourage the authors to rework the manuscript, from the title to the discussion, by removing any useless attempt to falsify or challenge a circular concept and, instead, constructively shed new light on how mirror neurons may work and which may be their functional role.

      Please see the response to all.

      2) An important point to be stressed, strictly related to the previous one, concerns the definition of "mirror neuron". I premise that I am perfectly fine with the definition used by the authors, which is in line with the very permissive one adopted in most studies of the last 20 years in this field. However, it does not at all fulfill the very restrictive original criteria of the study in which "action understanding" concept was proposed (see Gallese et al. 1996 Brain): no response to object, no response to pantomimed action or tool actions, activation during execution in the dark and during the observation of another's action.

      We do not agree that the enumerated "very restrictive original criteria" emerge from the Gallese et al. (Brain, 1996) study. Except for the first paragraph in the results section, there is no clear statement on how mirror neurons should be defined.

      If the idea (which I strongly disagree with) was to simply challenge a (very restrictive) definition of mirroring (a very out-of-date one, indeed, and different from the additional implication of "action understanding"), the original definition of this concept should be at least rigorously applied. In the absence of additional control conditions, only the example neuron in Figure 2A could be considered a mirror neuron according to Gallese et al. 1996.

      We have the impression that the question does not distinguish clearly enough between the definition of "mirror neuron" and the definition of "mirror mechanism". In defining "mirror mechanism", we refer to the work of Rizzolatti and Sinigaglia (Nat Rev Neurosci, 2016). We do not think that this definition is out-of-date (see for example the 2018 article by Rizzolatti and Rozzi in Handbook of Clinical Neurology). If the term "mirror mechanism" is to be defined differently, then another term should be used for a new definition or an annotation should be added (such as "version 2"). This would be necessary to avoid unnecessary confusion resulting from unclear terms.

      Permissive criteria implies that more "non-mirror" neurons are accepted as "mirror": simply because they are permissively named "mirror", does not imply they are mirroring anything as initially hypothesized

      Even for a neuron that would be classified as a "mirror neuron" according to your previously stated "very restrictive original criteria”, it does not follow that it "mirrors” according to a mirror mechanism. And, of course, it is quite possible that more neurons do not "mirror” according to a mirror mechanism if one tests more neurons.

      (Example neuron in Fig 2B, for example, could be related to mouth, rather than hand, movements, since it responds strongly and similarly around the reward delivery also during the observation task, when the monkey should be otherwise still).

      We agree, it is not excluded that this neuron has a relation to mouth movements. However, since the neuron meets the conditions to be classified as a "mirror neuron", an additional relation to mouth movements would not be relevant. If mouth movements are to be an exclusion criterion, then this would have to be included and justified in the definition of a "mirror neuron".

      Clearly, these concerns impact all the action preference analyses. To practically clarify what I mean, it should be sufficient to note that 74% (reported in this study) is the highest percentage ever reported so far in a study of neurons with "mirror" properties in F5 (see Kilner and Lemon 2013, Curr Biol) and it is similar to the 68% recently reported by these same authors (Pomper et al. 2020 J Neurophysiol) with very similar criteria. Clearly, there is a bias in the classification criteria relative to the original studies: again, no surprise if by rendering most of the recorded neurons "mirror by definition" then they don't "mirror" so much. I suggest keeping the authors' definition but removing the pervasive idea to challenge the (misleading) concept of understanding.

      We think that it is very important to clearly separate "mirror neuron" from "mirror mechanism". And the question arises whether one should not include a mirroring criterion, which is derived from a definition of a mirror mechanism, in the definition of mirror neurons. We address this briefly in the discussion. Ultimately, the point of our study is to find out how many of the - if you want to put it that way - "permissively defined" mirror neurons actually “mirror”. And the answer depends on how one defines “mirror mechanism”. We provide an answer by resorting to a “strictly defined mirror mechanism”. We have now also given throughout the results section the percentages of neurons with certain properties with respect to all measured F5 neurons. This is a reference that allows comparisons among studies, provided that no neurons were directly discarded during recording, which we avoided in our study.

      3) It would be useful to provide more information on the task. Panel B in Figure 1 is the unique information concerning the type of actions performed by the monkey and the experimenter. Although I am quite convinced of the generally low visuomotor congruence, there are no kinematics data nor any other evidence of the statement "the experimental monkey was asked to pay attention to the same actions carried out by a human actor". First, although the objects were the same, the same object cannot be grasped or manipulated in the same way by a human and a macaque, even just because of the considerable difference in the size of their hands; this certainly changes the way in which monkeys' and experimenter's hands interact with the same object, and this is a quantifiable (but not quantified) source of visuomotor difference between observed and executed actions and a potential source of reduced congruency.

      We agree, of course, that there are kinematic differences in how a monkey and how a human manipulate the same object. We have not measured the kinematics and thus cannot make a systematic statement about this. We now report in the results section the rather incidental observation that already the reaching trajectories for the three actions differed and show corresponding differences in the timing of the approach epoch. However, for the question of this study, how many neurons are eligible to represent observed actions according to a strictly defined mirror mechanism, the kinematic repertoire of the observed actor is irrelevant. The reference is the F5 mirror neuron activity during the monkey's own action, i.e., how the monkey approaches the object with his hand, how he grasps it, and how he brings it to a certain target position and holds it there. The observed action, according to the strictly defined mirror mechanism, is to be mapped to this reference. Therefore, we did not collect kinematic data. But it is of course a possible explanation for a non-shared code if the strictly defined mirror mechanism does not apply.

      Second, there is little information about monkey's oculomotor behavior in the two conditions, which is known to affect mirror neuron activity when exploratory eye movements are allowed (Maranesi et al. 2013 Eur J Neurosci), potentially influencing the present findings: a {plus minus}7 (vertical) and {plus minus}5 (horizontal) window at 49 cm implies that the monkey could explore a space larger than 10 cm horizontally and 14 cm vertically, which is fine, but certainly leaves considerable freedom to perform different exploratory eye movements, potentially different among observed actions and hence capable to account for different "attention" paid by the monkey to different conditions and hence a source of neural variability, in addition to action tuning.

      We agree that the topic of the relationship between F5 MNs activity and eye movements is interesting. And we know from the work of Maranesi et al. (2013) that at least larger eye movements during action observation are related to the activity of F5 MNs. In our study, we ensured that the observing monkey was actually observing the action. For this purpose, we used a fixation window. We now additionally verified that the monkey really looked into the area of the object during all three actions (see Results, lines 209-219 in the manuscript with tracked changes). In our study, the fixation window was so small that the monkey could not see the face of the human actor, in contrast to the study of Maranesi et al. (2013). It was mainly the face that attracted the monkey's attention in that study (measured by gaze position). In our study, the risk that the gaze of observing monkey was out of the fixation window was high when he looked at the human actor's hand above the wrist. The execution of the action by the monkey took place in darkness. We did not use a fixation window because the monkey's own execution of the action can be assumed to direct his attention to the action.

      We cannot rule out the possibility that smaller eye movements during observation, larger eye movements during execution in darkness, covert shifts of spatial attention, or more generally attentional fluctuations have an influence on F5 MNs that might have counteracted a shared action code in our study. However, if this were the case, then the investigated hypothesis that the activity of F5 MNs during action observation is a motor representation according to the strictly defined mirror mechanism would also have to be rejected.

      4) Information about error trials and their relationship with action planning. The monkey cannot really "make errors" because, despite the cue, each object can be handled in a unique way. The monkey may not pay attention to the cue and adjust the movement based on what the object permits once grasped, depending on online object feedback. From the behavioral events and the times reported in Table 1, I initially thought that "shift" action was certainly planned in advance, whereas "lift" and "twist" could in principle be obtained by online adjustments based on object feedback; nonetheless, from the Methods section it appears that these times are not at all informative because they seem to depend on an explicit constraint imposed by the experimenters (in a totally unpredictable way). Indeed, it is stated that "to motivate the monkey even more to use the LED in the execution task, another timeout was active in 30% (rarely up to 100%) of trials for the time period between touch of object to start moving the object: 0.15 (rarely 0.1) for a twist and shift, 0.35 (rarely 0.3s) for a lift". This is totally confusing to me; I don't understand 1) why the monkey needed to be motivated, 2) how can the authors be sure/evaluate that the monkeys were actually "motivated" in this way, and 3) what kind of motor errors the monkey could actually do if any. If there is any doubt that the monkeys did actually select and plan the action in advance based on the cue, there is no way to study whether the activity during action execution truly reflects the planned action goal or a variety of other undetermined factors, that may potentially change during the trials. Please clarify.

      It is true that the three actions could in principle be performed without using the LED as an informative cue. While this is unlikely under the assumption that a monkey prefers the easiest and fastest way to get reward, it remains a possibility. For this reason, we introduced time constraints in a part of the trials. The selection of time constraints and the proportion of trials in which they were applied, was a pragmatic compromise between a time limit, at which the LED must be used as an informative cue for action selection in order to comply with the task, and a time span that allows the task to be completed even when overall motivation is low. The latter takes into account the general experimental experience that a monkey's engagement or motivation in such experiments varies across trials, sessions, and days. To evaluate whether the LED color was, indeed, used as a cue for action planning in the execution task, we randomly interleaved trials with a different LED, non-informative regarding the type of object, as a control in 5% of the trials. We compared the behavioral responses in trials with informative cues and those with a non-informative cue. The behavioral analysis established that both monkeys indeed used the informative cues to guide their choices (see Fig. 1D).

      Further evidence that the monkey used the cue for action selection and planning is the finding that the type of action was encoded before the release of the start button and then further during the approach phase, i.e., much earlier than somatosensory feedback about the manipulability of the object was available (see Fig. 3A and Fig. 6A).

      Regarding the question, which "motor errors" were possible: The answer can be found in the description of the cases in which a trial was aborted (see Material and methods): releasing the start button too early (< 100 ms after turning on the LED), manipulating the object too slowly after touching it (the time constraints mentioned), not holding the object until the reward was given, or not performing the task at all (10 s timeout).

      5) Classification analysis. There seems to be no statistical criterion to establish where and when the decoding is significantly higher than chance: the classifier performance should be formally analyzed statistically. I would expect that, in this way, both the exe-obs and the obs-exe decoding may be significant. Together with the considerations of the previous point 2 about the permissive inclusion criteria for mirror neurons, this is a remarkable (even quite unexpected) result, which would prove somehow contrary to what the authors claim in the title of the paper. The fact that in any classification the "within task" performance is significantly better than the "between task" performance does not appear in any way surprising, considering both the inclusive selection criteria for "mirror neurons" and the unavoidably huge different sources of input (e.g. proprioceptive, tactile, top-down, etc. afferences) between execution and observation. So, please add a statistical criterion to establish and show in the figures when and where the classifications are significantly above chance.

      We have added - in addition to the statistics already performed in the first version (Fig. 3A in the previous version, now Fig. 6A) - a number of analyses including statistics. This mainly concerns the analyses regarding a shared code at the single neuron level, in which we additionally tested against the null hypothesis proposed by Csibra in 2005 using permutation tests. And we have now also calculated confidence intervals for the population classifications that allow the comparison with chance level. We re-performed the classification analyses using eight-fold cross-validation. We also added a statistical analysis to the finding of clustering of time periods with shared code (Fig. 4). In Figure 5, we additionally compared the frequency of action segments with shared and non-shared codes, which is a descriptive, exploratory analysis. For this reason, it does not make sense to perform inferential statistics. Overall, these analyses represent a significant expansion of the analyses in the first version. We have done this primarily to arrive at statistically sound conclusions at the single neuron level.

      Regarding the comparison between within-task classification (o2o) and cross-task classification (e2o), it is important to keep in mind that the goal was to test the hypothesis that the activity of F5 MNs during action observation is a motor representation of the observed action according to the strictly defined mirror mechanism. This hypothesis requires both, 1) an above chance level accuracy of the e2o classifier and 2) no better accuracy of the o2o classifier as compared to the e2o classifier. If the o2o classifier were better, then the actions would not be represented as they are executed. And the reference in this hypothesis is the motor representation, that is, the code at execution. Thus, the direction e2o classification is the crucial one, not the reverse direction (o2e). One explanation for the fact that o2o shows better accuracy in the population may be the different sensory inputs mentioned above. In this case, the tested hypothesis has to be rejected and replaced by another one, which should then have a different name.

      Nevertheless, we also show the result of the o2e cross-task classification in Fig. 6 (yellow curve), which was already included in Fig. 3 of the first version. However, we do not address it in more detail in the main text because it is not relevant for the hypothesis to be tested. It is only a reportable additional result.

      6) "As the concept of a mirror mechanism posits that the observation performance can be led back to an activation of a motor representation, we restricted this analytical step to a comparison of the exe-obs and the obs-obs discrimination performance". I don't understand the rationale of this choice. The so-called "concept" of mirror mechanism in classical terms posits that mirror neurons have a motor nature and hence their functioning during observation should follow the same principle as during action execution. But this logical consideration has never been demonstrated directly (it is indeed costated by several papers), and when motor neurons are concerned (e.g. pyramidal tract neurons, see Kraskov et al. 2009) their behavior during action observation is by far more complex (e.g. suppression vs facilitation) than that hypothesized for classical "mirror neurons". Furthermore, when across-task decoding for execution and observation code has been used, both in neurophysiological (e.g. Livi et al. 2019, PNAS) and neuroimaging (Fiave et al. 2018 Neuroimage) data, the visual-to-motor direction typical produce better performance than the opposite one. Thus, I don't see any good reason not to show also (if not even just) the obs-exe results. Furthermore, I wonder whether it is considered the possible impact of a rescaling in the single neuron firing rate across contexts, as the observation response is typically less strong than the execution response in basically all brain areas hosting neurons with mirror properties, and this should not impact on the matching if the tuning for the three actions remains the same (e.g. see Lanzilotto et al. 2020 PNAS). The analysis shown in Figures 4 and 5 is, for the rest, elegant and very convincing - somehow surprising to me, as the total number of "congruent" neurons (7.5%) is even greater than in the original study by Gallese et al. (5.4%).

      As to the rationale of our approach, please see our response to the previous point.

      On the issue of rescaling: the hypothesis tested here requires that the F5 MNs activity on observation is a motor representation of the observed action. Hence, from the activity during observation the action should be just as readable as from the execution-related activity. If we had to use rescaling to find a shared code, then observed actions would not be represented in F5 MNs in the same way as on execution. Additional information on whether the action is being executed or observed would be needed. This would of course be possible in principle, but would contradict the hypothesis. And we then not only have the difficulty of which readout is the physiological one (here we make a parsimonious assumption with a linear readout), but we would have to make an additional assumption about rescaling. For this study, we have now chosen the solution of performing the action preference analysis on a single neuron level in a statistically clean way. This represents a very liberal form of rescaling, as it only tests whether the action with the highest or lowest discharge rate is the same when executed and observed. That is, if the result here is not fundamentally different, which is the case, then it can also be assumed that one does not get qualitatively different results for other forms of rescaling.

      7) The discussion may need quite deep revision depending on the authors' responses and changes following the comments; for sure it should consider more extensively the numerous recent papers on mirror neurons that are relevant to frame this work and are not even mentioned.

      The discussion has been thoroughly revised considering the comments raised and suggestions of this and the other two reviewers.

      Reviewer #3 (Public Review):

      Mirror neurons are a big deal in the neuroscience literature and have been for thirty years. I (and many others) remain skeptical of whether they serve the functions often attributed to them - specifically, whether they are motor planning neurons that contribute to understanding the actions of others. Testing their functions, therefore, is of great interest and importance. The present study, however, is not a cogent or convincing test. I do not think this study helps to answer the questions surrounding mirror neurons. It purports to provide a crucial test, that comes out mostly against the mirror neuron hypothesis, but the test has too many weaknesses to be convincing.

      Thank you for the clear words. We take from it, first of all, that in the first version of the manuscript we failed to convey the relevance of our study for the discussion of mirror neuron function. The concerns of this reviewer are in line with those of the others and are addressed in our response to all three reviewers.

      First, consider that the motor tuning and the visual tuning match "poorly." How poor or good must the match be before the mirror neuron hypothesis is rejected? I do not know, and the study does not help here. Even a "poor" match could contribute significantly to a social perception function.

      The specific hypothesis tested here assumes that an action-specific activity of F5 MNs evoked by observed actions corresponds to an action-specific activity of these actions if executed. The approach taken here to compare cross-task classification accuracy (execution-trained, tested in observation) with within-task classification accuracy (observation-trained, tested in observation) tests this hypothesis. The fact that we found a cluster of time periods of single neurons in which both accuracies are almost equal supports this approach and also the hypothesis for these time periods. In principle, of course, the decision for the presence of a difference or equality is always only a statistical statement and contains assumptions. For example, the assumption that a linear readout has physiological relevance enters here. But this problem exists in all studies that ultimately try to understand biological neuronal networks in order to explain perceptions and behavior. However, it is such studies that attempt to elucidate what information is contained in which neurons that set the stage for experiments that, in the optimal case, manipulate certain neurons in a particular way in order to then measure the behavior of an animal that is just right for those neurons.

      Second, the results remind me in some ways of other multi-modal responses in the brain. For example, in the visual area MST, neurons are tuned to optic flow fields that imply specific directions of self-motion. Many of the same neurons are tuned to vestibular signals that also imply specific directions of self-motion. But the optic flow tuning and the vestibular tuning are not perfectly matched. There is considerable slop and complexity in how the two tunings compare within individual neurons. That complexity is not evidenced against multi-modal tuning. Instead, it suggests a hidden-layer complexity that is simply not fully understood yet. Just so here, the fact that the apparent motor tuning and apparent visual tuning match "poorly" is not evidence against both a motor planning and a visual encoding function.

      We hope that it is now clearer, in contrast to the first version, that we tested a specific hypothesis that is only a prerequisite for the hypothesis of a very specific form of understanding. Referring to the example, the hypothesis analogous to ours would be that the representation of self-motion direction due to optic flow ("observation") corresponds to the representation of self-motion direction due to vestibular stimulation ("execution"). If it were then found that the self-motion direction due to optic flow cannot be predicted from a classifier trained on vestibular stimulation, and that another classifier trained on optic flow performs better, then the hypothesis would have to be rejected. This is then a reason to realize that "everything is a bit more complex" and to search for better explanations.

      Third, the animals are massively over-trained in three actions. They perform these actions and see them performed thousands of times toward the same object. Surely, if I were in the place of the monkey, every time I saw the object, I'd mentally imagine all three actions. As I saw a person act on the object, I'd mentally imagine the alternative two actions at the same time. Even if the mirror neuron hypothesis is strictly correct, this experiment might still find a confusion of signals, in which neurons that normally might respond mainly to one action begin to respond in a less predictable way during all three trial types.

      In our study, we tested a specific hypothesis related to the time an action is observed. Here, you suggest an alternative hypothesis. The question is whether this alternative hypothesis better explains the result of our study. The alternative hypothesis can be formulated as follows: the F5 MNs activity elicited by an observed action in this experiment corresponds to a mixture of the activities that occur when the other two actions are executed. This hypothesis is to be rejected because it fails to explain why a shared code occurs in single neurons and why cross-task population classifiers show an accuracy above chance level. A modified alternative hypothesis, which states that what is represented in the experiment during observation is a mixture of all three actions, cannot explain why the three actions are very well represented in the population and are optimally represented exactly when the target position of the object is reached.

      Fourth, the experiment relies on a colored LED that acts as an instructional cue, telling the monkey which action to perform. What is to stop the neurons from developing a cue-sensitive response, as in classic studies from Steve Wise and others in the premotor cortex? Perhaps the neuronal signal that the experimenters are trying to measure is partly obscured by other, complex responses influenced in some manner by the instructional cue?

      In principle, there is the possibility that purely sensory information is also represented in area F5, at least in some neurons or at certain points in time. We take your suggestion and discuss this as one of the alternative concepts (we call it "sensory concept"). However, several findings argue against this concept. For example, neural responses to cues usually represent the subsequent action, but not sensory information of the cue such as the color of the cue. In our study, it is evident from Figure 3A, 6A and 6B that during action execution, actions are discriminated even before the start button is released. Since this discrimination of actions occurs with a time delay after the cue and then increases continuously, this is evidence that the action to be executed is represented, but not the cue itself.

      Fifth, finally, and most importantly, the fundamental problem with this study is that it is correlational. Studies that purport to test the function of a set of neurons, and do so by use of correlational measurements, cannot provide strong answers. There are always half a dozen different interpretations and caveats, such as the ones I raised here. Both sides of a debate can always spin the results, and the arguments are never resolved. To test the mirror neuron hypothesis properly would require a causal study. For example, lesion area F5 and test if the monkey is less able to discriminate the actions of others. Or, electrically microstimulate in area F5 and test if the stimulation interferes (either constructively or destructively) with the task of discriminating the actions of others. Only in this way will it be possible to answer the question: do mirror neurons functionally participate in understanding the actions of others? The present study does not answer that question.

      We would like to reiterate that studies aimed at elucidating what information is contained in which neurons or areas are necessary to understand neural network processes and are a prerequisite for conducting well-considered experiments that measure behavioral effects through specific manipulation of the neural network. Without the work of Gallese, Rizzolatti and colleagues, the idea of associating F5 neurons with action understanding would not have occurred in the first place. The current tricky question is whether at all, and if so, to what understanding, to what perception, to what behavior that uses information about mental states of another, F5 MNs might be able to contribute. And for this, it helps to have a clearer idea of what information is contained in F5 MNs during action observation.

  2. Jul 2023
    1. Author Response:

      Reviewer #1 (Public Review):

      This is a short but important study. Basically, the authors show that α-synuclein overexpression's negative impact on synaptic vesicle recycling is mediated by its interaction with E-domain containing synapsins. This finding is highly relevant for synuclein function as well as for the pathophysiology of synucleinopathies. While the data is clear, functional analysis is somewhat incomplete.

      We will perform all additional functional analyses asked by the reviewer (listed in “recommendations for the authors”) and report that in the revised version. These include dissociation of exo/endocytosis in the context of synapsin-E domain, and further quantification of the rise and fall of pHluorin curves.

      Reviewer #2 (Public Review):

      In this manuscript the authors established synapsin's E-domain as an essential functional binding partner that allows α-syn functionality. They show very elegantly that only synapsin isoforms that have an Edomain bind α-syn and allow the inhibition mediated by α-syn. Deletion of the C-terminus (α-syn 96-110) eliminated this interaction. Hence, synapsin E-domain binds to α-syn enabling the inhibitory effect of αsyn on synaptic transmission.

      The paper will be improved significantly if additional experiments are added to expand and provide a more mechanistic understanding of the effect of α-syn and the intricate interplay between synapsin, αsyn, and the SV. For an enthusiastic reader, the manuscript as it looks now with only 3 figures, ends prematurely. Some of the experiments above or others could complement, expand and strengthen the current manuscript, moving it from a short communication describing the phenomenon to a coherent textbook topic. Nevertheless, this work provides new and exciting evidence for the regulation of neurotransmitter release and its regulation by synapsin and α-syn.

      We will address all the technical and conceptual points raised by the reviewer, and do all the necessary experiments (listed in “recommendations for the authors”) and report that in the revised version). These include quantification of the expression levels of various proteins, evaluation of the dispersion of synapsin and α-syn under the stimulation conditions used in our studies, and consideration of other proposed roles of α-syn.

    1. Author Response:

      We thank the reviewers for their very thoughtful suggestions. We will submit a revised manuscript addressing these comments and including a point-by-point response to reviewers. We will provide evidence that Wnt3a treatment increases macropinocytosis and that PMA increases this cellular response in cultured cells, but only in the presence of Wnt3a. This will be done using the current gold standard for macropinocytosis assays, the uptake of high molecular weight Dextran sensitive to the Na/H+ exchanger inhibitor EIPA. A time-lapse video of rapid macropinocytosis cup induction by PMA in colorectal cancer cells will also be provided. Other new experiments will show that levels of the upstream macropinocytosis regulator Rac1 are increased by β-catenin DNA, constitutively active Lrp6, or LiCl. The criticism that by taking a broad approach our study lacks mechanistic analysis depth is a valid one. The reason we used a multiplicity of approaches – Xenopus embryo assays, cancer calls in culture, colon cancer tissue arrays and mouse xenografts – was to validate, in as many different ways possible, a central finding: that the classical phorbol ester tumor promoters can act by potentiating Wnt/β-catenin signaling through membrane trafficking.

    1. Author Response:

      We are very grateful to the Editors and the three Reviewers for their valuable reviews of our submission. We will take into account all the comments and provide a revised manuscript with our point-by-point responses as soon as possible. In the meantime, we would like to respond provisionally to the reservation expressed in the eLife editorial assessment and by Reviewer #3 about the validity of our models to study of the neurobehavioral consequences of purine deficiency and the pathogenesis of Lesch-Nyhan disease (LND) in Drosophila.

      Two enzymes are responsible for purine recycling in mammals: APRT and HGPRT. Only HGPRT deficiency causes neurobehavioral disturbances and LND in humans, while APRT deficiency leads to metabolic deficits without neurological or behavioral symptoms. In contrast, as we have been able to confirm, Drosophila expresses a single purine recycling enzyme, Aprt, and no HGPRT or HGPRT-like activity. Here we propose different ways to model LND in Drosophila, based either on Aprt deficiency or the expression of mutant HGPRT.

      Although it may be difficult to accept that the inactivation of a different gene in a distant organism could be a good model for LND, we have found that, in contrast to humans, Aprt deficiency has both metabolic and neurobehavioral consequences in Drosophila. This suggested that Aprt, being the unique fly purine recycling enzyme, might share the enzymatic function of human APRT and the neurodevelopmental function of human HGPRT, because its inactivation should recapitulate all pathological consequences of a lack of purine recycling in this organism, and in particular in the brain.

      The statement by Reviewer #3 that “it is unknown whether Aprt is also a structural homologue [of HGPRT]” is not accurate. APRT and HGPRT are known to be functionally and structurally related. Both human APRT and HGPRT belong to the type I PRTases family identified by a conserved phosphoribosyl pyrophosphate (PRPP) binding motif, which is used as a substrate to transfer phosphoribosyl to purines. This binding motif is only found in PRTases from the nucleotide synthesis and salvage pathways (see: Sinha and Smith (2001) Curr Opin Struct Biol 11(6):733-9. PMID: 11751055). The purine substrates adenine, hypoxanthine and guanine share the same chemical skeleton and APRT can bind hypoxanthine, indicating that APRT and HGPRT also share similarities in their substrate binding sites (Ozeir et al. (2019) J Biol Chem. 294(32):11980-11991. PMID: 31160323). Moreover, Drosophila Aprt and Human APRT are closely related as the amino acid sequences of APRTs have been highly conserved throughout evolution (shown in Fig. S3B of our paper). We apologize for not providing this information in our original submission. This point will be made clearer in the revised article.

      Here we report a set of evidence that Drosophila can be used as a model to study LND. A strong argument, as we believe, is that the same drugs have been found effective in rescuing the seizure-like phenotype in Aprt-deficient flies (Figure 7 in our manuscript) and the viability of fibroblasts and neural stem cells derived from iPSCs of LND patients, in which de novo purine synthesis was prevented (as discussed on page 37). This is a good sign that Drosophila could be used to identify new genetic targets and pharmacological compounds capable to rescue HGPRT mutations in humans.

      Finally, we would like to emphasize that Reviewer #1 and Reviewer #2 expressed confidence in the potential usefulness of our work to better understand and treat LND in their public reviews. Reviewer #1 indeed stated that: “The findings provide a new example of how manipulating specific genes in the fruit fly allows the study of fundamental molecular processes that are linked to a human disease”, and Reviewer #2 further wrote: "Altogether, these are very important and fundamental findings that convincingly demonstrate the establishment of a Drosophila model for the scientific community to investigate LND, to carry out drug testing screens and find cures”, and added: “To conclude, this is a fundamental piece of work that opens the opportunity for the broader scientific community to use Drosophila to investigate LND”.

    1. Author Response:

      We thank the reviewers for the constructive feedback and detailed reviews. To avoid any misunderstandings, we would like to add the following clarification. The comments from Reviewer 3 seem to indicate that in our simulator, synthspot, we mix cells from different data sets and even different species to create synthetic spots. The comment is the following:

      The choice to blend mouse and human scRNA-seq datasets in the simulation setup for generating synthetic spots is not ideal due to its departure from a realistic biological scenario.

      We would like to point out that the synthetic spots we create for the silver standard data sets are always sampled from the same scRNAseq or snRNAseq data set to keep the simulations as biologically plausible as possible.

      For each of the 6 public data sets, we create 9 different synthetic data sets, resulting in a total of 54 synthetic data sets. Each of these 9 data sets correspond to a different abundance pattern with spots representing combinations of cells sampled from this same public data set. Hence, these synthetic data sets always reflect cell types that actually co-occur in the tissue sections used to generate the underlying public scRNAseq or snRNAseq data set.

    1. Author Response:

      Reviewer #1 (Public Review):

      In this paper, Hui and colleagues investigate how the predictive accuracy of a polygenic score (PGS) for body mass index (BMI) changes when individuals are stratified by 62 different covariates. After showing that the PGS has different predictive power across strata for 18 out of 62 covariates, they turn to understanding why these differences and seeing if predictive performance could be improved. First, they investigated which types of covariates result in the largest differences in PGS predictive power, finding that covariates with larger "main effects" on the trait and covariates with larger interaction effects (interacting with the PGS to affect the trait) tend to better stratify individuals by PGS performance. The authors then see if including interactions between the PGS and covariates improves predictive accuracy, finding that linear models only result in modest increases in performance but nonlinear models result in more substantial performance gains.

      Overall, the results are interesting and well-supported. The results will be broadly interesting to people using and developing PGS methods. Below I list some strengths and minor weaknesses.

      Strengths:

      A major impediment to the clinical use of PGS is the interaction between the PGS and various other routinely measured covariates, and this work provides a very interesting empirical study along these lines. The problem is interesting, and the work presented here is a convincing empirical study of the problem.

      The result that PGS accuracy differs across covariates, but in a way that is not well-captured by linear models with interactions is important for PGS method development.

      Thank you for all of the positive comments.

      Weakness:

      While arguably outside the scope of this paper, one shortcoming is the lack of a conceptual model explaining the results. It is interesting and empirically useful that PGS prediction accuracy differs across many covariates, but some of the results are hard to reconcile simultaneously. For example, it is interesting that triglyceride levels are associated with PGS performance across cohorts, but it seems like the effect on performance is discordant across datasets (Figure 2). Similarly, many of these effects have discordant (linear) interactions across cohorts (Figure 3). Overall it is surprising that the same covariates would be important but for presumably different reasons in different cohorts. Similarly, it would be good to discuss how the present results relate to the conceptual models in Mostafavi et al. (eLife 2020) and Zhu et al. (Cell Genomics 2023).

      Thank you for the comments. We agree that more generalizable explanations would be useful, which may be worth exploring in future work. Specifically, if there is heteroskedasticity in the relationship between PGS and BMI (e.g., phenotypic variance increases for higher values of BMI while PGS variance does not, or at least by a different amount), then that may partially explain the performance differences when stratifying by covariates that have main effects on BMI – somewhat similarly to what is presented in Figure 2 of Mostafavi et al. Such results may imply that similar performance differences could occur when stratifying by the phenotype itself, although this still may not explain differences in PGS effects, and differences in performance when using nonlinear methods (such as in this work and in Figure 4 of Zhu et al.). While we observe discordant effects for certain covariates across datasets, the findings from the correlation analyses use all cohorts and ancestries, and we expect that these difference in effects across datasets may be due to differences in their relationship with BMI across datasets (triglyceride levels may be especially noisy due to their sensitivity to fasting which may have been controlled for differently across datasets).

      Reviewer #2 (Public Review):

      This work follows in the footsteps of earlier work showing that BMI prediction accuracy can vary dramatically by context, even within a relatively ancestrally homogenous sample. This is an important observation that is worth the extension to different context variables and samples.

      Much of the follow-up analyses are commendably trying to take us a step further-towards explaining the underlying observed trends of variable prediction accuracy for BMI. Some of these analyses, however, are somewhat confounded and hard to interpret.

      For example, many of the covariates which the authors use to stratify the sample by may drive range restriction effects. Further, the covariates considered could be causally affected by genotype and causally affect BMI, with reverse causality effects; other covariates may be partially causally affected by both genotype and BMI, resulting in collider bias. Finally, population structure differences between quintiles of a covariate may drive variable levels of stratification. These can bias estimation and confounds interpretations, at least one of which intuitively seems like a concern for each of the context variables (e.g., the covariates SES, LDL, diet, age, smoking, and alcohol drinking).

      The increased prediction accuracy observed with some of the age-dependent prediction models is notable. Despite the clear utility of this investigation, I am not aware of much existing work that shows such improvements for context-aware prediction models (compared to additive/main effect models). I would be curious to see if the predictive utility extends to held-out data from a data set distinct from the UKB, where the model was trained, or whether it replicates when predicting variation within families. Such analyses could strengthen the evidence for these models capturing direct causal effects, rather than other reasons for the associations existing in the UKB sample.

      Thank you for the comments. We agree there are certain biases that may be introduced in these analyses. For population structure between quintiles, the analyses are already stratified by ancestry and have the top 5 genetic principal components included, which may help with this issue. In the interaction models we included separate terms for the PGS of the covariate as well which was meant to better capture the environmental component of the covariates, which may partially ameliorate issues of collider bias as SNPs that are causally affecting both BMI and the covariate would be partially adjusted for. While range restriction effects could introduce bias, in the correlation analyses the relationship between main effects and interaction effects (which were estimated without range restriction) have strong and reproducible correlations with PGS R2 differences across datasets.

      We agree the increased prediction performance using PGS created directly from GxAge GWAS effects is notable, as it is essentially “free” performance increase that doesn’t require any new data, and it likely generalizable to additional covariates. It would be useful to validate its performance in other datasets, especially ones that are outside of the 40-69 age of UKBB.

      Reviewer #3 (Public Review):

      Polygenic scores (PGS), constructed based on genetic effect sizes estimated in genome-wide association studies (GWAS) and used to predict phenotypes in humans have attracted considerable recent interest in human and evolutionary genetics, and in the social sciences. Recent work, however, has shown that PGSs have limited portability across ancestry groups, and that even within an ancestry group, their predictive accuracy varies markedly depending on characteristics such as the socio-economic status, age, and sex of the individuals in the samples used to construct them and to which they are applied. This study takes further steps in investigating and addressing the later problem, focusing on body mass index, a phenotype of substantial biomedical interest. Specifically, it quantifies the effects of a large number of co-variates and of interactions between these covariates and the PGS on prediction accuracy; it also examines the utility of including such covariates and interaction in the construction of predictors using both standard methods and artificial neural networks. This study would be of interest to investigators that develop and apply PGSs.

      I should add that I have not worked on PGSs and am not a statistician, and apologize in advance if this has led to some misunderstandings.

      Strengths:

      • The paper presents a much more comprehensive assessment of the effects of covariates than previous studies. It finds many covariates to have a substantial effect, which further highlights the importance of this problem to the development and application of PGSs for BMI and more generally.
      • The findings re the relationships between the effects of covariates and interactions between covariates and PGSs are, to the best of my knowledge, novel and interesting.
      • The development of predictors that account for multiple covariates and their interaction with the PGS are, to the best of my knowledge, novel and may prove useful in future efforts to produce reliable PGSs.
      • The improvement offered by the predictors that account for PGS and covariates using neural networks highlights the importance of non-linear interactions that are not addressed by standard methods, which is both interesting and likely to be of future utility.

      Thank for the positive feedback.

      Weaknesses:

      • The paper would benefit substantially from extensive editing. It also uses terminology that is specific to recent literature on PGSs, thus limiting accessibility to a broader readership.
      • The potential meaning of most of the results is not explored. Some examples are provided below: • The paper emphasizes that 18/62 covariates examined show significant effects, but this result clearly depends on the covariates included. It would be helpful to provide more detail on how these covariates were chosen. Moreover, many of these covariates are likely to be correlated, making this result more difficult to interpret. Could these questions at least be partially addressed using the predictors constructed using all covariates and their interactions jointly (i.e., with LASSO)? In that regard, it would be helpful to know how many of the covariates and interactions were used in this predictor (I apologize if I missed that). • While the relationship between covariate effects and covariate-PGS interaction effects is intriguing, it is difficult to interpret without articulating what one would expect, i.e., what would be an appropriate null. • The finding that using artificial neural networks substantially improves prediction over more standard methods is especially intriguing, and highlights the potential importance of non-linear relationships between PGSs and covariates. These relationships remain hidden in a black box, however. Even fairly straightforward analyses, based on using different combinations of the PGS and/or covariates may shed some light on these relationships. For example, analyzing which covariates have a substantial effect on the prediction or varying one covariate at a time for different values of the PGS, etc.
      • The relationship to previous work should be discussed in greater detail.

      Thank you for the comments. Regarding running LASSO with all covariates along with each of their interactions with PGS in one model, upon reading those sections of the text again it is a little unclear we agree; but we actually did something very similar already (related sections have been edited for clarity in our revised manuscript) with these results being presented later on in the neural network section (second paragraph, S Table 7 – those results specifically aren’t in Figure 5). We just looked at changes in prediction performance, and did not try to interpret the model coefficients. We agree that many of the covariates are probably correlated, but based on the correlation results (Figure 4) it doesn’t seem like any covariate is especially important separately from its effect on BMI itself i.e., whatever covariates were chosen by LASSO may still not be especially important. This explanation is related to the interpretation of the neural network results, where neural networks improved performance even over linear models with just age and sex and their interactions with PGS as additional covariates, which may suggest that increased performance is coming from nonlinearities apart from multiplicative interaction effects with the PGS. So observing the coefficients from LASSO but still with a linear model may still not substantially aid in explaining the relationships that increase prediction performance using neural networks (additionally, this analysis may be difficult to replicate since many of the covariates are not present in multiple datasets). But this replication would be nice to see in future studies if such datasets exist. In terms of the null relationship between covariate main and interaction effects, if they are from the same model they will inherently be correlated, but the main effects from Figure 4 are from a main effects model only. Regarding the other points, the text will be edited for clarity and elaboration on specific topics.

    1. Author Response:

      We would like to express our gratitude for the valuable feedback provided by the editors and reviewers. In response to the reviewer's comments, we have outlined a plan to carry out additional experiments to bolster our paper's strength. Our primary objectives are to explore the developmental roles of both Porl1F and Regnase-1 and to provide further clarification regarding the involvement of Regnase-1 in memory consolidation. We will utilize the newly available Polr1F RNAi transgenes and confirm the efficacy of both the previous and new RNAi lines through quantitative polymerase chain reaction (qPCR) analysis. Additionally, we aim to investigate the impact of Regnase-1 overexpression on sleep and memory consolidation. We will also clarify some points that may not have been clear to reviewers.

    1. Author Response

      Reviewer #1 (Public Review):

      This paper has significant strengths in taking a rich, quantitative, neurally-grounded approach to the development of human walking. It provides a rich empirical dataset of EMG and kinematic data at this challenging age, as well as sophisticated analyses of these data in terms of motor primitives, which are a concept that has recently been usefully applied to understanding human walking and its development.

      STRENGTHS

      It builds on emerging literature in this field and adds data at the key age of infancy-toddlerhood.

      It takes a longitudinal approach, sampling children at the ages of newborn, 3 months, and newly walking. This is still reasonably rare in developmental research and allows for a powerful, robust interpretation of data: the authors should be commended for taking this approach.

      WEAKNESSES

      Some aspects of the work could have been more clearly introduced. This includes neural aspects: the location of the CNS control centres at the spinal level, and which higher centres control them (e.g. brainstem); the justification for understanding primitives as modular (no cross-talk or feedback). It also includes developmental aspects: introducing the stepping reflex, and behavioural aspects of infant motor variability (e.g. Adolph, Hoch & Cole, TICS, 2018).

      The patterns relate to walking in a stereotypical manner, yet children's walking is full of skips, jumps, and climbs - both in relation to external obstacles and on even ground. Indeed, it is a challenge to get children to 'walk normally' in a lab. Thus, variability is in fact greater than is discussed here and this should be acknowledged.

      Thanks for the remarks. We reviewed the introduction and clarified these points. Mainly, we realized that we were not clear enough about the type of variability that we focused on, and added a paragraph at the top of the introduction to clearly define the different types of variability that exist during development and to specify that we only focus on the ability to produce a given coordination mode (like for example alternated leg movements) with various muscle activities (line 34-44). We also added some specification about the neural structures that are known to be involved in modularity in animals (line 53-58).

      The analyses are based on a limited sample of the data. (1) I am not clear on what basis the coders selected cycles, and why 5 cycles were selected. (2) It is not clear why certain movement parameters (cycle duration and flexion/extension proportions) and not others (e.g. step length, double support time) were selected. In particular, it is not clear why the authors focus on temporal, rather than spatial, variability. (3) Some data are based on stepping, and some on kicking. Because it's not clear that these are really equivalent, and because there are small samples of each (n<10), it's not clear that there is enough data to allow us to come to strong conclusions. The sample size should be justified - on the basis of power analyses and/or previous work in this area (e.g. Dominici, Science, n=40). From the results, where p values often hover around p=0.06, the paper seems underpowered to detect a decrease in variability with age for stepping kinematics and primitives.

      We initially limited to 5 the number of cycles to analyze in each individual and age in order to make the indexes of variability comparable across individuals and ages. However, as detailed in the general response above, in the new version of the manuscript we preprocessed (i.e. filtered and normalized) a different amount of data in each individual and age (i.e. between 5 and 22 cycles depending on what was available) and we reproduced every analysis of the paper for 5 randomly chosen combinations of 5 cycles when strictly more than 5 cycles were available (i.e. we used a bootstrapping approach, limiting the number of combinations to 5 because of the processing time of the algorithm). Therefore, every result presented in the paper correspond to an average value computed across these 5 random combinations (except when the number of available cycles was strictly equal to 5), which allowed to include a different number of steps in the analysis while keeping the indexes comparable across individuals and ages. This raised the number of cycles included in the analysis from 200 to 586.

      We do not present data on step length and double support time because we wanted to apply our analyses on the two behaviors (i.e. stepping and kicking) and there are no step length or support phase in kicking. Moreover, we do not have access to these data. In fact, the available space on the skin on newborns was limited after having disposed EMG sensors, and we could not dispose enough 3D markers to analyze step length. Furthermore, we had to record toddler’s walking in a room that was not equipped with motion capture, therefore we did not have access to any marker’s position at walking onset. As such, we report kinematic parameters that were available for each behavior, which are stride duration, variability of stride duration and percentage of extension phase. This was clarified in the manuscript line 581-583.

      As detailed in our general response, we had chosen a very conservative approach which reduced the amount of data that were presented in the original manuscript, however we systematically reviewed our data and we now present our analyses on 18 infants, of which 11 stepped at birth, 15 stepped at 3 months old, 15 kicked at birth, 15 kicked at 3 months old, and 15 were recorded at walking onset. Each infant was followed longitudinally and we only present data if they are available on at least two time points. The results were reinforced with this new number of included individuals, and the p values are stronger (see table S1 were all the p-values are reported, line 979).

      There are some points of interpretation that could have been clearer, for example highlighting how one might distinguish between variability as incidental (motor noise) or purposeful (for exploration); and how studying the time around walking onset can contribute to the broader literature on this topic.

      The main result of this study is that the structure of EMG variability evolves during the first year of life, but the origin of this variability (incidental or purposeful) remains unknown. Be it purposeful or incidental, variability might arise at any level of the nervous system (Dhawale et al., 2017), and here we propose that it arises at the level of primitives’ activation during early development. As this is coherent with the fact that different pharmacological or electrical stimuli applied to the spinal cord of neonatal rodents can generate variability (Kiehn and Kjærulff, 1996; Klein et al., 2010), we can hypothesize that such variability could be purposely generated at a supra-spinal level during early development. However, even if it is generated at this level, variability could result from an instability of the command rather than from purposeful explorations. Interestingly, the distinction itself might be challenging, because both types of variability (incidental or purposeful) might contribute to exploration: theoretically, variability might be useful for exploration and learning even if it has not been purposely generated by the individual (Dhawale et al., 2017). As such we used animal literature to make hypothesis about the origin of this variability but we are not aware or any protocol that could have helped to discriminate among the two. This was specified line 388-389: “As similar neurophysiological investigations cannot be conducted in human infants, discriminating among purposeful and incidental variability remains challenging,”.

      The time around walking onset was chosen to match previous literature on the topic (mainly, Dominici et al., (2011), but it also matches the period that is more and more recommended as a period when to intervene in early therapy. This was discussed line 469-471: “Overall, when compared with adult values (Figure 3, Figure 5, Table S3), our results suggest an immaturity of the modular system before and around walking onset, which confirms that infancy should be an ideal period of plasticity to benefit from in therapy (Ulrich et al., 2010; Morgan et al., 2021).”.<br /> As the age of walking onset is highly variable across infants (Martorell et al., 2006), we also chose to focus on walking onset rather than age to standardize recruitment along experience rather than age, as EMG variability is known to rapidly evolve with experience after a few months of walking experience (Chang et al., 2006). In the new version of the manuscript, we highlighted this variability by allocating legends according to the age of walking onset (Figure 2, Figure 3 and Figure 5, see Figure 3E detailing this legend).

      Reviewer #3 (Public Review):

      Hinnekens et al. examined the development of humans' leg movements as they learn to step, kick, and independently walk during infancy. An established theory argues that motor movements can be composed of a finite set of building blocks ("motor primitives"), just like any word can be composed of a finite set of letters. In their paper, Hinnekens et al. follow up this theory by longitudinally recording muscle activations of infants using EMG (at three time points: a few days after birth, at 3 months, and shortly after they learned to walk independently). The authors examined two modules that underlie the infants' stepping and two modules that underlie toddler walking, all based on previous literature. The authors also examined different modules that underlie infants' upright stepping and supine kicking. The authors used supervised machine learning (an advanced version of factor analysis) to identify the modules and to track their change at the different developmental time points. The authors found that trial-to-trial variability in the structure of primitives reduces from newborns to toddlers, even though the number of primitives increased. The authors relate these findings to motor exploration by arguing that newborns generate high variability with a low number of primitives.

      The paper has one clear strength - its longitudinal recordings. Unlike most papers in this area of research, the authors follow the same individuals from birth until they learn to walk and the comparison between the use of primitives is done on the same infants. This is certainly novel.

      That said, the contribution of the paper to the literature is unclear and it suffers from some critical weaknesses that challenge the current conclusions in the paper, based on the existing data.

      1) Although the data is based on longitudinal recordings, and this is certainly desirable, the paper is based only on 10 infants. Moreover, only seven infants contributed supine data at the first time points and only six infants contributed upright data at the different time points. The paper would benefit from a more reliable dataset that includes more infants and time points to compare. To conclude the authors' conclusions, much richer data is required.

      As detailed in our general response, we had chosen a very conservative approach which reduced the amount of data that were presented in the original manuscript, however we systematically reviewed our data and we now present our analyses on 18 infants, of which 11 stepped at birth, 15 stepped at 3 months old, 15 kicked at birth, 15 kicked at 3 months old, and 15 were recorded at walking onset. Each infant was followed longitudinally and we only present data if they are available on at least two time points. The results were confirmed by those analyses that yielded stronger p-values (see table S1, line 979).

      2) Relatedly, although the strength of longitudinal data is compared between individuals and has significant insights into individual differences in development, this was not clearly (sometimes not at all) discussed in the paper. The work would benefit from more focus on individual differences and a clear explanation of its contribution to the field from that aspect. The key arguments in the paper focus on the ratio between the number of primitives and the variability in each time point, but none of this from the lens of individual differences. This is challenging to do because there are not many individuals who contribute to the dataset but otherwise, it is not clear what the paper contributes to previous work and more critically.

      Thanks for the suggestion. To follow this remark, we modified each figure of the paper so the 18 individuals would each have their own color and could be followed across figures. Also, as the age of walking onset was different across infants, we allocated colors to each infant based on when they started to walk (Figure 2, Figure 3, Figure 5). Moreover, increasing our cohort highlighted some interindividual differences in the development of kicking only between birth and three months old (Figure 3, Figure 5, Table S1). This was discussed in a new paragraph of the discussion (line 469-487).

      3) The motivation for the paper is unclear. Why did the authors do what they did? Why is this important to do it the way they did? In the current manuscript, it is not clear why they used this design to get those conclusions.

      The main rational of the paper was to explore a paradox of the literature on early locomotor development: on one hand, newborn infants produce a highly variable muscular activity (Teulier et al., 2012), but on the other hand authors report that they produce rhythmic movement with a small number of invariant modules (Dominici et al., 2011; Sylos-labini et al., 2020). As the latest studies were based on averaged or single-step data, our main goal was to assess both EMG variability and features of modularity in the same cohort, in an attempt to refute or explain this paradox. We reviewed and clarified the introduction on this matter by clarifying the place of our study among the broader literature on variability in development (line 34-44) and by deepening explanations about the abovementioned paradox in relation to previous studies on infants’ modularity (line 72-96).

      4) The data selection process is also not clear. At each time point and from each infant, the authors examined 5 cycles from the same leg. The definition of a cycle was hip-flexion onset to another hipflexion onset on one side of hip extension. It is not clear what variability (measured by % of the cycle in flexion and extension) means in this case because infants hold their legs in one position for a long time. What are those 5 cycles? Why five? A lot of information is missing there about the arbitrary selection of analytic parameters. In addition, the authors argue they performed the same analyses with different parameters and that they got similar results. However, those results are not given in detail and it is hard to compare them with the authors' report.

      We entirely reviewed our data and less selection were applied in the current manuscript. Here is the complete data selection process:

      Among the 18 infants that we followed from birth on, 15 were followed until walking onset (among the other three, one had moved and the other two could not be seen around walking onset because of the covid pandemic). Around birth and three months old, in each infant we tried to elicit stepping (by holding the infant in an upright position with his feet above a surface) and kicking (by placing the infant in a supine position). Therefore, we systematically analyzed each video from every infant and every age to spot and count every alternated leg movement within the two behaviors. After this step, we checked the quality of EMG data for the 10 muscles that were recorded. As our analysis has to be based on the same number of muscles for each individual, if the quality of the signal was too low for even one muscle during a leg cycle, the cycle had to be removed from the analysis. After this check, if less than 5 alternated leg cycles were available, the whole trial was removed from the analysis. The rational is that the hypotheses that we tested were mainly about intra-individual variability and therefore analyses had to be based on a minimal number of cycles. In newborns this was particularly challenging because we were limited in recording time (1 to 2 minutes), moreover we did not always have qualitative EMG data because we always reduced the amount of adhesive surface on the skin for ethical reasons. Therefore for several babies we could not observe enough cycles to include them in the analysis, however in the current version of the manuscript we present data on 11 babies for newborn stepping, 15 babies for 3 mo stepping, 15 babies for newborn kicking, 15 babies for 3 mo kicking, and 15 babies for toddlers walking. The trials that were not included are grey in Table 1 of this document. For every other trial, the exact number of remaining cycles are reported in the same table.

      In the previous version of the manuscript, as we wanted the indexes to be comparable across individuals and ages, we had systematically analyzed 5 cycles that were randomly chosen among the available one. However this created data loss. As detailed in the general response above, to be less selective and to include every available cycle, we now rely on a new approach: if more than 5 cycles were available, we computed every variable of the study 5 times (for 5 random combinations of 5 cycles that were randomly chosen among every available cycle). The variables were averaged afterwards. Thanks to this new approach, 586 cycles are now included in the analysis, which confirmed the robustness of our findings.

      Infants can indeed hold their legs in one position for a long time but all of our results were obtained after having normalized each phase of flexion or extension by a given number of time points (see Figure 6, Temporal normalization). Our results were also verified with a different temporal normalization, directly normalizing the cycle instead of the phases. We choose not to report more results in the main text for the overall readability of the paper but here are the same table of p-value as in the appendix of the paper with a normalization based on cycles instead of phases.

      5) The recording times are not common across individuals. One newborn was recorded after 1 day and the other after 21 days. Not sure this is comparable, especially if the main contribution of the paper is the longitudinal data. Moreover, the second recording was conducted between 74 days to 122 days. This range is too broad. Same for the third time point - one walk onset is not reported, some infants were recorded at <380 days and some >500 days. This difference challenges the reliability of the data.

      Given the high inter-individual variability that relates to the age of walking onset (Martorell et al., 2006) it is often a challenge in developmental sciences to choose between standardizing recruitment according to the age or according to the experience. In the present study, we choose to recruit toddlers of similar experience (i.e. around walking onset) rather than on similar age because motor variability is known to depend a lot on experience, in particular regarding EMG data during the first months of walking (Chang et al., 2006). However, we agree with the reviewer that the age of walking onset is an important source of inter-individual variability and therefore we modified each figure of the paper so the 18 individuals would each have their own color which was ordered and allocated according to the age of walking onset (see Figure 3E detailing this legend).

      Regarding the other recording points, and the experience after walking onset, the recording time can indeed vary across individual despite our efforts during data collection to prevent this phenomenon. Main reasons were benign diseases of infants or work constraints for parents that induced postponements of the appointments. However, we report the precise age of each infant for each recording as well as individual data underlying each global figure (see source data of Figure 2, Figure 3 and Figure 5). Based on these data we checked that the individual that were recorded later than the others (for example, subject 1 and subject 14 who were recorded at 21 days for the 1st time point) did not demonstrate aberrant values.

      6) Conceptually, I'm not sure I understand why the authors selected leg alternation (and not other types of movements) as their modules. I was not convinced that leg alternations reflect their real-life locomotor experience (e.g., short bouts in all directions), and therefore the variability measured in this work does not reflect the variability of infants' natural locomotor behaviour.

      We fully agree that leg alternation do not reflect the whole variability that underlies real-life locomotor experience of these infants, however we did not intend to focus here on all the variability that exists during development but more specifically on the variability that allows to produce a given type of behavior with different inputs. This variability is interesting to study because infants tend to use steadier and steadier patterns of coordination to produce a given movement (Teulier et al., 2012), suggesting that they explore among different possible muscular associations before choosing some. As we wanted to study this phenomenon, it appeared methodologically pertinent to fix other sources of variability (i.e. to study different behaviors separately and to study only one coordination mode), as is commonly done in other EMG-based studies of the field (Dominici et al., 2011; Sylos-labini et al., 2020; Teulier et al., 2012). This choice allowed to remain comparable between infants and toddlers. Indeed, while infants produce numerous coordinative patterns while stepping or kicking, such as parallel cycles or singles cycles for example, toddlers only produce alternated flexion and extension cycle of the lower-limb when walking. Therefore, by selecting alternating cycles of flexion and extension only in infants, we ensure that the differences of variability that we observe between ages is not due to the ability of producing various movement, but really due to the ability of producing a given movement with various muscle outputs. Accordingly, and following our results, it allows to conclude that the structure of variability evolve between birth and independent walking to command a given movement. To explain this notion that relates to the redundancy of motor control, we added a new paragraph at the top of the introduction to better explain the place of our studies among broader literature on infant variability (line 34-44). We also clearly wrote in the discussion that our conclusions did not apply to every developmental source of variability (line 393-395): “As we observed such structure within alternated leg movements, other studies are needed to explore the extent of these results to other early behaviors or coordination modes”.

      7) There is not enough rationale for why the specific measurements (IEV, VAF, IRV, etc.) were used and why those are the appropriate ones for the address the questions in the paper. What is the justification for using those measurements?

      As our main goal is to characterize how EMG variability can be generated in a modular system, we defined those metrics as directly representative of the different features that we wanted to study: variability of the EMG output, dimensionality of the underlying modular organization, variability of module activations and selectivity of the command (be it through module activations or within module themselves). While VAF is commonly used in muscle synergies studies, this study is the first to explore how cycle-to-cycle variability could be generated in a modular system, and therefore these indexes were defined for its proper needs. As such to clarify their role to a broad audience we included a new table at the beginning of the Results section (see Table 1 of the ms, line 176).

      8) Some of the conclusions, especially those that relate to motor exploration, are not based on sufficient data. Motor exploration was not explicitly measured in this study, and how motor exploration is reflected by the current data and analyses is not clear.

      We fully agree with the reviewer: while we observed that the structure of EMG variability evolves during the first year of life, the origin of this variability (incidental or purposeful) remains unknown. This was specified line 388-389 “As similar neurophysiological investigations cannot be conducted in human infants, discriminating among purposeful and incidental variability remains challenging,”.

    1. Author Response

      Reviewer #1 (Public Review):

      Summary

      While DNA sequence divergence, differential expression, and differential methylation analysis have been conducted between humans and the great apes to study changes that "make us human", the role of lncRNAs and their impact on the human genome and biology has not been fully explored. In this study, the authors computationally predict HSlncRNAs as well as their DNA Binding sites using a method they have developed previously and then examine these predicted regions with different types of enrichment analyses. Broadly, the analysis is straightforward and after identifying these regions/HSlncRNAs the authors examined their effects using different external datasets.

      Strengths/weaknesses

      By and large, the analysis performed is dependent on their ability to identify HSlncRNAs and their DBS. I think that they have done a good job of showing the performance metrics of their methods in previous publications. Thereafter, they perform a series of enrichment-type analyses that have been used in the field for quite a while now to look at tissue-specific enrichment, or region-specific enrichment, or functional enrichment, and I think these have been carried out well. The authors achieved the aims of their work. I think one of the biggest contributions that this paper brings to the field is their annotation of these HSlncRNAs. Thus a major revisionary effort could be spent on applying their method to the latest genomes that have been released so that the community could get a clean annotation of newly identified HSlncRNAs (see comment 2).

      Comments

      1) Though some of their results about certain HSlncRNAs having DBSs in all genes is rather surprising/suspicious, I think that broadly their process to identify and validate DBSs is robust, they have multiple lines of checks to identify such regions, including functional validation. These predictions are bound to have some level of false positive/negative rate and it might be nice to restate those here and on what experiment/validation data these were conducted. However, the rest of their analysis comprises different types of enrichment analysis which shouldn't be affected by outlier HSlncRNAs if indeed their FPR/FNR are low.

      2) There are now several new genomes available as part of the Zoonomia consortium and 240 Primate consortium papers released. These papers have re-examined some annotations such as Human Accelerated Regions (HARs) and found with a larger dataset as well as better reference genomes, that a large fraction of HARs were actually incorrectly annotated - that is that they were also seen in other lineages outside of just the great apes. If these papers have not already examined HSlncRNAs, the authors should try and re-run the computational predictions with this updated set and then identify HSlncRNAs there. This might help to clarify their signal and remove lncRNAs that might be present in other primates but are somehow missing in the great apes. This might also help to mitigate some results that they see in section 3 of their paper in comparing DBS distances between archaics and humans.

      3) The differences between the archaic hominins in their DBS distances to modern humans are a bit concerning. At some level, we expect these to be roughly similar when examining African modern humans and perhaps the Denisovan being larger when examining Europeans and Asians, but they seem to have distances that aren't expected given the demography. In addition, from their text for section 3, they begin by stating that they are computing two types of distances but then I lost track of which distance they were discussing in paragraph 3 of section 3. Explicitly stating which of the two distances in the text would be helpful for the reader.

      (1) According to Figure 1A (according actually to Meyer et al., 2012, Prufer et al., 2017, and Prüfer et al., 2013), the phylogenetic distance from modern humans to Denisovan is shorter than the distance to Altai Neanderthal. However, also according to these studies, the branch of Denisovan is more remote to modern humans than Altai Neanderthal. Thus, it is not unreasonable to find that 2514 and 1256 DBSs have distances > 0.034 in genes in Denisovans and Altai Neanderthals, respectively. Probably, both the phylogenetic distances and DBS distances depend considerably on the sampled genomes of Altai and Denisovan who lived on the earth for quite long. When new samples are obtained, these distances may be somewhat changed.

      (2) Regarding “they are computing two types of distances but then I lost track of which distance they were discussing in paragraph 3 of section 3”, the second type of distances were discussed in section 3, and the distances computed in the first way were not further analyzed because “This defect may be caused by that the human ancestor was built using six primates without archaic humans”.

      4) Isn't the correct control to examine whether eQTLs are more enriched in HSlncRNA DBSs a set of transcription factor binding sites? I don't think using just promoter regions is a reasonable control here. This does not take away from the broader point however that eQTLs are found in DBSs and I think they can perform this alternate test.

      Indeed, the TFs-TFBSs and lncRNAs-DBSs relationships are comparable, and which one contains more QTLs is an interesting question. In this sense, it is reasonable to use TFBSs as the control. However, for three reasons, we did not perform the comparison and use TFBSs as the control. First, most TFBSs are predicted by varied methods, making us concern the reliability of comparing two sets of predictions. Second, most QTLs in DBSs are mQTLs but most QTLs in TFBSs are eQTLs. Third, probably a greater portion of TFBSs than DBSs are not in promoters, and the time consumption of LongTarget made us unable to predict DBSs truly genome-wide. Nevertheless, this is an interesting question deserving further exploring.

      5) In the discussion, they highlight the evolution of sugar intake, which I'm not sure is appropriate. This comes not from GO enrichment but rather from a few genes that are found at the tail of their distribution. While these signals may be real, the evolution of traits is often highly polygenic and they don't see this signal in their functional enrichment. I suggest removing that line. Moreover, HSlncRNAs are ones that are unique across a much longer time frame than the transition to agriculture which is when sugar intake rose greatly. Thus, it's unlikely to see enrichment for something that arose in the past 6000-7000 years would in the annotation that is designed to detect human-chimp or human-neanderthal level divergence.

      Multiple sugar metabolism-related pathways, including “glucose homeostasis” and “glucose metabolic process”, are found to be enriched only in Altai Neanderthal but not in chimpanzees (Figure 2). Indeed, HS lncRNAs are across a much longer time frame than the transition to agriculture. However, given that apes and monkeys know picking the ripe, sugar-rich fruits at the right time and place, we conjecture that archaic humans as hunter-gatherer could effectively explore natural sugars.

      Reviewer #2 (Public Review):

      Lin et al attempt to examine the role of lncRNAs in human evolution in this manuscript. They apply a suite of population genetics and functional genomics analyses that leverage existing data sets and public tools, some of which were previously built by the authors, who clearly have experience with lncRNA binding prediction. However, I worry that there is a lack of suitable methods and/or relevant controls at many points and that the interpretation is too quick to infer selection. While I don't doubt that lnc RNAs contribute to the evolution of modern humans, and certainly agree that this is a question worth asking, I think this paper would benefit from a more rigorous approach to tackling it.

      At this point, my suggestions are mostly focused on tightening and strengthening the methods; it is hard for me to predict the consequence of these changes on the results or their interpretation, but as a general rule I also encourage the authors to not over-interpret their conclusions in terms of what phenotype was selected for when as they do at certain points (eg glucose metabolism).

      I note some specific points that I think would benefit from more rigorous approaches, and suggest possible ways forward for these.

      1) Much of this work is focused on comparing DNA binding domains in human-unique long-noncoding RNAs and DNA binding sites across the promoters of genes in the human genome, and I think the authors can afford to be a bit more methodical/selective in their processing and filtering steps here. The article begins by searching for orthologues of human lncRNAs to arrive at a set of 66 human-specific lncRNAs, which are then characterised further through the rest of the manuscript. Line 99 describes a binding affinity metric used to separate strong DBS from weak DBS; the methods (line 432) describe this as being the product of the DBS or lncRNA length times the average Identity of the underlying TTSs. This multiplication, in fact, undoes the standardising value of averaging and introduces a clear relationship between the length of a region being tested and its overall score, which in turn is likely to bias all downstream inference, since a long lncRNA with poor average affinity can end up with a higher score than a short one with higher average affinity, and it's not quite clear to me what the biological interpretation of that should be. Why was this metric defined in this way?

      Length is an important metric of DBS, but it has a defect – a triplex of 100 bp may have 50% or 70% of nucleotides bound; in the two situations, the binding affinity of DBD and DBS is very different.

      2) There is also a strong assumption that identified sites will always be bound (line 100), which I disagree is well-supported by additional evidence (lines 109-125). The authors show that predicted NEAT1 and MALAT1 DBS overlap experimentally validated sites for NEAT1, MALAT1, and MEG3, but this is not done systematically, or genome-wide, so it's hard to know if the examples shown are representative, or a best-case scenario.

      More details are described in the citation Wen et al. 2022. We will put the sites into Supplementary Tables in the revised version.

      It's also not quite clear how overlapping promoters or TSS are treated - are these collapsed into a single instance when calculating genome-wide significance? If, eg, a gene has five isoforms, and these differ in the 3' UTR but their promoter region contains a DBS, is this counted five times, or one? Since the interaction between the lncRNA and the DBS happens at the DNA level, it seems like not correcting for this uneven distribution of transcripts is likely to skew results, especially when testing against genome-wide distributions, eg in the results presented in sections 5 and 6. I do not think that comparing genes and transcripts putatively bound by the 40 HS lncRNAs to a random draw of 10,000 lncRNA/gene pairs drawn from the remaining ~13500 lncRNAs that are not HS is a fair comparison. Rather, it would be better to do many draws of 40 non-HS lncRNAs and determine an empirical null distribution that way, if possible actively controlling for the overall number of transcripts (also see the following point).

      (1) If, say, three transcripts of a gene share the same promoter region (i.e., they have the same TSS) but differ only in 3’UTR, the promoter region was used to predict DBSs just for once. Otherwise, if the three transcripts have different TSS, the three promoter regions were used to predict DBSs.

      (2) A gene may have many DBSs if it has many transcripts, or few ones if it has just a few transcripts. We did not correct for this uneven distribution of transcripts, because our GTEx analysis was on the transcript level; it is well recognized that transcripts of the same gene can be expressed in different tissues.

      (3) We randomly sampled a pair of non-HS lncRNA and a transcript for 10000 times (i.e., 10000 pairs). It is a point that multiple draws of 40 non-HS lncRNAs should be made to make the statistics more robust.

      3) Thresholds for statistical testing are not consistent, or always well justified. For instance, in line 142 GO testing is performed on the top 2000 genes (according to different rankings), but there's no description of the background regions used as controls anywhere, or of why 2000 genes were chosen as a good number to test? Why not 1000, or 500? Are the results overall robust to these (and other) thresholds? Then line 190 the threshold for downstream testing is now the top 20% of genes, etc. I am not opposed to different thresholds in principle, but they should be justified.

      The over-representation analysis using g:Profiler was performed taking the whole genome as the background. Analyzing more DBSs (especially weak DBSs) would generate more results, but the results could be less reliable. Thus, there is a trade-off between analyzing fewer DBSs with relatively high reliability and analyzing more DBSs with relatively low reliability. Inevitably, the handling of this trade-off is somewhat subjective, and to carefully compare the two classes of DBSs per can be an independent question. Although weak DBSs were not systematically analyzed, the results from the strong DBSs undoubtedly suggest that HS lncRNAs have contributed greatly to human evolution.

      Likewise, comparing Tajima's D values near promoters to genome-wide values is unfair, because promoters are known to be under strong evolutionary constraints relative to background regions; as such it is not surprising that the results of this comparison are significant. A fairer comparison would attempt to better match controls (eg to promoters without HS lncRNA DBS, which I realise may be nearly impossible), or generate empirical p-values via permutation or simulation.

      We examined Tajima’s D in DBSs (Supplementary Figure 9) and in HS lncRNA genes (Supplementary Figure 18). In both cases, we compared the Tajima’s D values with the genome-wide background.

      4) There are huge differences in the comparisons between the Vindija and Altai Neanderthal genomes that to me suggest some sort of technical bias or the such is at play here. e.g. line 190 reports 1256 genes to have a high distance between the Altai Neanderthal and modern humans, but only 134 Vindija genes reach the same cutoff of 0.034. The temporal separation between the two specimens does not seem sufficient to explain this difference, nor the difference between the Altai Denisovan and Neanderthal results (2514 genes for Denisovan), which makes me wonder if it is a technical artefact relating to the quality of the genome builds? It would be worth checking.

      We used the same workflow (and the same cutoff 0.034) to analyze Vindija and Altai Neanderthal and Denisovan. If a smaller cutoff was used, one would see more Vindija genes. The question again is that there is a trade-off. Analyzing epigenome and epigenetic regulation in archaic genomes is an interesting direction, and much more studies are needed before more reasonably setting related parameters and cutoffs.

      5) Inferring evolution: There are some points of the manuscript where the authors are quick to infer positive selection. I would caution that GTEx contains a lot of different brain tissues, thus finding a brain eQTL is a lot easier than finding a liver eQTL, just because there are more opportunities for it. Likewise, claims in the text and in Tables 1 and 2 about the evolutionary pressures underlying specific genes should be more carefully stated. The same is true when the authors observe high Fst between groups (line 515), which is only one possible cause of high Fst - population differentiation and drift are just as capable of giving rise to it, especially at small sample sizes.

    1. Author Response

      The primary concern of Reviewer 1 is that Ne might affect gBGC and hence GC, and this might act as a confounding effect. The reviewer suggests that we should investigate how gBGC (with GC presumably as its proxy) might affect CAIS, and to what extent any relationship here could explain the relationship between CAIS and body mass. We believe that we have already dealt with this both in Supplementary Figure S5A (where we regret having inserted the wrong figure panel, a mistake we will correct), and its PIC-corrected counterpart in S5B. These two panels show (or will show) that CAIS is not correlated with GC. Note that we expect our genomic-GC-based codon usage expectations to reflect unchecked gBGC in an average genomic region, independently of whether that species has high or low Ne. Our working model is that mutation biases, including but not limited to the strength of gBGC, vary among species, and that they rather than selection determine each species’ genome-wide %GC. By correcting for genome-wide %GC, our CAIS thus corrects for mutation bias, in order to isolate the effects of selection.

      Reviewer 1 also suggests that we examine the relationship between gene expression and GC corrected RSCU, as we would expect codon adaptation to be stronger in more highly expressed genes, as was previously shown in the non-GC corrected CAI metric (Sharp et al 1987). Correlations with gene expression are outside the scope of the current work, which is focused on producing a single value of codon adaptation per species. It is indeed possible that our general approach could be useful in future work investigating differences among genes.

      One key difference between our work and that of Galtier et al. 2018 is that our approach does not rely on identifying specific codon preferences per species. Our approach thus remains appropriate even for scenarios e.g. where different cell types, different environmental conditions, and/or different genes have different codon preferences (Gingold et al. 2014 https://doi.org/10.1016/j.cell.2014.08.011). At a high level, our results are in broad agreement with those of Galtier et al., 2018, who found that gBGC affected all animal species, regardless of Ne, and who like us, found that the degree of selection on codon usage depended on Ne. Through use of a more sensitive methodology, we believe we have expanded our ability to detect codon adaptation into animals of somewhat higher Ne than in previous work.

      We thank Reviewer 2 for explicitly laying out the math that was implicit in our Figures 1 and 2. In our revisions, we will more clearly acknowledge that the per-site codon adaptation bias depicted in Figure 1 has limited sensitivity to s*Ne. We believe our approach worked despite this because the phenomenon is driven by what is shown in Figure 2. I.e., where Ne makes a difference is by determining the proteome-wide fraction of codons subject to significant codon adaptation, rather than by determining the strength of codon adaptation at any particular site or gene.

      Simulated datasets would be great, but we think it a nice addition rather than must-have, in particular because we are skeptical about whether our understanding of all relevant processes is good enough such that simulations would add much to our more heuristic argument along the lines of Figure 2. E.g. we believe the complications documented by Gingold et al. 2014 cited above are pertinent, but incorporating them into simulations would require a complex set of assumptions.

      In response to the final comment of reviewer 2, the reason that we hard-coded genome-wide %GC values is that we took them from the previous study of James et al. (2023) https://doi.org/10.1093/molbev/msad073. As summarized in the manuscript, genome-wide %GC was a byproduct of a scan conducted in that work, of all six reading frames across genic and intergenic sequences available from NCBI with access dates between May and July 2019. The code used in the current work to calculate the intergenic %GC, as well as that used to calculate amino acid frequencies, is located at https://github.com/MaselLab/Codon-Adaptation-Index-of-Species. We agree that more user-friendly tools would be useful, but producing robust tools falls outside the scope of the current manuscript.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study addresses both the native role of the Plasmodium falciparum protein PfFKBP35 and whether this protein is the target of FK506, an immunosuppressant with antiplasmodial activity. The genetic evidence for the essentiality of FKBP35 in parasite growth is compelling. However, the conclusion that the role of FKBP35 is to secure ribosome homeostasis and the claim that FK506 exerts its antimalarial activity independently of FKBP35 rely on incomplete evidence.

      We thank the Reviewers and Editors for their careful evaluation of our manuscript and the constructive criticism. We realized that some of our conclusions may be regarded/misunderstood as overstatements. This was by no means our intention and we apologize for the unnecessary inconvenience. The phenotype of FKBP35 knock-out parasites clearly centers on failing ribosomes and protein synthesis, which in our opinion, provides an important leap towards understanding the role of this drug target in P. falciparum biology. It is however correct that, at this point, we can only make evidence-based hypotheses about direct interaction partners and we will emphasize this more clearly in a revised version of the manuscript. In order to prevent misinterpretation of our work, and as detailed in the point-by-point responses to the reviewer comments, we propose changing the manuscript title to “Genetic validation of PfFKBP35 as an antimalarial drug target”. To address the criticism regarding the effects of FK506, we will perform specific additional experiments. We are convinced that this new data set will resolve any remaining ambiguities and allows for a conclusive assessment of FK506 drug activity in P. falciparum.

      Reviewer #1 (Public Review):

      In this study, the authors investigate the biological function of the FK506-binding protein FKBP35 in the malaria-causing parasite Plasmodium falciparum. Like its homologs in other organisms, PfFKBP35 harbors peptidyl-prolyl isomerase (PPIase) and chaperoning activities, and has been considered a promising drug target due to its high affinity to the macrolide compound FK506. However, PfFKBP35 has not been validated as a drug target using reverse genetics, and the link between PfFKBP35-interacting drugs and their antimalarial activity remains elusive. The manuscript is structured in two parts addressing the biological function of PfFKBP35 and the antimalarial activity of FK506, respectively.

      The first part combines conditional genome editing, proteomics and transcriptomics analysis to investigate the effects of FKBP35 depletion in P. falciparum. The work is very well performed and clearly described. The data provide definitive evidence that FKBP35 is essential for P. falciparum blood stage growth. Conditional knockout of PfFKBP35 leads to a delayed death phenotype, associated with defects in ribosome maturation as detected by quantitative proteomics and stalling of protein synthesis in the parasite. The authors propose that FKBP35 regulates ribosome homeostasis but an alternative explanation could be that changes in the ribosome proteome are downstream consequences of the abrogation of FKBP35 essential activities as chaperone and/or PPIase. It is unclear whether FKBP35 has a specific function in P. falciparum as compared to other organisms. The knockdown of PfFKBP35 has no phenotypic consequence, showing that very low amounts of FKBP35 are sufficient for parasite survival and growth. In the absence of quantification of the protein during the course of the experiments, it remains unclear whether the delayed death phenotype in the knockout is due to the delayed depletion of the protein or to a delayed consequence of early protein depletion. This limitation also impacts the interpretation of the drug assays.

      We thank the Reviewer for the compliments regarding our experimental setup and the clarity of our manuscript. We agree that the link between FKBP35 knock-out and ribosome homeostasis is indirect and we now emphasize this more clearly in the revised manuscript. To prevent a general misinterpretation of our manuscript, we will adapt the title accordingly.

      We would still like to reiterate that the phenotype of FKBP35 knock-out parasites is best described by their defects in maintaining functional ribosomes. It is for several reasons that we believe the links between FKBP35 and ribosome function are purely evidence driven: First, pre-ribosomal and nucleolar factors are the first proteins (in generation 1 schizonts) to be affected upon knock-out of fkbp35 (Figure 2A, Table S1). We realized that Figure 2A falls short in showing this observation, which is why will update the figure accordingly. Second, the dysregulation of ribosomal factors and the general stall in protein synthesis is dominating the phenotype of FKBP35 knock-out parasites in generation 2. We thus believe it is appropriate to say that knock-out cells are most likely killed in response to defective ribosome maintenance – which is a consequence of reduced FKBP35 levels. We are aware that our experiments (and possibly any other reverse genetics approach) cannot rule out that FKBP35 affects ribosomal factors indirectly. Clearly, more work is required to disentangle this question in more detail in the future.

      We agree with the Reviewer that it is not possible to tell if the delayed death-like phenotype is due to a “delayed protein depletion”. We would however like to note that the DiCre/loxP approach allows for an immediate knock-out at the genome level and is thus as precise as possible. Further, in addition to the substantial depletion of FKBP35 in knock-out cells during the phenotypically silent generation, knocking out of fkbp35 at earlier time points (TPs 24-30 and 34-40 hpi in the preceding generation) resulted in the very same phenotype cycle (Figure 1). Here, parasite death was delayed substantially longer, i.e. more than one complete cycle. Together with the dysregulation of early ribosome maturation in generation 1, these findings point towards a delayed death phenotype. It is of course still possible to explain the delayed death-like phenotype by remnant activity of proteins synthetized prior to the genomic knock-out. We address this possibility and describe the two scenarios mentioned by the Reviewer in lines 141-144. Disentangling the two possibilities in future experiments will be difficult, not only with regards to FKBP35, but regarding “delayed death” phenotypes in general.

      In the second part, the authors investigate the activity of FK506 on P. falciparum, and conclude that FK506 exerts its antimalarial effects independently of FKBP35. This conclusion is based on the observation that FK506 has the same activity on FKBP35 wild type and knock-out parasites, suggesting that FK506 activity is independent of FKBP35 levels, and on the fact that FK506 kills the parasite rapidly whereas inducible gene knockout results in delayed death phenotype. However, there are alternative explanations for these observations. As mentioned above, the delayed death phenotype could be due to delayed depletion of the protein upon induction of gene knockout. FK506 could have a similar activity on WT and mutant parasites when added before sufficient depletion of FKBP35 protein. In some experiments, the authors exposed KO parasites to FK506 later, presumably when the KO is effective, and obtained similar results. However, in these conditions, the death induced by the knockout could be a confounding factor when measuring the effects of the drug. Furthermore, the authors show that FK506 binds to FKBP35, and propose that the FK506-FKBP35 complex interferes with ribosome maturation, which would point towards a role of FKBP35 in FK506 action. In summary, the study does not provide sufficient evidence to rule out that FK506 exerts its effects via FKBP35.

      Noteworthy, we were also very much surprised by data indicating that the antimalarial activity of FK506 is independent of FKBP35. It is for this reason that we conducted a comprehensive set of experiments to disprove our initial observations, but couldn`t find any evidence for an FKBP35-dependent mode of action of FK506:

      We were not able to see altered FK506 sensitivity in (i) inducible knock-down parasites, (ii) inducible overexpression parasites and (iii) inducible knock-out parasites. Parasites with altered FKBP35 levels (as assessed by Western blot and quantitative proteomics at 36-42 hpi, respectively) were equally sensitive to FK506. Importantly, at no sub-lethal FK506 concentration did lower FKBP35 levels lead to an altered response of FKBP35KO compared to the wild-type control population. Furthermore, (iv) induction of the knock-out in the cycle preceding FK506 exposure also had no effect on parasite sensitivity. As mentioned by the Reviewer, we also exposed the parasites to FK506 at 30-36 hpi and (v) did not see any effect, even though we measured a 19-fold difference in FKBP35 protein levels between the parasite populations at 36-42 hpi. At this point, parasite death induced by the knock-out cannot be a confounding factor (as it was mentioned by the Reviewer), because the FKBP35 knock-out has no effect on parasite survival in generation 1 in the absence of FK506 (Figure 1F). This demonstrates that the observed effect is only due to drug-mediated killing and not due to the FKBP35 knock-out.

      To account for a scenario in which the drop in FKBP35 levels only occurs after 36 hpi, we will perform an additional set of experiments, in which we induce the knock-out at 0-6 hpi and treat the parasites at 36-42 hpi (i.e. the time point at which the 19-fold difference in protein levels was measured by quantitative proteomics). This setup will allow determining whether or not the parasite killing activity of FK506 depends on FKBP35 levels.

      So far, our experiments cannot support any scenario in which FK506 kills P. falciparum parasites via inhibiting the essential role of FKBP35 and we would therefore want to insist that this statement is based on highly solid evidence. In this context, it is important to note that our conclusion includes two scenarios: “This indicates that either the binding of FK506 does not interfere with the essential role of PfFKBP35, or that PfFKBP35 is inhibited only at high FK506 concentrations that also inhibit other essential factors.” While this phrase is already present in our initial submission, we will emphasize this point more clearly in the revised manuscript. We are convinced that this information is of high importance for ongoing and future drug development.

      Reviewer #2 (Public Review):

      The manuscript by Thomen et al. FKBP secures ribosome homeostasis in Plasmodium falciparum and focuses on the importance of PfKBP35 protein, its interaction with the FK506 compound, and the role of PfKBP35 in ribosome biogenesis. The authors showed the interaction of the PfKBP54 with FK506, but the part of the FK506 and PfKBP54 in ribosome biogenesis based on the data is unclear.

      The introduction is plotted with two parallel stories about PfKBP35 and FK506, with ribosome biogenesis as the central question at the end. In its current form, the manuscript suffers from two stories that are not entirely interconnected, unfinished, and somewhat confusing. Both stories need additional experiments to make the manuscript(s) more complete. The results from PfFBP35 need more evidence for the proposed ribosome biogenesis pathway control. On the other hand, the results from the drug FK506 point to different targets with lower EC50, and other follow-up experiments are needed to substantiate the authors' claims.

      The strengths of the manuscript are the figures and experimental design. The combination of omics methods is informative and gives an opportunity for follow-up experiments.

      We thank the Reviewer for the evaluation of the manuscript. We apologize for the fact that the Reviewer found the manuscript to be inaccessible. We will use the comments as an incentive to restructure the manuscript and do our best to clarify the presentation, interpretation and conclusion of the presented data in the revised version. We believe that the FKBP35 data are strongly interlinked with the findings on FK506. We will emphasize these links more clearly and are convinced that the complementary nature of the datasets are a particular strength of the presented work.

      Reviewer #3 (Public Review):

      The study by Thommen et al. sought to identify the native role of the Plasmodium falciparum FKBP35 protein, which has been identified as a potential drug target due to the antiplasmodial activity of the immunosuppressant FK506. This compound has multiple binding proteins in many organisms; however, only one FKBP exists in P. falciparum (FKBP35). Using genetically-modified parasites and mass spectrometry-based cellular thermal shift assays (CETSA), the authors suggest that this protein is in involved in ribosome homeostasis and that the antiplasmodial activity of FK506 is separate from its activity on the FKBP35 protein. The authors first created a conditional knockdown using the destruction domain/shield system, which demonstrated no change in asexual blood stage parasites. A conditional knockout was then generated using the DiCre system. FKBP35KO parasites survived the first generation but died in the second generation. The authors called this "a delayed death phenotype", although it was not secondary to drug treatment, so this may be a misnomer. This slow death was unrelated to apicoplast dysfunction, as demonstrated by lack of alterations in sensitivity to apicoplast inhibitors. Quantitative proteomics on the FKBP35KO vs FKBP35WT parasites demonstrated enrichment of proteins involved in pre-ribosome development and the nucleolus. Interestingly, the KO parasites were not more susceptible to cycloheximide, a translation inhibitor, in the first generation (G1), suggesting that mature ribosomes still exist at this point. The SunSET technique, which incorporates puromycin into nascent peptide chains, also showed that in G1 the FKBP35KO parasites were still able to synthesize proteins. But in the second generation (G2), there was a significant decrease in protein synthesis. Transcriptomics were also performed at multiple time points. The effects of knockout of FKBP35 were transcriptionally silent in G1, and the parasites then slowed their cell cycles as compared to the FKBP35WT parasites.

      The authors next sought to evaluate whether killing by FK506 was dependent upon the inhibition of PfKBP35. Interestingly, both FKBP35KO and FKBP35WT parasites were equally susceptible to FK506. This suggested that the antiplasmodial activity of FK506 was related to activity targeting essential functions in the parasite separate from binding to FKBP35. To identify these potential targets, the authors used MS-CETSA on lysates to test for thermal stabilization of proteins after exposure to drug, which suggests drug-protein interactions. As expected, FK506 bound FKBP35 at low nM concentrations. However, given that the parasite IC50 of this compound is in the uM range, the authors searched for proteins stabilized at these concentrations as putative secondary targets. Using live cell MS-CETSA, FK506 bound FKBP35 at low nM concentrations; however, in these experiments over 50 ribosomal proteins were stabilized by the drug at higher concentrations. Of note, there was also an increase in soluble ribosomal factors in the absence of denaturing conditions. The authors suggested that the drug itself led to these smaller factors disengaging from a larger ribosomal complex, leading to an increase in soluble factors. Ultimately, the authors conclude that the native function of FKBP35 is involved in ribosome homeostasis and that the antiplasmodial activity of FK506 is not related to the binding of FKBP35, but instead results from inhibition of essential functions of secondary targets.

      Strengths:

      This study has many strengths. It addresses an important gap in parasite biology and drug development, by addressing the native role of the potential antiplasmodial drug target FKBP35 and whether the compound FK506 works through inhibition of that putative target. The knockout data provide compelling evidence that the KBP35 protein is essential for asexual parasite growth after one growth cycle. Analysis of the FKBP35KO line also provides evidence that the effects of FK506 are likely not solely due to inhibition of that protein, but instead must have secondary targets whose function is essential. These data are important in the field of drug development as they may guide development away from structure-based FK506 analogs that bind more specifically to the FKBP35 protein.

      Weaknesses:

      There are also a few notable weaknesses in the evidence that call into question the conclusion in the article title that FKBP35 is definitely involved in ribosomal homeostasis. While the proteomics supports alterations in ribosome biogenesis factors, it is unclear whether this is a direct role of the loss of the FKBP35 protein or is more related to non-specific downstream effects of knocking down the protein. The CETSA data clearly demonstrate that FK506 binds PfKB35 at low nM concentrations, which is different than the IC50 noted in the parasite; however, the evidence that the proteins stabilized by uM concentrations of drug are actual targets is not completely convincing. Especially, given the high uM amounts of drug required to stabilize these proteins. This section of the manuscript would benefit from validation of a least one or two of the putative candidates noted in the text. In the live cell CETSA, it is noted that >50 ribosomal components are stabilized in drug treated but not lysate controls. Similarly, the authors suggest that the -soluble fraction of ribosomal components increases in drug-exposed parasites even at 37{degree sign}C and suggests that this is likely from smaller ribosomal proteins disengaging from larger ribosomal complexes. While the evidence is convincing that this protein may play a role in ribosome homeostasis in some capacity, it is not sure that the title of the paper "FKBP secures ribosome homeostasis" holds true given the lack of mechanistic data. A minor weakness, but one that should nonetheless be addressed, is the use of the term "delayed death phenotype" with regards to the knockout parasite killing. This term is most frequently used in a very specific setting of apicoplast drugs that inhibit apicoplast ribosomes, so the term is misleading. It is also possible that the parasites are able to go through a normal cycle because of the kinetics of the knockout and that the time needed for protein clearance in the parasite to a level that is lethal.

      Overall, the authors set out to identify the native role of FKB35 in the P. falciparum parasites and to identify whether this is, in fact, the target of FK506. The data clearly demonstrate that FKBP35 is essential for parasite growth and provide evidence that alterations in its levels have proteomic but not transcriptional changes. However, the conclusion that FKBP35 actually stabilizes ribosomal complexes remains intermediate. The data are also very compelling that FK506 has secondary targets in the parasite aside from FKBP35; however, the high uM concentrations of the drug needed to attain results and the lack of biological validation of the CETSA hits makes it difficult to know whether any of these are actually the target of the compound or instead are nonspecific downstream consequences of treatment.

      We appreciate the detailed and valuable suggestions to improve the manuscript. We agree that CETSA could only identify potential targets of FK506 in the micromolar range, while FK506 showed a high affinity for FKBP35, consistent with earlier reports (2). We would however like to point out that FK506 kills P. falciparum at exactly these relatively high concentrations and not at those presumed from the high affinity interactions between FK506 and FKBP35. The relatively high FK506 concentration required to stabilize potential off target proteins is therefore not a concerning observation, but rather corroborates our conclusion that FK506 fails to inhibit the essential function of FKBP35 at concentrations that leave off targets unaffected. As mentioned in response to Reviewer 1, we will describe and discuss these data more clearly in the revised manuscript. We thank the Reviewer for pointing out the potential issues regarding the use of the term “delayed death phenotype”. We now refer to the FKBP35 phenotype as “delayed death-like” in the revised manuscript.

      We believe that follow-up work on specific FK506 CETSA hits is out of scope of the current and already quite complex manuscript.

      As mentioned in the response to Reviewer 1, we realize that the short title of the manuscript can be regarded as an overstatement. Again, this was clearly not our intention and we apologize that the Reviewers had to indicate this issue. While we believe that the message of the title holds true (see response to Reviewer 1), we recognize the misconception that might arise from it, which is why we propose the new title: “Genetic validation of PfFKBP35 as an antimalarial drug target”.

      Reviewer #1 (Recommendations For The Authors):

      1) Documentation of FKBP35 protein levels over time in knockout, knockdown and overexpressing parasites is missing here. Since the knockdown of PfFKBP35 has no phenotypic consequence, very low amounts of FKBP35 are probably sufficient for parasite survival and growth. In the absence of quantification of the protein during the course of the experiments, it remains unclear whether the delayed death phenotype in the knockout is due to the delayed depletion of the protein or to a delayed consequence of early protein depletion. This limitation also impacts the interpretation of the drug assays. In particular, the delayed death phenotype could simply reflect delayed protein depletion, contrasting with the immediate inhibition of FKBP35 by FK506. The quantification by mass spectrometry does indicate substantial depletion but provides no information on the kinetics and levels. What is 19 fold compared to the knockdown condition? Also, expression of FKBP35 in overexpressing parasites should be compared side by side with the iKD (in the presence of Shield).

      We agree with the Reviewer that low FKBP35 levels are likely sufficient for parasite survival. This is addressed in the manuscript (lines 141-143). Assessing protein levels in the transgenic parasites side by side in time course experiments would be interesting. However, our conclusions are independent of the outcome of such experiments because the relative difference in FKBP35 levels resulting from conditional expression systems did not change the parasites` susceptibility to FK506. We believe that comparing isogenic populations is much more informative than comparing independent cell lines with each other.

      2) The authors claim that FK506 fails at inhibiting the essential function of PfFKBP35 (line 103), however this is not directly supported by data. FK506 kills the parasite and so inhibits essential functions. The data indicate that FK506 antimalarial activity does not seem to be influenced by FKBP35 levels, which would support the authors claim. However, as mentioned above, it is important to better define experimentally FKBP35 expression levels. Also, in experiments where FK506 is added late after rapamycin treatment, the authors need to clarify how they could distinguish drug killing and death due to the knockout.

      In the experiment described by the Reviewer, the FKBP35 knock-out was induced in young ring stages (0-6 hpi) and FK506 was added at 30-36 hpi, we measured the parasite survival from G1 to G2 (see figure 5A). In the absence of FK506, the FKBP35 knock-out has no effect on parasite survival (Figure 1), demonstrating that the observed effect is only due to drug killing and not due to the KO.

      To address the concerns regarding delayed depletion of FKBP35, we have performed an additional set of experiments. This data corroborates that the effect of FK506 is independent of FKBP35 levels. We discuss this topic in more detail in the Public Review. In brief, the additional experiment included exposing knock-out parasites (KO induced 0-6 hpi) with FK506 at 36-42 hpi, i.e. at a time point when FKBP35 protein levels are reduced by more than 90% (19-fold difference compared to the control parasites based on quadruplicate quantitative mass spectrometry data). However, despite the clear difference, the IC50 of FK506 remained the same as determined before (see new figure 4F).

      3) Since FK506 is known to inhibit FKBP35 PPIase activity, it could be relevant to compare the effects of FK506 versus KO on ribosomes and translation. This could provide further evidence supporting a FKBP35-independent activity of FK506.

      We agree with the Reviewer that this would be very informative. However, it would be difficult to disentangle indirect downstream processes on translation caused by both the FK506 drug treatment and the FKBP35 knock-out in a cellular assay. Establishing a biochemical in vitro assay to study the role of PPIase activity in translation is out of scope of this manuscript.

      Minor points

      -The title is rather vague, which reflects the fact that the function of PfFKBP35 is not precisely defined in the study.

      We thank the Reviewer for this assessment, which is in agreement with Reviewer 3. Based on these concerns, and in order to prevent misinterpretation of our manuscript, we propose changing the title to “Genetic validation of PfFKBP35 as an antimalarial drug target” (see public response above).

      -The transcriptomics data (Fig 3) provide little information on the function of FKBP35 and could be included as supplemental material. On the contrary, data in FigS5 convey important information and should be moved to the main figures.

      We believe that the transcriptomics data are important to characterize the effect of limiting FKBP35 levels in G2, as they show that, unlike certain homologs of other organisms (3), FKBP35 has no role in transcriptional control and its knock-out does not have any downstream consequences on the transcriptional level (except for the death-related stall in cell cycle progression). We would therefore would like to keep this dataset represented in the main figures. The updated Figure 4F now includes more information about the effect of adding FK506 at different time points, which was only addressed in Figure S5 in the previous version of the manuscript. We believe that the key message of Figure S5 is now covered in Figure 4.

      -Line 30: "action" rather than "role"

      We corrected this.

      Reviewer #2 (Recommendations For The Authors):

      I have no comments on data, code, or other issues.

      General comments:

      The introduction is plotted with two parallel stories about PfKBP35 and FK506, with ribosome biogenesis as the central question at the end. In its current form, the manuscript suffers from two stories that are not entirely interconnected, unfinished, and somewhat confusing. I recommend focusing only on one story - either characterizing PfBP35 and its role in Plasmodium falciparum biology - future investigation of PfBP35 control of cellular processes or focusing on the actual targets of the FK506 drug (identified in figure 4). Both stories need additional experiments to make the manuscript(s) more complete and ready for publication. The results from PfFBP35 need more evidence for the proposed ribosome biogenesis pathway control. On the other hand, the results from the drug FK506 point to different targets with lower EC50, and other follow-up experiments are needed to substantiate the authors' claims.

      The strengths of the manuscript are the figures and experimental design. The combination of omics methods is informative and gives an opportunity for follow-up experiments.

      Detailed points and suggestions for authors:

      Line 99

      There is no such thing as "protein translation"; it is mRNA translation or protein synthesis, which needs to be updated throughout the manuscript.

      We thank Reviewer 2 for pointing out this error that we now corrected.

      Line 174

      The statement needs a reference(s).

      We added an appropriate review reference.

      Lines 229-235

      While transcriptomics and proteomics data can argue that FKBP35 maybe acts at the post-transcriptional level, its function, as well as presented data, could point to post-translational mechanisms as well, cell cycle checkpoint misregulation, and multiple other pathways that control cell size, cell proliferation, translation, and ribosome biogenesis. More solid and direct evidence on ribosome biogenesis (rRNA processing, polysome profiles, or similar experiments) would be needed to show the function of FKBP35 in this cellular process.

      We have changed the term “post-transcriptional processes” to “transcription-independent processes”. As detailed in the Public Review, we agree with the Reviewer and lowered our statements regarding the function of FKBP35 throughout the manuscript.

      Lines 237-313

      The authors showed again the interaction of PfFKBP35 with the FK506 drug, but the phenotype differs from the protein deletion. Moreover, EC50s for multiple other proteins (i.e., PF3D7_1138700 or PF3D7_1325900, among others) are lower than for PfFKBP35 but are never further tested. This would be necessary to characterize FK506 drug targets, and it would be a different study.

      We believe that characterizing putative targets of FK506 is out of the scope of this already complex study and should be addressed, as suggested by the Reviewer, in a future and independent efforts.

      Lines 293 - 301

      The point of lower EC50 for PfFKBP35 and FK506 in in vitro cell lysate experiment compared to in vivo IC50 data is not surprising, given that drug delivery is not an issue in a lysate experiment. It is unclear why the authors pick some proteins and not others for further characterization of FK506 binding. There is no explanation for this selection. They did not follow up on the best targets of FK406 drugs from Fig 4 (above comment).

      As mentioned above, validation of FK506 targets is out of scope of this study.

      Lines 313 -352

      An alternative scenario for the FK506 drug data in CETSA experiments is that they bind directly to ribosomes interacting with rRNA, as many macrolides do. One should note that these are not ribosomal factors (line 334) but ribosomal proteins mentioned in Fig.4 F, mainly associated with large ribosomal subunit.

      We agree with Reviewer 2 that FK506 could bind indirectly to ribosomal proteins. This scenario is already described in the initial version of the manuscript (see lines 285-287: “Of note, these ribosomal proteins were stabilized at virtually identical FK506 concentrations (Figs. 4D, and S7), indicating that the drug – directly or indirectly – interacts with ribosomal complexes.”).

      We thank the Reviewer for pointing out that we are indeed talking about “ribosomal proteins” rather than “ribosomal factors”. We now corrected this.

      Reviewer #3 (Recommendations For The Authors):

      Please see Public review for suggestions about experimental validation of the link to ribosome homeostasis.

      We would like to thank Reviewer 3 for the detailed suggestions.

      References

      1) Kennedy K, Cobbold SA, Hanssen E, Birnbaum J, Spillman NJ, McHugh E, et al. Delayed death in the malaria parasite Plasmodium falciparum is caused by disruption of prenylation-dependent intracellular trafficking. PLoS Biol. 2019;17(7):e3000376.

      2) Kotaka M, Ye H, Alag R, Hu G, Bozdech Z, Preiser PR, et al. Crystal structure of the FK506 binding domain of Plasmodium falciparum FKBP35 in complex with FK506. Biochemistry. 2008;47(22):5951-61.

      3) Kasahara K, Nakayama R, Shiwa Y, Kanesaki Y, Ishige T, Yoshikawa H, et al. Fpr1, a primary target of rapamycin, functions as a transcription factor for ribosomal protein genes cooperatively with Hmo1 in Saccharomyces cerevisiae. PLoS Genet. 2020;16(6):e1008865.

    1. Author Response

      We thank the reviewers for their comments, and their evident close reading of the manuscript. Generally, we agree with the reviewers on the strengths and weaknesses of our manuscript. We plan to submit a revised version which has a more extensive discussion of alternative explanations for initial high ribosome density as seen by ribosome profiling, and which more specifically points out the limitations of our work.

      As a preface to specific responses to the reviewers, we will say that we could divide observations of slow initial translation into two categories, which we will call “encoded slow codons”, and “increased ribosome density”. With respect to the first category, Tuller et al. documented initial “encoded slow codons”, that is, there is a statistical excess of rare, slowly-translated codons at the 5’ ends of genes. Although the size of this effect is small, statistical significance is extremely high, and the existence of this enrichment is not in any doubt. At first sight, this appears to be a strong indication of a preference for slow initial translation. In our opinion, our main contribution is to show that there is an alternative explanation for this initial enrichment of rare, slow codons—that they are a spandrel, a consequence of sequence plasticity at the 5’ (and 3’) ends of genes. The reviewers seem to generally agree with this, and we are not aware that any other work has provided an explanation for the 5’ enrichment of rare codons.

      The second category of observations pertaining to slow initial translation is “increased ribosome density”. Early ribosome profiling studies used cycloheximide, and these showed a much greater density of ribosomes near the 5’ end of genes than elsewhere. This high initial ribosome density helped motivate the paper of Tuller et al., though their finding of “encoded slow codons” could explain only a very small part of the increased ribosome density. More modern ribosome profiling studies do not use cycloheximide as the first step in arresting translation, and in these studies, the density of ribosomes near the 5’ end of genes is greatly reduced. And yet, there remains, even in the absence of cycloheximide at the first step, a significantly increased density of ribosomes near the 5’ end (e.g., Weinberg et al., 2016). (However, at least some of these studies do use cycloheximide at later steps in the protocol, and the possibility of a cycloheximide artefact is difficult to exclude.) It appears to us that some of the reviewer’s main concerns are that we do not explain the increased 5’ ribosome density seen by ribosome profiling. We agree; but we feel it is not the main point of our manuscript. In revision, we will more extensively discuss other work on increased ribosome density, and more explicitly point out the limitations of our manuscript in this regard. We also note, though, that increased ribosome density is not a direct measure of translation speed—it can have other causes.

      Specific Responses.

      Reviewer 1 was concerned that we did not more fully discuss other work on possible reasons for slow initial translation. We will discuss such work more extensively in our revision. However, as far as we know, none of this work proposes a reason for the 5’ enrichment of rare, slow codons.

      Reviewer 1 was also concerned about confounding effects in our reporter gene analysis of the effects of different codons on efficiency of translation. We have two comments. First, it is important to remember that although we changed codons in our reporters, we did not change any amino acids. We changed codons only to synonymous codons. Thus at least one of the reviewer’s possible confounding effects—interactions of the nascent peptide chain with the exit channel of the ribosome—does not apply. However, of course, the mRNA nucleotide sequence is altered, and this would cause a change in mRNA structure or abundance, which could matter. We agree this is a limitation to our approach. However, to fully address it, we feel it would be necessary to examine a really large number of quite different sequences, which is beyond the scope of this work.

      Reviewer 2 was concerned that the conservation scores for the 5’ 40 amino acids, and the 3’ 40 amino acids were similar, but slow translation was only statistically significant for the 5’ 40 amino acids. As we say in the manuscript, we are also puzzled by this. We note that 3’ translation is statistically slow, if one looks over the last 100 amino acids. Our best effort at an explanation is a sort of reverse-Tuller explanation: that in the last 40 amino acids, the new slow codons created by genome plasticity are fairly quickly removed by purifying selection, but that in the first 40 amino acids, for genes that need to be expressed at low levels, purifying selection against slow codons is reduced, because poor translation is actually advantageous for these genes. To expand on this a bit, we feel that the 5000 or so proteins of the proteome have to be expressed in the correct stoichiometric ratios, and that poor translation can be a useful tool to help achieve this. In this explanation, slow translation at the 5’ end is bad for translation (in agreement with our reporter experiments), but good for the organism, whereas in Tuller, slow translation at the 5’ end is good for translation.

      Reviewer 2 wondered whether the N-terminal fusion peptide affects GFP fluorescence in our reporter. This specific reporter, with this N-terminus, has been characterized by Dean and Grayhack (2012), and by Gamble et al. (2016), and the idea that a super-folder GFP reporter is not greatly affected by N-terminal fusions is based on the work of Pedelacq (2006). None of these papers show whether this N-terminal fusion might have some effect, but together, they provide good reason to think that any effect would be small. We will add these citations to the revision.

    1. Author Response

      Reviewer 2 (Public Review):

      1) The authors developed a novel C.elegans model for studying extracellular amyloid beta aggregation and is therefore likely to be taken up broadly by the field. However, the new model should be fully characterized. Throughout the manuscript, the only method to detect amyloid deposition was the GFP fluorescence intensity and morphology, while direct characterization of amyloid aggregates is lacking.

      We thank the reviewer for the feedback and the foresight that this model might be taken up by the field. To strengthen our model, as the reviewer had suggested, we confirmed that the GFP fluorescence is indeed amyloid aggregations. Please, see point 3 above and the new Supporting Figure 1.1.

      2) A targeted RNA interference (RNAi) screen was used to identify the key regulators of Aβ aggregation and clearance, which is one of the strengths of the study. There should be evidence that RNAi works to knockdown the specific genes. Similarly, there should be evidence indicating that ADM-2 is indeed expressed in the overexpression experiments.

      We aimed to verify our main hits (cri-2 and adm-2) with a mutation in these genes, as RNAi can have off-target effects. The adm-2(ok3178) allele is a 989 bp deletion leading to a splice/acceptor change leading to a probably truncated and out-of-frame protein.

      Author response image 1.

      The cri-2(gk314) allele is a 1213 bp deletion covering the whole cri-2 locus, suggesting to be a null allele.

      Author response image 2.

      For the overexpression, there is no ADM-2 antibody available. We tried to generate an ADM-2 antibody, unfortunately unsuccessfully. Thus, we can only, based on the induction and higher red fluorescence of ADM-2::mScarlet (Supporting Figure 6.1.) infer the ADM-2 overexpression.

      3) It remains unknown whether ADM-2 directly degrades Aβ or facilitates the clearance of Aβ by remoulding the ECM. The effect of ADM-2 on ECM remodeing should be examined.

      We addressed this in point 1 above and also in our discussion section.

    1. Author Response

      Reviewer #2 (Public Review):

      During meiosis, mitotic cohesin complexes are replaced by meiosis-specific cohesins to enable a stepwise loss of sister chromatid cohesion. The identity of the cohesin complex is defined by its kleisin subunit. In the early meiotic prophase, the mitotic kleisin Scc1 is replaced by a meiotic counterpart Rec8. C. elegans expresses two additional meiotic kleisins, COH-3 and COH-4; however, how meiotic cohesin complexes differ in their loading and function has been unclear. In this paper, Castellano-Pozo and colleagues unveil their differential dynamics and functions using elegant approaches that include auxin-mediated depletion and TEV-mediated removal of meiotic kleisins. The association of COH-3/4 with chromosomes is dynamic and is under the control of two cohesin regulators, WAPL-1 and SCC-2, while REC-8 remains more stably associated. The authors established that COH-3/4 is involved in maintaining the structural integrity of chromosome axes, whereas the REC-8 cohesin is solely responsible for sister chromatid cohesion throughout meiosis. They further demonstrated the role of REC-8 in the repair of meiotic DSBs.

      Overall, this solid work unequivocally establishes the distinct regulation and requirements for REC-8 and COH-3/4 cohesin complexes during C. elegans meiosis.

      We thank the reviewer for their overall support.

      However, as the authors acknowledged, the role of REC-8 cohesins in sister chromatid cohesion has been shown previously using genetic mutants (Crawley et al., 2016 eLife). While the authors highlighted the advantages of removing cohesin subunits in establishing their distinct requirements, many of the results were recapitulated from their previous work (e.g. rec-8; spo-11 and coh-3/4; spo-11). It might be helpful for the readers to compare the results between the two studies and point out uniquely illuminating results.

      Although we and others have previously suggested that REC-8 cohesin provides SCC in worms based on observations made in different meiotic mutants, a convincing demonstration of this possibility was lacking and an alternative model proposing that COH-3/4 cohesin do provide SCC had been proposed (Severson et al 2014). Using TEV-tagged versions of REC-8 and COH-3/4 we unequivocally establish that SCC is uniquely provided by REC-8 complexes in metaphase I oocytes. We have introduced modifications in the text and figures (including a model shown in Figure 5) to highlight the main results of our study.

      The role of REC-8 in DNA repair has also been shown in different contexts. Chromosomes fragmentation and DNA bridges are observed in rec-8; syp-1 or rec-8; syp-2 (RNAi) animals (Colaiacovo et al., 2003 Dev Cell; Crawley et al., 2016 eLife), suggesting a role of REC-8 in inter-sister repair. Persistent RAD-51 foci are also observed on asynapsed chromosomes in rec-8 mutants, suggesting a role for REC-8 in DNA repair (Cahoon et al., 2019 Genetics). The authors must cite these papers and discuss the results in the context of prior work.

      We agree with the reviewer that the studies mentioned above are consistent with the possibility that REC-8 complexes contribute to inter-sister repair. We now include citations of the manuscripts mentioned by the reviewer. The experiments presented in Figures 4A-B are different from those in the studies mentioned by the reviewer in that by introducing exogenous DSBs by IR (including in a spo-11 mutant background (Figure 4B)) we can more directly address the contribution of REC-8 and COH-3/4 complexes in pachytene nuclei under a situation in which similar numbers of DSBs are introduced. These experiments show that low abundance REC-8 complexes play a much more prominent role in DSB repair than highly-abundant COH-3/4 complexes and suggest that this activity is coupled to REC-8’s role in SCC.

      Reviewer #3 (Public Review):

      The study, performed in the animal model C. elegans, aims at characterizing functional differences in the meiosis-specific kleisins, REC-8 and COH-3/4.

      The authors conclude that in worms the identity of the kleisin subunit of the cohesin complex determines whether cohesin promotes cohesion, or controls higher-order chromosome structure. COH-3/4 is highly abundant and dynamic and responds to SCC-2 and WAPL-1. In contrast, REC-8 complexes associate stably and in low abundance and are resistant to SCC-2 and WAPL-1 perturbations.

      Main points:

      This study is a continuation and partially a repeat of a study Castellano-Pozo & Martinez-Perez published in Nat. Comm. 2020, in which they depleted COH-3/4 and REC-8 by injecting TEV and cleaved artificially engineered TEV sites in these kleisins.The results were slightly different though, as the authors concluded: "Disassembly of axial elements requires simultaneous removal of REC-8 and COH-3/4."

      The current study uses a degron instead of TEV and SIM to revisit the same result. This time, degradation of COH-3/4 alone, but not of Rec8 alone completely eliminates axial elements. It seems that, if the conclusion is now correct, the previous headline must be incorrect, showing that more care has to be taken in the conclusions.

      The reviewer is referring to data shown in Figure 1C saying that we used a degron system to degrade COH-3/4 and REC-8 from pachytene nuclei. This is incorrect, images in this figure correspond to rec-8 and coh-3 coh-4 double mutants (as indicated in main text and figure legend) and therefore to germlines lacking REC-8 or COH-3/4 from the onset of meiosis. In contrast, in the Castellano-Pozo et al 2020 study REC-8 or COH-3/4 were removed from pachytene chromosomes using the TEV approach following normal chromosome morphogenesis at meiosis onset to specifically address how kleisin removal in nuclei at the pachytene stage impacted on meiotic progression. In addition to this, Figure 1C does not show that lack of COH-3/4 “completely eliminates axial elements”, as stated by the reviewer, but rather that “SMC-1::GFP signals appeared as discontinuous weak signals in pachytene nuclei” (see description of this result in lines 103-104 of first version). This finding is consistent with the Castellano-Pozo et al 2020 study where we reported that staining of HORMADs (used to visualise axial elements) became weaker and more discontinuous following removal of COH-3/4 than REC-8 from pachytene axial elements (this observation is also mentioned in lines 96-97 of the first version of our manuscript).

      One new experiment in this study is the degradation of scc-2::AID::GFP. The authors treat the germline with auxin for 14 hours. How long scc-2::AID actually needs for degradation and thus, how long cells actually remain without SCC-2, is unknown. What is definitely needed is a serious analysis of the speed of degradation of Scc2 in the various stages.

      It is currently not possible to estimate, as the authors do, how long cells have been without SCC-2. This estimation assumes an immediate depletion of SCC-2.

      If this were indeed the case, then depletion intervals should be much shorter, because the important primary phenotypes occur immediately after depletion, not 14 hours later.

      We now analyse REC-8::HA and COH-3/4 staining after auxin treatment for 8 and 14 hours, showing that 8 hours results in weaker effect on COH-3/4 depletion in pachytene nuclei and a smaller section of the germline lacking REC-8::HA staining in early prophase. We also include cartoons in Figure 2B to explain how nuclei progress through pachytene (35 hours in total).

    1. Author Response

      Reviewer #2 (Public Review):

      This manuscript tackles the important and vexing problem of mapping alleles for TB. It is a really important problem, and this paper presents the largest genetic data set. It does so by amalgamating data from multiple cohorts. The manuscript rightly points out that many studies have not produced reproducible results, and most alleles are population specific, and rarely seen in multiple studies.

      1) Authors find a strong HLA associated SNP. They do conduct HLA imputation, but there is little effective fine-mapping. Authors should report which classical alleles are consistent with this allelic association (e.g. which classical alleles are in phase with it). Authors comment on DQA1-0301, but it isn't clear in the main text how significant it is. I think the authors should dig a little deeper. Imputing amino acids and assessing association might be useful. Finding classical alleles that explain the SNP associations and are seen across populations might be useful. If the authors think that the SNP might be a regulatory allele, the authors should make a case for that based on genomic annotations, eQTL analyses etc.

      We thank the reviewer for pointing out the issues with the HLA section. We also received feedback from another reviewer about the HLA section. Based on this we have completely reworked the HLA section with more rigorous analysis to make the results easier to interpret and detect potential underlying HLA alleles that could explain the significant SNP detected in the MR-MEGA meta-analysis. This includes our findings with summary statistics for the DQA1*02:01 allele with those available from studies that were not included in our genome-wide meta-analysis. The HLA section has been updated on page 7-9, as shown below and a figure has been added to the main manuscript (Figure 3B) and the supplementary data (Figure S2):

      Notwithstanding inconsistency across populations the strongest signal in the combined global analyses is at DQA102:01, revealing a protective effect (OR 0.88, 95% CI 0.82-93, p-value = 1.3e-5, Figure 3B). The signal remains apparent in the six populations with the lead SNP at MAF >2.5% and individual level data available (p-value = 0.0003). However, conditioning on the significant SNP (rs28383206) in this subset, we find the signal at DQA102:01 all but disappears (Figure S2) suggesting the classical allele is tagging the rs28383206 association (p-value = 0.44). This observation is consistent with previous observations of HLA analysis in Icelandic (DQA102:01: OR 0.82, p-value = 7.39e-4) and Han Chinese populations (DQA102:01: OR 0.82, p-value = 7.39e-4), but showed opposite direction of effect in another Chinese population (DQA1*02:01: OR 1.28, p-value = 0.0193, Figure 3B)19,21,23.

      The discussion was also updated (page: 14-15) to incorporate and discuss the updated results as shown below:

      Based on the significant association, rs28383206, in the HLA region identified in this multi-ancestry (Figure 3A), HLA specific imputation and association testing was done to fine map the region and identify potential HLA epitopes driving this association. HLA DQA102:01 had the strongest signal in the meta-analysis across the 8 included studies (Figure 3B), but this signal disappeared when conditioning on the significant SNP (rs28383206). HLA DQA102:01 has previously been identified in an Icelandic and two Chinese population, but the direction of effect was not consistent19,21,23. Despite these inconsistencies the association between Mtb and HLA class II should be explored in more detail in future studies. A study investigating outcomes of Mtb exposure in individuals of African Ancestry identified protective effects of HLA class II alleles for individuals resistant to TB, highlighting the importance of HLA class II and susceptibility to TB62. HLA class II is a key determinant of the immune response in TB and Mtb has mechanisms to directly interfere with MHC class 2 antigen presentation63. This is supported by studies in mice, where mice in which the MHC class ll genes were deleted died quickly when exposed to Mtb and died faster than mice in which MHC class I genes were deleted63.

      2) The authors comment on ancestry. Are ancestry components disease associated in any cohort? It might be interesting to demonstrate this.

      We thank the reviewers for this recommendation. While ancestry components have been shown to be disease associated in the admixed (RSA) populations in previous studies, we have considered the fact that effects of genetic ancestry can be severely confounded by socioeconomic factors. Factors such as housing, employment, poverty and access to healthcare have significant impact on TB incidence rates, especially in African populations. We cannot account for these socioeconomic differences in our analysis, but we have updated the manuscript (page: 15) to highlight this issue and the potential impact of socioeconomic factors on our results.

      This is supported by the fact that previous TB genetic association studies have identified significant effects of ancestry on TB susceptibility11,26. However, the effects of genetic ancestry can be confounded by other factors not accounted for in this analysis, such as differences in socioeconomic factors (including differences in housing, employment, poverty, and access to healthcare) between the included study populations59–61. For the ancestry-specific analysis, fewer studies result in there being less input heterogeneity to account for, but the reduced sample size was not sufficient to detect any ancestry-specific genome-wide associations. This is particularly evident for the African ancestry-specific meta-analysis where the large degree of heterogeneity, which could be a result of the high genetic diversity within Africa, in combination with differences in socioeconomic factors compared to other populations included in this study, resulted in no observable suggestive association peaks59,60.

      Reviewer #3 (Public Review):

      This paper was a significant and commendable effort, given all the challenges in TB genetics research. It was generally well written and analyses well done. Analytical methods were appropriate. The inclusion of polygenic heritability estimates is also nice to have within this large work. There is also a wealth of supplemental data provided, which will be useful to the field.

      However, there are a number of important weaknesses that need to be addressed. These are listed here, and recommended revisions are addressed in the recommendations section:

      1) As the authors point out, one of the challenges in this work is the varying phenotype definitions (diagnosis of TB cases, definition of controls) across all the included genetic studies. Table S1 is critical for this, however it is missing information, and some of the information is unclear. More importantly, the authors state multiple times that there is no evidence of heterogeneity due to these variable phenotype definitions, and that genetic ancestry contributes more to differences in effect sizes between GWAS than study design. However, these two things are confounded - different study designs / phenotype definitions were used in studies of different ancestry.

      We thank the reviewer for pointing this out and we have updated Table S1 to define the phenotype definitions and how cases and controls were identified. All datasets should now have clear definitions. As for the impact of different phenotype definitions on the heterogeneity we do agree that these are confounding factors and we do not claim that there is no evidence of phenotype definitions influencing heterogeneity, but rather we claim that the genetic ancestry of the included populations has a larger impact on heterogeneity than other factors investigated in this study. We updated the manuscript to clarify this in the discussion (page: 15) as shown below:

      The p-values of residual heterogeneity in genetic effects between the studies in the multi-ancestry meta-analysis show no significant inflation between the studies suggesting that differences in study characteristics (phenotype definition, infection pressure, Mtb strain) are not the main contributor to the lack of significant associations, but they certainly have an impact and are compounded with ancestry-correlated heterogeneity and other factors. However, the ancestry-correlated heterogeneity p-values are generally lower than the residual heterogeneity, suggesting that genetic ancestry has a stronger impact on the differences in effects sizes between the studies. This is supported by the fact that previous TB genetic association studies have identified significant effects of ancestry on TB susceptibility11,26. However, the effects of genetic ancestry can be confounded by other factors not accounted for in this analysis, such as differences in socioeconomic factors (including differences in housing, employment, poverty, and access to healthcare), phenotype definitions and differences in infection pressure between the included study populations 60–62

      And we also updated the polygenic heritability in the results section (page: 4) as shown below:

      Furthermore, variations in phenotype definition can have an impact on heritability estimates (Table S1).

      2) The polygenic heritability analysis table is not explained very well.

      We thank the reviewer for pointing out this issue. The polygenic heritability table (Table S2) has been updated and some columns were removed (as they contained results from a discarded analysis). We have added footnotes to the table to define the variables and make the table more understandable and we have also updated the results section to clarify the analysis (page: 19) as shown below:

      The genetic relationship matrix was calculated for each autosomal chromosome (un-imputed data) which were pruned for SNPs in linkage disequilibrium (LD) using a 50 SNP window, sliding by 10 SNPs at a time and removing all variants with LD greater than 0.5.

      And page 19:

      Heritability estimations were transformed onto the liability scale using the GCTA software to account for the difference in the proportion of cases in the data compared to the population prevalence74.

      3) The supplemental data file is not very helpful without some sort of guide. It isn't clear whether the wealth of candidate genes that have been studied in TB were examined in these data. That would be a great benefit of this work.

      We thank the reviewer for pointing this out and we agree that the supplemental data excel sheet was difficult to understand. We have included a readme file (also on sheet 1 of the excel sheet) to explain which information is in the sheets of the excel document. This includes a list of candidate SNPs and genes that we investigated along with the meta-analysis results of these candidate SNPs and genes. We also updated the “Prior associations” section of the manuscript in which we cover the results of candidate SNPs and genes (page: 13-14).

      4) There needs to be clarity on how unpublished works were sought. In non-genetic meta-analyses, there is usually some detail about a process of contacting authors, etc. There needs to be some assurance that every attempt was made to collect all the relevant data. It is also not clear why family-based analyses could not be included considering that summary statistics were the basis of analysis.

      I updated the manuscript to address this (page: 18):

      This analysis includes 12 of the 17 published (and un-published, Table 1 and S1) GWAS studies of TB (with HIV negative cohorts) prior to 202210–17,26. For unpublished works we contacted researchers that were funded for genetic TB research and acquired data sharing agreements to obtain summary statistics (or raw data) along with any meta-data that was available. It excludes data from Iceland and Vietnam 18,31, as they declined to share data. It excludes data from China, Korea, Peru and Japan6,20,21,23,31, as data sharing agreements could not be finalized in time for this analysis. The Indonesian and Moroccan data were to sparsely genotyped and not suitable for reliable imputation and the Moroccan data was also family-based and thus also not suitable for this meta-analysis, as this would introduce confounding effects from the inclusion of related individuals24,25.

      5) It is rather surprising that only one locus meets genome-wide significance. The authors do explain this well in terms of the ancestry-specific effects driving these results, but it is also surprising that no candidate genes (that had not been discovered in GWAS studies, but were rather studied separately) did not rise to some higher significance threshold.

      We agree that it is surprising that we did not detect more significant associations and failed to replicate any candidate SNPs or genes at a genome wide significance level. We aim to have future iterations of this analysis with more data to increase power to detect more variants of interest, but this is beyond the scope of this manuscript.

    1. Author Response

      Reviewer #1 (Public Review):

      “Liu et al present a very interesting manuscript investigating whether there are distinct mechanisms of learning in children with ASD. What they found was that children with ASD showed comparable learning to typically developing children, but that there was a difference in learning strategy, with less plasticity and more stable learning representations in children with ASD. In other words, children with ASD showed similar learning performance to typically developing children but were more likely to use different learning rules to get there. Interestingly greater fMRI-measured brain plasticity was associated with learning gains in typically developing children, whereas more stable (less plasticity) neural patterns were associated with learning gains in autistic children. This was mediated by insistence on sameness (from the RRIB) in the ASD group. This is a good paper, well reasoned and with strong methods.”

      We appreciate the positive comments from the reviewer.

      1.1) “The biggest issue is related to subject numbers...With n=35 it is only possible to make a generalized statement about autism.”

      Thank you for this comment. Although the sample size in the current study was modest, we would like to note that acquiring high-quality behavioral and brain imaging data at multiple time points a is a challenge in children with ASD. The current training study with unique longitudinal behavioral and brain imaging data provides an unprecedented opportunity to investigate the potentially atypical training-induced learning and brain plasticity in children with ASD relative to TD peers. To our knowledge, the present longitudinal sample is largest of its kind in studies of neurocognitive function in children with ASD. We have acknowledged these points in the revised Discussion section (Page 15), including the following statement:

      “First, larger sample sizes are required to further characterize heterogeneous patterns of atypical learning and whether the findings can be generalized to a broader ASD population.” (Page 15)

      1.2) “[Another] issue is related to [heterogeneity of autism-related findings]. For example, take the following statement from the results: "while most TD children used the memory-based strategy most frequently following training, nearly half of the children with ASD used rule-based strategies most frequently for trained problems." Is this the heterogeneity of autism at play, or the noisiness of the task and measures?

      We hypothesize that group differences in changes in strategy use following training are due to atypical learning style or high level of inter-individual differences, i.e., greater heterogeneity, in autism, rather than noisiness of the measures. This hypothesis is based on the fact that we used the same tasks before and after training and a standardized training protocol across the two groups, which (i) allowed us to systemically examine atypical learning of these tasks in children with ASD compared to TD children and (ii) provided ecologically valid measures. This design minimized potential differences in measurement error between the two groups. We have clarified these points in the revised Introduction section (Page 4), including the following statement: “Crucially, we employed identical tasks before and after training and a standardized training protocol across the two groups. This approach enabled systemic analysis of learning in children with ASD relative to TD children.” (Page 4)

      1.3) “Conceptually, is it realistic to expect a unitary learning strategy in all of autism?

      We agree with the sentiment expressed by the reviewer, and indeed this notion led to the hypothesis that our study was to test. We hypothesized that children with ASD would not show a unitary learning strategy at this stage of development examined. Our results reveal that a disproportionate number of children with ASD use a rule-based strategy, reflecting atypical learning styles.

      1.4) “Lastly, the task itself can only be solved in a subset of autistic children and therefore presents a limited view of the condition.”

      We thank the reviewer for this important point and agree that additional studies tailored to more severely affected children with ASD are required for a more comprehensive characterization of learning in children with autism.

      Reviewer #2 (Public Review):

      “Overall, the authors sought to determine whether children with autism spectrum disorder (ASD) or typical development (TD) would both benefit from a 5-day intervention designed to improve numerical problem-solving. They were particularly interested in how learning across training would be associated with pre-post intervention changes in brain activity, measured with functional magnetic resonance imaging (fMRI). They also examined whether brain-behavior associations driven by learning might be moderated by a classic cognitive inflexibility symptom in ASD ("insistence on sameness"). The study is reasonably well-powered, uses a 5-day evidence-based intervention, and uses a multivariate correlation-based metric for examining neuroplastic changes that may be less susceptible to random variation over time than conventional mass univariate fMRI analyses. The study did have some weaknesses that draw into question the specific claims made based on the present set of analyses, as well as limit the generalizability of the findings to the significant proportion of individuals with ASD that are outside of the normative range of general cognitive functioning. The study also found minimal evidence for transfer between trained and untrained mathematical problems, limiting enthusiasm for the intervention itself. The majority of the authors' claims were rooted in the data and the team was generally able to accomplish their aims. I am sensitive to the fact that one of the main limitations I noted would have significant ethical implications-i.e. NOT offering potentially beneficial numerical training to children randomized to a sham or control group. I think the authors' work will represent a welcome addition to a growing corpus of studies showing similar neuropsychological test performance across several cognitive domains (e.g. learning, memory, proactive cognitive control, etc.) in ASD and TD. However, these relatively preserved cognitive functions still appear to be implemented by unique neural systems and demonstrate unique correlations to clinical symptoms in youth with ASD relative to TD, which may have implications for both educational and clinical contexts.

      We thank the reviewer for the positive feedback and helpful suggestions.

      Reviewer #3 (Public Review):

      “Liu and colleagues examined learning and brain plasticity in neurotypical children and children with autism. The main findings include autistic children relying more on rule-based versus memory-based learning strategies, altered associations between learning gains and brain plasticity in children with autism, and insistence on sameness as a moderator between brain plasticity and learning in autism. Although the sample size is limited in this study, the findings provide a significant contribution to the field. The major strengths of this paper include an extensive pre and post training protocol, a detailed methods section, rationale behind the study, investigation of a potential moderator of learning gains and neural plasticity, and investigation of "neural plasticity" in association to learning in autism. Weaknesses of the study include a small sample size, and some missing information/analyses from the study. The authors laid out four clear aims of the study. They investigated these aims and the analytic approaches were appropriate. The paper included significant findings toward better understanding the mechanisms underlying differences in learning strategies and behavior in children diagnosed with autism spectrum disorder. This holds significant value in educational and classroom settings. Further, the investigation of a potential moderator of learning gains and neural plasticity provides a potential mechanism to improve the relationship. Overall, this is a significant contribution to the field. The autism literature is limited in understanding differences in learning styles and the underlying neural mechanisms of these differences.”

      We thank the reviewer for the positive comments and detailed suggestions.

    1. Author Response

      Reviewer #1 (Public Review):

      As part of a special issue on COVID-19 and cancer, Fuzzell and colleagues report findings from their mixed method study on the impact of the pandemic on cervical cancer screening and colposcopies, consisting of a national (United States) survey (March-August 2021) of 1251 clinicians (675 perform colposcopy) and qualitative interviews (June-December 2021) with 55 of these clinicians. The study looked specifically at perceived pandemic-related practice changes and disruptions over one year into the pandemic after the lockdowns had been lifted.

      The overall focus is on three pandemic-related questions (impact on cervical cancer screening practice, colposcopy practice, ability to provide LEEP) that were asked as part of a larger survey related to cervical cancer screening and management of abnormal results, details of which are however not fully described in terms of the survey's general aim and items, but seem to have been designed within the context of adherence to guidelines (following Cabana's Guideline Based Practice Improvement Framework).

      The authors thank the reviewer for their thoughtful feedback. The surveys topics assessed are now described more fully in the Method, and measures are available upon request. The survey covered several areas related to cervical cancer screening practices and management of abnormal screening results, including presentation of vignettes focused on screening intervals, management or treatment, and screening exit or continuation in relation to 2019 ASCCP risk-based management guidelines adoption, as well as a sub-set of items for clinicians who perform colposcopy. There were also items related to HPV self-sampling, as well as the impact of the COVID-19 pandemic on screening and follow-up (which is the focus of the present manuscript).

      Reviewer #2 (Public Review):

      Lindsay Fuzzell and her team of researchers have performed an extremely well-executed survey study, which captures a wide spectrum of providers who perform cervical cancer screening in the US. The researchers have captured a vast amount of demographic data in this study in attempting to determine whether cervical cancer screening continued to be reduced in the year immediately after the lockdown period caused by the COVID-19 pandemic.

      The authors have uncovered some important and revealing concerns regarding the current state of cancer screening during the public health crisis caused by the COVID-19 pandemic. The most notable implication from their survey was a statistically higher reported reduction in cervical cancer screening in Internal medicine and family medicine providers as well as for community health and safety net clinics. These findings are important as they represent a large portion of primary care and a vulnerable patient population that has been shown to have worse cancer-related outcomes.

      This study is more sobering information about the magnitude of ramifications of the COVID-19 pandemic on the US public health system. Decreases in cancer screening may have lasting implications for cancer-related mortality for many years to come. The implications of not going back to pre-pandemic cancer screening rates are daunting, to say the least.

      The scope of this survey, the amount of data attained, and the sound methodology of the data acquisition and statistical analysis are the strengths of this study. Weaknesses are inherent to the study relying on survey answers rather than data from cervical cancer screening registries. Reporting biases are complex in surveys and answers given may not reflect the true rates of screening. The authors have also reported a disproportionate and statistically significant reduction in cervical cancer screening for Black and Asian providers. I would conclude more cautiously here with confidence intervals crossing one in both for this statistical analysis.

      Overall, this is a survey study with a great magnitude, which has important implications for cancer screening and public health in the US.

      The authors thank the reviewer for their kind assessment. The discussion now includes an acknowledgement of the weaknesses inherent with using self-report surveys, namely that self-report surveys have inherent biases and may not be actual representations of screening and colposcopy practices that could be ascertained via medical record or claims databases. Additionally, regarding confidence intervals that cross one, given the few studies that have explored factors associated with clinician perspectives on screening and colposcopy changes due to the pandemic, we desired a more broad-based approach to identifying factors associated with our outcomes of interest, thus electing to utilize p of .10 as significance level. This strikes a balance between the commonly accepted method of using the AIC (Akaike's Information Criterion, which implicitly assumes a significance level of 0.157), and the often-used significance level of 0.05. We now describe the choice of 0.10 in the text. However, we acknowledge that by using 0.10 as a significance level, some 95% confidence intervals for factors we consider significant cross one. We have tempered language in the discussion for findings with p-values between 0.05 and 0.10. Additionally, in examination of the confidence intervals for findings related to race that the reviewer mentions, we identified an error in the labelling of Table 3. Marginally significant findings for Asian clinicians actually apply to mixed race/other clinicians. We have corrected this error in Table 3 and throughout the manuscript. We thank the reviewer for bringing the confidence intervals that cross one to our attention as this triggered an examination of our findings.

    1. Author Response

      Reviewer #2 (Public Review):

      Reviewer #2 was critical of every aspect of our manuscript and we were disappointed that they failed to appreciate the significance of our findings. However, we have responded to each point as described below:

      1) The experiment displayed in Figure 5 is deeply flawed for multiple reasons and should be removed from the manuscript entirely. A Michaelis-Menton plot compares the initial rate of a reaction versus substrate concentration. Instead, the authors plotted the fraction of SsrB that is phosphorylated after 10 minutes at various substrate concentrations. Such a plot must reach saturation because the enzyme is limiting, whereas it is not always possible to achieve saturation in a genuine Michaelis-Menton plot. Because no reaction rates were measured, it is not possible to derive kcat values from the data.

      Mea culpa. We now plot our phosphorylation data and describe the mid-point as a k0.5 and have removed Fig. 1g. When we directly compare the H12 mutant to wt at neutral pH, its phosphorylation level is less compared to the wt (see new Fig. 4a). The wt phosphorylation is reduced at acid pH, (Fig 4b), but with His12Q, there was no difference in phosphorylation between neutral and acid pH (Fig 4c). It is important to include this data, because in RcsB, a close homolog of SsrB, an H12A mutant was not phosphorylated by acetyl phosphate and it was incapable of binding to DNA, unlike what we show here with SsrB.

      (i) Increasing the concentration of the phosphoramidite substrate increased ionic strength. Response regulator active sites contain many charged moieties and autophosphorylation of at least one response regulator (CheY) is inhibited by increasing ionic strength (PMID 10471801).

      The reviewer raises some interesting points and they are based on CheY phosphorylation by small molecules. We have a long history of studying OmpR and SsrB as well as other RRs and we know that they can all behave very differently from “canonical signaling”. We examined the effect of ionic strength on SsrB phosphorylation and it was relatively insensitive to changes in ionic strength (our original buffer was 267-430 mOsm and in each case, we have 90% phosphorylation). However, we repeated all of the phosphorylation experiments and kept ionic strength constant. These data are now presented in the revised manuscript.

      (ii) Autophosphorylation with phosphoramidite is pH dependent because the nitrogen on the donor must be protonated to form a good leaving group (PMID 9398221). The pKa of phosphoramidite is ~8. Therefore, the fraction of phosphoramidite that is reactive (i.e., protonated) will be very different at pH 6.1 and 7.4.

      We are aware of those findings, but we are comparing the H12 mutant with the wt protein in each case. There is no reason to believe that the presence of the mutant should alter the phosphoramidate substrate, so we are comparing how the wt phosphorylation compares with the mutant (Fig 4b, c).

      (iii) Response regulator autophosphorylation absolutely depends on the presence of a divalent metal ion (usually Mg2+) in the active site (PMID 2201404). There is no guarantee that the 20 mM Mg2+ included in the reaction is sufficient to saturate SsrB. Furthermore, as the authors themselves note, the amino acid at SsrB position 12 is likely to affect the affinity of Mg2+ binding. Therefore, the fraction of SsrB that is reactive (i.e. has Mg2+ bound) may differ between wildtype and the H12Q mutant, and/or between wildtype at different pHs (because the protonation state of His12 changes).

      This is exactly the point that we are making. And why we varied the magnesium concentration (increasing to 50-100 mM). There was a slight increase in phosphorylation at 50 mM MgCl2 compared to 20 mM, and only a slight increase between 50 and 100 mM at pH 6.1. The revised phosphorylation experiments all contain 100 mM MgCl2.

      2) The data in Figures 1abcd and 3de are clearly sigmoidal rather than hyperbolic, indicating cooperativity. However, there are insufficient data points between the upper and lower bounds to accurately calculate the Hill coefficient or KD values. This limitation of the data means that comparisons of apparent Hill coefficient or KD values under different conditions cannot be the basis of credible conclusions.

      We respectfully disagree. In every curve that we provide, there is at least one data point in the transition between low and high binding. With the mutant H12Q, we did manage to get two data points in the transition and the KD was the same as the wildtype (Fig. 2). We provide an analysis of the binding curve which nicely demonstrates the range of KD values based on the lowest and highest error in the point (132-168 nM) and it doesn’t significantly change the value (this is now shown in Fig.1– figure supplement 1). The very high affinity we observed at pH 6.1 (KD ~5 nM) makes the range of possibilities between 4-8 nM (i.e. still VERY high affinity). These range in affinities at neutral and acid pH are very reminiscent of affinities we measured for OmpR and OmpR~P at the porin promoters, suggesting that acid pH puts SsrB in an activated state even in the absence of phosphorylation. A similar argument holds for the Hill coefficient (see Figure).

      3) There are hundreds of receiver domain structures in PDB. There is some variation, but to a first approximation receiver domain structures, all exhibit an (alpha/beta)5 fold. The structure of SsrB predicted by i-TASSER breaks the standard beta-2 strand into two parts, which throws off the numbering for subsequent beta strands. Given the highly conserved receiver domain fold, I am skeptical that the predicted i-TASSER structure is correct or adds any value to the manuscript. If the authors wish to retain the structure of the manuscript, then they should point out the unusual feature and the consequence of strand numbering.

      We now include a new model based on the RcsB/DNA crystal structure that eliminates this problem (see new Fig.2– figure supplement 2). We have replaced this model with an Alphafold prediction that was energy minimized to align with the RcsB dimer crystal structure (Fig.5– figure supplement 2). This model retains the original (beta/alpha)5 fold, so the classical numbering is retained.

      4) The detailed predictions of active site structure in Supplementary Figure 5 are not physiologically relevant because Mg2+ was not included in the simulation. The presence of a divalent cation binding to Asp10 and Asp11 is likely to substantially alter interactions between Asp 10, Asp11, His12, and Lys109.

      See response to 1iii, above and new Fig.5– figure supplement 2. Author response image 1 is a zoomed-in snapshot of supplementary Figure 8c that has been modelled using the RcsB dimer bound to BeF3 and Mg2+(6ZIX). Both the i-TASSER and Alphafold model receiver domains align well with this structure, and the polar contacts and pi-cation interactions made by His12 are maintained.

      Author response image 1.

      5) The authors present an AlphaFold model of an SsrB dimer, and note that His12 is at the dimer interface. However, the authors also believe that a higher-order oligomer of SsrB binds to DNA in a pH-dependent manner. Do the authors have any suggestions or informed speculation about how His12 might affect higher-order oligomerization than dimerization?

      As mentioned to point 3, above, we now include a new model of an SsrB dimer bound to DNA based on our NMR structure of the CTD and the RcsB/DNA structure. In the RcsB paper, they also have evidence for a higher-order oligomer in the crystal structure of unphosphorylated (and BeF3-) RcsB, which showed an asymmetric unit containing 6 molecules of RcsB, which form 3 dimers arranged in a hexameric structure that resembles a cylinder. This configuration involves a crossed conformation with the REC of one molecule interacting with the DBD of another and interestingly, His12 is interacting with the DBD of another molecule. We modelled an SsrB oligomer structure using the RcsB hexamer as a template and have included it as a new figure (see Fig.5– figure supplement 3) and in the revised discussion (lines 432-448).

    1. Author Response

      Reviewer #2 (Public Review):

      This paper addresses the topic of how T cells migrate in different tissues. The authors provide experimental evidence that T cell migration in the lung is more confined than in lymph nodes and gut villi. While prior studies have started to define the way T cells migrate during normal and pathological conditions, there is still a lot to learn about the factors that control this process. Thus, the topic is significant and timely. The authors use previously acquired data with two-photon microscopy from murine tissues. They compare multiple motility parameters of T cells in lymph nodes, gut villi, and inflamed lungs. Experiments demonstrate that T cells in the lung have a particular mode of migration characterized by low speeds, back-and-forth motions, and confinement.

      Strengths:

      Overall, this is a very well-performed study. The data presented is of excellent quality and, for the most part, supports the authors' conclusions. The imaging techniques used to track T cells in various organs and the mouse models implemented are very relevant and robust. The functional analysis of the different migration features of T cells is compelling and should be of use to the community. The conclusion that T cells use different migration modes depending on the organ appears novel. This is considered of major significance.

      We appreciate these comments by the reviewer that the study is relevant, robust, and timely.

      Weaknesses:

      The main weakness of the manuscript is that the study remains descriptive and comparative. It is important to analyze and describe different migration modes depending on the organ. Still, it would have been desirable for the authors to provide information on the reason for such differences. One of the striking observations is the back-and-forth motion of T cells in the lung. Searching for mechanisms underlying this unique mode of displacement would strengthen the quality of the study.

      We agree that the next step is to determine the underlying cells, signals, and structures that determine motility differences between tissues. However, we believe that a detailed study is beyond the scope of this manuscript, which is the first to directly compare the types of motility that should be studied in individual tissues that distinguish T cell motility in individual tissues such as villi and lung.

      Reviewer #3 (Public Review):

      The ability of T cells to move through a variety of complex and disparate tissue environments is fundamental to their success in surveying and responding to infectious challenges. A better understanding of the molecular cues that regulate T cell motility in tissues is needed in order to inform therapeutic targeting of T cell migration. Contributions that are intrinsic and extrinsic to the T cells themselves have been shown to shape the pattern of T cell movement. This study uses advanced quantitative image analysis tools to dissect differences in T cell motility in different tissue locations, to better define how the tissue environment shapes the pattern of motility and scope of tissue explored. The combination of different quantitative measures of motion enables the extensive characterization of CD8 T cell motility in the lymph node, lung, and villi of the small intestine. However, there are too many variables with respect to the CD8 T cell populations used for analysis to be able to gain new insight into the impact of the tissue microenvironment itself.

      The use of these advanced quantitative imaging analysis tools has the potential to significantly expand our analysis capabilities of T cell movement within and across tissues. The strength of the paper is the comprehensive analysis of multiple motility parameters designed with T cell function in mind. Specifically, with respect to the need for T cells to search a tissue area to identify antigen-bearing cells for T cell activation and identify cellular targets for the delivery of anti-microbial effector functions. The inclusion of an analysis of the "patrolled volume per time" is seen as a particularly useful advance to compare T cell behaviors across tissues.

      However, with the current data sets, it is difficult to draw definitive conclusions on the impact of the tissue environment on how T cell move, given the considerable variability in the CD8 T cells themselves. Extended experimentation would be needed to fully support their key claims. In particular:

      1) The authors have separated out naïve and activated CD8 T cells for their analysis, but this is a marked over-simplification. There are too many variables within these groups to be able to distinguish between differences in the T cell populations versus differences in the tissue environment. Variables include:

      a) T cells pre-activated in vitro before in vivo transfer (LPS-lung) versus transfer of naïve T cells for activation in vivo (Flu-lung, LCMV-villi)

      b) Polyclonal CD8 T cells (naïve, LPS-lung, Flu-lung) versus monoclonal (P14) CD8 T cells (LCMV-villi)

      c) Presence of cognate-antigen (Flu-lung, LCMV-villi) versus absence of antigen (LPS-lung)

      d) Cell numbers, 104 polyclonal naïve for Flu-lung versus 5 x 104 monoclonal (P14 T cells) for LCMV-villi)

      e) Intravital imaging (LCMV-villi) versus tissue explants (Flu-lung)

      The reviewer is absolutely correct that many factors differ, and we have added details about these potential differences. However, we can conclude that there are similarities in motility despite tissue and T cell activation differences, particularly between naive T cells in LN and d8 activated CD8 T cells in the gut villi. We report that the most significant differences between T cell motility parameters are in activated CD8 T cells in the lung compared to those in other tissues, regardless of antigen specificity. These lead us to suggest that the specific motility differences we see in T cells in the lung are likely to be the result of a combination of factors which we hypothesize are likely to be due to molecular changes in both the T cells (chemokine receptors) and the tissue (cell types, chemokines, and structural components). Future work will include defining specific differences that lead to changes in motility.

      The authors do present data that suggest similarities of motility patterns within the same tissue occur despite variabilities in the CD8 T cell source, for example, the MSD is not significantly different in the two lung groups despite differences in the way the CD8 T cells were activated. However, these similarities are lost when other parameters are analyzed suggesting additional variability independent of the tissue itself.

      In addition to the MSD (Fig 3), we also include parameters commonly analyzed including cell- based speed (Fig 2A). Regardless of the type of T cell, the median cell-based speeds range from 4.3 um/min to 6.5 um/min. Meandering ratio is also commonly used to analyze motility dynamics and naive T cells (0.70) and activated T cells in villi (0.63) also show similar meandering ratios (Fig 5).

      2) Controlled experiments are needed, where the input CD8 T cell population is kept constant and the target tissue differs, to substantiate any of the current conclusions. This could be done by using a single source and/or specificity of CD8 T cells (e.g., P14 or OT-I TCR transgenics, or polyclonal in vitro activated CD8 T cells) transferred into mice where the tissue providing the antigen or inflammation source is varied (lung with pOVA-flu versus small intestine with pOVA-LCMV for example).

      Alternatively, activated polyclonal CD8 T cells could be analyzed in the LPS-lung draining LN as well as in the LPS-lung to make a direct comparison between the tissues (LN versus lung) using CD8 T cells of the same activation status.

      The experimental systems cannot be directly compared except in some circumstances. For example, we included LPS-induced lung injury because we wanted to directly compare non-antigen specific with antigen specific activated T cells in the lung. We have compared motility of OTI Tg T cells responses in the lung with non-OTI Tg T cells and found similar motility and effector characteristics [15]. We have not repeated the additional controls requested here as OVA is a model antigen and commonly used as a tag to simply track CD8 T cell effector responses. There is vast literature showing similar responses between OVA-specific versus antigen specific CD8 T cell responses in multiple tissues, with OTI Tg T cells analyzed as “normal CD8 T cells”. Thus, while it is possible that imaging OTIs in multiple tissues could confirm that the type of T cells is “more similar” in each tissue, we do not believe adding this analysis would add to the overall conclusions of the manuscript as there is no data to suggest that OTIs would behave differently in different tissues. Adding in vitro activated CD8 T cells imaged in activated lymph nodes would add more variables (activated lymph node versus naive lymph node) which we do not believe would shed new light on our primary finding which is that the lung appears to induce specific types of T cell behavior compared to the naive lymph node and the gut.

      3) Differences in the micro-anatomical regions of the tissues studied may also contribute to tissue differences in movement patterns between the lung and the small intestine. The region of the small intestine imaged was specifically focused on the villi, close to the gut epithelium. Details of the location within the lung where images were taken are missing, therefore the motility differences between the lung and small intestine could reflect differences in the micro-anatomical position of the CD8 T cells within the tissue (proximal to epithelium versus parenchymal), rather than differences between the tissues themselves.

      The reviewer is absolutely correct and we have added greater discussion of this in both the Introduction and Discussion.

      Overall, the authors have developed a quantitative multi-parameter approach to the study of T-cell motility in different tissues. Application of these analytical tools to the study of T-cell behavior in different tissue locations has the potential to reveal tissue and/or T-cell-specific patterns of movement that may help to identify molecular requirements for context-specific dynamic T-cell behavior. Their quantitative approach reveals small but statistically significant differences in particular motility parameters, the functional significance of which will require further study. The careful design of experiments to reduce as many variables as possible will be needed to increase the impact of the work and ensure new insights into this important aspect of T-cell function.

    1. Author Response

      Reviewer #1 (Public Review):

      The manuscript by Curtis et al. reports the interaction between CaMKII and alpha-actinin-2. The authors found that the interaction was elevated after NMDA receptor activation in dendritic spines. In addition, this study reveals NMDA receptor binding to CaMKII facilitates alpha-actinin-2 access to the CaMKII regulatory segment, indicating that the NMDA receptor is involved in this interaction. The authors identified the EF1-4 motifs mediated this interaction, and overexpression of this motif inhibited structural LTP. Moreover, biochemical measurements of affinities from various combination of protein fragments including autoinhibited CaMKII 1-315, regulatory segments of CaMKII, and the EFhand motif reveals that autoinhibited CaMKII has limited access to alpha-actinin-2. The authors also solved the structure of the interaction, supporting their finding in neurons at the molecular level. The authors claim that the interaction between CaMKII and alpha-actinin-2 is essential for structural LTP through cooperative action by the NMDA receptor and actin cytoskeleton.

      Overall, the experiments are well-designed and the results are largely convincing and well-interpreted. But some aspects of the experiments need to be clarified.

      1) Time resolution of the interaction analysis appears to be poor, as calcium elevation in a dendritic spine would be at milli-second order. What is the time window to interact alpha-actinin-2 with CaMKII during NMDA receptor activation or LTP?

      We have performed additional time-course experiments to determine how quickly interactions between alpha-actinin-2 and CaMKII are elevated following NMDAR activation. The results of these experiments are shown in Figure 2A and Figure 2-Figure Supplement 1. We found that the change in association was established rapidly after NMDAR activation (t50% = 22±1 s, Figure 2A), which is consistent with proposed time-courses for CaMKII interactions following the induction of LTP (see Yasuda, Hayashi & Hell, Nat Rev Neuroscience, 2022, PMID 36056211). We have included additional text in the results (lines 138-147), methods (lines 609-611 & 650-652), and discussion (lines 426-427) sections explaining these experiments, and figure legends are provided for the new figures on lines 10061009 and lines 1096-1101.

      2) The authors analyzed the binding of CaMKII and alpha-actinin-2 with partial fragments. It remains to be unknown whether CaMKII can form a protein complex with GluN2B and alpha-actinin-2 in a single CaMKII protomer.

      The reviewer is referring to experiments shown in figure 5, in which we found that a fragment of GluN2B (1260-1492) increases pull-down of full-length CaMKIIa with a fusion of GST to the EF3-4 region of a-actinin-2. This region of GluN2B contains a CaMKII phosphorylation sequence (positions 1290-1309) that occupies the substrate binding groove of the kinase domain (Stratton et al., Cell Reports, 2023, PMID 35830796). Therefore, the most logical explanation for the results of the pulldown experiment is that GluN2B increases a-actinin-2 access to the regulatory segment by binding to the substrate binding groove of the same CaMKII protomer. Nevertheless, we discuss the difficulty of conceptualising and investigating interactions between oligomeric proteins within the PSD on lines 451461.

      3) Besides synaptic localization, the effect of the interaction on the enzymatic activity of CaMKII is not known.

      The Colbran laboratory has previously examined the effect of a-actinin-2 on CaMKII activity. Jalan-Sakrikar and colleagues (JBC, 2012, PMID 22427672) showed that a fragment of aactinin-2 corresponding to EF hands 3 and 4 is able to weakly activate CaMKII (~ 10 % compared to Ca2+/CaM) towards peptide substrates autocamtide-2 and GluN2B but not syntide-2 (see Figure 1B&C of this paper). An earlier study by Robison and colleagues (JBC, 2005, PMID 16172120) found that aactinin-2 antagonises Ca2+/CaM-dependent activation of unphosphorylated CaMKII towards autocamtide2, but does not affect the activity of pT286 auto-activated CaMKII (see Figure 4A of this paper). This work is referred to on lines 63-65 of the introduction.

      4) Although the authors quantify the effect of the EF-hand disruptor by measuring numbers of the dendritic spine by its shape, the specificity of the EF-hand disruptor needs to be clarified.

      There are two known interaction partners for the EF hand region of a-actinin-2: CaMKII and Titin (Young et al., EMBO J, 1998, PMID 9501083; Atkinson et al., Nat Struct Biol, 2001, PMID 11573089). Titin is an extremely long sarcomeric protein that is expressed in striated muscle cells but not neurons. Therefore, the effects of the disruptor are highly likely to reflect disruption of interactions to CaMKII. We also performed control experiments with EF34 L854R that does not bind CaMKII effectively (Figure 3-figure supplement 1C). We have added a sentence to clarify the specificity of the EF-hand disruptor on lines 182-184, as follows: ” Furthermore, the only known interaction partner for the EF14 region of a-actinin-2 besides CaMKII is the muscle-specific protein titin (Young et al., 1998), so any effects of EF14 in neurons are likely to reflect destabilisation of native interactions between CaMKII and a-actinin-2”.

    1. Author Response

      Reviewer #1 (Public Review):

      This study uses electrophysiological techniques in vitro to address the role of the Na+ leak channel NALCN in various physiological functions in cartwheel interneurons of the dorsal cochlear nucleus. Comparing wild type and glycinergic neuron-specific knockout mice for NALCN, the authors show that these channels 1) are required for spontaneous firing, 2) are modulated by noradrenaline (NA, via alpha2 receptors) and GABA (through GABAB receptors), 3) how the modulation by NA enhances IPSCs in these neurons.

      This work builds on previous results from the Trussell's lab in terms of the physiology of cartwheel cells, and from other labs in terms of the role of NALCN channels, that have been characterized in more and more brain areas somewhat recently; for this reason, this study could be of interest for researchers that work in other preparations as well. The general conclusions are strongly supported by results that are clearly and elegantly presented.

      I have a few comments that, in my opinion, might help clarify some aspects of the manuscript.

      1) It is mentioned throughout the manuscript, including the abstract, that the results suggest a closed apposition of NALCN channels and alpha2 and GABAB receptors. From what I understand, this conclusion comes from the fact that GABAB receptors activate GIRK channels through a membrane-delimited mechanism. Is it possible that these receptors converge on other effectors, for example adenylate cyclase (see https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6374141/).

      It will be of interest to test the roles of adenylyl cyclase modulation in the control of NALCN, as a complement to the studies we have presented here.

      2) In Figure 2G, the neurons from NALCN KO mice appear to reach a significantly higher frequency than those from WT (figure 2E, 110 vs. 70 spikes/s). Was this higher frequency a feature of all experiments? The results mention a rundown of peak firing rate due to whole-cell dialysis, but, from what I understand, the control conditions should be similar for all experiments.

      The peak firing rates in control solutions for WT and KO CWC are not statistically different.

      3) Also in Figure 2, the firing patterns for neurons from WT and NALCN KO mice appear to be quite different, with spikes appearing to be generated during the hyperpolarization of the bursts in the second half of the current step for WT neurons but always during the depolarization in KO neurons. Was this always the case? If so, could NALCN channels be involved in this type of firing? Along these lines, it would be interesting to show an example of a firing pattern of neurons from WT mice in the presence of NA, which inhibits NALCN channels.

      The specific pattern of spikes in CWC is quite variable from trial-to-trial or cell-to-cell, as it is dependent on multiple CaV and calcium dependent K channels subtypes, and is not dependent on the genotypes used here. The primary effects observed in the KO are in background firing and sensitivity to NA, both reflected alterations in rheobase. The firing pattern example requested was shown in the raster plot of fig 2B2.

      4) It might be interesting to discuss how the hyperpolarization induced by the activation of GIRK channels and inhibition of NALCN channels could have different consequences due to their opposite effect on the input resistance.

      We considered this as a point of discussion, but decided that making sense of it would depend on assumptions about the location of the channels (dendritic vs somatic, distance to AIS) that we do not have data for. For example, a dendritic increase in resistance through NALCN block, leading to a hyperpolarization of the soma, might have actions similar to a somatic hyperpolarizing conductance increase by GIRK, as far as the voltage at the AIS is concerned.

      Reviewer #3 (Public Review):

      The study by Ngodup and colleagues describes the contribution of sodium leak NALCN conductance on the effects of noradrenaline on cartwheel interneurons of the DCN. The manuscript is very well-written and the experiments are well-controlled. The scope of the study is of high biological relevance and recapitulates a primary finding of the Khaliq lab (Philippart et al., eLife, 2018) in ventral midbrain dopamine neurons, that Gi/o-coupled receptors inhibit NALCN current to reduce neuronal excitability. Together these studies provide unequivocable evidence for NALCN as a downstream target of these receptors. There are no major concerns. I have only minor suggestions:

      Minor

      1) As introduced in the introduction, NALCN is inhibited by extracellular calcium which has led to some discourse of the relevance of NALCN when recorded in 0.1 mM calcium. A strength of this study is the effect of NA on NALCN is recorded in physiological levels of calcium (1.2 mM). I suggest including the concentration of extracellular calcium in the aCSF in the Results section instead of relying on the reader to look to the Methods.

      Will do.

      2) It would be interesting to include the basal membrane properties of the KO compared to wildtype, including membrane resistance and resting membrane potential. From the example recording in Figure 2, one might think that the KOs have lower membrane resistance, so it is interesting that the 2 mV hyperpolarization produced similar effects on rheobase. In addition, from the example in Figure 2G, it appears that NA has an effect on firing frequency with large current injection in the KO. Is this true in grouped data and if so, is there any speculation into how this occurs?

      Will do.

      3) Please expand on the rationale for why GABAB and alpha2 must be physically close to NALCN. To my knowledge, the mechanism by which these receptors inhibit NALCN is not known. Must it be membrane-delimited?

      Given the known membrane delimited modulation of GIRK by GABAB, and that alpha2 and GABAB receptors appear to share the same population of NALCN channels, and that alpha2 receptors do not appear to target GIRK channels, we felt the simplest explanation would be coupling through G-proteins, with spatial segregation of different receptor/channel pools providing the means for separating GIRK and NALCN effects. However, the involvement of an additional second messenger is testable.

    1. Author Response

      We wish to thank the Reviewers for the appreciation they have expressed for our work, and the constructive feedback that they offered. We agree that clarifying the interpretation of synergy and information decomposition in the context of macroscale BOLD signals and loss of consciousness will be a valuable addition to the manuscript, and so will be improving the quality of our figures, and we will endeavour to do so. Briefly, at this stage we just wish to clarify that it is not our intention to claim that Phi-R and synergy, as measured at the level of regional BOLD signals, represent a direct cause of consciousness, or are identical to it. Rather, our work is intended to use these measures similarly to the use of sample entropy and LZC for BOLD signals: as theoretically grounded macroscale indicators, whose empirical relationship to consciousness may reveal the relevant underlying phenomena. We will ensure that our updated manuscript reflects this additional nuance.

    1. Author Response

      We thank the reviewers for their very thorough and detailed comments as well as the overall positive reception of the work. Additionally, the reviewers provided excellent detailed suggestions for future work.

      Specific response to Reviewer 1:

      “Indeed, the major disappointment of this work is the clinical relevance that was highlighted in the Introduction but was never really studied in the end. iPSC from patients could be added to the study.”

      We completely agree that it would be very exciting to use patient-derived iPSC in the platform that we describe in this manuscript. We recognize that extensive work to characterize and validate BMECS differentiated from patient-derived iPSCs would be required, including validating BBB-like properties, before retinol transport data could be collected and interpreted. This work is beyond the scope of the current manuscript. We hope that in the future the in vitro model we describe in this manuscript will be used for exactly this type of clinically relevant application.

      Specific response to Reviewer 2:

      “1) The authors assume that there is a significant fraction of free ROL, 20% for ROH/RBP and 7% for RBP/TTR complexes (summarized in Table 1). This implies that at the physiological concentration of ROH/RBP in the plasma of 2 uM, free ROL represents 0.4 uM. However, the concentration of free ROL is limited by its poor solubility in the aqueous phase, which is around 0.06 uM (Szuts EZ, 1991, Arch Biochem Biophys). Moreover, taking into account the large concentration of other potential nonspecific carriers for lipids, it is safe to assume that there is virtually no free ROH in the plasma. There is also an important physiological reason for the limited amount of free ROL. Its rapid and nonspecific partition into cells (also observed in this study) would work against the highly specific RBP/STRA6-dependent ROH uptake pathway, undermining its physiological function.”

      The reviewer raises an important point that we considered carefully during the design of the research. As the reviewer says, Szuts (1991) reported retinol (ROH) solubility of ~0.06 µM (range of 0.03 – 0.11 µM). Szuts defined ROH solubility as ‘the amount of dissolved solute in equilibrium with its solid state…includ[ing] all its dissolved forms (monomers, multimers, and micelles)’. We are using a definition of ‘free’ ROH as ‘ROH not bound to protein’; in our work ‘free’ ROH could include retinol multimers and micelles, which likely do exist under our experimental conditions. (We did not see any evidence of solid ROH.) That said, we calculate that the concentration of free ROH (ROH not bound to protein) is ~0.14 µM when both RBP and TTR are present. In more complex biological mixtures containing other ROH carriers, the concentration of unbound ROH is expected to be lower, in agreement with the reviewer.

      One key point is that the free ROH concentration depends on the experimental setup, and must be correctly accounted for. For example, in some of the literature investigating STRA6-mediated uptake and signaling in vitro, purified ROH-RBP is used as the retinol source and samples do not include TTR. In such a case, the unbound ROH concentration in an equilibrated sample is anticipated to be significantly higher than the physiological concentration. Our investigation demonstrates that unbound ROH can accumulate intracellularly; thus, failure to include TTR and/or to account for the action of unbound ROH could lead to errors in mechanistic interpretation of experimental studies on retinol transport into cells or across barriers such as the BBB.

      2) “However, a question remains: would the outcome of the experiment be different if the basolateral chamber contained an ROH acceptor (retinol-binding proteins) rather than Hank's balanced salt solution, to which the partition of ROL is limited by its water solubility?”

      We agree with the reviewer that it would be very interesting to determine whether retinol permeability changes in the presence of RBP and/or TTR on the basolateral side. This is a logical next step and can readily be performed in the Transwell setup. We chose not to do this for this project because we wanted to compare our setup with other in vitro models (e.g., with porcine BMECs) where no retinol-binding proteins were present basolaterally.

      3) “The authors claim that transthyretin (TTR) increases BMECs permeability when compared to ROH/RBP. However, the mechanistic explanation for this phenomenon remains unclear. Do the authors imply the presence of a putative TTR receptor whose signaling could affect the efflux of ROL at the basolateral side of BMECs? TTR is an ubiquitous plasma protein. The concentration of TTR is tightly regulated and maintained between 300 - 330 mg/L. Therefore, it is questionable how TTR can serve as a signaling molecule modulating retinoid homeostasis in the brain.”

      We disagree with the reviewer about the TTR concentration. Per Johnson et al (Clin Chem Lab Med 2007, 45:419-426), TTR concentration varies with age, gender, inflammation and nutritional status, with typical concentrations for adults ranging from 150-450 mg/L. We were surprised at our observations that TTR enhanced ROH permeability across BMECs and that LRAT expression increased in the presence of TTR. We do not currently have a mechanistic interpretation and agree with the reviewer that further exploration of these tantalizing observations is warranted.

      “Additional technical issues that could affect the experimental outcomes: The formation of the ROH/RBP-TTR complex should be confirmed and purified using gel filtration to separate free TTR and ROH/RBP. Only fractions containing the complex should be used in the experiments. Assuming that the complex is formed with 100% efficiency is overly optimistic.”

      We respectfully disagree with the reviewer regarding using gel filtration to isolate TTR/ROH/RBP complexes. Any such isolated complexes will fairly rapidly re-equilibrate so that some protein and some ROH is unbound. It is important to note that we do not assume that the complex is formed with 100% efficiency. In fact, on the contrary, we explicitly take into account the distribution of materials (free TTR, free RBP, free ROH, RBP-ROH, TTR-RBP-ROH) in any sample; values are reported in the manuscript. This issue is also relevant to the first point raised by the reviewer. We routinely validated binding of ROH to RBP by FRET and ROH-RBP to TTR by fluorescence anisotropy.

      “Reloading RBP with isotopically labeled ROH requires an additional purification step. Stripping ROL from the ROH/RBP complex with organic solvent (diethyl ether) is appropriate but relatively harsh, causing partial unfolding of a fraction of RBP. Therefore, assuming that 100% of stripped RBP remains functional and can be reloaded with ROH is inaccurate. Reloading apo-RBP with a stoichiometric amount of ROH without an additional purification step (e.g., ion exchanger) leads to an excess of free ROL and/or its nonspecific association with nonfunctional RBP fractions. Measuring absorbance at 330 nm is not sufficient proof of binding since free ROH also absorbs at the same wavelength.”

      We produced RBP by refolding of guanidine-denatured RBP in an excess of ROH to ensure near 100% ROH loading. High quality refolded RBP can qualitatively be determined by examination of the A330/280 absorbance ratio, which should be ~1.0. We then extract ROH to completion by diethyl ether to produce pure apo-RBP (ROH-free). We utilized this diethyl-ether stripped apo-RBP stock for all future characterizations, including binding to ROH and TTR. We found our stripped apo-RBP was a suitable replacement for serum sources in every biophysical assay performed. Reloaded ROH-RBP elutes as a single peak on ion exchange chromatography, indicating the vast majority of stripped RBP is available for ROH binding. We provide detailed information about RBP characterization in Est and Murphy, Prot. Exp. Purif. (2020), to which the interested reader is referred.

    1. Author Response

      The following is the authors’ response to the current reviews.

      Comment 1: The descriptions about body weights should be matched.

      Regrettably, we did not monitor the body weights throughout the study. We have now revised the description clarifying the confusions. Importantly we evaluated the weights of the muscle (EDL and soleus) and heart tissues in 8-month-old mice (Fig. 1A).

      Comment 2: Quantitative data for figures.

      As stated in the manuscript, the presented images are representatives of at least three mice per genotype. However, assessing specific measurements such as cell sizes, diameters, or mitochondria sizes in histological tissue sections and electron microscopical fields is not feasible due to practical limitations. Unfortunately, we do not have access to specialized software for such analyses. While semi-quantification of Western blot bands is possible, implementing this for all Western blots in the manuscript would result in a substantial increase in the number of bar graphics. Below are Western blots from additional two pairs of mice used in all figures.

      Comment 3: Confusions about “total mitochondrial content”.

      The mitochondria content in cells was assessed by quantitatively comparing the DNA level of the mitochondrial gene cytochrome B to that of the nuclear gene 18S using quantitative PCR. This method is commonly used to determine the relative number of mitochondria in cells. However, we have revised and provided a clearer description in the figure legend to avoid any potential confusion.

      Comment 4: Suggestions on further analyses of PGC1-alpha and TFAM. LC3-I and -II.

      We evaluated LC3-I/II levels in PTPMT1 knockout muscles, and our findings did not indicate any signs of increased autophagic activity (Supplementary Figure S3). We will examine PGC1-alph and TFAM levels in our future studies. It is worth noting that in our previous RNA-seq analyses of PTPMT1 knockout hematopoietic cells, we did not observe any significant alterations in the expression levels of these two genes.

      Comment 5: Description on fibrotic lesions.

      Quantifying fibrotic areas poses a significant challenge. Therefore, we were only able to describe this finding.

      Comment 6: Fig 6 is not well organized and aligned.

      In response to your suggestion, we have reorganized this figure accordingly. Panels C, D, and E display mitochondrial OCR data derived from three biological replicates/genotype. We feel that these changes are sufficient to demonstrate the differences in substrate utilization between PTPMT1 knockout and control mitochondria.

      Comment 7: Descriptions on glucose oxidation and glycolysis in different types of muscle fibers are confusing

      We have followed the suggestions and revised the descriptions accordingly.

      Comment 8: A discussion about lactate utilization in cardiomyocytes would be helpful.

      Following this suggestion, we have now added a brief discussion.

      Comment 9: “Cropped” images were used in Fig 10.

      The images shown in Fig. 10 were not cropped images. In order to efficiently use the tissue and mitochondrial lysates, the Western blot membranes were intentionally cut into smaller fragments based on the molecular weights of the proteins to be detected. These smaller membrane sections were then employed for individual Western blotting purposes.

      Minor comment 1: The order of Fig 1 panels should be reorganized.

      Following this suggestion, we have now reorganized this figure.

      Minor comment 2: Suggestion for an Echocardiograph result table.

      These analyses were carried out by trained personnel at the Emory Animal Physiology Core. The data presented in our manuscript was provided by them. It is important to note that no additional parameters were measured beyond the data provided by the Core.

      Minor comment 3: Is ROS production increased in PTPMT1 knockout muscle cells?

      Yes, PTPMT1 knockout tissues showed elevated overall cellular ROS levels even at 3 months (Figure 6I).

      Minor comment 4: Typo in S10 legend.

      The typo has been corrected.


      The following is the authors’ response to the original reviews.

      Comment 1: The effects of PTPMT1 on the skeletal muscle and heart might be an embryonic defect. They might be mediated by significantly reduced mTOR signaling

      We acknowledge the valid point made by this reviewer. While both CKMM-Cre and Myh6Cre express Cre during the embryonic stage, we did not observe any developmental defects in skeletal muscle-specific (PTPMT1fl/fl/CKMM-Cre) or heart-specific (PTPMT1fl/fl/Myh6-Cre) knockout mice. These knockout mice appeared indistinguishable from their WT littermates until the age of 3-4 months.

      Morphologically, the skeletal muscle and heart dissected from these mice showed no abnormalities. Additionally, mitochondria isolated from these tissues did not exhibit any morphological/structural defects. Undoubtedly, the late-onset phenotypes observed in the knockout mice over time was attributed to the metabolic defects arising from the loss of PTPMT1 in the embryos. Although PTPMT1 knockout muscle cells and cardiomyocytes initially maintained energy homeostasis through enhanced fatty acid and glutamate oxidation, along with metabolic adaptations or activation of alternative energy-producing pathways in the first few months, they eventually encountered substantial energy deficits. This was attributed to the subsequent occurrence of oxidative stress and mitochondrial damage. In response to this valuable feedback, we have included a brief discussion in the manuscript's discussion section to address this point.

      As mentioned in the manuscript, the late-onset phenotypes observed in our study were likely a result of subsequent damages induced by prolonged metabolic substrate shift and lipid accumulation within the cells. We agree with the reviewer that decreased mTOR activities may also contribute to these late effects, and have included a brief discussion in the discussion section.

      Comment 2: Why are the effects of the loss of PTPMT1 similar in the skeletal muscle and heart.

      The depletion of PTPMT1 yields similar effects in both tissue types; however, the manifestations occur earlier in the skeletal muscle. Although mitochondria in the skeletal muscle and heart have distinct preferences for energy sources, prolonged forced utilization of fatty acids caused by PTPMT1 depletion eventually leads to lipid accumulation and cellular damage (lipotoxicity) in both tissue types. This phenomenon underscores the importance of maintaining a balance in substrate utilization to prevent adverse effects on cellular health in the skeletal muscle and heart.

      Comment 3: AMPK is activated in PTPMT1 knockout cardiomyocytes; this should have cardioprotective effects.

      AMPK can be activated through various mechanisms. In our study, AMPK activation occurs in response to energetic stress in late-stage PTPMT1 knockout tissues that displayed significantly reduced ATP levels, aligning with its role as a bioenergetic stress sensor. It is possible that AMPK activation alone was insufficient to overcome the secondary damages induced by the prolonged metabolic switch from carbohydrate metabolism to fatty acid metabolism.

      Comment 4: Knockout skeletal muscles and hearts had lipid accumulation; why were knockout mice smaller than controls? Are there any changes in white fat, core temperature or browning of fat? Rescue experiments should be considered to prove that lipid accumulation is the cause of death in the knockout mice.

      We believe that the lipid accumulation observed in muscle cells and cardiomyocytes of the knockout mice does not necessarily imply that these tissue-specific knockout mice would be heavier or have increased body fat. We appreciate the suggestions regarding energy expenditure tests and rescue experiments. We will certainly consider incorporating these experiments into our future study.

      As stated in the manuscript, we did not observe any morphological changes in white or brown fat tissues in the adipocyte-specific PTPMT1 knockout mice. Furthermore, we assessed body temperature and its response to a cold environment (4°C), and no differences were detected between the knockout mice and the control mice.

      Comment 5: Are there sex differences in muscle and heart phenotypes in the tissue specific knockout mice?

      We did not observe significant differences in phenotypes between male and female knockout mice.

      Comment 6: What happens to UCP2 activity in PTPMT1 deleted cells and what is its function in mediating AMPK and/mTOR regulation.

      Currently, there is a lack of direct methods available to measure UCP2 activity. The relationship between UCP2 and the regulation of AMPK and mTOR has not been extensively investigated.

      Comment 7: What is the effect of PTPMT1 deletion on cardiolipin synthesis?

      PTPMT1 has been implicated in both facilitating mitochondrial utilization of pyruvate and participating in the synthesis of cardiolipin. To investigate the impact of PTPMT1 knockout on cardiolipin levels, we plan to establish a mass spectrometry assay for the quantitative analysis of cardiolipin in knockout mitochondria. Completing these experiments might require a considerable amount of time. Nonetheless, we extensively addressed this point in the discussion section.

      Minor concerns:

      Comment 8: The title needs more specificity.

      As suggested, we have revised the title to "Loss of PTPMT1 restricts mitochondrial utilization of carbohydrates and induces muscle atrophy and heart failure in tissue-specific knockout mice".

      Comment 9: Heart and skeletal muscle weights in Fig 1A should be normalized against tibia length.

      Unfortunately, we did not perform normalization in this study. However, we appreciate the suggestion and will incorporate it into our future studies. It is important to note that the lengths of tibias in the knockout mice were only marginally shorter.

      Comment 10: Low magnification and longitudinal section of the muscle should be shown in Fig 1B and 2A.

      The histological images provide supporting evidence for the conclusion, despite not being optimal in quality. We acknowledge the suggested improvements and assure you that we will integrate them into our future studies. It is crucial to emphasize that each conclusion in this study was derived from multiple experimental designs, rather than solely relying on morphological changes.

      Comment 11: Fig 1F is mislabeled as 1G.

      We have conducted a thorough review and can confidently confirm that the labeling is correct.

      Comment 12: Fig 2F and 6B should be quantified.

      As indicated in the manuscript, the images presented are representatives of at least three mice per genotype. While semi-quantification of Western blot bands is possible, implementing this for all Western blots in the manuscript would result in a substantial increase in the number of bar graphics. Below are Western blot images from additional two pairs of mice included in Fig. 2F and Fig. 6B. Furthermore, Western blot images from two additional pairs of mice in other figures are also provided below.

      Author response image 1

      Western blotting data from additional two pairs of mice in Fig. 2F.

      Author response image 2

      Western blotting data from additional two pairs of mice in Fig. 6B.

      Author response image 3

      Western blotting data from additional two pairs of mice in Supplementary Fig. 2G.

      Author response image 4

      Western blotting data from additional two pairs of mice in Supplementary Fig. 3A.

      Author response image 5

      Western blotting data from additional two pairs of mice in Supplementary Fig. 3C.

      Author response image 6

      Western blotting data from additional two pairs of mice in Supplementary Fig. 3D.

      Author response image 7

      Western blotting data from additional two pairs of mice in Supplementary Fig. 4F.

      Author response image 8

      Western blotting data from additional two pairs of mice in

      Author response image 9

      Western blotting data from additional two pairs of mice in Supplementary Fig. 7C.

      Comment 13: Knockout mice should be placed on HFD or keto diet to test for the effects of PTPMT1 depletion.

      We appreciate this thoughtful suggestion. We will certainly incorporate this suggestion into our future studies, expanding beyond the scope of the current initial report.

      Comment 14: Suggestions on Fig 4A.

      Please see our response to Comment 10.

      Comment 15: Suggestions for improving echocardiographs.

      These analyses were conducted by trained personnel at the Emory Animal Physiology Core. The data presented in our manuscript was provided by them. We appreciate bringing the issues to our attention, and we will inform them accordingly.

      Comment 16: Comment on Fig 5B.

      The tissues were sectioned at comparable, if not identical, levels. WT and PTPMT1 knockout heart sections look dramatically different because of the dilated myopathy observed in the knockout hearts.

      Comment 17: Comment on Fig 5C.

      We believe the cell death occurred predominantly in cardiomyocytes.

    1. Author Response

      We thank the reviewers for their careful reading of our manuscript and for their constructive and positive comments. We will revise the manuscript to address their key points. Here, we address the reviewer’s scepticism of sleep-learning being mediated by the episodic memory system. We agree that the reported unconscious learning of novel verbal associations during sleep may not match textbook definitions of episodic memory. However, the traditional definitions of episodic memory have long been criticized (e.g, Henke, 2010; Hannula, Minor, Slabbekoorn, 2023; Shohamy & Turk-Browne, 2013; Dew & Cabeza, 2011; Reder et al, 2009). We stand by our claim that sleep-learning was of episodic nature. Here, we provide arguments for this claim:

      In the introduction and the discussion, we are reporting that we use a computational definition of episodic memory (Cohen & Eichenbaum, 1993; Henke, 2010; O’Reilly et al., 2014; O’Reilly & Rudy, 2000), and not the traditional definition of episodic memory that ties episodic memory to wakefulness and conscious awareness (Gabrieli, 1998; Moscovitch, 2008; Schacter, 1998; Squire & Dede, 2015; Tulving, 2002). Consciousness and wakefulness are no properties of episodic memory according to the computational definition of episodic memory. Instead, the core computational features of episodic memory according to the computational definition are 1) rapid learning, 2) association formation, and 3) a compositional and flexible representation of the associations in long-term memory. We designed the retrieval task in the current study to assess only the retention of sleep-formed flexibly and compositionally stored word-word associations. Reviewer 3 suggests that sound-sound associations may have been formed during sleep and may have been reactivated at test resulting in the translation of the sound pattern of the translation word to the meaning of the translation word and further to the correct superordinate semantic category of the translation word. Although these processing steps during sleep and during the wake retrieval are possible, the rapid sound-sound associative encoding, long-term storage, and the flexible sound retrieval would still require hippocampal processing and hence computations in the episodic memory system. The interpretation in terms of associative auditory learning with a double semantic translation at wake testing is laborious and inefficient and hence a less parsimonious interpretation of sleep-learning than conceptual associative encoding during sleep. Our view resonates the findings by Andrillon et al. (2017) that mere auditory perceptual learning during slow-wave sleep was not possible at all or led to suppressive memory traces that could not be retrieved following awakening.

      Importantly, Züst et al. (Current Biology, 2019) had also presented pseudowords and translation words for paired-associative word encoding during slow-wave sleep. Retrieval testing was performed in the waking state following sleep by use of a cued-recall task, as in the current study. During retrieval testing, Züst et al. recorded brain blood oxygenation using functional magnetic resonance imaging. Importantly, the hippocampus was activated during correctly, but not during incorrectly retrieved memories that had been formed during sleep. Crucially, activation resulting from this contrast within the posterior and anterior hippocampus and within lexical-semantic storage sites in the left temporal pole correlated between participants with retrieval performance (Züst et al., 2019). These correlation results demonstrate that those participants, who learned the vocabulary best during slow-wave sleep activated the hippocampus and lexical-semantic storage sites the most during wake retrieval testing. Because the learning and retrieval tasks in the current study were similar to Züst et al. (2019), the hippocampus was likely mediating the retrieval of the sleep-formed associations in the current study. We have also measured the brain oxygenation using functional magnetic resonance imaging in five persons while they learned pairs of pseudowords and translation words during slow-wave sleep and found the hippocampus activated (besides language areas) in all persons (unpublished).

      For these reasons, we believe that vocabulary presentations during sleep had triggered a hippocampus-mediated rapid conceptual-associative encoding process that provided for flexible representations of combinations of pseudowords and translation words in episodic memory.

    1. Author Response

      We thank the reviewers for their insightful reviews of our work, including both its strengths and limitations. Below we present minor corrections to the preprint and responses to the main points brought up by each reviewer.

      Erratum:

      • Line 330 refers to Fig. 7F (instead of 7D).

      • Line 331 refers to Fig. 7G (instead of 7E).

      Reviewer #1 (Public Review):

      The experimental design presented cannot clearly show that the effect of passive exposure was due to the specific exposure to task-relevant stimuli since there is no control group exposed to irrelevant stimuli.

      We acknowledge the possibility that exposure to task-irrelevant stimuli could result in improvements in learning. Testing this possibility would be a worthwhile goal of future experiments, but it is outside the scope of our current study. We have been careful in our paper to only draw conclusions about the effects of exposure to task-relevant stimuli compared to no exposure. We will also add a discussion of this point and references to the literature pointed out by the reviewer to the final version of our manuscript.

      The conclusion that "passive exposure influences responses to sounds not used during training" (line 147) does not seem fully supported by the authors' analysis. The authors show that there is an increase in accuracy for intermediate sweep speeds despite the fact that this is the first time the animals encounter them in the active session. However, it seems impossible to exclude that this effect is not simply due to the increased accuracy of the extreme sounds that the animals had been trained on.

      The conclusion that the reviewer quotes from our paper is drawn from Figure 3, in which we show that mice exhibit an improvement on non-extreme stimuli after training on extreme stimuli. Panel 3D illustrates that the observed improvements are not just changes in psychometric performance driven by the extreme sounds. In the context of this result, the conclusion relates to generalization in performance on task-relevant stimuli that are closely related to the training stimuli. In our view, it was not entirely obvious a priori that this result would have to occur, since it is possible that performance could improve at the extremes without improving at the intermediate stimuli.

      In the modelling section, the authors adjusted the hyper-parameters to maximize the difference between pure active and passive/active learning. This makes a comparison of learning rates between models somewhat confusing.

      We apologize for the confusion. None of our conclusions are based on comparisons of learning speed between models, but perhaps this was not pointed out sufficiently clearly. The relevant comparisons between conditions for each specific model are made using the same hyperparameters. We will clarify this in the updated version of our manuscript.

      The description of the sound does not state whether when reducing the slope of the sweeps the center or the onset frequency of the sounds is preserved.

      Frequency modulated sounds of different FM slopes were generated such that the center frequency was always the same. This will be clarified in the updated version of our manuscript.

      Reviewer #2 (Public Review):

      One limitation here is that the presented analysis is somewhat simplistic, does not include any detailed psychometric analysis (bias, lapse rates etc), and primarily focuses on learning speed.

      In our analyses of trials that included extreme and intermediate stimuli, we investigated some metrics of the type that the reviewer suggests here. However, since such additional psychometric analyses generally led to null results and would in any case be somewhat tangential to our main results, which are about learning speed and responses to sounds not included during training, we did not include these in our manuscript. A limitation of our study is that the available data does not allow for an analysis of psychometrics during the initial learning stages, since only the extreme stimuli were presented during the task.

      Reviewer #3 (Public Review):

      The first [major weakness] is that even Model 5 differs from their data. For example, the A+P (passive interleaved condition) learning curve in Figure 7 seems to be non-monotonic, and has some sort of complex eigenvalue in its decay to the steady state performance as trials increase. This wasn't present in their experimental data (Figure 2D), and implies a subtle but important difference. There also appear to be differences in how quickly the initial learning (during early trials) occurs for the A+P and A:P conditions. While both A+P and A:P conditions learn faster than A only in M5, A+P and A:P seem to learn in different ways, which isn't supported in their data.

      The reviewer is correct that there are subtle differences between the two learning curves produced by Model 5. Due to noise in the experimental data, however, it is possible that such subtle distinctions also appear in the learning curves of the mice. Further, the slight overshoot of the learning curve that the reviewer mentions is not constrained by the experimental data due to the fact that different mice reach asymptotic performance at different times, and many of them have not even reached asymptotic performance by the end of the training period.

      However, even if there are minor discrepancies between the learning curves produced by the final version of the model and by the mice, we do not see this as being especially surprising or problematic. As in any model, there are a large number of potentially important features that are not included in any of our models–for example, realistic spectrotemporal neural responses, nonlinearity in neural activations, heterogeneity across mice, and many others. The aim of our modeling was to choose a space of possible models (which is inevitably restricted) and show which model version within that space best captures our experimental observations. Expanding the space of possible models that we considered to capture further nuances in the data will be a task for future work.

      The second major weakness is that the authors also don't generate any predictions with M5. Can they test this model of learning somehow in follow-up behavioural experiments in mice? ... Without follow-up experiments to test their mechanism of why passive exposure helps in a schedule-independent way, the impact of this paper will be limited.

      Although testing behavioral predictions from our models was beyond the scope of the current study, we do generate specific predictions with M5 (specifically, about neural representations). Our model produces predictions about neural representations and the ways in which they evolve through learning, and we hope to test these predictions in future work.

      I believe the authors need to place this work in the context of a large amount of existing literature on passive (unsupervised) and active (supervised) learning interactions. This field is broad both experimentally and computationally. For example, there is an entire sub-field of machine learning, called semi-supervised learning that is not mentioned at all in this work.

      We thank the reviewer for pointing this out. The updated version of our manuscript will include a discussion on how our results fit in with this literature.

    1. Author Response

      The following is the authors’ response to the original reviews.

      First, the authors would like to thank the reviewers and editors for their thoughtful comments. The comments were used to guide our revision, which is substantially improved over our initial submission. We have addressed all comments in our responses below, through a combination of clarification, new analyses and new experimental data.

      Reviewer #1 (Public Review):

      In this manuscript, the authors identified and characterized the five C-terminus repeats and a 14aa acidic tail of the mouse Dux protein. They found that repeat 3&5, but not other repeats, contribute to transcriptional activation when combined with the 14aa tail. Importantly, they were able to narrow done to a 6 aa region that can distinguish "active" repeats from "inactive" repeats. Using proximal labeling proteomics, the authors identified candidate proteins that are implicated in Dux-mediated gene activation. They were able to showcase that the C-terminal repeat 3 binds to some proteins, including Smarcc1, a component of SWI/SNF (BAF) complex. In addition, by overexpressing different Dux variants, the authors characterized how repeats in different combinations, with or without the 14aa tail, contribute to Dux binding, H3K9ac, chromatin accessibility, and transcription. In general, the data is of high quality and convincing. The identification of the functionally important two C-terminal repeats and the 6 aa tail is enlightening. The work shined light on the mechanism of DUX function.

      A few major comments that the authors may want to address to further improve the work:

      We thank the reviewer for their efforts and constructive comments, which have guided our revisions.

      1) The summary table for the Dux domain construct characteristics in Fig. 6a could be more accurate. For example, C3+14 clearly showed moderate weaker Dux binding and H3K9ac enrichment in Fig 3c and 3e. However, this is not illustrated in Fig. 6a. The authors may consider applying statistical tests to more precisely determine how the different Dux constructs contribute to DNA binding (Fig. 3c), H3K9ac enrichment (Fig. 3e), Smarcc1 binding (Fig. 5e), and ATAC-seq signal (Fig. 5f).

      We thank the reviewer for this comment, and agree that there were some modest differences in construct characteristics that were not captured in the Summary Table (6a). To better reflect the differences between constructs, we added additional dynamic range to our depiction/scoring, and believe that the new scoring system provides sufficient qualitative range to capture the difference without imposing a statistical approach.

      2) Another concern is that exogenous overexpressed Dux was used throughout the experiments. The authors may consider validating some of the protein-protein interactions using spontaneous or induced 2CLCs (where Dux is expressed).

      We agree that it would be helpful to determine endogenous DUX interaction with our BioID candidates. Here, we attempted co-IPs for endogenous DUX protein with the DUX antibody and were unsuccessful, which indicated that the DUX antibody is useful for detection but not efficient in the primary IP. This is why we utilized the mCherry tag for DUX IP experiments, which worked exceptionally well.

      3) It could be technically challenging, but the authors may consider to validate Dux and Smarcc1 interaction in a biologically more relevant context such as mouse 2-cell embryos where both proteins are expressed. Whether Smarcc1 binding will be dramatically reduced at 4-cell embryos due to loss of Dux expression?

      While we agree that it would be interesting to validate the in vivo interaction of DUX and SMARCC1 in the early embryo, it is not technically feasible for us to conduct the experiment, as the IP would require thousands of two-cell embryos, and we have the issue of poor co-IP quality with the DUX antibody.

      Reviewer #2 (Public Review):

      In this manuscript, Smith et al. delineated novel mechanistic insights into the structure-function relationships of the C-terminal repeat domains within the mouse DUX protein. Specifically, they identified and characterised the transcriptionally active repeat domains, and narrowed down to a critical 6aa region that is required for interacting with key transcription and chromatin regulators. The authors further showed how the DUX active repeats collaborate with the C-terminal acidic tail to facilitate chromatin opening and transcriptional activation at DUX genomic targets.

      Although this study attempts to provide mechanistic insights into how DUX4 works, the authors will need to perform a number of additional experiments and controls to bolster their claims, as well as provide detailed analyses and clarifications.

      We thank this reviewer for their constructive comments, and have conducted several new analyses, additional experiments and clarifications – which have strengthened the manuscript in several locations. Highlights include a statistical approach to the similarity of mouse repeats to themselves and to orthologs (Figure S1d) and clarified interpretations, a wider dynamic range to better reflect changes in DUX construct behaviors (Figure 6a), and additional data on construct behavior, including ‘inactive’ constructs (e.g C1+14aa in Figure 1a,d, new ATAC-seq in Figure S1g), and active constructs such as C3+C5+14aa and C3+C514aa (in Figure S1b).

      Reviewer #3 (Public Review):

      Dux (or DUX4 in human) is a master transcription factor regulating early embryonic gene activation and has garnered much attention also for its involvement in reprogramming pluripotent embryonic stem cells to totipotent "2C-like" cells. The presented work starts with the recognition that DUX contains five conserved c. 100-amino acid carboxy-terminal repeats (called C1-C5) in the murine protein but not in that of other mammals (e.g. human DUX4). Using state-of-the-art techniques and cell models (BioID, Cut&Tag; rescue experiments and functional reporter assays in ESCs), the authors dissect the activity of each repeat, concluding that repeats C3 and C5 possess the strongest transactivation potential in synergy with a short C-terminal 14 AA acidic motif. In agreement with these findings, the authors find that full-length and active (C3) repeat containing Dux leads to increased chromatin accessibility and active histone mark (H3K9Ac) signals at genomic Dux binding sites. A further significant conclusion of this mutational analysis is the proposal that the weakly activating repeats C2 and C4 may function as attenuators of C3+C5-driven activity.

      By next pulling down and identifying proteins bound to Dux (or its repeat-deleted derivatives) using BioID-LC/MS/MS, the authors find a significant number of interactors, notably chromatin remodellers (SMARCC1), a histone chaperone (CHAF1A/p150) and transcription factors previously (ZSCAN4D) implicated in embryonic gene activation.

      The experiments are of high quality, with appropriate controls, thus providing a rich compendium of Dux interactors for future study. Indeed, a number of these (SMARCC1, SMCHD1, ZSCAN4) make biological sense, both for embryonic genome activation and for FSHD (SMCHD1).

      A critical question raised by this study, however, concerns the function of the Dux repeats, apparently unique to mice. While it is possible, as the authors propose, that the weak activating C1, C2 C4 repeats may exert an attenuating function on activation (and thus may have been selected for under an "adaptationist" paradigm), it is also possible that they are simply the result of Jacobian evolutionary bricolage (tinkering) that happens to work in mice. The finding that Dux itself is not essential, in fact appears to be redundant (or cooperates with) the OBOX4 factor, in addition to the absence of these repeats in the DUX protein of all other mammals (as pointed out by the authors), might indeed argue for the second, perhaps less attractive possibility.

      In summary, while the present work provides a valuable resource for future study of Dux and its interactors, it fails, however, to tell a compelling story that could link the obtained data together.

      We appreciated the reviewer’s views regarding the high quality of the work and our generation of an important dataset of DUX interactors. We also appreciate the comments provided to improve the work, and have performed and included in the revised version a set of clarifications, additional analyses and additional experiments that have served to reinforce our main points and provide additional mechanistic links. We also agree that more remains to be done to understand the function and evolution of repeats C1, C2 and C4.

      Reviewer #1 (Recommendations For The Authors):

      1) For immuno-blots, authors may indicate the expected bands to help readers better understand the results.

      Agreed, and we have included the predicted molecular weight of proteins in the Figure Legends. We note that our work shows that the C-terminal domains confer anomalous migration in SDS-PAGE.

      2) Fig. 5b, a blot missing for the mCherry group?

      Figure 5b is a volcano blot, so we believe the reviewer is referring to Figure 5d, which is a coimmunoprecipitation experiment between SMARCC1 and mCherry-tagged DUX constructs. However, we are unsure of the comment as an anti mCherry sample is present in that panel.

      3) Line 99-100, Fig. S1d, it seems that repeat2, but not repeat3, is more similar to human DUX4 C-terminal region.

      This comment and one by another reviewer have prompted us to re-examine the similarities of the DUX repeats, and we have new analyses (Figure S1d) and an alternative framing in the manuscript as a result. We have expanded on this in our response to Reviewer #2, point #1 – and direct the reviewer there for our expanded treatment.

      4) There are a few references are misplaced. For example, line 48, the studies that reported the role of Dux in inducing 2CLCs should be from Hendrickson et al., 2017, De Iaco et al., 2017, and Whiddon et al., 2017. The authors may want to double check all references.

      Thanks for pointing these out. These issues have been corrected in the manuscript.

      5) In the materials & methods section, a few potential errors are noticed. For example, concentrations of PD0325901 and CHIR99021 in mESC medium appear ~1000-fold higher than standards.

      Thanks – corrected.

      Reviewer #2 (Recommendations For The Authors):

      Major Points

      1) Line 99 - The authors claimed that the "human DUX4 C-terminal region is most similar to the 3rd repeat of mouse DUX", but based on Supp. Fig. 1d, the human DUX4 C-term should be most similar to the 2nd repeat of mouse DUX. If this is indeed the case, it will undermine the rest of this study, since the authors claim that the 3rd repeat is transcriptionally active, whereas the 2nd repeat is transcriptionally inactive, and the bulk of this study largely focused on how the active repeats, not the inactive repeats, are critical in recruiting key transcriptional and chromatin regulators to induce the embryonic gene expression program.

      We thank the reviewer for their comments here. Since submission,and as mentioned above for reviewer #1 we have revisited the issue of similarity of the DUX4 C-terminal region to the mouse C-terminal repeats, with a BLAST-based approach that is more rigorous and informed by statistics – which is in Author response table 1 and now in the manuscript as Figure S1d, and has affected our interpretation. Our prior work involved a simple % identity comparison table and we now appreciate that some of the similarity analyses did not meet statistical significance, and therefore we are unable to draw certain conclusions. We make the appropriate modifications in the text. For example, we no longer state that the DUX4 C-terminus appears to be most similar to mouse repeats 3 and 5. This does not affect the main conclusions of the paper regarding interactions of the C-terminus with chromatin-related proteins, only our speculation on which repeat might have represented the original single repeat in the mouse – an issue we think of some interest, but did not rise to the level of mentioning in the original or current abstract.

      Author response table 1.

      Parameters: PAM250 matrix. Gap costs of existence: 15 and extension: 3. Numbers represent e-value of each pairwise comparison

      *No significant similarities found (>0.05).

      2) In Supp Fig 1d, it seems that the rat DUX4 C-terminal region is most similar to the 4th repeat of mouse DUX, which according to the author is supposedly transcriptionally inactive. This weakens the authors justification that the 3rd or 5th repeat is likely the "parental repeat for the other four", and further echoes my concern in point 1 where the human DUX4 C-term is most similar to the 2nd (inactive) repeat of mouse DUX.

      The reviewer’s point is well taken and is addressed in point #1 above.

      3) In Fig. 1d, the authors showed that DUX4-containing C3 and C5, but lacking acidic tail, can promote MERVL::GFP expression, albeit to a slightly lower extent compared to FL. However, in Fig. 2b, C3 or C5 alone (lacking acidic tail) completely failed to promote MERVL::GFP expression. However, in the presence of the acidic tail, both versions were able to promote MERVL::GFP expression, similar to that of FL. The latter would suggest that it is the acidic tail that is crucial for MERVL::GFP expression, and this does not quite agree with Fig 1b, where C12345 (lacking acidic tail) was able to promote MERVL::GFP expression. Although C12345 did not activate MERVL to a similar level as FL, it is clearly proficient, compared to C3 or C5 alone (lacking acidic tail) where there is no increase in MERVL at all. Additional constructs will be helpful to clarify these points. For example, 'C3+C5 minus acidic tail' and 'HD1+HD2+acidic tail only' constructs.

      We agree that constructs such as those mentioned would add to the work. First, we have done the additional construct HD1+HD2+14aa tail, which is presented as ΔC12345+14aa in Figure 2a and in S2a. Additionally, we performed experiments on the requested C3+C5+14aa and C3+C5Δ14aa (see samples 6 and 7 in Author response image 1, which are now included in Supplemental Figure 2b). The results reinforce our hypothesis of an additive effect toward DUX target gene activation by increasing C-terminal repeats and including the 14aa tail.

      Author response image1.

      4) Related to the above, the flow cytometry data for the MERVL::GFP reporter as presented in Figures 1 and 2, as well as in Supp. Fig. 2, show a considerably large difference in the %GFP|mCherry for the FL construct, ranging from ~6-26%. This makes it difficult to convince the reader which of the different DUX domain constructs cannot or can partially induce GFP|mCherry signal when compared to FL, and hence it is tough to definitively ascertain the exact contribution of each of the 5 C-terminal repeats with high confidence, as it appears that there exists a significant amount of variability in this MERVL::GFP reporter system. The authors need to address this issue since this is their primary method to elucidate the transcriptional activity of each of the mouse DUX repeat domains.

      We note that with the Dux-/- cell lines we used throughout the timeline of the study, the percent of %GFP|mCherry expression progressively and slowly decreased – possibly due to slow/modest epigenetic silencing of the reporter. However, we always used the full-length DUX construct to establish the dynamic range. We emphasize that the relative differences between constructs over multiple cell line replicates remained relatively consistent. However, we elected to show absolute values in each experiment, rather than simply normalizing the full-length to 100% and showing relative.

      5) Lines 140-142 - The authors claimed that the functional difference between the transcriptionally active and inactive repeats could be narrowed down to a "6aa region which is conserved between repeats C3 and C5, but not conserved in C1, C2 and C4". Assuming the 6aa sequence is DPLELF, why does C1C3a elicit almost twice the intensity of GFP|mCherry signal compared to C3C1c, despite both constructs having the exact same 6aa sequence?

      Indeed, C1C3a and C3C1c both containing the ‘active’ DPL sequence but having different relative levels of %GFP|mCherry. This is consistent with these sequences having a positive role in DUX target gene regulation – but likely in combination with other other regions which potentiate its affect, possibly through interacting proteins or post-translational modifications.

      Why does DPLEPL (the intermediate C3C1b construct) induce a similar extent of GFP|mCherry signal as the FL construct, even though the former includes 3aa from a transcriptionally inactive repeat? In contrast, GSLELF (the other intermediate C1C3b construct) that also includes 3aa from a transcriptionally inactive repeat is almost completely deficient in inducing any GFP|mCherry signal. Why is that so? Is DPL the most crucial sequence? It will be important to mutate these 3 (or the above 6) residues on FL DUX4 to examine if its transcriptional activity is abolished.

      These are interesting points. DPL does appear to be the most important region in the mouse DUX repeats. However, DPL is not shared in the C-terminus of human DUX4. Notably, the DUX4 C-terminus is sufficient to activate the mouse MERVL::GFP reporter when cloned to mouse homeodomains (see Author response image 2, second sample) and other DUX target genes (initially published in Whiddon et al. 2017). One clear possibility is that the DPL region is helping to coordinate the additive effects of multiple DUX repeats, which only exist in the mouse protein.

      Author response image 2.

      6) Line 154 - The intermediate DUX domain construct C1C3b occupied a different position on the PCA plot from the C1C3c construct that does not contain any of the critical 6aa sequence, as shown in Fig. 2e. However, both these constructs appear to be similarly deficient in inducing any GFP|mCherry signal, as seen in Fig. 2c. Why is that so?

      The PCA plot assesses the impact on the whole transcriptome and not just the MERVL::GFP reporter, suggesting the 3aa region has transcriptional effects on the genome beyond what is detected in the MERVL::GFP reporter.

      7) To strengthen the claim that "Chromatin alterations at DUX bindings sites require a transcriptionally active DUX repeat", the authors should also perform CUT&Tag for constructs containing transcriptionally inactive DUX repeats (e.g. C1+14aa), and show that such constructs fail to occupy DUX binding sites, as well as are deficient in H3K9ac accumulation.

      This is a good comment. We elected to control this with constructs containing or lacking an active repeat. Although we have not pursued this by CUT&TAG, we have examined the impact of DUX constructs with inactive repeats (including the requested C1+14aa, new Figure S1g) by ATAC-seq (see #12, ATAC-seq section, below), and observe no chromatin opening, suggesting that the lack of transcriptional activity is rooted in the inability to open chromatin.

      8) It would be good if the authors could also include CUT&Tag data for some of the C1C3 chimeric constructs that were used in Fig. 2, since the authors argued that the minimal 6aa region is sufficient to activate many of the DUX target genes. This would also strengthen the authors’ case that the transcriptionally active, not inactive, repeats are critical for binding at DUX binding sites and ensuring H3K9ac occupancy.

      We agree that these would be helpful, and have examined the inactive repeats in transcription and ATAC-seq formats during revision (new data in Figures 1d and S1g), but not yet the CUT&TAG format.

      9) Line 213 - "SMARCA4" should have been "SMARCA5"? Based on Fig. 4d, SMARCA5 is picked up in the BirA*-DUX interactome, not SMARCA4.

      Thanks – corrected.

      10) Lines 250-252 - The authors compared the active BirA-C3 against the inactive BirA-C1 to elucidate the interactome of the transcriptionally active C3 repeat, as illustrated in Fig. 5c. They found 12 proteins more enriched in C1 and 154 proteins in C3. This information should be presented clearly as a separate tab in Supp Table 2. What are the proteins common to both constructs, i.e. enriched to a similar extent? Do they include chromatin remodellers too? Although the authors sought to identify differential interactors between the 2 constructs, it is also meaningful to perform 2 separate comparisons - active BirA-C3 against BirA alone control, and inactive BirA-C1 against BirA alone control - like in Fig. 4d, so as to more accurately define whether the active C3 repeat, and not the inactive C1 repeat, interacts with proteins involved in chromatin remodeling.

      We thank the reviewer for this comment, and we have modified the manuscript by adding a second sheet in Supplementary Table 2 including the results for enriched proteins in BirA-C1 vs. C3. Additionally, due to limitations of annotation between BirA alone and BirA*-C3 being sequenced in different mass spectrometry experiments, it is difficult to quantitatively compare the two datasets with pairwise comparisons.

      11) Fig 5d: The authors mentioned in the legend that endogenous IP was performed for SMARCC1. However, in line 266, they stated Flag-tagged SMARCC1. Is SMARCC1 overexpressed? The reciprocal IP should also be presented. More importantly, C1 constructs (e.g. C1+14aa and C1Δ14aa) should also be included.

      To clarify, Figure 4e used exogenously overexpressed FLAG-SMARCC1 in HEK-293T cells to confirm the results of the full-length DUX BioID experiment. Figure 5d was performed with overexpressed DUX construct, but involved endogenous SMARCC1 in mESCs. This has now been made clearer in the revised manuscript.

      12) For both the SMARCC1 CUT&Tag and ATAC-seq experiments shown in Figures 5e and 5f respectively, the authors need to include DUX derivatives that contain transcriptionally inactive repeats with and without the 14aa acidic tail, i.e. C1+14aa and C1Δ14aa, and show that these constructs prevent the binding/recruitment of SMARCC1 to DUX genomic targets, and correspondingly display a decrease in chromatin accessibility. Only then can they assert the requirement of the transcriptionally active repeat domains for proper DUX protein interaction, occupancy and target activation.

      We agree that examination of an inactive repeat in certain approaches would improve the manuscript. Importantly, we have now included C1+14 in our ATAC-seq experiments, and in Author response image 3 two individual replicates, which constitute a new Figure S1g. Compared to the transcriptionally active DUX constructs, which see opening at DUX binding sites, we do not see chromatin opening at DUX binding sites with transcriptionally inactive C1+14.

      Author response image 3.

      13) To prove that DUX-interactors are important for embryonic gene expression, it will be important to perform loss of function studies. For instance, will the knockdown/knockout of SMARCC1 in cells expressing the active DUX repeat(s) lead to a loss of DUX target gene occupancy and activation?

      We agree that it would be interesting to better understand SMARCC1 cooperation with DUX function in the embryo, but we believe this is beyond the scope of this paper.

      Minor Points

      1) Lines 124-126 - What is the reason/rationale for why the authors used one linker (GGGGS2) for constructs with a single internal deletion, but 2 different linkers (GGGGS2 and GAGAS2) for constructs with 2 internal deletions?

      With Gibson cloning, there are homology overhang arms for each PCR amplicon that are required to be specific for each overlap. Additionally, each PCR amplicon needs to be specific enough from one another so that all inserts (up to 5 in this manuscript) are included and oriented in the right order. The linker sequences were included in the homology arm overlaps, so the nucleotide sequences for each linker needed to be specific enough to include all inserts. This is a general rule to Gibson cloning. Additionally, both GGGGS2 and GAGAS2 are common linker sequences used in molecular biology and the amino acids structures are similar to one another, suggesting there is no functional difference between linkers.

      2) Line 704 - 705: In the figure legend, the authors stated that 'Constructs with a single black line have the linker GGGGS2 and constructs with two black lines have linkers with GGGGS2 and GAGAS2, respectively.'. This was not obvious in the figures.

      Constructs used for flow and genomics experiments that are depicted in Figure 2, Supplementary Figure 2, Figure 3, Figure 4, and Figure 5 have depicted black lines where deletions are present. Where these deletions are present, there are linkers in order to preserve spacing and mobility for the protein.

      3) Line 160 - Clusters #1 and #2 are likely written in the wrong order. It should have been "activating the majority of DUX targets in cluster #2, not cluster #1" and "failed to activate those in cluster #1, not cluster #2", based on the RNA-seq heatmap in Fig. 2f.

      We thank the reviewer for this comment, and the error has been corrected in the manuscript.

      4) Line 188 - Delete the word "of" in the following sentence fragment: "DUX binding sites correlating with the of transcriptional".

      Thanks – corrected.

      5) Line 191 - Delete the word "aids" in the following sentence fragment: "important for conferring H3K9ac aids at bound".

      Thanks – corrected.

      6) Line 711 - "C1-C3 a,b,d" should be "C1-C3 a,b,c".

      Thanks – corrected.

      7) Lines 711-712 - The colors "pink to blue" and "blue to pink" are likely written in the wrong order. Based on Fig. 2c, the blue to pink bar graphs should represent C1-C3 a,b,c in that order, and likewise the pink to blue bar graphs should represent C3-C1 a,b,c in that order.

      Thanks – corrected.

      8) There is an overload of data presented in Fig. 2c, such that it is difficult to follow which part of the figure represents each data segment as written in the figure legend. It is recommended that the data presented here is split into 2 sub-figures.

      Figure 2c has a supporting figure in Supplementary Figure 2b. While there is both a graphical depiction of the constructions and the data both in the main panel of Figure 2C, we have depicted it as so to be as clear as possible for the reader to interpret the complexity and presentence of amino acids in each of the constructs.

      9) Line 717 - "following" is misspelt.

      Thanks – corrected.

      10) Lines 720-721 - "(Top)" and "(Bottom)" should be replaced with "(Left)" and "(Right)", as the 2 bar graphs presented in Fig. 2d are placed side by side to each other, not on the top and bottom.

      Thanks – corrected.

      11) Lines 725 and 839 - "Principle" is misspelt. It should be "Principal".

      Thanks – corrected.

      12) In Figures 3d and 3e, the sample labeled "C3+14_1" should be re-labeled to "C3+14", in accordance with the other sub-figures. Additionally, for the sake of consistency, "aa" should be appended to the relevant constructs, e.g. "C3+14aa" and "C3Δ14aa".

      Thanks – corrected.

      13) Line 773 - Were the DUX domain constructs over-expressed for 12hr (as written in the figure legend) or 18hr (as labeled in Fig. 5d)?

      Thanks – corrected.

      14) Related to minor point 19 above, is there a reason/rationale for why some of the experiments used 12hr over-expression of DUX domain constructs (e.g. for CUT&TAG in Fig. 3), whereas in other experiments 18hr over-expression was chosen instead (e.g. flow cytometry for MERVL::GFP reporter in Figures 1 and 2, and co-IP validations of BirA*-DUX interactions in Fig. 4)?

      Thanks for the opportunity to explain. In this work, experiments that reported on proteins that are translated following DUX gene activation (e.g. MERVL:GFP via flow) were done at 18hr to allow for enough time for transcription and translation of GFP (or other DUX target genes). For experiments that report on the impact of DUX on chromatin and transcription, such as RNA-seq, CUT&Tag, and ATAC-seq, we induced DUX domain constructs for 12 hours.

      15) Line 804 - "ΔHDs" is missing between "C2345+14aa" and "ΔHD1".

      Thanks – corrected.

      16) In Fig. 5c, "Chromatin remodelers" is misspelt.

      Thanks – corrected.

      17) There is no reference in the manuscript to the proposed model that is presented in Fig. 6b.

      Thanks – corrected.

      Reviewer #3 (Recommendations For The Authors):

      Given the uncertainty of the function of the Dux peptide repeats in mice, could it not also be possible that the underlying repeated nature of the (coding) DNA? That is, could these DNA repeats exert a regulatory function on Dux transcription itself (also given the dire consequences of misregulated DUX4 expression as seen in FSHD, for example).

      Yes, it remains possible that the internal coding repeats within Dux are playing a role in locus regulation, and might be interesting to examine. However, we consider this question as being outside the scope of the current paper.

      Finally, it would be interesting to know whether these repeats are, in fact, present in all mouse species. Already no longer present in rat, do they exist, or not, in more "distant" mice, e.g. M. caroli?

      Determining whether all mouse strains contain C-terminal repeats in DUX is a question we also considered. However, Dux and its orthologs are present in long and very complex repeat arrays that are not present in the sequencing data or annotation in other mouse strains. Therefore, we are not unable to answer this question from existing sequencing data. Answering would require a considerable genome sequencing and bioinformatics effort, or alternatively a considerable effort aimed at cloning ortholog cDNAs from 2-cell embryos.

      Minor points:

      line 169: here it seems, in fact, that the 'inactive' C2, C4 repeats are more similar to each other (my calculation: 91 and 96% identity at the protein and DNA level, respectively) than the active C3 and C5 repeats (82 and 89% identity, resp.), the outlier being C1.

      Thanks for this comment, which was mentioned by other reviewers as well and has been addressed through new statistical analyses and interpretation (see new Figure S1d).

      line 191: I'm not sure this sentence parses correctly ("...14AA tail is important for conferring H3K9Ac aids at bound sites...")

      We thank the reviewer for this comment, and we have corrected the sentence in the manuscript.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      This study presents an important finding on human m6A methyltransferase complex (including METTL3, METTL14 and WTAP). The evidence supporting the claims of the authors is convincing, although the model and assays need to be further modified. The work will be of interest to biologists working on RNA epigenetics and cancer biology.

      In mammals, a large methyltransferase complex (including METTL3, METTL14 and WTAP) deposits m6A across the transcriptome, and METTL3 serves as its catalytic core component. In this manuscript, the authors identified two cleaved forms of METTL3 and described the function of METTL3a (residues 239-580) in breast tumorigenesis. METTL3a mediates the assembly of METTL3-METTL14-WTAP complex, the global m6A deposition and breast cancer progression. Furthermore, the METTL3a-mTOR axis was uncovered to mediate the METTL3 cleavage, providing potential therapeutic target for breast cancer. This study is properly performed and the findings are very interesting; however, some problems with the model and assays need to be modified. It is widely known that METTL3 and METTL14 form a stable heterodimer with the stoichiometric ratio of 1:1 (Wang X et al. Nature 534, 575-578 (2016), Su S et al. Cell Res 32(11), 982994 (2022), Yan X et al. Cell Res 32(12), 1124-1127 (2022)), the numbers of METTL3 and METTL14 in the model of Fig 7P are not equivalent and need to be modified.

      We thank for reviewer’s good suggestion. We have modified the model in Fig. 7P.

      Reviewer #2 (Public Review):

      In this study, Yan et al. report that a cleaved form of METTL3 (termed METTL3a) plays an essential role in regulating the assembly of the METTL3-METTL14-WTAP complex. Depletion of METTL3a leads to reduced m6A level on TMEM127, an mTOR repressor, and subsequently decreased breast cancer cell proliferation. Mechanistically, METTL3a is generated via 26S proteasome in an mTOR-dependent manner.

      The manuscript follows a smooth, logical flow from one result to the next, and most of the results are clearly presented. Specifically, the molecular interaction assays are welldesigned. If true, this model represents a significant addition to the current understanding of m6A-methyltransferase complex formation.

      A few minor issues detailed below should be addressed to make the paper even more robust. The specific comments are contained below.

      1) The existence of METTL3a and METTL3b.<br /> In this study, the author found the cleaved form of METTL3 in breast cancer patient tissues and breast cancer cell lines. Is it a specific event that only occurs in breast cancer? The author may examine the METTL3a in other cell lines if it is a common rule.

      We thank reviewer for point this out. We discovered the cleaved form of METTL3 in breast cancer, and we further examined this cleaved METTL3 in other cell lines such as lung cancer cell lines, renal cancer cell lines, HCT116 and MEF (new Supplementary Figures 1A-1C), these data suggest that it is a common rule. Therefore, we speculate that METTL3a may be ubiquitiously expressed. We have added this part in the revised manuscript, please see Line 118-120.

      2) Generation of METTL3a and METTL3b.

      1) Figure 1 shows that METTL3a and METTL3b were generated from the C-terminal of full-length METTL3. Because the sequence of METTL3a is involved in the sequences of METTL3b, can METTL3b be further cleaved to produce METTL3a?

      Although the sequence of METTL3a is involved in the sequences of METTL3b, overexpression of METTL3b in T47D, MDA-MB-231 and 293T cells did not show METTL3a expression in these cells (please see Figures 3A, 3C, 3G), suggesting that METTL3b can not be further cleaved to produce METTL3a, and the METTL3 cleavage may require its N-terminal region. We have added this in the discussion, please see Line 358 to 360.

      2) Based on current data, the generation of METTL3a and METTL3b are separated. Are there any factors that affect the cleavage ratio between METTL3a and METTL3b?

      We thank for reviewer’s excellent question. In this study, we show that both METTL3a and METTLb are produced through proteasomal cleavage, and both of them are positively regulated by the mTOR pathway. On the other hand, we indeed observed the differential cleavage ratios between METTL3a and METTL3b across different cell lines. For example, METTL3a/METTLb ratio was greater than 1 in MDA-MB-231 cells (see Figure 7C), less than 1 in T47D and 293T cell lines (see Figure 7A and 7B), and equal to 1 in MEF cells (see Figure 7O). Based on these results, we speculate that there may be some factors that control the cleavage ratio between METTL3a and METTL3b, which warrants further investigation. We have added this in the discussion, please see Line 374 to 379.

      3) In Figure 2G, the author shows the result that incubation of the Δ198+Δ238 METTL3 protein with T47D cell lysates cannot produce the METTL3a and METTL3b variants. The author may also show the results that Δ198 METTL3 protein or Δ238 METTL3 protein incubates with T47D cell lysates, respectively.

      Following the reviewer’s suggestion, we had performed in vitro cleavage assays by incubation of METTL3-Δ238 or METTL3-Δ198 with T47D cell lysates, and had incorporated this result in the revised manuscript. Please see our new Supplementary Figure 3A.

      4) As well as many results published in previous studies, the in vitro methylation assay shows that WT METTL3 is capable of methylating RNA probe (figure 2H). The main point of this study is that METTL3a is required for the METTL3-METTL14 assembly. However, the absence of METTL3a in the in vitro system did not inhibit METTL3METTL14 methylation activity. Moreover, the presence of METTL3a even resulted in a weak m6A level.

      The main point of this study is that METTL3a is required for the METTL3WTAP interaction, but dispensable for the METTL3-METTL14 assembly (see Figure 4A-4B). In this in vitro methylation assays, METTL3 and METTL14 is capable of methylating RNA probe in the absent of WTAP. In this condition, we found that METTL3 WT as well as its different variants (METTL3-Δ238, METTL3-Δ198, METTL3b and METTL3a) except the catalytically dead mutant METTL3 APPA showed methylation activity in vitro.

      5) In Figure 4A, the author suggests that WTAP cannot be immunoprecipitated with METTL3a and 3b because WTAP interacted with the N-terminal of METTL3. If this assay is performed in WT cells, the endogenous full-length METTL3 may help to form the complex. In this case, WTAP is supposed to be co-immunoprecipitated.

      We thank reviewer for point this out. METTL3 interacts with WTAP through its N-terminal (1-33aa) (1). Consistently, we find that the two cleaved forms METTL3a and METTL3b which lack the N-terminal region are not able to bind with WTAP. In Figure 4A, we overexpressed METTL3 WT as well as its different variants METTL3-Δ238, METTL3-Δ198, METTL3b and METTL3a respectively in WT cells, and compared the binding ability with WTAP or METTL14 across these overexpressed METTL3 variants. We acknowledge that the exogenous METTL3a and METTL3b interact with endogenous full-length METTL3, and the endogenous full-length METTL3 may help them to form the complex with WTAP. But in fact, the exogenous expression levels of METTL3a and METTL3b are much higher than that of endogenous full-length METTL3 (see Figure 3A and 3C). In this case, METTL3a or METTL3b predominantly interacts with itself, METTL3, METTL14 or other potential interacting proteins through its C-terminal region, this may greatly dilute the condition for the interaction between WTAP and endogenous full-length METTL3. Moreover, in Figure 4A, the comparison is among overexpressed METTL3 variants, the week indirect interactions through much lower expression levels of endogenous protein are probably not comparable to those direct interactions between overexpressed METTL3 variants and WTAP.

      Reference:

      1) Schöller, E., Weichmann, F., Treiber, T., Ringle, S., Treiber, N., Flatley, A., Feederle, R., Bruckmann, A., and Meister, G. (2018). Interactions, localization, and phosphorylation of the m6A generating METTL3–METTL14–WTAP complex. Rna 24, 499-512

      Reviewer #1 (Recommendations For The Authors):

      Major points:

      1) It is widely known that METTL3 and METTL14 form a stable heterodimer with the stoichiometric ratio of 1:1 (Wang X et al. Nature 534, 575-578 (2016), Su S et al. Cell Res 32(11), 982-994 (2022), Yan X et al. Cell Res 32(12), 1124-1127 (2022)), the numbers of METTL3 and METTL14 in the model of Fig 7P are not equivalent and need to be modified.

      We thank for reviewer’s good suggestion. We have modified the model in Fig. 7P.

      2) The in vitro methylation activity was detected by the m6A antibody, which has limited linear range. The MTase-Glo{trade mark, serif} Methyltransferase Assay is a SAMdependent enzyme assay with wide applications (Please refer to the references below).

      Could this assay be performed by authors?

      Wilkinson AW et al. Nature 565(7739), 372-376 (2019).

      Yu D et al. Nucleic Acids Res 49(20),11629-11642 (2021).

      Yan X et al. Cell Res 32(12), 1124-1127 (2022).

      Chen J et al. Nat Commun 13(1), 3257 (2022).

      Thanks for reviewer’s good suggestion. We had performed the in vitro methylation assay by using MTase-Glo kit, and the data is consistent with the dot blot results. Please see the new Figure 2H-J.

      3) When expressed alone in mammalian cell lines, METTL14 is unstable and is easily contaminated with endogenous METTL3 during purification (Yang W et al. Nat Cell Biol 16(2), p.191-8 (2014), Fig 1e). In Fig 2I, Co-expressing METTL3 and METTL14 maybe a good choice.

      We thank for reviewer’s good suggestion. In fact, we co-expressed METTL3 and METTL14 in this in vitro methylation assay in Fig 2I (new Figure 2J in the revised version), METTL3-Flag or its mutant with Flag tag and METTL14-Flag were co-transfected into 293T cells, and co-purified by using Flag M2 magnetic beads from the cell lysates. We have added these details in the indicated method section, please see Line 574-585.

      Other minor points:

      1) In Fig 5D, the protein domain information of METTL3 and relevant references need to be added (Su S et al. Cell Res 32(11), 982-994 (2022), Fig 6g; Yan X et al. Cell Res 32(12), 1124-1127 (2022), Fig 1a).

      We have added these references in the revised manuscript.

      2) In Fig 5, would METTL3b contribute to the METTL3-METTL3 interaction?

      Our data showed that METTL3a but not METTL3b is responsible for the METTL3-WTAP interaction, breast cancer cell proliferation and the m6A modification. Then, we investigated the mechanism of how METTL3a regulates the METTL3-WTAP interaction, and found that METTL3a is essential for METTL3-METTL3 interaction, which is a prerequisite step for WTAP recruitment in MTC complex. In this case, we speculate that METTL3b is not required for the METTL3-METTL3 interaction. Indeed, through Co-IP assays,we found that METTL3b has no effect on the METTL3-METTL3 interaction (new supplementary Figure 4D), which is consistent with our above data showing that METTL3b is dispensable for the METTL3-WTAP interaction. We have added this comment in Page 6, Line 226 to 228.

      3) In Fig 3F, the color in the legend and figure is inconsistent.

      We have corrected the inconsistent color in the revised manuscript.

      Reviewer #2 (Recommendations For The Authors):

      1) In Figure 5D, the construction details of METTL3-HA and Flag should have been included in the method section. Are these tag sequences in the N-terminal of METTL3 protein?

      These tags are all in the C-terminal of METTL3. We have added the construction details of these plasmids in the method section. Please see Line 434.

      2) In Figure 7A, the labels of the inhibitors are overlapped with the figures.

      We have corrected the labels of the inhibitors in Figure 7A in the revised manuscript.

    1. Author Response

      We thank the reviewers and editors for their thoughtful evaluation of our preprint. We felt that the reviews were fair and that addressing them will improve the rigor and clarity of our presentation. We are working to address all of the comments, with intent to submit a revised manuscript in the near future.

    1. Author Response

      Reviewer #1 (Public Review):

      This cross-sectional study examined the results of a survey about cancer treatment disruption during June-August 2020 in 82 counties located in Missouri and Illinois in the U.S. The main outcome was disruption in cancer care. Authors reported that higher education, being a female, experiencing more discrimination in healthcare settings, and having scheduled a telehealth appointment were associated with higher odds of care disruption. Lack of a research focus, lack of following any conceptual framework, the cross-sectional nature of the study, and the small sample size were the noted shortcomings of the manuscript.

      We thank Reviewer 1 for their comments. We agree that it is important to understand COVID-related care disruptions using causal methods. However, this manuscript aimed to examine the local impact of COVID care disruptions. We focused on the Siteman Cancer Center’s (SCC) catchment area because the co-author team includes the SCC’s Associate Director of Community Outreach and Engagement (COE) program, the SCC Associate Director for Diversity, Equity, and Inclusion, multiple members of the SCC COE leadership team. Thus, we are uniquely positioned to mobilize and identify outreach opportunities and/or programs that address any gaps we discover. Moreover, this focus on our catchment area and the motivation for this survey aligns with the National Cancer Institute’s priorities of population health assessments to characterize cancer-relevant knowledge, attitudes, beliefs, and behaviors across cancer center catchment areas. While this is a crosssectional study, this snapshot of care disruption will be helpful in planning local outreach strategies. Lastly, our catchment area is challenged with multiple cancer disparities patterned by social identities. Therefore, our analysis was guided by the theory that social identities related to race, ethnicity, class, and gender shape access to healthcare and disease processes and are the fundamental drivers of health. Thus, we included variables that impact health and are patterned by these social factors.

      Reviewer #2 (Public Review):

      Dr. Kia Davis and colleagues present a thoughtful analysis of disruptions to cancer care during COVID-19 in the article, "Understanding disruptions in cancer care to reduce increased cancer burden: a cross-sectional study." The article is based on an online survey of 680 residents in the Siteman Cancer Center catchment area in Summer 2020. The authors aim to characterize demographic differences in cancer care disruptions. Information about the causes and distribution of care disruption can help reduce the impacts of COVID-19 and guide the recovery of programs and services. The article provides a clear and detailed assessment of factors associated with care disruption and return to care during the first six months of the pandemic.

      A strength of the study is the focus on the catchment area of the cancer center during a period of dramatic change. The results would provide timely and actionable data to address emerging barriers to care and associated social or contextual factors. This information helps the Community Outreach and Engagement efforts to be responsive to community priorities despite rapidly evolving circumstances.

      The analysis would benefit from greater detail in three areas. First, it would be helpful to have more information about how the outcome measures were originally developed or tested. Second, for the regression analysis, it would be helpful to show the demographic characteristics of the two strata to better understand the sample composition. Third, the authors should demonstrate that the data do not violate the assumptions for conducting logistic regression to improve confidence in the findings.

      COVID-19 affected all aspects of the cancer continuum. The study reports factors associated with postponing or canceling cancer-related appointments during the pandemic. It will be of great interest to researchers and practitioners in cancer prevention and control.

      We thank Reviewer 2 for their thoughtful critique of our work. Their suggestions have strengthened our manuscript. Since our article was submitted, the questionnaire where we derived our outcome measure has been published. The questions were drawn from validated measures assessing the impact of pandemics such as H1N1, and major life disruptions such as natural disasters. This language was updated in the manuscript as were the references. Moreover, we added a supplemental Table 2 to show the demographic characteristics by race strata. Finally, we tested and can confirm that the analysis does not validate the assumptions of logistic regression. We believe that our results will aid in the understanding of how COVID impacted cancer care in our catchment area so that we can better mobilize resources. While we understand this is a cross-sectional study with the potential for unmeasured confounding, we believe this snapshot of cancer care during the pandemic will also be of interest to researchers, clinicians, and other practitioners in cancer prevention and control in locations like ours.

    1. Author Response

      Reviewer #3 (Public Review):

      In this manuscript, Castano et al generate and test a small molecule inhibitor of CDKL5, an Xlinked kinase whose loss-of-function is the cause of a severe neurodevelopmental disorder. Since the current knowledge of CDKL5 functions mainly rely on genetic models it is still unclear which effects are caused directly by CDKL5 loss and which can be ascribed to indirect effects. A specific inhibitor would therefore be an important tool for the field.

      Castano and colleagues therefore tested a panel of twenty kinase inhibitors for their capacity to block phosphorylation of a EB2, a bona fide CDKL5 substrate, in rat neurons. Among the three that could inhibit EB2 phosphorylation at low concentrations, one was found to inhibit CDKL5 while not affecting GSK3 kinases, which share significant homology to CDKL5. Considering that genetic studies have previously linked CDKL5 to excitatory synaptic transmission, acute hippocampal slices were exploited to test the consequences of CDKL5 inhibition. While CDKL5 loss in the past was found to affect both AMPA- and NMDA-Rs, the small molecule-based inhibition affected only AMPA-R responses at the post-synaptic level. Since pharmacokinetic analyses showed that the inhibitor has a low capacity for brain penetration the molecule remains limited for testing the acute inhibition of CDKL5 in vitro and ex vivo. Such a tool represents an important aspect in the CDKL5 field and the findings suggesting a direct role of CDKL5 in regulating AMPA-R functions are interesting. However, the manuscript could be improved to render it more readable.

      Thank you for this positive feedback and we hope that our adjustments improve the readability.

      The description of the binding and orthogonal assays, which are the basis for the selection of the small molecule inhibitor, is not straightforward to understand for non-expert readers and could be improved.

      We have added additional text to the Methods and Results to better explain the assays.

      While the in vitro and ex vivo assays are well presented, it is not clear why the myelin basic protein is used as a substrate for CDKL5 in the in vitro kinase assays. Does this protein contain a CDKL5 consensus site?

      To execute the in vitro kinase assays, myelin basic protein (Active Motif, 31314) was employed as a substrate for recombinant CDKL5. Myelin basic protein is used as a substrate for multiple kinases, both serine/threonine and tyrosine kinases, to enable in vitro kinase assays due to the presence of multiple sites for phosphorylation. As such, we and others have used this protein as a kinase substrate for evaluating kinase activity[2, 4]. MBP does not contain a CDKL5 consensus site of RPXS/T*, and as such could be considered a less than ideal substrate to study CDKL5 activity, however for in vitro kinase assays MBP is still suitable as it can be phosphorylated by CDKL5. In addition, CDKL5 is known to phosphorylate substrates that do not contain a consensus motif[3].

    1. Author Response

      Reviewer #1 (Public Review):

      This study demonstrates that a hybrid measurement method increases 3 fold the resolution of mouse USV localization. This increased resolution enables to revise previous occurrence frequency measures for female vocalizations and establishes the existence of vocal dominance in triadic interactions. The method is well described and its efficiency is carefully quantified. A limitation of the study is the absence of ground truth data, which may have been generated eventually with miniaturized loudspeakers in mouse puppets. However, a careful error estimation partially compensates for the absence of these likely challenging calibrations. In addition, the conclusions take into account this uncertainty. The gain in accuracy with respect to previous methods is clear and the impact of localisation accuracy on biological conclusions about vocalisation behavior is clearly exemplified. This study demonstrates the impact of the new method for understanding vocal interactions in the mouse model, which should be of tremendous interest for the growing community studying social interactions in mice.

      We have performed the requested, additional ground estimate using a movable miniature speaker, for more details see point 2 of Reviewer 2, and the new supplementary figure.

      Reviewer #2 (Public Review):

      Past systems for identifying and tracking rodent vocalizations have relied on triangulating positions using only a few high-quality ultrasonic microphones. There are also large arrays of less sensitive microphones, called acoustic cameras that don't capture the detail of the sounds, but do more accurately locate the sound in 3D space. Therefore the key innovation here is that the authors combine these two technologies by primarily using the acoustic camera to accurately find the emitter of each vocalization, and matching it to the highresolution audio and video recordings. They show that this strategy (HyVL) is more accurate than other methods for identifying vocalizing mice and also has greater spatial precision. They go on to use this setup to make some novel and interesting observations. The technology and the study are timely, important, and have the potential to be very useful. As machine learning approaches to behavior become more widespread in use, it is easy to imagine this being incorporated and lowering entry costs for more investigators to begin looking at rodent vocalizations. I have a few comments.

      1) What is the relationship of the current manuscript to this: https://www.biorxiv.org/content/10.1101/2021.10.22.464496v1 which has a number of very similar figures and presents a SLIM-only method that reportedly has lower precision than the current HyVL approach. Is this superseded by the submitted paper?

      The referred manuscript (now published in Scientific Reports) is indeed related to the current work: The currently presented system is based on the integration between SLIM (based on 4 high quality microphones) and Beamforming (based on the 64-channel microphone array). The accuracy of SLIM is generally lower than that of HyVL, but it makes essential contributions to the overall accuracy of HyVL through the integration of the complementary strengths of the two methods/microphone arrays (see Fig. 3A, L-shape of errors). To our knowledge, SLIM was the previously most accurate technique (based on 4 microphones, see comparison in the Discussion), but HyVL exceeds this by a substantial margin. Some figures appear similar mostly due to related code in the underlying analysis pipeline and visualization scripts (e.g. the half-disc densities). However, the set of dyadic and triadic recordings was collected specifically for the present study, and all top-level analyses were performed separately. The single mouse (C57Bl/6 WT) ground truth dataset is shared between the two studies, where in the SLIM paper only the USM4/SLIM part was evaluated (leading to a correspondingly lower, single animal accuracy).

      We felt that the level of detail above would probably impede the reading of the manuscript, and we have therefore added a subset of the above clarifications to the methods and the first time the other study is mentioned.

      2) Can the authors provide any data showing the accuracy of their system in localizing sounds emitted from speakers as a function of position and amplitude? I am imagining that it would be relatively easy to place multiple speakers around the arena as ground truth emitting devices to quantify the capabilities of the system.

      Ground truth data is critical for any meaningful comparison. First, we would like to highlight that we already provided ground truth data in the previous version of the manuscript: In Fig. 3C. we analyzed vocalization data from trials with (1) just a single mouse as well as (2) vocalization at times when all mice were far apart in relation to the accuracy of HyVL (>100 mm, i.e. >25x the accuracy of HyVL) where the chances of erroneous assignment are negligible. We think that these tests are the most relevant, as they are conducted with the relevant sounds, at their actual intensity, spectral profile and emitter acoustics.

      In addition, we have now conducted a series of tests with sounds produced by a miniature speaker placed in 25 different locations to demonstrate the lower-bound of accuracy achievable with the system. The tests indicate an accuracy of MAE < 1mm under these ideal conditions, i.e. without the absorption of the mouse bodies, varying direction of emission of the mouse snout, varying intensity, varying spectral content, duration, etc. Exploring the dependence on all these parameters is in itself interesting, but requires a detailed study in itself. The detailed experimental conditions and results are now provided in Supplementary Fig. 4, including a quantification of the dependence on amplitude.

      3) How is the system's performance affected by overlapping vocalizations? It might be useful to compare the accuracy of caller identification for periods where only one animal is calling at a time vs. periods where multiple animals are simultaneously calling.

      This is an excellent question. Our current code for detecting vocalizations cannot automatically determine if one or multiple vocalizations are concurrently present. We have therefore manually checked all vocalizations for overlapping instances, including those in triadic recordings with two males, where this would be expected to occur most frequently.

      We considered vocalizations to be overlapping if the overlapping constituent timefrequency traces did not form a harmonic stack. Overall, overlaps were surprisingly rare. We did find a couple of cases (<0.1%) where our detection algorithm produced a longer vocalization interval that contained multiple, differently shaped vocalization traces that, when re-analyzed in shortened time-frequency bins with beamforming, belonged to two different males. Note here that beamforming is separately performed from the onset to the end of each vocalization, so the cumulative heatmap can change depending on these onset and end times, which are normally determined by our detection algorithm.

      However, although the identity of the assigned vocalizer could shift in these very rare cases depending on which time bin was re-analyzed, the system’s localization performance remained in principle unaffected: as mentioned above, shorter time bins on non-overlapping parts correctly show the origin of the vocalizations in this case, and therefore a solution to this issue could be a USV detection algorithm that is able to detect the overlap based on the spectral shapes and parses them apart. During the beamforming each vocalization can then be separately localized, by restricting the beamforming to the corresponding time and frequency range. Further, the analysis could be refined so that multiple salient peaks can be detected in the soundfield estimate. This would, however, substantially change the analysis approach, i.e. rather than a single estimate per USV, a sequence of soundfield estimates should be computed and later fused again. Since such a procedure uses less data per single estimate, it also increases the possibility of false positives, which in the current situation with very few overlaps in time, would likely reduce the overall accuracy of the system, we decided to not modify the algorithm in this direction, but we agree that ideally a joint approach - combining separation on the spectrogram and soundfield level - should be pursued. For the present data, if a time window was analyzed such that the intensity map of the sound field contains multiple hotspots of an approximately equal magnitude, the USV would likely remain unassigned, because the within soundfield uncertainty would be higher than for a single peak, and this would reduce the MPI. However, given the rarity of these cases in our dataset, we do not think that their exclusion would change the results appreciably. This information was added as a paragraph to the Discussion.

      It is worth noting that HyVL is very robust: There were a number of cases (<5%) where environmental dampening in combination with harmonic stacking produced interesting timefrequency traces in some of the USM4 microphones, but our system did not have any issue spatially localizing this - what seems like a - smeared vocalization trace. We provide a few examples of this kind in a short video (see Rebuttal Video 2 and the legend at the bottom of this document), where the overlap is also reflected in the intensity map of the sound field, overlaid onto the platform.

      4) Can the authors comment on how sound shadows cast by animals standing between the caller and a USM4 affect either the accuracy of identification or the fidelity of the vocal recording?

      An important point to raise. Sound scattering and dampening caused by the conspecifics of the vocalizing animal can impede the accuracy of any sound localization system, but can unfortunately not be avoided in a social setting. To address this issue, we raised all USM4 microphones by ~12 cm above the interaction platform to minimize the instances of sound blocked by the mice. Further, the Cam64 device should largely be unaffected by sound shadows as it is centrally located above the platform. We have added a modified version of the above comment to the discussion under the heading "Current limitations and future improvements of the presented system".

      5) I'm a bit confused about how the algorithm uses the information from the video camera. Reading through the methods, it seems like they primarily calculate competing location estimates by the two types of microphone data and then make sure that a mouse is in close proximity to one location, discarding the call if there isn't. Why did the authors choose this procedure rather than use the tracked position of the snouts as constrained candidate locations and use the microphone data to arbitrate between them? Do they think that their tracking data are not reliable or accurate enough?

      Thanks for this important suggestion, which we have actually grappled with a lot during the analysis. First of all, the visual tracking data, in particular the manual data, is in our opinion (based on human visual identification) near perfect (within the limits of the video resolution, pixel resolution = 0.8 mm), i.e. on the order of 1-2 mm, and is therefore not the source of any unattributable vocalizations. If we understand the reviewer correctly, then we indeed perform the attribution as he indicates based on the tracked snouts of all mice, specifically by measuring the MPI's of both acoustic location estimates for all mice and then choosing the most reliable one. Specifically, the attributions can be grouped into 3 cases: (i) Estimated origin close to one snout, and snouts rather far apart, (ii) Estimated origin close to one snout and snouts close, and (iii) estimated origin not close to either snout. (i) is easy to address, (ii) is appropriately handled by the mouse probability index, but (iii) is tricky. Since the vocalization has to come from one of the mice, this already indicates that the localization is not working well in this case. Therefore we found it prudent (similar to Neunuebel et al. 2015) to not assign in these cases. Interestingly the MPI is not useful in these cases, as due to the exponential dependence of the normal density on distance, for example a case with a distance of 50 mm to one snout and 60 mm to another snout could lead to an MPI close to 1, which is likely not trustable. We have described this in the Methods as follows:

      "This distance threshold mainly serves to compensate for a deficiency of the 𝑀𝑃𝐼: if all mice are far from the estimate, all 𝑃𝑘 are extremely small, however, the 𝑀𝑃𝐼𝑘 will often exceed 0.95."<br /> Due to the inherent limit for localizing very quiet, short USVs by any system, we think this kind of selection (introduced originally by Neunuebel et al 2015) is a valuable and necessary step in the processing to avoid confusions (which are of course already substantially reduced through HyVL here).

      6) I guess the authors have code that we can run, but I couldn't access it. The manuscript describes the algorithms and equations that are used to calculate the location, but this doesn't really give me a feel for how it works. If you want to have the broadest impact possible, I think you would do well to make the code user-friendly (maybe it is, I don't know). In pursuit of that goal, I would suggest that the authors devote some of the paper to a guided example of how to use it.

      While the code was made available to the reviewers via the link at the beginning of the manuscript (p2, before abstract), we completely agree that this method of distribution is not very accessible. We have therefore created a publicly available GitHub repository (https://github.com/benglitz/HyVL) which hosts the code and details its use on the basis of a sample data set (which is available to the reviewers in the repository link, and later to the public under https://doi.org/10.34973/7kgc-ta72). While we do provide a sample video and analysis workflow there, our data analysis pipeline is quite integrated and other labs will likely use different pipelines. We have therefore tried to make the core functions independent of our pipeline and thus easy to integrate by others into their analysis pipelines.

      Reviewer #3 (Public Review):

      The present manuscript describes a new method to identify the emitter of ultrasonic vocalisations during social interactions between 2 or 3 mice. The method combines two technologies (an "acoustic camera" and a set of four microphones) and succeeds in increasing the spatial precision and the attribution of USV emission to one of the mice. The manuscript describes the characteristics and advantages of each method and the advantages of using both to optimize the identification of USV emitter. The authors used the method to confirm that females are also vocalising during male-female interactions and that females emit USV mostly during nose-nose contact while this was not the case for males. Interestingly, the authors identified that the vocal behaviour of two competing males was strongly asymmetric when facing a female. This was not the case for two females facing one male.

      The method is really promising since the identification of the emitter of USVs during mouse social interactions is a necessary step to speed up our understanding of this communication modality. The increase in spatial precision and in the proportion of attributed vocalisations is non-negligible and will be of great utility in the future.

      We would like to thank the reviewer for this positive perspective on the future utility of our system.

      Generally, the statistical analyses should be adjusted. Indeed, the statistical analyses do not consider the fact that the same individuals were recorded several times (if we understood well the methods). Each point was considered independent (in non-parametric Wilcoxon tests), while this is not the case given the repetitions with the same individuals (the number of repeated encounters per individual should be given in the methods section, by the way). We strongly recommend revising the statistical analyses of the results in Figures 4 and 5. In addition, it could be interesting to check whether the vocal behaviour is stable within each individual (i.e., a male that is vocalising frequently in one situation vocalises always frequently in other situations).

      We generally agree with this suggestion: In order to properly conduct the analysis for individuals as you suggest, a balanced dataset should be used. We had initially collected such a balanced dataset, which was previously not detailed in the manuscript, as the focus was on USV localization/attribution and hence only the recordings containing USVs were analyzed (detailed now in the beginning of Results and Methods). However, overall, the probability of a recording containing vocalizations at all is low: in our balanced set only 23/112 recordings contained vocalizations. We therefore had collected additional recordings with the best vocalizers which created the previously analyzed set of 83 recordings containing USVs recorded with all microphones. This dataset is therefore dominated by recordings from mice that are active vocalizers. While this does not raise any issue for the estimation of the accuracy of the method (Figure 3) or the female vocalizations (Figure 4, because recordings were always randomized across female mice), it precludes an encompassing analysis of individual differences in Figure 5, i.e. the dyadic-triadic comparison. In the new Figure 5, we address the reviewer's question for the dyadic recordings, finding that the current set of recordings does not provide sufficient evidence that individual male mice had significantly different vocalization rates. We would, however, like to point out that this is likely a consequence of the n=4 recordings that are compared here. For the female mice, we also did not find differences in vocalization rates, which is based on n=14 recordings and thus a more reliable result (p=0.16, 1-way ANOVA with factor individual).

      For the triadic recordings, however, due to a limitation in the experiment execution, we unfortunately do not have the complete information available on an experiment level for the triadic recordings, i.e. the video stream was accidentally started after all mice were placed in the platform, and since the same sex animals are visually not separable (while the female mice are separable from the males, based on a slightly shaved region on their head), we cannot completely assess this question in triadic recordings based on the available data. When including the triadic recordings in addition and assuming a single vocalizer (combining all male USVs, see below for why the males could not be assigned in the triadic condition) the male individual comparison can be approximately performed with n=8 recordings, and then the dependence on individual becomes borderline significant (p=0.028, 2-way ANOVA with factors individual and condition).

      For the comparison of vocalization rates in the previous Figure 5 that the reviewer was referring to, we cannot perform a rigorous analysis on the individual level, due to the lack of balance. While we thus agree that differences between individual mice can contribute to the differences observed, we do not think that this would change the conclusion that one of the mice dominates the vocal emissions. If the reviewers agree, we would thus leave Figures 6 (old Fig. 5) and new Figure 7 (behavioral confirmation of dominant/subordinate division) as part of the manuscript, with a clear cautioning about the possible contribution of individual differences to the observed differences. If the reviewers find it inappropriate to leave the results based on the unbalanced dataset in, all results after figure 5 could also be excluded (although we would find this unfortunate, given the additional time and effort we have invested in these).

      It is not easy to understand the rationale behind testing animals in pairs and in triads from the beginning of the manuscript. The authors should better introduce this aspect in the manuscript, especially given the fact that biological results deal with this aspect in Figure 5. The authors might strengthen the parts of the biological results extracted from their new method.

      Thank you for pointing out the need for clarification regarding the rationale behind testing animals in pairs and in triads. It is because courtship interactions are particularly vocal and social, that they are of interest to many fields, e.g. neurodevelopmental disorders.3,4 Due to the natural competitiveness between mice during courtship interactions, high accuracy is particularly beneficial in this regard because it allows disentangling USVs at close distances. We adapted the introduction to better reflect this reasoning and included an extra paragraph in the introduction and also where the biological results from old Fig. 5 / new Fig. 6 are summarized.

      More specifically, the fact that one male takes over the vocal behaviour within a triad is of high interest. Nevertheless, some behavioural data would be needed to strengthen these findings.

      We agree that this is an interesting finding and also agree that some additional behavioral analysis is useful to complement it. In order to arrive at this analysis, we performed all-frame, 3-animal tracking on the 14 triadic recordings with two males. This required switching to skeleton tracking with SLEAP5 in addition to manual post-processing to ensure that no identity switches occur. In each recording the dominant male was then defined as the one that emitted more vocalizations, and then the vocalization-independent spatial interaction histogram was computed, similar to the ones in Fig.4, but now separating between the dominant and the subordinate males (see new Figure 7). The results are consistent with the most typical location of vocalization of the male, in proximity to the female abdomen: The dominant male's spatial interaction histogram (Fig. 7A) was more clearly peaked in the location of the female abdomen very close to the male's snout, in comparison with the subordinate male's histogram (Fig. 7B), which shows up very clearly in the difference between the normalized histograms (Fig. 7C). Significance analysis was performed using 100x bootstrapping on the relative spatial positions to estimate p=0.99 confidence bounds around the histograms of the dominant and subordinate respectively. Significance at a level of p<0.01 highlights multiple relative spatial positions (Fig. 7D), including the one proximal to the snout which has the largest absolute difference (Fig. 7C). Note, that these analyses were conducted on the basis of the non-balanced dataset which contained enough vocalizations to assess the dominant male based on the vocalization rates and thus individual traits of certain animals remain as a possible confound.

      A small proportion of USVs was not assigned. The authors did not discuss the potential reason for this failure (Were the USVs too soft? Did they include specific acoustic characteristics that render them difficult to localise?). These points could be of interest when testing other mouse strains or other species.

      Good point, we agree that it is interesting to know the reasons for failure. As so often, there is not a single property that makes localization hard, but multiple factors contribute. In the SLIM paper, we already identified duration and intensity as important contributors (Fig. 3E/F), and in the speaker test (see new Supplementary Fig. 4) we again demonstrated the influence of intensity. In addition, frequency bandwidth and acoustic occlusion are two other main contributors that each influence the availability of the information/signal-to-noise ratio at the microphones:

      • Frequency bandwidth: In signals that are very narrowband, there are more opportunities for phase ambiguity, in particular for very high-frequency signals. These are avoided/reduced for more wideband signals.

      • Acoustic occlusion: As ultrasonic sounds can be quite directional, if an animal is vocalizing away from a microphone, which in addition would put its body in the way of the sounds to the microphone, then this can reduce the intensity at the microphone to a level where the information is insufficient to utilize information from this microphone. This mostly influences the 4 microphones surrounding the platform, while the Cam64 overhead will likely not be affected by acoustic occlusion in the plain.

      We have added a brief version of this explanation to the discussion under the heading: "Current limitations and future improvements of the presented system"

    1. Author Response

      Reviewer #1 (Public Review):

      In this manuscript, Marmor and colleagues reanalyze a previously published dataset of chronic widefield Ca2+ imaging from the dorsal cortex of mice as they learn a go/no-go somatosensory discrimination task. Comparing hit trials that have a distinct history (i.e. are preceded by distinct trial types), the authors find that hit trials preceded by correct rejections of the nontarget stimulus are associated with larger subsequent neural responses than trials precede by other hits, across the cortex. The authors analyze the time course over which this effect emerges in the barrel cortex (BC) and the rostrolateral visual area (RL), and find that its magnitude increases as the animals become expert task performers. Although the findings are potentially interesting, I, unfortunately, believe that there are important methodological concerns that could put them into question. I also disagree with the rationale that singles out BC and RL as being especially important for the emergence of trial history effects on neural responses during decision-making. I detail these points below .

      1) The authors did not perform correction for hemodynamic contamination of GCaMP fluorescence. In widefield imaging, blood vessels divisively decrease neural signals because they absorb green-wavelength photons, which could lead to crucial confounds in the interpretation of the main results because of neurovascular coupling, which lags neural activity by seconds. For example, if a reward response from the previous trial is associated with a lagged hemodynamic contamination that artificially decreases the signal in the following trial, one could get artificially higher activity in trials that were not preceded by a reward (i.e. CR), which is what the authors observed. Ideally, the experiments would be repeated with proper hemodynamic correction, but at the very least the authors should try to address this with control analyses.

      Done. We basically redone the experiment with proper hemodynamic correction and maintained trial history results. Please see point 1 above for more details (Figures S4 and S5). In addition to hemodynamic controls, we also present novel two-photon single cell data with similar results in Figure S6. We also added a dedicated section for this in the Methods section (pg. 12).

      For example, what is the time course of reward-related responses in BC and elsewhere?

      In general, and specifically in BC, reward related responses return to baseline up to 5 seconds after the start of the reward period and at least 5 seconds before the stimulus presentation of the next trial. In the novel experiments we even extended the baseline period by an additional 2 seconds just in case. Trial history information was still present with an extended inter-trial interval.

      The text now reads (pg. 4): "We further report that responses during the reward period in cortex and specifically in BC went back to baseline 4-5 seconds after the start of the reward period and 6-8 seconds before the presentation of the next stimulus (total inter-trial interval ranged between 10-12 seconds)."

      Do hemodynamics artifacts have a trial-by-trial correlation with the subsequent trial history effect?

      We have now done the proper hemodynamic control (Figure 2) and we did not find a strong effect of hemodynamic responses on trial history information.

      What is the learning time course of reward responses?

      Responses during the reward period as a function of learning were not significantly modulated. We further show the whole learning profile for BC response during the reward period in Author response image 1.

      Author response image 1.

      Response in BC averaged during the reward period (2-4 sec after texture stop) as a function of learning for each mouse separately.

      The text now reads (pg. 4): "In addition, responses in BC during the reward period were not consistently modulated as a function of learning (p>0.05; Wilcoxon signed-rank test between naïve and expert, BC response averaged during the reward period, 2-4 seconds after stimulus onset; n=7 mice). Taken together, we find that direct responses from the reward period do not effect history-related responses during the next trial."

      Note that I don't believe the FA-Hit condition analysis that the authors have already presented provides adequate control, as punishment responses are also pervasive in the cortex and therefore suffer from the same interpretational caveat. Unfortunately, I believe this is a serious methodological issue given the above. However, I will proceed to take the reported results at face value .

      We hope that our additional control analysis regarding the hemodynamic controls are satisfactory.

      2) The statistics used to assess the effect of trial history over learning are inadequate (e.g., Fig 2b). The existence of a significant effect in one condition (e.g., CR-Hit vs. Hit-Hit in expert) but not in another (e.g., same comparison in naive) does not imply that these two conditions are different. This needs to be tested directly. Moreover, the present analysis does not account for the fact that measures across learning stages are taken from the same animals. Thus, the appropriate analysis for these cases would be to first use a two-way ANOVA with repeated measures with factors of trial history and learning stage (or equivalent non-parametric test) and then derive conclusions based on post hoc pairwise tests, corrected for multiple comparisons .

      Done. We performed 2 way ANOVA as suggested and found significant history and learning effects along with a significant interaction effect for BC.

      The text now reads (pg. 4): "This difference was significant during the stim period in learning and expert phases across mice (Fig. 2b; 2-way ANOVA with repeated measures; DF (1-6) F=51 p<0.001, DF (2-12) F=18 p<0.001, DF(2-12) F=5 p<0.05 for trial history, learning and the interaction between trial history and learning; Post hoc Tukey analysis p<0.05 for trial history in learning and expert phases; p>0.05 in the naïve phase)."

      3) I am not convinced that BC and RL are especially important for trial-history-dependent effects. Figures 4 and 5 suggest that this modulation is present across the cortex, and in fact, the difference between CR-Hit and Hit-Hit in some learning stages appears stronger in other areas. BC and RL do have the highest absolute activity during the epochs in Figs 4 and 5, but I would argue that this is likely due to other aspects of the task (e.g., touch) and therefore is not necessarily relevant to the issue of trial history .

      Done. First, we would like to point out that RL during the pre period displays the largest difference between the CR-Hit and Hit-Hit conditions (Fig. 5c bottom). Second, we now show difference maps (i.e., activity in CR-Hit minus Hit-Hit) which clearly show a positive activity patch in BC during the stim period for 5 out of the 7 mice (Fig. S10a). Example maps also highlight RL during the pre period (Fig. S10b). We note that activity patches somewhat spread over to other areas and also slightly vary across mice. This is why the grand average may slightly average out trial history information. Taken together, we strongly feel that during the pre period, trial history information emerges in RL (and adjacent posterior association areas) which shift towards BC during the stim period

      Nevertheless, we agree with the reviewer that other areas (that do not necessarily display high activity) may encode trial history information and we now clearly report this in the text (pg. 5): "We note that other areas, e.g., different association areas, also encoded historydependent information especially during learning and expert phases. In addition, we present activity difference maps between CR-Hit and Hit-Hit conditions during the stim period (Fig. S10a). These maps clearly show the highest trial history information (i.e., difference in activity) in BC. Taken together, these results indicate that BC encodes history-dependent information that emerges during the stim period and just after learning. "

      And also in (pg. 6): " In addition, we present activity difference maps between CR-Hit and HitHit conditions during the pre period (Fig. S10b). These maps localize trial history information to RL which also spreads to other adjacent association areas. Moreover, activity patches slightly vary across the different mice which may affect the grand average (averaged across mice) of each area."

      4) Because of similar arguments to the above, and because this was not directly assessed, I do not believe the conclusion that history information emerges in RL and is transferred to BC is warranted. For instance, there is no direct comparison between areas, but inspection of the ROC plots in Fig 6b suggests that history information emerges concomitantly across cortical areas. I suggest directly comparing the time course between these and other areas

      Done. We now add example history AUC maps and quantify history AUC for all 25 areas during the pre and stim periods. During the pre period (Fig. 6), AUC values are concentrated around the RL (and other PPC areas), whereas during the stim periods AUC values shift to BC. Again, due to the inter-mouse variability, these differences are slightly averaged out which also makes it tough to have strong statistical test (with only 7 mice).

      The text now reads (pg. 7): "We next calculated the history AUC for each pixel during either the pre or stim period. The history AUC maps during the pre period display AUC values around the RL areas (Fig. 6f). In contrast, the history AUC maps during the stim period display AUC values mostly in BC (Fig. 6g). Quantified across 25 areas and averaged across mice, RL displays the highest history AUC during the pre period, whereas BC displays the highest history AUC values during the stim period (Fig. 6h). We note that other cortical areas such as other association areas also display high history AUC values. Taken together, we find that trial history emerges in RL before the texture arrives and then shifts to BC during stimulus presentation. "

      5) How much is task performance itself modulated by trial history? How does this change over the course of learning? These behavioral analyses would greatly help interpret the neural findings and how this trial history might be used behaviorally .

      Done, we have now calculated the dprime for Hit-Hit and CR-Hit trials separately. We find no significant differences between conditions both within and across mice (see Fig. S2 below).

      The text now reads pg. 3): "We note that learning curves that are calculated separately for each pair (i.e., either a preceding Hit or CR trial) were not significantly different (Fig. S2)."

      Reviewer #2 (Public Review):

      Marmor et al. mine a previously published dataset to examine whether recent reward/stimulus history influences responses in sensory (and other) cortices. Bulk L2/3 calcium activity is imaged across all of the dorsal cortex in transgenic mice trained to discriminate between two textures in a go/no-go behavior. The authors primarily focus on comparing responses to a specific stimulus given that the preceding trial was or was not rewarded. There are clear differences in activity during stimulus presentation in the barrel cortex along with other areas, as well as differences even before the second stimulus is presented. These differences only emerge after task learning. The data are of high quality and the paper is clear and easy to follow. My only major criticism is that I am not completely convinced that the observed difference in response is not due to differences in movement by the animal on the two trial types. That said, the demonstration of differences in sensory cortices is relatively novel, as most of the existing literature on trial history effect demonstrates such differences only in higher-order areas .

      Major :

      1a) The claim that body movements do not account for the results is in my view the greatest weakness of the paper - if the difference in response simply reflects a difference in movement, perhaps due to "excitement" in anticipation of reward after not receiving one on CR-H vs. HH trials, then this should show up in movement analysis. The authors do a little bit of this, but to me, more is needed .  

      Done. We have now extensively and carefully analyzed body and whisker movements for CRHit and Hit-Hit conditions. First, In the figure below we decomposed body movements into 22 different body parts using DeepLabCut. In short, we find no significant difference between CRHit and Hit-Hit conditions in each body part separately (Fig. S7 below). This was true for the naïve, learning and expert phases. Please see additional analyses in the points below.

      This is now reported in the text (pg. 4): “In addition, we performed a more detailed body and whisker analysis, e.g., decomposing the movement to different body parts and obtaining single whisker dynamics. These analyses did not find significant differences in movement parameters between CR-Hit and Hit-Hit conditions (Fig. s7 and s8).”

      First, given the small sample size and use of non-parametric tests, you will only get p<.05 if at least 6 of the 7 mice perform in the same way. So getting p>.05 is not surprising even if there is an underlying effect. This makes it especially important to do analyses that are likely to reveal any differences; using whisker angle and overall body movement, which is poorly explained, is in my opinion insufficient. An alternative approach would be to compare movements within animals; small as the dataset is, it is feasible to do an animal-by-animal analysis, and then one could leverage the large trial count to get much greater statistical power, foregoing summary analyses that pool over only n=7 .

      We agree with this point and are have now dramatically improved our statistical analysis.

      1) We now perform within mouse statistics for responses in BC during naïve, learning and expert (see Fig. S4 below). In short, we find statistical significance for 7 out of 7 mice during the expert phase, 6 out of 7 mice in the learning phase and 0 out of 7 in the naive phase. For RL during the pre period we find significant difference in 5 out of 7 expert mice.

      This is now reported in the text (pg. 4): "In addition, a statistical comparison between CR-Hit and Hit-Hit responses within each mouse separately maintained significance for expert (7/7 mice Mann-Whitney U-test p<0.05) and learning (6/7 mice) but not for naïve (0/7 mice. Fig. S3)."

      And also in (pg. 5): "In addition, a statistical comparison between CR-Hit and Hit-Hit responses in RL within each mouse separately maintained significance for expert (5/7 mice; MannWhitney U-test p<0.05)."

      2) We would like to point out that we have now added 3 additional mice (with hemodynamics control) and performed within mouse statistics in BC and RL (Fig. S5), adding to our initial observations.

      3) In terms of body movements, we now performed within mice statistics and compared body movements between CR-Hit and Hit-Hit conditions. In general, most mice did not show a significant difference in body movements or whisker envelope.

      This is now reported in the text (pg. 4): "A within mouse statistical comparison between body or whisker parameters in CR-Hit and Hit-Hit maintained a non-significant difference in expert (1/7 mice displayed a significant difference; Mann-Whitney U-test p>0.05), learning (2/7 mice) and naïve (0/7 mice)."

      And also in (pg. 4): "Body movements and whisker parameters did not significantly differ between CR-Hit and Hit-Hit conditions during the pre-period (Similar to the stim period. Across and within mice. P>0.05; Mann-Whitney U-test)."

      In summary, we have now substantially improved our statistical analysis and further decomposed the body movements, maintaining the trial history results.

      The authors only consider a simple parametrization of movement (correlation across successive frames), and given the high variability in movement across animals, it is likely that different mice adopt different movements during the task, perhaps altering movement in specific ways. Aggregating movement across different body parts after an analysis where body parts are treated separately seems like an odd choice - perhaps it is fine, but again, supporting evidence for this is needed. As it stands, it is not clear if real differences were averaged out by combining all body parts, or what averaging actually entails .

      Please see the above point where we decomposed body movements (Fig. S7 and Methods section in Pg. 14).

      If at all possible, I would recommend examining curvature and not just the whisker angle, since the angle being the same is not too surprising given that the stimulus is in the same place. If the animal is pressing more vigorously on CR-H trials, this should result in larger curvature changes .

      Done. We now decompose whisker dynamics (i.e., curvature) using DeepLabCut (Fig. S8 see below). In general, we find no significant differences in whisker parameters between Hit-Hit and CR-Hit conditions.

      This is now reported in the text (pg. 4): "In addition, we performed a more detailed body and whisker analysis, e.g., decomposing the movement to different body parts. This analysis did not find significant differences between CR-Hit and Hit-Hit conditions (Fig. S7 and S8)."

      Finally, the authors presumably have access to lick data. Are reaction times shorter on CR-H trials? Is lick count or lick frequency shorter?

      Done. We now calculated lick reaction time and lick rate and find a significant difference for the lick reaction time but not in lick rate. We show a figure below for the reviewer and report this in the text

      The text now reads (pg. 3): "In addition, the lick reaction time (but not the lick rate) between Hit-Hit and CR-Hit were significantly different (p<0.05; Wilcoxon signed-rank test) ,maybe indicating a more considered response after a previous stop signal."

      If movement differs across trial types, it is entirely plausible that at least barrel cortex activity differences reflect differences in sensory input due to differences in whisker position/posture/etc. This would mitigate the novelty of the present results .

      As detailed above, have now meticulously analyzed the whisker parameter differences between both conditions and did not find any significant differences.

      1b) Given the importance of this control to the story, both whisker and body movement tracking frames should be explicitly shown either in the primary paper or as a supplement. Moreover, in the methods, please elaborate on how both whisker and body tracking were performed .

      Done. Please see Figs. S7 and S8 for tracking frames. This is now detailed in the above points and also the revised relevant methods section

      2) .Did streak length impact the response? For instance, in Fig. 1f "Learning", there is a 6-trial "no-go" streak; if the data are there, it would be useful to plot CR-H responses as a function of preceding unrewarded trials.

      Done. We have now calculated response in CR-Hit as a function of the number of preceding CRs. In general, we obtain inconsistent results across mice that may be due to the small number of trials that have more than one preceding CR. Nevertheless, some mice have a trend, sometimes significant, in which CR-Hit responses are higher for longer CR preceding streaks. This is especially true during the learning phase. We have decided not to include this in the manuscript and present this figure only to the reviewer.

    1. Author Response

      Reviewer #1 (Public Review):

      The central claim that the R400Q mutation causes cardiomyopathy in humans require(s) additional support.

      We regret that the reviewer interpreted our conclusions as described. Because of the extreme rarity of the MFN2 R400Q mutation our clinical data are unavoidably limited and therefore insufficient to support a conclusion that it causes cardiomyopathy “in humans”. Importantly, this is a claim that we did not make and do not believe to be the case. Our data establish that the MFN2 R400Q mutation is sufficient to cause lethal cardiomyopathy in some mice (Q/Q400a; Figure 4) and predisposes to doxorubicin-induced cardiomyopathy in the survivors (Q/Q400n; new data, Figure 7). Based on the clinical association we propose that R400Q may act as a genetic risk modifier in human cardiomyopathy.

      To avoid further confusion we modified the manuscript title to “A human mitofusin 2 mutation can cause mitophagic cardiomyopathy” and provide a more detailed discussion of the implications and limitations of our study on page 11).

      First, the claim of an association between the R400Q variant (identified in three individuals) and cardiomyopathy has some limitations based on the data presented. The initial association is suggested by comparing the frequency of the mutation in three small cohorts to that in a large database gnomAD, which aggregates whole exome and whole genome data from many other studies including those from specific disease populations. Having a matched control population is critical in these association studies.

      We have added genotyping data from the matched non-affected control population (n=861) of the Cincinnati Heart study to our analyses (page 4). The conclusions did not change.

      For instance, according to gnomAD the MFN2 Q400P variant, while not observed in those of European ancestry, has a 10-fold higher frequency in the African/African American and South Asian populations (0.0004004 and 0.0003266, respectively). If the authors data in table one is compared to the gnomAD African/African American population the p-value drops to 0.029262, which would not likely survive correction for multiple comparison (e.g., Bonferroni).

      Thank you for raising the important issue of racial differences in mutant allele prevalence and its association with cardiomyopathy. Sample size for this type of sub-group analysis is limited, but we are able to provide African-derived population allele frequency comparisons for both the gnomAD population and our own non-affected control group.

      As now described on page 4, and just as with the gnomAD population we did not observe MFN2 R400Q in any Caucasian individuals, either cardiomyopathy or control. Its (heterozygous only) prevalence in African American cardiomyopathy is 3/674. Thus, the R400Q minor allele frequency of 3/1,345 in AA cardiomyopathy compares to 10/24,962 in African gnomAD, reflecting a statistically significant increase in this specific population group (p=0.003308; Chi2 statistic 8.6293). Moreover, all African American non-affected controls in the case-control cohort were wild-type for MFN2 (0/452 minor alleles).

      (The source and characteristics of the subjects used by the authors in Table 1 is not clear from the methods.)

      The details of our study cohorts were inadvertently omitted during manuscript preparation. As now reported on pages 3 and 4, the Cincinnati Heart Study is a case-control study consisting of 1,745 cardiomyopathy (1,117 Caucasian and 628 African American) subjects and 861 non-affected controls (625 Caucasian and 236 African American) (Liggett et al Nat Med 2008; Matkovich et al JCI 2010; Cappola et al PNAS 2011). The Houston hypertrophic cardiomyopathy cohort [which has been screened by linkage analysis, candidate gene sequencing or clinical genetic testing) included 286 subjects (240 Caucasians and 46 African Americans) (Osio A et al Circ Res 2007; Li L et al Circ Res 2017).

      Relatedly, evaluation in a knock-in mouse model is offered as a way of bolstering the claim for an association with cardiomyopathy. Some caution should be offered here. Certain mutations have caused a cardiomyopathy in mice when knocked in have not been observed in humans with the same mutation. A recent example is the p.S59L variant in the mitochondrial protein CHCHD10, which causes cardiomyopathy in mice but not in humans (PMID: 30874923). While phenocopy is suggestive there are differences in humans and mice, which makes the correlation imperfect.

      We understand that a mouse is not a man, and as noted above we view the in vitro data in multiple cell systems and the in vivo data in knock-in mice as supportive for, not proof of, the concept that MFN2 R400Q can be a genetic cardiomyopathy risk modifier. As indicated in the following responses, we have further strengthened the case by including results from 2 additional, previously undescribed human MFN2 mutation knock-in mice.

      Additionally, the argument that the Mfn2 R400Q variant causes a dominant cardiomyopathy in humans would be better supported by observing of a cardiomyopathy in the heterozygous Mfn2 R400Q mice and not just in the homozygous Mfn2 R400Q mice.

      We are intrigued that in the previous comment the reviewer warns that murine phenocopies are not 100% predictive of human disease, and in the next sentence he/she requests that we show that the gene dose-phenotype response is the same in mice and humans. And, we again wish to note that we never argued that MFN2 R400Q “causes a dominant cardiomyopathy in humans.” Nevertheless, we understand the underlying concerns and in the revised manuscript we present data from new doxorubicin challenge experiments comparing cardiomyopathy development and myocardial mitophagy in WT, heterozygous, and surviving (Q/Q400n) homozygous Mfn2 R400Q KI mice (new Figure 7, panels E-G). Homozygous, but not heterozygous, R400Q mice exhibited an amplified cardiomyopathic response (greater LV dilatation, reduced LV ejection performance, exaggerated LV hypertrophy) and an impaired myocardial mitophagic response to doxorubicin. These in vivo data recapitulate new in vitro results in H9c2 rat cardiomyoblasts expressing MFN2 R400Q, which exhibited enhanced cytotoxicity (cell death and TUNEL labelling) to doxorubicin associated with reduced reactive mitophagy (Parkin aggregation and mitolysosome formation) (new Figure 7, panels A-D). Thus, under the limited conditions we have explored to date we do not observe cardiomyopathy development in heterozygous Mfn2 R400Q KI mice. However, we have expanded the association between R400Q, mitophagy and cardiomyopathy thereby providing the desired additional support for our argument that it can be a cardiomyopathy risk modifier.

      Relatedly, it is not clear what the studies in the KI mouse prove over what was already known. Mfn2 function is known to be essential during the neonatal period and the authors have previously shown that the Mfn2 R400Q disrupts the ability of Mfn2 to mediate mitochondrial fusion, which is its core function. The results in the KI mouse seem consistent with those two observations, but it's not clear how they allow further conclusions to be drawn.

      We strenuously disagree with the underlying proposition of this comment, which is that “mitochondrial fusion (is the) core function” of mitofusins. We also believe that our previous work, alluded to but not specified, is mischaracterized.

      Our seminal study defining an essential role for Mfn2 for perinatal cardiac development (Gong et al Science 2015) reported that an engineered MFN2 mutation that was fully functional for mitochondrial fusion, but incapable of binding Parkin (MFN2 AA), caused perinatal cardiomyopathy when expressed as a transgene. By contrast, another engineered MFN2 mutant transgene that potently suppressed mitochondrial fusion, but constitutively bound Parkin (MFN2 EE) had no adverse effects on the heart.

      Our initial description of MFN2 R400Q and observation that it exhibited impaired fusogenicity (Eschenbacher et al PLoS One 2012) reported results of in vitro studies and transgene overexpression in Drosophila. Importantly, a role for MFN2 in mitophagy was unknown at that time and so was not explored.

      A major point both of this manuscript and our work over the last decade on mitofusin proteins has been that their biological importance extends far beyond mitochondrial fusion. As introduced/discussed throughout our manuscript, MFN2 plays important roles in mitophagy and mitochondrial motility. Because this central point seems to have been overlooked, we have gone to great lengths in the revised manuscript to unambiguously show that impaired mitochondrial fusion is not the critical functional aspect that determines disease phenotypes caused by Mfn2 mutations. To accomplish this we’ve re-structured the experiments so that R400Q is compared at every level to two other natural MFN2 mutations linked to a human disease, the peripheral neuropathy CMT2A. These comparators are MFN2 T105M in the GTPase domain and MFN2 M376A/V in the same HR1 domain as MFN2 R400Q. Each of these human MFN2 mutations is fusion-impaired, but the current studies reveal that that their spectrum of dysfunction differs in other ways as summarized in Author response table 1:

      Author response table 1.

      We understand that it sounds counterintuitive for a mutation in a “mitofusin” protein to evoke cardiac disease independent of its appellative function, mitochondrial fusion. But the KI mouse data clearly relate the occurrence of cardiomyopathy in R400Q mice to the unique mitophagy defect provoked in vitro and in vivo by this mutation. We hope the reviewer will agree that the KI models provide fresh scientific insight.

      Additionally, the authors conclude that the effect of R400Q on the transcriptome and metabolome in a subset of animals cannot be explained by its effect on OXPHOS (based on the findings in Figure 4H). However, an alternative explanation is that the R400Q is a loss of function variant but does not act in a dominant negative fashion. According to this view, mice homozygous for R400Q (and have no wildtype copies of Mfn2) lack Mfn2 function and consequently have an OXPHOS defect giving rise to the observed transcriptomic and metabolomic changes. But in the rat heart cell line with endogenous rat Mfn2, exogenous of the MFN2 R400Q has no effect as it is loss of function and is not dominant negative.

      Our results in the original submission, which are retained in Figures 1D and 1E and Figure 1 Figure Supplement 1 of the revision, exclude the possibility that R400Q is a functional null mutant for, but not a dominant suppressor of, mitochondrial fusion. We have added additional data for M376A in the revision, but the original results are retained in the main figure panels and a new supplemental figure:

      Figure 1D reports results of mitochondrial elongation studies (the morphological surrogate for mitochondrial fusion) performed in Mfn1/Mfn2 double knock-out (DKO) MEFs. The baseline mitochondrial aspect ratio in DKO cells infected with control (b-gal containing) virus is ~2 (white bar), and increases to ~6 (i.e. ~normal) by forced expression of WT MFN2 (black bar). By contrast, aspect ratio in DKO MEFs expressing MFN2 mutants T105M (green bar), M376A and R400Q (red bars in main figure), R94Q and K109A (green bars in the supplemental figure) is only 3-4. For these results the reviewer’s and our interpretation agree: all of the MFN2 mutants studied are non-functional as mitochondrial fusion proteins.

      Importantly, Figure 1E (left panel) reports the results of parallel mitochondrial elongation studies performed in WT MEFs, i.e. in the presence of normal endogenous Mfn1 and Mfn2. Here, baseline mitochondrial aspect ratio is already normal (~6, white bar), and increases modestly to ~8 when WT MFN2 is expressed (black bar). By comparison, aspect ratio is reduced below baseline by expression of four of the five MFN2 mutants, including MFN2 R400Q (main figure and accompanying supplemental figure; green and red bars). Only MFN2 M376A failed to suppress mitochondrial fusion promoted by endogenous Mfns 1 and 2. Thus, MFN2 R400Q dominantly suppresses mitochondrial fusion. We have stressed this point in the text on page 5, first complete paragraph.

      Additionally, as the authors have shown MFN2 R400Q loses its ability to promote mitochondrial fusion, and this is the central function of MFN2, it is not clear why this can't be the explanation for the mouse phenotype rather than the mitophagy mechanism the authors propose.

      Please see our response #7 above beginning “We strenuously disagree...”

      Finally, it is asserted that the MFN2 R400Q variant disrupts Parkin activation, by interfering with MFN2 acting a receptor for Parkin. The support for this in cell culture however is limited. Additionally, there is no assessment of mitophagy in the hearts of the KI mouse model.

      The reviewer may have overlooked the studies reported in original Figure 5, in which Parkin localization to cultured cardiomyoblast mitochondria is linked both to mitochondrial autophagy (LC3-mitochondria overlay) and to formation of mito-lysosomes (MitoQC staining). These results have been retained and expanded to include MFN2 M376A in Figure 6 B-E and Figure 6 Figure Supplement 1 of the revised manuscript. Additionally, selective impairment of Parkin recruitment to mitochondria was shown in mitofusin null MEFs in current Figure 3C and Figure 3 Figure Supplement 1, panels B and C.

      The in vitro and in vivo doxorubicin studies performed for the revision further strengthen the mechanistic link between cardiomyocyte toxicity, reduced parkin recruitment and impaired mitophagy in MFN2 R400Q expressing cardiac cells: MFN2 R400Q-amplified doxorubicin-induced H9c2 cell death is associated with reduced Parkin aggregation and mitolysosome formation in vitro, and the exaggerated doxorubicin-induced cardiomyopathic response in MFN2 Q/Q400 mice was associated with reduced cardiomyocyte mitophagy in vivo, measured with adenoviral Mito-QC (new Figure 7).

      Reviewer #2 (Public Review):

      In this manuscript, Franco et al show that the mitofusin 2 mutation MFN2 Q400 impaires mitochondrial fusion with normal GTPase activity. MFN2 Q400 fails to recruit Parkin and further disrupts Parkin-mediated mitophagy in cultured cardiac cells. They also generated MFN2 Q400 knock-in mice to show the development of lethal perinatal cardiomyopathy, which had an impairment in multiple metabolic pathways.

      The major strength of this manuscript is the in vitro study that provides a thorough understanding in the characteristics of the MFN2 Q400 mutant in function of MFN2, and the effect on mitochondrial function. However, the in vivo MFN2 Q/Q400 knock-in mice are more troubling given the split phenotype of MFN2 Q/Q400a vs MFN2 Q/Q400n subtypes. Their main findings towards impaired metabolism in mutant hearts fail to distinguish between the two subtypes.

      Thanks for the comments. We do not fully understand the statement that “impaired metabolism in mutant hearts fails to distinguish between the two (in vivo) subtypes.” The data in current Figure 5 and its accompanying figure supplements show that impaired metabolism measured both as metabolomic and transcriptomic changes in the subtypes (orange Q400n vs red Q400a in Figure 5 panels A and D) are reflected in the histopathological analyses. Moreover, newly presented data on ROS-modifying pathways (Figure 5C) suggest that a central difference between Mfn2 Q/Q400 hearts that can compensate for the underlying impairment in mitophagic quality control (Q400n) vs those that cannot (Q400a) is the capacity to manage downstream ROS effects of metabolic derangements and mitochondrial uncoupling. Additional support for this idea is provided in the newly performed doxorubicin challenge experiments (Figure 7), demonstrating that mitochondrial ROS levels are in fact increased at baseline in adult Q400n mice.

      While the data support the conclusion that MFN2 Q400 causes cardiomyopathy, several experiments are needed to further understand mechanism.

      We thank the reviewer for agreeing with our conclusion that MFN2 Q400 can cause cardiomyopathy, which was the major issue raised by R1. As detailed below we have performed a great deal of additional experimentation, including on two completely novel MFN2 mutant knock-in mouse models, to validate the underlying mechanism.

      This manuscript will likely impact the field of MFN2 mutation-related diseases and show how MFN2 mutation leads to perinatal cardiomyopathy in support of previous literature.

      Thank you again. We think our findings have relevance beyond the field of MFN2 mutant-related disease as they provide the first evidence (to our knowledge) that a naturally occurring primary defect in mitophagy can manifest as myocardial disease.

    1. Author Response

      Reviewer #2 (Public Review):

      This manuscript reports on an important study that aims to identify symptom trajectories for the early detection of pancreatic cancer. The study's findings are based on the analysis of two complementary data sources: structured data obtained from the Danish National Patient Registry and unstructured information extracted from the free-text sections of patient notes. The researchers successfully identified various symptoms and disease trajectories that are strongly associated with pancreatic cancer, with compelling evidence from both data sources. Additionally, the study provides a detailed comparison and contrast of the results obtained from each data source, adding valuable insights into the strengths and limitations of each method.

      Strengths:

      The work is well motivated by the urgent need for early detection of pancreatic cancer, which is often difficult due to the lack of effective (computational) methods. The manuscript is generally well-written and includes relevant studies, providing a comprehensive overview of the current state of the field.

      One of the unique contributions of this work is its use of both structured registry data and unstructured clinical notes to leverage complementary information. This approach enables a more nuanced and comprehensive understanding of the disease symptom trajectories, which is critical for improving early disease diagnosis and prognosis.

      The methodology employed in this study is sound and robust, and the authors have candidly discussed its limitations. The results are significant and highlight previously unknown insights into symptom disease trajectories, which have important implications for the management of pancreatic cancer.

      Overall, this is a well-designed and executed study that makes an important contribution to the field of cancer/informatics research, and it should be of great interest to both researchers and clinicians.

      Weaknesses:

      To complement the results in Figure 1, I'd also suggest that the authors compile a list of the most common (known) symptoms of pancreatic cancer as a reference. In other words, not only can you compare results found from the two sources but also compare them with existing knowledge. This is something you discussed partly in lines 245 but including this early as part of the results in Figure 1 would be more informative.

      We agree that this would be informative to include into the Venn diagram. Hence, we have created a list of the most established and well-known symptoms of pancreatic cancer (Supplementary table S1) and converted these to the comparable ICD-10 level that we also use for the text mining and registry counts in Fig. 1. We have included the Venn diagram as Supplementary Figure S1.

      In terms of the text mining evaluation results, providing information on recall errors would be beneficial to better understand the performance of the method. Additionally, line 144 mentions 53 words, but it is still not clear to me what these words refer to. Could you please clarify this point or provide more context?

      We have added sensitivity/recall measures on the text mining procedure and furthermore added two references in the Discussion of the Tagcorpus program which was used for text mining the clinical notes. These references also mention similar sensitivities for the studies. The 53 words are false positives and we have clarified why these have been captured as false positives by the Tagcorpus (negations).

      The disparities between Figure 2A and 2B are noteworthy, from very different initial symptoms to the proportion of short median survival dates (<=90 days), with much more pronounced differences than those observed in Figure 1 comparing two data sources. The highlighted trajectories are almost completely different. Should this be expected? I was hoping to see at least some overlap between the two results.

      After updating the case population (via the cancer registry) and showing only symptoms trajectories in this revised version, we can clearly see that the trajectories are more similar. This gives an indication that the methods pick up on similar pancreatic-cancer symptoms, but there are also differences that show how each data type can complement the other, such as the text-mined trajectories being able to pick up longer symptom trajectories prior to the cancer.

      All trajectories shown in Figure 2 include three symptoms. Is this by design? Could there be meaningful trajectories with different numbers of symptoms (e.g. 4 or more)?

      We agree and have added the significant length 4 trajectories (for the registry data) as supplementary figure S2. No trajectories with length 5 or higher were found in the registry-based analysis. No length 4 (or higher) trajectories were found for the text-mined patients (presumably due to the data set size).

      Considering those patients with both clinical notes and registry data, it may be beneficial to merge their symptoms to generate more informative trajectories.

      This could be interesting but is out of scope for this paper. Here we would like to stress the proof-of-concept that the two data types can complement each other. The next steps would be to generate these multimodal trajectories to for example test if they are predictive of pancreatic cancer. Nonetheless, we acknowledge the significance of this perspective and have incorporated it into the Discussion section of the manuscript.

      Given that results from two sources are being compared in Figures 1 and 2, have you considered calculating the top 20 most significant symptoms from the registry data as well?

      We have done this and added them to Supplementary figure S3.

      While there is a discussion related to cardiovascular diseases, I noticed no mention of cataracts or gonarthrosis, which were found to be prevalent among patients with short survival in Figure 2.

      Since we now only include symptoms trajectories in the Results, we have chosen to not include these results in the Discussion for the final version of the manuscript. However, the diagnosis-wide trajectories are included in the Supplementary figure S2. Cataract and gonarthrosis have still been found significant in the results even though they are not shown in the Supplementary figure due to its visualization threshold of min. 400 patients per trajectory.

      Ultimately, the goal of this research is to improve the early detection and prognosis of pancreatic cancer, thus it is important to discuss how the findings of this work could be applied in practice towards this goal (e.g. used by disease prediction algorithms?)

      We agree that this is very important and have added a small section on this in the Discussion. We have also cited a recent publication using deep learning algorithms to predict pancreatic cancer based solely on registry data (Placido et al. 2023).

    1. Author Response

      Reviewer #1 (Public Review):

      In general, in the discussion, I miss two of the main points that led to suspend screening programs in most countries during the pandemic:

      1) protecting women from the risk of infection linked to attending a clinic during pandemic when health facilities were mostly attended by symptomatic people seeking care for Covid-19;

      We agree. We have added this to the background and Discussion section (page 3, lines 76-78 & page 9, lines 296-299).

      2) the of health professionals because they were mostly involved in covid related activities: lack of radiologists (addressed to the emergency department to assure diagnoses of pneumonia), lack of anesthesiologists (due to the expansion of intensive care), thus risking not having timely surgical treatment; lack of screening organization personal for invitations and phone calls (working on contact tracing).

      We agree. We have added this to the background and Discussion section (page 3, lines 76-78 & page 9, lines 296-299).

      Lacking the rationale for suspending screening, it is not clear to the reader how the Danish program afforded these issues and was able to maintain open the program.

      We have elaborated on this in the Discussion section (page 296-299), arguing that Denmark may have partly decreased the issue of staff shortage due to e.g., a lower burden of COVID-19, use of laymen and medical student for testing and vaccinations and a high vaccine coverage.

    1. Author Response

      Reviewer #1 (Public Review):

      Hoang, Tsutsumi and colleagues use 2-photon calcium imaging to study the activity of Purkinje cells during a Go/No-go task and related this activity to their location in Aldolase-C bands. Tensor component analysis revealed that a substantial part of the calcium responses can be linked to four functional components. The manuscript addresses an important question with an elegant technical approach and careful analysis. There are a few points that I think could be addressed to further improve the quality of the manuscript.

      1) The authors should be careful not to overstate the goal and results. For instance, in the abstract it is stated that dynamical functional organization is necessary for dimension reduction. However, the statement that the 4 TCs together account for about half of the variance (line 220) indicates that dimensionality may not be reduced that much. I would suggest revising the first and last sentence of the abstract accordingly.

      Dynamic functional organization of TC1 and TC2 by synchronization is the major finding of this study and we believe that it is one of the most efficient mechanisms of dimension reduction, given the unique anatomy of the cerebellum. In the revised manuscript, we added a supplemental result showing that the dimensionality of TC1 and TC2 neurons decreased and increased, respectively, in accordance with bi-directional changes in their synchronization (Figure 3 – figure supplement 1DE). Dimension reduction was further confirmed by conventional PCA (Figure 6 – figure supplement 1). However, we agree that the statement that the cerebellum reduces dimensions by self-organization of components is speculative, and we revised the abstract accordingly.

      At the end of the introduction, the authors refer to "the first evidence supporting the two major theories of cerebellar function" but which two theories is referred to and how this manuscript support them is not very obvious. Similarly, they state that "This study unveiled the secret of cerebellar functional architecture", which I would consider to be an unnecessary overstatement of the impact of the work described.

      In the revised Introduction, we explicitly stated that TC1 and TC2 are related to timing control and cognitive error learning, respectively, with some indirect causal evidence. We also revised the last paragraph of the Introduction to emphasize that this study provides the first evidence to support the view that distinct cerebellar components may serve divergent cerebellar functions in a single task. The statement "This study unveiled the secret of cerebellar functional architecture" was removed.

      In the title, the authors use the word modular. In the consensus paper on cerebellar modules (Apps et al., 2018) an attempt is made to unify the terms used to describe cerebellar anatomical structures. Here "module" is used for the longitudinal zone of interconnected PCs, CN neurons and olivary neurons. As the authors only studied PC activity (and indirectly the IO), I would suggest using band, stripe or subpopulation instead.

      Because we used TCA to identify functional components underlying the Go/No-go data, we changed the word “module” to “component” in the title.

      Finally, the term "CF firing" or "CF activity" is used when referring to the recorded signals. However, the authors measure postsynaptic calcium responses that are indeed likely driven by CF inputs, but could also be influenced by PF inputs. At the very least, because Purkinje cells and not climbing fibers are being imaged, "complex spike" should be used instead. It would be more accurate still to use the more general "calcium response" and make less of an assumption about the origin of the calcium response.

      In this study, CF-dependent dendritic Ca2+ signals in adjacent AldC compartments were recorded by the two-photon imaging. The HA_time algorithm (Hoang et al. 2020) was then applied to extract spike timings from the recorded signals. In the revised manuscript, we used the terms “calcium responses” and “complex spikes” when referring to the recorded Ca2+ signals and the estimated spikes, respectively.

      2) For some figure panels and statements in the manuscript error bars or confidence intervals and statistics are missing. This is the case for, for example, the changes in fraction correct, lick latency, fraction incorrect, etc. (Fig 1B, 2E-F, TC levels in 3, 4D-E and 5A-C). Including these is particularly relevant in Fig 4E as this is a key result, mentioned also in the abstract. Please indicate clearly if these plots are cumulative for all mice or per mouse and averaged. I advise the authors to statistically support the claim that the changes are significant and in opposite direction as this element of the study is referred to in the abstract and discussion (summary).

      We added the error bars / confidence intervals to the related figures. Most importantly, we added histograms of synchrony strength for TC1/TC2 neurons (Figure 4E) and conducted statistical tests to strengthen the claim of bi-directional changes in synchronization of TC1/TC2.

      3) Data presentation sometimes does not do the work justice. For example, the data in Figure 6 are very interesting, but hard to read because of the design of the figure. It is clear how the components are mostly confined to Aldolase-C domains, but within the domains the distribution is not clear. I would advise to also more clearly indicate what the locations of the colors within the bands refers to. The spatial distribution of the selected top 300 cells for each TC could be added.

      We added pie-chart plots for the fraction of TC1-4 neurons in each Ald-C zone and learning stage. We also indicated in the figure legend that the location of a single-color bar referred to the geographic distance of the corresponding neuron relative to Ald-C boundaries. We included spatial distribution of the selected neurons in Figure 4 – figure supplement 1D.

    1. Author Response

      Reviewer #1 (Public Review):

      The authors investigate the mechanistic underpinning of paradoxical activation (PA) of RAF by small molecule kinase inhibitors using mathematical modeling. The main novelty of the study is the consideration of RAF conformational autoinhibition by its N-terminal regulatory domains as a new determinant of PA. This mechanism has not been explicitly considered in previous theoretical studies, which are based on two other mechanisms: drug-induced RAF oligomerization into active dimers (dimer potentiation DP) and negative cooperativity (NC) of inhibitor binding by a second monomer in the inhibitor-induced RAF kinase dimerization. An important discovery of this study is that conformational autoinhibition is a critical determinant of PA and that in some cases, it can contribute to PA in the absence of DP and NC. Another novelty is the consideration of RAF interaction with 14-3-3 proteins, as a determinant of PA. The 14-3-3 dimeric scaffolds play an important role in the regulation of both autoinhibited and active states of RAF and thus understanding how their interaction with RAF influences PA by RAF inhibitors is important. Using mathematical modeling the authors show that 14-3-3 binding does indeed enhance PA in response to a spectrum of RAF inhibitors.

      We thank Reviewer #1 for reviewing our manuscript, and we agree with this summary.

      Strengths

      The overall strength of this study is that it increases the mechanistic understanding of how PA of RAF originates in response to its inhibitors. Consideration of the effect that the inhibitors play in breaking the autoinhibited conformation has been overlooked by previous mathematical analyses of PA, and this study bridges this gap. By doing so, the authors discover that breaking that autoinhibited state is in fact the biggest contribution to PAB by RAF inhibitors. In my opinion, this is the most impactful finding of this study, which additionally speaks to how important are the autoinhibitory mechanisms for constraining basal RAF signaling in cells. The presented analysis also shows that consideration of conformational autoinhibition can explain PA by all different types of RAF inhibitors (1, 1.5, and 2), which until now has been difficult to reconcile.

      Another important contribution of this study is the investigation of how the 14-3-3 scaffold proteins can further contribute to PA. This is exciting, especially in light of recent elegant structural studies that unveiled complex regulation of RAF by 14-3-3 (which are both important for RAF inhibition and stabilization of the active dimers). The authors dissect these opposing roles of 14-3-3 in their model and show the autoinhibitory interaction with 14-3-3, but not the activating one, significantly increases the PA response. Their findings that an increase in the 143-3 levels amplifies PA is very interesting and somewhat provocative as it is unclear how much 14-3-3 levels in cells can oscillate. To this end, the authors show that elevated 14-3-3 levels are observed with increased time of RAF inhibitor treatment, which might point to a new mechanism of resistance to RAF inhibitors.

      We thank reviewer #1 for the enthusiastic review and for highlighting the value of bringing conformational autoinhibition into the study and understanding of paradoxical activation. We also appreciate the positive consideration of the 14-3-3 section of the manuscript and the helpful suggestions later in the review. In this revision, we have taken the offered option of removing all of the 14-3-3 theoretical and experimental work. We plan to expand the 14-3-3 work in our ongoing work, in accordance with the thoughtful input from reviewers #1, #2, and #3 on this topic. Thank you.

      Weaknesses

      The main weakness of the study is the limited experimental analysis conducted to test the predictions that arise from the mathematical models. While some of these predictions might be challenging to test, the one which is tested is not tested rigorously. The experiments focus on 14-3-3-based regulation and are conducted in cells by observing the effect of 14-3-3 overexpression on the inhibition of RAF signaling by its different kinase inhibitors. While the authors acknowledge that too, 14-3-3 overexpression will have a multifaceted effect on signaling as these scaffold proteins participate in the regulation of almost all signaling events. Thus, the proposed experiments are not sufficient to conclude that the observed effects are in fact a result of 14-3-3/RAF interaction.

      The authors consider conformational autoinhibition and 14-3-3 stabilization of autoinhibited RAF as two different mechanisms. While it is not a weakness, I am curious how accurate is the consideration of the autoinhibited state of RAF in the absence of 14-3-3. Is it known how the proportion of RAF in cells in its inactive state exists while not bound to 14-3-3?

      We thank Reviewer #1 for this input on how we can significantly improve the 14-3-3 section of the manuscript. We have removed the 14-3-3 sections due to the consensus input of all three reviewers and the presented option of focusing on the theoretical results of how conformational autoinhibition influences PA. We do plan to continue this research program on beyond this manuscript, and we therefore very much appreciate these insights into which aspects should be supported with additional experiments and the challenges that follow from the pleiotropic activities of 14-3-3 proteins. The suggestion of quantifying the ratio of autoinhibited to non-autoinhibited forms of RAF when 14-3-3 proteins are present and absent is an experiment we plan to pursue in our future work. It will require us to learn new methods and/or to form new collaborations, and we therefore appreciate the consensus opinion that this would be outside of our current expertise and outside of the scope of the focused manuscript on modeling the impact of conformational autoinhibition on PA.

      Reviewer #2 (Public Review):

      In this study, the authors set out to investigate factors that have been neglected in existing mathematical models for the paradoxical activation (PA) of RAF by pharmacological inhibitors. The PA phenomenon is well known and is thought to be an important factor in limiting the effectiveness of RAF inhibitors. The authors primarily use mathematical models, first to examine the importance of conformational autoinhibition of RAF monomers, and later to investigate the potential role played by binding of 14-3-3 proteins to either autoinhibited monomers or active dimers. The authors develop several model variants containing different candidate mechanisms and generate analytical solutions that demonstrate under which parameter conditions PA may occur within these models. The use of analytical solutions is a strong point of the paper, as it allows evaluation of the models independently of specific parameter values. This analysis suggests that conformational autoinhibition is a very strong contributor to paradoxical activation, as models that include this mechanism show substantially larger concentration ranges under which RAF is activated by inhibitors. Fitting the parameters of the model to a published dataset on multiple inhibitors further suggests that conformational activation is important, as models containing this mechanism can fit the dataset with significantly lower error. Another interesting observation is that the different types of RAF inhibitors (1, 1.5, 2) fit the data with parameter values that are reasonably similar within each type. A moderate weakness in this analysis is that all of these observations provide indirect evidence for the importance of conformational autoinhibition. A direct test of whether PA is reduced when conformational autoinhibition is removed would be more compelling, but such a test could be difficult to set up experimentally.

      We thank Reviewer #2 for reviewing our manuscript, and we agree with this summary. We agree that an experimental test where conformational autoinhibition is removed from the system would a very compelling experiment, but that it would be difficult to set up experimentally. We appreciate the option to focus on the theoretical advance in our revision, and we will be working toward such an experiment.

      The authors then perform an analysis of how 14-3-3 binding to either autoinhibited monomers or active dimers might enhance PA. A new model is constructed that contains these binding events in the context of conformational activation, but without negative cooperativity or dimer potentiation included, for the sake of limiting complexity. These models implicate monomer binding, but not dimer binding as a contributor to PA. They follow up on this model result by overexpressing 14-3-3 proteins in two RAS-mutant cell lines, which leads to both higher baseline ERK phosphorylation and to a wider range of inhibitor-induced PA, as predicted by the model. A cell-based RAF dimerization assay also shows higher dimerization effects when 14-3-3 plasmids are transfected as well. This experimental evidence provides strong support for the model, although one drawback, which is noted by the authors in the discussion, is that 14-3-3 overexpression could potentially exert effects on RAF activity through pleiotropic effects other than the binding actions included in the model.

      We thank Reviewer #2 for the input on the 14-3-3 section of the manuscript. Although it has been removed from the revision, all of the comments from the review will be helpful for our ongoing work.

      Overall, this study makes a strong contribution to understanding the paradoxical effects of RAF inhibitors on the RAS/ERK signaling pathway, which remains a significant problem in the use of targeted inhibitors for cancer. Demonstrating that both conformational activation and 14-3-3 binding strongly contribute to the PA effect is an important step forward, as it establishes that these mechanisms should not be overlooked when designing strategies to use Raf inhibitors.

      We appreciate the thoughtful review and helpful comments to improve the manuscript.

      Reviewer #3 (Public Review):

      The authors describe a mathematical and computational modeling study of RAF paradoxical activation (PA), a phenomenon in which RAF inhibitors exhibit a bell-shaped dose-response curve of Erk phosphorylation - activating signaling through wild-type RAF at low drug concentrations before inhibiting it at higher concentrations. They explore three distinct mechanisms that may contribute to PA - conformational autoinhibition, negative cooperativity, and drug-induced dimerization - and conclude that all three are required to best fit published data that show the PA phenomenon. They explore the effect of 14-3-3 binding to RAF both computationally and experimentally and reach the conclusion that 14-3-3 can potentiate the PA phenomenon via stabilization of the autoinhibited conformation.

      We thank Reviewer #3 for reviewing our manuscript, and for the helpful comments in the review.

      Strengths:

      One key finding will be quite valuable to the field - that paradoxical activation can arise in the absence of negative cooperativity and without any effect of the inhibitor on the propensity of RAF to dimerize, provided that there exists a "conformationally autoinhibited" state that cannot dimerize and cannot bind inhibitor. This finding is important because negative cooperativity and dimer-induction have been a major focus - arguably the main focus - of prior studies of the phenomenon and also a source of considerable confusion. Inhibitors with very different chemical structures and binding properties - type 1.5 inhibitors that are dimer-breakers (and may or may not exhibit negative cooperativity) and type I and II inhibitors that can promote dimers (and almost certainly do not exhibit negative cooperativity) can nevertheless both exhibit PA. Thus the authors' modeling provides a unifying explanation - it is not dimerinduction or negative cooperativity that is at the root of PA, rather it is that there exists an autoinhibited state that can neither bind inhibitor nor dimerize. The authors further show that negative cooperativity and dimer-induction can act in concert with "conformational autoinhibition" to modify the PA response in a drug-specific manner.

      We thank Reviewer #3 for highlighting these strengths and their value to the field. In the focused paper, we have updated our discussion of the fits and of the model to highlight these points better.

      Weaknesses:

      Unfortunately, the authors don't really explain in a straightforward manner what is going on with the conformational autoinhibition model (Figure 2A). One has to read carefully and all the way to section 3 of appendix 1 to piece it together. In short, what the math shows is that at least for certain ranges of parameter values, the presence of an inhibitor can increase the concentration of dimers, even when it does not change the equilibrium constant for dimer formation, and some of those dimers will have an active, drug-free protomer. This is because the inhibitor effectively traps open monomers, which can then capture drug-free open monomers to form active dimers (active in one subunit, inactive and drug-bound in the other). As inhibitor concentration increases, the pool of autoinhibited RAF is diminished, and eventually, it is shifted completely to fully inhibited dimers. But at low concentrations of inhibitor, there is a net increase in dimerized (active) but drug-free protomers (see figure on page 27 of the appendix). Voila, paradoxical activation, with no need to invoke negative cooperativity.

      We apologize for the confusion, and agree that the description/walk through in the appendix should be featured more prominently in the manuscript. To this end, we have added a section to the main manuscript (titled “Paradoxical activation reflects a shifting balance of signaling complexes”) that includes the content that was previously in the appendix, and we have added a supplementary figure (Figure 2 – figure supplement 2) which includes the figures from the appendix. Thank you for your thorough review and working through the appendix, and we appreciate this suggestion.

      Considering the potential for confusion around what is meant by "drug-induced dimerization" as an effect distinct from the effect of the drug in promoting RAF dimerization in their conformational autoinhibition model, it would have been helpful for the authors to explicitly address the distinction (drug-induced dimerization alters the equilibrium constant for dimerization; this is not a feature of the conformational autoinhibition model).

      Thank you for this suggestion. We have clarified our text by rewriting it to read: … some RAF inhibitors have been shown to result in an increased level of RAF dimerization (Hatzivassiliou et al., 2010; Jin et al, 2017; Karoulia et al., 2016; Lavoie et al, 2013). This druginduced dimer potentiation is commonly thought of as manifesting in a higher affinity between RAF protomers when one (or both) are bound to a RAF inhibitor (Kholodenko, 2015).

      Also, I am confused by Figure 3C. The figure shows, and the authors state in the text, that for type II inhibitors an f > ~1 indicates a propensity to break dimers. But type 1.5 inhibitors should break dimers, and Type I and II inhibitors should promote dimers (at least some Type I and II drugs have been shown to promote kinase dimers). Seems that the predictions of the model are inconsistent with experimental data, at least for some inhibitors.

      We agree that discussing the fits, relating them to experimental data and current thinking in the field, is important. We have therefore significantly extended our discussion of the fits in Figure 3C in the Discussion of the text. The new text reads:

      It has previously been difficult to reconcile PA for Type I.5 inhibitors, which are sometimes thought of as dimer breakers because they position the alpha-C helix in the “out” position (in contrast to Type I and Type II inhibitors). Studies with recombinant protein and analytic ultracentrifugation clearly found type I.5 inhibitors to predominantly be in the monomeric form (Lavoie et al., 2013). Within-cell assays have similarly found type I.5 inhibitors to promote dimerization less than other Type I and Type II RAF inhibitors (Hatzivassiliou et al., 2010; Peng et al., 2015; Thevakumaran et al, 2015), however, RAF inhibitors still appeared to promote some dimerization in those in-cell assays. 14-3-3 binding proteins, which can help stabilize RAF dimers, may help explain this discrepancy (Kondo et al., 2019; Liau et al, 2020; Park et al., 2019). For example, by promoting the non-autoinhibited form, a type I.5 inhibitorbound RAF monomer is more dimerization capable than an autoinhibited (and non-inhibitor bound) RAF monomer, and even if the affinity is reduced compared to a non-autoinhibited and non-inhibitor bound RAF monomer, 14-3-3 proteins may be able to bind and overcome the effect. As our model does not explicitly include 14-3-3 proteins, this effect may contribute to our parameter estimation process finding an elevated binding affinity for type I.5 bound RAF monomers.

      Although negative cooperativity has been difficult to precisely measure experimentally, it has widely been assumed to be present to help explain the paradoxical activation caused by Type I.5 inhibitors that do not promote dimerization as strongly as other RAF inhibitors. Our best fit parameters did tend to have g values that were larger than 1, indicating that the model fit best when there was some negative cooperativity. This could suggest that negative cooperativity is more abundant than widely believed. Alternatively, the model without negative cooperativity was able to fit the data nearly as well as the full model that included negative cooperativity (i.e., Figure 3D). This may suggest that other processes not included in the model may be modulating paradoxical activation and the g parameter, as the only other term the model, is contributing to the models ability to account for these otherwise not included effects.

      We found parameter sets that reproduced available, published, data in order to test our model and investigate the potential for it to help illuminate aspects of PA. The best fit parameter sets further support a role for conformational autoinhibition and its modulation by RAF inhibitors in PA. However, it is also important not to read too deeply into the fits. For example, the data for the type II inhibitors AZ-628, LY3009120, and TAK-632 had small total fold-change PA magnitudes, and our fits for them have even less PA. We anticipate that the model-fitting approach would converge to increasingly accurate estimates for the parameters as the set of data being fit to expands. Additionally, quantitative experimental measurements of the parameters being fit should also cascade to impact other parameters and result in better estimates (Gutenkunst et al, 2007).

      A large part of the paper deals with the effect of 14-3-3 binding. In my view, this part of the manuscript is not particularly helpful. There is no evidence (that I am aware of) that 14-3-3 concentrations vary significantly, or that their variation affects RAF activity/signaling. Considering their abundance relative to RAF, and relatively high affinity for RAF, it is likely that both autoinhibited and active RAF are saturated with 14-3-3. (RAF that is not 14-3-3-bound is likely mostly bound to chaperones and not active). That said, the authors' conclusion (based on modeling) that 14-3-3 can increase the extent of paradoxical activation by stabilizing the autoinhibited state seems sensible, but hard to reconcile with their experimental result where they find increased basal signaling with 14-3-3 over-expression. It is also difficult to understand how increased 14-3-3 binding to RAF could lead to active RAF dimers that are not inhibited at 10-100 uM concentrations of potent RAF dimer inhibitors like LY3009120 (Fig. 5C). It seems more likely that 14-3-3 overexpression is promoting Erk phosphorylation in a manner that is (at least partially) Raf-independent. To their credit, the authors acknowledge this concern.

      We thank Reviewer #3 for the helpful critique of the section on 14-3-3. Although we have cut this section as part of the consensus review and suggestions for how to proceed with the revision, these points are very helpful for us as we consider how to interpret the modeling and experimental results of this section, how it fits into what is known, and what we should investigate next. Thank you.

      Finally, one comment regarding the presentation. The authors discuss conformational inhibition and 14-3-3 binding as if they are promoting and/or inducing paradoxical activation. This is pervasive in the paper, including in the title, and is distracting and potentially will mislead some readers. Obviously, it is RAF inhibitor that induces or promotes paradoxical activation. Conformational autoinhibition - mediated by 14-3-3 - is a feature of the system that makes paradoxical activation possible.

      We completely agree. We have rephrased to avoid this interpretation and we apologize for not recognizing it previously. Thank you for catching this and noting it for us to fix. As examples of the revisions to address this point, the last sentence of our abstract now reads:

      Overall, this work establishes conformational autoinhibition as a robust mechanism for RAFinhibitor driven PA based solely on equilibrium dynamics of canonical interactions that comprise RAF signaling and inhibition.

      And as another example, the third to last sentence in our Introduction now reads:

      Our modeling reveals that, under certain conditions, RAF autoinhibitory conformational changes and their modulation by RAF inhibitor binding can be sufficient to drive PA.

      Lastly, we have a last paragraph in the discussion that summarizes and hypothesizes to generalization:

      \Our analysis was motivated by RAF inhibitors and PA in RAS mutant cells treated with a RAF inhibitor. Our model, however, is generalizable to other systems that share the modeled features. We anticipate that PA will be observed for other proteins (a) that have a dynamic-equilibrium of conformations, (b) where not all conformations can dimerize, and (c) where drug binding the protein stabilizes one or more of the conformations that can dimerize. As dimerization and conformational autoinhibition are both common features for kinase regulation (Huse & Kuriyan, 2002; Lavoie et al, 2014), it seems reasonably to hypothesize PA will be observed for more kinases through modulation of the conformation and dimerization dynamic-equilibrium. Thank you for suggesting these changes.

    1. Author Response

      Reviewer #1 (Public Review):

      This manuscript reports a study to investigate the reporting practices in three top cardiovascular research journals for articles published in 2019. The study was preregistered, which makes the intent and methodology transparent, and the authors also make their materials, data, and code open. While the preregistration and sample strategy is a strength, it suffers from a higher than expected number of non-empirical articles decreasing the sample size and thus inference that can be drawn. The author's focus was mainly on transparency of reporting and not on the actual reproducibility or replicability of the articles; however, the accessibility of data, code, materials, and methods is a prerequisite. While the authors were still able to draw inferences to their main objectives, they could not perform some of their proposed analyses because of a small sample size (due partly to the less than half empirical articles in their sample as well as the low number of papers with accessible information to code). One of the descriptive analyses they performed, the country level scores (Figure 6), in particular suffers from the small sample size and while the authors state indicates this in their manuscript I do not think it would be reasonable to include as it has the potential to be misinterpreted since so many are based on an n=1. Overall, I found the authors presentation and discussion clear and concise; however, a lack of a more in-depth discussion is an area to improve the current manuscript. The manuscript outlines opportunities for researchers, journals, funders, and institutions to improve the way cardiovascular research is reported to enable discovery, reuse, and reproducibility.

      We appreciate the reviewer’s recognition of our pre-registration, methodology, and resource sharing and also their feedback regarding the small sample size of empirical research articles and need for a more in-depth discussion of the impacts of our study. We have now increased the number of empirical studies to a total of 393 out of 639 articles screened. We also agree that our study focuses more on transparency than reproducibility and replicability, and we have changed our title to reflect this. While the sample size of empirical papers has increased, a comparison of accessibility scores across countries continued to suffer from small sample size and we have removed it based on the recommendation of the reviewers. We have updated the Materials and Methods section to reflect our updated analyses, as well as included additional paragraphs on Limitations and Future Work in our Discussion to acknowledge future improvements that could be made to the accessibility score used in our study.

      Reviewer #2 (Public Review):

      This is a descriptive paper in the field of metascience, which documents levels of accessibility and reproducible research practices in the field of cardiovascular science. As such, it does not make a theoretical contribution, but it argues, first, that there is a problem for this field, and second, it provides a baseline against which the impact of future initiatives to improve reproducibility can be assessed. The study was pre-registered and the methods and data are clearly documented. This kind of study is extremely labour-intensive and represents a great deal of work.

      I have a major concern about the analysis. It is stated that to be fully reproducible, publications must include sufficient resources (materials, methods, data and analysis scripts). But how about cases where materials are not required to reproduce the work? In line 128-129 it is noted that the materials criterion was omitted for meta-analyses, but what about other types of study where materials may be either described adequately in the text, readily available (eg published questionnaires), or impossible to share (e.g. experimental animals).

      To see how valid these concerns might be, I looked at the first 4 papers in the deposited 'EmpricalResearchOnly.csv' file. Two had been coded as 'No Materials availability statement' and for two the value was blank.

      Study 1 used registry data and was coded as missing a Materials statement. The only materials that I could think might be useful to have might be 'standardized case report forms' that were referred to. But the authors did note that the Registry methods were fully documented elsewhere (I am not sure if that is the case).

      Study 2 was a short surgical case report - for this one the Materials field was left blank by the coder.

      Study 3 was a meta-analysis; the Materials field was blank by the coder

      Study 4 was again coded as lacking a Material statement. It presented a model predicting outcome for cardiac arrhythmias. The definitions of the predictor variables were provided in supplementary materials. I am not clear what other materials might be needed.

      These four cases suggest to me that it is rather misleading to treat lack of a Materials statement as contributing to an index of irreproducibility. Certainly, there are many studies where this is the case, but it will vary from study to study depending on the nature of the research. Indeed, this may also be true for other components of the irreproducibility index: for instance, in a case study, there may be no analysis script because no statistical analysis was done. And in some papers, the raw data may all be present in the text already - that may be less common, but it is likely to be so for case studies, for instance.

      A related point concerns the criteria for selecting papers for screening: it was surprising that the requirement for studies to have empirical data was not imposed at the outset: it should be possible to screen these out early on by specifying 'publication type'; instead, they were included and that means that the numbers used for the actual analysis are well below 400. The large number of non-empirical papers is not of particular relevance for the research questions considered here. In the Discussion, the authors expressed surprise at the large number of non-empirical papers they found; I felt it would have been reasonable for them to depart from their pre registered plan on discovering this, and to review further papers to bring the number up to 400, restricting consideration to empirical papers only - also excluding case reports, which pose their own problems in this kind of analysis.

      A more minor point is that some of the analyses could be dropped. The analysis of authorship by country had too few cases for many countries to allow for sensible analysis.

      Overall, my concern is that the analysis presented here may create a backlash against metascientific analyses like this because it appears unfair on authors to use a metric based on criteria that may not apply to their study. I am strongly in favour of open, reproducible science, and agree it is important to document the state of the science for different disciplines. But what this study demonstrates to me is that if you are going to evaluate papers as to whether they include things like materials/data/ availability statements, then you need to have a N/A option. Unfortunately, I suspect it may not be possible to rely on authors' self-evaluation of N/A and that means that metascientists doing an evaluation would need to read enough of the paper to judge whether such a statement should apply.

      We thank the reviewer for the time taken to review our paper, the appreciation of the work we conducted, and for the suggestions for improving our research methods. To address the initial concern about our analytical approach, the definition for fully reproducible publications that we used was only applicable to research that utilized empirical research methods. We recognize that publications such as editorials and reviews are not inherently reproducible experimental studies; thus, such papers were not provided with an accessibility score, were only screened for the components such as funding and conflict of interest information, and were only compared amongst each other. Additionally, articles such as meta-analyses and systematic reviews that do not include materials had adjusted accessibility scores. We expanded our Methods and Discussion section to further explain our screening process and our assumption that all empirical research articles contain methods, data, and analysis scripts and to acknowledge the limitations of our approach. We also agree that screening more empirical research articles is more in line with the intent of our pre-registration and we expanded the number of empirical research articles screened to 393. We also agree with the reviewer that the analysis by country should be excluded because of the small sample size for most countries, and we have adjusted the manuscript accordingly.

    1. Author Response

      We thank the reviewers for their insightful comments, which raise several important points regarding our study. As the reviewers have recognised, we introduced a number of simplifications in order to perform this complex optimisation problem, such as by restricting the analysis to a single intervention (insecticide-treated nets) and modelling countries at a national level. Despite their clear relevance to the study, computationally it would not have been feasible to run the multitude of scenarios suggested by reviewer 1, which we recognise as a limitation. As such we agree with the assessment that this study primarily represents a thought experiment to assess whether current policies are aligned with an optimal allocation strategy or whether there might be a need to consider alternative strategies. The findings are relevant primarily to global funders and should not be used to inform individual country allocation decisions. This perspective also underlies our decision to start the analysis from a baseline of year 2000 as opposed to modelling the current 2023 malaria situation: the largest international donor (the Global Fund) also uses baseline malaria levels in the period 2000-2004 as the basis of their allocation calculations (The Global Fund, Description of the 2020-2022 Allocation Methodology, December 2019). A simplified version of this method is represented by our “proportional allocation” strategy. We will further address these points in a revised manuscript and detailed responses to the reviewer comments.

    1. Author Response

      Reviewer #2 (Public Review):

      Machold and colleagues develop and describe an intersectional genetic mouse (Id2Cre:Dlx5/6FlpE) that allows for the targeting of a cortical interneuron subpopulation predominantly consisting of the neurogliaform cell subtype (NGFCs). The strategy is a modification of that previously published by the authors (Id2cre:Nkx2-1Flpo; Valero et al., 2021) in which a subset of deep layer 6 NGFCs with distinct embryonic origins were targeted. Conversely, using the NDNF transgenic mouse lines previous studies, including thosefrom the Rudy laboratory, have clearly shown the prevalence of NGFCs in the outermost cortical Layer 1 region. Thus, the Id2Cre:Dlx5/6FlpE mouse poses an advantage over these previous approaches permitting the targeting of NGFCs in Layers 2-5. NGFCs in these regions have been hitherto difficult to study in an expedited manner.

      The manuscript is of the resource/toolbox type and the authors are thorough in their description of the distribution and molecular characteristics of the ID2 neurons labelled by this intersectional approach. Furthermore, the authors perform a series of in vivo experiments. These entail the identification of NGFCs, the assessment of their influence on other neuronal populations, and the ability to delineate their activity during various network and behavioral states. Indeed, the authors reveal an activity pattern that is unique to NGFCs across epochs of specific network states. Therefore, this clearly demonstrates the applicability of the ID2Cre:Dlx5/6Flpe mouse to study the role of L2-5 NGFCs in a whole brain setting and these in vivo experiments constitute a major strength of the current study.

      However, as with many transgenic mice, they are not always perfect, and the authors are very transparent regarding the additional, albeit a relatively smaller number of reported non-NGFCs particularly those of the CCK IN subtype. Indeed, clear morpho- functional divergence is revealed by the authors between these ID2 IN subpopulations. Furthermore, it is possible that this variability may differ across varying cortical regions. Thus, careful consideration of this caveat is necessary when using this mouse for future in vitro and in vivo studies. Related to this matter is a concern regarding the framing of the manuscript. The authors term the ID2 mixed population as the "4th group" since they do not express PV, SST, and VIP. One could argue this is a matter of semantics but to combine IN types that display distinct morphological and physiological properties into a single "group" based on one molecular feature is not consistent with that proposed by the widely accepted Petilla terminology (Ascoli et al., 2008).

      We agree that the definition of “group” here for INs delineated by the molecular markers PV, SST, VIP and Id2 is oversimplified, but in practice, the use of the corresponding genetic tools (e.g., Pvalb-Cre, Sst-Cre etc.) has resulted in widespread adoption of this marker-based organization of IN diversity. For example, PV+ INs targeted with PV-Cre encompass both basket cells and chandelier cells that while sharing some electrophysiological properties (e.g., fast-spiking behavior) are completely distinct morphologically, and innervate different subcellular compartments (soma vs. axon initial segment). The same is true for SST INs, in that there appear to be at least three main subtypes – Martinotti, non-Martinotti, and long range projecting – each with distinct axonal projections and electrophysiology. Thus, while the molecular targeting approaches developed to date have greatly facilitated functional studies of IN subtypes, they have prioritized marker expression over the other aspects of IN diversity outlined in the Petilla framework.

      Of interest to many who investigate cortical INs is the ability to genetically target specific subtypes during development. To this end, a potential and welcome addition to the manuscript would be an analysis (perhaps restricted to distribution/molecular characterization) highlighting whether the Id2cre:Dlx5/6Flpe strategy allows genetic access to layer 2-5 NGFCs during postnatal development following maternal tamoxifen administration.

      We agree that a method to target NGFC at early postnatal ages would be useful; however, the expression of Id2 is dynamic during development, and is robust in ventricular zone progenitors at embryonic stages (Neuman et al., 1993 Dev. Biol. PMID 8224536) so maternal tamoxifen administration is likely to result in nonspecific labeling. Furthermore, we found that multiple doses of tamoxifen were necessary to achieve decent labeling of the Id2 IN population in adult animals, a protocol that would be difficult to perform in pregnant dams or early postnatal animals due to pup lethality.

      Regardless, the experiments in the current study are, in general, well performed and clearly presented with the authors' conclusions supported by the results. Thus, it is clear that further refinements to genetic strategies are obviously required to exclusively target NGFCs throughout the cortical depth. Nevertheless, in the interim, the approach described in this current manuscript will be of use to the neuroscience community and help to further unravel the physiological role of this relatively understudied neuronal subtype.

    1. Author Response

      Reviewer #3 (Public Review):

      Because of the position of pigeon embryos in eggs, light exposure will only stimulate the right eye, leading to lateralisation of brain responses and behaviour. Lorenzi and colleagues injected manganese chloride into pigeon eggs, to assess neuronal activation in the embryonic brain. While the eggs were placed in the light or dark, manganese ions accumulated in neurons that were activated (in cell bodies and axons), which was then visualized with MRI of the embryos before hatching. The authors report lateralisation of neuronal activity in three brain regions, which could potentially be important for our understanding of experience-dependent development of lateralised neural activation.

      The tectofugal pathway in pigeons projects from the retina to the optical tectum, then to the nucleus rotundus in the thalamus, and then to the entopallium. The thalamofugal pathway projects from the retina to the GLd in the thalamus, and then to the wulst in the hyperpallium. The two pathways involve different thalamic nuclei (e.g., Deng 2006). In the methods and throughout the manuscript it should be specified which thalamic region is used as ROI.

      Here we refer to the Gld in the thalamofugal visual pathway, we did not estimate activity in the n. rotundus. We have now clarified this point in the revised MS (ll. 54, 80, 86).

      This manuscript only describes neural activity, but the MEMRI technique should also be used to assess the effect of experimental manipulations on axonal connectivity. It is important to learn about the asymmetry of contralateral projections in the light vs dark groups for answering the research question.

      Here we used systemic administration of Mn through the CAM. The Blood Brain Barrier at this embryonic stage is not completely developed and its permeability to ions and small molecules is way higher in embryo than in later stages of development (Engelhardt, B. (2003). Development of the blood-brain barrier. Cell and tissue research, 314(1), 119-129.). Other studies involving direct, local injection in selected brain regions are more apt to investigate connectivity, but this is not the protocol used here. We appreciate the reviewer’s suggestion, and this will be the object of future experiments. However, we would like to disseminate the current protocol and the results it led to at an early stage to enable and encourage its use by other researchers in the field.

      There is an overinterpretation of post-hoc statistics that are reported without correction for multiple testing. The wulst light group lateralization is probably not actually different from zero (uncorrected p=0.04).

      We considered the reviewer's observation regarding the need for improvements in the statistical methods. In response, we have made amendments to the relevant section of the manuscript, explicitly stating that significant findings were obtained using a two-way ANOVA. For comparisons between conditions within specific brain regions, we conducted two-sample t-tests, and the results were corrected for Type I errors using the false discovery rate (FDR) method. Post-hoc one-sample t-tests were employed to assess lateralization across brain regions and conditions, and the corresponding p-values were reported without correction for multiple comparisons (as explicitly reported in the text, to avoid any confusion).

      The first line in the discussion states that there is thalamofugal lateralization, but no lateralization in the tectofugal pathway. To my understanding, previous literature reported it the other way around: in altricial pigeons, light exposure in the egg mainly affected the tectofugal pathway (Deng & Rogers 2002), while the thalamofugal pathway in pigeons was not lateralized (Strockens et al., 2013). The manuscript should compare the current findings with the literature and discuss differences.

      We are aware of the substantial differences in brain lateralization of the two visual pathways between pigeons and chicks after embryonic light exposure. However, in the present work we employed chick embryos (Gallus gallus domesticus), and the space limitations of a Brief Communication do not allow for an in-depth discussion of these differences between avian species.

      Moreover, the tectum is the only region shown here from the tectofugal pathway. However, lateralization of contralateral connections is expected from tectum to the nucleus rotundus in the thalamus, and thus lateralization of activation may only arise in downstream brain regions from the optical tectum. Therefore, the conclusion that there is no lateralization in the tectofugal pathway is not supported by the data.

      In conclusion, I think it is interesting and worthwhile that the authors assessed neural activity in response to visual stimulation in the embryo prior to hatching, but multiple methodological weaknesses and unclarities should be addressed.

      The ROI that we here named Thalamus does not include the nucleus rotundus, but is referring to the nucleus geniculatus lateralis (Gld). We have now clarified this point in the revised MS (ll. 54, 80, 86), and we now refer only to the tectum, without generalizing to the entire tectofugal pathway, which will be the subject of future investigations.

    1. Author Response

      Reviewer #3 (Public Review):

      This manuscript proposes to tackle a very interesting and methodologically challenging topic: the mechanistic underpinnings of neural specialization in the infant brain. The authors presented 4- to 7-month-old infants with social and non-social stimuli while their neural, hemodynamic, and metabolic activity was monitored, and they report a complex pattern of relationships between neural and metabolic or hemodynamic responses during social processing on the one hand, and during non-social processing on the other hand.

      The approach described in this manuscript is very interesting and the combined use of EEG and bNIRS data appears very promising. However, there is some confusion between the initial aims of the study, and the analyses performed, which jeopardizes the clarity and the impact of this manuscript. Besides, the predictions of the authors are often underspecified which complexifies the interpretation of the results.

      Based on its abstract, the goal of this work is to "combine simultaneous measures of coordinated neural activity metabolic rate and oxygenated blood supply to measure emerging specialization in the infant brain". The introduction nicely elaborates on the "interactive specialization theory" and the potential role of the interplay between brain energy consumption and neural activity in the emergence of functionally specialized brain regions during development. The authors present a novel multimodal approach, with potentially important implications for the study of brain specialization as a function of experience or maturation. Yet the experimental procedure presented in this manuscript only assesses specialized brain activity in response to social processing in 4- to 7-month-old infants, using multimodal neuroimaging.

      Indeed, the authors presented 4- to 7-month-old infants with social and non-social stimuli while their neural, hemodynamic, and metabolic activity was monitored. The authors report significant differences between the two conditions in terms of neural activity in the delta, alpha, beta, and gamma bands; as well as in the pattern of hemodynamic to metabolic coupling. Using a GLM approach, the authors report on fNIRS channels and EEG sensors showing significant relationships between the evoked neural activity in the beta and gamma frequency bands, and each of the bNIRS signals (HbO, HbR & CCO), in the social and in the non-social conditions. The authors identify a particular fNIRS channel overlaying posterior STS, showing a positive relationship between Pz EEG beta activity and HbO, as well as CCO, together with a negative relationship between that same neural activity and HbR, in the social condition. This pattern of activity was not observed in the non-social condition.

      Overall, these results indicate differential neural responses to social and non-social stimuli, coupled metabolic and hemodynamic activity in response to social as well as nonsocial stimuli.

      These results additionally indicate coordinated metabolic, hemodynamic, and neural responses in brain regions selective for social processing, but it does not allow us to conclude that this coordinated activity is actually related to the functional specialization process (e.g. last sentence of the abstract).

      We would like to thank the reviewer for their detailed comments. Based on their suggestions, we have made several changes to the manuscript. This study was the first to combine EEG and broadband NIRS and therefore served as a proof of principle study. At the onset of this work, there were many elements to develop such as the technical aspect of simultaneous bNIRS – EEG measurements as well as the methodology to combine the signals from both techniques with such different time resolutions. Therefore, we focused on one age group of infants rather than performing a study involving multiple age groups. The 4-to-7-month-old age group has been studied extensively using fNIRS, particularly to look at social brain development using similar stimuli as those used in the present study. Previous studies have demonstrated that social selectivity can be detected at 4 – 8 months of age (Grossmann et al., 2010; Lloyd-Fox et al., 2012, 2013, 2017). As this was a proof of principle study, we wanted to ensure that we were able to replicate results from previous studies with this new methodology. We therefore used one age group of 4-to-7-months. This has also been added to the introduction of the manuscript to provide clearer reasoning for using this age group.

      The reviewer is correct that the current study does not provide direct evidence of developmental change in functional specialisation or the hypothesised interactive process through which functional specialisation may occur. Rather, we are measuring the status of functional specialisation (the idea that different areas in the brain are specialised for different functions) at the age we study, by testing whether the signals we observe are selective to social but not non-social stimuli. We have reframed the abstract and introduction of the manuscript to ensure this is clear, and we additionally now focus more on the methodology developed to answer such questions. Future studies can leverage our methodology to study different age groups to establish how the relationships between neural and vascular/metabolic signals changes over developmental time, which may provide greater insight into the specialisation process.

      Grossmann, T., Oberecker, R., Koch, S. P., & Friederici, A. D. (2010). The Developmental Origins of Voice Processing in the Human Brain. Neuron, 65(6), 852–858. https://doi.org/https://doi.org/10.1016/j.neuron.2010.03.001

      Lloyd-Fox, S., Begus, K., Halliday, D., Pirazzoli, L., Blasi, A., Papademetriou, M., Darboe, M. K., Prentice, A. M., Johnson, M. H., Moore, S. E., & Elwell, C. E. (2017). Cortical specialisation to social stimuli from the first days to the second year of life: A rural Gambian cohort. Developmental Cognitive Neuroscience, 25, 92–104. https://doi.org/10.1016/j.dcn.2016.11.005

      Lloyd-Fox, S., Blasi, A., Elwell, C. E., Charman, T., Murphy, D., & Johnson, M. H. (2013). Reduced neural sensitivity to social stimuli in infants at risk for autism. Proceedings of the Royal Society B: Biological Sciences, 280(1758), 20123026. https://doi.org/10.1098/rspb.2012.3026

      Lloyd-Fox, S., Blasi, A., Mercure, E., Elwell, C. E., & Johnson, M. H. (2012). The emergence of cerebral specialization for the human voice over the first months of life. Social Neuroscience, 7(3), 317–330. https://doi.org/10.1080/17470919.2011.614696

      Another weakness of this manuscript relates to the unclear or underspecified motivations behind some of the performed analyses. For example, the authors contrast brain responses to social vs. baseline, non-social vs. baseline, and social vs. non-social. For clarity in the manuscript, the authors should specify the motivation behind each of these contrasts and their predictions.

      We thank the reviewer for their suggestion. We have added the predictions for each of the analyses in the introduction section, lines 436 – 527. We have removed the “social minus non-social” comparison for the EEG topographical maps from Figure 2 as there was no value added by including this comparison.

      Another example is in the analysis of the hemodynamic and metabolic coupling analysis, here the authors analyze only the social vs. baseline and non-social vs. baseline contrast, and they do not analyze the social vs non-social contrast. It would be useful for the reader to understand why only these two contrasts are performed and not the social vs. non-social, and what are the predictions of the authors.

      We have now added this into the manuscript and the results can be seen in Figure 3c. We have clarified our predictions both at the end of the introduction (lines 436 - 527) and at the beginning of the discussion (lines 685 – 755).

      The following has been added to the introduction:

      For EEG, we expected an increase in neural activity in response to the social condition and a decrease in neural activity in response to the non-social condition. Based on previous work, this was expected to be strongest in the theta frequency band [3]. Moreover, for the combined bNIRS-EEG analyses, we hypothesised differentiated haemodynamic/metabolic coupling with neural activity for the social and non-social stimulus conditions. We performed two types of statistical tests: a) individual comparisons of the social and non-social conditions and b) comparison of the social condition versus the non-social condition. The individual condition tests were performed to show the scale and spatial location/sensitivity of the coupling between haemodynamics/metabolism and neural activity for each condition. Meanwhile, the social versus non-social comparison was performed to show where there was a significant difference in the coupling between the two conditions. With comparison (a) we aimed to identify regions involved in the processing of social and non-social stimuli by identifying the regions where the coupling was significant. With comparison (b) we aimed to identify regions where coupling was significantly different between conditions. We predicted that for the individual comparison of the social condition, we would observe positive associations between bNIRS and EEG measures, i.e. coordinated increases in haemodynamics/metabolism and neural oscillatory activity in the beta and gamma frequency bands (based on previous combined EEG – fMRI studies [16], [18]–[21], [23], [30]) which would be localised to core social brain regions. We hypothesised that for the non-social condition, over the same brain regions, positive associations would be observed between bNIRS and EEG measures, but they would be coordinated decreases in haemodynamics/metabolism and oscillatory activity. We also expected coordinated increases in haemodynamics/metabolism and oscillatory activity localised to the parietal brain region. These predictions are based on our previous work [29] where we demonstrated that stronger coupling between haemodynamics and metabolism was observed in the temporo-parietal regions for the social condition and in parietal region for the non-social condition which is known to play an important role in object processing [31], [32]. For the social versus the non-social contrast, we predicted that haemodynamic activity and metabolism would be coupled with neuronal oscillatory activity more strongly for the social stimuli in comparison to the non-social stimuli, with significant differences being observed in the temporo-parietal regions.

      The following has been added to the discussion:

      As a proof of principle, we examined the relationship between these measures to identify regional selectivity to social versus non-social stimuli. To first demonstrate the scale and spatial sensitivity of the coupling between haemodynamic/metabolic activity and neuronal oscillatory activity, comparisons were performed individually for the social and non-social conditions. For this, we predicted coordinated increases in haemodynamics/metabolism and neural activity in the beta and gamma frequency band. We predicted that for the social condition this would be localised to the core social brain regions (temporo-parietal region) while for the non-social condition, we expected the coupling to be localised to parietal regions, known to be involved in object processing [31], [32]. We additionally expected coordinated decreases in haemodynamic/metabolic activity and neural activity over the temporo-parietal region for the non-social condition, in accordance with our previous work [29]. Next, to demonstrate differential coupling for social and non-social stimuli, we performed a comparison of the social condition versus the non-social condition. For this, we hypothesised that in the beta and gamma frequency bands, there would be stronger coupling between haemodynamics/metabolism and neural activity for the social condition over the temporo-parietal region.

      Finally, the core result of this work derives from the final GLM analysis which relates EEG activity to hemodynamic or metabolic responses. This analysis implies the inspection of interactions between 3 neuroimaging modalities, with 4 EEG measures, 2 hemodynamic measures, and 1 metabolic measure, which represents a very rich and relatively complex analytic approach. Unfortunately, the predictions are not clearly specified, which makes results interpretation difficult.

      We appreciate that the methods are complex, and the hypotheses should be stated more clearly. The hypotheses have now been explicitly stated both at the end of the introduction (lines 436 - 527) and at the beginning of the discussion (lines 685 – 755).

      Based on the results (L160-162) and discussion (L233-235) sections, it appears that the authors aim at identifying brain regions showing a precise pattern of activity, with a positive relationship between EEG activity and HbO/CCO responses together with a concurrent negative relationship between EEG and HbR responses in response to social events, but not in response to non-social events. Importantly, the social vs. non-social contrast seems crucial to assess the selectivity of the response. Yet, the authors analyze the 3 chromophores separately, and they do not contrast the two conditions (figure 3). As a result, the authors are limited to reporting a descriptive pattern of relationships between EEG and HbO/HbR/CCO activations for the social condition. And another one for the non-social condition. Overall, the authors conclude that channel 14, overlaying the right TPJ, shows the expected pattern of activity, specifically in response to social stimuli. Yet, this statement is only supported by visual inspection/comparison of the results between the social vs baseline and non-social vs baseline conditions. The authors do not assess analytically the differential patterns of activations between the two conditions. Instead, a GLM including all 3 chromophores and contrasting the two experimental conditions would allow us to directly test the predicted pattern of activity, and the selectivity of the activity for social stimuli.

      As per the reviewer’s comment, we have now included the comparison of the social and non-social conditions, shown in Figure 3c. The results from this comparison showed that haemodynamics and metabolic activity at channels 11 and 14 (located spatially close to one another) had a significantly greater association to EEG electrode “Pz” for the social condition, in comparison to the non-social condition for the beta and gamma bands. These results support/indicate the selectivity of the response to the social condition, analytically.

      We have kept the results showing the individual comparison of the social and non-social conditions. The individual condition tests were performed to show the scale and spatial location/sensitivity of the coupling between haemodynamics/metabolism and neural activity for each condition. Meanwhile, the social versus non-social comparison was performed to show where there was a significant difference in the coupling between the two conditions. With comparison (a) we aimed to identify regions involved in the processing of social and non-social stimuli by identifying the regions where the coupling was significant. With comparison (b) we aimed to identify regions where coupling was significantly different between conditions. The following has been added on line 533 – 541 to explain the reasoning behind the comparisons performed.

      We performed two types of statistical tests: a) individual comparisons of the social and non-social conditions and b) comparison of the social condition versus the non-social condition. The individual condition tests were performed to show the scale and spatial location/sensitivity of the coupling between haemodynamics/metabolism and neural activity for each condition. Meanwhile, the social versus non-social comparison was performed to show where there was a significant difference in the coupling between the two conditions. With comparison (a) we aimed to identify regions involved in the processing of social and non-social stimuli by identifying the regions where the coupling was significant. With comparison (b) we aimed to identify regions where coupling was significantly different between conditions.

      As our interest was in looking at the selectivity of the response and not comparing the chromophores, we did not perform a comparison between chromophores.

    1. Author Response

      Reviewer 2 (Public Review):

      1) My major criticism of the study is that the authors argue for CD8+ Trm activity as a key mechanism for OLP pathogenesis but have presented mostly descriptive datasets. The data strongly argue for CD8+ Trm cells as a defining feature of erosive OLP, but there is no data to support their involvement in disease pathogenesis. The authors note the lack of a mouse model for OLP which represents a significant technical barrier to interrogating the role of CD8+ Trm cells in OLP pathogenesis.

      Thank you for bringing this to our attention, and please accept our apologies for any confusion caused by our previous article. The pathogenesis of OLP is responsible for the immune disease caused by multiple factors, but there is no corresponding animal model at present, which has obvious limitations on the research. Therefore, we focus on the research on the reasons for the change of the clinical state of the disease. Our study found that CD8+ TRM cells play an important role in the changes observed in the local presentation of OLP, specifically erosions. However, it is important to note that they are not the primary driver of the disease. In addition, we use cohort studies combined with transcriptome data to increase the strength of evidence for causal effects. We have revised and emphasized this point in the updated text.

      The modified description in introduction is as follows:

      Notably, EOLP has a significantly higher risk of malignant transformation than non-erosive oral lichen planus (NEOLP) (Danielsson et al., 2013). To reduce the psychological and economic burden of OLP patients, improve their quality of life, and decrease the risk of cancer, it is crucial to maintain the disease in a relatively stable non-erosive stage for as long as possible. However, clinical experience suggests that OLP often exhibits a prolonged and recurrent disease course, with alternating periods of non-erosive and erosive lesions. Despite this, the underlying causes and mechanisms of lesion type switching remain unclear (Husein-ElAhmed and Steinhoff, 2022). (Page 4, lines 13-21)

      2) Another criticism is the lack of strong findings in the analysis of CD8+ Trm cells isolated from non-erosive and erosive OLP tissues. The authors note increases in CD8+ Trm cell recovery, however, they only observe minor changes in CD8+ Trm activity upon restimulation. Analyzing the activation status or proliferative capacity of CD8+ Trm cells from non-erosive and erosive OLP could be informative and more robust measures of functional changes.

      We appreciate your suggestion to test the activation status and proliferation of sorted CD8+ Trm cells to further investigate the differences between the two groups. However, due to the limited amount of tissue available for our study, it was so hard to obtain sufficient numbers of CD8+ Trm cells for these experiments. Additionally, there is a lack of established methods for in vitro culture of CD8+ Trm cells, which further limited our options for functional studies.

      To investigate the function of CD8+ Trm cells in the two tissue groups, we instead measured inflammatory factors in the supernatant of CD8+ Trm cells after in vitro stimulation. This allowed us to indirectly assess the activity of CD8+ Trm cells in non-erosive and erosive OLP. We used ELISA assay to measure the levels of several inflammatory cytokines, which are known to be produced by activated T cells, including CD8+ Trm cells.

      We acknowledge that this method has limitations and is an indirect measure of CD8+ Trm cell function. However, we believe that our approach provides useful information on the potential role of CD8+ Trm cells in oral lichen planus and represents a valuable contribution to the field.

      3) A minor criticism is the formatting of the data presented in Figure 4. The authors should clearly label each marker used in the flow cytometry experiments as well as clearly labeling y-axes for graphs 4H and 4I.

      Thank you for your valuable comments, I have modified the flow cytometry diagram accordingly and labeled each step of the gating strategy, also modified the other two diagrams. And 4H and 4I figure numbers changed to 4G and 4H.

    1. Author Response

      Reviewer #1 (Public Review):

      This paper investigates whether bistable rhodopsins can be used to manipulate GPCR signalling in zebrafish. As a first step, the authors compared the performance of bistable rhodopsins fused with a flag tag or with a fluorescent protein tag (TagCFP). Constructs were compared by expressing in HEK cells followed by calcium imaging with aequorin or cAMP monitoring with GloSensor. This showed that the protein with a smaller flag tag performed better. Then, a series of transgenic zebrafish lines were made, in which tagged rhodopsins were expressed in reticulospinal neurons or cardiomyocytes.

      The data indicate that bistable rhodopsin can be used to manipulate Gq and Gi/o signalling in zebrafish. The Gq-coupled SpiRh1 was effective in manipulating reticulospinal neurons, as indicated by analysis of tail movements and calcium imaging of the neurons. Gi/o signalling could be manipulated by Opn3 from mosquitoes, TMT from pufferfish, and parapinopsin from lamprey, as shown by their effects on the heartbeat. Lamprey parapinopsin has the interesting property that it can be turned on and off by different wavelengths of light, and this was used to stop and restart the heart. Finally, the authors show that the cardiac effects are mediated by an inward-rectifier K+ channel, through the use of pharmacological inhibitors.

      A strength of this paper is the testing of a range of bistable rhodopsins, with a total of 10 proteins tested. This provides a good resource for future experiments. A weakness is the failure to show that some experiments involved repeated sampling of the same animal. Figure 3 gives the impression that there are 48 independent datapoints. However, there are 8 animals, with 6 datapoints coming from each. Similarly, Figure 4 shows the data from 6 trials of 4 animals, not 24 independent animals. Repeated sampling should be reflected in the data presentation, and in the statistical analysis. Was there an effect of trial number, which is suggested in Figure 6?

      In response to the reviewer’s comments, we modified the graph to show the average data for individual animals in Figure 3A-E, Figure 3-supplement 2, Figure 4D-F, H, and Figure 4-supplement 2B. We also showed the effect of trial number (difference between trials 1 and 6) in Figure 3-supplement 1 and Figure 4-supplement 1. In addition, we also showed all data as source data. We believe that more accurate statistical analyses were conducted using data from each individual animal.

      Delta F/F refers to relative change, which should be (F-F0)/F0. This should be zero when t = 0. The values in Figure 3E, and 3F are ~ 1 when t = 0, however. Are these figures showing F/F0?

      The reviewer is correct. It is indeed F-F0/F0 (ΔF/F0). In Figure 3F (3E in the original manuscript), t=0 was the time when 470-495 nm light (for both stimulation of SpiRh1 and detection of GCaMP6s fluorescence) started to be applied. In the experiment in Figure 3G (3F in the original manuscript), 405 nm light was applied to activate SpiRh1[S186F] for 2 s and then 470-495 nm light was applied to detect GCaMP6s fluorescence. In other words, t=0 is the time when 405 nm light started to be applied.

      The authors' conclusions that the bistable rhodopsins are useful tools in the zebrafish system appear largely justified. This is consistent with findings from other organisms, including mouse (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8097317/, https://www.sciencedirect.com/science/article/pii/S0896627321001616). The tools here are likely to find broad use by scientists who use the zebrafish as the experimental system for a variety of different areas.

      For the studies on LamPP and MosOpn3, we cited the references mentioned by the reviewer. We believe that our study substantiates that LampPP and MosOpn3, as well as other bistable rhodopsins, are valuable tools for zebrafish research, as pointed out by the reviewer.

      Reviewer #2 (Public Review):

      The presented study aims at deciphering the physiological function of GPCR signaling in excitable cells. To this end, the authors developed transgenic zebrafish models expressing a selection of Gq- and Gi/o-coupled bistable rhodopsins in either reticulospinal neurons or cardiomyocytes and elucidated behavioral responses (tail movements) or physiological responses (heartbeat) as well as intracellular Ca2+ dynamics following optical stimulation of rhodopsins.

      One of the major strengths of the presented study is the functional comparison of five Gq- and five Gi/o-coupled rhodopsins in two major classes of excitable cells, however; the selection of rhodopsins tested remains elusive. More importantly, it is not obvious why some of the effects of rhodopsin activation were assessed in both neurons and cardiomyocytes, while others were only tested in one of the two systems without further explanation. The main chosen experimental readouts (swimming/tail bending or cardiac contractions) have limited informative value regarding GPCR signaling, as they will only report the peak of the iceberg, namely whether movements are elicited or heartbeats inhibited. No analysis on subtle changes in heart rate and contraction force was included, but such modulation of cardiac activity (e.g. positive or negative chronotropic, inotropic, dromotropic, bathmotropic, and/or lusitropic responses) would represent better the physiological modulation of the heart via GPCR and down-stream signaling events. In line, the presented data only represents behavior at one light intensity tested, whereas a light titration of observed effects could provide more meaningful insight into both rhodopsin responses and signaling mechanisms. Also, the potential promiscuity of G protein activation of selected receptors has not been addressed, neither experimentally nor in the discussion part. As a result of the above-mentioned limitations, it is difficult to follow the logic of the study and especially to interconnect the data obtained in reticulospinal neurons (where activation of jumping spider rhodopsin elicited tail bending) to myocyte data (where three Gi-coupled rhodopsins suppressed cardiac activity). Moreover, as such, the study does not provide explanations on why a certain tool might evoke an effect in one system or the other, or not, which could be the main deliverable of such a comparative analysis.

      We are grateful for helpful and insightful comments from the reviewer. We believe that the presentation of experimental findings in the original manuscript may have led to a misunderstanding. We examined the effects of Gq and Gi/o-coupled bistable rhodopsins on both reticulospinal V2a neurons and cardiomyocytes. We observed noticeable effects of Gq rhodopsins on reticulospinal V2a neurons, but no significant effects on cardiomyocytes. Similarly, we found effects of Gi/o-coupled rhodopsins on cardiomyocytes, but no significant effects on reticulospinal V2a neurons. These discrepancies could be attributed to differences in the target cells and experimental conditions, suggesting the need for further optimization. We described the data on page 13, lines 16-22 and page 16, lines 9-10 in the Result section and Table 1, and discussed the relationship between the activity of bistable rhodopsins and their effects on target cells on page 21, lines 6-15 and page 24, line 19-page 25, line 2 in the Discussion section of the revised manuscript.

      In order to clarify the function of Gi/o-coupled rhodopsins on the heart in more detail, we conducted experiments in which we activated cardiomyocytes expressing bistable rhodopsins at various light intensities to observe the effects on heartbeats. We analyzed cardiac arrest rate, latency to cardiac arrest, and time to resumption of heartbeat. The results of these experiments are shown in Figure 4 and Figure 4-supplement 2, 3 in the revised manuscript. We described the data on page 15, line 16-page 16, line 1 in the revised manuscript, as follows.

      To analyze the photosensitivity of Gi/o-coupled rhodopsins, we applied light of various intensities for 1 s and examine their effect on HBs (Figure 4-supplement 2). Cardiac arrest was induced and sustained for over 20 s after stimulation of MosOpn3 with 0.05 mW/mm2 light for 1 s. Photoactivation of PufTMT and LamPP at lower light intensities (0.2 or 0.05 mW/mm2) resulted in cardiac arrest, but faster HB recovery than stimulation with 0.5 mW/mm2 light (Figure 4-supplement 2). The data indicate that the ability of MosOpn3 to suppress HBs is more photosensitive than PufTMT and LamPP in the zebrafish heart. We further examined atrial-ventricular (AV) conductivity by measuring the time difference between atrial and ventricular contractions before and after light stimulation when HBs had slightly recovered. There was no significant difference in AV conductivity before and after light stimulation (Figure 4-supplement 3).

      We performed experiments to the best of our ability with current technology regarding cardiac function. However, we hope that the reviewer is willing to acknowledge that there are certain limitations in conducting a detailed analysis of the zebrafish larval heart, since many experimental techniques, such as electrophysiological analysis, have not yet been fully or effectively established for this animal model.

      While the presented data is interesting, the graphical presentation and description of the data are insufficient. Most importantly, the current version of the text does not include a quantitative description of effects and statistical analyses (which are found in the figures and legends!). The lack of quantitative description also extends to both the introduction and discussion, which remain general without a specific dissection of observed effects.

      We have described quantitative data in the Result section.

      One major concern is the selective citation of own work. While single statements in both the introduction and discussion are supported by up to ten own papers, recent studies using rhodopsins for dissecting GPCR signaling in neurons are not sufficiently discussed and new data is not compared to published results by other teams. Moreover, relevant papers on cardiomyocytes (e.g. PMID: 35579776, 35365606, 34987414, 30894542) are not cited at all, despite the use of similar rhodopsins and/or optogenetic activation of the same signaling pathways. Taking into account these published studies may help to better understand the observed responses.

      We apologize for not citing important relevant papers in the original manuscript. We have now cited all four papers (Dai et la., 2022; Wagdi et al., 2022; Cokic et al., 2021; Makowka et al., 2019) mentioned by the reviewer, as well as a new paper describing the use of MosOpn3 and LamPP in C. elegans neurons (Koyanagi et al., 2022) in the Introduction section. We also discussed the differences between our findings and previously published data in the Discussion section.

      Additional comment: Data were obtained from larvae zebrafish. It would be useful to include a discussion on how GPCR signaling might be different in adult fish compared to larvae, and how to test whether the observed effects are more generally applicable.

      We discussed the differences between the hearts of zebrafish larvae and adults, and the differences in GPCR signaling, on page 27, lines 10-16, as follows. In this study, we used zebrafish larvae to study the role of GPCR signaling in cardiac function, and there are differences in heart structure and function between larvae and adult zebrafish. As a zebrafish grows, blood pressure increases and the heart becomes more complex with the development of valves and ventricular trabeculae. Therefore, GPCR signaling, which regulates heart structure and function, may differ between juvenile and adult fish. Optogenetic manipulation of the heart’s function in adult zebrafish using bistable opsins should clarify this issue.

    1. Author Response

      Reviewer #1 (Public Review):

      This paper aims to test whether a series of light activated ion channels (GtCCRT4, KnChR) and enzymes that regulate second messengers (BeGC1, bPac, OaPac) can be used to manipulate cells in the zebrafish.

      Among the strengths of the paper are the use of several independent methods to test whether the tools are functional - e.g. electrophysiology of mammalian cells for GtCCR4, calcium and cAMP imaging in zebrafish cells in vivo, behaviour tests (tail movement) and monitoring of heart beat. Multiple transgenic lines were established, to select for lines with optimal expression levels. Experiments are carried out in two cell types - reticulospinal neurons in the hindbrain and cardiomyocytes.

      The authors have largely achieved their aim of determining whether the rhodopsins can be used in zebrafish. They demonstrate that the cation channel KnChR is particularly sensitive in triggering depolarization of the reticulospinal neurons, as indicated by tail movement. They show that the photoactivatable adenylyl cyclase bPAC and cation channels have an effect on heartbeat. Two other photoactivatable enzymes OaPAC and BeGC1 have no effect on heartbeat, although it is not evident whether this is due to lack of effect on cAMP and cGMP levels.

      The abstract sets out to investigate the role of second messengers, emphasizing the need for specificity. However, KnChR is not specific for Na+. As noted by Tashiro et al, the channel can also conduct H+, Ca2+ and Mg2+. The knowledge gap that is being addressed by the manuscript thus needs to be reframed. The concluding statement of the abstract, that the tools tested here can be used to investigate second messengers, is not accurate given the broad conductance of KnChR.

      We agree with the reviewer. We changed the title to “Optogenetic manipulation of neuronal and cardiomyocyte functions in zebrafish using microbial rhodopsins and adenylyl cyclases” and revised the abstract and introduction, accordingly. The last sentence of the abstract was modified to “These data suggest that these optogenetic tools can be used to reveal the function and regulation of zebrafish neurons and cardiomyocytes.”

      The tools described here have been tested previously in other species, either in cultured mammalian cells (GtCCR4, KnChR, OaPAC) or in vivo (bPAC and BeGC1). The current work thus does not introduce novel tools, but provides evidence that some of these tools can be used in zebrafish. Overall, the lines characterized here will be of use to scientists using zebrafish as the experimental system in a variety of areas.

      We appreciated the positive comments from the reviewer. It was worthwhile generating and analyzing so many transgenic zebrafish.

      Reviewer #2 (Public Review):

      Optogenetic proteins are important tools for circuit neuroscience. The authors characterize five proteins, GtCCR4, KnCHR2, BeGC1, bPAC, and OaPAC with respect to their ability to suppress normal cell excitability and compare the results to those for the more established GtACR1 and CrChR2[T159]. The study makes use of expression in the zebrafish heart and hindbrain, as well as in a cell line. Electrophysiology in the cell line demonstrates that GtCCR photo-activation induces similar currents as CrChR2 activation and shows less signs of desensitization. Using a transgenic vsx2:Gal4 zebrafish line, immunohistochemistry shows that the tools are expressed. When activated, they triggered the expected behavioral responses (swimming) at short latency (<4s). This was true even for the three tools that are guanylyl or adenylyl cyclases (BeGC1, bPAC, OaPAC) and thus affect cell excitability only indirectly. At the tested light intensity, the Klebsormidium nitens channelrhodopsin (KnChR) had the shortest latency (<0.5 s) and highest (100%) probabilities of inducing locomotion. When expressing the tools in the zebrafish heart, brief illumination (100 ms) induces brief (100 ms - 1500 ms) suppression of the heartbeat. Notably, also tools that evoke depolarization induce heartbeat suppression. Heartbeat movies and calcium imaging demonstrate that this is caused by prolonged cardiomyocyte contraction. The optogenetic guanylyl and adenylyl cyclases were not effective in perturbing zebrafish heartbeat (except for bPAC over longer time scales).

      Given the large number of optogenetic proteins available to date and the challenge of employing them in well-controlled neuroscience experiments, this study presents an important contribution for neuroscientists performing optogenetic research in animal models. Two light-gated cation channels, GtCCR4 and KnChR, are tested for the first time in vivo. The evidence supporting the claims regarding heartbeat and induced swimming behavior is solid. Since GtCCR4 is more Na+-selective than other channelrhodopsins, it should allow better control of experimental variables and is a valuable addition to the optogenetic tool box. The created transgenic zebrafish lines will be useful for the zebrafish neuroscience community.

      The expression in zebrafish was compared using immunohistochemical staining (of a single Gal4 driver line). From this experiment alone, it is difficult to judge the expression level, the in vivo visibility of the fluorescence under the microscope, and the proportion of target cells that do express the optogenetic gene of interest.

      The evidence for optogenetically induced alteration of swimming behavior is compelling. However, the associated neuronal responses and their dependence on different light intensity levels remain uncharacterized. Therefore, if anyone plans to use these tools to investigate a neural circuit in the future, the needed light levels and the specificity of the manipulation would still need to be determined.

      We stimulated neuronal ND7/23 cells, reticulospinal V2a neurons or cardiomyocytes expressing microbial optogenetic tools at various light intensities and examined their effects on neuronal activities and behaviors (tail movements and cardiac arrest). These data are shown in revised Figure 1, Figure 1-supplement 1, Figure 3, Figure 3-supplements 2, 3, Figure 5, and Figure 5-supplements 1, 2. We described the data on page 12, line-page 13, line 1 and page 14, lines 10-13 in the revised manuscript.

      For the optogenetic guanylyl and adenylyl cyclases, which clearly were able to alter behavioral responses, the signaling and circuit mechanisms that lead to neuronal depolarization remain unknown, but possible activation pathways are discussed.

      Reviewer #3 (Public Review):

      In this study, the authors set out to test several new optogenetic tools in zebrafish. They motivate the study by citing differences in ion selectivity of channelrhodopsins and the potential utility of photoactivatable anenylyl and guanylyl cyclases to control cell functions. Although the study provides some useful new information about the utility of these tools in zebrafish, the characterization is limited and there are serious caveats around interpretation of behavioral responses.

      The latency of behavioral responses is often extremely long and there is a lack of control data from opsin negative animals, raising serious doubts as to whether these responses are optogenetically mediated.

      In other words, many of these responses may not result from optogenetic activation of V2a cells, but instead arise from indirect effects such as visual stimulation of the animal. Previous zebrafish studies have shown swimming responses in opsin-negative control animals at latencies above ~100 ms and used a 50 ms cut-off for optogenetically evoked swims. One can see evidence suggestive of this issue in the authors' data: latency data for GtCCR4 appears bimodal with a cluster of short latency swims and a second spread at latencies >2s; this could be a mix of fast optogenetic and slow artifactual responses. As the authors have already tested opsin negative control animals, they should examine the latency distribution of these responses. The long latency is even more striking in the case of BeGC1, pPAC and OaPAC where in all cases mean latency exceeds 2 seconds. No short latency responses are apparent and the delay is too long to be solely a result of second messenger action (e.g. activation of cyclic nucleotide gated ion channels). In any case, no explanation is provided.

      We understand the reviewer’s concern that the responses were too slow. However, the neurons responded after accumulation of cAMP or cGMP, which bind and activate CNG in the neurons. Similar delayed responses were observed when G protein-coupled bistable rhodpsins were activated in reticulospinal V2a neurons (please see the accompanying manuscript).

      We compared the latency of zebrafish larvae expressing each tool with those not expressing the tool. The data are shown in Figure 3, Figure 3-supplement 1, Figure 5, Figure 6, Figure 7, and Figure 7-supplement 1. Statistically, we considered responses within 8 s after the start of light stimulation as positive, and significant differences in responses were observed depending on the presence or absence of tool expression, suggesting that tail movements were induced by tool activation. In the absence of tool expression, spontaneous movements were occasionally observed, but they did not often occur within 8 s. We have described the data on page 15, line 20-page 16, line 4 in the revised manuscript.

      Although this study is motivated by the need to precisely control the flux of specific ions and modulate specific second messenger pathways, there is almost no characterisation of these processes in zebrafish cells. As such, the degree to which these tools are useful to "precisely control second messengers in vivo" is unclear and the lack of mechanistic data also leaves open questions about unexpected aspects of behavioral results (e.g. the long latency of presumed cyclic-nucleotide induced behavior, above).

      We believe that the description "controlling second messengers" was misleading. Since Reviewer #3 has taken issue with this aspect, we note that this paper does not provide a detailed analysis of second(ary) messengers. We have restructured the entire manuscript to focus on optogenetic regulation of zebrafish neurons and cardiomyocytes rather than on "control messenger regulation".

      Finally, there is little comparison with other commonly used optogenetic actuators. CrChR2[T159C] is used as the only control but more recent tools (e.g. CoChR, Chrmine, ChroME) are not considered. Thus, beyond showing that the new tools have behavioral effects in zebrafish, the usefulness of this report for researchers wanting to compare and select between tools is limited.

      We examined the activity of CoChR and ChrimsonR in neuronal ND7/23 cells. In addition, we generated transgenic zebrafish expressing CoChR or ChrimsonR, and examined their activity in V2a neurons and cardiomyocytes. We thereby compared the activity of GtACR4, KnChR, and CrChR2[T159C] with that of CoChR and ChrimsonR. The data are shown in Figure 1, Figure 1-supplement 1, Figure 2, Figure 3, Figure 3-supplement 3, and Figure 5-supplements 1, 2. We described the data for CoChR and ChrimsonR in the relevant part of the Result section (pages 8-14) and discussed a comparison on page 18, lines 2-16 in the revised manuscript.

      We found that KnChR was a more potent optogenetic tool than GtCCR4, CrChR2, and ChrimsonR in zebrafish reticulospinal V2a neurons. Optogenetic activity of KnChR was comparable to that of CoChR in both reticulospinal V2a neurons and cardiomyocytes (Figures 1, 3, 5). Truncation of KnChR prolonged the channel open lifetime by more than 10-fold (Tashiro et al. , 2021) (Figure 1). KnChR conducts various monovalent and bivalent cations, including H+, Na+, and Ca2+, while KnChR has a higher permeability to Na+ and Ca2+ and a higher permeability ratio of Ca2+ to Na+ than CrChR2 (Tashiro et al. , 2021). These properties may contribute to the high photo-inducible activity of KnChR. Activation of KnChR may induce influx of more cations with a longer channel open time than CrChR2 and ChrimsonR, leading to stronger cell depolarization. Optogenetic activity of KnChR was comparable to that of GtCCR4 in cultured cells, but higher than GtCCR4 in zebrafish reticulospinal V2a neurons and cardiomyocytes. While the exact reason is unclear, it is possible that the expression of functional KnChR protein may be high in zebrafish cells.

    1. Author Response

      Reviewer #2 (Public Review):

      Dipeptide repeat (DPR) proteins produced from both sense GGGGCC (poly-GA, poly-GP and poly-GR) and antisense CCCCGG (poly-PR, poly-PG, poly-PA) repeat RNAs are found C9ORF72-linked ALS/FTD and contribute to neurodegeneration. The translation of the repeat RNA can initiate without the AUG start codon, a process known as repeat associated non-AUG (RAN) translation. In this manuscript, the authors used luciferase reporter construct to show that the translation of PR and PG from the CCCCGG repeats initiated from in-frame AUG in the C9 sequences before the repeats. After mutating candidate AUG codons, the translation can initiate from other AUG, so there is redundancy. But if mutating all the in-frame AUG codons, the luciferase was dramatically reduced, supporting the translation initiated at the AUG start codon. The translation initiation factor eIF2D has been shown to be important for CUG start codon-dependent poly-GA translation from GGGGCC repeats. Here it is shown that eIF2D is not required for poly-PG and poly-PR translation from CCCCGG repeats using both reporter and patient iPS-neurons. The data using luciferase reporter to study antisense repeat translation is solid, the translation initiates from AUG start codon as there are AUG in frame with PG and PR in the constructs containing the antisense sequences.

      We thank the reviewer for the constructive feedback.

      On the other hand, as the reporter construct includes the sequences containing the AUG codon, it is not surprising that AUG was used. This is canonical translation.

      We completely agree. In the revised Introduction, we now point out that, before our study, it was not clear which mode of translation (RAN vs AUG canonical) is employed for DPR synthesis.

      Also, in the revised Discussion (lines 251-257)), we mention the following: “Hence, our findings together with these previous studies suggest that DPR synthesis may involve at least three different modes of translation: (a) near-cognate start codon (e.g., CUG, AGG) dependent-translation for poly-GA and poly-GR from sense GGGGCC transcripts, (b) canonical AUG-dependent translation for poly-PR and poly-PG synthesis from antisense CCCCGG transcripts, and (c) DPR synthesis may also occur through RAN translation mechanisms that solely utilize the repeat. It is conceivable that all three modes of translation may occur simultaneously in disease, and that the use of non-canonical and canonical initiation codons may be the primary contributors of DPR production ”.

      The 1,000bp intronic sequence included in our antisense 35xCCCCGG constructs (Figure 1A) is the authentic human intronic sequence. We agree that it does contain multiple putative initiation codons, and this was our motivation for conducting systematic mutagenesis of all these codons. To narrow down the list of putative initiation codons, we used our recently developed machine-learning algorithm for initiation codon prediction (PMID: 35648796). We found a CUG and an AUG in poly-PR frame; a CUG and three AUGs in the poly-PG frame), all of which had a good Kozak sequence (as mentioned in Results). Systematic mutagenesis of these codons (single and multiple codon mutations were generated) revealed that an AUG at -273bp is necessary for poly-PR synthesis (Figure 2). Of note, poly-PR is one of the most toxic DPRs, for which an initiation codon had not been previously identified in the literature.

      Additionally, the AUG-initiated translation of antisense repeats has been reported previously. Therefore, the novelty is limited.

      We agree that an AUG initiation codon was previously described for poly-PG (Boivin et al., EMBO J, 2020, PMID: 31930538). However, our findings significantly extend this observation because redundancy at the level of AUG initiation codon usage was not reported in that study.

      We believe our study significantly contributes to the field of C9ORF72 ALS/FTD in the following way:

      (i) We identified for the first time an AUG (at -273nt) necessary for synthesis of poly-PR, one of the most toxic DPRs.

      (ii) We propose the concept of initiation codon redundancy for poly-PG, which may apply to other DPRs in C9ORF72 ALS/FTD, as well as in other neurological disorders caused by nucleotide repeat expansion mutations.

      (iii) Our findings merged with those of previous studies suggest that DPR synthesis may involve at least three different modes of translation: (a) near-cognate start codon (e.g., CUG, AGG) dependent-translation for poly-GA and poly-GR from sense GGGGCC transcripts, (b) canonical AUG-dependent translation for poly-PR and poly-PG synthesis from antisense CCCCGG transcripts, and (c) DPR synthesis may also occur through RAN translation mechanisms that solely utilize the repeat. It is conceivable that all three modes of translation may occur simultaneously in disease, and the use of non-canonical and canonical initiation codons may be the primary contributor of DPR production”.

      (iv) We found that the non-canonical translation initiation factor eIF2D is mainly responsible for poly-GA (sense DPR) production without affecting anti-sense DPRs. Hence, we propose a model where DPR translation occurs in a “piecemeal manner”, i.e., a distinct machinery of translation initiation factors may be needed for the synthesis of each DPR.

      In the revised manuscript, we now better highlight these key contributions.

      How the antisense DPRs are translated endogenously, AUG-canonical translation or RAN translation, depends on whether the AUG is included in the antisense RNA in patients and where the transcription of the antisense starts, upstream or downstream of the AUG start codons. However, this is not considered in the manuscript.

      Thank you for this important point. Zu et al., (PNAS, 2013) observed antisense DPR aggregation in brain samples of C9ORF72 ALS/FTD patients. In the same study, the authors conducted 5’ Rapid Amplification of cDNA Ends (RACE). Although this analysis did not identify the exact transcription start site for the antisense CCCCGG RNA, it did show that the region that includes the AUG codons, which we found to be important for poly-PR or poly-PG, is included in the antisense RNA from human C9ORF72 ALS/FTD samples. In page E4969, Zu et al write: “RACE analysis of FCX samples showed intron 1b antisense transcripts begin at varying sites 251–455 bp upstream of the G2C4 repeat”. The same study also detected antisense RNA foci in brain samples of C9ORF72 ALS/FTD patients.

      The exact transcription start site for the antisense (and sense) transcript remains unknown. In the near future, we plan RACE experiments to identify it and share these finding with the community in a separate manuscript.

      We have modified the Results (lines 133-136) to: “These results strongly suggest that AUG at -273 bp is the start codon for translation of poly-PR, one of the most toxic DPRs in C9ORF72 ALS/FTD. This AUG is predicted to be included in the endogenous antisense CCCCGG transcript based on 5’ Rapid Amplification of cDNA Ends (RACE) analysis on brain samples of C9ORF72 ALS/FTD patients14.”

    1. Author Response

      Reviewer #1 (Public Review):

      1) While the current dataset aims to demonstrate a "correlation" between grid cell encoding and task performance, the other variables that could confound this correlation should be carefully examined.

      (1) The exact breakdown of the fraction of beaconed/non-beaconed/probe trials is never shown. if the session makeup has a significant effect on the coding scheme or other results, this variable should be accounted for.

      (2) The manuscript did not provide information about whether individual mice experienced sessions with different combinations of the three trial types, and whether they show different preferences in position or distance encoding even in comparable sessions. This leads to the question of whether different behaviour and activity encoding were dominated by experimental or natural differences between individual mice. Presenting the data per mouse will be helpful.

      (3) Related to the above point, in Figure 5, the mice appeared to behave worse in probe trials than non-beaconed trials. If the mouse did not know if a trial is a probe or a non-beacon trial, they should behave equivalently until the reward location and thus should stop an equal amount. If this difference is because multiple probe trials are placed consecutively, did the mouse learn that it will not get a reward and then stop trying to get rewards? Did this affect switching between position and distance coding?

      (4) It is not shown how the behaviours (e.g., running speed away from the reward zone, licking for reward) in beaconed/non-beaconed/probe trials were different and whether the difference in behaviours led to the different encoding schemes.

      We appreciate these suggestions and will add all of the requested analyses in a revised manuscript. We note here that while the proportion of trial types differed between sessions, in all sessions trial types were varied in a repeating sequence, so blocks of behaviour where grid firing is anchored (or not anchored) to the track coordinates can not be explained as a consequence of a particular trial type. We will make this clearer in a revised manuscript.

      2) Regarding the behaviour and activity encoding on a trial-by-trial basis, did the behavioural change occur first, or did the encoding switch occur first, or did they happen within the same trial? This analysis will potentially determine whether the encoding is causal for the behaviour, or the other way around.

      We agree this is an important point and the corresponding analyses will be reported in a revised manuscript.

      3) The author determined that the grid cell coding schemes were limited to distance encoding and position encoding. However, there could be other schemes, such as switching between different position encodings (with clear spatial fields but at different locations), as indicated by Low et. al., 2021, and switching between different distant encodings (with different distance periods). If these other schemes indeed existed in the data, they might contribute to the variation of the behaviours.

      We did not observe switching between coding schemes of the same type within our dataset and so did not document this. We agree it is important to do so and will provide additional analyses in the revised manuscript

      4) The percentage of neurons categorised in each coding scheme was similar between non-grid and grid cells. This implies that non-grid cells might switch coding schemes in sync with grid cells, which would mean the whole MEC network was switching between distance and position coding. This raises the question of whether the grid cell coding scheme was important per se, or just the MEC network coding scheme.

      We appreciate the suggestion and very much agree that looking at cells outside of just grid cells is important in determining which cells are functionally relevant in spatial behaviours. We will provide additional analyses in a revised manuscript.

      5) In Figure 2 there are several cell examples that are categorised as distance or position coding but have a high fraction of the other coding scheme on a per-trial basis. Given this variation, the full session data in F should be interpreted carefully, since this included all cells and not just "stable" coding cells. It will be cleaner to show the activity comparison only between the stable cells.

      We agree that showing stable examples before introducing examples that switch on a per-trial basis will be helpful. We will amend this in a revised manuscript.

      6) The manuscript is not well written. Throughout the manuscript, there are many unexplained concepts (especially in the introduction) and methods, mis-referenced figures, and unclear labels.

      We appreciate the feedback and will work to address the concerns in a revised manuscript.

      Reviewer #2 (Public Review):

      This study is very timely as there is a pressing need to identify/delimitate the contribution of grid cells to spatial behaviors. More studies in which grid cell activity can be associated with navigational abilities are needed. The link proposed by Clark and Nolan between "virtual position" coding by grid cells and navigational performance is a significant step toward better understanding how grid cell activity might support behavior. It should be noted that the study by Clark and Nolan is correlative. Therefore, the effect of selective manipulations of grid cell activity on the virtual task will be needed to evaluate whether the activity of grid cells is causally linked to the behavioral performance on this task. In a previous study by the same research group, it was shown that inactivating the synaptic output of stellate cells of the medial entorhinal cortex affected mice's performance of the same virtual task (Tennant et al., 2018). Although this manipulation likely affects non-grid cells, it is still one of the most selective manipulations of grid cells that are currently available.

      We appreciate this additional context provided here. In our view, it is critical to narrow down the space of possible behaviours that grid cells might contribute to. As the reviewer notes, our previous work provided evidence that speaks to this question by targeting genetic manipulations (Tennat et al., 2018), but while this approach was specific to stellate cells it does not discriminate grid from non-grid cells and so does not tell us specifically about roles for grid cells. As far as we are aware there is currently no manipulation that will do this. In the experiments here, we take a complementary approach, leveraging the variability inherent in behaviour and the fact that in our location memory task animals will perform many trials in a session. By showing that spatially anchored grid firing does not predict behavioural success on cued trials, but does predict success on trials that are solved by path integration, we substantially narrow the space of behaviours that grid cells could contribute to. Importantly, stellate cells appear necessary for both cued and uncued behaviour in the task (Tennant et al., 2018), suggesting that their roles are more general than the grid cell population, which is likely to be only a subset of stellate cells. We will more carefully address this point in a revised manuscript.

      When interpreting the "position" and "distance" firing mode of grid cells, it is important to appreciate that the "position" code likely involves estimating distance. The visual cues on the virtual track appear to provide mainly optic flow to the animal. Thus, the animal has to estimate its position on the virtual track by estimating the distance run from the beginning of the track (or any other point in the virtual world).

      We agree this terminology has the potential for causing confusion. A simpler descriptive definition would be track-anchored and track-independent rather than position and distance coding. We will consider this and other alternatives for a revised manuscript.

      Reviewer #3 (Public Review):

      This study addresses the major question of 'whether and when grid cells contribute to behaviour'. There is no doubt that this is a very important question. My major concern is that I'm not convinced that this study gives a significant contribution to this question, although this study is well-performed and potentially interesting. This is mainly due to the fact that the relation between grid cell properties and behaviour is exclusively correlative and entirely based on single cell activity, although the introduction mentions quite often the grid cell network properties and dynamics. In general, this study gives the impression that grid cells exclusively support the cognitive processes involved in this task. This problem is in part related to the text. However, it would be interesting to look at the population level (even beyond grid cells) to test whether at the network level, the link between behavioural performance and neural activity is more straightforward compared to the single-cell level.

      We appreciate the feedback and suggestions. As we note in our response to Reviewer #2, there is currently no method for selective manipulation of grid cells, while testing correlation is a critical step on the path to establishing causation. Our study contributes by reducing the space of possible functions of grid cells to exclude behaviours in which local cues are available, while providing evidence for a clear relationship between anchoring of grid cells and successful outcomes when path integration is used for localisation. We’re unclear here about what the reviewer means by ‘more straightforward’ as the relationships we establish do not appear overly complicated, and as strong relationships between activity of single grid cells and populations of grid cells are already well established (Gardner et al., 2021; Waaga et al., 2021; Yoon et al., 2013).

      The authors used a statistical method based on the computation of the frequency spectrum of the spatial periodicity of the neural firing to classify grid cells as 'position-coding' (with fields anchored to the virtual track) and 'distance-coding' (with fields repeating at regular intervals across trials). This is an interesting approach that has nonetheless the default to be based exclusively on autocorrelograms. It would be interesting to compare with a different method based on the similarities between raw maps.

      We’re not sure we understand the point here. The manuscript provides analyses comparing rate maps for activity periods in which grid cells are / are not anchored to the task environment (e.g. Figure 2A-C, Figure 3B-E); when grid cells are anchored the rate maps are clearly spatial, when they are not anchored we show that spatial information (in the track reference frame) is very substantially reduced.

      Beyond this minor point, cell categorization is performed using all trial types. Each trial type (i.e. beacon or non-beacon) is supposed to force mice to use different strategies and should induce different spatial representations within the entorhinal-hippocampal circuit (and not only in the grid cell system). In that context, since all trials are mixed, it is difficult to extrapolate general information.

      Again, we’re not sure we understand the point. We appreciate this likely reflects a lack of clarity on our part in the writing of the manuscript. As noted in our response to Reviewer #1, we will include additional details about the organisation of trials and relationships between trials, behavioural outcomes and neural codes observed. We should note here that mice are not ‘forced’ to adopt any particular strategy. Rather, on uncued trials a path integration strategy is the most efficient way to solve the task. Mice could instead use a less efficient strategy of stopping at short intervals and still obtain rewards, although the behavioural evidence suggests they do not choose to do this after learning the task.

      On page 5 the authors state that 'Since only position representations should reliably predict the reward location, ..., we reasoned that the presence of positional coding could be used to assess whether grid firing contributes to the ongoing behaviour'. I do not agree with this statement. First of all, position coding should be more informative only in a cue-guided trial. Second, distance coding could be as informative as position coding since at the network level may provide information relevant to the task (such as distance from the reward).

      Again, this point perhaps reflects a lack of clarity on our part in writing the manuscript. When grid cells are anchored to the track reference frame (position encoding in the manuscript), then the location of the rate peaks in grid firing is reliable from trial to trial. This is the case whether or not the trial is cued. When grid cells are independent of the track reference frame (distance encoding in the manuscript, but we now appreciate this is a poor choice of words), then the location of the firing rate peaks vary from trial to trial; thus position can not be read out directly from trial to trial. In principle, when grid cells are not anchored to the track the mouse could read out track position by storing the grid network configuration at the start of each trial and then subtracting this from readouts of distance as mice move along the track. If mice do use this computation we would expect them to do so equally well on cued and uncued trials, whereas our results clearly show a dissociation between trial types in the relationship between grid firing and behavioural outcome. We will highlight this possibility in a revised manuscript.

      Third, position-coding is interpreted as more relevant because it predominates in correct trials. However, this does not imply that this coding scheme is indeed used to perform correct trials.

      As we note above, our analyses reduce the space of behaviours to which grid cells might contribute, by providing evidence that anchoring of grid firing is associated with successful outcomes specifically when mice adopt a path integration strategy. We agree that alternative models remain plausible, for example perhaps the behaviourally relevant computations are implemented elsewhere in the brain with grid anchoring to the track as an indirect consequence. Nevertheless, the space of alternative models is substantially reduced given our experiments and analyses, while our approach complements tests of grid-behaviour functions that rely on manipulations which leave open alternative explanations based on off target effects. We expect that inclusion in a revised manuscript of the further analyses suggested above should provide further tests of the grid-behaviour relationship.

      It could be more informative to push forward the correlative analysis by looking at whether behavioural performance can be predicted by the coding scheme on a trial-by-trial basis.

      Figure 5E shows the recommended analysis.

    1. Author Response

      eLife assessment

      This useful study emphasizes some previously ignored aspects of synaptic communication between Purkinje neurons and their targets in the cerebellar nuclei. Reviewers felt that some aspects of the evidence were solid but that others were incomplete.

      We think this is an extensive and complete study. The major issue that the reviewers raised is about the usage of high chloride internals in our recordings. We feel that this single issue does not really match the statement “others were incomplete”, which suggests that this study is incomplete in some way. Please note that in our complete revision we will respond to the issue of chloride by pointing out: (1) the advantages of using high chloride internals to determine the distribution of input sizes, (2) the challenges of estimating the relationship between input sizes for different chloride internals, (3) the previous studies that have established the relationship between input sizes and chloride levels at other synapses, and (4) additional simulations will be provided indicating that subtle changes in the input sizes would have minor quantitative effects on the influences of individual inputs, but would not affect the main conclusions of the paper.

      Reviewer #1 (Public Review):

      This manuscript explores physiological properties of Purkinje-to-nuclear synapses. The report provides largely incremental advances over what has already been discovered about this synaptic relationship. The main findings, as articulated by the authors, are that Purkinje-to-nuclear synaptic strength is variable, with a few very strong inputs to the cerebellar nuclei. They show that single inputs effectively inhibit nuclear firing and that the diversity of synaptic strength influences nuclear neuron responsivity to inputs by enhancing synaptic variance. In addition, while not necessarily surprising, it's nice to see that stronger inputs would have a stronger influence on a postsynaptic cell, both in terms of rates and temporal coding transfer. Overall, as it stands, the manuscript is not very scholarly, overstates the novelty of findings, and frames a straw-man. That said, buried in here are some potentially interesting observations.

      This review provides us with an opportunity to more clearly summarize what is new in our findings. Our study builds upon Person and Raman (2012) and other studies, and makes a number of important advances. (1) We provide a much more extensive characterization of input sizes (n=157) than previous studies, and show that the distribution of input sizes is skewed, with the largest inputs almost 100 times larger than the smallest inputs. This distribution is clearly different from that of Person and Raman (2012), where the estimation of unitary PC input sizes was based on small sample sizes from a broad range of age (n=30, P13-29 animals). The high Cl- concentration internal we used in our recordings provides us with superior stability and sensitivity in detecting such variability in input size. (2) We show for the first time that the distribution of input sizes becomes more skewed in juvenile animals than in young animals, suggesting that PC-CbN synapses are modified by plasticity mechanisms during development. (3) Our dynamic clamp approach is based on the skewed distribution of input sizes we observed, and the Purkinje cell firing patterns we recorded in vivo, whereas Person and Raman (2012) primarily focused their dynamic clamp studies on 40 uniform sized inputs (even though they recognized that there are also somewhat larger inputs), with their firing interspike intervals drawn from Gaussian distributions (which lack refractory periods and do not represent realistic PCs firing patterns). We also complement our dynamic clamp studies with simulations using an integrate-and-fire model that does a good job of replicating our dynamic clamp studies. This allowed us to more thoroughly explore the effects of different size input that would not be practical with dynamic clamp studies. (4) We show that individual PC inputs powerfully regulate the rate and timing of CbN neuron firing, without requiring a high degree of PC synchrony. (5) We further show that timing control by PCs leads to strong inhibition of CbN firing and, surprisingly, a brief elevation prior to the inhibition. This result from the refractory period of PCs, which generate a disinhibition period prior to the inhibition, and is shaped by the firing statistics of PC inputs. If such an elevation prior to inhibition was observed in vivo, it could be misinterpreted as excitation of CbN neurons by other inputs (e.g., mossy fiber collaterals) preceding the PC inputs. (6) We show that the total inhibitory conductance and the coefficient of variation (CV) of this conductance are both important factors in controlling the firing rate of CbN neurons. Having variable input sizes or synchronized inputs all lead to higher CV of the inhibitory conductance and therefore higher firing rates. (7) We show that all different-sized PC inputs transmit a robust rate code that simply depend on their sizes. (8) Our study helps to resolve a long-standing controversy in the field. Some thought that PC synchrony is an effective way of controlling CbN neuron firing, while others doubted the physiological relevance of PC synchrony. Here we show that a single large input is functionally equivalent to many small, perfectly synchronized inputs, which can influence the rate and timing of CbN firing as previously proposed (Person and Raman, 2012a), but without requiring a high degree of PC synchrony. We also suggest that a high degree of synchrony is not a prerequisite for an appreciable influence, because synchronizing a few large inputs can have large effects on CbN neuron firing. We strived to be fair and thorough, and we think that the study is scholarly. Prior to the initial submission, we sought advice from experts in the field, Indira Raman and Nicolas Brunel, and their input was very helpful in this regard. We will revise the manuscript to more clearly articulate what has been done previously, and what aspects of our study are new.

      Reviewer #2 (Public Review):

      In this manuscript, the authors address how cerebellar Purkinje cells (PC) control the firing of nuclear cells (CbN), the output stage of the cerebellar. They used patch-clamp recordings in acute cerebellar slices, and combined dynamic clamp with simulations of nuclear cell firing rate.

      This article addresses one of the most fundamental unresolved question of the cerebellar physiology: how inhibitory PCs control the output stage of the cerebellum?

      They first described a developmental evolution of the that PC-CbN synapses. Inhibitory synaptic weights become highly variable after three weeks of age, with a group of very large PC inputs. They used dynamic clamp to examine the influence of these variable inputs on CbN firing rate. They demonstrate that while all input size affect CbN discharge, larger ones can stop them for a few milliseconds. Using a distribution of variable input size, they showed that increasing the variability of PC inputs favor CbN discharge, while increasing the magnitude of a constant inhibitory conductance decrease their firing rate. By varying the frequency of PC inputs, they suggest that CbNs faithfully transmit rate code, but larger inputs are more effective to decrease their firing rate. Finally, addressing how synchrony of variable PC inputs influence CbN discharge, dynamic clamp studies and simulations showed that input synchronization enhance firing, but driven by the total charge of the inhibitory input.

      The keystone observations that PC inputs are highly variable is very interesting and convincing and open new questions about PC-CbN plasticity. More importantly the combination of dynamic clamp and simulations is a real strength of the study, allowing the authors to test many combinations of inputs in real cells and extrapolating their hypotheses in silico. Weaknesses result from the assumptions made on the construction of the distribution of inputs and the many different conditions explored. The organization of the article could be difficult to read for a non-specialist of cerebellar physiology.

      We thank the reviewer for their kind comments. We will revise the manuscript to clarify the assumptions made to construct the distribution of input sizes. We will do our best to revise the manuscript to make it easier for a non-specialist to read.

    1. Author Response

      We thank the editors and the reviewers for their comments. In response, we plan to revise the manuscript in order to provide the details requested and include additional bioinformatic analysis of the data, along the lines suggested by the reviewers. We will also take into account individual variations among the subjects investigated in this study, and discuss the extent to which factors other than age might contribute to the results. And we will expand the discussion to consider how our results may apply to other cells/tissues and how they relate to other findings in the field.

    1. Author Response

      The following is the authors’ response to the current reviews.

      We will make some minor changes to address the issues in the revised manuscript during preparation of the Version of Record.

      1) Acknowledge the previous discovery that COUPTFII expression is confined to the ventral hippocampus in early human fetal forebrain (doi: 10.1093/cercor/bhx185).

      We agree. We will incorporate the previous discovery that COUPTFII expression is confined to the ventral hippocampus in early human fetal forebrain (doi: 10.1093/cercor/bhx185) in the discussion section of "COUP-TFII governs the distinct characteristics of the ventral hippocampus".

      2) Give some consideration to this observation from my original review "Abnormalities in the trisynaptic circuit. No studies of actual synapses, either physiological or morphological, were carried out. I wonder to what extent these immunohistochemical studies just further reflect the abnormalities in hippocampal morphology presented earlier in the manuscript without specifically telling us about synaptic circuits? Although the immunohistochemical preparations are beautiful, they are inadequate on their own in telling us much about what sort of synaptic circuitry exists in the transgenic animals".

      Our data in Figure 4 show clearly that at the neural circuit level, compared with the corresponding control, the trisynaptic circuit is abnormal in all three models; therefore, in the discussion section of "COUP-TF genes are imperative for the formation of the trisynaptic circuit", we will add the following sentence, "We would like to investigate what sort of synaptic circuitry is compromised either physiologically or morphologically in the trisynaptic circuit of individual animal model in detail in the future studies.

      In addition, we will correct a reference related to the COUP-TFII gene and congenital heart defects.

      The reference of "High, F. A., Bhayani, P., Wilson, J. M., Bult, C. J., Donahoe, P. K., & Longoni, M. (2016). De novo frameshift mutation in COUP-TFII (NR2F2) in human congenital diaphragmatic hernia. Am J Med Genet A, 170(9), 2457-2461. doi:10.1002/ajmg.a.37830" was replaced with "Al Turki, S., Manickaraj, A. K., Mercer, C. L., Gerety, S. S., Hitz, M. P., Lindsay, S., . . . Hurles, M. E. (2014). Rare variants in NR2F2 cause congenital heart defects in humans. Am J Hum Genet, 94(4), 574-585. doi:10.1016/j.ajhg.2014.03.007".

      —————

      The following is the authors’ response to the original reviews.

      Reviewer #1(Recommendations For The Authors):

      1) Better presentation of the western blot results

      We agree with the reviewer. Based on the suggestion, new information about the western blot results has been added in the revised Figure 1Ap. We added a dash to each western blot image to indicate the target band of COUP-TFI (46 KDa), COUP-TFII (45 KDa), and GAPDH (37 KDa), respectively. There were two bands in the blot of COUP-TFII, with the upper band corresponding to mouse IgG at 50 KDa, and the bottom band corresponding to COUP-TFII protein at 45 KDa. Therefore, only the lower bands of COUP-TFII are used for the quantitative analysis. The expression of COUP-TFII in the ventral hippocampus is clearly higher than that in the dorsal hippocampus.

      2) Full presentation of the Immunohistochemistry and qPCR results for at E11.5 and E14.5 in double knockdown mice.

      Thanks for the suggestion. Based on the suggestion, we added immunofluorescent data in the double knockout mice at E11.5 in the Figure 5Ba-h. Meanwhile, given that it takes time to prepare animal samples at E14.5 for RT-qPCR assays, we performed immunofluorescent assays at both E13.5 and E14.5 to make sure that the changes of Lhx5 and Lhx2 expression in the hippocampal regions between the control and mutant mice were consistent. As shown in the new Figure 5B, consistent with the downregulated expression of Lhx5 transcripts in the double mutant, the expression of the Lhx5 protein was reduced in the CH in the double mutants at E11.5; moreover, the numbers of Lhx5-positive Cajal-Retzius cells decreased in the double mutant embryos at E11.5, E13.5 and E14.5 (Figure 5Ba-d, a’-d’, a’’-d’’, i-l, i’-l’, q-t, q’-t’). Consistent with RT-qPCR data, the expression of Lhx2 was comparable between the control and double-mutant mice at E11.5 (Figure 5Be-h, e’-h’). Interestingly, the expression of the Lhx2 protein was increased in the hippocampal primordium in the COUP-TF double-mutant mice at E13.5 and E14.5 (Figure 5Bm-p, m’-p’, u-x, u’-x’). Please find the altered descriptions in the Page 15, lines 347-351, 353-358 and Page 21, lines 500-503 in the revised manuscript.

      3) Minor corrections. Lines 159-162, prospected not quite the right word. I would suggest "an ectopic CA-like region was observed medially in the temporal hippocampus in the COUP1TFII mutant, where the prospective posterior part of the medial amygdaloid nucleus was situated, (MeP), indicated by the star (Figure 1Ba-f). The presence of the ectopic CA-like region in the ventral but not dorsal hippocampus of the mutant was further confirmed by the presence of the prospective MeP and amygdalohippocampal area (AHi) in sagittal sections, as indicated by the star. See also line 251. Line437/438 I would suggest "... most important breakthroughs in understanding the role of the hippocampus in memory."

      Thanks for the suggestion. We made the changes based on the suggestion. Please find the amendments in Page 8, lines 178-181; Page 12, lines 270, 276; Page 14, line 318; Page 19, lines 451; Page 20, lines 461-462 in the revised manuscript.

      Reviewer #2 (Recommendations For The Authors):

      1) It is also important to point out that the immunofluorescence data in Figure 5B is contrary to what is known for Lhx5 (it's not expressed in the neocortical and hippocampal vz) and Lhx2 (it's not expressed in the choroid plexus). Authors should explain how their conclusions could align more clearly, and consider the possibility that their results are due to a possible artifact of image setting issues or worse, antibody specificity issues.

      Very good point. Based on the comments and suggestions, we first tested another Lhx5 antibody, R&D, Cat # AF6290, in the immunofluorescence assays. Indeed, there was something wrong with the previous Lhx5 antibody, Millipore, Cat # AB5762. With the new Lhx5 antibody, consistent with the reported in situ data, the expression of Lhx5 was detected specifically in the CH at E11.5, and in the Cajal-Retzius cells in the marginal zone of the telencephalon. The same Lhx2 antibody, Santa Cruz, Cat # sc-19344, which has been used successfully in one of our previous studies (Tang et al., Development, 2012) (PMID: 22492355), was used in the present study. We believe that the observations at the MP and DP of the samples are really associated with the expression of Lhx2 protein. We performed new immunofluorescence assays with the new Lhx5 antibody and confirmed with the Lhx2 antibody. As shown in new Figure 5B, consistent with the downregulated expression of Lhx5 transcripts in the double mutant, the expression of the Lhx5 protein was reduced in the CH in the double mutants at E11.5; moreover, the numbers of Lhx5-positive Cajal-Retzius cells decreased in the double mutant embryos at E11.5, E13.5 and E14.5 (Figure 5Ba-d, a’-d’, a’’-d’’, i-l, i’-l’, q-t, q’-t’). Consistent with RT-qPCR data, the expression of Lhx2 was comparable between the control and double-mutant mice at E11.5 (Figure 5Be-h, e’-h’). Interestingly, the expression of the Lhx2 protein was increased in the hippocampal primordium in the COUP-TF double-mutant mice at E13.5 and E14.5 (Figure 5Bm-p, m’-p’, u-x, u’-x’). Please find the changed descriptions in Page 15, lines 347-351, 353-358 and Page 21, lines 500-503 in the revised manuscript.

      The reference:

      Tang, K., Rubenstein, J. L., Tsai, S. Y., & Tsai, M. J. (2012). COUP-TFII controls amygdala patterning by regulating neuropilin expression. Development, 139(9), 1630-1639. doi:10.1242/dev.075564

      2) The expression domain of RxCre remains poorly explained, and the early expression of COUPTFI and II (E10.5-E12.5) could be considered major weaknesses of the paper.

      Thanks for the suggestion. The generation of RXCre was reported by Swindell et al., Genesis, 2006 (PMID: 16850473). Given that the activation of the LacZ expression serves as an indicator for the deletion of the COUP-TFII gene (Tang et al., Development, 2012) (PMID: 22492355), we performed the immunofluorescent data with antibodies against COUP-TFII and LacZ on the sagittal sections of RXCre/+; COUP-TFIIF/+ heterozygous mutant and RXCre/+; COUP-TFIIF/F homozygous mice at E11.5. As shown in the new Figure 1—figure supplement 1Da-f, COUP-TFII was readily detected at the hippocampal primordium of the heterozygous mutant embryo at E11.5 (Figure 1—figure supplement 1Da, c, g); in contrast, the expression of COUP-TFII significantly decreased in the homozygous mutant (Figure 1—figure supplement 1Dd, f, j). In addition, compared with the heterozygous mutant embryo, the LacZ signals increased distinctly in the hippocampal primordium of the homozygous mutant embryo at E11.5 (Figure 1—figure supplement 1Db-c, e-f, h, k), suggesting that RXCre recombinase can efficiently excise the COUP-TFII gene in the hippocampal primordium as early as E11.5. Please find the corresponding changes in Page 7, lines 149-159 and Page 8, lines 160-164 in the revised manuscript.

      Meanwhile, we also added the early expression of COUP-TFI and -TFII at E10.5 and E11.5 in new Figure 1—figure supplement 1Aa-d. At embryonic days 10.5 (E10.5), COUP-TFI was detected in the dorsal pallium (DP) laterally and COUP-TFII was expressed in the MP and CH medially (Figure 1—figure supplement 1Aa, b). At E11.5, the expression of COUP-TFII remained in the hippocampal primordium, including MP and CH (Figure 1—figure supplement 1Ac, d). Please find the corresponding changes in Page 6, lines 129-132 and Page 9, lines 202-203 in the revised manuscript.

      The references:

      Swindell, E. C., Bailey, T. J., Loosli, F., Liu, C., Amaya-Manzanares, F., Mahon, K. A., . . . Jamrich, M. (2006). Rx-Cre, a tool for inactivation of gene expression in the developing retina. Genesis, 44(8), 361-363. doi:10.1002/dvg.20225

      Tang, K., Rubenstein, J. L., Tsai, S. Y., & Tsai, M. J. (2012). COUP-TFII controls amygdala patterning by regulating neuropilin expression. Development, 139(9), 1630-1639. doi:10.1242/dev.075564

      Reviewer #3 (Recommendations For The Authors):

      1) Regarding the RxCre line, I was also confused about its spatiotemporal expression, as this line is not a commonly used Cre line and no detailed description is provided in the manuscript. Searching this line shows a previous paper by the authors (PMID: 22492355) in which they tested the RxCre recombinase activity. At E12.5, RxCre induced high LacZ expression in the ventral telencephalon but much less in the dorsal telencephalon. But they did not check later stage. Therefore, it's hard to explain the defective dorsal hippocampus in RxCre, CFI CKO. They should check later stage.

      The generation of RXCre was reported by Swindell et al., Genesis, 2006 (PMID: 16850473), which reveals high Cre recombinase activity of RXCre in the eye and ventral telencephalon. Given that the activation of the LacZ expression serves as an indicator for the deletion of COUP-TFII gene, Tang et al., Development, 2012 (PMID: 22492355), we performed the immunofluorescent data with antibodies against COUP-TFII and LacZ on the sagittal sections of RXCre/+; COUP-TFIIF/+ heterozygous mutant and RXCre/+; COUP-TFIIF/F homozygous mice at E11.5. As shown in new Figure 1—figure supplement 1D, compared with the heterozygous mutant embryo, the expression of COUP-TFII was significantly decreased in the homozygous mutant; in addition, the LacZ signals evidently increased in the hippocampal primordium of the homozygous mutant embryo at E11.5, suggesting that RXCre recombinase can efficiently excise the target gene in the hippocampal primordium as early as E11.5. The expression of COUP-TFI is barely detectable in the early developing hippocampal primordium including MP at E10.5, E11.5 and E12.5. The expression of COUP-TFI is high in the MP of the control (Figure 1Cj, l); in contrast, the COUP-TFI expression is barely detectable in the MP of the homozygous double mutant at E14.5, indicating that RXCre can efficiently delete the COUP-TFI gene in the hippocampal primordium at E14.5. The loss of the COUP-TFI gene in the MP as early as E14.5 by RXCre initiates the defective dorsal hippocampus in RXCre/+; COUP-TFIF/F knockout mice.

      2) Authors should check and review extensively for improvements to the use of English.

      We carefully checked and made changes throughout the manuscript accordingly. For example, “imperative” was used 6 times in the previous manuscript, lines 20, 255, 486, 499, 522, 553; “imperative” was used only once in Page 22, line 522 in the revised manuscript.

      3) Please correct the manuscript; 1-month-old mice are not adult mice.

      Thanks for the suggestion. Based on the suggestion, we have corrected related words and sentences in the manuscript. Please find the amendments in the revised manuscript (Page 7, line 146; Page 9, lines 203-204; Page 10, line 213; Page 13, lines 299-300; Page 17, line 406; Page 20, line 476).

      4) Additional ref should be added at line 93 on page 5.

      Based on the suggestion, we added some new references (Bertacchi et al., EMBO J, 2020) (PMID: 32572460); (Del Pino et al., Cereb Cortex, 2020) (PMID: 32484994); (J. Feng et al., Sci Adv, 2021) (PMID: 34215582) at line 96 on page 5.

      The references:

      Bertacchi, M., Romano, A. L., Loubat, A., Tran Mau-Them, F., Willems, M., Faivre, L., . . . Studer, M. (2020). NR2F1 regulates regional progenitor dynamics in the mouse neocortex and cortical gyrification in BBSOAS patients. Embo j, 39(13), e104163. doi:10.15252/embj.2019104163

      Del Pino, I., Tocco, C., Magrinelli, E., Marcantoni, A., Ferraguto, C., Tomagra, G., . . . Studer, M. (2020). COUP-TFI/Nr2f1 Orchestrates Intrinsic Neuronal Activity during Development of the Somatosensory Cortex. Cereb Cortex, 30(11), 5667-5685. doi:10.1093/cercor/bhaa137

      Feng, J., Hsu, W. H., Patterson, D., Tseng, C. S., Hsing, H. W., Zhuang, Z. H., . . . Chou, S. J. (2021). COUP-TFI specifies the medial entorhinal cortex identity and induces differential cell adhesion to determine the integrity of its boundary with neocortex. Sci Adv, 7(27). doi:10.1126/sciadv.abf6808

      5) I am confused why the authors analyzed 1-month-old mice in some instances but 3-month-old mice in others.

      The RXCre/+; COUP-TFIF/F; COUP-TFIIF/F double mutant mice barely survived beyond postnatal 3 weeks. To make our findings consistent and comparable, we mainly prepared figures with observations on about 1-month-old mice in the RXCre related single or/and double gene mutant mouse models. In the study of the Emx1Cre related COUP-TFI mouse model, due to behavioral tests such as the Morris water maze test, experiments were performed with the adult experimental animal about postnatal 3 months. In order to be consistent with the stage of the mice for the behavioral tests, we only displayed morphological data with observations on the control and Emx1Cre/+; COUP-TFIF/F mutant mice at about postnatal 3-month.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their comments. We have now addressed all the comments in a revised version of the manuscript, which we believe has strengthened our paper.

      1) Introduction LINE 60: the authors cite Funato et al 2016 as the paper first describing a role for SIk3 in sleep regulation. In fact, the role for this kinase was first identified nearly a decade earlier in C. elegans (Van der Linden et al, Genetics 2008 PMID 18832350).

      Thank you for pointing us to this reference. Van der Linden et al. demonstrated that the C. elegans homolog of Sik3 (KIN-29) regulates satiety quiescence, in which worms stop moving following feeding on high quality food. However, as pointed out in Trojanowski and Raizen “Call it Worm Sleep” (2016), not all of the behavioral criteria for sleep has been applied to C. elegans satiety quiescence, and we cannot find any references that unequivocally demonstrate satiety quiescence is a sleep state. As McClanahan et al., (2020) show, quiescent states following mild sensory arousal do not fulfill the sleep criteria of changes in arousal threshold and homeostatic regulation, so not all quiescent states in C. elegans are sleep. Then again Grubbs et al, 2020 does demonstrate that KIN29 regulates both developmentally timed and stress induced sleep states in worms, suggesting that the observations in Van der Linden were ahead of its time and these behavioral states are possibly inter-related. We believe, though, that our line “the roles of… SIK3 kinase in modulating sleep homeostasis in mice (Funato et al. 2016) were identified in genetic screens” remains accurate.

      2) Introduction LINE 71: remove the word "known" from "...while some known human sleep/wake regulators, such as the...")

      Good idea. Done.

      3) I was confused regarding Supplemental data 1 describing the genes they targeted with their forward genetic screen. Am I understanding correctly from the "Summary stats" tab that 702 fish lines with virus insertions were screened behaviorally? In Figure S1, it looks like about 60 are shown in the histograms but in the text (in the Discussion) they say 25 were screened. Were all the genes listed under the Excel tabs (GPCRs, channels, etc) tested? Or was just a subset tested? Where are the sleep data for these lines? Negative results may be relevant to their manuscript since they listed (tested??) a number of ion channel genes under tab "channels" which appear to NOT have a sleep phenotype.

      We apologize for the confusion on these points. As highlighted in the legend to Supplementary Figure S1, we had planned a screening strategy with the following pipeline: Candidate mammalian gene → Zebrafish ortholog → ID viral insertion from “Zenemark” library → grow viral insertion lines from frozen sperm→ phenotype F3 heterozygous and homozygous mutant generation. Unfortunately, the company, Znomics, which held the Zenemark library, could not reliably reconstitute the correct live fish from the sperm library, and of the 702 lines we planned to screen, we could only screen 26 (25 was a typo) lines. We treated heterozygous and homozygous animals for each line independently, for a total of 52 screened lines in the histograms.

      To make this clearer, we have edited the main text as follows (lines 104-105): “For screening, we identified zebrafish sperm samples from the Zenemark collection (Varshney et al., 2013) that harboured viral insertions in genes of interest and used these samples for in vitro fertilization and the establishment of F2 families, which we were able to obtain for 26 lines.” And lines 111-112: “While most screened heterozygous and homozygous lines had minimal effects on sleep-wake behavioural parameters (Figure S1B-S1C),”

      We believe it is important to include the full set of Supplementary Data 1, even though the vast majority of these candidate lines were not tested.

      4) Results LINE 117: remove the word "prominent", which is subjective, from the sentence "...showed a prominent decrease in sleep during the..."

      Good point. Done.

      5) LINES 185-186: did you see any circadian variation in your dmist:GFP protein abundance or localization? Protein trafficking has been described as a mechanism of circadian regulation of excitability.

      For practical reasons, we imaged the membrane localization of Dmist:GFP in plasmidinjected embryos at 90% epiboly, which is about 9 hours after fertilization and when the cells remain large and in a relatively flat epithelium. Thus, we could not follow circadian fluctuations in abundance or localization. For circadian studies, we believe the best method will be to raise an antibody that recognizes Dmist.

      6) LINE 203: does the GFP-tagged Dmist rescue the loss-of-function phenotype? This is relevant to Figure 2E. it is also relevant to the issue of structure-function. If it rescues, then the C-terminus may not be essential to protein function.

      As noted, for practical reasons, we observed Dmist-GFP only transiently at early stages of development, expressed using a strong, ubiquitous promoter. A rescue experiment is a good idea for future experiments, where we carefully control the expression of Dmist in neurons.

      7) LINE 220: explain what you mean by "...consistent with nonsense-mediated decay." and/or give a reference.

      In zebrafish and other species including humans, mutant transcripts that have premature stop codons often undergo “nonsense mediated decay”, whereby the expression levels are largely reduced (Wittkopp et al., 2009). In the zebrafish community, this is often used as secondary evidence of a loss of function mutation, as relatively few antibodies are available to directly observe zebrafish proteins. We have added a reference that describes this phenomenon (Wittkopp et al., 2009).

      8) LINE 225: define "LME model"

      Now reads: “Linear mixed effects (LME).”

      9) LINES 227-229: could the vir/vir phenotype be explained by specific effects on protein structure? could vir/vir be a gain-of-function allele?

      We can’t rule this out formally, and vir/+ animals do show some sleep phenotypes, albeit weaker than those of vir/vir animals (Figure 1G). However, it is not uncommon for heterozygous mutants to show significant phenotypes that are weaker than those of their homozygous mutant siblings, and the strong suppression of dmist expression by the viral insertion (which is located in the dmist intron) is more consistent with a hypomorphic loss-of-function phenotype for the vir allele.

      10) LINES 229-230: I don't quite follow the argument for pursuing further studies only of i8/i8. i8/i8 seems to also be a hypomorphic allele based on your qPCR data.

      First, the dmist viral line was generated by an insertional mutagenesis method followed by sequencing, and each line has multiple other inserts in a background that does not match the background of the other animals reported in this paper. Second, the dmist vir allele is an insertion in the intron, leading to reduced, but not complete loss of expression. In contrast, the i8 allele was generated on the same background strain as our other existing and newly reported lines. Moreover, our i8 line is likely a loss-of-function allele and not a hypomorph. Yes, dmist expression is reduced in the i8 allele; however, this is likely due to nonsense mediated decay of dmist mRNA. The mutation introduces a frameshift in the dmist coding sequence, and as a result the amino acid sequence of the protein is altered after the N-terminal signal sequence.

      11) LINES 241-243: grammar.

      Fixed

      12) LINE 245: define "JackHMMR iterative search"

      We’ve added the phrase: “and seeding a hidden Markov model iterative search (JackHMMR)”

      13) LINE 246 is missing the word "we" prior to "...found distant homology between..."

      Added

      14) LINE 301: show data demonstrating deviation from Mendelian ratios. Also, comment on meaning of such data (embryonic lethality??).

      We have added this data in the line (301):

      “atp1a3b mutant larvae were not obtained at Mendelian ratios (55 wild type [52.5 expected], 142 [105] atp1a3b+/-, 13 [52.5] atp1a3b-/-; p<0.0001, Chi-squared) suggesting some impact on early stages of development leading to lethality.”

      15) Discussion LINES 362-372: This paragraph seems to be of only tangential relevance to the paper. Consider removing.

      Our screening strategy was a large-scale reverse genetic screen, but the number of lines was limited by the technical issues described above. We think it is important to mention that the strategy, if employed today, could benefit from newer technologies.

      16) Discussion. Another model is that Dmist and NaK pump have a developmental effect. Arguing against this developmental model is the Oubain expt.

      This is an important point. We’ve added the line (454:457): “We also cannot exclude a role for Dmist and the Na+/K+ pump in developmental events that impact sleep, although our observation that ouabain treatment, which inhibits the pump acutely after early development is complete, also impacts sleep, argues against a developmental role.”

      17) FIGURE 1G: Are these significance cut offs corrected for multiple comparisons?

      Yes, all the data is corrected for multiple comparisons.

      18) performing neuronal activity measures, either via neural activity imaging or phospho-ERK labeling in different mutants at day or night conditions, to determine whether baseline neuronal activity brain-wide or in specific brain regions are altered.

      These are excellent experiments that we plan to perform in the future.

      19) Please check all Figure numbers for accuracy.

      We have double checked these.

      20) The authors emphasize the role of increased cellular sodium, but equally plausibly, the phenotypes could be due to decreased cellular potassium. The potassium channel shaker has been previously identified as a critical sleep regulator in Drosophila.

      We completely agree. We would like to highlight that we did devote an entire paragraph to the possibility of changes in extracellular potassium in the discussion: “A third possibility is that Dmist and the Na+,K+-ATPase regulate sleep not by modulation of neuronal activity per se but rather via modulation of extracellular ion concentrations. Recent work has demonstrated that interstitial ions fluctuate across the sleep/wake cycle in mice. For example, extracellular K+ is high during wakefulness, and cerebrospinal fluid containing the ion concentrations found during wakefulness directly applied to the brain can locally shift neuronal activity into wake-like states (Ding et al., 2016). Given that the Na+,K+-ATPase actively exchanges Na+ ions for K+ , the high intracellular Na+ levels we observe in atp1a3a and dmist mutants is likely accompanied by high extracellular K+. Although we can only speculate at this time, a model in which extracellular ions that accumulate during wakefulness and then directly signal onto sleep-regulatory neurons could provide a direct link between Na+,K+ ATPase activity, neuronal firing, and sleep homeostasis. Such a model could also explain why disruption of fxyd1 in non-neuronal cells also leads to a reduction in night-time sleep.”

      We also agree that Shaker may be an important component of this sleep regulatory mechanism. Indeed, we previously showed that another potassium channel in zebrafish regulates sleep (Rihel et al., 2010).

      We have emphasized sodium homeostasis in our title and paper only because we were able to directly observe intracellular sodium levels, so we are confident that these have been altered in our mutants. We can only presume that potassium levels have also been altered, but we could not directly observe this.

      21) The similar phenotype between dmist and Fxyd1 in sleep reduction yet very different expression patterns, with dmist being mostly neuronal while fxyd1 being mostly non-neuronal, raise many possible questions: 1) are the sleep phenotypes due to neuronal Na/K imbalance? Or 2) Are the sleep phenotypes due to extracellular Na/K imbalance? Or 3) both? Some feasible experiments may help achieve a better mechanistic understanding of the observed sleep defects.

      Yes, we think these are excellent studies for future work. As noted in the previous point (20), we did discuss the possibility that changes to extracellular potassium might be a parsimonious explanation for the similar phenotypes of fxyd1 and dmist mutants.

      Future experiment suggestions (not required)

      1) Perform a double mutant analysis of fxyd1 and atp1a3a, to determine whether an epistatic relationship similar to that of dmist and atp1a3a is observed in the case of fxyd1 and atp1a3a.

      This is a great experiment that we will do in the future. Unfortunately, the fxyd1 mutant had been sperm frozen during the COVID-19 pandemic, so we cannot do this experiment at this time.

      2) Given the differences in the sleep phenotypes between vir/vir and i8/i8 mutants, would be informative to see the phenotype of the vir/i8 trans-heterozygote.

      This is also a good experiment to perform in the future. Since obtaining the cleaner i8 allele, the dmistvir/vir lines were sperm frozen.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      In this manuscript, the authors investigated the role of Elg1 in the regulation of telomere length. The main role of the Elg1/RLC complex is to unload the processivity factor PCNA, mainly after completion of synthesis of the Okazaki fragment in the lagging strand. They found that Elg1 physically interacts with the CST (Cdc13-Stn1- Ten1) and propose that Elg1 negatively regulates telomere length by mediating the interaction between Cdc13 and Stn1 in a pathway involving SUMOylation of both PCNA and Cdc13. Accumulation of SUMOylated PCNA upon deletion of ELG1 or overexpression of RAD30 leads to elongated telomeres. On the other hand, the interaction of Elg1 with Sten1 is SIM-dependent and occurs concurrently with telomere replication in late S phase. In contrast Elg1-Cdc13 interaction is mediated by PCNA-SUMO, is independent on the SIM of Elg1 but still dependent on Cdc13 SUMOylation. The authors present a model containing two main messages 1) PCNA- SUMO acts as a positive signal for telomerase activation 2) Elg1 promotes Cdc13/Stn1 interaction at the expense of Cdc13/Est1 interaction thus terminating telomerase action.

      The manuscript contains a large amount of data that make a major inroad on a new type of link between telomere replication and regulation of the telomerase. Nevertheless, the detailed choreography of the events as well as the role of PCNA- SUMO remain elusive and the data do not fully explain the role of the Stn1/Elg1 interaction. The data presented do not sufficiently support the claim that SUMO- PCNA is a positive signal for telomerase activation.

      We thank the reviewer for her/his review efforts and opinion. We have re-submitted a new version of the manuscript in which we clarify some of the criticisms presented. In a point-by-point letter we respond to all the specific queries.

      Reviewer #2 (Public Review):

      This paper purports to unveil a mechanism controlling telomere length through SUMO modifications controlling interactions between PCNA unloader Elg1 and the CST complex that functions at telomeres. This is an extremely interesting mechanism to understand, and this paper indeed reveals some interesting genetic results, leading to a compelling model, with potential impact on the field. The conclusions are largely supported by experiments examining protein-protein interactions at low resolution and ambiguous regarding directness of interactions like co-IP and yeast two-hybrid (Y2H) combined with genetics. However, some results appear contradictory and there's a lack of rigor in the experimental data needed to support claims. There is significant room for improvement and this work could certainly attain the quality needed to support the claims. The current version needs substantial revision and lacks the necessary experimental detail. Stronger support for the claims would add detail to help distinguish competing models.

      We thank the reviewer for her/his positive opinion. We have re-submitted a new version of the manuscript in which we clarify some of the criticisms presented by thereferees, and added all the missing experimental details. In a point-by-point letter we respond to all the specific queries.

      Reviewer #3 (Public Review):

      This paper reveals interesting physical connections between Elg1 and CST proteins that suggest a model where Elg1-mediated PCNA unloading is linked to regulation of telomere length extension via Stn1, Cdc13, and presumably Ten1 proteins. Some of these interactions appear to be modulated by sumolyation and connected with Elg1's PCNA unloading activity. The strength of the paper is in the observations of new interactions between CST, Elg1, and PCNA. These interactions should be of interest to a broad audience interested in telomeres and DNA replication.

      We thank the reviewer for her/his positive opinion. We have re-submitted a new version of the manuscript in which we clarify some of the criticisms presented. In a point-by-point letter we respond to all the specific queries.

      What is not well demonstrated from the paper is the functional significance of the interactions described. The model presented by the authors is one interpretation of the data shown, and proposes that the role of sumolyation is temporally regulate the Elg1, PCNA and CST interactions at telomeres. This model makes some assumptions that are not demonstrated by this work (such as Stn1 sumolyation, as noted) and are left for future testing. Alternative models that envision sumolyation as a key in promoting spatial localization could also be proposed based on the data here (as mentioned in the discussion), in addition to or instead of a role for sumolyation in enforcing a series of switches governing a tightly sequenced series of interactions and events at telomeres. Critically, the telomere length data from the paper indicates that the proposed model depicts interactions that are not necessary for telomerase activation or inhibition, as telomeres in pol30-RR strains are normal length and telomeres in elg1∆ strains are not nearly as elongated as in stn1 strains. One possibility mentioned in the paper is the PCNAS and Elg1 interactions are contributing to the negative regulation of telomerase under certain conditions that are not defined in this work. Could it also be possible that the role of these interactions is not primarily directed toward modulating telomerase activity? It will be of interest to learn more about how these interactions and regulation by Sumo function intersect with regulation of telomere extension.

      We present compelling evidence for a role of SUMOylated PCNA in telomere length regulation. Figure 1 shows that this modification is both necessary and sufficient to elongate the telomeres, indicating that PCNA SUMOylation plays a positive role in telomere elongation. The model we present is consistent with all our results. There are, of course, possible alternative models, but they usually fail to explain some of the results. We agree that the fact that pol30-RR presents normal-sized telomeres implies that SUMO-PCNA is not required for telomerase to solve the "end replication problem", but rather is needed for "sustained" activity of telomerase. Since elongated telomeres (by absence of Elg1 or by over-expression of SUMO-PCNA) was the phenotype monitored, this may require sustained telomerase activity. Similar results were seen in the past for Rnr1 (Maicher et al., 2017), and this mode depends on Mec1, rather than Tel1 (Harari and Kupiec, 2018). Telomere length regulation is complex, and we may not yet understand the whole picture. It appears that for normal “end replication problem” solution, very little telomerase activity may be needed, and spontaneous interactions at a low level may suffice. Future work may find the conditions at which telomerase switches from "end replication problem" to "sustained" activity. We have added further explanations on this subject to the Discussion section.

      We suspect, but could not prove, a role for Stn1 SUMOylation in the interactions. SUMOylation is usually transient, and notoriously hard to detect, and despite the fact that many telomeric proteins are SUMOylated, Stn1 SUMOylation could not be shown directly by us and others (Hang et al, 2011).

      Reviewer #1 (Recommendations For The Authors):

      Suggestions for improved or additional experiments, data or analyses.

      • My main concern is the claim that SUMOylated PCNA acts as a positive signal for telomerase activation. Yet the pol30-RR mutant has no impact on telomere length. The explanation of the authors is not entirely convincing.

      We are aware that the regulation of telomere length is complex, and we may not fully understand it yet. Just consider the fact that ~500 genes participate in determining the final telomere length of a yeast (Askree et al., 2004). Since mutation in EACH of these genes has a phenotype, the implication is that the joint action of 500 players determines the outcome (a dialogue of 500 participants). Having said this, we clearly show in figure 1 that mutations that prevent PCNA SUMOylation prevent telomere length elongation in cells lacking Elg1, and overexpressing SUMOylated PCNA is enough to elongate the telomeres. Thus, SUMOylation of PCNA does act as a positive signal for elongation.

      However, it appears that to fulfill the minimal requirement of dealing with the "end- replication problem", PCNA SUMOylation is not required, and only a "sustained activity" mode requires the S-PCNA signal (as we have also shown, surprisingly, for RNR1, Maicher et al. 2017). This sustained activity mode depends on Mec1, rather than Tel1 (Harari and Kupiec, 2018). Since elongated telomeres (by absence of Elg1 or by over-expression of SUMO-PCNA) was the phenotype monitored, this may require sustained telomerase activity. Telomere length regulation is complex, and we may not yet understand the whole picture. It appears that for normal “end replication problem” solution, very little telomerase activity may be needed, and spontaneous interactions at a low level may suffice (for example, unmodified PCNA may promote telomerase activity at a lower level than that of SUMO-PCNA. Future work may find the conditions at which telomerase switches from "end replication problem" to "sustained" activity.

      We have added further explanations on this subject to the Discussion section.

      • The model is entitled « Elg1 negatively regulates the telomere length by forming an interaction with the CST complex ». Nevertheless, expression of PCNA-RR completely reversed the long telomere phenotype of elg1∆ cells. Thus it appears that although the interaction between Stn1 and Cdc13 is reduced in the absence of Elg1, Elg1/Stn1 interaction is not instrumental in the formation of the CST complex and thus in the termination of telomerase activity. Does the elg1∆SIM mutant that does not interact with Stn1 impact telomere length?

      • In the model part (lane 318), it is argued that the complex Elg1-Stn1 unloads SUMOylated PCNA. Elg1-Stn1 interaction depends on the SIM of Elg1. This SIM is however not required for Elg1's function in genome-wide SUMO-PCNA unloading, is it required specifically at telomeres?

      The interactions between Elg1 and SUMOylated PCNA are carried out through both the SIM and the Threonines 386 and 387 (Shemesh et al, 2017). Consistently, the single elg1-SIM mutant has telomeres of normal length, and its effects on telomere length can only be seen when combined with mutations in the Threonines (elg1- TT386/7AA or elg1-TT386/7DD). Although the unloading of SUMOylated PCNA by Elg1 is important, the gene is not essential, and PCNA is either eventually unloaded by RFC, or spontaneously dis-assembles. This explains why the telomere length does not reach the same length in the absence of Elg1 as in the absence of, say, Stn1.

      • The model suggests that Elg1 promotes the interaction between Cdc13 and Stn1. This is based on the data presented in Figure 5 E and F. This is an important result. Because the experiment has been done on cells synchronized in S phase and the Elg1/Stn1 interaction occurs specifically at the end of S-phase, the FACS profile should be shown or a control provided to show that the two conditions are comparable.

      The FACS profile for this experiment is shown in Figure 5C.

      • Does the interaction between Cdc13 and Pol30 depend on the SUMOyaltion of POL30 ?

      Yes. We have added this as new Figure S2, and presented the results together with Figure 3 (Figure 3 is already too crowded).

      Others points :

      • Fig 1 : it should be mentioned in the Materials and Methods or in the figure legend how the average telomere lengths (horizontal bar) were calculated from the teloblot, as the position of the bar is not always intuitive

      We estimate telomere length by using TelQuant (Rubinstein et al., 2014). We have added this to the Methods section.

      -Fig 2 : Owing to the large span of telomere length in the stn1 mutants, the epistatic relationship between elg1∆ and stn1 mutants is poorly illustrated by the teloblot.

      We repeated this experiment several times, and stn1 mutants consistently gave a very spread telomere length. In ALL the blots, however, the double mutants elg1 stn1 showed a telomere length similar to that of the single stn1 mutant, and never longer.

      • It is mentioned that other mutants in the collection showed epistasis. Are any of these mutants related to telomere replication or the proposed model?

      Since we used the collection of non-essential mutants (so far), it was quite devoid of genes involved in DNA replication, which are mostly essential. An exception was siz1, which showed epistasis with elg1Δ.

      • The section entitled « Elg1's functional activity is essential for its interaction with Cdc13 » (lane 205) is difficult to follow. The hierarchy between the different mutants of Elg1 on their capacity to unload PCNA is not totally in agreement with the data published in Itzkovich et al 2023 and Shemesh et al. 2017. In particular it appears to me from these papers that elg1-WalkerA 238 (KK343/4AA) mutant did not show a defect in contrast to elg1-WalkerA 238(KK343/4DD).

      We are sorry for the typo in the results. We used the elg1-WalkerA (KK343/4DD) allele, which has a normal SIM but no activity. In a nutshell, we used mutants that either did or did not show unloading activity and/or SIM. The results clearly show that you need to unload PCNA in order for the N-ter of Elg1 to interact with Cdc13.

      • Are the synchronization done at 30{degree sign}C ?

      Yes. We have added the information to the Methods section.

      • ChIP experiments are not described in the Materials and Methods

      We apologize for this. They are now described.

      • In the figure 6, the PCNA rings are curiously placed at the beginning of the Okasaki fragments.

      We thank the referee for noticing, we have corrected the figure.

      Reviewer #2 (Recommendations For The Authors):

      This paper purports to unveil a mechanism controlling telomere length through SUMO modifications controlling interactions between PCNA unloader Elg1 and the CST complex that functions at telomeres. This is an extremely interesting mechanism to understand, and this paper indeed reveals some interesting genetic results, leading to a compelling model, with potential impact on the field. The conclusions are largely supported by experiments examining protein-protein interactions at low resolution and ambiguous regarding directness of interactions like co-IP and yeast two-hybrid (Y2H) combined with genetics. However, some results appear contradictory and there's a lack of rigor in the experimental data needed to support claims. There is significant room for improvement and this work could certainly attain the quality needed to support the claims. The current version needs substantial revision and lacks necessary experimental detail. Stronger support for the claims would add detail to help distinguish competing models.

      Specific comments:

      Insufficient technical detail: I could find no explanation of how overexpression was achieved. No description of how teloChIP is performed, either for the PCNA IP or how the sequence analysis is performed. Too limited details on growth like exact temperatures for the cell cycle time course.

      We have significantly expanded the Methods section to include all the technical information.

      Please do not bold and underline text for emphasis-EVER

      We have removed those from the text.

      Lines 130-132: they have not shown "accumulation of SUMOylated PCNA" anywhere; this is an inference.

      We have modified the text, it says: ”show that SUMOylated PCNA, and not unmodified or ubiquitinated PCNA, is both necessary and sufficient for telomere elongation in the presence or in the absence of Elg1.”

      Fig 2A Can authors show any other very long-telomere mutant like stn1 that does show enhancement in combination with elg1∆ to show feasibility of such phenotype?

      We don't think it is appropriate for the paper, but we have systematically created double mutants with elg1Δ and found many additive and even synergistic interactions. Here is an example. in Author response image 1, taken from the PhD thesis of Taly Ben-Shitrit, a PhD student in the lab.

      Author response image 1.

      What about cdc13 or ten1? Epistatic?

      We did not test telomere length in combination with Ten1. Combining elg1 with cdc13-50 resulted in synergistic elongation. Given the complex genetic relationship between Stn1/Ten1 and Cdc13, it is hard to interpret this result.

      Seems tenuous to use Y2H to decipher protein-protein interactions occurring out of context (i.e., not at telomere but at reporter gene promoter)

      Y2H is a great method to detect interactions, even if they are transient. Whenever possible, we confirm our findings using co-IP or telo-ChIP.

      Lines 268-270: It would be more accurate to state "can be" instead of "becomes" or "is" as they have not shown that SUMOylation or PCNA unloading have occurred.

      We agree, and have changed the text.

      Cdc13snm protein level?

      Unfortunately our Western blot is not presentable, but the level of Cdc13snm was similar to that of the wt Cdc13, and this result has been already published by Hang et al., 2011.

      Fig S3A: If SUMOylated Cdc13 mediates the Stn1-Elg1 interaction, why is Stn1-Elg1 interaction maintained in cdc13snm strain? This result seems to directly contradict the premise and overall conclusion of this section that Cdc13-SUMO mediates the (Y2H) interaction of Elg1 and Stn1.

      According to our model, the interaction between Stn1 and Elg1 takes place upstream, and only then this complex interacts with SUMOylated Cdc13. Hence, if Cdc13 cannot be SUMOylated, the interaction Elg1-Stn1 is not lost, although Stn1 fails to interact with Cdc13, leading to a telomeric phenotype.

      Line 279: which data establishes Stn1-Elg1 interaction as direct? Fig 2B co-Ip indicates physical but not necessarily direct interaction, but later the authors suggest that the interaction requires a SUMOylated intermediary, and Y2H in Fig. S3B doesn't demonstrate direct interaction.

      We have changed the text, taking out the word "direct".

      Co-Ip shows that interaction of Elg1 with Stn1 occurs mainly during later Sphase and with an overall delay compared to initial Elg1-Pol3 interaction.Co-IP Interaction between Cdc13 and Stn1 is reduced in the absence of Elg1

      The subsection title: "The interaction of Elg1 with Stn1 takes place at telomeres only at late S-phase" is not well supported by the data. I agree the data are consistent with the idea of the interactions occurring at telomeres but there's no direct evidence of this.

      We have changed the subsection title. It now reads: " The interaction of Elg1 with Stn1 takes place only at late S-phase"

      Model: Is unloading happening at the fork? Doesn't PCNA unloading have to follow its loading which occurred behind the fork particularly on the lagging strand? Model now suggest that Stn1 itself is SUMOylated.

      Yes, according to the model Elg1 moves with the fork, unloading PCNA from the lagging strand. Once Elg1 reaches the telomeres, it interacts with Stn1 (Figure 5). This interaction requires SUMOylation of Stn1 or of some other protein, which is not PCNA (Figure 3D) nor Cdc13 (Figure S3A) and could be Stn1 itself or another telomeric protein (Hang et al., 2011)

      Title is rather vague.

      We think it summarizes what we present in the paper.

      Abstract:

      "We report that SUMOylated PCNA acts as a signal that positively regulates telomerase activity."

      I don't think this is supported or a good description of what they find

      Figure 1B clearly shows that SUMO-PCNA is both necessary and sufficient for telomere elongation.

      "and dissected the mechanism by which Elg1 and Stn1 negatively regulates telomere elongation, coordinated by SUMO."

      Again, I don't think this is sufficiently supported and the model invokes SUMOylation events not demonstrated like Stn1, which might be a significant step forward.

      On the positive side, their model makes several predictions that they could test much more directly and rigorously: for example, examining the impact of the relevant mutations in the recruitment of proteins to the telomere.

      We have dissected the mechanism, and future work will be devoted to examining the impact of the relevant mutations in the recruitment of proteins to the telomere.

      Reviewer #3 (Recommendations For The Authors):

      Comments:

      1) The telomere length analysis data presented here is consistent with an interpretation that Stn1 and Elg1 play roles in a similar telomere maintenance pathway because the telomere restriction fragment pattern in the double mutants are not longer than the stn1 single mutants. No comment is made with respect to the yellow bars in Figure 2 that presumably measure telomere length appearing to be slightly shorter than in the stn1 single mutants. It may be interesting and informative if the double mutants do in fact have some phenotype distinct from the single stn1 mutants. Is there an impact on viability in the double mutant?

      Given the variable telomeric phenotype of the single stn1 mutants, slight variations in the measurement of the median telomere size are expected. The difference observed is not likely to be significant. What is important is that the double mutants with elg1 do not show longer telomeres. In terms of fitness, the stn1 mutants grow slightly slowly, but the elg1 mutation does not slow them down further.

      2) It is somewhat surprising that no additional telomere length analysis is included that actually tests the proposed model, including whether this path could be operational only under certain conditions. Maybe this is a topic of the next paper?

      Indeed, future work will explore the conditions under which PCNA SUMOylation is essential, and those under which is only needed.

      3) Were the error bars in Figure 5F determined only from the experiment in E? Does this represent error in measuring the data from one biological replicate? The type of error should be made clear to avoid readers assuming the data represents measurements from more than one sample in more than one experiment. The data would be stronger if it represented measurements from multiple experiments.

      The graph was made with data from three biological replicates. We show the best blot in Figure 5E. We have now stressed this in the Figure Legend.

      4) Why was only one two hybrid reporter shown? Having the multiple reporters can give confidence in interactions. (Not a big deal here given the nice co-IP data.)

      We thought that it is enough to show one reporter, as the results with a different reporter (B-gal assay) led to the same conclusions. since this did not add information and made the paper too lengthy (and boring), we took them out. In any case all data was verified by co-IP.

      5) Line 414 - what are the 32P-radio labeled PCR fragments? Are these solely comprised of TG1-3 repeats of some length? A bit more detail in this aspect of the method could be helpful.

      We have added an explanation on the probe in the Methods section.

      6) Line 432-433 - which anti-HA or anti-My antibodies are these? (very minor detail)

      We have added the details.

    1. Author Response:

      We would like to thank the eLife reviewers for the considerable time and effort they have invested to review these manuscripts. We have also benefited from a previous round of review of the manuscript describing the proposed burial features, which underwent two rounds of revisions in a high-impact journal over a period of approximately 8 months during 2022 and early 2023. Both sets of reviews have reflected mixed responses to the evidence we have presented, with one reviewer recommending acceptance with minor editorial revisions, two recommending acceptance with minor revisions and the fourth recommending rejection based upon similar arguments to those reflected by some of the reviewers in this current round of reviews in eLife. Ultimately the managing editor of this first journal took the decision that the review process could not be completed in a timely manner and rejected the manuscript although the submission here reflected our consideration of these reviewers suggestions.

      We have chosen in this initial response to the eLife reviews to include some references to the previous anonymous reviews in order to illustrate differences of opinion and differences in revision suggestions within the review process. Our goal is to offer maximal insight into our decision-making process and to acknowledge the considerable time and effort put into the assessment of these manuscripts by reviewers (for eLife and in the case of the earlier review process). We hope that this approach will assist the readers, and reviewers, of our manuscripts in understanding why we are proceeding with certain decisions during the revision process.

      This is a new process for us and the reviewers, and one way in which it significantly differs from more traditional review is that both the reviews and our reply will be public well in advance of our revisions to the manuscript. Indeed, considering the scope of the reviews, some of those revisions may take considerable time, although many can be accomplished fairly easily. Thus, we are not in a position to say that we have solved every issue raised by the reviewers. Instead, we will examine what appear to be the key critical issues raised regarding the data and the analyses and how we propose to address these as we revise the papers. We will also address several philosophical and ethical issues raised by the reviews and our proposal for dealing with these. More specific editorial and citational recommendations will be dealt with on a case-by-case basis, and we do not address these point-by-point in this reply. Please note, this response to the reviewers is not the revision of the manuscript and is only the initial opinion of the corresponding authors with some guidance from the larger group of authors of all three papers. Our final submitted revision will reflect the input of all authors included on those submissions.

      We took the decision to submit three separate papers consciously. The two different categories of evidence, burials and engravings, involve different kinds of analysis and different (although overlapping) teams of researchers, and we recognized that each deserved their own presentation and assessment. Meanwhile, together they inform the context of H. naledi in a way that requires some synthetic discussion, in which both kinds of evidence are relevant, leading to a third paper. But the mutual relevance of these different kinds of evidence and their review by a common set of reviewers naturally raises cross-cutting issues, and the reviewers have cross-referenced the three articles. This has sometimes led to suggestions about one manuscript based on the contents of another. Considering the situation, we accepted the recommendation that it would be clearer to consider all three articles in a single reply. Thus, while each of the three papers will proceed separately during the revision process, it will be necessary to highlight across all three papers occasionally in our responses.

      Scientific Issues:

      In reading the reviews, we feel there are 9 critical points/assertions raised by one or more of the reviewers that present a problem for, or challenge to, our hypothesis that the observed evidence (bone accumulations and engravings) described in the Dinaledi subsystem are of intentional naledigenic origin. These are:

      1. The evidence presented does not demonstrate a clear interruption of the floor sediments, thus failing to demonstrate excavated holes.

      2. The sediments infilling the holes where the skeletal remains are found have not been demonstrated to originate from the disruption of the floor sediments and thus could be part of a natural geological process (e.g. water movement, slumping) or carnivore accumulations.

      3. Previous geological interpretations by our research group have given alternative geological explanations for formation of the bony accumulations that contradict the present evidence presented here and result in alternative origins hypotheses.

      4. Burial cannot be effectively assessed without complete excavation of the features and site.

      5. The skeletal remains as presented do not conform clearly to typical body arrangement/positions associated with human (Homo sapiens) burials.

      6. There is no evidence of grave goods or lithic scatters that are typically associated with human burials.

      7. Humans may have been involved with the creation of either the Homo naledi bone accumulations, the engravings, or both.

      8. Without a date of the engravings, the null hypothesis should be the engravings were created by Homo sapiens.

      9. The null hypothesis for explanation of the skeletal remains in this situation should be “natural accumulation”.

      Our analysis of the Dinaledi Feature 1 leads us to accept that the laminated orange-red mudstone (LORM) sedimentary layer is interrupted, indicating a non-natural intervention, and that the hole created by the interruption was then filled by both a fleshed body (and perhaps parts of other bodies) which were then covered by sediment that originated from the hole that was dug. We recognize that the four eLife reviewers are not convinced that our presentation is sufficient to establish this. Interestingly, this was not the universal opinion of earlier reviewers of the initial manuscript several of whom felt we had adequately supported this hypothesis. The lack of clarity in this current version of the burial manuscript is our responsibility. In the upcoming revision of this paper to be submitted, we will take the reviewers’ critiques to heart and add additional figures that illustrate better the disruption of the LORM and clarify the sedimentological data showing the material covering the skeletal remains in the hole are the disrupted sediments excavated from the same hole. We are proposing to isolate this most critical evidence for burial into a separate section in the revised submission based on the reviewers’ comments. The fact that the LORM layer is disrupted, a fleshed body was placed in the hole created by this disruption, and the body (and perhaps parts of other bodies) was/were then covered by the same sediments from the hole is the central feature of our hypothesis that the bone accumulations observed reflect a burial and not a natural process.

      The possibility of fluvial transport or involvement in the subsystem is a topic that we have addressed extensively in past work, and it is clear from these reviews that we must enhance our current manuscript to discuss this issue at greater length. Our previous work (Dirks et al. 2015; Dirks et al. 2017) emphasized that fluvial transport of whole bodies into the subsystem was precluded by several lines of sedimentological evidence. We excavated a rich accumulation of skeletal remains, including articulated limbs and other elements in subvertical orientations inconsistent with slow sedimentary infill, which were difficult to explain without positing either a large and dense pile of bodies and/or sediment movement. We encountered fractured chunks of laminated orange-red mudstone (LORM) in random orientations within our excavation area, within and among skeletal remains, which directly refuted that the remains were inundated with water at the time of burial, and this limited the possibility of fluvial transport. Water flow sufficient to displace bodies or complete skeletal evidence would also transport large and course sediment, which is absent from the subsystem, and would sort the commingled skeletal material that we found by size, which we do not observe. But our excavation only covered less than a square meter at very limited depth, and this was the limit to our knowledge of subsurface sediment. We thus were left with uncertainty that led us to suggest the possibility of sediment slumping or movement into subsurface drains, although these were not observed near our excavation. Our current work expands our knowledge of the subsurface and presents an alternative explanation for the disposition of skeletal remains from our earlier excavation. But we acknowledge that this new explanation is vulnerable to our own previous published proposals, and we must do a better job of explaining how the new information addresses our previous suggestions. By not clearly creating a section where we explained how these previous hypotheses were now nullified by new evidence, we clearly confused the reviewers with our own previous work. We will revise the manuscript by enhancing the review of the significant geological evidence demonstrating that there is no significant fluvial action in the system and making it clear how the burial hypothesis provides a clearer explanation for the situation of skeletal remains from our previous excavation work.

      One of the central issues raised by reviewers has been a perceived need to excavate these features completely, totally exhuming all skeletal remains from them. Reviewers have written that it is necessary to identify every skeletal element that is present and account for any missing elements. On this point, we have both ethical and scientific differences from these reviewers. We express our ethical concerns first. Many of the best-preserved possible burials ever discovered by archaeologists were subjected to total excavation and exhumation. Cases like La Chapelle-aux-Saints, La Ferrassie, and Skhūl were fully excavated at a time when data recording and excavation methods did not include the range of spatial and geomorphological approaches that later became routine. The judgment of early investigators that these situations were intentional burials was challenged by later workers, and the kind of information that might enable better tests had been irrevocably lost (Gargett 1999; Dibble et al. 2015; Rendu et al. 2014).

      Later, improved excavation standards have not sufficed to remove uncertainty or debate about possible burials. For example, it was long presumed that well-preserved remains of young children were by themselves diagnostic of intentional burial, such as those from Dederiyeh, Border Cave, or Roc de Marsal. Such cases were also fully excavated, with adequate documentation of the positioning of skeletal remains and their surrounding stratigraphic situation, but such cases were later challenged on several bases and the complete exhumation of material has confused or precluded testing of new hypotheses (e.g. Gargett 1999). The case of Roc de Marsal is one in which data from the initial excavation combined with data from the initial excavation combined with re-excavation and geoarchaeological analysis led to a naturalistic interpretation of the skeletal material (Sandgathe et al. 2011; Goldberg et al. 2017). But even in this case, the researchers erred in their interpretation of the skeleton’s situation due to a lack of identification of parts of the infant’s skeleton (Gómez-Olivencia and García-Martinez 2019). That is to say, it is not only the burial hypothesis but other hypotheses that suffer from complete excavation. Researchers concerned with preserving all possible information have sometimes taken extraordinary measures to remove and study possible burials at high-resolution in the laboratory. Such was the case of the Shanidar IV burial removed from the site and transported in plaster jacket by Solecki, which led to the disruption and loss of internal stratigraphic information (Pomeroy et al. 2020). Arguably, the current state of the art is full excavation with partial preparation, such as that undertaken at Panga ya Saidi (Martinón-Torres et al. 2021). But again, any future attempt to reinterpret or test the hypothesis of burial must rely on the adequacy of documentation as the original context has been removed.

      In our decision to leave material in place as much as possible, we are expanding upon standard practice to leave witness sections and unexcavated areas for future research. The situation is novel, representing possible burials by a nonhuman species, and that makes it doubly important in our opinion to be conservative in not fully exhuming the skeletal material from its context. We anticipate that many other researchers, including future investigators, will suggest additional methods to further test the hypothesis of burial, something that would be impossible if we had excavated the features in their entirety prior to publishing a description of our work. We believe strongly that our ethical responsibility is to publish the work and the most likely interpretation while leaving as much evidence in place as possible to enable further testing and replication. We welcome the suggestions of additional methods/analyses to test the H. naledi burial hypothesis.

      This being said, we also observe that total exhumation would not resolve the concerns raised by the reviewers. The recommendation of total exhumation is in pursuit of a full account of all skeletal material present and its preservation and spatial situation, in order to demonstrate that they conform to body positions comparable to human burials. As has been highlighted in forensic casework, the excavation of an inhumation feature does not necessarily provide an accurate spatial or anatomical manifest of the stratigraphical relationships between the body, encapsulating matrix, and any cut present due to preservational, taphonomic and operational factors (Dirkmaat and Cabo, 2016; Hunter, 2014). In particular, in cases where skeletal elements are highly fragmented, friable, or degraded (such as through bioerosion) then complete excavation—even under controlled laboratory conditions—may destroy bone and severely limit skeletal identification (Henderson, 1997; Hochrein, 2002; Owsley and Compton, 1997), particularly in elements where the ratio of trabecular to cortical bone is high (Darwent and Lyman, 2002; Lyman, 1994). As such, non-invasive methods of 3D and 4D modelling (preservation in situ) are often considered preferable to complete necropsy or excavation (preservation by record) where appropriate (Bolliger and Thali, 2009; Dell’Unto and Landeschi, 2022; Randolph-Quinney et al., 2018; Silver, 2016). 

      The test of burial is not primarily positional, but taphonomic and geological. The position and number of bones can elaborate on process-driven questions of decay and destruction in the burial environment, or post-mortem modification, but are not singularly indicative of whether the remains were intentionally buried – the post-mortem narrative of all the processes affecting the cadaveric island is required (Knüsel and Robb, 2016). In previous cases, researchers have disputed or accepted the hypothesis of intentional hominin burial based upon assumptions about how modern humans or Neandertals would have positioned bodies, with the idea that some positions reflect ritual intent while others do not. But applying such assumptions is unjustifiable, particularly for a species like H. naledi, whose culture may have differed fundamentally from our own. Our work acknowledges that the present evidence does not enable a full reconstruction of the burial positions, but it does show that fleshed remains were encased in sediment prior to decomposition of soft tissue, and that subsequent spatial changes can be most parsimoniously explained by natural decomposition within sedimentary matrix contained within a burial feature (after Green, 2022; Mickleburgh and Wescott, 2018; Mickleburgh et al., 2022). If the argument is that extraordinary claims require extraordinary evidence, we feel that the evidence documents excavation and interment (and will do so more clearly in the revision) and the fact of the remains do not match a “typical” human burial in body positioning is not in itself evidence that these are not H. naledi burials.

      We feel that the reviewers (in keeping with many palaeoanthropologists) have a clear idea of what they “think” a burial should look like in an idealised sense, but this platonic ideal of burial form is not matched by the extensive literature in archaeothanatology, funerary archaeology and forensic science which indicates enormous variability in the activity, morphology and post-mortem system experienced by the human body in cases of interment and body disposal (e.g. Aspöck, 2008; Boulestin and Duday, 2005 and 2006; Connelly et al., 2005; Channing and Randolph-Quinney, 2006; Cherryson, 2008; Donnelly et al., 1995; Finley, 2000; Hunter, 2014; Parker Pearson, 1999; Randolph-Quinney, 2013). Decades of experience in the identification, recovery and interpretation of clandestine, deviant, and non-formal burials indicates the platonic ideal is rare, and in many contexts, the exception (Cherryson, 2008; Parker Pearson, 1999). This variability is particularly relevant to morphological traits in burial context, such as the informal nature of the grave cut in plan and section, shallow burial depth, and initial disposition of body (placement) during the early post-mortem period. These might run counter to the expectations of reviewers or others referencing the fossil hominin record, but are well accepted within the communities of researchers investigating Holocene archaeological sites and forensic contexts.

      It is encouraging to see reviewers beginning to incorporate the extensive (often experimentally derived) literature from archaeothanatology and forensic taphonomy in their deliberations, and we will be taking these comments on board going forward. In particular, we acknowledge reviewers’ comments and the need to construct a more detailed post-mortem narrative, accounting for joint disarticulation (labile versus persistent joints etc), displacement, and final disposition of elements within the burial space. As such we will incorporate the hierarchy of decomposition (rank order disarticulation), associations between regions of anatomical association, areas of disassociation, and the voids produced during decomposition (after Mickleburgh and Wescott, 2018; Mickleburgh et al., 2022) into our narrative. In doing so we acknowledge the tensions between the inductive archaeolothanatological narrative-driven approach (e.g. Duday, 2005 & 2009) versus robust decomposition data derived from human forensic taphonomic experimentation recently articulated by Schotsmans and colleagues (2022) - noting that we will highlight comparative data based on forensic experimental casework and actualistic modelling over inductive intuitive approaches which come with significant evidential shortcomings (Bristow et al. 2011).

      Finally, from a taphonomic perspective it is worth pointing out to reviewers that we have already addressed the issue of lack of taphonomic evidence for carnivore involvement in the formation of the Dinaledi assemblage (Dirks, et al., 2016). Absence of any carnivore-induced bone surface modifications, patterns of skeletal part representation, and a total absence of any carnivore remains found within the Dinaledi chamber (following Kuhn and colleagues, 2010) lead us to reject carnivores as possible vectors of body accumulation within the Dinaledi Chamber and Hill Antechamber.

      Reviewers suggest that without a date derived from geochronological methods, the engravings cannot be associated with H. naledi, and that it is possible (or probable) that the engravings were done in the recent past by H. sapiens. This suggestion neglects the context of the site. We have previously documented the structure and extremely limited accessibility of the Dinaledi subsystem. This subsystem was not recorded on maps of the documented Rising Star Cave system prior to our work and its discovery by our teams. Furthermore, there is no evidence of prehistoric human activity in the areas of the cave related to possible subterranean entrances There is no evidence that humans in the past typically ventured into such extreme spaces like those of Rising Star. It is clear from the presence of the remains of many individuals that H. naledi ventured into these spaces again and again. It is likely that H. naledi moved through these spaces more easily than humans do based on their physique. We show that the engravings overlay each other suggesting multiple engraving events.  These engravings took time and effort and the only evidence for use of the Dinaledi subsystem by any hominin is by H. naledi. The context leads to the null hypothesis that H. naledi made the marks. In our revision, we will elaborate on this argument to clarify the evidence for our stance on this hypothesis. Several reviewers took issue with the title of the engraving paper as we did not insert a qualifier in front of the suggested date range for the engravings. We deliberately left out qualifying language so that the title took the form of a testable hypothesis rather than a weak assertation. Should future work find the engravings were not produced within this time range, then we will restate this hypothesis.

      Finally, with regards to the engravings we have chosen to report them because they exist. Not reporting the presence of engraved marks on the walls of a cave above hypothesized burials would be tantamount to leaving relevant evidence out of the description of an archeological context. We recognize and state in our manuscript that these markings require substantial further study, including attempts at geochronological dating. But the current evidence is clearly relevant to the archaeological context of the subsystem. We take a similar stance with reporting the presence of the tool shaped artefact near the hand of the H. naledi skeleton in the Hill Antechamber. It is evident that this object requires further study, as we stated in our manuscript, but again omitting it from our study would be leaving out relevant evidence.

      Some have suggested that the null hypothesis should be that all of these observed circumstances are of natural origin. Our team took this approach in our early investigation of the Dinaledi subsystem (Dirks et al. 2015). We adopted the null hypothesis that the geological processes involved in the accumulation of H. naledi skeletal remains were “natural” (e.g., non-naledigenic involvement), and we were able to reject many alternative explanations for the assemblage, including carnivore accumulation, “death trap” accumulation, and fluvial transport of bodies or bones (Dirks et al. 2015). This led us to the hypothesis that H. naledi were involved in bringing the bodies into the spaces where they were found. But we did not hypothesize their involvement in the formation of the deposit itself beyond bringing the bodies to the location.

      This approach seems conservative. It followed the traditional view that small-brained hominins do not engage in cultural practices. But we recognize in hindsight that this null hypothesis approach did harm to our analyses. It impeded us from recognizing within our initial excavations of the puzzle box area and other excavations between 2014 – 2017 that we might be encountering remains that were intrusive in the sedimentary floor of the chamber. If we had approached the accumulation of a large number of hominins from the perspective of the null hypothesis being that the situation was likely cultural, we perhaps would have collected evidence in a slightly different manner. We certainly note that if the Dinaledi system had been full of the remains of modern humans, there would have been little doubt that the null hypothesis would have been that this was a cultural space and not a “natural space”.  We therefore respectfully disagree with the reviewers who continue to support the idea that we should approach hominin excavations with the null hypothesis that they will be natural (specifically non-cultural) in origins. If excavations continue with this mindset we believe that potential cultural evidence is almost certain to be lost.

      There has been a gradient across paleoanthropological excavations, archaeological work, and forensic investigation, with increasing precision of context. The reality is that the recording precision and frame of approach is typically different in most paleontological excavations than in those related to contemporary human remains. If anything comes from the present discussion of whether the Dinaledi system is a burial site for H. naledi or not, we hope that by taking seriously the possibility of deep cultural dynamics of hominins, we will encourage other teams to meet the highest standards of excavation in order to preserve potential cultural evidence. Given H. naledi’s cranial capacity we suggest that even very early hominin skeletal assemblages should be re-examined, if there is sufficient evidence or records available.  These would include examples such as the A.L. 333 Au. afarensis site (the so called First Family site in Hadar Ethiopia), the Dikika infant skeleton, WT 15000 (Turkana Boy) and even A.L. 288 (Lucy) as such unusual taphonomic situations where skeletons are preserved cannot be simply explained away as “natural” in origin, based solely on the cranial capacity and assumed lack of cognitive and cultural complexity of the hominins as emphasized by us in Fuentes et al. (2023). We are not the first to observe that some very early hominin situations may represent early mortuary activity (Pettitt 2013), but we would advocate a step further. We suggest it may be damaging to take “natural accumulation” as the standard null hypothesis for hominin paleoanthropology, and that it is more conservative in practice to engage remains with the null hypothesis of possible cultural formation.

      We are deeply grateful for the time and effort all of the 8 reviewers (across three reviews) have taken with this work.  We also acknowledge the anonymous reviewers from previous submissions who’s opinions and comments will have made the final iterations of these manuscripts better for their efforts. As this process is rather public and includes commentary outside of the eLife forum, we ask that the efforts of all 37 authors and 8 reviewers involved be respected and that the discourse remain professional in all venues as we study this fascinating and quite complex occurrence. We appreciate also the efforts of members of the public who have engaged with this relatively new process where preprints are posted prior to the reviews allowing comments and interactions from colleagues and the public who are normally not part of the internal peer review process.  We believe these interactions will make for better final papers. We feel we have met the standards of demonstrating burials in H. naledi and that the engraving are most likely associated with H. naledi. However, given the reviews we see many areas where our clarity and context, and analyses, were less strong than they can be. With the clarifications and additions taken on board through these review processes the final papers will be stronger and clearer. We, recognize that this is an ongoing process of scientific investigation and further work will allow continued, and possibly better, evaluation of these hypothesis and others.

      Lee R Berger, Agustín Fuentes, John Hawks, Tebogo Makhubela

      Works cited:

      • Aspöck, E. (2008). What Actually is a ‘Deviant Burial’?: Comparing German-Language and Anglophone Research on ‘Deviant Burials.’ In E. M. Murphy (Ed.). Deviant Burial in the Archaeological Record. Oxford: Oxbow Books.  pp 17–34.

      • Bolliger, S.A. & Thali, M.J. (2009). Thanatology. In S.A. Bolliger and M.J. Thali (eds) Virtopsy Approach:  3D Optical and Radiological Scanning and Reconstruction in Forensic Medicine. Boca Raton: CRC Press. pp 187-218.

      • Boulestin, B. & Duday, H. (2005). Ethnologie et archéologie de la mort: de l’illusion des références à l’emploi d’un vocabulaire. In: C. Mordant and G. Depierre (eds) Les Pratiques Funéraires à l’Âge du Bronze en France. Actes de la table ronde de Sens-en-Bourgogne. Paris: Éditions du Comité des Travaux Historiques et Scientifiques. pp. 17–30.

      • Boulestin, B. & Duday, H. (2006). Ethnology and archaeology of death: from the illusion of references to the use of a terminology. Archaeologia Polona 44: 149–169.

      • Bristow, J., Simms, Z. & Randolph-Quinney, P.S. Taphonomy. In S. Black and E. Ferguson (eds.) Forensic Anthropology 2000-2010. Boca Raton, FL: CRC Press. pp 279-318.

      • Channing, J. & Randolph-Quinney, P.S. (2006). Death, decay and reconstruction: the archaeology of Ballykilmore Cemetery, County Westmeath. In J. O’Sullivan and M. Stanley (eds.) Settlement, Industry and Ritual: Archaeology. National Roads Authority Monograph Series No. 3. Dublin: NRA/Four Courts Press. pp 113-126.

      • Cherryson, A. K. (2008). Normal, Deviant and Atypical: Burial Variation in Late Saxon Wessex, c. AD 700–1100. In E. M. Murphy (Ed.). Deviant Burial in the Archaeological Record. Oxford: Oxbow Books. pp 115–130.

      • Connolly, M., F. Coyne & L. G. Lynch (2005). Underworld : Death and Burial in Cloghermore Cave, Co. Kerry. Bray, Co. Wicklow: Wordwell.

      • Darwent, C. M. & R. L. Lyman (2002). Detecting  the postburial fragmentation of carpals, tarsals and phalanges. In M. H. Sorg and W. D. Haglund (eds). Advances in Forensic Taphonomy: Method, Theory and Archeological Perspectives. Boca Raton, FL, CRC Press. pp 355-378.

      • d’Errico, F., & Backwell, L. (2016). Earliest evidence of personal ornaments associated with burial: The Conus shells from Border Cave. Journal of Human Evolution, 93, 91–108.

      • De Villiers. H. (1973). Human skeletal remains from Border Cave, Ingwavuma District, KwaZulu, South Africa. Annals of the Transvaal Museum, 28(13), 229–246.

      • Dell’Unto, N. and Landeschi, G. (2022). Archaeological 3D GIS. London: Routledge.

      • Dibble, H. L., Aldeias, V., Goldberg, P., McPherron, S. P., Sandgathe, D., & Steele, T. E. (2015). A critical look at evidence from La Chapelle-aux-Saints supporting an intentional Neandertal burial. Journal of Archaeological Science, 53, 649–657.

      • Dirkmaat, D. C., & Cabo, L. L. (2016). Forensic archaeology and forensic taphonomy: basic considerations on how to properly process and interpret the outdoor forensic scene_. Academic Forensic Pathology_ 6, 439–454.

      • Dirks, P. H., Berger, L. R., Roberts, E. M., Kramers, J. D., Hawks, J., Randolph-Quinney, P. S., Elliott, M., Musiba, C. M., Churchill, S. E., de Ruiter, D. J., Schmid, P., Backwell, L. R., Belyanin, G. A., Boshoff, P., Hunter, K. L., Feuerriegel, E. M., Gurtov, A., Harrison, J. du G., Hunter, R., … Tucker, S. (2015). Geological and taphonomic context for the new hominin species Homo naledi from the Dinaledi Chamber, South Africa. ELife, 4, e09561.

      • Dirks, P.H.G.M., Berger, L.R., Hawks, J., Randolph-Quinney, P.S., Backwell, L.R., and Roberts, E.M. (2016). Comment on “Deliberate body disposal by hominins in the Dinaledi Chamber, Cradle of Humankind, South Africa?” [J. Hum. Evol. 96 (2016) 145-148]. Journal of Human Evolution 96:  149-153.

      • Dirks, P. H., Roberts, E. M., Hilbert-Wolf, H., Kramers, J. D., Hawks, J., Dosseto, A., Duval, M., Elliott, M., Evans, M., Grün, R., Hellstrom, J., Herries, A. I., Joannes-Boyau, R., Makhubela, T. V., Placzek, C. J., Robbins, J., Spandler, C., Wiersma, J., Woodhead, J., & Berger, L. R. (2017). The age of Homo naledi and associated sediments in the Rising Star Cave, South Africa. ELife, 6, e24231.

      • Donnelly, S., C. Donnelly & E. Murphy (1999). The forgotten dead: The cíllíní and disused burial grounds of Ballintoy, County Antrim. Ulster Journal of Archaeology 58, 109-113.

      • Duday, H. (2005). L’archéothanatologie ou l’archéologie de la mort. In: O. Dutour, J.-J. Hublin and B. Vandermeersch (eds) Objets et Méthodes en Paléoanthropologie. Paris: Comité des Travaux Historiques et Scientifiques. pp. 153–215.

      • Duday, H. (2009). Archaeology of the Dead: Lectures in Archaeothanatology. Oxford: Oxbow Books.

      • Finley, N. (2000). Outside of life: Traditions of infant burial in Ireland from cillin to cist.  World Archaeology 31, 407-422.

      • Gargett, R. H. (1999). Middle Palaeolithic burial is not a dead issue: The view from Qafzeh, Saint-Césaire, Kebara, Amud, and Dederiyeh. Journal of Human Evolution, 37(1), 27–90.

      • Goldberg, P., Aldeias, V., Dibble, H., McPherron, S., Sandgathe, D., & Turq, A. (2017). Testing the Roc de Marsal Neandertal “Burial” with Geoarchaeology. Archaeological and Anthropological Sciences, 9(6), 1005–1015.

      • Gómez-Olivencia, A., & García-Martínez, D. (2019). New postcranial remains from the Roc de Marsal Neandertal child. PALEO. Revue d’archéologie Préhistorique, 30–1, 30–1.

      • Green, E.C. (2022). An archaeothanatological approach to the identification of late Anglo-Saxon burials in wooden containers. In C.J. Knüsel and E.M.J. Schotsmans (eds.) The Routledge Handbook of Archaeothanatology. London: Routledge. pp 436-455.

      • Henderson, J. (1987). Factors determining the state of preservation of human remains. In A. Boddington, A. Garland and R. Janaway (eds). Death, Decay and Reconstruction: Approaches to Archaeology and Forensic Science. Manchester: Manchester University Press. pp 43-54.

      • Hunter, J. R. (2014). Human remains recovery: archaeological and forensic perspectives. In C. Smith (ed). Encyclopedia of Global Archaeology. New York: Springer New York. pp 3549-3556.

      • Hochrein, M. (2002). An Autopsy of the Grave: Recognizing, Collecting and Preserving Forensic Geotaphonomic Evidence. In M. H. Sorg and W. D. Haglund (eds). Advances in Forensic Taphonomy: Method, Theory and Archeological Perspectives. Boca Raton, FL, CRC Press: 45-70.

      • Knüsel, C.K. & Robb, J. (2016). Funerary taphonomy: An overview of goals and methods. Journal of Archaeological Science: Reports 10, 655-673.

      • Kuhn, B.F., Berger, L.R. & Skinner, J.D. (2010). Examining criteria for identifying and differentiating fossil faunal assemblages accumulated by hyenas and hominins using extant hyenid accumulations. International Journal of Osteoarchaeology 20, 15-35.

      • Lyman, R. (1994). Vertebrate Taphonomy. Cambridge, Cambridge University Press.

      • Martinón-Torres, M., d’Errico, F., Santos, E., Álvaro Gallo, A., Amano, N., Archer, W., Armitage, S. J., Arsuaga, J. L., Bermúdez de Castro, J. M., Blinkhorn, J., Crowther, A., Douka, K., Dubernet, S., Faulkner, P., Fernández-Colón, P., Kourampas, N., González García, J., Larreina, D., Le Bourdonnec, F.-X., … Petraglia, M. D. (2021). Earliest known human burial in Africa. Nature, 593(7857), 7857.

      • Mickleburgh, H.L & Wescott, D.J. (2018). Controlled experimental observations on joint disarticulation and bone displacement of a human body in an open pit: implications for funerary archaeology. Journal of Archaeological Science: Reports 20: 158-167.

      • Mickleburgh, H.L., Wescott, D.J., Gluschitz, S. & Klinkenberg, V.M. (2022). Exploring the use of actualistic forensic taphonomy in the study of (forensic) archaeological human burials: An actualistic experimental research programme at the Forensic Anthropology Center at Texas State University (FACTS), San Marcos, Texas. In C.J. Knüsel and E.M.J. Schotsmans (eds.) The Routledge Handbook of Archaeothanatology. London: Routledge. pp 542-562.

      • Owsley, D. & B. Compton (1997). Preservation in late 19th Century iron coffin burials. In W. Haglund and M. Sorg (eds). Forensic Taphonomy: The Postmortem Fate of Human Remains. Boca Raton, FL, CRC Press: 511-526.

      • Parker Pearson, M. (1999). The Archaeology of Death and Burial. College Station: Texas A&M University Press.

      • Pettitt, P. (2013). The Palaeolithic Origins of Human Burial. Routledge.

      • Pomeroy, E., Bennett, P., Hunt, C. O., Reynolds, T., Farr, L., Frouin, M., Holman, J., Lane, R., French, C., & Barker, G. (2020). New Neanderthal remains associated with the ‘flower burial’ at Shanidar Cave. Antiquity, 94(373), 11–26.

      • Randolph-Quinney, P.S. (2013). From the cradle to the grave: the bioarchaeology of Clonfad 3 and Ballykilmore 6. In N. Brady, P. Stevens and J. Channing (eds.). Settlement and Community in the Fir Tulach Kingdom. Dublin: National Roads Authority Press. pp A2.1-48.

      • Randolph-Quinney, P.S., Haines, S. and Kruger, A. (2018). The use of three-dimensional scanning and surface capture methods in recording forensic taphonomic traces: issues of technology, visualisation, and validation. In: W.J. M. Groen and P. M. Barone (eds). Multidisciplinary Approaches to Forensic Archaeology. Berlin: Springer International Publishing, pp. 115-130.

      • Rendu, W., Beauval, C., Crevecoeur, I., Bayle, P., Balzeau, A., Bismuth, T., Bourguignon, L., Delfour, G., Faivre, J.-P., Lacrampe-Cuyaubère, F., Tavormina, C., Todisco, D., Turq, A., & Maureille, B. (2014). Evidence supporting an intentional Neandertal burial at La Chapelle-aux-Saints. Proceedings of the National Academy of Sciences, 111(1), 81–86.

      • Sandgathe, D. M., Dibble, H. L., Goldberg, P., & McPherron, S. P. (2011). The Roc de Marsal Neandertal child: A reassessment of its status as a deliberate burial. Journal of Human Evolution, 61(3), 243–253.

      • Silver, M. (2016). Conservation Techniques in Cultural Heritage. In E. Stylianidis and F. Remondino (eds) 3D Recording, Documentation and Management of Cultural Heritage. Dunbeath: Whittles Publishing. pp 15-106.

      • Schotsmans, E.M.J., Georges-Zimmermann, P., Ueland, M. and Dent, B.B. (2022). From flesh to bone: Building bridges between taphonomy, archaeothanatology and forensic science for a better understanding of mortuary practices. In C.J. Knüsel and E.M.J. Schotsmans (eds.) The Routledge Handbook of Archaeothanatology. London: Routledge. pp 501-541.

    1. Author Response:

      We would like to thank the eLife reviewers for the considerable time and effort they have invested to review these manuscripts. We have also benefited from a previous round of review of the manuscript describing the proposed burial features, which underwent two rounds of revisions in a high-impact journal over a period of approximately 8 months during 2022 and early 2023. Both sets of reviews have reflected mixed responses to the evidence we have presented, with one reviewer recommending acceptance with minor editorial revisions, two recommending acceptance with minor revisions and the fourth recommending rejection based upon similar arguments to those reflected by some of the reviewers in this current round of reviews in eLife. Ultimately the managing editor of this first journal took the decision that the review process could not be completed in a timely manner and rejected the manuscript although the submission here reflected our consideration of these reviewers suggestions.

      We have chosen in this initial response to the eLife reviews to include some references to the previous anonymous reviews in order to illustrate differences of opinion and differences in revision suggestions within the review process. Our goal is to offer maximal insight into our decision-making process and to acknowledge the considerable time and effort put into the assessment of these manuscripts by reviewers (for eLife and in the case of the earlier review process). We hope that this approach will assist the readers, and reviewers, of our manuscripts in understanding why we are proceeding with certain decisions during the revision process.

      This is a new process for us and the reviewers, and one way in which it significantly differs from more traditional review is that both the reviews and our reply will be public well in advance of our revisions to the manuscript. Indeed, considering the scope of the reviews, some of those revisions may take considerable time, although many can be accomplished fairly easily. Thus, we are not in a position to say that we have solved every issue raised by the reviewers. Instead, we will examine what appear to be the key critical issues raised regarding the data and the analyses and how we propose to address these as we revise the papers. We will also address several philosophical and ethical issues raised by the reviews and our proposal for dealing with these. More specific editorial and citational recommendations will be dealt with on a case-by-case basis, and we do not address these point-by-point in this reply. Please note, this response to the reviewers is not the revision of the manuscript and is only the initial opinion of the corresponding authors with some guidance from the larger group of authors of all three papers. Our final submitted revision will reflect the input of all authors included on those submissions.

      We took the decision to submit three separate papers consciously. The two different categories of evidence, burials and engravings, involve different kinds of analysis and different (although overlapping) teams of researchers, and we recognized that each deserved their own presentation and assessment. Meanwhile, together they inform the context of H. naledi in a way that requires some synthetic discussion, in which both kinds of evidence are relevant, leading to a third paper. But the mutual relevance of these different kinds of evidence and their review by a common set of reviewers naturally raises cross-cutting issues, and the reviewers have cross-referenced the three articles. This has sometimes led to suggestions about one manuscript based on the contents of another. Considering the situation, we accepted the recommendation that it would be clearer to consider all three articles in a single reply. Thus, while each of the three papers will proceed separately during the revision process, it will be necessary to highlight across all three papers occasionally in our responses.

      Scientific Issues:

      In reading the reviews, we feel there are 9 critical points/assertions raised by one or more of the reviewers that present a problem for, or challenge to, our hypothesis that the observed evidence (bone accumulations and engravings) described in the Dinaledi subsystem are of intentional naledigenic origin. These are:

      1. The evidence presented does not demonstrate a clear interruption of the floor sediments, thus failing to demonstrate excavated holes.

      2. The sediments infilling the holes where the skeletal remains are found have not been demonstrated to originate from the disruption of the floor sediments and thus could be part of a natural geological process (e.g. water movement, slumping) or carnivore accumulations.

      3. Previous geological interpretations by our research group have given alternative geological explanations for formation of the bony accumulations that contradict the present evidence presented here and result in alternative origins hypotheses.

      4. Burial cannot be effectively assessed without complete excavation of the features and site.

      5. The skeletal remains as presented do not conform clearly to typical body arrangement/positions associated with human (Homo sapiens) burials.

      6. There is no evidence of grave goods or lithic scatters that are typically associated with human burials.

      7. Humans may have been involved with the creation of either the Homo naledi bone accumulations, the engravings, or both.

      8. Without a date of the engravings, the null hypothesis should be the engravings were created by Homo sapiens.

      9. The null hypothesis for explanation of the skeletal remains in this situation should be “natural accumulation”.

      Our analysis of the Dinaledi Feature 1 leads us to accept that the laminated orange-red mudstone (LORM) sedimentary layer is interrupted, indicating a non-natural intervention, and that the hole created by the interruption was then filled by both a fleshed body (and perhaps parts of other bodies) which were then covered by sediment that originated from the hole that was dug. We recognize that the four eLife reviewers are not convinced that our presentation is sufficient to establish this. Interestingly, this was not the universal opinion of earlier reviewers of the initial manuscript several of whom felt we had adequately supported this hypothesis. The lack of clarity in this current version of the burial manuscript is our responsibility. In the upcoming revision of this paper to be submitted, we will take the reviewers’ critiques to heart and add additional figures that illustrate better the disruption of the LORM and clarify the sedimentological data showing the material covering the skeletal remains in the hole are the disrupted sediments excavated from the same hole. We are proposing to isolate this most critical evidence for burial into a separate section in the revised submission based on the reviewers’ comments. The fact that the LORM layer is disrupted, a fleshed body was placed in the hole created by this disruption, and the body (and perhaps parts of other bodies) was/were then covered by the same sediments from the hole is the central feature of our hypothesis that the bone accumulations observed reflect a burial and not a natural process.

      The possibility of fluvial transport or involvement in the subsystem is a topic that we have addressed extensively in past work, and it is clear from these reviews that we must enhance our current manuscript to discuss this issue at greater length. Our previous work (Dirks et al. 2015; Dirks et al. 2017) emphasized that fluvial transport of whole bodies into the subsystem was precluded by several lines of sedimentological evidence. We excavated a rich accumulation of skeletal remains, including articulated limbs and other elements in subvertical orientations inconsistent with slow sedimentary infill, which were difficult to explain without positing either a large and dense pile of bodies and/or sediment movement. We encountered fractured chunks of laminated orange-red mudstone (LORM) in random orientations within our excavation area, within and among skeletal remains, which directly refuted that the remains were inundated with water at the time of burial, and this limited the possibility of fluvial transport. Water flow sufficient to displace bodies or complete skeletal evidence would also transport large and course sediment, which is absent from the subsystem, and would sort the commingled skeletal material that we found by size, which we do not observe. But our excavation only covered less than a square meter at very limited depth, and this was the limit to our knowledge of subsurface sediment. We thus were left with uncertainty that led us to suggest the possibility of sediment slumping or movement into subsurface drains, although these were not observed near our excavation. Our current work expands our knowledge of the subsurface and presents an alternative explanation for the disposition of skeletal remains from our earlier excavation. But we acknowledge that this new explanation is vulnerable to our own previous published proposals, and we must do a better job of explaining how the new information addresses our previous suggestions. By not clearly creating a section where we explained how these previous hypotheses were now nullified by new evidence, we clearly confused the reviewers with our own previous work. We will revise the manuscript by enhancing the review of the significant geological evidence demonstrating that there is no significant fluvial action in the system and making it clear how the burial hypothesis provides a clearer explanation for the situation of skeletal remains from our previous excavation work.

      One of the central issues raised by reviewers has been a perceived need to excavate these features completely, totally exhuming all skeletal remains from them. Reviewers have written that it is necessary to identify every skeletal element that is present and account for any missing elements. On this point, we have both ethical and scientific differences from these reviewers. We express our ethical concerns first. Many of the best-preserved possible burials ever discovered by archaeologists were subjected to total excavation and exhumation. Cases like La Chapelle-aux-Saints, La Ferrassie, and Skhūl were fully excavated at a time when data recording and excavation methods did not include the range of spatial and geomorphological approaches that later became routine. The judgment of early investigators that these situations were intentional burials was challenged by later workers, and the kind of information that might enable better tests had been irrevocably lost (Gargett 1999; Dibble et al. 2015; Rendu et al. 2014).

      Later, improved excavation standards have not sufficed to remove uncertainty or debate about possible burials. For example, it was long presumed that well-preserved remains of young children were by themselves diagnostic of intentional burial, such as those from Dederiyeh, Border Cave, or Roc de Marsal. Such cases were also fully excavated, with adequate documentation of the positioning of skeletal remains and their surrounding stratigraphic situation, but such cases were later challenged on several bases and the complete exhumation of material has confused or precluded testing of new hypotheses (e.g. Gargett 1999). The case of Roc de Marsal is one in which data from the initial excavation combined with data from the initial excavation combined with re-excavation and geoarchaeological analysis led to a naturalistic interpretation of the skeletal material (Sandgathe et al. 2011; Goldberg et al. 2017). But even in this case, the researchers erred in their interpretation of the skeleton’s situation due to a lack of identification of parts of the infant’s skeleton (Gómez-Olivencia and García-Martinez 2019). That is to say, it is not only the burial hypothesis but other hypotheses that suffer from complete excavation. Researchers concerned with preserving all possible information have sometimes taken extraordinary measures to remove and study possible burials at high-resolution in the laboratory. Such was the case of the Shanidar IV burial removed from the site and transported in plaster jacket by Solecki, which led to the disruption and loss of internal stratigraphic information (Pomeroy et al. 2020). Arguably, the current state of the art is full excavation with partial preparation, such as that undertaken at Panga ya Saidi (Martinón-Torres et al. 2021). But again, any future attempt to reinterpret or test the hypothesis of burial must rely on the adequacy of documentation as the original context has been removed.

      In our decision to leave material in place as much as possible, we are expanding upon standard practice to leave witness sections and unexcavated areas for future research. The situation is novel, representing possible burials by a nonhuman species, and that makes it doubly important in our opinion to be conservative in not fully exhuming the skeletal material from its context. We anticipate that many other researchers, including future investigators, will suggest additional methods to further test the hypothesis of burial, something that would be impossible if we had excavated the features in their entirety prior to publishing a description of our work. We believe strongly that our ethical responsibility is to publish the work and the most likely interpretation while leaving as much evidence in place as possible to enable further testing and replication. We welcome the suggestions of additional methods/analyses to test the H. naledi burial hypothesis.

      This being said, we also observe that total exhumation would not resolve the concerns raised by the reviewers. The recommendation of total exhumation is in pursuit of a full account of all skeletal material present and its preservation and spatial situation, in order to demonstrate that they conform to body positions comparable to human burials. As has been highlighted in forensic casework, the excavation of an inhumation feature does not necessarily provide an accurate spatial or anatomical manifest of the stratigraphical relationships between the body, encapsulating matrix, and any cut present due to preservational, taphonomic and operational factors (Dirkmaat and Cabo, 2016; Hunter, 2014). In particular, in cases where skeletal elements are highly fragmented, friable, or degraded (such as through bioerosion) then complete excavation—even under controlled laboratory conditions—may destroy bone and severely limit skeletal identification (Henderson, 1997; Hochrein, 2002; Owsley and Compton, 1997), particularly in elements where the ratio of trabecular to cortical bone is high (Darwent and Lyman, 2002; Lyman, 1994). As such, non-invasive methods of 3D and 4D modelling (preservation in situ) are often considered preferable to complete necropsy or excavation (preservation by record) where appropriate (Bolliger and Thali, 2009; Dell’Unto and Landeschi, 2022; Randolph-Quinney et al., 2018; Silver, 2016). 

      The test of burial is not primarily positional, but taphonomic and geological. The position and number of bones can elaborate on process-driven questions of decay and destruction in the burial environment, or post-mortem modification, but are not singularly indicative of whether the remains were intentionally buried – the post-mortem narrative of all the processes affecting the cadaveric island is required (Knüsel and Robb, 2016). In previous cases, researchers have disputed or accepted the hypothesis of intentional hominin burial based upon assumptions about how modern humans or Neandertals would have positioned bodies, with the idea that some positions reflect ritual intent while others do not. But applying such assumptions is unjustifiable, particularly for a species like H. naledi, whose culture may have differed fundamentally from our own. Our work acknowledges that the present evidence does not enable a full reconstruction of the burial positions, but it does show that fleshed remains were encased in sediment prior to decomposition of soft tissue, and that subsequent spatial changes can be most parsimoniously explained by natural decomposition within sedimentary matrix contained within a burial feature (after Green, 2022; Mickleburgh and Wescott, 2018; Mickleburgh et al., 2022). If the argument is that extraordinary claims require extraordinary evidence, we feel that the evidence documents excavation and interment (and will do so more clearly in the revision) and the fact of the remains do not match a “typical” human burial in body positioning is not in itself evidence that these are not H. naledi burials.

      We feel that the reviewers (in keeping with many palaeoanthropologists) have a clear idea of what they “think” a burial should look like in an idealised sense, but this platonic ideal of burial form is not matched by the extensive literature in archaeothanatology, funerary archaeology and forensic science which indicates enormous variability in the activity, morphology and post-mortem system experienced by the human body in cases of interment and body disposal (e.g. Aspöck, 2008; Boulestin and Duday, 2005 and 2006; Connelly et al., 2005; Channing and Randolph-Quinney, 2006; Cherryson, 2008; Donnelly et al., 1995; Finley, 2000; Hunter, 2014; Parker Pearson, 1999; Randolph-Quinney, 2013). Decades of experience in the identification, recovery and interpretation of clandestine, deviant, and non-formal burials indicates the platonic ideal is rare, and in many contexts, the exception (Cherryson, 2008; Parker Pearson, 1999). This variability is particularly relevant to morphological traits in burial context, such as the informal nature of the grave cut in plan and section, shallow burial depth, and initial disposition of body (placement) during the early post-mortem period. These might run counter to the expectations of reviewers or others referencing the fossil hominin record, but are well accepted within the communities of researchers investigating Holocene archaeological sites and forensic contexts.

      It is encouraging to see reviewers beginning to incorporate the extensive (often experimentally derived) literature from archaeothanatology and forensic taphonomy in their deliberations, and we will be taking these comments on board going forward. In particular, we acknowledge reviewers’ comments and the need to construct a more detailed post-mortem narrative, accounting for joint disarticulation (labile versus persistent joints etc), displacement, and final disposition of elements within the burial space. As such we will incorporate the hierarchy of decomposition (rank order disarticulation), associations between regions of anatomical association, areas of disassociation, and the voids produced during decomposition (after Mickleburgh and Wescott, 2018; Mickleburgh et al., 2022) into our narrative. In doing so we acknowledge the tensions between the inductive archaeolothanatological narrative-driven approach (e.g. Duday, 2005 & 2009) versus robust decomposition data derived from human forensic taphonomic experimentation recently articulated by Schotsmans and colleagues (2022) - noting that we will highlight comparative data based on forensic experimental casework and actualistic modelling over inductive intuitive approaches which come with significant evidential shortcomings (Bristow et al. 2011).

      Finally, from a taphonomic perspective it is worth pointing out to reviewers that we have already addressed the issue of lack of taphonomic evidence for carnivore involvement in the formation of the Dinaledi assemblage (Dirks, et al., 2016). Absence of any carnivore-induced bone surface modifications, patterns of skeletal part representation, and a total absence of any carnivore remains found within the Dinaledi chamber (following Kuhn and colleagues, 2010) lead us to reject carnivores as possible vectors of body accumulation within the Dinaledi Chamber and Hill Antechamber.

      Reviewers suggest that without a date derived from geochronological methods, the engravings cannot be associated with H. naledi, and that it is possible (or probable) that the engravings were done in the recent past by H. sapiens. This suggestion neglects the context of the site. We have previously documented the structure and extremely limited accessibility of the Dinaledi subsystem. This subsystem was not recorded on maps of the documented Rising Star Cave system prior to our work and its discovery by our teams. Furthermore, there is no evidence of prehistoric human activity in the areas of the cave related to possible subterranean entrances There is no evidence that humans in the past typically ventured into such extreme spaces like those of Rising Star. It is clear from the presence of the remains of many individuals that H. naledi ventured into these spaces again and again. It is likely that H. naledi moved through these spaces more easily than humans do based on their physique. We show that the engravings overlay each other suggesting multiple engraving events.  These engravings took time and effort and the only evidence for use of the Dinaledi subsystem by any hominin is by H. naledi. The context leads to the null hypothesis that H. naledi made the marks. In our revision, we will elaborate on this argument to clarify the evidence for our stance on this hypothesis. Several reviewers took issue with the title of the engraving paper as we did not insert a qualifier in front of the suggested date range for the engravings. We deliberately left out qualifying language so that the title took the form of a testable hypothesis rather than a weak assertation. Should future work find the engravings were not produced within this time range, then we will restate this hypothesis.

      Finally, with regards to the engravings we have chosen to report them because they exist. Not reporting the presence of engraved marks on the walls of a cave above hypothesized burials would be tantamount to leaving relevant evidence out of the description of an archeological context. We recognize and state in our manuscript that these markings require substantial further study, including attempts at geochronological dating. But the current evidence is clearly relevant to the archaeological context of the subsystem. We take a similar stance with reporting the presence of the tool shaped artefact near the hand of the H. naledi skeleton in the Hill Antechamber. It is evident that this object requires further study, as we stated in our manuscript, but again omitting it from our study would be leaving out relevant evidence.

      Some have suggested that the null hypothesis should be that all of these observed circumstances are of natural origin. Our team took this approach in our early investigation of the Dinaledi subsystem (Dirks et al. 2015). We adopted the null hypothesis that the geological processes involved in the accumulation of H. naledi skeletal remains were “natural” (e.g., non-naledigenic involvement), and we were able to reject many alternative explanations for the assemblage, including carnivore accumulation, “death trap” accumulation, and fluvial transport of bodies or bones (Dirks et al. 2015). This led us to the hypothesis that H. naledi were involved in bringing the bodies into the spaces where they were found. But we did not hypothesize their involvement in the formation of the deposit itself beyond bringing the bodies to the location.

      This approach seems conservative. It followed the traditional view that small-brained hominins do not engage in cultural practices. But we recognize in hindsight that this null hypothesis approach did harm to our analyses. It impeded us from recognizing within our initial excavations of the puzzle box area and other excavations between 2014 – 2017 that we might be encountering remains that were intrusive in the sedimentary floor of the chamber. If we had approached the accumulation of a large number of hominins from the perspective of the null hypothesis being that the situation was likely cultural, we perhaps would have collected evidence in a slightly different manner. We certainly note that if the Dinaledi system had been full of the remains of modern humans, there would have been little doubt that the null hypothesis would have been that this was a cultural space and not a “natural space”.  We therefore respectfully disagree with the reviewers who continue to support the idea that we should approach hominin excavations with the null hypothesis that they will be natural (specifically non-cultural) in origins. If excavations continue with this mindset we believe that potential cultural evidence is almost certain to be lost.

      There has been a gradient across paleoanthropological excavations, archaeological work, and forensic investigation, with increasing precision of context. The reality is that the recording precision and frame of approach is typically different in most paleontological excavations than in those related to contemporary human remains. If anything comes from the present discussion of whether the Dinaledi system is a burial site for H. naledi or not, we hope that by taking seriously the possibility of deep cultural dynamics of hominins, we will encourage other teams to meet the highest standards of excavation in order to preserve potential cultural evidence. Given H. naledi’s cranial capacity we suggest that even very early hominin skeletal assemblages should be re-examined, if there is sufficient evidence or records available.  These would include examples such as the A.L. 333 Au. afarensis site (the so called First Family site in Hadar Ethiopia), the Dikika infant skeleton, WT 15000 (Turkana Boy) and even A.L. 288 (Lucy) as such unusual taphonomic situations where skeletons are preserved cannot be simply explained away as “natural” in origin, based solely on the cranial capacity and assumed lack of cognitive and cultural complexity of the hominins as emphasized by us in Fuentes et al. (2023). We are not the first to observe that some very early hominin situations may represent early mortuary activity (Pettitt 2013), but we would advocate a step further. We suggest it may be damaging to take “natural accumulation” as the standard null hypothesis for hominin paleoanthropology, and that it is more conservative in practice to engage remains with the null hypothesis of possible cultural formation.

      We are deeply grateful for the time and effort all of the 8 reviewers (across three reviews) have taken with this work.  We also acknowledge the anonymous reviewers from previous submissions who’s opinions and comments will have made the final iterations of these manuscripts better for their efforts. As this process is rather public and includes commentary outside of the eLife forum, we ask that the efforts of all 37 authors and 8 reviewers involved be respected and that the discourse remain professional in all venues as we study this fascinating and quite complex occurrence. We appreciate also the efforts of members of the public who have engaged with this relatively new process where preprints are posted prior to the reviews allowing comments and interactions from colleagues and the public who are normally not part of the internal peer review process.  We believe these interactions will make for better final papers. We feel we have met the standards of demonstrating burials in H. naledi and that the engraving are most likely associated with H. naledi. However, given the reviews we see many areas where our clarity and context, and analyses, were less strong than they can be. With the clarifications and additions taken on board through these review processes the final papers will be stronger and clearer. We, recognize that this is an ongoing process of scientific investigation and further work will allow continued, and possibly better, evaluation of these hypothesis and others.

      Lee R Berger, Agustín Fuentes, John Hawks, Tebogo Makhubela

      Works cited:

      • Aspöck, E. (2008). What Actually is a ‘Deviant Burial’?: Comparing German-Language and Anglophone Research on ‘Deviant Burials.’ In E. M. Murphy (Ed.). Deviant Burial in the Archaeological Record. Oxford: Oxbow Books.  pp 17–34.

      • Bolliger, S.A. & Thali, M.J. (2009). Thanatology. In S.A. Bolliger and M.J. Thali (eds) Virtopsy Approach:  3D Optical and Radiological Scanning and Reconstruction in Forensic Medicine. Boca Raton: CRC Press. pp 187-218.

      • Boulestin, B. & Duday, H. (2005). Ethnologie et archéologie de la mort: de l’illusion des références à l’emploi d’un vocabulaire. In: C. Mordant and G. Depierre (eds) Les Pratiques Funéraires à l’Âge du Bronze en France. Actes de la table ronde de Sens-en-Bourgogne. Paris: Éditions du Comité des Travaux Historiques et Scientifiques. pp. 17–30.

      • Boulestin, B. & Duday, H. (2006). Ethnology and archaeology of death: from the illusion of references to the use of a terminology. Archaeologia Polona 44: 149–169.

      • Bristow, J., Simms, Z. & Randolph-Quinney, P.S. Taphonomy. In S. Black and E. Ferguson (eds.) Forensic Anthropology 2000-2010. Boca Raton, FL: CRC Press. pp 279-318.

      • Channing, J. & Randolph-Quinney, P.S. (2006). Death, decay and reconstruction: the archaeology of Ballykilmore Cemetery, County Westmeath. In J. O’Sullivan and M. Stanley (eds.) Settlement, Industry and Ritual: Archaeology. National Roads Authority Monograph Series No. 3. Dublin: NRA/Four Courts Press. pp 113-126.

      • Cherryson, A. K. (2008). Normal, Deviant and Atypical: Burial Variation in Late Saxon Wessex, c. AD 700–1100. In E. M. Murphy (Ed.). Deviant Burial in the Archaeological Record. Oxford: Oxbow Books. pp 115–130.

      • Connolly, M., F. Coyne & L. G. Lynch (2005). Underworld : Death and Burial in Cloghermore Cave, Co. Kerry. Bray, Co. Wicklow: Wordwell.

      • Darwent, C. M. & R. L. Lyman (2002). Detecting  the postburial fragmentation of carpals, tarsals and phalanges. In M. H. Sorg and W. D. Haglund (eds). Advances in Forensic Taphonomy: Method, Theory and Archeological Perspectives. Boca Raton, FL, CRC Press. pp 355-378.

      • d’Errico, F., & Backwell, L. (2016). Earliest evidence of personal ornaments associated with burial: The Conus shells from Border Cave. Journal of Human Evolution, 93, 91–108.

      • De Villiers. H. (1973). Human skeletal remains from Border Cave, Ingwavuma District, KwaZulu, South Africa. Annals of the Transvaal Museum, 28(13), 229–246.

      • Dell’Unto, N. and Landeschi, G. (2022). Archaeological 3D GIS. London: Routledge.

      • Dibble, H. L., Aldeias, V., Goldberg, P., McPherron, S. P., Sandgathe, D., & Steele, T. E. (2015). A critical look at evidence from La Chapelle-aux-Saints supporting an intentional Neandertal burial. Journal of Archaeological Science, 53, 649–657.

      • Dirkmaat, D. C., & Cabo, L. L. (2016). Forensic archaeology and forensic taphonomy: basic considerations on how to properly process and interpret the outdoor forensic scene_. Academic Forensic Pathology_ 6, 439–454.

      • Dirks, P. H., Berger, L. R., Roberts, E. M., Kramers, J. D., Hawks, J., Randolph-Quinney, P. S., Elliott, M., Musiba, C. M., Churchill, S. E., de Ruiter, D. J., Schmid, P., Backwell, L. R., Belyanin, G. A., Boshoff, P., Hunter, K. L., Feuerriegel, E. M., Gurtov, A., Harrison, J. du G., Hunter, R., … Tucker, S. (2015). Geological and taphonomic context for the new hominin species Homo naledi from the Dinaledi Chamber, South Africa. ELife, 4, e09561.

      • Dirks, P.H.G.M., Berger, L.R., Hawks, J., Randolph-Quinney, P.S., Backwell, L.R., and Roberts, E.M. (2016). Comment on “Deliberate body disposal by hominins in the Dinaledi Chamber, Cradle of Humankind, South Africa?” [J. Hum. Evol. 96 (2016) 145-148]. Journal of Human Evolution 96:  149-153.

      • Dirks, P. H., Roberts, E. M., Hilbert-Wolf, H., Kramers, J. D., Hawks, J., Dosseto, A., Duval, M., Elliott, M., Evans, M., Grün, R., Hellstrom, J., Herries, A. I., Joannes-Boyau, R., Makhubela, T. V., Placzek, C. J., Robbins, J., Spandler, C., Wiersma, J., Woodhead, J., & Berger, L. R. (2017). The age of Homo naledi and associated sediments in the Rising Star Cave, South Africa. ELife, 6, e24231.

      • Donnelly, S., C. Donnelly & E. Murphy (1999). The forgotten dead: The cíllíní and disused burial grounds of Ballintoy, County Antrim. Ulster Journal of Archaeology 58, 109-113.

      • Duday, H. (2005). L’archéothanatologie ou l’archéologie de la mort. In: O. Dutour, J.-J. Hublin and B. Vandermeersch (eds) Objets et Méthodes en Paléoanthropologie. Paris: Comité des Travaux Historiques et Scientifiques. pp. 153–215.

      • Duday, H. (2009). Archaeology of the Dead: Lectures in Archaeothanatology. Oxford: Oxbow Books.

      • Finley, N. (2000). Outside of life: Traditions of infant burial in Ireland from cillin to cist.  World Archaeology 31, 407-422.

      • Gargett, R. H. (1999). Middle Palaeolithic burial is not a dead issue: The view from Qafzeh, Saint-Césaire, Kebara, Amud, and Dederiyeh. Journal of Human Evolution, 37(1), 27–90.

      • Goldberg, P., Aldeias, V., Dibble, H., McPherron, S., Sandgathe, D., & Turq, A. (2017). Testing the Roc de Marsal Neandertal “Burial” with Geoarchaeology. Archaeological and Anthropological Sciences, 9(6), 1005–1015.

      • Gómez-Olivencia, A., & García-Martínez, D. (2019). New postcranial remains from the Roc de Marsal Neandertal child. PALEO. Revue d’archéologie Préhistorique, 30–1, 30–1.

      • Green, E.C. (2022). An archaeothanatological approach to the identification of late Anglo-Saxon burials in wooden containers. In C.J. Knüsel and E.M.J. Schotsmans (eds.) The Routledge Handbook of Archaeothanatology. London: Routledge. pp 436-455.

      • Henderson, J. (1987). Factors determining the state of preservation of human remains. In A. Boddington, A. Garland and R. Janaway (eds). Death, Decay and Reconstruction: Approaches to Archaeology and Forensic Science. Manchester: Manchester University Press. pp 43-54.

      • Hunter, J. R. (2014). Human remains recovery: archaeological and forensic perspectives. In C. Smith (ed). Encyclopedia of Global Archaeology. New York: Springer New York. pp 3549-3556.

      • Hochrein, M. (2002). An Autopsy of the Grave: Recognizing, Collecting and Preserving Forensic Geotaphonomic Evidence. In M. H. Sorg and W. D. Haglund (eds). Advances in Forensic Taphonomy: Method, Theory and Archeological Perspectives. Boca Raton, FL, CRC Press: 45-70.

      • Knüsel, C.K. & Robb, J. (2016). Funerary taphonomy: An overview of goals and methods. Journal of Archaeological Science: Reports 10, 655-673.

      • Kuhn, B.F., Berger, L.R. & Skinner, J.D. (2010). Examining criteria for identifying and differentiating fossil faunal assemblages accumulated by hyenas and hominins using extant hyenid accumulations. International Journal of Osteoarchaeology 20, 15-35.

      • Lyman, R. (1994). Vertebrate Taphonomy. Cambridge, Cambridge University Press.

      • Martinón-Torres, M., d’Errico, F., Santos, E., Álvaro Gallo, A., Amano, N., Archer, W., Armitage, S. J., Arsuaga, J. L., Bermúdez de Castro, J. M., Blinkhorn, J., Crowther, A., Douka, K., Dubernet, S., Faulkner, P., Fernández-Colón, P., Kourampas, N., González García, J., Larreina, D., Le Bourdonnec, F.-X., … Petraglia, M. D. (2021). Earliest known human burial in Africa. Nature, 593(7857), 7857.

      • Mickleburgh, H.L & Wescott, D.J. (2018). Controlled experimental observations on joint disarticulation and bone displacement of a human body in an open pit: implications for funerary archaeology. Journal of Archaeological Science: Reports 20: 158-167.

      • Mickleburgh, H.L., Wescott, D.J., Gluschitz, S. & Klinkenberg, V.M. (2022). Exploring the use of actualistic forensic taphonomy in the study of (forensic) archaeological human burials: An actualistic experimental research programme at the Forensic Anthropology Center at Texas State University (FACTS), San Marcos, Texas. In C.J. Knüsel and E.M.J. Schotsmans (eds.) The Routledge Handbook of Archaeothanatology. London: Routledge. pp 542-562.

      • Owsley, D. & B. Compton (1997). Preservation in late 19th Century iron coffin burials. In W. Haglund and M. Sorg (eds). Forensic Taphonomy: The Postmortem Fate of Human Remains. Boca Raton, FL, CRC Press: 511-526.

      • Parker Pearson, M. (1999). The Archaeology of Death and Burial. College Station: Texas A&M University Press.

      • Pettitt, P. (2013). The Palaeolithic Origins of Human Burial. Routledge.

      • Pomeroy, E., Bennett, P., Hunt, C. O., Reynolds, T., Farr, L., Frouin, M., Holman, J., Lane, R., French, C., & Barker, G. (2020). New Neanderthal remains associated with the ‘flower burial’ at Shanidar Cave. Antiquity, 94(373), 11–26.

      • Randolph-Quinney, P.S. (2013). From the cradle to the grave: the bioarchaeology of Clonfad 3 and Ballykilmore 6. In N. Brady, P. Stevens and J. Channing (eds.). Settlement and Community in the Fir Tulach Kingdom. Dublin: National Roads Authority Press. pp A2.1-48.

      • Randolph-Quinney, P.S., Haines, S. and Kruger, A. (2018). The use of three-dimensional scanning and surface capture methods in recording forensic taphonomic traces: issues of technology, visualisation, and validation. In: W.J. M. Groen and P. M. Barone (eds). Multidisciplinary Approaches to Forensic Archaeology. Berlin: Springer International Publishing, pp. 115-130.

      • Rendu, W., Beauval, C., Crevecoeur, I., Bayle, P., Balzeau, A., Bismuth, T., Bourguignon, L., Delfour, G., Faivre, J.-P., Lacrampe-Cuyaubère, F., Tavormina, C., Todisco, D., Turq, A., & Maureille, B. (2014). Evidence supporting an intentional Neandertal burial at La Chapelle-aux-Saints. Proceedings of the National Academy of Sciences, 111(1), 81–86.

      • Sandgathe, D. M., Dibble, H. L., Goldberg, P., & McPherron, S. P. (2011). The Roc de Marsal Neandertal child: A reassessment of its status as a deliberate burial. Journal of Human Evolution, 61(3), 243–253.

      • Silver, M. (2016). Conservation Techniques in Cultural Heritage. In E. Stylianidis and F. Remondino (eds) 3D Recording, Documentation and Management of Cultural Heritage. Dunbeath: Whittles Publishing. pp 15-106.

      • Schotsmans, E.M.J., Georges-Zimmermann, P., Ueland, M. and Dent, B.B. (2022). From flesh to bone: Building bridges between taphonomy, archaeothanatology and forensic science for a better understanding of mortuary practices. In C.J. Knüsel and E.M.J. Schotsmans (eds.) The Routledge Handbook of Archaeothanatology. London: Routledge. pp 501-541.

    1. Author Response:

      We would like to thank the eLife reviewers for the considerable time and effort they have invested to review these manuscripts. We have also benefited from a previous round of review of the manuscript describing the proposed burial features, which underwent two rounds of revisions in a high-impact journal over a period of approximately 8 months during 2022 and early 2023. Both sets of reviews have reflected mixed responses to the evidence we have presented, with one reviewer recommending acceptance with minor editorial revisions, two recommending acceptance with minor revisions and the fourth recommending rejection based upon similar arguments to those reflected by some of the reviewers in this current round of reviews in eLife. Ultimately the managing editor of this first journal took the decision that the review process could not be completed in a timely manner and rejected the manuscript although the submission here reflected our consideration of these reviewers suggestions.

      We have chosen in this initial response to the eLife reviews to include some references to the previous anonymous reviews in order to illustrate differences of opinion and differences in revision suggestions within the review process. Our goal is to offer maximal insight into our decision-making process and to acknowledge the considerable time and effort put into the assessment of these manuscripts by reviewers (for eLife and in the case of the earlier review process). We hope that this approach will assist the readers, and reviewers, of our manuscripts in understanding why we are proceeding with certain decisions during the revision process.

      This is a new process for us and the reviewers, and one way in which it significantly differs from more traditional review is that both the reviews and our reply will be public well in advance of our revisions to the manuscript. Indeed, considering the scope of the reviews, some of those revisions may take considerable time, although many can be accomplished fairly easily. Thus, we are not in a position to say that we have solved every issue raised by the reviewers. Instead, we will examine what appear to be the key critical issues raised regarding the data and the analyses and how we propose to address these as we revise the papers. We will also address several philosophical and ethical issues raised by the reviews and our proposal for dealing with these. More specific editorial and citational recommendations will be dealt with on a case-by-case basis, and we do not address these point-by-point in this reply. Please note, this response to the reviewers is not the revision of the manuscript and is only the initial opinion of the corresponding authors with some guidance from the larger group of authors of all three papers. Our final submitted revision will reflect the input of all authors included on those submissions.

      We took the decision to submit three separate papers consciously. The two different categories of evidence, burials and engravings, involve different kinds of analysis and different (although overlapping) teams of researchers, and we recognized that each deserved their own presentation and assessment. Meanwhile, together they inform the context of H. naledi in a way that requires some synthetic discussion, in which both kinds of evidence are relevant, leading to a third paper. But the mutual relevance of these different kinds of evidence and their review by a common set of reviewers naturally raises cross-cutting issues, and the reviewers have cross-referenced the three articles. This has sometimes led to suggestions about one manuscript based on the contents of another. Considering the situation, we accepted the recommendation that it would be clearer to consider all three articles in a single reply. Thus, while each of the three papers will proceed separately during the revision process, it will be necessary to highlight across all three papers occasionally in our responses.

      Scientific Issues:

      In reading the reviews, we feel there are 9 critical points/assertions raised by one or more of the reviewers that present a problem for, or challenge to, our hypothesis that the observed evidence (bone accumulations and engravings) described in the Dinaledi subsystem are of intentional naledigenic origin. These are:

      1. The evidence presented does not demonstrate a clear interruption of the floor sediments, thus failing to demonstrate excavated holes.

      2. The sediments infilling the holes where the skeletal remains are found have not been demonstrated to originate from the disruption of the floor sediments and thus could be part of a natural geological process (e.g. water movement, slumping) or carnivore accumulations.

      3. Previous geological interpretations by our research group have given alternative geological explanations for formation of the bony accumulations that contradict the present evidence presented here and result in alternative origins hypotheses.

      4. Burial cannot be effectively assessed without complete excavation of the features and site.

      5. The skeletal remains as presented do not conform clearly to typical body arrangement/positions associated with human (Homo sapiens) burials.

      6. There is no evidence of grave goods or lithic scatters that are typically associated with human burials.

      7. Humans may have been involved with the creation of either the Homo naledi bone accumulations, the engravings, or both.

      8. Without a date of the engravings, the null hypothesis should be the engravings were created by Homo sapiens.

      9. The null hypothesis for explanation of the skeletal remains in this situation should be “natural accumulation”.

      Our analysis of the Dinaledi Feature 1 leads us to accept that the laminated orange-red mudstone (LORM) sedimentary layer is interrupted, indicating a non-natural intervention, and that the hole created by the interruption was then filled by both a fleshed body (and perhaps parts of other bodies) which were then covered by sediment that originated from the hole that was dug. We recognize that the four eLife reviewers are not convinced that our presentation is sufficient to establish this. Interestingly, this was not the universal opinion of earlier reviewers of the initial manuscript several of whom felt we had adequately supported this hypothesis. The lack of clarity in this current version of the burial manuscript is our responsibility. In the upcoming revision of this paper to be submitted, we will take the reviewers’ critiques to heart and add additional figures that illustrate better the disruption of the LORM and clarify the sedimentological data showing the material covering the skeletal remains in the hole are the disrupted sediments excavated from the same hole. We are proposing to isolate this most critical evidence for burial into a separate section in the revised submission based on the reviewers’ comments. The fact that the LORM layer is disrupted, a fleshed body was placed in the hole created by this disruption, and the body (and perhaps parts of other bodies) was/were then covered by the same sediments from the hole is the central feature of our hypothesis that the bone accumulations observed reflect a burial and not a natural process.

      The possibility of fluvial transport or involvement in the subsystem is a topic that we have addressed extensively in past work, and it is clear from these reviews that we must enhance our current manuscript to discuss this issue at greater length. Our previous work (Dirks et al. 2015; Dirks et al. 2017) emphasized that fluvial transport of whole bodies into the subsystem was precluded by several lines of sedimentological evidence. We excavated a rich accumulation of skeletal remains, including articulated limbs and other elements in subvertical orientations inconsistent with slow sedimentary infill, which were difficult to explain without positing either a large and dense pile of bodies and/or sediment movement. We encountered fractured chunks of laminated orange-red mudstone (LORM) in random orientations within our excavation area, within and among skeletal remains, which directly refuted that the remains were inundated with water at the time of burial, and this limited the possibility of fluvial transport. Water flow sufficient to displace bodies or complete skeletal evidence would also transport large and course sediment, which is absent from the subsystem, and would sort the commingled skeletal material that we found by size, which we do not observe. But our excavation only covered less than a square meter at very limited depth, and this was the limit to our knowledge of subsurface sediment. We thus were left with uncertainty that led us to suggest the possibility of sediment slumping or movement into subsurface drains, although these were not observed near our excavation. Our current work expands our knowledge of the subsurface and presents an alternative explanation for the disposition of skeletal remains from our earlier excavation. But we acknowledge that this new explanation is vulnerable to our own previous published proposals, and we must do a better job of explaining how the new information addresses our previous suggestions. By not clearly creating a section where we explained how these previous hypotheses were now nullified by new evidence, we clearly confused the reviewers with our own previous work. We will revise the manuscript by enhancing the review of the significant geological evidence demonstrating that there is no significant fluvial action in the system and making it clear how the burial hypothesis provides a clearer explanation for the situation of skeletal remains from our previous excavation work.

      One of the central issues raised by reviewers has been a perceived need to excavate these features completely, totally exhuming all skeletal remains from them. Reviewers have written that it is necessary to identify every skeletal element that is present and account for any missing elements. On this point, we have both ethical and scientific differences from these reviewers. We express our ethical concerns first. Many of the best-preserved possible burials ever discovered by archaeologists were subjected to total excavation and exhumation. Cases like La Chapelle-aux-Saints, La Ferrassie, and Skhūl were fully excavated at a time when data recording and excavation methods did not include the range of spatial and geomorphological approaches that later became routine. The judgment of early investigators that these situations were intentional burials was challenged by later workers, and the kind of information that might enable better tests had been irrevocably lost (Gargett 1999; Dibble et al. 2015; Rendu et al. 2014).

      Later, improved excavation standards have not sufficed to remove uncertainty or debate about possible burials. For example, it was long presumed that well-preserved remains of young children were by themselves diagnostic of intentional burial, such as those from Dederiyeh, Border Cave, or Roc de Marsal. Such cases were also fully excavated, with adequate documentation of the positioning of skeletal remains and their surrounding stratigraphic situation, but such cases were later challenged on several bases and the complete exhumation of material has confused or precluded testing of new hypotheses (e.g. Gargett 1999). The case of Roc de Marsal is one in which data from the initial excavation combined with data from the initial excavation combined with re-excavation and geoarchaeological analysis led to a naturalistic interpretation of the skeletal material (Sandgathe et al. 2011; Goldberg et al. 2017). But even in this case, the researchers erred in their interpretation of the skeleton’s situation due to a lack of identification of parts of the infant’s skeleton (Gómez-Olivencia and García-Martinez 2019). That is to say, it is not only the burial hypothesis but other hypotheses that suffer from complete excavation. Researchers concerned with preserving all possible information have sometimes taken extraordinary measures to remove and study possible burials at high-resolution in the laboratory. Such was the case of the Shanidar IV burial removed from the site and transported in plaster jacket by Solecki, which led to the disruption and loss of internal stratigraphic information (Pomeroy et al. 2020). Arguably, the current state of the art is full excavation with partial preparation, such as that undertaken at Panga ya Saidi (Martinón-Torres et al. 2021). But again, any future attempt to reinterpret or test the hypothesis of burial must rely on the adequacy of documentation as the original context has been removed.

      In our decision to leave material in place as much as possible, we are expanding upon standard practice to leave witness sections and unexcavated areas for future research. The situation is novel, representing possible burials by a nonhuman species, and that makes it doubly important in our opinion to be conservative in not fully exhuming the skeletal material from its context. We anticipate that many other researchers, including future investigators, will suggest additional methods to further test the hypothesis of burial, something that would be impossible if we had excavated the features in their entirety prior to publishing a description of our work. We believe strongly that our ethical responsibility is to publish the work and the most likely interpretation while leaving as much evidence in place as possible to enable further testing and replication. We welcome the suggestions of additional methods/analyses to test the H. naledi burial hypothesis.

      This being said, we also observe that total exhumation would not resolve the concerns raised by the reviewers. The recommendation of total exhumation is in pursuit of a full account of all skeletal material present and its preservation and spatial situation, in order to demonstrate that they conform to body positions comparable to human burials. As has been highlighted in forensic casework, the excavation of an inhumation feature does not necessarily provide an accurate spatial or anatomical manifest of the stratigraphical relationships between the body, encapsulating matrix, and any cut present due to preservational, taphonomic and operational factors (Dirkmaat and Cabo, 2016; Hunter, 2014). In particular, in cases where skeletal elements are highly fragmented, friable, or degraded (such as through bioerosion) then complete excavation—even under controlled laboratory conditions—may destroy bone and severely limit skeletal identification (Henderson, 1997; Hochrein, 2002; Owsley and Compton, 1997), particularly in elements where the ratio of trabecular to cortical bone is high (Darwent and Lyman, 2002; Lyman, 1994). As such, non-invasive methods of 3D and 4D modelling (preservation in situ) are often considered preferable to complete necropsy or excavation (preservation by record) where appropriate (Bolliger and Thali, 2009; Dell’Unto and Landeschi, 2022; Randolph-Quinney et al., 2018; Silver, 2016). 

      The test of burial is not primarily positional, but taphonomic and geological. The position and number of bones can elaborate on process-driven questions of decay and destruction in the burial environment, or post-mortem modification, but are not singularly indicative of whether the remains were intentionally buried – the post-mortem narrative of all the processes affecting the cadaveric island is required (Knüsel and Robb, 2016). In previous cases, researchers have disputed or accepted the hypothesis of intentional hominin burial based upon assumptions about how modern humans or Neandertals would have positioned bodies, with the idea that some positions reflect ritual intent while others do not. But applying such assumptions is unjustifiable, particularly for a species like H. naledi, whose culture may have differed fundamentally from our own. Our work acknowledges that the present evidence does not enable a full reconstruction of the burial positions, but it does show that fleshed remains were encased in sediment prior to decomposition of soft tissue, and that subsequent spatial changes can be most parsimoniously explained by natural decomposition within sedimentary matrix contained within a burial feature (after Green, 2022; Mickleburgh and Wescott, 2018; Mickleburgh et al., 2022). If the argument is that extraordinary claims require extraordinary evidence, we feel that the evidence documents excavation and interment (and will do so more clearly in the revision) and the fact of the remains do not match a “typical” human burial in body positioning is not in itself evidence that these are not H. naledi burials.

      We feel that the reviewers (in keeping with many palaeoanthropologists) have a clear idea of what they “think” a burial should look like in an idealised sense, but this platonic ideal of burial form is not matched by the extensive literature in archaeothanatology, funerary archaeology and forensic science which indicates enormous variability in the activity, morphology and post-mortem system experienced by the human body in cases of interment and body disposal (e.g. Aspöck, 2008; Boulestin and Duday, 2005 and 2006; Connelly et al., 2005; Channing and Randolph-Quinney, 2006; Cherryson, 2008; Donnelly et al., 1995; Finley, 2000; Hunter, 2014; Parker Pearson, 1999; Randolph-Quinney, 2013). Decades of experience in the identification, recovery and interpretation of clandestine, deviant, and non-formal burials indicates the platonic ideal is rare, and in many contexts, the exception (Cherryson, 2008; Parker Pearson, 1999). This variability is particularly relevant to morphological traits in burial context, such as the informal nature of the grave cut in plan and section, shallow burial depth, and initial disposition of body (placement) during the early post-mortem period. These might run counter to the expectations of reviewers or others referencing the fossil hominin record, but are well accepted within the communities of researchers investigating Holocene archaeological sites and forensic contexts.

      It is encouraging to see reviewers beginning to incorporate the extensive (often experimentally derived) literature from archaeothanatology and forensic taphonomy in their deliberations, and we will be taking these comments on board going forward. In particular, we acknowledge reviewers’ comments and the need to construct a more detailed post-mortem narrative, accounting for joint disarticulation (labile versus persistent joints etc), displacement, and final disposition of elements within the burial space. As such we will incorporate the hierarchy of decomposition (rank order disarticulation), associations between regions of anatomical association, areas of disassociation, and the voids produced during decomposition (after Mickleburgh and Wescott, 2018; Mickleburgh et al., 2022) into our narrative. In doing so we acknowledge the tensions between the inductive archaeolothanatological narrative-driven approach (e.g. Duday, 2005 & 2009) versus robust decomposition data derived from human forensic taphonomic experimentation recently articulated by Schotsmans and colleagues (2022) - noting that we will highlight comparative data based on forensic experimental casework and actualistic modelling over inductive intuitive approaches which come with significant evidential shortcomings (Bristow et al. 2011).

      Finally, from a taphonomic perspective it is worth pointing out to reviewers that we have already addressed the issue of lack of taphonomic evidence for carnivore involvement in the formation of the Dinaledi assemblage (Dirks, et al., 2016). Absence of any carnivore-induced bone surface modifications, patterns of skeletal part representation, and a total absence of any carnivore remains found within the Dinaledi chamber (following Kuhn and colleagues, 2010) lead us to reject carnivores as possible vectors of body accumulation within the Dinaledi Chamber and Hill Antechamber.

      Reviewers suggest that without a date derived from geochronological methods, the engravings cannot be associated with H. naledi, and that it is possible (or probable) that the engravings were done in the recent past by H. sapiens. This suggestion neglects the context of the site. We have previously documented the structure and extremely limited accessibility of the Dinaledi subsystem. This subsystem was not recorded on maps of the documented Rising Star Cave system prior to our work and its discovery by our teams. Furthermore, there is no evidence of prehistoric human activity in the areas of the cave related to possible subterranean entrances There is no evidence that humans in the past typically ventured into such extreme spaces like those of Rising Star. It is clear from the presence of the remains of many individuals that H. naledi ventured into these spaces again and again. It is likely that H. naledi moved through these spaces more easily than humans do based on their physique. We show that the engravings overlay each other suggesting multiple engraving events.  These engravings took time and effort and the only evidence for use of the Dinaledi subsystem by any hominin is by H. naledi. The context leads to the null hypothesis that H. naledi made the marks. In our revision, we will elaborate on this argument to clarify the evidence for our stance on this hypothesis. Several reviewers took issue with the title of the engraving paper as we did not insert a qualifier in front of the suggested date range for the engravings. We deliberately left out qualifying language so that the title took the form of a testable hypothesis rather than a weak assertation. Should future work find the engravings were not produced within this time range, then we will restate this hypothesis.

      Finally, with regards to the engravings we have chosen to report them because they exist. Not reporting the presence of engraved marks on the walls of a cave above hypothesized burials would be tantamount to leaving relevant evidence out of the description of an archeological context. We recognize and state in our manuscript that these markings require substantial further study, including attempts at geochronological dating. But the current evidence is clearly relevant to the archaeological context of the subsystem. We take a similar stance with reporting the presence of the tool shaped artefact near the hand of the H. naledi skeleton in the Hill Antechamber. It is evident that this object requires further study, as we stated in our manuscript, but again omitting it from our study would be leaving out relevant evidence.

      Some have suggested that the null hypothesis should be that all of these observed circumstances are of natural origin. Our team took this approach in our early investigation of the Dinaledi subsystem (Dirks et al. 2015). We adopted the null hypothesis that the geological processes involved in the accumulation of H. naledi skeletal remains were “natural” (e.g., non-naledigenic involvement), and we were able to reject many alternative explanations for the assemblage, including carnivore accumulation, “death trap” accumulation, and fluvial transport of bodies or bones (Dirks et al. 2015). This led us to the hypothesis that H. naledi were involved in bringing the bodies into the spaces where they were found. But we did not hypothesize their involvement in the formation of the deposit itself beyond bringing the bodies to the location.

      This approach seems conservative. It followed the traditional view that small-brained hominins do not engage in cultural practices. But we recognize in hindsight that this null hypothesis approach did harm to our analyses. It impeded us from recognizing within our initial excavations of the puzzle box area and other excavations between 2014 – 2017 that we might be encountering remains that were intrusive in the sedimentary floor of the chamber. If we had approached the accumulation of a large number of hominins from the perspective of the null hypothesis being that the situation was likely cultural, we perhaps would have collected evidence in a slightly different manner. We certainly note that if the Dinaledi system had been full of the remains of modern humans, there would have been little doubt that the null hypothesis would have been that this was a cultural space and not a “natural space”.  We therefore respectfully disagree with the reviewers who continue to support the idea that we should approach hominin excavations with the null hypothesis that they will be natural (specifically non-cultural) in origins. If excavations continue with this mindset we believe that potential cultural evidence is almost certain to be lost.

      There has been a gradient across paleoanthropological excavations, archaeological work, and forensic investigation, with increasing precision of context. The reality is that the recording precision and frame of approach is typically different in most paleontological excavations than in those related to contemporary human remains. If anything comes from the present discussion of whether the Dinaledi system is a burial site for H. naledi or not, we hope that by taking seriously the possibility of deep cultural dynamics of hominins, we will encourage other teams to meet the highest standards of excavation in order to preserve potential cultural evidence. Given H. naledi’s cranial capacity we suggest that even very early hominin skeletal assemblages should be re-examined, if there is sufficient evidence or records available.  These would include examples such as the A.L. 333 Au. afarensis site (the so called First Family site in Hadar Ethiopia), the Dikika infant skeleton, WT 15000 (Turkana Boy) and even A.L. 288 (Lucy) as such unusual taphonomic situations where skeletons are preserved cannot be simply explained away as “natural” in origin, based solely on the cranial capacity and assumed lack of cognitive and cultural complexity of the hominins as emphasized by us in Fuentes et al. (2023). We are not the first to observe that some very early hominin situations may represent early mortuary activity (Pettitt 2013), but we would advocate a step further. We suggest it may be damaging to take “natural accumulation” as the standard null hypothesis for hominin paleoanthropology, and that it is more conservative in practice to engage remains with the null hypothesis of possible cultural formation.

      We are deeply grateful for the time and effort all of the 8 reviewers (across three reviews) have taken with this work.  We also acknowledge the anonymous reviewers from previous submissions who’s opinions and comments will have made the final iterations of these manuscripts better for their efforts. As this process is rather public and includes commentary outside of the eLife forum, we ask that the efforts of all 37 authors and 8 reviewers involved be respected and that the discourse remain professional in all venues as we study this fascinating and quite complex occurrence. We appreciate also the efforts of members of the public who have engaged with this relatively new process where preprints are posted prior to the reviews allowing comments and interactions from colleagues and the public who are normally not part of the internal peer review process.  We believe these interactions will make for better final papers. We feel we have met the standards of demonstrating burials in H. naledi and that the engraving are most likely associated with H. naledi. However, given the reviews we see many areas where our clarity and context, and analyses, were less strong than they can be. With the clarifications and additions taken on board through these review processes the final papers will be stronger and clearer. We, recognize that this is an ongoing process of scientific investigation and further work will allow continued, and possibly better, evaluation of these hypothesis and others.

      Lee R Berger, Agustín Fuentes, John Hawks, Tebogo Makhubela

      Works cited:

      • Aspöck, E. (2008). What Actually is a ‘Deviant Burial’?: Comparing German-Language and Anglophone Research on ‘Deviant Burials.’ In E. M. Murphy (Ed.). Deviant Burial in the Archaeological Record. Oxford: Oxbow Books.  pp 17–34.

      • Bolliger, S.A. & Thali, M.J. (2009). Thanatology. In S.A. Bolliger and M.J. Thali (eds) Virtopsy Approach:  3D Optical and Radiological Scanning and Reconstruction in Forensic Medicine. Boca Raton: CRC Press. pp 187-218.

      • Boulestin, B. & Duday, H. (2005). Ethnologie et archéologie de la mort: de l’illusion des références à l’emploi d’un vocabulaire. In: C. Mordant and G. Depierre (eds) Les Pratiques Funéraires à l’Âge du Bronze en France. Actes de la table ronde de Sens-en-Bourgogne. Paris: Éditions du Comité des Travaux Historiques et Scientifiques. pp. 17–30.

      • Boulestin, B. & Duday, H. (2006). Ethnology and archaeology of death: from the illusion of references to the use of a terminology. Archaeologia Polona 44: 149–169.

      • Bristow, J., Simms, Z. & Randolph-Quinney, P.S. Taphonomy. In S. Black and E. Ferguson (eds.) Forensic Anthropology 2000-2010. Boca Raton, FL: CRC Press. pp 279-318.

      • Channing, J. & Randolph-Quinney, P.S. (2006). Death, decay and reconstruction: the archaeology of Ballykilmore Cemetery, County Westmeath. In J. O’Sullivan and M. Stanley (eds.) Settlement, Industry and Ritual: Archaeology. National Roads Authority Monograph Series No. 3. Dublin: NRA/Four Courts Press. pp 113-126.

      • Cherryson, A. K. (2008). Normal, Deviant and Atypical: Burial Variation in Late Saxon Wessex, c. AD 700–1100. In E. M. Murphy (Ed.). Deviant Burial in the Archaeological Record. Oxford: Oxbow Books. pp 115–130.

      • Connolly, M., F. Coyne & L. G. Lynch (2005). Underworld : Death and Burial in Cloghermore Cave, Co. Kerry. Bray, Co. Wicklow: Wordwell.

      • Darwent, C. M. & R. L. Lyman (2002). Detecting  the postburial fragmentation of carpals, tarsals and phalanges. In M. H. Sorg and W. D. Haglund (eds). Advances in Forensic Taphonomy: Method, Theory and Archeological Perspectives. Boca Raton, FL, CRC Press. pp 355-378.

      • d’Errico, F., & Backwell, L. (2016). Earliest evidence of personal ornaments associated with burial: The Conus shells from Border Cave. Journal of Human Evolution, 93, 91–108.

      • De Villiers. H. (1973). Human skeletal remains from Border Cave, Ingwavuma District, KwaZulu, South Africa. Annals of the Transvaal Museum, 28(13), 229–246.

      • Dell’Unto, N. and Landeschi, G. (2022). Archaeological 3D GIS. London: Routledge.

      • Dibble, H. L., Aldeias, V., Goldberg, P., McPherron, S. P., Sandgathe, D., & Steele, T. E. (2015). A critical look at evidence from La Chapelle-aux-Saints supporting an intentional Neandertal burial. Journal of Archaeological Science, 53, 649–657.

      • Dirkmaat, D. C., & Cabo, L. L. (2016). Forensic archaeology and forensic taphonomy: basic considerations on how to properly process and interpret the outdoor forensic scene_. Academic Forensic Pathology_ 6, 439–454.

      • Dirks, P. H., Berger, L. R., Roberts, E. M., Kramers, J. D., Hawks, J., Randolph-Quinney, P. S., Elliott, M., Musiba, C. M., Churchill, S. E., de Ruiter, D. J., Schmid, P., Backwell, L. R., Belyanin, G. A., Boshoff, P., Hunter, K. L., Feuerriegel, E. M., Gurtov, A., Harrison, J. du G., Hunter, R., … Tucker, S. (2015). Geological and taphonomic context for the new hominin species Homo naledi from the Dinaledi Chamber, South Africa. ELife, 4, e09561.

      • Dirks, P.H.G.M., Berger, L.R., Hawks, J., Randolph-Quinney, P.S., Backwell, L.R., and Roberts, E.M. (2016). Comment on “Deliberate body disposal by hominins in the Dinaledi Chamber, Cradle of Humankind, South Africa?” [J. Hum. Evol. 96 (2016) 145-148]. Journal of Human Evolution 96:  149-153.

      • Dirks, P. H., Roberts, E. M., Hilbert-Wolf, H., Kramers, J. D., Hawks, J., Dosseto, A., Duval, M., Elliott, M., Evans, M., Grün, R., Hellstrom, J., Herries, A. I., Joannes-Boyau, R., Makhubela, T. V., Placzek, C. J., Robbins, J., Spandler, C., Wiersma, J., Woodhead, J., & Berger, L. R. (2017). The age of Homo naledi and associated sediments in the Rising Star Cave, South Africa. ELife, 6, e24231.

      • Donnelly, S., C. Donnelly & E. Murphy (1999). The forgotten dead: The cíllíní and disused burial grounds of Ballintoy, County Antrim. Ulster Journal of Archaeology 58, 109-113.

      • Duday, H. (2005). L’archéothanatologie ou l’archéologie de la mort. In: O. Dutour, J.-J. Hublin and B. Vandermeersch (eds) Objets et Méthodes en Paléoanthropologie. Paris: Comité des Travaux Historiques et Scientifiques. pp. 153–215.

      • Duday, H. (2009). Archaeology of the Dead: Lectures in Archaeothanatology. Oxford: Oxbow Books.

      • Finley, N. (2000). Outside of life: Traditions of infant burial in Ireland from cillin to cist.  World Archaeology 31, 407-422.

      • Gargett, R. H. (1999). Middle Palaeolithic burial is not a dead issue: The view from Qafzeh, Saint-Césaire, Kebara, Amud, and Dederiyeh. Journal of Human Evolution, 37(1), 27–90.

      • Goldberg, P., Aldeias, V., Dibble, H., McPherron, S., Sandgathe, D., & Turq, A. (2017). Testing the Roc de Marsal Neandertal “Burial” with Geoarchaeology. Archaeological and Anthropological Sciences, 9(6), 1005–1015.

      • Gómez-Olivencia, A., & García-Martínez, D. (2019). New postcranial remains from the Roc de Marsal Neandertal child. PALEO. Revue d’archéologie Préhistorique, 30–1, 30–1.

      • Green, E.C. (2022). An archaeothanatological approach to the identification of late Anglo-Saxon burials in wooden containers. In C.J. Knüsel and E.M.J. Schotsmans (eds.) The Routledge Handbook of Archaeothanatology. London: Routledge. pp 436-455.

      • Henderson, J. (1987). Factors determining the state of preservation of human remains. In A. Boddington, A. Garland and R. Janaway (eds). Death, Decay and Reconstruction: Approaches to Archaeology and Forensic Science. Manchester: Manchester University Press. pp 43-54.

      • Hunter, J. R. (2014). Human remains recovery: archaeological and forensic perspectives. In C. Smith (ed). Encyclopedia of Global Archaeology. New York: Springer New York. pp 3549-3556.

      • Hochrein, M. (2002). An Autopsy of the Grave: Recognizing, Collecting and Preserving Forensic Geotaphonomic Evidence. In M. H. Sorg and W. D. Haglund (eds). Advances in Forensic Taphonomy: Method, Theory and Archeological Perspectives. Boca Raton, FL, CRC Press: 45-70.

      • Knüsel, C.K. & Robb, J. (2016). Funerary taphonomy: An overview of goals and methods. Journal of Archaeological Science: Reports 10, 655-673.

      • Kuhn, B.F., Berger, L.R. & Skinner, J.D. (2010). Examining criteria for identifying and differentiating fossil faunal assemblages accumulated by hyenas and hominins using extant hyenid accumulations. International Journal of Osteoarchaeology 20, 15-35.

      • Lyman, R. (1994). Vertebrate Taphonomy. Cambridge, Cambridge University Press.

      • Martinón-Torres, M., d’Errico, F., Santos, E., Álvaro Gallo, A., Amano, N., Archer, W., Armitage, S. J., Arsuaga, J. L., Bermúdez de Castro, J. M., Blinkhorn, J., Crowther, A., Douka, K., Dubernet, S., Faulkner, P., Fernández-Colón, P., Kourampas, N., González García, J., Larreina, D., Le Bourdonnec, F.-X., … Petraglia, M. D. (2021). Earliest known human burial in Africa. Nature, 593(7857), 7857.

      • Mickleburgh, H.L & Wescott, D.J. (2018). Controlled experimental observations on joint disarticulation and bone displacement of a human body in an open pit: implications for funerary archaeology. Journal of Archaeological Science: Reports 20: 158-167.

      • Mickleburgh, H.L., Wescott, D.J., Gluschitz, S. & Klinkenberg, V.M. (2022). Exploring the use of actualistic forensic taphonomy in the study of (forensic) archaeological human burials: An actualistic experimental research programme at the Forensic Anthropology Center at Texas State University (FACTS), San Marcos, Texas. In C.J. Knüsel and E.M.J. Schotsmans (eds.) The Routledge Handbook of Archaeothanatology. London: Routledge. pp 542-562.

      • Owsley, D. & B. Compton (1997). Preservation in late 19th Century iron coffin burials. In W. Haglund and M. Sorg (eds). Forensic Taphonomy: The Postmortem Fate of Human Remains. Boca Raton, FL, CRC Press: 511-526.

      • Parker Pearson, M. (1999). The Archaeology of Death and Burial. College Station: Texas A&M University Press.

      • Pettitt, P. (2013). The Palaeolithic Origins of Human Burial. Routledge.

      • Pomeroy, E., Bennett, P., Hunt, C. O., Reynolds, T., Farr, L., Frouin, M., Holman, J., Lane, R., French, C., & Barker, G. (2020). New Neanderthal remains associated with the ‘flower burial’ at Shanidar Cave. Antiquity, 94(373), 11–26.

      • Randolph-Quinney, P.S. (2013). From the cradle to the grave: the bioarchaeology of Clonfad 3 and Ballykilmore 6. In N. Brady, P. Stevens and J. Channing (eds.). Settlement and Community in the Fir Tulach Kingdom. Dublin: National Roads Authority Press. pp A2.1-48.

      • Randolph-Quinney, P.S., Haines, S. and Kruger, A. (2018). The use of three-dimensional scanning and surface capture methods in recording forensic taphonomic traces: issues of technology, visualisation, and validation. In: W.J. M. Groen and P. M. Barone (eds). Multidisciplinary Approaches to Forensic Archaeology. Berlin: Springer International Publishing, pp. 115-130.

      • Rendu, W., Beauval, C., Crevecoeur, I., Bayle, P., Balzeau, A., Bismuth, T., Bourguignon, L., Delfour, G., Faivre, J.-P., Lacrampe-Cuyaubère, F., Tavormina, C., Todisco, D., Turq, A., & Maureille, B. (2014). Evidence supporting an intentional Neandertal burial at La Chapelle-aux-Saints. Proceedings of the National Academy of Sciences, 111(1), 81–86.

      • Sandgathe, D. M., Dibble, H. L., Goldberg, P., & McPherron, S. P. (2011). The Roc de Marsal Neandertal child: A reassessment of its status as a deliberate burial. Journal of Human Evolution, 61(3), 243–253.

      • Silver, M. (2016). Conservation Techniques in Cultural Heritage. In E. Stylianidis and F. Remondino (eds) 3D Recording, Documentation and Management of Cultural Heritage. Dunbeath: Whittles Publishing. pp 15-106.

      • Schotsmans, E.M.J., Georges-Zimmermann, P., Ueland, M. and Dent, B.B. (2022). From flesh to bone: Building bridges between taphonomy, archaeothanatology and forensic science for a better understanding of mortuary practices. In C.J. Knüsel and E.M.J. Schotsmans (eds.) The Routledge Handbook of Archaeothanatology. London: Routledge. pp 501-541.

    1. Author Response:

      We thank eLife and the reviewer for the nice summary of our manuscript. We largely agree with the summary and review, and just add a few small points.

      First, the review asks about the reproducibility of our findings, and suggests that they are only from a single experiment. In fact, our manuscript reports data from two independent single-cell experiments: one performed at low multiplicity of infection (MOI), and another at higher MOI. The broad trends, including the lack of strong correlations between viral mRNA transcription and progeny production, are consistent across both experiments.

      Second, the reviewer asks about what happens when two different virions bearing the same viral barcode infect two different cells, given that we estimate 4-8% of barcodes to be shared between multiple infecting virions. When two cells are infected by different virions with the same barcode, this breaks the one-to-one link between transcription in that cell and progeny in the supernatant, since it is not possible to determine which cell contributed the progeny with that barcode. This means that between 4-8% of the points on our correlation plots could be affected by this factor, meaning that a few outliers should be expected. Another scenario, where a single cell is infected by two barcodes, is not problematic for our method because we can simply sum the progeny output for both barcodes from that cell.

      Finally, the reviewer notes that some cells appear to produce progeny virions despite failing to express one or more viral genes. Such cells can be explained in one of two ways. First, as noted immediately above, we expect a small fraction (4-8%) of the points to be erroneous due to a lack of a guaranteed one-to-one link between cell and progeny for non-unique barcodes. Second, in some cases the missing viral gene could be a technical artifact caused by a stochastic failure to capture modestly expressed transcripts from the gene; this phenomenon, known as gene dropout, occurs at a fairly high rate in single-cell experiments (see Qiu Nature Communications 2020 for a detailed discussion). Genes that are expressed at lower levels, like the Influenza virus polymerase genes, are more likely to be missed during single-cell RNA sequencing. The absent viral genes in each infected cell can be explored in detail using the interactive plots at https://jbloomlab.github.io/barcoded_flu_pdmH1N1/

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Major Revisions:

      1) Although we appreciate this work was carried out independently, it would improve this paper if this structure presented here was compared to the recently published structure of Cx43 (Nat Commun 14, 931 (2023)) with the conclusions including added in the discussion.

      We encourage the readers to read both our study on Cx43 and the one mentioned by the reviewer. However, we believe the optimal format for such a comparison is going to be a more comprehensive review article, which is outside the scope of our study.

      2) Please elaborate on the lipid-binding pockets observed for lipid 1, lipid 2, and the N-lipid/PGL. For example, what are the residues involved in these lipid-protein interactions? Are these residues conserved in other connexin isoforms? Do these lipid-binding pockets match with previous structures, including the recent Cx43 structure? Please clarify what lipid sites are ambiguous due to insufficient resolution.

      Within the scope of our study, we have shown that some of the disease-linked residues are located in close proximity to the lipid sites (Fig. 4b). This suggests a possible role of the lipid sites in diseases associated with Cx43 mutations (and possibly with the mutations in other connexins, as the structures of other connexin channels also feature bound lipids inside the pore region). We feel that a more in-depth comparison will require a careful study, beyond the analysis that we have performed here, and for this reason we would like to reserve such a detailed comparison for our future work (possibly a comprehensive review article on connexin structure and function).

      3) The NT domain and TM2 segments are referred to as the gate region. If there is no strong evidence to support this claim then please use "putative" gate region.

      We have updated the text accordingly, referring to this region as a putative gate region where appropriate.

      4) It is mentioned that there is a reorientation of extracellular loops 1 and 2 after Gap junction formation. Based on their structures, I wonder how this rearrangement alters the channel conduction pathway. For example, Do the electrostatic surface and hydrophobic properties change? Please consider adding further details as this information could be useful to understand why some properties of hemichannels differ from intercellular GJ channels.

      We have updated the Fig. 5 with an illustration of the Cx43 HC surface coloured according to electrostatic potential (to match the same representation of the Cx43 GJC). It is obvious that the rearrangement of the extracellular loops 1 and 2 do not dramatically alter the electrostatic properties of the HC relative to the GJC. A more obvious difference is in the local environment of the ECLs: it is radically different in a “free” HC (exposed to the solvent or to the extracellular space of a cell), compared to the ECL environment in a connexon within a GJC (which is sealed by a docked connexon from the opposite membrane).

      5) Related to the previous point, the pore profile shown in Figure 5C shows that there is a constriction site in the extracellular part with the same diameter as the observed constriction caused by the NT domain. This constriction point seems to be associated with the high energies calculated for Cl-. Please clarify if this constriction is produced by the formation of the GJC or is also present in HC?

      This is the same constriction zone, and the Cl- barriers are further down the channel axis where the electrostatic potential of the protein is negative. We have included a similar calculation for the HC simulation in Fig. 5 (revised Fig. 5f).

      6) Related to the MD simulations shown in Figure 5d: if the voltage is applied across the whole GJC, the free energy under voltage should not be symmetric. Please clarify.

      The symmetry observed in the free energies is due to the fact that the ions enter and exit from the same hemichannel. Only at very high voltages we observe some rare full GJC permeation events, slightly unbalancing the free energy at 500 mV.

      7) The scheme in Figure 6 many needs further editing. The authors propose a putative closed state in which lipids are bound next to the NT, but we suggest it should be made clearer in the figure that this is a putative model, since there is no functional evidence supporting the role of these lipids in the gating/permeation properties of Cx43. Also, please clarify what is meant by a "semi-permeable gate" - a channel that only permeates ions but not molecules?

      We have updated the legend of the figure 6, to clearly reflect that this is a putative model. The “semi-permeable” state of the channel is something that was suggested previously by the authors of the Cx31.3 study, and we refer to that structure in the figure.

      Minor comments:

      1) In the result section there are some statements that currently lack solid experimental support. Please consider editing or moving this text to the discussion section only. A good example of this is the Diseaselinked mutation section, specifically lines 199-206. In another example: in lines, 237-238 authors state that NT can move laterally and vertically, but this idea still requires experimental validation.

      We feel that the original formulations of these portions of the text are appropriate. Disrupting them would interrupt the flow of the manuscript, and we prefer to stay with the original text in this case.

      2) Line 283. "With these structures in mind, we can now establish the existence of several structurally defined gating substates of the connexin channels". Please, tone down this statement. Replace "establish" with "propose" or another more appropriate word.

      We have updated the text as suggested ("propose” instead of “establish”)

      3) Line 313-314. " The presence of such molecules could have important implications for HC or GJC assembly, substrate permeation, and molecular gating". Currently, this entire statement does not have any support. Is there any paper that authors can discuss to suggest with some basis that lipids might have a role in assembly, permeation or gating?

      We feel that this statement is sufficiently careful, conveying a thought that the presence of such molecules could have important implications for various HC- or GJC-related processes. It is not a particularly strong claim and seems to be appropriate in this context.

      4) It seems that the structure shown in panels A and C in Figure 2 are shown in opposite directions, which makes the figure confusing. If needed, please rotate the structure in panel A to show the cytosolic part of the protein as panel C. Also, in the same figure, panels G and F are wrongly labeled. Please correct.

      For Fig. 2a, the angle is very different from anything else we show in the figure, so we would rather keep this as it is now. We have corrected the labelling for Fig. 2g-h.

      5) Check spelling mistakes in the legend of Extended data Fig.2, Extended data Fig.9, and line 243.

      We are grateful to the reviewers for pointing out the typos, which have now been corrected.

      6) The colors for G-L isoforms are not specified in Extended Data Fig.10. Please correct this.

      We updated the figure, removing the PGL label (the correct label is “lipid-N”).

      7) It is not clear what is the difference between PGL and the N-lipid density. Does PGL refers to the lipid-like density observed in nanodiscs, as indicated in Extended Fig. 4 and 10?. Please clarify this issue in the manuscript.

      The labeling has been corrected in like with the revised version of the manuscript (this density element is now referred to as the “lipid-N”).

      8) Page 7 line 234-235 "The pore opening has a solvent-accessible radius of ~6Å (Figure 5c) very close to the effective hydrated radius of K+ (~6.6 Å) and Cl- (~7.2 Å). This makes it the most narrow pore opening...", it should be diameter, not radius.

      We have added a calculation for the HC (new Fig. 5f) and corrected the text as follows (line 234):

      “The pore opening observed in our cryo-EM structures has a solvent-accessible radius of ~3 Å (Figure 2b). This makes it the most narrow pore opening observed for a connexin channel to date (a comparison of the pore openings in the cryo-EM structures of connexin channels is shown in Extended Data Fig. 12). However, the average solvent-accessible radius of the pore during molecular dynamics was ~6 Å (Figure 5c); note that the effective hydrated radius of K+ and Cl- is ~3.3 Å and ~3.6 Å, respectively.”

      And line 277:

      “The average pore radius during the simulations was consistent with that observed in the cryo-EM structure (Fig. 5f).”

    1. Author Response

      Reviewer #2 (Public Review):

      The manuscript by Ma et al, "Two RNA-binding proteins mediate the sorting of miR223 from mitochondria into exosomes" examines the contribution of two RNA-binding proteins on the exosomal loading of miR223. The authors conclude that YBX1 and YBAP1 work in tandem to traffic and load miR223 into the exosome. The manuscript is interesting and potentially impactful. It proposes the following scenario regarding the exosomal loading of miR223: (1) YBAP1 sequesters miR223 in the mitochondria, (2) YBAP1 then transfers miR223 to YBX1, and (3) YBX1 then delivers miR223 into the early endosome for eventual secretion within an exosome. While the authors propose plausible explanations for this phenomenon, they do not specifically test them and no mechanism by which miR223 is shuttled between YBAP1 and YBX1, and the exosome is shown. Thus, the paper is missing critical mechanistic experiments that could have readily tested the speculative conclusions that it makes.

      Comments:

      1) The major limitation of this paper is that it fails to explore the mechanism of any of the major changes it describes. For example, the authors propose that miR223 shuttles from mitochondrially localized YBAP1 to P-body-associated YBX1 to the exosome. This needs to be tested directly and could be easily addressed by showing a transfer of miR223 from YBAP1 to YBX1 to the exosome.

      Testing this idea using fluorescently labeled miR223 would indeed be an ideal experiment. However, miRNA imaging presents challenges. As reviewer 1 pointed out, and we have now confirmed, the atto-647 dye itself localizes to mitochondria. We will continue our efforts to identify a suitable fluorescent label for miR223in order to be in a position to evaluate the temporal relationship between mitochondrial and endosomal miR223.

      2) If YBAP1 retains miR223 in mitochondria, what is the trigger for YBAP1 to release it and pass it off to YBX1? The authors speculate in their discussion that sequestration of mito-miR223 plays a "role in some structural or regulatory process, perhaps essential for mitochondrial homeostasis, controlled by the selective extraction of unwanted miRNA into RNA granules and further by secretion in exosomes...". This is readily testable by altering mitochondria dynamics and/or integrity.

      A previous study has reported that YBAP1 can be released from mitochondria to the cytosol during HSV-1 infection (Song et al., 2021). However, due to restrictions, we are unable to conduct experiments using HSV to verify this condition. We attempted to induce mitochondrial stress by using different concentrations of CCCP, but we did not observe the release of YBAP1 from mitochondria after CCCP treatment. We speculate that not all mitochondrial stress conditions can trigger YBAP1 release. Investigating the mechanism of mito-miR223 release from mitochondria is one of our interests that we aim to explore in future studies.

      3) Much of the miRNA RT-PCR analysis is presented as a ratio of exosomal/cellular. This particular analysis assumes that cellular miRNA is unaffected by treatments. For example, Figure 1a shows that the presence of exosomal miR223 is significantly reduced when YBX1 is knocked out. This analysis does not consider the possibility that YBX1-KO alters (up or down-regulates) intracellular miR223 levels. Should that be the case, the ratiometric analysis is greatly skewed by intracellular miRNA changes. It would be better to not only show the intracellular levels of the miRs but also normalize the miRNA levels to the total amount of RNA isolated or an irrelevant/unchanged miRNA.

      Our previous publications demonstrated that miR223 levels are increased in YBX1-KO cells and decreased in exosomes derived from YBX1 KO cells. However, no significant changes were observed in miR190 levels (Liu et al., 2021; Shurtleff et al., 2016). The repeated data has been included in Figure 1a.

      For the analysis of other miRNAs by RT-PCR, we assessed changes in intracellular and exosomal miRNA levels in the corresponding figures. In the qPCR analysis, miRNA levels were normalized to the total amount of RNA.

      4) In figure 1, the authors show that in YBX1-KO cells, miR223 levels are decreased in the exosome. They further suggest this is because YBX1 binds with high affinity to miR223. This binding is compared to miR190 which the authors state is not enriched in the exosome. However, no data showing that miR190 is not present in the exosome is shown. A figure showing the amount of cellular and exosomal miR223 and 190 should be shown together on the same graph.

      In previous publications we demonstrated that miR190 is not localized in exosomes and not significantly changed in YBX1 knockout (KO) cells and exosomes derived from YBX1 KO cells (Liu et al., 2021; Shurtleff et al., 2016). The repeated data has been included in Figure 1a.

      5) Figure 2 Supplement 1 - As to determine the nucleotides responsible for interacting with YBX1, the authors made several mutations within the miR223 sequence. However, no explanation is given regarding the mutant sequences used or what the ratios mean. Mutant sequences need to be included. How do the authors conclude that UCAGU is important when the locations of the mutations are unclear? Also, the interpretation of this data would benefit from a binding affinity curve as shown in Fig 2C.

      The ratio is of labeled miR223/unlabeled miR223 (wt and mutant). All mutant sequences of miR223 have been included in Figure 2 supplement 1.

      6) While the binding of miR223mut to YBX1 is reduced, there is still significant binding. Does this mean that the 5nt binding motif is not exact? Do the authors know if there are multiple nucleotide possibilities at these positions that could facilitate binding? Perhaps confirming binding "in vivo" via RIP assay would further solidify the UCAGU motif as critical for binding to YBX1.

      The binding affinity of miR223mut with YBX1 is reduced approximately 27-fold compared to miR223. We speculate that the secondary structure of miR223 may contribute to the interaction with YBX1.

      Our EMSA data, in vitro packaging data, and exosome analysis reinforce the conclusion that UCAGU is critical for YBX1 binding. These findings suggest that the presence of the UCAGU motif in miR223 is crucial for its interaction with YBX1 and subsequent sorting into exosomes.

      7) Figures 2g, h - It would be nice to show that miR190mut also packages in the cell-free system. This would confirm that the sequence is responsible. Also, to confirm that the sorting of miR223 is YBX1-dependent, a cell-free reaction using cytosol and membranes from YBX1 KO cells is needed.

      Although we have not performed the suggested experiment, we purified exosomes from cells overexpressing miR190sort and observed an increase in the enrichment of miR190sort in exosomes compared to miR190. This finding confirmed that the UCAGU motif facilitates miRNA sorting into exosomes.

      Regarding the in vitro packaging assay, our previously published paper demonstrated that cytosol from YBX1 knockout (KO) cells significantly reduces the protection of miR223 from RNase digestion. We concluded that the sorting of miR223 into exosomes is dependent on YBX1 (Shurtleff et al., 2016).

      8) In Figure 3a, the authors show that miR223 is mitochondrially localized. Does the sequence of miR223 (WT or Mut) matter for localization? Does it matter for shuttling between YBAP1 and YBX1?

      The localization of miR223mut has not been tested in our current study. We plan to conduct these experiments in the future.

      9) Supplement 3c - Is it strange that miR190 is not localized to any particular compartment? Is miR190 present ubiquitously and equally among all intracellular compartments?

      Most mature miRNAs are predominantly localized in the cytoplasm. Although there is no specific subcellular localization reported for miR190 in the literature, our experimental findings indicate a relatively high expression of miR190 in 293T cells. It is likely that most of miR190 is localized in the cytosol. However, it is also possible that a small fraction of miR190 may associate with a membrane, which could explain its distribution in various subcellular structures. Importantly, we did not observe enrichment of miR190 in the mitochondria or exosomes.

      10) Figure 3h - Why would the miR223 levels increase if you remove mitochondria? Does CCCP also cause miR223 upregulation? I would have thought miR223 would just be mis-localized to the cytosol.

      We report that the levels of cytoplasmic miR223 increase following the removal of mitochondria using CCCP treatment. While we cannot rule out the possibility that upregulation of miR223 is directly caused by CCCP treatment, we suggest that miR223 becomes mis-localized to the cytosol upon mitochondrial removal. Our data suggests that mitochondria contribute to the secretion of miR223 into exosomes. When mitochondria are removed by mitophagy, cytosolic miR223 is not efficiently secreted, which provides an alternative explanation for the observed increase in miR223 level after mitochondrial removal.

      11) Figure 3i - What is the meaning of "Urd" in the figure label? This isn't mentioned anywhere.

      “Urd” represents Uridine. Uridine is now spelled out in figure 3i. The absence of mitochondria can impact the function of the mitochondrial enzyme dihydroorotate dehydrogenase, which plays a role in pyrimidine synthesis. To address this issue, one approach is to supplement the cell culture medium with Urd. A previous study demonstrated that primary fibroblasts showed positive responses when Urd was added to the cell culture medium, resulting in improved cell viability for extended periods of time (Correia-Melo et al., 2017).

      12) Figure 3j - The data is presented as a ratio of EV/cell. Again, this inaccurately represents the amount of miR223 in the EV. This issue is apparent when looking at Figures 3h and 3j. In 3h, CCCP causes an upregulation of intracellular miR223. As such, the presumed decrease in EV miR233 after CCCP (3j) could be an artifact due to increased levels of intracellular miR223. Both intracellular and EV levels of miRs need to be shown.

      Both the intracellular and exosomal levels of miR223 have been included in Figure 3j.

      13) In Figure 4, the authors show that when overexpressed, YBX1 will pulldown YBAP1. Can the authors comment as to why none of the earlier purifications show this finding (Figure 1 for example)? Even more curious is that when YBAP1 is purified, YBX1 does not co-purify (Figure 4 supplement 1a, b).

      In Figure 4a-b, human YBX1 fused with a Strep II tag was purified from 293T cells using Strep-Tactin® Sepharose® resin in a one-step purification process. Our data has shown that YBAP1 is expressed in 293T cells.

      In Figure 1 and Figure 4 Supplement 1a, human YBX1 or YBAP1 fused with His and MBP tags were purified from insect cells using a three-step purification process involving Ni-NTA His-Pur resin, amylose resin, and Superdex-200 gel filtration chromatography.

      One possibility is that human YBX1 or YBAP1 may not interact well with insect YBAP1 or YBX1, which could result in separate tagged forms of YBX1 or YBAP1 isolated from insect cells.

      Another possibility is that the expression levels of insect YBAP1 and YBX1 may be too low. Consequently, tagged forms YBX1 or YBAP1 expressed in insect cells may copurify with partners not readily detected by Coomassie blue stain. However, in Figure 4 Supplement 1b, human YBX1 fused with His and MBP tags was co-expressed with non-tagged human YBAP1, and both bands of YBX1 and YBAP1 were visible on the Coomassie blue gel after purification using Ni-NTA His-Pur resin, amylose resin, and Superdex-200 gel filtration chromatography.

      14) Figure 4f, g - The text associated with these figures is very confusing, as is the labeling for the input. Also, what is "miR223 Fold change" in this regard? Seeing as your IgG should not have IP'd anything, normalizing to IgG can amplify noise. As such, RIP assays are typically presented as % input or fold enrichment.

      The RIP assay results have been calculated and presented as a % input in Figure 4g.

      15) Figure 4h - The authors show binding between miR223 and YBAP1 however it is not clear how significant this binding is. There is more than a 30-fold difference in binding affinity between miR223 and YBX1 than between miR223 and YBAP1. Even more, when comparing the EMSAs and fraction bound from figures 1 and 2 to those of Figure 4h, the binding between miR223 and YBAP1 more closely resembles that of miR190 and YBX1, which the authors state is a non-binder of YBX1. The authors will need to reconcile these discrepancies.

      We agree that the binding of YBAP and YBX1 differ quite significantly in the affinity of their interaction with miR223. It is difficult to draw conclusions from a comparison of the affinities of YBX1 for miR190 and YBAP1 for miR223. Nonetheless, a quantitative difference in the interaction of YBAP1 with miR223 and miR190 is apparent (Fig. 4 h, I, j) and we observed no enrichment miR190 in isolated mitochondria (Fig. 3 supplement 1a) whereas YBAP1 selectively IP’d miR223 from isolated mitochondria (Fig. 4 f and g).

      16) Can the authors present the Kd values for EMSA data?

      The Kd values for the EMSA data have been added to the respective figures.

      17) Figure 5 - Does YBAP1-KO affect mitochondrial protein integrity or numbers?

      We generated stable cell lines expressing 3xHA-GFP-OMP25 in both 293T WT and YBAP1-KO cells, but we did not observe any alterations in mitochondrial morphology (Author response image 1).

      Author response image 1.

      Additionally, we performed a comparison of different mitochondrial markers using immunoblot in 293T WT cells and YBAP1-KO cells and did not observe any changes in these markers (data has been included in Figure 5b.).

      18) Figure 6a - Are the authors using YBAP1 as their mitochondrial marker? Please include TOM20 and/or 22.

      In Figure 4c and 4e, our data clearly demonstrate that the majority of YBAP1 is localized in the mitochondria.

      To further validate this localization, we performed immunofluorescence staining using antibodies against endogenous Tom20 and YBX1. The immunofluorescence images document YBX1 associated with mitochondria (Author response image 2 and new Fig 6a.).

      Author response image 2.

      19) Figure 6b - Rab5 is an early endosome marker and may not fully represent the organelles that become MVBs. Co-localization at this point does not suggest that associating proteins will be present in the exosome, and it is possible that the authors are looking at the precursor of a recycling endosome. Even more, exosome loading does not occur at the early endosome, but instead at the MVB. Perhaps looking at markers of the late endosome such as Rab7 or ideally markers of the MVB such as M6P or CD63 would help draw an association between YBX1, YBAP1, and the exosome. Also, If the authors want to make the claim that interactions at the early endosome leads to secretion as an exosome, the authors should show that isolated EVs from Rab5Q79L-expressing cells contain miR223.

      We have previously used overexpressed Rab5(Q79L) to monitor the localization of exosomal content, specifically CD63 and YBX1, in enlarged endosomes (Liu et al. 2021, Fig. 4A, B). These endosomes exhibit a mixture of early and late endocytic markers, including CD63. (Wegner et al., 2010). Hence, the presence of Rab5(Q79L)-positive enlarged endosomes does not solely indicate early endosomes.

      20) The mentioning of P-bodies is interesting but at no time is an association addressed. This is therefore an overly speculative conclusion. Either show an association or leave this out of the manuscript.

      In a previous paper we demonstrated that YBX1 puncta colocalize with P-body markers EDC4, Dcp1 and DDX6 (Liu et al., 2021).

      21) In lines 55-58, the authors make the comment "However, many of these studies used sedimentation at ~100,000 g to collect EVs, which may also collect RNP particles not enclosed within membranes which complicates the interpretation of these data." Do RNPs not dissolve when secreted? Can the authors give a reference for this statement?

      In a previous paper, we demonstrated that the RNP Ago2 does not dissolve in the conditioned medium and is not in vesicles but sediments to the bottom of a density gradient (Temoche-Diaz et al., 2019).

    1. Author Response

      Reviewer #1 (Public Review):

      In this study, Shin and colleagues investigate the role of the posttranslational modification of the DNA methyltransferase by covalent linkage of the N-Acetylglucosamine (O-GlcNAc).

      The authors present compelling evidence showing that a prolonged high fat/sucrose diet causes global protein O-GlcNAcylation in the liver and DNMT1 is among the proteins that increase their O-GlcNAc level. This result is significant because of the paucity of in vivo data addressing the interplay between metabolism and protein O-GlcNAcylation. The paper also shows that DNMT1's O-GlcNAcylation level correlated to the extracellular glucose levels in other cell types.

      Using mass spectrometry, the authors identify S878 as the main site for O-GlcNAcylation. It is noteworthy that the mapping was performed with hyper-O-GlcNAcylated cells and may be different in a physiological situation. To investigate how O-GlcNAcylation of S878 of DNMT1 impacts its activity and ultimately DNA methylation patterns, Shin and colleagues mostly use a cellular model of hyper O-GlcNAcylation induced by the combination of high glucose and a chemical inhibitor of OGA (the only enzyme responsible for O-GlcNAc removal). The data shows that increased O-GlcNAcylation resulting from the combination of high glucose and OGA inhibition causes a reduction of DNMT1 activity and local loss of DNA methylation specifically at partially methylated domains.

      This study brings completely new knowledge on the regulatory function of glycosylation of DNMT1 and its impact on its methyl-transferase activity and downstream genomic methylation. Furthermore, the manuscript introduces new data on the interplay between cellular metabolism and O-GlcNAcylation on DNMT1 and other proteins. The experiments are well-controlled, and their interpretation is sound. This study should be of special interest to the fields of fundamental and environmental epigenetics, as well as metabolism.

      The main limitation of the study is the convolution of the functional experiments where the perturbation is a combination of high glucose and chemical inhibition of OGA. The relative contribution of the two variables is partially addressed in Figure 3-figure supplement 1B which shows that high glucose increases DNMT1 activity (Hep3B cells) while Figure 3D shows that high glucose when combined with OGA inhibitor decreases DNMT1 activity (Hep3B cells). As discussed, the data suggest that high-glucose and OGA inhibition may have an antagonistic effect on DNMT1 activity. An experiment of treatment of the cells with the OGA inhibitor in physiological glucose conditions would address this gap of knowledge.

      We thank the reviewer for the suggestion. The physiological glucose levels are between 5 to 7 mM, and 25mM is in hyperglycemic range, which corresponds to severe diabetes. The new Figure 1A shows TMG treatment with physiological glucose conditions. We have included new WB data of 5mM glucose, 5mM glucose + TMG, 25mM glucose, and 25mM glucose + TMG (Figure 1A).

      To understand the impact of the environment (in this study: extracellular glucose level) on the epigenome, one should keep in mind the variation of cytosine methylation patterns between individuals and over time. A recent large-scale profiling of DNA methylation of 137 individuals shows a near absence of individual variation between replicates of the same cell type, suggesting that genomic methylation patterns are largely insensitive to the environment (https://doi.org/10.1038/s41586-022-05580-6).

      Comparative methylomes of healthy and diabetic individuals are needed to examine the medical significance of the findings presented here. It is possible that the modulation of DNMT1 activity by O-GlcNAc modification is relevant for a specific cell type or developmental stage that remains to be discovered.

      We thank the reviewer for the suggestion. While the present study is focused on the functional impact of glucose concentrations on O-GlcNAcylation of DNMT1, the extension of this work to diabetic individuals is a goal for a follow up project.

      Reviewer #2 (Public Review):

      I've read the manuscript by Shin et al with great interest. The authors describe the identification of O-GlcNAcylation of DNMT1 and the impact this modification has on the maintenance activity of DNMT1 genome-wide and that modification of S878 leads to enzyme inhibition. The manuscript is written in a clear and understandable way making it easy for the reader to understand the logic as well as the steps of the experimental approach.

      The authors identify O-GlcNAcylation of DNMT1 in a number of different cell lines by combining inhibition studies and WB and further on they identify the modification sites with LC/MS, predictions, and mutational studies. I really like the experimental approach, which while being straightforward (albeit technically challenging), is powerful and well-controlled in this case to unequivocally prove the modification of DNMT1 and identify the site. However, mutation of the two identified modification sites does not remove all the O-GlcNAcylation signal associated with DNMT1, thus possibly not all the possible sites were identified. While this is not a criticism of this manuscript, it would be interesting to know what other sites are modified and the enzymatic/biological effects associated.

      We completely agree with the reviewer. As the O-GlcNAc band was also detected in double mutated DNMT1 (Figure 2D), it is expected that undetected O-GlcNAcylated sites will exist. This is a limitation of current MS analysis and is known to be difficult to detect in the case of modified sites located at both 5’- and 3’- ends of the protein or around the site cut by endoprotease such as trypsin. In follow up work we plan to detect more diverse O-GlcNAc modified sites using more types of endoproteases and observe changes in the phenotype of various cells accordingly.

      Also, the authors isolate the modified DNMT1 from cells using immunoprecipitation, which is indeed useful to study the changes in catalytic activity but does not provide any information if the cellular localisation of modified DNMT1 changes.

      We apologize for this oversight. We have added a DNMT1 localization assay via immunofluorescence (IF) in the revised manuscript (Figure 3—figure supplement 3). We found no difference in DNMT1 localization between wild type and S878A mutants.

      Subsequently, the authors checked the impact of high glucose diet on the genome-wide DNA methylation patterns. The observed effects (Fig 4A) are very strong, almost as strong as observed with Aza treatment and therefore I wonder if LINE/IAP or other elements are getting activated (as observed with genome-wide demethylation with Aza).

      We thank the reviewer for the suggestion. Changes in methylation of LINE-1 by hyperglycemia condition are displayed in Figure 4—figure supplement 4. In the case of LINE-1, DNA methylation is lost globally in hyperglycemia conditions. While beyond the scope of this study, a more thorough examination of the impact of the observed loss of methylation under high glucose conditions is of interest.

      Do the authors see any changes in cell phenotype, slower/faster proliferation, or increased apoptosis due to the activation of mobile elements (not only ROS)?

      This is also a very interesting idea. We plan on further investigating this as part of a follow up study.

      Another point is that the S878A mutant seems not to be able to fully maintain the DNA methylation (Fig 4A). Does O-GlcNAcylation recruit any additional interactors? Given that the authors immunoprecipitated DNMT1 and use it for activity assay, it is possible, that the modification attracts an additional protein factor that could in turn inhibit DNMT1 activity (as observed). Therefore, the observed kinetic effect could be indirect, while still interesting and important, the mechanism of inhibition would be different.

      We thank the reviewer for the great suggestions. According to Figure 4A, in the case of mutated DNMT1, a slight methylation loss appears to occur in both conditions. There could be for a number of reasons. It may be due to interacting proteins or it may be caused by some damage of DNMT1 itself. A further investigation of this is planned as a follow up project.

      DNA methylation clock can be used to estimate the biological age of a tissue/cells. While not directly in the line of the manuscript, I was wondering if the DNA methylation changes in the high glucose diet would affect the methylation sites used for the DNAme clock. Meaning, would the cells/tissue epigenetically age faster when in high glucose media, and if the Ala mutant could provide resistance to that?

      We thank the reviewer for the interesting suggestion. We believe this is beyond the scope of this manuscript, but we'll consider this with interest in the future.

      In discussion, the authors write that this is the first investigation of O-GlcNAcylation in relation to DNA methylation, while this is true for DNMTs, TET enzymes, that oxidise 5mC and trigger active DNA demethylation have been shown before to also be modified.

      We have toned down the language throughout the revised manuscript. This is the first investigation into the maintenance of DNA methylation. Although there is a great deal of evidence regarding the important regulatory role of O-GlcNAcylation in gene regulation, a direct link with maintenance of DNA methylation has not previously been established.

      A nice and rigorous study, with important observations and connections to biological effects. It would be nice to prove that the effects are direct and not associated with other factors that could be recruited by the modification and impact the activity of DNMT1. I find it a bit surprising that phosphorylation of the target serine does not impact DNMT1 activity as well.

      We thank the reviewer for the positive comments and agree that there are many interesting avenues to follow up on this.

      Reviewer #3 (Public Review):

      The authors investigate the potential effect of OGlcNacylation on the activity of the DNA methyltransferase DNMT1.

      Some results that are convincingly obtained include:

      • There is more overall OGlcNacylation when Glucose concentration in the culture medium or the feed is high;

      • DNMT1 is OGlcNacylated, and more so in high glucose or on rich chow;

      • The position S878 can be OGlcNacylated;

      • The activity of transfected DNMT1 is decreased in high glucose conditions. This effect is lessened when S878 is mutated to A or D.

      Some results that are suggested but not fully backed by experimental data include:

      • This process happens to the endogenous protein under physiologically relevant conditions;

      We agree that we could not completely rule out endogenous DNMT1 in our experiments. We have adjusted the language in the revised manuscript to acknowledge this. However, we confirmed the change in activity of recombinant DNMT1 (Figure 3D), and also demonstrated the change in activity under physiological conditions (normal physiological glucose level vs hyperglycemic range) in Figure 3—figure supplement 1B. This is a result that directly shows that the activity of DNMT1 changes under physiological conditions. In addition, DNA hypomethylation due to high glucose has been previously reported, already (Kandilya et al., 2020; Lan et al., 2016). Our results suggest a possible mechanism for this.

      Kandilya, D., Shyamasundar, S., Singh, D.K., Banik, A., Hande, M.P., Stunkel, W., Chong, Y.S., and Dheen, S.T. (2020). High glucose alters the DNA methylation pattern of neurodevelopment associated genes in human neural progenitor cells in vitro. Sci Rep 10, 15676.

      Lan, C.C., Huang, S.M., Wu, C.S., Wu, C.H., and Chen, G.S. (2016). High-glucose environment increased thrombospondin-1 expression in keratinocytes via DNA hypomethylation. Transl Res 169, 91-101 e101-103.

      • This process is responsible for changes in DNA methylation, leading to changes in gene expression, leading to increased ROS and increased apoptosis.

      We confirmed that ROS levels increased under high glucose conditions through DCFH-DA fluorescence experiments (Figure 5A). In addition, γH2A.X fluorescence experiments showed that DNA damage was increased under high glucose conditions (Fig. 5B). On the other hand, in the case of the S878A mutant, DNA damage was reduced under hyperglycemic conditions compared to wild type DNMT1 despite an increase in ROS levels (Fig. 5B). Moreover, we verified that the DNA damage did not come from oxidative stress through 8-OHdG analysis (Figure 5—figure supplement 4). Therefore, DNA oxidative stress is suppressed by DNMT1 due to the increase of ROS under high glucose conditions. However, the reduction of DNA methylation by O-GlcNAcylation of DNMT1 induces apoptosis due to oxidative stress.

      Studying the connection between cellular metabolism and epigenetic phenomena is interesting. However, I feel that the article falls short of its aims because of the limits of the experimental system, some missing controls, and some data overinterpretation.

      We hope the reviewer finds our revised manuscript more suitable.

    1. Author Response

      Reviewer #1 (Public Review):

      Overall, this manuscript exposes key gaps in patient care resulting from the pandemic, as well as the challenges and unmet needs felt by healthcare workers in cervical cancer screening. The authors’ findings on the struggles while regaining screening volume across the nation in a sustainable way, demonstrate that pre-existing weaknesses in the cancer control system were exacerbated by the pandemic and are integral to amend. The authors were able to identify these gaps in care and work environments through their synthesis of qualitative interviews. I applaud the use of such mixed methods, which emphasizes the complementary need for both quantitative and qualitative data. What could be better strengthened in the manuscript is the authors’ justification for statistical analyses within the context of the research question, and reporting of survey administration and management.

      The authors thank the reviewer for a thorough assessment of the manuscript. We have addressed the reviewer’s concerns regarding justification of statistical analyses in the Data Analysis, Quantitative survey data section, and reporting of survey administration and management in the Results, Quantitative survey data section.

      Reviewer #2 (Public Review):

      Fuzzell et al. conducted a mixed-method study looking into the possible impact of COVID-19 on clinician perceptions of cervical cancer screening. The authors examined how the pandemic-related staffing changes might have affected the screening and abnormal results follow-up during the period October 2021 through July 2022.

      They found that 80% of the clinicians experienced decreased screening during the start of the pandemic and that ≈67% reported a return to pre-pandemic levels. The general barriers for not returning to pre-pandemic levels were staffing shortages and problems with structural systems for tracking overdue patients and those in need of follow-up after abnormal screening tests.

      Strengths:

      There is a high focus on the consequences and the need for action to prevent the ongoing impact of COVID-19 on cervical cancer screening. Some of the actions mentioned by the authors could be the use of HPV self-sampling kits, and it is interesting to be provided knowledge on the clinicians' views on HPV self-sampling. Both are of high interest to the general population in the US. Throughout the discussion, the authors and their claims are supported by other studies.

      Weaknesses:

      The lack of a National representative sample, where 63% of the responding clinicians were practicing in the Northeast, affects the possibility of generalization of the results found in the study. The overrepresentation of white females is not addressed in the discussion. This composition could have affected the results, especially when the authors report a need to look at higher salaries and better childcare to maintain adequate staffing.

      The conclusions are mostly supported by the data, however, some aspects of the data analysis need to be clarified.

      We thank the reviewer for their constructive feedback. Despite our best efforts, we were unable to recruit a sample more representative of all US regions. We note this limitation in the discussion: “Notwithstanding efforts to achieve a regionally diverse sample, 63% of responding clinicians were practicing in the Northeast at the time of their participation. Given that COVID-19 policies varied widely by state, this regional imbalance may limit the generalizability of our results. Despite the oversample of clinicians in the Northeast, region was not a significant predictor of either outcome.” Also, we acknowledge the high enrollment of White women in our provider sample and now address this point in the discussion: “Similarly, our sample was 85% female and 70% White. Although ideally we would have included a sample that was more diverse with respect to race and gender, these characteristics are not disparate from the majority of clinicians who perform cervical cancer screening (e.g., race: Women’s Health NPs [77% White], active Ob/Gyns [67% White], all active physicians [64% White]; gender: all NPs [92% female], Ob/Gyns [64% female], all active physicians [37% female]).” Data describing these characteristics are reported in the Association of American Medical Colleges (AAMC) 2022 Physician Specialty Data Report and Executive Summary, the 2018 NPWH Women’s Health Nurse Practitioner Workforce Demographics and Compensation Survey: Highlights Report, and a published paper describing the characteristics of nurse practitioners in the US, which are cited in text.

      Reviewer #3 (Public Review):

      This US study presents findings from an online survey and in-person interviews of healthcare providers regarding themes associated with cervical screening in federally qualified health centres (FQHCs). The study provides insights during the post-acute phase of the pandemic into a range of areas, including perceived changes in the provision of cervical cancer screening services and the impact of the pandemic, staffing and systems barriers to cervical cancer screening, strategies for tracking missed screens and catch-ups, follow-up of abnormal screening results, as well as attitudes towards HPV self-sampling. Results indicate persisting pandemic-related impacts on patient engagement and staffing, as well as system barriers to effective screening, catch-up of missed screens and follow-ups. Taken together, these issues may lead to increases in cervical cancer in the long-term in populations serviced by these centres, if measures are not taken to adequately support them. Participants were recruited from various regions in the US, however, the study was not conducted using a nationally-representative sample. Although highlighted issues are informative, findings cannot be generalised and larger studies are warranted in the future to monitor cervical screening provision and outcomes in FQHCs.

      We thank the reviewer for their thorough assessment of the manuscript. In the discussion, we have made sure to note the non-nationally representative sample and need for continued monitoring of cervical cancer screening and related outcomes in underserved settings and communities.

    1. Author Response

      Reviewer #2 (Public review):

      1) The systematic review includes data from some studies where PCOS is self-reported. While self-reported PCOS information has been found to be largely sensitive and specific, it would be of interest to know if prevalence ratios of mental health-related were impacted by self-reporting.

      Thank you for your insightful comment regarding the potential impact of self-reporting on the prevalence ratios of mental health-related outcomes in women with PCOS. We agree that this is an important factor to consider.

      In response, we have revisited all the studies included in our review. We have updated Supplemental Tables 2-4 to provide greater transparency and understanding. These revised tables now include a new column specifying the mental health assessment method used in each study. This update should allow for a more nuanced interpretation of the results, taking into account the potential impact of self-reporting.

      Furthermore, we conducted a sensitivity analysis by rerunning the meta-analysis to discern the potential influence of self-reported PCOS on our results, excluding the studies that relied solely on self-reported PCOS diagnosis. After we excluded studies where PCOS was self-reported, the point estimate for anxiety was similar whereas point estimates for depression and eating disorder were slightly higher but none of the estimates were different beyond chance compared to the original analysis. We believe these steps significantly strengthen the clarity and robustness of our findings (Line 314; Supplemental Tables 7 and 8).

      2) Likewise, the screening vs self-reported nature of the mental health disorders is not clear from the information included in the characteristics table.

      We have modified our Supplemental Tables 2-5 to include a column detailing the method of ‘Mental Health Assessment’. We should note that the majority of the studies directly assessed mental health using a variety of validated questionnaires. We have also included in the Discussion a section emphasizing that some of the studies included in the review relied on self-reported PCOS diagnosis and its potential impact. We also highlighted that while self-reported information is generally reliable, it is subject to potential bias that could impact the prevalence ratios of mental health-related conditions (Line 460).

      3) Calculated prevalence ratios were compared with prevalence values for the general population to determine the excess prevalence. However, the source of these general population statistics (i.e., whether these figures come from the control data in the included studies or other sources) is not clear.

      Thank you for raising this important point. We have now clarified in our Methods section that the general population statistics used for determining excess prevalence were derived from the control data in the included studies. We hope this provides the necessary transparency for our approach in calculating and interpreting the prevalence ratios (Line 210).

      4) The estimated costs for anxiety-, depression- and eating disorder-related care are accessed in published papers and used to calculate the excess costs. Conclusions would be strengthened by a defence of these figures, particularly for anxiety where the source paper is from 1999.

      Thank you for your insightful comment. We agree that providing a justification for our choice of cost estimates, especially for the anxiety care cost from a 1999 study, would strengthen our conclusions. The 1999 source was selected because it is a seminal study that offers a comprehensive breakdown of anxiety-related care costs. Despite its age, this paper is often cited in contemporary research due to its rigorous methodology and the granularity of its cost analysis. Adjusted for inflation, its findings still provide an insightful comparison point for current data. To ensure that these figures accurately represent present-day costs, we have adjusted them for inflation using the medical care inflation calculator. Our choice of these specific studies was based on their rigorous methodology, the detailed breakdown of costs, and their relevance to our targeted age groups. The aforementioned adjustments and justifications ensure that these figures aptly represent the present-day costs of treating these conditions.

      Similarly, the 2021 papers on depression and eating disorders present comprehensive and up-to-date analyses of the economic burdens associated with these conditions. These papers were selected for their rigorous methodologies, comprehensive cost breakdowns, and alignment with our age-specific focus. The Greenberg et al. (2021) paper, for example, is an authoritative source that provides detailed analysis on the economic burden of adults with major depressive disorder. Likewise, the paper by Streatfeild et al. (2021) offers a meticulous investigation into the socio-economic cost of eating disorders in the U.S., making it an apt choice for our study. We recognize the necessity of providing a robust justification for our choice of these particular papers, and we have endeavored to do so in our Methods section, thus reinforcing the transparency of our approach. We have clarified this in our Methods section to make our approach more transparent to readers (Line 225).

      5) An inflation tool is used to adjust the figure, but this does not take into account changes in treatment or practice since this estimate was made. The accuracy of these estimated figures is central to the final conclusions.

      Thank you for your valuable comment. We do note that the inflation figures used are a healthcare-specific inflation factor, as healthcare inflation differs from general consumer inflation. However, we agree that the inflation-adjusted figures do not necessarily account for changes in treatment practices since the original estimate was made, assuming these changes would alter the cost of care. We have added a discussion of this limitation in our manuscript and proposed future studies to validate these estimates using more recent data (Line 473).

    1. Author Response

      Reviewer #1 (Public Review):

      GSK3 is a multi-tasking kinase that recognises primed (i.e. phosphorylated) substrates. One of the mechanisms by which the activity of GSK3 can be regulated is through N-terminal (pSer9) phosphorylation. In this case, the phosphorylated N-terminus turns into a pseudo-substrate that occupies the substrate binding pocket and thus inhibits the activity of GSK3 towards its real substrates.

      One outstanding question is how this autoinhibitory mechanism can affect some, but not all signaling pathways that GSK3 is involved in. One example is WNT/CTNNB1 signaling. Here, GSK3 plays a central role in the turnover of CTNNB1 in the absence of WNT, but this pool of GSK3 is not affected by pSer9 phosphorylation.

      Gavagan et al. address this question using an in vitro approach with purified proteins. They identify a role for AXIN1 in protecting the "WNT signaling pool" of GSK3 from the auto- inhibition that occurs upon pSer9 phosphorylation.

      Specifically, they show that i) GSK3-pSer9 is less capable of binding and phosphorylating primed CTNNB1 - thus suggesting that GSK3-pSer9 does not contribute to WNT signaling, ii) in the presence of AXIN1, GSK3-pSer9 becomes more capable of binding and phosphorylating CTNNB1 - suggesting that Axin can promote binding of GSK3 and CTNNB1 even when the primed binding pocket on GSK3 is blocked initially, iii) AXIN1 specifically prevents the PKA mediated phosphorylation of GSK3B on pSer9 - while leaving the phosphorylation of other PKA substrates unaffected.

      Strengths:

      • The authors use an in vitro system in which they can reconstitute different interactions and reactions using purified proteins, thus allowing them to zoom in on specific biochemical events in isolation.

      • The authors measure the phosphorylation of primed substrates (pSer45-CTNNB1 or WNT- independent substrates) and quantify specific kinetic parameters (kcat, KM, and kcat/KM) - of wildtype non-phosphorylated GSK3B, pSer9GSK3B, or the non-phosphorylatable S9A-GSK3B, either in the presence or absence of AXIN1 (or an AXIN1 fragment).

      • The experiments appear to be well-controlled and the results appear to be interpreted correctly.

      Weaknesses:

      • Key experiments (e.g. Figures 2 and 3) are described as being performed as n=3 technical replicates rather than independent/biological replicates.

      We suggest that the replicates described in our work can properly be described as biological replicates, and we have updated the manuscript accordingly. We apologize for the confusion and elaborate on our reasoning below.

      Each replicate reported for our in vitro kinetic assays is an independent reaction prepared in a separate reaction vessel, and replicates were analyzed on separate gels. Thus, each reaction is a distinct biological sample and should have been described as a biological replicate. A technical replicate would have been repeat measurements of the same timepoint from a single reaction.

      Our original description as technical replicates was based on the notion that each replicate came from the same protein purification (biological sample). However, an analogy to cell culture experiments can illustrate why our initial reasoning was incorrect. In a cell culture experiment, cells from the same initial source are typically split into independent wells for biological replicates. Similarly, our proteins come from the same initial source but are split into independent reaction vessels for biological replicates.

      The critical point is that, regardless of the precise terminology, our replicates capture the variability between independent experiments.

      • The validation in a biologically relevant setting (i.e. a cellular context) is limited to Figure 4C, which shows that over-expression of AXIN1 reduces the total levels of pSer9-GSK3.

      The biochemical experiments presented in our work address a critical gap in the signaling field and, together with the in vivo validation in Figure 4C, establish a model that was previously speculative. We suggest that further in vivo experiments are beyond the scope of the current manuscript.

      The authors convincingly show that AXIN1 can play a role in shielding GSK3 from auto- inhibition. As it stands, the impact of this work on the field of WNT/CTNNB1 signaling is likely to remain limited. This is mainly due to the reason that the mechanism by which AXIN1 shields the WNT/CTNNB1 signaling pool of GSK3 from pSer9 inhibition remains unresolved. Based on the fact that a mini AXIN1 (i.e. an AXIN1 fragment) behaves the same as WT AXIN1, the authors conclude that AXIN1 likely causes allosteric changes on GSK3 but is less likely to block PKA from binding. They cannot conclusively show this, however, as they do not have evidence in favour of one or the other explanation.

      We thank the reviewer for this important comment which details the central concern raised in the review process. To address this point, we have collected additional biochemical data that conclusively shows that the Axin shielding effect is allosteric and not a steric block. We demonstrated that a minimal, 27 amino acid Axin peptide produces the same GSK3β shielding behavior as full length Axin and miniAxin. The minimal Axin peptide does not sterically occlude the GSK3β phosphorylation site. This data is included in a revised Fig 4A and described on lines 115-120 of the revised manuscript.

      However, this study does offer more insight into the compartmentalisation of GSK3 and the quantitative parameters may be used in computational models describing the different cellular activities of GSK3.

      This work also has conceptual significance: Scaffold proteins are known to promote signal transduction by bringing proteins together (often: kinases and substrates). Here, Gavagan et al. show that AXIN1 also plays a second role, namely in protecting one of its binding kinases (GSK3) from inhibitory signals. This could potentially hold for other scaffolding proteins as well.

      Reviewer #2 (Public Review):

      Gavagan et al. investigated the role of the scaffolding protein, Axin, in the cross-pathway inhibition of GSK3b. The authors utilize reconstituted Axin, b-catenin, GSK3b, and protein kinase A to test 2 models. In the first model, the formation of the complex consisting of Axin, b-catenin, and GSK3b overcomes inhibitory phosphorylation of serine 9 of GSK3b. In the second model, the binding of Axin to GSK3b inhibits serine 9 phosphorylation through allosteric effects. Previous literature has established that the phosphorylation of serine 9 of GSK3b inhibits its kinase activity. To provide a quantitative measure of inhibition, the authors determine the binding affinity and catalytic efficiency of GSK3b in comparison to GSK3b phosphoS9 towards b-catenin. Interestingly, the data demonstrate a 200-fold decrease in Kcat/Km and 7 fold increase in Km. It is unclear why serine 9 mutation to alanine increases the rate of B-catenin phosphorylation more than the GSK unphosphorylated protein in figure S10.

      We thank the reviewer for catching this inconsistency. In the Michaelis-Menten plots presented in the main text (Figure 2 & Figure 3D), rates for unphosphorylated GSK3β and GSK3β_S9A are indistinguishable. These plots were used to determine the kinetic parameters reported in Table S1 (now Supplementary file 1a). The purpose of Figure S10 (now Figure 2-figure supplement 8) was to confirm that these reactions were first order (linear) in enzyme concentration, but the reviewer is correct to flag the inconsistency in absolute rates. In Figure S10A (now Figure 2-figure supplement 8A), the rates for unphosphorylated GSK3β were ~2-3-fold lower than expected.

      We have reanalyzed the original frozen reaction timepoints on new western blots. The results were identical for unphosphorylated GSK3β and GSK3β_S9A, resolving the apparent discrepancy. Upon review of the original western blot images, we noted that they were relatively noisy, potentially indicating incomplete blot transfer or an antibody going bad. Because we were able to reanalyze the original samples and obtained internally consistent results, we suggest that the updated data should replace the original data. The updated data are included in a revised Figure S10A (now Figure 2-figure supplement 8A).

      Next, the authors tested if the addition of Axin could overcome this inhibition. Although the addition of Axin decreases the Km, thereby producing a 20-fold increase in catalytic efficiency, the addition of Axin does not rescue the catalytic turnover of the phosphorylated GSK3b. Hence, the authors propose that Axin does not rescue the kinase activity of GSK3b from the inhibitory effects of serine 9 phosphorylation.

      Next, the authors test if Axin protects GSK3b from phosphorylation by the upstream kinase PKA. Excitingly, the data show a decrease in binding affinity and catalytic efficiency of PKA with GSK3b phosphoS9 in comparison to GSK3b. The binding of Axin inhibits GSK3b serine 9 phosphorylation by PKA but does not inhibit the phosphorylation of other PKA substrates such as Creb. The authors demonstrate that a fragment of Axin, residues 384-518, behaves similarly to the full-length Axin to shield GSK3b from phosphorylation. However, it is unclear how this fragment may bind in the destruction complex and if Axin has allosteric effects on GSK3b.

    1. Author Response

      Reviewer #1 (Public Review):

      Various parts of the premotor cortex have been implicated in choices underlying decisionmaking tasks. Further, norepinephrine has been implicated in modulating behavior during various decision-making tasks. Less work has been done on how noradrenergic modulation would affect M2 activity to alter decision-making, nor is it clear whether noradrenergic modulation effects on activity would differ between the male and female sexes.

      This manuscript addresses some of these questions.

      • In particular, clear sex differences in task engagement are seen.

      • May also show some interesting differences and distributions of β2 adrenergic receptors in M2 between males and females.

      We thank the reviewer for their summary of our findings and thoughtful critique of our manuscript. In our revised manuscript we have taken measures to address the reviewer’s comments in line (blue edits in text and revised figures) with direct responses outlined below. We believe these revisions improve the scientific rigor of our findings and provide relevant context for our studies. We hope that they have sufficiently addressed the reviewer’s concerns.

      Less clear is the specificity of systemic antagonism of β adrenergic receptors on the changes in M2 activity reported. As propranolol was given systemically, changes in M2 firing rates could also be due to broader circuit (indirect) activity changes. As it was not given locally, nor were local receptor populations manipulated, one is unable to make the conclusion that changes in neural activity are due to the direct effects of adrenergic receptors within M2 populations.

      We agree that propranolol driven changes in anterior M2 activity may arise via multiple mechanisms, including direct action on the adrenoreceptors within M2, and indirect action via other regions that project to M2. Although locally activating inhibitory interneurons within M2 is sufficient to disrupt cueguided action plans and behavior in a 2AFC task (Inagaki et al., 2018), our noradrenergic manipulation was not restricted to M2. We have clarified our conclusions and provided additional discussion to highlight that propranolol actions were multifaceted and that direct actions in M2 are likely working in concert with propranolol mediated actions in other regions.

      Also not clear, is the contribution of M2 to this task, and whether the changes in M2 activity patterns observed are directly responsible for the behavioral disruptions measured.

      We have revised our introduction and discussion to more clearly outline the critical role of cue-guided action plans in M2 for successful behavior in 2AFC tasks. Suppression of cue-guided activity in M2 results in behavioral performance at near chance levels, similar to what we saw in females after propranolol (Guo et al., 2017; Inagaki et al., 2018; Li et al., 2016). Furthermore, targeted photostimulation of action plan encoding neurons in M2 is sufficient to drive behavioral responses (Daie et al., 2021). In our investigations it is plausible to expect propranolol related disruptions in other cognitive, sensory or motor regions. Based on the strong foundational evidence for M2 activity in 2AFC, the propranolol driven changes in anterior M2 in females, whether direct or indirectly mediated, are likely sufficient to drive behavioral disruptions in accuracy and/or trial completion.

      Reviewer #2 (Public Review):

      This paper by Rodbarg et al describes an interesting study on the role of beta noradrenergic receptors in action-related activity in the premotor cortex of behaving rats. This work is precious because even if the action of neuromodulatory systems in the cortex is thought to be critical for cognition, there is very little data to actually substantiate the theories. The study is well conducted and the paper is well written. I think, however, that the paper could benefit from several modifications since I can see 3 major issues:

      We thank the reviewer for their generous comments on the potential impact of our manuscript as well as their suggestions to improve this work. Below we outline responses to specific comments raised by the reviewer in addition to adresing them in the revised manuscript. We hope these responses sufficiently address the reviewer’s concerns.

      Both from a theoretical and from a practical point of view, the emphasis on 'cue-related' activity and the potential influence of NA on sensory processing is problematic. First, recent studies in rodents and primates have clearly demonstrated that LC activation is more closely related to actions than to stimulus processing (see Poe et al, 2020 for review).

      Indeed during optimal performance the peaks of LC activity are larger when PETH are aligned to action initiation rather than the cue itself (Clayton et al., 2004). This alignment resolves variability in decision processing times and omitted cues. Although LC responses align with action they are evoked by, and occur after, cue presentation with LC responses to visual cues occurring ~ 60ms after presentation (Aston-Jones & Bloom, 1981). The same behavioral action without preceding task relevant cues does not evoke an LC response (Rajkowski et al., 2004)

      In our current study cues initiate activity in anterior M2, this is our primary interest and where our electrodes are placed. The window between cue delivery and action completion hones in on our goal of investigating the role for β noradrenergic signaling in target cortical processing, rather than LC explicitly. In both NHP and rodents NE signaling (and evoked LC) promotes sustained cortical representations between cue onset and actions across cortical regions (dlPFC, S1) (Ramos & Arnsten, 2007; Vazey et al., 2018; Wang et al., 2007). In the current study we aligned neural data to either cue presentation (Figure 3) or action (lever press; Figure 4). Both presentations support a critical role for β adrenoreceptor signaling in suppressing irrelevant information, resolving and maintaining action plans. A unique feature of aligning the data to cue onset is that it allows us to see how the neural activity changes not only on completed trials (that end with a lever press) but also on omitted trials (which strongly increase after propranolol). We propose the reason we are seeing large increases in omitted trials is because β adrenoreceptor blockade either directly or indirectly prevents anterior M2 from resolving an action plan.

      Second, the analysis of neural activity around cue onset should be examined with spikes aligned on the action, since M2 is a motor region and raster plots suggest that activity is strongly related to action (I'll be more specific below).

      We agree that M2 shows important action plan activity which we highlight throughout the manuscript. In cued tasks, M2 neurons have been shown to represent action plans starting at cue onset that continues up to behavioral execution. Neural data was examined and results presented aligned to cue onset (illustrated in Figure 3) and aligned to action - lever press (illustrated in Figure 4). The impact of propranolol in diminishing action plan selection was similar in both action, and cue-aligned analyses.

      The distinction between neural activity and behavior or cognition is not always clear. I understand that spike count can be related to motor preparation or decision, but it should not be taken for granted that neuronal activity is action planning. The analysis should be clarified and the relation between neural activity, behavior, and potential hidden cognitive operations should be explicated more clearly.

      We have worked to clarify in our revised introduction, results and discussion the specifics of the known roles of neural activity in M2 in both action planning and decision making. We further expand that the neuronal activity in our study may reflect potential changes in cognitive processing and thus alter resultant behavioral outcomes.

      The sex difference is interesting, but at the moment it seems anecdotal. From a theoretical point of view, is there any ecological/ biological reason for a sex dependency of noradrenergic modulation of the cortex? Is there any background literature on sex differences in motor functions in rats, or in terms of NA action? If not, why does it matter (how does it change the way we should interpret the data?) From a practical point of view, is there a functional sex difference in absence of treatment, or is it that the drug has a distinct effect on males vs females? This has very distinct consequences, I think.

      We did not find overt differences in behavior in the absence of treatment. Only when noradrenergic function was challenged using propranolol did we identify functional sex differences. We agree that this has very distinct consequences – specifically it supports sex differences that can be revealed by perturbations of normal function. These functional sex differences may be a result of differences in the anatomy of central noradrenergic systems, a hypothesis further supported by our mRNA expression findings and existing literature on LC anatomy across species (Bangasser et al., 2011, 2016; Luque et al., 1992; Mulvey et al., 2018; Ohm et al., 1997; Pinos et al., 2001). Collectively these results have potential ramifications for understanding sex differences in disease prevalence and targeted treatments.

      Background literature supports some innate sex differences in motor function and executive function in rodents and humans. Of particular relevance to our investigation is an established difference in behavioral strategy with females being more risk averse than males (Grissom & Reyes, 2019). Ethologically risk adverse strategies may support parental care roles, and increased inhibitory mechanisms may be selected for in females. Although this strategy was not directly tested in our study, the large increase in omissions after propranolol seen in females is in line with avoiding risk (incorrect choices) during uncertainty (disrupted neural signaling). As with other executive functions, the utilization of norepinephrine within the cortex along with other neuromodulators, and local microcircuit interactions would all contribute to promoting risk averse behavior.

      These issues could be clarified both in the introduction and in the discussion, but the authors might have a different view on what is theoretically relevant here. In the result section, however, I think that both the lack of specificity in the description of behavior and cognitive operation and the confusion between 'sensory' and 'motor' functions make it very difficult to figure out what is going on in these experiments, both at a behavioral and at a neurophysiological level. First, the description of the behavior in the task is clearly not sufficient, which makes the interpretation of the measures very difficult.

      We have made an effort to better specify the task and relevant behavioral operations in both the methods and results and have included a clearer task schematic (Figure 1A). We agree that the confusion between ‘sensory’ and ‘motor’ functions may make it more difficult to understand the findings in this study. Anterior M2 plays a unique role in representing motor/action plans that can be informed by sensory information. This integrative function creates difficulty in parsing the neural activity of anterior M2 as strictly motor, sensory or cognitive. In attempts to improve clarity we have expanded and highlighted relevant information on the known roles of M2 in the introduction and discussion.

      One possible interpretation of the effects of the drug is a decrease in motivation, for instance, due to a decrease in reward sensitivity or an increase in sensitivity to effort. But there are others. More importantly, none of these measures can be used to tease apart action preparation from action execution, even though the study is supposed to be about the former.

      Neural activity during action planning, prior to action execution is known to be an essential function of M2 (Barthas & Kwan, 2017; Gremel & Costa, 2013; Guo et al., 2017; Inagaki et al., 2018, 2022; Li et al., 2016; Siniscalchi et al., 2016; Sul et al., 2011; Wei et al., 2019) for optimal performance in 2AFC tasks. In all, we found that the representation/separation of opposing action plans (a well validated function of M2) prior to responses (lever press) is degraded after propranolol, especially in females. We have provided additional emphasis on these foundational studies throughout our revised manuscript.

      To minimize impact of motivational factors, effort and reward size remain consistent within our task, and all trials require a random initiation hold prior to cue delivery. As described in our general response to the editor above (Figure 1, above), we investigated whether motivational changes may be reflected in our M2 recordings. PETHs from the first and last 10 trials within saline sessions did not identify potential motivation related differences in anterior M2 activity. Similarly, across propranolol sessions the neural activity was consistent between early and late trials. We used early and late trials as there was a mild decrease in trial rate during saline sessions in both males and females, potentially indicative of motivation/reward sensitivity changes during these sessions. M2 neural responses consistently separate action plans (after saline) or failed to separate action plans (propranolol sessions).

      Also, but this is less critical: In Figures 2C and D, it looks like there is a bimodal distribution for the effect of propranolol in females. Is there something similar in the neuronal effects of the drug? And in the distribution of receptors? Can it be accounted for by hormonal cycles/ anything else?

      Although there is some clustering in behavioral outcomes all data passed normality assumption as appropriate. Propranolol treatments were not synchronized to hormonal cycles, and the data likely include animals at various hormonal stages. Similar clustering was not apparent in neuronal effects of propranolol, although propranolol increased variability in many measures.

      In a pilot experiment we did not see any difference in baseline performance on our 2AFC task across the hormonal cycle (diestrous, proestrous, estrous or metestrous) of females in any measure including accuracy (F(3,33)=0.59, p=0.63, one-way ANOVA) and omissions (F(3,33)=0.51, p=0.68).

      The description of neural activity is also very superficial. In general, it is not clear how spike count measures have been extracted. For example, legend and figure C are not clear, is the (long) period of cue presentation included in the 'decision time'?? "Cues were presented at a variable interval 200-700ms after initiation and until animals left the well, 'Well Exit'. The time from cue onset to well exit was identified as the decision time (yellow)." Yet on the figure only the period after cue presentation is in yellow. This is critical because, given the duration of the cue, the animals are probably capable of deciding (to exit the well) before the cue turns off. Indeed, as shown in fig 2D, the animals can decide within about 500 ms. So to what extent is the 'cue response' actually a 'decision response'?

      We have clarified the task and spike count measurements in methods and added a revised task schematic. It is correct that the cues are available throughout the decision time (for up to 5 seconds or until well exit), and an action plan is generated before well exit/cues turn off as reflected by the separation of neural action plans (Fig 3, saline). Anterior M2 neurons maintain action plan representation from cue onset until the lever press under normal conditions (Fig 4, saline). These action plans encapsulate “cue responses” and “decision responses”. We have aligned neural data to discrete timestamps at either end of the window in which M2 processing is known to be critical, specifically between cues and actions (lever press) and focus on neural activity relative to those points. We refer to this activity throughout the manuscript as an ‘action plan’ as action planning functions of M2 activity have been well established in prior studies.

      When looking at figure 3A, there is clearly a pattern on the raster, a line going from top left to bottom right. If the trials are sorted chronologically, something is happening over time. If, as I suspect, trials are sorted by ascending response time, this raster is showing that what authors are calling a 'response to cues' is actually a response around action. Basically, if propranolol slows down reaction time, the spikes will be delayed from cue onset only because they remain locked to the action. Then the whole analysis and interpretation need to be reconsidered. But it might be for the best: as I mentioned earlier, recent work on LC activity has clearly emphasized its influence on motor rather than sensory processing (Poe et al, 2020).

      Figure 3A is a single neuron example, and data analyses focus on population-wide activity. Neural data is presented both aligned to cues, for all trials in which a cue was received, and aligned to lever press (action), for all trials on which a lever press occurred. In both cases, aligned to cue or aligned to action, the impact of propranolol is the same. β adrenoreceptor blockade reduces the separation of action plans in M2, severely so in females. However, a major finding is that females receive a cue but omit a large number of trials after propranolol, for this outcome the action does not occur. We propose this is due to the lack of action plan separation in anterior M2 (either directly or indirectly). When no behavioral response occurs, these trials cannot be aligned to action, yet we are still interested in the neural activity during the critical window between cue delivery and actions. We are not assigning this neural activity to sensory processing but using this discrete sensory event within our trials (cue) to align the data as there is substantial evidence that action plans in M2 arise after cue presentation in tasks such as ours where performance is guided by external cues.

      Fig 2D-F: it is hard to believe that the increase in firing rate induced by propranolol in females is not significant. Presumably, because the range of the median firing rate is so high in the first place, distribution (2E) really indicates an increase in firing. Maybe some other test? e.g paired t.test, or standardized values (z.score) to get rid of variability in firing across neurons?

      We agree that the session wide firing rate appears rightward shifted in females after propranolol. As our recordings were taken on different days, several days apart we cannot assume they are the same neurons for paired analyses. In our revised manuscript we evaluated these distributions using a MannWhitney test to increase power and decrease the impact of variability within the population. Previously we had used a Kolmogorov-Smirnov test. Using our new analysis, we can confirm that the propranolol significantly increases session wide firing rates in anterior M2 of females (p=0.027) but not males. This finding increases evidence for direct actions of propranolol within M2 and supports our hypothesis that propranolol leads to local disinhibition by reducing β noradrenergic signaling in interneurons and that without this noradrenergic tone anterior M2 is less efficient at suppressing irrelevant action plans.

      Along those lines, would it be worth looking for effects on specific populations (interneurons) which are sometimes characterized by thinner spikes and higher mean firing rates? Given the distribution of beta receptors RNA on interneurons, one would actually expect an effect of propranolol on the firing rate irrespective of task events. Or what is it that prevents the influence of propranolol on interneurons from changing the firing rate? In any case, one of the strengths of this study is the localization of beta receptors on specific neuronal populations in the cortex, so I think that the authors should really try to build on it and find something related to the neurophysiological effects. Otherwise, one cannot exclude the possibility that the behavioral effects are not related to the influence of the drug on these receptors in that region.

      Data were collected using stainless steel electrode arrays and our sample population of task related neurons is likely biased to pyramidal neurons, with a small number of fast spiking interneurons. We used validated spike waveform parameters of interneurons in premotor cortex (peak-to-trough ratio and duration; Giordano et al., 2023) in an attempt to isolate putative interneurons and found only a very small number of these cells in our recordings (n=5-7 per group). This population is too small to make any inferences about specific impacts. We have focused on the collective population activity of M2 as this is most strongly related to optimal action planning.

      You are correct that from the given findings we cannot conclusively show that the results found here are a result of propranolol acting solely within anterior M2. We have made sure to clarify throughout our revised manuscript that the behavioral and physiological changes we identified are a result of collective direct and indirect actions of propranolol.

      The conclusion that neuronal discrimination decreases because the proportion of neurons showing no effect increases is confusing (negative results, basically). It would be clearer if they were reporting the number of neurons that do show an effect, and presumably that this number shows a significant decrease.

      The reviewer is correct that the number of neurons that do show an effect (task related activity) does significantly decrease with propranolol (from n=70 to 27 in females and n=71 to 48 in males). These n are now given adjacent to the proportions rather than at the end of the paragraph. Proportions were used for statistical analysis due to an overall decrease in the total number of units after propranolol. All PETH presented are from neurons that show some task related activity, these PETH confirm that neural activity no longer effectively discriminates/separates action plans in M2.

      Figs 3F-I: a good proportion of neurons (at least 20%) show a significant encoding before cue onset. How is it possible? This raises the issue of noise level/ null hypothesis for this kind of repeated analysis. How did the author correct for multiple comparison issues?

      In response to reviews, we have altered the manner in which we identify the significantly modulated neurons to increase rigor and no longer include these figures or analyses. The proportion of neurons showing action plan encoding prior to cue onset was likely an artifact of how the data was analyzed and an insufficient correction for multiple comparisons, allowing inclusion of internally generated action plans in some neurons.

      The description of the action-related activity is globally confusing. Again, how can the authors discriminate between activity related to planning vs action itself? What is significant and what is not, in males vs females? What is being measured here? For example, a very unclear statement on line 238: "Propranolol primarily disrupted active inhibition of irrelevant action selection in M2 activity, reducing the ability to maintain action plan representation in M2, delaying lever press responses (Figure 4L, 4M)." What is 'active inhibition? What is an irrelevant action plan? What is selection? All of that should be defined using objective behavioral criteria and tested formally.

      We have changed our wording to clarify what we are describing and why we have chosen the words we have, and to ensure consistency and objectivity throughout the manuscript. Much of the wording we have used – for example action planning or action plan selection, are the words used in the literature to describe M2 neural activity. We call the activity in M2 action planning (either externally/cue guided or internally guided) because that is what has been previously demonstrated. In our task design and analysis we are tracking cue guided actions, as opposed to internally guided.

      We also separate the electrophysiology data as preferred and nonpreferred because the literature has shown individual M2 neurons show specific directional tuning as noted in our results, using the term ‘preferred’ encapsulates that tuning regardless of left/right direction. An example M2 neuron that increases activity for left cues and responses (preferred direction), will show active inhibition (low/negative z scores) on trials with right cues and responses (nonpreferred), other neurons would show the inverse relationship with direction.

      A primary impact of propranolol was the loss of negative z-scores for nonpreferred trials ie neurons with a left preference that are usually inhibited on right trials were still firing and vice-versa. After propranolol neurons continue to fire for an irrelevant action plan (for the opposite direction), and the resulting population activity is not significantly different for opposing cues/responses. Behavioral responses normally occur after opposing action plans have significantly separated in M2, collapsing action plans by preventing relevant signaling (Guo et al., 2017; Inagaki et al., 2018; Li et al., 2016) or facilitating irrelevant signaling as we see here with propranolol leads impairments in 2AFC performance.

      Also, the description of the classifier analysis should be more thorough. Referencing the toolbox is not sufficient to understand what has been done.

      We have added additional explanation in both the methods and description of the results to clarify the functions of the neural decoding box and how we are using it to evaluate information encoding within M2. We have provided detail on how the algorithm was trained, how shuffled data was generated and how we determined significance of decoding accuracy.

      Measuring Beta adrenoceptors is a great idea, and the results are interesting, especially the difference between neuron types. But again, how does that fit with neurophysiological results? Note, that since this is RNA measures, it should not be phrased as 'receptors' but 'receptors RNA' throughout. One possible interpretation of these anatomical results that cannot be reconciled with physiology is that protein expression at the membrane shows a distinct pattern.

      We have changed the references to β receptor expression to β receptor mRNA expression throughout the manuscript. Although mRNA provides a valuable proxy for adrenoreceptor production, as noted by the reviewer protein expression at the membrane may differ. Reliable antibodies that allow quantitative analysis of membrane bound adrenoreceoptors in situ with co-labeling of specific cell types are limited. The goal of assessing mRNA expression within M2 was to determine if the functional sex differences we identified in M2 neurophysiology when manipulating β adrenoreceptor function could be mediated by basal differences in adrenoreceptors. The causal impact of differential mRNA expression in anterior M2 was not directly tested but our findings provide preliminary evidence that adrenoreceptor regulation may differ across sexes. Our results provide a plausible avenue for differential sensitivity to β adrenoreceptor manipulation across sexes, that may also be found in other brain regions.

      In conclusion, I think that this is a very interesting study and that the results are potentially relevant for a wide audience. But the paper would clearly benefit from revisions. If the authors could clearly identify a significant relationship between the action of NA on beta receptors on specific cortical neurons, at a physiological and behavioral level, that would be a seminal study. At the moment, the evidence is not convincing enough but the data suggest that it is the case.

      We thank the reviewer for the kind remarks. We have undertaken a number of new analyses, refined existing analysis and clarified our claims in the manuscript to improve rigor. Collectively our data reflect that the behavioral and neural deficits after systemic propranolol are likely due to both direct and indirect actions on M2. We believe this work is compelling and that it will inform future work investigating potential sex differences in central noradrenergic anatomy and functional sex differences after perturbations of noradrenergic signaling.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      (1) What's the rationale of trypsinizing the tissue prior to mitochondrial isolation? This is not standard for subsequent proteomics analysis. This step will inevitably cause protein loss, especially for the post mitochondrial fractions (PMF). Treating samples with 0.01ug/uL trypsin for 37oC 30 min is sufficient to partially digest a substantial portion of the proteome. If samples from different subjects were not of the same weight, then this partial digestion step may introduce artificial variability as variable proportions of proteins from different subjects would be lost during this step. In addition, the mitochondrial protein enrichment in the mito fraction, despite statistically significant, does not look striking (Figure 1E, ~30% mitochondrial proteins in the mito fraction). As a comparison, Williams et al., MCP 2018 seem to have obtained high mitochondrial protein content in the mito fraction without trpsinizing the frozen quadriceps using a similar SWATH-MS-based approach.

      Trypsinisation of the tissue prior to mitochondrial isolation is based on previous work and a Nature Protocol (1, 2) which isolated mitochondria for skeletal muscle. The rationale is that it aids in mechanical homogenisation from highly fibrous tissues such as quadriceps muscle by digesting extracellular matrix proteins. The trypsin/protein ratio used to aid in this process is at least 400 times lower than the amount of trypsin used for formal proteomic tryptic digestion. Three pieces of evidence suggest this step has negligible effect on downstream proteomic analysis. First, because the trypsinisation buffer is detergent free, trypsin will only affect extracellular or exposed membrane proteins. Filtering our PMF dataset for proteins with ‘extracellular matrix’ gene ontology identifies at least 90 unique extracellular matrix proteins indicating good retention of proteins susceptible to partial digestion. Second, the trypsin dose used is 50 times lower than the concentration used for passaging cultured cells, which retain viability after trypsinisation. Third, and contrary to the point raised by the reviewer, we observe less missingness in PMF samples compared to mitochondrial samples. We thank the reviewer for bringing the Williams et al. 2018 MCP paper to our attention. We note that mitochondrial enrichment between the two papers is comparable (~2- fold). To improve clarity line 408 now reads: “Whole quadriceps muscle samples were prepared as previously described with modification (99, 100). First, tissue was snap frozen with liquid nitrogen…” and line 95 reads: “Mitochondrial proteins were defined based on their presence in MitoCarta 3.0 (24) and consistent with previous work (25) were approximately two-fold enriched in the mitochondrial fraction relative to the PMF (Fig 1E).”

      (2) The authors mentioned that the proteomics data were Log2 transformed and median- normalized. Would it be possible to provide a bit more details on this? Were the subjects randomized?

      Samples were randomised prior to sample processing and mass spectrometry analysis. Because of possible variation in total protein content, it is critical to normalise protein intensities between samples. Median normalisation adjusts the samples so that they have the same median, thereby accounting for technical variation. Log2 normalisation helps to achieve normal distributions, critical for many downstream statistical tests. Line 471 now reads: “…to achieve normal distributions and account for technical variation in total protein.”

      (3) In Figure 1D, what were the numbers of mice the authors used for the CV comparisons in each group? Were they of similar age and sex? Were the differences in CV values statistically significant?

      The mitochondrial and PMF proteomes originated from the same quadriceps sample from the same mouse, and thus the age and sex are the same across both proteomes. After quality control, we had mitochondrial proteomes for 194 mice and PMF proteomes for 215 mice. The overall CV in the mitochondrial fraction was significantly greater than in the PMF, however whether the source of this variation is biological, or the result of mitochondrial isolation is unclear and as such we have avoided making a statement within the body of the manuscript. We have now more clearly described the nature of the samples in the revised manuscript and added sample sizes to figure 1F.

      (4) The authors stated in lines 155-157 that proteins negatively associated with the Matsuda index were further filtered by presence of their cis-pQTLs. Perhaps more explanations would be needed to justify this filtering criterion? Having a cis-pQTL would mean the protein abundance variation is explained by the variation in its coding gene, this however conceptually would not be relevant to its association with the Matsuda index. With the data that the authors have in hand, would it not be natural to align the Matsuda index QTL with the pQTLs (cis and trans if available), and/or to perform mediation analysis to examine causal relationships with statistical significance?

      The rationale for filtering by cis-pQTL was not to study the genetics of either Matsuda or associated proteins but rather to identify proteins that were more likely to be causally associated with Matsuda Index as opposed to adaptively associated. To clarify this line 165 now reads: “Filtering based on cis-pQTL presence was based on the rationale that if genetic variation can explain protein abundance differences between mice, then we can be confident that phenotype (Matsuda Index) is not driving the observed differences and therefore the protein-phenotype associations are likely causal. Importantly, this assumption can only be made for cis-acting pQTLs.” Previous work by Matthew et al. (see https://qtlviewer.jax.org/) has demonstrated that cis-pQTL have markedly higher LOD scores than trans-pQTLs, and our own unpublished work suggests that trans-pQTLs do not reproduce well between datasets. The reviewer rightfully suggests aligning protein QTL with those for Matsuda. This is our long-term goal but to identify genome wide significant peaks associated with altered Matsuda will require many more mice than studied here.

      (5) It seems a bit odd that the first half of the paper focused extensively on the authors' discoveries in the mitochondrial proteome, and how proteins involved in mitochondrial processes (such as complex I) were associated with Matsuda Index, but the final fingerprint list of insulin resistance, which contained 76 proteins, only had 7 mitochondrial proteins. Was this because many mitochondrial proteins were filtered out due to no cis-pQTL presenting?

      There are three reasons our fingerprint is lacking mitochondrial proteins: 1) there are more non-mitochondrial than mitochondrial proteins in the muscle proteome; 2) we focussed on negatively associated proteins, and as demonstrated in figure 2c, the mitochondrial proteome is enriched for positively associated proteins; 3) as implied by the reviewer, we filtered for pQTL presence, further reducing the number of mitochondrial proteins in our fingerprint. To improve clarity, line 170 now reads: “Low mitochondrial representation in the fingerprint is the result of selecting negatively associating proteins, and as seen (Figure 2C) previously, the mitochondrial proteome is enriched for positive contributors to insulin resistance.”

      (6) The authors found that thiostrepton-induced insulin resistance reversal effects were not through insulin signalling. It activated glycolysis but the mechanism of action was not clear. What are the proteins in the fingerprint list that led to identification of thiostrepton on CMAP?

      Is thiostrepton able to bind or change the expression of these proteins? Since thiostrepton was identified by searching the insulin resistance fingerprint protein list against CMAP, it would be rational to think that it exerts the biological effects by directly or indirectly acting on these protein targets.

      This is indeed the implication of our data. Because of the timescales involved it is unlikely that thiostrepton is changing fingerprint protein levels but could be binding to and inhibiting them. Searching the CMAP thiostrepton signature reveals ARHGDIB and NAGK as the fingerprint proteins with the most positive and negative fold-changes respectively perhaps suggesting they play a role in thiostrepton’s mechanism of action. Experiments are underway to test this hypothesis however these are beyond the scope of the current paper.

      Reviewer #2 (Public Review):

      Line 105: The observation that variance in respiratory proteins is stable while lipid pathways is variable is quite interesting. Is this due to lower overall levels of lipid metabolism enzymes (ex. do these differ substantially from similar pathways ranked from high-low abundance?).

      The relationship between coefficient of variation (CV) and relative abundance of proteins is important to consider. To address this, we have now also performed GSEA on proteins ranked from high to low relative abundance. These comparisons have been added to supplementary figure 1 and line 110 now reads: “As a control experiment, we also performed enrichment analysis on proteins ranked by LFQ relative abundance. High CV pathways (enriched for high CV proteins) tended to be lower in relative abundance (enriched for low relative abundance proteins) (Supplementary Fig 1a, b). However, many high variability pathways, lipid metabolism for example, were not enriched in either direction based on relative abundance suggesting differences in relative abundance do not fully explain pathway variability differences.”

      Line 154: the 664 associations are impressive and potentially informative. It would be valuable to know which of these co-map to the same locus - either to distinguish linkage in a 2mb window or identify any cis-proteins which directly exert effects in trans-

      To assess this, we have analysed pQTL position relative to gene position to generate a ‘hotspot’ plot. We have also generated a histogram of this pQTL density (in a 2 Mbp window) and added these figures to figure 3. We did not detect any obvious pQTL hotspots, and the distribution of pQTLs across the genome appears fairly uniform. Line 159 now reads: “These were distributed across the genome and were predominately cis acting (Figure 3A)...”

      Line 194: Cross-platform validation of the CMAP fingerprint results is an admirable set of validations. It might be good to know general parameters like how many compounds were shared/unique for each platform. Also the concordance between ranking scores for significant and shared compounds.

      The Connectivity Map (CMap) query included 5163 compounds, the Prestwick library included 1120, and the overlap was 420. We have added these comparisons to supplementary figure 2. Supplementary figure 2 now also contains a comparison of CMap scores between overlapping compounds (found in CMap and the Prestwick library) against all significant compounds identified by CMap (supplementary figure 2b). Interestingly, compounds present in both platforms scored higher on average, suggesting the Prestwick library captures a significant proportion of highly scoring CMap candidates. Line 206 now reads: “In total, 420 compounds were found across both platforms, and these consensus compounds captured a significant proportion of highly scoring CMap compounds (Supplementary Figure 2A, B).”

      Line 319: Another consideration in the molecular fingerprint is how unique these are for muscle. While studies evaluating gene expression have shown that many cis-eQTLs are shared across tissues, to my knowledge, this hasn't been performed systematically for pQTLs. Therefore, consider adding a point to the discussion pointing out that some of the proteins might be conserved pQTLs whereas others which would be more relevant here present unique druggable targets in muscle.

      To examine tissue specificity, we determined whether our skeletal muscle fingerprint proteins were detected and contained a pQTL in two metabolically important tissues, liver and adipose. Despite detecting almost all the fingerprint proteins in both adipose and liver tissue, they were depleted for pQTL compared to skeletal muscle. These data have now been added to figure 3c. Line 172 now reads: “To assess the tissue specificity of our fingerprint we searched for the same proteins in metabolically important adipose and liver tissues. Despite detecting 94% and 82% of muscle fingerprint proteins across each tissue respectively, both adipose and liver were depleted for pQTL presence (Figure 3C) suggesting that regulation of our fingerprint protein abundance is specific to skeletal muscle.”

      Line 332: These are fascinating observations. 1, that in general insulin signaling and ampk were not themselves shown as top-ranked enrichments with matsuda and that this was sufficient to alter glucose metabolism without changes in these pathways. While further characterization of this signaling mechanism is beyond the scope of this study, it would be good to speculate as to additional signaling pathways that are relevant beyond ROS (ex. CNYP2 and others)

      We have now added further discussion to the manuscript to address this point., Line 347 now reads: “Aside from glycolysis, other pathways may be involved in enhancing insulin sensitivity. For example, the negatively associated protein ARHGDIA (Figure 2F) is a potent negative regulator of insulin sensitivity, and our fingerprint of insulin resistance contained its homologue ARHGDIB. Both ARHGDIA and ARHGDIB have been reported to inhibit the insulin action regulator RAC1 thus lowering GLUT4 translocation and glucose uptake. Further investigations may uncover a role for thiostrepton in modulating the RAC1 signalling pathway via ARHGDIB.”

      Line: 314: Remove the statement: "While this approach is less powerful than QTL co- localisation for identifying causal drivers,", as I don't believe that this has been demonstrated. Clearly, the authors provide a sufficient framework to pinpoint causality and produce an actionable set of proteins.

      We have edited line 314, which now reads: “Moreover, our approach has the major advantage that it requires far fewer mice to obtain meaningful outcomes (222 mice in this study) compared to that required for genetic mapping of complex traits like Matsuda Index.”

      Line 346: I would highlight one more appeal of the approach adopted by the authors. Given that these compound libraries were prioritized from patterns of diverse genetics, these observations are inherently more-likely to operate robustly across target backgrounds.

      This point is further supported by our thiostrepton results in both C57BL6/j and BXH9 mice. Line 317 now reads: “Furthermore, because we have used genetically diverse datasets (DOz mice and multiple cell lines in Connectivity Map) our findings are likely robust across diverse target backgrounds.”

      Line 434: I might have missed but can't seem to find where the muscle data are available to researchers. Given the importance and novelty of these studies, it will be important to provide some way to access the proteomic data.

      These data are now available via the ProteomeXchange Consortium. Line 465 now reads: “The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (104) partner repository with the dataset identifier PXD042277.”

      1. Frezza C, Cipolat S, Scorrano L. Organelle isolation: functional mitochondria from mouse liver, muscle and cultured filroblasts. Nat Protoc. 2007;2(2):287-95.

      2. Acin-Perez R, Benador IY, Petcherski A, Veliova M, Benavides GA, Lagarrigue S, et al. A novel approach to measure mitochondrial respiration in frozen biological samples. The EMBO Journal. 2020;39(13):e104073.

      3. Chick JM, Munger SC, Simecek P, Huttlin EL, Choi K, Gatti DM, et al. Defining the consequences of genetic variation on a proteome-wide scale. Nature. 2016;534(7608):500- 5.

      4. Gatti DM, Svenson KL, Shabalin A, Wu L-Y, Valdar W, Simecek P, et al. Quantitative Trait Locus Mapping Methods for Diversity Outbred Mice. G3 Genes|Genomes|Genetics. 2014;4(9):1623-33.

    1. Author Response

      Reviewer #1 (Public Review):

      In this study, the authors set out to investigate spatial RNA processing events, specifically alternative splicing and 3' UTR usage, in mouse brain and kidney tissues using ReadZS and SpliZ methodologies on spatial transcriptomics data. The research contributes to understanding tissue-specific gene expression regulation from a spatial perspective. The study introduces a novel approach for analyzing spatial transcriptomics data, allowing for the identification of RNA processing and regulation patterns directly from 10X Visium data. The authors present convincing evidence supporting the identification of novel RNA processing patterns using their methodology, which holds significant implications for researchers in the field of spatial transcriptomics and the study of alternative splicing and 3' UTR usage.

      Thank you for this thorough overview of our work.

      The conclusions of the study are mostly well-supported by the data; however, certain aspects could be improved to strengthen the findings.

      1) The conclusions of this study would be strengthened by conducting a more extensive tissue sample analysis and including biological replicates. Additionally, appropriate batch effect corrections should be applied when dealing with biological replicates.

      We agree that including biological replicates would strengthen our findings. We will include biological replicates of the mouse brain tissues in the revision.

      2) The 3' UTR usage and alternative splicing should be compared among clearly labeled clusters for a more comprehensive analysis.

      We understand that it can be difficult to see how the SpliZ quantiles map spatially onto the tissue images. For the splicing of Gng13, Myl6, and Rps24, we will include box plots broken down by spatial quadrant in the revision. However, this does result in an oversimplification of the spatial patterns found in the tissue slices, which make the plots less informative than the quantile plots to our view.

      3) The authors should clarify their rationale for choosing ReadZS and SpliZ approaches and provide comparisons with other methods to demonstrate the advantages and potential limitations of their chosen methodologies.

      Thank you for pointing out the lack of sufficient discussion of ReadZS and SpliZ in the manuscript. The ReadZS and SpliZ were chosen for this analysis because both of these methods provide an individual score for each cell-gene pair, which is easily adapted to providing a score for each spot-gene pair. Due to the sparsity and 3’ bias of Visium data, approaches designed to analyze RNA processing in full-length sequencing analysis are not applicable. The SpliZ and ReadZS are two of the limited number of tools available that are designed for the analysis of RNA processing in droplet-based data. Other available tools tend to rely on aggregating data across multiple cells using a method called pseudo-bulking (Li et al., 2021; Patrick et al., 2020). It is not clear how this could be used for spatial transcriptomics data without potentially obscuring subtle spatial patterns in the data. Others are based on PSI measurements, which are vulnerable to artifacts due to sparsity (Buen Abad Najar et al., 2020; Olivieri et al., 2022; Wen et al., 2022). The tradeoff between pseudo-bulking and a single score per spot-gene pair means that the ReadZS and SpliZ do not have the power to detect changes for genes with very low read counts. We will add text in the revision to clarify this point.

      Reviewer #2 (Public Review):

      The authors applied existing ReadZS and the SpliZ methods, previously developed to analyze RNA process in scRNA-seq data, to Visium data to study spatial splicing and RNA processing events in tissues by Moran's I. The authors showed several example genes in mouse brain and kidney, whose processing are spatially regulated, such as Rps24, Myl6, Gng13.

      Thank you for this thorough overview of our work.

      The paper touches on an important question in RNA biology about how RNA processing is regulated spatially. Both experimental and computational challenges remain to address it. Despite some potentially interesting findings, most claims remain to be validated by orthogonal methods such as RNA FISH and simulations.

      We appreciate that the reviewer finds the question important, and that the findings are potentially interesting. In the revision we will include biological replicates for our findings in the mouse brain. Unfortunately, experimental validation is outside of our budget for this project. It is unclear what further simulations could validate the biological discoveries in this manuscript: permutations were used to calculate the p value of each discovery, and the false positive and negative rates of the SpliZ have been assessed through simulation (Olivieri et al., 2022).

      In addition, the percentage of spatial processing events (splicing in 0.8-2.2% of detected genes, i.e. 8-17 genes and RNA processing in 1.1-5.5% of detected genomic windows, i.e. 57-161 windows) discovered is low. Does it suggest that most of RNA processing events were not spatially regulated across the tissue? Or does it question the assumption of treating spatial transcriptomics data similar to scRNA-seq data?

      We agree that the question of the prevalence of spatial RNA processing regulation is critical. Rather than the two options proposed here, we believe that the sparsity of the data limits our ability to call more of these events. In the revision, we will provide a supplemental figure showing the relationship between read depth and p value for each gene to quantify how the fraction of observed regulation changes with sequencing depth. It is worth noting that as these technologies improve, we expect the sequencing depth of spatial technologies to increase which would likely result in more discoveries.

      The unique features for ST data, such as mixture of neighboring cells, different capture biases and much smaller number of spots (pseudo cells here), may have significant effects on the power of scRNA-seq based methods, but it is not discussed in the manuscript. The lack of careful evaluation and low discovery rates could limit application of the approach to other tissues and subcellular data.

      We appreciate the concern that technical differences between scRNA-seq data and spatial transcriptomics data could affect our results. We agree that this point could be addressed more thoroughly in the text. None of the specificities of spatial transcriptomics data invalidate the assumptions of the SpliZ or ReadZS. The method we use to identify genes with significant spatial regulation of RNA processing was specifically created to be used for Visium data. It takes into account mixture of RNAs in neighboring cells by randomly sampling scores of neighboring cells, rather than randomization of the location of the spots themselves, which does indeed result in a high false positive rate (see “Permutations for Moran’s I” in the Methods). We do note that there is a limit to the power of this kind of analysis based on the number of spots and the read depth, which we will quantify in a plot in the revision.

    1. Author Response:

      We thank Reviewer #1 for their positive assessment of our work.

      Reviewer #2 (Public Review):

      […] Although these results confirm what we already know about processes involved in the meninges in MS and its models and gradients of pathology in sub-pial regions, this is the first to use spatial transcriptomics to demonstrate such gradients at a molecular level in an animal model that demonstrates lymphoid like tissue development in the meninges and associated grey matter pathology. The mouse EAE model being used here does reproduce many, although not all, of the pathological features of MS and the ability to look at longer time points has been exploited well. However, this particular spatial transcriptomics technique cannot resolve at a cellular level and therefore there is a lot of overlap between gene expression signatures in the meninges and the underlying grey matter parenchyma.

      We appreciate the reviewer’s concise summary and comments on our manuscript. We agree that the Visium spatial sequencing technology we applied is limited in its resolution and cannot precisely distinguish individual cells or anatomic regions. For that reason, there is undoubtedly some overlap between gene expression signatures in the meninges and underlying parenchyma, particularly in spots on the borders of the meningeal inflammation clusters. However, we believe that the majority of meningeal inflammation (“cluster 11”) spots are indeed in the meninges and represent the spatial transcriptome of that niche. To support this, in the revised manuscript we will provide H&E images with the UMAP clusters overlayed to demonstrate the anatomic borders that correlate with the clusters.

      The short nature of this report means that the results are presented and discussed in a vague way, without enough molecular detail to reveal much information about molecular pathogenetic mechanisms.

      We thank the reviewer for this comment. The goal of this work is to transcriptomically characterize the spatial relationship between areas of meningeal inflammation and the underlying parenchyma. While we agree that mechanistic studies are needed to further evaluate the role of presented signaling pathways, those experiments are beyond the scope of this brief report.

      The trajectory analysis is a good way to explore gradients within the tissues and the authors are to be applauded for using this approach. However, the trajectory analysis does not tell us much if you only choose 2 genes that you think might be involved in the pathogenetic processes going on in the grey matter. It might be more useful to choose some genes involved in pathogenetic processes that we already know are involved in the tissue damage in the underlying grey matter in MS, for which there is already a lot of literature, or genes that respond to molecules we know are increased in MS CSF, although the animal models may be very different. Why were C3 and B2m chosen here?

      We appreciate the reviewer’s points here. C3 and B2m were chosen as examples of genes that have differential fit to the gradient descending pattern to assist the reader in interpreting subsequent gene set trajectory analysis. However, we agree that there are many other genes of interest and will expand the number of genes displayed in our revised manuscript. 

      Strengths: <br /> - The mouse model does exhibit many of the features of the compartmentalized immune response seen in MS, including the presence of meningeal immune cell infiltrates in the central sulcus and over the surface of the cortex, with the presence of FDC's HEVs PNAd+ vessels and CXCL13 expression, indicating the formation of lymphoid like cell aggregates. In addition, disruption of the glia limitans is seen, as in MS. Increased microglial reactivity is also present at the pial surface. <br /> - Spatial transcriptomics is the best approach to studying gradients in gene expression in both white matter and grey matter and their relationship between compartments. <br /> - It would be useful to have more discussion of how the upregulated pathways in the two .compartments fit with what we know about the cellular changes occurring in both, for which presumably there is prior information from the group's previous publications.

      Limitations: <br /> - EAE in the mouse is not MS and may be far removed when one considers molecular mechanisms, especially as MS is not a simple anti-myelin protein autoimmune condition. Therefore, this study could be following gene trajectories that do not exist in MS. This needs a significant amount of discussion in the manuscript if the authors suggest that it is mimicking MS. <br /> - The model does not have the cortical subpial demyelination typical of MS and it is unknown whether neuronal loss occurs in this model, which is the main feature of cytokine-mediated neurodegeneration in MS. If it does not then a whole set of genes will be missing that are involved in the neuronal response to inflammatory stimuli that may be cytotoxic. <br /> - Visium technology does not get down to single cell level and does not appear to allow resolution of the border between the meninges and the underlying grey matter. <br /> - Neuronal loss in the MS cortex is independent of demyelination and therefore not related to remyelination failure. There does not appear to be any cortical grey matter demyelination in these animals, so it is difficult to relate any of the gene changes seen here to demyelination. <br /> - No mention of how the ascending and descending patterns of gene expression may be due to the gradient of microglial activation that underlies meningeal inflammation, which is a big omission.

      We thank the reviewer for their insightful comments on the strengths and limitations of our study. Regarding the SJL EAE model we use in this paper, it certainly is not a perfect model of meningeal inflammation in MS, indeed we believe that no such animal model exists, but it does recapitulate several key features of human disease as described by the reviewer. Spatial transcriptomics of cortical grey matter lesions and overlying meninges of samples derived from patients with MS would be ideal, though access to this tissue is highly limited. In the revised manuscript we will include more detailed discussion of the limitations in applying these findings to MS. However, in addition to potential implications for MS research, our data contribute more generally to understanding of meningeal inflammation and penetrance of inflammation into brain tissue.

      We acknowledge that sub-pial neuronal loss has not been assessed in SJL EAE, and if present it would increase the relevance of this model to neurodegeneration. We are currently working to assess this.

      We agree with the reviewer that Visium technology is limited in its ability to discriminate individual cells, as discussed above (2.2).

      We agree that gene expression by activated microglia is likely a major driver of the transcriptomic changes observed in the parenchyma, and thank the reviewer for highlighting this. We will add discussion of this to our revised manuscript, and intend to generate additional data regarding the contribution of subpial microglial activation to the measured transcriptomic changes.

      Finally, we thank Reviewer #3 for their assessment of our work.

    1. Author Response

      eLife assessment:

      Trypanosoma brucei evades mammalian humoral immunity through the expression of different variant surface glycoprotein genes. In this fundamental paper, the authors extend previous observations that TbRAP1 both interacts with PIP5pase and binds PI(3,4,5)P3, indicating a role for PI(3,4,5)P3 binding and suggesting that antigen switching is signal dependent. While much of the evidence is compelling, one reviewer suggested that the work would benefit from further controls.

      We appreciate the evaluation of the work and agree that the findings substantially advance our understanding of antigenic variation. A detailed response to the public review is included below, which addresses and clarifies the issues raised by the reviewers, including those concerning controls. We also want to highlight the comment by Reviewer #3 “The methods used in the study are rigorous and well-controlled…. their results support the conclusions made in the manuscript.”. We hope this and our comments will help address the issue of controls in this eLife statement.

      Reviewer #1 (Public Review):

      Trypanosoma brucei undergoes antigenic variation to evade the mammalian host’s immune response. To achieve this, T. brucei regularly expresses different VSGs as its major surface antigen. VSG expression sites are exclusively subtelomeric, and VSG transcription by RNA polymerase I is strictly monoallelic. It has been shown that T. brucei RAP1, a telomeric protein, and the phosphoinositol pathway are essential for VSG monoallelic expression. In previous studies, Cestari et al. (ref. 24) have shown that PIP5pase interacts with RAP1 and that RAP1 binds PI(3,4,5)P3. RNAseq and ChIPseq analyses have been performed previously in PIP5pase conditional knockout cells, too (ref. 24). In the current study, Touray et al. did similar analyses except that catalytic dead PIP5pase mutant was used and the DNA and PI(3,4,5)P3 binding activities of RAP1 fragments were examined. Specifically, the authors examined the transcriptome profile and did RAP1 ChIPseq in PIP5pase catalytic dead mutant. The authors also expressed several C-terminal His6-tagged RAP1 recombinant proteins (full-length, aa1-300, aa301-560, and aa 561-855). These fragments’ DNA binding activities were examined by EMSA analysis and their phosphoinositides binding activities were examined by affinity pulldown of biotin-conjugated phosphoinositides. As a result, the authors confirmed that VSG silencing (both BES-linked and MES-linked VSGs) depends on PIP5pase catalytic activity, but the overall knowledge improvement is incremental. The most convincing data come from the phosphoinositide binding assay as it clearly shows that N-terminus of RAP1 binds PI(3,4,5)P3 but not PI(4,5)P2, although this is only assayed in vitro, while the in vivo binding of full-length RAP1 to PI(3,4,5)P3 has been previously published by Cestari et al (ref. 24) already. Considering that many phosphoinositides exert their regulatory role by modulating the subcellular localization of their bound proteins, it is reasonable to hypothesize that binding to PI(3,4,5)P3 can remove RAP1 from the chromatin. However, no convincing data have been shown to support the author’s hypothesis that this regulation is through an “allosteric switch”. Therefore, the title should be revised.

      We appreciate the reviewer’s detailed evaluation of our work. There are a few general comments that we would like to clarify. We will break them into three points. All data included here are new and were not previously published.

      i) “RNAseq and ChIPseq analyses have been performed previously …(ref. 24).” Reference 24 is Cestari et al. 2019, Mol Cell Biol. We, or others, have not published ChIP-seq of RAP1 in T. brucei. Previous work showed ChIP-qPCR, which analyses specific loci. The ChIP-seq shows genome-wide binding sites of RAP1, and new findings are shown here, including binding sites in the BES, MESs, and other genome loci such as centromeres. We also identified DNA sequence bias defining RAP1 binding sites (Fig 2A). We also show by ChIP-seq how RAP1-binding to these loci changes upon expression of catalytic inactive PIP5Pase. As for the RNA-seq, this is also the first time we show RNA-seq of T. brucei expressing catalytic inactive PIP5Pase, which establishes that the regulation of VSG silencing and switching is dependent on PIP5Pase enzyme catalysis, i.e., PI(3,4,5)P3 dephosphorylation. To improve clarity in the manuscript, we edited page 4, line 122, as follows: “We showed that RAP1 binds telomeric or 70 bp repeats (24), but it is unknown if it binds to other ES sequences or genomic loci.”

      ii) “The in vivo binding of full-length RAP1 to PI(3,4,5)P3 has been previously published by Cestari et al. (ref. 24) already.”. We published in reference 24 that RAP1-HA can bind agarose beads-conjugated synthetic PI(3,4,5)P3. Here, we were able to measure T. brucei endogenous PI(3,4,5)P3 associated with RAP1-HA (Fig 4F). Moreover, we showed that the endogenous RAP1-HA and PI(3,4,5)P3 binding is about 100-fold higher when PIP5Pase is catalytic inactive than WT PIP5Pase. The data establish that in vivo endogenous PI(3,4,5)P3 binds to RAP1-HA and how the binding changes in cells expressing mutant PIP5Pase; this data is new and relevant to our conclusions.

      iii) “no convincing data have been shown to support the author’s hypothesis that this regulation is through an “allosteric switch””. We show here in vitro and in vivo data supporting the conclusion. We show that PI(3,4,5)P3 binds to the N-terminus of rRAP1-His with a calculated Kd of about 20 µM (Fig 4B-E, Table 1). In contrast, we show by EMSA and binding kinetics by microscale thermophoresis that rRAP1-His binds to 70 bp and telomeric repeats via protein regions encompassing the Myb (central) or Myb-L domains (C-terminal) but not the N-terminus containing the VHP domain (Fig 3C-G, and Fig S5). Using microscale thermophoresis, we also show that rRAP1-His binds to 70 bp and telomeric repeats with Kd of 10 and 24 nM, respectively (Fig 3 and Table 1). Notably, we show that 30 µM of PI(3,4,5)P3, but not PI(4,5,)P2 – used as a control – disrupts rRAP1-His binding to 70 bp and telomeric repeats, changing Kds to about 188 and 155 nM, respectively (Fig 5A-C). We also show that PI(3,4,5)P3 does not disrupt the binding of rRAP1-His fragments (Myb or MybL) without the N-terminus domain (Fig S5), implying binding of PI(3,4,5)P3 to RAP1 N-terminus is required for displacement of RAP1 DNA binding domains (Myb and MybL) from telomeric and 70 bp repeats, and that PI(3,4,5)P3 is not competing for Myb or Myb-L binding to DNA. Moreover, we show that RAP1-HA binding to 70 bp and telomeric repeats in vivo is displaced in T. brucei cells expressing catalytic inactive PIP5Pase (Fig 5D-G), which we show results in RAP1-HA binding about 100-fold more endogenous PI(3,4,5)P3 than in T. brucei expressing WT PIP5Pase (Fig 4F). The in vivo data agrees with the in vitro data. The data show a typical allosteric regulator system, in which binding of a ligand to one site of the protein, here PI(3,4,5)P3 binding to RAP1 N-terminus, affects other domains (RAP1 Myb and Myb-L domains) binding to DNA. To improve the clarity of the title, we will change it in the revised version to imply a direct role of PI(3,4,5)P3 regulation of RAP1 in the process. This will provide more specific information to the readers and addresses the concern of the reviewer related to the “allosteric switch”. The new title will be: PI(3,4,5)P3 allosteric regulation of RAP1 controls antigenic switching in trypanosomes

      There are serious concerns about many conclusions made by Touray et al., according to their experimental approaches:

      1) The authors have been studying RAP1’s chromatin association pattern by ChIPseq in cells expressing a C-terminal HA tagged RAP1. According to data from tryptag.org, RAP1 with an N-terminal or a C-terminal tag does not seem to have identical subcellular localization patterns, suggesting that adding tags at different positions of RAP1 may affect its function. It is therefore essential to validate that the C-terminally HA-tagged RAP1 still has its essential functions. However, this data is not available in the current study. RAP1 is essential. If RAP1-HA still retains its essential functions, cells carrying one RAP1-HA allele and one deleted allele are expected to grow the same as WT cells. In addition, these cells should have the WT VSG expression pattern, and RAP1-HA should still interact with TRF. Without these validations, it is impossible to judge whether the ChIPseq data obtained on RAP1-HA reflect the true chromatin association profile of RAP1.

      Tryptag data show both N- and C-terminus RAP1 with nuclear localization in procyclic forms, although there are differences in signal intensities in the images (http://tryptag.org/?id=Tb927.11.370). It is important to note that Tryptag data is from procyclic forms, and DNA constructs are not validated for their integration in the correct locus. As for the RAP1-HA localization in bloodstream forms, we demonstrated that C-terminally HA-tagged RAP1 co-localizes with telomeres by a combination of immunofluorescence and fluorescence in situ hybridization (Cestari and Stuart, 2015, PNAS), and RAP1-HA co-immunoprecipitate telomeric and 70 bp repeats (Cestari et al. 2019 Mol Cell Biol). We also showed by immunoprecipitation and mass spectrometry that HA-tagged RAP1 interacts with nuclear and telomeric proteins, including PIP5Pase (Cestari et al. 2019). Others have also tagged T. brucei RAP1 in bloodstream forms with HA without disrupting its nuclear localization (Yang et al. 2009, Cell; Afrin et al. 2020, Science Advances). As for the experiment suggested by the reviewer, there is no guarantee that cells lacking one allele of RAP1 will behave as wildtype, i.e., normal growth and repression of VSGs genes. Also, less than 90% of T. brucei TRF was reported to interact with RAP1 (Yang et al. 2009, Cell), which might be indirect via their binding to telomeric DNA repeats rather than direct protein-protein interactions.

      2) Touray et al. expressed and purified His6-tagged recombinant RAP1 fragments from E. coli and used these recombinant proteins for EMSA analysis: The His6 tag has been used for purifying various recombinant proteins. It is most likely that the His6 tag itself does not convey any DNA binding activities. However, using His6-tagged RAP1 fragments for EMSA analysis has a serious concern. It has been shown that His6-tagged human RAP1 protein can bind dsDNA, but hRAP1 without the His6 tag does not. It is possible that RAP1 proteins in combination with the His6 tag can exhibit certain unnatural DNA binding activities. To be rigorous, the authors need to remove the His6 tag from their recombinant proteins before the in vitro DNA binding analyses are performed. This is a standard procedure for many in vitro assays using recombinant proteins.

      We show in Fig 3C-G that His-tagged full-length rRAP1 does not bind to scrambled telomeric dsDNA sequences, which indicates that His-tagged rRAP1 does not bind unspecifically to DNA. Moreover, in Fig 3G, we show that His-tagged rRAP11-300 also does not bind to 70 bp or telomeric repeats. In contrast, full-length His-tagged rRAP1, rRAP1301-560, or rRAP1561-855 bind to 70 bp or telomeric repeats (Fig 3C-G). Since all proteins were His-tagged, the His tag cannot be responsible for the DNA binding.

      As for the statement that human rRAP1-His has unspecific DNA binding properties, we could not find a reference to this statement; we cannot compare it without knowing the details of the experiment. Biochemical assays can result in unspecific binding depending on binding/buffer conditions. Also, humans and T. brucei RAP1 share only 15% of amino acid identity; unspecific binding to DNA could be specific to human RAP1.

      3) It is unclear why Nanopore sequencing was used for RNAseq and ChIPseq experiments. The greatest benefit of Nanopore sequencing is that it can sequence long reads, which usually helps with mapping, particularly at genome loci with repetitive sequences. This seems beneficial for RAP1 ChIPseq analysis as RAP1 is expected to bind telomere repeats. However, for ChIPseq, the chromatin needs to be fragmented. Larger DNA fragments from ChIPseq experiments will decrease the accuracy of the final calculated binding sites. Therefore, ChIPseq experiments are not supposed to have long reads to start with, so Nanopore sequencing does not seem to bring any advantage. In addition, compared to Illumina sequencing, Nanopore sequencing usually yields smaller numbers of reads, and the sequencing accuracy rate is lower. The Nanopore sequencing accuracy may be a serious concern in the current study. All telomeres have the perfect TTAGGG repeats, all VSG genes have a very similar 3’ UTR, and all 70 bp repeats have very similar sequences. In fact, the active and silent ESs have 90% sequence identity. Are sequence reads accurately mapped to different ESs? How is the sequencing and mapping quality controlled? Furthermore, it is unclear whether the read depth for RNAseq is deep enough.

      The mean sequence length for the ChIP-seq was about 500 bp (see Table S3), which helps to align reads to ESs and distinguish the different ESs, and it is a reasonable size range to define RAP1 binding sites. Although sequencing depths are usually higher in Illumina than in nanopore (all depending on the amount of sequencing), most Illumina short reads map to multiple genomic sequences, making it difficult to distinguish ESs. This is particularly important for RAP1 because it binds to repeats such as 70 bp and telomeric repeats. Mapping short reads to those regions would be virtually impossible; hence, our choice of nanopore sequencing. For RNA-seq, the ~500 bp read length help sequence alignment to the subtelomeric regions containing many VSG genes. The nanopore reads obtained here had an average sequencing score 12 (i.e., base call accuracy of 94%). Filtering reads with MAPQ ≥ 20 (99% probability of correct alignment) helped us to distinguish RAP1 binding to specific ESs, including silent vs active ES (ChIP-seq) or VSG sequences (RNA-seq). The details of the analysis and sequencing metrics (i.e., sequencing depth and read length) were described in the Methods section “Computational analysis of RNA-seq and ChIP-seq” and Table S3, respectively.

      4) Many statements in the discussion section are speculations without any solid evidence. For example, lines 218 - 219 “likely due to RAP1 conformational changes”, no data have been shown to support this at all. In lines 224-226, the authors acknowledged that more experiments are necessary to validate their observations, so it is important for the authors to first validate their findings before they draw any solid conclusions. Importantly, RAP1 has been shown to help compact telomeric and subtelomeric chromatin a long time ago by Pandya et al. (2013. NAR 41:7673), who actually examined the chromatin structure by MNase digestion and FAIRE. The authors should acknowledge previous findings. In addition, the authors need to revise the discussion to clearly indicate what they “speculate” rather than make statements as if it is a solid conclusion.

      The statement “likely due to RAP1 conformational changes” in lines 218-219 (page 6) is part of the Discussion. We did not make a strong statement but discussed a possibility. We believe that it is beneficial to the reader to have the data discussed, and we do not feel this point is overly speculative.

      For lines 224-226 (page 6), the statement refers to the finding of RAP1 binding to centromeric regions by ChIP-seq, which is a new finding but not the focus of this work. Hence, future studies are necessary for this finding, and we believe it is appropriate in the Discussion to be upfront and highlight this point to the readers. However, for the RAP1 binding to telomeric ES sites, e.g., 70 bp repeats and telomeric repeats (the focus of this work), we validated the binding by EMSA and by performing binding kinetics using microscale thermophoresis.

      We did not include Pandya et al. 2013 NAR because the authors demonstrated RAP1 compaction of chromatin to occur in procyclic forms only. Pandya et al. stated in their abstract: “no significant chromatin structure changes were detected on depletion of TbRAP1 in BF cells”. Hence, the suggested reference is not relevant to the context of our conclusions in bloodstream forms. Nevertheless, we have reviewed the Discussion to avoid broad speculations in the revised version of the manuscript.

      There are also minor concerns:

      1) In the PIP5Pase conditional knockout system, the WT or mutant PIP5Pase with a V5 tag is constitutively expressed from the tubulin array. What’s the relative expression level of this allele and the endogenous PIP5Pase? Without a clear knowledge of the mutant expression level, it is hard to conclude whether the mutant has any dominant negative effects or whether the mutant phenotype is simply due to a lower than WT PIP5pase expression level.

      The relative mRNA levels of the exclusive expression of PIP5Pase Mut compared to the WT is available in the Data S1, RNA-seq. The Mut allele’s relative expression level is 0.85-fold to the WT allele (both from tubulin loci). We also showed by Western blot the WT and Mut PIP5Pase protein expression (Cestari et al. 2019, Mol Cell Biol). Concerning PIP5Pase endogenous alleles, we compared RNA-seq reads counts per million from the conditional null PIP5Pase cells exclusively expressing WT or the Mut PIP5Pase alleles (Data S1, this work) to our previous RNA-seq of single-marker 427 strain (Cestari et al. 2019, Mol Cell Biol). We used the single-maker 427 because the conditional null cells were generated in this strain background. The PIP5Pase WT and Mut mRNAs expressed from tubulin loci are 1.6 and 1.3-fold the endogenous PIP5Pase levels in single-marker 427, respectively. We include a statement in the Methods, page 7, lines 265-268: “The WT or Mut PIP5Pase mRNAs exclusively expressed from tubulin loci are 1.6 and 1.3-fold the WT PIP5Pase mRNA levels expressed from endogenous alleles in the single marker 427 strain. The fold-changes were calculated from RNA-seq reads counts per million from this work (WT and Mut PIP5Pase, Data S1) and our previous RNA-seq from single marker 427 strain (24).”

      2) In EMSA analysis, what are the concentrations of the protein and the probe used in each reaction? The amount of protein used in the binding assay appears to be very high, and this can contribute to the observation that many complexes are stuck in the well. Better quality EMSA data need to be shown to support the authors’ claims.

      All concentrations were provided in the Methods section. See page 9 Electrophoretic mobility shift assays: “100 nM of annealed DNA were mixed with 1 μg of recombinant protein…”. For microscale thermophoresis, also see page 9, Microscale thermophoresis binding kinetics: “1 μM rRAP1 was diluted in 16 two-fold serial dilutions in 250 mM HEPES pH 7.4, 25 mM MgCl2, 500 mM NaCl, and 0.25% (v/v) N P-40 and incubated with 20 nM telomeric or 70 bp repeats…”. Note that two different biochemical approaches, EMSA and microscale thermophoresis, were used to assess rRAP1-His binding to DNA. Both show similar results (Fig 3 and 5, and Fig S5; microscale thermophoresis shows the binding kinetics, data available in Table 1). The EMSA images clearly show the binding of RAP1 to 70 bp or telomeric repeats but not to scramble telomeric repeat DNA.

      Reviewer #2 (Public Review):

      This manuscript by Touray, et al. provides a significant new twist to our understanding of how antigenic variation may be regulated in T. brucei. Key aspects of antigenic variation are the mutually exclusive expression of a single antigen per cell and the periodic switching from expression of one antigen isoform to another. In this manuscript, the authors show, as they have previously shown, that depletion of the nuclear phosphatidylinositol 5-phosphatase (PIP5Pase) results in a loss of mutually exclusive VSG expression. Furthermore, using ChIP-seq, the authors show that the repressor/activator protein 1 (RAP1) binds to regions upstream and downstream of VSG genes located in transcriptionally repressed expression sites and that this binding is lost in the absence of a functional PIP5Pase. Importantly, the authors decided to further investigate this link between PIP5Pase and RAP1, a protein that has previously been implicated in antigenic variation in T. brucei, and found that inactivation of PIP5Pase results in the accumulation of PI(3,4,5)P3 bound to the RAP1 N-terminus and that this binding impairs the ability of RAP1 to bind DNA. Based on these observations, the authors suggest that the levels of PI(3,4,5)P3 may determine the cellular function of RAP1, either by binding upstream of VSG genes and repressing their function, or by not binding DNA and allowing the simultaneous expression of multiple VSG genes in a single parasite.

      While I find most of the data presented in this manuscript compelling, there are aspects of Figure 1 that are not clear to me. Based on Figure 1F, the authors claim that transient inactivation of PIP5Pase results in a switch from the expression of one VSG isoform to another. However, I am not exactly sure what the authors are showing in this panel, nor do the data in Figure 1F seem to be consistent with those shown in Figure 1C. Based on Figure 1F, a transient inactivation of PIP5Pase appears to result in an almost exclusive switch to a VSG located in BES12. However, based on Figure 1E, the VSG transcripts most commonly found after a transient inactivation of PIP5Pase are those from the previously active VSG (BES1) and VSGs located on chr 1 and 6 (I believe). The small font and the low resolution make it impossible to infer the location of the expressed VSG genes, nor to confirm that ALL VSG genes located in expression sites are activated, as the authors claim. Also, I was not able to access the raw ChIP-seq and RNA-seq reads. Thus, could not evaluate the quality of the sequencing data.

      We appreciate the reviewer’s comments and evaluation of our work. Fig 1E shows VSG-seq of a population after transient (24h) exclusive expression of the PIP5Pase mutant, followed by re-expression of the WT PIP5Pase allele for 60 hours (multiple VSGs are detected). As a control, it also shows VSG-seq in cells continuously expressing WT PIP5Pase (mostly VSG2, BES1 is detected). Fig 1F and Fig S1 show the sequencing of VSGs expressed by clones isolated (5-6 days of growth) after a temporary knockdown (24h) of PIP5Pase (tet -), followed by its re-expression. For comparison, no knockdown (tet +) was included. Fig 1F shows potential switchers in the population, the Fig 1E confirms VSG switching in clones.

      To clarify the difference between Fig 1E and 1F, we edited the manuscript on page 3, lines 103-110: “To verify PIP5Pase role in VSG switching, we knocked down PIP5Pase for 24h (Tet -), then restored its expression (Tet +) and isolated clones by limiting dilution and growth for 5-6 days. Analysis of isolated clones after temporary PIP5Pase knockdown (Tet -/+) confirmed VSG switching in 93 out of 94 (99%) of the analyzed clones (Fig 1F, Fig S1). The cells switched to express VSGs from silent ESs or subtelomeric regions, indicating switching by transcription or recombination mechanisms. Moreover, no switching was detected in 118 isolated clones from cells continuously expressing WT PIP5Pase (Tet +, Fig 1F).”. We also edited Fig 1F to indicate temporary knockdown (Tet -/+) vs no knockdown (Tet -). The modifications will be available in the resubmitted version of the manuscript.

      We agree that the heat map is difficult to read due to the amount of information. We will include in the revised version of the manuscript a table with the data in the supplementary information; the reader will be able to evaluate the data in detail.

      A preference for switching to specific ESs has been observed in T. brucei (Morrison et al. 2005, Int J Parasitol; Cestari and Stuart, 2015, PNAS), which may explain several clones switching to BES12. Many potential switchers were detected in the VSG-seq (Fig 1F, the whole cell population is over 107 parasites), but not all potential switchers were detected in the clonal analysis because we analyzed 212 clones total, a fraction of the over 107 cells analyzed by VSG-seq (Fig 1E). Also, it is possible that not all potential switchers are viable. However, the point of the clonal analysis is to validate the VSG switching after genetic perturbation of PIP5Pase.

      Fig 1C shows examples of ES derepression by RNA-seq after 24h exclusive expression of the mutant compared to WT PIP5Pase. The RNA-seq shows that all ESs are derepressed (Fig 1B). This can be visualized in the volcano plot (Fig 1B, BES and MES VSGs are labelled) and on the spreadsheet Data S1. Although all ESs are derepressed after PIP5Pase mutant expression, not all ESs are selected during switching, as observed in Fig 1E-F. This agrees with our previous observations in switching assays with proteins that control VSG switching (Cestari and Stuart, 2015, PNAS).

      As for metrics of sequencing and raw sequencing data. See Methods section, page 13, lines 483-485: “Sequencing information is available in Table S3 and fastq data is available in the Sequence Read Archive (SRA) with the BioProject identification PRJNA934938.” Table S3 has a summary of sequencing data. Metrics information such as sequencing quality and analysis can be found in the Methods section “Computational analysis of RNA-seq and ChIP-seq”. The latter includes information about nanopore reads, i.e., mean Q-score of 12.

      Reviewer #3 (Public Review):

      In this manuscript, Touray et al investigate the mechanisms by which PIP5Pase and RAP1 control VSG expression in T. brucei and demonstrate an important role for this enzyme in a signalling pathway that likely plays a role in antigenic variation in T. brucei.

      The methods used in the study are rigorous and well-controlled. The authors convincingly demonstrate that RAP1 binds to PI(3,4,5)P3 through its N-terminus and that this binding regulates RAP1 binding to VSG expression sites, which in turn regulates VSG silencing. Overall their results support the conclusions made in the manuscript.

      There are a few small caveats that are worth noting. First, the analysis of VSG derepression and switching in Figure 1 relies on a genome that does not contain minichromosomal (MC) VSG sequences. This means that MC VSGs could theoretically be misassigned as coming from another genomic location in the absence of an MC reference. As the origin of the VSGs in these clones isn’t a major point in the paper, I do not think this is a major concern, but I would not over-interpret the particular details of switching outcomes in these experiments.

      The authors state that “our data imply that antigenic variation is not exclusively stochastic.” I am not sure this is true. While I also favor the idea that switching is not exclusively stochastic, evidence for a signaling pathway does not necessarily imply that antigenic variation is not stochastic. This pathway could be important solely for lifecycle-related control of VSG expression, rather than antigenic variation during infection. Nevertheless, these data are critical for establishing a potential pathway that could control antigenic variation and thus represent a fundamental discovery.

      Another aspect of this work that is perhaps important, but not discussed much by the authors, is the fact that signalling is extremely poorly understood in T. brucei. In Figure 1B, the RNA-seq data show many genes upregulated after expression of the Mut PIP5Pase (not just VSGs). The authors rightly avoid claiming that this pathway is exclusive to VSGs, but I wonder if these data could provide insight into the other biological processes that might be controlled by this signaling pathway in T. brucei.

      Overall, this is an excellent study that represents an important step forward in understanding how antigenic variation is controlled in T. brucei. The possibility that this process could be controlled via a signalling pathway has been speculated for a long time, and this study provides the first mechanistic evidence for that possibility.

      We thank the reviewer for the evaluation of our work. We agree that it is difficult to ensure the origin of all VSG genes not having minichromosome sequences; hence we did not emphasize this point in the manuscript. We used the 427-2018 reference genome assembled by PacBio and Hi-C (Muller et al. 2018, Nature), which we believe is the best assembly for the 427 strain, especially related to the VSG genes.

      We also agree that having signaling controlling switching in vitro does not mean the switching necessarily occurs by signaling in vivo. Nevertheless, stochastic switching is an accepted model; but it has not been proved, whereas we provide molecular evidence that signaling can cause switching. To express this reviewer’s suggestion, we edited the Discussion, page 7, line 250: from “our data imply that antigenic variation is not exclusively stochastic” to “our data suggest that antigenic variation is not exclusively stochastic”.

      Most of the RNA-seq data were VSGs genes/pseudogenes. Other genes upregulated included retrotransposons and DNA/RNA processing enzymes such as endonucleases and polymerases. We included in the Results, page 3, line 100: “Other genes upregulated include primarily retrotransposons, endonucleases, and polymerase proteins.”.

    1. Author Response

      Reviewer #2 (Public Review):

      Associative learning assigns valence to sensory cues paired with reward or punishment. Brain regions such as the amygdala in mammals and the mushroom body in insects have been identified as primary sites where valence assignment takes place. However, little is known about the neural mechanisms that translate valence-specific activity in these brain regions into appropriate behavioral actions. This study identifies a small set of upwind neurons (UpWiNs) in the Drosophila brain that receive direct inputs from two mushroom body output neurons (MBONs) representing opposite valences. Through a series of behavioral, imaging, and electrophysiological experiments, the authors show that UpWiNs are differentially regulated by the two MBONs, i.e., inhibited by the glutamatergic MBON-α1(encoding negative valence) while activated by the cholinergic MBON-α3 (encoding positive valence). They also show that UpWiNs control the wind-directed behavior of flies. Activation of UpWiNs is sufficient to drive flies to orient and move upwind, and inhibition of UpWiNs reduces flies' upwind movement toward the source of reward-predicting odors (CS+). These results, together with existing knowledge about the function of the mushroom body in memory processing, suggest an appealing model in which reward learning decreases and increases the responses of MBON-α1 and MBON-α3 to the CS+ odor, respectively, and these changes cause UpWiNs to respond more strongly to the CS+ odor and drive upwind locomotion. Interestingly, in the final part of the results, the authors reveal a wind-independent function of UpWiNs: increasing the probability that flies will revisit the site where UpWiNs were activated. Thus, UpWiNs guide learned reward-seeking behavior with and without airflow. Although the mushroom body has been extensively studied for its role in learning and memory, the downstream neural circuits that read the information from the mushroom body to guide memory-driven behaviors remain poorly characterized. This study provides an important piece of the puzzle for this knowledge gap.

      Strength

      1) Memory studies have predominantly relied on binary choice (go or no-go) assays as measures of memory performance. While these assays are convenient and efficient, they fall short of providing a comprehensive understanding of underlying behavioral structures. In an effort to overcome this limitation, the current study used video recording and tracking software to delve deeper into memory-guided behavior. This innovative approach allowed the authors to uncover novel neurons and examine their contribution to behavior with a level of detail not possible with binary choice assays.

      2) This study used electron microscopy-based Drosophila hemibrain connectome data to reveal the synaptic connection between UpWiNs and MBON-α1 and MBON-α3. Using this method, the study shows that a single UpWiN receives direct input from both MBON-α1 and MBON- α3, which is confirmed by a functional imaging experiment. The connectome dataset also reveals several neurons downstream of UpWiNs, opening avenues for further research into the neural mechanisms linking memory and behavior.

      Weakness

      1) The authors repeatedly state in the manuscript that MBON-α1 and MBON-α3 convey appetitive or aversive memories, respectively. This assertion may not be entirely accurate. Evidence from sugar reward conditioning experiments suggests that MBON-α3 is potentiated and required for sugar reward memory retrieval. Therefore, the compartmentalization for appetitive and aversive memories appears not as obvious at the level of MBONs.

      What we intended was that activation of DANs in these compartments can induce aversive and appetitive memories, respectively, when paired with odors, and that these are the sole output pathway from these compartments to read out the memories in these compartments. As we previously proposed (Aso et al., 2014a eLife), these MBONs can integrate inputs from MBONs of other compartments and their activity can reflect appetitive memory stored as synaptic plasticity in other compartments. Since DANs in the α3 compartment respond to heat, bitter and electric shock but not sugar, the observation that MBON-α3 acquires an enhanced CS+ odor response after appetitive conditioning is presumably due to these intercompartmental connections rather than plasticity of KC-MBON synapses in the α3 compartment. In any case, the fact that excitatory activity of MBON-α1 and MBON-α3 conveys opposite valence of memory still holds true since appetitive conditioning induces depression and potentiation of odor responses, respectively.

      To clarify this point, we now cited related literature in the following sentence in the final paragraph of Introduction: “UpWiNs receive inputs from several types of lateral horn neurons and integrate inhibitory and excitatory inputs from MBON-α1 and MBON-α3, which are the output neurons of MB compartments that store long-lasting appetitive or aversive memories, respectively (Aso and Rubin, 2016; Ichinose et al., 2015; Jacob and Waddell, 2022a; Pai et al., 2013; Yamagata et al., 2015).”

      2) This study did not conclusively establish the importance of the MBON-α1/α3 to UpWiN pathways in memory-driven behavior. In the experiments shown in Figure 5, flies were trained to associate the activation of reward-related DANs with a specific odor (CS+). After conditioning, UpWiNs were observed to show enhanced responses to the CS+ odor. However, the results should be interpreted with caution because the driver line used to activate DANs (R58E02-LexAp65) labels not only DANs projecting to the MBON-α1 compartment, but all DANs in the protocerebral anterior medial (PAM) cluster. Thus, it remains unclear to what extent the observed enhanced responses are influenced by changes in inhibitory inputs from MBON-α1. While UpWiNs have been shown to play a critical role in the expression of sugar reward memory (Figure 7), it should be noted that UpWiNs receive inputs from multiple upstream neurons, making it difficult to accurately assess the contribution of MBON-α1/α3 to UpWiN pathways in UpWiN recruitment. Further research is needed to fully address this issue.

      We totally agree with this point and added a sentence to explain an alternative mechanism. “This enhancement of CS+ response can be most easily explained as an outcome of disinhibition from MBON-α1 whose output had been decreased by memory formation; MBON-α1 is inhibitory to UpWiNs (Figure 4B) and MBON-α1 response to the CS+ is reduced following the same training protocol (Yamada et al. 2023). In addition to such a mechanism, plasticity in the β1 compartment may contribute to the enhanced CS+ response in UpWiNs because the driver R58E02 contains DANs in the β1 and glutamatergic MBON from the β1 directly synapse on the dendrites of MBON-α1 and MBON-α3. “

      3) UpWind neurons (UpWiNs) were so named because their activation promotes upwind locomotion. However, when activated in the absence of airflow, flies show increased locomotor speed and an increased probability of revisiting the same location (Figure 7 and Figure 7-figure supplement 1). The revisiting behavior can be observed during the activation of UpWiNs, which is distinct from the local search behavior that typically begins after a reward stimulus is turned off (e.g., Gr64f-GAL4 results in Figure 7-figure supplement 1).

      Return probability was calculated within a 15-s time window. High return probability during LED ON period (10-20s) in Figure 7-figure supplement 1 does not necessarily mean that flies returned during LED ON period. If a fly is at the position A when t=10s, to be counted as “returned”, it needs to move more than 10mm away from A and move back to the position less than 3mm distance from A by t=25s. In the case of sugar sensory neuron activation with Gr64f-GAL4, the peak of return probability is shifted toward a later time point because flies stop and extend proboscis during activation period.

      Because revisiting a location can also be a consequence of repeated turns, it seems more accurate to describe UpWiNs as controlling the speed and likelihood of turns and promoting upwind movement by integrating with neurons that sense the direction of airflow.

      The return probability plotted in Figure 7E is probability of return to the position at the end of LED period within 15s post LED period when angular speed of SS33917>CsChrimson and SS33918>CsChrimson flies are identical to empty-split-GAL4>CsChrimson control flies (Figure 7-figure supplement 1). Thus, revisiting behavior cannot be explained by a simple increase in turing probability.

      Although functions of UpWiNs are not limited to promotion of wind-directed walking, we still think that the “UpWind Neurons” is a practical name for broad readers and oral communications at the current stage of investigations, because EM neuron IDs and names (SMP348, SMP353, SMP354, SLP399 and SLP400) are too lengthy and do not contain any functional information. We initially defined a set of 11 neurons labeled by SS33197 split-GAL4 as “UpWind Neurons (UpWiNs)” based on initial optogenetic screening (Figure 2A). We found other driver lines for mushroom body interneuron cell types that can promote release of dopamine and more robust returning phenotype (e.g. SS49755), but SS33917 remained to be the champion driver line for upwind locomotion phenotype.

      Reviewer #3 (Public Review):

      Aso et al. provide insight into how learned valences are transformed into concrete memory-driven actions, using a diverse set of proven techniques.

      Here the authors use a four-armed arena to evaluate flies' preference for a reward-predicting odor and measure upwind locomotion. This behavioral paradigm was combined with the photoactivation of different memory-eliciting neurons, revealing that appetitive memories stored in different compartments of the mushroom bodies (center of olfactory memory) induce different levels of upwind locomotion. The authors then proceed to a non-exhaustive optogenetic screen of the neurons located downstream of the output neurons of the mushroom bodies (MBONs) and identify a group of 8-11 Cholinergic neurons promoting significant changes in upwind locomotion, the UpWins. By combining confocal immunolabelling of these neurons with electron microscope images, they manage to establish the UpWins' connectome within themselves and with the MBONs. Then, using two in vivo cell recording techniques, electrophysiology, and calcium imaging, they define that UpWins integrate both inhibitory and excitatory synaptic inputs from the MBONs encoding appetitive and aversive memory, respectively. In addition, they show that the UpWins' response to a reward-predicting odor is increased after appetitive training. On a behavioral level, the authors establish that the UpWins respond to wind direction only and are not involved in lower-level motor parameters, such as turning direction and acceleration. Finally, they demonstrate that the UpWins' activity is necessary for long-term appetitive memory retrieval, and even suggest a broader role for the UpWins in olfactory navigation, as their photoactivation increases the probability of revisiting behavior. In the end, the authors state that they provide new insights into how memory is translated into concrete behavior, which is fully supported by their data. Altogether, the authors present a pretty complete study that provides very interesting and reliable data, and that opens a new field of investigation into memory-driven behaviors.

      Strengths of the study:

      • To support their conclusions, the authors provide detailed data from different levels of analysis (behavioral, cellular, and molecular), using multiple sophisticated techniques.

      • The measurement of multiple parameters in the behavioral analysis supports the strong changes in upwind locomotion. In addition, taken individually these parameters provide precise insights into how upwind locomotion changes, and allow the authors to more precisely define the role of the UpWins.

      • The authors use split-Gal4 drivers instead of Gal4, allowing them to better refine neuron labelling.

      The authors discussed and investigated all possible biases, making their data very reliable. For example, they demonstrated that the phenotypes observed in the behavioral assay were wind-directed behaviors and could not be explained by bias avoidance of the arena's center area.

      Limitations of the study:

      • In the absence of more precise drivers, the UpWins' labelling lacks precision. For example, there is no way to know exactly which UpWin is responding in the electrophysiological experiment presented in Figure 4.

      We have ongoing efforts to generate split-GAL4 and split-LexA driver lines for specific subsets of UpWiN neurons, but the data using those lines are not ready for this manuscript. However, we would like to point out that historically, identification of a group of neurons with striking phenotype has been foundational to promote follow-up studies. A good example is P1 neurons for courtship behavior.

      • The screening of neurons located downstream of the MBONs is not exhaustive, meaning that other groups of neurons might be involved in memory-driven upwind locomotion. Although, it does not diminish the authors' conclusions.

      The UpWiNs is certainly not the only one cell type for mediating memory-driven upwind locomotion, since our and other groups’ studies (e.g. Matheson et al., 2022; PMCID: PMC9360402) identified a collection of cell types that can promote upwind locomotion upon optogenetic activation.

      In 2021, we released images and driver lines of a larger collection of split-GAL4 driver lines at https://splitgal4.janelia.org. We are preparing a manuscript to provide anatomical descriptions of these lines. This collection of new drivers will help elucidate more comprehensive views of circuits for memory-driven actions.

      • All data were obtained with walking flies. So far, there have been no experiments on flying flies.

      This is an intriguing question and we mentioned in Discussion that “Our study was limited to walking behaviors, and the role of UpWiNs in flight behaviors remains to be investigated.”

    1. Author Response

      Reviewer #1 (Public Review):

      The authors present a PyTorch-based simulator for prosthetic vision. The model takes in the anatomical location of a visual cortical prostheses as well as a series of electrical stimuli to be applied to each electrode, and outputs the resulting phosphenes. To demonstrate the usefulness of the simulator, the paper reproduces psychometric curves from the literature and uses the simulator in the loop to learn optimized stimuli.

      One of the major strengths of the paper is its modeling work - the authors make good use of existing knowledge about retinotopic maps and psychometric curves that describe phosphene appearance in response to single-electrode stimulation. Using PyTorch as a backbone is another strength, as it allows for GPU integration and seamless integration with common deep learning models. This work is likely to be impactful for the field of sight restoration.

      1) However, one of the major weaknesses of the paper is its model validation - while some results seem to be presented for data the model was fit on (as opposed to held-out test data), other results lack quantitative metrics and a comparison to a baseline ("null hypothesis") model. On the one hand, it appears that the data presented in Figs. 3-5 was used to fit some of the open parameters of the model, as mentioned in Subsection G of the Methods. Hence it is misleading to present these as model "predictions", which are typically presented for held-out test data to demonstrate a model's ability to generalize. Instead, this is more of a descriptive model than a predictive one, and its ability to generalize to new patients remains yet to be demonstrated.

      We agree that the original presentation of the model fits might give rise to unwanted confusion. In the revision, we have adapted the fit of the thresholding mechanism to include a 3-fold cross validation, where part of the data was excluded during the fitting, and used as test sets to calculate the model’s performance. The results of the cross- validation are now presented in panel D of Figure 3. The fitting of the brightness and temporal dynamics parameters using cross-validation was not feasible due to the limited amount of quantitative data describing temporal dynamics and phosphene size and brightness for intracortical electrodes. To avoid confusion, we have adapted the corresponding text and figure captions to specify that we are using a fit as description of the data.

      We note that the goal of the simulator is not to provide a single set of parameters that describes precise phosphene perception for all patients but that it could also be used to capture variability among patients. Indeed, the model can be tailored to new patients based on a small data set. Figure 3-figure supplement 1 exemplifies how our simulator can be tailored to several data sets collected from patients with surface electrodes. Future clinical experiments might be used to verify how well the simulator can be tailored to the data of other patients.

      Specifically, we have made the following changes to the manuscript:

      • Caption Figure 2: the fitted peak brightness levels reproduced by our model

      • Caption Figure 3: The model's probability of phosphene perception is visualized as a function of charge per phase

      • Caption Figure 3: Predicted probabilities in panel (d) are the results of a 3-fold cross- validation on held-out test data.

      • Line 250: we included biologically inspired methods to model the perceptual effects of different stimulation parameters

      • Line 271: Each frame, the simulator maps electrical stimulation parameters (stimulation current, pulse width and frequency) to an estimated phosphene perception

      • Lines 335-336: such that 95% of the Gaussian falls within the fitted phosphene size.

      • Line 469-470: Figure 4 displays the simulator's fit on the temporal dynamics found in a previous published study by Schmidt et al. (1996).

      • Lines 922-925: Notably, the trade-off between model complexity and accurate psychophysical fits or predictions is a recurrent theme in the validation of the components implemented in our simulator.

      2) On the other hand, the results presented in Fig. 8 as part of the end-to-end learning process are not accompanied by any sorts of quantitative metrics or comparison to a baseline model.

      We now realize that the presentation of the end-to-end results might have given the impression that we present novel image processing strategies. However, the development of a novel image processing strategy is outside the scope of the study. Instead, The study aims to provide an improved simulation which can be used for more realistic assessment of different stimulation protocols. The simulator needs to fit experimental data, and it should run fast (so it can be used in behavioral experiments). Importantly, as demonstrated in our end-to-end experiments, the model can be used in differentiable programming pipelines (so it can be used in computational optimization experiments), which is a valuable contribution in itself because it lends itself to many machine learning approaches which can improve the realism of the simulation.

      We have rephrased our study aims in the discussion to improve clarity.

      • Lines 275-279: In the sections below, we discuss the different components of the simulator model, followed by a description of some showcase experiments that assess the ability to fit recent clinical data and the practical usability of our simulator in simulation experiments

      • Lines 810-814: Computational optimization approaches can also aid in the development of safe stimulation protocols, because they allow a faster exploration of the large parameter space and enable task-driven optimization of image processing strategies (Granley et al., 2022; Fauvel et al., 2022; White et al., 2019; Küçükoglü et al. 2022; de Ruyter van Steveninck et al., 2022; Ghaffari et al., 2021).

      • Lines 814-819: Ultimately, the development of task-relevant scene-processing algorithms will likely benefit both from computational optimization experiments as well as exploratory SPV studies with human observers. With the presented simulator we aim to contribute a flexible toolkit for such experiments.

      • Lines 842-853: Eventually, the functional quality of the artificial vision will not only depend on the correspondence between the visual environment and the phosphene encoding, but also on the implant recipient's ability to extract that information into a usable percept. The functional quality of end-to-end generated phosphene encodings in daily life tasks will need to be evaluated in future experiments. Regardless of the implementation, it will always be important to include human observers (both sighted experimental subjects and actual prosthetic implant users in the optimization cycle to ensure subjective interpretability for the end user (Fauvel et al., 2022; Beyeler & Sanchez-Garcia, 2022).

      3) The results seem to assume that all phosphenes are small Gaussian blobs, and that these phosphenes combine linearly when multiple electrodes are stimulated. Both assumptions are frequently challenged by the field. For all these reasons, it is challenging to assess the potential and practical utility of this approach as well as get a sense of its limitations.

      The reviewer raises a valid point and a similar point was raised by a different reviewer (our response is duplicated). As pointed out in the discussion, many aspects about multi- electrode phosphene perception are still unclear. On the one hand, the literature is in agreement that there is some degree of predictability: some papers explicitly state that phosphenes produced by multiple patterns are generally additive (Dobelle & Mladejovsky, 1974), that the locations are predictable (Bosking et al., 2018) and that multi-electrode stimulation can be used to generate complex, interpretable patterns of phosphenes (Chen et al., 2020, Fernandez et al., 2021). On the other hand, however, in some cases, the stimulation of multiple electrodes is reported to lead to brighter phosphenes (Fernandez et al., 2021), fused or displaced phosphenes (Schmidt et al., 1996, Bak et al., 1990) or unpredicted phosphene patterns (Fernández et al., 2021). It is likely that the probability of these interference patterns decreases when the distance between the stimulated electrodes increases. An empirical finding is that the critical distance for intracortical stimulation is approximately 1 mm (Ghose & Maunsell, 2012).

      We note that our simulator is not restricted to the simulation of linearly combined Gaussian blobs. Some irregularities, such as elongated phosphene shapes were already supported in the previous version of our software. Furthermore, we added a supplementary figure that displays a possible approach to simulate some of the more complex electrode interactions that are reported in the literature, with only minor adaptations to the code. Our study thereby aims to present a flexible simulation toolkit that can be adapted to the needs of the user.

      Adjustments:

      • Added Figure 1-figure supplement 3 on irregular phosphene percepts.

      • Lines 957-970: Furthermore, in contrast to the assumptions of our model, interactions between simultaneous stimulation of multiple electrodes can have an effect on the phosphene size and sometimes lead to unexpected percepts (Fernandez et al., 2021, Dobelle & Mladejovsky 1974, Bak et al., 1990). Although our software supports basic exploratory experimentation of non-linear interactions (see Figure 1-figure supplement 3), by default, our simulator assumes independence between electrodes. Multi- phosphene percepts are modeled using linear summation of the independent percepts. These assumptions seem to hold for intracortical electrodes separated by more than 1 mm (Ghose & Maunsell, 2012), but may underestimate the complexities observed when electrodes are nearer. Further clinical and theoretical modeling work could help to improve our understanding of these non-linear dynamics.

      4) Another weakness of the paper is the term "biologically plausible", which appears throughout the manuscript but is not clearly defined. In its current form, it is not clear what makes this simulator "biologically plausible" - it certainly contains a retinotopic map and is fit on psychophysical data, but it does not seem to contain any other "biological" detail.

      We thank the reviewer for the remark. We improved our description of what makes the simulator “biologically plausible” in the introduction (line 78): ‘‘Biological plausibility, in our work's context, points to the simulation's ability to capture essential biological features of the visual system in a manner consistent with empirical findings: our simulator integrates quantitative findings and models from the literature on cortical stimulation in V1 [...]”. In addition, we mention in the discussion (lines 611 - 621): “The aim of this study is to present a biologically plausible phosphene simulator, which takes realistic ranges of stimulation parameters, and generates a phenomenologically accurate representation of phosphene vision using differentiable functions. In order to achieve this, we have modeled and incorporated an extensive body of work regarding the psychophysics of phosphene perception. From the results presented in section H, we observe that our simulator is able to produce phosphene percepts that match the descriptions of phosphene vision that were gathered in basic and clinical visual neuroprosthetics studies over the past decades.”

      5) In fact, for the most part the paper seems to ignore the fact that implanting a prosthesis in one cerebral hemisphere will produce phosphenes that are restricted to one half of the visual field. Yet Figures 6 and 8 present phosphenes that seemingly appear in both hemifields. I do not find this very "biologically plausible".

      We agree with the reviewer that contemporary experiments with implantable electrodes usually test electrodes in a single hemisphere. However, future clinically useful approaches should use bilaterally implanted electrode arrays. Our simulator can either present phosphene locations in either one or both hemifields.

      We have made the following textual changes:

      • Fig. 1 caption: Example renderings after initializing the simulator with four 10 × 10 electrode arrays (indicated with roman numerals) placed in the right hemisphere (electrode spacing: 4 mm, in correspondence with the commonly used 'Utah array' (Maynard et al., 1997)).

      • Line 518-525: The simulator is initialized with 1000 possible phosphenes in both hemifields, covering a field of view of 16 degrees of visual angle. Note that the simulated electrode density and placement differs from current prototype implants and the simulation can be considered to be an ambitious scenario from a surgical point of view, given the folding of the visual cortex and the part of the retinotopic map in V1 that is buried in the calcarine sulcus. Line 546-547: with the same phosphene coverage as the previously described experiment

      Reviewer #2 (Public Review):

      Van der Grinten and De Ruyter van Steveninck et al. present a design for simulating cortical- visual-prosthesis phosphenes that emphasizes features important for optimizing the use of such prostheses. The characteristics of simulated individual phosphenes were shown to agree well with data published from the use of cortical visual prostheses in humans. By ensuring that functions used to generate the simulations were differentiable, the authors permitted and demonstrated integration of the simulations into deep-learning algorithms. In concept, such algorithms could thereby identify parameters for translating images or videos into stimulation sequences that would be most effective for artificial vision. There are, however, limitations to the simulation that will limit its applicability to current prostheses.

      The verification of how phosphenes are simulated for individual electrodes is very compelling. Visual-prosthesis simulations often do ignore the physiologic foundation underlying the generation of phosphenes. The authors' simulation takes into account how stimulation parameters contribute to phosphene appearance and show how that relationship can fit data from actual implanted volunteers. This provides an excellent foundation for determining optimal stimulation parameters with reasonable confidence in how parameter selections will affect individual-electrode phosphenes.

      We thank the reviewer for these supportive comments.

      Issues with the applicability and reliability of the simulation are detailed below:

      1) The utility of this simulation design, as described, unfortunately breaks down beyond the scope of individual electrodes. To model the simultaneous activation of multiple electrodes, the authors' design linearly adds individual-electrode phosphenes together. This produces relatively clean collections of dots that one could think of as pixels in a crude digital display. Modeling phosphenes in such a way assumes that each electrode and the network it activates operate independently of other electrodes and their neuronal targets. Unfortunately, as the authors acknowledge and as noted in the studies they used to fit and verify individual-electrode phosphene characteristics, simultaneous stimulation of multiple electrodes often obscures features of individual-electrode phosphenes and can produce unexpected phosphene patterns. This simulation does not reflect these nonlinearities in how electrode activations combine. Nonlinearities in electrode combinations can be as subtle the phosphenes becoming brighter while still remaining distinct, or as problematic as generating only a single small phosphene that is indistinguishable from the activation of a subset of the electrodes activated, or that of a single electrode.

      If a visual prosthesis happens to generate some phosphenes that can be elicited independently, a simulator of this type could perhaps be used by processing stimulation from independent groups of electrodes and adding their phosphenes together in the visual field.

      The reviewer raises a valid point and a similar point was raised by a different reviewer (our response is duplicated). As pointed out in the discussion, many aspects about multi- electrode phosphene perception are still unclear. On the one hand, the literature is in agreement that there is some degree of predictability: some papers explicitly state that phosphenes produced by multiple patterns are generally additive (Dobelle & Mladejovsky, 1974), that the locations are predictable (Bosking et al., 2018) and that multi-electrode stimulation can be used to generate complex, interpretable patterns of phosphenes (Chen et al., 2020, Fernandez et al., 2021). On the other hand, however, in some cases, the stimulation of multiple electrodes is reported to lead to brighter phosphenes (Fernandez et al., 2021), fused or displaced phosphenes (Schmidt et al., 1996, Bak et al., 1990) or unpredicted phosphene patterns (Fernández et al., 2021). It is likely that the probability of these interference patterns decreases when the distance between the stimulated electrodes increases. An empirical finding is that the critical distance for intracortical stimulation is approximately 1 mm (Ghose & Maunsell, 2012).

      We note that our simulator is not restricted to the simulation of linearly combined Gaussian blobs. Some irregularities, such as elongated phosphene shapes were already supported in the previous version of our software. Furthermore, we added a supplementary figure that displays a possible approach to simulate some of the more complex electrode interactions that are reported in the literature, with only minor adaptations to the code. Our study thereby aims to present a flexible simulation toolkit that can be adapted to the needs of the user.

      Adjustments:

      • Lines 957-970: Furthermore, in contrast to the assumptions of our model, interactions between simultaneous stimulation of multiple electrodes can have an effect on the phosphene size and sometimes lead to unexpected percepts (Fernandez et al., 2021, Dobelle & Mladejovsky 1974, Bak et al., 1990). Although our software supports basic exploratory experimentation of non-linear interactions (see Figure 1-figure supplement 3), by default, our simulator assumes independence between electrodes. Multi- phosphene percepts are modeled using linear summation of the independent percepts. These assumptions seem to hold for intracortical electrodes separated by more than 1 mm (Ghose & Maunsell, 2012), but may underestimate the complexities observed when electrodes are nearer. Further clinical and theoretical modeling work could help to improve our understanding of these non-linear dynamics.

      • Added Figure 1-figure supplement 3 on irregular phosphene percepts.

      2) Verification of how the simulation renders individual phosphenes based on stimulation parameters is an important step in confirming agreement between the simulation and the function of implanted devices. That verification was well demonstrated. The end use a visual-prosthesis simulation, however, would likely not be optimizing just the appearance of phosphenes, but predicting and optimizing functional performance in visual tasks. Investigating whether this simulator can suggest visual-task performance, either with sighted volunteers or a decoder model, that is similar to published task performance from visual-prosthesis implantees would be a necessary step for true validation.

      We agree with the reviewer that it will be vital to investigate the utility of the simulator in tasks. However, the literature on the performance of users of a cortical prosthesis in visually-guided tasks is scarce, making it difficult to compare task performance between simulated versus real prosthetic vision.

      Secondly, the main objective of the current study is to propose a simulator that emulates the sensory / perceptual experience, i.e. the low-level perceptual correspondence. Once more behavioral data from prosthetic users become available, studies can use the simulator to make these comparisons.

      Regarding the comparison to simulated prosthetic vision in sighted volunteers, there are some fundamental limitations. For instance, sighted subjects are exposed for a shorter duration to the (simulated) artificial percept and lack the experience and training that prosthesis users get. Furthermore, sighted subjects may be unfamiliar with compensation strategies that blind individuals have developed. It will therefore be important to conduct clinical experiments.

      To convey more clearly that our experiments are performed to verify the practical usability in future behavioral experiments, we have incorporated the following textual adjustments:

      • Lines 275-279: In the sections below, we discuss the different components of the simulator model, followed by a description of some showcase experiments that assess the ability to fit recent clinical data and the practical usability of our simulator in simulation experiments.

      • Lines 842-853: Eventually, the functional quality of the artificial vision will not only depend on the correspondence between the visual environment and the phosphene encoding, but also on the implant recipient's ability to extract that information into a usable percept. The functional quality of end-to-end generated phosphene encodings in daily life tasks will need to be evaluated in future experiments. Regardless of the implementation, it will always be important to include human observers (both sighted experimental subjects and actual prosthetic implant users in the optimization cycle to ensure subjective interpretability for the end (Fauvel et al., 2022; Beyeler & Sanchez- Garcia, 2022).

      3) A feature of this simulation is being able to convert stimulation of V1 to phosphenes in the visual field. If used, this feature would likely only be able to simulate a subset of phosphenes generated by a prosthesis. Much of V1 is buried within the calcarine sulcus, and electrode placement within the calcarine sulcus is not currently feasible. As a result, stimulation of visual cortex typically involves combinations of the limited portions of V1 that lie outside the sulcus and higher visual areas, such as V2.

      We agree that some areas (most notably the calcarine sulcus) are difficult to access in a surgical implantation procedure. A realistic simulation of state-of-the-art cortical stimulation should only partially cover the visual field with phosphenes. However, it may be predicted that some of these challenges will be addressed by new technologies. We chose to make the simulator as generally applicable as possible and users of the simulator can decide which phosphene locations are simulated. To demonstrate that our simulator can be flexibly initialized to simulate specific implantation locations using third- party software, we have now added a supplementary figure (Figure 1-figure supplement 1) that displays a demonstration of an electrode grid placement on a 3D brain model, generating the phosphene locations from receptive field maps. However, the simulator is general and can also be used to guide future strategies that aim to e.g. cover the entire field with electrodes, compare performance between upper and lower hemifields etc.

      Reviewer #3 (Public Review):

      The authors are presenting a new simulation for artificial vision that incorporates many recent advances in our understanding of the neural response to electrical stimulation, specifically within the field of visual prosthetics. The authors succeed in integrating multiple results from other researchers on aspects of V1 response to electrical stimulation to create a system that more accurately models V1 activation in a visual prosthesis than other simulators. The authors then attempt to demonstrate the value of such a system by adding a decoding stage and using machine-learning techniques to optimize the system to various configurations.

      1) While there is merit to being able to apply various constraints (such as maximum current levels) and have the system attempt to find a solution that maximizes recoverable information, the interpretability of such encodings to a hypothetical recipient of such a system is not addressed. The authors demonstrate that they are able to recapitulate various standard encodings through this automated mechanism, but the advantages to using it as opposed to mechanisms that directly detect and encode, e.g., edges, are insufficiently justified.

      We thank the reviewer for this constructive remark. Our simulator is designed for more realistic assessment of different stimulation protocols in behavioral experiments or in computational optimization experiments. The presented end-to-end experiments are a demonstration of the practical usability of our simulator in computational experiments, building on a previously existing line of research. In fact, our simulator is compatible with any arbitrary encoding strategy.

      As our paper is focused on the development of a novel tool for this existing line of research, we do not aim to make claims about the functional quality of end-to-end encoders compared to alternative encoding methods (such as edge detection). That said, we agree with the reviewer that it is useful to discuss the benefits of end-to-end optimization compared to e.g. edge detection will be useful.

      We have incorporated several textual changes to give a more nuanced overview and to acknowledge that many benefits remain to be tested. Furthermore, we have restated our study aims more clearly in the discussion to clarify the distinction between the goals of the current paper and the various encoding strategies that remain to be tested.

      • Lines 275-279: In the sections below, we discuss the different components of the simulator model, followed by a description of some showcase experiments that assess the ability to fit recent clinical data and the practical usability of our simulator in simulation experiments

      • Lines 810-814: Computational optimization approaches can also aid in the development of safe stimulation protocols, because they allow a faster exploration of the large parameter space and enable task-driven optimization of image processing strategies (Granley et al., 2022; Fauvel et al., 2022; White et al., 2019; Küçükoglü et al. 2022; de Ruyter van Steveninck, Güçlü et al., 2022; Ghaffari et al., 2021).

      • Lines 842-853: Eventually, the functional quality of the artificial vision will not only depend on the correspondence between the visual environment and the phosphene encoding, but also on the implant recipient's ability to extract that information into a usable percept. The functional quality of end-to-end generated phosphene encodings in daily life tasks will need to be evaluated in future experiments. Regardless of the implementation, it will always be important to include human observers (both sighted experimental subjects and actual prosthetic implant users in the optimization cycle to ensure subjective interpretability for the end user (Fauvel et al., 2022; Beyeler & Sanchez-Garcia, 2022).

      2) The authors make a few mistakes in their interpretation of biological mechanisms, and the introduction lacks appropriate depth of review of existing literature, giving the reader the mistaken impression that this is simulator is the only attempt ever made at biologically plausible simulation, rather than merely the most recent refinement that builds on decades of work across the field.

      We thank the reviewer for this insight. We have improved the coverage of the previous literature to give credit where credit is due, and to address the long history of simulated phosphene vision.

      Textual changes:

      • Lines 64-70: Although the aforementioned SPV literature has provided us with major fundamental insights, the perceptual realism of electrically generated phosphenes and some aspects of the biological plausibility of the simulations can be further improved and by integrating existing knowledge of phosphene vision and its underlying physiology.

      • Lines 164-190: The aforementioned studies used varying degrees of simplification of phosphene vision in their simulations. For instance, many included equally-sized phosphenes that were uniformly distributed over the visual field (informally referred to as the ‘scoreboard model’). Furthermore, most studies assumed either full control over phosphene brightness or used binary levels of brightness (e.g. 'on' / 'off'), but did not provide a description of the associated electrical stimulation parameters. Several studies have explicitly made steps towards more realistic phosphene simulations, by taking into account cortical magnification or using visuotopic maps (Fehervari et al., 2010;, Li et al., 2013; Srivastava et al., 2009; Paraskevoudi et al., 2021), simulating noise and electrode dropout (Dagnelie et al., 2007), or using varying levels of brightness (Vergnieux et al., 2017; Sanchez-Garcia et al., 2022; Parikh et al., 2013). However, no phosphene simulations have modeled temporal dynamics or provided a description of the parameters used for electrical stimulation. Some recent studies developed descriptive models of the phosphene size or brightness as a function of the stimulation parameters (Winawer et al., 2016; Bosking et al., 2017). Another very recent study has developed a deep-learning based model for predicting a realistic phosphene percept for single stimulating electrodes (Granley et al., 2022). These studies have made important contributions to improve our understanding of the effects of different stimulation parameters. The present work builds on these previous insights to provide a full simulation model that can be used for the functional evaluation of cortical visual prosthetic systems.

      • Lines 137-140: Due to the cortical magnification (the foveal information is represented by a relatively large surface area in the visual cortex as a result of variation of retinal RF size) the size of the phosphene increases with its eccentricity (Winawer & Parvizi, 2016, Bosking et al., 2017).

      • Lines 883-893: Even after loss of vision, the brain integrates eye movements for the localization of visual stimuli (Reuschel et al., 2012), and in cortical prostheses the position of the artificially induced percept will shift along with eye movements (Brindley & Lewin, 1968, Schmidt et al., 1996). Therefore, in prostheses with a head-mounted camera, misalignment between the camera orientation and the pupillary axes can induce localization problems (Caspi et al., 2018; Paraskevoudi & Pezaris, 2019; Sabbah et al., 2014; Schmidt et al., 1996). Previous SPV studies have demonstrated that eye-tracking can be implemented to simulate the gaze-coupled perception of phosphenes (Cha et al., 1992; Sommerhalder et al., 2004; Dagnelie et al., 2006; McIntosh et al., 2013, Paraskevoudi & Pezaris, 2021; Rassia & Pezaris 2018, Titchener et al., 2018, Srivastava et al., 2009)

      3) The authors have importantly not included gaze position compensation which adds more complexity than the authors suggest it would, and also means the simulator lacks a basic, fundamental feature that strongly limits its utility.

      We agree with the reviewer that the inclusion of gaze position to simulate gaze-centered phosphene locations is an important requirement for a realistic simulation. We have made several textual adjustments to section M1 to improve the clarity of the explanation and we have added several references to address the simulation literature that took eye movements into account.

      In addition, we included a link to some demonstration videos in which we illustrate that the simulator can be used for gaze-centered phosphene simulation. The simulation models the phosphene locations based on the gaze direction, and updates the input with changes in the gaze direction. The stimulation pattern is chosen to encode the visual environment at the location where the gaze is directed. Gaze contingent processing has been implemented in prior simulation studies (for instance: Paraskevoudi et al., 2021; Rassia et al., 2018; Titchener et al., 2018) and even in the clinical setting with users of the Argus II implant (Caspi et al., 2018). From a modeling perspective, it is relatively straightforward to simulate gaze-centered phosphene locations and gaze contingent image processing (our code will be made publicly available). At the same time, however, seen from a clinical and hardware engineering perspective, the implementation of eye-tracking in a prosthetic system for blind individuals might come with additional complexities. This is now acknowledged explicitly in the manuscript.

      Textual adjustment:

      Lines 883-910: Even after loss of vision, the brain integrates eye movements for the localization of visual stimuli (Reuschel et al., 2012), and in cortical prostheses the position of the artificially induced percept will shift along with eye movements (Brindley & Lewin, 1968, Schmidt et al., 1996). Therefore, in prostheses with a head-mounted camera, misalignment between the camera orientation and the pupillary axes can induce localization problems (Caspi et al., 2018; Paraskevoudi & Pezaris, 2019; Sabbah et al., 2014; Schmidt et al., 1996). Previous SPV studies have demonstrated that eye-tracking can be implemented to simulate the gaze-coupled perception of phosphenes (Cha et al., 1992; Sommerhalder et al., 2004; Dagnelie et al., 2006, McIntosh et al., 2013; Paraskevoudi et al., 2021; Rassia et al., 2018; Titchener et al., 2018; Srivastava et al., 2009). Note that some of the cited studies implemented a simulation condition where not only the simulated phosphene locations, but also the stimulation protocol depended on the gaze direction. More specifically, instead of representing the head-centered camera input, the stimulation pattern was chosen to encode the external environment at the location where the gaze was directed. While further research is required, there is some preliminary evidence that such a gaze-contingent image processing can improve the functional and subjective quality of prosthetic vision (Caspi et al., 2018; Paraskevoudi et al., 2021; Rassia et al., 2018; Titchener et al., 2018). Some example videos of gaze-contingent simulated prosthetic vision can be retrieved from our repository (https://github.com/neuralcodinglab/dynaphos/blob/main/examples/). Note that an eye-tracker will be required to produce gaze-contingent image processing in visual prostheses and there might be unforeseen complexities in the clinical implementation thereof. The study of oculomotor behavior in blind individuals (with or without a visual prosthesis) is still an ongoing line of research (Caspi et al.,2018; Kwon et al., 2013; Sabbah et al., 2014; Hafed et al., 2016).

      4) Finally, the computational capacity required to run the described system is substantial and is not one that would plausibly be used as part of an actual device, suggesting that there may be difficulties with converting results from this simulator to an implantable system.

      The software runs in real time with affordable, consumer-grade hardware. In Author response image 1 we present the results of performance testing with a 2016 model MSI GeForce GTX 1080 (priced around €600).

      Author response image 1.

      Note that the GPU is used only for the computation and rendering of the phosphene representations from given electrode stimulation patterns, which will never be part of any prosthetic device. The choice of encoder to generate the stimulation patterns will determine the required processing capacity that needs to be included in the prosthetic system, which is unrelated to the simulator’s requirements.

      The following addition was made to the text:

      • Lines 488-492: Notably, even on a consumer-grade GPU (e.g. a 2016 model GeForce GTX 1080) the simulator still reaches real-time processing speeds (>100 fps) for simulations with 1000 phosphenes at 256x256 resolution.

      5) With all of that said, the results do represent an advance, and one that could have wider impact if the authors were to reduce the computational requirements, and add gaze correction.

      We appreciate the kind compliment from the reviewer and sincerely hope that our revised manuscript meets their expectations. Their feedback has been critical to reshape and improve this work.

    1. Author Response

      Review #1 Public Review:

      This is an interesting study which attempts to assess the effect of the pandemic on diagnoses of pancreatic cancer. The authors have used a large national database to evaluate this, however, it should be noted that this database only captures 40% of the population in England. The authors have looked at specific parameters including Body Mass Index (BMI) as well as markers of diabetes and liver function. Only BMI had a difference in the frequency of measurements during the pandemic, presumably due to reduced face-to-face visits to allow weight and height to be captured.

      Interestingly the authors noticed a reduction in surgery for pancreatic cancer by 25%, yet reported that there were no differences in the frequency of death within 6 months following the diagnosis of pancreatic cancer. The reduction in surgery is likely related at least in part to the loss of operating lists due to pandemic restrictions, however, this paper is not equipped to address another important possibility behind this, which is that pancreatic cancers were presenting too late for surgical intervention. It is not sufficient to comment that pancreatic cancer treatment was not affected by the pandemic based on the data presented on deaths within 6 months of the diagnosis of pancreatic cancer alone, as the median survival of patients diagnosed with pancreatic cancer within the pandemic has not been captured and compared to that of patients diagnosed in the preceding 5 years.

      Therefore while the study can conclude no difference in pancreatic cancer diagnoses before and during the pandemic, more work needs to be done to truly assess if the pandemic had any effect on the outcomes from pancreatic cancer for patients diagnosed within this timeframe.

      Thank you for taking time to undertake the review and for all the constructive comments. This study was designed to assess the effect of the pandemic on pancreatic cancer services in England. We focused on the quantity of healthcare.

      We acknowledge and understand the comments by the reviewer with regards to the limitations of this study in relation to the effect of the COVID-19 pandemic on diagnosis and survival. We did not assess the effect of the pandemic on the staging information and survival length.

    1. Author Response

      Reviewer #1 (Public Review):

      This research aimed to discern the pattern of methylation changes that occur during aging, distinguishing between a unified specific mechanism and stochastic changes. To date, no unified hypothesis exists to guide our understanding of the changes in chromatin geography observed during the aging of cells. This work analysed six different types of purified blood-borne white blood cells allowing comparison across different immune cell subsets to determine if similar patterns occurred in all cell populations. Intriguingly, each subset exhibited its own distinct differential methylation rather than a single program. However, a core set of gene changes close to age-associated CpGs was identified suggesting that a central program existed, but that individual cell type function and metabolism shaped the overall chromatin landscape for the population. These findings establish a new framework for considering the aging process and open new questions about how the individual clocks of different populations might be regulated. While circulating cells are readily accessible for evaluation in humans, the majority of immune cells that regulate immune homeostasis are found within the tissues of the body. Whether these cells exhibit a similar profile to circulating cells or are rather shaped by their tissue or organ-specific ecosystem remains to be determined. In this setting, these tissue-resident cells are exposed to very different oxygen tensions and metabolic substrates. Furthermore, genes identified have been associated with aging, they concurrently appear to be associated with inflammation, thus it is not clear whether aging and low-grade inflammation are inherently linked, or whether these two pathways can be segregated. Thus a number of questions remain warranting further investigation.

      The reviewer makes a very good point regarding different tissue resident cells being exposed to different oxygen and metabolic stress. In the reviewed manuscript we have Arid3a coming up as one of the transcription factors with motifs in and around probes hypermethylated with age in monocytes. Arid3a is known to target inflammatory genes but future research is warranted to implicate the link between aging and low-grade inflammation. To address the comment about connection between aging and low-grade inflammation, in the revised manuscript, we have incorporated new analysis by looking into SomaScan array derived protein levels of seven cytokines from the same cohort of donors. We tested the hypothesis that part of the age-associated changes in DNA methylation are connected with the well-known age-related proinflammatory state. We have now added the details in the Results and Methods sections. Briefly, we run two regression models (CpGi~age+sex and CpGi~age+sex+analytej, where i is each CpG probe from EPIC array and j is each of the seven cytokines). We find that change in DNA methylation levels in nearly 70009000 CpG sites in CD4 cells and 124 CpG sites in B cells that were originally age-associated, also are associated with increasing levels of TNFRSF1A, TNFRSF1B and TNF-alpha levels thereby indicating a link between DNA methylation change and aging as well as inflammatory cytokines levels.

    1. Author Response

      Reviewer #1 (Public Review):

      The authors convincingly show in this study the effects of the fas5 gene on changes in the CHC profile and the importance of these changes toward sexual attractiveness.

      The main strength of this study lies in its holistic approach (from genes to behaviour) showing a full and convincing picture of the stated conclusions. The authors succeeded in putting a very interdisciplinary set of experiments together to support the main claims of this manuscript.

      We appreciate the kind comments from the reviewer.

      The main weakness stems from the lack of transparency behind the statistical analyses conducted in the study. Detailed statistical results are never mentioned in the text, nor is it always clear what was compared to what. I also believe that some tests that were conducted are not adequate for the given data. I am therefore unable to properly assess the significance of the results from the presented information. Nevertheless, the graphical representations are convincing enough for me to believe that a revision of the statistics would not significantly affect the main conclusions of this manuscript.

      We apologize for neglecting a detailed description of statistical tests that were performed. We wrote additional paragraphs in the method part specifically explaining the statistical analyses (line 435-445; 489-502; 559-561; 586-591).

      The second major problem I had with the study was how it brushes over the somewhat contradicting results they found in males (Fig S2). These are only mentioned twice in the main text and in both cases as being "similarly affected", even though their own stats seem to indicate otherwise for many of the analysed compound groups. This also should affect the main conclusion concerning the effects of fas5 genes in the discussion, a more careful wording when interpreting the results is therefore necessary.

      Thank you for pointing this out. Though our focus clearly lay on the female CHC profiles as a function in sexual signaling has only been described thus far for them, we now elaborated the result and discussion for the fas5 RNAi male part (line 167-178; 258-268).

      Reviewer #2 (Public Review):

      Insects have long been known to use cuticular hydrocarbons for communication. While the general pathways for hydrocarbon synthesis have been worked out, their specificity and in particular the specificity of the different enzymes involved is surprisingly little understood. Here, the authors convincingly demonstrate that a single fatty acid synthase gene is responsible for a shift in the positions of methyl groups across the entire alkane spectrum of a wasp, and that the wasps males recognize females specifically based on these methyl group positions. The strength of the study is the combination of gene expression manipulations with behavioural observations evaluating the effect of the associated changes in the cuticular hydrocarbon profiles. The authors make sure that the behavioural effect is indeed due to the chemical changes by not only testing life animals, but also dead animals and corpses with manipulated cuticular hydrocarbons.

      I find the evidence that the hydrocarbon changes do not affect survival and desiccation resistance less convincing (due to the limited set of conditions and relatively small sample size), but the data presented are certainly congruent with the idea that the methyl alkane changes do not have large effects on desiccation.

      We appreciate the kind comments from the reviewer.

      Reviewer #3 (Public Review):

      In this manuscript, the authors are aiming to demonstrate that a fatty-acyl synthase gene (fas5) is involved in the composition of the blend of surface hydrocarbons of a parasitoid wasp and that it affects the sexual attractiveness of females for males. Overall, the manuscript reads very well, it is very streamlined, and the authors' claims are mostly supported by their experiments and observations.

      We appreciate the kind comments from the reviewer.

      However, I find that some experiments, information and/or discussion are absent to assess how the effects they observe are, at least in part, not due to other factors than fas5 and the methyl-branched (MB) alkanes. I'm also wondering if what the authors observe is only a change in the sexual attractiveness of females and not related to species recognition as well.

      We appreciate the interesting point that the reviewer raises in sexual attractiveness and species recognition and now expand upon this potential aspect in the discussion (lines 327-330). However, in this manuscript, we very much focused on the effect of fas5 knockdown on the conveyance of female sexual attractiveness in a single species (Nasonia vitripennis). Therefore, we argue that species recognition constitutes a different communication modality here, and we currently cannot infer whether and how species recognition is exactly encoded in Nasonia CHC profiles despite some circumstantial evidence for species-specificity (Buellesbach et al. 2013; Mair et al. 2017). Thus, we would like to refrain from any further speculation on species recognition before this can be unambiguously demonstrated, and remain within the mechanism of sexual attractiveness within a single species which we clearly show is mediated by the female MB-alkane fraction governed by the fatty acid synthase genes. We however still consider potential alternative explanations (e.g., n-alkenes acting as a deterrent of homosexual mating attempts).

      The authors explore the function of cuticular hydrocarbons (CHCs) and a fatty-acyl synthase in Nasonia vitripennis, a parasitic wasp. Using RNAi, they successfully knockdown the expression of the fas5 gene in wasps. The authors do not justify their choice of fatty-acyl synthase candidate gene. It would have been interesting to know if that is one of many genes they studied or if there was some evidence that drove them to focus their interest in fas5.

      In a previous study, 5 fas candidate genes orthologous to Drosophila melanogaster fas genes were identified and mapped in the genome of Nasonia vitripennis (Buellesbach et al. 2022). We actually investigated the effects of all of these fas genes on CHC variation, but only fas5 led to such a striking, traceable pattern shift. We are currently preparing another manuscript discussing the effects of the other fas genes, but decided to focus exclusively on fas5 here, due to its significance for revealing how sexual attractiveness can be encoded and conveyed in complex chemical profiles, maintained and governed by a surprisingly simple genetic basis.

      The authors observe large changes in the cuticular hydrocarbons (CHC) profile of male and females. These changes are mostly a reduction of some MB alkanes and an increase in others as well as an increase of n-alkene in fas5 knockdown females. For males fas5 knockdowns, the overall quantity of CHC is increased and consequently, multiple types of compounds are increased compared to wild-type, with only one compound appearing to decrease compared to wild-type. Insects are known to rely on ratios of compounds in blends to recognize odors. Authors address this by showing a plot of the relative ratios, but it seems to me that they do show statistical tests of those changes in the proportions of the different types of compounds. In the results section, the authors give percentages while referring to figures showing the absolute amount of CHCs. They should also test if the ratios are significantly different or not between experimental conditions. Similar data should be displayed for the males as well.

      We appreciate your suggestions. We kindly refer you to our response to reviewer 1, where we addressed the statistical tests. Specifically, we generated separate subplots to display the proportions of different compound classes and performed statistical tests to compare these proportions between different treatments for both males and females. Additionally, we have revised the results section to replace relative abundances with absolute quantity, as depicted in Figure 2C-G.

      Furthermore, the authors didn't use an internal standard to measure the quantity of CHCs in the extracts, which, to me, is the gold standard in the field. If I understood correctly, the authors check the abundance measured for known quantities of n-alkanes. I'm sure this method is fine, but I would have liked to be reassured that the quantities measured through this method are good by either testing some samples with an internal standard, or referring to work that demonstrates that this method is always accurate to assess the quantities of CHC in extracts of known volumes.

      We actually did include 7,5 ng/μl dodecane (C12) as an “internal” standard in the hexane resuspensions of all of our processed samples (line 456, Materials and Methods). This was primarily done to allow for visually inspecting and comparing the congruence of all chromatograms in the subsequent data analysis and immediately detect any variation from sample preparation, injection process and instrument fluctuation. In our study, we have a very elaborate and standardized CHC extraction method that the volume of solvent and duration for extraction are strictly controlled to minimize the variation from sample preparation steps. Furthermore, we calibrated each individual CHC compound quantity with a dilution series of external standards (C21-C40) of known concentration. By constructing a calibration curve based on this dilution series, we achieved the most accurate compound quantification, also taking into account and counteracting the generally diminishing quantities of compounds with higher chain lengths.

      The authors provide a sensible control for their RNAi experiments: targeting an unrelated gene, absent in N. vitripennis (the GFP). This allows us to see if the injection of RNAi might affect CHC profiles, which it appears to do in some cases in males, but not in females. The authors also show to the reader that their RNAi experiments do reduce the expression of the target gene. However, one of the caveats of their experiments, is that the authors don't provide evidence or information to allow the (non-expert) reader to assess whether the fas5 RNAi experiments did affect the expression of other fatty-acyl synthase genes. I'm not an expert in RNAi, so maybe this suggestion is not relevant, but it should, at least, be addressed somewhere in the manuscript that such off-target effects are very unlikely or impossible, in that case, or more generally.

      We acknowledge the reviewer’s concern about potential off-target effect of the fas5 knockdown. We actually did check initially for off-target effects on the other four previously published fas genes in N. vitripennis (Lammers et al. 2019; Buellesbach et al. 2022) and did not find any effects on their respective expressions. We now include these results as supplementary data (Figure 2-figure supplement 1). However, as mentioned in the cover letter to the editor, we discovered a previously uncharacterized fas gene in the most recent N. vitripennis genome assembly (NC_045761.1), fas6, most likely constituting a tandem gene duplication of fas5. These two genes turned out to have such high sequence similarity (> 90 %, Figure 2-figure supplement 2) that both were simultaneously downregulated by our fas5 dsRNAi construct, which we confirmed with qPCR and now incorporated into our manuscript (Fig. 2H). Therefore, we now explicitly mention that the knockdown affects both genes, and either one or both could have the observed phenotypic effects. Recognizing this RNAi off-target effect, we have now also incorporated a discussion of this issue in the appropriate section of the manuscript (line 364-377), as well as the potential off-target effects of our GFP dsRNAi controls (line 262-274).

      The authors observe that the modified CHCs profiles of RNAi females reduce courtship and copulation attempts, but not antennation, by males toward live and (dead) dummy females. They show that the MB alkanes of the CHC profile are sufficient to elicit sexual behaviors from males towards dummy females and that the same fraction from extracts of fas5 knockdown females does so significantly less. From the previous data, it seems that dummy females with fas5 female's MB alkanes profile elicit more antennation than CHC-cleared dummy females, but the authors do not display data for this type of target on the figure for MB alkane behavioral experiments.

      Actually similar proportions of males performed antennation behavior towards female dummies with MB alkane fraction of fas5 RNAi females and CHC-cleared female dummies (55% and 50%, respectively, see Author response image 1 for the corresponding parts of the sub-figures 3 E and 4 D). We did not deem it necessary to show the same data on CHC-cleared female dummies in Figure 3 as well.

      Author response image 1.

      Unfortunately, the authors don't present experiments testing the effect of the non-MB alkanes fractions of the CHC extracts on male behavior toward females. As such, they are not able to (and didn't) conclude that the MB-alkane is necessary to trigger the sexual behaviors of males. I believe testing this would have significantly enhanced the significance of this work. I would also have found it interesting for the authors to comment on whether they observe aggressive behavior of males towards females (live or dead) and/or whether such behavior is expected or not in inter-individual interactions in parasitoids wasps.

      In our experiment, we focus on the function of the MB-alkane fraction in female CHC profiles, and we comprehensibly demonstrate in figure 4 that the MB-alkane fraction from WT females alone is sufficient to trigger mating behavior coherent with that on alive and untreated female dummies. Therefore, we do not completely understand the reviewer’s concern about us not being ” able to (and didn't) conclude that the MB-alkane is necessary to trigger the sexual behaviors of males”. We appreciate the suggestion from the reviewer of testing the non-MB alkanes (n-alkanes and n-alkenes). However, due to the experimental procedure of separating the CHC compound class fractions through elution with molecular sieves, it was not possible for us to retrieve either the whole n-alkane or n-alkene fraction remaining bound to the sieves after separation). The role of n-alkenes in N. vitripennis is however considered in the discussion, as a deterrent for homosexual interactions between males (Wang et al. 2022a). Moreover, we did not observe aggressive behavior of males towards live or dead females.

      CHCs are used by insects to signal and/or recognize various traits of targets of interest, including species or groups of origin, fertility, etc. The authors claim that their experiments show the sexual attractiveness of females can be encoded in the specific ratio of MB alkanes. While I understand how they come to this conclusion, I am somewhat concerned. The authors very quickly discuss their results in light of the literature about the role of CHCs (and notably MB alkanes) in various recognition behaviors in Hymenoptera, including conspecific recognition. Previous work (cited by the authors) has shown that males recognize males from females using an alkene (Z9C31). As such, it remains possible that the "sexual attractiveness" of N. vitripennis females for males relies on them not being males and being from the right species as well. The authors do not address the question of whether the CHCs (and the MB alkanes in particular) of females signal their sex or their species. While I acknowledge that responding to this question is beyond the scope of this work, I also strongly believe that it should be discussed in the manuscript. Otherwise, non-specialist readers would not be able to understand what I believe is one of the points that could temper the conclusions from this work.

      We acknowledge the reviewer’s insight about the MB alkanes in signaling sex or species in N. vitripennis, and now include this aspect in our revised discussion (line 324-330). Moreover, we clearly demonstrate that n-alkenes have been reduced to minute trace components after our compound class separation, and the males still do not display courtship and copulation behaviors similar to WT females, thus strongly indicating that the n-alkenes do not play a role when relying solely on the changed MB-alkane patterns, further strengthening our main argument.

      References

      Benjamini, Y. and D. Yekutieli. 2001. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29:1165-1188.

      Buellesbach, J., J. Gadau, L. W. Beukeboom, F. Echinger, R. Raychoudhury, J. H. Werren, and T. Schmitt. 2013. Cuticular hydrocarbon divergence in the jewel wasp Nasonia: Evolutionary shifts in chemical communication channels? J. Evol. Biol. 26:2467-2478.

      Buellesbach, J., C. Greim, and T. Schmitt. 2014. Asymmetric interspecific mating behavior reflects incomplete prezygotic isolation in the jewel wasp genus Nasonia. Ethology 120:834-843.

      Buellesbach, J., H. Holze, L. Schrader, J. Liebig, T. Schmitt, J. Gadau, and O. Niehuis. 2022. Genetic and genomic architecture of species-specific cuticular hydrocarbon variation in parasitoid wasps. Proc. R. Soc. B 289:20220336.

      Engl, T., N. Eberl, C. Gorse, T. Krüger, T. H. P. Schmidt, R. Plarre, C. Adler, and M. Kaltenpoth. 2018. Ancient symbiosis confers desiccation resistance to stored grain pest beetles. Mol. Ecol. 27:2095-2108.

      Ferveur, J. F., J. Cortot, K. Rihani, M. Cobb, and C. Everaerts. 2018. Desiccation resistance: effect of cuticular hydrocarbons and water content in Drosophila melanogaster adults. Peerj 6.

      Lammers, M., K. Kraaijeveld, J. Mariën, and J. Ellers. 2019. Gene expression changes associated with the evolutionary loss of a metabolic trait: lack of lipogenesis in parasitoids. BMC Genom. 20:309.

      Mair, M. M., V. Kmezic, S. Huber, B. A. Pannebakker, and J. Ruther. 2017. The chemical basis of mate recognition in two parasitoid wasp species of the genus Nasonia. Entomol. Exp. Appl. 164:1-15.

      Wang, Y., W. Sun, S. Fleischmann, J. G. Millar, J. Ruther, and E. C. Verhulst. 2022a. Silencing Doublesex expression triggers three-level pheromonal feminization in Nasonia vitripennis males. Proc. R. Soc. B 289:20212002.

      Wang, Z., J. P. Receveur, J. Pu, H. Cong, C. Richards, M. Liang, and H. Chung. 2022b. Desiccation resistance differences in Drosophila species can be largely explained by variations in cuticular hydrocarbons. eLife 11:e80859.

    1. Author Response

      Reviewer #1 (Public Review):

      The work described herein would have an impact on the field in multiple ways. Firstly, it demonstrates a novel metabolic role for MSH in the regulation of hepatic cholesterol metabolism. This may prove to be a viable therapeutic strategy for the treatment of dyslipidemia. Furthermore, the authors demonstrate an alternative signaling cascade elicited by MSH independent of cAMP, but rather relying on AMPK. This novel interaction between AMPK and MC1R could have more widespread implications beyond the control of hepatic cholesterol metabolism.

      For the most part, the conclusions offered by the authors are supported by the data that is presented. There are, however, a number of concerns in the current version of this manuscript detailed below.

      We thank the reviewer for the encouraging and insightful comments, and we are pleased to read that the manuscript has raised considerable interest.

      1) The authors demonstrate the expression of MC1R in hepatocytes through IHC staining and western blot analysis. Furthermore, the authors show an alteration in systemic bile acid homeostasis in MC1R KO mice. However, no mention of MC1R expression or function in cholangiocytes is discussed. This is important to assess both experimentally and within the discussion given the profound role of the biliary epithelium in modulating bile acid homeostasis. Furthermore, in figure 1 the authors validate the MC1R knockdown only through mRNA expression. Given panels A and C of figure 1 shows there is clearly a functional antibody for MC1R, validation of protein knockdown is needed.

      The reviewer raises an important point, which we addressed by performing immunofluorescence staining using an antibody against the cholangiocyte marker cytokeratin 19 (CK-19). These colocalization studies demonstrate the presence of MC1-R in CK19-positive cholangiocytes (Figure 1-figure supplement 1). Furthermore, we have now added a discussion on the possible role of MC1-R in modulating bile acid homestasis in cholangiocytes (page 12, lines 456-462).<br /> We also quantified MC1-R protein expression by Western blotting in the liver of LMc1r-/- mice. MC1-R protein level was significantly reduced in L-Mc1r-/- mice compared to L-Mc1+/- mice (Figure 2-figure supplement 2).

      2) Figure 2 demonstrates a steatotic effect of MC1R knockdown in hepatocytes. The authors attempt to provide mechanistic insight into this phenomenon through assessing the mRNA expression of genes involved in cholesterol and fatty acid synthesis. The data provided is modest at the gene level and no protein validation was provided to demonstrate functional alterations of these proteins in MC1R KO mice. Key proteins proposed such as SREBP2 and HMGCR need to be validated via a western blot of IHC analysis.

      As requested by the reviewer, we quantified the expression of key proteins in the liver of L-Mc1r-/- mice by Western blotting. We observed that the protein levels of HMGCR and DHCR7 as well as the ratio between the mature and precursor forms of SREBP2 were reduced in L-Mc1r-/- mice (Figure 2F-H, page 6/lines 182-191 & page 10-11/lines 390-401). This is likely a result of the feedback regulation, whereby cholesterol accumulation suppresses the cleavage of SREBP2 and leads to a consequent downregulation of the key cholesterol synthesis enzymes such as HMGCR and DHCR7 (Brown S & Goldstein JL, Cell. 1997 May 2;89(3):331-40).

      We discussed in the original submission (page 11) as follows: ‘In the presence of excess cellular cholesterol, transcriptional induction and posttranslational activation of SREBP-2 should be attenuated, which in turn downregulates Hmgcr and Dhcr7 and reduces cholesterol synthesis as a counterregulatory mechanism. Therefore, given the increase in hepatic cholesterol content, it was unexpected that Srebp2 expression was upregulated in the liver of L-Mc1r-/- mice’. The finding of reduced SREBP2/HMGCR protein expression is thus more logical, but admittedly, it is discordant with increased Srebp2/Hmgcr mRNA expression (as reported in the original submission), which might be a compensatory response to suppressed SREBP2 cleavage. Taking into account that activation of MC1-R did not affect the protein expression of HMGCR or DHCR7 in HepG2 cells, it is plausible that hepatic cholesterol accumulation in L-Mc1r-/- mice is driven by a defect in bile acid metabolism, rather than by a direct effect of MC1-R signaling on cholesterol synthesis. To avoid unnecessary confusion, we decided to omit the qPCR data and related text parts from the manuscript and report the protein expression data instead.

      4) The authors suggest the involvement of AMPK in mediating the cholesterol-lowering effects of MSH. However, MSH is still able to lower free cholesterol levels even in the presence of an AMPK inhibitor. This suggests that MSH does not in fact rely on the activation of AMPK to elicit these cholesterol-lowering effects. The authors' conclusions are stronger than the actual data support. Furthermore, the authors claim LD211 phenocopies the effects of MSH in the presence of an AMPK inhibitor. However, the authors only measured the phosphorylation of Akt as their outcome. This begs the question, does LD211 still lower total cholesterol in the presence of AMPK inhibitors? This experiment is essential to conclude whether or not LD211 phenocopies the effects of MSH.

      The reviewer may have missed that we postulate in the manuscript that ‘MC1-R activation engages multiple signaling mechanisms to regulate cholesterol metabolism in HepG2 cells’ (manuscript page 8, lines 310-311 & page 13, lines 498508), since low concentration of a-MSH was still able to lower free cholesterol level in the presence of the AMPK inhibitor dorsomorphin. We have been careful not to claim that the effects of a-MSH are solely dependent on AMPK phosphorylation. Likewise, we have not claimed in the original submission that LD211 phenocopies the effects of MSH in the presence of an AMPK inhibitor. However, as suggested by the reviewer, we performed new experiments to investigate the effects of LD211 on cellular cholesterol levels in the absence and presence of dorsomorphin. We found that AMPK inhibition with dorsomorphin completely abolished the cholesterollowering effect of LD211 (Figure 7-figure supplement 2), which might indicate that this synthetic agonist has a stronger signaling bias toward the AMPK pathway compared to α-MSH.

      5) The authors initiate the project by showing high-fat diet disrupts the expression of MC1R. However, all of the subsequent experiments in hepatic MC1R KO mice are performed under normal chow. This begs the question of what is the phenotype of the hepatic MC1R KO mice fed a high-fat diet. Does KO of MC1R in the liver exacerbate HFD-induced obesity, glucose intolerance, and dyslipidemia? Inversely, can WT mice challenged with an HFD be rescued metabolically by treatment with either MSH or LD211? Providing data along these lines of investigation will provide physiological/clinical relevance to their findings.

      As suggested by the reviewer, we phenotyped the hepatic MC1R KO (LMc1r-/-) mice after feeding them a cholesterol- and fat-rich Western diet for 12 weeks (RD Western Diet, D12079B, Research Diets Inc, NJ, USA). This was exactly the same dietary regimen (product and duration) that was used to study the changes in hepatic MC1-R expression in wild-type C57Bl mice (Figure 1B&C). We observed that 12-week Western diet feeding induced a significant gain in body weight and total fat mass as well as an increase in plasma and hepatic cholesterol and TG levels (Figure 2-figure supplement 2). L-Mc1r-/- mice did not show a difference in body weight gain, but the weight gain was attributable to enhanced gain in fat mass and a blunted increase in lean mass compared to control Mc1rfl/fl mice (Figure 2-figure supplement 2A, D & E). Furthermore, liver weight and plasma cholesterol and TG concentrations were unchanged in HFD-fed L-Mc1r-/- mice (Figure 2-figure supplement 2B, C, F & G). Importantly, recapitulating the phenotype observed in chow-fed mice, hepatic cholesterol and TG content was significantly increased in LMc1r-/- mice after a HFD challenge (Figure 2-figure supplement 2H & I). Taken together, it appears that the phenotype of HFD-fed L-Mc1r-/- mice was slightly diluted compared to the phenotype observed in chow-fed L-Mc1r-/- mice. This phenotypic difference might relate to the finding that Western diet feeding reduced the hepatic expression of MC1-R, thus limiting the incremental effect of genetically induced MC1-R deficiency on hypercholesterolemia and hepatic lipid accumulation.

      We have previously studied the effects of pharmacological MC1-R activation in Western diet-fed mice and observed that chronic treatment with a selective MC1-R agonist reduced plasma cholesterol level and upregulated hepatic Ldlr expression without affecting body weight gain (Rinne P et al, Circulation. 2017 Jul 4;136(1):8397.). These findings are also discussed on manuscript page 12, lines 475-478. Although the selective MC1-R agonist was different in that particular study, it is expected that LD211 would also elicit a similar cholesterol-lowering effect in Western diet-fed mice. Chronic treatment with a-MSH, on the other hand, would likely produce wide-ranging metabolic effects. In addition to MC1-R activation in hepatocytes and its consequent effect on liver cholesterol metabolism, a-MSH would affect feeding, energy expenditure and cholesterol metabolism via MC4-R activation in the central nervous system as well as fatty acid and glucose metabolism via MC5-R activation in the skeletal muscle. Therefore, the phenotype associated with a-MSH treatment would be complex and mediated by multiple mechanisms and MC-R subtypes, thus making it difficult to interpret the exact contribution of hepatic MC1-R signaling to the observed phenotype.

      Reviewer #2 (Public Review):

      Keshav Thapa et al. investigated the role of melanocortin 1 receptor (MC1-R) in cholesterol and bile acid metabolism in the liver. First, they observed that MC1-R is present in the mouse liver and that its expression is reduced in response to a cholesterolrich diet. To determine the role of MC1-R in the liver, they generated hepatocyte-specific MC1-R KO mice (L-Mc1r-/-). These animals exhibited a significant increase in liver weight, lipid accumulation, triglycerides and cholesterol levels, and fibrosis in comparison with control mice. By performing liquid chromatography-mass spectrometry, the authors also found that L-Mc1r-/- mice also have fewer bile acids in the plasma and faeces, but not in the liver. In accordance with these findings, mRNA/protein expression of different genes involved in these processes were altered in L-Mc1r-/- animals.

      Secondly, in an attempt to evaluate the underlying mechanisms, they measured the expression of MC1-R in HepG2 cells under different treatments (i.e., palmitic acid, LDL, and atorvastatin). Moreover, they stimulated these cells with the endogenous MC1-R agonist - MSH, where they show that this molecule decreases the free cholesterol content, whereas increasing LDL and HDL uptake, as well as recapitulates some previously observed phenotypes in the proportions of bile acids. These effects were also encountered when using a selective agonist for MC1-R (i.e., LD211), further supporting the specific role of MC1-R. Finally, some experiments indicated that -MSH evokes not one single, but multiple intracellular signalling cascades for which MC1-R activation effects might take place.

      Overall, this work provides novel and interesting findings on the role of MC1-R in cholesterol and bile acid metabolism in the liver, which undoubtedly will have some crucial implications for future research. Nevertheless, some experimental details should be better explained for the correct interpretation of the data. Besides, discrepant results exist regarding the molecular mechanisms behind MC1-R action that requires additional experimentation to support the conclusions drawn.

      We thank the reviewer for the encouraging and insightful comments, and we are pleased to read that the manuscript has raised considerable interest.

    1. Author Response

      Reviewer #1 (Public Review):

      The authors aim to understand the role of clonal heterogeneity of tumors in immunogenicity of clonally expressed antigens. This is a significant problem with many basic as well as translational implications.

      The strength of the manuscript lies in the novel demonstration that a poorly immunogenic tumor antigen, when paired with a stronger tumor antigen, begins to elicit significant immune response. The weakness lies in the fact that the actual mechanism of the key demonstration is never shown. There is a lot of speculation and tangential experimentation, but little actual evidence of a mechanism.

      By making the key observation (mentioned in the strength section in the previous paragraph), the authors did achieve their objective albeit very partially. Their observation is based on excellent experimental tools and design. This study will stimulate further experiments in this important field.

      Their key observation is somewhat reminiscent of the practice of conjugating small "non-immunogenic" antigens (such as some carbohydrates) to large protein carriers (such as serum albumin) in order to elicit strong antibody response to the weaker antigen. It is interesting to contemplate if the underlying mechanisms have any commonality.

      We thank the reviewer for their consideration of our work and their constructive feedback. We concur that our study has limitations and further work will be necessary to fully deconstruct the mechanism leading to the observed phenotype. We have revised the text to better reflect the aim and scope of our study. However, the goal of our work was to establish a trackable model that would allow us to model different, albeit limited, degrees of antigen expression patterns reflecting what is observed in patients with different levels of ITH. Our key observation reproduces what is observed clinically, adding strength to the model. Next, we wanted to study what was different about the induced immune responses to develop strategies to better treat tumors with heterogeneous NeoAg expression patterns that currently do not respond to checkpoint blockade therapy. Studying KP-HetHigh and KP-HetLow tumors revealed that tumor debris-carrying cDC1 draining from KP-HetLow tumors phagocytosed both NeoAgs. This population of cDC1, carrying both NeoAgs, had a more stimulatory phenotype compared to cDC1 without tumor debris or cDC1 that had engulfed only one NeoAg. We were able to develop a targeted therapy including CD40 agonism based on our key observations: KP-HetLow had a more robust response towards the weaker NeoAg which was associated with more stimulatory cDC1 presenting both NeoAgs compared to KP-HetHigh tumors. The stronger immune response increased responsiveness to CBT.

      The reviewer makes an interesting point about conjugate vaccines, which canonically elicit greater responses because they engage multiple immune cells, namely T cells with B cells, resulting in stronger antibody responses. The prevalence of tumor debris-carrying cDC1 with both neoantigens in KP-HetLow does make us consider that this population of cDC1 may be engaging multiple immune populations, i.e., different neoantigen-specific T cells. We suggest this as a possible mechanism for greater Aatf responses, but further work is necessary to determine if the same cDC1 can directly interact with both neoantigen-specific T cells.

      Reviewer #2 (Public Review):

      There are data to suggest that intratumour mutational heterogeneity (ITH; the proportion of all mutations that are found only within cancer subclones) is associated with worse therapeutic outcomes. Specifically, patients with more mutations (and thus neoantigens) mostly expressed by subclones (high ITH) have poorer responses to checkpoint immunotherapy. The authors set out to explore the mechanisms underlying this by studying 2 dimensions of neoantigen biology: firstly, distribution (clonal vs subclonal) and secondly, immunogenicity (weak vs strong binding to MHC class I). Using a panel of lung cancer cell lines modified to express individual or dual neoantigens in order to model clonal and subclonal expression, elegant studies show that clonal co-expression with a "strong" neoantigen can boost the immunogenicity of a "weak" neoantigen and result in tumour control. Mechanistically, this is related to engulfment of both neoantigens by cross presenting type 1 conventional dendritic cells and the associated enhanced activation state of this cell type. This is an interesting and potentially important finding that may be related to mechanisms of epitope spreading as immune responses diverge from targeting more to less immunogenic epitopes. Overall, the study is thought-provoking, informative in relation to how neoantigen immunogenicity is shaped and may have practical relevance.

      We greatly appreciate the constructive comments from the reviewer and their insightful comments and questions on our work. We have edited the text in response to their feedback. We believe these changes have made the writing clearer and more effectively communicates the scope of our study and our results to the reader.

    1. Author Response:

      We would like to thank the Editors and Reviewers for their positive evaluations, constructive comments, and for the opportunity to revise our manuscript. We feel that the comments and suggestions will further improve our manuscript.

      In the updated manuscript we aim to incorporate all suggested changes and considerations provided by the Reviewers. In particular, we will provide further information on the quality-control ratings per subfield, as suggested by Reviewer 1. Moreover, we will evaluate whether the training-related changes were specific to CA1-3, rather than just showing significant alterations in CA1-3 and not in the other subfields. Last, as suggested by Reviewer 2, we will additionally test for multivariate associations between hippocampal subfield structure and function, to further evaluate the specificity of hippocampal subfield change as a function of training and cortisol.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      This study is well presented and contains all the necessary experiments to support their claims. They made the interesting finding of an additional factor Dyn2. However, it is unclear whether it is present in the human complex. Hence, it would be interesting to see whether Dyn2 co-purifies when expressed with the other complex components in insect cells. Also, purification of a tagged complex from yeast would have indicated whether Dyn2 is part of the complex and whether other factors, like RBM15 or Hakai, present in humans are also present in yeast.

      We agree that Dyn2 subunit is an exciting new finding that is worth further investigation. The IP-MS experiments suggest that Dyn2 is subunit of the complex and that the Dyn2 interaction is mediated via Slz1. We also noticed a reduction in m6A levels (50%) in the dyn2 deletion mutant. What the function of Dyn2 is and whether it is conserved remains to be determined.

      Our IP-MS experiments with Mum2 identified the complex as described in the manuscript, however we did not find evidence of orthologs of RBM15 and Hakai. More follow up work is needed using in vivo and in vitro assays are needed to determine how m6A by the yeast MTC is regulated.

      P3 top: Although m6A is the most abundant internal methylation variant, it is far below the methylation levels of cap-adjacent nucleotides in mammalian mRNAs (PMID: 35970556 ).

      We have added the word “internal” to the first sentence of the introduction.

      A list of author contributions is missing.

      We have added this in the revised version.

      Reviewer #2 (Recommendations For The Authors):

      Most of the conclusions of this paper are well supported by data, and the text is clearly written and easy to read. Here are my suggestions and comments:

      1) In Fig.2, why not use LC-MS to measure m6A levels in Ygl036w, Dyn2, Pab1, Npl3 mutants, as in Fig.1?

      For measuring m6A levels, we use combination of LC-MS and m6A ELISA and m6A-seq2 throughout the manuscript. We used ELISA in the Fig2 because we had established this assay in the lab (Ensinck et al, RNA Journal, 2023). M6A-ELISA technique was more accessible and easier to execute compared to LC-MS. Additionally our collaborator for the LC-MS moved his lab to another country, which made it impractical to continue the use of LC-MS.

      2) The protein purification experiment described in Fig. 4D is informative. Can they include Dyn2 in the expression system as well?

      Thank you for the suggestion. Dyn2 was not the focus of the manuscript as Dyn2 has, at best, only a minor role in m6A deposition in vivo. We are also currently aiming to dissect how Dyn2 regulates m6A and the yeast MTC in follow up work. Hence we decided not to add more experiments on Dyn2 to the current manuscript.

      3) Among the MTC components identified in this study, Dyn2 is a new and interesting subunit. It was shown that in C. elegans Dlc1 is involved in stabilizing the m6A writer Mett10. I wonder if yeast has a homolog of C. elegans Mett10?

      As far as we know, there is no ortholog identified of Mett10 (METTL16 in mammals) in budding yeast.

      4) The authors have emphasized "the m6A dependent and independent functions"; however, this is only based on previous observations. Is it possible that the less severe phenotype associated with ime4 catalytic mutant is due to residual catalytic activity? I think the data presented in Fig. 5 tell us that Ime4 and other MTC subunits have no additional moonlighting function. It is not entirely clear to me what "the m6A-independent function" is.

      The observation that the yeast MTC complex has m6A dependent and independent function is based on the previous observations and the current work. In Agarwala et al 2012 PLOS Genetics, it was shown that mum2 and ime4 deletion mutants have more severe phenotype than slz1 deletion mutant or the catalytically inactive mutant of Ime4. We confirmed these observations in the revised manuscript (see Figure S5A and S5B). In this work, we showed that kar4 and vir1 deletion mutants have comparable delay in the onset of meiosis as mum2 and ime4 deletion mutants. Also, the MTC remains intact with absence of Slz1, but falls apart in ime4D, mum2D, vir1D or showed strongly reduced RNA binding (kar4 deletion mutant). Based on this we conclude that an m6A independent function of the MTC exists.

      We have included data demonstrating that the catalytically inactive mutant has no residual m6A and a milder meiotic phenotype compared to the ime4 deletion mutant (see Figure S5A and S5B).

      5) In Mum2-TEV-ProA IP (1B) and Kar4-TEV-ProA IP (S1A), Slz1 was not significantly enriched; however, in the repeated Mum2-TEV-ProA IP with/without RNAse (S1B, 4C), Slz1 was strongly enriched. Why are the Slz1 results so variable?

      This is an astute observation, for which we do not have a definitive answer. One possibility is that Slz1 is the only subunit that is induced during meiosis. It is possible that induction of Slz1 varied between the different IP-MS experiments, hence leading to variability in its association with the MTC complex.

      6) The last paragraph on page 11, "Collectively...", and the first paragraph on page 12, "Collectively...", seem redundant.

      We have removed the duplicated paragraph in the revised manuscript.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      MCM8 and MCM9 are paralogues of the eukaryotic MCM2-7 proteins. MCM2-7 form a heterohexameric complex to function as a replicative helicase while MCM8-9 form another hexameric helicase complex that may function in homologous recombination-mediated longtract gene conversion and/or break-induced replication. MCM2-7 complex is loaded during the low Cdk period by ORC, CDC6, and Cdt1, when the origin DNA may intrude into the central channel via the MCM2-MCM5 entry "gate". In the S phase, MCM2-7 complex is activated as CMG helicase with the help of CDC45 and GINS complex. On the other hand, it still remains unclear how MCM8-9 complex is loaded onto DNA and then activated.

      In this study, the authors first investigated the cryo-EM structure of chicken MCM8-9 (gMCM89) complex. Based on the data obtained, they suggest that the observed gMCM8-9 structure might represent the structure of a loading state with possible DNA entry "gate". The authors further investigated the cryo-EM structure of human MCM8-9 (hMCM8-9) complex in the presence of the activator protein, HROB, and compared the structure with that obtained without HROB1, which the authors published previously. As a result, they suggest that MCM8-9 complex may change the conformation upon HROB binding, leading to helicase activation. Furthermore, based on the structural analyses, they identified some important residues and motifs in MCM8-9 complex, mutations of which actually impaired the MCM8-9 activity in vitro and in vivo.

      Overall, the data presented would support the authors' conclusions and would be of wide interest for those working in the fields of DNA replication and repair. One caveat is that most of the structural data are shown only as ribbon model without showing the density map data obtained by cryo-EM, which makes accurate evaluation of the data somewhat difficult.

      We thank the reviewer for the positive comments on our work. For evaluating all the structural data, in our revised manuscript, we have presented the density maps of the cryo-EM structures of the gMCM8/9 complex in supplementary figure S5 and S6. In addition, the 3D cryo-EM map of the gMCM8/9 complex and the hMCM8/9 NTD ring have been deposited to the EMDB database with accession number EMD-32346 and EMD-33989, respectively. The corresponding atomic models have been deposited at the RSCB PDB under the accession code 7W7P and 7YOX, respectively. All these data have been released in May 2023.

      Reviewer #2 (Public Review):

      MCM8 and MCM9 together form a hexameric DNA helicase that is involved in homologous recombination (HR) for repairing DNA double-strand breaks. The authors have previously reported on the winged-helix structure of the MCM8 (Zeng et al. BBRC, 2020) and the Nterminal structure of MCM8/9 hexametric complex (MCM8/9-NTD) (Li et al. Structure, 2021). This manuscript reports the structure of a near-complete MCM8/9 complex and the conformational change of MCM8/9-NTD in the presence of its binding protein, HROB, as well as the residues important for its helicase activity.

      The presented data might potentially explain how MCM8/9 works as a helicase. However, additional studies are required to conclude this point because the presented MCM8/9 structure is not a DNA-bound form and HROB is not visible in the presented structural data. Taking into these accounts, this work will be of interest to biologists studying DNA transactions.

      A strength of this paper is that the authors revealed the near-complete MCM8/9 structure with 3.66A and 5.21A for the NTD and CTD, respectively (Figure 1). Additionally, the authors discovered a conformational change in the MCM8/9-NTD when HROB was included (Figure 4) and a flexible nature of MCM8/9-CTD (Figure S6 and Movie 1).

      The biochemical data that demonstrate the significance of the Ob-hp motif and the N-C linker for DNA helicase activity require careful interpretation (Figures 5 and 6). To support the conclusion, the authors should show that the mutant proteins form the hexamer without problems. Otherwise, it is conceivable that the mutant proteins are flawed in complex formation. If that is the case, the authors cannot conclude that these motifs are vital for the helicase function.

      A weakness of this paper is that the authors have already reported the structure of MCM8/9NTD utilizing human proteins (Li et al. Structure, 2021). Although they succeeded in revealing the high-resolution structure of MCM8/9-NTD with the chicken proteins in this study, the two structures are extremely comparable (Figure S2), and the interaction surfaces seem to be the same (Figure 2).

      Another weakness of this paper is that the presented data cannot fully elucidate the mechanistic insights into how MCM8/9 functions as a helicase for two reasons. 1) The presented structures solely depict DNA unbound forms. It is critical to reveal the structure of a DNA-bound form. 2) The MCM8/9 activator, HROB, is not visible in the structural data. Even though HROB caused a conformational change in MCM8/9-NTD, it is critical to visualize the structure of an MCM8/9HROB complex.

      We appreciate the reviewer’s comments on our work. Regarding the first weakness mentioned above, the previously reported cryo-EM structure of hMCM8/9 NTD ring was achieved with a resolution of 6.6 Å. At this level of resolution, we were only able to observe the overall shape of the structure and a partial representation of the protein's secondary structure. It is hard for us to discern any specific details regarding the interaction interface between MCM8 and MCM9. In this study, we solved the structure of gMCM8/9 NTD ring with a resolution of 3.67 Å. We believe that the higher resolution of gMCM8/9 NTD structure provides a significant advantage in analyzing the interaction surface between MCM8 and MCM9. This improved resolution has enabled us to gain valuable insights into the assembly mechanism of the MCM8/9 hexamer, representing a significant step forward in our understanding of the MCM8/9 helicase complex. In response to the second weakness raised by the reviewer, we fully agree with the reviewer that high-resolution structures of the MCM8/9 complex with DNA or HROB are necessary to elucidate the mechanism of this helicase complex. We are actively working towards obtaining these complex structures using cryo-EM and X-ray crystal diffraction.

      Moreover, we would like to address the reviewer's concern regarding the mutant proteins used in the in vitro helicase assays. We have conducted additional experiments to confirm that these mutant proteins do not impair the formation of the MCM8/9 hexamer. Specifically, we performed size exclusion chromatography (SEC) analyses of the wild-type (WT) MCM8/9 complex, as well as MCM8 and MCM9 mutant proteins (Author response image 1). The results demonstrated that all the proteins behaved consistently and displayed similar SEC profiles during the purification process. Notably, the N-C linker deletion mutant (hMCM8_Δ369-377+MCM9_Δ283-287) combining the MCM8 and MCM9 N-C linker deletions also behaved similarly with WT MCM8/9 (Author response image 2). These findings strongly suggest that the mutations in the OB-hps regions and the N-C linkers do not disrupt the hexamer formation of the MCM8/9 complex. Author response image 1 and Author response image 2 have been included into the supplementary figure S8 and S11, respectively.

      Author response image 1.

      SEC profiles of WT and OB-hps mutants of MCM8/9 complex.

      Author response image 2.

      SEC profiles of WT and N-C linker mutant of MCM8/9 complex.

      Reviewer #1 (Recommendations For The Authors):

      I would like to provide some suggestions to improve the manuscript.

      1) Throughout the manuscript, more density map data obtained by the cryo-EM should be shown for accurate evaluation of the data. For example, in Figure 1C, the authors state that inner channel of the gMCM8-9 hexamer is ~28 angstrom, apparently based on the ribbon model. This is not appropriate because the space upon ribbon model is not same as that upon the density map. For Figure 1B, they state that "The domain structures of gMCM8-9 fit well into their electron map". If so, please show the actual docking data. Also for Figure 2, the docking presentation between the side chains in the ribbon model and the density map should be shown.

      We sincerely appreciate the reviewer for the constructive suggestions. In addition to releasing our structural data in the EMDB and PDB, we have also followed the reviewer’s suggestions to included more density map data in the supplementary material. In fact, when calculating the dimeter of the inner channel of the MCM8/9 hexamer, we also measured that upon the density map (Author response image 3. A and B), which is consistent with our report in our manuscript. To further evaluate the structure of MCM8/9, we have included additional docking structures based on the density map (Author response image 3. C-F). Moreover, for Figure 2, more docking presentation are provided and the key residues involved in the hydrophobic interactions were highlighted in a bold manner (Author response image 4). Author response image 3 and Author response image 4 have been included into the supplementary figure S5 and S6, respectively.

      Author response image 3.

      The cryo-EM structure of gMCM8/9. (A and B) Reconstructed cryo-EM map of gMCM8/9. The diameter of the inner channel of MCM8/9 was measured at ~28 Å. (C-F) Representative regions of the cryo-EM structure of gMCM8/9 NTD are shown based on their density map. C, chain A (MCM9); D, chain B (MCM8); E, chain C (MCM9); F, chain D (MCM8).

      Author response image 4.

      Representative regions of the cryo-EM structure of gMCM8/9 NTD. (A and B), the region mediated hydrophobic interaction in figure 2B. A (MCM8), B (MCM9). (C and D), the region mediated hydrophobic interaction in figure 2C. C (MCM8), D (MCM9). The key residues were in bold.

      2) Figures 4, 5, and 6: For helicase assay, more detailed experimental conditions (e.g. concentrations of DNA substrates and proteins used) should be presented. In addition, it should be described how Flag-hMCM8-9 complex (Figure 4C) was purified.

      We sincerely appreciate the constructive suggestion provided by the reviewer. In the revised manuscript, we have included more experimental details in the helicase assays, including the concentrations of DNA substrates and proteins. The following paragraph describes the updated experimental procedure and also provided in the revise version of the manuscript.

      Helicase assays: To prepare the substrate, the oligonucleotide (5'(dT)40GTTTTCCCAGTCACGACG-TTGTAAAACGACGGCCAGTGCC-3') containing a 40 nt region complementary to the M13mp18(+) stand and a 40 nt oligo-dT at the 5′ end was labeled at the 3′ terminus with [α-32P] dCTP (Perkin Elmer) and annealed to the single-stranded DNA M13mp18 (24). 0.1 nM (in molecules) DNA substrates were respectively mixed with 5 µg recombinant MCM8/9 complex and its mutants as indicated within each 15 µl volume reaction in the helicase buffer (25 mM HEPES, pH 7.5, 1 mM magnesium acetate, 25 mM sodium acetate, pH 5.2, 4 mM ATP, 0.1 mg/ml BSA, 1 mM DTT). 2.5 µg HROB was used as an activator. To avoid re-annealing, the reaction was supplemented with a 100-fold unlabeled oligonucleotide. The reactions were then incubated at 37 °C for 60 min and stopped by adding 1 µl of stop buffer (0.4% SDS, 30 mM EDTA, and 6% glycerol) and 1µl of proteinase K (20 mg/ml, Sigma) into the reaction for another 10 min incubation at 37 °C. The products were separated by 15% polyacrylamide gel electrophoresis in 1× TBE buffer and analyzed by the Amersham typhoon (Cytiva).

      In addition, to describe the expression of Flag-hMCM8/9 complex in Figure 4C, we have included the Pull-Down Assay in the “Material and Methods” section. The description is as follow: The HEK293T cells transfected with Flag-hMCM8/9-FL or Flag-hMCM8/9-NTD were cultured overnight and washed twice with cold phosphate-buffered saline (PBS). Cell pellets were resuspended with lysis buffer (20 mM Tris, pH7.5, 150 mM NaCl, 5mM EDTA, 0.5% NP-40, 10% glycerol, protease inhibitor cocktail (Roche, 04693132001)). After incubation for 45 min at 4°C with gentle agitation, the whole-cell lysates were collected by centrifugation (12,000 × g for 15 min, at 4 °C). GST beads coupled with 2 μg GST-HROB or GST alone were then incubated with an equal volume of above HEK293T cell lysates at 4°C for 4h. The beads were washed four times with lysis buffer. Proteins bound to the beads were separated by SDS–PAGE and subsequently immunoblotted with anti-Flag antibody (Cytiva).

      3) Figure 3C: This is just an assumed model. Please clearly state it in the manuscript.

      We appreciate the reviewer’s comment. We guess the reviewer is referring to Figure 5C. As Figure 3C depicts the top view of the gMCM8/9 hexamer structurally aligned with the MCM2-7 double hexamer (wheat) by aligning their respective C-tier ring. On the other hand, Figure 5C represents an assumed model where we docked a forked DNA fragment into the central channel of the gMCM8/9 hexamer. To address this assumed model, we have made the following clarification in the revised manuscript: “We artificially docked a forked DNA into the central channel to generate a gMCM8/9-DNA model and found that the OB-hps of gMCM8 are capable to closely contact with it and insert their highly positively charged terminal loops into the major or minor grooves of the DNA strand, implying that they could be involved in substrate DNA processing and/or unwinding (Figure 5C)”.

      4) Figure S1, C and D: The coloring of the gMCM8-9 CTD appears to show higher resolution than the NTD. May this be mispresentation?

      We appreciate the reviewer's valuable feedback, and we have thoroughly re-evaluated Figure S1C and D. At the beginning, the local resolution distributions of the gMCM8/9 NTD and gMCM8/9 CTD were calculated using CryoSPARC. Upon re-examination, we found that the density maps of the gMCM8/9 CTD may be lower than 3.66 Å, because the density map of the gMCM8/9 CTD does not reveal more structural details than what is observed in the gMCM8/9 NTD. Thus, although the map shown in Figure S1D may appear to show a greater distribution of high-resolution regions., we would like to clarify that this discrepancy could be attributed to an optical illusion. We thank the reviewer for bringing this to our attention.

      5) Figure S9: Is the "mean resolution" 5.21 angstrom identical to the Gold standard FSC? If not, please estimate the resolution using FSC, like other maps in this paper.

      We thank the reviewer for the constructive suggestion. In response to this feedback, we would like to clarify the resolution estimation process for the gMCM8/9 CTD. Initially, we calculated the resolution of the gMCM8/9 CTD using the gold standard Fourier shell correlation (FSC) method, which yielded a resolution of 3.66 Å. However, upon further analysis, we identified an issue with the GSFSC Resolution curves, which led to an overestimation of the resolution based on the density map of the gMCM8/9 CTD. To ensure a more reliable and accurate estimation, we employed the Phenix software package to calculate the mean resolution during the refinement process of the gMCM8/9 CTD structure. The calculated mean resolution was determined to be 5.21 Å, which aligns more reasonably with the characteristics of the density map. To address any potential misunderstandings and provide clarity, we have explicitly labeled and described the evaluation process for this mean resolution in the "Single particle data processing" section of the Materials and Methods.

      Minor points:

      1) Throughout the manuscript, there are several typographical and grammatical errors, which should be corrected. For example, in "Introduction", "GNIS complex" should be "GINS complex".

      We thank the reviewer for pointing out the typographical and grammatical errors. We have corrected the grammar errors and polished our manuscript with the help of native speakers.

      Reviewer #2 (Recommendations For The Authors):

      1) "During HR repair, MCM8/9 was rapidly recruited to the DNA damage sites and colocalized with the recombinase Rad51 (21). It also interacted with the nuclease complex MRN (MRE11RAD50-NBS1) and was required for DNA resection at DSBs to facilitate the HR repair (Introduction)."

      There is a debate about whether MCM8/9-HROB colocalizes with RAD51 and whether it works upstream or downstream of RAD51 (Park et al. MCB, 2013; Lee et al. Nat Commun., 2015; Lutzmann et al. Mol Cell, 2012; Nishimura et al. Mol Cell, 2012; Natsume et al. G&D, 2017; Hustedt et al. G&D, 2019; Huang et al. Nat Commun., 2020).

      We completely agree with the reviewer that previous studies have reported contradictory results regarding to the function of MCM8/9 in homologous recombination. Based on the structure information of MCM8/9, now we do not have direct evidence to resolve the ongoing debate. Nonetheless, based on our findings, we speculate that the MCM8/9 complex is likely involved in multiple steps within the process of homologous recombination. The structural insights provided by our study serve as a foundation for further investigations and may contribute to a better understanding of the complex and multifaceted roles of MCM8/9 in homologous recombination repair.

      2) I noted that the BioRxiv version 1 (https://www.biorxiv.org/content/10.1101/2022.01.26.477944v1?versioned=true) contains a near-complete MCM8/9 with human protein based on the crystal analysis. Because its structure is comparable to chicken MCM8/9 revealed by cryo-EM, I highly suggest including this data in the manuscript.

      We would like to thank the reviewer for this suggestion. The resolution of the hMCM8/9 crystal structure presented in our previous BioRxiv version is 6.6 Å, which is a little low. Moreover, it cannot provide more information than the present cryo-EM structures of MCM8/9. We are dedicated to optimizing the crystal quality and implementing strategies to enhance the resolution of the structure. We hope to present an improved crystal structure of hMCM8/9 in our forthcoming article.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their insightful comments. The main issue raised by the reviewers was that because E6AP depletion reduced checkpoint signaling vis MASTL upregulation, this pathway is likely to be involved also in DNA damage checkpoint activation, in addition to checkpoint recovery. Hence, the proposed “timer”-like model is not fully supported. However, it is important to note that, the expression level of MASTL is not upregulated during the activation stage of the DNA damage checkpoint (unless E6AP is depleted). DNA damage signaling, via ATM-dependent E6AP phosphorylation, caused MASTL accumulation over time. This ultimately shifts the balance toward checkpoint recovery and cell cycle re-entry. As such, the role of MASTL (and E6AP-depletion) in suppressing DNA damage checkpoint is in harmony with the proposed role of MASTL upregulation in promoting checkpoint recovery. We have made additional clarifications about this point in the revised manuscript.

      We have also addressed other concerns raised by the reviewers, as explained in the point-to-point responses below. With the addition of new modifications and data, we believe the revised manuscript is complete and conclusive.

      Reviewer #1 (Public Review):

      In principle a very interesting story, in which the authors attempt to shed light on an intriguing and poorly understood phenomenon; the link between damage repair and cell cycle re-entry once a cell has suffered from DNA damage. The issue is highly relevant to our understanding of how genome stability is maintained or compromised when our genome is damaged. The authors present the intriguing conclusion that this is based on a timer, implying that the outcome of a damaging insult is somewhat of a lottery; if a cell can fix the damage within the allocated time provided by the "timer" it will maintain stability, if not then stability is compromised. If this conclusion can be supported by solid data, the paper would make a very important contribution to the field.

      However, the story in its present form suffers from a number of major gaps that will need to be addressed before we can conclude that MASTL is the "timer" that is proposed here. The primary concern being that altered MASTL regulation seems to be doing much more than simply acting as a timer in control of recovery after DNA damage. There is data presented to suggest that MASTL directly controls checkpoint activation, which is very different from acting as a timer. The authors conclude on page 8 "E6AP promoted DNA damage checkpoint signaling by counteracting MASTL", but in the abstract the conclusion is "E6AP depletion promoted cell cycle recovery from the DNA damage checkpoint, in a MASTL-dependent manner". These 2 conclusions are definitely not in alignment. Do E6AP/MASTL control checkpoint signaling or do they control recovery, which is it?<br /> Also, there is data presented that suggest that MASTL does more than just controlling mitotic entry after DNA damage, while the conclusions of the paper are entirely based on the assumption that MASTL merely acts as a driver of mitotic entry, with E6AP in control of its levels. This issue will need to be resolved.

      We thank the reviewer for his/her insightful comments. The main issue raised by the reviewers was that because E6AP depletion reduced checkpoint signaling vis MASTL upregulation, this pathway is likely to be involved also in DNA damage checkpoint activation, in addition to checkpoint recovery. Hence, the proposed “timer”-like model is not fully supported. However, it is important to note that, the expression level of MASTL is not upregulated during the activation stage of the DNA damage checkpoint (unless E6AP is depleted). DNA damage signaling, via ATM-dependent E6AP phosphorylation, caused MASTL accumulation over time. This ultimately shifts the balance toward checkpoint recovery and cell cycle re-entry. As such, the role of MASTL (and E6AP-depletion) in suppressing DNA damage checkpoint is in harmony with the proposed role of MASTL upregulation in promoting checkpoint recovery. We have made additional clarifications about this point in the revised manuscript.

      As suggested by the reviewer, we have rephrased the statement in abstract to “E6AP depletion reduced DNA damage signaling, and promoted cell cycle recovery from the DNA damage checkpoint, in a MASTLdependent manner”.

      As a mitotic kinase, MASTL promotes mitotic entry and progression. This is well in line with our findings that DNA damage-induced MASTL upregulation promotes cell cycle re-entry into mitosis. MASTL upregulation could also inhibit DNA damage signaling. This manner of feedback, inhibitory, modulation of DNA damage signaling by mitotic kinases (e.g., PLK1, CDK) has been implicated in previous studies (reviewed in Cell & Bioscience volume 3, Article number: 20 (2013)). In the revised manuscript, we have included more discussions about this aspect of checkpoint regulation.

      Finally, the authors have shown some very compelling data on the phosphorylation of E6AP by ATM/ATR, and its role in the DNA damage response. But the time resolution of these effects in relation to arrest and recovery have not been addressed.

      Detailed time point information is now added in the figure legends for E6AP phosphorylation data. We were able to observe this event during early stages (e.g., 1 hr, or 2-4 hr) of the DNA damage response, prior to significant MASTL protein accumulation.

      Reviewer #2 (Public Review):

      This is an interesting study from Admin Peng's laboratory that builds on previous work by the PI implicating Greatwall Kinase (the mammalian gene is called MASTL) in checkpoint recovery.

      The main claims of this study are:

      1) Greatwall stability is regulated by the E6-AP ubiquitin ligase and this is inhibited following DNA damage in an ATM dependent manner.

      2) Greatwall directly interacts with E6-AP and this interaction is suppressed by ATM dependent phosphorylation of E6-AP on S218

      3) E6-AP mediates Greatwall stability directly via ubiqitylation

      4) E6-AP knock out cells show reduced ATM/ATR activation and quicker checkpoint recovery following ETO and HU treatment

      5) Greatwall mediated checkpoint recovery via increased phosphorylation of Cdk substrates

      In my opinion, there are several interesting findings presented here but the overall model for a role of the E6-AP -Greatwall axis is not fully supported by the current data and will require further work. Moreover, there are a number of technical issues making it difficult to assess and interpret the presented data.

      Major points:

      1) The notion that Greatwall is indeed required for checkpoint recovery hinges on two experiments shown in Figures 5A and B where Greatwall depletion blocks the accumulation of HELA cells in mitosis following recovery from ETO treatment and in G2/M following release from HU. An alternative possibility to the direct involvement of Greatwall in checkpoint recovery could be that Greatwall in HeLA cells is required for S-phase progression (as for example Charrasse et al. suggested). A simple control would be to monitor the accumulation of mitotic cells by microscopy or FACS following Greatwall depletion without any further checkpoint activation.

      We thank the reviewer for his/her insightful comments.

      Charrasse et al. showed ENSA knockout prolonged, but not stopped the progression of S-phase. In our experiments, MASTL (partial) knockdown did not significantly impact HeLa cells proliferation in the absence of DNA damage (Fig. 5, supplemental 1A). The reported role of MASTL in checkpoint recovery was consistently seen in response to various drugs, including etoposide which typically induces G2 arrest. Thus, we do not believe a prolonged S-phase accounts for the checkpoint recovery phenotype.

      2) The changes in protein levels of Greatwall and the effects of E6-AP on Greatwall stability are rather subtle and depend mostly on a qualitative assessment of western blots. Where quantifications have been made (Figures 2D and 4F) the loading control and the starting conditions for Greatwall (0 timepoints in the right panel) appear saturated making precise quantification impossible. I would argue that the authors should at least quantify the immuno-blots that led them to conclude on changes in Greatwall levels and make sure that the exposure times used are in the dynamic range of the camera (or film). A more precise experiment would be to use the exogenously expressed CFP-Greatwall that is described in Figure 6 and measure the acute changes in protein levels using quantitative fluorescence microscopy in live cells. This is, in my opinion, a lot more trustworthy than quantitative immuno-blots.

      I also note here that most experiments linking Greatwall levels to E6-AP were done using siRNA, while the E6-AP ko cells would be a more reliable background for these experiments, especially with reconstituted controls.

      DNA damage-induced MASTL upregulation was observed in various cell lines and after different treatments. To further strengthen this point, as suggested by the reviewer, we have included quantification of fluorescent measurements (Fig. 2, supplemental 1 A-C). Quantification of immunoblots for MASTL upregulation was also added in Fig. 1, supplemental 1E. The effects of E6AP depletion were consistently shown for both siRNA and stable KO.

      3) This study has no data linking the effects of Greatwall to its canonical target PP2A:B55. The model shown in Figure 9 is therefore highly speculative. The possibility that Greatwall could act independently of PP2A:B55 should at least be considered in the discussion given the lack of experimental evidence.

      The role of MASTL in promoting cell cycle progression via suppressing PP2A/B55 has been well established. As suggested by the reviewer, we have included discussions to acknowledge that “The role of MASTL upregulation in promoting checkpoint recovery and cell cycle progression can be attributed to inhibition of PP2A/B55, although the potential involvement of additional mechanisms is not excluded”.

      4) The major effect of E6-AP depletion on the checkpoint appears to be a striking reduction in ATM/ATR activation, suggesting that this ubiquitin ligase is involved in checkpoint activation rather than recovery. It is not clear if this phenotype is dependent on Greatwall. If so it would be hard to reconcile with the default model that E6-AP acts via the destabilisation of Greatwall. In the permanent absence of E6-AP, increased Greatwall levels should inactivate B55:PP2A. How would this lead to a decrease in ATM/ATR activation? This is unlikely, and indeed Figure 5E shows that the reduction of MASTL in parallel to E6-AP does not result in elevated levels of ATR/ATM activation. Conversely, the S215A E6-AP mutant does have a strong rescue impact on ATR/ATM (Figure 8D).

      We do not propose that PP2A/B55 directly dephosphorylates ATM/ATR-mediated phosphorylation. In fact, PP2A/B55 dephosphorylates and inactivates mitotic kinases and substrates which can feedback inhibit DNA damage checkpoint signaling (as previously shown for PLK1 and CDK). We included in a discussion about this point in the revised manuscript.<br /> The point regarding checkpoint activation vs recovery is addressed below (point 5).

      5) In summary, I do not think that the presented experiments clearly dissect the involvement of E6-AP and Greatwall in checkpoint activation and recovery. E6-AP depletion has a strong effect on checkpoint activation while Greatwall depletion is likely to have various checkpoint-independent effects on cell cycle progression.

      It is important to note that, the expression level of MASTL is not upregulated during the activation stage of the DNA damage checkpoint (unless E6AP is depleted). DNA damage signaling, via ATM-dependent E6AP phosphorylation, caused MASTL accumulation over time. This ultimately shifts the balance toward checkpoint recovery and cell cycle re-entry. As such, the role of MASTL (and E6APdepletion) in suppressing DNA damage checkpoint is in harmony with the proposed role of MASTL upregulation in promoting checkpoint recovery. We have made additional clarifications about this point in the revised manuscript.

      Reviewer #3 (Public Review):

      In this manuscript, Li et al. describe the contribution of the ATM-E6AP-MASTL pathway in recovery from DNA damage. Different types of DNA damage trigger an increase in protein levels of mitotic kinase MASTL, also called Greatwall, caused by increased protein stability. The authors identify E3 ligase E6AP to regulate MASTL protein levels. Depletion or knockout of E6AP increases MASTL protein levels, whereas overexpression of E6AP leads to lower MASTL levels. E6AP and MASTL were suggested to interact in conditions without damage and this interaction is abrogated after DNA damage. E6AP was shown to be phosphorylated upon DNA damage on Ser218 and a phosphomimicking mutant does not interact with MASTL. Stabilization of MASTL was hypothesized to be important for recovery of the cell cycle/mitosis after DNA damage.

      The identification of this novel pathway involving ATM and E6AP in MASTL regulation in the DNA damage response is interesting. However, is surprising that authors state that not a lot is known about DNA damage recovery while Greatwall and MASTL have been described to be involved in DNA damage (checkpoint) recovery. In addition, PP2A, a phosphatase downstream of MASTL is a known mediator of checkpoint recovery, in addition to other proteins like Plk1 and Claspin. Although some of the publications regarding these known mediators of DNA damage recovery are mentioned, the discussion regarding the relationship to the data in this manuscript are very limited.

      We thank the reviewer for his/her insightful comments. As suggested, the previously reported role of PLK1 and other cell cycle kinases in DNA damage checkpoint recovery is discussed in more details in the revised manuscript. As for PP2A/B55, we do not think it promotes checkpoint recovery, e.g., by dephosphorylating ATM/ATR or their substrates. Instead, this phosphatase dephosphorylates cell cycle kinases or their substrates, such as CDK1 or PLK1.

      The regulation of MASTL stability by E6AP is novel, although the data regarding this regulation and the interaction are not entirely convincing. In addition, several experiments presented in this paper suggest that E6AP is (additionally) involved in checkpoint signalling/activation, whereas the activation of the G2 DNA damage checkpoint was described to be independent of MASTL. Has E6AP multiple functions in the DNA damage response or is ATM-E6AP-MASTL regulation not as straightforward as presented here?

      Altogether, in my opinion, not all conclusions of the manuscript are fully supported by the data.

      We showed that E6AP depletion reduced checkpoint signaling vis MASTL upregulation, so this pathway is likely to be involved also in DNA damage checkpoint activation, in addition to checkpoint recovery. However, it is important to note that, the expression level of MASTL is not upregulated during the activation stage of the DNA damage checkpoint (unless E6AP is depleted). DNA damage signaling, via ATM-dependent E6AP phosphorylation, caused MASTL accumulation over time. This ultimately shifts the balance toward checkpoint recovery and cell cycle re-entry. As such, the role of MASTL (and E6APdepletion) in suppressing DNA damage checkpoint is in harmony with the proposed role of MASTL upregulation in promoting checkpoint recovery. We have made additional clarifications about this point in the revised manuscript.

      Reviewer #1 (Recommendations For The Authors):

      In principle a very interesting story, that attempts to shed light on an intriguing and poorly understood phenomenon; the link between damage repair and cell cycle re-entry once a cell has suffered from DNA damage. The issue is highly relevant to our understanding of how genome stability is maintained or compromised when our genome is damaged. The authors present the intriguing conclusion that this is based on a timer, implying that the outcome of a damaging insult is somewhat of a lottery; if a cell can fix the damage within the allocated time it will maintain stability, if not then stability is compromised. However, the story in its present form suffers from a number of major gaps that will need to be addressed

      Major point:

      My primary concern regarding the main conclusion is that altered MASTL regulation seems to be doing much more than simply promoting more rapid recovery after DNA damage. This concern comes from the following gaps that I noted whilst reading the paper:

      • Knock out of E6AP, is leading to a dramatic inhibition of ATM/ATR activation after damage (Fig.5C,D,E), this is (partially) rescued by co-depletion of MASTL (Fig5E). The authors will have to show that the primary effect of altered MASTL regulation is improved recovery, rather than reduced checkpoint activation. In other words, is initial checkpoint activation in cells that have lost E6AP normal, or do these cells fail to mount a proper checkpoint response? If the latter is true, that could completely alter the take home-message of this paper, because it could mean that E6AP/MASTL do not act as a "timer", but as a "tuner" to set checkpoint strength at the start of the DNA damage response. The authors themselves conclude on page 8 "E6AP promoted DNA damage checkpoint signaling by counteracting MASTL", but in the abstract the conclusion is "E6AP depletion promoted cell cycle recovery from the DNA damage checkpoint, in a MASTL-dependent manner". These 2 conclusions are definitely not in alignment, do E6AP/MASTL control checkpoint signaling or do they control recovery?

      The expression level of MASTL is not upregulated during the activation stage of the DNA damage checkpoint (unless E6AP is depleted). DNA damage signaling, via ATM-dependent E6AP phosphorylation, caused MASTL accumulation over time. This ultimately shifts the balance toward checkpoint recovery and cell cycle re-entry. As such, the role of MASTL (and E6AP-depletion) in suppressing DNA damage checkpoint is in harmony with the proposed role of MASTL upregulation in promoting checkpoint recovery. We have made additional clarifications about this point in the revised manuscript. We have also made clarification to the statement indicated by the reviewer.

      • MASTL KD has a rather unexpected effect on cell cycle progression after HU synchronization (Fig.5B). It seems that the MASTL KD cells fail to exit from the HU-imposed G1/S arrest, an effect that is not rescued in the E6AP knock-outs. Inversely, E6AP knock-outs seem to more readily exit from the HU-imposed arrest, an effect that is completely lost after knock-down of MASTL. How do the authors interpret these results? Their conclusions are entirely based on a role for MASTL as a driver of mitotic entry, with E6AP in control of its levels, but this experiment suggests that MASTL and E6AP are controlling very different aspects of cell cycle control in their system.

      As the reviewer pointed out, our data in checkpoint signaling and cell cycle progression suggested that MASTL upregulation could also inhibit DNA damage signaling, in addition to promoting cell cycle progression. This manner of feedback, inhibitory, modulation of DNA damage signaling by mitotic kinases (e.g., PLK1, CDK) has been implicated in previous studies (reviewed in Cell & Bioscience volume 3, Article number: 20 (2013)). In the revised manuscript, we have included discussions about this aspect of checkpoint regulation.

      • It is not possible to evaluate the validity of the conclusions that are based on Figure 6. We need to know how long the cells were treated with HU to disrupt the interaction between E6AP and MASTL. Is the timing of this in the range of the timing of MASTL increase after damage? A time course experiment is required here.

      • The data obtained on E6AP-S218 phosphorylation and with the S218A mutant during damage and recovery look very promising. But again, the release from HU is confusing me as to what to conclude from them. Also, the authors should show how S218A expression affects MASTL levels (before and after damage). Also, a time course of ATM/ATR activation is required to decide if initial or late ATM/ATR signaling is affected.

      Detailed time point information is now added in the figure legends for E6AP phosphorylation and E6AP-MASTL dissociation data. We were able to observe these events during early stages (e.g., 1 hr, or 2-4 hr) of the DNA damage response, prior to significant MASTL protein accumulation.

      • The conclusion that "and was not likely to be caused by the completion of DNA repair, as judged by the phosphorylation of replication protein A" (page 5) is based on western blots that represent the average across the entire population. It is possible that MASTL expression is still low in the cells that have not completed repair, while it's increase on blots comes from a subset of cells where repair is complete. The authors should perform immunofluorescence so that expression levels of MASTL can be directly compared to levels of phospho-RPA in individual cells. In fact, the manuscript could benefit a lot from a more in-depth single-cell (microscopy)-based analysis of the relations over time between ATM/ATR activation, E6AP phosphorylation, MASTL stabilization versus the checkpoint arrest and subsequent recovery.

      Time point analyses were provided for DNA damage-induced RPA phosphorylation and ATM/ATR substrate phosphorylation (Fig. 1). These data showed MASTL accumulation in the presence of active DNA damage checkpoint signaling. To further strengthen this point, as suggested by the reviewer, we have included quantification of fluorescent measurements (Fig. 2, supplemental 1 A-C). IF data showed MASTL upregulation in correlation with ATM/ATR activation.

      Minor points:

      It's not "ionized radiation", but "ionizing radiation" (page 5)

      We have made the correction as pointed out by the reviewer.

      Expression levels of MASTL should be quantified over time after DNA damage. In some of the experiments the increase seems to plateau relatively quick (HU treatment, fig 1B, 1-2 hours), while in others the levels continue to increase over longer periods (HU treatment, fig 1D, 6 hours). This is relevant to the timer function of MASTL that is proposed here.

      The kinetics of MASTL upregulation is generally consistent among all cell lines. As suggested, quantification of immunoblots is provided (Fig. 1, supplemental 1E); additional quantification of IF signals is also included (Fig. 2, supplemental 1 A-C).

      The experiment executed with caffeine (page 5) should be repeated with more selective/potent ATM/ATR inhibitors that are commercially available.

      Specific ATM inhibitor was used to confirm the caffeine result in Fig. 7 supplemental 1B&C.

      "a potential binding pattern" (page 6) should be "a potential binding partner"

      We have made the correction as pointed out by the reviewer.

      Reviewer #2 (Recommendations For The Authors):

      1) All western blots require size markers. The FACS blots shown do not have any axis labels.

      We have included size markers for blots, at the first appearance of each antibody. Labels are added for FACS blots.

      2) The quantification of mitotic cells does not indicate how many cells were counted and if this was done by eye or using software.

      The missing experimental information is included in the figure legends, as suggested.

      3) The western blots demonstrating ubiquitylation of Greatwall (Figure 4D) are of very poor quality and impossible to interpret.

      The ubiquitination of MASTL did not show clear ladders, possibly due to its relative protein size.

      Reviewer #3 (Recommendations For The Authors):

      Specific suggestions to improve the manuscript:

      1) Include literature regarding known mediators of DNA damage checkpoint recovery, including MASTL/Greatwall and PP2A, in the manuscript and discuss the observations from this manuscript in relationship with the literature.

      Related literatures are included in the discussion.

      2) The increase in MASTL protein levels upon DNA damage are not always clear, for example Fig. 1A. The same for MASTL stability after DNA damage, such as in Fig. 2C. Quantification of the westerns would help demonstrating a significant effect.

      As suggested by the reviewer, we have included quantification of fluorescent measurements (Fig. 2, supplemental 1 A-C). Quantification of immunoblots for MASTL upregulation was also added in Fig. 1, supplemental 1E.

      3) The E6AP-MASTL in vitro interaction studies shown in Fig. 3 raise doubts. First, beads only are used as negative control, whereas MBP only-beads are a better control. The westerns in top panels of 3B (MASTL), 3C (GST-MASTL) and 3D (MASTL) should be improved. In addition, in Fig. 3C, different GSTMASTL fragments are used in an MBP-E6AP pull down, but the GST-MASTL input does not show any specific band to demonstrate that these fragments are correct. The same for the GFP-E6AP fragments in Fig. 3 Suppl. 1C The input does not show any proteins, there is no N fragment present in the IP and the size of the fragment N3 in the IP GFP does not seem correct.

      Altogether, it makes me doubt that the interaction between E6AP and MASTL is direct. Better data with appropriate controls should show whether the interaction is direct or mediated via another protein.

      Purified proteins used for the in vitro interaction had significant degradation, causing many bands in the input. We included a lighter exposure of the input here as Author response image 1. MBP alone did not bind MASTL, as both M and C segments of MASTL were MBP-tagged, and did not pull down MASTL. We agree with the reviewer that our direct interaction data showed rather weak MASTL/E6AP interaction, suggesting the interaction is dynamic or possibly mediated by additional binding proteins. We have included this statement in the revised manuscript “Taken together, our data characterized MASTL-E6AP association which was likely mediated via direct protein interaction, although the potential involvement of additional binding partners was not excluded”.

      Author response image 1.

      4) Fig. 4B. Overexpression of HA-E6AP results in a decrease in MASTL protein levels. Can this effect be rescued by treatment with proteasome inhibitor MG132?

      As expected, MG132 stabilized MASTL, with or without E6AP overexpression. We have added this new data in Fig. 4, supplemental 1B.

      5) Fig. 4G. MASTL interacts with HA-ubiquitin in WT, but not E6AP KO cells. These cells are treated with MG132, so if E6AP really ubiquitinates MASTL, I would expect MASTL to be polyubiquitinated. However, the "interaction signal" does not show polyubiquitination. In fact, this band actually runs lower than MASTL in input samples, which even could be an artifact. Please explain.

      The ubiquitination of MASTL did not show clear ladders, possibly due to its relative protein size. As the reviewer noted, the band position in the HA-Ub IP lanes seemed slightly shifted, compared to the input. We have noticed in many experiments that bands in the IP lanes did not perfectly align with the input lanes.

      6) The DNA damage recovery experiments measuring mitotic index after washing off etoposide (Fig. 5A and Fig. 8A): What are the time points taken? And importantly, why are there no error bars on these intermediate time points, but only on the 4 hour time point?

      As suggested, time point information and additional error bars are included.

      7) Fig. 5E. According to the authors, depletion of MASTL rescues the effect of KO of E6AP. However, no increase in pATM/ATR substrate signal is seen upon etoposide treatment in these samples so I am not convinced this experiment demonstrates a rescue.

      The rescue was evident, especially for many high molecular weight bands which were more effectively detected by this phospho-specific antibody.

      8) Fig. 5C and 8D strongly suggest that E6AP is involved in checkpoint activation. How do these data relate to DNA damage recovery? Is the recovery in E6AP KO cells faster as a consequence of reduced checkpoint signaling or is the recovery effect really specific by stabilization of MASTL? These data should be explained, also taken the data from Wong et al. (Sci. Rep. 2016) into account, that demonstrate that G2 checkpoint activation is independent of MASTL.

      The expression level of MASTL is not upregulated during the activation stage of the DNA damage checkpoint (unless E6AP is depleted). DNA damage signaling, via ATM-dependent E6AP phosphorylation, caused MASTL accumulation over time. This ultimately shifts the balance toward checkpoint recovery and cell cycle re-entry. As such, the role of MASTL (and E6AP-depletion) in suppressing DNA damage checkpoint is in harmony with the proposed role of MASTL upregulation in promoting checkpoint recovery. We have made additional clarifications about this point in the revised manuscript.

      9) The model presented in Fig. 9 is puzzling because there does not seem to be a difference between phosphorylation of E6AP and the interaction with MASTL on early versus late times after DNA damage. And this exactly is what is missing in the manuscript: A more detailed evaluation of the timing of E6APSer218 phosphorylation and the E6AP-MASTL interaction in response to DNA damage.

      More clarification is given to explain this model in the figure legend of Fig. 9.<br /> Time point analyses were provided for DNA damage-induced RPA phosphorylation and ATM/ATR substrate phosphorylation (Fig. 1). These data showed MASTL accumulation in the presence of active DNA damage checkpoint signaling. To further strengthen this point, we have included quantification of fluorescent measurements (Fig. 2, supplemental 1 A-C). IF data showed MASTL upregulation in correlation with ATM/ATR activation. Time point information was also added for Ser-218 phosphorylation and MASTL-ENSA dissociation which were observed in early stages of the DNA damage response (1 hr, or 2-4 hr).

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Membrane receptor guanylyl cyclases are important for many physiological processes but their structures in full-length and their mechanism are poorly understood. Caveney et al. determined the cryo-EM structure of a highly engineered GC-C in a complex with endogenous HSP90 and CDC37. The structural work is solid and the structural information will be useful for the membrane receptor guanylyl cyclases field and the HSP90 field. However, a detailed characterization of the protein sample is lacking. Moreover, the physiological significance of this structure is not fully exploited by supporting experiments and the mechanistic insight is currently limited.

      We thank Reviewer #1 for constructive reviews and agree that this work forms the basis for future exploration by the guanylyl cyclase and HSP90 fields.

      1) The characterization of the protein sample is lacking. SDS-PAGE would be useful to identify potential proteolysis, leading to the dissociation of GC dimer. Further size-exclusion chromatography would be helpful to estimate the molecular weight of the complex and to determine if only GC-C monomer is purified.

      We have included a representative SDS-PAGE gel in our revised version of the manuscript (Figure 1—figure supplement 1). While we agree that SEC could be beneficial to further explore the stoichiometry of the imaged sample, we see no significant degradation of the guanylyl cyclase via SDS-PAGE, and therefore believe that the zippered construct would remain dimeric. Relatively poor yields of these samples precluded further exploration in this regard.

      2) The orientation distribution of the particles is not homogenous in Fig. S1D. It would be helpful to present the 3DFSC curve to evaluate the effect of preferred orientation on the reconstruction.

      While the orientational distribution is not perfectly uniform, the provided angles allowed for sufficient reconstruction of maps with no notable anisotropy. We have included 3DFSC curves in our revised version of Figure 1—figure supplement 1.

      3) Description of protein expression details is lacking. Did the author use transient transfection, stable cell line or virus-mediated transduction?

      We have clarified that these cells were expressed using transiently transfected ExpiCHO cells.

      4) HSP90 binds ATP and is often co-purified with endogenous ATP/ADP. Is there ATP or ADP present in the sample/cryo-EM maps? Is the conformation of NBD similar to ATP-bound HSP90? The author needs to include the description/figures about the nucleotide state of HSP90.

      There is clear density for present nucleotide in our reconstruction. Given the mechanistic role for ATP turnover in the release of HSP90 client (Young, Hartl, 2000 – PMID 11060043) and the resolved density, we believe the identity for this nucleotide is ATP. We have added comment to this regard in the revised manuscript: “…the C2 pseudosymmetric, ATP bound, closed state Hsp90 dimer.”

      5) The catalytic domains of GC have to be dimerized to perform cyclase function. The presence of only one GC-PK monomer in the cryo-EM structure indicates the structure does not represent an active state of GC. These results suggest the GC expressed in this way is not functional. The authors need to explain why most of the GC protein is trapped in this inactive form.

      Indeed, we do believe that this regulatory state is non-functional, as observed for active kinases. We have clarified this in the revised manuscript: “In addition, this disruption of the native state of GC-C, as observed in our structure, would likely leave GC domains out of each other’s proximity, precluding their catalytic activity while Hsp90 is bound.”

      6) The GC-C construct used here is a highly engineered "artificial" construct, which has not been fully characterized in this work. Does this construct have similar activity as the activated wt GC-C? Does the protein (this engineered construct) expressed in CHO cells show activity?

      While our original goal in developing this construct was to create an imageable construct that was locked in the active state, our current interpretation of the data is that the leucine-zipper induced, putative active geometry leads to the majority of this construct falling into the regulatory state with HSP90 binding. We make no claim to have resolved an active conformation in this work, yet believe that this state is of note due to the previously unresolved nature of these regulatory complexes for guanylyl cyclase receptors.

      7) Are the residues on the interface between GC and HSP conserved in other members of membrane receptor guanylyl cyclases? Would mutations on this interface affect the activity of GC?

      Given the role this structure plays in our understanding that HSP90 client recruitment is largely not driven by specific residue interactions and the ~30% identity of GC-C to NPR-A and NPR-B, we do not believe that mutations that do not significantly change the stability or fold of the PK domain would significantly modify recruitment to HSP.

      8) The authors propose that targeting HSP90 would tune the activity of GC. Is there any experimental data supporting this idea?

      Based on the work of Kumar et al., 2001 (PMID 11152473), we do believe that there is a functional link between HSP90 recruitment and GC activity. We hope that this work will spark further exploration of these concepts.

      9) The model in Fig. S3 is largely speculative due to the lack of supporting functional data. In addition, it would be better to change the title to "structure of the protein kinase domain of guanylyl cyclase receptor in complex with HSP90 and cdc37" because the mechanistic insight is limited.

      We agree that our supplemental figure is more speculative. We have referenced this in the discussion section of the manuscript and put this figure in the supplement to ensure that this is understood to be more speculative in nature.

      Reviewer #2 (Public Review):

      Caveney et al have overexpressed an engineered construct of the human membrane receptor guanyl cyclase GC-C in hamster cells and co-purified it with the endogenous HSP90 and CDC37. They have then determined the structure of the resultant complex by single particle cryoEM reconstruction at sufficient resolution to dock existing structures of HSP90 and CDC37, plus an AlphaFold model of the pseudo-kinase domain of the guanylyl cyclase. The novelty of the work stems from the observation that the pseudo-kinase domain of GC-C associates with CDC37 and HSP90 similarly to how the bona fide protein kinases CDK4, CRAF and BRAF have been previously shown to interact.

      The experimentation is limited to the cryoEM analysis, and is lacking additional studies that would give deeper insight into the oligomeric nature - if any - of the GC-C when bound to HSP90-CDC37 as compared to the free protein. This is relevant, as the dimerization domain downstream of the pseudokinase, is evident in the maps - albeit not well resolved - and it is not clear whether it is still able to mediate dimerization with a second free or HSP90-CDC37bound GC-C. It would also be good to see some experimentation that asks whether association with HSP90-CDC37 inhibits the guanyl cyclase activity. It is clear from previous work that HSP90-CDC37 silence the kinase activity of their bound client kinases, but in this case the catalytic guanyl cyclase is not directly associated with the chaperone complex and may still be able to function.

      Given the geometry of the interaction, the dimerization domain of the GC would likely be monomerized, albeit with global dimerization remaining – contributed by the ECD, or in our case the liganded-ECD mimicking leucine zipper. Experimentally, it has been shown in live cells (Kumar et al., 2001, PMID 11152473) that the HSP90 association is required for maximal GC-A function. This is likely due to some sort of resetting nature to the associating to allow further activity, as opposed to activity during the association – given the latter is unlikely based on our structure, where the two GC domains would not be able to form the active dimerized state. Further dissection of this, while outside the scope of the current work, is of great interest.

      Although the sequence alignment presented in SuppFig 2 shows that GC-C conserves the classic DFG motif that plays a critical role in the regulation of most kinases, the numbering of the sequence is absent, making it very difficult to relate this to the structural detail shown in Fig 2B. This needs to be clarified, as the interaction of CDC37-Trp31 with the DFG motifs and downstream activation loops in CRAF and BRAF have been proposed as important features of the selectivity of these kinases for the HSP90-CDC37 system, and it would be good to be able to see clearly how much of this is also conserved in the GC-C pseudokinase domain interaction. For example, is the much shorter activation segment (DFG -> APE) ordered in the complex or disordered?

      We have clarified Figure 2—figure supplement 1 with additional numbering. While we agree that the DFG motif may play a role in recognition, only the first residue of this motif is interacting with CDC37 in our structure, so it may be likely that the role of this motif is more structural in maintaining a CDC37 complementary fold, as opposed to direct residue interactions. Additionally, many kinases which are not regulated by CDC37/HSP90 contain this motif. The shorter DFGAPE of GC-C is traceable with the exception of N613, S614, I615, though the density in this region reflects this loop not being well stabilized.

      It was not easy to follow what was in the sample used for cryoEM. The cloning of the guanylyl cyclase (GC) component is described in the methods and they have shown some illustrations in fig 1 but a proper numbered figure of the domain organisation clearly showing domain boundaries and linker segments is really needed for a reader not familiar with the structure of GCs, especially since they have replaced the ECD with a leucine zipper in their construct. It is important to show a domain figure of what this construct looks like as well, as from the illustrations in fig 1 for examples its hard to see what's PK, DD, GC domains. It would also be helpful to see in the supplementary a gel of complex they put on the grids, to make it clearer what exactly the sample is and to reassure that the GC-C domains that are not resolved in the cryoEM are nonetheless present in the sample.

      We have added in a gel figure to the supplement and clarified the content of the imaged construct in the methods section: “This construct contains all domains of the native GC-C, with the exception of the ECD.”

      Overall there is only minimal proposal of mechanism or biological function based on the structure. The speculation in the Discussion of two fates - PP5 dephosphorylation or E3 ligase recruitment, is not supported by any experimentation, which is reasonable for speculation, but is also not underpinned by reference to any previously published work suggesting that these additional processes may be important. In the absence of any work by the authors can they put these speculations more in context with previously published work that supports the importance of these processes specifically for GC regulation?

      We have ensured that these potential pathways only appear in the discussion section. It has been observed, for instance by Oberoi et al., 2022 that phosphatases can act on all components of a HSP90–CDC37–client system. Given there are well characterized phosphorylation sites for membrane GC receptors, we believe this is worth discussing in this manuscript, to stimulate further exploration of these mechanisms in the field. In addition, it has been reported that many E3 ligases are recruited to HSP90 complexes and can degrade rather non-specifically. It has been shown that one can generate PROTAC-like molecules to target non-specific clients to HSP90–E3 ligase machinery for degradation (Li et al., 2023). Given this proximity induced nature to E3 degradation of HSP90 clients, it would be highly likely that, at least in some cases, mGCs would be degraded by this mechanism as well.

      Reviewer #3 (Public Review):

      A detailed understanding of how membrane receptor guanylyl cyclases (mGC) are regulated has been hampered by the absence of structural information on the cytoplasmic regions of these signaling proteins. The study by Caveney et al. reports the 3.9Å cryo-EM structure of the human mGC cyclase, GC-C, bound to the Hsp90-Cdc37 chaperone complex. This structure represents a first view of the intracellular functional domains of any mGC and answers without doubt that Hsp90-Cdc37 recognizes mGCs via their pseudokinase (PK) domain. This is the primary breakthrough of this study. Additionally, the new structural data reveals that the manner in which Hsp90-Cdc37 recognizes the GC-C PK domain C-lobe is akin to how kinase domains of soluble kinases docks to the chaperone complex. This is the second major finding of this study, which provides a concrete framework to understand, more broadly, how Hsp90-Cdc37 recruits a large number of other diverse client proteins containing kinase or pseudokinase domains. Finally, the Hsp90-Cdc37-GC-C structure offer clues as to how GC-C may be regulated by phosphorylation and/or ubiquitinylation by serving as a platform for recruitment of PP5 and/or E3 ligases.

      Comments:

      1) The authors used an interesting approach to obtain the GC-C-Hsp90-Cdc37 complex. Flagtagged human GC-C was overexpressed in CHO cells with the expectation of co-purifying endogenous hamster homologs of Hsp90 and Cdc37. There are several points worth noting:

      a) It is not clear from the data presented (Figure 1C, Suppl Fig 1A) or the Methods the percentage of particles in the cryo-EM specimen that represent the GC-C-Hsp90-Cdc37 complex. Presumably, some fraction of GC-C isolated will not be associated with Hsp90Cdc37. If a very large portion of GC-C is associated with Hsp90-Cdc37, it would be good to explain why this is to be expected. Are 2D/3D classes corresponding to the activated GC-C dimer found? If not, why?

      While we see some traces of GC-C not bound by Hsp90, there is, in the least, a significant alignment bias for the Hsp90 bound complex. We believe that the engineered construct, which we designed to be locked in a putative active conformation, is going through catalytic cycles to some point where the regulatory mechanism is kicking in. It may be that for proper resetting of the receptor, the receptor needs to cycle back through an unliganded, inactive conformation, which our leucine zipper construct is unable to allow, thus locking our GC in the regulatory complex, though this is speculation.

      b) Figure 1A suggests that GC-C is phosphorylated before recruitment of Hsp90-Cdc37. What is the phosphorylation status of the GC-C specimen that was imaged by cryo-EM?

      We had placed the P in grey in this figure to represent the potential for the active state to be phosphorylated. For GC-C in particular, the phosphorylation state does not affect activity as much as GC-A and GC-B for example. We have removed this P from the figure for clarity.

      c) The resolution of the cryo-EM map (3.9 Å) is too low for unambiguous identification of proteins. Please provide more precise justification for the claim that the densities observed do in fact correspond to hamster Hsp90 and Cdc37.

      While we agree that the resolution is limiting for protein identification, the fact that we are using a very stringent FLAG purification allows confidence in the ID for our target, GC-C. For Hsp90 and Cdc37, we are confident that they are endogenous hamster Hsp90 and Cdc37, given the large structural similarity observed in comparison to prior Hsp90/Cdc37/client complex structures, and the ID/register well confirmed by the placement of bulky residues.

      d) The authors state that human GC-C pulls down hamster Hsp90-cdc37 but soluble kinases cannot, despite the high sequence identity between human and hamster Hsp90-cdc37. Is this because GC-C recognition is more promiscuous? Can this difference be understood in light of the new structural information presented?

      “This native pulldown strategy contrasts with the structures of Hsp90–Cdc37 in complex with soluble kinases (García-Alonso et al., 2022; Oberoi et al., 2022; Verba et al., 2016), for which Hsp90 and Cdc37 had to be overexpressed to obtain complex suitable for imaging.”

      It is our understanding, from reading the papers cited above, that Hsp90/Cdc37 needed to be overexpressed to obtain these samples for imaging. We use a different strategy because our sample does not require overexpression of Hsp90 and Cdc37. This may be because of something specific to hamster cells, which were (presumably) not tested in the above studies, or it could be something specific to do with GC-C.

      2) A large portion of the enforced GC-C dimer was not visible in the cryo-EM maps. It is not easy to learn from Figure 1 exactly which parts of the GC-C construct was sufficiently ordered and observed structurally. Please improve Figure 1.

      We have adjusted Figure 1 to better depict what is observed in the cryoEM density.

      3) On page 4, the authors claim that they are able to orient the GC-C-Hsp90-Cdc37 complex "as it would sit on a membrane" and referred to Figure 1B. It is not clear what is implied here. Does Hsp90-Cdc37 binding constrain the complex to face the inner leaflet of the membrane in a specific orientation as shown in Figure 1B? If true, this could potentially have important functional implications. Please illustrate how this was deduced based on the information available.

      Given the observed density for the PK domain, which is membrane proximal, we can safely assume that the TM would be located immediately above this region. Given the size of Hsp90 and assuming the soluble Hsp90 must sit below the membrane, we can determine, with some accuracy the relative orientation of this complex next to the membrane. This orientation is depicted in Figure 1B.

      4) Also on page 4, it is stated that it is sterically unlikely an additional Hsp90-Cdc37 complex is associated with the other copy of GC-C in the leucine zippered dimer. It is not obvious to the reader how this may be the case. An additional figure could help make this more clear. Additional biochemical evidence will also help. The absence of GC-C-Hsp90-Cdc37 dimers in cryo-EM micrographs can also support the argument.

      We have clarified this: “is sterically unlikely that an additional regulatory complex is forming on the second GC-C in a concurrent fashion, given the large size of the first Hsp90–Cdc37 and the requisite proximity of the second GC-C.”

      5) Some comments on Figure 2:

      a) NTD and CTD are mislabeled in Figure 2A.

      Thank you for catching this, we have fixed this.

      b) The authors should show cryo-EM density to support their modeling of GC-C in Figures 2B and C.

      We have provided maps and models to the reviewer and will release these maps and models upon publication so that all relevant densities can be interpreted to their fullest extent by readers. In addition, we have added representative density panels to Figure 1-figure supplement 2.

      6) The authors claim that Hsp90-Cdc37 clients are more similar structurally near the cdc37 interface. Please illustrate this with additional figures. Suppl. Figure 2 is inadequate for this purpose.

      We have added a structural overlay to Figure 2—figure supplement 1A to illustrate this.

      The authors can also consider adding a more detailed discussion comparing the interactions between the pseudokinase/kinase C-lobe and Cdc37 in known structures. Is shape/charge complementarity a universal feature of cdc37-dependent kinase/pseudokinase recruitment? It would be interesting to also consider if it would be possible to predict which of the ~60 human pseudokinases are possible Hsp90-Cdc37 clients. New structural findings from this study and publicly available AI-predicted protein structures could help.

      While the use of AI to predict pseudokinase interactions would indeed be interesting, we believe this is outside the scope of this work. Given methodology is in place for determination of kinase clients for Hsp90 (Taipale et al., 2012), this could be an additional route to obtain this information in future work.

      Reviewer #2 (Recommendations For The Authors):

      In Figure 1B the authors show a large unaccounted-for region of density which they speculate may be due to the dimerization domain. That this is lost in the sharpened maps suggests that it is more mobile than the core which probably dominates the automatic mask generation used by cryoSPARC. It would be very interesting to try and resolve this region further by using focussed classification and refinement - probably in RELION. This would add further novelty, as so far in the three HSP90-CDC37 kinase complexes previously described, little is seen outside the C-terminal lobe of the kinase (or in this case pseudokinase) lobe.

      Given the structurally uncharacterized nature of the DD and GC domains for mGCs, using computational means to further our understanding of these regions was attempted. Across several software packages, these attempts were unsuccessful. We will be uploading these micrographs to EMPIAR shortly after publication, which will allow for other groups to re-process this data as they see fit and as new software techniques emerge in this rapidly developing field. We believe that the partially unfolded nature of the PK domain is providing too much of a hinge point prior to the DD for the software to be able to resolve this currently.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer # 1

      Specific comments

      1) Figure 1: it is unclear how many mice were used for the described phenotypic analyses (panels D and E). Please clarify.

      We acknowledge that we made a mistake in failing to clearly describe the phenotypic analyses. In Figure 1D and E, we performed statistical analysis on the number of TEBs in whole mammary mounts. One mouse stained a mammary whole mount with Carmine-alum staining. Thus, “n” represents the 10 mice we analyzed. We have modified the legend of Figure 1 to " D, E. Quantification of the average number of TEBs and bifurcated TEBs in littermate Crb3fl/fl (n=10) and Crb3fl/fl;MMTV-Cre (n=10) mice at 8 weeks old" in lines 909-911.

      2) Figure 2: in panels B and C it is unclear how the data was quantified; the legend states "n=10", does this mean the experiment in B was done 10 times? And that 10 acini per condition were measured in panel C? In panel D a difference in 0.3% between NC and shCRB3 seems miniscule; do the authors mean 30% instead? And how many acini were counted per condition per (how many) experiments? Same applies to panels G and H, it is unclear how many cells were analyzed per (how many) experiments.

      Thanks for your suggestions. We failed to describe the details of the statistical analysis well in the experimental method. To provide a brief overview of our statistical analysis method, we took 3-4 random bright-field micrographs of each well in the chamber slide system and repeated the experiment three times. We then counted the number of acini in all micrographs (Figure 2B) and examined the diameter of all acini in each photograph, averaging the values as data (Figure 2C). We also determined the percentage of aberrant acini in each photograph, which was used as an analysis value (Figure 2D). We carefully confirmed that the vertical axis of Figure 3D was indeed mislabeled and should mean 30%, and revised the original figure. For IF analysis of the mitotic spindle orientation during lumen formation, we examined the division angle of one cell in one acinus that was mitotically dividing, 3-4 acini were randomly examined in each well in the chamber slide system, and this experiment was repeated three times (Figure 2G and H). Therefore, we have provided a detailed description of these issues in the Figure 2 legend. The revised parts are found in lines 922-924, lines 926-927, lines 929-930, and line 932.

      3) Figure 2: it would be desirable if authors were able to quantify the data in panels E and I.

      Thank you for your comments. According to your suggestions, we performed the quantitative analysis of Figure 2E and I, which is now presented in the new Figure 2D and H.

      4) For all cell-based assays using shRNA to knock down CRB3 (Fig. 2A-H; Fig. 3A-F; Fig. 4C-E; Fig. 5G-J; Fig. 6C; Fig. 7C, D; Fig. 8E-G), it would be desirable to perform rescue experiments to ensure that the observed phenotype of CRB3 depleted cells is specific and not due to off-target effects of the shRNA.

      Yes, rescue experiments involving overexpression of CRB3 in CRB3 depleted cells can accurately account for the specific phenotype as well as eliminate the off-target effects of shRNA. However, our group has long focused on the role of the cell polarity protein CRB3 in contact inhibition and tumorigenesis. Our previous studies have ruled out the off-target effects of shRNA and reported that CRB3 regulates contact inhibition and tumorigenesis through Hippo or Wnt signaling pathways (Cell Death Dis 2017;8(1):e2546, Oncogenesis 2017;6(4):e322, J Cell Mol Med 2018;22(7):3423-33). Therefore, we will pay close attention to rescue experiments to ensure experimental integrity and phenotypic specificity in our subsequent studies.

      5) Figure 3: how many cells were counted/measured per condition (in how many experiments) in panels B, D, H, F, G and H? In panels C and D, what is the CRB3 protein level in these cells? This is of relevance as protein overexpression per se could impinge on ciliation frequency. This question could be addressed by performing a western blot analysis with CRB3 antibody.

      We did not clearly describe the measurement and statistical analysis methods in the previous manuscript. Similarly, we took 3-4 random IF and SEM micrographs of each sample in one experiment, and this experiment was repeated three times. Subsequently, the number of ciliated cells and total cells were counted, and the proportion of ciliated cells was calculated (Figure 3B, D and F). In these figures, the cilium length of representative ciliated cells was measured in each photograph. In the knockout mouse model, we needed to find the intact mammary ductal lumen and renal tubule in IF staining of mouse mammary and renal tissue sections, with 5-6 random fields micrographs taken per slice, and the proportion of ciliated cell was measured by counting and taking the average. A total of ten mice were repeated in these experiments (Figure 3G and H). Therefore, the legend of Figure 3G and H has been partially modified and a detailed description has been added to the Figure 3 legend. The revised parts are in lines 945-946, lines 950-951, line 953.

      Thank you for your suggestions that we perform a western blot analysis with CRB3 antibody in Figure 3C and D. And we have added the western blotting with CRB3 analysis in the new Supplementary Figure 3A.

      6) Figure 3G: it is very difficult to see that the red stained structures are primary cilia.

      Yes, the staining structure of primary cilia in mammary ductal lumen are less clear than that of individual cells and in renal tubule in Figure 3G. We used recognized acetylated tubulin and γ-tubulin to stain the primary cilia, which were clearly labeled in individual cells. However, the labeled primary cilia in renal tubule were longer length and demonstrated a more pronounced structure than those in the mammary ductal lumen. In the mammary ductal lumen of the 10 mice we analyzed, the primary cilia showed shorter length and staining structure than the others shown in Figure 3G. This difference may be due to the distinct characteristics of primary cilia in different tissues.

      7) Figure 4B: how many cells were analyzed in how many experiments?

      Our statistical methods for analyzing cellular experiments using IF were essentially the same. We randomly selected 3-4 IF micrographs of each sample in one experiment, and this experiment was repeated three times. Subsequently, the number of colocalization cells and total cells were counted, and the proportion of cells with pericentrin and CRB3 colocalization was calculated (Figure 4B). The detailed description has been added to the Figure 4 legend. The revised part is in lines 962-963.

      8) Lines 217-219: since the cells were not stained with a cilia marker, only a centrosome marker, the claim that CRB3 localizes to the base of cilia is unsubstantiated.

      Thank you for your comments. The base of cilia is the basal body, which develops from the mother centriole of the centrosome (Cancer Res. 2006;66(13): 6463-7). Firstly, we found colocalization of CRB3 and pericentrin, a centrosome marker, in MCF10A cells (Figure 4A and B). Secondly, we verified the colocalization of CRB3 with γ-tubulin, a marker of basal body in primary cilia, in confluent quiescence cells (Figure 4C and D). In addition, we found that CRB3 was localized at the base of primary cilia labeled with acetylated tubulin (Figure 4E and F). Due to the species of commercialized CRB3 antibody, we were able to indirectly claim that CRB3 localizes to the base of cilia through these experiments.

      9) Figure 3 and Figure 4: is it problematic to use gamma tubulin as centrosome marker if CRB3 depletion causes reduced centrosomal recruitment of gamma tubulin ring complex components? Also, in Figure S3A no gamma tubulin staining can be seen in the lower panel, why?

      Thank you for your positive comments. As is well known, γ-tubulin is a marker of the centrosome, and we found that CRB3 depletion causes reduced centrosomal recruitment of gamma tubulin ring complex components. However, Our Figure 3 was illustrated the effect of CRB3 on ciliary assembly, and Figure 4 was analyzed the localization of CRB3 in primary cilia. In some reports on ciliary assembly, the fluorescent double staining of acetylated tubulin and γ-tubulin have been used to label primary cilia, and the effect of target genes on ciliary number and assembly were analyzed by these markers (Nature. 2013;502(7470): 254-7, Cell. 2007;130(4): 678-90 and so on). Although CRB3 affects the recruitment of gamma tubulin ring complex components, it does not affect the analysis of ciliary number and localization in Figures 3 and 4.

      In Figure S3A, green staining labeled with γ-tubulin could be clearly found in the lower left panel. The representative area from the left amplification may have been poorly selected, resulting in no γ-tubulin staining on the right side. We have updated the lower right panel in the new Supplementary Figure 3B.

      10) Figure S4A: the grouping of indicated proteins is factually wrong. For example, FBF1, SCLT1 and ODF2 are not IFT-B components, and several of the proteins indicated as localizing to the basal body also localize to (unciliated) centrioles. In contrast, CP110 is usually only found on unciliated centrioles and not mature basal bodies. Authors should consult the relevant literature and correct the figure accordingly. Alternatively, this misleading text/grouping could be removed from the figure. Furthermore, in the legend to Figure S4 there is no information provided about this quantitative analysis (how many independent experiments, which cells were analyzed etc.).

      Thank you for your helpful suggestions. We have taken your advice and removed this misleading information from the manuscript, Supplementary Figure 4A and its corresponding legend. In the legend to Supplementary Figure 4A, we have added the detailed information for this quantitative analysis in the legend. The revised legend is shown in lines 1098-1100.

      11) Figure S4B: how do authors know which of the bands correspond to CRB3 fusion protein?

      Based on the construction strategy of the CRB3-GFP fusion protein (Figure 6D) and its base sequence, we were able to calculate its molecular weight. Then the molecular weight of CRB3-GFP fusion protein was verified by western blotting (Figure 6F and 7A). Meanwhile, exogenous overexpression allowed for the production of the CRB3-GFP fusion protein in large quantities. Due to these features, we could know that the band indicated by the black arrow is most likely CRB3-GFP fusion proteins. In order to check the molecular weight, we have labeled the key molecular weight markers in the new Supplementary Figure 4B.

      12) Lines 251-253: this seems like data overinterpretation.

      Thank you for your comments. We have revised this sentence in lines 252-254.

      13) Lines 260-261: the data showing perturbed gamma tubulin localization is not convincing as data was not quantified.

      According to your suggestions, we performed the quantitative analysis of Figure 4C, which is now presented in the new Figure 4E.

      14) Figure 5H and Figure 6C: to show that the GCP6 IP actually worked, these blots should be probed also for GCP6.

      Thank you for your good suggestions. We have added these blots probed for GCP6 in new Figure 5H and 6C.

      15) Figure 5I: how many cells were analyzed in how many experiments?

      Our statistical methods for analyzing cellular experiments using IF were essentially the same. We took 3-4 random IF micrographs of each sample in one experiment, and this experiment was repeated three times. The detailed description has been added to the Figure 5 legend. The revised part is in lines 992-994.

      16) Figure S5: it looks like GPC6 and Rab11 are localizing all over the cell, are the antibodies used for the IFMs specific for these proteins?

      After checking the specificity of these antibodies used for the IFMs, we have decided to delete the corresponding results in the Supplementary Figure 5 and their description in the original manuscript.

      17) Lines 43, 89, and 314-315: the claim that CRB3 directly binds Rab11 is not supported by the data. The data provided only shows that these proteins interact indirectly. To show direct interaction, yeast-2-hybrid analysis or pull-down assays with purified proteins would be required.

      Thank you for your positive comments. Since we were unable to complete the relevant experiments to demonstrate direct interaction of two proteins, we have revised our conclusions. Replace " CRB3 directly binds Rab11" with " CRB3 binds Rab11" in the manuscript.

      18) Figure 6G and lines 314-315: this result is surprising as it indicates GTP- and GDP-locked versions of Rab11 have the same inhibitory effect on CRB3 binding? Please comment, and also indicate how data in Figure 6G was quantified (and how many independent experiments were used for the quantification).

      We were also puzzled by the results shown in Figure 6G. Based on the western blotting bands, we suspected that there may have been some issues with the experiment. Specifically, we believed that the inefficient transfection of Flag-Rab11aWT, Flag-Rab11a[Q70L], Flag-Rab11a[S20V], and Flag-Rab11a[S25N] plasmids, as well as the insufficient amount of GFP antibody used in the co-IP experiment, led to the corresponding bands being too weak and masking the true differences.

      To address this, we optimized the experimental conditions, strictly increased the experimental control, and repeated the experiment in triplicate. The new results are shown in the revised Figure 6G. The statistics from the three independent experiments revealed that CRB3b had a stronger interaction with Rab11a[Q70L] and Rab11a[S20V], while showing a weaker interaction with Rab11a[S25N], compared to Rab11aWT. As this result, we revised the original manuscript in lines 308-310 and added a detailed description to the Figure 6 legend in lines 1012-1013.

      19) Figure 8G: data needs to be quantified.

      Thank you for your comments. We replaced the unattractive bands in the western blotting of Figure 8G with better quality ones. The statistical analysis of the Figure 8G data is shown in Supplementary Figure 6.

      Further minor comments

      1) Abstract should indicate that this study describes conditional knockout of Crb3 in mouse mammary gland epithelial cells.

      This is good writing advice. We have added the relevant description in lines 40-42.

      2) Line 87: specify which gland (mammary?).

      We have modified to " mammary gland" in line 87.

      3) Line 140: sentence states that knockout of Crb3 is essential for branching morphogenesis in mammary gland development, I do not think this is correct.

      We have removed the inappropriate finding.

      4) Line 152: "formed more number" should be "formed more" or "formed higher number of".

      We modified "formed more number" to "formed more" in line 154.

      5) Lines 157-163: text and logic are difficult to follow for a non-expert.

      We have modified the logic of this paragraph, as detailed in lines 158-165.

      6) Figure 4A, C: figure resolution could be improved. It is difficult to see what the authors claim these figures are showing.

      The clarity of the original images in Figure 4A and C is acceptable, while the images on the right are electronically enlarged. Although there is a decrease in pixels, it can still display our findings.

      7) Figure 7D, E: images look pixelated.

      The clarity of the original images in Figure 7D and E is acceptable using a laser confocal microscope, while the images on the right are electronically enlarged.

      8) Line 222: unclear what authors mean by "detected a series".

      We modified "detected a series" to "some important" in line 226.

      9) Lines 221-225: which cells were used for the analysis in Fig. S4?

      We used MCF10A cells for the analysis in Supplementary Figure 4, and modified its legend in line 1098.

      10) Line 245: what is "cytomembrane"?

      We modified "cytomembrane" to "cell membrane" in lines 246-247.

      11) Lines 246-250: wording is unclear/difficult to understand.

      We have modified this paragraph, as detailed in lines 248-251.

      12) Line 273: should "regimented" be "sedimented"?

      We modified "regimented" to "sedimented" in line 274.

      13) Line 287-288: sentence does not make sense.

      We have removed this sentence.

      14) Figure 5A: it would be desirable to show the original dataset (Excel file) used for generating this figure.

      To maintain data integrity, we should provide the original dataset (Excel file). However, there are some unpublished data in this file that we must withhold for the time being. If needed, the corresponding author can be requested to provide the file.

      15) Lines 298-299: wording is unclear.

      We have modified this sentence, as detailed in lines 296-298.

      16) Lines 285-287: replace "instead of" with "but not".

      We modified "instead of" to "but not" in line 286.

      17) For all IFMs showing merged images of the green and red channel, please also show the red and green channel separately.

      Most of our fluorescence images are presented separately for each channel in this manuscript, with only a few merged images due to space limitations. This type of presentation is commonly used in published papers.

      18) Lines 326 and 327: replace "bonded" with "bound".

      We have modified in lines 322-323.

      19) Lines 327-328 and 361-364: wording is unclear/grammatically incorrect.

      We have modified these paragraphs, as detailed in line 323 and lines 357-360.

      20) Line 342: what is meant by "the combination of"?

      We modified "the combination of" to "the binding of" in line 338.

      21) Line 365: localization of what?

      This means "subcellular localization" in lines 360-361.  

      Reviewer # 2

      Major points

      1) CRB3 is present in mammals as 2 isoforms, A and B, originating from alternative splicing. In this study, the authors never mention this fact and when using approaches to KO or KD CRB3A/B they are likely to deplete both isoforms which have been shown to have different C-terminal domains and functions (Fan et al., 2007). This is also important for the CRB3 antibodies used in the study since according to the material and methods section they are either against the extracellular domain common to both isoforms or the intracellular domain which is only similar in the domain close to transmembrane between the 2 isoforms. Since the antibodies used in each figure are not detailed it is impossible to know if the authors are detecting CRB3A or B or both. Please provide the information and correct for the actual isoform detected in the data and conclusions.

      Thanks for your positive comments. In mammals, CRB3 has two isoforms, CRB3a and CRB3b, distinguished by alternative splicing within the fourth exon of the CRB3 gene, which in turn produces a protein with 23 amino acid differences at the C terminus. Both CRB3a and CRB3b have mostly identical amino acid sequences, and have indistinguishable molecular weight sizes. As a result, the knockout mouse construction strategy and the design principles of RNAi sequences target both CRB3a and CRB3b. This is described in lines 100-104 and lines 149-150. Additionally, commercially available antibodies detect both CRB3a and CRB3b, as mentioned in line 123 and lines 636-637 in revised manuscript.

      However, it should be noted that our CRB3 overexpression, as shown in the CRB3 structural domain in Figure 6D, refers specifically to the sequence of CRB3b. As a result, we have updated the original manuscript as well as the legends of Figures 3C, 3E, 4A, 5A, 5B, 6D-G, 7A, 7B and Supplementary Figure 2F-H, 3A, 4B, 6B to reflect this change. All instances of overexpressed CRB3 have been changed to CRB3b.

      2) CRB3A and B have been localized in the cilium itself (Fan et al., 2004; 2007) but in the study CRB3A/B does not enter the cilium but is localized in the basal body (figure 4). How the authors reconcile these different localizations?

      Indeed, we found that CRB3 is mainly localized at the basal body of the primary cilium, which differs from previous reports in the literature (Curr Biol. 2004;14(16):1451-61 and J Cell Biol. 2007;178(3):387-98). However, upon closer examination of one of these reports (Curr Biol. 2004;14(16):1451-61), it appears that CRB3 was actually scattered on the primary cilia, with a strong focus at the basal body. Additionally, in rat kidney collecting ducts, the localization of CRB3 on primary cilia was significantly reduced, with obvious localization at the basal body. Another study (J Cell Biol. 2007;178(3):387-98) also reported the co-localization of CRB3b and γ-tubulin in MDCK cells, which is consistent with our conclusion. We further verified the co-localization of CRB3 with the centrosome by overexpressing CRB3b in mammary epithelial cells, indicating that CRB3 mainly localizes to the basal body of the primary cilium. This information is discussed in the Discussion section of the manuscript (lines 400-410).

      3) The authors use GFP-CRB3A/B, it is not stated which isoform, over-expression to localize CRB3A/B in MCF10A cells (figure 4A). The levels of expression appear to be very high in the GFP panel and it is likely that the secretory pathway of the cells is clogged with GFP-CRB3A/B in transit from the ER to the plasma membrane. Thus, the colocalization with pericentrin might be due to the accumulation of ER and Golgi around the centrosome. This colocalization should be done with the endogenous CRB3A/B and with a better resolution.

      Thank you for your comments. We were also interested in the co-localization of endogenous CRB3 and centrosome proteins. However, the only commercial CRB3 antibody available is the rabbit species, and the pericentrin antibody (Abcam, ab4448) that is very useful is also the rabbit species. We had difficulty finding commercial centrosome-associated antibodies for other species. Therefore, we examined the co-localization of endogenous CRB3 with γ-tubulin in Figure 4C and combined the results with those of exogenous CRB3 to illustrate the co-localization of CRB3 with centrosomes.

      4) The staining for CRB3A/B in figure 4C (red) is striking with a very strong accumulation in an undefined intracellular structure and the authors do not provide any explanation for such a difference with the GFP-CRB3A/B just above.

      Thank you for your good suggestions. The immunofluorescence images of GFP-CRB3 in Figure 4a were obtained using a fluorescence microscope, while the images of endogenous CRB3 were obtained using a laser confocal microscope. The fluorescence microscope excites a fluorescent dye to emit a signal, which is amplified into a visible light signal and presents a full fluorescent signal. In Figure 4a, we can clearly see the full distribution of exogenous CRB3 in MCF10A cells, including its tight junctional localization consistent with previous reports in the literature and its co-localization with centrosomal proteins. On the other hand, laser confocal microscopy uses a laser as the light source to excite the fluorescence within the sample point by point. It employs a precision pinhole filtering technique with strong laminar imaging capabilities. In the specific analysis of endogenous CRB3 co-localization studies with centrosomes and primary cilium, signals at tight junctions must be excluded. Therefore, Figure 4c represents the fluorescence signal at the level of intracellular CRB3 co-localization with γ-tubulin. The two methods use different detection means and techniques, and are not directly comparable.

      5) The staining in figure 4E is also different from those shown in figure 4F in which the CRB3A/B staining is right at the base of the axoneme while it is not the case in figure 4E where we can see a red dot close to but not right at the base of the axoneme.

      Thank you for your comments. The new Figure 4F displays the localization relationship between CRB3 and primary cilium, analyzed using laser confocal microscopy. With the unique single-level detection function of this microscope, the problem of level selection may cause the red dots to appear close to, rather than right at the basal body of the primary cilium. However, the new Figure 4G, based on the use of 3D reconstruction scanning technique, clearly demonstrates the localization of CRB3 at the basal body of the primary cilium under the same cells and conditions.

      6) The authors claim that CRB3A/B interacts directly with Rab11 but they only show co-immunoprecipitation experiments from cell lysates which do not support direct interactions. The only way to show a direct interaction is to produce both proteins in vitro. Thus, the term direct interaction should be removed.

      Thank you for your positive comments. Since we were unable to complete the relevant experiments to demonstrate direct interaction of two proteins, we have revised our conclusions. Replace " CRB3 directly binds Rab11" with " CRB3 binds Rab11" in the manuscript.

      7) In addition, the authors claim (Line 251/252) that Rab11 is necessary for the transport of CRB3A/B but they should KD Rab11 to show this.

      Thank you for your good suggestions. It is essential to observe CRB3 trafficking after knockdown Rab11. However, in Figure 5C, we used the endocytosis inhibitor dynasore, which also inhibits Rab11-positive endosomes. This result shows that dynasore can significantly inhibit CRB3 trafficking in MCF10A cells. We believe that this experiment partially demonstrates that inhibiting Rab11 function can affect CRB3 trafficking.

      8) The domain of CRB3A/B that is necessary for the interaction with Rab11 is the N-terminal part of the extracellular domain. This domain is thus inside the transport vesicles and not accessible from the cytoplasm. Given that Rab11 is a cytoplasmic protein, how the 2 proteins could interact across the membrane? The authors do not even discuss this essential point for their hypothesis.

      Thank you for your positive comments. As shown in the schematic model in Figure 9, we believe that when cells form tight junctions, CRB3 is primarily located on the cell membrane. Subsequently, endosomes are involved in the intracellular degradation process of CRB3 on the cell membrane. Intracellular CRB3 can bind to Rab11 through the extracellular domain, which in turn participates in primary cilia assembly. We have made detailed modifications to lines 418-421.

      9) Figures are not numbered.

      Thank you for your comments. We have updated the numbers in the original manuscript as well as the legends of Figures 1D, 1E, 2B, 2D, 2F, 2G, 3B, 3D, 3F-H, 4B, 4E, 5I, 6, 8G and Supplementary Figure 1E, 2, 3C, 4A, 5B, 6.

      Minor points

      1) The authors cite several studies showing that a down regulation of CRB3A/B in human cells promotes cancer but other studies show the contrary: Lin et al., 2015 for example. Please discuss these discrepancies.

      Thanks for your good suggestion. We have included additional studies with contrasting results in the discussion section, specifically in lines 378-380.

      2) Line 98: "exhibit smaller" smaller than what?

      We modified "exhibit smaller" to "exhibit smaller size" in line 97.

      3) Line 152: "form more number, ..." ???

      We modified "formed more number" to "formed more" in line 154.

      4) Line 180: "Compared with the control, the number of cells with primary cilium was significantly increased ». To me it is the contrary! This part is not clear at all. Please rewrite.

      We have revised the sentence in lines 183-185.

      5) Authors should check and review extensively for improvements to the use of English.

      Thanks for your good writing advice. We have carefully reviewed and revised the entire manuscript to improve its readability.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the reviewers and appreciate their recommendations to improve this work.

      Reviewer 1:

      Reviewer 1 recognizes that ‘This is an important finding that is relevant to the actions of VDR on colorectal cancer. The data presented to support the presented conclusion is convincing’.

      Reviewer 1 identifies as a major weakness ‘that the site of SIRT1 regulatory lysine acetylation is defined by mutational analysis rather than by direct biochemical analysis.

      However, as the reviewer mentions “previous reports of K610 acetylation using mass spec https://www.phosphosite.org/proteinAction.action?id=5946&showAllSites=true), and the absence of SIRT1 mutant K610R in the immunoprecipitates using anti-acetylated lysine antibodies presented in Fig. 4E clearly overcome this weakness”.

      In addition, overall SIRT1 acetylation is reduced by vitamin D and by the specific SIRT1 activator SRT1720 as shown by decreased SIRT1 in the anti-acetyl-lysine immunoprecipates, (Fig. 4A and B). The second weakness identified by Reviewer 1 concerns “the use of only one shRNA to deplete VDR in CRC cells.”

      We have made efforts to demonstrate that the results are specific, though we do not have results with alternative shRNAs for a variety of reasons. To mitigate this issue, we have compared two colon cancer cells originating from the same patient which differ in the presence/absence of VDR. SW480, derive from the primary tumor and express VDR, whereas SW620 cells were derived from a lung metastasis and lack VDR. Similar, to the comparison of HCT116 with shVDR HCT116 cells presented in this study, VD induced SIRT1 levels in SW480 in contrast to a lack of induction in SW620, as shown in Author response image 1. This result provides support for the specificity of the shVDR.

      Author response image 1.

      Vitamin D requires the presence of VDR to increase SIRT1 protein levels. SW480 and SW620 cell lines derive from the same patient, from primary tumor and lung metastasis respectively and differ in their VDR content. 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) was added at 100 nM for 24 h. Representative western-blot, where TBP was used as a loading control, of four biological replicates. Statistical analysis by ANOVA and values represent mean ± SEM; *p<0.05; *** p<0.001.

      The referee noticed the inclusion of an siRNA for SIRT1 in Table 1. We apologize for that, since this is an error, and no results are presented in this study with SIRT1 depletion. Table 1 has been modified accordingly.

      Concerning the third and fourth weaknesses that Reviewer 1 identifies, we agree that mapping the interacting domains in both VDR and SIRT1 and in vitro reconstitution would improve the present study. However, we believe that these would constitute long-term studies that themselves are not strictly necessary at this stage. Consequently, we favor the publication of the present body of work. In vitro reconstitution of the present work and the putative relevance of the proposed mechanism of vitamin D action via SIRT1 on types of cancer other than colon (eg breast etc), are certainly very interesting and warrant further investigation.

      Reviewer 2:

      This reviewer acknowledges that “…this study provides very interesting and solid information on the link between vitamin D and colorectal cancer. It is likely that this study will provide insight into the importance of vitamin D in other types of cancer. It may also lead to new therapeutic strategies for specific cases. This article is convincing, although the authors can improve their study as outlined…”

      We acknowledge the proposed changes and recommendations, and have changed the text and Figures as suggested the by Reviewer as follows:

      Figure 1

      Figure 1E and F: the cell lines used were described in the figure legend, but we agree that including the name in the figure brings more clarity and these are now added.

      Figure 1G: the statistical analysis was for all panels of Figure 1 as described in the Figure legend (lines 731-32), We have amended the original omission of panels 1G and 1H. In panel G, * represents statistical analysis by ANOVA (comparing the four groups) whereas # was the analysis by Students t test (comparing the two indicated groups), where * or #p<0.05. We hope to have clarified this point now.

      Figure 2

      Figure 2C: We showed originally the SIRT1/VDR interaction by immunoprecipitation of VDR and detection of SIRT1 in immunoprecipitates. We also showed immunoprecipitation of exogenously expressed Myc-SIRT1 (WT or mutants) and detection of VDR in immunoprecipitates (Figure 4F). The reviewer requests that we perform the inverse IP for endogenous SIRT1, that is immunoprecipitate SIRT1 and detect VDR in the immunoprecipates, which we now supply for the reviewer in Author response image 2.

      Author response image 2

      Immunoprecipitation of endogenous SIRT1 to show interaction with VDR. 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) was added at 100 nM for 24 h. Representative western-blots, where TBP was used as a loading control.

      Figure 3

      • Figure 3D: ‘The authors should indicate the color of the different stainings’. Immunostainings have been revealed with DAB (diaminebenzidine); thus, positiveness is highlighted by light or dark brown according to their low or high protein expression. Counterstaining has been performed with hematoxilin, which stains nuclei in dark blue and cytoplasm in light blue.

      Do the authors mean that the secondary antibody marks in brown/red? If so, these results are inconsistent with the text considering that hematoxylin was used for non-tumor tissue. This part needs to be clarified.

      We thank the Reviewer for asking us to clarify this issue. Neither the primary nor anti-Ig horseradish peroxidase-conjugated secondary antibodies presented positiveness resulting from these antibodies individually. Therefore, secondary antibody does not mark in any color. Hematoxylin has been used as counterstaining for both non-tumor as well as for tumor tissues.

      What about the level of FOXO3A in these tissues/tumors?

      We did not prove the tumor sections for specific SIRT1 substrates such as FoxO3A since their levels may not entirely depend on SIRT1 specific deacetylation.

      What is the level of 1,25(OH)2D3 in these patients?

      We agree with this referee that this information would be very useful, but unfortunately, we do not have data on vitamin D levels for these patients since they were not specifically recruited for this study and vitamin D levels are not routinely measured.

      Figure 3D, the following information is missing: "A detailed amplification is shown in the lower left of each micrograph."

      We decided not to include the amplification in micrographs because the aim of the manuscript is focused on protein levels, not localization and including the amplification was more confusing than enlightening. This has been amended now in the text.

      Figure 3E, it says p=0.325, in the legend p<0.01, and in the text there is a trend. Which is the correct version?

      We really apologize for this misunderstanding. As stated in the Figure, p=0.325 and therefore it does not reach statistical significance. We have amended the main text and figure legend to report that differences between SIRT1 expression levels of healthy and cancer human colon samples are not statistically significant.

      Figure 4

      Figure 4F. The quality of the presented blots is not optimal. It needs to be improved. In addition, the number of independent biological experiments is not indicated.

      We have substituted the representative western-blot and included statistical analysis of four independent biological replicates. Since 4F is now a bigger panel, it has required a slight reorganization of the whole Figure, but the rest of panels remain with the originals. Now we indicate in the figure legend that at least three independent biological replicas were analyzed. In addition, we supply below the four experiments for the reviewer in Author response image 3.

      Author response image 3

      Immunoprecipitation of exogenous myc-tagged SIRT1 to show interaction with VDR of wild type (WT) or mutants. 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) was added at 100 nM for 24 h. FT: Flow Through. TBP as a loading control.

      Regarding the last general comment concerning the number of independent experiments performed, this is indicated in the Figure legends (lines 732-36, 757-58, 82324, 840-41). All the in vitro experiments were performed at least as three independent experiments and not by repeating a western blot. A representative western blot is shown, and the statistical analysis corresponds to the analysis of the three biological replicates. For experiments with patient samples, the number of patients appears clearly indicated in the corresponding panel.

    1. Author Response

      Reviewer #1 (Public Review):

      The objective of this investigation was to determine whether experimental pain could induce alterations in cortical inhibitory/facilitatory activity observed in TMS-evoked potentials (TEPs). Previous TMS investigations of pain perception had focused on motor evoked potentials (MEPs), which reflect a combination of cortical, spinal, and peripheral activity, as well as restricting the focus to M1. The main strength of this investigation is the combined use of TMS and EEG in the context of experimental pain. More specifically, Experiment 1 investigated whether acute pain altered cortical excitability, reflected in the modulation of TEPs. The main outcome of this study is that relative to non-painful warm stimuli, painful thermal stimuli led to an increase on the amplitude of the TEP N45, with a larger increase associated with higher pain ratings. Because it has been argued that a significant portion of TEPs could reflect auditory potentials elicited by the sound (click) of the TMS, Experiment 2 constituted a control study that aimed to disentangle the cortical response related to TMS and auditory activity. Finally, Experiment 3 aimed to disentangle the cortical response to TMS and reafferent feedback from muscular activity elicited by suprathreshold TMS applied over M1. The fact that the authors accompanied their main experiment with two control experiments strengthens the conclusion that the N45 TEP peak could be implicated in the perception of painful stimuli.

      Perhaps, the addition of a highly salient but non-painful stimulus (i.e. from another modality) would have further ruled out that the effects on the N45 are not predominantly related to intensity/saliency of the stimulus rather than to pain per se.

      We thank the reviewer for their comment on the possibility of whether stimulus salience influences the N45 as opposed to pain per se. However, we note that in Experiment 1, despite the same level of stimulus salience/intensity for all participants (46 degrees), individual differences in pain ratings were associated with the change in the N45 amplitude, suggesting that the results cannot be explained by stimulus intensity/salience.

      Reviewer #2 (Public Review):

      The authors have used transcranial magnetic stimulation (TMS) and motor evoked potentials (MEPs) and TMS-electroencephalography (EEG) evoked potentials (TEPs) to determine how experimental heat pain could induce alterations in these metrics.In Experiment 1 (n = 29), multiple sustained thermal stimuli were administered over the forearm, with the first, second, and third block of stimuli consisting of warm but non-painful (pre-pain block), painful heat (pain block) and warm but non-painful (post-pain block) temperatures respectively. Painful stimuli led to an increase in the amplitude of the fronto-central N45, with a larger increase associated with higher pain ratings. Experiments 2 and 3 studied the correlation between the increase in the N45 in pain and the effects of a sham stimulation protocol/higher stimulation intensity. They found that the centro-frontal N45 TEP was decreased in acute pain.

      The study comes from a very strong group in the pain fields with long experience in psychophysics, experimental pain, neuromodulation, and EEG in pain. They are among the first to report on changes in cortical excitability as measured by TMS-EEG over M1.

      While their results are in line with reductions seen in motor-evoked responses during pain and effort was made to address possible confounding factors (study 2 and 3), there are some points that need attention. In my view the most important are:

      1) The method used to calculate the rest motor threshold, which is likely to have overestimated its true value : calculating highly abnormal RMT may lead to suprathreshold stimulations in all instances (Experiment 3) and may lead to somatosensory "contamination" due to re-afferent loops in both "supra" and "infra" (aka. less supra) conditions.

      The method used to assess motor threshold was the TMS motor threshold Assessment Tool (Awiszus et al., 2003). This was developed as a quicker alternative for calculating motor threshold compared to the traditional Rossini-Rothwell method which involves determining the lowest intensity that evokes 5/10 MEPs of at least 50 microvolts. The method has been shown to achieve the same accuracy of determining motor threshold as the traditional Rossini-Rothwell method, but with fewer pulses (Qi et al., 2011; Silbert et al., 2013). Therefore, the high RMTs in our study cannot be explained by the threshold assessment method. Instead, they are likely explained by aspects of the experimental setup that increased the distance between the TMS coil and the scalp, including the layer of foam placed over the coil, the EEG cap and the fact that the electrodes we used had a relatively thick profile.

      Awiszus, F. (2003). TMS and threshold hunting. In Supplements to Clinical neurophysiology (Vol. 56, pp. 13-23). Elsevier.

      Qi, F., Wu, A. D., & Schweighofer, N. (2011). Fast estimation of transcranial magnetic stimulation motor threshold. Brain stimulation, 4(1), 50-57.

      Silbert, B. I., Patterson, H. I., Pevcic, D. D., Windnagel, K. A., & Thickbroom, G. W. (2013). A comparison of relative-frequency and threshold-hunting methods to determine stimulus intensity in transcranial magnetic stimulation. Clinical Neurophysiology, 124(4), 708-712.

      2) The low number of pulses used for TEPs (close to ⅓ of the usual and recommended)

      We agree that increasing the number of pulses can increase the signal to noise ratio. During piloting, participants were unable to tolerate the painful stimulus for long periods of time and we were required to minimize the number of pulses per condition.

      We note that there is no set advised number of trials in TMS-EEG research. According to the recommendations paper, the number of trials should be based on the outcome measure e.g., TEP peaks vs. frequency domain measures vs. other measures and based on previous studies investigating test-retest reliability (Hernandez-Pavon et al., 2023). The choice of 66 pulses per condition was based on the study by Kerwin et al., (2018) showing that optimal concordance between TEP peaks can be found with 60-100 TMS pulses delivered in the same run (as in the present study). The concordance was particularly higher for the N40 peak at prefrontal electrodes, which was the key peak and electrode cluster in our study.

      Further supporting the reliability of the TEP data in our experiment, we note that the scalp topographies of the TEPs for active TMS at various timepoints (Figures 5, 7 and 9) were similar across all three experiments, especially at 45 ms post-TMS (frontal negative activity, parietal-occipital positive activity).

      In addition to this, the interclass correlation coefficient (Two-way fixed, single measure) for the N45 to active suprathreshold TMS across timepoints for each experiment was 0.90 for Experiment 1 (across pre-pain, pain, post-pain time points), 0.74 for Experiment 2 (across pre-pain and pain conditions), and 0.95 for Experiment 3 (across pre-pain conditions). This suggests that even with the fluctuations in the N45 induced by pain, the N45 for each participant was stable across time, further supporting the reliability of our data. These ICCs will be reported in the next revision.

      Hernandez-Pavon, J. C., Veniero, D., Bergmann, T. O., Belardinelli, P., Bortoletto, M., Casarotto, S., ... & Ilmoniemi, R. J. (2023). TMS combined with EEG: Recommendations and open issues for data collection and analysis. Brain Stimulatio, 16(3), 567-593

      Kerwin, L. J., Keller, C. J., Wu, W., Narayan, M., & Etkin, A. (2018). Test-retest reliability of transcranial magnetic stimulation EEG evoked potentials. Brain stimulation, 11(3), 536-544.

      Lack of measures to mask auditory noise.

      In TMS-EEG research, various masking methods have been proposed to suppress the somatosensory and auditory artefacts resulting from TMS pulses, such as white noise played through headphones to mask the click sound (Ilmoniemi and Kičić, 2010), and a thin layer of foam placed between the TMS coil and EEG cap to minimize the scalp sensation (Massimini et al., 2005). However, recent studies have shown that even when these methods are used, sensory contamination of TEPs is still present, as shown by studies that show commonalities in the signal between active and sensory sham conditions that mimic the auditory/somatosensory aspects of real TMS (Biabani et al., 2019; Conde et al., 2019; Rocchi et al., 2021). This has led many authors (Biabani et al., 2019; Conde et al., 2019) to recommend the use of sham conditions to control for sensory contamination. To separate the direct cortical response to TMS from sensory evoked activity, Experiment 2 (n = 10) included a sham TMS condition that mimicked the auditory/somatosensory aspects of active TMS to determine whether any alterations in the TEP peaks in response to pain were due to changes in sensory evoked activity associated with TMS, as opposed to changes in cortical excitability. Therefore, the lack of auditory masking does not impact the main conclusions of the paper.

      Ilmoniemi, R. J., & Kičić, D. (2010). Methodology for combined TMS and EEG. Brain topography, 22, 233-248.

      Massimini, M., Ferrarelli, F., Huber, R., Esser, S. K., Singh, H., & Tononi, G. (2005). Breakdown of cortical effective connectivity during sleep. Science, 309(5744), 2228-2232.

      Biabani, M., Fornito, A., Mutanen, T. P., Morrow, J., & Rogasch, N. C. (2019). Characterizing and minimizing the contribution of sensory inputs to TMS-evoked potentials. Brain stimulation, 12(6), 1537-1552.

      Conde, V., Tomasevic, L., Akopian, I., Stanek, K., Saturnino, G. B., Thielscher, A., ... & Siebner, H. R. (2019). The non-transcranial TMS-evoked potential is an inherent source of ambiguity in TMS-EEG studies. Neuroimage, 185, 300-312.

      Rocchi, L., Di Santo, A., Brown, K., Ibáñez, J., Casula, E., Rawji, V., ... & Rothwell, J. (2021). Disentangling EEG responses to TMS due to cortical and peripheral activations. Brain stimulation, 14(1), 4-18.

      3) A supra-stimulus heat stimulus not based on individual HPT, that oscillates during the experiment and that lead to large variations in pain intensity across participants is unfortunate.

      The choice of whether to calibrate or fix stimulus intensity is a contentious question in experimental pain research. A recent discussion by Adamczyk et al., (2022) explores the pros and cons of each approach and recommends situations where one method may be preferred over the other. That paper suggests that the choice of the methodology is related to the research question – when the main outcome of the research is objective (neurophysiological measures) and researchers are interested in the variability in pain ratings, the fixed approach is preferrable. Given we explored the relationship between MEP/N45 modulation by pain and pain intensity, this question is better explored by using the same stimulus intensity for all participants, as opposed to calibrating the intensity to achieve a similar of pain across participants.

      Adamczyk, W. M., Szikszay, T. M., Nahman-Averbuch, H., Skalski, J., Nastaj, J., Gouverneur, P., & Luedtke, K. (2022). To calibrate or not to calibrate? A methodological dilemma in experimental pain research. The Journal of Pain, 23(11), 1823-1832.

      So is the lack of report on measures taken to correct for a fortuitous significance (multiple comparison correction) in such a huge number of serial paired tests.

      Note that we used a Bayesian approach for all analyses as opposed to traditional frequentist approach. In contrast to the frequentist approach, the Bayesian approach does not require corrections for multiple comparisons (Gelman et al., 2000) given that they provide a ratio representing the strength of evidence for the null vs. alternative hypotheses as opposed to accepting or rejecting the null hypothesis based on p-values. As such, throughout the paper, we frame our interpretations and conclusions based on the strength of evidence (e.g. anecdotal/weak, moderate, strong, very strong) as opposed to referring to the significance of the effects.

      Gelman A, Tuerlinckx F. (2000). Type S error rates for classical and Bayesian single and multiple comparison procedures. Computational statistics, 15(3):373-90.

      Reviewer #3 (Public Review):

      The present study aims to investigate whether pain influences cortical excitability. To this end, heat pain stimuli are applied to healthy human participants. Simultaneously, TMS pulses are applied to M1 and TMS-evoked potentials (TEPs) and pain ratings are assessed after each TMS pulse. TEPs are used as measures of cortical excitability. The results show that TEP amplitudes at 45 msec (N45) after TMS pulses are higher during painful stimulation than during non-painful warm stimulation. Control experiments indicate that auditory, somatosensory, or proprioceptive effects cannot explain this effect. Considering that the N45 might reflect GABAergic activity, the results suggest that pain changes GABAergic activity. The authors conclude that TEP indices of GABAergic transmission might be useful as biomarkers of pain sensitivity.

      Pain-induced cortical excitability changes is an interesting, timely, and potentially clinically relevant topic. The paradigm and the analysis are sound, the results are mostly convincing, and the interpretation is adequate. The following clarifications and revisions might help to improve the manuscript further.

      1) Non-painful control condition. In this condition, stimuli are applied at warmth detection threshold. At this intensity, by definition, some stimuli are not perceived as different from the baseline. Thus, this condition might not be perfectly suited to control for the effects of painful vs. non-painful stimulation. This potential confound should be critically discussed.

      In Experiment 3, we also collected warmth ratings to confirm whether the pre-pain stimuli were perceived as different from baseline. We did not include this data initially in the first submission, but will do so in the supplemental material in our next revision. This data showed warmth ratings were close to 2/10 on average. This confirms that the non-painful control condition produced some level of non-painful sensation.

      2) MEP differences between conditions. The results do not show differences in MEP amplitudes between conditions (BF 1.015). The analysis nevertheless relates MEP differences between conditions to pain ratings. It would be more appropriate to state that in this study, pain did not affect MEP and to remove the correlation analysis and its interpretation from the manuscript.

      The interindividual relationship between changes in MEP amplitude and individual pain rating is statistically independent from the overall group level effect of pain on MEP amplitude. Therefore, conclusions for the individual and group level effects can be made independently.

      It is also important to note that in the pain literature, there is now increasing emphasis placed on investigating the individual level relationship between changes in cortical excitability and pain as opposed to the group level effect (Seminowicz et al., 2019; Summers et al., 2019). As such, it is important to make these results readily available for the scientific community.

      Summers, S. J., Chipchase, L. S., Hirata, R., Graven-Nielsen, T., Cavaleri, R., & Schabrun, S. M. (2019). Motor adaptation varies between individuals in the transition to sustained pain. Pain, 160(9), 2115-2125.

      Seminowicz, D. A., Thapa, T., & Schabrun, S. M. (2019). Corticomotor depression is associated with higher pain severity in the transition to sustained pain: a longitudinal exploratory study of individual differences. The Journal of Pain, 20(12), 1498-1506.

      3) Confounds by pain ratings. The ISI between TMS pulses is 4 sec and includes verbal pain ratings. Considering this relatively short ISI, would it be possible that verbal pain ratings confound the TEP? Moreover, could the pain ratings confound TEP differences between conditions, e.g., by providing earlier ratings when the stimulus is painful? This should be carefully considered, and the authors might perform control analyses.

      It is unlikely that the verbal ratings contaminated the TEP response as the subsequent TMS pulse was not delivered until the verbal rating was complete and given that each participant was cued by the experimenter to provide the pain rating after each pulse (rather than the participant giving the rating at any time). As such, it would not be possible for participants to provide earlier ratings to more painful stimuli. We will make this part of the protocol clearer in the next revision of the manuscript.

      4) Confounds by time effects. Non-painful and painful conditions were performed in a fixed order. Potential confounds by time effects should be carefully considered.

      Previous research suggests that pain alters neural excitability even after pain has subsided. In a recent meta-analysis (Chowdhury et al., 2022) we found effect sizes of 0.55-0.9 for MEP reductions 0-30 minutes after pain had resolved. As such, we avoided intermixing pain and warm blocks given subsequent warm blocks would not serve as a valid baseline, as each subsequent warm block would have residual effects from the previous pain blocks.

      At the same time, given there was no conclusive evidence for a difference in N45 amplitude between pre-pain and post-pain conditions of Experiment 1 (Supplementary Figure 1), it is unlikely that the effect of pain was an artefact of time i.e., the explanation that successive thermal stimuli applied to the skin results an increase in the N45, regardless of whether they are painful or not. We will make this point in our next revision.

      Chowdhury, N. S., Chang, W. J., Millard, S. K., Skippen, P., Bilska, K., Seminowicz, D. A., & Schabrun, S. M. (2022). The Effect of Acute and Sustained Pain on Corticomotor Excitability: A Systematic Review and Meta-Analysis of Group and Individual Level Data. The Journal of Pain, 23(10), 1680-1696.

      5) Data availability. The authors should state how they make the data openly available.

      We will upload the MEP, TEP and pain data on the Open science framework at the time of the next revision.

    1. Author Response

      Reviewer #1 (Public Review):

      Sun and colleagues investigated the cross-reactive antibodies between E. coli and the host in severe alcoholic hepatitis (SAH). The study found that IgA and IgG were deposited in the liver of SAH patients. Complements C3d and C4d were also deposited in the SAH patient's liver. Moreover, they found that the Ig accumulated in the SAH liver, but not in the SAH serum, induced hepatocyte killing, suggesting that liver Ig is important. Then, they found that these Ig can recognize both human and E. coli antigens. Very interestingly, SAH-derived Ig shows cross-reactivity to both human and E. coli antigens, suggesting E. coli-primed Ig in SAH may damage hepatocytes through host antigen recognition. These Ig are not observed in alcoholic cirrhosis patients. The liver RNA-seq data suggested that Ig was also produced in the liver, not only gut-derived Ig. This is a very interesting study showing the novel mechanism of SAH mediated by the Ig with the cross-reactivity with bacteria and host antigens, which is not observed in AC patients. Overall, the study design is reasonable and the data are consistent to support their central hypothesis. There are a few comments.

      We thank the Reviewer for his/her positive comments on our manuscript!

      Specific comments:

      1) Figures 1 and 2 show Ig deposition in the liver (it seems on hepatocytes). Not only Ig reaction to the specific antigen but also non-specific Fc receptor-mediated binding to hepatocytes could have contributed.

      2) Similarly, in Figure 2G Ig-mediated hepatocyte killing, Fc receptor-mediated hepatocyte killing may be involved.

      Anti-IgG antibody (ab200699) recognizes a protein of 75 kDa, identified as gamma heavy chain of human immunoglobulins. It is possible that non-specific Fc receptor-mediated binding to hepatocytes in the SAH liver can also be recognized by this anti-IgG antibody staining.

      However, no IgG or IgA deposition in the healthy donor livers was identified by anti-IgG or IgA staining. These results suggest that there was no antigen specific or Fc receptor-mediated binding to healthy hepatocytes.

      In the ADCC assay, hepatocytes isolated from healthy donor livers were used as the target cells. Immune cell (NK) mediated ADCC is mainly triggered by IgG (binding to antigens of hepatocytes) through the interaction between IgG Fc fragment and Fc-receptors (FcγRs) of NK cells. If IgG deposition in the SAH liver were mainly due to non-specific Fc receptor-mediated binding to hepatocytes, we would expect IgG binding to FcγRs of hepatocytes and no activation of NK cells. Ig-mediated hepatocyte killing (Figure 2G) indicates the Ig (from SAH liver) reaction to the specific antigens.

      3) The study examined the possibility of liver resident B cell and plasma cell-mediated Ig. As the authors mentioned in the discussion, B cells may be translocated from the intestine to the liver. Or the resident B cells (not from the gut) are also involved.

      We agree with the Reviewer at this point. The resident B cells may be also involved in the Ig production.

      Reviewer #2 (Public Review):

      In this paper, Ahmadi et al demonstrated that antibodies produced locally in the liver by infiltrating B cells can enhance liver damage caused by fat accumulation. The main finding is that human samples extracted from severe alcoholic hepatitis showed antibody accumulation that may be related to an enhanced immune response to self-antigens, which could ultimately fuel liver damage - which was already present due to alcohol consumption. Their data are corroborated by arrays and gene ontology assays, and I strongly believe that these data could add to the future options we have to treat patients.

      We thank the Reviewer for his/her positive comments on our manuscript!

    1. Author Response:

      We thank the reviewers and eLife editorial team for their valuable assessment. While additional experiments could further strengthen the theoretical framework proposed in this study, we believe that we have successfully established the delayed nuclear export of hemagglutinin and neuraminidase mRNAs by quantifying the FISH observation with the mathematical model. We agree that this finding raises a further important question to be addressed regarding the molecular mechanism underlying the prolonged nuclear retention of these segments. Our ongoing investigation is focusing on identifying potential cis-elements that contribute to the delay of these segments.

    1. Author Response:

      We are grateful to the three referees for their overall positive evaluation of our work and valuable constructive suggestions. We will address their public reviews with utmost care, as well as their private recommendations.

      To Reviewer #1: thanks for the positive comments and for the appreciation of our « impressive approaches »

      • We will add a more comprehensive section of neuronal migration analysis in the Material and Methods section. Sorry for that regrettable lack of precision.

      • We will address the comments about the sinuosity index definition and interpretations.

      • We will enhance the clarity of our writing and delve deeper into the discussion. As mentioned to Reviewer #3, the brevity of the text was influenced by the Short report format.

      To Reviewer #2 : thanks for the overall positive appreciation.

      We will also consider the recommendations for authors with care.

      To Reviewer #3 : thanks a lot for the feedback.

      • We will further develop the introduction and discussion sections as suggested. Regrettably and as mentioned to Reviewer #1, we had to significantly condense them due to the space constraints imposed by the Short Report format.

      • We will attempt to overexpress Map1B in order to assess the potential phenotypic similarity to the Fmr1 null condition, as suggested. However, it is important to acknowledge that this experiment may not yield a definitive answer due to potential differences in the level of Map1B expression driven by a CMV promoter compared to its endogenous expression in Fmr1 null neurons, as well as variations in the subcellular distribution of the overexpressed Map1B.

      • Regarding the anatomical consequences of aberrant migration, we acknowledge that neither our present work nor our previous study by Scotto-Lomassesse et al. provide evidence in this regard, as pointed out by the reviewer. Indeed, the delayed neurons do reach the olfactory bulb based on our findings. However, other studies have demonstrated that a delay in migration can have important functional consequences (eg Bocchi et al, 2017 doi: 10.1038/s41467-017-01046-w). Accordingly, we will revise and moderate our conclusions on this specific point.

    1. Author Response

      Reviewer #1 (Public Review):

      The authors examine the role of the K700E mutation in the Sf3B1 splicing factor in PDAC and report that this Sf3B1 mutation promotes PDAC by decreasing sensitivity to TGF-b resulting in decreased EMT and decreased apoptosis as a result. They propose that the Sf3b1 K700E mutant causes decreased expression of Map3K7, a known mediator of TGF-β signaling and also known to be alternately spliced in other systems by the Sf3b1 K700E mutation. The role of splicing defects in cancer is relatively understudied and could identify novel targets for therapeutic intervention so this work is of potential significance. However, the data is over-interpreted in many instances and it is not clear the authors can make the claims they do based on the data shown. In particular, the data showing that decreased Map3k7 underlies the effects of the Sf3b1K700E mutant is very weak. Does over-expression of Map3k7 promote the EMT signature and induce apoptosis? Do the Map3k7 expressing organoids form tumors more effectively when transplanted into mice? Also, the novelty of the work is a concern since aberrant Map3k7 splicing due to SF3B1 mutation was seen previously in other systems. The authors also do not address the apparent conundrum of Sf3b1 K700E mutation promoting tumorigenesis despite there being less EMT which is also required for progression to metastasis in PDAC.

      Major Concerns.

      1) The analysis of the effect of Sf3b1K700E expression on normal pancreas and on PanINs in KC mice and PDAC in KPC mice is superficial and could be enhanced by staining for amylase, cytokeratin-19 and insulin. In particular, the data quantified in figure 1L should be accompanied by staining for CK19, Mucin5AC or some other marker of ductal transformation. Also, are any effects seen at older ages in normal mice?

      We performed staining of normal and cancerous mouse pancreata using Ck19, MUC5AC and b-amylase antibodies. In line with our hypothesis that Sf3b1K700E mainly plays a role in early stages of PDAC formation, we observed significant differences in CK19 (increase), MUC5AC (increase) and b-amylase (decrease) expression in early stage KPC-Sf3b1K700E vs. KPC tumors (Fig. 1G-J), but not in late stage tumors (see Figure 1-figure supplement 1F-I). In addition, no differences were observed in normal mice. We added these data to the revised manuscript (see Figure 1-figure supplement 1D, E).

      2) The invasion assays used are limited and should be complemented by more routine quantification of cell migration and invasion including such assays as a scratch assay, Boyden chamber assays and use of the IncuCyte system to quantify. As it stands the image in Figure 3B is difficult to interpret since it is very poorly described in the figure legend. Additional evidence is needed to make the claims made by the authors.

      During the revisions we performed wound healing/scratch assays using PANC-1 cells with inducible SF3B1 WT/K700E overexpression. We observed a significant difference in migratory capacity between SF3B1 WT- and SF3B1 K700E overexpressing cells stimulated with TGF-β. We added this data to the revised manuscript (Fig. 2I, J). We also describe the abovementioned figure 3B in more detail (revised manuscript Fig. 2G, H; line 759-767).

      3) The authors should show the actual CC3 staining quantified in Suppl. Figure 2G.

      We added a representative image of CC3 staining (see Figure 3-figure supplement 1A) for the quantified data (see Figure 3-figure supplement 1B in the revised manuscript).

      4) The graph in Figure 3L should show WT and Sf3b1K700E expressing organoids number both with and without TGF-b.

      Since without TGF-b supplementation organoids have to be split in a 1:3 ratio every 5 days, we could not follow the same passaging regimen as in experiments with TGF-b supplementation (split in a 1:2 ratio every 20 days, Fig. 3I). However, we assessed the organoid number grown in control medium without TGF-b for 4 passages (20 days) in a 1:3 ratio, and observe no difference in organoid number in WT and Sf3b1K700E expressing organoids (Author response image 1). In the revised manuscript we show with a highly quantitative read-out (CellTiterGlo) that Sf3b1K700E expressing organoids do not grow faster than Sf3b1 WT expressing organoids in absence of TGF-β (see Figure 3-figure supplement 1E). Taken together, we can exclude that Sf3b1K700E organoids outgrow Sf3b1 WT organoids in medium with TGF-β supplementation because they generally have a growth advantage.

      Author response image 1.

      Author response image 1. WT and Sf3b1K700E expressing organoids were cultured without TGF-β supplementation. Organoids were split in a 1:3 ratio every 5 days. Data points show organoid number before splitting, assessed for 4 passages.

      Reviewer #2 (Public Review):

      The manuscript has several areas of strength; it functionally explores a mutant that is detected in a portion of pancreatic cancers; it conducts mechanistic investigation and it uses human cell lines to validate the findings based on mouse models. Some areas for improvement are described below.

      1) TGF-b is known to act as a tumor suppressor early in carcinogenesis, and as a tumor promoter later. The authors should extend their analysis of mouse models to determine whether the effect of SF3B1K700E is specific to promoting initiation (e.g. more, early acinar ductal metaplasia) or faster progression of PanINs following their formation. Another way to address this could be acinar cultures, to determine whether an increased propensity to ADM exists.

      To further detangle the effect KPC-Sf3b1K700E with respect to tumor progression, we analyzed our autochthonous model at an early and late stage of tumor progression: Histological examination at 5 weeks revealed increased propensity to ADM (see Figure 1-figure supplement 1J, K), PanIN formation (shown by Muc5a1 and CK19 IF stainings, Fig. 1G, I, J) and a concomitant decrease of acinar cells (shown by b-amylase staining) in KPC-Sf3b1K700E vs. KPC tumors (Fig. 1G, H). Analyzing tumors at 9 weeks of age did not show differences in CK19 staining and fibrosis. We added these data to the revised manuscript (see Figure 1-figure supplement 1F-I).

      2) Given that the effect of SF3B1K700E expression is more prominent in KC mice, rather than in KPC mice, the authors should explain the rationale for using the latter for RNA sequencing.

      In KC mice, pre-invasive PanIN lesions only infrequently progress to PDAC (spontaneous progression, see Gabriel et al., Pancreatology, 2020 ). Therefore, it would have been difficult to collect enough material for cell sorting and downstream RNA sequencing of tumor cells. The KPC mouse model develops PDAC with a 100% penetrance, allowing the collection of sufficient material.

      3) Given that this mutation is found in about 3% of human pancreatic cancer, it would be interesting to know whether these tumors have any unique feature, and specifically any characteristic that could be harnessed therapeutically.

      Unfortunately, the size of published datasets is too small for a meaningful differential gene expression analysis of SF3B1-WT vs. SF3B1-K700E PDAC tumors (due to the low occurrence of SF3B1-K700E PDAC). However, harnessing the K700E mutation therapeutically by increasing missplicing through splicing inhibitors has previously been suggested, and it was shown that SF3B1-K700E mutated cancer cells are more prone to apoptosis when splicing is chemically targeted than SF3B1-WT cells. We tested a similar approach in murine pre-cancerous organoids, demonstrating that Sf3b1-WT organoids show higher survival than Sf3b1K700E expressing organoids when treated with the splicing-inhibitor Pladienolide B (Author response image 2). However, since this concept is not novel and not within the topic of our manuscript, we would prefer to not integrate this data into our manuscript.

      Author response image 2.

      Author response image 2. 33 nM of the splicing inhibitor Pladienolide B was added to the cell culture medium for 48 hours and the viability was assessed by normalizing organoid numbers to untreated control organoids. The line indicates WT and Sf3b1K700E organoids assessed in the same replicate.

      4) It would be interesting to know whether this mutation mutually exclusive to other mutations affecting response to TGF-b. Further, while the data might not be widely available, it would be interesting to know whether in human patients the mutation occurs in precursor lesions (PanIN might be difficult to assess, but IPMN might be doable) or at later stages.

      We performed a mutual exclusivity analysis in PDAC samples available at www.cbioportal.org, but did not find mutual exclusivity of SF3B1-K700E to genes of the TGF-β-pathway. Of note, the value of the analysis is limited by the small sample size of SF3B1-K700E PDAC (n=7) Moreover, to our knowledge there is no public tissue biobank for PDAC which would allow us to assess the stage of SF3B1-K700E mutated PDAC tumors. Thus, unfortunately we cannot histologically assess if the mutations already occur in early stages of human tumor development.

      Author response table 1.

      Author response table 1: Mutual exclusivity analysis of public PDAC databases (ICGC, CPTAC, QCMG, TCGA, UTSW), including 910 patients. Mutation frequency is 25% for SMAD4, 5% for TGF-ΒR2, 3% for SMAD2, 2.6% for TGF-ΒR1, 1.4% for SMAD3, 0.7% for SF3B1-K700E, 0.7% for TGF-ΒR3, 0.4% for SMAD1. Analysis was performed on cbioportal.org.

      Reviewer #3 (Public Review):

      Alternative splicing as a result of mutations in different components of the splicing machinery has been associated with a variety of cancer types, including hematological malignancies where this has been most extensively studied but also for solid tumors such as breast and pancreatic ductal adenocarcinoma (PDAC). Here the authors analyze genome sequencing data in human PDAC samples and identify a recurring mutation in the SF3B1 subunit that substitutes lysine for glutamate at residue 700 (SF3B1K700E) in PDACs. This mutation has been identified and its' molecular role in disease progression in other diseases has been studied, but the mechanism for promoting disease progression in pancreatic cancer has not been as well characterized.

      To study how SF3B1K700E contributes to PDAC pathology, the authors generate a novel genetically modified mouse model of a pancreas specific SF3B1K700E mutation and explore its oncogenicity and tumor promoting potential. The authors find that SF3B1K700E is not oncogenic, but potentiates the oncogenic potential of Kras and p53 (KP) driver mutations commonly found in PDAC tumors. The authors then proceed to characterize the molecular mechanisms that might drive this phenotype. By transcriptomic analysis, the authors find KP-SF3B1K700E tumors have downregulation of epithelial-to-mesenchymal transition (EMT) genes compared to KP tumors. The cytokine TGFβ has previously been found to limit PDAC initiation and progression by causing lethal EMT in PDAC and PDAC precursor cells. Thus, the authors propose SF3B1K700E inhibition of EMT blocks the tumor suppressive activity of TGFβ and this underpins the tumor promoting role of SF3B1K700E mutation in PDAC. Consistent with this finding, SF3B1K700E mutation blocks TGFβ-induced toxicity in a variety of cell culture models of PDAC and PDAC precursor models.

      Lastly, the authors seek to identify how altered splicing reduces EMT activity in PDAC cells. The authors identify misspliced genes consistent in both KP and human SF3B1K700E mutant cancer samples and find Map3k7 as one of 11 consistently misspliced genes. MAP3K7 has previously been identified as a positive regulator of EMT. Thus the authors speculated Map3k7 missplicing would lead to reduced MAP3K7 activity and a reduction EMT and that this underpins the TGFβ in SF3B1K700E mutant PDAC cells. Consistent with this, the authors find inhibition of MAP3K7 reduces TGFβ toxicity in SF3B1K700E WT cells and overexpression of MAP3K7 in SF3B1K700E mutant PDAC cells induces TGFβ toxicity. Altogether, this suggests activity of Map3k7 is responsible for altered EMT activity and TGFβ sensitivity in SF3B1K700E mutant PDAC.

      Altogether, the authors generate a valuable model to study the role of a recurring splicing mutation in PDAC and provide compelling evidence that this mutation is accelerates disease. The authors then perform both: (1) an open-ended investigation of how this mutation alters PDAC cell biology where they identify altered EMT activity and (2) rigorous mechanistic studies showing suppressed EMT provides PDAC cells with resistance to TGFβ, which has previously been shown to be tumor suppressive in PDAC, suggesting a possible mechanism by which SF3B1K700E mutation is oncogenic in PDAC that future animal studies can confirm. This work generates valuable models and datasets to advance the understanding of how mutations in the splicing machinery can promote PDAC progression and suggests alternative splicing of MAP3K7 is one such possible mechanism that altered splicing promotes PDAC progression in vivo.

      • One major concern about the manuscript is that the proposed mechanism by which SF3B1K700E mutation accelerates PDAC progression (MAP3K7 inhibition -> EMT inhibition -> reduced TGF-β toxicity) is only tested in ex vivo culture models and there is very limited and correlative data to suggest that this is the operative mechanism by which SF3B1K700E mutant tumors are accelerated. This is especially important because of recent findings that IFN-α signaling, which the authors also found to be high in SF3B1K700E mutant tumors, also promotes PDAC progression (https://www.biorxiv.org/content/10.1101/2022.06.29.497540v1). Thus, while thoroughly convinced by the rigorous ex vivo work that SF3B1K700E does lead to MAP3K7 inhibition -> EMT inhibition -> reduced TGF-β toxicity, further experiments to confirm this mechanism is critical in vivo would be needed to convince me that this mechanism is critical to tumor progression in vivo. For example, would forced expression of MAP3K7 slow orthotopic KP-SF3B1K700E tumor growth while leaving IFN-α signaling unperturbed?

      We thank the reviewer for raising these important points. To first test if the upregulation of IFN-α signaling, seen in our RNA-seq data of sorted KPC-Sf3b1K700E cells, was directly caused by the Sf3b1-K700E mutation, we assessed the 5 most deregulated genes of the IFN-α signature in in-vitro activated KPC and KPC-Sf3b1K700E organoids (analogous to the experiments on the EMT gene signature in see Figure 2-figure supplement 1D). However, in contrast to EMT marker genes, INFa signature genes were not differently expressed in KPC-Sf3b1K700E vs. KPC organoids (Author response image 3). Thus, increased IFN-α signaling in KPC-Sf3b1K700E tumors in mice is likely an indirect consequence of further progressed cancers rather than an effect directly caused by Sf3b1K700E mediated missplicing.

      Author response image 3.

      Author response image 3. Expression of the 5 most deregulated genes of the IFN-α gene set identified in sorted KPC-Sf3b1K700E cells in in-vitro activated KPC-Sf3b1K700E and KPC organoids. 4 biological replicates were performed. For analysis, Ct-values of the indicated genes were normalized to Actb and a two-tailed unpaired t-test was used to compute the indicated p-values.

      To next examine the effect of Map3k7 on tumors in vivo, we established orthotopic transplantation models with KPC and KPC-Sf3b1K700E cells, with overexpression or knockdown of Map3k7 (Author response image 4). However, in contrast to the autochthonous mouse model, already orthotopically transplanted KPC vs. KPC-Sf3b1K700E cells did not show differences in tumor size (see Figure 1-figure supplement 1M, N). These data support our hypothesis that Sf3b1-K700E rather plays an important role during early stages of PDAC (KPC cells are isolated from fully developed PDAC tumors and orthotopic KPC transplantation thus represents a late-stage PDAC model).

      Unfortunately, these data also demonstrate that orthotopic transplantation of KPC cells is not a suitable model for studying the impact of Map3k7 in PDAC development, and as expected, neither Map3k7 overexpression in transplanted KPC-Sf3b1K700E cells nor shRNA mediated knockdown of Map3k7 (shMap3k7) in transplanted KPC cells led to differences in growth compared to their control groups (Author response image 4). In line with these results, the EMT genes that were found to be differentially expressed in our autochthonous mouse model (KPC vs. KPC-Sf3b1K700E) were expressed at similar levels upon Map3K7 downregulation or overexpression.

      Since establishment of an autochthonous KPC PDAC mouse model with a knock-down of MAP3K7 is out of scope for a revision, in the revised manuscript we discuss the limitation of our study that the molecular link between Sf3b1K700E, Map3k7 and Tgfb resistance has only been studied in vitro in organoids and cell lines. We also adapted the abstract and the title of the manuscript accordingly (formerly “Mutant SF3B1 promotes PDAC malignancy through TGF-β resistance”, now “Mutant SF3B1 promotes malignancy in PDAC”).

      Author response image 4.

      Author response image 4. (A) Relative gene expression of Map3k7 in KPC cells transduced with shRNA targeting Map3k7 (shMap3k7), normalized to KPC cells transduced with scrambled control shRNA (shCtrl). 3 biological replicates are shown. (B) Weight of tumors derived by orthotopical transplantation of shMap3k7 and shCtrl KPC cells. 5 biological replicates are shown. (C) Relative gene expression of EMT genes in tumors derived by orthotopic transplantation of shCtrl and shMap3k7 cells. 4 biological replicates are shown. (D) Relative gene expression of Map3k7 in KPC-Sf3b1K700E cells transduced with an overexpression vector of Map3k7 (OE Map3k7), normalized to control KPC cells without Map3k7 overexpression. 3 biological replicates are shown, a two-sided student’s t-test was used to calculate significance. (E) Weight of tumors derived by orthotopical transplantation of Map3k7 overexpressing KPC-Sf3b1K700E cells (n=5) and control KPC-Sf3b1K700E cells (n=4). (F) Relative gene expression of EMT genes in tumors derived by orthotopic transplantation of KPC-Sf3b1K700E cells with- and without overexpression of Map3k7. 4 biological replicates are shown. A two-sided student’s t-test was used to calculate significance in Fig. 2A-F.

    1. Author Response

      Reviewer #1 (Public Review):

      Cedillo et al. address the critically important question of how biguanides exert their positive effects on longevity using the powerful C. elegans model. Biguanides metformin and phenformin have been widely prescribed in the clinic to address metabolic challenges of diabetes; more recently the value of metformin in addressing specific cancers has emerged, and testing for impact on healthy human aging is getting underway. The need to understand the mechanism of biguanide action and the metabolic consequences of biguanide administration is clear.

      The authors report that three genes that suppress longevity associated with metformin or phenformin treatment affect a common pathway for ether lipid biosynthesis; this ether lipid biosynthesis pathway is required for mitochondrial lifespan extension, eat-2 mediated dietary restriction longevity, and TOR inhibition-associated longevity, but not insulin pathway mediated longevity. Authors document with lipid profiling how ether lipids and some other lipids are impacted by phenformin vs. genetic disruption of ether lipid biosynthesis, define the tissue primarily responsible for the ether lipid biosynthesis, show that over-expression of enzyme fard-1 is sufficient to confer most of the phenformin effect, and implicate conserved stress transcription factor SKN-1 as a downstream outcome of the ether lipid change.

      Strengths include the exploitation of the nematode model to address requirements not readily discerned in other models, the rigor of genetic documentation, the inclusion of metabolic profiling, the testing of multiple potential pathways that have been in the general discourse regarding metformin action, and the elaboration of a reasonably supported model that ether lipid biosynthesis is required for phenformin to activate longevity-promoting metabolic defenses downstream of conserved stress-responsive transcription factor SKN-1/NRF2. The novelty includes that ether lipids are directly linked to lifespan, ether lipid biosynthesis is needed for specific longevity pathways, and that ether lipids might play a role in a shift to pro-longevity metabolism.

      There are some points that require clarification and could benefit from additional study, some wording and presentation issues, and a few missing points of potential discussion.

      Overall, the data reported in this paper contribute a highly valuable advance in the biguanide field and adds stimulating hypotheses to the scientific community for moving forward in this biomedically important area.

      We thank Reviewer #1 for their positive feedback regarding our work, and for their insightful suggestions to improve the rigor and impact of this manuscript.

      Reviewer #2 (Public Review):

      This manuscript pulls together a series of integrated genetic and metabolomic data sets to examine the molecular basis for biguanide action in C. elegans. Biguanides such as Metformin are important anti-diabetic drugs as well as being explored as a therapeutic mechanism for increasing human longevity. Understanding the molecular basis of biguanide action is of general interest to those in the ageing and age-related health fields as well as to those studying metabolism and obesity. The work here has been carried out in C. elegans but the work can be picked up by those working in mammalian systems. More could be done to highlight the conserved aspects of the mechanisms involved to assist with this translatability.

      The methodology used is in general standard in the field and experiments are reported in detail. The successful use of metabolomics in C. elegans and its associated protocols is helpful as more labs expand to do this type of work.

      Strengths: In general all the experiments presented are logical and well executed with the conclusions supported by the data. I am convinced that: 1) Metformin and Phenformin extend C. elegans lifespan (although that has previously been shown), 2) biguanides induce changes in ether lipids, 3) genes required for ether lipid biogenesis are required for the lifespan incurred with biguanide treatment and, in the case of fard-1 oe, can also promote longevity when levels are increased, 4) ether lipid biogenesis is also needed for other specific key longevity processes to extend lifespan, and 5) that some key ageing regulators (skn-1, aak-2 and daf-16) are required for fard-1 oe to extend lifespan.

      Weaknesses: I was less convinced by the fat accumulation data and felt that the link between skn-1 gain of function and ether lipid genes was not clear and that the results were more correlative than mechanistic. If age-associated somatic depletion of fat is important for the lifespans seen here then this is interesting and important and identifying an epistatic, genetic link between the implicated genes and fat levels is desirable. Additionally, biguanides are reported to have major effects on the metabolism and growth of bacteria. As C. elegans grows on and eats E. coli, it is important that the biguanides in question do not alter the worm's food source. If bacterial growth is restricted or metabolically altered this would have a major impact on fat metabolism and the other outputs examined here (see Cabreiro et al 2013). Therefore the impact of these biguanide treatments on the C. elegans foods used here should be clearly addressed. Additionally, biguanide treatment is subject to dose dependence. Different concentrations of biguanide are used for different types of experiments to make correlative points e.g. growth inhibition at 160mM metformin, and metformin uptake measured in C. elegans treated with 50mM. It is not clear why, or whether this could impact the results. Can the authors be sure that these different doses do not alter metformin action and/or uptake either by the worms or the way the bacteria metabolise it? I appreciate that it is interesting and important to understand what biguanides are doing in the organism irrespective of whether this is a direct or indirect effect but knowing how the effects are achieved could be important for treatment strategies moving forwards.

      We thank Reviewer #2 for their favorable comments on our manuscript and for their helpful feedback regarding the weaknesses in our initial manuscript submission. We address the major comments below:

      1. Regarding the genetic link between SKN-1 and ether lipid biosynthetic machinery in regulation of fat accumulation, we have performed Asdf analysis in skn-1(zu135) total loss-of-function animals, rigorously indicating that biguanides require SKN-1 to drive somatic lipid depletion (Figure 6D-E). We additionally show that biguanides activate the innate immune response sensor dod-24, previously shown by us to be activated by a transcriptionally redirected SKN-1 metabolic stress response program2, in a manner that requires both SKN-1 and all ether lipid biosynthetic machinery (Figure 6F and Figure 6 – figure supplement 1C). Combined with our previous result showing that fard-1 (oe3) requires SKN-1 to extend lifespan (Figure 5D), and our observation that SKN-1 gain-of-function animals do not mimic the ether lipid pattern seen in FARD-1 overexpressing animals (Reviewer Response 1), our results rigorously corroborate that biguanides activate SKN-1 downstream of ether lipid machinery to exert a metabolic stress defense response. This activation results in alterations of somatic lipid homeostasis, innate immune response, and pro-longevity outcomes.

      2. Regarding possible indirect effects of biguanides on bacterial growth and metabolism to modulate ether lipid biosynthetic activity, we performed FAME GC/MS of Adult Day 1 nematodes treated with or without phenformin and grown on live or dead, metabolically inactive OP50-1 E. coli food sources using a rigorously established 1% PFA treatment protocol (Figure 6 – figure supplement 2)3. We additionally performed lifespan analyses in the same experimental design, with the inclusion of lifespan extending doses of metformin (Figure 6 – figure supplement 3). Both experiments show, with biological replication, that biguanide-mediated induction of ether lipid synthesis, biguanide-mediated lifespan extension, and the dependency of ether lipid machinery on biguanide-mediated lifespan extension all operate through direct interactions in the worm, as opposed to indirect effects on bacterial growth and metabolism.

      3. Regarding the use of different doses of biguanides: this point was also raised by Reviewer 1 and is responded to above in Author Response 4. Briefly, the goal of the 160 mM dosage of metformin used in our prior genetic screens10 and subsequently highlighted in Figure 1 – figure supplement 1A is to enhance the sensitivity and specificity of our discovery approach to identify effectors of the biological action of biguanides. The 160 mM dose causes potent growth inhibition in C. elegans. Our prior published work indicates that use of this dose to identify growth inhibitory effectors of biguanides can also identify longevity effectors of metformin 10. Thus, we used a similar strategy here to identify fard-1 and acl-7, which were initially identified as gene knockdowns that block the growth inhibitory effects of 160 mM metformin. The justification for the different biguanide concentrations used in this work is now included in the text for clarity (lines 135 to 153).

    1. Author Response

      Reviewer #2 (Public Review):

      "... the fact that MGN-BLA circuit disruptions were done during the conditioning phase of associative threat learning, and not during the recall phase only, complicates the side-by-side comparison: it could be argued that in this case what is disturbed is the processing of the unconditioned innately aversive stimulus in the task, the foot shock, instead of the learnt threat of the sound".

      In our previous email to the editors, we mentioned work by Barsy et al., showing that indeed the inhibition of this input during the recall phase reduces freezing response (Please see Fig. 8 in Barsy et al). In the new revision, we refer to this experiment.

      Specific comments (weaknesses):

      e) There are not enough analysis and method descriptions to demonstrate the specificity of the targeting approach

      We have included these data as supplementary figures (S2A and B, S5B, S7, S9A and S10K) and added a more detailed methodology in the method section.

      f) …the authors administer blockers of beta-adrenergic receptors systemically. This reveals differences between MGN-BLA projecting neurons, BLA neurons, and innate and learnt threat, but the mechanistic implications are not clear and should be discussed.

      In the revised manuscript, we extensively discuss these points: (This indicates that the looming stimulus conveyed through the thalamic input…may contribute to the variability in the effect of the drug in freezing response); (...in mice injected with propranolol, the defensive responses…The differences in species or strains used, or experimental parameters may contribute to the variability in the effect of the drug in freezing response.)

    1. Author Response

      Reviewer #2 (Public Review):

      Mahbub et al further elucidate the structural and functional consequences of the ARL15-CNNM2 interaction for divalent cation transport. They show that ARL15 has low GTP binding affinity and could not detect GTPase activity, questioning whether ARL15 functions as a GTPase. Although the interaction of ARL15 and CNNMs has been demonstrated by multiple groups before, this study addresses some of the key questions that are central within the TRPM-CNNM-PRL-ARL15 field. Particularly, the authors have identified residues in both ARL15 and CNNM proteins which are required for their binding to one another. In addition, they have also illustrated how PRL proteins compete with ARL15 for their binding to CNNMs. Lastly, the functional consequences of ARL15 binding to CNNMs are shown by TRPM7-mediated Zn2+ transport assays.

      We thank the reviewer for the many positive comments.

      However, the current dataset also comes with limitations. Previous studies demonstrated that PRLs interact with the CBS domains of CNNMs and lock them in their so-called "flat" confirmation. It remains unclear how ARL15 affects the structure of the CBS domains, especially in the presence of ATP. The subcellular localisation of these interactions has not been examined. Moreover, the consequences of ARL15 on TRPM7 activity are not completely elucidated. It remains unclear whether this functional effect is CNNM-dependent. Moreover, how the zinc uptakes translate to other divalent ion transport, such as magnesium, has not been examined. These questions should be answered to confirm the model as presented in Figure 7.

      We agree that CBS-pair domain dimerization is important. Structural studies of a prokaryotic CNNM homolog from our group showed large conformational changes in an ATP-binding mutant (Chen et al., Nat Comm, 2021).

      While most crystal structure of PRL-CNNM complexes do indeed show the flat conformation, it is unclear if that is a consequence of crystal packing or PRL binding. We do not see an effect of ATP on PRL binding affinity. The CBS-pair domain dimerization interface appears to be very adaptable; our recent structure of PRL-CNNM proteins from flies shows a completely different dimerization interface (Fakih et al, JBC, 2023).

      In contrast, the ARL15-CNNM interaction is affected by ATP. As suggested by the reviewer, we have examined ARL15 binding to a CNNM2 mutant (T568I) that is unable to bind ATP. These results confirm the roughly two-fold improvement in affinity is due to ATP binding to the CNNM2 CBS-pair domain and resulting conformational changes.

      As requested by all the reviewers, we have added experiments to Figure 7 that investigate the effect of ARL15 on Mg2+ transport.

    1. Author Response

      Reviewer #1 (Public Review):

      It has recently been shown that the HIV-1 protease can cleave and activate the inflammasome-forming sensor CARD8 upon treatment of infected cells with non-nucleoside reverse-transcriptase inhibitors (Wang et al., Science 2021). Here, Kulsuptrakul and colleagues show that the high susceptibility to proteolytic activation by the HIV-1 protease is a specific feature of human CARD8. They show that changes in human-specific F-F motif render the CARD8 protein of non-human primates largely resistant to cleavage. Interestingly, the protease of SIVcpz the direct precursor of pandemic HIV-1 strains are also capable of cleaving human but not chimpanzee CARD8. Thus, the authors propose that a human-specific CARD8 motif may contribute to the increased levels of inflammation and disease progression in HIV-infected humans compared to non-human primates that are naturally infected with SIV.

      Strengths of the study are that the authors convincingly show that a single human-specific amino acid change in CARD8 determines its susceptibility to cleavage by the HIV-1 protease and that the results shown are well controlled and presented. It is also interesting that SIVcpz can cleave human CARD8 and activate an inflammatory response. The major weakness is that it remains unclear whether HIV-1 of SIVcpz may induce CARD8-dependent inflammatory responses in primary CD4+ T cells or macrophages. The most relevant setting in the study was the infection of THP-1 cells with the T cell line-adapted X4-tropic HIV-1 LAI molecular clone. However, the effects on cell death were modest (Figure 3A) and on IL-1ß secretion was not dose-dependent (Figure 3B). Altogether, stronger effects were observed with VSV-G-pseudotyped HIV-1 and only those were used in subsequent experiments involving human CARD8 cleavage mutants (Figure 4). Additional evidence that primary HIV-1 molecular clones and/or SIVcpz may indeed induce CARD8-dependent inflammatory responses in primary viral target cells would greatly increase the significance of the study. In the absence of such data, conclusions about the potential role of CARD8 sensing of the viral protease for the pathogenesis of AIDS should be cautioned throughout.

      We have now added an experiment using the HIV-1 strain BG505, which uses a distinct co-receptor and is from a different clade than LAI. The results show that BG505 infection also induces CARD8-depdenent inflammasome activation (Figure 3E).

      We have also more specifically measured caspase-1 activation using a FLICA assay (which specifically measures active CASP1) in WT, CARD8 KO and CASP1 KO THP-1 cells (Figure 3D, right panel). In experiments with both VSV-g pseudotyped and infectious virus, we observed increased FLICA signal in WT but not CASP1 KO THP-1 cells. Moreover, the FLICA signal and other readouts of inflammasome activation in CARD8 KO THP-1 cells was indistinguishable from the CASP1 KO THP-1 cells (Figure 3D). Thus, our results are consistent with HIV-1 infection inducing CASP1-dependent pyroptosis downstream of CARD8.

      While we agree with the reviewers that primary cell data would be informative, we believe that this is not the main point of our paper. Moreover, others have already shown CARD8-dependent cell death after infection of primary T cells with HIV-1 (Wang et al., 2021, Science; Clark et al. 2022, Nature Chem Biol; Balibar et al. 2023, Science Trans Med; Wang & Shan, 2023, BioRxiv). We therefore have not extensively pursued primary cell experiments in this manuscript and instead have elected to use a more easily manipulatable cell line to focus on the evolutionary and mechanistic basis of CARD8 activation by simian lentiviruses.

    1. Author Response

      Reviewer #1 (Public Review):

      Point 1: Many of the initial analyses of behavior metrics, for instance predicting reaction times, number of fixations, or fixation duration, use value difference as a regressor. However, given a limited set of values, value differences are highly correlated with the option values themselves, as well as the chosen value. For instance, in this task the only time when there will be a value difference of 4 drops is when the options are 1 and 5 drops, and given the high performance of these monkeys, this means the chosen value will overwhelmingly be 5 drops. Likewise, there are only two combinations that can yield a value difference of 3 (5 vs. 2 and 4 vs 1), and each will have relatively high chosen values. Given that value motivates behavior and attracts attention, it may be that some of the putative effects of choice difficulty are actually driven by value.

      To address this question, we have adapted the methods of Balewski and colleagues (Neuron, 2022) to isolate the unique contributions of chosen value and trial difficulty to reaction time and the number of fixations in a given trial (the two behaviors modulated by difficulty in the original paper). This new analysis reveals a double dissociation in which reaction time decreases as a function of chosen value but not difficulty, while the number of fixations in a trial shows the opposite pattern. Our interpretation is that reaction time largely reflects reward anticipation, whereas the number of fixations largely reflects the amount of information required to render a decision (i.e., choice difficulty). See lines 144-167 and Figure 2.

      Point 2: Related to point 1, the study found that duration of first fixations increased with fixated values, and second (middle) fixation durations decreased with fixated value but increased with relative value of the fixated versus other value. Can this effect be more concisely described as an effect of the value of the first fixated option carrying over into behavior during the second fixation?

      This is a valid interpretation of the results. To test this directly, we now include an analysis of middle fixation duration as a function of the not-currentlyviewed target. Note that the vast majority of middle fixations are the second fixation in the trial, and therefore the value of the unattended target is typically the one that was viewed first. The analysis showed a negative correlation between middle fixation duration and the value of the unattended target which is consistent with the first fixated value carrying over to the second fixation. See lines 243-246.

      Point 3: Given that chosen (and therefore anticipated) values can motivate responses, often measured as faster reaction times or more vigorous motor movements, it seems curious that terminal non-decision times were calculated as a single value for all trials. Shouldn't this vary depending at least on chosen values, and perhaps other variables in the trial?

      In all sequential sampling model formulations we are aware of, nondecision time is considered to be fixed across trial types. Examples can be found for perceptual decisions (e.g., Resulaj et al., 2009) and in the “bifurcation point” approach used in the recent value-based decision study by Westbrook et al. (2020).

      To further investigate this issue, we asked whether other post-decision processes were sensitive to chosen value in our paradigm. To do so, we measured the interval between the center lever lift and the left or right lever press, corresponding to the time taken to perform the reach movement in each trial (reach latency). We then fit a mixed effects model explaining reach latency as a function of chosen value. While the results showed significantly faster reach latencies with higher chosen values, the effect size was very small, showing on average a ~3ms decrease per drop of juice. In other words, between the highest and lowest levels of chosen value (5 vs. 1), there is only a difference of approximately 12ms. In contrast, the main RT measure used in the study (the interval between target onset and center lever lift) is an order of magnitude more sensitive to chosen value, decreasing ~40ms per drop of juice. These results are shown in Author response image 1.

      Author response image 1.

      This suggests that post-decision processes (NDT in standard models and the additive stage in the Westbrook paper) vary only minimally as a function of chosen value. We are happy to include this analysis as a supplemental figure upon request.

      Point 4: The paper aims to demonstrate similarities between monkey and human gaze behavior in value-based decisions, but focuses mainly on a series of results from one group of collaborators (Krajbich, Rangel and colleagues). Other labs have shown additional nuance that the present data could potentially speak to. First, Cavanaugh et al. (J Exp Psychol Gen, 2014) found that gaze allocation and value differences between options independently influence drift rates on different choices. Second, gaze can correlate with choice because attention to an option amplifies its value (or enhances the accumulation of value evidence) or because chosen options are attended more after the choice is implicitly determined but not yet registered. Westbrook et al. (Science, 2020) found that these effects can be dissociated, with attention influencing choice early in the trial and choice influencing attention later. The NDTs calculated in the present study allot a consistent time to translating a choice into a motor command, but as noted above don't account for potential influences of choice or value on gaze.

      The two-stage model of gaze effects put forth by Westbrook et al. (2020) is consistent with other observations of gaze behavior and choice (i.e., Thomas et al., 2019, Smith et al., 2018, Manohar & Husain, 2013). In this model, gaze effects early in the trial are best described by a multiplicative relationship between gaze and value, whereas gaze effects later in the trial are best described with an additive model term. To test the two-stage hypothesis, Westbrook and colleagues determined a ‘bifurcation point’ for each subject that represented the time at which gaze effects transitioned from multiplicative to additive. In our data, trial durations were typically very short (<1s), making it difficult to divide trials and fit separate models to them. We therefore took at different approach: We reasoned that if gaze effects transition from multiplicative to additive at the end of the trial, then the transition point could be estimated by removing data from the end of each trial and assessing the relative fit of a multiplicative vs. additive model. If the early gaze effects are predominantly multiplicative and late gaze effects are additive, the relative goodness of fit for an additive model should decrease as more data are removed from the end of the trial. To test this idea, we compared the relative model fit of an additive vs. multiplicative models in the raw data, and for data in which successively larger epochs were removed from the end of the trial (50, 100, 150, 200, 300, and 400ms). The relative fit was assessed by computing the relative probability that each model accurately reflects the data. In addition, to identify significant differences in goodness of fit, we compared the WAIC values and their standard errors for each model (Supplemental File 3). As shown in Figure 4, the relative fit probability for both models is nonzero in the raw data 0 truncation), indicating that a neither model provides a definitive best fit, potentially reflecting a mixture of the two processes. However, the relative fit of the additive model decreases sharply as data is removed, reaching zero at 100ms truncation. 100ms is also the point at which multiplicative models provide a significantly better fit, indicated by non-overlapping standard error intervals for the two models (Supplemental File 3). Together, this suggested that the transition between early- and late-stage gaze effects likely occurs approximately 100ms before the RT.

      To minimize the influence of post-decision gaze effects, the main results use data truncated by 100ms. However, because 100ms is only an estimate, we repeated the main analyses over truncation values between 0 and 400ms, reported in Figure 6 - figure supplement 1 & Figure 7 - figure supplement 1. These show significant gaze duration biases and final gaze biases in data truncated by up to 200ms.

      Reviewer #2 (Public Review):

      Recommendation 1: The only real issue that I see with the paper is fairly obvious: the authors find that the last fixations are longer than the rest, which is inconsistent with a lot of the human work. They argue that this is due to the reaching required in this task, and they take a somewhat ad-hoc approach to trying to correct for it. Specifically, they take the difference between final and non-final, second fixations, and then choose the 95th percentile of that distribution as the amount of time to subtract from the end of each trial. This amounts to about 200 ms being removed from the end of each trial. There are several issues with this approach. First, it assumes that final and non-final fixations should be the same length, when we know from other work that final fixations are generally shorter. Second, it seems to assume that this 200ms is "the latency between the time that the subject commits to the movement and the time that the movement is actually detected by the experimenter". However, there is a mismatch between that explanation and the details of the task. Those last 200ms are before the monkey releases the middle lever, not before the monkey makes a left/right choice. When the monkey releases the middle lever, the stimuli disappear and they then have 500ms to press the left or right lever. But, the reaction time and fixation data terminate when the monkey releases the middle lever. Consequently, I don't find it very likely that the monkeys are using those last 200ms to plan their hand movement after releasing the middle lever.

      Thanks for the opportunity to clarify these points. There are three related issues:

      First, with regards to fixation durations, in the updated Figure 3 we now show durations as a function of both the absolute order in the trial (first, second, third, fourth, etc.) and the relative order (final/nonfinal). We find that durations decrease as a function of absolute order in the trial, an effect also seen in humans (see Manohar & Husain, 2013). At the same time, while holding absolute order constant, final fixations are longer than non-final fixations. To explain the discrepancy with human final fixation durations, we note that monkeys make many fewer fixations per trial (~2.5) than humans do (~3.7, computed from publicly available data from Krajbich et al., 2010.) This means that compared to humans, monkeys’ final fixations occur earlier in the trial (e.g., second or third), and are therefore comparatively longer in duration. Note that studies with humans have not independently measured fixation durations by absolute and relative order, and therefore would not have detected the potential interaction between the two effects.

      Second, the comment suggests that the final 200ms before lever lift is not spent planning the left/right movement, given that the monkeys have time after the lever lift in which to execute the movement (400 or 500ms, depending on the monkey). The presumption appears to be that 400/500ms should be sufficient to plan a left/right reach. However, we think that these two suggestions are unlikely, and that our original interpretation is the most plausible. First, the 400/500ms deadline between lift and left/right press was set to encourage the monkeys to complete the reach as fast as possible, to minimize deliberations or changes of mind after lifting the lever. More specifically, these deadlines were designed so that on ~0.5% of trials, the monkeys actually fail to complete the reach within the deadline and fail to obtain a reward. This manipulation was effective at motivating fast reaches, as the average reach latency (time between lift and press) was 165 SEM 20ms for Monkey K, and 290 SEM 100ms for Monkey C.

      Therefore, given the time pressure imposed by the task, it is very unlikely that significant reach planning occurs after the lever lift. In addition to these empirical considerations, the idea that the final moments before the RT are used for motor planning is a standard assumption in many theoretical models of choice (including sequential sampling models, see Ratcliff & McKoon 2008, for review), and is also well-supported by studies of motor control and motor system neurophysiology. Based on these, we think the assumption of some form of terminal NDT is warranted.

      Third, we have changed our method for estimating the NDT interval. In brief we sweep through a range of NDT truncation values (0-400ms) and identify the smallest interval (100ms) that minimizes the contribution of “additive” gaze effects, which are thought to reflect late-stage, post-decision gaze processes. See the response to Point 4 for Reviewer 1 above, Figure 4 and lines 267-325 in the main text. In addition, we report all of the major study results over a range of truncation values between 0 and 400ms.

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      […] Overall, the conclusions of this study are mostly well supported by the data. The concept of placental aging has been controversial, with several prior studies with conflicting viewpoints on whether placental aging occurs at all, is a normal process during gestation, or rather only a pathologic phenomenon in abnormal pregnancies. This has been rather difficult to study given the difficulty of obtaining serial placental samples in late gestation. The authors used both a mouse model of serial placental sampling and human placental samples obtained at preterm, but non-pathologic deliveries, which is an impressive accomplishment as it provides insight into a previously poorly understood timepoint of pregnancy. The data clearly demonstrate changes in the HIF-1 pathway and cellular senescence at increasing gestational ages in the third trimester, which is consistent with the process of aging in other tissues.

      Weaknesses of this study are that although the authors attribute alterations in HIF-1 pathways in advanced gestation to hypoxia, there are no experiments directly assessing whether the changes in HIF-1 pathways are due to hypoxia in either in vitro or in vivo experiments. HIF-1 has both oxygen-dependent and oxygen-independent regulation, so it is unclear which pathways contribute to placental HIF-1 activity during late gestation, especially since the third-trimester placenta is exposed to significantly higher oxygen levels compared to the early pregnancy environment. Additionally, the placenta is in close proximity to the maternal decidua, which consists of immune and stromal cells, which are also significantly affected by HIF-1. Although the in vitro experimental data in this study demonstrate that HIF-1 induction leads to a placenta senescence phenotype, it is unclear whether the in vivo treatment with HIF-1 induction acts directly on the placenta or rather on uterine myometrium or decidua, which could also contribute to the initiation of preterm labor.

      We thank Reviewer #1 for the thoughtful analysis offered here. We agree that our study has not determined whether placental HIF-1 activation occurring during late gestation is due to oxygen-dependent or oxygen-independent regulation; both possibilities are outlined in paragraph 3 of the Discussion. We used a pharmacological approach in our experiments characterizing the effects of HIF-1 stabilization in trophoblasts because it allows superior command of experimental conditions, but in future studies using hypoxic growth conditions we will determine whether oxygen sensing is a critical component of the aging effects on mitochondrial abundance, metabolism, and cellular senescence in the placenta.

      Reviewer #1 also appropriately highlights the possibility that extra-placental effects of DMOG may contribute to the initiation of preterm labor in our mouse model. Future studies making use of mice with placenta-specific transgenes will allow clarification of the specific contributions of placental HIF-1 signaling to labor onset.

      Reviewer #2 (Public Review):

      […] The major strength of this study is the use of multiple model systems to address the question at hand. The consistency of findings between mouse and human placenta, and the validation of mechanisms in vitro and in vivo modeling are strong support for their conclusions. The rationale for studying the term placentas to understand the abnormal process of preterm birth is clearly explained. Although the idea that hypoxic stress and placental senescence are triggers for labor is not novel, the comprehensiveness of the approach and idea to study the normal aging process are appreciated.

      There are some areas of the manuscript that lack clarity and weaknesses in the methodology worth noting. The rationale for focusing on senescence and HIF-1 is not clearly given that other pathways were more significantly altered in the WGCNA analysis. The placental gene expression data were from bulk transcriptomic analyses, yet the authors do not explicitly discuss the limitations of this approach. Although the reader can assume that the authors attribute the mRNA signature of aging to trophoblasts - of which, there are different types - clarification regarding their interpretation of the data and the relevant cell types would strengthen the paper. Additionally, while the inclusion of human placenta data is a major strength, the differences between mouse and human placental structure and cell types make highlighting the specific cells of interest even more important; although there are correlations between mouse and human placenta, there are also many differences, and the comparison is further limited when considering the whole placenta rather than specific cell populations.

      Additional details regarding methods and the reasons for choosing certain readouts are needed. Trophoblasts are sensitive to oxygen tension which varies according to gestational age, and it is unclear if this variable was taken into consideration in this study. Many of the cellular processes examined are well characterized in the literature yet the rationale for choosing certain markers is unclear (e.g., Glb1 for senescence; the transcripts selected as representative of the senescence-associated secretory phenotype; mtDNA lesion rate).

      Overall, the findings presented are a valuable contribution to the field. The authors provide a thoughtful discussion that places their findings in the context of current literature and poses interesting questions for future pursuit. Their efforts to be comprehensive in the characterization of placental aging is a major strength; few placental studies attempt to integrate mouse and human data to this extent, and the validation and presentation of a potential mechanism by which fetal trophoblasts signal to maternal uterine myocytes are exciting.

      Nevertheless, a clear discussion of the methodologic limitations of the study would strengthen the manuscript.

      We thank Reviewer #2 for careful consideration of our data and for the valuable feedback.

      We chose to focus on HIF-1 signaling, mitochondrial function and abundance, and cellular senescence among the pathways that emerged from WGCNA based on our testable hypothesis that these three phenomena could be linked, with HIF-1 upstream of mitochondrial changes and cellular senescence (noted in Lines 166-169 with references to studies on aging establishing this connection in other systems). The other pathways not studied here (FOXO, AMPK, mTOR signaling) are important stress-response mediators which likely play additional key roles in the biology we have begun to describe; extensive future studies are warranted to explore this fully.

      While we focused on establishing new mechanistic insights for aging in the placenta as a whole, localization of the effects described here to specific placental cell populations will be important to clarify in future studies, as is proposed in the Discussion (lines 316-319, which has been updated for emphasis). To our knowledge, no single-cell transcriptomics studies of the placenta have been published to date describing gene expression changes across advancing gestational age in healthy pregnancies, and the quantitative value of immunolocalization studies of candidate proteins in isolation would be limited.

      We do not dispute the limitations of mouse placenta as an imperfect model for the human organ; we have provided parallel data from human specimens wherever possible. We agree that this will continue to be critical in future studies, especially those aiming to achieve cell-type localization of these signaling pathways.

      As mentioned in the response to Reviewer #1, we utilized pharmacological HIF-1 induction in our experimental models rather than manipulation of oxygen tension but acknowledge the value of follow-up studies utilizing hypoxic growth conditions in the Discussion.

      SA-b-Gal activity is a key biomarker of cellular senescence, and this is most commonly assessed histochemically. Unfortunately, detecting b-galactosidase enzyme activity was not possible in the biobanked human specimens we accessed in this study (not collected/stored in a suitable format for histochemical processing), which is why we instead quantified expression of the lysosomal enzyme b-D-galactosidase, encoded by GLB1, the gene responsible for SA-b-Gal activity (Lee BY et al. Senescence-associated β-galactosidase is lysosomal β-galactosidase. Aging Cell 2006 – cited in line 106). A host of other senescence markers exists, but their appearance in senescent cells depends on the cell type and underlying drivers of the senescent phenotype (reference #45), with SA-b-Gal activity among the most universal. Similarly, the specific SASP components depend on cell type and senescence stimulus; we selected the markers in Figure 5H based on their previously established roles as mediators of placental signaling. As noted in the text (lines 120-121 with references to the relevant literature), mtDNA damage has previously been implicated as a driver of age-related loss-of-function in other tissues, which led us to explore whether mtDNA damage accompanies the other signs of mitochondrial dysfunction and dysregulation that were emerging in our data.

      Reviewer #3 (Public Review):

      In this study, Ciampa and colleagues demonstrate that HIF-1α activity is increased with gestation in humans and mice placentas and use several in vitro models to indicate that HIF activation in trophoblasts may release factors (yet to be identified) which promote myometrial contraction. Previous studies have linked placental factors to the preparation of the myometrium for labour (e.g. prostaglandins), but HIF-1α has not been implicated. Due to several issues regarding the experimental design, the results do not currently support the conclusions.

      Major concerns:

      1)  The hypothesis states that placental aging promotes parturition via HIF-1a activation, the study does not provide any evidence of an aged placenta. Aging is considered a progressive and irreversible loss of functional capacity, inability to maintain homeostasis, and decreased ability to repair the damage. The placenta retains all these abilities throughout pregnancy [PMID: 9462184], and there's no evidence that the placenta functionally declines between 35-39 weeks, otherwise, it wouldn't be able to support fetal development. However, there is evidence of a functional decline in post-term placentas (i.e. >40 weeks in humans) but the authors compare preterm placentas with E17.5 mice placentas or 39-week human placentas, both these gestational periods are prior to the onset of parturition in most pregnancies (human = 40wkGA, mice=E18.5).

      We thank Reviewer #3 for careful consideration of our manuscript and the thoughtful feedback.

      Our stance that the placenta ages across its normal lifespan is based on the appearance of cellular senescence as an emerging pathway in latter gestational timepoints in the WGCNA, with subsequent validation of cellular senescence markers accumulating in placental samples from the advanced gestational age cohort. Although functional deficits stemming from the appearance of cellular senescence late in pregnancy may not be appreciable at the whole-system level until post-dates, we propose that the subclinical cellular aging that we have detected even before labor onset may be relevant in the setting of a “second hit” stressor — eg, impaired ability to maintain homeostasis, repair damage.

      Future studies will examine functional deficits at the cellular level in response to HIF-1 stabilization (eg. Seahorse assay) and in early- versus late-gestational age primary cells. We hypothesize such studies will reveal impaired resistance to metabolic stressors in the senescent phenotype. Further, there will be value in exploring the impact of senolytics in restoring function to aged tissue.

      In both mouse and human, our selection of placentas that had not yet been exposed to spontaneous labor was deliberate, in order to avoid confounding from the inflammatory effects of labor and delivery itself (due to large swings in perfusion pressure and local ischemia-reperfusion events).

      2)  While the authors provide evidence that HIF-1α activity increases in both the human and mice placenta as gestation progresses, the mechanistic link between placental HIF-1α and parturition is not strongly supported. For example, most of the evidence is based on in vitro studies showing that conditioned media from trophoblasts treated with CoCl2 increased the contraction of myometrial cells. The specific factor responsible was not identified but the authors allude to pro- inflammatory factors such as cytokines. It was therefore interesting to note that the conditioned media had undergone a filtration step that removes all substances >10kDa, which includes the majority of cytokines and hormones.

      We appreciate the opportunity to clarify that in the filtration step, we retained the >10 kDa fraction, allowing us to clear CoCl2 itself among other <10kDa molecules. A 10kDa cutoff was chosen to allow for retention of cytokines including those previously implicated as signals that can promote contractility in uterine myocytes. As mentioned in the discussion, future studies will aim to identify specific factors within the secretome that are necessary and sufficient to induce the contractile changes.

      3) An alternative explanation is that CoCl2 treatment-induced trophoblast differentiation and the effects on myometrial contraction may be related to differences in secreted factors produced by cytotrophoblasts versus syncytiotrophoblast. Although JAR cells do not spontaneously differentiate, they can be induced to syncytialise upon cAMP stimulation. Ref 39 the authors cite shows this. Indeed, the morphology of the cells in Fig5F that were exposed to CoCl2 indicates that they may be syncytialised. Syncytialised trophoblasts also express markers of senescence including increased SA-β-gal activity and reductions in mitochondrial activity.

      The following is taken from Reference 39, final paragraph:

      For instance, among the tested cell lines the choriocarcinoma cell line BeWo is best suited for studies on syncy8al fusion. However, ACH-3P, JAR and Jeg-3 cells react to forskolin treatment with elevated levels of hCG they do not form syncy8a73 and are therefore poor models for syncy8aliza8on over a period of 7

      days.

      4)  The in vivo experiment showing reduced gestation length in pregnant mice receiving DMOG injection is interesting. However, we cannot exclude the effects of DMOG on non-placental tissues (both maternal and fetal) or the non-specific effects of DMOG (i.e. HIF-1α independent). Furthermore, previous studies using a more direct approach to alter HIF-1α activity in the placenta using trophoblast-specific overexpression of HIF-1α in mice do not lead to changes in gestation length [PMID: 30808910].

      As stated in the response to Reviewer #1, we acknowledge the possibility that extra-placental effects of DMOG may contribute to the initiation of preterm labor in our mouse model. Future studies making use of mice with placenta-specific transgenes will allow clarification of the specific contributions of placental HIF-1 signaling to labor onset.

      Regarding PMID 30808919, as noted in our Discussion (lines 326-335), an important distinction is that the referenced paper studied effects of trophoblast- specific expression of a constitutively active HIF1 from the beginning of pregnancy, and their findings highlight markedly abnormal placental development in that context. By contrast, we describe effects of HIF-1 stabilization late in pregnancy in a normally developed placenta.

      5)  Lack of appropriate experimental models. E.g. JAR choriocarcinomas are not an ideal model of the human trophoblast as they are malignant. Much better models are available e.g. primary human trophoblasts from term placentas or human trophoblast stem cells from first-trimester placentas. Similarly, the mouse model is also not specific as discussed above.

      We agree with the Reviewer that the JAR cell line has important differences from human trophoblasts, nonetheless as stated in the Results section (Lines 181-184) they were used in order to model long-term exposure to HIF-1 induction without underlying syncytialization confounding the findings, as would be the case with primary cells.

      6)  Lack of cohesion between the different experimental models. E.g. CoCl2 was used to induce hypoxia/HIF1α in mouse TBs, but DMOG was used in vivo in mice. SA-β Gal staining was carried out in cells but not in mouse or human tissues.

      We used two distinct prolyl hydroxylase inhibitors (CoCl2 and DMOG) in our in vitro studies (Figures 4, 5, and 5 Supplement) to demonstrate reproducibility across models and to help attribute the effects to HIF-1 stabilization rather than off-target effects. DMOG was chosen for the in vivo studies because of its prior use in mice.

      As mentioned in response to reviewer 2, detecting b-galactosidase enzyme activity was not possible in the biobanked human specimens we accessed in this study (not collected/stored in a suitable format for histochemical processing), which is why we instead quantified expression of the lysosomal enzyme b-D- galactosidase, encoded by GLB1, the gene responsible for SA-b-Gal activity (Lee BY et al. Senescence-associated β-galactosidase is lysosomal β-galactosidase. Aging Cell 2006 – cited in line 106).

      7)  Evidence of senescence and mitochondrial abundance could be strengthened by providing additional markers. E.g. only GLB1 mRNA expression is provided as evidence of senescence, and COX IV protein for mitochondrial abundance in mouse and human placentas.

      As mentioned in response to Reviewer 2, the appearance of other senescence markers depends on the cell type and underlying drivers of the senescent phenotype (reference #45), with SA-b-Gal activity among the most universal. Future studies will further probe which markers accompany cellular senescence in aging placenta to define the senescence phenotype in this setting.

      8)  Given that the main goal of this study was to investigate the role of hypoxia, hypoxia (i.e. low oxygen) was never directly induced and the results were based on chemical inducers of HIF-1α which have multiple off-target effects.

      As mentioned in response to Reviewer 1, we agree that our study has not determined whether placental HIF-1 activation occurring during late gestation is due to oxygen-dependent or oxygen-independent regulation; both possibilities are outlined in paragraph 3 of the Discussion. We used a pharmacological approach in our foundational experiments characterizing the effects of HIF-1 stabilization in trophoblasts because it allows superior command of experimental conditions, but in future studies using hypoxic growth conditions we will determine whether oxygen sensing is a critical component of the aging effects on mitochondrial abundance, metabolism, and cellular senescence in the placenta. We are encouraged by the consistency of the senescence phenotype in JAR cells following administration of two distinct prolyl hydroxylase inhibitors, CoCl2 and DMOG, suggesting that the effects seen are more likely attributable to HIF-1 stabilization (versus off-target effects).

      Reviewer #1 (Recommendations For The Authors):

      This is a very interesting and well-written study that supports the concept of placental aging using a combination of a mouse model, in vitro cell lines, and human placental samples.

      Overall this is an important contribution to our current understanding of placental biology highlighting the role of the HIF-1 pathway and merits publication.

      This study would be strengthened by the following addition:

      - As stated in the Public Review, the authors attribute HIF-1 induction at increased gestation to hypoxia, however, this has not been demonstrated experimentally and HIF-1 has both O2-dependent and independent regulation. The authors could perform an in vitro culture of primary placental cells or JAR cells under hypoxic conditions and assess the HIF-1 pathway/mitochondria activity to provide support for a hypoxia-dependent mechanism.

      We thank Reviewer #1 for the thoughtful analysis offered here. We agree that our study has not determined whether placental HIF-1 activation occurring during late gestation is due to oxygen-dependent or oxygen-independent regulation; both possibilities are outlined in paragraph 3 of the Discussion. We used a pharmacological approach to characterize effects of HIF-1 stabilization in trophoblasts because it allows superior command of experimental conditions, but in future studies using hypoxic growth conditions we will determine whether oxygen sensing is a critical component of the aging effects on mitochondrial abundance, metabolism, and cellular senescence in the placenta.

      Reviewer #2 (Recommendations For The Authors):

      Major comments:

      1. The rationale for the pursuit of HIF-1 and cellular senescence after initial WGCNA was weakly supported, though this avenue led to interesting and impactful results. The text could provide a stronger rationale for pursuing these pathways as opposed to the top- upregulated and downregulated pathways, perhaps by emphasizing previously published work in the field.

      We thank Reviewer #2 for careful consideration of our data and for the valuable feedback.

      We chose to focus on HIF-1 signaling, mitochondrial function and abundance, and cellular senescence among the pathways that emerged from WGCNA based on our testable hypothesis that these three phenomena could be linked, with HIF-1 upstream of mitochondrial changes and cellular senescence (noted in Lines 166-169 with references to studies establishing this connection in other systems). The other pathways not studied here (FOXO, AMPK, mTOR signaling) are important stress-response mediators which likely play additional key roles in the biology we have begun to describe; extensive future studies are warranted to explore this fully.

      2.  Validation of the gene expression data with placental histology and immunolocalization of proteins of interest would bolster the study by identifying the relevant cell types and showing changes in protein levels over time. Additionally, single-cell RNA-seq data from mouse and human placenta are available. Exploration of these published datasets would also be interesting.

      While we focused on establishing new mechanistic insights for aging in the placenta as a whole, localization of the effects described here to specific placental cell populations will be important to clarify in future studies, as is proposed in the Discussion (lines 316-319, which has been updated for emphasis). To our knowledge, no single-cell transcriptomics studies of the placenta have been published to date describing gene expression across advancing gestational age timepoints, and the value of single timepoint “snapshots” that exist in the literature is limited for the purpose of validating the aging mechanisms we have proposed here.

      3. In Figure 2, all of the data have a gestational age-dependent trend except for Fig 2F where the mtDNA lesion rate drops at e15.5. What is the authors' interpretation of these results?

      A testable hypothesis to explain this result is that as mtDNA damage begins to accumulate, cells are initially able to respond via mitophagy, removing those mitochondria with damaged DNA (e15.5), until that response is overwhelmed, allowing the detectable mtDNA lesion rate to spike at e17.5.

      4. In paragraph three of the results, the authors conclude that there is an accumulation of ROS stress, yet there is no direct measurement of ROS. Measuring ROS directly in this setting would strengthen this conclusion (similar to what is done in Figure 5E).

      We interpreted the accumulation of mtDNA damage as a marker of ROS stress, but the Reviewer correctly points out that we did not measure ROS directly in this model. We have updated the language (line 126) to be more accurate.

      5. There is a discrepancy in the length of CoCl2 treatment in primary trophoblasts vs. JAR cells (48 hours vs. 6 days). Treatment with DMOG in JAR cells also differed (4 days). Do the authors have any evidence that longer vs. shorter stabilization of HIF-1 has secondary effects in these cells that could affect the results of the study?

      We preliminarily explored the timecourse of the effects of HIF-1 stabilization in JAR cells, as shown in Fig 5 – Supp 1, and also found that the decline in mt abundance precedes the appearance of senescence markers (data not shown). JAR cells are a much better model for exploring effects of chronic exposure to HIF-1 stabilization because they do not syncytialize as primary trophoblasts do. We limited our studies in primary cells for this reason to a 48h- timepoint, because the effects of syncytialization would confound longer studies. With the aim of simply validating our CoCl2 findings with a separate prolyl hydroxylase inhibitor, we picked an intermediate timepoint for convenience. The reviewer correctly pinpoints the value of future studies that further dissect the kinetics of these phenomena, which could also potentially identify at which phases the effects are reversible.

      6. The authors evaluated mitochondrial effects in a time course experiment (Figure 5 Supplement 1) and found that the effects of HIF-1 stabilization emerged after three days of treatment, but no such experiment was conducted to determine the timing of senescence with SA-βGal. It would be interesting to correlate the mitochondrial effects and onset of senescence caused by HIF-1 stabilization.

      In future studies we will continue to explore the relative dynamics of HIF1 stabilization vs mitochondrial effects and senescence. In doing so it will be important to explore other markers of senescence; while SAbGal is the most universal senescence marker, others (such as p16 or p21 induction), if present, may lend themselves to more precise quantification and a clearer definition of senescence “start time”.

      7. IL-1β is used in experiments testing the effect of JAR-conditioned media on uterine myocytes. The conclusion of this experiment is that conditioned media from JAR cells treated with CoCl2, but not from untreated JAR cells, results in myocyte contraction (Figure 6E) and expression of contraction-associated genes (Figure 6A-D). Although the figure shows that IL-1β + conditioned media increases expression of these genes compared to IL- 1β alone, an added control condition where conditioned media is used in the absence of IL- 1β would underscore this conclusion and show whether the components in the conditioned media are sufficient to induce gene expression and contraction. There is also no justification for the 10 kDa cutoff in this experiment.

      We did test whether conditioned media could induce contractile changes in myocytes in the absence of IL-1b co-stimulation, and indeed found that the CoCl2-stimulated conditioned media does elicit this effect on its own. We eliminated these conditions from the published figure in an aim to limit its complexity, but present them here (*, p< 0.05 vs no treatment):

      Author response image 1.<br />

      The filtration step was implemented to concentrate the conditioned media prior to applying it to the myocytes. A 10kDa cutoff was chosen to ensure retention of most cytokines, especially those previously implicated in contractile switching of uterine myocytes (eg. IL1b, IL1a, TNFa each approximately 18 kDa, IL6 approximately 21 kDa). The filtration and wash steps also ensured clearance of CoCl2 out of the conditioned media before it was applied to myocytes.

      8. Figure 7 shows the use of DMOG in vivo to stabilize HIF-1, which induces preterm labor. Is there a way to inhibit HIF-1 signaling downstream to show that preterm labor in vivo is specifically due to HIF-1 stabilization and not an off-target effect of DMOG? Rescue experiments either in vitro or in DMOG-treated mice using HIF-1s inhibitors would be very compelling although we recognize these may not be feasible. Regardless, a comment on the translational impact of this study and the potential of targeting the HIF pathway to treat or prevent SPTB should be considered.

      There is considerable research into HIF inhibitors as cancer therapeutics (and FDA approval of a HIF2a inhibitor, belzutifan, for von Hippel Lindau disease). Future studies into the ability of HIF-1 inhibitors to rescue preterm labor are certainly of interest, though translational potential may be limited by systemic toxicity unless a targeted placenta-specific delivery system can be achieved. Genetic approaches using placenta-specific knockout might also be useful, particularly if conditional knockout can be achieved to limit the effects on HIF-1 signaling to late pregnancy, after placental development is complete.

      9. The effect of JAR-conditioned media on uterine myocytes is very interesting. The authors might consider additional discussion of what the putative mediators are and what is suggested in the preterm birth literature (e.g., Sheller-Miller, PMID: 30679631). Assessment of other SASP factors in using ELISA, e.g., would strengthen the study, or at least a rationale for the genes evaluated.

      We agree that follow-up studies should be done to identify which components of the secretome are key for mediating the contractile effect in myocytes, as noted in the Discussion (Lines 271-273), now updated for emphasis and with the suggested references.

      Additional minor comments:

      10.  For Figure 1A, without reading the figure legend it is unclear that the vertical color graph represents different gene clusters; consider labeling the y-axis with 'Gene clusters.' Also, blue and turquoise clusters could be labeled as "upregulated" or "downregulated" for simplicity and clarity.

      Updated, thank you for the suggestions.

      11. For mRNA expression wherever relevant, state in the figure legends and main text the method used (i.e., qPCR) and what the reference timepoint and normalization strategy was. For instance, in Figure 2 (and supplement 1), we were of the impression that the e15.5 and e17.5 values were normalized to e13.5.

      Updated, thank you for the suggestions.

      12.  For Figure 5, can the authors explain in the main text what is Mtsox and how is it a marker for mitochondrial depolarization? In 5E, it would be helpful to mention what is TMRE and FCCP are and how it measures mitochondrial ROS.

      Updated, thank you for the suggestions.

      13.  Figure 5 Supplement 2 and Figure 5 Supplement 3 appear to be missing labels indicating black vs. blue vs. red datasets.

      Updated, thank you for the suggestion.

      14.  Figure 7c, what is the n in each group?

      Gestational length data in Figures 7c and 7d each reflect the same n=8 mice per group.

      15.  Minor edits are needed for inconsistent use of terms (pre-term vs. preterm, for example) and grammar.

      Updated, thank you for the suggestion.

      Suggested additions to the Methods section to improve reproducibility:

      16.    Include more detail re: cell culture conditions, including % oxygen.

      Updated, thank you.

      17.  Collagen lattice contraction assay - include details on how measurements of collagen discs were performed. Was this automated?

      Updated, thank you.

      18.  Immunoblots. Details, such as the amount of protein loaded, gel composition, protein extraction method, etc., would be helpful.

      Updated, thank you.

      Reviewer #3 (Recommendations For The Authors):

      Minor comments:

      1.  It is unclear why 2-way ANOVA was performed in figure 3 when there are only 2 groups under comparison: <35 wks vs >39 wks

      As in Figure 2D, multiple genes are analyzed together in Figure 3A using 2-way ANOVA with the two factors being 1) gestational age and 2) individual gene targets (GLB1, HK2, GLUT1). This approach allows us to define the combined effect of gestational age on expression level of all of the genes whose expression is increasing.

      2.  Scale bars missing in some figures - Fig4E, Fig 5D, 5F, Fig5 - Suppl 3C.

      Scale bars were not captured with the original images; we regret this omission.

    1. Author Response:

      Reviewer #1 (Public Review):

      […] Collective variable choice:

      The explanation for the choice of CVs on page 5 is not sufficient to understand the process and its likely success. How were the most important and unimportant CVs identified exactly? Table 2 on page 19 shows only gate distances, cavity-filter distances and a single variable related to filter structure itself (77 CA - 77 CA) representing a pinch. Is that pinching really the only slow variable associated with inactivation changes in the filter? Why are there no variables, say for carbonyl flipping, E71 or D80 movements or even for ion and water occupancy (although water may be sampled with control of other interactions, such as involving L81)?

      CVs for steering simulations were selected based on structural comparisons between the X-ray structures as well as the information about the inactivation available in the literature. These steering CVs were later used as CVs for the string method with the exception of those found to be irrelevant in preliminary string simulations (see methods for details). For example we discarded CVs that would just oscillate freely and thus represent fast equilibrating CVs. We will add additional explanations to the methods section of the manuscript in revisions.

      Carbonyl flipping, E71 and D80 movement and SF occupancy were observed in the initial steering simulation to correlate with the 77 CA - 77 CA opening and the opening of the L81-W67 contact. They were not biased but followed the expected path as a consequence of the motion of the imposed selectivity filter constriction. Therefore, they did need not be explicitly biased. The same can be said with respect to water occupancy behind the selectivity filter, which correlates with the opening of the L81-W67 contact.

      I understand that the X-ray structure is the one source of information used to define an inactivated structure and is one with just a pinch and no complete carbonyl flipping away from the pore, as has been identified in past studies and discussed as being involved by the authors on page 14. Key changes like carbonyl flipping surely are part of the story and may be slow variables. At the very least, if not part of the CV space, could be analysed.

      Indeed, the reviewer is correct in stating that there are molecular motions of interest aside from the ones included in the CV space. Figure 3 and associated supplementary figures indeed extensively investigate the probability distributions of many of those as the system progresses along the inactivation pathway. These results are presented in the section titled “Free energy landscapes offer insights into atomistic-resolution mechanistic details”. Carbonyl flipping seemed to be highly correlated with the 77CA- 77CA distance and this analysis was therefore not presented.

      On page 10 the authors discuss possible differences in Amber and Charmm involving the extent to which the 4 subunits change in respect to the L81-W67 water pathway and W67-D80 hydrogen bond, arguing the different results for force field could be to do with different numbers of subunits doing different things. If I understand, the chosen CVs are all tetramer-based distances (including across subunits) and not subunit-based CVs, so that random and incomplete changes may occur to subunits for a given point in CV space.

      In fact, some of the CVs represent intrasubunit distances, for example L81-W67 while others represent distance across subunits. This distinction never represented a criterion to select CVs.

      There is thus potential for the string to converge on a local minimum pathway with partial changes to its interactions within and between subunits, and may not be a unique global solution. Can the authors please explain whether or not this is possible and what analysis has been done to check it?

      This indeed represent a well-recognized shortcoming of all string-based enhanced sampling methods. The string-of-swarms method used herein indeed assumes that there is a dominant minimum free energy path and requires a reasonable starting path. One major advantage of this methodological choice, however, is that the path can be described in high dimension, thus avoiding stark dimensionality reduction as is the case in many collective-variable based methods such as metadynamics.

      We do note that though the initial path was the same for the two force fields, the final pathway is different, which tends to indicate that the results do not only depend on the initial path but also on the force field guiding the dynamics of the process.

      X-ray endpoints and initial pathway:

      The string was created from a pulling/steered MD between existing X-ray structures for the closed (5VKH), partially open (3FB5), fully open (5VK6) and finally inactivated (5VKE) states. The authors write on page 12 that "The block of conduction during inactivation appears to result from pinching at the selectivity filter...", but given the end point was forced to be the X-ray structure with pinching, wasn't this outcome predetermined? This raises a significant point of how much has choice of endpoints predetermined the final states of the string? i.e. How much is an end state actually allowed to draft away from the initial Xray structure. Was a bead placed at the very endpoint and allowed to update via swarms, or was it fixed and all beads just interpolate between those fixed end states? The reason this is important is that it is plausible the inactivated crystal structure with pinching but not other changes (such as complete V76 carbonyl flipping or outer filter splaying), may not be the actual free energy minimum structure for that state and that force field.

      The reviewer is right to point out that this observation is most likely a consequence of the choice of the end points of the initial string. The string method assumes that the end points of the string are fairly representative of the initial and final states of the processed studied. In this case, for ease of use, the endpoints of the simulation were fixed. When endpoints are left free to relax, they drift towards the closest minima and make comparisons between force fields, between simulation conditions, etc more difficult.

      We do agree that the selection of initial and final states as well as the starting string are important modeling choices. For this reason, we were very mindful and made these choices based on the existing published evidence (available at the time).

      We will make these details explicit in a revised version of the manuscript.

      Another obvious concern is the possible reliance on the initial pulling procedure used before string optimisation began. Fig.2 Supp 1 shows generally that the Amber path stayed pretty close to the initial steered MD path, whereas Charmm drifted downward away from that path. One could justifiably ask, if a very different initial path was chosen, might different local minimum pathways result, including Amber sampling a path like Charmm? How does one test whether or not the final path has not been trapped in some local trough of free energy? e.g. Imagine starting the Amber string using an initial path like the more diagonal Charmm-like path, or even a more extreme unphysiological one, such as a steered trajectory that initially inactivates before opening the gate. Would the final results be the same? I appreciate the simulations are very expensive and such trials may not be possible, but what evidence is there that the final path has not been trapped away from the global minimum?

      As stated above, the reviewer is right to point out the weakness of the method of converging to the closest local minimum free energy path. It is unfortunately computationally infeasible to test many possible paths. For this reason, we chose to initiate our calculations with a pathways based on experimental data; in this case based on available X-ray structures. In addition, it is necessary to contrast the results of the simulation with available experimental evidence: the string method with swarms of trajectories, when aptly used, has a history of bringing useful insights to several biological systems (Lev et al. 2017b; Suh et al. 2019, Fleetwood et al 2021, 2019; McComas et al. 2022).

      As already noted, the fact that the two force field yield very different energy landscapes is evident since they would otherwise converge to the same final pathway given the same initial pathway guess.

      One test offered by the authors is a set of unbiased MD simulations launched from points on the string. The authors ran 200ns simulations and write on page 5 that "These simulations have the expected stability based on their starting values. This is a good quality test to check the correct estimation of the general features of the free energy surface". While this sounds reasonable, 200ns MD may only be sufficient to begin to explore locally within the solved free energy trough, much like the swarms in the iterations were able to do. My own examination of Fig2 Supp 5 is that some of these simulations linger around the expected states and some drift away within the general trough of sampling, which is a good sign. What those 200ns simulations may not be able to do is escape that trough and see evidence of other possible solutions, beyond what was sampled with the string that was tied to Xray endpoints and trapped in the solution pathway that was already formed after 100-300 iterations. Overall, the string involved 800 iterations of 10ps swarms (80ns around each bead; albeit 32 trajectories in parallel), allowing good local sampling around the beads in the free energy trough, but in terms of ability to diffuse away from that point, only being comparable in contiguous trajectory time to the unbiased MD tests. It therefore would have been interesting to see if longer simulations remain in this trough; though I understand the challenges in running so much MD. Such simulations may, however, lead to exploration beyond what was seen in the string solutions.

      We agree with the authors that longer simulations would be very interesting to understand the behavior of the string-of-swarms method and how it behaves for this intricate FES. Note however, that 80 ns divided over 32 trajectories yields an overall trajectory length that is ~two orders of magnitude below a single 200 ns-long simulation. We thus still stand by our statement that the fact that these simulations behave as expected from the free energy landscapes is a good quality check of the CVs and of the resulting free energy landscapes.

      Force field effects and origin:

      Regarding the effect of the chosen force field, the authors state that "Given that our simulations were conducted under activating conditions, we had expected the open states to be more populated than the closed ones. Simulations carried out at higher pH may be able to resolve this inconsistency". Also running at high pH would be a nice thing to do to prove the method is in fact sensitive to conditions to see a shift in the distribution of states.

      Indeed this is the logical next step for future work.

      But the question is why were open states not more occupied under low pH and 50mM K+? From my analysis of the figures, the results show that the Charmm force field tends to allow for opening of the channel somewhat (at least with similar free energy for partially and fully open to closed) whereas Amber tends to close the channel more (with more uphill energy as the channel opens than Charmm; Fig 2). i.e. at low pH and 50 K+, isn't the Amber model incorrectly reporting fairly strong bias against opening? Moreover, regarding the free energy of the inactivated state itself, why should we not expect equilibrated channels under activating conditions to eventually fall into an inactivated state, in which case we should expect low free energy of that state (as found with Charmm and not Amber in Fig2), but with a slow rate. While much discussion in the manuscript appears to discuss limitations in Charmm (although on page 12 discussion leans either way), these factors may seem to favour Charmm over Amber.

      We would like to thank the reviewer for raising these points. We can only speculate about what might be the reasons for these discrepancies, and we have tried to be as honest as possible in our manuscript and avoid overinterpretation of our results. It is interesting that Reviewer 2 gathered from our data that the AMBER results were more consistent with expectations while this reviewer thought the opposite. This does reinforce our decision to avoid taking sides and present both options. Our personal opinion is currently that both force fields are imperfect at describing all the aspects of the activation-inactivation gates coupling. We will include more discussion in the revisions of the manuscript.

      On page 12 the authors explain the possible causes for force field dependence, although this seems limited to ion interactions, glutamate charges and dihedrals. But it would be nice to get a bit more insight into what terms may have influenced the pathway, in particular involving interactions between TM2 and the base of the selectivity filter and hydration behind the filter. Regarding ion interactions, is there a good reason to believe ions are key to the difference seen? i.e. How were ions involved differently in the state transitions involving Amber and Charmm? The authors have noted a role for ion-carbonyl interactions.

      We agree that this would be interesting, but judged that this would be better done in a separate study. We do note that the K-carbonyl interactions have been reported as candidates for these discrepancies, as mentioned and cited in the manuscript. Very recent simulations using ab initio MD support that the overstimation of the K-carbonyl interaction is the reason for the low conductance of potassium channels in classical MD, refer to Hui et al. Biophysical Journal, vol. 122, issue 3, p. 520a. We will add this reference in revisions.

      It is important that the authors explain which is the two competing models has been used and why. i.e. Off-the-shelf Charmm36 force field includes strong K+-backbone carbonyl interaction, previously seen to promote high ion occupancy, similar to Amber, whereas Lennard-Jones parameters modified to match N-methyl-acetamide and water partitioning (such as early Berneche, Noskov and Roux work) reduce ion occupancy and increase water content inside the filter.

      We have used “off-the-shelf” or conventional CHARMM36 as described in the literature cited.

      Reviewer #2 (Public Review):

      […] The study is impressive and interesting. However, I have a number of concerns that the authors may wish to address in a revised version of the manuscript.

      First, concerning a set of unbiased simulations spawned at different regions of the investigated free energy landscapes, the authors write: "These simulations have the expected stability based on their starting values".

      Fig 2.c shows a rather smooth downhill slope in the free energy curve towards the closed state for AMBER , so wouldn't the expected behavior in that case be that all unbiased trajectories end up in the closed state, or at least travel a substantial amount in that direction? However, that is not observed. This should be further investigated.

      It is true that this would be the effect we should observe after a significant simulation time. Resorting to 200ns-long simulations, our goal was to test whether the local free energy basins identified by the string-of-swarms method were indeed metastable. If that were the case, we would expect the trajectories to remain within the basins on medium timescales due to the kinetic barriers that would need to be overcome to transfer to other basins. Of course, if simulations were long enough, all basins would eventually be explored by the trajectory with a probability related to the relative free energy of the basins.

      Second, "This suggests that stabilization of the partially open state by the removal of bound lipids can explain the increase in open probability" is an odd statement, as "stabilization of the partially open state" means almost the same as "increase in open probability".

      It is true that one appears to necessarily imply the other. An increase in open probability could potentially come from two effects: a stabilization of the open state or a destabilization of the closed one. In a two-state system, the two cases are indistinguishable since only relative difference in free energies matter. However, this is a three state system, if one takes as a reference the energy of the inactivated state, there is an effective difference in the physics of the system if a stabilization of the open state or a destabilization of the closed state occurs.

      The statement "both force fields yield inactivation barriers that are orders of magnitude lower than what is expected from electrophysiology experiments" seems inaccurate. Perhaps the authors mean "inactivation rates that are orders of magnitude lower" rather than barriers?

      Yes, this was a mistake on our part. We will amend the manuscript.

      In addition, the assertion "The CHARMM force field, on the other hand, results in landscapes in agreement with the fact that one of the dominant states in activating conditions is the partially open state, as revealed by a combination of ssNMR+MD." seems to hold for the AMBER force field without PG lipids rather than for CHARMM?

      AMBER simulations with or without bound PG lipids have a fully open state basin within the minimum free energy path (Fig 4a, 4b) which is not the case for CHARMM (Fig 2b). In that sense, the CHRAMM force field seems to be in better agreement with the ssNMR data. The ssNMR+MD study however suggests that the PO open state basin should be the lowest in free energy. In both cases, however, the C basin is lower in free energy than the PO. We can only speculate about why that may be.

      Together with the higher barrier towards the inactivated state as well as covering most known x-ray structures along the inactivation pathway, this would seem to point all in the direction that the studied AMBER force field provides a more faithful picture of the inactivation pathway than CHARMM. I, therefore, find the somewhat inconclusive summary as presented in Fig. 5 a bit uninformative, as it suggests that both mechanisms might be equally likely.

      Although the X-ray structures do suggest an AMBER-like path, structural information in isolation is not sufficient to fully understand a phenomenon of dynamical nature. The X-ray structures of metastable structures particularly of open states require the use of engineered mutations and other techniques to trap these states. We of course do not question that a lot of very valuable information can be derived from them, but they should be considered in the context of other computational and experimental techniques. We believe we are very explicit in the text in discussing the weakness and strengths of either possibilities. In fact, we find it interesting that Reviewer 1 gathered from our data that the CHARMM results were more consistent with expectations. This does reinforce our decision to avoid taking sides and present both options. Our personal opinion is currently that both force fields are imperfect at describing all the aspects of the activation-inactivation gates coupling.

      Overall, the study would benefit from a follow-up step to become more conclusive. This could be either in the form of the suggested L81 mutation or changing the simulation conditions to inactivating conditions such as low salt, in which case the inactivated state would be expected to become a minimum, which would provide an additional reference point for validation. Either of these would narrow down the spectrum of possible mechanisms.

      We absolutely agree with this reviewer. These are great suggestions for further investigations that will definitely be considered in future studies.

      Reviewer #3 (Public Review):

      […] The analysis is careful and is state-of-the-art. The results reveal remarkable differences between the CHARMM and AMBER force fields.

      Unfortunately, the "elephant in the room" with regards to K+ channel inactivation is the significance of the dilated structures more recently obtained by Xray and EM. While it is worthwhile doing our best to really understand the constriction mechanism of KcsA, and the present manuscript does an excellent job at that, the ground has shifted and understanding finer points about KcsA constriction has become, unfortunately, not the most prominent issue in the field at the present time.

      Let's discuss the current situation about the inactivation of K+ channels. The situation is fairly unsettled. The KcsA channel was the first for which some atomic structure and mechanism, centered on a constriction of the selectivity filter, were proposed. The constricted conformation really does not conduct because the filter is too narrow. More recently a few structures (Xray and EM) for channel mutants known to have more propensity to inactivate have revealed a different conformation of the filter which appears to be dilated toward the extracellular side. This is a conformation that had never been seen previously. Different "camps" co-exist in the K+ channel community about inactivation. Those who were very skeptical about the constricted conformation claim that the new dilated structures is the final truth. While the dilated structures are certainly part of the body of information that we have now, but their significance remains somewhat unclear if anything because of the fact that they are not perfectly occluded and they allow ion conduction! While it is worthwhile doing our best to really understand the constriction mechanism of KcsA, and the present manuscript does an excellent job at that, the ground has shifted and understanding finer points about KcsA constriction has become, unfortunately, not the most prominent issue in the field at the present time.

      We appreciate the reviewer’s comments and we are also grateful for the contextualization of the current state of the literature with respect to KcsA inactivation.

      Although we acknowledge the importance of these new findings and look forward to a lively debate in the literature regarding the importance of this alternative mechanism, this information was not available at the time when this study was started. In any case, for an initial study with a novel technology and with methodological choices such as the force field choice, studying the more established path seems still a valid choice. Of course, the techniques used to study this method can be used to study new hypotheses and contrast them with our current work. This will be an important line of work going forward. We will add further literature discussion to the manuscript and better outline how we decided on the scope of this study.

    1. Author Response:

      Weaknesses:

      1) In vivo studies are limited to select outcomes of recovery and do not validate or address mechanism of action in vivo.

      2) Known activities of DMAPT beyond microtubule detyrosination, such as oxidative stress, mitochondrial function and NFkB inhibition, are not considered in experimental examinations or in the interpretation of findings.

      Response: Our research indicates that parthenolide exhibits a regenerative effect within a nanomolar range and with a bell-shaped concentration-response curve in culture. Moreover, we demonstrate a close correlation between the inhibition of detyrosinated microtubules and regeneration and consider the effects of hIL-6 or PTEN-KO on detyrosination in mouse and human RGCs. Therefore, we offer a coherent and satisfactory mechanistic explanation for the effects of parthenolide. We, therefore, feel the request to experimentally explore additional, somewhat speculative possibilities is not reasonable or helpful, and this issue should not be considered as a weakness.

      Moreover, to the best of our knowledge, no evidence suggests profound antioxidative effects of DMAPT or parthenolide within these low-concentration ranges and that these would affect axon regeneration. Antioxidative effects may also not explain the observed bell-shaped curve. Furthermore, we have already considered the effect of NFkappaB in our previous work (Gobrecht et al., 2016) and shown that NFkappaB remains unaffected by low concentrations of parthenolide. Hence, conducting additional experiments addressing oxidative stress or other speculative causes will not strengthen our findings and do not justify the additional sacrifice of animal lives. Nevertheless, we will consider discussing these points in a revised version.

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      - There were no mechanistic or causation-focused investigations that could have greatly strengthened the study. The study is ultimately providing two prioritized candidate genes that may be causative, reactive, or independent of the disease.

      Answer: We thank the reviewer for their positive assessment and agree that our study lacks formal causal analyses. We are aware of this limitation and have made it clear throughout the text. Through triangulation of evidence across tissues and species, we point to very interesting candidates that merit further study, which is the usual scope of such systems genetics investigations. Nevertheless, to introduce some causal inference and reinforce the human relevance of our results, we have performed Mendelian randomization (MR) analysis to investigate the potential associations between MUC4’s gene expression in human colons and the risk of IBD. EPHA6 lacks detectable eQTLs in human colon so we could not include it in this analysis. We found suggestive evidence that increased expression of MUC4 in the sigmoid, but not transverse, colon may increase the risk of IBD (nominal p = 0.033).

      The description in the manuscript:

      However, it is unclear through what mechanisms the genetic variants in the candidate genes affect IBD susceptibility. One possibility is that genetic variation leads to altered levels of expression of the gene, ultimately affecting disease susceptibility. To test this possibility, we examined the GTEx resource (GTEx Consortium, 2013) and found that MUC4, but not EPHA6, has cis-eQTLs in the sigmoid and transverse colon. To establish likely causal links with IBD incidence, we used these associations as instruments in a two-sample Mendelian randomization (MR) (Hemani, Tilling and Smith, 2017; Hemani et al., 2018) analysis. Using publicly available GWAS summary statistics for IBD, Crohn’s disease, and ulcerative colitis (Liu et al., 2015; Elsworth et al., 2020) as outcomes, we found suggestive evidence that increased expression of MUC4 in the sigmoid, but not transverse, colon may increase the risk of IBD (nominal P value = 0.033, Appendix 1 - Table 6). No eQTLs were reported for EPHA6 in the colon, precluding us from investigating the potential consequences of changes in its expression in these tissues.

      - Figures 3 and its supplement Figure 1: Among the 39 modules, the authors have only focused on significantly overlapping up-regulated IBD-related gene modules in both CD (M28 and M32) and HFD (M9 and M28) for their follow up analyses in Figures 4 and 5 to prioritize candidate genes. However, this reviewer thinks there is great value in also focusing on significantly overlapping down-regulated IBD-related gene modules in both CD (M17) and HFD (M15 and M26) for their follow up candidate gene prioritization analyses.

      Answer: Thank you for your suggestion. We had initially performed overrepresentation analyses in HFD_M15, HFD_M26 and CD_M17, but did not find enrichments related to inflammation (see Author response image 1 below). We did not include this result in the manuscript.

      Author response image 1.

      Dot plot showing the enrichment of IBD-related modules in hallmark genesets. Gene ratios higher than 0.1 are shown and represented by dot size. Dots are colored by -Log10(BH-adjusted P values).

      We also checked the module QTL mapping for the significantly overlapping down-regulated IBD-related gene modules in both CD and HFD. We did not find any loci that are significantly associated with these modules, indicating that they are not modulated by genetic variation and hence are less likely to inform on IBD susceptibility.

      The description in the manuscript:

      The ModQTL analysis was also performed on the modules that are significantly enriched in IBD-downregulated genes (HFD_M15, HFD_M24, and HFD_M26), but no significant or suggestive QTLs were detected. Therefore, we focused on the QTL for IBD-induced genes in HFD_M28 and annotated its candidate genes based on three criteria (Figure 5B).

      Reviewer #2 (Recommendations For The Authors):

      - One small addition that would be nice would be to indicate if the two candidate genes have cis eQTL in human tissues and/or have any protein-coding variants in humans. This would provide nice additional evidence of causality for these two genes.

      Answer: Thank you for your positive assessment and suggestion. MUC4 and EPHA6 both have protein-coding variants in humans that were listed in the Appendix – Table 3 and Table 4. In addition, cis-eQTLs have been found for MUC4 in both the sigmoid and transverse colon in humans (GTEx, https://gtexportal.org/home/locusBrowserPage/ENSG00000145113.21). As indicated in our response to the first comment of Reviewer #1, we have now performed mendelian randomization on human eQTL for MUC4. However, no eQTLs were reported for EPHA6 in the colon, preventing us from performing MR analysis on its expression.

      - Also, it would be helpful to include the size of the modules in the text of the manuscript. Especially the two modules that were followed up on.

      Answer: Thank you for your suggestion, we have indicated the size of IBD-related modules in the text of the manuscript.

      The description in the manuscript:

      Enrichment analyses indicated that modules HFD_M9 (484 genes), HFD_M16 (328 genes), and HFD_M28 (123 genes) were enriched with genes that are upregulated by DSS-induced colitis, while HFD_M15 (368 genes), HFD_M24 (159 genes), and HFD_M26 (135 genes) were significantly enriched with downregulated genes (Figure 3C). Of note, more than 20% of genes involved in HFD_M9 and HFD_M28 were part of the dysregulated genes of the acute phase of mouse UC (day6 and day7) (Figure 3C). Interestingly, genes perturbed during IBD pathogenesis in humans were also enriched in HFD_M9 and HFD_M28 (Figure 3C).

      While IBD-related genes were predominantly found in HFD modules, we also found that two modules, CD_M28 (185 genes) and CD_M32 (142 genes), in CD-fed mouse colons were associated with IBD (Figure 3—figure supplement 1A). These two-modules significantly overlapped with the IBD-related HFD_M9 and HFD_M28 modules, respectively (BH-adjusted P value < 0.05) (Figure 3—figure supplement 1B). Moreover, the molecular signatures underlying human UC and Crohn’s disease were also clustered in these two modules (CD_M28 and CD_M32) under CD (Figure 3—figure supplement 1C). Collectively, the co-expression and enrichment analyses identify HFD_M9 and HFD_M28 as IBD-related modules on which we focus our subsequent investigation.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Jamge et al. sought to identify the relationships between histone variants and histone modifications in Arabidopsis by systematic genomic profiling of 13 histone variants and 12 histone modifications to define a set of "chromatin states". They find that H2A variants are key factors defining the major chromatin types (euchromatin, facultative heterochromatin, and constitutive heterochromatin) and that loss of the DDM1 chromatin remodeler leads to loss of typical constitutive heterochromatin and replacement of this state with features common to genes in euchromatin and facultative heterochromatin. This study deepens our understanding of how histone variants shape the Arabidopsis epigenome and provides a wealth of data for other researchers to explore.

      Strengths:

      1) The manuscript provides convincing evidence supporting the claims that: A) Arabidopsis nucleosomes are homotypic for H2A variants and heterotypic for H3 variants, B) that H3 variants are not associated with specific H2A variants, and C) H2A variants are strongly associated with specific histone post-translational modifications (PTMs) while H3 variants show no such strong associations with specific PTMs. These are important findings that contrast with previous observations in animal systems and suggest differences in plant and animal chromatin dynamics.

      2) The authors also performed comprehensive epigenomic profiling of all H2A, H2B, and H3 variants and 12 histone PTMs to produce a Hidden Markov Model-based chromatin state map. These studies revealed that histone H2A variants are as important as histone PTMs in defining the various chromatin states, which is unexpected and of high significance.

      3) The authors show that in ddm1 mutants, normally heterochromatic transposable element (TE) genes lose H2A.W and gain H2A.Z, along with the facultative heterochromatin and euchromatin signatures associated with H2A.Z at silent and expressed genes, respectively.

      Weaknesses:

      1) Following up on the finding that H2A.Z replaces H2A.W at TE genes in ddm1 mutants, the authors provide in vitro evidence that DDM1 binds to H2A.Z-H2B dimers. These results are taken together to conclude that DDM1 normally removes H2A.Z-H2B dimers from nucleosomes at TE genes and replaces them with H2A.W-H2B dimers. However, the evidence for this model is circumstantial and such a model raises a variety of other questions that are not addressed by the authors.

      The Reviewer raises a series of interesting questions. We proposed that DDM1 exchanges H2A.Z to H2A.W because it is the simplest model and also because LSH - the mammalian ortholog of DDM1 exchanges H2A to macroH2A. However we do stress in the revised manuscript that this is a model and other possible models that could involve chaperones and additional remodelers are possible. Addressing why the loss of DDM1 results in a net exchange of H2A.W to H2A.Z is not the purpose of this study. Here we use the perturbation caused by ddm1 as a means to address the importance of the dynamics exchange of H2A variants in setting up the chromatin states. We do observe that perturbing this dynamic exchange causes an important perturbation of chromatin states. This further supports our main conclusion: H2A variants dynamics are one important factor that organizes chromatin states.

      For example: if DDM1 does remove H2A.Z from TE genes, how does H2A.Z normally come to occupy these sites, given that they are highly DNA methylated and that H2A.Z is known to anticorrelate with DNA methylation in plants and animals?

      The anticorrelation between H2A.Z and DNA methylation is observed at steady state. The exchange of H2A.Z to H2A.W that results from the action of DDM1 would indeed remove unwanted H2A.Z from regions occupied by DNA methylation as suggested by the Reviewer.

      Given that H2A.Z does not accumulate in TEs in h2a.w mutants, how would H2A.X and H2A instead become enriched at these sites if DDM1 cannot bind these forms of H2A?

      This is a valid question: We envisage that H2A.X and H2A are deposited by remodelers and chaperones other than DDM1 in the h2a.w mutant.

      Given that there are no apparent regions with common sequence between H2A.Z and H2A.W variants that are not also shared with other H2A classes, how would DDM1 selectively bind to H2A.W-H2B and H2A.Z-H2B dimers to the exclusion of H2A(.X)-H2B dimers?

      It was shown by the Muegge Lab both in vitro and in vivo that LSH - the mammalian ortholog of DDM1 binds to macroH2A and H2A, and these two H2A variants do not share similar specific region. Yet it remains to determine which region of H2A.Z and H2A.W binds to DDM1, which does not fit in the scope of this study.

      Reviewer #2 (Public Review):

      Jamge et al. set out to delineate the relationship between histone variants, histone modifications and chromatin states in Arabidopsis seedlings and leaves. A strength of the study is its use of multiple types of data: the authors present mass-spec, immunoblotting and ChIPseq from histone variants and histone modifications. They confirm the association between certain marks and variants, in particular for H2A, and nicely describe the loss of constitutive heterochromatin in the ddm1 mutant.

      The support for some of the conclusions is weak. The title of the discussion, "histone variants drive the overall organization of chromatin states" implies a causation which wasn't investigated, and overstates the finding that some broad chromatin states can be further subdivided when one considers histone variants (adding variables to the model).

      We have removed subtitles in the discussion and have taken care to avoid over simplified statements.

      Adding variables to a ChromHMM model naturally increases the complexity of the models that can be built, however it is difficult to objectively define which level of complexity is optimal. The differences between states may be subtle to the point that they may be considered redundant. The authors claim that the sub-states they define are biologically important, but provide little evidence to support this claim. It is not obvious whether the 26 states model is much more useful than a 9-states model. Removing variables naturally affects the definition of states that depend on these variables, but it is also hard to define the biological significance of that change. This sensitivity analysis is thus not very developed.

      We agree that adding more input tracks/ data will increase the complexity.

      But we would like to mention the differences of this study and the 9-state model,

      1) We have included the histone variants which have been previously missed in chromatin state definition.

      2) The previous 9-state model used data from different tissue types. In this study all the data generated and analyzed is from seedlings.

      3) Increasing the number of states allowed us to resolve heterochromatin states compared to 9-state model which was previously missed. (BioRXiv)

      4) The biological relevance of the 26 states model is analyzed and described in depth (States BioRxiv paper).

      In addition we have now updated the Figure 2F to include a more direct comparison of marks used in both models. And we have expanded the description in the methods section and our reasoning behind using 26 state model to be analyzed in depth.

      There are issues with the logical sequence of arguments in Fig1 and Fig3. Fig1A shows that nucleosomes often contain both H3.1 and H3.3. Therefore pulling-down H3.1-containing nucleosomes also pulls down H3.3 and whether specific H2A variants associated with H3.1 cannot be answered in this way (Fig1B).

      We thank the Reviewer for point this out. If 60% of nucleosomes are homotypic and if they would associate with a specific H2A variant this would be clearly visible on WB as a much stronger band. Also, the MS data presented in Figure1 figure supplement 1D clearly show that all H2A variants associate with both H3.1 and H3.3. We have included in the revised version more detailed explanation to clarify this point.

      The same issue likely carries to the investigation of the association with H3 modifications if Fig1C and 1D, since the H3.1-HA pull-down also pulls down endogenous H3.1 (so presumably the rest of the nucleosome, with H3.3, as well).

      We disagree on this point. The H3 band corresponding to the transgene copy is either H3.1 or H3.3, so all signals on upper band (T) in Figure 1C are associated with either H3.1 (H3.1 IP) or H3.3 (H3.3 IP), thus unambiguously showing that all modifications we analyzed are present on both H3.1 and H3.3. Furthermore, data shown in Figure 1D and E, where we analyzed modifications on K27 and K36 which are in the H3 region that can be distinguished between H3.1 and H3.3 by MS clearly demonstrate that these modifications are present on both H3.1 and H3.3. In order to make this clearer, we also extended the description of this part in the Results section to emphasize this.

      In Fig3, the conclusion that it is the loss of H2A.Z -> H2A.W exchange in the ddm1 mutant that causes loss of constitutive heterochromatin is rushed. The fact that the h2a.w mutant does not recapitulate the loss of constitutive heterochromatin seen in ddm1 argues against this interpretation.

      We agree that at first the minimal impact of the loss of H2A.W alone is surprising. However, we point to the preprint https://www.biorxiv.org/content/10.1101/2022.05.31.493688v1. There it is shown that the joint loss of H2A.W and H3K9 methylation (also observed in ddm1) affects silencing of a large range of transposons that also lose silencing in ddm1.

      It's also difficult to conclude about the importance of dynamic exchanges when the ddm1 mutation has been present for generations and the chromatin landscape has fully readapted. Further work is needed to support the authors' hypothesis.

      We apologize that the Reviewer could not find the information regarding the origin of ddm1 mutant material. We did not use a mutant where ddm1 mutations was kept for generations. We were in fact very careful on this point and used leaves from ddm1 first homozygous plants segregated from heterozygous ddm1 kept heterozygous.

      The study also relies on a large number of custom (polyclonal) antibodies with no public validation data. Lack of specificity, a common issue with antibodies, would muddle the interpretation of the data.

      We added information about validation of custom made antibodies into Methods: ”Specificities of custom made polyclonal antibodies against Arabidopsis H2A.Z.9, H2A.X, H2A.W.6, H2A.13, H2A.W.7, H2Bs, and linker histone H1 were validated in previous publications (Yelagandula et al., 2014; Lorkovic et al., 2017; Jiang et al., 2020; Osakabe et al., 2021).“ For H2A.2 and H2A.Z.11 antibodies we provide validation data as Figure 2 figure supplement 1.

      Overall, this study nicely illustrates that, in Arabidopsis, histone variants (and H2A variants in particular) display specificity in modifications and genomic locations, and correlate with some chromatin sub-states. This encourages future work in epigenomics to consider histone variants with as much attention as histone modifications.

      Reviewer #3 (Public Review):

      How chromatin state is defined is an important question in the epigenetics field. Here, Jamge et al. proposed that the dynamics of histone variant exchange control the organization of histone modifications into chromatin states. They found 1) there is a tight association between H2A variants and histone modifications; 2) H2A variants are major factors that differentiate euchromatin, facultative heterochromatin, and constitutive heterochromatin; 3) the mutation in DDM1, a remodeler of H2A variants, causes the mis-assembly of chromatin states in TE region. The topic of this paper is of general interest and results are novel.

      Overall, the paper is well-written and results are clearly presented. The biochemical analysis part is solid.

      Reviewer #4 (Public Review):

      This work aims at analyzing the impact of histone variants and histone modifications on chromatin states of the Arabidopsis genome. Authors claim that histone variants are as significant as histone modifications in determining chromatin states. They also study the effect of mutations in the DDM1 gene on the exchange of H2A.Z to H2A.W, which convert the silent state of transposons into a chromatin state normally found on protein coding genes.

      This is an interesting and well done study on the organization of the Arabidopsis genome in different chromatin states, adding to the previous reports on this issue.

      Reviewer #1 (Recommendations For The Authors):

      1) The rationale for switching from using 10-day old seedlings for chromatin profiling to using mature leaves in Figure 3 and beyond is not explained and introduces additional complexity into the analyses. The reasoning should be clearly explained in the text, and there are several additional suggestions or questions related to this that should be addressed:

      This was done for practical reasons. We had already obtained some profiles of marks in ddm1 mutants and extended the dataset using the same stage of development because this tied this study with our previous study. Using different stages of development provides an additional benefit. The same chromatin states are observed in 10 day old seedlings and leaves of older plants. Constitutive heterochromatin is occupied by the same chromatin states and logically euchromatin is positioned on different genes as expected by the distinct pattern of gene expression at the two stages of development.

      A) In the 16-state model (Figure 3A), euchromatin states were not well defined compared to the 26-state model. Why did the authors not profile these marks also, and could this explain why ddm1 mutants did not show a significant effect on euchromatin states in this model?

      We apologize for the lack of detailed explanation: In our previous study we used leaves of five weeks ld plants to show the impact of ddm1 on the profiles of H2A.W.6, H2A.X, H1, H3K9me2, H3K36me3 and H3K27me3 in leaves (Jamge, Osakabe et al., 2021). This study showed that DDM1 causes the deposition of H2A.W.6 to heterochromatin and we thus used leaves to extend this investigation to the two other marks of heterochromatin (constitutive or facultative) H3K9me1, H2A.W.7 and H2A.Z.9 and H2A.Z.11.

      B) The authors state that the tissue types do not impact the definition of chromatin states. However, there is a clear difference in the portion of the genome occupied by each chromatin state between leaf and seedling (states 1, 5, 8, 13, and 14; Figure S3A).

      We had missed a comment on supFig3B and have now provided more explanation: “Although the composition of the chromatin states did not vary significantly between seedlings and leaves, each state occupied a similar proportion of the genome in seedling or leaves to the exception of state 5 present primarily in leaves and state 13 only present in seedlings (Figure 3 figure supplement 3A, right column with green bars) and the euchromatin states occupied different genes (Figure 3 figure supplement 3B) as expected by the dissimilar transcriptomes of these two developmental stages.”

      2) The naming of supplemental figures throughout the text is confusing as the legends refer to them as "Figure SX" but they are called out in the text as "Figure X figure supplement XA-B". The eLifeconvention is "Figure X figure supplement XA-B".

      This was changed.

      3) In Figure 4, Panel D is mislabeled as C in the figure, and C is lacking a label.

      4) Please remove the word "the" from the title.

      This was done

      Reviewer #2 (Recommendations For The Authors):

      Fig1D legend should also mention K37.

      This was corrected.

      Fig2F legend should say "no H3 modifications" rather than "no histone modifications" This was corrected.

      Fig4 labels C/D do not correspond to the legend. D is missing and C should go to the ddm1 stacked barplot.

      This was corrected.

      H3 variants analysis: Taking the relative abundance of H3.1 and H3.3 (and transgenes) into account would be useful to interpret the results of the nucleosome composition results. If they are at equivalent amounts, the null hypothesis of independent association would give 50% heterotypic nucleosomes and 50% homotypic.

      This is a valid comment. In an ideal system the last statement would be correct, but this does not take into account chromatin dynamics associated with replication, transcription, etc. Also, total amounts of H3.1 and H3.3 in tissue we used for the experiment is not known. It could possibly be inferred from RNAseq data, but if this would reflect real amounts of the protein is highly questionable. In Arabidopsis there are 5 H3.1 genes and 3 H3.3 genes. Nevertheless, we recalculated data for H3.1 and H3.3 and this has been updated in the main text (~60% of H3.1 and ~42% of H3.3 immunoprecipitated nucleosomes contained both H3 variants). Thus, from the available data these numbers are the best we can get.

      p. 5 bottom paragraph. Repetition.

      This was corrected

      p12. The reference to LSH is dropped in without making clear how it is relevant. Expand on mechanism to suggest similar DDM1 mechanism?

      This section was expanded to provide more background in the interpretation of the results.

      p13. inversion between H2A.W and H2A.Z in "the loss of DDM1 prevents the replacement of H2A.W by H2A.Z".

      This was corrected

      p13. make it clear that the last sentence of the results is a working model, not a fully backed up conclusion.

      Alternative models are mentioned in this section and in the discussion in the revised version.

      p14 middle paragraph. Not clear what "in silico simulation" refers to. Simply chromatin-state classification with ChromHMM?

      This refers to the Jacard index calculation in Fig. 2F that models the impact of the loss of H2A variants (or other elements of chromatin) on the definition of chromatin states by ChromHMM. This is now clarified.

      p14 bottom paragraph: the H2A.Z tail repression of ubiquitin ligase but its being the favoured substrate for H2AK121Ub is apparently contradictory. Can this be explained?

      This refers to H2B Ubiquitination and is now clarified

      p15. Correlation between variants and modifications/chromatin states does not necessarily mean causation.

      We agree and have improved the revised version in this respect.

      p15 "forward feedback loop" is ambiguous (is it a feed-forward loop? A feedback loop?), just use "positive feedback loop".

      This was corrected.

      p23 top "$(Ingouff et al)" doesn't seem properly formatted.

      This reference did not belong there and has been removed.

      Data availability: GSE226469 is not public. The manuscript also mentions availability of source data for all the main figures, but I could not find it. It would be great to make the code publicly available too.

      All the data and code will be public upon posting the revised version of the manuscript.

      Reviewer #3 (Recommendations For The Authors):

      My major concern is authors only used DDM1 as an example to show that the exchange of the histone variant contributes to definition and distribution of chromatin state on transposons (i.e., constitutive heterochromatin regions associated with H2A.W). Readers may wonder whether similar mechanisms also work at the euchromatin region. This point should be clearly discussed and mentioned in the Results (for example, cite recent work on INO80).

      We discuss the impact of other remodelers in the Discussion in the revised version. We hope that the reviewer will understand that doing a study on the impact of other remodelers on chromatin states which would require dozens of new ChIP profiles and is clearly beyond the scope of revising a manuscript.

      Minor:

      1) Fig. 2A and 2B, what does color mean? I guess the color code is referred to chromatin states (Fig. 2F).

      We have clarified on Figure 2A the attribution of a specific color to each chromatin state. This same color is used also in other panels of Figures 2 and S2.

      2) Supplemental Figures: All the figure panels should be on the same page.

      We rearranged supplemental figures so that each figure fits on one page. In places where this was not possible, we created additional supplemental figures.

      3) "We observed that increasing state numbers from 26 to 27 gave rise to biologically redundant states.": Where are the data? Fig S2A? This figure is hard to understand.

      In the updated manuscript, we have described the legend and the methods for FigS2A in more detail.

      Reviewer #4 (Recommendations For The Authors):

      A general concern refers to the text that frequently falls into excessive oversimplifications and/or overstatements, with the danger of being misleading for the reader. This needs to be thoroughly revised.

      We added more careful statements and proposed alternative models when it was possible.

      Specific comments.

      1) Fig 1A. Authors found the ~40% of nucleosomes contained both H3.1 and H3.3. This is a significant finding that deserves a more detailed comment.

      We now provide a more detailed description of IP and MS data presented in Figure 1. This should also help to avoid oversimplifications and/or overstatements as criticized in a general comment.

      2) Fig 1C. "H3. And H3.3 bore the same sets and comparable levels of methylation and acetylation...". Too general statement, please specify. Is this also the case for H3K9me2? Others?

      We did describe this part into more detail to emphasize more precisely what Figure 1 shows. We also included data on K9me into Figure 1 figure supplement 1H.

      3) Fig 1D. Could you confirm the high level of H3K27me1 on H3.3?

      H3K27me1 data are shown both by WB (Figure 1C) and Mass spectrometry (Figure 1D and E). We also provide a possible explanation for high levels of this mark on H3.3 by taking into account the fact that H3K27me1 is also produced by demethylation of H3K27me3 by JMJ demethylases.

      4) All WB in Fig 1. They need to be quantified and normalized (plus statistical analysis) in order to provide strong support to the conclusions.

      The conclusion of all WB are supported by quantified Mass spectrometry data and many WB were even repeatedly shown in Figure 1F (for example IPs for H2A variants and a large set of H3 marks used for WBs) with the same results. Also, association of H3K4me3 and H3K36me3 with H2A variants was analyzed in both ways (Figure 1F); IPs of variants and WBs of variants and marks and IPs of marks and WBs of marks and variants. For most of the data we do not have more than two repeats, so statistical analysis may not be possible.

      Nevertheless, we are convinced that our major conclusions from data presented in Figure 1 and Supporting figure 1 (these are: that H3 variants form both homotypic and heterotypic nucleosomes, that H3 marks do not preferentially associate with H3 variants but some of them do so with H2A variants and that H3 modifications show very complex pattern of associations with each other) are fully valid as they were drawn from two orthogonal approaches and further supported by the chromatin states identified.

      5) Fig. 2A. Authors focus on "the most parsimonious model" based on 26 chromatin states. This needs to be justified in a more explicit manner. It is surprising that this number emerges for an analysis of 27 independent variants and marks. What are the differences in the conclusions when other number of states are used? See also below (reduced number of number derived from the "concatenated model").

      Why 26 states were chosen is now explained in great details in the method section. Since to the exception of H2A variants that are invariably homotypic, nucleosomes can be heterotypic for all other histone variants and histone modifications, the random combination of the 27 marks in one nucleosome representing one states is 4 H2A (without the subtypes) x 4H3 x 2H1 x 2(power16) (for each mark) which is well above the circa 26 states observed. This shows that our probabilistic model reduces the potential complexity of a theorical random association in a remarkable manner.

      6) As a summary, it would be very helpful to generated a table (or similar) where is proposed chromatin state is ascribed to functional genomic elements.

      This aspect of the work is presented in a preprint where the biological association with the chromatin is described in details. See Jamge et al 2002, https://www.biorxiv.org/content/10.1101/2022.06.02.494419v1

      7) Fig 2F (and S2B). A comprehensive comparison a various approaches should include others and estimate the Jaccard similarity index: (1) the same of marks and variants used in the Sequeira-Mendes et al paper, and (2) the subset of marks and variants added in this study. In this way, a direct evaluation of the contributions could be more properly made.

      We thank the reviewer for this suggestion and have now included a new column with the combination of marks and variants as used in Sequeira-Mendes et al., 2014 (see Figure 2F). These data clearly demonstrate that adding histone variants significantly contribute to the definition of chromatin states.

      8) Fig. 3. Explain in more detail the concatenated model used here. Does the reduction in the number of chromatin states mean that the other do not add new information?

      ChromHMM concatenated model allows to identify common definition of chromatin state in multiple tissue types. Here multiple cell types are concatenated leading to a shared definition of chromatin states, but specific to each cell type.

      In our paper we used the concatenated model to identify common chromatin states in two different genotypes (WT and ddm1). The data for WT and ddm1 was obtained from leaves. As we had a limited number of ChIP-seq profiles in the leaves dataset The complexity of the concatenated model was also reduced compared to the extensive 26 chromatin state model. We chose to analyze 16-states in the concatenated model because this was the minimal number of states that gave rise to a similar complexity of heterochromatic states.

      9) The ddm1 mutant. The text in page 14 is a bit confusing. It seems that H2A.Z is deposited on TEs and the exchanged by the H2A.W.

      We have provided additional alternative models that could explain our observations.

      10) Page 15: link between H2A.Z and H3K27me3. Gomez-Zambrano et al (2018, cited in the text, found that only a relatively small subset of (putative) targets are common to H2A.Z and H3K27me3. How do authors reconcile this with their statement supporting a link between both of them?

      We refer to Gomez-Zambranao et al to illustrate the link between H2A.Z and H2AK121ub so we do not understand this comment. The strong link between H2A.Z and H3K27me3 is shown without ambiguity by our work and also Carter et al., 2018.

  3. Jun 2023
    1. Author Response:

      Reviewer #1 (Public Review):

      The study investigates the nature of "trailblazer" cells in distinct tumor models, including luminal B (MMTV/PyMT) and triple negative (TNBC) tumors (C3-TAg). The authors note that the trail-blazer phenotypes in the TNBC model are more complex relative to the Luminal B model and represent distinct EMT programs associated with the expression of distinct EMT-TFs (Zeb1, Zeb2 and Fra-1). They demonstrated that of numerous EMT-TFs, Zeb1 and Fra-1 were required for increased cancer cell migration and invasion. They reveal that TGF-beta and EGF-mediated signaling are required for the diverse EMT states that are required for trailblazer cell activity and increased cell migration/invasion. TGF-beta signaling engaged Zeb 1 and Zeb2 while EGF sig-naling activated Fra-1. Indeed, inhibitors of either TGF-beta or EGF signaling could impair cell migration/invasion. While both pathways contributed to trailblazer phenotypes, EGF signaling was shown to interfere with certain TGF-beta induced transcriptional response, including the ex-pression of genes encoding extracellular matrix proteins.

      One concern was the heavy reliance of the C3-TAg as the sole TNBC model in which the dis-tinct trailblazer phenotypes were described. The data in Fig. 3 of the submission reveals that the phenotypes observed in the C3-TAg model could be recapitulated in a TNBC patient-derived xenograft model (PDX). Using this PDX, the authors were able to show vimentin expression in lung metastatic TNBC cells that were intravascular, those that had extravasated and clusters of cancer cells fully within the lung parenchyma. This was an important addition to the manuscript. The additional experiments to investigate the role of Zeb1 and Zeb1 more fully, beyond the focus on Fra-1 in the initial submission was an additional strength of the new submission. Additional clarifications to the discussion also clarified the concepts articulated in the study. The study em-ploys multiple breast cancer models, utilizes numerous in vitro and in vivo assessments of the trailblazer phenotypes, and the experimental design is rigorous and the interpretation of the data is sound. The manuscript will be of general interest to the research community.

      Thank you for the supportive comments. We are glad that the revisions addressed your prior concerns.

      Reviewer #2 (Public Review):

      This represents an important study that demonstrates a high degree of heterogeneity within trailblazer cells in clusters that participate in collective migration. Solid methods highlight this het-erogeneity and show that in TNBC cancers, trailblazer cells are defined by vimentin (and not Keratin 14) and are dependent on both TGFbeta and EGFR signaling. Additional, single cell stud-ies would further support this work.

      Thank you for the suggestion. Our current data establishes that trailblazer cells are heterogene-ous using FACS, immunostaining and functional studies of fresh tumor organoids and estab-lished tumor organoid lines. In addition, our RNA-seq experiments provided deep insight into the nature of gene expression changes that corresponded with the evolution of new trailblazer states. This discovery of trailblazer cell heterogeneity was one of multiple key new discoveries in this manuscript, along with revealing a Krt14-independent invasion mechanism, the regulation of trailblazer cells by Tgfβ and Egfr signaling and a new compromise mode of signal integration. We agree that our results support further investigation of the nature and function of basal-like breast cancer heterogeneity during the progression to metastasis. However, a comprehensive implementation of scRNA-seq is mostly likely required to further unravel new aspects of hetero-geneity that substantially advance upon the conclusions supported by our current data. Such an undertaking is beyond the scope of this investigation.

      We agree that scRNA-seq would be confirmatory of trailblazer cell heterogeneity that has been demonstrated with multiple approaches rather than a new discovery of heterogeneity.

      Strengths:

      The paper highlights that collective migration, and the nature of trailblazer cells can be highly heterogeneous. This is important as it suggests that the ability to move between states may su-persede a singular phenotype.

      The paper uses animal models and organoids and in several areas attempts to correlate find-ings to human tissues.

      The experiments are logically described.

      Reviewer #3 (Public Review):

      Cancer is a disease of many faces and in particular, the ability of cancers cells to change their phenotypes and cell behaviors - cancer cell plasticity - is a major contributor to cancer lethality and therapeutic challenge of treating this disease. In this study, Nasir, Pearson et al., investigate tumor cell plasticity through the lens of invasive heterogeneity, and in particular in models of tri-ple-negative breast cancer (TNBC), a subtype of breast cancer with particularly poor clinical prognosis and more limited treatment modalities. Using organoid models in a variety of matrix systems, microscopy, and signaling pathway inhibitors, they find that invading TNBC breast tu-mors, primarily in the C31-Tag genetically engineered mouse model of TNBC, are composed of heterogeneous invasive/"trailblazer" type tumor cells that in many cases express vimentin, a classical intermediate filament marker of epithelial-mesenchymal transition, and reduced keratin-14, another filament marker of basal epithelial cells associated with collective invasion in differ-ent breast cancer models. Supportive genetic and pharmacologic evidence is provided that gen-eration of these cells is TGF-beta signaling pathway driven, likely in vivo from the surrounding tumor microenvironment, in accord with published studies in this space. Another important as-pect of this study is the good transcriptional evidence for multiple migratory states showing dif-fering degrees of partial overlap with canonical EMT programs, dependent on TGF-beta, and suggestive but at present incomplete understanding of a parallel program involving Egfr/Fra-1 mediated effects on invasion. When taken in context with other recent studies (Grasset et al. Science Translational Medicine 2022), these data are broadly supportive of concept of targeting vimentin-dependent invasion programs in TNBC tumors.

      The core conclusions of this paper are generally supported by the data, but there are some conceptual and technical considerations that should be taken into account when interpreting this study. Specific comments:

      1) The contribution of the different vimentin-positive trailblazer cells to distant metastasis was not directly confirmed in vivo in this study. Given the limited proliferative potential of many fully EMT'd cells and in light of recent studies indicating that invasion can be uncoupled from meta-static potential, it seems important to directly test whether the different C31-tag isolates, varying in invasive potential in this study, produce metastases and if so do metastases abundance corre-late with the invasive potential in 3D culture. The collection of lungs at 34 days post injection de-scribed in methods is too short to evaluate metastatic frequency.

      We agree that it is important to determine the contribution of trailblazer cells towards metastatic dissemination. In this manuscript, we show that Vimentin expressing cells in a triple negative breast cancer (TNBC) PDX model disseminate to the lungs (Figure 3F). We have also shown that Vimentin expressing SUM159 breast cancer (BC) trailblazer cells spontaneously metasta-size to the lungs in previous publications (Fig. 2–figure supplement 1C) and (Westcott et al, J Clin Invest, 2015, 10.1172/JCI77767 and Maine et al, Oncotarget, 2016, 10.18632/oncotarget.7408). Notably, the depletion of genes specifically expressed in trailblazer cells reduced spontaneous metastasis without significantly impinging on primary tumor growth (Westcott et al, J Clin Invest, 2015, 10.1172/JCI77767 and Maine et al, Oncotarget, 2016, 10.18632/oncotarget.7408). Our new results in Figure 5D show that Tgfβ activates genes that define the trailblazer state in the metastatic SUM159 trailblazer cell model. Thus, features of the Tgfβ regulated trailblazer program in the C3-TAg cells is active in the SUM159 trailblazer model of spontaneous metastasis. In addition, commonly employed BC cell line metastasis models, such as MDAMB231 derivatives are highly mesenchymal (Fig. 2–figure supplement 1C) and (Kang et al, Cell, 2003, 10.1016/S1535-6108(03)00132-6 and Minn et al, Nature, 2005, 10.1038/nature03799, as examples).

      It is not technically feasible to establish a correlation between the relative invasion of The C3-TAg GEMM primary tumors and spontaneous metastasis. C3-TAg GEMM primary tumors de-velop rapidly and the mice must be euthanized prior to the detection of metastasis. This limitation of the model is mentioned in the Results section “Trailblazer cells are specified by Vimentin ex-pression in basal-like breast cancer patient tumors”. The aggressive primary tumor growth and limited spontaneous metastasis of the the C3-TAg model has also been previously reported by others (Green et al, Oncogene, 2000, 10.1038/sj.onc.1203280). Surgical resection of the original primary tumor is not feasible option to allow metastases to form since additional tumors develop in multiple mammary glands.

      In response to reviewer requests, we initiated the growth of orthotopic primary tumors from con-trol or Tgfβ treated 1339-org cells to address the relationship between induction of the trailblazer state and primary tumor cell dissemination. We had to euthanize the mice at day 34 (d34) be-cause tumors within both cohorts had reached the maximum permitted diameter of 2 cm. This will be indicated in the Methods section with revised text. We detected CTCs from the mice bearing control and Tgfβ treated 1339-org cell tumors. However, no micrometastases were de-tected, which is indicated in the text describing Figure 4–figure supplement 3A-B. Thus, per-forming surgical resection in new experiments would not be expected to allow the later detection of metastasis, as there did not appear to be DTCs in the lungs that could initiate colonization. In addition, we would have to resect the tumors prior to d34 to successfully and humanely remove the primary tumors, further reducing the odds of metastases developing. We will continue our work to identify an experimental balance that permits sufficient primary tumor growth to initiate spontaneous metastasis. However, the time scale of resolving this technical challenge is uncer-tain and we believe that our published analysis of trailblazer cell metastasis and new findings here showing the dissemination of Vimentin expressing cells in a PDX model addresses the question of whether Vimentin expressing trailblazer cells metastasize.

      We agree that certain cell states induced by EMT programs can limit the proliferative potential of tumor cells. As described in the Introduction, we previously found that the induction of a trailblaz-er state in a subset of breast cancer cell line models triggers a collateral cost in fitness that limits the ability of trailblazer cells to initiate tumor growth (Westcott et al, Cancer Res, 2020, 10.1158/0008-5472.CAN-20-0014). The traits that distinguish trailblazer cells which are capable of tumor initiation and metastasis versus trailblazer cells with reduced fitness have begun to be delineated. Our prior report suggested that cells that were dependent on p63 for growth lost their proliferative capacity when converting to a trailblazer state (Westcott et al, Cancer Res, 2020, 10.1158/0008-5472.CAN-20-0014). C3-TAg cells are not dependent on p63 for growth, which is indicated by the vast majority of the tumor cells lacking p63 expression in primary tumors and primary tumor organoids (Westcott et al, Cancer Res, 2020, 10.1158/0008-5472.CAN-20-0014), similar to the metastatic SUM159 breast cancer cell line model. We were also able to derive clonal trailblazer cell lines that lacked detectable p63 expression from a C3-TAg tumor (Figure 2—figure supplement 1B) and grow organoids even when the limited extent of p63 expression was further reduced by Tgfβ (Figure 5C). Additionally, the persistent Tgfβ treated 1339-org cells, which were enriched for trailblazer cells and had reduced p63 expression, were capable of initiating primary tumor growth (Figure 4F). Together, these results indicate that C3-TAg trail-blazer cells are capable of initiating metastatic colonization. However, given the heterogeneity in trailblazer states that we discovered, it is possible that a subset of trailblazer cell states have re-duced proliferative capacity. Our analysis approach in this manuscript would not necessarily de-tect these low fitness trailblazer cells if they were a relatively small fraction of the total trailblazer population. We will clarify this point in the Discussion section in the revised manuscript. Our re-sults have begun to reveal mechanisms for the transcriptional regulation of trailblazer cell heter-ogeneity. We plan to continue delineating the regulatory programs conferring specific transcrip-tion state, defining approaches for the prospective isolation of distinct trailblazer subpopulations and determining trailblazer subpopulation specific biomarkers to understand the specific contri-bution of distinct trailblazer subpopulations towards metastasis. Given the scope of this analysis, it is not feasible to incorporate these future studies into this manuscript.

      2) The invasion of cancer cells is dependent on 3D matrix composition. In other studies, collec-tive cancer invasion is performed in exclusively collagen type 1 gels or in other instances entirely in 3D reconstituted basement membrane gel, e.g. lung cancer invasion studies. In this study, the authors use a mixture composed of both matrices. Given the invasion suppressive effects of matrigel, particularly for epithelial type cells, further studies would be important to determine whether the invasion phenotypes seen in this study are generalizable across matrix environ-ments.

      The invasion of C3-TAg and PyMT organoids embedded in a 100% pure reconstituted base-ment is shown in Fig. 1–figure supplement 1G. We will emphasize that trailblazer invasion was evaluated in multiple ECM compositions with revised text and figure graphic. We also provide images for the reviewer showing that C3-TAg organoids collectively invade in a pure Collagen I ECM. Importantly, these findings are consistent with our results showing that Vimentin express-ing cells are associated with basal-like mammary tumor cell invasion in the complex ECM of C3-TAg GEMM primary tumors (Figure 2G) and patient primary tumors (Figure 3D). Moreover, Vimentin expressing cells disseminated to the lungs in the TNBC PDX that we evaluated (Figure 3F).

      The ECM composition selected for experiments is dictated by the experimental question(s) being addressed. It is unlikely that mammary tumor cells would only ever collectively invade through an ECM that is either pure Collagen I or pure reconstituted basement membrane (BM). Indeed, it has been proposed that mixtures of Collagen I and BM proteins best reconstitute the complexity of primary tumor ECM (Hooper et al, Methods Enzymol, 2006, 10.1016/S0076-6879(06)06049-6). In line this observation, mixtures of Collagen I and BM proteins have been routinely used for the past 20 years to define mechanisms of 3D invasion; Xiang and Muthuswamy, Methods En-zymol, 2006, 10.1016/S0076-6879(06)06054-X; Calvo et al, Nat Cell Biol, 2013 10.1038/ncb2756; and Kato et al, eLife, 2023, 10.7554/eLife.76520, as examples).

      Consistent with the known complexity of the ECM in the tumor microenvironment (TME), we detect Collagen I and Collagen IV (a key component of experimental BM) in the TME of primary breast cancer tumor models (Westcott et al, J Clin Invest, 2015, 10.1172/JCI77767). Important-ly, we have found that a mixture of collagen I and experimentally derived BM proteins reliably reveals breast cancer trailblazer cell invasion mechanisms that promote the malignant progres-sion and metastasis of primary tumors and whose expression correlates with poor patient out-come (Westcott et al, J Clin Invest, 2015, 10.1172/JCI77767 and Westcott et al, Cancer Res, 2020, 10.1158/0008-5472.CAN-20-0014, as examples). Notably, the relative differences in trail-blazer and opportunist cell invasive phenotypes are not dictated by the ECM composition used in our 3D assays. We have previously tested the invasion of trailblazer and opportunist subpopula-tions in different ECM compositions using both spheroid vertical invasion assays (Westcott et al, J Clin Invest, 2015, 10.1172/JCI77767). Increasing collagen I concentration enhanced the rela-tive rate of trailblazer cell invasion, with trailblazer cells always showing a significantly enhanced invasion relative to opportunist cells.

      The relationship between trailblazer and opportunist cells that we have detected in primary tu-mors is recapitulated when using mixtures of Collagen I and BM proteins in our past publications and in this manuscript. The clonal opportunist cell lines derived from a C3-TAg tumor expressed high levels of the transcription factor p63 (Figure 2–figure supplement 1A-B). We previously showed that p63 restricts induction of a trailblazer state in human breast cancer trailblazer cell lines (Westcott et al, Cancer Res, 2020, 10.1158/0008-5472.CAN-20-0014). Notably, we showed that p63 expressing C3-TAg cells were not able to initiate collective invasion in the same ECM composition used in our current manuscript. Moreover, p63 cells in primary C3-TAg tumors were noninvasive opportunist cells that were limited to trailing p63-low trailblazer cells when collective-ly invading in primary tumors and in organoids (Westcott et al, Cancer Res, 2020). We now show that p63 expressing opportunist cell lines are limited to invading behind primary C3-TAg trailblazer cells and trailblazer cell lines in our 3D invasion assays (Figure 1B and Figure 1–figure supplement 1D-E). Together, these results indicate that the ECM employed in our 3D assays reveals the mechanistic underpinnings of both trailblazer and opportunist cell invasion in primary tumors.

      With respect to lung cancer invasion, leader cells that we would classify as trailblazer cells have been isolated from 2 non-small cell lung cancer cell line spheroid models grown in pure reconsti-tuted BM extract (Konen et al, Nat Comm, 2017, 10.1038/ncomms15078). However, it unclear whether these cell line derived NSCLC trailblazer cells are more intrinsically invasive than non-trailblazer siblings in primary NCSCLC tumors or if the traits associated cell line NSCLC trail-blazer cells are required for metastasis. These tests have never been reported to the best of our knowledge. Similarly, it is not clear whether these NSCLC cell line derived trailblazer cells reflect features of primary NSLC primary tumor cells, as we are unaware of any such comparisons be-ing reported. Thus, there is no reason to consider pure reconstituted BM to be an equivalent or preferred experimental option to define trailblazer cell features. Nevertheless, as we mentioned before, our discovery approach identifies trailblazer cells that are intrinsically more invasive than opportunist siblings across multiple ECM conditions, including pure reconstituted BM and, im-portantly, in primary tumors.

      3) TGF-beta is well known to induce EMT. Although this study identifies potential transcriptional mediators of the invasion/trailblazer program, is this program reversible?

      We have previously shown the breast cancer trailblazer cells can convert to an opportunist state, demonstrating that trailblazer states are reversible (Westcott et al, J Clin Invest, 2015, 10.1172/JCI77767). In this manuscript. we show that C3-TAg organoid lines derived in the Tgfbr1 inhibitor A83-01 have few if any cells with a trailblazer phenotype relative to C3-TAg pri-mary tumors, suggesting a reversion of the trailblazer state (Fig. 4C and Figure 4–figure sup-plement 2A-C). However, our results do not entirely rule out the possibility that only non-trailblazer cells grew to establish the organoid lines. Indeed, the problem of tracing phenotypic conversions when evaluating heterogeneous populations is a systemic challenge that extends beyond our analysis of trailblazer cells. Clearly defining the conversion rates for trailblazer cells will require multiple genetic markers to distinguish the different trailblazer states we have now identified, in addition to phenotypic and molecular analysis over multiple days, or possibly weeks. Thus, further definition of the rate of reversion of different trailblazer cells is worthy line of future investigation rather than a feasible objective of this study.

    1. Author Response:

      We thank the reviewers for their careful and overall positive assessment of our work.

      Reviewer #1 (Public Review):

      This paper describes the discovery, functional analysis and structure of TcaP, a protein encoded by the Vibrio phage satellite PLE that forms a size-determining scaffold around PLE procapsids made from helper phage ICP1 structural proteins. The system displays a fascinating similarity to the P2/P4 system, which had previously been unique in its use of a size-determining external scaffolding protein, Sid. The work is interesting, comprehensive and of high quality. The presentation could be improved as listed in the suggestions below.

      An interesting observation is that PLE appears to be dependent on small capsids for efficient transduction. This is not completely surprising if the element uses a cos site type mechanism for packaging, since this requires an integer number of genomes to be packaged when the capsid is full, and this might be more difficult to accomplish when the helper capsid is much larger than the satellite, as is the case with ICP1. The authors mention in a few places that this is the first known satellite to have this requirement. However, this is not quite correct: a similar defect was seen in phi12/SaPIbov5, where the large phi12 capsid was not quite the right size for either two or three copies of the wildtype ("unevolved") SaPIbov5 (Carpena et al. 2016).

      We thank the reviewer for bringing up this point. First, we agree that for cos type packaging systems, this would not be surprising. However, ICP1 is a pac type phage and we have evidence that PLE is also a pac rather than a cos type packaging satellite; therefore, PLE is the first headful satellite to show such a defect. For cos packaging elements, both SaPIbov5 and P4, non-integer genome lengths have been shown to pack less efficiently into capsids as pointed out above and shown in Carpena et al 2016 and Shore 1978. However, in both of these cases, the genomes were manipulated to change their size, suggesting that naturally occurring cos satellites maintain their genome sizes to be proportional to their capsid sizes or in integer proportion to their helper capsids. We will include a short summary of these previous findings in the main text to provide context for the rare decreases in transduction efficiency reported in the cos satellites.

      The authors present several micrographs showing capsids formed in the presence or absence of wildtype or mutant TcaP and CP (Fig. 1, Fig 2., Fig 3). However, each micrograph shows only a handful of particles of the "correct" size, in addition to a few shells that are aberrant or of a different size. I miss a more statistically rigorous enumeration of shells of different size (PLE or ICP1 sized, or different), empty vs. full, aberrant shells etc. This could be presented as a size distribution graph, a histogram or in table form.

      We thank the reviewer for this recommendation and agree that it would add to the manuscript. We will quantify these particles and present the data in the main text.

      In the abstract, the term "divergent satellite P4" is vague and unclear. Divergent from what? Probably they mean distinct from or unrelated to PLE. Please clarify.

      Yes, we did mean unrelated to PLE, and we will clarify in the text.

      How do they know that gp123 is a decoration protein? Was this previously determined, does it have (sequence) similarity to other known decoration proteins, or is it simply the most likely designation based on its position in the genome?

      Gp123 was annotated based on its position. While there is sequence similarity to other annotated Vibrio phages’ decoration proteins, we will clarify in the text that Gp123 is a putative decoration protein.

      Although the reconstruction and modeling statistics are good, it is difficult to assess the quality of the map and the model from the presented figures. Details of the density and FSC curves (half-map and model-to-map) should be shown. It is also difficult to see the TcaP structure and how it compares to Sid from the figures presented.

      We will address this concern in the revised manuscript.

      Introduction, Paragraph 3: "...which is the number of coat proteins divided by 60" is not strictly speaking the definition of T number. The T number corresponds to the number of subtriangles that one triangular face of the icosahedron is divided into. It corresponds to the number of coat proteins divided by 60 in the canonical case, but in tailed phages, 5 copies are removed to make way for the portal protein. (Other viruses could be described as having architecture corresponding to a specific T number, but with divergent numbers of subunits, e.g. adenoviruses or polyomaviruses.)

      We agree that our simplified explanation of the T number is not entirely accurate and will modify the sentence appropriately.

      Reviewer #2 (Public Review):

      Phage satellites are fascinating elements that have evolved to hijack phages for induction, packaging, and transfer, promoting their widespread dissemination in nature. It is remarkable how different satellites use conserved strategies of parasitism, utilising unrelated proteins that perform similar roles in their cognate elements. In the current manuscript, Dr. Seed and coworkers elucidated the mechanism used by one family of satellites, the PLEs, to produce small capsids, a process that inhibits phage reproduction while increasing PLE transmission. The work is presented beautifully, and the results are astonishing. The authors identified the gene responsible for generating the small capsids, characterised its role in the PLE transfer and phage inhibition, and determined the structure of the PLE-sized small capsids. It is a truly impressive piece of work.

      We thank the reviewer for their positive evaluation of our work.

      Reviewer #3 (Public Review):

      The manuscript by Boyd and co-authors "A Vibrio cholerae viral satellite maximizes its spread and inhibits phage by remodelling hijacked phage coat proteins into small capsids" reports important results related to self-defending mechanisms that bacteria are used against phages that infect them. It has been shown previously that bacteria produce phage-inducible chromosomal island-like elements (PLE) that encode proteins that are integrated into bacterial genome. These proteins are used by bacteria to amend the phage capsids and to create phage-like particles (satellites) that move between cells and transfer the genetic material of PLE to another bacteria. That study highlights the interactions between a PLE-encoded protein, TcaP, and capsid proteins of the phage ICP1.

      The manuscript is well written, provides a lot of new information and the results are supported by biochemical analysis.

      We thank the reviewer for their supportive evaluation of our work.

    1. Author Response:

      We would like to thank the reviewers for their time in evaluating our manuscript. The reviewers provided constructive comments and suggested changes to improve our manuscript. The main comment was about the framing. We agree with the reviewers and will rewrite the manuscript to focus more on migration patterns than conservation. We will add and expand the paper's theoretical framework and include the studies and descriptions of migration patterns of individual species suggested by the reviewers. At the same time, some of the reviewers' comments (especially on the terms and suggestions for changing the title of the paper) are mutually exclusive. We will pay particular attention to this issue and improve the paper's theoretical basis.

    1. Author Response

      Joint Public Review

      Strengths

      Overall, the idea that the PAG interacts with the BLA via the midline thalamus during a predator vs. foraging test is new and quite interesting. The authors have used appropriate tools to address their questions. The major impact in the field would be to add evidence to claims that the BLA can be downstream of the dPAG to evoke defensive behaviors. The study also adds to a body of evidence that the PAG mediates primal fear responses.

      Weaknesses

      (Anatomical concerns)

      1) The authors claim that the recordings were performed in the dorsal PAG (dPAG), but the histological images in Fig. 1B and Supplementary S2 for example show the tip of the electrode in a different subregion of PAG (ventral/lateral). They should perform a more careful histological analysis of the recording sites and explain the histological inclusion and exclusion criteria. Diagrams showing the sites of all PAG and BLA recordings, as well as all fiber optics, would be helpful.

      The PAG is composed of dorsomedial (dm), dorsolateral (dl), lateral (l), and ventrolateral (vl) columns that extend along the rostro-caudal axis of the aqueduct. The term “dorsal PAG” (dPAG) generally encompasses dmPAG, dlPAG, and lPAG, as substantiated by track-tracing, neurochemical, and immunohistochemical techniques (e.g., Bandler et al., 1991; Bandler & Keay, 1996; Carrive, 1993). As Bandler and Shipley (1994) summarized, “These findings suggest that what has been traditionally called the 'dorsal PAG' (a collective term for regions dorsal and lateral to the aqueduct), consists of three anatomically distinct longitudinal columns: dorsomedial and lateral columns…and a dorsolateral column…" Similarly, Schenberg et al. (2005) clarified in their review that, “According to this parcellation...the defensive behaviors (freezing, flight or fight) and aversion-related responses (switchoff behavior) were ascribed to the DMPAG, DLPAG, and LPAG (usually named the ‘dorsal’ PAG).” In our study, all recordings were conducted within the dPAG. Also, Figures 1B and S2 in our manuscript correspond to the -6.04 mm template from Paxinos & Watson’s atlas (1998), which is shown in the left panel in Author response image 1 and is considerably anterior to the location where the vlPAG emerges, as shown in the right panel. In our revised manuscript, we will provide a detailed definition of the dPAG, inclusive of dmPAG, dlPAG, and lPAG, and support this with the referenced literature.

      Author response image 1.

      2) Prior studies investigating the role of BLA neurons during a foraging vs. robot test similar to the one used in this study should be also cited and discussed (e.g., Amir et al 2019; Amir et al 2015). These two studies demonstrated that most neurons in the basal portion of the BLA exhibit inhibitory activity during foraging behavior and only a small fraction of neurons (~4%) display excitatory activity in response to the robot (in contrast to the 25% reported in the present study). A very accurate histological analysis of BLA recording sites should be performed to clarify whether distinct subregions of the BLA encode foraging and predator-related information, as previously shown in the two described studies.

      In the revised manuscript, we will discuss papers by Amir et al. (2015) and Amir et al. (2019) that utilized a similar 'approach food-avoid predator' paradigm. These studies found a correlation between the neuronal activities in the basolateral amygdala (BL) and the velocity of animal movement during foraging, regardless of the presence or absence of predators. Specifically, the majority of BL neurons were inhibited in both conditions, with only 4.5% being responsive to predators. Consequently, Amir et al. posited that amygdala activity predominantly aligns with behavioral output such as foraging, rather than with responses to threats.

      In contrast, our body of work (Kim et al., 2018; Kong et al., 2021; the present study) reveals that the majority of neurons in the BA/BLA displayed distinct responses in pre-robot and robot sessions. Kong et al. (2021) discussed in depth several factors that may account for this discrepancy, given that both Amir et al. and our research used similar behavioral paradigms. Differences in apparatus features, experimental procedures, and data analysis methodologies (refer to Amir et al., 2019) could be contributing to the conflicting results and interpretations concerning the significance of amygdalar neuronal activities.

      Additionally, our studies uniquely monitored the same set of amygdalar neurons during pre-robot and robot sessions, affording us the opportunity for a direct comparison of neuronal activities under different threat conditions.

      Another salient difference lines in the foraging success rates, which were markedly higher in Amir et al (~80%) compared to our studies (<3-4%). We hypothesize that there may be an inverse relationship between the pellet procurement rate and the intensity of fear. The high foraging success rate in Amir et al., which correlates with subdued amygdalar activity, stands in contrast to our findings of heightened amygdalar activity associated with a lower foraging success rate. Supporting this notion, optogeneticallyinduced amygdalar activity led naïve rats to abandon foraging and escape to the nest (Kong et al., 2021, the present study).

      3) An important claim of this study that the PAG sends predator-related signals to BLA via the PVT (Fig. 4). The authors stated that PVT neurons labeled by intra-BLA injection of the retrograde tracer CTB were activated by the predator, but a proper immunohistochemical quantification with a control group was not provided to support this claim. To provide better support for their claim, the authors should quantify the doublelabeled PVT neurons (cFos plus CTB positive neurons) during the robot test.

      As recommended, we will include a revised Fig. 4 in the manuscript to present the quantification of neurons that are double-labeled with c-Fos and CTB in the PVT. This updated figure will provide a more rigorous analysis and visual representation of the data.

      4) The AVV anterograde tracer deposit spread to a large part of the PAG, including dorsolateral and lateral PAG, and supraoculomotor regions (Fig. 4B). Is the projection to the PVT from the dPAG or other regions of the PAG?

      As previously addressed in response to Comment #1, the dPAG comprises the dmPAG, dlPAG, and lPAG. In the revised manuscript, we will acknowledge the diffusion of the AAV to the adjacent deep gray layer of the superior colliculus. Additionally, we are considering conducting more restricted AAV injections into the dPAG to verify terminal expressions in the PVT.

      (Concerns about the strength of the evidence supporting a role for the PVT)

      5) The authors conclude in the discussion section that the dPAG-amygdala pathway is involved in generating antipredatory defensive behavior. However, the current results are entirely based on correlational analyses of neural firing rate and there is no direct demonstration that the PAG provides information about the robot to the BLA. Therefore, the authors should tone down their interpretation or provide more evidence to support it by performing experiments applying inhibitory tools in the dPAG > PVT > BLA pathway and examining the impact on behavior and downstream neural firing.

      As suggested, we will moderate the assertions about the functional implications of the PVT, based on the data from anterograde and retrograde tracers, to present a more measured interpretation in the manuscript.

      (Other concerns)

      6) One of the main findings of this study is the observation that BLA neurons that are responsive to PAG photostimulation are preferentially recruited during the foraging vs. robot test (Fig. 3). However, the experimental design used to address this question is problematic because the laser photostimulation of PAG neurons preceded the foraging vs. robot test. Prior photoactivation of PAG may have caused indirect shortterm synaptic plasticity in BLA cells, which would favor the response of these cells to the robot. Please see Oishi et al, 2019 PMID: 30621738, which demonstrated that 10 trains of 20Hz photoactivation (300 pulses each) was sufficient to induce LTP in brain slices.

      After approximately eight photostimulation trials of the dPAG, with 40 pulses each, the animals entered a post-photostimulation testing phase (referred to as "Post"; Fig. 3C), lasting 10-15 minutes over an average of eight trials before robot testing. Although the PAG does not directly project to the BLA, the remote possibility of trans-synaptic plasticity in the BLA cannot be completely excluded and will be acknowledged. Additionally, it is noteworthy that Oishi et al's (2019) study applied a total of 3,000 pulses (i.e., 10 15-s trains of 20-Hz pulses) and investigated CA3-CA3 synaptic plasticity, as opposed to a total of 320 pulses (i.e., 8 2-s trains of 20-Hz pulses) in our study.

      7) The authors should perform a longitudinal analysis of the behavioral responses of the rats across the trials to clarify whether the animals habituate to the robot or not. In Figure 1E, it appears that PAG neurons fire less across the trials, which could be associated with behavioral habituation to the predator robot. If that is the case, the activity of many other PAG and BLA neurons will also most likely vary according to the trial number, which would impact the current interpretation of the results.

      In Figure 1E, the y-axis represents the Z scores of individual dPAG neurons, instead of representing repeated tests of the same neuron across multiple trials. The raster plot in Figure 1F clearly depicts that the same dPAG neurons consistently display heightened neural activity in response to the approaching robot across successive trials.

      8) In Figure 1, it is unclear why the authors compared the activity of neurons that respond to the robot activation against the activity of the neurons during the retrieval of the food pellets in the pre-robot and postrobot sessions. The best comparison would be aligning the cells that were responsive to the activation of the robot with the moment in which the animals run back to the nest after consuming the pellets during the prerobot or post-robot sessions. This would enable the authors to demonstrate that the PAG responses are directly associated with the expression of escaping behavior in the presence of the robot rather than associated with the onset of goal-directed movement in direction to the next during the pre- and post-robot sessions. A graphic showing the correlation between PAG firing rate and escape response would be also informative.

      Figure 1E compares the dPAG neural activity when animals enter a designated pellet zone (time-stamped by camera tracking) during both pre-robot and post-robot trials to the dPAG neural activity when entering the robot trigger zone (time-stamped by robot activation). We wish to clarify that rats carry the large (0.5 g) pellet back to the nest for consumption rather than consume it in the open arena before returning to the nest.

      In our study, we aimed to investigate the direct response of dPAG neurons to the looming predator and explore the communication between dPAG and BLA in relation to antipredatory defensive responses. To build upon our previous research that suggests a potential role of dPAG in conveying such responses to the BLA (Kim et al., 2013) and the immediate firing of BLA neurons in response to predatory threats (Kim et al., 2018; Kong et al., 2021), we chose to narrow our testing window to a short latency period (< 500 ms) following robot activations. This specific time window allowed us to focus on the initial stages of the threat stimulus processing and minimize potential confounding factors such as the presence of residual firing activity triggered by the robot during the animals’ escape or any activity changes induced by the animals' behavior.

      Furthermore, Figure S1C clearly demonstrates that (i) increased activity of dPAG robot cells preceded the animals’ actual turning and fleeing behavior toward the nest, as indicated by the peak values of movement speed (dark yellow), and (ii) the presence of pellets did not affect activity changes of the robot cells during pre- and post-robot sessions. These observations suggest that the heightened activity of dPAG robot cells was not due to movement changes or pellet motivation.

      Lastly, as stated in the original manuscript, the vast majority of robot cells (90.9%) did not show significant correlations between movement speed and firing rates, lending further support to the interpretation that the dPAG activity observed was not merely a reflection of movement changes.

      References

      Bandler, R., Carrive, P., & Depaulis, A. (1991). Emerging principles of organization of the midbrain periaqueductal gray matter. The midbrain periaqueductal gray matter: functional, anatomical, and neurochemical organization, 1-8.

      Bandler, R. & Keay, K. A. (1996). Columnar organization in the midbrain periaqueductal gray and the integration of emotional expression. Progress in brain research, 107, 285-300.

      Bandler, R. & Shipley, M. T. (1994) Columnar organization in the midbrain periaqueductal gray: modules for emotional expression? Trends in Neurosciences, 17(9), 379-89.

      Carrive, P. (1993). The periaqueductal gray and defensive behavior: functional representation and neuronal organization. Behavioural brain research, 58(1-2), 27-47.

      Oishi, N., Nomoto, M., Ohkawa, N., Saitoh, Y., Sano, Y., Tsujimura, S., ... & Inokuchi, K. (2019). Artificial association of memory events by optogenetic stimulation of hippocampal CA3 cell ensembles. Molecular brain, 12, 1-10.

      Paxinos, G. & Watson, C. (1998). The Rat Brain in Stereotaxic Coordinates. Academic Press, San Diego. Schenberg, L. C., Póvoa, R. M. F., Costa, A. L. P., Caldellas, A. V., Tufik, S., & Bittencourt, A. S. (2005). Functional specializations within the tectum defense systems of the rat. Neuroscience & Biobehavioral Reviews, 29(8), 1279-1298.

    1. Author Response

      We are grateful for the constructive feedback and the possibility of further improving our manuscript in terms of quality and clarity. Below, we have prepared a brief answer to the points raised in the reviewers’ feedback. We plan to address all these issues fully in the revised version of the manuscript.

      We agree that some of our claims were overly enthusiastic. We will rewrite parts of the manuscript to tame our statements. Additionally, we are thankful for the comments on the use of language, which we will certainly apply while editing the manuscript. Below, we focus on the main comments.

      Both reviewers: We appreciate advice on possible confounding factors. We should note here that there is substantial evidence on the effects of alpha rhythm amplitude on the excitability of a neuronal network and, as a consequence, on the amplitude of evoked responses (Baumgarten et al., 2016 Cerebral Cortex; Iemi et al., 2017 eLife; Stephani et al., 2021 eLife). This effect is due to changing the gain for evoked responses, and it is quite different compared to the baseline-shift mechanism (BSM). In BSM, the changes in the amplitude of evoked responses occur due to the generation of an additional evoked response component, which we tried to reveal in our current work. Still, we agree with suggestions to test additional factors, such as earlier evoked responses, baseline window, and head size, and we will test those.

      Reviewer #2 Comment 2: Certainly, for low-density recordings, some method of data transformation is required. Here we would like to show our reasoning for why we did not use current-source density (CSD) but rather utilised other approaches. First, the CSD transform performs well for spatially localised activities since it is a spatial high-pass filter. In our case, P300 and alpha amplitude dynamics are fairly widespread with low spatial frequency, and we believe we would not benefit from applying CSD. Second, CSD has been shown to be more sensitive to surface sources in the crowns of gyri. For activity in the P300 window, we have no reason to believe that this is the case. Third, as we completely agree that low density montage is a limitation, we used source reconstruction with eLoreta (Fig. 5) to refine the spatial localisation of potential sources of P300 and alpha amplitude change.

      Reviewer #1 Comment 4: Our study is indeed based on a sample of older participants. However, in our previous work (Studenova et al., 2022), we compared young and elderly participants using resting-state data. There, we measured the baseline-shift index (BSI). We found that BSIs for elderly participants were lower in comparison to those for young participants. Therefore, despite these limitations, in the current study, we were still able to detect a correspondence between BSIs and evoked responses in elderly participants. Therefore, we believe that for a sample of young participants, the results should not be different.

      Reviewer #2 Comment 4: We agree that mediation analysis will provide additional insights, and we will add it to the revised version of the manuscript.

      Overall, we found the reviewer's comments very helpful. We will update the manuscript accordingly.

    1. Author Response:

      We would like to thank the reviewers for their comments on the manuscript. The primary concern that they raised is that the imaging data are largely qualitative. This is a fair assessment, and we agree that a careful quantitative characterization of TF clustering with and without IDRs using high resolution imaging would provide valuable insight that would extend our findings. Our goal for this study was to conduct a high level survey of IDR localization, for which we believe a qualitative overview was sufficient. We hope that this work can serve as a useful foundation for future studies of the complex roles that IDRs play in TF function.

    1. Author Response

      Reviewer #1 (Public Review):

      1) Only one PITAR siRNA was tested in majority of the experiments, which compromises the validity of the results. Some results are inconsistent. For example, Fig 2G indicates that PITAR siRNA caused G1 arrest. However, PITAR overexpression in the same cell line did not show any effect on cell cycle progression in Fig 5I.

      We thank the reviewer for this comment. Indeed, we have used two siRNAs in experiments related to Fig. 2C, 2D, and 2E. Keeping the reviewer’s comment, we plan to reproduce the results of Fig. 2F, 2G, 2H, 2I, 5A, 5B, 5E, and supplementary Fig. 5A using additional siRNA targeting PITAR.

      The reason for the fact that “PITAR silencing showed a robust G1 arrest, but PITAR overexpression failed to show any effect on the cell cycle profile” is as follows: since glioma cells overexpress PITAR (which keeps the p53 suppressed), silencing PITAR (which will elevate p53 levels) in glioma cells will show a robust phenotype in cell cycle profile (in the form of increase G1 arrest). In contrast, the overexpression of PITAR in glioma cells (which already has high levels of PITAR and hence drastically reduced p53 levels) is unlikely to show any significant change in the cell cycle profile. But, a phenotype for PITAR overexpression on cell cycle profile can be shown in DNA-damaged (which induces p53 levels) glioma cells. Indeed, we have done this experiment in Fig. 5L, which shows G2/M arrest (42.34%) induced by DNA damage is reduced significantly (19%) in PITAR overexpressed condition (34.42%). However, keeping reviewers' comments in the right spirit, we plan to repeat this experiment with appropriate modifications to arrive at a more robust phenotype for PITAR overexpression.

      2) The conclusion that PITAR inactivates p53 through regulating TRIM28, which is highlighted in the title of the manuscript, is not supported by convincing results. Although the authors showed that a PITAR siRNA increased while PITAR overexpression decreased p53 level, the siRNA only marginally increased the stability of p53 (Fig 5E). The p53 ubiquitination level was barely affected by PITAR overexpression in Fig 5F. To convincingly demonstrate that PITAR regulates p53 through TRIM28, the authors need to show that this regulation is impaired/compromised in TRIM28-knockout conditions. The authors only showed that TRIM28 overexpression suppressed PITAR siRNAinduced increase of p53, which is not sufficient. Note that only one cell line was investigated in Fig 5.

      To address this issue, we will overexpress PITAR in TRIM28 silenced cells to show the requirement of TRIM28 for PITAR to inhibit p53. In addition, we also plan to carry out PITAR silencing and overexpression experiments in another glioma cell line as recommended by the reviewer.

      3) Another major weakness of this manuscript is that the authors did not provide any evidence indicating that the glioblastoma-promoting activities of PITAR were mediated by its regulation of p53 or TRIM28 (Fig 6 and Fig 7). Thus, the regulation of glioblastoma growth and the regulation of TRIM28/p53 appear to be disconnected.

      We would like to respectfully disagree with the reviewer on this particular point. We have indeed provided the following evidence in the current version of the manuscript glioblastomapromoting activities of PITAR were mediated by its regulation of p53 or TRIM28.

      A) In Fig. 6, we demonstrate that PITAR silencing-induced reduction in the neurosphere growth is accompanied by a reduction in TRIM28 RNA and an increase in the CDKN1A RNA without a change in p53 RNA levels. We also demonstrate that PITAR overexpression-induced neurosphere growth is accompanied by an increase in the TRIM28 RNA, and a decrease in CDKN1A RNA without a change in p53 RNA levels.

      B) To add strength to the above results, we plan to do western blot experiments under similar conditions to demonstrate the appropriate changes in TRIM28, p53, and CDKN1A levels. Also, we will do a TRIM28 rescue experiment in RG5 neurosphere cells.

      C) In supplementary Fig. 6 (related to Fig. 6), we show that PITAR silencing failed to decrease neurosphere growth in mutant p53 containing GSC line (MGG8).

      D) In supplementary Fig. 7 (related to Fig. 6), we show that PITAR silencing failed to inhibit colony growth of p53-silenced U87 glioma cells (U87/shp53#1). We also show that while PITAR silencing decreased TRIM28 RNA levels in U87/shNT and U87/shp53#1 glioma cells, it failed to increase CDKN1A and MDM2 (p53 targets) at the RNA level.

      E) In Fig. 7, we show that the TRIM28 protein level is drastically reduced in small tumors formed by U87/siPITAR cells.

      F) In supplementary Fig. 8 (related to Fig. 7), we show that glioma tumor formed by U87/PITAR OE express high levels of TRIM28 protein but reduced levels of p21 protein.

      G) We also plan to do additional experiments, as described below, to demonstrate that glioblastoma-promoting activities of PITAR are indeed mediated by its regulation of p53 or TRIM28. We will demonstrate the inability of PITAR overexpression to induce the growth of glioma-tumor initiated by TRIM28 silenced U87 cells.

      4) It is not clear what kind of message the authors tried to deliver in Fig 7F/G. Based on the authors' hypothesis, DNA-damaging agents like TMZ would induce PITAR to inactivate p53, which would compromise TMZ's anti-cancer activity. However, the data show that TMZ was very effective in the inhibition of U87 growth. The authors may need to test whether PITAR downregulation, which would increase p53 activity, have any effects on TMZ-insensitive tumors. Such results are more therapeutically relevant.

      Reviewer #1 rightly pointed out that TMZ induces PITAR expression, which should compromise TMZ's anti-cancer activity. In addition, overexpression of PITAR also promotes glioma-tumor growth. Figure 7F&G demonstrates the following two facts:1. PITAR overexpression increases the glioma-tumor growth (Figure 7G, compare red line with the blue line), 2. PITAR overexpressing glioma-tumor are resistant to TMZ chemotherapy (Figure 7G, compare the pink line with the green line).

      In addition, in Figure 2I, we indeed show that PITAR-silenced cells are more sensitive to TMZ and Adriamycin chemotherapy.

      However, considering reviewers’ comments, we plan to repeat Figure 7A, combining TMZ chemotherapy and PITAR silencing to demonstrate that TMZ chemotherapy-induced PITAR indeed promotes chemo-resistance.

      5) Lastly, the model presented in Fig 7H is confusing. It is not clear what the exact role of PITAR in the DNA damage response based on this model. If DNA damage would induce PITAR expression, this would lead to inactivation of p53 as revealed by this manuscript. However, DNA damage is known to activate p53. Do the authors want to imply that PITAR induction by DNA damage would help to bring down the p53 level at the end of DNA damage response? The presented data do not support this role unfortunately.

      We appreciate reviewer #1 comments. Based on our model in 7H, we believe DNA damageinduced PITAR attenuates DNA damage response by increasing TRIM28 protein levels. TRIM28 ubiquitinates p53 in an MDM2-dependent manner ( Wang et al., 2005). Based on this, we hypothesised that PITAR-induced TRIM28 also contributes to MDM2 mediated ending of DNA damage response.

      Considering the reviewers' comments, we plan to do the following experiment.

      The kinetics of p53, TRIM28, p21, MDM2 protein levels, and PITAR RNA levels after DNA damage will be monitored in PITAR-silenced conditions. It is known that reduction in the DNA damage-induced p53 levels coincides with high levels of MDM2 accumulation. We believe that in PITAR-silenced cells, p53 levels will remain high for a longer time compared to control cells because of the lack of PITAR-induced TRIM28-mediated degradation of p53.

    1. Author Response:

      Reviewer #1 (Public Review):

      […] The major strength of the study is the elegant and well-powered data set. Longitudinal data on this scale is very difficult to collect, especially with patient cohorts, so this approach represents an exciting breakthrough. Analysis is straightforward and clearly presented. However, no multiple comparison correction is applied despite many different tests. While in general I am not convinced of the argument in the citation provided to justify this, I think in this case the key results are not borderline (p<0.001) and many of the key effects are replications, so there are not so many novel/exploratory hypothesis and in my opinion the results are convincing and robust as they are. The supplemental material is a comprehensive description of the data set, which is a useful resource.

      The authors achieved their aims, and the results clearly support the conclusion that the AD and mean confidence in a perceptual task covary longitudinally. I think this study provides an important impact to the project of computational psychiatry.Sspecifically, it shows that the relationship between transdiagnostic symptom dimensions and behaviour is meaningful within as well as across individuals.

      Response: We thank the reviewer for their appraisal of our paper and positive feedback on the main manuscript and supplementary information. We agree with the reviewer that the lack of multiple comparison corrections can also justified by key findings being replications and not borderline significance. We have added this additional justification to the manuscript (Methods, Statistical Analyses, page 15, line 568: “Adjustments for multiple comparisons were not conducted for analyses of replicated effects”)

      Reviewer #2 (Public Review):

      […] The major strength and contribution of this study is the use of a longitudinal intervention design, allowing the investigation of how the well-established link between underconfidence and anxious-depressive symptoms changes after treatment. Furthermore, the large sample size of the iCBT group is commendable. The authors employed well-established measures of metacognition and clinical symptoms, used appropriate analyses, and thoroughly examined the specificity of the observed effects.

      However, due to the small effect sizes, the antidepressant and control groups were underpowered, reducing comparability between interventions and the generalizability of the results. The lack of interaction effect with treatment makes it harder to interpret the observed differences in confidence, and practice effects could conceivably account for part of the difference. Finally, it was not completely clear to me why, in the exploratory analyses, the authors looked at the interaction of time and symptom change (and group), since time is already included in the symptom change index.

      Response: We thank the reviewer for their succinct summary of the main results and strengths of our study. We apologise for the confusion in how we described that analysis. We examine state-dependence., i.e. the relationship between symptom change and metacognition change, in two ways in the paper – perhaps somewhat redundantly. (1) By correlating change indices for both measures (e.g. as plotted in Figure 3D) and (2) by doing a very similar regression-based repeated-measures analysis, i.e. mean confidence ~ time*anxious-depression score change. Where mean confidence is entered with two datapoints – one for pre- and one for post-treatment (i.e. within-person) and anxious-depression change is a single value per person (between-person change score). This allowed us to test if those with the biggest change in depression had a larger effect of time on confidence. This has been added to the paper for clarification (Methods, Statistical Analysis, page 14, line 553-559: “To determine the association between change in confidence and change in anxious-depression, we used (1) Pearson correlation analysis to correlate change indices for both measures and, (2) regression-based repeated-measures analysis: mean confidence ~ time*anxious-depression score change, where mean confidence is entered with two datapoints (one for pre- and one for post-treatment i.e., within-person) and anxious-depression change is a single value per person (between-person change score)”).

      The analyses have also been reported as regression in the Results for consistency (Treatment Findings: iCBT, page 5, line 197-204: ‘To test if changes in confidence from baseline to follow-up scaled with changes in anxious-depression, we ran a repeated measure regression analyses with per-person changes in anxious-depression as an additional independent variable. We found this was the case, evidenced by a significant interaction effect of time and change in anxious-depression on confidence (b=-0.12, SE=0.04, p=0.002)… This was similarly evident in a simple correlation between change in confidence and change in anxious-depression (r(647)=-0.12, p=0.002)”).

      This longitudinal study informs the field of metacognition in mental health about the changeability of biases in confidence. It advances our understanding of the link between anxiety-depression and underconfidence consistently found in cross-sectional studies. The small effects, however, call the clinical relevance of the findings into question. I would have found it useful to read more in the discussion about the implications of the findings (e.g., why is it important to know that the confidence bias is state-dependent; given the effect size of the association between changes in confidence and symptoms, is the state-trait dichotomy the right framework for interpreting these results; suggestions for follow-up studies to better understand the association).

      Response: Thank you for this comment. We have elaborated on the implications of our findings in the Discussion, including the relevance of the state-trait dichotomy to future research and how more intensive, repeated testing may inform our understanding of the state-like nature of metacognition (Discussion, Limitations and Future Directions, page 10, line 378-380: “More intensive, repeating testing in future studies may also reveal the temporal window at which metacognition has the propensity to change, which could be more momentary in nature.”).

      Reviewer #3 (Public Review):

      […] I think these findings are exciting because they directly relate to one of the big assumptions when relating cognition to mental health - are we measuring something that changes with treatment (is malleable), so might be mechanistically relevant, or even useful as a biomarker?

      This work is also useful in that it replicates a finding of heightened confidence in those with compulsivity, and lowered confidence in those with elevated anxious-depression.

      One caveat to the interest of this work is that it doesn't allow any causal conclusions to be drawn, and only measures two timepoints, so it's hard to tell if changes in confidence might drive treatment effects (but this would be another study). The authors do mention this in the limitations section of the paper.

      Another caveat is the small sample in the antidepressant group.

      Some thoughts I had whilst reading this paper: to what extent should we be confident that the changes are not purely due to practice? I appreciate there is a relationship between improvement in symptoms and confidence in the iCBT group, but this doesn't completely rule out a practice effect (for instance, you can imagine a scenario in which those whose symptoms have improved are more likely to benefit from previously having practiced the task).

      Response: We thank the reviewer for commenting on the implications of our findings and we agree with the caveats listed. We thank the reviewer for raising this point about practice effects. A key thing to note is that this task does not have a learning element with respect to the core perceptual judgement (i.e., accuracy), which is the target of the confidence judgment itself. While there is a possibility of increased familiarity with the task instructions and procedures with repeated testing, the task is designed to adjust the difficulty to account of any improvements, so accuracy is stable. We see that we may not have made this clear in some of our language around accuracy vs. perceptual difficulty and have edited the Results to make this distinction clearer (Treatment Findings: iCBT, pages 4-5, lines 184-189: “Although overall accuracy remained stable due to the staircasing procedure, participants’ ability to detect differences between the visual stimuli improved. This was reflected as the overall increase in task difficulty to maintain the accuracy rates from baseline (dot difference: M=41.82, SD=11.61) to follow-up (dot difference: M=39.80, SD=12.62), (b=-2.02, SE=0.44, p<0.001, r2\=0.01)”.)

      However, it is true that there can be a ‘practice’ effect in the sense that one may feel more confident (despite the same accuracy level) due to familiarity with a task. One reason we do not subscribe to the proposed explanation for the link between anxious-depression change and confidence change is that the other major aspect of behaviour that improved with practice did so in a manner unrelated to clinical change. As noted above in the quoted text, participants’ discrimination improved from baseline to follow-up, reflected in the need for higher difficulty level to maintain accuracy around 70%. Crucially, this was not associated with symptom change. This speaks against a general mechanism where symptom improvement leads to increased practice effects in general. Only changes in confidence specifically are associated with improved symptoms. We have provided more detail on this in the Discussion (page 9, lines 324-326: “This association with clinical improvements was specific to metacognitive changes, and not changes in task performance, suggesting that changes in confidence do not merely reflect greater task familiarity at follow-up.”).

      Relatedly, to what extent is there a role for general task engagement in these findings? The paper might be strengthened by some kind of control analysis, perhaps using (as a proxy for engagement) the data collected about those who missed catch questions in the questionnaires.

      Response: Thank you for your comment. We included the details of data quality checks in the Supplement. Given the small number of participants that failed more than one attention checks (1% of the iCBT arm) and that all those participants passed the task exclusion criteria, we made the decision to retain these individuals for analyses. We have since examined if excluding these small number of individuals impacts our findings. Excluding those that failed more than one catch item did not affect the significance of results, which has now been added to the Supplementary Information (Data Quality Checks: Task and Clinical Scales, page 5, lines 181-185: “Additionally, excluding those that failed more than one catch item in the iCBT arm did not affect the significance of results, including the change in confidence (b=0.16, SE=0.02, p<0.001), change in anxious-depression (b=-0.32, SE=0.03, p<0.001), and the association between change in confidence and change in anxious-depression (r(638)=-0.10, p=0.011)”).

      I was also unclear what the findings about task difficulty might mean. Are confidence changes purely secondary to improvements in task performance generally - so confidence might not actually be 'interesting' as a construct in itself? The authors could have commented more on this issue in the discussion.

      Response: Thank you for this comment and sorry it was not clear in the original paper. As we discussed in a prior reply, accuracy – i.e. proportion of correct selections (the target of confidence judgements) are different from the difficulty of the dot discrimination task that each person receives on a given trial. We had provided more details on task difficulty in the Supplement. Accuracy was tightly controlled in this task using a ‘two-down one-up’ staircase procedure, in which equally sized changes in dot difference occurred after each incorrect response and after two consecutive correct responses. The task is more difficult when the dot difference between stimuli is lower, and less difficult when the dot difference between stimuli is greater. Therefore, task difficulty refers to the average dot difference between stimuli across trials. Crucially, task accuracy did not change from baseline to follow-up, only task difficulty. Moreover, changes in task difficulty were not associated with changes in anxious-depression, while changes in confidence were, indicating confidence is the clinically relevance construct for change in symptoms.

      We appreciate that this may not have been clear from the description in the main manuscript, and have added more detail on task difficulty to the Methods (Metacognition Task, page 14, lines 540-542: “Task difficulty was measured as the mean dot difference across trials, where more difficult trials had a lower dot difference between stimuli.”) and Results (Treatment Findings: iCBT, pages 4-5, lines 184-186: “Although overall accuracy remained stable due to the staircasing procedure, participants’ ability to detect differences between the visual stimuli improved.”). We have also elaborated more on how improvements in symptoms are associated with change in confidence, not task performance in the Discussion (page 9, lines 324-326: “This association with clinical improvements was specific to metacognitive changes, and not changes in task performance, suggesting that changes in confidence do not merely reflect greater task familiarity at follow-up”).

      To make code more reproducible, the authors could have produced an R notebook that could be opened in the browser without someone downloading the data, so they could get a sense of the analyses without fully reproducing them.

      Response: Thank you for your comment. We appreciate that an R notebook would be even better than how we currently share the data and code. While we will consider using Notebooks in future, we checked and converting our existing R script library into R Notebooks would require a considerable amount of reconfiguration that we cannot devote the time to right now. We hope that nonetheless the commitment to open science is clear in the extensive code base, commenting and data access we are making available to readers.

      Rather than reporting full study details in another publication I would have found it useful if all relevant information was included in a supplement (though it seems much of it is). This avoids situations where the other publication is inaccessible (due to different access regimes) and minimises barriers for people to fully understand the reported data.

      Response: We agree this is good practice – the Precision in Psychiatry study is very large, with many irrelevant components with respect to the present study (Lee et al., BMC Psychiatry, 2023). For this reason, we tried to provide all that was necessary and only refer to the Precision in Psychiatry study methods for fine-grained detail. Upon review, the only thing we think we omitted that is relevant is information on ethical approval in the manuscript, which we have now added (Methods, Participants, page 11, lines 412-417: “Further details of the PIP study procedures that are not specific to this study can be found in a prior publication (21). Ethical approval for the PIP study was obtained from the Research Ethics Committee of School of Psychology, Trinity College Dublin and the Northwest-Greater Manchester West Research Ethics Committee of the National Health Service, Health Research Authority and Health and Care Research Wales”). If any further information is lacking, we are happy to include it here also.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      She et al studied the evolution of gene expression reaction norms when individuals colonise a new environment that exposes them to physiologically challenging conditions. Their objective was to test the "plasticity first" hypothesis, which suggest that traits that are already plastic (their value changes when facing a new environment compared to the original environment) facilitates the colonisation of novel environments, which, if true, would be predicted to result in the evolution of gene expression values that are similar in the population that colonised the new environment and evolved under these particular selection pressures. To test this prediction, they studied gene expression in cardiac and muscle tissues in individuals originating from three conditions: lowland individuals in their natural environment (ancestral state), lowland individuals exposed to hypoxia (the plastic response state), and a highland population facing hypoxia for several generations (the coloniser state). They classified gene expression patterns as maladaptive or adaptive in lowland individuals responding to short term hypoxia by classifying gene expression patterns using genes that differed between the ancestral state (lowland) and colonised state (highland). Genes expressed in the same direction in lowland individuals facing hypoxia (the plastic state) as what is found in the colonised state are defined as adaptative, while genes with the opposite expression pattern were labelled as maladaptive, using the assumption that the colonised state must represent the result of natural selection. Furthermore, genes could be classified as representing reversion plasticity when the expression pattern differed between the plasticity and colonised states and as reinforcement when they were in the same direction (for example more expressed in the plastic state and the colonised state than in the ancestral state). They found that more genes had a plastic expression pattern that was labelled as maladaptive than adaptive. Therefore, some of the genes have an expression pattern in accordance with what would be predicted based on the plasticity-first hypothesis, while others do not.

      Thank you for a precise summary of our work. We appreciate the very encouraging comments recognizing the value of our work. We have addressed concerns from the reviewer in greater detail below.

      Q1. As pointed out by the authors themselves, the fact that temperature was not included as a variable, which would make the experimental design much more complex, misses the opportunity to more accurately reflect the environmental conditions that the colonizer individuals face at high altitude. Also pointed out by the authors, the acclimation experiment in hypoxia lasted 4 weeks. It is possible that longer term effects would be identifiable in gene expression in the lowland individuals facing hypoxia on a longer time scale. Furthermore, a sample size of 3 or 4 individuals per group depending on the tissue for wild individuals may miss some of the natural variation present in these populations. Stating that they have a n=7 for the plastic stage and n= 14 for the ancestral and colonized stages refers to the total number of tissue samples and not the number of individuals, according to supplementary table 1.

      We shared the same concerns as the reviewer. This is partly because it is quite challenging to bring wild birds into captivity to conduct the hypoxia acclimation experiments. We had to work hard to perform acclimation experiments by taking lowland sparrows in a hypoxic condition for a month. We indeed have recognized the similar set of limitations as the review pointed out and have discussed the limitations in the study, i.e., considering hypoxic condition alone, short time acclimation period, etc. Regarding sample sizes, we have collected cardiac muscle from nine individuals (three individuals for each stage) and flight muscle from 12 individuals (four individuals for each stage). We have clarified this in Supplementary Table 1.

      Q2. Finally, I could not find a statement indicating that the lowland individuals placed in hypoxia (plastic stage) were from the same population as the lowland individuals for which transcriptomic data was already available, used as the "ancestral state" group (which themselves seem to come from 3 populations Qinghuangdao, Beijing, and Tianjin, according to supplementary table 2) nor if they were sampled in the same time of year (pre reproduction, during breeding, after, or if they were juveniles, proportion of males or females, etc). These two aspects could affect both gene expression (through neutral or adaptive genetic variation among lowland populations that can affect gene expression, or environmental effects other than hypoxia that differ in these populations' environments or because of their sexes or age). This could potentially also affect the FST analysis done by the authors, which they use to claim that strong selective pressure acted on the expression level of some of the genes in the colonised group.

      The reviewer asked how individual tree sparrows used in the transcriptomic analyses were collected. The individuals used for the hypoxia acclimation experiment and represented the ancestral lowland population were collected from the same locality (Beijing) and at the same season (i.e., pre-breeding) of the year. They are all adults and weight approximately 18g. We have clarified this in the Supplementary Table S1 and Methods. We did not distinguish males from females (both sexes look similar) under the assumption that both sexes respond similarly to hypoxia acclimation in their cardiac and flight muscle gene expression.

      The Supplementary Table 2 lists the individuals that were used for sequence analyses. These individuals were only used for sequence comparisons but not for the transcriptomic analyses. The population genetic structure analyzed in a previously published study showed that there is no clear genetic divergence within the lowland population (i.e., individuals collected from Beijing, Tianjing and Qinhuangdao) or the highland population (i.e., Gangcha and Qinghai Lake). In addition, there was no clear genetic divergence between the highland and lowland populations (Qu et al. 2020).

      Q4. Impact of the work

      There has been work showing that populations adapted to high altitude environments show changes in their hypoxia response that differs from the short-term acclimation response of lowland population of the same species. For example, in humans, see Erzurum et al. 2007 and Peng et al. 2017, where they show that the hypoxia response cascade, which starts with the gene HIF (Hypoxia-Inducible Factor) and includes the EPO gene, which codes for erythropoietin, which in turns activates the production of red blood cell, is LESS activated in high altitude individuals compared to the activation level in lowland individuals (which gives it its name). The present work adds to this body of knowledge showing that the short-term response to hypoxia and the long term one can affect different pathways and that acclimation/plasticity does not always predict what physiological traits will evolve in populations that colonize these environments over many generations and additional selection pressure (UV exposure, temperature, nutrient availability). Altogether, this work provides new information on the evolution of reaction norms of genes associated with the physiological response to one of the main environmental variables that affects almost all animals, oxygen availability. It also provides an interesting model system to study this type of question further in a natural population of homeotherms.

      Erzurum, S. C., S. Ghosh, A. J. Janocha, W. Xu, S. Bauer, N. S. Bryan, J. Tejero et al. "Higher blood flow and circulating NO products offset high-altitude hypoxia among Tibetans." Proceedings of the National Academy of Sciences 104, no. 45 (2007): 17593-17598.

      Peng, Y., C. Cui, Y. He, Ouzhuluobu, H. Zhang, D. Yang, Q. Zhang, Bianbazhuoma, L. Yang, Y. He, et al. 2017. Down-regulation of EPAS1 transcription and genetic adaptation of Tibetans to high-altitude hypoxia. Molecular biology and evolution 34:818-830.

      Thank you for highlighting the potential novelty of our work in light of the big field. We found it very interesting to discuss our results (from a bird species) together with similar findings from humans. In the revised version of manuscript, we have discussed short-term acclimation response and long-term adaptive evolution to a high-elevation environment, as well as how our work provides understanding of the relative roles of short-term plasticity and long-term adaptation. We appreciate the two important work pointed out by the reviewer and we have also cited them in the revised version of manuscript.

      Reviewer #2 (Public Review):

      This is a well-written paper using gene expression in tree sparrow as model traits to distinguish between genetic effects that either reinforce or reverse initial plastic response to environmental changes. Tree sparrow tissues (cardiac and flight muscle) collected in lowland populations subject to hypoxia treatment were profiled for gene expression and compared with previously collected data in 1) highland birds; 2) lowland birds under normal condition to test for differences in directions of changes between initial plastic response and subsequent colonized response. The question is an important and interesting one but I have several major concerns on experimental design and interpretations.

      Thank you for a precise summary of our work and constructive comments to improve this study. We have addressed your concerns in greater detail below.

      Q1. The datasets consist of two sources of data. The hypoxia treated birds collected from the current study and highland and lowland birds in their respective native environment from a previous study. This creates a complete confounding between the hypoxia treatment and experimental batches that it is impossible to draw any conclusions. The sample size is relatively small. Basically correlation among tens of thousands of genes was computed based on merely 12 or 9 samples.

      We appreciate the critical comments from the reviewer. The reviewer raised the concerns about the batch effect from birds collected from the previous study and this study. There is an important detail we didn’t describe in the previous version. All tissues from hypoxia acclimated birds and highland and lowland birds have been collected at the same time (i.e., Qu et al. 2020). RNA library construction and sequencing of these samples were also conducted at the same time, although only the transcriptomic data of lowland and highland tree sparrows were included in Qu et al. (2020). The data from acclimated birds have not been published before.

      In the revised version of manuscript, we also compared log-transformed transcript per million (TPM) across all genes and determined the most conserved genes (i.e., coefficient of variance ≤  0.3 and average TPM ≥ 1 for each sample) for the flight and cardiac muscles, respectively (Hao et al. 2023). We compared the median expression levels of these conserved genes and found no difference among the lowland, hypoxia-exposed lowland, and highland tree sparrows (Wilcoxon signed-rank test, P<0.05). As these results suggested little batch effect on the transcriptomic data, we used TPM values to calculate gene expression level and intensity. This methodological detail has been further clarified in the Methods and we also provided a new supplementary Figure (Figure S5) to show the comparative results.

      The reviewer also raised the issue of sample size. We certainly would have liked to have more individuals in the study, but this was not possible due to the logistical problem of keeping wild bird in a common garden experiment for a long time. We have acknowledged this in the manuscript. In order to mitigate this we have tested the hypothesis of plasticity following by genetic change using two different tissues (cardiac and flight muscles) and two different datasets (co-expressed gene-set and muscle-associated gene-set). As all these analyses show similar results, they indicate that the main conclusion drawn from this study is robust.

      Q2. Genes are classified into two classes (reversion and reinforcement) based on arbitrarily chosen thresholds. More "reversion" genes are found and this was taken as evidence reversal is more prominent. However, a trivial explanation is that genes must be expressed within a certain range and those plastic changes simply have more space to reverse direction rather than having any biological reason to do so.

      Thank you for the critical comments. There are two questions raised we should like to address them separately. The first concern centered on the issue of arbitrarily chosen thresholds. In our manuscript, we used a range of thresholds, i.e., 50%, 100%, 150% and 200% of change in the gene expression levels of the ancestral lowland tree sparrow to detect genes with reinforcement and reversion plasticity. By this design we wanted to explore the magnitudes of gene expression plasticity (i.e., Ho & Zhang 2018), and whether strength of selection (i.e., genetic variation) changes with the magnitude of gene expression plasticity (i.e., Campbell-Staton et al. 2021).

      As the reviewer pointed out, we have now realized that this threshold selection is arbitrarily. We have thus implemented two other categorization schemes to test the robustness of the observation of unequal proportions of genes with reinforcement and reversion plasticity. Specifically, we used a parametric bootstrap procedure as described in Ho & Zhang (2019), which aimed to identify genes resulting from genuine differences rather than random sampling errors. Bootstrap results suggested that genes exhibiting reversing plasticity significantly outnumber those exhibiting reversing plasticity, suggesting that our inference of an excess of genes with reversion plasticity is robust to random sampling errors. We have added these analyses to the revised version of manuscript, and provided results in the Figure 2d and Figure 3d.

      In addition, we adapted a bin scheme (i.e., 20%, 40% and 60% bin settings along the spectrum of the reinforcement/reversion plasticity). These analyses based on different categorization schemes revealed similar results, and suggested that our inference of an excess of genes with reversion plasticity is robust. We have provided these results in the Supplementary Figure S2 and S4.

      The second issue that the reviewer raised is that the plastic changes simply have more space to reverse direction rather than having any biological reason to do so. While a causal reason why there are more genes with expression levels being reversed than those with expression levels being reinforced at the late stages is still contentious, increasingly many studies show that genes expression plasticity at the early stage may be functionally maladapted to novel environment that the species have recently colonized (i.e., lizard, Campbell-Staton et al. 2021; Escherichia coli, yeast, guppies, chickens and babblers, Ho and Zhang 2018; Ho et al. 2020; Kuo et al. 2023). Our comparisons based on the two genesets that are associated with muscle phenotypes corroborated with these previous studies and showed that initial gene expression plasticity may be nonadaptive to the novel environments (i.e., Ghalambor et al. 2015; Ho & Zhang 2018; Ho et al. 2020; Kuo et al. 2023; Campbell-Staton et al. 2021).

      Q3. The correlation between plastic change and evolved divergence is an artifact due to the definitions of adaptive versus maladaptive changes. For example, the definition of adaptive changes requires that plastic change and evolved divergence are in the same direction (Figure 3a), so the positive correlation was a result of this selection (Figure 3d).

      The reviewer raised an issue that the correlation between plastic change and evolved divergence is an artifact because of the definition of adaptive versus maladaptive changes, for example, Figure 3d. We agree with the reviewer that the correlation analysis is circular because the definition of adaptive and maladaptive plasticity depends on the direction of plastic change matched or opposed that of the colonized tree sparrows. We have thus removed previous Figure 3d-e and related texts from the revised version of manuscript. Meanwhile, we have changed Figure 3a to further clarify the schematic framework.

      Reviewer #1 (Recommendations For The Authors):

      Q1. Here are private recommendations that I think could help improve the manuscript. West-Eberhard was a pioneer back in 2003 in explicating the hypothesis of "plasticity first". I think it is important to cite their main work in the first paragraph of introduction and to use the term "plasticity-first", which is widely known among evolutionary biologists studying phenotypic plasticity, instead of "plasticity followed by genetic change", since the three papers cited in paragraph 1 call it « plasticity first ».

      West-Eberhard, M.J. (2003) Developmental Plasticity and Evolution, Oxford University Press.

      Thank you for suggesting West-Eberhard (2003) and we have cited this important work. We have also changed “plasticity followed by genetic change” to “plasticity first”.

      Q2. Introduction. Line 5, Change for « On the one hand, if plasticity changes ... »

      We have modified as suggested.

      Q3. Line 52, Change for « ...same direction as adaptive evolution does ...»

      We have modified as suggested.

      Q4. Line 66,When presenting papers that address the plasticity and evolution of gene expression in response to environmental variables, paper by Morris et al is another example that could be useful to include (but this is only a suggestion in case the authors missed it).

      Thank you for suggesting this nice work. We have cited Morris et al. (2014).

      Q5. Line 94, Change for "We acclimated"

      We have modified as suggested.

      Q6. In Figure 3, the figure in panel A and B is labelled "normaxia", but I think that "normoxia" is usually the term used.

      Thank you for spot the typo. We have modified Figure 3a and we no longer used the term “normaxia”.

      Material and methods

      It would be important to merge supplementary table 1 and 2 and only present the individuals that were used with their respective cardiac and muscle libraries (if they come from the same individual?). Also, the origin of the individuals used in the hypoxia experiment should be explained at the beginning of the methods section and explicated in the supplementary table. Information on sex or stage of development (juvenile? Adult? Male? female?) and time of year (in breeding stage? Pre-migration (if any), etc) would allow the reader to see that individuals from lowland differed only in their exposure to hypoxia or not, or if other variables may affect gene expression patterns. Similarly, if all individuals form the highland are males and the lowland hypoxia exposed individuals are females (or juveniles versus breeders, or different time of year, etc) this should be stated in the methods. Gene expression is labile so the reader should know if other variables influence the results presented or not.

      Thank you for suggestion. We have added detailed information (i.e., age, collecting time and season) to the supplementary Table 1. We have also added this information to the Methods. Because the birds used in transcriptomic analysis (Supplementary Table 1) were different individuals from those used in the sequence analyses (Supplementary Table 2), these two tables cannot be merged.

      References:

      Campbell-Staton SC, Velotta JP, Winchell KM. 2021. Selection on adaptive and maladaptive genes expression plasticity during thermal adaptation to urban heat islands. Nat. Commun. 12: 6195.

      Ghalambor CK, Hoke KL, Ruell EW, Fischer EK, Reznick DN, Hughes KA. 2015. Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. Nature 525:372–375.

      Hao et al. 2023. Divergent contributions of coding and noncoding sequences to initial high-altitude adaptation in passerine birds endemic to the Qinghai–Tibet Plateau. Mol. Ecol. Doi: 10.1111/mec.16942.

      Ho WC, Zhang J. 2018. Evolutionary adaptations to new environments generally reverse plastic phenotypic changes. Nat. Commun. 9: 350.

      Ho WC, Zhang J. 2019. Genetic gene expression changes during environmental adaptations tend to reverse plastic changes even after correction for statistical nonindependence. Mol. Biol. Evol. 36: 604–612.

      Ho WC, Li D, Zhu Q, Zhang J. 2020. Phenotypic plasticity as a long-term memory easing readaptations to ancestral environments. Sci. Adv. 6: eaba3388.

      Kuo KC, Yao CT, Liao BY, Weng MP, Dong F, Hsu YC, Hung CM. 2023. Weak gene-gene interaction facilitates the evolution of gene expression plasticity. BMC Biol. 21: 57.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      I would recommend the authors check the results section, it seems to me that the first two paragraphs are not results, but methods.

      We would like to express our appreciation to both reviewers for bringing this to our attention. Indeed, we discussed this in detail, but decided that because the methods come after the results section. We believe that providing the basic methodological approach to readers before the results is essential for better comprehension. Once again, we sincerely thank the reviewers for their valuable feedback, however, we would prefer to leave this part as it is.

      In Figure 3B, why there is not male and female shown in different lines, as in the rest of figures? I recommend following the same pattern everywhere.

      Has been changed accordingly, and the respective sex-specific lines were also added to Figure 4.

      I recommend checking carefully all the articles included in Table 2. Maybe some of the included information here is not precise.

      We thank the reviewer for highlighting this. We carefully checked the articles again, and made some small adjustments.

      In Material and methods: just note that when ages are estimated, usually there is a variable accounting for the amount of estimated years, that should be included in the model, and see that it has no effect on the dependent variable. I recommend including this variable.

      We sincerely appreciate the helpful comment from the reviewer, which we have carefully considered and implemented in our manuscript. However, we would like to highlight that addressing age estimation error is complex, as it involves measurement error. Thus, simply adding it as an independent variable may not fully capture its potential impact, as the effect may be positive or negative depending on the individual. Hence, the potential effect would be better accounted for by the implementation of individual random intercepts and smooths to adjust the confidence intervals, which is part of our model structures. Furthermore, we would like to emphasize that we have also conducted analyses on a reduced dataset that only included zoo-born individuals with precisely known birthdates, and the results remained consistent. So instead of changing our analyses, we now emphasize how our approach also addresses this aspect.

      Creatinine: Is there any other reference, more recent and in English, to complement the original one cited?

      We have now supplemented the original citation with an additional English citation: Anestis et al. 2009.

      Reviewer #2 (Recommendations For The Authors):

      Minor corrections

      Please, in Study population, the citation of table 2 is in fact Table 3. For table 3 (in Methodology), please provide the units Body weight having a mean of 32.4, has it a median of 9 ?

      Please, provide results separately for males and females

      We changed the table as requested, though the table only reports sample sizes and thus only numbers without units. The values for body weight are accurate.

      In Results

      The two first paragraphs have to be included in methods and structured with those already present.

      We would like to express our appreciation to both reviewers for bringing this to our attention. Indeed, we discussed this in detail, but decided that because the methods come after the results section, we believe that providing the basic methodological approach to readers before the results is essential for better comprehension. Once again, we sincerely thank the reviewers for their valuable feedback, however, we would prefer to leave this part as it is.

      In Table 1, indicate what 'Est' means.

      Has been changed accordingly

    1. Author Response

      Reviewer #1 (Public Review):

      The cerebral cortex, or surface of the brain, is where humans do most of their conscious thinking. In humans, the grooves (sulci) and bumps (convolutions) have a particular pattern in a region of the frontal lobe called Broca's area, which is important for language. Specialists study features imprinted on the internal surfaces of braincases in early hominins by casting their interiors, which produces so-called endocasts. A major question about hominin brain evolution concerns when, where, and in which fossils a humanlike Broca's area first emerged, the answer to which may have implications for the emergence of language. The researchers used advanced imaging technology to study the endocast of a hominin (KNM-ER 3732) that lived about 1.9 million years ago (Ma) in Kenya to test a recently published hypothesis that Broca's remained primitive (apelike) prior to around 1.5 Ma. The results are consistent with the hypothesis and raise new questions about whether endocasts can be used to identify the genus and/or species of fossils.

      We would like to thank Rev. 1 for their comments on our paper.

      Reviewer #2 (Public Review):

      The authors tried to support the hypothesis that early Homo still had a primitive condition of Broca's cap (the region in fossil endocasts corresponding to Broca's area in the brain), being more similar to the condition in chimpanzees than in humans. The evidence from the described individual points to this direction but there are some flaws in the argumentation.

      We are grateful to Rev. 2 for their comments, although we partially agree with some of them.

      First, we would like to rectify the statement of Rev. 2 that we “tried to support the hypothesis that early Homo still had a primitive condition of Broca's cap”, indeed, our aim was to test this hypothesis and not to try to validate it.

      First, only one human and one chimpanzee were used for comparison, although we know that patterns of brain convolutions (and in addition how they leave imprints in the endocranial bones) are very variable.

      We understand the point raised by Rev. 2 about the variation of brain convolutions in humans and chimpanzees. We used atlases published by Connolly (1950), Falk et al. (2018) and de Jager et al. (2019, 2022) to analyse the endocast of KNM-ER 3732 and compare it to the extant human and chimpanzee cerebral conditions. However, in Figure 2, for the sake of clarity only two Homo and Pan specimens were used to illustrate the comparison (as it has been done in other published papers, e.g., Carlson et al., 2011; Science, Gunz et al., 2020 Sci Adv). In the revised version, we modified the manuscript to explain further our approach (line 156) “We used brain and endocast atlases published in Connolly (1950), Falk et al. (2018) and de Jager et al. (2019, 2022; see also www.endomap.org) for comparing the pattern identified in KNM-ER 3732 to those described in extant humans and chimpanzees. To the best of our knowledge, these atlases are the most extensive atlases of extant human and chimpanzee brains/endocasts available to date and are widely used in the literature to explore variability in sulcal patterns. In Figure 2, the extant human and chimpanzee conditions are illustrated by one extant human (adult female) and one extant chimpanzee (adult female) specimens from the Pretoria Bone Collection at the University of Pretoria (South Africa) and in the Royal Museum for Central Africa in Tervuren (Belgium), respectively (Beaudet et al., 2018).”.

      Second, the evidence from this fossil specimen adds to the evidence of previously describe individuals but still not yet fully prove the hypothesis.

      We tempered our discussion by concluding that (line 116) “Overall, the present study not only demonstrates that Ponce de León et al.’s (2021) hypothesis of a primitive brain of early Homo cannot be rejected, but also adds information […]”.

      Third, there is a vicious circle in using primitive and derived features to define a fossil species and then using (the same or different) features to argue that one feature is primitive or derived in a given species. In this case, we expect members of early Homo to be derived compared to their predecessors of the genus Australopithecus and that's why it seems intriguing and/or surprising to argue that early Homo has primitive features. However, we should expect that there is some kind of continuum or mosaic in a time in which a genus "evolves into" another genus. This discussion requires far more discussions about the concepts we use, maybe less discussion about what is different between the two groups but more discussion about the evolutionary processes behind them.

      We fully agree with Rev. 2 on this aspect. We believe that identifying these differences/similarities between fossil and extant hominids constitute the first step of a better understanding of the evolutionary mechanisms. Our work suggests indeed a certain continuity between genera and raises questions on the genus concept and how to interpret the specimens currently attributed to early Homo. In the revised version of the manuscript we included a reference to this possible scenario (line 134): “[…] or to the absence of a definite threshold between the two genera based on the morphoarchitecture of their endocasts (Wood and Collard, 1999).”.

      Fourth, the data of convolutional imprints presented are rather subjective when identifying which impressions represent which brain convolutions. Not seeing an impression does not necessarily mean that the corresponding brain feature did not exist. Interestingly, the manuscript does not mention and discuss at all the frontoorbital sulcus. This is a sulcus that usually runs from the orbital surface of the frontal lobe up to divide the inferior frontal gyrus in chimpanzees, a condition totally different than in humans who do not have a frontoorbital sulcus. Could such a sulcus be identified, this would provide a far more convincing argument for a primitive condition in this specimen. In Australopithecus sediba, e.g., the condition in this region seems to be a mosaic in which some aspects of the morphology seem to be more modern while one of the sulcual impressions can well be interpreted as a short frontoorbital sulcus. For this specimen, by the way, I would come back to my third point above: some experts in the field might argue that this specimen could belong to Homo rather than Australopithecus...

      We agree that the presence of a fronto-orbital sulcus would be more conclusive. However, this sulcus has not been identified in KNM-ER3732 and the region in which we would expect to find it is not preserved. As demonstrated by Ponce de León et al. (2021), because of the topographic relationships between sulci (and cranial structures), it is possible to interpret imprints on endocasts and the evolutionary polarity of some traits even in the absence of landmarks such as the fronto-orbital sulcus. In Australopithecus sediba the main derived feature of the endocast corresponds to the ventrolateral bulge in the left inferior frontal gyrus, and not to the sulcal pattern itself (Carlson et al., 2011 Science). However, the discussion around the taxonomic status of this taxon confirms the urgent need for reconsidering specimens from that time period and clarifying the mosaic-like or concerted evolution of the derived Homo-like traits within our lineage. Regarding the subjective nature of this approach, we invite readers to examine the specimen on MorphoSource (https://www.morphosource.org/concern/media/000497752?locale=en) and to request access to the National Museums of Kenya to the physical or virtual specimen to falsify our hypothesis.

      According to my arguments above, I think that this manuscript might revive interesting discussions about this topic but it is not likely to settle them because the data presented are not strong enough to fully support the hypothesis.

      We would be more than happy to consider new/other specimens with similar chronological and geographical contexts and investigate further this hypothesis in the future.

      Reviewer #3 (Public Review):

      The authors provide a detailed analysis of the sulcal and sutural imprints preserved on the natural endocast and associated cranial vault fragments of the KNM-ER3732 early Homo specimen. The analyses indicate a primitive ape-like organization of this specimen's frontal cortex. Given the geological age of around 1.9 million years, this is the earliest well-documented evidence of a primitive brain organization in African Homo.

      In the discussion, the authors re-assess one of the central questions regarding the evolution of early Homo: was there species diversity, and if yes, how can we ascertain it? The specimen KNM-ER1470 has assumed a central role in this debate because it purportedly shows a more advanced organization of the frontal cortex compared to other largely coeval specimens (Falk, 1983). However, as outlined in Ponce de León et al. 2021 (Supplementary Materials), the imprints on the ER1470 endocranium are unlikely to represent sulcal structures and are more likely to reflect taphonomic fracturing and distortion. Dean Falk, the author of the 1983 study, basically shares this view (personal communication). Overall, I agree with the authors that the hypothesis to be tested is the following: did early Homo populations with primitive versus derived frontal lobe organizations coexist in Africa, and did they represent distinct species?

      I greatly appreciate that the authors make available the 3D surface data of this interesting endocast.

      We are grateful to Rev. 3 for their comments and for contextualizing our finding. We would also like to point out that, although the 3D surface can be viewed on MorphoSource, permission from the National Museums of Kenya has to be requested for studying the specimen and getting access to the physical specimen and/or the 3D model.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their positive and constructive evaluations. Based upon the reviewers’ helpful comments, we have performed complementary experiments. In particular, we additionally show that:

      • a complete analysis of CXCR1/2 binding chemokines in the secretions of tissular CD8+ T cells reinforces the key role of CXCL8 in CD8+ T cell-induced fibrocyte chemotaxis (new panel D in Figure 2)

      • a direct contact between fibrocytes and CD8+ T cells triggers CD8+ T cell cytotoxicity against primary basal bronchial epithelial cells (new Figure 6)

      • the interaction between CD8+ T cells and fibrocytes is bidirectional, with CD8+ T cells triggering the development of fibrocyte immune properties (new Figure 7)

      • the characteristic time to reach a stationary state reminiscent of a resolution of the COPD condition was estimated to be about 2.5 years using the simulations. Interfering with chemotaxis and adhesion processes by inhibiting CXCR1/2 and CD54, respectively was not sufficient to reverse the COPD condition, as predicted by the mathematical model (new Figure 9)

      • the massive proliferation effect induced by fibrocytes is specific to CD8+ T cells and not CD4+ T cells (new Figure 3-figure supplement 2), and that fibrocytes moderately promote the death of unactivated CD8+ T cells in direct co-culture (new Figure 3-figure supplement 3)

      We have graphically summarized our findings (new Figure 10) suggesting the existence of a positive feedback loop playing a role in the vicious cycle that promotes COPD. A new table describing patient characteristics for basal bronchial epithelial cell purification has also been added (new Supplementary File 9), the Supplementary Files 7 and S8 have been up-dated to take into account the new experiments.

      The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository with the dataset identifier PXD041402.  

      Reviewer #1 (Recommendations For The Authors):

      The experimental approaches are all rationally designed and the data clearly presented, with appropriate analyses and sample sizes. I could find no technical or interpretative concerns. The interrelationship between the observational data (histology) with the quantitative live cell imaging and the follow-on functional investigations is especially laudable. The data nicely unifies several years of accumulated data regarding the (separate) participation of CD8 T cells and fibrocytes in COPD.

      We thank the reviewer for his/her comments.

      I have only minor comments:

      1) Line 79: The observation that T cells may influence fibrocyte differentiation/function was initially made some years earlier by Abe et al (J Immunol 2001; 7556), and should be cited in addition to the follow-on work of Niedermeyer.

      This reference has been added to acknowledge this seminal work.

      2) Line 632: Corticosteroids originate from the cortex of the adrenal gland. Budenoside and fluticasone are glucocorticoids, not corticosteroids.

      This mistake has been corrected in the discussion of the revised manuscript (see line 802 in the revised manuscript).

      3) Given the state of T cell immunotherapies, cytokine/chemokine antagonists, and emerging fibrocyte-targeted drugs, can the authors possibly speculate as to desired pathways to target therapeutically?

      Chemokine-receptor based therapies could be used to inhibit fibrocyte recruitment into the lungs, such as CXCR4 blockade. We have very recently shown that using the CXCR4 antagonist, plerixafor, alleviates bronchial obstruction and reduces peri-bronchial fibrocytes density (Dupin et al., 2023). Because CXCR4 expression in human fibrocytes is dependent on mTOR signaling and is inhibited by rapamycin in vitro (Mehrad et al., 2009), alternative strategies consisting of targeting fibrocytes via mTOR have been proposed. This target has proven effective in bronchiolitis obliterans, idiopathic pulmonary fibrosis, and thyroid-associated ophthalmopathy, using rapamycin (Gillen et al., 2013; Mehrad et al., 2009), sirolimus (Manjarres et al., 2023) or an insulin-like growth factor-1 (IGF-I) receptor blocking antibody (Douglas et al., 2020; Smith et al., 2017). Inhibiting mTOR is also expected to have effects on CD8+ T cells, ranging from an immunostimulatory effect by activation of memory CD8+ T-cell formation, to an immunosuppressive effect by inhibition of T cell proliferation (Araki et al., 2010). Last, chemokine-receptor base therapies could also include strategies to inhibit the CD8+-induced fibrocyte chemotaxis, such as dual CXCR1-CXCR2 blockade. We were able to test this latter strategy in our mathematical model, see response to point 6 of reviewer 2.

      Immunotherapies directly targeting the interaction between fibrocytes and CD8+ T cells could also be considered, such as CD86 or CD54 blockade. The use of abatacept and belatacept, that interfere with T cell co-stimulation, is effective in patients with rheumatoid arthritis (Pombo-Suarez & Gomez-Reino, 2019) and in kidney-transplant recipients (Vincenti et al., 2016), respectively. Targeting the IGF-I receptor by teprotumumab in the context of thyroid-associated ophthalmopathy also improved disease outcomes, possibly by altering fibrocyte-T cell interactions (Bucala, 2022; Fernando et al., 2021).

      We also tested this CD86 and CD54 blocking strategy for COPD treatment by simulations, see response to point 6 of reviewer 2.

      However, such therapies should be used with caution as they may favour adverse events such as infections, particularly in the COPD population (Rozelle & Genovese, 2007). Additionally, the fibrocytes-lymphocytes interaction has recently been shown to promote anti-tumoral immunity via the PD1-PDL1 immunological synapse (Afroj et al., 2021; Mitsuhashi et al., 2023). Therefore, care should be taken in the selection of patients to be treated and/or timing of treatment administration with regards to the increased risk of lung cancer in COPD patients.

      The discussion section has been altered accordingly.

      4) The authors may want to consider mentioning (and citing) recent insight into the immune-mediated fibrosis in thyroid-associated ophthalmopathy

      These important publications are now cited in a dedicated paragraph about the possible therapeutical interventions (see answer to point 3, and discussion in the revised manuscript).

      Reviewer #2 (Recommendations For The Authors):

      Specific comments

      1) The rationale for the selection of chemokines overexpressed by CD8+ T cells in COPD is based on literature data of n=2 patients per group. This is limited and risky. I am less concerned about false positives given the selection of chemokines and the available literature but am worried about the possibility that many chemokines may not have been selected based on insufficient power to do meaningful stats on this comparison. For example, many other CXCR1/2 binding CXCL chemokines exist and these could contribute to the migration effect in Fig 2C as well. Given the currently available single-cell resources it should be possible to extend these observations and to investigate CXCL chemokine expression in COPD CD8 T cells to the benefit of Fig 2A in full detail.

      We agree with the reviewer that the rationale for the selection of chemokines of interest could be reinforced by the analysis of supplementary single-cell resources. We used data from the COPD cell atlas (Gene Expression Omnibus GSE136831 (Sauler et al., 2022)) to perform such an analysis of chemokine expression by CD8+ CD103+ and CD8+ CD103- T cells. However, the expression level of all chemokines was globally very low, and was not different between control and COPD patients (see Author response image 1).

      Author response image 1.

      Expression of CXC chemokines in lung CD8+ CD103+ and CD8+ CD103- T cells from patients with COPD (n=18 independent samples) in comparison with healthy control subjects (n=29 independent samples) under resting conditions by Single-Cell RNA sequencing analysis (GEO accession GSE136831). The heatmaps show the normalized expression of genes (horizontal axes) encoding CXC chemokines. PF4=CXCL4, PPBP= CXCL7.

      The latter results are in discrepancy with those resulting from transcriptomic analysis of microarray data obtained on purified lung CD8+ CD103+ and CD8+ CD103- T cells, showing a significant level of chemokines expression (Hombrink et al., 2016), and a differential expression of CCL2, CCL26, CXCL2, CXCL8 and CCL3L1 between CD8+ T lymphocytes of control and COPD patients (Figure 2A in the revised manuscript). The reason for these differences is unclear, and could be attributed to biological differences (samples obtained from different patients) or, more likely, to differences in sample processing (cell sorting by flow cytometry for microarray analysis, that could activate minimally CD8+ cells) and/or methodological differences (differences of sensitivity between microarray and scRNA seq).

      Nevertheless, microarray data regarding CXCL8 expression are in good agreement with our in vitro experiments, showing an enhanced CXCL8 expression by CD8+ T cells purified from COPD lungs, in comparison with that of control subjects. In addition, the CXCL8 blocking antibody fully abrogates the increase of migration induced by secretion of COPD CD8+ T cells, to the same extent as the blocking of CXCR1/2 by reparixin. This suggests that this supplementary chemotaxis is mainly due to CXCL8 and not other CXCR1/2 binding CXCL chemokines, and correlates CXCL8 measurements to functional experiments. This precision has been now added in the results section of the revised version.

      2) Equally, it would strengthen the work if multiplex ELISA assays could be provided on the supernatants used in Fig 2D to provide a more comprehensive view of CXCR1/2 binding chemokines.

      In order to have a complete view of CXCR1/2 binding chemokines, we have now performed supplementary ELISA assays to measure the concentrations of CXCL1, 3, 5, 6 and 7, in addition of the measurements of CXCL2 and CXCL8 already presented in the previous version of the manuscript (Figure 2D). Results of these new assays are now presented in the revised version of Figure 2. Concentrations of CXCL1, 3, 5, 6 and 7 were unchanged between the control and COPD conditions.

      3) In the functional analyses, I missed information on the activation of the fibrocytes. Equally, the focus on CD8 T cells was mainly on proliferation in the functional work. RNAseq analyses on the cells, comparing CD8 T cells and fibrocytes, alone and in co-culture to each other would help to identify interaction patterns in comprehensive detail. Such an experiment would bolster the significance of the studies by providing impact analysis not only on the T cells beyond proliferation but by expanding on the effect of the interaction on the fibrocyte as well.

      Regarding the activation state of fibrocytes, we apologize if this was not clear: in our in vitro co-culture experiments, we chose not to activate the fibrocytes. This setting is in agreement with previous findings, demonstrating an antigen-independent T cell proliferation effect driven by fibrocytes (Nemzek et al., 2013), and it is now explicitly written in the results of the revised manuscript.

      Regarding the focus of the functional analyses:

      First, we have pushed forward the analysis of the consequences of the interaction beyond CD8+ T cells proliferation. In particular, having shown that fibrocytes promote CD8+ T cells expression of cytotoxic molecules such as granzyme B, we decided to investigate the cytotoxic capacity of CD8+ T cells against primary basal bronchial epithelial cells (see new Supplementary File 9 in the revised manuscript for patient characteristics).

      Direct co-culture with fibrocytes increased total and membrane expression of the cytotoxic degranulation marker CD107a, which was only significant in non-activated CD8+ T cells (see new Figure 6A-E in the revised manuscript). A parallel increase of cytotoxicity against primary epithelial cells was observed in the same condition (see new Figure 6F-H in the revised manuscript). This demonstrates that following direct interaction with fibrocytes, CD8+ T cells have the ability to kill target cells such as bronchial epithelial cells. This is now included in the results section of the revised manuscript.

      Second, we have now performed proteomic analyses on fibrocytes, alone or in co-culture during 6 days with CD8+ T cells either non-activated or activated (see new Figure 7A in the revised manuscript). Of the top ten pathways that were most significantly activated in co-cultured vs mono-cultured fibrocytes, largest upregulated genes were those of the dendritic cell maturation box, the multiple sclerosis signaling pathway, the neuroinflammation signaling pathway and the macrophage classical signaling pathway, irrespective of the activation state of CD8+ T cells (see new Figure 7B in the revised manuscript). The changes were globally identical in the two conditions of CD8+ T cell activation, with some upregulation more pronounced in the activated condition. They were mostly driven by up-regulation of a core set of Major Histocompatibility Complex class I (HLA-B, C, F) and II (HLA-DMB, DPA1, DPB1, DRA, DRB1, DRB3) molecules, co-simulatory and adhesion molecules (CD40, CD86 and CD54). Another notable proteomic signature was that of increased expression of IFN signaling-mediators IKBE and STAT1, and the IFN-responsive genes GBP2, GBP4 and RNF213. We also observed a strong downregulation of CD14, suggesting fibrocyte differentiation, and an upregulation of the matrix metalloproteinase-9 (MMP9) in the non-activated condition only. Altogether, these changes suggest that the interaction between CD8+ T cells and fibrocytes promotes the development of fibrocyte immune properties, which could subsequently impact the activation of CD4+ T cells activation.

      Up-regulated pathways identified in proteomic profile of fibrocytes co-cultured with CD8+ T cells are very consistent with a shift towards a proinflammatory phenotype rather than towards a reparative role. The activation of IFN-γ signaling could be triggered by CD8+ T cell secretion of IFN upon fibrocyte interaction, suggesting the existence of a positive feedback loop (see new Figure 10). Additionally, the priming of fibrocytes by CD8+ T cells could also induce CD4+ T cell activation.

      4) I suggest rewording the abstract to capture the main storyline and wording more. The abstract is good, but I see so many novelties in the paper that are not well sold in the abstract, particularly the modelling aspects.

      As suggested by the reviewer, we revised the abstract, as shown below and in the revised manuscript. The changes are indicated in red:

      Revised abstract:

      Bronchi of chronic obstructive pulmonary disease (COPD) are the site of extensive cell infiltration, allowing persistent contacts between resident cells and immune cells. Tissue fibrocytes interaction with CD8+ T cells and its consequences were investigated using a combination of in situ, in vitro experiments and mathematical modeling. We show that fibrocytes and CD8+ T cells are found in vicinity in distal airways and that potential interactions are more frequent in tissues from COPD patients compared to those of control subjects. Increased proximity and clusterization between CD8+ T cells and fibrocytes are associated with altered lung function. Tissular CD8+ T cells from COPD patients promote fibrocyte chemotaxis via the CXCL8-CXCR1/2 axis. Live imaging shows that CD8+ T cells establish short-term interactions with fibrocytes, that trigger CD8+ T cell proliferation in a CD54- and CD86-dependent manner, pro-inflammatory cytokines production, CD8+ T cell cytotoxic activity against bronchial epithelial cells and fibrocyte immunomodulatory properties. We defined a computational model describing these intercellular interactions and calibrated the parameters based on our experimental measurements. We show the model’s ability to reproduce histological ex vivo characteristics, and observe an important contribution of fibrocyte-mediated CD8+ T cell proliferation in COPD development. Using the model to test therapeutic scenarios, we predict a recovery time of several years, and the failure of targeting chemotaxis or interacting processes. Altogether, our study reveals that local interactions between fibrocytes and CD8+ T cells could jeopardize the balance between protective immunity and chronic inflammation in bronchi of COPD patients.

      5) The probabilistic model appears to suggest that reduced CD8 T cell death may also explain the increase in the pathology in COPD. Did the authors find that fibrocytes reduce cell death of the CD8 T cells?

      Taking advantage of the staining of CD8+ T cells with the death marker Zombie NIR™, we have quantified CD8+ T cell death in our co-culture assay. The presence of fibrocytes in the indirect co-culture assay did not affect CD8+ T cell death (see new Figure 3-figure supplement 3A-B in the revised manuscript). In direct co-culture, the death of CD8+ T cells was significantly increased in the non-activated condition but not in the activated condition (see new Figure 3-figure supplement 3C-D in the revised manuscript). Of note, these results are in agreement with a recent study showing the existence of CD8+ T cell-population-intrinsic mechanisms regulating cellular behavior, with induction of apoptosis to avoid an excessive increase in T cell population (Zenke et al., 2020). This is taken into account in our mathematical model by an increased probability p_(dC+) of dying when a CD8+ T cell is surrounded by many other T cells in its neighborhood. It also suggests that the reduced CD8+ T cell death evidenced in tissues from patients with COPD (Siena et al., 2011) might not be due to the specific interplay between fibrocyte and CD8+ T cells, but rather to a global pro-survival environment in COPD lungs.

      These new data have been described in the results section.

      6) Following the modeling in Figure 6, curiosity came to mind, which is how long it would take for the pathology to disappear if a drug would be applied to the patient. How much should the interactions be reduced and how long would it take to reach clinical benefit? Could such predictions be made? I understand that this may be outside the main message of the manuscript but perhaps this could be included in the discussion.

      This is a very interesting question, that we have addressed by performing additional simulations to investigate the outcomes of possible therapeutic interventions. First, we applied a COPD dynamics during 20 years, to generate the COPD state, that provide the basis for treatment implementation. Then, we applied a COPD dynamic during 7 years, that mimics the placebo condition (see new Figure 9A in the revised manuscript, and below), that we compared to a control dynamics (“Total inhibition”), that mimics an ideal treatment able to restore all cellular processes. As expected the populations of fibrocytes and CD8+ T cells, as well as the density of mixed clusters, decreased. These numbers reached levels similar of healthy subjects after approximately 2.5 years, and this time point can therefore be considered as the steady state (Figure 9B-E).

      Monitoring of the different processes revealed that these effects were mainly due to a reduction in fibrocyte-induced CD8+ T duplication, and a transient or more prolonged increase in basal fibrocyte and CD8+ T death (Figure 9C-D).

      Then, three possible realistic treatments were considered (Figure 9A). We tested the effect of directly inhibiting the interaction between fibrocytes and CD8+ T cells by blocking CD54. This was implemented in the model by altering the increased probability of a CD8+ T cell to divide when a fibrocyte is in its neighbourhood, as shown by the co-culture results (Figure 4). We also chose to reflect the effect of a dual CXCR1/2 inhibition by setting the displacement function of fibrocyte similar to that of control dynamics, in agreement with the in vitro experiments (Figure 2E). Blocking CD54 only slightly reduced the density of CD8+ T cells compared to the placebo condition, and had no effect on fibrocyte and mixed cluster densities (Figure 9B). CXCR1/2 inhibition was a little bit more potent on the reduction of CD8+ T cells than CD54 inhibition, and it also significantly decreased the density of mixed clusters (Figure 9B). As expected, this occurred through a reduction of fibrocyte-induced duplication, which was affected more strongly by CXCR1/2 blockage than by CD54 blockage (Figure 9C-E). Combining both therapies (CD54 and CXCR1/2 inhibition) did not strongly major the effects (Figure 9B-E). In all the conditions tested, the size of the fibrocyte population remained unchanged, suggesting that other processes such as fibrocyte death or infiltration should be targeted to expect broader effects.

      The results section has been altered accordingly.

      Using the simulations, we were also able to estimate the characteristic time to reach a stationary state reminiscent of a resolution of the COPD condition. This time of approximately 2.5 years was totally unpredictable by in vitro experiments, and indicates that a treatment aiming at restoring these cellular processes should be continued during several years to obtain significant changes.

      We have also investigated the outcomes of more realistic treatments, modifying specifically processes such as chemotaxis or targeting directly the intercellular interactions. The modification of parameters controlling these processes only slightly affected the final state, suggesting that such treatments may be more effective when used in combination with other drugs e.g. those affecting fibrocyte infiltration and/or death.

      The discussion section has been altered accordingly.

      Reviewer #3 (Recommendations For The Authors):

      1) Broader assessment of cell types in the lung: Staining for other cell types such as dendritic cells, CD4 cells, and interstitial macrophages, and comparing their proximity to fibrocytes with that of CD8 cells would better justify the CD8 focus.

      We agree with the reviewer that multiple stainings would have better justified the focus on CD8+ T cells. However, it is difficult to distinguish fibrocytes, dendritic cells and interstitial macrophages on the basis of immunohistochemistry, as we and others previously showed (Dupin et al., 2019; Mitsuhashi et al., 2015; Pilling et al., 2009). On the other hand, the study of Afroj et al. indicated the possible interaction between fibrocytes and CD8+ T cells in cancer context, with the induction of CD8+ T cell proliferation (Afroj et al., 2021). This T cell-costimulatory function of fibrocytes and CD8+ T cells was further confirmed in a very recent study, together with the antitumor effects of PD-L1 and VEGF blockade (Mitsuhashi et al., 2023). These data, along with the specific implication on CD8+ T cells in COPD, relying mainly on their abundance in COPD bronchi (O’Shaughnessy et al., 1997), their overactivation state (Roos-Engstrand et al., 2009), their cytotoxic phenotype (Freeman et al., 2010; Wang et al., 2020) and the protection against lung inflammation and emphysema induced by their depletion (Maeno et al., 2007) justified the CD8 focus.

      To further justify this focus, we have now performed co-culture between fibrocytes and CD4+ T cells, indicating that the massive fibrocyte-mediated proliferation was specific to CD8+ T cells (see answer to comment 3 below). This is in agreement with the results obtained with the simulations, showing that considering fibrocytes and CD8+ T cells only was sufficient to reproduce the spatial patterns in the bronchi of healthy and COPD patients. Altogether, we think that focusing on the CD8+ T cell-fibrocyte interplay was pertinent in the context of COPD. It does obviously not exclude the possibility of other interactions, that could be the focus of other studies.

      2) Transcriptomic analysis: Using n=2 and only showing the chemokines as well as selected adhesion receptor data narrows the focus but does not provide broader insights into the interactions. Using a more robust sample size and performing a comprehensive pathway analysis would represent an unbiased analysis to determine the most dysregulated pathways. Importantly, the authors could use a single-cell RNA-seq dataset to broadly assess the transcriptomes of several cell types in the lung (such as the data from (Sauler et al, Characterization of the COPD alveolar niche using single-cell RNA sequencing).

      This very pertinent suggestion has also been raised by reviewer 2, see our answer to comment 1 of reviewer 2, and below:

      We agree with the reviewer that the rationale for the selection of chemokines of interest could be reinforced by the analysis of supplementary single-cell resources. We used data from the COPD cell atlas (Gene Expression Omnibus GSE136831 (Sauler et al., 2022)) to perform such an analysis of chemokine expression by CD8+ CD103+ and CD8+ CD103- T cells. However, the expression level of all chemokines was globally very low, and was not different between control and COPD patients (see Figure scRNAseq, in the answer to comment 1 of reviewer 2).

      These latter results are in discrepancy with those resulting from transcriptomic analysis of microarray data obtained on purified lung CD8+ CD103+ and CD8+ CD103- T cells, showing a significant level of chemokines expression (Hombrink et al., 2016), and a differential expression of CCL2, CCL26, CXCL2, CXCL8 and CCL3L1 between CD8+ T lymphocytes of control and COPD patients (Figure 2A in the revised manuscript). The reason for these differences is unclear, and could be attributed to biological differences (samples obtained from different patients) or, more likely, to differences in sample processing (cell sorting by flow cytometry for microarray analysis, that could activate minimally CD8+ cells) and/or methodological differences (differences of sensitivity between microarray and scRNA seq).

      Nevertheless, microarray data regarding CXCL8 expression are in good agreement with our in vitro experiments, showing an enhanced CXCL8 expression by CD8+ T cells purified from COPD lungs, in comparison with that of control subjects. In addition, the CXCL8 blocking antibody fully abrogates the increase of migration induced by secretion of COPD CD8+ T cells, to the same extent as the blocking of CXCR1/2 by reparixin. This suggests that this supplementary chemotaxis is mainly due to CXCL8 and not other CXCR1/2 binding CXCL chemokines, and correlates CXCL8 measurements to functional experiments. This precision has been now added in the text of the revised version.

      3) Inclusion of control/comparison cell types in co-culture studies would help establish that CD8 cells are more relevant for interactions with fibrocytes than for example CD4 cells.

      We have now performed co-cultures between fibrocytes and CD4+ T cells, with the same settings than for CD8+ T cells. The results from these experiments show that fibrocytes did not have any significant effect of CD4+ T cells death, regardless of their activation state (see new Figure 3-figure supplement 2A-C in the revised manuscript, and below). Fibrocytes were able to promote CD4+ T cells proliferation in the activated condition but not in the non-activated condition (see new Figure 3-figure supplement 2A-D in the revised manuscript). Altogether this indicates that although fibrocyte-mediated effect on proliferation is not specific to CD8+ T cells, the amplitude of the effect is much larger on CD8+ T cells than on CD4+ T cells.

      These new data have been added in the results section.

      4) In vitro analysis of cells from non-COPD patients would also help assess whether the circulating cells from COPD patients have a level of baseline activation which promotes the vicious cycle but may not exist in healthy cells.

      Regarding circulating cells, the present study relies on the COBRA cohort (COhort of BRonchial obstruction and Asthma), which includes only asthma and COPD patients, and therefore does not grant access to healthy subjects’ blood samples (Pretolani et al., 2017). Unfortunately, we have no other ongoing study with healthy subjects that would allow us to retrieve blood for research, and fibrocytes can only be grown from freshly drawn blood samples. We agree with the reviewer that it is a limitation of our study, which is now acknowledged at the end of the discussion section.  

      References

      Afroj, T., Mitsuhashi, A., Ogino, H., Saijo, A., Otsuka, K., Yoneda, H., Tobiume, M., Nguyen, N. T., Goto, H., Koyama, K., Sugimoto, M., Kondoh, O., Nokihara, H., & Nishioka, Y. (2021). Blockade of PD-1/PD-L1 Pathway Enhances the Antigen-Presenting Capacity of Fibrocytes. The Journal of Immunology, 206(6), 1204‑1214. https://doi.org/10.4049/jimmunol.2000909

      Araki, K., Youngblood, B., & Ahmed, R. (2010). The role of mTOR in memory CD8+ T-cell differentiation. Immunological reviews, 235(1), 234‑243. https://doi.org/10.1111/j.0105-2896.2010.00898.x

      Bucala, R. J. (2022). Targeting fibrocytes in autoimmunity. Proceedings of the National Academy of Sciences, 119(5), e2121739119. https://doi.org/10.1073/pnas.2121739119

      Douglas, R. S., Kahaly, G. J., Patel, A., Sile, S., Thompson, E. H. Z., Perdok, R., Fleming, J. C., Fowler, B. T., Marcocci, C., Marinò, M., Antonelli, A., Dailey, R., Harris, G. J., Eckstein, A., Schiffman, J., Tang, R., Nelson, C., Salvi, M., Wester, S., … Smith, T. J. (2020). Teprotumumab for the Treatment of Active Thyroid Eye Disease. The New England Journal of Medicine, 382(4), 341‑352. https://doi.org/10.1056/NEJMoa1910434

      Dupin, I., Henrot, P., Maurat, E., Abohalaka, R., Chaigne, S., Hamrani, D. E., Eyraud, E., Prevel, R., Esteves, P., Campagnac, M., Dubreuil, M., Cardouat, G., Bouchet, C., Ousova, O., Dupuy, J.-W., Trian, T., Thumerel, M., Begueret, H., Girodet, P.-O., … Berger, P. (2023). CXCR4 blockade alleviates pulmonary and cardiac outcomes in early COPD (p. 2023.03.10.529743). bioRxiv. https://doi.org/10.1101/2023.03.10.529743

      Dupin, I., Thumerel, M., Maurat, E., Coste, F., Eyraud, E., Begueret, H., Trian, T., Montaudon, M., Marthan, R., Girodet, P.-O., & Berger, P. (2019). Fibrocyte accumulation in the airway walls of COPD patients. The European Respiratory Journal, 54(3), Article 3. https://doi.org/10.1183/13993003.02173-2018

      Fernando, R., Caldera, O., & Smith, T. J. (2021). Therapeutic IGF-I receptor inhibition alters fibrocyte immune phenotype in thyroid-associated ophthalmopathy. Proceedings of the National Academy of Sciences, 118(52), e2114244118. https://doi.org/10.1073/pnas.2114244118

      Freeman, C. M., Han, M. K., Martinez, F. J., Murray, S., Liu, L. X., Chensue, S. W., Polak, T. J., Sonstein, J., Todt, J. C., Ames, T. M., Arenberg, D. A., Meldrum, C. A., Getty, C., McCloskey, L., & Curtis, J. L. (2010). Cytotoxic potential of lung CD8+ T cells increases with COPD severity and with in vitro stimulation by IL-18 or IL-15. Journal of immunology (Baltimore, Md. : 1950), 184(11), 6504‑6513. https://doi.org/10.4049/jimmunol.1000006

      Gillen, J. R., Zhao, Y., Harris, D. A., LaPar, D. J., Stone, M. L., Fernandez, L. G., Kron, I. L., & Lau, C. L. (2013). Rapamycin Blocks Fibrocyte Migration and Attenuates Bronchiolitis Obliterans in a Murine Model. The Annals of thoracic surgery, 95(5), 1768‑1775. https://doi.org/10.1016/j.athoracsur.2013.02.021

      Hombrink, P., Helbig, C., Backer, R. A., Piet, B., Oja, A. E., Stark, R., Brasser, G., Jongejan, A., Jonkers, R. E., Nota, B., Basak, O., Clevers, H. C., Moerland, P. D., Amsen, D., & van Lier, R. A. W. (2016). Programs for the persistence, vigilance and control of human CD8+ lung-resident memory T cells. Nature Immunology, 17(12), Article 12. https://doi.org/10.1038/ni.3589

      Maeno, T., Houghton, A. M., Quintero, P. A., Grumelli, S., Owen, C. A., & Shapiro, S. D. (2007). CD8+ T Cells are required for inflammation and destruction in cigarette smoke-induced emphysema in mice. Journal of Immunology (Baltimore, Md.: 1950), 178(12), 8090‑8096. https://doi.org/10.4049/jimmunol.178.12.8090

      Manjarres, D. C. G., Axell-House, D. B., Patel, D. C., Odackal, J., Yu, V., Burdick, M. D., & Mehrad, B. (2023). Sirolimus suppresses circulating fibrocytes in idiopathic pulmonary fibrosis in a randomized controlled crossover trial. JCI Insight. https://doi.org/10.1172/jci.insight.166901

      Mehrad, B., Burdick, M. D., & Strieter, R. M. (2009). Fibrocyte CXCR4 regulation as a therapeutic target in pulmonary fibrosis. The International Journal of Biochemistry & Cell Biology, 41(8‑9), 1708‑1718. https://doi.org/10.1016/j.biocel.2009.02.020

      Mitsuhashi, A., Goto, H., Saijo, A., Trung, V. T., Aono, Y., Ogino, H., Kuramoto, T., Tabata, S., Uehara, H., Izumi, K., Yoshida, M., Kobayashi, H., Takahashi, H., Gotoh, M., Kakiuchi, S., Hanibuchi, M., Yano, S., Yokomise, H., Sakiyama, S., & Nishioka, Y. (2015). Fibrocyte-like cells mediate acquired resistance to anti-angiogenic therapy with bevacizumab. Nature Communications, 6(1), Article 1. https://doi.org/10.1038/ncomms9792

      Mitsuhashi, A., Koyama, K., Ogino, H., Afroj, T., Nguyen, N. T., Yoneda, H., Otsuka, K., Sugimoto, M., Kondoh, O., Nokihara, H., Hanibuchi, M., Takizawa, H., Shinohara, T., & Nishioka, Y. (2023). Identification of fibrocyte cluster in tumors reveals the role in antitumor immunity by PD-L1 blockade. Cell Reports, 112162. https://doi.org/10.1016/j.celrep.2023.112162

      Nemzek, J. A., Fry, C., & Moore, B. B. (2013). Adoptive transfer of fibrocytes enhances splenic T-cell numbers and survival in septic peritonitis. Shock (Augusta, Ga.), 40(2), 106‑114. https://doi.org/10.1097/SHK.0b013e31829c3c68

      O’Shaughnessy, T. C., Ansari, T. W., Barnes, N. C., & Jeffery, P. K. (1997). Inflammation in bronchial biopsies of subjects with chronic bronchitis : Inverse relationship of CD8+ T lymphocytes with FEV1. American Journal of Respiratory and Critical Care Medicine, 155(3), 852‑857. https://doi.org/10.1164/ajrccm.155.3.9117016

      Pilling, D., Fan, T., Huang, D., Kaul, B., & Gomer, R. H. (2009). Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts. PloS One, 4(10), e7475. https://doi.org/10.1371/journal.pone.0007475

      Pombo-Suarez, M., & Gomez-Reino, J. J. (2019). Abatacept for the treatment of rheumatoid arthritis. Expert Review of Clinical Immunology, 15(4), 319‑326. https://doi.org/10.1080/1744666X.2019.1579642

      Pretolani, M., Soussan, D., Poirier, I., Thabut, G., Aubier, M., COBRA Study Group, & COBRA cohort Study Group. (2017). Clinical and biological characteristics of the French COBRA cohort of adult subjects with asthma. The European Respiratory Journal, 50(2), 1700019. https://doi.org/10.1183/13993003.00019-2017

      Roos-Engstrand, E., Ekstrand-Hammarström, B., Pourazar, J., Behndig, A. F., Bucht, A., & Blomberg, A. (2009). Influence of smoking cessation on airway T lymphocyte subsets in COPD. COPD, 6(2), 112‑120. https://doi.org/10.1080/15412550902755358

      Rozelle, A. L., & Genovese, M. C. (2007). Efficacy results from pivotal clinical trials with abatacept. Clinical and Experimental Rheumatology, 25(5 Suppl 46), S30-34.

      Sauler, M., McDonough, J. E., Adams, T. S., Kothapalli, N., Barnthaler, T., Werder, R. B., Schupp, J. C., Nouws, J., Robertson, M. J., Coarfa, C., Yang, T., Chioccioli, M., Omote, N., Cosme, C., Poli, S., Ayaub, E. A., Chu, S. G., Jensen, K. H., Gomez, J. L., … Rosas, I. O. (2022). Characterization of the COPD alveolar niche using single-cell RNA sequencing. Nature Communications, 13(1), Article 1. https://doi.org/10.1038/s41467-022-28062-9

      Siena, L., Gjomarkaj, M., Elliot, J., Pace, E., Bruno, A., Baraldo, S., Saetta, M., Bonsignore, M. R., & James, A. (2011). Reduced apoptosis of CD8+ T-lymphocytes in the airways of smokers with mild/moderate COPD. Respiratory Medicine, 105(10), 1491‑1500. https://doi.org/10.1016/j.rmed.2011.04.014

      Smith, T. J., Kahaly, G. J., Ezra, D. G., Fleming, J. C., Dailey, R. A., Tang, R. A., Harris, G. J., Antonelli, A., Salvi, M., Goldberg, R. A., Gigantelli, J. W., Couch, S. M., Shriver, E. M., Hayek, B. R., Hink, E. M., Woodward, R. M., Gabriel, K., Magni, G., & Douglas, R. S. (2017). Teprotumumab for Thyroid-Associated Ophthalmopathy. The New England Journal of Medicine, 376(18), 1748‑1761. https://doi.org/10.1056/NEJMoa1614949

      Vincenti, F., Rostaing, L., Grinyo, J., Rice, K., Steinberg, S., Gaite, L., Moal, M.-C., Mondragon-Ramirez, G. A., Kothari, J., Polinsky, M. S., Meier-Kriesche, H.-U., Munier, S., & Larsen, C. P. (2016). Belatacept and Long-Term Outcomes in Kidney Transplantation. The New England Journal of Medicine, 374(4), 333‑343. https://doi.org/10.1056/NEJMoa1506027

      Wang, X., Zhang, D., Higham, A., Wolosianka, S., Gai, X., Zhou, L., Petersen, H., Pinto-Plata, V., Divo, M., Silverman, E. K., Celli, B., Singh, D., Sun, Y., & Owen, C. A. (2020). ADAM15 expression is increased in lung CD8+ T cells, macrophages, and bronchial epithelial cells in patients with COPD and is inversely related to airflow obstruction. Respiratory Research, 21(1), 188. https://doi.org/10.1186/s12931-020-01446-5

      Zenke, S., Palm, M. M., Braun, J., Gavrilov, A., Meiser, P., Böttcher, J. P., Beyersdorf, N., Ehl, S., Gerard, A., Lämmermann, T., Schumacher, T. N., Beltman, J. B., & Rohr, J. C. (2020). Quorum Regulation via Nested Antagonistic Feedback Circuits Mediated by the Receptors CD28 and CTLA-4 Confers Robustness to T Cell Population Dynamics. Immunity, 52(2), 313-327.e7. https://doi.org/10.1016/j.immuni.2020.01.018

    1. Author Response:

      We are grateful to the reviewers for their insightful comments, suggestions, and criticism. In the updated version of the manuscript, all these will be properly reflected. Here we briefly address the main points raised:

      Reviewer #1:

      1.1. Patient selection and tumor area selection are crucial for this study but not very carefully defined. Why are some core and others not? Figure referral is an issue here (sup figure 6 where all core and non-core samples are supposed to be according to the legend of Fig 4 is likely sup fig 7 but this is then a complete copy paste of Figure 4). In the methods it is stated that the core samples are based on limited contamination of additional morphotypes (<20%) but Fig 4 suggests that all tumours listed have multiple morphotypes.

      The tissue samples were obtained from a hospital cohort of patients with stage II-IV colorectal cancer (at diagnostic time), with no particular selection criteria imposed, as this was an exploratory study.

      Tumor regions were marked for macro-dissection by an experienced pathologist following the standard practice for whole-tumor transcriptomics studies. The subregions (morphological regions) were marked by the same experienced pathologist for macro-dissection (in an adjacent section) and reassessed later with respect to their “morphological purity”. It is impossible to macro-dissect regions containing a single morphological pattern. Hence, those regions which contained significant amount (>=20%) of other morphologies were considered “non-core”, while the rest were called “core” regions. This distinction applies to morphological regions solely and not to whole-tumor samples.

      Indeed, the reference in caption to Figure 4, should refer to Supp. Fig. 7 (which needs to be updated).

      1.2. CMS subtype should be performed with single sample predictor rather than CMScaller.

      We agree that a single-sample predictor for CMS is needed, however CMScaller is the de facto classifier for CMS (>130 citations) so we used it to illustrate the practical implications.

      1.3. A couple of surprising observations need specification. MUC2 is a strong CMS3 reporter gene yet Mucinous tumours appear to end up in CMS4 rather than 3. Can the authors show that indeed stroma cells are very evident in these samples?

      We do not have a direct estimation of the amount of stromal cells, but the high scores of the various fibroblast-related signatures in mucinous regions (Fig2 B, D) indicate that, indeed, there is an enrichment in stroma. In the follow-up study we plan to perform specific staining as well as spatial transcriptomics of these regions to further investigate our findings.

      1.4. The SE PP and CT are assigned to CMS2, but in Figure 4 this appears a lot more variable than the authors would make the reader believe. The full data are not completely clear (see point 1).

      In the paper, we transparently state that PP, SE, and CT were assigned to CMS2 in 62.5%, 41.7% and 41.9% of cases, respectively. These proportions referred to all samples for which CMSCaller made a prediction. In Fig.4, we also show the proportion of cases in which CMSCaller did not predict any subtype.

      1.5. The tumor response rates are rather weird as this is likely dependent on the complete tumour and not so much the subareas. It is not very well described what we see in this analysis.

      We did not compute any response rates but simple prognostic scores as (weighted, if weights were provided) means of genes in the specific signatures (see Methods). The question addressed was whether these scores were comparable between whole tumor and corresponding tumor regions (within same tumor). Given the observed (relative) variability, the more important follow-up question - which we cannot answer with our limited survival data – is whether a higher score in a region in comparison with whole-tumor is indeed indicative of a higher risk of relapse.

      1.6. Serrated adenomas have previously been aligned with CMS4. Is this different from serrated areas in cancers?

      We do not have data from adenomas to compare with the serrated carcinoma regions. But a comparison of (regions of) both traditional serrated and sessile serrated adenomas to serrated carcinoma would be interesting.

      1.7. The fact that iCMS2 and iCMS3 align rather well with the current analysis of the distinct regions suggests that the analysis that was reported last year is the proper way to view tumor intrinsic signatures. The authors now propose a rather similar outcome to this issue which does take away a lot of the novelty of the findings of this study.

      Our goal was not to propose another stratification paradigm for colorectal cancer, but rather to study the associations between morphology and transcriptome and its implications in practice. As such, our analyses are not limited to molecular subtypes and the respective observations are but a small part of our findings. Indeed, the intrinsic subtypes (iCMS 2/3) are stable and robust, as they are based on the genes expressed in epithelial cells, and they may well prove to be of clinical importance too. However, they do not cover all aspects (e.g. fibroblasts subtypes) and, as stated in Joanito et al. Nat Gen 54, pages 963–975 (2022), “iCMS, MSI status and CMS jointly inform the molecular classification of CRC”. Last, in our opinion, the molecular classification of CRC, while a useful point of view in tumour classification, is not covering all the necessary perspectives on tumour heterogeneity.

      Reviewer #2:

      2.1. Overall, the manuscript provides an interesting histological/morphological framework through which we can consider heterogeneity in colorectal carcinoma and an approach by which we might improve the performance of gene expression-based classifiers in predicting clinical behaviour and/or responses to therapy. Exploration of CRC morphotypes and their differences was quite interesting. However, more work is needed to support the claims made by the authors. While I appreciate that the authors themselves identify limitations of their study within the manuscript, I believe awareness of these limitations is not reflected in some of the claims made in the abstract and at points in the main text when discussing the use of expression-based classifiers.

      We will improve the manuscript to stress the exploratory nature of our analyses and their limitations.

    1. Author Response

      The following is the authors’ response to the original reviews.

      This important work reports the identification of a list of proteins that may participate in the clearance of paternal mitochondria during fertilization, which is known as essential for normal fertilization and embryonic and fetal development. While the main method used is state of the art and the supporting data are solid, the vigor of the biochemical assays and function validation is inadequate. This work will be of interest to developmental and reproductive biologists working on fertilization. Key revisions (for the authors) include 1) Use a mitochondria-enriched fraction instead of whole sperm for the assays, and add more control samples to monitor what got lost during sperm and oocyte treatments before the coincubation step. 2) Functional validation of the key proteins identified.

      We thank Editors of eLife, as well as Special Issue Guest-Editors and Reviewers for a favorable assessment and helpful recommendations for key revisions. Provisional revisions included in our revised article are detailed below. We agree with Editors’ comment about the use of mitochondrion enriched fractions and additional functional validation of key proteins. In fact, we are developing experimental protocols for oocyte extract coincubation with isolated sperm heads and tails, and eventually with purified mitochondrial sheaths, to separate the ooplasmic sperm nucleus remodeling factors from the mitophagic ones. Such experiments, as well as functional validations using porcine zygotes are contingent upon anticipated post-pandemic rebound in the availability of porcine oocytes, obtained from ovaries harvested on slaughterhouse floors, requiring currently unavailable workforce which has hampered our access to this necessary resource.

      Reviewer #1 (Peer Review):

      Could the authors make clear how much the presented pictures reflect the described localisation? There is no information on the number of spermatozoa and embryos observed nor the fraction of these embryos showing the presented pattern of localisation. This must be included.

      Two hundred spermatozoa were counted per replicate of the cell-free system co-incubation and 20 zygotes per replicate, with 3 replicates of immunolabelling for each phase/picture which were examined to establish the typical localization patterns that were observed. The displayed patterns were observed in 65 to 88% of examined spermatozoa/zygotes; varying dependent on protein, replicate, and phase of immunolabelling. In all cases, the signal displayed is the typical pattern that was displayed in most cells. This information has been added to the Materials and Methods section for clarification.

      It is not clear if the authors also examined the localization of other proteins and obtained a different pattern than anticipated from the proteomic approach or if they only tested these 6 proteins and got a 100% of correlation.

      These are the 6 proteins which were selected based on extensive literature review into known functions of all identified proteins, as well as extensive research into available and reliable antibodies to detect such proteins within our porcine systems. Even so, no particular localization patterns were anticipated; instead, we presented the patterns actually observed and even some patterns which defied our expectations (i.e., the localization of BAG5 in the sperm acrosome).

      The authors use "MS" in the text to indicate "mitochondrial Sheath" and "Mass spectrometry". this is confusing.

      The authors agree and the usage of MS as an acronym for either has been removed entirely to avoid confusion.

      In the introduction the author refers to Ankel-Simons and Cummins, 1996 as a reference for the number of sperm mitochondria in mammalian species, this is incorrect since the quoted paper is about the number of mtDNA molecules and mentioned an earlier publication.

      This has been revised and the appropriate citation has been used.

      Reviewer #2 (Peer Review):

      Major:

      1) It has been proved from the earlier studies from this group that the porcine cell-free system is useful to observe spermatozoa interacting with ooplasmic proteins in a single trial and could recapitulate fertilization sperm mitophagy events that take place in a zygote without affecting later cell-division process. However, the post-fertilization sperm mitophagy process is a complex time-associated event that many processes that occur sequentially and interactively, which means ooplasmic proteins might be involved in this process but may not directly interact with sperm or may associate with sperm-ooplasmic protein complex at different time points. It is certainly a great advance already in knowledge to identify "the candidate players" from the list of 185 proteins; however, with the time-resolution (4 and 24hr) in the current study and without functional validation experiments at this stage, it is still difficult to postulate the importance of these identified proteins. The functional validation experimental designs, in my opinion, is critically important for better interpretation of the data.

      The authors agree with this reviewer’s sentiments and do plan to conduct further functional analysis. This project was able to generate a list of candidate, sperm-mitophagy promoting proteins and we were further able to show that many of these proteins were detectable both via mass spectrometry and via immunocytochemistry in spermatozoa exposed to our cell-free system. Furthermore, similar localization patterns were found in spermatozoa that were detected within newly fertilized zygotes. These results boost our confidence in our cell-free system and show that our list of candidate proteins is truly a useful list for future localization and functional analyses. We are certainly aware that we have not captured every protein that may play a role in post-fertilization sperm mitophagy and that the proteins captured are just candidates until proven otherwise. Likewise, we have almost certainly captured multiple proteins that are currently candidates that will likely not be shown to play a role in postfertilization sperm mitophagy, while it is plausible that at least some of these candidate proteins do play a role in mitophagy and some of them likely participate (perhaps have yet to be described roles) in other fertilization events, in which we would be extremely interested in as well.

      2) As shown in Figure 1, whole sperm was used in the co-incubation and the later MS analysis; thus, proteins identified in the current study might be relevant in fertilization processes other than postfertilization sperm mitophagy, as proteins identified in the current study may be associated with other parts of the sperm (e.g. sticky sperm head, e.g. PSMG2 associated with sperm midpieces, tail at 4hr coincubation, but then only associate with sperm head at 24hr co-incubation) rather than sperm midpiece, despite the fact that authors applied immunohistochemistry to show the localization of this protein, but the evidence is indirect, so how authors functionally differentiate these 6 identified proteins from sperm mitophagy process with other processes and to confirm (or to associate) the relevance of these proteins with sperm mitophagy process?

      The authors agree that the 6 proteins which were further studied by using immunocytochemistry may be playing roles in other processes such as pronuclear formation. We discussed some potential roles including and beyond post-fertilization mitophagy, in the Supplemental Discussion. After reviewer comments, we moved the Supplemental Discussion back in the main Discussion section. Thus, this section now considers additional putative pathways in which the said 6 proteins cold participate, though we concede that thorough functional studies must still be performed.

      3) Class 3 proteins were present in both the gametes or only the primed control spermatozoa, but are decreased in the spermatozoa after co-incubation, which authors interpreted as sperm-borne mitophagy determinants and/or sperm-borne proteolytic substrates of the oocyte autophagic system, this data categorization may need to be revised as sperm-borne proteolytic substrates of the oocyte autophagic system only, not for sperm borne mitophagy determinants. The argument for this disagreement is due to the fact that if the protein is a sperm-borne mitophagy determinant, after coincubation, to execute the mitophagy process, this protein should still be associated with the sperm at least at the early stage (of 4hr) (constant under MS detection when comparing control with 4hr treated) rather than being released from the sperm. Or alternatively, they could result in class 3 proteins (but not all those 6 were in class 3). Nevertheless, if these proteins serve as substrates, they can be used (consumed) and show decreased under MS detection.

      This argument for redefining the Class 3 proteins more accurately is understood and we agree. The definition is revised in the paper.

      4) Of particular interest among the 6 proteins that were further investigated. Unlike other proteins, MVP was highly significant (p<0.001) after 4hr incubation, but the significance became less after 24hr (p=0.19). Interpretation of this dynamic change in the relevance of the mitophagy process would facilitate the readers to understand the relevance and the role of MVP.

      The differences in significance are likely influenced by the abundance of MVP detectable by mass spectrometry. As the time of cell-free system incubation increases, the variability between replicates also seemed to increase, likely due to the sustained proteolytic activity taking place in our system. This work was based on three replicates of mass spectrometry for each time point; additional replicates likely would have reduced the p-value for the 24hr cell-free data set, for MVP and potentially other proteins also. At both time points, MVP was only detectable in spermatozoa after they had been exposed to the cell-free system treatment which is the criteria that truly interested us more than the actual differences in content between the timepoints and is why it was added to our list of candidate proteins.

      5) In figure 3, the association of ooplasmic MVP to sperm midpiece is not convincing enough as sperm midpiece and tail often show some levels of non-specific signals under fluorescent microscopy. And the dynamic association of ooplasmic MVP to sperm midpiece in Fig. 3F-G is difficult to reach a conclusion solely based on data presented in the manuscript. Additional negative control of sperm MVP staining from the primed and treated sperm would be helpful. Additionally, a quantitative comparison (15 vs 25hr) of sperm-associated MVP signals from the fertilized embryo or a stack image from different angles would clarify the doubts raised here.

      For all images and all replicates, serum controls were also generated. These controls were then viewed under fluorescent microscope, and light intensities and exposures thresholds for each fluorescent light channel were set based on the background intensity that came from these nonimmune serum-treated control samples. We set our light intensity/acquisition time below a threshold where the non-specific signal began to appear. All the presented patterns are based on setting this peak intensity threshold and as such the signal we see should be the true signal. Furthermore, 200 spermatozoa were counted per treatment per replicate of the cell-free system co-incubation and 20 zygotes per replicate, with 3 replicates of immunolabelling for each protein and data point, which was used to represent the typical localization patterns that were observed. The displayed patterns were observed between in 65- 88% of examined spermatozoa/zygotes. Invariably, the signal displayed in the manuscript is the typical pattern that was seen in a majority of cells. This information has now been added to the Materials & Methods section for clarification.

      6) Same concerns for the other 5 proteins (PSMG2, PSMA3, FUNDC2, SAMM50, BAG5) as indicated above.

      See response to Question 5.

      7) The patterns of these 6 proteins under the immunofluorescent study are confusing as the pattern varies after co-incubation (treated), and mostly, the signal of these proteins observed from the fertilized embryos is not really associated with sperm midpieces. Therefore, the evidence of these proteins involving in post-fertilization sperm mitophagy is, at this moment, weak based on the data presented. But the relevance of these proteins in events post-fertilization or early embryo development is certainly (evidence did not strong enough to support "sperm mitophagy," in my opinion).

      The authors agree that some of these proteins seem to be playing roles beyond postfertilization sperm mitophagy and that there is a need for true functional studies before the authors can state with certainty that these proteins play a role in any of the discussed fertilization events. We state this in the discussion: “Considering the dynamic proteomic remodeling of both the oocyte and spermatozoa which takes place during early fertilization, these 185 proteins which have been identified likely play roles in processes beyond sperm mitophagy.” It should be noted that the authors went into greater detail about potential alternative protein functions based on the present data and literature review in the Supplemental Discussion. Based on this comment and other reviewer comments we have now included the Supplemental Discussion as part of the main Discussion section, and this will hopefully help clarify some of the authors’ thoughts about the 6 candidate proteins which were further analyzed during this study.

      Minor:

      1) To my understanding, statistical significance (relevance) is normally set at a p-value of either <0.1 or 0.05. The reason for loosening the p-value of 0.2 in the current study needs to be justified as this was not a common statistical criterium, and the interpretation of those candidates from this loosened criterium should also be careful.

      The loosening of statistical relevance in this study to 0.2, only applied to our Class 1 proteins. This is because for a protein to fall into the Class 1 proteins it was a protein that was only present in samples after they were exposed to the cell-free system. In the case of these Class 1 proteins, this happened for all 3 replicates at each stated timepoint. We found this pattern of detection to be important whether the p-value fell under 0.1 or 0.2. As such, we loosened our statistical threshold for our Class 1 proteins. Any proteins added to our candidate list will be subject to further investigation before definitive conclusions can be drawn, and as such we think that capturing more proteins was more important for the goals of this study than limiting the number of proteins captured, especially for those Class 1 proteins. An explanation of this has been added to the Materials & Methods section Mass Spectrometry Data Statistical Analysis.

      2) First cell cleavage of porcine embryo normally occurs within 48hr post-insemination or activation; therefore, the 4 and the 24hr time points used in the current study require justification included in the discussion or methods and material section.

      First cleavage of porcine embryos normally occurs around 24 - 28 hours post-insemination. Thus, for both the cell-free system and the embryo studies we were capturing an advanced 1 cell stage zygote/zygote like system with our 24 hour and 25-hour time points.

      3) In figure 2, colors used in different time points and in two different classes represent (sometimes) different protein categories, would be easier for the readers for quick comparisons if the same color could be used to represent the same protein category throughout the graph. (E.g, proteins for early zygote development are shown in red in "A", but blue in "B")

      This has been corrected and the color scheme for Figure 2 has been revised for easier comparisons.

      Reviewer #3 (Peer Review):

      I am not used to seeing a supplementary discussion in a manuscript. I also believe it should be incorporated into normal discussion.

      The Supplemental Discussion has been incorporated into the main Discussion now.

      It would be very helpful to make an additional figure in which the proposed interactome of identified factors with the sperm mitochondria before and after incubation are drawn schematically and also which factors are not IDed in both cases (when comparing to somatic mito- or autophagy). This eases to get through the discussion and will beautifully summarize and illustrate the importance and progress that the authors have made with this assay.

      We made a diagram that depicts the changes in protein localization patterns overtime within our cell-free system. This diagram has been added to the manuscript as Figure 9.

      Reviewer #1 (Public Review):

      In this manuscript, the authors used an unbiased method to identify proteins from porcine oocyte extracts associated with permeabilised boar spermatozoa in vitro. The identification of the proteins is done by mass spectrometry. A previous publication of this lab validated the cell-free extract purification methods as recapitulating early events after sperm entry in the oocyte. This novel method with mammalian gametes has the advantage that it can be done with many spermatozoa at the time and allows the identification of proteins associated with many permeabilised boar spermatozoa at the time. This allowed the authors to establish a list of proteins either enriched or depleted after incubation with the oocytes extract or even only associated with spermatozoa after incubation for 4h or 24h. The total number of proteins identified in their test is around 2 hundred and with very few present in the sample only when spermatozoa were incubated with the extracts. The list of proteins identified using this approach and these criteria provide a list of proteins likely associated with spermatozoa remnants after their entry and either removed or recruited for the transformation of spermatozoa-derived structures. Using WB and histochemistry labelling of spermatozoa and early embryos using specific antibodies the authors confirmed the association/dissociation of 6 proteins suspected to be involved in autophagy.

      While this unique approach provides a list of potential proteins involved in sperm mitochondria clearance it's (only) a starting point for many future studies and does not provide the demonstration that any of these proteins has indeed a role in the processes leading to sperm mitochondria clearance since the protein identified may also be involved in other processes going-on in the oocyte at this time of early development.

      We thank reviewer 1 for positive comments. We added a sentence in Discussion addressing the obvious shortcoming of present study, as further functional validations of candidate mitophagy factors are planned.

      Concerning the localisation of the 6 proteins further analysed, the authors must add how much the presented picture represents the observed patterns. They must include the details on the fraction of spermatozoa and embryos displaying the presented pattern.

      We now specify that the patterns depicted in manuscript are typical and representative of data from at least three replicates of immunolabeling in spermatozoa and zygotes. For each of these replicates, 200 spermatozoa were examined per replicate of the cell-free system co-incubation or 20 zygotes per replicate. The displayed patterns were observed between 65-88% in examined spermatozoa/zygotes. Invariably, the signal displayed in manuscript is the typical pattern that was seen in a majority of cells. This information has now been added to the Materials & Methods section for clarification.

      Reviewer #2 (Public Review):

      Mitochondria are essential cellular organelles that generate ATPs as the energy source for maintaining regular cellular functions. However, the degradation of sperm-borne mitochondria after fertilization is a conserved event known as mitophagy to ensure the exclusively maternal inheritance of the mitochondrial DNA genome. Defects on post-fertilization sperm mitophagy will lead to fatal consequences in patients. Therefore, understanding the cellular and molecular regulation of the postfertilization sperm mitophagy process is critically important. In this study, Zuidema et. al applied mass spectrometry in conjunction with a porcine cell-free system to identify potential autophagic cofactors involved in post-fertilization sperm mitophagy. They identified a list of 185 proteins that might be candidates for mitophagy determinants (or their co-factors). Despite the fact that 6 (out of 185) proteins were further studied, based on their known functions, using a porcine cell-free system in conjunction with immunocytochemistry and Western blotting, to characterize the localization and modification changes these proteins, no further functional validation experiments were performed. Nevertheless, the data presented in the current study is of great interest and could be important for future studies in this field.

      We thank reviewer 2 for positive comments. As we explain in our response to Editors and Reviewer 1, further validation studies will be resumed once the availability of slaughterhouse ovaries for such studies improves. Examples of such functional validation of pro-mitophagic proteins SQSTM1 and VCP are included in our previous studies (DOI: 10.1073/pnas.1605844113 and DOI: 10.3390/cells10092450) that led to the development of cell-free system reported here, and are cited in present study.

      Reviewer #3 (Public Review):

      In this manuscript, a cytosolic extract of porcine oocytes is prepared. To this end, the authors have aspirated follicles from ovaries obtained from by first maturing oocytes to meiose 2 metaphase stage (one polar body) from the slaughterhouse. Cumulus cells (hyaluronidase treatment) and the zona pellucida (pronase treatment) were removed and the resulting naked mature oocytes (1000 per portion) were extracted in a buffer containing divalent cation chelator, beta-mercaptoethanol, protease inhibitors, and a creatine kinase phosphocreatine cocktail for energy regeneration which was subsequently triple frozen/thawed in liquid nitrogen and crushed by 16 kG centrifugation. The supernatant (1.5 mL) was harvested and 10 microliters of it (used for interaction with 10,000 permeabilized boar sperm per 10 microliter extract (which thus represents the cytosol fraction of 6.67 oocytes). The sperm were in this assay treated with DTT and lysoPC to prime the sperm's mitochondrial sheath. After incubation and washing these preps were used for Western blot (see point 2) for Fluorescence microscopy and for proteomic identification of proteins.

      Points for consideration:

      1) The treatment of sperm cells with DTT and lysoPC will permeabilize sperm cells but will also cause the liberation of soluble proteins as well as proteins that may interact with sperm structures via oxidized cysteine groups (disulfide bridges between proteins that will be reduced by DTT).

      This is certainly a possibility, the lysoPC and DTT permeabilization steps were designed to mimic natural processing (plasma membrane removal and sperm protein disulfide bond reduction), which the spermatozoa would undergo during fertilization. However, we do realize that this is a chemically induced processing and thus is not a perfect recapitulation of fertilization processes. However, in this study and in previous studies with this system, we were able to show alignment between proteomic interactions taking place in the cell-free system and within the zygotes.

      2) Figure 3: Did the authors really make Western blots with the amount of sperm cells and oocyte extracts as the description in the figures is not clear? This point relates to point 1. The proteins should also be detected in the following preparations (1) for the oocyte extract only (done) (2) for unextracted nude oocytes to see what is lost by the extraction procedure in proteins that may be relevant (not done) (3) for the permeabilized (LPC and DTT treated and washed) sperm only (not done) (4) For sperm that were intact (done) (5) After the assay was 10,000 permeabilized sperm and the equivalent of 6.67 oocyte extracts were incubated and were washed 3 times (or higher amounts after this incubation; not done). Note that the amount of sperm from one assay (10,000) likely will give insufficient protein for proper Western blotting and or Coomassie staining. In the materials and methods, I cannot find how after incubation material was subjected to western blotting the permeabilized sperm. I only see how 50 oocyte extracts and 100 million sperm were processed separately for Western blot.

      The authors did make Western blots with the number of spermatozoa and oocytes stated in the materials and methods, a total protein equivalent of 10 to 20 million spermatozoa (equivalent to ~20-40 µg of total protein load) and 100 MII oocytes (equivalent to ~20 µg of total protein load). These numbers have been corrected in the Materials & Methods. Also, we did find in the Materials & Methods section that the Co-Incubation of Permeabilized Mammalian Spermatozoa with Porcine Oocyte Extracts section refers to using cell-free exposed spermatozoa for electrophoresis; however, for none of the presented Western blot work was this true. Rather, all of the presented Western blots as per their descriptions are utilizing ejaculated or capacitated sperm or oocytes. This line has been removed from the Materials & Methods to reduce confusion.

      Regarding preparation (2), we have previously assessed the difference between oocyte extract and intact oocytes in this manner internally and we are certainly losing proteins due to the oocyte extraction process. We make caveats in this vein throughout the article such as: “Furthermore, this cell-free system while useful does not perfectly capture all the events which take place during in vivo fertilization. The cell-free system is intended to mimic early fertilization events but is presumably not the exact same as in vitro fertilization.”

      3) Figures 4, 5, 6, 7, and 8 see point 2. I do miss beyond these conditions also condition 1 despite the fact that the imaged ooplasm does show positive staining.

      For all the presented Western blots, the tissue type is stated in the image description and the protocol which was used to prepare these samples is stated in the Materials & Methods.

      4) These points 1-3 are all required for understanding what is lost in the sperm and oocyte treatments prior to the incubation step as well as the putative origin of proteins that were shown to interact with the mitochondrial sheath of the oocyte extract incubated permeabilized sperm cells after triple washing. Is the origin from sperm only (Figs 5-8) or also from the oocyte? Is the sperm treatment prior to incubation losing factors of interest (denaturation by DTT or dissolving of interacting proteins preincubation Figs 3-8)?

      The authors understand that there are proteins and interactions lost on both sides of the cellfree system equation and we have added a sentence to the Discussion to caveat this limitation in the system.

      5) Mass spectrometry of the permeabilized sperm incubated with oocyte extracts and subsequent washing has been chosen to identify proteins involved in the autophagy (or cofactors thereof). The interaction of a number of such factors with the mitochondrial sheath of sperm has been shown in some cases from sperm and others for an oocyte origin. Therefore, it is surprising that the authors have not sub-fractionated the sperm after this incubation to work with a mitochondrial-enriched subfraction. I am very positive about the porcine cell-free assay approach and the results presented here. However, I feel that the shortcomings of the assay are not well discussed (see points 1-5) and some of these points could easily be experimentally implemented in a revised version of this manuscript while others should at least be discussed.

      We agree that the use of a mitochondrial-enriched subfraction for further analysis would be interesting and useful. We are actively developing experimental protocols for oocyte extract coincubation with isolated sperm heads and tails, and eventually with purified mitochondrial sheaths. However, such experiments are contingent upon our access to porcine oocytes, which has continued to be a struggle since the COVID-19 pandemic compromised our ability to attain oocytes in large, cheap, and reliable quantities. This was a continuous problem with preparing materials for this very paper and has continued to be an issue for our laboratory as well as many others at our university and across the country. We continue to maximize oocytes every time we can get access to them, but the unfortunate reality is that this access has become sparce and unreliable over the past three years.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The expression and localization of Foxc2 strongly suggest that its role is mainly confined to As undifferentiated spermatogonia (uSPGs). Lineage tracing demonstrated that all germ cells were derived from the FOXC2+ uSPGs. Specific ablation of the FOXC2+ uSPGs led to the depletion of all uSPG populations. Full spermatogenesis can be achieved through the transplantation of Foxc2+ uSPGs. Male germ cell-specific ablation of Foxc2 caused Sertoli-only testes in mice. CUT&Tag sequencing revealed that FOXC2 regulates the factors that inhibit the mitotic cell cycle, consistent with its potential role in maintaining a quiescent state in As spermatogonia. These data made the authors conclude that the FOXC2+ uSPG may be the true SSCs, essential for maintaining spermatogenesis. The conclusion is largely supported by the data presented, but two concerns should be addressed: 1) terminology used is confusing: primitive SSCs, primitive uSPGs, transit amplifying SSCs... 2) the GFP+ cells used for germ cell transplantation should be better controlled using THY1+ cells.

      Thanks for your good comments. According to your suggestions, we have addressed your two concerns as follows:

      1> Overall our work suggest that FOXC2+ SSCs are a subpopulation of SSCs in a quiescent state, thus we have replaced the term ‘primitive’ with ‘quiescent’ in the revised manuscript. In general, ‘transient amplifying SSCs’ is considered to be ‘progenitors’, thus we have replaced ‘transient amplifying SSCs’ with ‘progenitors’ in the revised manuscript.

      2> The transplantation experiment was conducted using MACS-sorted THY1+, FACS sorted THY1+, and FACS-sorted GFP+ (FOXC2+) uSPGs simultaneously. To be consistent with the single-cell RNA-seq using the MACS-sorted THY1+ uSPGs, we only presented the results from MACS-sorted THY1+ and FACS-sorted GFP+ (FOXC2+) uSPGs in the previous manuscript. Following the reviewer’s suggestion, we have included the results derived from FACS sorted THY1+ uSPGs as the control. The overall conclusion is still fully supported by the more comprehensive dataset, i.e. FOXC2+ cells generated significant higher numbers of colonies than THY1+ cells after transplantation (Figure 2D, E).

      Reviewer #2 (Public Review):

      The authors found FOXC2 is mainly expressed in As of mouse undifferentiated spermatogonia (uSPG). About 60% of As uSPG were FOXC2+ MKI67-, indicating that FOXC2 uSPG were quiescent. Similar spermatogonia (ZBTB16+ FOXC2+ MKI67-) were also found in human testis.

      The lineage tracing experiment using Foxc2iCreERT2/+;Rosa26LSL-T/G/LSL-T/G mice demonstrated that all germ cells were derived from the FOXC2+ uSPG. Furthermore, specific ablation of the FOXC2+ uSPGs using Foxc2iCreERT2/+;Rosa26LSL-DTA/+ mice resulted in the depletion of all uSPG population. In the regenerative condition created by busulfan injection, all FOXC2+ uSPG survived and began to proliferate at around 30 days after busulfan injection. The survived FOXC2+ uSPGs generated all germ cells eventually. To examine the role of FOXC2 in the adult testis, spermatogenesis of Foxc2f/-;Ddx4Cre/+ mice was analyzed. From a 2-month-old, the degenerative seminiferous tubules were increased and became Sertoli cell-only seminiferous tubules, indicating FOXC2 is required to maintain normal spermatogenesis in adult testes. To get insight into the role of FOXC2 in the uSPG, CUT&Tag sequencing was performed in sorted FOXC2+ uSPG from Foxc2iCreERT2/+;Rosa26LSL-T/G/LSL-T/G mice 3 days after TAM diet feeding. The results showed some unique biological processes, including negative regulation of the mitotic cell cycle, were enriched, suggesting the FOXC2 maintains a quiescent state in spermatogonia.

      Lineage tracing experiments using transgenic mice of the TAM-inducing system was well-designed and demonstrated interesting results. Based on all data presented, the authors concluded that the FOXC2+ uSPG are primitive SSCs, an indispensable subpopulation to maintain adult spermatogenesis.

      The conclusion of the mouse study is mostly supported by the data presented, but to accept some of the authors' claims needs additional information and explanation. Several terminologies define cell populations used in the paper may mislead readers.

      1) "primitive spermatogonial stem cell (SSC)" is confusing. SSCs are considered the most immature subpopulation of uSPG. Thus, primitive uSPGs are likely SSCs. The naming, primitive SSCs, and transit-amplifying SSCs (Figure 7K) are weird. In general, the transit-amplifying cell is progenitor, not stem cell. In human and even mouse, there are several models for the classification of uSPG and SSCs, such as reserved stem cells and active stem cells. The area is highly controversial. The authors' definition of stem cells and progenitor cells should be clarified rigorously and should compare to existing models.

      Thanks for your good comments. Considering that our results showed that FOXC2+ SSCs are in a quiescent state and that Mechanistically FOXC2 maintained the quiescent state of SSCs by promoting the expression of negative regulators of cell cycle, we have replaced ‘primitive SSCs’ with ‘quiescent SSCs’ in the revised manuscript. We agree with the reviewer that ‘transient amplifying SSCs’ is considered to be ‘progenitors’, thus we have replaced ‘transient amplifying SSCs’ with ‘progenitors’ in the revised manuscript. Further,from our point of view, the FOXC2+Ki67+ SSCs could be regarded as active stem cells, and the FOXC2+Ki67- SSCs could be regarded as reserved stem cells, although further research evidence is still needed to confirm this.

      2) scRNA seq data analysis and an image of FOXC2+ ZBTB16+ MKI67- cells by fluorescent immunohistochemistry are not sufficient to conclude that they are human primitive SSCs as described in the Abstract. The identity of human SSCs is controversial. Although Adark spermatogonia are a candidate population of human SSCs, the molecular profile of the Adark spermatogonia seems to be heterogeneous. None of the molecular profiles was defined by a specific cell cycle phase. Thus, more rigorous analysis is required to demonstrate the identity of FOXC2+ ZBTB16+ MKI67- cells and Adark spermatogonia.

      We agree with the reviewer that the identity of human SSCs remain elusive even though Adark population demonstrates certain characteristics of SSCs. To acknowledge this notion, we have revised our conclusion as such that only suggests FOXC2+ZBTB16+MKI67- represents a quiescent state of human SSCs.

      3) FACS-sorted GFP+ cells and MACS-THY1 cells were used for functional transplantation assay to evaluate SSC activity. In general, the purity of MACS is significantly lower than that of FACS. Therefore, FACS-sorted THY1 cells must be used for the comparative analysis. As uSPGs in adult testes express THY1, the percentage of GFP+ cells in THY1+ cells determined by flow cytometry is important information to support the transplantation data.

      Thanks for your good comments. According to your suggestions, we have addressed your concerns as follows:

      1> The transplantation experiment was conducted using MACS-sorted THY1+, FACS sorted THY1+, and FACS-sorted GFP+ (FOXC2+) uSPGs simultaneously. To be consistent with the single-cell RNA-seq using the MACS-sorted THY1+ uSPGs, we only presented the results from MACS-sorted THY1+ and FACS-sorted GFP+ (FOXC2+) uSPGs in the previous manuscript. Following the reviewer’s suggestion, we have included the results derived from FACS sorted THY1+ uSPGs as the control. The overall conclusion is still fully supported by the more comprehensive dataset, i.e. FOXC2+ cells generated significant higher numbers of colonies than THY1+ cells after transplantation (Figure 2D, E).

      2> We performed FACS analysis to determine the proportion of GFP+ cells in FACS-sorted THY1+ cells from Rosa26LSL-T/G/LSL-T/G or Foxc2iCreERT2/+;Rosa26LSL-T/G/LSL-T/G mice at day 3 post TAM induction, and the result showed that GFP+ cells account for approximately 20.9±0.21% of THY1+ cells, See Author response image 1.

      Author response image 1.

      4) The lineage tracing experiments of FOXC2+-SSCs in Foxc2iCreERT2/+;Rosa26LSL-T/G/LSL-T/G showed ~95% of spermatogenic cells and 100% progeny were derived from the FOXC2+ (GFP+) spermatogonia (Figure 2I, J) at month 4 post-TAM induction, although FOXC2+ uSPG were quiescent and a very small subpopulation (~ 60% of As, ~0.03% in all cells). This means that 40% of As spermatogonia and most of Apr/Aal spermatogonia, which were FOXC2 negative, did not contribute to spermatogenesis at all eventually. This is a striking result. There is a possibility that FOXC2CRE expresses more widely in the uSPG population although immunohistochemistry could not detect them.

      Thanks for your good comments. From our lineage tracing results, over 95% of the spermatogenic cells are derived from the FOXC2+ SSCs in the testes of 4-month-old mice, which means that FOXC2+ SSCs maintain a long-term stable spermatogenesis. In addition, previous studies have shown that only a portion of As spermatogonia belong to SSCs with complete self-renewal ability (PMID: 28087628, PMID: 25133429), which is consistent with our findings. Therefore, we speculate that 40% of As spermatogonia and most of Apr/Aal spermatogonia, which were FOXC2 negative, did contribute to spermatogenesis but cannot maintain a long-term spermatogenesis due to limited self-renewal ability.

      5) The CUT&Tag_FOXC2 analysis on the FACS-sorted FOXC2+ showed functional enrichment in biological processes such as DNA repair and mitotic cell cycle regulation (Figure 7D). The cells sorted were induced Cre recombinase expression by TAM diet and cut the tdTomato cassette out. DNA repair process and negative regulation of the mitotic cell cycle could be induced by the Cre/lox recombination process. The cells analyzed were not FOXC2+ uSPG in a normal physiological state.

      We do appreciate the reviewer’s concern on the possibility of the functions enriched in the analysis as referred might be derived from Cre/lox recombination. However, we think it is unlikely that the Cre/lox recombination process, supposed to be rather local and specific, can trigger such a systemic and robust response by the DNA damage and cell cycle regulatory pathways. The reasons are as follows: First, as far as we are aware, there has been sufficient data to support this suggested scenario. Second, we did not observe any alteration in either the SSC behaviors or spermatogenesis in general upon the TAM-induced genomic changes, suggesting the impact from the Cre/lox recombination on DNA damage or cell cycle was not significant. Third, no factors associated with the DNA repair process were revealed in the differential analysis of single-cell transcriptomes of FOXC2-WT and FOXC2-KO.

      6) Wei et al (Stem Cells Dev 27, 624-636) have published that FOXC2 is expressed predominately in As and Apr spermatogonia and requires self-renewal of mouse SSCs; however, the authors did not mention this study in Introduction, but referred shortly this at the end of Discussion. Their finding should be referred to and evaluated in advance in the Introduction.

      Thanks for your good comments. According to your suggestion, we have revised the introduction to refer this latest parallel work on FOXC2. We are happy to see that our discoveries are converged to the important role of FOXC2 in regulating SSCs in adult mammals.  

      Reviewer #3 (Public Review):

      By popular single-cell RNA-seq, the authors identified FOXC2 as an undifferentiated spermatogonia-specific expressed gene. The FOXC2+-SSCs can sufficiently initiate and sustain spermatogenesis, the ablation of this subgroup results in the depletion of the uSPG pool. The authors provide further evidence to show that this gene is essential for SSCs maintenance by negatively regulating the cell cycle in adult mice, thus well-established FOXC2 as a key regulator of SSCs quiescent state.

      The experiments are well-designed and conducted, the overall conclusions are convincing. This work will be of interest to stem cell and reproductive biologists.

      Thanks for the positive feedback.  

      Reviewer #1 (Recommendations for the Authors):

      The authors should address the following concerns:

      1) The most primitive uSPGs should be the true SSCs. The term "primitive SSCs" is very confusing.

      2) In addition to FACS-sorted GFP+ cells, FACS-sorted THY1+ cells should also be used for transplantation.

      Thanks for your good comments. According to your suggestions, we have addressed your two concerns as follows:

      1) Overall our work suggest that FOXC2+ SSCs are a subpopulation of SSCs in a quiescent state, thus we have replaced the term ‘primitive’ with ‘quiescent’ in the revised manuscript.

      2) The transplantation experiment was conducted using MACS-sorted THY1+, FACS sorted THY1+, and FACS-sorted GFP+ (FOXC2+) uSPGs simultaneously. To be consistent with the single-cell RNA-seq using the MACS-sorted THY1+ uSPGs, we only presented the results from MACS-sorted THY1+ and FACS-sorted GFP+ (FOXC2+) uSPGs in the previous manuscript. Following the reviewer’s suggestion, we have included the results derived from FACS sorted THY1+ uSPGs as the control. The overall conclusion is still fully supported by the more comprehensive dataset, i.e. FOXC2+ cells generated significant higher numbers of colonies than THY1+ cells after transplantation (Figure 2D, E).

      Reviewer #3 (Recommendations for the Authors):

      The experiments are well-designed and conducted, the overall conclusions are convincing. The only concerns are the writing, especially the introduction which was not well-rationalized. Sounds the three subtypes and three models for SSCs' self-renew are irrelevant to the major points of this manuscript. I don't think you need to talk too much about the markers of SSCs. Instead, I suggest you provide more background about the quiescent or activation states of the SSCs. In addition to that, as a nuclear-localized protein, it cannot be used to flow cytometric sorting, I don't think it should be emphasized as a marker. You identified a key transcription factor for maintaining the quiescent state of the primitive SSCs, that's quite important!

      Appreciate the positive feedback and constructive suggestions on the writing. We have substantially revised our manuscript to include the relevant advances and understanding from the field as well as highlight the importance of FOXC2 in regulating the quiescent state of SSCs.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer 1 (Recommendations For The Authors):

      1) The strikingly different conclusion from the previous Bourane study seems to stem from the experimental approaches. Rather than using genetic crosses that target all neurons from the hindbrain and spinal cord that express Npy at any point in development, Boyle et al target their manipulations specifically to the lumbar region of the superficial dorsal horn in adult mice using direct viral injections. Thus, Boyle is almost certainly manipulating much fewer neurons that the original study. How then is their behavioral effects so much greater? At the minimum, the authors need to discuss this discrepancy head on. Better would be a direct molecular/anatomical comparison of the neurons targeted by each approach. This could be done using Nyp-Cre mice crossed to a Rosa-LSL-reporter strain and quantifying the overlap with the same markers used here. Perhaps, the intersectional approach with Lbx1 resulted in labeling of a different population of neurons than the adult AAV injections? Although likely outside the scope, given this work directly questions the main conclusion of the Bourane paper, it will be important to see a replication of the original finding of selectivity to mechanical itch.

      We agree that our approach should be manipulating a smaller population of neurons, and that it is therefore suprising that we see greater behavioural effects. Please see our response to "Weakness 1" of Reviewer 2 for consideration of this point. We have already provided a direct molecular comparison as requested by the reviewer, and this appears in Figure 1 supplement 1. Here we used tissue from NPY::Cre that had been crossed with Ai9 mice (i.e. a Rosa-LSL-reporter) and had received intraspinal injections of AAV.flex.GFP. We then characterised the neurochemistry of tdTomato+ cells that were GFP+ or GFP-negative.

      2) The authors state that, "91.6% ± 0.3% of cells classed as Cre-positive cells were also Npy-positive, and these accounted for 62.1% ± 0.6% of Npy-positive cells" If I am reading this correctly, does that mean that 40% of the Npy+ cells are Cre negative? If so, how is this possible?

      This interpretation is correct. For quantification of RNAscope data we used a cut-off level of 4 transcripts, and cells with fewer than 4 transcripts were classed as negative. It is likely that some of the NPY cells classified as negative for Cre would have had some Cre mRNA (sufficient to cause recombination), but at a level below this threshold. It is also possible that some NPY+ cells would fail to express Cre, since this is a BAC transgenic mouse, rather than a knock-in.

      3) Similarly, the authors state that "great majority of FP-expressing neurons in laminae I-III were immunoreactive (IR) for NPY (78.5% ± 3.6%), and these accounted for 74.6% ± 109 1.9% of the NPY-IR neurons in this area". So does this mean 20% of the recombination is non-specific/in other cell types that could be involved in pain/itch sensation?

      Our finding that 91.6% of cells with Cre mRNA were also positive for Npy mRNA (see above) indicates that Cre expression was largely restricted to NPY cells. The failure to detect NPY peptide in some of these cells probably results from the relatively low level of peptide seen in the cell bodies of peptidergic neurons, which results from the rapid transport of peptides into their axons.

      4) Comparing Fig 3B and Fig4B it seems the control baseline von Frey responses are different. In fact, baseline response in Fig4b is quite like the CNO effect in Fig 3B. Unless I'm misunderstanding something, this seems quite odd?

      We agree that there is a difference between the baseline responses. We are not aware of any particular reason for this, and we think that it reflects a degree of variability that is seen with the von Frey test. Interestingly, the baseline values for the SNI cohort (Fig 4E) lies between the values in Fig 3B and Fig 4B.

      5) In Fig 4E, the behavior of the CNO treated mice is quite variable. Can the authors comment as to how this might be happening? Does the effect correlate with viral transduction?

      We did not see any obvious correlation between the extent of viral transduction and the behaviour of individual mice.

      6) Fig6, the PDyn-Cre experiment, is a bit of a non sequitur?

      Please see our response to "Weakness 2" of Reviewer 2 for consideration of this point.

      7) The conclusion is unusually long. I recommend trimming it to make it more concise.

      We presume that this refers to the Discussion. However, this was ~1550 words, and we do not feel that that is unusually long.

      Reviewer 2 (Public Review):

      Weaknesses

      1) There is inadequate discussion about previous studies of NPY interneurons. Specifically, the authors should address why a more restricted subset of these neurons (this study) have broader effects than seen previously.

      We have expanded the discussion on the discrepancies between our findings and those reported previously. We state at the outset that we are targeting a more restricted population (lines 509-10), and we now go into more detail concerning both similarities and differences between our findings and the reasons that we think may underlie any discrepancies (various changes between lines 522-575).

      2) I cannot see the reason for including results from manipulation of Dyn+ interneurons in this paper. First, the title does not reflect roles of spinal Dyn+ population. In addition, without further experiments characterizing relationships between NPY and Dyn interneurons in modulating itch and/or nociception, Dyn datasets seem to deviate from the main theme.

      We had previously shown that activating Dyn-INs suppressed pruritogen-evoked itch (Huang et al 2018), but it was important to test whether silencing these cells would have the opposite effect. Our finding of overlap in function (i.e. both NPY-INs and Dyn-INs suppress itch, and that both innervate GRPR cells) provides strong evidence against the idea that neurochemically-defined interneuron populations have highly specific functions, and we now state this in the Discussion. The anatomical experiments (which follow on from the functional studies) provide important new information concerning synaptic circuitry of the dorsal horn, by showing that NPY-INs preferentially innervate GRPR cells, and provide around twice as many synapses on these cells, compared to the Dyn-INs. Interestingly, this correlates with the relatively large optogenetically-evoked IPSCs that we saw when NPY-INs were activated, compared to those reported by Liu et al (2019) when galanin-expressing (which largely correspond to Dyn-INs) were activated. By including these findings in the paper, we are able to make comparisons between these two populations.

      3) While the authors provided convincing evidence that GRPR+ neurons serve as a downstream effector of NPY+ neuron evoked itch, the relationship between GRPR and NPY neurons in modulating pain is not examined. Therefore, Fig. 7B is pure speculation and should be removed.

      We feel that our recent findings that GRPR neurons correspond to vertical cells, that they respond to noxious stimuli, and that activating them results in pain-related behaviours, makes it reasonable to speculate that the NPY/GRPR circuit may also be involved in the anti-nociceptive action of NPY cells. The legend for Fig 7B already refers to this as a "potential circuit", and we have toned down the corresponding part of the discussion to say that our findings "raise the possibility" that this is the case (lines 605-7). We feel that this part of the figure is important, as otherwise our summary diagram ignores some of the main findings of the paper, and we hope that this is now acceptable.

      Recommendations For The Authors

      1) Fig. 1G: the "misexpression" of tdTomato neurons was much more prominent in deep dorsal horn laminae but not in the superficial ones. Was this representative? Can the authors perform a laminae specific characterization?

      We did test for this possibility in 2 NPY::Cre;Ai9 mice that had received intraspinal injections of AAV.flex.GFP, and found that there was a modest difference - 62% of tdTomato+ cells in laminae I-II, but only 39% of those in lamina III, were GFP+. This suggests that "misexpression" may have differed slightly between these regions. However, since the difference was quite modest, and we were only able to analyse tissue from two mice in this way, we did not include these findings in the paper.

      2) I have a lot of problems interpreting the c-Fos data in Fig. 2 E and F. For the mCherry- population, how was the quantification performed? From the image, it does not look like 2030% of cells express c-Fos; at a minimum a clear stain of neurons would be needed. Similarly, the identification of NPY cells is not particularly convincing (e.g., middle arrowhead lower 2 panels in C).

      We have provided further details on how the analysis was performed (changes made to lines 1016-29). NeuN staining was used to reveal all neurons, and a modified optical disector method was performed from somatotopically appropriate regions of the dorsal horn. As noted by the Reviewer, NeuN staining was required to allow identification of mCherrynegative cells. However, we have not included the NeuN immunoreactivity in the image, as this would add considerably to the complexity. These images are from single optical sections, and therefore the overall numbers of cells are low (in comparison to what would be seen in a projected image). The intensity of mCherry staining varied between cells. However, for all mCherry-positive cells (including the example referred to by the Reviewer), there was clear staining in the membrane, which could be followed in serial sections.

      3) Please add individual data points for all quantifications.

      These have been added.

      Reviewer 3 Recommendations For The Authors:

      1) It is somewhat surprising that there is no effect on CPP after activating spinal NPY neurons in neuropathic mice, given the almost complete rescue of hypersensitivity to baseline values in the nociceptive tests. Based on the methods, it appears that conditioning was carried out already 5 min after CNO injection. Yet, suppression of c-fos activity in excitatory spinal dh neurons was observed 30min after CNO injection. Also, it is not clear to me when CNO was injected prior to the nociceptive or CQ testing?

      Have the authors considered that conditioning from 5-35 min after CNO injection might be too short after CNO injection to achieve a profound analgetic effect?

      In a previous study (Polgár et al 2023), we had observed the timecourse of CNO-evoked itch and pain behaviours in mice in which GRPR cells expressed hM3Dq. We found that these started within 5 minutes of i.p. CNO injection (e.g. Fig S2 in that paper). In addition, the timecourse of action of gabapentin and CNO (both given i.p.) are likely to be similar, and there was a preference for the chamber paired with gabapentin. We are therefore confident that the conditioning period with CNO was adequate. We now explain this in the Methods section (lines 846-52). The timing of CNO injections for the nociceptive and CQ tests is now described (lines 749-55).

      2) The authors claim that tonic pain was not affected based on the conditioned place preference test. Efficacy in withdrawal response tests and in the CPP differ by more than duration of the stimulus. I'd suggest using more cautious wording here.

      We agree that caution is needed in interpreting the results of the CPP experiments. We have therefore replaced "does" with "may" in the Results section (line 336) and "did" with "may" in the Discussion (line 620).

      3) On page 9 the authors state "...suggesting that they suppress the transmission of pain- and itch-related information in the dorsal horn." However, pain is not affected in the loss of function experiments suggesting some qualitative differences in the role of the NPY neurons in itch and pain. This should also be reflected more clearly in this statement and in the discussion e.g. "suppress itch" and "can suppress pain".

      We accept the point made by the Reviewer. We have slightly altered the wording in lines 249-51 and 610 to reflect this.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      [...] Weaknesses

      Showing that A-2 and especially A-3 are outliers in the PCA analysis is useful, but it may be hiding other interesting signals in the data. The other strains are remarkably colinear on these plots, hinting that if the outliers were removed, one main component would emerge along which they are situated. It also seems possible that this additional analysis step would allow the second dimension to better differentiate them in a way that is interesting with respect to their mutator status or mutations in key metabolic or regulatory genes.

      We thank the reviewer for their positive comments and their constructive feedback on the manuscript. Following reviewer’s recommendation, we performed the PCA analysis on metabolism data after removing A-2 and A-3 data. We have detailed those results below. Consistent with a similar analysis performed on RNA-seq datasets in our previous publication, we find that removing these outliers has only a modest effect on separating mutators from non-mutators. We find that, while the new PC2 separates most mutators from the non-mutators, the separation is rather weak. Moreover, we do not see a similar distinction when looking at metabolic data in the Stationary phase. In the interest of improving the readability of the manuscript, we recommend not including these analysis in the final manuscript. We have presented the data for the reviewer’s benefit in Author response image 1, 2 and 3.

      Author response image 1.

      Author response image 2.

      Author response image 3.

      There is a missed opportunity to connect some key results to what is known about LTEE mutations that reduce the activity of pykF (pyruvate kinase I). This gene is mutated in all 12 LTEE populations, and often these mutations are frameshifts or transposon insertions that should completely knock out its activity. At first glance, inactivating an enzyme for a step in glycolysis does not make sense when the nutrient source in the growth medium is glucose, even though PykF is only one of two isozymes E. coli encodes for this reaction. There has been speculation that inactivating pykF increases the concentration of phosphoenolpyruvate (PEP) in cells and that this can lead to increased rates of glucose import because PEP is used by the phosphotransferase system of E. coli to import glucose (see https://doi.org/10.1002/bies.20629). The current study has confirmed the higher PEP levels, which is consistent with this model.

      We thank the reviewer for pointing out this missed opportunity. We have expanded the discussion around the role of pykF mutations and the elevated concentrations of PEP observed in our data in section 3.4.

      In the introduction, the papers cited to show the importance of changes in metabolism for adaptation do not seem to fit the focus of this study very well. They stress production of toxins and secondary metabolites, which do not seem to be mechanisms that are at work in the LTEE. I can think of two areas of background that would be more relevant: (1) studies of how bacterial metabolism evolves in adaptive laboratory evolution (ALE) experiments to optimize metabolic fluxes toward biomass production (for example, https://doi.org/10.1038/nature01149), and (2) discussions of how cross-feeding, metabolic niche specialization, and metabolic interdependence evolve in microbial communities, including in other evolution experiments (for example, https://doi.org/10.1073/pnas.0708504105 and https://doi.org/10.1128/mBio.00036-12).

      We thank the reviewer for pointing out missed citations in our introduction. We agree that these papers are relevant to the topic and have added their citations. Additionally, following the suggestion of another reviewer, we have reorganized the introduction so that the concept of the role of metabolism in evolution is presented first and the LTEE second.

      Reviewer #2 (Public Review):

      [...] Overall, this is a significant and well-executed research study. It offers new insights into the complex relationship between genetic changes and observable traits in evolving populations and utilizes metabolomics in the LTEE, a novel approach in combination with RNA-seq and mutation datasets.

      However, the paper's overall clarity is lacking. It is spread too thin and covers many topics without a clear focus. I strongly recommend a substantial rewrite of the manuscript, emphasizing structure and readability. The science is well executed, but the current writing does not do it justice.

      We thank the reviewer for their positive comments and their constructive feedback on the lack of clarity in writing. Following the reviewer’s suggestions, we have rewritten parts of the manuscript and reorganizd a few sections to improve readability. We hope the revised manuscript is significantly improved.

      Recommendations for the authors

      Reviewer #1 (Recommendations For The Authors):

      1) Title and Abstract: Add the study organism to the abstract, and probably also the title. Currently, E. coli is not mentioned in either! I'm also not sure that the LTEE is a sufficiently well-known acronym to abbreviate this in the title.

      We have revised the title of the manuscript and now spell out LTEE and included E. coli in the title and the abstract.

      2) Abstract: I would switch the usage of metabolome to metabolism in a few more places. For example, "changes in its metabolism", "networked and convoluted nature of metabolism". The metabolome, the concentrations of all metabolites, is what is being measured, but I think of this as a phenotypic readout of how metabolism evolving.

      We have changed “metabolome” to “metabolism” in cases where we refer to what is evolving and use “metabolome” when we refer to what is being measured.

      3) Line 16: Technically, the 12 LTEE populations were not initially identical. The Ara- differed from the Ara+ ancestors by one intentional mutation and one unintentional mutation that was not discovered until whole genomes were sequenced. I would rephrase this to "where 12 replicate populations of E. coli are propagated" or something similar so that it can be correct without needing to describe this unnecessary detail.

      The line has been rephrased as suggested.

      4) General Note: The text refers to populations as Ara-3 but the figures use A-3. I'd suggest going with A-3 and similar throughout for consistency.

      Instances of Ara have been changed to A+/-, and a sentence specifying as such has been added to the intro to make mention of this.

      5) Lines 43-44, 97-98. My understanding is that both S and L ecotypes in A-2 can use both glucose and acetate, but that the differentiation is related to their specialization that leads to each one being better on one or the other nutrient. The descriptions make it sound like each grows at a different time. Also, by definition, cells are not growing during "stationary phase". The change from glucose utilization (and acetate secretion) to acetate utilization during one cycle of growth is better described as a diauxic shift.

      We have reworded this part to remove mention of “growth” during stationary phase and changed the wording such that it no longer sounds like they grow at different times.

      6) Line 54: The statement "provide the ability to test hypotheses from previous data" is vague. Either provide an example or delete.

      We have removed this sentence as suggested.

      7) Lines 71-72: The terms "interphase" and "intraphase" sound too much like parts of the cell cycle. I'd suggest describing the comparisons as between and within growth phases.

      The use of intra and interphase have been changed as suggested.

      8) Line 79: The citrate is presumably still a chelating agent, so change phrasing to "Citrate is present in the medium because it was originally added as a chelating agent" or something similar.

      This sentence has been rewritten as suggested.

      9) Line 83: Write out "mutation accumulations" so it is easier to understand as "the number of mutations that have accumulated".

      The phrase has been changed as suggested.

      10) Line 116: It's unclear whether the abundances of metabolites are "strategies of survival" in stationary phase. An equally valid explanation is that there is less selection on the metabolome to have a specific composition during stationary phase to have high fitness.

      We have added a line about the possibility for alternative hypotheses.

      11) Figure 1: There seems to be some information missing from the legend. What are R06 and R07 in Panels A and B? Is panel D exponential phase and panel E stationary phase?

      This information was inadvertently missing from the caption and has been added.

      12) Figures 2 and 3: Gene names should be in italics. To me, the gray for deleted genes is hard to tell apart from the blue/red. Perhaps you could put a little X in these boxes instead? I think that having a little triangle pointing from each gene or metabolite name its corresponding abundance panel would help the reader track which information goes with which features. In Fig. 3 the placement of L-aspartate is a bit awkward. I'd suggest moving it down so the dashed line does not have to go through the abundance panel.

      These figures have been edited to include small triangles that link a gene or metabolite and its heatmap. Additionally, an X has been added where genes have suffered inactivating mutations and the placement of some elements has been moved to improve overall clarity.

      13) Lines 183-185: It would be easier to see and judge the consistency of these argR related relationships if a correlation graph of some kind was shown, probably as a supplemental figure. This plot could, for example, have genes/metabolites across the x-axis and fold-change on the y-axis with lines connecting points corresponding to each of the twelve populations across these categories (like Fig S8 but with lines added). Alternatively, it could be a heat map with the populations across one axis and the genes/metabolites across the other axis (like Fig S3).

      We have added a supplementary figure consisting of heatmaps showing the consistency of these changes within an evolved line. It is now figure S9.

      14) Line 195: I think adding a sentence elaborating on what exactly mutation accumulation means in this context would be helpful to readers.

      We have attempted to clarify the meaning of this by specifically stating that it is due to the accumulation of deleterious mutations.

      15) Line 293: Is standard LTEE medium DM25? These omics experiments with the LTEE sometimes use similar media with different glucose concentrations, and this is a very important detail to precisely specify.

      We reference “standard” LTEE medium in the methods section and have additionally specified the amount of sugar to make it clear that we are not supplementing the media with additional sugar.

      16) Figure S8B. Is "cystine" used instead of "cysteine" on purpose here since the compound is oxidized in the metabolomics treatment?

      The use of cystine is intentional, we detect the oxidized compound.

      Reviewer #2 (Recommendations For The Authors):

      Title:

      The abbreviation "LTEE" should not be in the title. Most readers will not recognize what it means. Instead, either the full name of the experiment, "Long-Term Evolution Experiment with E. coli," should be used, or the title should be rephrased to "Linking genotypic and phenotypic changes during a long-term evolution experiment using metabolomics."

      We have spelled out LTEE and included E. coli in the title.

      Abstract:

      Sentence 1: Consider softening the statement: "Do changes in an organism's environment, genome, or gene expression patterns often lead to changes in its metabolome?"

      We have rephrased this sentence to “Changes in an organism's environment, genome, or gene expression patterns can lead to changes in its metabolism”.

      Sentence 4: Use a hyphen for "Long-Term."

      This addition has been made.

      Sentence 4: Replace "transduce" with a more appropriate term: "...how the effects of mutations can be distributed through a cellular network to eventually affect metabolism and fitness."

      We have rewritten this sentence as “to understand how mutations can eventually affect metabolism and perhaps fitness”.

      Sentence 5: Clarify the use of "both" to refer to the ancestor of the LTEE and its descendant populations as two classes.

      We have reworded this sentence so it’s clear that the ancestors and evolved lines are two separate classes “We used mass-spectrometry to broadly survey the metabolomes of the ancestral strains and all 12 evolved lines…”.

      Sentence 6: Reverse the order for better emphasis: "Our work provides a better understanding of how mutations might affect fitness through the metabolome in the LTEE, and thus provides a major step in developing a complete genotype-phenotype map for this experimental system."

      We have rearranged this sentence per the reviewers suggestion.

      Introduction:

      Revise the introduction for clarity, readability, and logical narrative progression. Start with the second paragraph to set up the basic scientific principles being studied and then transition to describing the LTEE as a model system to examine those principles.

      The introduction has been rearranged and reworded in parts to increase clarity.

      Sentence 1: Revise for clarity: "The Long-Term Evolution Experiment (LTEE) has studied 12 initially identical populations of Escherichia coli as they have evolved in a carbon-limited, minimal glucose medium under a daily serial transfer regime."

      Sentence 2: Suggestion: "Begun in 1988, the LTEE populations have evolved for more than 75,000 generations, making it the longest-running experiment of its kind."

      Paragraph 2, sentence 2: Italicize "Drosophila."

      Paragraph 3, sentence 2: Make an important distinction: "Ara-3 is unique in that it evolved the ability to grow aerobically on citrate."

      Paragraph 3, sentence 4: Introduce the IS-mediated loss of the rbs operon in the LTEE as if it has not been described elsewhere.

      These suggestions have been incorporated into the manuscript.

      Results:

      Section 3.1: The use of samples from hours 2 and 24 to represent exponential and stationary phase may present some issues. For instance, capturing Ara-3 during its exponential growth on glucose, but not citrate, at hour 2. Furthermore, except for Ara-3, the LTEE populations reach stationary phase after approximately 4 hours, and there could be significant differences between early, mid, and late stationary phase. This possibility should be acknowledged, and future follow-up work should consider exploring these differences.

      We have added sentences in the first paragraph of the results section to include these details. We have also added a short paragraph to the conclusions suggesting additional studies of stationary phase, citing work on evolution of E. coli during long term stationary phase.

      Paragraph 3: While Turner et al. 2017 is an essential reference regarding resource use differences between Ara-3 and other LTEE populations, it would be more suitable to reference Blount et al. 2012 for the mutations that enabled access to citrate. Also, it is important to note that the difference lies in the ability to grow aerobically on citrate, rather than the ability to metabolize it.

      This citation has been added.

      Paragraph 4: As mentioned elsewhere, most LTEE populations exhibit balanced polymorphisms. Therefore, it is more appropriate to state that Ara-2 is the best-understood example of long-term diversity. It is likely that there are important metabolic differences between co-existing lineages in other LTEE populations.

      We now refer to Ara-2 as being the best-understood example of long term diversity..

      Paragraph 5: The first sentence of this paragraph should likely end with "levels."

      The word “levels” was added to the end of this sentence.

      Figure 3: It is preferable to refer to the "Superpathway of arginine and polyamine biosynthesis," citing EcoCyc as a reference, rather than a descriptor.

      This has been changed to a reference.

      Section 3.3, Paragraph 3: While higher intracellular amino acid abundances may facilitate higher translation rates and faster growth, the higher abundances themselves do not evaluate the hypothesis. To evaluate the hypothesis, it is necessary to demonstrate that higher abundances are associated with higher translation or growth rates. Therefore, the final sentence of this paragraph is not meaningful.

      We have reworded this sentence to say that it’s not possible to tell what the additional amino acids are being used for given only this data and that additional experiments are needed to confirm this hypothesis.

      Section 3.4: The first paragraph of this section misstates how evolution works. The low level of glucose in the LTEE does not drive innovation; instead, innovation occurs at random through the introduction of variation by mutation. Although the existence of the citrate resource acts as a reward that selects for variation that provides access to it, it is essential to remember that evolution is blind to such a reward. Moreover, regarding the evolution of the Cit+ trait, it is incorrect to assert that low glucose contributed to its evolution. As shown by Quandt et al. (2015), it seems probable that Cit+ evolution was potentiated by adaptation to specialization on acetate, which is produced by overflow metabolism resulting from rapid growth on glucose. This rapid growth only occurs when glucose is relatively abundant. The level of glucose seems low to us because it is low relative to traditional levels in bacteriological media, but not to the bacteria.

      We agree that this is a semantical, but important distinction. We have reworded this part as to not suggest that evolution has any forward thinking properties and is indeed blind to any rewards that might occur as the result of adaptation.

      In general, all instances of "utilize" and its cognates should be replaced with "use" and its cognates.

      Instances of “utilize” have been changed to use and its cognates.

      There is some uncertainty about the expectation of ramping up the TCA cycle in the LTEE. Overflow metabolism and acetate production appear to be prevalent in the LTEE, suggesting that many lineages only partially oxidize carbon derived from glucose, thereby bypassing the TCA cycle. While it is possible that this interpretation is incorrect, it would be helpful to see it addressed in the manuscript.

      We agree that this is a plausible hypothesis, we have added a paragraph at the end of this section that discusses the implications of overflow metabolism as an alternative hypothesis.

    1. Author Response

      Reviewer #1 (Public Review):

      In this study, the authors study the effect of dynactin disruption on kinetochore fiber (k-fiber) length in spindles of dividing cultured mammalian cells. Dynactin disruption is known to interfere with dynein function and hence spindle pole formation. The main findings are that poles are not required for correct average k-fiber length and that severed k-fibers can regrow to their correct length both in the presence and absence of poles by modulating their dynamic properties at both k-fiber ends. In the presence of poles, regrowth is faster and the variation between k-fiber lengths is smaller. This is a very interesting study with high-quality quantitative imaging data that provides important new insight into potential mechanisms of spindle scaling, extending in an original manner previous work on this topic in cultured cells and in Xenopus egg extract. The Discussion is interesting to read as several possible mechanisms for k-fiber length control are discussed. The technical quality of the study is very high, the experiments are very original, and most conclusions are well supported by the data. Especially, the experiments observing the regrowth of k-fibers after severing and the study of the dynamic properties of these k-fibers provide very novel insight. Addressing the following concerns could potentially improve the manuscript:

      We thank the reviewer for their fair, rigorous, and conceptually engaging remarks.

      (1) The phenotype generated here by disrupting dynactin via overexpressing p50 appears to be different from that caused by knocking down NuMA or dynein - as previously reported by the Dumont lab (Hueschen et al., 2019). In this study here, unfocused spindles are observed whereas earlier turbulent spindles were observed. This raises the question of whether dynein activity that contributes to pole focusing is really completely inhibited here. These discrepancies in phenotypes seem to deserve an explanation. Is k-fiber length in cultured mammalian cells only maintained in the case of this specific type of inhibition?

      We thank the reviewer for the important point about the different phenotypes observed in different dynein inhibition conditions and we refer them to our response to Essential Revision #1. In summary, we believe that different dynein inhibition phenotypes are similar. Unfocused spindles appear turbulent on longer timescales and appear to reach a steady-state on shorter timescales. The amount of pole-unfocusing also seems to correspond to the severity of dynein inhibition (Figure 1—figure supplement 1). We have chosen to study inhibited spindles that were steady-state and unfocused. We have added this discussion in line 129 as well as better characterized our system of dynein inhibition by adding two new figures (Figure 1—figure supplement 1, Figure 1—figure supplement 3).

      Furthermore, we address the question of whether dynein might still be responsible for length regulation despite poles being unfocused in line 433 of the Discussion: “recent work has revealed that mammalian spindles can achieve similar architecture whether or not dynein (or its recruiter NuMA) is knocked out (Neahring et al., 2021). This suggests that the severe defects in spindle coordination (Figure 1, Figure 5) and maintenance (Figure 2) observed in p50-unfocused spindles are more likely due to the loss of spindle poles than due to the loss of dynein activity per se.”

      We have additionally overexpressed p50 in human RPE1 cells and observed qualitatively similarly unfocused yet generally bi-oriented spindles as in rat kangaroo PtK2 cells, showing that the formation of unfocused spindles in PtK2 is not an artifact unique to that cell line (see newly added Figure 1—figure supplement 3). However, these unfocused RPE1 spindles did not have clear, resolvable k-fibers as in PtK2, so length was not quantified. The only method we are aware of that robustly unfocuses poles in PtK2 spindles is p50 overexpression.

      (2) p50 addition and also p150-cc1 addition was often used in Xenopus egg extract in order to inhibit dynein function. Considerably larger concentrations of p50 than p150-cc1 needed to be used. Can the authors estimate the level of overexpression of p50 in the cells they study? It seems that could be possible given that a mCherry fusion protein can be overexpressed. Was it necessary to select cells with a particular level of mCherry-p50 overexpression to observe the reported phenotypes?

      We thank the reviewers for the suggestion to quantify p50 expression and have added Figure 1—figure supplement 1. Due to gradual red laser power loss over months, data from a single day were plotted for proper comparison, but trends were always consistent within any given day. As discussed above, we observed that higher levels of mean p50 intensity corresponded to unfocused spindles. We have clarified that we chose to study these highly overexpressing unfocused spindles in the text and methods, and we speculate that level of p50 overexpression correlates with amount of dynein inhibition and subsequent pole-unfocusing. This is also consistent with the higher concentrations of p50 needed to inhibit dynein in Xenopus.

      (3) Some comparison to previous experiments using p50 and p150-cc1 addition to Xenopus egg extract spindles could put this study better into the context of the available literature. It seems from previous publications that the p50 addition produced short, unfocused, barrel-shaped spindles, indicating that spindle length is maintained without poles, whereas the p150-cc1 addition produced elongating spindles (e.g. Gaetz & Kapoor, 2004).

      We appreciate the reviewer’s discussion of dynein inhibition in the Xenopus context.

      While Xenopus has been used to study spindle size regulation, it has not been as useful to study k-fiber length regulation, which we focus on. Xenopus spindles have a different architecture, with k-fibers that are not discrete and continuous like in mammalian spindles. Indeed, while p50 and p150-CC1 overexpression alter spindle length in Xenopus, they do not have the same effect in mammalian spindles. Additionally, p150-CC1 does not robustly unfocus poles in mammalian spindles as it does in Xenopus; instead, it leads to an inconsistent variety of spindle disorganization phenotypes with frequently focused poles in PtK2 (data not shown). We speculate this variety of spindle phenotypes arise from a different mechanism of dynein inhibition that does not fully target pole-focusing.

      However, we agree that referencing prior Xenopus work establishes important context and precedent. In line 95 of the Introduction, we state “…inhibiting dynein unfocuses poles but spindles still form albeit with altered lengths in Drosophila (Goshima et al., 2005) and Xenopus (Gaetz and Kapoor, 2004; Heald et al., 1996; Merdes et al., 1996), and without a clear effect on mammalian spindle length (Guild et al., 2017; Howell et al., 2001),” addressing the different effects of dynein inhibition in Xenopus compared to mammalian spindles. We have also added direct mentions of p50 in Xenopus in line 129 (see Essential Revision #1 response).

      Finally, we have added a figure showing overexpression of p50 in a human RPE1 cells to show reproducibility of pole unfocusing across other mammalian cell types (see newly added Figure 1—figure supplement 3).

      (4) In this context, it seems that some more explanation is required for the observations presented in Fig. 1D and 1E. It appears that spindle length and k-fiber length have been measured quite differently. Not much information is provided for how spindle length was defined and measured (please expand this part of the Methods). Could the two different methods of measurement be the reason for the mean k-fiber length remaining unaltered in dynactin-disrupted spindles, whereas the spindle length increases in these cells? If not, do non-k-fiber microtubules contribute to unfocused spindles being longer or are chromosomes not aligned in the metaphase plate causing the increase in spindle length by misalignment of k-fiber sister pairs?

      We thank the reviewers for pointing out the lack of clarity in Figures 1D and 1E. We have expanded and clarified the Methods section describing how spindle axes were measured and how k-fiber lengths were measured, as well as included examples and cartoons to illustrate them (see newly added Figure1—figure supplement 4).

      To clarify, we did not intend to directly measure spindle length, but we did approximate the size of each spindle’s “footprint” in Figure 1D as well as measure individual k-fiber length in Figure 1E. It is now clarified in the Methods line 898 as “Spindle minor and major axes lengths were determined by cropping, rotating, then thresholding spindle images with the Otsu filter using SciKit. Ellipses were fitted to thresholded spindles to approximate the length of their major and minor axes using SciKit’s region properties measurement (Figure1—figure supplement 4A). In control spindles, the major axis corresponded to spindle length along the pole-to-pole axis, and the minor axis corresponded to spindle width along the metaphase plate axis. However, unfocused spindles were disorganized along both axes to the extent where the minor axis did not always correspond to the metaphase plate axis. Thus, Figure 1D reports ”spindle minor axis length” and “spindle major axis length” rather than “spindle width” and “spindle length”. Furthermore, it is worth noting that in unfocused spindles, spindle length is decoupled from k-fiber length because of k-fiber disorganization along both axes. Thus, spindle length was not measured in unfocused spindles...”

      We additionally removed the potentially confusing terminology of “wider” and “longer” in the Results section to make clear that we are approximating spindle size, not spindle length and width, and we now state in line 168,“ k-fibers were more spread out in the cell, with spindles covering a larger area compared to control along both its major and minor axes (Figure 1D).”

      We believe our clarification and expansion of the Methods section, as well as inclusion of a new supplementary figure and cartoon address the reviewer’s points, and we thank them for pointing out the lack of clarity.

      (5) It seems that in the Discussion it is implied that k-fibers can respond to severing in both focused and unfocused spindles by modulating their dynamics at both ends of the k-fibers, but in the Results section the wording is more cautious because of the difference in 'flux' in severed and unsevered unfocused spindles is not significant (Fig. 4D, blue data). It appears indeed that there is also a difference in flux between severed and unsevered unfocused spindles, but the number of data points is too small. Depending on how difficult these experiments are, it could be worth increasing the size of the data set to come to a clear conclusion, given that the data shown in Figs. 3 and 4 are quite remarkable and form the core of the study.

      We appreciate the reviewer’s close reading and pertinent suggestions.

      As detailed in our response to Essential Revision #3, we did not increase the sample size for unfocused spindles since it would not be reasonably feasible to show significant differences in flux. However, we performed more ablations and photomarking in control spindles as detailed in our response to this reviewer’s point 6 below, a different but related point.

      (6) Can the authors exclude that the stopping of 'flux' at minus ends after severing is due to some sort of permanent damage induced by ablation? In other words, do severed spindles begin to flux again once they have regrown to their original length?

      We thank the reviewer for their important points.

      We have addressed this question in the newly added Figure 4—figure supplement 1 as described in our response to Essential Revision #3 to show that flux resumes after length recovery. In summary, we observed no adverse effects of ablation on k-fiber minus-ends. Severed k-fibers have restored lengths, and minus-end dynamics several minutes after ablation.

      (7) To this reader, the conceptualization of distinguishing between 'global' and 'local' effects/behavior was a little confusing, both in the title and also later in the text. The concept of 'local' regulation of k-fiber length appears to contradict the observation that k-fiber length can be regained after severing by changes in the dynamics at both ends (so at two very different locations) which is a rather remarkable finding. Maybe distinguishing between 'individual' and 'collective' k-fiber behavior could be clearer.

      We appreciate the reviewer’s consideration of terminology. We have addressed this by clearly defining our use of ‘local’ to refer to individual k-fibers as a unit where appropriate in the text (lines 271, 449). We chose these terms since they can help describe individual versus collective properties, while simultaneously emphasizing the aspects of global architecture and spatial organization in the spindle.

      (8) Can the authors exclude that some of the differences between unfocused and focused spindles could be due to altered dynein activity at kinetochores? Or due to the dynein-dependent accumulation of certain spindle proteins along microtubules towards the minus ends of k-fibers or other spindle microtubules, instead of being due to only the presence versus absence of poles? Could this be tested by ablating both poles? If this is too challenging, a discussion of these possibilities could be justified.

      We appreciate the reviewer’s consideration of kinetochore activity as well as other methods of removing poles. However, p50 overexpression is currently the only method to robustly unfocus spindles in PtK2 cells – ablating poles or removing pole-associated structures such as centrosomes does not abolish pole-focusing in this system (Khodjakov et al., 2000). Furthermore, we now discuss the possibility that altered dynein activity (such as activity at kinetochores) may give rise to the phenotypes we describe in our work in line 433: “…recent work has revealed that mammalian spindles can achieve similar architecture whether or not dynein (or its recruiter NuMA) is knocked out (Neahring et al., 2021). This suggests that the severe defects in spindle coordination (Figure 1, Figure 5) and maintenance (Figure 2) observed in p50-unfocused spindles are more likely due to the loss of spindle poles than due to the loss of dynein activity per se. Though we cannot exclude it, this also suggests that the findings we make in unfocused spindles are not due changes in activity of the dynein population at kinetochores.”

      Reviewer #2 (Public Review):

      The mitotic spindle of eukaryotic cells is a microtubule-based assembly responsible for chromosome segregation during cell division. For a given cell type, the steady-state size and shape of this structure are remarkably consistent. How this morphologic consistency is achieved, particularly when one considers the complex interplay between dynamic microtubules, spatial and temporal regulation of microtubule nucleation, and the activities of several microtubule-based motor proteins, remains a fundamental unanswered question in cell biology. In this work by Richter et al., the authors use biochemical and biophysical perturbations to explore the feedback between mitotic spindle shape and the dynamics of one of its main structural elements, kinetochore fibers (k-fibers) - bundles of microtubules that extend from kinetochores to spindle poles. Overexpression of the p50 dynactin subunit in mammalian tissue culture cells (Ptk2) was used to inhibit the microtubule motor cytoplasmic dynein resulting in misshapen spindles with unfocused poles. Measurements of k-fiber lengths in control and unfocused conditions showed that although mean k-fiber length was not statistically different, the variation of length was significantly higher in unfocused spindles, suggesting that k-fiber length is set locally, occurring in the absence of focused poles. With a clever combination of live-cell imaging with photoablation and/or photobleaching of fluorescently-labeled k-fibers, the authors went on to explore the mechanistic bases of this length regulation. K-fiber regrowth following ablation occurred in both conditions, albeit more slowly in unfocused spindles. Paired ablation and localized photobleaching on the same k-fiber revealed that microtubule dynamics, specifically those at the plus-end, can be tuned at the level of individual k-fiber. Lastly, the authors show that chromosome segregation is severely impaired when cells with unfocused spindles are forced to enter mitosis. The work's biggest strength is the application of an innovative experimental approach to address thoughtful and well-articulated hypotheses and predictions. Conclusions stemming from the experiments are generally well-supported, though the experiments addressing the "tuning" of k-fiber dynamics could be bolstered by additional data points and perhaps better presented. The manuscript would also benefit from the inclusion of some investigation of spatial differences in the observed effects as well as the molecular and biophysical basis of the observed feedback between k-fiber length and focused poles.

      We appreciate the reviewer providing pertinent, rigorous, and intellectually astute suggestions.

      Comments/Concerns/Questions:

      1) In the discussion, the authors acknowledge that the changes in spindle morphology resulting from p50 overexpression are likely also causing changes in the well-characterized RanGTP/SAF gradients that radiate from chromosome surfaces. Why did the authors did not include an analysis of k-fiber length as a function of positioning within the spindle? The inclusion of this data would not require more experimentation and could be added as a plot showing K-fiber length versus distance from the geometric center of the spindle (defined by the intersection of the major and minor axes perhaps?).

      We thank the reviewer for this pertinent suggestion and refer them to our response to Essential Revision #2. Briefly, we have added the recommended analyses to Figure 1—figure supplement 6 by correlating k-fiber length to position along the spindle’s longitudinal and latitudinal axes.

      2) The authors also acknowledge the established relationship between MT length and MT end dynamics, yet in their ablation studies, the average initial k-fiber length at ablation in control spindles was higher than that for k-fibers in unfocused spindles. It seems that this difference makes the interpretation of the data, particularly the conclusion that fiber growth rates differ due to the absence of focused poles, a bit tenuous. To address this, the authors should consider including plots of grow-back rates versus k-fiber length (again, this should not require additional experiments, just more analysis).

      We thank the reviewer for their critical thinking about experiments. We would like to clarify to the reviewer that initial k-fiber lengths within unfocused spindles preceding ablation were not actually longer on average compared to the average length of control k-fibers from Figure 1E (Figure 2—figure supplement 1). We apologize that this unexpected artifact was not clear in the text and have now reworded line 232 to be more straightforward: “Mean k-fiber lengths in unfocused spindles before ablation appeared to be shorter (Figure 2D); however, this was due to not capturing the full length of k-fibers in a single z-plane while imaging ablated k-fibers. Indeed, length analysis of full z-stacks from unfocused spindles before ablation yielded an indistinguishable mean k-fiber length compared to control k-fibers in Figure 1E (Figure 2—figure supplement 1). Thus, ablated k-fibers were compared to their unablated neighbors as internal controls.”

      We believe that this language clearly calls out the perceived inconsistency, and that our use of internal controls overcomes this confounding factor to make meaningful conclusions. We address the relationship of k-fiber length and growth rate in our response to Essential Revision #2. We are not including it in the manuscript based on our inability to make any meaningful conclusion to either support or exclude the possibility of length-dependent growth rates.

      3) As presented, the data shown in Figure 4 is confusing and does not seem very compelling. The relationship between the kymographs and time series is unclear as is the relationship between the dashed lines in the kymographs and the triangles and the plots in the 4B time series and 4C, respectively. Furthermore, it's not always clear what the triangles are pointing to (e.g. in the unfocused condition time series). The authors might want to consider reworking this figure and providing more measurements of flux following ablation in both the control and unfocused conditions. Lastly, the authors should clarify what negative displacement means.

      We apologize for the unclear figure annotations and thank reviewers for their suggestions. As discussed in our response to Essential Revision #3, we believe we have improved the clarity and presentation of figures and kymographs. More measurements of flux after ablation in unfocused spindles was not feasible as discussed; however, we have performed these measurements in control spindles and added Figure 4—figure supplement 1 to strengthen conclusions about turning flux off/on after ablation.

      We have additionally clarified axis titles by replacing “negative displacement” with the more intuitive descriptor “photomark position relative to minus-end” and clearly defining it in the figure legends in line 565 as follows: “Figure 3 […] (D) Minus-end dynamics, where photomark position over time describes how the mark approaches the k-fiber’s minus-end over time in control and unfocused k-fibers.”

      We thank reviewers for their suggestions to improve clarity and bolster our conclusions.

    1. Author Response

      We thank the Editor for his assessment. We agree that the data we present in this manuscript can be a starting point for more in-depth analysis. We are currently developing a mathematical model of HIV transmission dynamics; we plan to use the data that we present in this paper as parameter values.

      Reviewer #1 (Public Review):

      One aim of this paper was to study historical migration from Botswana during the time of the development of the HIV epidemic. The second aim was to test whether the migration networks impacted the development of the epidemic. The first aim was achieved: this paper used historical census data in a clear way, to describe the qualities of characteristics of migration in the country at four points in time, from 1981 to 2011. Very detailed data are presented in clear ways, using network chord diagrams, sharing age- and sex-specific migration rates, and urban-rural classifications. However, data was not presented to achieve the second aim. The authors reviewed some important literature about migration and HIV. They suggested that the migration patterns, such as from specific mining towns and mostly between districts, could have been important in supporting the generalized spread of HIV. But without evidence linking HIV prevalence over time in the linked districts in Botswana, this aim was not supported.

      We have now made it clear that we are not testing whether the migration networks impacted the development of Botswana’s HIV epidemic: this is what the Reviewer describes as the second aim of our paper. We have only one aim: to test the hypothesis that, during the development of Botswana’s HIV epidemic, the population was extremely mobile and highly connected through migratory flows and counter-flows. This is based on the fact that these conditions are necessary for the development of a generalized HIV epidemic. However – previous to our analysis – these conditions have not been shown to occur during the development of a generalized HIV epidemic. Given that our results support our mobility hypothesis (i.e., that the population was very mobile and essentially all the districts were connected throughout the country), in the discussion (lines 338-362) we describe how the migration networks that we have identified may have impacted the development of the generalized hyperendemic HIV epidemic in Botswana. We have also clarified that our study has only one hypothesis that we are testing by referring to this single hypothesis as the mobility hypothesis (Abstract: lines 25-29).

      One other limitation of the paper was that very little context, outside of migration rates, was provided. Is there any additional information about economic growth, or political event for example, that could clarify or add context to these migration flows? As it stands now, these analyses are quite basic and don't take into account underlying demographic, economic, or political trends.

      In response to this concern we have expanded the text in the introduction to provide more context regarding political, demographic and economic factors (Introduction: lines 66-75). We have also expanded our discussion of the implications of our results (and of additional results that we have included: lines 263-283) for understanding the role of internal migration on urbanization in Botswana (Discussion: lines 379-420); urbanization occurred simultaneously to the development of Botswana’s generalized hyperendemic HIV epidemic.

      The data presented in this paper has potential impact. As the paper stands now, it could be quite useful for future work when linked to additional data sources on HIV prevalence over time (or other questions that could have been influenced by migration patterns).

      We thank this Reviewer for their helpful comments.

      Reviewer #2 (Public Review):

      To provide context into the HIV epidemic in Botswana over the latter half of the 20th century and the beginning of the 21st, the authors have analyzed micro census data to examine patterns of migration. They use this dataset to show how patterns between urban and rural areas have changed over several decades, and the demographic characteristics of migrants. The dataset used for this study is a very reliable source, and the insights in terms of migration patterns are interesting. The primary weakness of the analyses regards the link to HIV transmission: micro-census data only examine mobility that leads to individuals changing residence for longer periods of time, without accounting for shorter-term trips that may also lead to HIV transmission, such as seasonal migration or short trips. This is likely less of an issue with HIV than other diseases, however, due to its transmission often involving new sexual partners, which will generally be less likely to occur during short trips. Broadly, however, this is an interesting report on the migration patterns during a critical period for HIV transmission nationwide.

      We thank the Reviewer for their comments.

      In our current manuscript, we have discussed the potential impact of mobility on Botswana’s HIV epidemic, and focused on migration, i.e., one directional movement in terms of a permanent re-location of residency. This type of migration, by changing an individual’s sexual network and social environment, has been shown to increase the risk of acquiring HIV for both women and men. Short-term mobility (e.g., short-term circular migration, where the trip can range in duration from overnight to an entire season) can also affect HIV transmission dynamics. Circular migrants have been shown to both have an increased risk of acquiring HIV, and of transmitting HIV. The greater the number of trips and/or the duration of the trip, the greater the risk. We note that both migration and short-term mobility are important, and their relative importance to each other is likely to evolve over time as a generalized HIV epidemic diffuses through the population. Their relative importance is also likely to vary amongst countries in sub-Saharan Africa.

      We have added all of the previous paragraph, with citations, to the text (Discussion: lines 364-377).

    1. Author Response

      Reviewer #1 (Public Review):

      1) Although I found the introduction well written, I think it lacks some information or needs to develop more on some ideas (e.g., differences between the cerebellum and cerebral cortex, and folding patterns of both structures). For example, after stating that "Many aspects of the organization of the cerebellum and cerebrum are, however, very different" (1st paragraph), I think the authors need to develop more on what these differences are. Perhaps just rearranging some of the text/paragraphs will help make it better for a broad audience (e.g., authors could move the next paragraph up, i.e., "While the cx is unique to mammals (...)").

      We have added additional context to the introduction and developed the differences between cerebral and cerebellar cortex, also re-arranging the text as suggested.

      2) Given that the authors compare the folding patterns between the cerebrum and cerebellum, another point that could be mentioned in the introduction is the fact that the cerebellum is convoluted in every mammalian species (and non-mammalian spp as well) while the cerebrum tends to be convoluted in species with larger brains. Why is that so? Do we know about it (check Van Essen et al., 2018)? I think this is an important point to raise in the introduction and to bring it back into the discussion with the results.

      We now mention in the introduction the fact that the cerebellum is folded in mammals, birds and some fishes, and provide references to the relevant literature. We have also expanded our discussion about the reasons for cortical folding in the discussion, which now contains a subsection addressing the subject (this includes references to the work of Van Essen).

      3) In the results, first paragraph, what do the authors mean by the volume of the medial cerebellum? This needs clarification.

      We have modified the relevant section in the results, and made the definition of the medial cerebellum more clear indicating that we refer to the vermal region of the cerebellum.

      4) In the results: When the authors mention 'frequency of cerebellar folding', do they mean the degree of folding in the cerebellum? At least in non-mammalian species, many studies have tried to compare the 'degree or frequency of folding' in the cerebellum by different proxies/measurements (see Iwaniuk et al., 2006; Yopak et al., 2007; Lisney et al., 2007; Yopak et al., 2016; Cunha et al., 2022). Perhaps change the phrase in the second paragraph of the result to: "There are no comparative analyses of the frequency of cerebellar folding in mammals, to our knowledge".

      We have modified the subsection in the methods referring to the measurement of folial width and folial perimeter to make the difference more clear. The folding indices that have been used previously (which we cite) are based on Zilles’s gyrification index. This index provides only a global idea of degree of folding, but it’s unable to distinguish a cortex with profuse shallow folds from one with a few deep ones. An example of this is now illustrated in Fig. 3d, where we also show how that problem is solved by the use of our two measurements (folial width and perimeter). The problem is also discussed in the section about the measurement of folding in the discussion section:

      “Previous studies of cerebellar folding have relied either on a qualitative visual score (Yopak et al. 2007, Lisney et al. 2008) or a “gyrification index” based on the method introduced by Zilles et al. (1988, 1989) for the study of cerebral folding (Iwaniuk et al. 2006, Cunha et al. 2020, 2021). Zilles’s gyrification index is the ratio between the length of the outer contour of the cortex and the length of an idealised envelope meant to reflect the length of the cortex if it were not folded. For instance, a completely lissencephalic cortex would have a gyrification index close to 1, while a human cerebral cortex typically has a gyrification index of ~2.5 (Zilles et al. 1988). This method has certain limitations, as highlighted by various researchers (Germanaud et al. 2012, 2014, Rabiei et al. 2018, Schaer et al. 2008, Toro et al. 2008, Heuer et al. 2019). One important drawback is that the gyrification index produces the same value for contours with wide variations in folding frequency and amplitude, as illustrated in Fig. 3d. In reality, folding frequency (inverse of folding wavelength) and folding amplitude represent two distinct dimensions of folding that cannot be adequately captured by a single number confusing both dimensions. To address this issue we introduced 2 measurements of folding: folial width and folial perimeter. These measurements can be directly linked to folding frequency and amplitude, and are comparable to the folding depth and folding wavelength we introduced previously for cerebral 3D meshes (Heuer et al. 2019). By using these measurements, we can differentiate folding patterns that could be confused when using a single value such as the gyrification index (Fig. 3d). Additionally, these two dimensions of folding are important, because they can be related to the predictions made by biomechanical models of cortical folding, as we will discuss now.”

      5) Sultan and Braitenberg (1993) measured cerebella that were sagittally sectioned (instead of coronal), right? Do you think this difference in the plane of the section could be one of the reasons explaining different results on folial width between studies? Why does the foliation index calculated by Sultan and Braitenberg (1993) not provide information about folding frequency?

      The measurement of foliation should be similar as far as enough folds are sectioned perpendicular to their main axis. This will be the case for folds in the medial cerebellum (vermis) sectioned sagittally, and for folds in the lateral cerebellum sectioned coronally. The foliation index of Sultan and Braitenberg does not provide a similar account of folding frequency as we do because they only measure groups of folia (what some called lamellae), whereas we measure individual folia. It is not easy to understand exactly how Sultan and Braitenberg proceeded from their paper. We contacted Prof. Fahad Sultan (we acknowledge his help in our manuscript). Author response image 1 provides a more clear description of their procedure:

      Author response image 1.

      As Author response image 1 shows, each of the structures that they call a fold is composed of several folia, and so their measurements are not comparable with ours which measure individual folia (a). The flattened representation (b) is made by stacking the lengths of the fold axes (dashed lines), separating them by the total length of each fold (the solid lines), which each may contain several folia.

      6) Another point that needs to be clarified is the log transformation of the data. Did the authors use log-transformed data for all types of analyses done in the study? Write this information in the material and methods.

      Yes, we used the log10 transformation for all our measurements. This is now mentioned in the methods section, and again in the section concerning allometry. We are including a link to all our code to facilitate exact replication of our entire method, including this transformation.

      7) The discussion needs to be expanded. The focus of the paper is on the folding pattern of the cerebellum (among different mammalian species) and its relationship with the anatomy of the cerebrum. Therefore, the discussion on this topic needs to be better developed, in my opinion (especially given the interesting results of this paper). For example, with the findings of this study, what can we say about how the folding of the cerebellum is determined across mammals? The authors found that the folial width, folial perimeter, and thickness of the molecular layer increase at a relatively slow rate across the species studied. Does this mean that these parameters have little influence on the cerebellar folding pattern? What mostly defines the folding patterns of the cerebellum given the results? Is it the interaction between section length and area? Can the authors explain why size does not seem to be a "limiting factor" for the folding of the cerebellum (for example, even relatively small cerebella are folded)? Is that because the 'white matter' core of the cerebellum is relatively small (thus more stress on it)?

      We have expanded the discussion as suggested, with subsections detailing the measuring of folding, the modelling of folding for the cerebrum and the cerebellum, and the role that cerebellar folding may play in its function. We refer to the literature on cortical folding modelling, and we discuss our results in terms of the factors that this research has highlighted as critical for folding. From the discussion subsection on models of cortical folding:

      “The folding of the cerebral cortex has been the focus of intense research, both from the perspective of neurobiology (Borrell 2018, Fernández and Borrell 2023) and physics (Toro and Burnod 2005, Tallinen et al. 2014, Kroenke and Bayly 2018). Current biomechanical models suggest that cortical folding should result from a buckling instability triggered by the growth of the cortical grey matter on top of the white matter core. In such systems, the growing layer should first expand without folding, increasing the stress in the core. But this configuration is unstable, and if growth continues stress is released through cortical folding. The wavelength of folding depends on cortical thickness, and folding models such as the one by Tallinen et al. (2014) predict a neocortical folding wavelength which corresponds well with the one observed in real cortices. Tallinen et al. (2014) provided a prediction for the relationship between folding wavelength λ and the mean thickness (𝑡) of the cortical layer: λ = 2π𝑡(µ/(3µ𝑠))1/3. (...)”

      From this biomechanical framework, our answers to the questions of the Reviewer would be:

      • How is the folding of the cerebellum determined across mammals? By the expansion of a layer of reduced thickness on top of an elastic layer (the white matter)

      • Folial width, folial perimeter, and thickness of the molecular layer increase at a relatively slow rate across the species studied. Does this mean that these parameters have little influence on the cerebellar folding pattern? On the contrary, that indicates that the shape of individual folia is stable, providing the smallest level of granularity of a folding pattern. In the extreme case where all folia had exactly the same size, a small cerebellum would have enough space to accommodate only a few folia, whereas a large cerebellum would accommodate many more.

      • What mostly defines the folding patterns of the cerebellum given the results? Is it the interaction between section length and area? It’s the mostly 2D expansion of the cerebellar cortical layer and its thickness.

      • Can the authors explain why size does not seem to be a "limiting factor" for the folding of the cerebellum? Because even a cerebellum of very small volume would fold if its cortex were thin enough and expanded sufficiently. That’s why the cerebellum folds even while being smaller than the cerebrum: because its cortex is much thinner.

      8) One caveat or point to be raised is the fact that the authors use the median of the variables measured for the whole cerebellum (e.g., median width and median perimeter across all folia). Although the cerebellum is highly uniform in its gross internal morphology and circuitry's organization across most vertebrates, there is evidence showing that the cerebellum may be organized in different functional modules. In that way, different regions or folia of the cerebellum would have different olivo-cortico-nuclear circuitries, forming, each one, a single cerebellar zone. Although it is not completely clear how these modules/zones are organized within the cerebellum, I think the authors could acknowledge this at the end of their discussion, and raise potential ideas for future studies (e.g., analyse folding of the cerebellum within the brain structure - vermis vs lateral cerebellum, for example). I think this would be a good way to emphasize the importance of the results of this study and what are the main questions remaining to be answered. For example, the expansion of the lateral cerebellum in mammals is suggested to be linked with the evolution of vocal learning in different clades (see Smaers et al., 2018). An interesting question would be to understand how foliation within the lateral cerebellum varies across mammalian clades and whether this has something to do with the cellular composition or any other aspect of the microanatomy as well as the evolution of different cognitive skills in mammals.

      We now address this point in a subsection of the discussion which details the implications of our methodological decisions and the limitations of our approach. It is true that the cerebellum is regionally variable. Our measurements of folial width, folial perimeter and molecular layer thickness are local, and we should be able to use them in the future to study regional variation. However, this comes with a number of difficulties. First, it would require sampling all the cerebellum (and the cerebrum) and not just one section. But even if that were possible that would increase the number of phenotypes, beyond the current scope of this study. Our central question about brain folding in the cerebellum compared to the cerebrum is addressed by providing data for a substantial number of mammalian species. As indicated by Reviewer #3, adding more variables makes phylogenetic comparative analyses very difficult because the models to fit become too large.

      Reviewer #2 (Public Review):

      1) The methods section does not address all the numerical methods used to make sense of the different brain metrics.

      We now provide more detailed descriptions of our measurements of foliation, phylogenetic models, analysis of partial correlations, phylogenetic principal components, and allometry. We have added illustrations (to Figs. 3 and 5), examples and references to the relevant literature.

      2) In the results section, it sometimes makes it difficult for the reader to understand the reason for a sub-analysis and the interpretation of the numerical findings.

      The revised version of our manuscript includes motivations for the different types of analyses, and we have also added a paragraph providing a guide to the structure of our results.

      3) The originality of the article is not sufficiently brought forward:

      a) the novel method to detect the depth of the molecular layer is not contextualized in order to understand the shortcomings of previously-established methods. This prevents the reader from understanding its added value and hinders its potential re-use in further studies.

      The revised version of the manuscript provides additional context which highlights the novelty of our approach, in particular concerning the measurement of folding and the use of phylogenetic comparative models. The limitations of the previous approaches are stated more clearly, and illustrated in Figs. 3 and 5.

      b) The numerous results reported are not sufficiently addressed in the discussion for the reader to get a full grasp of their implications, hindering the clarity of the overall conclusion of the article.

      Following the Reviewer’s advice, we have thoroughly restructured our results and discussion section.

      Reviewer #3 (Public Review):

      1) The first problem relates to their use of the Ornstein-Uhlenbeck (OU) model: they try fitting three evolutionary models, and conclude that the Ornstein-Uhlenbeck model provides the best fit. However, it has been known for a while that OU models are prone to bias and that the apparent superiority of OU models over Brownian Motion is often an artefact, a problem that increases with smaller sample sizes. (Cooper et al (2016) Biological Journal of the Linnean Society, 2016, 118, 64-77).

      Cooper et al.’s (2016) article “A Cautionary Note on the Use of Ornstein Uhlenbeck Models in Macroevolutionary Studies” suggests that comparing evolutionary models using the model’s likelihood leads often to incorrectly selecting OU over BM even for data generated from a BM process. However, Grabowski et al (2023) in their article ‘A Cautionary Note on “A Cautionary Note on the Use of Ornstein Uhlenbeck Models in Macroevolutionary Studies”’ suggest that Cooper et al.’s (2016) claim may be misleading. The work of Clavel et al. (2019) and Clavel and Morlon (2017) shows that the penalised framework implemented in mvMORPH can successfully recover the parameters of a multivariate OU process. To address more directly the concern of the Reviewer, we used simulations to evaluate the chances that we would decide for an OU model when the correct model was BM – a similar procedure to the one used by Cooper et al.’s (2016). However, instead of using the likelihood of the fitted models directly as Cooper et al. (2016) – which does not control for the number of parameters in the model – we used the Akaike Information Criterion, corrected for small sample sizes: AICc. The standard Akaike Information Criterion takes the number of parameters of the model into account, but this is not sufficient when the sample size is small. AICc provides a score which takes both aspects into account: model complexity and sample size. This information has been added to the manuscript:

      “We selected the best fitting model using the Akaike Information Criterion (AIC), corrected for 𝐴𝐼𝐶 = − 2 𝑙𝑜𝑔(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + 2 𝑝. This approximation is insufficient when the𝑝 sample size small sample sizes (AICc). AIC takes into account the number of parameters in the model: is small, in which case an additional correction is required, leading to the corrected AIC: 𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 + (2𝑝2 + 2𝑝)/(𝑛 − 𝑝 − 1), where 𝑛 is the sample size.”

      In 1000 simulations of 9 correlated multivariate traits for 56 species (i.e., 56*9 data points) using our phylogenetic tree, only 0.7% of the times we would decide for OU when the real model was BM.

      2) Second, for the partial correlations (e.g. fig 7) and Principal Components (fig 8) there is a concern about over-fitting: there are 9 variables and only 56 data points (violating the minimal rule of thumb that there should be >10 observations per parameter). Added to this, the inclusion of variables lacks a clear theoretical rationale. The high correlations between most variables will be in part because they are to some extent measuring the same things, e.g. the five different measures of cerebellar anatomy which include two measures of folial size. This makes it difficult to separate their effects. I get that the authors are trying to tease apart different aspects of size, but in practice, I think these results (e.g. the presence of negative coefficients in Fig 7) are really hard or impossible to interpret. The partial correlation network looks like a "correlational salad" rather than a theoretically motivated hypothesis test. It isn't clear to me that the PC analyses solve this problem, but it partly depends on the aims of these analyses, which are not made very clear.

      PCA is simply a rigid rotation of the data, distances among multivariate data points are all conserved. Neither our PCA nor our partial correlation analysis involve model fitting, the concept of overfitting does not apply. PCA and partial correlations are also not used here for hypothesis testing, but as exploratory methods which provide a transformation of the data aiming at capturing the main trends of multivariate change. The aim of our analysis of correlation structure is precisely to avoid the “correlational salad” that the Reviewer mentions. The Reviewer is correct: all our variables are correlated to a varying degree (note that there are 56 data points per variable = 56*9 data points, not just 56 data points). Partial correlations and PCA aim at providing a principled way in which correlated measurements can be explored. In the revised version of the manuscript we include a more detailed description of partial correlations and PCA (phylogenetic). Whenever variables measure the same thing, they will be combined into the same principal component (these are the combinations shown in Fig. 8 b and d). Additionally, two variables may be correlated because of their correlation with a third variable (or more). Partial correlations address this possibility by looking at the correlations between the residuals of each pair of variables after all other variables have been covaried out. We provide a simple example which should make this clear, providing in particular an intuition for the meaning of negative correlations:

      “All our phenotypes were strongly correlated. We used partial correlations to better understand pairwise relationships. The partial correlation between 2 vectors of measurements a and b is the correlation between their residuals after the influence of all other measurements has been covaried out. Even if the correlation between a and b is strong and positive, their partial correlation could be 0 or even negative. Consider, for example, 3 vectors of measurements a, b, c, which result from the combination of uncorrelated random vectors x, y, z. Suppose that a = 0.5 x + 0.2 y + 0.1 z, b = 0.5 x - 0.2 y + 0.1 z, and c = x. The measurements a and b will be positively correlated because of the effect of x and z. However, if we compute the residuals of a and b after covarying the effect of c (i.e., x), their partial correlation will be negative because of the opposite effect of y on a and b. The statistical significance of each partial correlation being different than 0 was estimated using the edge exclusion test introduced by Whittaker (1990).”

      The rationale for our analyses has been made more clear in the revised version of the manuscript, aided by the more detailed description of our methods. In particular, we describe better the reason for our 2 measurements of folial shape – width and perimeter – which measure independent dimensions of folding (this is illustrated in Fig. 3d).

      3) The claim of concerted evolution between cortical and cerebellar values (P 11-12) seems to be based on analyses that exclude body size and brain size. It, therefore, seems possible - or even likely - that all these analyses reveal overall size effects that similarly influence the cortex and cerebellum. When the authors state that they performed a second PC analysis with body and brain size removed "to better understand the patterns of neuroanatomical evolution" it isn't clear to me that is what this achieves. A test would be a model something like [cerebellar measure ~ cortical measure + rest of the brain measure], and this would deal with the problem of 'correlation salad' noted below.

      The answer to this question is in the partial correlation diagram in Fig. 7c. This analysis does not exclude body weight nor brain weight. It shows that the strong correlation between cerebellar area and length is supported by a strong positive partial correlation, as is the link between cerebral area and length. There is a significant positive partial correlation between cerebellar section area and cerebral section length. That is, even after covarying everything else, there is still a correlation between cerebellar section area and cerebral section length (this partial correlation is equivalent to the suggestion of the Reviewer). Additionally, there is a positive partial correlation between body weight and cerebellar section area, but not significant partial correlation between body weight and cerebral section area or length. Our approach aims at obtaining a general view of all the relationships in the data. Testing an individual model would certainly decrease the number of correlations, however, it would provide only a partial view of the problem.

      4) It is not quite clear from fig 6a that the result does indeed support isometry between the data sets (predicted 2/3 slope), and no coefficient confidence intervals are provided.

      We have now added the numerical values of the CIs to all our plots in addition to the graphical representations (grey regions) in the previous version of the manuscript. The isometry slope (0.67) is either within the CIs (both for the linear and orthogonal regressions) or at the margin, indicating that if the relationships are not isometric, they are very close to it.

      Referencing/discussion/attribution of previous findings

      5) With respect to the discussion of the relationship between cerebellar architecture and function, and given the emphasis here on correlated evolution with cortex, Ramnani's excellent review paper goes into the issues in considerable detail, which may also help the authors develop their own discussion: Ramnani (2006) The primate cortico-cerebellar system: anatomy and function. Nature Reviews Neuroscience 7, 511-522 (2006)

      We have added references to the work of Ramnani.

      6) The result that humans are outliers with a more folded cerebellum than expected is interesting and adds to recent findings highlighting evolutionary changes in the hominin human cerebellum, cerebellar genes, and epigenetics. Whilst Sereno et al (2020) are cited, it would be good to explain that they found that the human cerebellum has 80% of the surface area of the cortex.

      We have added this information to the introduction:

      “In humans, the cerebellum has ~80% of the surface area of the cerebral cortex (Sereno et al. 2020), and contains ~80% of all brain neurons, although it represents only ~10% of the brain mass (Azevedo et al. 2009)”

      7) It would surely also be relevant to highlight some of the molecular work here, such as Harrison & Montgomery (2017). Genetics of Cerebellar and Neocortical Expansion in Anthropoid Primates: A Comparative Approach. Brain Behav Evol. 2017;89(4):274-285. doi: 10.1159/000477432. Epub 2017 (especially since this paper looks at both cerebellar and cortical genes); also Guevara et al (2021) Comparative analysis reveals distinctive epigenetic features of the human cerebellum. PLoS Genet 17(5): e1009506. https://doi.org/10.1371/journal. pgen.1009506. Also relevant here is the complex folding anatomy of the dentate nucleus, which is the largest structure linking cerebellum to cortex: see Sultan et al (2010) The human dentate nucleus: a complex shape untangled. Neuroscience. 2010 Jun 2;167(4):965-8. doi: 10.1016/j.neuroscience.2010.03.007.

      The information is certainly important, and could have provided a wider perspective on cerebellar evolution, but we would prefer to keep a focus on cerebellar anatomy and address genetics only indirectly through phylogeny.

      8) The authors state that results confirm previous findings of a strong relationship between cerebellum and cortex (P 3 and p 16): the earliest reference given is Herculano-Houzel (2010), but this pattern was discovered ten years earlier (Barton & Harvey 2000 Nature 405, 1055-1058. https://doi.org/10.1038/35016580; Fig 1 in Barton 2002 Nature 415, 134-135 (2002). https://doi.org/10.1038/415134a) and elaborated by Whiting & Barton (2003) whose study explored in more detail the relationship between anatomical connections and correlated evolution within the cortico-cerebellar system (this paper is cited later, but only with reference to suggestions about the importance of functions of the cerebellum in the context of conservative structure, which is not its main point). In fact, Herculano-Houzel's analysis, whilst being the first to examine the question in terms of numbers of neurons, was inconclusive on that issue as it did not control for overall size or rest of the brain (A subsequent analysis using her data did, and confirmed the partially correlated evolution - Barton 2012, Philos Trans R Soc Lond B Biol Sci. 367:2097-107. doi: 10.1098/rstb.2012.0112.)

      We apologise for this oversight, these references are now included.

    1. Author Response

      Reviewer #2 (Public Review):

      Root growth is driven by cell elongation, and its local control allows roots to navigate the complex soil environment. Cell growth is driven by the relaxation of the cell wall, a process requiring a drop in pH. Auxin is a key regulator of root development that inhibits root growth. Auxin effects on proton dynamics are complex, it can promote both acidification and alkalinization of the extracellular space through different signaling modules, some only recently uncovered. Serre et al. report on using a new dye to monitor extracellular pH in the region surrounding the Arabidopsis thaliana root. Their manuscript aims to clarify the relationships between pH around the root, proton flux, auxin, cell elongation, and root growth with this tool. They show a typical zonation of pH values along the root: a more acidic domain corresponding to the transit-amplifying compartment, followed by a more alkaline one at the transition and early elongation zones and a more acidic one in the late elongation/root hair zone. This zonation is in agreement with previous reports obtained by other methods. A particularly puzzling aspect is the origin of the more alkaline domain. Serre et al. present evidence supporting the involvement of the AUX1-AFB1-CNGC14 module for the emergence of this more alkaline domain and how it can contribute to the ability of the root to navigate its environment.

      Serre et al. show that the more alkaline domain in the transition zone is not directly determined by the activity or localization of the AHA proton pumps but rather by the auxin influx carrier AUX1. They show that the components of the rapid auxin response pathway, in particular, the auxin co-receptor AFB1 and the calcium channel CNGC14, contribute to the emergence of this more alkaline domain. Finally, they show that mutants in these two genes, impaired in the rapid auxin response pathway, show less efficient navigation of the root tip.

      The manuscript is clear and well-written. The logic is sound, and the conclusions are supported by the data.

      The new dye appears as a promising tool for monitoring the pH in the rhizosphere with advantages over the previous ones. Yet, as pointed out by the authors in the discussion, it reports on pH at the organ scale in the region around the root, not in the apoplast or the cell wall, which can eventually complexify the elaboration of a mechanistic model joining auxin, proton efflux, cell wall properties, cell elongation, and root growth. Although several of the findings confirm previous reports, the manuscript brings novelty by demonstrating the involvement of the rapid auxin response. I am overall supportive of the manuscript. Yet, several points should be addressed:

      • The presentation of the more acidic and alkaline domains could be easier to visualize.

      • The authors refer to acidic and alkaline domains but do not report on absolute pH values; they monitor the emission ratio of the dye. They justify why to use relative pH value in the discussion and refer there to internal controls that are not clearly defined. In my opinion, the wording should be more consistent across the text and figures and refer to more acidic and more alkaline domains rather than acidic (pH<7) and alkaline (pH>7) domains.

      • The data related to the unaltered distribution of AHA using antibody staining should be backed up.

      • The way the pH profile and the statistical analyses should be improved.

      • The authors should test the effect of extracellular auxin perception (tmk, abp) mutants on pH zonation.

      • Conclusion could be strengthened by moving several pieces of data currently in supplemental material to the main text.

      We agree with the comment to the definition of ‘acidic’ and ‘alkaline’ domains; we altered the text and explained that we observe ‘relatively alkaline’ and ‘relatively acidic’ domains in comparison to the medium pH in the first part of results.

      We defined the ‘internal controls’ in the text – by this we mean mock treated or wild type plants imaged together with the treated or mutant plants.

      To address the role of the apoplastic auxin pathway in the root surface pH, we analyzed the tmk1, tmk4 and abp1 mutants. Surprisingly, all three mutants appear undistinguishable from the controls, showing the crucial importance of the cytoplasmic AFB1 auxin perception pathway. We have included the data as Fig.S4-1.

    1. Author Response

      Reviewer #1 (Public Review):

      This paper studies color vision in anemonefish. The central conclusion of the paper is that anemonefish use signals from their UV cones to discriminate colors that would not otherwise be distinguishable; this differs from other fish in which UV cones extend the range of wavelengths of sensitivity but do not add a dimension to color vision. The work fits into a rich history of studies investigating how color vision fits into an animal's ecological niche. My primary concerns regard the microspectrophotometry data from single cones and some aspects of the presentation of the behavioral data.

      Microspectrophotometry

      The spectral properties of the cone types are a key issue for interpreting the results. These were measured using MSP, and fits are shown in Figure 2. The raw data shown in Fig. S1 appears more complicated than indicated in the main text. The templates miss the measurements across broad wavelength bands in each cone type. Particularly concerning is the high UV absorbance across cone types and the long-wavelength absorbance in the UV cone. It is not clear how this picture supports the relatively simple description of cone types and spectral sensitivities given in the main text and which forms the basis of the modeling.

      Microspectrophotometry is an inherently noise-prone measurement technique, particularly for very small photoreceptor outer segments such as that of single cones, which are also difficult to detect as intact, isolated (nonoverlapping) cells. As such, the absorbance curve fitting and derived lambda max (λmax) values should be treated as estimates. The accuracy of these estimates is adequate for this type of study, and visual modelling results have been shown to be robust against small errors (±10 nm λmax) in photoreceptor sensitivity for multiple species [see Lind, O. & Kelber, A. (2009). Vis Res. 49(15), 1939-1947; and Bitton, PP. et al. (2017). PLOS ONE, 12: e0169810]. We consider it highly unlikely that small shifts in cone λmax from measurement error would make a meaningful difference to the colour discrimination thresholds.

      It should be noted that the raw data shown in the original Supplementary Figure 1, included all scans overlain with an average absorbance curve for presentation purposes; however, the actual lambda max values for different cone types were measured and then averaged among individual scans fitted with photopigment absorbance curve templates. For clarity and transparency, we have now provided three multipaned plots (see Figure 1 – figure supplements 1-3) showing the individual pre- and post-bleach scans of absorbance spectra, fitted absorbance curve templates, and R2 values from the best visual pigment template fit.

      It is worth noting that most of the cone absorbance spectra found in our study closely resemble those in λmax and quality to those measured in another anemonefish species (Amphiprion akindynos) [see Supplementary Figure 1 in Stieb S. et al. (2019). Sci Rep. 9, 16459]. These cone λmax values can also be reconciled with previous estimates on opsin λmax based on amino acid sequences and cone opsin expression in the A. ocellaris retina characterised in Mitchell LJ et al. (2021). GBE, 13: evab184.

      Evidence that the unusual long-wavelength absorbance detected in a couple of the single cone (pre-bleach) measurements were not of visual pigment in origin comes from post-bleach scans, which showed their persistence (i.e., did not show a photobleaching response) and were likely instead contaminants (e.g., blood, RPE pigment). UV absorbance in some of the double cone measurements (above that expected of the prebleached beta peak from chromophore spectral absorption) can be attributed to either noise from scans as is quite typical of MSP and/or partial (accidental) bleaching from stray light sources. Although utmost care was taken to minimise contamination and unintended bleaching sometimes it is unavoidable.

      We refer the Reviewer to multiple published studies for further examples of typical MSP measurements that share similar levels of noise to ours e.g., see Figure 1 in Knott B. et al. (2013). JEB, 216:4454-4461; Figure 3 in Schott, RK et al. (2015). PNAS, 113(2): 356-361; Figure 2 in Dalton BE et al. (2014). Proc R Soc B. 281; Figure 5 in Tosetto, JE et al. (2021). Brain Behav Evol. 96: 103-123.

      Presentation

      The results are not presented in a straightforward way - at least for this reviewer. What is missing for me is a clear link between the psychometric curves in Figure 3A and the discrimination thresholds indicated in Figure 3B and Figure 4. Figure 3A is only discussed in the text on line 289 - after Figure 4 has been introduced and discussed. It would have been very helpful for me if the psychometric curves were first introduced and described, then the relation to Figure 3B was clearly indicated (perhaps with a single psychometric curve as an example). Similarly for Figure 4 the relationship between specific psychometric curves and the threshold plotted would be quite helpful. Currently it takes a careful reading to understand why being below the dashed line in Figure 4 is important.

      We have made the following changes, including the introduction of the psychometric curves earlier in the results (lines 236-249) and moved the psychometric function comparison before the mention of Figure 4. Additionally, to make the association between the plotted colour loci and psychometric curves clearer, we have added a smaller psychometric curve plot adjacent to the colour space (in Figure 3B) using red as an example which has an averaged psychometric curve overlying the individual fish curves. The figure caption (lines 250-274) explains that the plotted colour loci and given thresholds are mean values calculated from the individual fish behavioural data.

      We have also added a brief reminder that the theoretical limit of colour discrimination is predicted by the RNL model as 1∆S, where in our task fish should be just able to distinguish targets from grey distractors (see lines 222-224). To clarify, the plotted values in Figure 4B are both the individual fish thresholds (points) and average threshold (black bar) per colour set. The individual threshold values are taken at a correct choice probability of 50% from fitted psychometric curves of fish behavioural performance (shown in Figure 3A).

      RNL model

      The data is fit and interpreted in the context of the receptor noise limited model. The paragraph in the discussion about complementary color pairs suggests that this model is incorrect (text around line 332). Consideration of how the results depend on the RNL model is important, especially given the interpretation here.

      The inability of the RNL model to account for the observed asymmetry between color discrimination thresholds implies that they cannot be solely attributed to photoreceptor noise. We can therefore infer from the asymmetry that thresholds are set by a higher-level process, whether that involves post-receptor processes within the inner retina or in the brain remains to be investigated. As explained in lines 396-397 one possibility is that activation of the UV receptor suppresses noise in the visual pathway or enhances the saliency of colors for anemonefish. The high sensitivity to violet-green, which was found in all six of the fish tested, is consistent with the heightened saliency of this color (lines 397-399).

      Figure 3B

      This is the key figure in the paper. But several issues make seeing the data in this figure difficult. First, the important part of the figure is buried near the origin and hard to see. Can you show a surface that connects the thresholds in the different chromatic directions, or otherwise highlight the regions of discriminable and not discriminable colors?

      See previous comment. In short, we have taken the advice of the Reviewer and added highlighted areas around the regions of discriminable colors in Figure 3B to help visually separate them from the non-discriminable regions of colors (from grey). Additionally, we have added an inset showing an enlarged image of the area surrounding the centre of colour space.

      Reviewer #2 (Public Review):

      Mitchell and colleagues examined the contribution of a UV-sensitive cone photoreceptor to chromatic detection in Amphiprion ocellaris, a type of anemonefish. First, they used biophysical measurements to characterize the response properties of the retinal receptors, which come in four spectrally-distinct subtypes: UV, M1, M2, and L. They then used these spectral sensitivities to construct a 4-dimensional (tetrahedral) color space in which stimuli with known spectral power distributions can be represented according to the responses they elicit in the four cone types. A novel five-LED display was used to test the fish's ability to detect "chromatic" modulations in this color space against a background of random-intensity, "achromatic" distractors that produce roughly equal relative responses in the four cone types. A subset of stimuli, defined by their high positive UV contrast, were more readily detected than other colors that contained less UV information. A well-established model was used to link calculated receptor responses to behavioral thresholds. This framework also enabled statistical comparisons between models with varying number of cone types contributing to discrimination performance, allowing inferences to be drawn about the dimensionality of color vision in anemonefish.

      The authors make a compelling case for how UV light in the anemonefish habitat is likely an important ecological source of information for guiding their behavior. The authors are to be commended for developing an elegant behavioral paradigm to assess visual performance and for incorporating a novel display device especially suited to addressing hypotheses about the role of UV light in color perception. While the data are suggestive of behavioral tetrachromacy in anemonefish, there are some aspects of the study that warrant additional consideration:

      1) One challenge faced by many biological imaging systems is longitudinal chromatic aberration (LCA) - that is, the focal power of the system depends on wavelength. In general, focal power increases with decreasing wavelength, such that shorter wavelengths tend to focus in front of longer wavelengths. In the human eye, at least, this focal power changes nonlinearly with wavelength, with the steepest changes occurring in the shorter part of the visible spectrum (Atchison & Smith, 2005). In the fish eye, where the visible spectrum extends to even shorter wavelengths, it seems plausible that a considerable amount of LCA may exist, which could in turn cause UV-enriched stimuli to be more salient (relative to the distractor pixels) due to differences in perceived focus rather than due solely to differences in their respective spectral compositions. Such a mechanism has been proposed by Stubbs & Stubbs (2016) as a means for supporting "color vision" in monochromatic cephalopods (but see Gagnon et al. 2016). It would be worth discussing what is known about the dispersive properties of the crystalline lens in A. ocellaris (or similar species), and whether optical factors could produce sufficient cues in the retinal image that might explain aspects of the behavioral data presented in the current study.

      This is an interesting point, and we appreciate the reviewer’s thoughtful comment regarding this topic especially as LCA increases exponentially in the UV. Although we certainly cannot disprove such a mechanism in the present study, we are highly sceptical that LCA could be used by reef fish and is involved in the heightened saliency of UV stimuli. Previous work has found that LCA is mostly corrected for in the teleost retina of both marine and freshwater species by graded, multifocal lenses that focus different wavelengths at the same depth as their maximally sensitive cone photoreceptors [e.g., for evidence in African cichlids see Kröger, R. H. H. et al. (1999). J Comp Physiol. A, 184, 361-369; Malkki, P. E. & Kröger, R. H. H. (2005). J Opt. A, 7, 691-700; and for various reef fishes see Karpestam, B. et al. (2007). J Exp Biol., 210, 16: 2923-2931]. In essence, LCA is corrected in the eyes of many teleosts by accurately tuning longitudinal spherical aberration through having a graded density lens. We draw particular attention to the latter reference which comparatively examined the optical properties of reef fish lenses, including diurnal, planktivorous damselfishes (from the same family as anemonefishes, Pomacentridae). They found that not only were the lenses of these species highly UV-transmissive (as we show in anemonefish), but all were multifocal and capable of focusing both visible (non-UV) and UV wavelengths. Considering the coastal cephalopod species examined thus far, all of them contain only one type of visual pigment which is packed in their long photoreceptor (150-450µm long outer segment) across an entire retina (Chung and Marshall 2016, Proceeding B). Theoretically, given these long photoreceptors, the LCA and the resulting differentials of focal length onto different patches of photoreceptors or different depth of the outer segment might provide cues for colour discrimination even though no behavioural evidence exists to prove this hypothesis yet. Unlike the cephalopod case, the four specific spectral cones arranged in a mosaic pattern along with their very short outer segments (5-10µm) in the anemonefish retina likely makes the LCA less effective in this retinal design.

      We have added a short paragraph (Lines 400-412) discussing the possibility of an optical mechanism contributing to heightened UV saliency with a particular focus on LCA and our thoughts on why we consider it an unlikely mechanism in anemonefish.

      2) The authors provide a quantitative description of anemonefish visual performance within the context of a well-developed receptor-based framework. However, it was less clear to me what inferences (if any) can be drawn from these data about the post-receptoral mechanisms that support tetrachromatic color vision in these organisms. Would specific cone-opponent processes account for instances where behavioral data diverged from predictions generated with the "receptor noise limited" model described in the text? The general reader may benefit from more discussion centered on what is known (or unknown) about the organization of cone-opponent processing in anemonefish and related species.

      In short, we do not know the specific opponent interactions of anemonefish cones. The RNL model assumes all possible opponent interactions in its calculations. From our results, very little can be said about the post-receptor mechanisms involved in their putative tetrachromatic vision. We would like to avoid overreaching beyond what our data can show. A future directions section has now been added to the discussion (lines 467-497), which briefly mentions the known UV opponency in larval zebrafish and that future investigation in anemonefish should attempt to disentangle the specific opponent (chromatic) and non-opponent (achromatic) circuits in the anemonefish retina.

      Reviewer #3 (Public Review):

      The comments below focus mainly on ways that the data and analysis as currently present do not to this reviewer compel the conclusions the authors wish to draw. It is possible that further analysis and/or clarification in the presentation would more persuasively bolster the authors' position. It also seems possible that a presentation with more limited conclusions but clarity on exactly what has been demonstrated and where additional future work is needed would make a strong contribution to the literature.

      • Fig 3A. It might be worth emphasizing a bit more explicitly that the x-axis (delta S) is the result of a model fit to the data being shown, since this then means that if RNL model fit the data perfectly, all of the thresholds would fall at deltaS = 1. They don't, so I would like to see some evaluation from the authors' experience with this model as to whether they think the deviations (looks like the delta S range is ~0.4 to ~1.6 in Figure 4B) represent important deviations of the data from the model, the non-significant ANOVA notwithstanding. For example, Figure 4B suggests that the sign of the fit deviations is driven by the sign of the UV contrast and that this is systematic, something that would not be picked up by the ANOVA. Quite a bit is made of the deviations below, but that the model doesn't fully account for the data should be brought out here I think. As the authors note elsewhere, deviations of the data from the RNL model indicate that factors other than receptor noise are at play, and reminding the reader of this here at the first point it becomes clear would be helpful.

      We have now stated more explicitly in the figure caption for Figure 3A, that the delta S values presented were calculated by fitting fish behavioral data to the RNL model. To test the overall effect that the sign of the UV contrast had on the discrimination threshold, we have now included ‘contrast’ (positive or negative) as another fixed effect in the linear mixed effects model. We have now included details of this test in the results which shows the systematic effect (lines 338-340). Additionally, as suggested we now briefly introduce in the results the idea that factors other than receptor noise are causing the observed deviations in data from the RNL model.

      • Line 217 ff, Figure 4, Supplemental Figure 4). If I'm understanding what the ANOVA is telling us, it is that the deviations of the data across color directions and fish (I think these are the two factors based on line 649) is that the predictions deviate significantly from the data, relative to the inter-fish variability), for the trichromatic models but not the tetrachromatic model. If that's not correct, please interpret this comment to mean that more explanation of the logic of the test would be helpful.

      The interpretation of the ANOVA by the Reviewer is mostly correct. We had the variables color set and Fish ID, with threshold delta S as the dependent variable. This showed that deviations from the predicted threshold were significant relative to the inter-fish variability for the trichromatic models. Missing details describing the ANOVA have now been added to the methods (lines 789-798).

      Assuming that the above is right about the nature of the test, then I don't think the fact that the tetrachromatic model has an additional parameter (noise level for the added receptor type) is being taken into account in the model comparison. That is, the trichromatic models are all subsets of the tetrachromatic model, and must necessarily fit the data worse. What we want to know is whether the tetrachromatic model is fitting better because its extra parameter is allowing it to account for measurement noise (overfitting), or whether it is really doing a better job accounting for systematic features of the data. This comparison requires some method of taking the different number of parameters into account, and I don't think the ANOVA is doing that work. If the models being compared were nested linear models, than an F-ratio test could be deployed, but even this doesn't seem like what is being done. And the RNL model is not linear in its parameters, so I don't think that would be the right model comparison test in any case.

      Typical model comparison approaches would include a likelihood ratio test, AIC/BIC sorts of comparisons, or a cross-validation approach.

      If the authors feel their current method does persuasively handle the model comparison, how it does so needs to be brought out more carefully in the manuscript, since one of the central conclusions of the work hinges at least in part on the appropriateness of such a statistical comparison.

      Our visual model comparisons were aimed at assessing whether a trichromatic or tetrachromatic model best fit the colour discrimination data. The trichromatic and tetrachromatic models assume two and three opponency pathways, respectively. If the fish were not tetrachromatic, and instead trichromatic, then we would expect that the RNL model should better fit the data with two opponency mechanisms (rather than three). Our reason for making this assessment, is because of the possibility that not all the cones could be contributing to colour vision and could be used exclusively for achromatic tasks (e.g., luminance vision or motion detection). However, according to our finding that the data best fit the tetrachromatic model (i.e., how the behavioural discrimination thresholds more closely fitted the theoretical prediction of 1∆S), it is likely that anemonefish used all four cones for colour vision.

      We have also now repeated our analysis using unweighed delta S values which are calculated using general n-dimensional models of colour vision (using the PAVO2 package). These models essentially follow the same initial steps followed by the RNL model (and many others) but omit the receptor noise correction stage. After comparing (using ANOVA, see lines 303-311) the predicted thresholds with the data in this non-RNL space, it was found that again the tetrachromatic model predictions did not deviate significantly from the data relative to individual fish performance; however, we also found that the trichromatic model without M2 cone input no longer differed from the predicted values. In this case, it seems that the extra noise parameter did contribute to the difference in fit. Whether this is a biologically meaningful comparison (as all photoreceptors contain noise) is an open question. We have added a short statement explicitly framing our interpretation of anemonefish having a 3-D colour space to being in accordance with the closeness of RNL model predictions (lines 370-371, 506-508).

      • Also on the general point on conclusions drawn from the model fits, it seems important to note that rejecting a trichromatic version of the RNL model is not the same as rejecting all trichromatic models. For example, a trichromatic model that postulates limiting noise added after a set of opponent transformations will make predictions that are not nested within those of RNL trichromatic models. This point seems particularly important given the systematic failures of even the tetrachromatic version of the RNL model.

      This is a good point. We have limited our conclusions to specifically address trichromatic models generated within the framework of the RNL model by adding in the conclusion section that fish psychophysical thresholds were best explained by the RNL model when all four cone types contributed to colour vision (see lines 370-371, 506-508). In this same sentence, we have also added in parentheses that “suggesting (but not proving) tetrachromacy” (line 508). We have also edited the abstract to state that our results were “…best described by a tetrachromatic model using all four cone types…”, rather than stating we have shown tetrachromacy (lines 36-37).

      • More generally, attempts to decide whether some human observers exhibit tetrachromacy have taught us how hard this is to do. Two issues, beyond the above, are the following. 1) If the properties of a trichromatic visual system vary across the retina, then by imaging stimuli on different parts of the visual field an observer can in principle make tetrachromatic discriminations even though visual system is locally trichromatic at each retinal location. 2) When trying to show that there is no direction in a tetrachromatic receptor space to which the observer is blind, a lot of color directions need to be sampled. Here, 9 directions are studied. Is that enough? How would we know? The following paper may be of interest in this regard: Horiguchi, Hiroshi, Jonathan Winawer, Robert F. Dougherty, and Brian A. Wandell. "Human trichromacy revisited." Proceedings of the National Academy of Sciences 110, no. 3 (2013): E260-E269. Although I'm not suggesting that the authors conduct additional experiments to try to address these points, I do think they need to be discussed. We agree with the reviewer, that colour discriminability achieved by tetrachromatic vision could in theory be achieved by the combined effect of localised, distinct forms of trichromacy. Evidence in other fishes suggests that such multiple forms of trichromacy across the retina likely exist in many species. However, the behavioural effects of this retinal setup remain to be studied likely due to its extremely difficult nature. We have added a new section titled “future directions” (Lines 474-489), in which we discuss the possibility that distinct forms of trichromacy in the anemonefish retina could in theory achieve colour discrimination on par with tetrachromatic vision. We also give suggestions on how this could be investigated.

      Although we tried to include as many colour directions as practically possible in our experiment, we have certainly not provided an exhaustive range that completely encompasses anemonefish colour space. Whether 9 colour directions are adequate to assess the dimensionality of their color vision is difficult to say. As addressed in the previous comment, we now acknowledge this limitation by refining our conclusion, saying that our results do not prove tetrachromacy.

      • Line 277 ff. After reading through the paper several times, I remain unsure about what the authors regard as their compelling evidence that the UV cone has a higher sensitivity or makes an omnibus higher contribution to sensitivity than other cones (as stated in various forms in the title, Lines 37-41, 56-57, 125, 313, 352 and perhaps elsewhere).

      At first, I thought they key point was that the receptor noise inferred via the RNL model as slightly lower (0.11) for the UV cone than for the double cones (0.14). And this is the argument made explicitly at line 326 of the discussion. But if this is the argument, what needs to be shown is that the data reject a tetrachromatic version of the RNL model where the noise value of all the cones is locked to be the same (or something similar), with the analysis taking into account the fewer parametric degrees of freedom where the noise parameters are so constrained. That is, a careful model comparison analysis would be needed. Such an analysis is not presented that I see, and I need more convincing that the difference between 0.11 and 0.14 is a real effect driven by the data. Also, I am not sanguine that the parameters of a model that in some systematic ways fails to fit the data should be taken as characterizing properties of the receptors themselves (as sometimes seems to be stated as the conclusion we should draw).

      We have performed various modelling scenarios where receptor noise was adjusted for each channel; however, the UV channel was consistently found to be more sensitive than the other channels. In (the original) Supplementary Figure 6 (now Figure 4 – figure supplements 1 and 2), we show predicted dS values calculated using receptor noise levels in the exact manner that the Reviewer suggests by ranging from 0.05 to 0.15, and most importantly, included scenarios where receptor noise was held equal across cone types and others where it was varied between single cones and double cones. None of the models adjusted the data so that sensitivity was equal across all four channels, which means that by an unknown mechanism, the UV channel is more sensitive, but this is unrelated to noise levels. Our best-fit receptor noise values of 0.11 (for single cones) and 0.14 (for double cones) are estimate values and should be treated as such till actual receptor noise measurements are made.

      Then, I thought maybe the argument is not that the noise levels differ, but rather that the failures of the model are in the direction of thresholds being under predicted for discriminations that involve UV cone signals. That's what seems to be being argued here at lines 277 ff, and then again at lines 328 ff of the discussion. But then the argument as I read it more detail in both places switches from being about the UV cones per se to being about postive versus negative UV contrast. That's fine, but it's distinct from an argument that favors omnibus enhanced UV sensitivity, since both the UV increments and decrements are conveyed by the UV cone; it's an argument for differential sensitivity for increments versus decrements in UV mediated discriminations. The authors get to this on lines 334 of the discussion, but if the point is an increment/decrement asymmetry the title and many of the terser earlier assertions should be reworked to be consistent with what is shown.

      To clarify our argument, we found that the colour discrimination thresholds were systematically lower than predicted by the RNL model for colours which elicited higher UV cone stimulation relative to other cone types. These colours we refer to as UV positive based on the sign direction of their contrast against grey distractors produced by higher UV/V LED channel (i.e., in a positive direction). Whereas colours with UV negative chromatic contrast had lower UV cone stimulation relative to the other cone types. Therefore, our interpretation of the importance of UV cone signals for colour discrimination are congruent with the results. In the discussion, we suggest a possibility that activation of the UV receptor suppresses noise downstream in the visual pathway or enhances the saliency of colours (see lines 397-398). This activation of the UV receptor would, of course, be at its highest for colours with positive UV chromatic contrast.

      Note that we have added to the discussion the possibility that colour preferences or a difference in attentiveness might have contributed to differences in discrimination thresholds (see discussion lines 412-413, 427-428, 433-435, 456-466, and 469-473). However, we consider it a less likely explanation due to a couple of reasons, including 1) a lack of difference in responsiveness across colour sets in their timing to peck the target, and 2) any non-learnt bias would have likely been overridden or at least weakened by training prior to the experiment where colours were rewarded equally (see lines 462-466).

      We have edited the results (lines 334-352) to make our point clearer and by changing the subtitle to be more explicit: “Lower discrimination thresholds induced by positive UV contrast”. The subsection begins by explaining the different types of UV chromatic contrast by elevation angle and, finally, how this division among colour sets was a major determinant of colour discrimination thresholds.

      Perhaps the argument with respect to model deviations and UV contrast independent of sign could be elaborated to show more systematically that the way the covariation with the contrasts of the other cone stimulations in the stimulus set goes, the data do favor deviations from the RNL in the direction of enhanced sensitivity to UV cone signals, but if this is the intent I think the authors need to think more about how to present the data in a manner that makes it more compelling than currently, and walk the reader carefully through the argument.

      We have added to the results the linear mixed-effects model output with ‘contrast’ (positive/negative) added as a fixed effect. This analysis shows that the sign direction of UV contrast was a strong predictor of threshold (see address to previous comments and lines 399-401, 790-799).

      • On this point, if the authors decide to stick with the enhanced UV sensitivity argument in the revision, a bit more care about what is meant by "the UV cone has a comparatively high sensitivity (line 313 and throughout)" needs more unpacking. If it is that these cones have lower inferred noise (in the context of a model that doesn't account for at least some aspects of the data), is this because of properties of the UV cones, or the way that post-receptoral processing handles the signals from these cones mimicking a cone effect in the model. And if it is thought that it is because of properties of the cones, some discussion of what those properties might be would be helpful. As I understand the RNL model, relative numbers of cones of each type are taken into account, so it isn't that. But could it be something as simple as higher photopigment density or larger entrance aperture (thus more quantum catches and higher SNR)?

      It is unknown what aspect of the cone morphology or physiology sets the activation or inactivation threshold. Electrophysiological data collected from the UV cones of other fish species e.g., in goldfish and zebrafish [see Hawryshyn & Beauchamp (1985). 25, Vis Res.; and Yoshimatsu et al. (2020). 107, Neuron.] show that they have exceptionally high sensitivity. What has not been shown is that having a UV cone can improve colour discrimination.

      Previous quantitative cone opsin gene expression analysis showed that the single cone opsins (SWS1 and SWS2B) are expressed at lower levels than all double cone opsin genes. This difference in expression combined with the smaller size of single cone outer segments than the double cones make it unlikely that a larger photoreceptor size, higher volume or packing density of visual pigment is responsible. Contrary to our findings, these aspects of the different cone types (if they had an effect) would instead predict that double cones have a higher SNR, and non-UV colours would be more discriminable. We have now added these details to the discussion (see lines 391-397).

      • Line 288 ff. The fact that the slopes of the psychometric functions differed across color directions is, I think, a failure of the RNL model to describe this aspect of the data, and tells us that a simple summary of what happens for thresholds at delta S = 1 does not generalize across color directions for other performance levels. Since one of the directions where the slope is shallower is the UV direction, this fact would seem to place serious limits on the claim that discrimination in the UV direction is enhanced relative to other directions, but it goes by here without comment along those lines. Some comment here, both about implications for fit of RNL model and about implications for generalizations about efficacy of UV receptor mediated discrimination and UV increment/decrement asymmetries, seems important.

      The variation in the psychometric functions is difficult to interpret and cannot be explained by the RNL model. What the RNL model predicts is delta S based on low level factors (namely receptor noise). In the discussion, we completely agree with the notion that the asymmetry in thresholds from predicted values, and the variation in psychometric slopes cannot be explained by the RNL model, e.g., this is heavily implied by “colour discrimination thresholds cannot be directly attributed to noise in the early stages of the visual pathway…” (lines 388-390). To clarify the inability of the RNL model to account for this aspect of the data, we have included a statement (see line 390).

      It is a good point that this could be an indication of heterogeneity in colour space. Heterogeneity in discrimination thresholds across animal colour space (both surrounding the threshold area and for more saturated regions) has been explored in detail using trichromatic triggerfish by Green N. F. et al. (2022). JEB, 7(225):jeb243533. We have added this idea to the discussion (see lines 490-498). For UV, it seems that two of the five fish (#34 and 20) had noticeably shallower curves than the others tested for UV (fish #19, 33, 36). Both also varied more in their ability to distinguish targets, as shown by their wider confidence intervals. One of these two fish (#34) was retested for UV at the end of the experiment, and in the secondary assessment had a steeper psychometric curve more in line with the other fish in the experiment (see Figure 3 – figure supplement 1 and added lines 247-250). Based on this discrepancy in performance between assessments, it is also possible that individual learning effects had a role in impacting the shape of the psychometric curve. Note, this had minimal effect on colour discrimination thresholds and any differences were in the direction of change observed across colour sets in the experiment (i.e., lower dS for UV positive directions).

      • Line 357 ff. Up until this point, all of the discussion of differences in threshold across stimulus sets has been in terms of sensitivity. Here the authors (correctly) raise the possibility that a difference in "preference" across stimulus sets could drive the difference in thresholds as measured. Although the discussion is interesting and germaine, it does to some extent further undercut the security of conclusions about differential sensitivity across color directions relative to the RNL model predictions, and that should be brought out for the reader here. The authors might also discuss about how a future experiment might differentiate between a preference explanation and a sensitivity explanation of threshold differences.

      We have now added a paragraph (see lines 469-473) discussing that future work should test for color preferences and suggest how this could be done using a similar foraging task. We also include our thoughts immediately prior on why it is unlikely that a colour preference was a major contribution towards the results. In short, we consider it unlikely as fish showed no evidence of reduced latency for pecking at targets across the colour sets and because the training regime prior to the experiment equally rewarded fish for all colours and would likely have overridden a strong preference (at least in this specific foraging context).

      • RNL model. The paper cites a lot of earlier work that used the RNL model, but I think many readers will not be familiar with it. A bit more descriptive prose would be helpful, and particularly noting that in the full dimensional receptor space, if the limiting noise at the photoreceptors is Gaussian, then the isothreshold contour will be a hyper-ellipsoid with its axes aligned with the receptor directions.

      There is now added explanation of the RNL model (see lines 141-151), particularly on its assumptions that it only receives chromatic input and that discrimination is limited by noise arising in the photoreceptors and not by any specific opponent mechanisms. We also added the mention of the expected hyper-ellipsoid shape of isothreshold contours if receptor noise is Gaussian. Note, while we appreciate the importance of the reader to understand the basic functionality of the model, we wanted to avoid overloading the introduction with details on the RNL model which is not the focus of the paper. The RNL model is well-established in the field of visual ecology and animal vision research for well over a decade and has been thoroughly dissected by previous methodological reviews. We refer to one of these more recent reviews by Olsson et al. (2018) Behav Ecol. 29(2):273-282, and direct the reader to the methods section for further details on the RNL model.

      • Use of cone isolating stimuli? For showing that all four cone classes contribute to what the authors call color discrimination, a more direct approach would seem to be to use stimuli that target stimulation of only one class of cone at a time. This might require a modified design in which the distractors and target were shown against a uniform background and approximately matched in their estimated effect on a putative achromatic mechanism. Did the authors consider this approach, and more generally could they discuss what they see as its advantages and disadvantages for future work.

      The Reviewer is correct in that a targeted approach of isolated cone stimulation would be the optimal approach to demonstrating tetrachromatic colour vision. However, the extreme spectral overlap in the absorption curves of anemonefish cones, particularly in the mid-wavelength region makes this problematic in using the current LED display. We added to the discussion ways that this could be studied in the future (see lines 474-489). This might be possible (but still challenging) using a monochromator, but such technology severely limits the diversity of stimuli which can be created and usually restricts experiments to a simple paired choice design (or grey card experiment). The traditional paired choice experiment requires animals to be trained to distinguish a specific colour, while the Ishihara-like task trains animals to distinguish targets using an odd-one-out approach. This latter approach is highly efficient, as it does not require retraining when testing a new colour (i.e., fish learnt the task not a specific colour). Here, we wanted to assess colour discrimination in multiple directions to compare performance, and the flexible LED display combined with a generalisable task was important.

      The above assumes that anemonefish do not use multiple trichromatic systems. In which case, the use of standard experimental stimuli (e.g., a monochromator, an LED display) would be unsuitable as they illuminate the whole retina. To definitively test the range of opponent interactions, it would be necessary to make electrophysiological measurements targeting the transmitting neurons using a retinal multielectrode array (MEA) approach or by in-vivo calcium imaging (lines 484-486).

      We understand that our results are not a direct test of the dimensionality of anemonefish colour vision and should not be interpreted as such, as we do not have direct evidence of tetrachromacy. To recognize this limitation of our data, we have drawn back some of our conclusive statements that claimed to have demonstrated tetrachromacy.

    1. Author Response

      Reviewer #1 (Public Review):

      Precise regulation of gamete fusion ensures that offspring will have the same ploidy as the parents. However, breaking this regulation can be useful for plant breeding. Haploid induction followed by chemical-induced genome doubling can be used to fix desirable genotypes, while triparental hybrids where two sperm cells with two different genotypes fertilize an egg cell can be advantageous for bypassing hybridization barriers to create interspecies hybrids with increased fitness. This manuscript follows up on a previous study from the same research group that used a clever high throughput polyspermy detection assay (HIPOD) to show that wild-type Arabidopsis naturally forms triparental hybrids at very low frequencies (less than 0.05% of progeny) and that these triparental hybrids can bypass dosage barriers in the endosperm (Nakel, et al., 2017). Mao and co-authors hypothesized that mutants that conferred polytubey, the attraction of multiple pollen tubes by mutant female gametophytes, would also increase the rate of triparental hybrids. They used a double mutant in the endopeptidase genes ECS1 and ECS2 which had previously been reported to induce supernumerary pollen tube attraction to test this hypothesis with their two-component HIPOD system in which one pollen donor constitutively expresses the mGAL4-VP16 transcription factor while the second pollen donor carries an herbicide resistance gene regulated by the GAL4-responsive UAS promoter. Triparental hybrids are detected as herbicide-resistant progeny from wild-type Arabidopsis flowers that have been pollinated by the two paternal genotypes. The authors convincingly show that the ecs1 ecs2-1 double mutant more than doubled the frequency of triparental, triploid hybrids in HIPOD crosses. They next tested the hypothesis that this increase in triparental hybrids was due to a gametophytic effect by using an ecs1-/- ecs2-1/ECS2 maternal parent in the HIPOD assay and testing whether the ecs2-1 mutant allele was preferentially inherited in triparental hybrids. The mutant allele was inherited at a much higher rate than expected, confirming their hypothesis.

      The triparental hybrid results with the ecs1 ecs2 mutant were not that surprising since the presence of extra sperm cells gives more opportunities for triparental hybrids to form, especially if gamete fusion is misregulated. However, an unexpected result came when the authors used aniline blue staining to analyze the ecs1 ecs2 polytubey phenotype. They confirmed that the double mutant had increased levels of polytubey compared to wild-type ovules, but they also noticed that 13% of seeds were not developing normally. This phenotype was confirmed with a second ecs2 allele and was complemented with both ECS1 and ECS2 transgenes under their native promoters. Microscopic analysis revealed normal gametophyte morphology before fertilization, but 8% of pollinated ovules failed to develop an embryo and 7% failed to develop endosperm, suggesting single fertilization events. In a logical set of experiments, they followed up on this result by crossing ecs1 ecs2 with pollen carrying a fluorescent reporter that would be expressed in developing embryos and endosperm. In this experiment, they were again surprised. Some of the wild-type-looking seeds lacked a paternal contribution (i.e. no fluorescent signal from the paternal reporter construct) in the embryo. This prompted them to look more closely at the progeny, upon which they detected small plants that were haploid. They confirmed the haploid nature by chromosome spreads. Finally, they used interaccession crosses between ecs1 ecs2 (Col-0) and Landsberg to verify that haploid progeny only carried maternal alleles of markers on all five chromosomes, indicating that the ecs1 ecs2 genotype can induce maternal haploids.

      This interesting study highlights the importance of following up on unexpected results. The conclusions are well-supported by the data and quite exciting. Paternal haploid inducers have been discovered in several species, but this is one of only two examples of maternal haploid induction. While the percentage of maternal haploids is very low, this phenomenon could be useful for plant breeding.

      Weaknesses

      The data in the manuscript is intriguing, but the question of how the same mutant combination promotes the formation of both triploid and haploid progeny remains unanswered and is not thoroughly discussed, nor is any model suggested for how the ECS1/2 peptidases could play a role in regulating gamete fusion and/or repressing parthenogenesis. A second unanswered question is whether the maternal haploids are a result of failed plasmogamy or karyogamy between the egg and sperm leading to parthenogenesis or a result of paternal genome elimination after plasmogamy. In figure 3B, the authors attempted to test whether plasmogamy occurs between the male and female gametes in ecs1 ecs2 ovules by crosses with pollen that expresses a mitochondrial marker under control of the pRPS5a promoter which is active in sperm cells as well as embryos and endosperm of fertilized ovules. This experiment allowed them to detect sperm cells that had not fused with the egg and central cell at 2 days after pollination. They also counted the percentage of seeds that expressed the mitochondrial marker in both embryo and endosperm at 2 DAP and found that ecs1 ecs2 mutants had a 20% reduction of visible mitochondria in embryo sacs compared to wildtype. They conclude that the result indicates a potential plasmogamy defect. However, the dependability of this marker is questionable since only ~55% of wild-type seeds had detectable signal in the embryo and endosperm. The authors imply that this experiment could be used to test plasmogamy, but it is not clear how any conclusions related to the abnormal seed phenotype could be drawn from examining the rate of signal in both the embryo and endosperm. Since the mitochondrial marker was not expressed from a sperm-specific promoter, the fluorescent signal at 2DAP is likely due to new gene expression from pRPS5a in the fertilized embryo and endosperm, not an indication of the presence of sperm-derived mitochondria. Perhaps an earlier timepoint could be used as well as a spermspecific promoter instead of pRPS5a to answer the question of whether plasmogamy is happening in the ecs1 ecs2 ovules.

      Thanks for the suggestion. We here provide two additional new data sets to provide evidence that ecs1 ecs2 mutant plants indeed exhibit single fertilization that lead to fertilization recovery.

      We determined the fertilization failure by checking the decondensation HTR10-RFP labelled sperm nuclei 8-10 HAP (Figure 3B) and the frequency of heterofertilization through dual pollination experiment (Figure 3C-E) (see above).

      Reviewer #2 (Public Review):

      The manuscript reports the triploid and haploid productions using an ecs1ecs2 mutant as the maternal donor, in addition to the evaluation of the sexual process observed in the mutant. The indicated data show exquisite quality. To improve the content, I recommend carefully reconsidering the descriptions because some of the insights would cause a stir in the controversy regarding ECS1&2 functions in plant reproduction.

      Strengths

      Triploid production by a combination of ecs1ecs2 mutant and HIPOD system has potential as a future plant breeding tool. Moreover, it's intriguing that both triploid and haploid productions were achieved using the same mutant as a maternal donor. I think authors can claim the value of their results more by adding descriptions about the usefulness of the aneuploid plants in plant breeding history.

      The evidence of the persistent synergid nucleus (Figure 3A) is critical insight reported by this study. As Maruyama et al. (2013) reported by live cell imaging, synergid-endosperm fusion had occurred at the two endosperm nuclei stage. It would be valuable to claim the observed fact by citing Maruyama's previous observation.

      Weakness

      As the authors suggested, the higher triploid frequency observed in ecs1ecs2 than WT was likely caused by the increased polyspermy. However, it also could be that reduction of normal seed number in ecs1ecs2 (whichever is due to failure of fertilization or embryo development arrest) accounts for the increased frequency of the triploid compared to WT.

      The results in Figure 3C-E suggested the single fertilization for both egg and central cells at similar frequencies. This is an exciting result, but it is still possible that the fertilized egg or central cell degenerated after fertilization resulting in the disappearance of paternally inherited fluorescence. Evaluation of fertilization patterns at 7-10HAP in ecs1ecs2 mutant may provide more confident insight, although unfused sperm cell was evaluated at 1DAP (Figure 3-figure supplement 1B). The fertilization states can be distinguished depending on the HTR10RFP sperm nuclei morphology and their positions, as reported by Takahashi et al (2018).

      Thank you for your suggestion. We added the requested experiment see Figure 3B in the revised manuscript. In addition, we conducted a dual pollination experiment, that provides evidence for the activation of the fertilization recovery machinery (Figure 3C-E) (see above).

      Several recent studies have reported exciting insights on ECS1&2 functions; however, various results from different laboratories have raised controversy. Though, the commonly found feature is the repression of polytubey. For readers, it would be helpful to organize the explanation about which insights are concordant or different.

      Thank you for your suggestion. We now indicate using terms like in line with or in contrast to, where our data confirms /or contradicts with previous data.

      In addition, a drawing that explains the time course in the process from pollination to seed development (up to 6DAP) based on WT would help to understand which point is evaluated in each data.

      Thank you for your suggestion. We added a model figure (Figure 4E) at the end of the manuscript that brings the concepts together and facilitates the understandings.

      Reviewer #3 (Public Review):

      In this manuscript, Mao et al. reported that the two proteases ECS1 and ECS2 participate in both polyspermy block and gamete fusion in Arabidopsis thaliana. The authors could observe polytubey phenotype which has been reported previously and obtain both triparental plants and haploids in ecs1 ecs2 mutants. Therefore, they proposed that the triparental plants resulted from the polytubey block defect, whereas the haploids were caused by the gamete fusion defect. Together with two other previous reports, I think it is very interesting to see these two proteases participating in so many different but connected processes. Although they did not provide the molecular mechanism of how ECS participated in polyspermy block and gamete fusion, their findings provide more options for and thus promote plant breeding. The work may have a wide application in the future and will be of broad interest to cell biologists working on gamete fusion and plant breeders.

      We thank the reviewer for their positive comments.

      Although most of the conclusions in this paper are well supported by the data, it could be improved with a minor revision including providing clearer data analysis and descriptions, images with higher resolution, and more discussions.

    1. Author Response

      Reviewer #2 (Public Review):

      In the discussion, the authors suggest that the binding of CHAPS could be an inspiration to develop compounds, targeting, for instance, mammalian receptors, that would bind to both the orthosteric site and a potential groove underneath loop C (where the sterol moiety of CHAPS binds in Alpo4). A figure (SI4) shows a few homologues in surface representation, giving an idea of whether this groove is generally present in the family.

      Seeing this figure, I wondered if it would be relevant to compare several conformations of one or a few chosen homologues. Given that gating always impacts the quaternary assembly, is this groove more pronounced in say the inhibited state of a given homologue than in its agonist-bound state?

      The width of the groove in 7 does change as the channel transition from apo to open state. This is now demonstrated with an additional Figure 3 – figure supplement 1b and the discussion was adjusted accordingly p 18, line 379:

      “The sterol group connected by a linker binds in between subunits and induces conformational changes which also change the width of the groove in Alpo4 (Figure 3f, g), therefore it likely plays an active role in the observed quaternary twist. The changes in the groove shape are not specific to Alpo4 but are also observed for example in nicotinic 7 receptor (Figure 3 – supplement 1b) suggesting that the groove can be targeted for allosteric modulation of the channel. ”

      A related thought was that some of the protein binders affecting pLGIC function (toxins, VHH) contact two subunits and wrap around/below loop C. Do these have binding sites that overlap with the groove?

      We inspected the structures of pLGICs homologs with bound -bungarotoxin (6UWZ, 4HQP, 7Z14, and 7KOO) and 2 with bound VHHs (6SSI and 6HJY). The toxins were bound in similar conformations but not the VHHs. The examples of the complexes are now shown as Supplementary Figure 13a (see above). In the case of ELIC, the nanobody Nb72 was bound on top of the sterol-binding cavity, but it did not interact with the interior of the cavity. This is now explained on p 17 from line 374:

      “When binding sites of larger know binders, including VHH47,48 and -bungarotoxin10,49 were examined (Figure 3 – supplement 1a) a nanobody bound to ELIC in the site covering the sterol-binding groove was identified, however, its interactions with ELIC did not overlap significantly with the interior of the sterol-binding groove. This suggests that the latter is a novel target location for binders.”

      Very interestingly, the binding of CHAPS stabilizes a conformation that differs from the apo one. It includes a twist of the ECDs but does not lead to a significant opening of the M2 bundle. The authors note that the direction of the twist is reversed to that often associated with the binding of ligands in homologues. This reversion is quite a feature, which deserves to be shown in a supplementary movie (e.g overlay of the Alpo apo>CHAPs transition with the nico>apo transition of a7).

      We have re-examined the rotation and compared it to the conformational changes in nACh 7 and 5-HT3 receptors. Upon closer examination, it became clear that relative rotation of the ECD and the TMD provides a very simplistic view of the quaternary conformational changes which are more complex 3D quaternary changes than a simple relative domain rotation. Careful alignment of the structures to the extracellular side of the trans-membrane pore showed that in both channels resting-> open state transition is associated with clockwise rotation, but resting-> desensitized state transition in 5-HT3 involves a counterclockwise rotation. Thus, 1) the direction of rotation is not a ‘universal’ feature of pLGICs and 2) the clockwise rotation is the direction of channel activation for α7 nACh receptor and 5-HT3 and shares similarities with rearrangements observed in Alpo4. However, the relative movement of the ECDs is different between Alpo upon CHAPS binding and α7 nACh and 5-HT3 receptor upon activation. To demonstrate this, we added Video 2 which shows quaternary changes for all 3 channels and the text has been modified as follows on page 11 line 208:

      “Quaternary changes in Alpo4 induced upon CHAPS binding and those associated with the activation of related α7 nACh and 5-HT3 receptors induced rotation of ECD relative to TMD in the same direction, however, the shifts of principal relative to complementary subunits were different (Video 2). In Alpo4, the complementary subunit slides upward whereas in the two other channels it consistently shifts towards the principal subunit and tilts relative to the TMD. The tilt is less pronounced in Alpo4 which is probably why it does not lead to the pore dilation.”

      We are grateful to the reviewer for drawing our attention to this point, which permitted us to correct initially inaccurate statements.

    1. Author Response

      Reviewer #2 (Public Review):

      Here, a simple model of cerebellar computation is used to study the dependence of task performance on input type: it is demonstrated that task performance and optimal representations are highly dependent on task and stimulus type. This challenges many standard models which use simple random stimuli and concludes that the granular layer is required to provide a sparse representation. This is a useful contribution to our understanding of cerebellar circuits, though, in common with many models of this type, the neural dynamics and circuit architecture are not very specific to the cerebellum, the model includes the feedforward structure and the high dimension of the granule layer, but little else. This paper has the virtue of including tasks that are more realistic, but by the paper’s own admission, the same model can be applied to the electrosensory lateral line lobe and it could, though it is not mentioned in the paper, be applied to the dentate gyrus and large pyramidal cells of CA3. The discussion does not include specific elements related to, for example, the dynamics of the Purkinje cells or the role of Golgi cells, and, in a way, the demonstration that the model can encompass different tasks and stimuli types is an indication of how abstract the model is. Nonetheless, it is useful and interesting to see a generalization of what has become a standard paradigm for discussing cerebellar function.

      We appreciate the Reviewer’s positive comments. Regarding the simplifications of our model, we agree that we have taken a modeling approach that abstracts away certain details to permit comparisons across systems. We now include an in-depth discussion of our simplifying assumptions (Assumptions & Extensions section in the Discussion) and have further noted the possibility that other biophysical mechanisms we have not accounted for may also underlie differences across systems.

      Our results predict that qualitative differences in the coding levels of cerebellum-like systems, across brain regions or across species, reflect an optimization to distinct tasks (Figure 7). However, it is also possible that differences in coding level arise from other physiological differences between systems.

      Reviewer #3 (Public Review):

      1) The paper by Xie et al is a modelling study of the mossy fiber-to-granule cell-to-Purkinje cell network, reporting that the optimal type of representations in the cerebellar granule cell layer depends on the type task. The paper stresses that the findings indicate a higher overall bias towards dense representations than stated in the literature, but it appears the authors have missed parts of the literature that already reported on this. While the modelling and analysis appear mathematically solid, the model is lacking many known constraints of the cerebellar circuitry, which makes the applicability of the findings to the biological counterpart somewhat limited.

      We thank the Reviewer for suggesting additional references to include in our manuscript, and for encouraging us to extend our model toward greater biological plausibility and more critically discuss simplifying assumptions we have made. We respond to both the comment about previous literature and about applicability to cerebellar circuitry in detail below.

      2) I have some concerns with the novelty of the main conclusion, here from the abstract: ’Here, we generalize theories of cerebellar learning to determine the optimal granule cell representation for tasks beyond random stimulus discrimination, including continuous input-output transformations as required for smooth motor control. We show that for such tasks, the optimal granule cell representation is substantially denser than predicted by classic theories.’ Stated like this, this has in principle already been shown, i.e. for example: Spanne and Jo¨rntell (2013) Processing of multi-dimensional sensorimotor information in the spinal and cerebellar neuronal circuitry: a new hypothesis. PLoS Comput Biol. 9(3):e1002979. Indeed, even the 2 DoF arm movement control that is used in the present paper as an application, was used in this previous paper, with similar conclusions with respect to the advantage of continuous input-output transformations and dense coding. Thus, already from the beginning of this paper, the novelty aspect of this paper is questionable. Even the conclusion in the last paragraph of the Introduction: ‘We show that, when learning input-output mappings for motor control tasks, the optimal granule cell representation is much denser than predicted by previous analyses.’ was in principle already shown by this previous paper.

      We thank the Reviewer for drawing our attention to Spanne and Jo¨rntell (2013). Our study shares certain similarities with this work, including the consideration of tasks with smooth input-output mappings, such as learning the dynamics of a two-joint arm. However, our study differs substantially, most notably the fact that we focus our study on parametrically varying the degree of sparsity in the granule cell layer to determine the circumstances under which dense versus sparse coding is optimal. To the best of our ability, we can find no result in Spanne and J¨orntell (2013) that indicates the performance of a network as a function of average coding level. Instead, Spanne and Jo¨rntell (2013) propose that inhibition from Golgi cells produces heterogeneity in coding level which can improve performance, which is an interesting but complementary finding to ours. We therefore do not believe that the quantitative computations of optimal coding level that we present are redundant with the results of this previous study. We also note that a key contribution of our study is mathemetical analysis of the inductive bias of networks with different coding levels which supports our conclusions.

      We have included a discussion of Spanne and Jo¨rntell (2013) and (2015) in the revised version of our manuscript:

      "Other studies have considered tasks with smooth input-output mappings and low-dimensional inputs, finding that heterogeneous Golgi cell inhibition can improve performance by diversifying individual granule cell thresholds (Spanne and J¨orntell, 2013). Extending our model to include heterogeneous thresholds is an interesting direction for future work. Another proposal states that dense coding may improve generalization (Spanne and Jo¨rntell, 2015). Our theory reveals that whether or not dense coding is beneficial depends on the task."

      3) However, the present paper does add several more specific investigations/characterizations that were not previously explored. Many of the main figures report interesting new model results. However, the model is implemented in a highly generic fashion. Consequently, the model relates better to general neural network theory than to specific interpretations of the function of the cerebellar neuronal circuitry. One good example is the findings reported in Figure 2. These represent an interesting extension to the main conclusion, but they are also partly based on arbitrariness as the type of mossy fiber input described in the random categorization task has not been observed in the mammalian cerebellum under behavior in vivo, whereas in contrast, the type of input for the motor control task does resemble mossy fiber input recorded under behavior (van Kan et al 1993).

      We agree that the tasks we consider in Figure 2 are simplified compared to those that we consider elsewhere in the paper. The choice of random mossy fiber input was made to provide a comparison to previous modeling studies that also use random input as a benchmark (Marr 1969, Albus 1971, Brunel 2004, Babadi and Sompolinsky 2014, Billings 2014, LitwinKumar et al., 2017). This baseline permits us to specifically evaluate the effects of lowdimensional inputs (Figure 2) and richer input-output mappings (Figure 2, Figure 7). We agree with the Reviewer that the random and uncorrelated mossy fiber activity that has been extensively used in previous studies is almost certainly an unrealistic idealization of in vivo neural activity—this is a motivating factor for our study, which relaxes this assumption and examines the consequences. To provide additional context, we have updated the following paragraph in the main text Results section:

      "A typical assumption in computational theories of the cerebellar cortex is that inputs are randomly distributed in a high-dimensional space (Marr, 1969; Albus, 1971; Brunel et al., 2004; Babadi and Sompolinsky, 2014; Billings et al., 2014; Litwin-Kumar et al., 2017). While this may be a reasonable simplification in some cases, many tasks, including cerebellumdependent tasks, are likely best-described as being encoded by a low-dimensional set of variables. For example, the cerebellum is often hypothesized to learn a forward model for motor control (Wolpert et al., 1998), which uses sensory input and motor efference to predict an effector’s future state. Mossy fiber activity recorded in monkeys correlates with position and velocity during natural movement (van Kan et al., 1993). Sources of motor efference copies include motor cortex, whose population activity lies on a lowdimensional manifold (Wagner et al., 2019; Huang et al., 2013; Churchland et al., 2010; Yu et al., 2009). We begin by modeling the low dimensionality of inputs and later consider more specific tasks."

      4) The overall conclusion states: ‘Our results....suggest that optimal cerebellar representations are task-dependent.’ This is not a particularly strong or specific conclusion. One could interpret this statement as simply saying: ‘if I construct an arbitrary neural network, with arbitrary intrinsic properties in neurons and synapses, I can get outputs that depend on the intensity of the input that I provide to that network.’ Further, the last sentence of the Introduction states: ‘More broadly, we show that the sparsity of a neural code has a task-dependent influence on learning...’ This is very general and unspecific, and would likely not come as a surprise to anyone interested in the analysis of neural networks. It doesn’t pinpoint any specific biological problem but just says that if I change the density of the input to a [generic] network, then the learning will be impacted in one way or another.

      We agree with the Reviewer that our conclusions are quite general, and we have removed the final sentence as we agree it was unspecific. However, we disagree with the Reviewer’s paraphrasing of our results.

      First, we do not select arbitrary intrinsic properties of neurons and synapses. Rather, we construct a simplified model with a key quantity, the neuronal threshold, that we vary parametrically in order to assess the effect of the resulting changes in the representation on performance. Second, we do not vary the intensity/density of inputs provided to the network – this is fixed throughout our study for all key comparisons we perform. Instead, we vary the density (coding level) of the expansion layer representation and quantify its effect on inductive bias and generalization. Finally, our study’s key contribution is an explanation of the heterogeneity in average coding level observed across behaviors and cerebellum-like systems. We go beyond the empirical statement that there is a dependence of performance on the parameter that we vary by developing an analytical theory. Our theory describes the performance of the class of networks that we study and the properties of learning tasks that determine the optimal expansion layer representation.

      To clarify our main contributions, we have updated the final paragraph of the Introduction. We have also removed the sentence that the Reviewer objects to, as it was less specific than the other points we make here.

      "We propose that these differences can be explained by the capacity of representations with different levels of sparsity to support learning of different tasks. We show that the optimal level of sparsity depends on the structure of the input-output relationship of a task. When learning input-output mappings for motor control tasks, the optimal granule cell representation is much denser than predicted by previous analyses. To explain this result, we develop an analytic theory that predicts the performance of cerebellum-like circuits for arbitrary learning tasks. The theory describes how properties of cerebellar architecture and activity control these networks’ inductive bias: the tendency of a network toward learning particular types of input-output mappings (Sollich, 1998; Jacot et al., 2018; Bordelon et al., 2020; Canatar et al., 2021; Simon et al., 2021). The theory shows that inductive bias, rather than the dimension of the representation alone, is necessary to explain learning performance across tasks. It also suggests that cerebellar regions specialized for different functions may adjust the sparsity of their granule cell representations depending on the task."

      5) The interpretation of the distribution of the mossy fiber inputs to the granule cells, which would have a crucial impact on the results of a study like this, is likely incorrect. First, unlike the papers that the authors cite, there are many studies indicating that there is a topographic organization in the mossy fiber termination, such that mossy fibers from the same inputs, representing similar types of information, are regionally co-localized in the granule cell layer. Hence, there is no support for the model assumption that there is a predominantly random termination of mossy fibers of different origins. This risks invalidating the comparisons that the authors are making, i.e. such as in Figure 3. This is a list of example papers, there are more: van Kan, Gibson and Houk (1993) Movement-related inputs to intermediate cerebellum of the monkey. Journal of Neurophysiology. Garwicz et al (1998) Cutaneous receptive fields and topography of mossy fibres and climbing fibres projecting to cat cerebellar C3 zone. The Journal of Physiology. Brown and Bower (2001) Congruence of mossy fiber and climbing fiber tactile projections in the lateral hemispheres of the rat cerebellum. The Journal of Comparative Neurology. Na, Sugihara, Shinoda (2019) The entire trajectories of single pontocerebellar axons and their lobular and longitudinal terminal distribution patterns in multiple aldolase C-positive compartments of the rat cerebellar cortex. The Journal of Comparative Neurology.

      6) The nature of the mossy fiber-granule cell recording is also reviewed here: Gilbert and Miall (2022) How and Why the Cerebellum Recodes Input Signals: An Alternative to Machine Learning. The Neuroscientist. Further, considering the re-coding idea, the following paper shows that detailed information, as it is provided by mossy fibers, is transmitted through the granule cells without any evidence of re-coding: Jo¨rntell and Ekerot (2006) Journal of Neuroscience; and this paper shows that these granule inputs are powerfully transmitted to the molecular layer even in a decerebrated animal (i.e. where only the ascending sensory pathways remains) Jo¨rntell and Ekerot 2002, Neuron.

      We agree that there is strong evidence for a topographic organization in mossy fiber to granule cell connectivity at the microzonal level. We thank the Reviewer for pointing us to specific examples. We acknowledge that our simplified model does not capture the structure of connectivity observed in these studies.

      However, the focus of our model is on cerebellar neurons presynaptic to a single Purkinje cell. Random or disordered distribution of inputs at this local scale is compatible with topographic organization at the microzonal scale. Furthermore, while there is evidence of structured connections at the local scale, models with random connectivity are able to reproduce the dimensionality of granule cell activity within a small margin of error (Nguyen et al., 2022). Finally, our finding that dense codes are optimal for learning slowly varying tasks is consistent with evidence for the lack of re-coding – for such tasks, re-coding may absent because it is not required.

      We have dedicated a section on this issue in the Assumptions and Extensions portion of our Discussion:

      "Another key assumption concerning the granule cells is that they sample mossy fiber inputs randomly, as is typically assumed in Marr-Albus models (Marr, 1969; Albus, 1971; LitwinKumar et al., 2017; Cayco-Gajic et al., 2017). Other studies instead argue that granule cells sample from mossy fibers with highly similar receptive fields (Garwicz et al., 1998; Brown and Bower, 2001; J¨orntell and Ekerot, 2006) defined by the tuning of mossy fiber and climbing fiber inputs to cerebellar microzones (Apps et al., 2018). This has led to an alternative hypothesis that granule cells serve to relay similarly tuned mossy fiber inputs and enhance their signal-to-noise ratio (Jo¨rntell and Ekerot, 2006; Gilbert and Chris Miall, 2022) rather than to re-encode inputs. Another hypothesis is that granule cells enable Purkinje cells to learn piece-wise linear approximations of nonlinear functions (Spanne and J¨orntell, 2013). However, several recent studies support the existence of heterogeneous connectivity and selectivity of granule cells to multiple distinct inputs at the local scale (Huang et al., 2013; Ishikawa et al., 2015). Furthermore, the deviation of the predicted dimension in models constrained by electron-microscopy data as compared to randomly wired models is modest (Nguyen et al., 2022). Thus, topographically organized connectivity at the macroscopic scale may coexist with disordered connectivity at the local scale, allowing granule cells presynaptic to an individual Purkinje cell to sample heterogeneous combinations of the subset of sensorimotor signals relevant to the tasks that Purkinje cell participates in. Finally, we note that the optimality of dense codes for learning slowly varying tasks in our theory suggests that observations of a lack of mixing (J¨orntell and Ekerot, 2002) for such tasks are compatible with Marr-Albus models, as in this case nonlinear mixing is not required."

      7) I could not find any description of the neuron model used in this paper, so I assume that the neurons are just modelled as linear summators with a threshold (in fact, Figure 5 mentions inhibition, but this appears to be just one big lump inhibition, which basically is an incorrect implementation). In reality, granule cells of course do have specific properties that can impact the input-output transformation, PARTICULARLY with respect to the comparison of sparse versus dense coding, because the low-pass filtering of input that occurs in granule cells (and other neurons) as well as their spike firing stochasticity (Saarinen et al (2008). Stochastic differential equation model for cerebellar granule cell excitability. PLoS Comput. Biol. 4:e1000004) will profoundly complicate these comparisons and make them less straight forward than what is portrayed in this paper. There are also several other factors that would be present in the biological setting but are lacking here, which makes it doubtful how much information in relation to the biological performance that this modelling study provides: What are the types of activity patterns of the inputs? What are the learning rules? What is the topography? What is the impact of Purkinje cell outputs downstream, as the Purkinje cell output does not have any direct action, it acts on the deep cerebellar nuclear neurons, which in turn act on a complex sensorimotor circuitry to exert their effect, hence predictive coding could only become interpretable after the PC output has been added to the activity in those circuits. Where is the differentiated Golgi cell inhibition?

      Thank you for these critiques. We have made numerous edits to improve the presentation of the details of our model in the main text of the manuscript. Indeed, granule cells in the main text are modeled as linear sums of mossy fiber inputs with a threshold-linear activation function. A more detailed description of the model for granule cells can now be found in Equation 1 in the Results section:

      "The activity of neurons in the expansion layer is given by: h = φ(Jeffx − θ), (1) where φ is a rectified linear activation function φ(u) = max(u,0) applied element-wise. Our results also hold for other threshold-polynomial activation functions. The scalar threshold θ is shared across neurons and controls the coding level, which we denote by f, defined as the average fraction of neurons in the expansion layer that are active."

      Most of our analyses use the firing rate model we describe above, but several Supplemental Figures show extensions to this model. As we mention in the Discussion, our results do not depend on the specific choice of nonlinearity (Figure 2-figure supplement 2). We have also considered the possibility that the stochastic nature of granule cell spikes could impact our measures of coding level. In Figure 7-figure supplement 1 we test the robustness of our main conclusion using a spiking model where we model granule cell spikes with Poisson statistics. When measuring coding level in a population of spiking neurons, a key question is at what time window the Purkinje cell integrates spikes. For several choices of integration time windows, we show that dense coding remains optimal for learning smooth tasks. However, we agree with the Reviewer that there are other biological details our model does not address. For example, our spiking model does not capture some of the properties the Saarinen et al. (2008) model captures, including random sub-threshold oscillations and clusters of spikes. Modeling biophysical phenomena at this scale is beyond the scope of our study. We have added this reference to the relevant section of the Discussion:

      "We also note that coding level is most easily defined when neurons are modeled as rate, rather than spiking units. To investigate the consistency of our results under a spiking code, we implemented a model in which granule cell spiking exhibits Poisson variability and quantify coding level as the fraction of neurons that have nonzero spike counts (Figure 7-figure supplement 1; Figure 7C). In general, increased spike count leads to improved performance as noise associated with spiking variability is reduced. Granule cells have been shown to exhibit reliable burst responses to mossy fiber stimulation (Chadderton et al., 2004), motivating models using deterministic responses or sub-Poisson spiking variability. However, further work is needed to quantitatively compare variability in model and experiment and to account for more complex biophysical properties of granule cells (Saarinen et al., 2008)."

      A second concern the Reviewer raises is our implementation of Golgi cell inhibition as a homogeneous rather than heterogeneous input onto granule cells. In simplified models, adding heterogeneous inhibition does not dramatically change the qualitative properties of the expansion layer representation, in particular the dimensionality of the representation (Billings et al., 2014, Cayco-Gajic et al., 2017, Litwin-Kumar et al., 2017). We have added a section about inhibition to our Discussion:

      "We also have not explicitly modeled inhibitory input provided by Golgi cells, instead assuming such input can be modeled as a change in effective threshold, as in previous studies (Billings et al., 2014; Cayco-Gajic et al., 2017; Litwin-Kumar et al., 2017). This is appropriate when considering the dimension of the granule cell representation (Litwin-Kumar et al., 2017), but more work is needed to extend our model to the case of heterogeneous inhibition."

      Regarding the mossy fiber inputs, as we state in response to paragraph 3, we agree with the Reviewer that the random and uncorrelated mossy fiber activity that has been used in previous studies is an unrealistic idealization of in vivo neural activity. One of the motivations for our model was to relax this assumption and examine the consequences: we introduce correlations in the mossy fiber activity by projecting low-dimensional patterns into the mossy fiber layer (Figure 1B):

      "A typical assumption in computational theories of the cerebellar cortex is that inputs are randomly distributed in a high-dimensional space (Marr, 1969; Albus, 1971; Brunel et al., 2004; Babadi and Sompolinsky, 2014; Billings et al., 2014; Litwin-Kumar et al., 2017). While this may be a reasonable simplification in some cases, many tasks, including cerebellumdependent tasks, are likely best-described as being encoded by a low-dimensional set of variables. For example, the cerebellum is often hypothesized to learn a forward model for motor control (Wolpert et al., 1998), which uses sensory input and motor efference to predict an effector’s future state. Mossy fiber activity recorded in monkeys correlates with position and velocity during natural movement (van Kan et al., 1993). Sources of motor efference copies include motor cortex, whose population activity lies on a low-dimensional manifold (Wagner et al., 2019; Huang et al., 2013; Churchland et al., 2010; Yu et al., 2009). We begin by modeling the low dimensionality of inputs and later consider more specific tasks.

      We therefore assume that the inputs to our model lie on a D-dimensional subspace embedded in the N-dimensional input space, where D is typically much smaller than N (Figure 1B). We refer to this subspace as the “task subspace” (Figure 1C)."

      The Reviewer also mentions the learning rule at granule cell to Purkinje cell synapses. We agree that considering online, climbing-fiber-dependent learning is an important generalization. We therefore added a new supplemental figure investigating whether we would still see a difference in optimal coding levels across tasks if online learning were used instead of the least squares solution (Figure 7-figure supplement 2). Indeed, we observed a similar task dependence as we saw in Figure 2F. We have added a new paragraph in the Discussion under Assumptions and Extensions describing our rationale and approach in detail:

      "For the Purkinje cells, our model assumes that their responses to granule cell input can be modeled as an optimal linear readout. Our model therefore provides an upper bound to linear readout performance, a standard benchmark for the quality of a neural representation that does not require assumptions on the nature of climbing fiber-mediated plasticity, which is still debated. Electrophysiological studies have argued in favor of a linear approximation (Brunel et al., 2004). To improve the biological applicability of our model, we implemented an online climbing fiber-mediated learning rule and found that optimal coding levels are still task-dependent (Figure 7-figure supplement 2). We also note that although we model several timing-dependent tasks (Figure 7), our learning rule does not exploit temporal information, and we assume that temporal dynamics of granule cell responses are largely inherited from mossy fibers. Integrating temporal information into our model is an interesting direction for future investigation."

      Finally, regarding the function of the Purkinje cell, our model defines a learning task as a mapping from inputs to target activity in the Purkinje cell and is thus agnostic to the cell’s downstream effects. We clarify this point when introducing the definition of a learning task:

      "In our model, a learning task is defined by a mapping from task variables x to an output f(x), representing a target change in activity of a readout neuron, for example a Purkinje cell. The limited scope of this definition implies our results should not strongly depend on the influence of the readout neuron on downstream circuits."

      8) The problem of these, in my impression, generic, arbitrary settings of the neurons and the network in the model becomes obvious here: ‘In contrast to the dense activity in cerebellar granule cells, odor responses in Kenyon cells, the analogs of granule cells in the Drosophila mushroom body, are sparse...’ How can this system be interpreted as an analogy to granule cells in the mammalian cerebellum when the model does not address the specifics lined up above? I.e. the ‘inductive bias’ that the authors speak of, defined as ‘the tendency of a network toward learning particular types of input-output mappings’, would be highly dependent on the specifics of the network model.

      We agree with the Reviewer that our model makes several simplifying assumptions for mathematical tractability. However, we note that our study is not the first to draw analogies between cerebellum-like systems, including the mushroom body (Bell et al., 2008; Farris, 2011). All the systems we study feature a sparsely connected, expanded granule-like layer that sends parallel fiber axons onto densely connected downstream neurons known to exhibit powerful synaptic plasticity, thus motivating the key architectural assumptions of our model. We have constrained anatomical parameters of the model using data as available (Table 1). However, we agree with the Reviewer that when making comparisons across species there is always a possibility that differences are due to physiological mechanisms we have not fully understood or captured with a model. As such, we can only present a hypothesis for these differences. We have modified our Discussion section on this topic to clearly state this.

      "Our results predict that qualitative differences in the coding levels of cerebellum-like systems, across brain regions or across species, reflect an optimization to distinct tasks (Figure 7). However, it is also possible that differences in coding level arise from other physiological differences between systems."

      9) More detailed comments: Abstract: ‘In these models [Marr-Albus], granule cells form a sparse, combinatorial encoding of diverse sensorimotor inputs. Such sparse representations are optimal for learning to discriminate random stimuli.’ Yes, I would agree with the first part, but I contest the second part of this statement. I think what is true for sparse coding is that the learning of random stimuli will be faster, as in a perceptron, but not necessarily better. As the sparsification essentially removes information, it could be argued that the quality of the learning is poorer. So from that perspective, it is not optimal. The authors need to specify from what perspective they consider sparse representations optimal for learning.

      This is an important point that we would like to clarify. It is not the case that sparse coding simply speeds up learning. In our study and many related works (Barak et al. 2013; Babadi and Sompolinsky 2014; Litwin-Kumar et al. 2017), learning performance is measured based on the generalization ability of the network – the ability to predict correct labels for previously unseen inputs. As our study and previous studies show, sparse codes are optimal in the sense that they minimize generalization error, independent of any effect on learning speed. To communicate this more effectively, we have added the following sentence to the first paragraph of the Introduction:

      "Sparsity affects both learning speed (Cayco-Gajic et al., 2017), and generalization, the ability to predict correct labels for previously unseen inputs (Barak et al., 2013; Babadi and Sompolinsky, 2014; Litwin-Kumar et al., 2017)."

      10) Introduction: ‘Indeed, several recent studies have reported dense activity in cerebellar granule cells in response to sensory stimulation or during motor control tasks (Knogler et al., 2017; Wagner et al., 2017; Giovannucci et al., 2017; Badura and De Zeeuw, 2017; Wagner et al., 2019), at odds with classic theories (Marr, 1969; Albus, 1971).’ In fact, this was precisely the issue that was addressed already by Jo¨rntell and Ekerot (2006) Journal of Neuroscience. The conclusion was that these actual recordings of granule cells in vivo provided essentially no support for the assumptions in the Marr-Albus theories.

      In our reading, the main finding of J¨orntell and Ekerot (2006) is that individual granule cells are activated by mossy fibers with overlapping receptive fields driven by a single type of somatosensory input. However, there is also evidence of nonlinear mixed selectivity in granule cells in support of the re-coding hypothesis (Huang et al., 2013; Ishikawa et al., 2015). Jo¨rntell and Ekerot (2006) also suggest that the granule cell layer shares similar topographic organization as mossy fibers, organized into microzones. The existence of topographic organization does not invalidate Marr-Albus theories. As we have suggested earlier, a local combinatorial expansion can coexist with a global topographic organization.

      We have described these considerations in the Assumptions and Extensions portion of the Discussion:

      "Another key assumption concerning the granule cells is that they sample mossy fiber inputs randomly, as is typically assumed in Marr-Albus models (Marr, 1969; Albus, 1971; LitwinKumar et al., 2017; Cayco-Gajic et al., 2017). Other studies instead argue that granule cells sample from mossy fibers with highly similar receptive fields (Garwicz et al., 1998; Brown and Bower, 2001; J¨orntell and Ekerot, 2006) defined by the tuning of mossy fiber and climbing fiber inputs to cerebellar microzones (Apps et al., 2018). This has led to an alternative hypothesis that granule cells serve to relay similarly tuned mossy fiber inputs and enhance their signal-to-noise ratio (Jo¨rntell and Ekerot, 2006; Gilbert and Chris Miall, 2022) rather than to re-encode inputs. Another hypothesis is that granule cells enable Purkinje cells to learn piece-wise linear approximations of nonlinear functions (Spanne and J¨orntell, 2013). However, several recent studies support the existence of heterogeneous connectivity and selectivity of granule cells to multiple distinct inputs at the local scale (Huang et al., 2013; Ishikawa et al., 2015). Furthermore, the deviation of the predicted dimension in models constrained by electron-microscopy data as compared to randomly wired models is modest (Nguyen et al., 2022). Thus, topographically organized connectivity at the macroscopic scale may coexist with disordered connectivity at the local scale, allowing granule cells presynaptic to an individual Purkinje cell to sample heterogeneous combinations of the subset of sensorimotor signals relevant to the tasks that Purkinje cell participates in. Finally, we note that the optimality of dense codes for learning slowly varying tasks in our theory suggests that observations of a lack of mixing (J¨orntell and Ekerot, 2002) for such tasks are compatible with Marr-Albus models, as in this case nonlinear mixing is not required."

      We have also included the Jo¨rntell and Ekerot (2006) study as a citation in the Introduction:

      "Indeed, several recent studies have reported dense activity in cerebellar granule cells in response to sensory stimulation or during motor control tasks (Jo¨rntell and Ekerot, 2006; Knogler et al., 2017; Wagner et al., 2017; Giovannucci et al., 2017; Badura and De Zeeuw, 2017; Wagner et al., 2019), at odds with classic theories (Marr, 1969; Albus, 1971)."

      11) Results: 1st para: There is no information about how the granule cells are modelled.

      We agree that this should information should have been more readily available. We now more completely describe the model in the main text. Our model for granule cells can be found in Equation 1 in the Results section and also the Methods (Network Model):

      "The activity of neurons in the expansion layer is given by: h = φ(Jeffx − θ), (2)

      where φ is a rectified linear activation function φ(u) = max(u,0) applied element-wise. Our results also hold for other threshold-polynomial activation functions. The scalar threshold θ is shared across neurons and controls the coding level, which we denote by f, defined as the average fraction of neurons in the expansion layer that are active."

      12) 2nd para: ‘A typical assumption in computational theories of the cerebellar cortex is that inputs are randomly distributed in a high-dimensional space.’ Yes, I agree, and this is in fact in conflict with the known topographical organization in the cerebellar cortex (see broader comment above). Mossy fiber inputs coding for closely related inputs are co-localized in the cerebellar cortex. I think for this model to be of interest from the point of view of the mammalian cerebellar cortex, it would need to pay more attention to this organizational feature.

      As we discuss in our response to paragraphs 5 and 6, we see the random distribution assumption at the local scale (inputs presynaptic to a single Purkinje cell) as being compatible with topographic organization occurring at the microzone scale. Furthermore, as discussed earlier, we specifically model low-dimensional input as opposed to the random and high-dimensional inputs typically studied in prior models.

      "A typical assumption in computational theories of the cerebellar cortex is that inputs are randomly distributed in a high-dimensional space (Marr, 1969; Albus, 1971; Brunel et al., 2004; Babadi and Sompolinsky, 2014; Billings et al., 2014; Litwin-Kumar et al., 2017). While this may be a reasonable simplification in some cases, many tasks, including cerebellumdependent tasks, are likely best-described as being encoded by a low-dimensional set of variables. For example, the cerebellum is often hypothesized to learn a forward model for motor control (Wolpert et al., 1998), which uses sensory input and motor efference to predict an effector’s future state. Mossy fiber activity recorded in monkeys correlates with position and velocity during natural movement (van Kan et al., 1993). Sources of motor efference copies include motor cortex, whose population activity lies on a low-dimensional manifold (Wagner et al., 2019; Huang et al., 2013; Churchland et al., 2010; Yu et al., 2009). We begin by modeling the low dimensionality of inputs and later consider more specific tasks. We therefore assume that the inputs to our model lie on a D-dimensional subspace embedded in the N-dimensional input space, where D is typically much smaller than N (Figure 1B). We refer to this subspace as the “task subspace” (Figure 1C)."

      References

      Albus, J.S. (1971). A theory of cerebellar function. Mathematical Biosciences 10, 25–61.

      Apps, R., et al. (2018). Cerebellar Modules and Their Role as Operational Cerebellar Processing Units. Cerebellum 17, 654–682.

      Babadi, B. and Sompolinsky, H. (2014). Sparseness and expansion in sensory representations. Neuron 83, 1213–1226.

      Badura, A. and De Zeeuw, C.I. (2017). Cerebellar granule cells: dense, rich and evolving representations. Current Biology 27, R415–R418.

      Barak, O., Rigotti, M., and Fusi, S. (2013). The sparseness of mixed selectivity neurons controls the generalization–discrimination trade-off. Journal of Neuroscience 33, 3844– 3856.

      Bell, C.C., Han, V., and Sawtell, N.B. (2008). Cerebellum-like structures and their implications for cerebellar function. Annual Review of Neuroscience 31, 1–24.

      Billings, G., Piasini, E., Lo˝rincz, A., Nusser, Z., and Silver, R.A. (2014). Network structure within the cerebellar input layer enables lossless sparse encoding. Neuron 83, 960–974.

      Bordelon, B., Canatar, A., and Pehlevan, C. (2020). Spectrum dependent learning curves in kernel regression and wide neural networks. International Conference on Machine Learning 1024–1034.

      Brown, I.E. and Bower, J.M. (2001). Congruence of mossy fiber and climbing fiber tactile projections in the lateral hemispheres of the rat cerebellum. Journal of Comparative Neurology 429, 59–70.

      Brunel, N., Hakim, V., Isope, P., Nadal, J.P., and Barbour, B. (2004). Optimal information storage and the distribution of synaptic weights: perceptron versus Purkinje cell. Neuron 43, 745–757.

      Canatar, A., Bordelon, B., and Pehlevan, C. (2021). Spectral bias and task-model alignment explain generalization in kernel regression and infinitely wide neural networks. Nature Communications 12, 1–12.

      Cayco-Gajic, N.A., Clopath, C., and Silver, R.A. (2017). Sparse synaptic connectivity is required for decorrelation and pattern separation in feedforward networks. Nature Communications 8, 1–11.

      Chadderton, P., Margrie, T.W., and Ha¨usser, M. (2004). Integration of quanta in cerebellar granule cells during sensory processing. Nature 428, 856–860.

      Churchland, M.M., et al. (2010). Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nature Neuroscience 13, 369–378.

      Farris, S.M. (2011). Are mushroom bodies cerebellum-like structures? Arthropod structure & development 40, 368–379.

      Garwicz, M., Jorntell, H., and Ekerot, C.F. (1998). Cutaneous receptive fields and topography of mossy fibres and climbing fibres projecting to cat cerebellar C3 zone. The Journal of Physiology 512 ( Pt 1), 277–293.

      Gilbert, M. and Chris Miall, R. (2022). How and Why the Cerebellum Recodes Input Signals: An Alternative to Machine Learning. The Neuroscientist 28, 206–221.

      Giovannucci, A., et al. (2017). Cerebellar granule cells acquire a widespread predictive feedback signal during motor learning. Nature Neuroscience 20, 727–734.

      Huang, C.C., et al. (2013). Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells. eLife 2, e00400.

      Ishikawa, T., Shimuta, M., and Ha¨usser, M. (2015). Multimodal sensory integration in single cerebellar granule cells in vivo. eLife 4, e12916.

      Jacot, A., Gabriel, F., and Hongler, C. (2018). Neural tangent kernel: Convergence and generalization in neural networks. Advances in Neural Information Processing Systems 31.

      Jo¨rntell, H. and Ekerot, C.F. (2002). Reciprocal Bidirectional Plasticity of Parallel Fiber Receptive Fields in Cerebellar Purkinje Cells and Their Afferent Interneurons. Neuron 34, 797–806.

      Jorntell, H. and Ekerot, C.F. (2006). Properties of Somatosensory Synaptic Integration in Cerebellar Granule Cells In Vivo. Journal of Neuroscience 26, 11786–11797.

      Knogler, L.D., Markov, D.A., Dragomir, E.I., Stih, V., and Portugues, R. (2017). Senso-ˇ rimotor representations in cerebellar granule cells in larval zebrafish are dense, spatially organized, and non-temporally patterned. Current Biology 27, 1288–1302.

      Litwin-Kumar, A., Harris, K.D., Axel, R., Sompolinsky, H., and Abbott, L.F. (2017). Optimal degrees of synaptic connectivity. Neuron 93, 1153–1164. Marr, D. (1969). A theory of cerebellar cortex. Journal of Physiology 202, 437–470.

      Nguyen, T.M., et al. (2022). Structured cerebellar connectivity supports resilient pattern separation. Nature 1–7.

      Saarinen, A., Linne, M.L., and Yli-Harja, O. (2008). Stochastic Differential Equation Model for Cerebellar Granule Cell Excitability. PLOS Computational Biology 4, e1000004.

      Simon, J.B., Dickens, M., and DeWeese, M.R. (2021). A theory of the inductive bias and generalization of kernel regression and wide neural networks. arXiv: 2110.03922.

      Sollich, P. (1998). Learning curves for Gaussian processes. Advances in Neural Information Processing Systems 11.

      Spanne, A. and Jo¨rntell, H. (2013). Processing of Multi-dimensional Sensorimotor Information in the Spinal and Cerebellar Neuronal Circuitry: A New Hypothesis. PLOS Computational Biology 9, e1002979.

      Spanne, A. and Jo¨rntell, H. (2015). Questioning the role of sparse coding in the brain. Trends in Neurosciences 38, 417–427.

      van Kan, P.L., Gibson, A.R., and Houk, J.C. (1993). Movement-related inputs to intermediate cerebellum of the monkey. Journal of Neurophysiology 69, 74–94.

      Wagner, M.J., Kim, T.H., Savall, J., Schnitzer, M.J., and Luo, L. (2017). Cerebellar granule cells encode the expectation of reward. Nature 544, 96–100.

      Wagner, M.J., et al. (2019). Shared cortex-cerebellum dynamics in the execution and learning of a motor task. Cell 177, 669–682.e24.

      Wolpert, D.M., Miall, R.C., and Kawato, M. (1998). Internal models in the cerebellum. Trends in Cognitive Sciences 2, 338–347.

      Yu, B.M., et al. (2009). Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity. Journal of Neurophysiology 102, 614–635.

    1. Author Response

      Reviewer #1 (Public Review):

      This study combines in vitro somatic and dendritic recordings and computational modeling to study how cholinergic agonists modulate the response of CA1 pyramidal neurons to triangular current injections. The authors have previously used a similar approach (Upchurch, 2022, JNeuroscience) to show that CA1 neurons exhibit asymmetric AP firing (more firing on the upward ramp) in response to such current injections and that this effect is due to Na channel inactivation. The present work builds on these results by showing that cholinergic modulation changes this response, i.e., there is more firing on the downward part of the ramp. This change appears to require an intracellular Ca2+ concentration increase (mediated via IP3 and voltage-gated Ca2+ channels), which activates TRPM4 channels. In this scheme, cholinergic activity increases IP3, and the depolarizing current injection opens voltage-gated Ca2+ channels. This study will be of some interest to cellular neurophysiology experts working on the hippocampus.

      1) This study claims that the triangular current injections recapitulate hippocampal place cell activity. However, it has been shown recently that the asymmetric firing of CA1 place cells is due to synaptic weight changes resulting from synaptic plasticity (e.g., Bittner et al., 2017). This suggests that the asymmetric firing of place cells is primarily the result of asymmetric synaptic input. Therefore, the authors should test whether carbachol similarly affects a synaptically driven membrane potential ramp. If this is not the case, the strong claim that this work has implications for place cell firing is not justified, in my opinion.

      We have added the results showing the effects of cholinergic modulation on a synaptically-driven membrane potential ramp, obtained by electrically stimulating the Schaffer collaterals with a stimulation frequency that was adjusted according to a linear, symmetric ramp (see also Hsu et al, Neuron 99,147-162, 2018). These results have been added to the manuscript in the Results section for new Figure 2 (lines 169-197) and in the Methods section (lines 716-726).

      2) Along the same lines, it has been shown before that the precision of spike timing depends on the stimulation pattern in vitro (Mainen and Sejnowski, 1995). Constant stimuli led to imprecise AP firing trains, whereas current injections that included fluctuations resembling synaptic input generated spike trains that were more reliable and reproducible in terms of timing. This study concluded that a low intrinsic noise level in spike generation was essential in generating informative spike sequences. Following this pivotal work, the authors could add noise to their current stimulus and observe the effect on the AP firing patterns. If this is not possible, the authors should at least report the sweep-to-sweep variability for the data shown, e.g., in panels 1A2, 1B2, 1D2, and 1E2.

      We thank the reviewer for this suggestion to acknowledge the variability in the data across trials and we have added the Mainen and Sejnowski, 1995 citation to the manuscript (see Results lines 128-134). We addressed sweep-to-sweep variability among the various trials.

      3) In most of the data presented in this manuscript, Carbachol appears to induce a 3 mV hyperpolarization and increase input resistance. As a result, the amount of current injected during Carbachol is drastically lower than during the controls. This should be emphasized more, and the input resistance should be quantified for each experimental condition. It should also be discussed whether this change in input resistance can account for the changes in the firing pattern observed. Finally, it should be clearly stated how the amount of the current injected was chosen for each cell, and data from a range of injected current ramps should be shown for each cell.

      We thank the reviewers for this comment, which made us realize that our initial presentation was not clear, in particular with regard to the traces that were chosen as examples in the initial submission of the paper. We now clarify on page 5 (lines 113-125) of the manuscript as follows:

      “In some trials, under control conditions, we applied a baseline depolarization prior to the ramp, in order to capture the variability observed in vivo (Harvey et al Nature 461:941–946, 2009; Epsztein et al. Neuron 70:109–120, 2011). Application of the cholinergic agonist carbachol (CCh, 2 µM) caused a depolarization of 2-6 mV. We compensated for this depolarization by injecting tonic hyperpolarizing current to reestablish the original membrane potential (see also Losonczy, et al., Nature 452, 436-442, 2008), as indicated by an offset from the 0 pA current level in the traces of the injected current ramps. The amplitude of background fluctuations in the resting membrane potential increased from a few tenths of a mV in control to 2-4 mV in CCh. Moreover, the threshold for action potential generation became more hyperpolarized. For all these reasons, we were not able to consistently vary the membrane potential using baseline depolarizations in the presence of CCh, because baseline depolarization alone frequently evoked spiking.”

      For this reason, many of the carbachol example traces in the initial submission had more hyperpolarized Vm than their control counterparts. Acetylcholine also caused a depolarization in a dose-dependent manner, that was compensated for in the same way. In this new version of the manuscript, we systematically report the effects of cholinergic agonists on membrane potential and neuronal excitability. Further, we show example traces with resting membrane potentials within 1 mV for each pharmacological comparison, therefore removing this variable and hopefully making results clearer. We also now state how the amount of injected current was chosen for each condition, and that the amount of injected current was generally lower in the presence of cholinergic agonists. Both the tonic hyperpolarizing current and the amplitude of the injected ramp for each example can now be appreciated in each figure.

      Finally, the reviewers’ comment also made us realize that, in principle, the center of mass of firing could be systematically skewed by the initial membrane potential, the amplitude of the current ramp injection and/or the input resistance. For this reason, we added a supplementary figure (1-2) where the adaptation index was plotted as a function of each these variables. In all cases, it is apparent that the main factor determining whether the center of mass of firing is shifted earlier or later in the ramp is the presence or absence of carbachol rather than initial membrane potential, current injection amplitude, or input resistance.

      4) It remains unclear how the current result that TRPM4 channels can mediate the firing pattern change relates to the previous finding that the current injection evoked CA1 neuronal firing pattern is due to long-term Na channel inactivation.

      We thank the reviewers for this suggestion, which helps to clarify our initial results. New Figure 8 addresses the connection between long-term inactivation of Na+ channels and the activation of TRPM4 channels, as characterized by the model (see Results lines 375-391). Furthermore, the model was instrumental in assessing how the Ca2+ and voltage-dependence of TRPM4 channels synergize to contribute to the shift in the center of mass of firing (Figure 9). Figure 9 illustrates the positive feedback loop between Ca2+ entry and the additional depolarization produced by Ca2+ activation of TRPM4 channels that can potentially accelerate firing (see Results lines 392-427).

      5) Figure 8: Panel C is supposed to confirm the prediction from the model that the carbachol-mediated change of firing activity is related to intracellular Ca2+ domains. However, the example cell shown is depolarized to -52 mV, and there is no hyperpolarization following Carbachol. Is this an effect of the high concentration of BAPTA? Again, what was the current injected under this experimental condition?

      Again, we thank the reviewer for pointing out the lack of clarity in the presentation of our results. We have now rewritten the results section for former Figure 8 (now Figure 10) to more clearly present these findings. The reviewer is correct that with the combination of 30 mM BAPTA + 10 nM free Ca2+ added to the intracellular solution (panel C of current Figure 10) the addition of carbachol did not change the membrane potential, as there were no changes in the holding current. Also, the amplitude of the ramp is comparable in control conditions and in the presence of carbachol under these conditions.

      We have now added all these details in the Results section for figure 10C.

      Reviewer #2 (Public Review):

      The manuscript focuses on the cholinergic modulation of TRPM4 channels in the CA1 pyramidal neurons. The authors presented solid convincing evidence that TRPM4 but not TRPC channels are the Ca2+-activated nonselective cation channel in CA1 pyramidal neurons being modulated by activation of muscarinic receptors. Using bi-directional ramp protocol, the authors revealed that ACh modulation could lead to forward shifts in place field center of mass, whereas decreased ACh modulation could contribute to backward shifts. This represents a significant molecular/cellular finding that links neuromodulation of intrinsic properties to place field shifts, a phenomenon seen in vivo. The authors used a computational approach to model this CA1 neuron spiking to further reveal the mechanism.

      To further improve the manuscript, I have the following suggestions/questions:

      1) The triangular ramp stimulation (introduced by the same group; Upchurch et al., 2022) makes it possible to emulate the hill-shaped depolarization during place field firing. However, one concern is the time scale/duration of the ramp (2 sec) compared to the physiological pattern (100ms~200ms in the in vivo recording in freely moving rat, Epsztein et al., 2011). Using a longer ramp to generate more spikes for calculating the adaptation index is understandable. However, considering the Ca entry/accumulation during prolonged depolarization, repeating one set of experiments with a shorter ramp is crucial to verify the major findings.

      When determining the duration of the current injections for our ramps, we relied on the data recorded in vivo in freely moving rats (Epsztein et al. Neuron 70:109–120, 2011) or in head-fixed mice running on spherical a treadmill immersed in virtual reality (Harvey et al Nature 461:941–946, 2009). In those papers, the voltage deflections are shown as a function of time, and gray bars or boxes represent the time the animals spend traversing the place field. We interpret those figures as showing that the hill-shaped depolarizations have variable durations, on the order of 1-20 s; we therefore think that our experiments with 2 and 10 second-long ramps cover a fair range of these durations. The place fields in Epsztein et al., 2011 were 4 cm long, and the authors give an example in Figure 3, in which the 2 meter track is traversed 1.5 times in 3 minutes. At that rate, the rat spent on average 2.4 seconds in each place field. We interpret the numerous shorter epochs of firing on the order of 100-200 ms shown Figure 2 in Epsztein et al. as the result of ongoing theta modulation within one overall depolarization during a single place field traversal. The following quote from that paper supports our interpretation “Some (Figure 2E, trace 1), but not all (trace 2), passes revealed spiking associated with a series of large (to ~-25 mV), long-lasting (~100 ms) depolarizations (Kandel and Spencer, 1961; Wong and Prince, 1978; Traub and Llinás, 1979; Takahashi and Magee, 2009) occurring rhythmically at ~4–5 Hz (theta frequency).” We thank the reviewer for pointing out these traces; our results are more directly applicable to the traces without theta modulation. Adding theta modulation is beyond the scope of this study but will be considered in future studies. Our average results in Figure 1 show that carbachol similarly affects 2 s and 10 s ramps, therefore we decided to present only the data on 2 second ramps for all the subsequent figures (see Results lines 156-157).

      2) Strictly speaking, the term "Ca2+-induced Ca2+ release (CICR)" is only used in ER Ca2+ release via ryanodine receptors (RyR) rather than IP3Rs. The author should be careful since it is used in the abstract (Line 36). In addition, pharmacology inhibition experiments should be incorporated to further dissect the role of RyR-induced CICR.

      We thank the reviewer for pointing out the possible confusion regarding the use of the term Ca2+-induced Ca2+ release (CICR) and we removed it from the text. Further, for this resubmission, we have pharmacologically dissected the role of IP3 vs ryanodine receptors in the cholinergic shift in the center of mass of firing due to the activation of TRPM4 channels, as suggested by the reviewer (see new Figure 6). To our surprise, neither the IP3R antagonist, Xestospongin C (1-2 µM), nor the RyR antagonist ryanodine (40 µM) were effective in preventing the cholinergic shift of the center of mass of firing when added to the intracellular solution (see Results lines 310-340).

      3) Applying strong buffering BAPTA not only removed the IP3R-TRPM nanodomain but also hindered Ca entry via VGCC. To validate the role of ER Ca2+ release in regulating TRPM, depletion of ER Ca2+ pool with SERCA inhibitor (e.g. thapsigargin) would be a more direct way to test the model (also make sure to add TRPC inhibitor to avoid the store-operated Ca2+ entry).

      We agree with the reviewer that 30 mM BAPTA also disrupts intracellular Ca2+ elevation via voltage-dependent Ca2+ channels on the neuronal membrane. Given that our experiments excluded a role of Ca2+ release from the intracellular stores (see below), our new model includes a nanodomain where, during cholinergic activation, the Ca2+ entry through VGCC is amplified to reach micromolar concentrations, through a currently unknown mechanism. As pointed out by the reviewer, the experimental results with 30 mM BAPTA support the existence of a nanodomain for the activation of TRPM4 channels, regardless of the nature of the calcium source.

      We have also addressed the role of ER Ca2+ release in our experiments.

      4) How does the TRPM current overcome the long-term inactivation of Nav? A channel state model should be added to the manuscript to make it easier to understand.

      Figure 11C now shows the Markov model of the NaV channel and new Figure 8 is devoted to explaining the mechanism by which current through the TRPM4 channels overcomes the long-term inactivation of the NaV channel.

      Reviewer #3 (Public Review):

      Combining slice physiology and simulation, Combe and colleagues discovered that TRPM4 channels activated by Ca2+ in nanodomains mediate ICAN currents in CA1 pyramidal neurons that drive the cholinergic modulation of firing rate. The finding is novel and interesting.

      Strengths:

      1) Identification of TRPM4 channels as the carrier of ICAN currents with independent pharmacological inhibitors and other supporting evidence.

      2) Physiological and simulational verification of physically closely located Ca2+ source and TRPM4 channels required for ICAN activation.

      Weaknesses:

      1) The conclusion of the cholinergic role in down-ramp or backward firing shifts is not convincing.

      We agree with the reviewer that our interpretation is somewhat speculative, and we have now included disclaimers throughout the manuscript as well as placed most of these interpretations in a portion of the discussion titled “Ideas and speculations: Implications of our results for place fields in intact rodents”. In addition, we added the word “potential” in the title.

    1. Author Response

      Reviewer #1 (Public Review):

      The manuscript by Masschelin et al. describes how Vitamin B2 deficiency affects body composition, energy expenditure, and glucose metabolism. B2 deficient mice have lower O2 consumption, and locomotor activity, with no difference in food intake. These mice also have lower liver FAD levels, which is expected given that B2 is a necessary cofactor for this coenzyme. Additionally, these mice have lower blood glucose levels following pyruvate injection, implying a lower capacity for gluconeogenesis. Using PPAR KO mice, they show that this effect on pyruvate tolerance is due to PPARα activation, though there is still a minor difference between wildtype and KO mice. Importantly, they show that fenofibrate PPAR agonism can improve glucose output following pyruvate injection in the absence of B2. The authors also perform robust metabolomics in each experimental condition and phenotype of the mouse well.

      Thank you for the positive input.

      1) The authors have yet to explore other explanations of differences in glucose metabolism under B2D +/Fenofibrate. The canonical targets of PPARα are involved in fatty acid oxidation, ketogenesis, and VLDL/HDL metabolism, in addition to gluconeogenesis (Bougarne et al. 2018). Gluconeogenesis is more of a fasting response due to CREB, FOXO1/PGC1a activation rather than PPAR. In response to B2D, the PPARα KO mice have increased plasma TGs, which may suggest a difference in VLDL TG secretion (Suppl. S3). Perhaps lipid metabolism is more directly affected, and changes in glucose metabolism are secondary to that of triglyceride metabolism. Regarding ketogenesis, the fenofibrate+ B2D fed mice have decreased plasma betahydroxybutyrate, suggesting decreased ketogenesis, which is a more canonical PPARα pathway (Suppl. S3). Testing each of these processes would help control that this mechanism is specific to gluconeogenesis and not secondary to something else.

      We value this reviewer’s comment. To address this point, we considered other mechanisms in our revised Discussion. In future studies, we plan to further explore these metabolic effects and to use ATAC-Seq to understand the transcription factors responsive to B2D. We anticipate these studies will take additional years to complete. Nonetheless, the present studies set the foundation for future work to investigate how FAD influences transcriptional regulation of metabolism.

      2) Is the effect on ISR dependent on PPARα? Is the mechanism of Fenofibrate on the liver, or on another cell type? In Figure 1, the authors state that Riboflavin deficiency alters body composition and energy expenditure, and then focuses on the liver. However, FAD levels are also increased in the heart and kidneys in addition to the liver. These tissues also respond to PPARα agonism, in addition to the muscle which plays a role in regulating glucose metabolism (B2D mice also have a higher lean mass (Fig 1e)). Additionally, the authors haven't shown specifically if the effects of Fenofibrate on electron transport and the ISR are dependent on the presence of PPARα (Figure 5, 6).

      We agree that knowing whether the effects of Fenofibrate on the ISR require liver PPARA is a critical issue, which will require dedicated studies for a thorough and meaningful conclusion. In new experiments, we knocked down Ppara in the liver using AAV8-Cre administration to Pparaflox/flox mice. Our data show liver-specific Ppara knockdown recapitulates whole-body B2D effects on pyruvate tolerance and hepatic steatosis (Figure 3I). These results agree with findings in whole-body Ppara knockout mice (Supplemental Figure 4), reinforcing the idea that the direct impact of B2D mainly occurs via PPARA activity in the liver. We acknowledge in the discussion ATF4 and ISR activation may contribute to PPARA-independent responses to B2D (Biochem J 443:165–71, 2012; Gut 65:1202-1214, 2016).

      An assessment of genetic requirements will require a large, rigorous set of experiments to identify the ratelimiting responses for fenofibrate activities during B2D, which we plan to do in the future. For this report, we decided to focus exclusively on tissue-specific knockout of Ppara. We will establish evidence for ISR responses to B2D in a separate study based on the feedback received here.

      Reviewer #2 (Public Review):

      The objective of this work by Masschelin et al. is to investigate the physiological relevance of flavin adenine dinucleotide (FAD). In particular, FAD supports the activity of flavoproteins involved in the production of cellular energy. Mutations in genes encoding flavoproteins often are associated with inborn errors of metabolism (IEMs), thus the clinical interest in investigating in more depth the physiological role of FAD. In this study, the authors first subjected male mice to a vitamin B12 deficient diet (B2D), demonstrating that loss of B12 replicates the phenotypes often observed with IEMs, including loss of body weight, hypoglycemia, and fatty liver. Using a combination of metabolomic phenotyping, transcriptomic analyses, and pharmacology (treatment with Fenofibrate, a PPARa agonist), the authors then reach the general conclusion that activation of the nuclear receptor PPARa can rescue the B2D phenotypes, thus revealing that PPARa directly controls the metabolic responses to FAD availability. Although the phenotypic analysis of the mice subjected to B2D increases our knowledge of the physiological impact of depleting the FAD pools on global energy metabolism, not all conclusions and statements made by the authors are totally supported by the data. In particular, the study is overall too descriptive and lacks mechanistic insights. While PPARa is likely an important player in the metabolic response to FAD availability, the molecular details on how FAD controls the activity of PPARa either directly or indirectly are entirely missing. Therefore, the authors are encouraged to directly assess whether B2D directly influences PPARa activity on the genes identified in the study, perform rescue experiments in the liver of PPARa KO mice and explore the possibility that other factors (including nuclear receptors) also participate in the response to B2 deficiency and diminished FAD pools.

      We appreciate the input from Reviewer 2. The direct and indirect effects of B2D on PPARA activity are likely not trivial. However, we performed experiments to determine how FAD depletion affects PPARA transcriptional activity using the riboflavin analog and competitive inhibitor lumiflavin (Figure 3L). We found lumiflavin reduced PPRE-luciferase activity in the presence of PPARA agonist. Although the assay is a synthetic reporter expressed in vitro, the experiment provides evidence of how B2D influences PPARA transcriptional activity. And, yes, we agree that our manuscript does not completely reconcile the factor(s) explaining the effects of B2D on gene expression, and expanded the discussion to comment on this point. In future studies, we intend to identify which transcription factor(s) regulate the liver responses to B2D, and further elucidation of the molecular mechanisms will be a central objective of future work.

    1. Author Response

      Reviewer #1 (Public Review):

      In this manuscript, Scagliotti and colleagues investigate the role of Dlk1 in regulating pituitary size in multiple mouse models with different Dlk1 gene dosages in order to understand the mechanisms of organ size control. They find that overexpression of Dlk1 leads to pituitary overgrowth and loss of Dlk1 causes undergrowth. Authors find two compartments of Dlk1 expression in the pituitary, in the marginal zone stem cell compartment and the parenchymal differentiated cell compartment, and by combing genetic mouse models show that a specific interaction of Dlk1 expression in both regions is necessary to affect pituitary organ size. They present to suggest that Dlk1 may repress Wnt signaling during development to control a shift from progenitor proliferation to differentiation. The data are meticulous, high quality, and clear.

      I have some questions about the interpretation of their data regarding the mechanism of Dlk1 regulation of pituitary organ size, as I believe there could be potential alternative explanations for their observations:

      I was wondering about the cause of the enlargement of the pituitary gland in Fig 1E, and whether it is caused by an increased number of cells (hyperplasia), an increased cell size (hypertrophy), or both. Line 104 states it is hyperplasia, and that cell size was not affected in WT-TG ('not shown', line 121). However, line 444 says the TG is hypertrophic. It would be good if the authors could elaborate on this and show or state how cell size was determined. Figs 5/6 show that WT-Tg proliferation is generally similar to WT, which suggests the increased size is not hyperplasia. It would be good to know whether this is correct. Some previous studies have shown that in pregnancy, lactotroph hypertrophy can be responsible for pituitary enlargement without hyperplasia (Castrique 2010, Hodson 2012).

      We have now clarified this point throughout the manuscript. We had previously counted cells per field in the analysis shown in Figure 1D as a proxy for cell number (these did not significantly differ by genotype). We have now performed a more robust examination. Cell number was determined using a well-established stereological technique: For each animal the maximal cross-sectional area (CSA) was determined from the volumetric analysis. At this level 3 independent sections were used to measure anterior pituitary CSA and count haematoxilin-stained nuclei, giving a mean cells/CSA measurement per individual. This number was multiplied by the AP volume to give an estimate of cell number.

      This analysis was performed on mice from the new cohort of animals containing litter matched adults of all 4 genotypes, and shown in Figure 4E. WT-TG animals had a significant increase in cell number compared to WT littermates (p = 0.0443), therefore pituitary expansion occurs by hyperplasia.

      Related to the organ size question above, I had a question about the cell number and proportions in Fig 1D/E/F, which shows the maintenance of endocrine cell proportions and an increase in the volume of ~30% in WT-Tg. For the cell proportions to be maintained, I thought the increase in volume per cell type (Fig 1G) would therefore have to also increase proportionally in every cell type, while 1G appears to show an increase in GH (sig) and PRL/TSH cells (ns). It would be good if the authors could discuss this briefly.

      We agree and indeed we see this trend across all cell types. When the data in Figure 1G is compared by 2-Way ANOVA we see a significant effect by cell type (p< 0.0001) and by genotype (p = 0.0009). However, for other hormone producing cells the effect size is does not overcome the variation in a smaller cell population so the difference between genotypes does not pass multiple significance testing with the relatively small sample size used. We have modified the legend to Figure 1G to make the ANOVA result clearer.

      This study is impactful and will be of interest to several research communities, including those interested in pituitary development and function, organ size control, and gene imprinting mechanisms.

      Reviewer #2 (Public Review):

      Scagliotti et al address how organ size is regulated by imprinted genes. Using a series of mouse models to modulate the dosage of the paternally expressed gene, Dlk1, the authors demonstrate that DLK1 is important for the maintenance of the stem cell compartment leading to the growth of the pituitary gland and the expansion of growth hormone-producing cells. The authors show that overexpression of Dlk1 leads to pituitary hyperplasia while deletion of the paternal allele leads to reduced pituitary size. Reduced pituitary size is accompanied by reduced cell proliferation in the cleft at e13.5 and an increase in the number of POU1F1+ cells, suggesting that loss of Dlk1 alters the balance between the number of cells remaining in the replicating stem cell pool and those differentiating into the POU1F1 lineage. An elegant caveat of this paper is the rescue of Dlk1 expression in the population of cells expressing Pou1f1 but not in SOX2+ stem cells. Expression of Dlk1 only in POU1F1+ cells is not sufficient to rescue pituitary size. The authors suggest that this is because DLK1 must be present in stem cells which then activate paracrine WNT signaling to promote cell proliferation in POU1F1+ cells.

      Strengths:

      This is an important study that provides a mechanistic understanding of how the imprinted gene, Dlk1, regulates organ size. The study employs an elegant experimental design to address the dosage requirement for Dlk1 in regulating pituitary gland size. Rescuing Dlk1 in the POU1F1+ cells, but not the marginal zone SOX2+ cells provides intriguing results about a possible role for DLK1 in paracrine signaling between these different pituitary cell types. The study uses publicly available scRNAseq and ChIPseq data to further support their findings and identify Dlk1 as a likely target of POU1F1.

      Weaknesses:

      The study only analyzes females for the adult time point. For embryonic and postnatal time points sexes are pooled. Gender differences in pituitary gene expression embryonically or postnatally could potentially affect experimental outcomes.

      We have now added adult data for both sexes.

      The authors employ a mouse model that rescues Dlk1 expression starting at e15.5 in POU1F1+ parenchymal cells but not in marginal zone stem cells. Rescuing Dlk1 expression in a specific population of cells is one of the strengths of this study. Based on this information and the fact that overexpression of Dlk1 leads to increased pituitary size, the authors suggest that DLK1+ marginal zone stem cells and DLK+ parenchymal cells may interact to promote postnatal proliferation. However, the ability to more carefully parse out the complex spatial and temporal contributions of DLK1 to pituitary size would be enhanced by the addition of a mouse model that rescues Dlk1 expression only in SOX2+ cells and a model that rescues expression in both stem cells and POU1F1+ cells.

      We agree that the addition of a model where Dlk1 is only expressed in SOX2+ cells would add significant mechanistic insight. To our knowledge an inducible gain-of-function Dlk1 model does not yet exist. Moreover, use of a SOX2-Cre driver would also increase Dlk1 expression in the hypothalamus as well as Rathke’s pouch, further complicating the analysis.

    1. Author Response

      Reviewer #1 (Public Review):

      In this manuscript, Huang et al., assess cognitive flexibility in rats trained on an animal model of anorexia nervosa known as activity-based anorexia (ABA). For the first time, they do this in a way that is fully automated and free from experimenter interference, as apparently experimenter interference can affect both the development of ABA as well as the effect on behaviour. They show that animals that are more cognitively flexible (i.e. animals that had received reversal training) were better able to resist weight loss upon exposure to ABA, whereas animals exposed to ABA first show poorer cognitive flexibility (reversal performance).

      Strengths:

      • The development of a fully-automated, experimenter-free behavioural assessment paradigm that is capable of identifying individual rats and therefore tracking their performance.

      • The bidirectional nature of the study - i.e. the fact that animals were tested for cognitive flexibility both before and after exposure to ABA, so that direction of causality could be established.

      • The analyses are rigorous and the sample sizes sufficient.

      • The use of touchscreens increases the translational potential of the findings.

      Weaknesses

      • Some descriptions of methods and results are confusing or insufficiently detailed.

      We have been through all methods and results to include additional details as requested by this reviewer below.

      It seems to me that performance on the pairwise discrimination task cannot be directly (statistically) compared to performance on reversal (as in Figure 4E), as these are tapping into fundamentally different cognitive processes (discrimination versus reversal learning). I think comparing groups on each assessment is valid, however.

      We agree that discrimination and reversal are different cognitive processes, and statistical comparisons between these two components of the task were only made when examining the speed of learning in the validation of the novel testing system. Moreover, our inclusion of the pink and purple bars on graphs such as Figure 4C & 4E represent “main effects of ABA exposure”, regardless of learning phase (PD or reversal) rather than, as you describe, comparing PD to R1. Perhaps this comparison wasn’t clear, so we have amended the text to say ‘main effect of ABA exposure p=.0017’ rather than just “exposure”.

      Not necessarily a 'weakness' but I would have loved to see some assessment of the alterations in neural mechanisms underlying these effects, and/or some different behavioural assessments in addition to those used here. In particular, the authors mention in the discussion that this manipulation can affect cholinergic functioning in the dorsal striatum We (Bradfield et al., Neuron, 2013) and a number of others have now demonstrated that cholinergic dysfunction in the dorsomedial striatum impairs a different kind of reversal learning that based on alterations in outcome identity and thus relies on a different cognitive process (i.e. 'state' rather than 'reward' prediction error). It would be interesting perhaps in the future to see if the ABA manipulation also alters performance on this alternative 'cognitive flexibility' task.

      This is an excellent suggestion and we have already begun exploring this in other ongoing work in the laboratory. Due to ‘compulsive’ wheel running being a hallmark of ABA, we are interested in determining if this also translates to a goal-directed action impairment using the well-established outcome-specific devaluation task. Perhaps with ABA it may be more relevant to investigate outcome-reversals rather than stimulus-reversals, and if this is the case, it would further support the use of the ABA model for investigating cognitive dysfunction relevant to AN. We have included an additional section in the discussion text relating to our hypotheses regarding outcome-specific reversal learning in the ABA model.

      Nevertheless, I certainly think the manuscript provides a solid appraisal of cognitive flexibility using more traditional tasks, and that the authors have achieved their aims. I think the work here will be of importance, certainly to other researchers using the ABA model, but perhaps also of translational importance in the future, as the causal relationship between ABA and cognitive inflexibility is near impossible to establish using human studies, but here evidence points strongly towards this being the case.

      Reviewer #2 (Public Review):

      Huang and colleagues present data from experiments assessing the role of cognitive inflexibility in the vulnerability to weight loss in the activity-based anorexia paradigm in rats. The experiments employ a novel in-home cage touchscreen system. The home cage touch screen system allows reduced testing time and increased throughput compared with the more widely used systems resulting in the ability to assess ABA following testing cognitive flexibility in relatively young female rats. The data demonstrate that, contrary to expectations, cognitive inflexibility does not predispose to greater ABA weight loss, but instead, rats that performed better in the reversal learning task lost more weight in the ABA paradigm. Prior ABA exposure resulted in poorer learning of the task and reversal. An additional experiment demonstrated that rats that had been trained in reversal learning resisted weight loss in the ABA paradigm. The findings are important and are clearly presented. They have implications for anorexia nervosa both in terms of potentially identifying those at risk also in understanding the high rates of relapse.

      Thanks for a great summary of the manuscript.

      Reviewer #3 (Public Review):

      Activity-based anorexia (ABA), which combines access to a running wheel and restricted access to food, is a most common paradigm used to study anorexic behavior in rodents. And yet, the field has been plagued by persistent questions about its validity as a model of anorexia nervosa (AN) in humans. This group's previous studies supported the idea that the ABA paradigm captures cognitive inflexibility seen in AN. Here they describe a fully automated touchscreen cognitive testing system for rats that makes it possible to ask whether cognitive inflexibility predisposes individuals to severe weight loss in the ABA paradigm. They observed that cognitive inflexibility was predictive of resistance to weight loss in the ABA, the opposite of what was predicted. They also reported reciprocal effects of ABA and cognitive testing on subsequent performance in the other paradigm. Prior exposure to the ABA decreased subsequent cognitive performance, while prior exposure to the cognitive task promoted resistance to the ABA. Based on these findings, the authors argue that the ABA model can be used to identify novel therapeutic targets for AN.

      The strength of this manuscript is primarily as a methods paper describing a novel automated cognitive behavioral testing system that obviates the need for experimentalist handling and single housing, which can interfere with behavioral testing, and accelerate learning on the task. Together, these features make it feasible to perform longitudinal studies to ask whether cognitive performance is predictive of behavior in a second paradigm during adolescence, a peak period of vulnerability for many psychiatric disorders. The authors also used machine learning tools to identify specific behaviors during the cognitive task that predicted later susceptibility to the ABA paradigm. While the benefits of this system are clear, the rigor and reproducibility of experiments using this paradigm would be enhanced if the authors provided clear guidelines about which parameters and analyses are most useful. In their absence, the large amount of data generated can promote p-hacking.

      The authors use their automated behavioral testing paradigm to ask whether cognitive inflexibility is a cause or consequence of susceptibility to ABA, an issue that cannot be addressed in AN. They provide compelling evidence that there are reciprocal effects of the two behavioral paradigms, but do not perform the controls needed to evaluate the significance of these observations. For example, the learning task involves sucrose consumption and food restriction, conditions that can independently affect susceptibility to the ABA. Similarly, the ABA paradigm involves exercise and restricted access to food, which can both affect learning.

      In the Discussion, the authors hypothesize that the ABA paradigm produces cognitive inflexibility and argue that uncovering the underlying mechanism can be used to identify new therapeutic targets for AN. The rationale for their claim of translational relevance is undermined by the fact that the biggest effect of the ABA paradigm is seen in the pair discrimination task, and not reversal learning. This pattern does not fit clinical observations in AN.

      In summary, the significance of this manuscript lies in the development of a new system to test cognitive function in rats that can be combined with other paradigms to explore questions of causality. While the authors clearly demonstrate that cognitive flexibility does not promote susceptibility to ABA, the experiments presented do not provide a compelling case that their model captures important features of the pathophysiology of AN.

      We thank the reviewer for this detailed review and note that we have now both explicitly defined the most useful parameters for analyses from the novel touchscreen system as well as removed some comparisons that could be considered superfluous. We argue that the additional information provided by the machine learning analyses are, at this stage, exploratory, and rather than reveal independent descriptions of behavioural change in ABA exposed versus naïve rats this information will aid in the generation of hypotheses to be tested in future studies. Therefore, the figures pertaining to these analyses have now been provided as supplements to Figures 3 & 4 (Figure 3-figure supplement 3; Figure 4-figure supplements 3&4). We have also clarified our intention to explore possible behavioural differences using this technique in the methods and discussion.

      We have also completed the essential control experiment, defined in the “essential revisions” section of this review, whereby we show only moderate impairments in reversal learning following a matched period of food restriction without rapid weight loss, suggesting that the substantial impairment seen following ABA exposure was not due to food restriction alone (see updated Figure 4 and supplements).

      However, we do not agree with this reviewer “that the biggest effect of the ABA paradigm is seen in the pair discrimination task” and point to the outcomes of both reciprocal experiments.

      In the first experiment, rats that went onto be susceptible or resistant to ABA did not differ on pairwise discrimination learning but specifically on performance at the reversal of reward contingencies (Figure 3B & E). Although this result was not in the hypothesised direction, this suggests that reversal learning specifically and not pairwise discrimination can differentiate those rats that go on to be susceptible to weight loss. We have included additional discussion in the text related to this finding (see line 490-497).

      In the second experiment, it is clear by the number of ABA exposed rats that were unable to learn the reversal component even after being able to learn pairwise discrimination, that flexible learning is more impaired by ABA. While it is true that ABA exposed rats that were successful in learning the reversal task were slower to learn the pairwise discrimination component than naïve rats (Figure 4E), this was not related to their ability to learn the reversal task overall – with equivalent learning rates in pairwise discrimination to ABA exposed rats that failed to learn the reversal component (Figure 4G-I). The absence of significant differences between ABA exposed and naïve animals in Figure 4F relates to the fact that the large proportion of ABA exposed animals never reached performance criterion in the reversal phase of the task and therefore data from these animals could not be included in the figure. This is where the trials completed within each session becomes important for interpretation (i.e. Figure 4-figure supplement 1M-O), whereby ABA exposure caused impaired responding specifically within the reversal phase of the task. The results text has been updated to better reflect this critical point.

      Overall, this suggests that the impairment in cognitive flexibility caused by ABA exposure was related both to an associative learning impairment (slower to learn PD than naïve animals) and an impairment in the integration of new and existing learning (failure to learn R1 in a large proportion of animals).

    1. Author Response

      Reviewer #1 (Public Review):

      Weaknesses

      1) I was curious as to how novel this setup is. Although I do not do head-fixed research myself, I thought there were already some open-source, relatively cheap systems available. I'm not sure how the current setup differs from those already available. Personally, even if this system involves only the wheel turning, as this is a truly operant response, that is novel enough for my liking.

      The novelty of the system stems from the synergistic combination of functionality, the low-cost open source nature of the design, and the breadth of behavioral procedures the system is able to support. The use of a wheel as an operant response was adapted from the International Brain Laboratory rig which has been used extensively for visual discrimination tasks. We adapted this wheel design to make the response closer to lever pressing through the use of the wheel brake, which ensures that subjects have to rotate the wheel in discrete rotational bouts rather than continuously spinning the wheel and potentially disengaging and allowing the wheel to rotate independently. There are no examples of systems capable of delivering 5+ solutions within a behavioral session or conducting valence testing with a modification of real-time place preference without the cost and complexity associated with virtual reality. We believe that the combination of factors, the flexibility and scalability of the system makes OHRBETS a novel and useful system for diverse motivation and consumption behaviors in head-fixed mice.

      2) It would be useful to have a bit more detail in the manuscript (not just on the GitHub link - in supplemental material perhaps?) on how to build such a system, just to get a sense of how difficult building such a system might be and how many components it has.

      With this submission we have included detailed assembly instructions as a supplement to the main manuscript and added reference to the file within the methods section. We have also added details, including time estimates, to the methods section.

      3) I wasn't sure how to feel about the comparisons across experimental set-ups in Figures 2 and 3. Usually, these sorts of comparisons are not considered statistically valid due to the many variables that differ between set-ups. However, I do see that the intent here is a bit different - i.e. is to show that despite all these alterations in variables the behavioural outputs are still highly correlated. However, without commenting on this intent, I did find these comparisons a little jarring to read.

      Thank you for highlighting this. We have added in a justification for why we measured the consistency in behavior measured with each head-fixed system.

      4) The only dataset I was not wholly convinced by was that in Figure 3 (real-time place preference and aversion). I think the authors have done the best job that they can of replicating such a procedure in a head-fixed mouse, but the head-fixed version is going to necessarily differ from the freely moving version in a fundamental way when the contextual cues and spatial navigation form part of the RTPT task. Giving a discrete cue, such as a tone, just is not a sufficient substitute for contextual cues, and I think the two types of task would engage fundamentally different brain cells and circuits (e.g. only the free-moving version is likely to engage place cells in the hippocampus).

      To avoid confusion regarding the place component of the real-time place preference assay name, we have renamed the head-fixed assay for assessing valence to Wheel-Time Preference (WTP). We have also added a full paragraph to the discussion where we outline the differences in the task requirements and relevant neuronal circuits between the freely-moving RTPP and head-fixed WTP. We understand that the head-fixed task is not a perfect analog of the RTPP task, however based on the similarity in the resulting time spent in the stimulation chamber/zone we believe that the WTP is able to replicate the valence assessment that many in the field uses RTPP to measure. We believe that the WTP with OHRBETS opens up new possibilities for assessing preference in head-fixed mice and this justifies keeping the figure within the main manuscript.

      To thoroughly address the potential confound of spatial information during the multi-spout experiment, we have added an additional supplemental figure (Figure 4- figure supplement 5) that depicts the proportion of trials with licking and added a paragraph to the discussion centered on the potential confound associated with learning the solution identity.

      5) Personally, I found having the statistics in a separate file confusing.

      Thank you for raising this concern. With our initial submission, we were concerned that including all of the statistics within the main text would make the paper difficult to read due to the extensive amount of statistics. With this submission, in addition to the statistics table, we have included statistics within the figure legends and main text where applicable.

      6) Line 589-594. Suggesting the medial/lateral shell recording results mean that the medial shell 'tracks value, and the range of values during the multi-spout consumption of gradients of NaCl is greater than the range of values during multi-spout consumption of gradients of sucrose" seems to engage in circular logic to me. That is, the authors should use behavioural data to infer what the animal is experiencing and whether it is a change in value, and/or a greater change in value during NaCl vs. sucrose consumption, and only then should they make an inference about what the larger medial shell response means.

      Thank you for identifying this potential site of confusion. To address this concern we have modified the language to better communicate our interpretation of the data.

      “If we assume that the range of values is greater during multi-spout consumption of gradients of NaCl compared to gradients of sucrose, as indicated by a greater range in licking behavior (Figure 8- Figure Supplement 4), then the greater range of dopamine release in the NacShM could imply that dopamine release in this structure tracks value.”

    1. Author Response

      Reviewer #1 (Public Review):

      Wang, Y. et al. investigated the role of TPL2 signaling in acute and chronic neuroinflammatory conditions using small molecule inhibitors and a TPL2 kinase-dead mutant mouse line. They find that TPL2 is upregulated by various brain-resident cells, including microglia, astrocytes, and endothelial cells, during neurodegenerative disease progression and following peripheral LPS injection. They show that upon pharmacological and genetic inhibition during acute LPS stimulation, pro-inflammatory cytokine concentration, microgliosis, and neuronal loss can be reversed. In chronic neuroinflammation, as seen in a tauopathy mouse model, the loss of TPL2 rescues reactive gliosis, immune cell infiltration, neurodegeneration, and cognitive health. Interestingly, TPL2 loss of function was not significantly beneficial in models of nerve injury and stroke. By analyzing their multiple sequencing datasets and those of other research teams, the authors find that TPL2 aids to upregulate transcripts for the DAM signature, immediate early genes, and astrocyte reactivity. These data build together to further emphasize the intricacy and importance of the immune component in neurodegeneration and other neuroinflammatory conditions.

      The conclusions of this paper are mostly well supported by their data, but further confirmation of sequencing results and microglia intrinsic mechanisms need to be expanded.

      1) In the discussion section, it will be important to highlight that TPL2 could also be directly contributing to tauopathy disease progression through its actions in brain-resident endothelial cells. They spend a lot of time characterizing the effects of TPL2 on in vitro microglial responses and do not adequately discuss the potential that their disease phenotypes in the tauopathy model have more to do with TPL2's ability to regulate BBB permeability or facets of endothelial biology. It will be important to highlight that there are various discrete cellular mechanisms (e.g. functions for TPL2 in microglia, endothelial cells, astrocytes, peripheral immune cells, etc.) that could be underlying the disease readouts seen in their global TPL2 kinase-dead mice. They should discuss this in the context of previous literature demonstrating roles for TPL2 in other non-microglial cell types (e.g. Nanou et al PMID: 34038728).

      Thank you for this comment. We agree that while TPL2 is most highly expressed in microglia in the brain, TPL2 expression in endothelial cells and other cell types could potentially contribute to the disease. We have added discussion of this to the manuscript including discussion of the Nanou et al paper which raises the possibility that the TPL2-dependent infiltration of peripheral immune cells in TauP301S mice could be due to regulation of the BBB by TPL2 activity in endothelial cells. We also discuss potential roles for TPL2 in the various other cell types. In addition, we have now added characterization of cell-autonomous TPL2-dependent phenotypes in cultured astrocytes and have provided additional analysis of TPL2-dependent changes in endothelial cells in the scRNAseq experiment in TauP301S mice.

      2) Hippocampal single-cell RNA sequencing led the authors to report that TLP2KD in the PS19 model of tauopathy reduced the number of T-cell and dendritic cell (DC) infiltrates into the brain. The authors should corroborate this finding with immunohistochemistry or flow cytometry to confirm the presence of changing CD4+, CD8+, and DC populations. Most notably, it is critical for them to enumerate the cell numbers in an effort to validate that there are indeed empirical, and not just proportional, reductions in these cell populations.

      Thank you for the suggestion. We have performed immunohistochemistry to examine T cells in fixed brain tissue sections. We have included the data for T cell staining in Figure 5-figure supplement 2. We focused the IHC analysis on staining for CD8+ T cells based on the substantially greater abundance of CD8+ T cells compared to CD4+ T cells or DC in the single cell data (Figure 5C, Figure 5-figure supplement 5) and the availability of an antibody that worked well in our hands. These results corroborate the single cell data by empirically showing significantly increased numbers of T cells in TauP301S mice and significantly reduced numbers in the TauP301S x TPL2KD mice (Figure 5-figure supplement 2).

      3) The authors concluded from Figure 3 that TPL2 plays a key role in in vivo microglia and astrocyte activation. Adding in an in vitro study, like those done in Figures 1, 2, and S4, that looks at a cell-autonomous role for TPL2 in astrocyte reactivity would strengthen this claim and rule out a microglial-independent pathway of TPL2 inflammation.

      Thank you for the suggestion. To investigate the potential cell-autonomous role of TPL2 in astrocytes, we cultured primary mouse astrocyte and stimulated astrocytes with either LPS or cytokines, in the absence or presence of TPL2 inhibitor and measured stimulation induced changes in cytokine release and gene expression. Data are included in Figure 3-figure supplement 1 and the results are discussed in the manuscript. In contrast to the broader TPL2-dependence of cytokine release by cultured microglia only a much more restricted set of cytokines exhibited TPL2-dependence in cultured astrocytes. Furthermore, RT-qPCR analysis of TPL2-dependent activated astrocyte genes identified in the LPS in vivo study found much less TPL2-dependent activation in cultured astrocytes. We discuss that these results suggest that the TPL2-dependent astrocyte activation observed in vivo was probably largely contributed to indirectly by the function of TPL2 in microglia, but there was also potentially some contribution of cell-autonomous function of TPL2 in astrocytes.

      4) Although the TPL2KD mouse line is a valuable tool to impair TPL2's function while retaining its expression, the researchers failed to comment on the potential effects a global mutation in TPL2 could have in their model systems. Peripheral immunological challenges, like their IP injections of LPS, could behave differently and affect the nervous system in a microglia-independent pathway if monocyte/macrophage signaling is also impaired.

      We agree that during peripheral immunological challenges TPL2 could affect the nervous system in a microglia-independent manner. We have added this point to the discussion.

      5) Oligodendrocytes and OPCs have comparable numbers of DEGs to astrocytes (Figure S11a). What is changing within their transcriptional profile?

      In this manuscript we focused on TPL2-dependent DEGs in the Tauopathy model, which were all in microglia. We agree the TPL2-independent changes in the TauP301S mice in other cell types are also interesting. This data set has been uploaded to public data repository (GSE180041) and analysis of the changes in oligodendrocytes has been performed from this data set, as well as other disease models, in a recent publication: “Disease-associated oligodendrocyte responses across neurodegenerative diseases” (PMID: 36001972).

    1. Author Response

      Reviewer #1 (Public Review):

      Strengths

      This paper is well situated theoretically within the habit learning/OCD literature. Daily training in a motor-learning task, delivered via smartphone, was innovative, ecologically valid and more likely to assay habitual behaviors specifically. Daily training is also more similar to studies with non-humans, making a better link with that literature. The use of a sequential-learning task (cf. tasks that require a single response) is also more ecologically valid. The in-laboratory tests (after the 1 month of training) allowed the researchers to test if the OCD group preferred familiar, but more difficult, sequences over newer, simpler sequences.

      The authors achieved their aims in that two groups of participants (patients with OCD and controls) engaged with the task over the course of 30 days. The repeated nature of the task meant that 'overtraining' was almost certainly established, and automaticity was demonstrated. This allowed the authors to test their hypotheses about habit learning. The results are supportive of the authors' conclusions.

      We truly appreciate the positive assessment of referee 1, particularly the consideration that our study is theoretically strong and that ‘the results are supportive of the authors' conclusions’. This is an important external endorsement of our conclusions, contrasting somewhat with the views of referee 2.

      Weaknesses

      The sample size was relatively small. Some potentially interesting individual differences within the OCD group could have been examined more thoroughly with a bigger sample (e.g., preference for familiar sequences). A larger sample may have allowed the statistical testing of any effects due to medication status.

      The authors were not able to test one criterion of habits, namely resistance to devaluation, due to the nature of the task

      We agree with the reviewer that the proof of principle established in our study opens new avenues for research into the psychological and behavioral determinants of the heterogeneity of this clinical population. However, considering the study timeline and the pandemic constraints, a bigger sample was not possible. Our sample can indeed be considered small if one compares it with current online studies, which do not require in-person/laboratory testing, thus being much easier to recruit and conduct. However, given the nature of our protocol (with 2 demanding test phases, 1-month engagement per participant and the inclusion of OCD patients without comorbidities only) and the fact that this study also involved laboratory testing, we consider our sample size reasonable and comparable to other laboratory studies (typically comprising on average between 30-50 participants in each group).

      This article is likely to be impactful -- the delivery of a task across 30 days to a patient group is innovative and represents a new approach for the study of habit learning that is superior to an inlaboratory approach.

      An interesting aspect of this manuscript is that it prompts a comparison with previous studies of goal-directed/habitual responding in OCD that used devaluation protocols, and which may have had their effects due to deficits in goal-directed behavior and not enhanced habit learning per se.

      Thank you for acknowledging the impact of our study, in particular the unique ability of our task to interrogate the habit system.

      Reviewer #2 (Public Review):

      In this study, the researchers employed a recently developed smartphone application to provide 30 days of training on action sequences to both OCD patients and healthy volunteers. The study tested learning and automaticity-related measures and investigated the effects of several factors on these measures. Upon training completion, the researchers conducted two preference tests comparing a learned and unlearned action sequences under different conditions. While the study provides some interesting findings, I have a few substantial concerns:

      1) Throughout the entire paper, the authors' interpretations and claims revolve around the domain of habits and goal-directed behavior, despite the methods and evidence clearly focusing on motor sequence learning/procedural learning/skill learning. There is no evidence to support this framing and interpretation and thus I find them overreaching and hyperbolic, and I think they should be avoided. Although skills and habits share many characteristics, they are meaningfully distinguishable and should not be conflated or mixed up. Furthermore, if anything, the evidence in this study suggests that participants attained procedural learning, but these actions did not become habitual, as they remained deliberate actions that were not chosen to be performed when they were not in line with participants' current goals.

      We acknowledge that the research on habit learning is a topic of current controversy, especially when it comes to how to induce and measure habits in humans. Therefore, within this context referee’s 2 criticism could be expected. Across disQnct fields of research, different methodologies have been used to measure habits, which represent relaQvely stereotyped and autonomous behavioral sequences enacted in response to a specific sQmulus without consideraQon, at the Qme of iniQaQon of the sequence, of the value of the outcome or any representaQon of the relaQonship that exists between the response and the outcome. Hence these are sQmulus-bound responses which may or may not require the implementaQon of a skill during subsequent performance. Behavioral neuroscienQsts define habits similarly, as sQmulus-response associaQons which are independent of reward or outcome, and use devaluaQon or conQngency degradaQon strategies to probe habits (Dickinson and Weiskrantz, 1985; Tricomi et al., 2009). Others conceptualize habits as a form of procedural memory, along with skills, and use motor sequence learning paradigms to invesQgate and dissect different components of habit learning such as acQon selecQon, execuQon and consolidaQon (Abrahamse et al., 2013; Doyon et al., 2003; Squire et al., 1993). It is also generally agreed that the autonomous nature of habits and the fluid proficiency of skills are both usually achieved with many hours of training or pracQce, respecQvely (Haith and Krakauer, 2018).

      We consider that Balleine and Dezfouli (2019) made an excellent attempt to bring all these different criteria within a single framework, which we have followed. We also consider that our discussion in fact followed a rather cautious approach to interpretation solely in terms of goaldirected versus habitual control.

      Referee 2 does not actually specify criteria by which they define habits and skills, except for asserting that skilled behavior is goal-directed, without mentioning what the actual goal of the implantation of such skill is in the present study: the fulfillment of a habit? We assume that their definition of habit hinges on the effects of devaluation, as a single criterion of habit, but which according to Balleine and Dezfouli (2019) is only 1 of their 4 listed criteria. We carefully addressed this specific criterion in our manuscript: “We were not, however, able to test the fourth criterion, of resistance to devaluation. Therefore, we are unable to firmly conclude that the action sequences are habits rather than, for example, goal-directed skills. Regardless of whether the trained action sequences can be defined as habits or goal-directed motor skills, it has to be considered…”. Therefore, we took due care in our conclusions concerning habits and thus found the referee’s comment misleading and unfair.

      We note that our trained motor sequences did in fact fulfil the other 3 criteria listed by Balleine and Dezfouli (2019), unlike many studies employing only devaluation (e.g. Tricomi et al 2009; Gillan et al 2011). Moreover, we cited a recent study using very similar methodology where the devaluation test was applied and shown to support the habit hypothesis (Gera et al., 2022).

      Whether the initiation of the trained motor sequences in experiment 3 (arbitration) are underpinned by an action-outcome association (or not) has no bearing on whether those sequences were under stimulus-response control after training (experiment 1). Transitions between habitual and goal-directed control over behavior are quite well established in the experimental literature, especially when choice opportunities become available (Bouton et al (2021), Frölich et al (2023), or a new goal-directed schemata is recruited to fulfill a habit (Fouyssac et al, 2022). This switching between habits and goal-directed responding may reflect the coordination of these systems in producing effective behavior in the real world.

      • Fouyssac M, Peña-Oliver Y, Puaud M, Lim NTY, Giuliano C, Everitt BJ, Belin D. (2021).Negative Urgency Exacerbates Relapse to Cocaine Seeking After Abstinence. Biological Psychiatry. doi: 10.1016/j.biopsych.2021.10.009

      • Frölich S, Esmeyer M, Endrass T, Smolka MN and Kiebel SJ (2023) Interaction between habits as action sequences and goal-directed behavior under time pressure. Front. Neurosci. 16:996957. doi: 10.3389/fnins.2022.996957

      • Bouton ME. 2021. Context, attention, and the switch between habit and goal-direction in behavior. Learn Behav 49:349– 362. doi:10.3758/s13420-021-00488-z

      2) Some methodological aspects need more detail and clarification.

      3) There are concerns regarding some of the analyses, which require addressing.

      We thank referee 2 for their detailed review of the methods and analyses of our study and for the helpful feedback, which clearly helps improve our manuscript. We will clarify the methodological aspects in detail and conduct the suggested analysis. Please see below our answers to the specific points raised.

      Introduction:

      4) It is stated that "extensive training of sequential actions would more rapidly engage the 'habit system' as compared to single-action instrumental learning". In an attempt to describe the rationale for this statement the authors describe the concept of action chunking, its benefits and relevance to habits but there is no explanation for why sequential actions would engage the habit system more rapidly than a single-action. Clarifying this would be helpful.

      We agree that there is no evidence that action sequences become habitual more readily than single actions, although action sequences clearly allow ‘chunking’ and thus likely engage neural networks including the putamen which are implicated in habit learning as well as skill. In our revised manuscript we will instead state: “we have recently postulated that extensive training of sequential actions could be a means for rapidly engaging the ‘habit system’ (Robbins et al., 2019)]”

      5) In the Hypothesis section the authors state: “we expected that OCD patients... show enhanced habit attainment through a greater preference for performing familiar app sequences when given the choice to select any other, easier sequence”. I find it particularly difficult to interpret preference for familiar sequences as enhanced habit attainment.

      We agree that choice of the familiar response sequence should not be a necessary criterion for habitual control although choice for a familiar sequence is, in fact, not inconsistent with this hypothesis. In a recent study, Zmigrod et al (2022) found that 'aversion to novelty' was a relevant factor in the subjective measurement of habitual tendencies. It should also be noted that this preference was present in patients with OCD. If one assumes instead, like the referee, that the familiar sequence is goal-directed, then it contravenes the well-known 'egodystonia' of OCD which suggests that such tendencies are not goal-directed.

      To clarify our hypothesis, we will amend the sentence to the following: “Finally, we expected that OCD patients would generally report greater habits, as well as attribute higher intrinsic value to the familiar app sequences manifested by a greater preference for performing them when given the choice to select any other, easier sequence”.

      A few notes on the task description and other task components:

      6) It would be useful to give more details on the task. This includes more details on the time/condition of the gradual removal of visual and auditory stimuli and also on the within practice dynamic structure (i.e., different levels appear in the video).

      These details will be included in the revised manuscript. Thank you for pointing out the need for further clarification of the task design.

      7) Some more information on engagement-related exclusion criteria would be useful (what happened if participants did not use the app for more than one day, how many times were allowed to skip a day etc.).

      This additional information will be added to the revised manuscript. If participants omitted to train for more than 2 days, the researcher would send a reminder to the participant to request to catch up. If the participant would not react accordingly and a third day would be skipped, then the researcher would call to understand the reasons for the lack of engagement and gauge motivation. The participant would be excluded if more than 5 sequential days of training were missed. Only 2 participants were excluded given their lack of engagement.

      8) According to the (very useful) video demonstrating the task and the paper describing the task in detail (Banca et al., 2020), the task seems to include other relevant components that were not mentioned in this paper. I refer to the daily speed test, the daily random switch test, and daily ratings of each sequence's enjoyment and confidence of knowledge.

      If these components were not included in this procedure, then the deviations from the procedure described in the video and Banca al. (2020) should be explicitly mentioned. If these components were included, at least some of them may be relevant, at least in part, to automaticity, habitual action control, formulation of participants' enjoyment from the app etc. I think these components should be mentioned and analyzed (or at least provide an explanation for why it has been decided not to analyze them).

      This is also true for the reward removal (extinction) from the 21st day onwards which is potentially of particular relevance for the research questions.

      The task procedure was indeed the same as detailed in Banca et al., 2020. We did not include these extra components in this current manuscript for reasons of succinctness and because the manuscript was already rather longer than a common research article, given that we present three different, though highly inter-dependent, experiments in order to answer key interrelated questions in an optimal manner. However, since referee 2 considers this additional analysis to be important, we will be happy to include it in the supplementary material of the revised manuscript.

      Training engagement analysis:

      9)I find referring to the number of trials including successful and unsuccessful trials as representing participants "commitment to training" (e.g. in Figure legend 2b) potentially inadequate. Given that participants need at least 20 successful trials to complete each practice, more errors would lead to more trials. Therefore, I think this measure may mostly represent weaker performance (of the OCD patients as shown in Figure 2b). Therefore, I find the number of performed practice runs, as used in Figure 2a (which should be perfectly aligned with the number of successful trials), a "clean" and proper measure of engagement/commitment to training.

      We acknowledge referee’s concern on this matter and agree to replace the y-axis variable of Figure 2b to the number of performed practices (thus aligning with Figure 2a). This amendment will remove any potential effect of weaker performance on the engagement measurement and will provide clearer results.

      10) Also, to provide stronger support for the claim about different diurnal training patterns (as presented in Figure 2c and the text) between patients and healthy individuals, it would be beneficial to conduct a statistical test comparing the two distributions. If the results of this test are not significant, I suggest emphasizing that this is a descriptive finding.

      We will conduct the statistical test and report accordingly.

      Learning results:

      11) When describing the Learning results (p10) I think it would be useful to provide the descriptive stats for the MT0 parameter (as done above for the other two parameters).

      Thank you for pointing this out. The descriptive stats for MT0 will be added to the revised version of the manuscript.

      12) Sensitivity of sequence duration and IKI consistency (C) to reward:

      I think it is important to add details on how incorrect trials were handled when calculating ∆MT (or C) and ∆R, specifically in cases where the trial preceding a successful trial was unsuccessful. If incorrect trials were simply ignored, this may not adequately represent trial-by-trial changes, particularly when testing the effect of a trial's outcome on performance change in the next trial.

      This is an important question. Our analysis protocol was designed to ensure that incorrect trials do not contaminate or confound the results. To estimate the trial-to-trial difference in ∆MT (or C) and ∆R, we exclusively included pairs of contiguous trials where participants achieved correct performance and received feedback scores for both trials. For example, if a participant made a performance error on trial 23, we did not include ∆R or ∆MT estimates for the pairs of trials 23-22 and 24-23. Instead of excluding incorrect trials from our analyses, we retained them in our time series but assigned them a NaN (not a number) value in Matlab. As a result, ∆R and ∆MT was not defined for those two pairs of trials. Similarly for C. This approach ensured that our analyses are not confounded by incremental or decremental feedback scores between noncontiguous trials. In the past, when assessing the timing of correct actions during skilled sequence performance, we also considered events that were preceded and followed by correct actions. This excluded effects such as post-error slowing from contaminating our results (Herrojo Ruiz et al., 2009, 2019). Therefore, we do not believe that any further reanalysis is required.

      • Ruiz MH, Jabusch HC, Altenmüller E. Detecting wrong notes in advance: neuronal correlates of error monitoring in pianists. Cerebral cortex. 2009 Nov 1;19(11):2625-39.

      • Bury G, García-Huéscar M, Bhattacharya J, Ruiz MH. Cardiac afferent activity modulates early neural signature of error detection during skilled performance. NeuroImage. 2019 Oct 1;199:704-17.

      13) I have a serious concern with respect to how the sensitivity of sequence duration to reward is framed and analyzed. Since reward is proportional to performance, a reduction in reward essentially indicates a trial with poor performance, and thus even regression to the mean (along with a floor effect in performance [asymptote]) could explain the observed effects. It is possible that even occasional poor performance could lead to a participant demonstrating this effect, potentially regardless of the reward. Accordingly, the reduced improvement in performance following a reward decrease as a function of training length described in Figure 5b legend may reflect training-induced increased performance that leaves less room for improvement after poor trials, which are no longer as poor as before. To address this concern, controlling for performance (e.g., by taking into consideration the baseline MT for the previous trial) may be helpful. If the authors can conduct such an analysis and still show the observed effect, it would establish the validity of their findings."

      Thank you for raising this point. Figure 5b illustrates two distinct effects of reward changes on behavioral adaptation, which are expected based on previous research.

      I. Practice effects: Firstly, we observe that as participants progress across bins of practice, the degree of improvement in behavior (reflected by faster movement time, MT) following a decrease in reward (∆R−) diminishes, consistent with our expectations based on previous work. Conversely, we found that ∆MT does not change across bins of practices following an increase in reward (∆R+). We appreciate the reviewer's suggestion regarding controlling for the reference movement time (MT) in the previous trial when examining the practice effect in the p(∆T|∆R−) and p(∆T|∆R+) distributions. In the revised manuscript, we will conduct the proposed control analysis to better understand whether the sensitivity of MT to score decrements changes across practice when normalising MT to the reference level on each trial. But see below for a preliminary control analysis.

      II. Asymmetry of the effect of ∆R− and ∆R+ on performance: Figure 5b also depicts the distinct impact of score increments and decrements on behavioural changes. When aggregating data across practice bins, we consistently observed that the centre of the p(∆T|∆R−) distribution was smaller (more negative) than that of p(∆T|∆R+). This suggests that participants exhibited a greater acceleration following a drop in scores compared to a relative score increase, and this effect persisted throughout the practice sessions. Importantly, this enhanced sensitivity to losses or negative feedback (or relative drops in scores) aligns with previous research findings (Galea et al., 2015; Pekny et al., 2014; van Mastrigt et al., 2020).

      We have conducted a preliminary control analysis to exclude the potential impact that reference movement time (MT) values could have on our analysis. We have assessed the asymmetry between behavioural responses to ∆R− and ∆R+ using the following analysis: We estimated the proportion of trials in which participants exhibited speed-up (∆T < 0) or slow-down (∆T > 0) behaviour following ∆R− and ∆R+ across different practice bins (bins 1 to 4). By discretising the series of behavioural changes (∆T) into binary values (+1 for slowing down, -1 for speeding up), we can assess the type of changes (speed-up, slow-down) without the absolute ∆T or T values contributing to our results. We obtained several key findings:

      • Consistent with expectations (sanity check), participants exhibited more instances of speeding up than slowing down across all reward conditions.

      • Participants demonstrated a higher frequency of speeding up following ∆R− compared to ∆R+, and this asymmetry persisted throughout the practice sessions (greater proportion of -1 events than +1 events). 53% events were speed-up events in the in the p(∆T|∆R+) distribution for the first bin of practices, and 55% for the last bin. Regarding p(∆T|∆R-), there were 63% speed-up events throughout each bin of practices, with this proportion exhibiting no change over time.

      • Accordingly, the asymmetry of reward changes on behavioural adaptations, as revealed by this analysis, remained consistent across the practice bins.

      Thus, these preliminary findings provide an initial response to referee 2 and offer valuable insights into the asymmetrical effects of positive/negative reward changes on behavioural adaptations. We plan to include these results in the revised manuscript, as well as the full control analysis suggested by the referee. We will further expand upon their interpretation and implications.

      14) Another way to support the claim of reward change directionality effects on performance (rather than performance on performance), at least to some extent, would be to analyze the data from the last 10 days of the training, during which no rewards were given (pretending for analysis purposes that the reward was calculated and presented to participants). If the effect persists, it is less unlikely that the effect in question can be attributed to the reward dynamics.

      The reviewer’s concern is addressed in the previous quesQon. Also, this analysis would not be possible because our Gaussian fit analyses use the Qme series of conQnuous reward scores, in which ∆R− or ∆R+ are embedded. These events cannot be analyzed once reward feedback is removed because we do not have behavioral events following ∆R− or ∆R+ anymore.

      15) This concern is also relevant and should be considered with respect to the sensitivity of IKI consistency (C) to reward. While the relationship between previous reward/performance and future performance in terms of C is of a different structure, the similar potential confounding effects could still be present.

      We will conduct this analysis for the revised manuscript, similarly to the control analysis suggested by referee 2 on MT. Our preliminary control analysis, as explained above, suggests that the fundamental asymmetry in the effect of ∆R+ and ∆R+ on behavioral changes persists when excluding the impact of reference performance values in our Gaussian fit analysis.

      16) Another related question (which is also of general interest) is whether the preferred app sequence (as indicated by the participants for Phase B) was consistently the one that yielded more reward? Was the continuous sequence the preferred one? This might tell something about the effectiveness of the reward in the task.

      We have now conducted this analysis. There is in fact no evidence to conclude that the continuously rewarded sequence was the preferred one. The result shows that 54.5% of HV and 29% of the OCD sample considered the continuous sequence to be their preferred one. Of note, this preference may not necessarily be linked to the trial-by-trial reward sensitive analysis. The latter assesses how learning may be affected by reward. The overall preference may be influenced by many other factors, such as, for example, the aesthetic appeal of particular combinations of finger movements.

      Regarding both experiments 2 and 3:

      17) The change in context in experiment 2 and 3 is substantial and include many different components. These changes should be mentioned in more detail in the Results section before describing the results of experiments 2 and 3.

      Following referee’s advice, we will move these details (currently written in the Methods section) to the Results section, when we introduce Phase B and before describing the results of experiments 2 and 3.

      Experiment 2:

      18) In Experiment 2, the authors sometimes refer to the "explicit preference task" as testing for habitual and goal-seeking sequences. However, I do not think there is any justification for interpreting it as such. The other framings used by the authors - testing whether trained action sequences gain intrinsic/rewarding properties or value, and preference for familiar versus novel action sequences - are more suitable and justified. In support of the point I raised here, assigning intrinsic rewarding properties to the learned sequences and thereby preferring these sequences can be conceptually aligned with goal-directed behavior just as much as it could be with habit.

      We clearly defined the theoretical framing of experiment 2 as a test of whether trained action sequences gain intrinsic value and we are pleased to hear that the referee agrees with this framing. If the referee is referring to the paragraph below (in the Discussion), we actually do acknowledge within this paragraph that a preference for the trained sequences can either be conceptually aligned with a habit OR a goal-directed behavior.

      “On the other hand, we are describing here two potential sources of evidence in favor of enhanced habit formation in OCD. First, OCD patients show a bias towards the previously trained, apparently disadvantageous, action sequences. In terms of the discussion above, this could possibly be reinterpreted as a narrowing of goals in OCD (Robbins et al., 2019) underlying compulsive behavior, in favor of its intrinsic outcomes”

      This narrowing of goals model of OCD refers to a hypothetically transiQonal stage of compulsion development driven by behavior having an abnormally strong, goal-directed nature, typically linked to specific values and concerns.

      If the referee is referring to the penulQmate sentence of hypothesis secQon, this has been amended in response to Q5. We cannot find any other possible instances in this manuscript stating that experiment 2 is a test of habitual or goal-directed behavior.

      Experiment 3:

      19) Similar to Experiment 2, I find the framing of arbitration between goal-directed/habitual behavior in Experiment 3 inadequate and unjustified. The results of the experiment suggest that participants were primarily goal-directed and there is no evidence to support the idea that this reevaluation led participants to switch from habitual to goal-directed behavior.

      Also, given the explicit choice of the sequence to perform participants had to make prior to performing it, it is reasonable to assume that this experiment mainly tested bias towards familiar sequence/stimulus and/or towards intrinsic reward associated with the sequence in value-based decision making.

      This comment is aligned with (and follows) the referee’s criticism of experiment 1 not achieving automatic and habitual actions. We have addressed this matter above, in response 1 to Referee 2.

      Mobile-app performance effect on symptomatology: exploratory analyses:

      20) Maybe it would be worth testing if the patients with improved symptomatology (that contribute some of their symptom improvement to the app) also chose to play more during the training stage.

      We have conducted analysis to address this relevant question. There is no correlation between the YBOCS score change and the number of total practices, meaning that the patients who improved symptomatology post training did not necessarily chose to play the app more during the training stage (rs = 0.25, p = 0.15). Additionally, we have statistically compared the improvers (patients with reduced YBOCS scores post-training) and the non-improvers (patients with unchanged or increased YBOCS scores post-training) in their number of app completed practices during the training phase and no differences were observed (U = 169, p = 0.19).

      Discussion:

      21) Based on my earlier comments highlighting the inadequacy and mis-framing of the work in terms of habit and goal-directed behavior, I suggest that the discussion section be substantially revised to reflect these concerns.

      We do not agree that the work is either "inadequate or mis-framed" and will not therefore be substantially revising the Discussion. We will however clarify further the interpretation we have made and make explicit the alternative viewpoint of the referee. For example, we will retitle experiment 3 as “Re-evaluation of the learned action sequence: possible test of goal/habit arbitration” to acknowledge the referee’s viewpoint as well as our own interpretation.

      22) In the sentence "Nevertheless, OCD patients disadvantageously preferred the previously trained/familiar action sequence under certain conditions" the term "disadvantageously" is not necessarily accurate. While there was potentially more effort required, considering the possible presence of intrinsic reward and chunking, this preference may not necessarily be disadvantageous. Therefore, a more cautious and accurate phrasing that better reflects the associated results would be useful.

      We recognize that the term "disadvantageously" may be semantically ambiguous for some readers and therefore we will remove it.

      Materials and Methods:

      23) The authors mention: "The novel sequence (in condition 3) was a 6-move sequence of similar complexity and difficulty as the app sequences, but only learned on the day, before starting this task (therefore, not overtrained)." - for the sake of completeness, more details on the pre-training done on that day would be useful.

      Details of the learning procedure of the novel sequence (in condition 3, experiment 3) will be provided in the methods of the revised version of the manuscript.

      Minor comments:

      24) In the section discussing the sensitivity of sequence duration to reward, the authors state that they only analyzed continuous reward trials because "a larger number of trials in each subsample were available to fit the Gaussian distributions, due to feedback being provided on all trials." However, feedback was also provided on all trials in the variable reward condition, even though the reward was not necessarily aligned with participants' performance. Therefore, it may be beneficial to rephrase this statement for clarity.

      We will follow this referee’s advice and will rephrase the sentence for clarity.

      25) With regard to experiment 2 (Preference for familiar versus novel action sequences) in the following statement "A positive correlation between COHS and the app sequence choice (Pearson r = 0.36, p = 0.005) further showed that those participants with greater habitual tendencies had a greater propensity to prefer the trained app sequence under this condition." I find the use of the word "further" here potentially misleading.

      The word "further" will be removed.

    1. Author Response:

      The following is the authors' response to the original reviews.

      Thank you for considering our manuscript “An Unexpected Role of Neutrophils in Clearing Apoptotic Hepatocytes In Vivo". We also thank the referees for their review. We have addressed their comments in detail and added new data to buttress our conclusions.

      Reviewer #1 (Public Review):

      This study by Cao et al. demonstrates role of Neutrophil in clearing apoptotic hepatocytes by directly burrowing into the apoptotic hepatocytes and ingesting the effete cells from inside without causing inflammation. The authors applied intravital microscopy, Immunostaining and electron microscopy to visualize perforocytosis of neutrophil in hepatocytes. They also found that neutrophil depletion impairs the clearance of apoptotic hepatocytes causing impaired liver function and generation of autoantibodies, implying a role of defective neutrophil- mediated clearance of apoptotic cells in Autoimmune Liver disease. The experiments were well designed and conducted, the results were reasonably interpreted, and the manuscript was clearly written with logical inputs.

      Thank you for your comments.

      One weak point is that the signals/mechanisms that determine why neutrophil specifically target apoptotic hepatocytes in liver and no other organs or cells is not clearly understood.

      We are still studying why neutrophils selectively phagocytose hepatocytes but not HUVEC or 293 cells. We have some intriguing preliminary data so far showing that apoptotic 293 cells have no significant increase of IL-1β production as compared with their nonapoptotic controls; both apoptotic 293 cells and HUVECs do not have increased surface selectin proteins (new Fig. S3C).

      Reviewer #2 (Public Review):

      […] By examination of HE-stained, noncancerous liver tissue sections from patients with hepatocellular carcinoma and hepatic hemangioma, the authors observed that cells with neutrophil nuclear morphology were inside apoptotic hepatocytes. The authors also further characterized this observation by staining the sections with neutrophil and apoptosis markers. In addition, the authors observed the same phenomena in mouse livers using intravital microscopy, which also recorded the time course of the disappearance of a neutrophil-associated apoptotic cell. The author went on further characterization of neutrophil-mediated efferocytosis of cultured hepatic cells in vitro and demonstrated the process was specific for apoptotic hepatic cells, but not HEK293 or endothelial cells. The in vitro system was then used to characterize the molecular bases for neutrophil-mediated efferocytosis of apoptotic hepatic cells. The evidence was provided to suggest that IL1b and IL-8 released from and selectins upregulated in apoptotic hepatic cells were important. Importantly, the authors used two methods to deplete the neutrophils and showed that the neutrophil depletion increased apoptotic cells in livers. Finally, the authors showed that neutrophil depletion caused defects in liver function parameters. At the end, the authors presented evidence to suggest that AIL disease may be due to defective neutrophils that fail to perform "perforocytosis."

      Thank you for your comments.

      Point #1. Although the evidence in its totality indicates that neutrophils burrow into apoptotic hepatocytes, the significance of this "perforocytosis" phenomenon and the circumstances under which it may occur remain to be better defined. In both neutrophil depletion models, the TNUEL-positive cells were not definitively identified rather than assuming they were hepatocytes.

      Anatomically, the apoptotic hepatocytes are randomly distributed in the hepatic plate from the central vein to the portal region (please refer to the image below: hematoxylin staining of liver tissues, black arrowhead indicates perforocytosis sites).

      Author response image 1.

      Histologically, the structure of liver/hepatic lobe are well defined, and the cell types in the livers are easy to histologically identify based on their location, morphology and the relationship to hepatic plate and sinusoid. In addition, the hepatocytes are well known for its rich cytoplasmic components, cellular connection and prominent large round nucleus. Thus, hepatocytes are very easy to identify even without using specific molecular markers such as E-cadherin or albumin. Based on these characteristics, the TUNEL positive cells that we displayed in Fig. 5A are apoptotic hepatocytes.

      Point #2. In addition, there are discrepancies in the number of neutrophils and apoptotic cells in mouse liver studies; Fig. 2a WT (many neutrophils; locations unclear) vs Fig. 5A Ctr (a few neutrophils that appear in or near a vessel), and Fig. 2a DTR (a few apoptotic cells) vs Fig. 5A Depletion (many apoptotic cells).

      In response, Fig. 2A demonstrates a larger area of the mouse liver (bar, 100 µm), while Fig. 5A exhibits a relatively small area of the liver sample (bars, 20 µm for Ctrl and 15 µm for DTR). Similarly, apoptotic cells in Fig. 2A DTR need to zoom in to quantify. We apologize for the confusion, and we did quantify the apoptotic cells in Fig.2A WT vs DTR (see the bar graph next to the images in Fig. 2A).

      Point #3. Importantly, Fig 5a Ctrl, which is presumably a section from a mouse without any surgical treatment or without inflammation, the sole TUNNEL signal does not appear to be associated with neutrophils. Does this mean that "perforocytosis" primarily occurs in inflamed livers (Of note, human liver samples in Fig 1 are from patient with tumors. There should be inflammation in the livers of these patients).

      In Fig 5A Ctrl, the TUNEL signal indicates apoptotic hepatocytes. The neutrophils (stained with anti-NE antibody, red) are associated with the apoptotic hepatocyte (Fig. 5A). We observed that perforocytosis primarily occurs in normal noninflamed livers.

      Human liver samples in Fig 1 are from patient with tumors, hence it is possible that neutrophil burrowing is somehow associated with cancerous/inflammatory livers as the reviewer pointed out. This possibility was ruled out based on our method of sample preparation and experimental results themselves.

      1) Both noncancerous and cancerous liver samples were sliced based on the anatomical appearance of normal and cancer tissues (differences were rather easy to identify, and these samples were prepared by highly experienced pathologists from the Liver Cancer Center of Zhongshan Hospital, Shanghai). Furthermore, the results were confirmed by determining whether the surrounding tissue contained microlesions characteristic of metastatic tumors. We only counted apoptotic hepatocytes in noncancerous regions having normal liver lobes and morphologically normal hepatocytes, plates, sinusoid and Kupffer cells. We also excluded hepatoma, chronic inflammatory regions, and necrotic regions.

      2) We did not observe recruitment of neutrophils into apoptotic HCC cells, indicating that the clearance of apoptotic cancer cells was not mediated by neutrophils (unpublished observations).

      3) It is hard for us to obtain normal human liver samples; however, we did study samples from patients with liver hemangioma characterized by aberrant vasculature in livers but with normal liver functions and the structure of hemangioma livers that we analyzed are nearly identical to a healthy liver in histology (these liver samples contained no cancerous regions and there was no apparent cirrhosis or inflammation). And here we obtained similar results (these are shown in Fig. 1B; a total of 40 apoptotic hepatocytes were examined).

      4) Our data from normal mouse livers, isolated primary cells (hepatocytes and neutrophils) and cell lines (NCTC and HL60) all confirmed the central findings in this paper (Fig. 2, 3).

      Point #4. The data on human AIL patient neutrophils raises more questions: how many AIL patients have been examined? Do these AIL neutrophils lack IL1, IL8 receptors, and/or selectin ligands? Are there increases in apoptotic hepatocytes in AIL patients?

      In response, we have analyzed 16 AIL patient samples (see table below).

      Author response table 1.

      We performed microarray assay to screen the differential gene expression of neutrophils from normal and liver autoimmune patients. We have identified that IL-1β receptor, IL1R1 and selectin binding protein, P- selectin glycoprotein ligand 1 (PSGL-1) were all decreased in neutrophils from the AIL patients (new Fig 7D). These findings are consistent with our observations using cells and mouse models.

      Point #5. Additionally, the overall numbers of apoptotic cells even in the absence of neutrophils are rare; thus, it is questionable that such rarity of apoptotic cells can cause significant AIL phenotypes.

      We quantified apoptotic liver cells in percentages instead of overall numbers (Fig. 5, we were not able to precisely calculate the overall numbers, which could be large since billions of cells undergoing apoptosis daily). Depletion of neutrophils increased the percentage of apoptotic cells about 5-6-fold in livers, and we observed the generation of autoantibodies (Fig. 6).

      Reviewer #1 (Recommendations For The Authors):

      This study by Cao et al. was well designed and conducted, the results were reasonably interpreted, and the manuscript was clearly written with logical inputs.

      It would further gain the significance of this study if authors could address the following questions:

      1.  What are the mechanisms/ signals that prevents AIL Liver neutrophils from burrowing into hepatocytes?

      We have identified that IL-1β receptor, IL1R1 and selectin binding protein, P-selectin glycoprotein ligand 1 (PSGL-1) were all decreased in neutrophils from the AIL patients (new Fig 7D).

      2.  Have authors looked if autoantigens expressed on hepatocytes, which are often found in autoimmune liver disease trigger signaling events that activate neutrophils to burrow?

      Thank you for the comment, we have not examined autoantigens expressed in hepatocytes and plan to carry out this research as suggested.

      3.  Is perforocytosis observed in apoptotic hepatocytes induced by different agents like LPS, TNF-a , rapamycin, alcohol etc?

      We did not observe perforocytosis in LPS or TNF-a treated hepatocytes. One possible reason is that LPS or TNF-a we used induced massive necrosis instead of apoptosis. Howere, we did observe neutrophil perforocytosis in FasL-induced apoptotic hepatocytes (unpublished observations).

      Reviewer #2 (Recommendations For The Authors):

      In addition to the questions raised in the "Public review" section, the authors are also recommended to address the following issues:

      1) Why is CD11b+ not associated with the apoptotic sites as neutrophils express CD11b

      We have co-immunostained human liver samples with CD11b antibody (from Abcam: ab133357) and MPO antibody (from R&D: AF3667) and observed that tissue infiltrating neutrophils in livers have low to undetectable levels of CD11b expression (please refer the image below; white arrowheads point to neutrophils). Few CD11b+ cells in liver tissues express MPO (the CD11b+ cells are mostly macrophages, unpublished observations).

      Based on these data, we conclude that CD11b is hardly expressed in neutrophils inside livers.

      Author response image 2.

      2) Can TUNEL signals in Fig. S1C be from apoptotic neutrophils?

      In response, the fragmentation of nucleus is a hallmark of apoptosis hence TUNEL staining will uniformly label all fragmented parts of apoptotic nucleus. The nucleus of NE+ neutrophils are not labelled by TUNEL staining in Fig. S1C. The TUNEL+ nuclear fragments seen inside neutrophils are nuclear debris of apoptotic hepatocytes phagocytosed by neutrophils (Fig. S1C).

      3) The Fig 2B experiment may be done with induced apoptosis so that neutrophil burrowing steps may be recorded from the very beginning and a better time course for the entire process can be assessed.

      Thank you for the suggestions, we had tried many times with various conditions, yet still had no success to capture the very beginning of perforocytosis in vivo. We are continuing to work on this.

      4) In "we found thatU937 cells exhibited much lower phagocytosis of apoptotic NCTC cells than did HL60 cells (Fig. S2B, C)," the citation should be only S2C

      Thank you for pointing this out, we have corrected this in the manuscript.

      5) Both neutrophil depletion models cause neutrophil death, which may complicate the interpretation of the liver function and AIL disease phenotypes. A neutropenic model such as G-CSFR−/− or Cebpe-/- mice may be used to avoid the caveat of antibody/DTR-dependent depletion models.

      Thank you for this thoughtful suggestion. We have also induced AIL phenotypes in mice by using α- Galcer. α-Galcer did not cause neutrophil death but impaired neutrophil perforocytosis and futher generated AIL phenotypes in mice (unpublished observations). We plan to perform the simiarl experiments in G-CSFR−/− or Cebpe−/− mice as the reviewer suggested.

      6) RNAi silencing experiments need additional controls for off-target effects

      These RNAi silencing constructs were purchased from Santa Cruz Biotechnology and the off-target effects have been tested by the company. No significant off-target effects have been detected according to the manufacture report.

    1. Author Response

      Joint Public Review

      The molecular composition of synaptic vesicles (SVs) has been defined in substantial detail, but the function of many SV-resident proteins are still unknown. The present study focused on one such protein, the 'orphan' SV-resident transporter SLC6A17. By utilizing sophisticated and extensive mouse genetics and behavioral experiments, the authors provide convincing support for the notion that certain SLC6A17 variants cause intellectual disability (ID) in humans carrying such genetic variations. This is an important and novel finding. Furthermore, the authors propose, based on LCMS analyses of isolated SVs, that SLC6A17 is responsible for glutamine (Gln) transport into SVs, leading to the provocative idea that Gln functions as a neurotransmitter and that deficits in Gln transport into SVs by SLC6A17 represents a key pathogenetic mechanism in human ID patients carrying variants of the SLC6A17 gene.

      This latter aspect of the present paper is not adequately supported by the experimental evidence so that the main conceptual claims of the study appear insufficiently justified at this juncture. Key weaknesses are as follows:

      A) Detection of Gln, along with classical neurotransmitters such as glutamate, GABA, or ACh, in isolated SV fractions does not prove that Gln is transported into SVs by active transport. Gln is quite abundant in extracellular compartments. Its appearance in SV samples can therefore also be explained by trapping in SVs during endocytosis, presence in other - contaminating - organelles, binding to membrane surfaces, and other processes. Direct assays of Gln uptake into SVs, which have the potential to stringently test key postulates of the authors, are lacking.

      We have conducted multiple control experiments to exclude the possibility of contamination.

      1). Western blot analysis of SLC6A17-HA immunoisolation (Figure 4D and Figure 4—figure supplement 1) has shown that this faction contained little other organelles and membranes. These results are strong argument that contaminations in our isolated fraction were in very low level.

      2). We then examined the proportion of SLC6A17 localized SVs through quantifying the co-localization of Syp and SLC6A17 by anti-Syp immunoisolation in Slc6a17-2A-HA-iCre mice. We found that SLC6A17 is predominately localized on SVs (with 98.7% compared with classical SV marker, Author response image 1A). This further showed that immunoisolated SLC6A17 fraction was mainly composed of SVs.

      3). We also analyzed other SV marker proteins such as Syt1 and Syb2 for IP-LC-MS, all results supported Gln enrichment (Author response image 1B).

      4). Importantly, immunoisolation of the SLC6A17P633R-HA protein, which caused SLC6A17 mislocalization away from the SVs (Figure 3B and Figure 3—figure supplement 1C, D), showed no Gln enrichment (Author response image 1C).

      5). Moreover, immunoisolation of AAV-PHP.eb overexpressed cytoplasmic membrane Gln transporter SLC38A1-HA did not show Gln enrichment (Author response image 1D).

      6). We also tested whether trafficking organelles such as the lysosome could enrich Gln. As is shown in Author response image 1E, immunoisolation of AAV-PHP.eb overexpressed TMEM192-HA did not show Gln enrichment. For active transport, we tested the effects of proton dissipator FCCP, v-ATPase inhibitor NEM and ΔpH dissipator nigercin. As is shown in Author response image 1F, 1G, Gln level was reduced by these inhibitors, supporting active transport of Gln.

      Author response image 1.

      Control experiments to test for contamination. A. Anti-Syp immunoisolation in Slc6a17-2A-HA-iCre mice. B. Quantification of Gln level in anti-Syt1 and anti-Syb2 immunoisolated fraction. C. Anti-HA immunoisolation in SLC6A7-2A-HA and anti-Slc6a17P633R mice. D. Anti-HA immunoisolation in AAV-PHP.eb-hSyn-SLC38A1-HA overexperssion mice. E. Anti-HA immunoisolation in AAV-PHP.eb-hSyn-TMEM192-HA overexperssion mice. F. Anti-HA immunoisolation in SLC6A7-2A-HA mice under FCCP (50 μM) and NEM (200 μM). G. Anti-Syp immunoisolation in wild type mice under FCCP (50 μM) and Nigercin (20 μM).

      B) The authors generated multiple potentially very useful genetic tools and models. However, the validation of these models is incomplete. Most importantly, it remains unclear whether the different mutations affect SLC6A17 expression levels, subcellular localization, or the expression and trafficking of other SV and synapse components.

      The verification of transgenic mouse line is described in the Material and Methods section of our manuscript. There are numerous literatures published for CRISPR mediated gene editing in animals and the off-target effect of CRISPR-Cas9 system is widely studied with optimized design tools developed by many groups (Platt et al., 2014; Chu et al., 2015, 2016; Liu et al., 2017; Gemberling et al., 2021; Singh et al., 2022). The gRNAs used for animal generation were chosen carefully based on publically available tools. Apart from basic genomic PCR sequencing of target regions of all gene edited mouse models, Southern blots were performed by Biocytogen company for Slc6a17-HA-2A-iCre and Slc6a17P633R mice to rule out random insertions. Expression levels in Slc6a17-KO and Slc6a17P633R mice were not affected, as shown in Figure R2. HA-tagged protein in Slc6a17-HA-2A-iCre and Slc6a17P633R mice were detected by immunoisolation, immunofluorescence, and fractionation (Figure 3, 4, Figure 3—figure supplement 1, Figure 4—figure supplement 1). Both showed localizations expected from previous reports ().

      C) Apart from the caveats mentioned above regarding Gln uptake into SVs, the data interpretation provided by the authors lacks stringency with respect to the biophysics of plasma membrane and SV transporters.

      The biophysics of SLC6A17 was carefully studied (Para et al 2008; Zaia and Reimer, 2009). Our work focused on in vivo biochemical results, not biophysics.

      Author response image 2.

      Verification of genetic mouse models. A. q-PCR verification of Slc6a17-KO mice; B. q-PCR verification of Slc6a17P633R mice; C. Example of genomic primer design for Slc6a17-HA-2A-iCre mice founder mice screen; D. Example of genomic PCR for Slc6a17-HA-2A-iCre mice founder mice screen; E. Southern blot performed for Slc6a17-HA-2A-iCre mice.

      Reference

      Chu, Van Trung et al. “Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells.” Nature biotechnology vol. 33,5 (2015): 543-8. doi:10.1038/nbt.3198

      Chu, Van Trung, et al. "Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygotes." BMC biotechnology 16.1 (2016): 1-15.

      Gemberling, Matthew P et al. “Transgenic mice for in vivo epigenome editing with CRISPR-based systems.” Nature methods vol. 18,8 (2021): 965-974. doi:10.1038/s41592-021-01207-2

      Liu, Edison T., et al. "Of mice and CRISPR: The post‐CRISPR future of the mouse as a model system for the human condition." EMBO reports 18.2 (2017): 187-193.

      Madisen, Linda, et al. "A robust and high-throughput Cre reporting and characterization system for the whole mouse brain." Nature neuroscience 13.1 (2010): 133-140.

      Parra, Leonardo A., et al. "The orphan transporter Rxt1/NTT4 (SLC6A17) functions as a synaptic vesicle amino acid transporter selective for proline, glycine, leucine, and alanine." Molecular pharmacology 74.6 (2008): 15211532.

      Platt, R.J., Chen, S., Zhou, Y., Yim, M.J., Swiech, L., Kempton, H.R., Dahlman, J.E., Parnas, O., Eisenhaure, T.M., Jovanovic, M., et al. (2014). CRISPR-Cas9 knockin mice for genome editing and cancer mode Yang, Hui, Haoyi Wang, and Rudolf Jaenisch. "Generating genetically modified mice using CRISPR/Cas-mediated genome engineering." Nature protocols 9.8 (2014): 1956-1968.ling. Cell 159, 440-455.

      Singh, Surender et al. “Opportunities and challenges with CRISPR-Cas mediated homologous recombination based precise editing in plants and animals.” Plant molecular biology, 10.1007/s11103-022-01321-5. 31 Oct. 2022, doi:10.1007/s11103-022-01321-5

      Zaia, K.A., and Reimer, R.J. (2009). Synaptic vesicle protein NTT4/XT1 (SLC6A17) catalyzes Na+-coupled neutral amino acid transport. J Biol Chem 284, 8439-8448.

    1. Author Response

      eLife assessment

      This study assesses homeostatic plasticity mechanisms driven by inhibitory GABAergic synapses in cultured cortical neurons. The authors report that up- or down-regulation of GABAergic synaptic strength, rather than excitatory glutamatergic synaptic strength, is critical for homeostatic regulation of neuronal firing rates. The reviewers noted that the findings are potentially important, but they also raised questions. In particular, the evidence supporting the findings is currently incomplete and demonstration of independent regulation of mEPSCs and mIPSCs is a necessary experiment to support the major claims of the study.

      We appreciate the detailed, thoughtful assessment of our paper by the reviewers and editors and will submit a revised version in the future that addresses the reviewers’ comments as detailed below in response to each concern. We will include a more open discussion of alternative possibilities. Further, we will repeat the optogenetic experiments assessing AMPAergic scaling in our mouse cortical cultures in order to demonstrate independent regulation of mEPSCs and mIPSCs as suggested.

      Reviewer #1 (Public Review):

      In the manuscript titled "GABAergic synaptic scaling is triggered by changes in spiking activity rather than transmitter receptor activation," the authors present an investigation of the role of GABAergic synaptic scaling in the maintenance of spike rates in networks of cultured neurons. Their main findings suggest that GABAergic scaling exhibits features consistent with a key homeostatic mechanism that contributes to the stability of neuronal firing rates. Their data demonstrate that GABAergic scaling is multiplicative and emerges when postsynaptic spike rates are altered. Finally, their data suggest that, in contrast to their prior data on glutamatergic scaling, GABAergic scaling is driven by spike rates. The authors set the paper up as an argument that GABAergic scaling, rather than glutamatergic scaling, serves as the critical homeostatic mechanism for spike rate regulation.

      While the paper is ambitious in its rhetorical scope and certainly presents intriguing findings, there are several serious concerns that need to be addressed to substantiate the interpretations of the data. For example, the CTZ data do not support the interpretations and conclusions drawn by the authors. Summarily, the authors argue that GABAergic scaling is measuring spiking (at the time scale of the homeostatic response, which they suggest is a key feature of a homeostat) yet their data in figure 5B show more convincingly that CTZ does not influence spiking levels - only one out of four time points is marginally significant (also, I suspect that the bootstrapping method mentioned in line 454-459 was conducted as a pairwise comparison of distributions. There is no mention of multiple comparisons corrections, and I have to assume that the significance at 3h would disappear with correction).

      We certainly understand the criticism here (similar to reviewer 2’s third point). In our resubmission we will do a better job discussing these complications, which we now summarize. First, we are presenting our entire dataset to be as transparent as possible. Unlike most synaptic scaling studies (including our own) that apply drugs to alter activity and assess mPSC amplitude at the final time point, here we are actually showing CTZ’s effect on spiking activity within the culture over time. This is critical because it has informed us of the drug’s true effect on spiking, the variability that is associated with these perturbations, and the ability and timing of the cultured network to homeostatically recover initial levels. This was important because it revealed that the drugs do not always influence activity in the way we assume, and this provides greater context to our results. Second, we are showing all of our data, and presenting it using estimation statistics which go beyond the dichotomy of a simple p value yes or no (Ho J, Tumkaya T, Aryal S, Choi H, Claridge-Chang A. 2019. Moving beyond P values: data analysis with estimation graphics. Nat Methods 16: 565-66). Estimation statistics have become a more standard statistical approach in the last 15 years and is the preferred method for the Society for Neuroscience’s eNeuro Journal. This method shows the effect size and the confidence interval of the distribution. For the 3 hr time point in Fig. 5B the CTZ/ethanol vs. ethanol data points exhibit very little overlap and the effect size demonstrates a near doubling of spike frequency, and the confidence interval shows a clear separation from 0. This was a pairwise comparison as we compared values at each time point after the addition of ethanol or ethanol/CTZ. Third, the plots illustrate an upward trend in spike frequency at 1 and 6 hrs, but that there is also clear variability. It is important to note that while these recordings help us to understand effects on spiking across the cultured network, they cannot directly speak to spiking activity in the principal neurons that we target. This complication along with the variability inherent in these cultures could make simple comparisons difficult to interpret. Regardless, we do see some increase in spiking with CTZ and we clearly see increases in mIPSC amplitude, thus providing some support for the idea that spiking could be a critical player in terms of GABAergic scaling, particularly when put in the context of our other findings. However, it is important to recognize that something other than total spike rate may contribute to GABAergic scaling, such as the pattern of spiking that produces a particular calcium transient, and this will be discussed in the resubmission.

      Then, the fact that TTX applied on top of CTZ drives a increase in mIPSC amplitude is interpreted as a conclusive demonstration that GABAergic scaling is sensing spiking. It is inevitable, however, that TTX will also severely reduce AMAP-R activation - a very plausible alternative explanation is that the augmentation of AMPAR activation caused by CTZ is not sufficient to overcome the dramatic impact of TTX. All together, these data do not provide substantial evidence for the conclusion drawn by the authors.

      We understand this point when considering the CTZ/TTX experiments by themselves. However, spiking appears to be a more straightforward trigger when the CTZ/TTX results are coupled with the prevention of GABAergic downscaling by optogenetic restoration of spiking in the presence of AMPAR antagonists. Further, an important point here is that our results with TTX vs. TTX + CTZ are different for GABAergic scaling (no difference) and AMPAergic scaling (CTZ diminished upward scaling) suggesting different triggers for the two forms of scaling. We will make this more clear in our resubmission.

      Specific points:

      • The logic of the basis for the argument is somewhat flawed: A homeostat does not require a multiplicative mechanism, nor does it even need to be synaptic. Membrane excitability is a locus of homeostatic regulation of firing, for example. In addition, synapse-specific modulation can also be homeostatic. The only requirement of the homeostat is that its deployment subserves the stabilization of a biological parameter (e.g., firing rate).

      We agree with the reviewer and should not have suggested that this was a necessary requirement for a spike rate hemostat. What we should have said was that historically this definition has been attributed to AMPAergic scaling, which is thought to be a spike rate homeostat. We will correct this in the resubmission.

      • Line 63 parenthetically references an important, but contradictory study as a brief "however". Given the tone of the writing, it would be more balanced to give this study at least a full sentence of exposition.

      Agreed, we will do this.

      • The authors state (line 11) that expression of a hyperpolarizing conductance did not trigger scaling. More recent work ('Homeostatic synaptic scaling establishes the specificity of an associative memory') does this via expression of DREADDs and finds robust scaling.

      The purpose of citing this study was to argue that the spike rate homeostat hypothesis doesn’t make sense for AMPAergic scaling based on a study that hyperpolarized an individual cell while leaving the rest of the network unaltered and therefore leaving network activity and neurotransmission largely normal. In this case scaling was not triggered, suggesting reduced spike rate within an individual cell was insufficient to trigger scaling. The study that the reviewer refers to hyperpolarizes a majority of cells in the network and therefore will also alter neurotransmission throughout the network, which does not separate the importance of spiking and receptor activation as in the above-mentioned study. We will make this point more clearly in the resubmission.

      • Supplemental figure 1 looks largely linear to me? Out of curiosity, wouldn't you expect the left end to be aberrant because scaling up should theoretically increase the strength of some synapses that would have been previously below threshold for detection?

      We agree that the scaling ratio plot is largely linear. To be clear, the linearity of the ratio plot was interesting but our main point here was that this line had a positive slope meaning ratios (CNQX mPSC amplitudes/control mPSC amplitudes) got bigger for the larger CNQX-treated mPSCs. Alternatively, a multiplicative relationship where mPSCs are all increased by a single factor (e.g. 2X) would be a flat line with 0 slope at the multiplicative value (e.g. 2). In terms of the left side of the plot, we do see values that rise abruptly from 1 - this is partially obstructed by the Y axis in this figure and we will adjust this. This left part of the plot is likely due the CNQX-induced increases in mPSC amplitudes of mini’s that were below our detection threshold of 5pA. Therefore, mini’s that were 4pAs could now be 5pAs after CNQX treatment and these are then divided by the smallest control mPSCs which are 5 pAs (ratio of 1). We will try to do a better job describing this in the resubmission.

      Given that figure 2B also shows warping at the tail ends of similar distributions, how is this to be interpreted?

      The left side of the ratio plot shows evidence consistent with the idea that mIPSCs are dropping into the noise after CNQX treatment (similar to above argument), while most of the distribution suggests mIPSCs are reduced to 50% by CNQX treatment. On the right side of the ratio plot the values appear to mostly increase. We are not sure why this is happening, but it looks like some mIPSCs are not purely multiplicative at 0.5, particularly in TTX. It is also important to point out that this is a relatively small percent of the total population and the biggest mPSCs can vary to a great degree from one cell to the next. We will discuss this in the resubmission.

      • The readability of the figures is poor. Some of them have inconsistent boundary boxes, bizarre axes, text that appears skewed as if the figures were quickly thrown together and stretched to fit.

      We will address these issues in the resubmission.

      • I'm concerned about the optogenetic restoration of activity experiment. Cortical pyramidal neuron mean firing rates are log normally distributed and span multiple orders of magnitude. The stimulation experiments can only address the total firing at a network-level - given than a network level "mean" is meaningless in a lognormal distribution, how are we to think about the effect of this manipulation when it comes to individual neurons homeostatically stabilizing their own activities? In essence, the argument is made at the single-neuron level, but the experiment is conducted with a network-level resolution.

      As described above, we do not have the capacity to know what the actual firing rate of a particular neuron was before and after introducing a drug and so we cannot absolutely say that we have restored the original firing rates of neurons. However, there is reason to believe that this is achieved to some extent. Our optogenetic stimulation is only 50-100 ms long activating a subset of neurons. This is sufficient to provide a synaptic barrage that then triggers a full blown network burst where the majority of spikes occur, but this is after the light is off. In other words, the optogenetic light pulse only initiates what becomes a normal network burst that fortunately allows the individual cells to express their relatively normal (pre-drug) activity pattern. In our previous study we show that this is the case for individual units - the spiking of an individual unit during a burst is similar before and after CNQX/optostim (see Figure 4b and Suppl. Fig 4 in Fong et al. 2015 Nat. Comm.). We are not claiming that we have restored spiking to exactly the pre-drug state, but bring it back toward those levels and we see this is associated with a return of the mIPSC amplitude to near control levels. We will include a description of this in the resubmission.

      • Line 198-99: multiplicativity is not a requirement of a homeostatic mechanism.

      • Line 264-265 - again, neither multiplicativity and synaptic mechanisms are fundamentally any more necessary for a homeostatic locus than anything else that can modulate firing rate in via negative feedback.

      Agreed, see above discussion of homeostat requirement. Will adjust these statements in our resubmission.

      • 277: do you mean AMPAR?

      We were not clear enough here. We actually do mean GABAR. The idea is that CTZ increases network activity and thus increases both AMPAergic and GABAergic transmission. We will clarify this in the resubmission.

      • Example: Figure 1A is frustratingly unreadable. The axes on the raster insets are microscopic, the arrows are strangely large, and it seems unnecessary to fill so much realestate with 4 rasters. Only one is necessary to show the concept of a network burst. The effect of time+CNQX on the frequency of burst is shown in B and C.

      • Example: Figure 2 appears warped and hastily assembled. Statistical indications are shown within and outside of bounding boxes. Axes are not aligned. Labels are not aligned. Font sizes are not equal on equivalent axes.

      We will adjust these issues in the resubmission.

      • The discussion should include mention of the limitations and/or constraints of drawing general conclusions from cell culture.

      We agree and will adjust the discussion. Also, this is why we cited studies that argue GABAergic neurons have a particularly important role in homeostatic regulation of firing following sensory deprivations in vivo.

      • The discussion should include mention of the role of developmental age in the expression of specific mechanisms. It is highly likely that what is studied at ~P14 is specific to early postnatal development.

      We will discuss caveats of cortical cultures at DIV 14-20.

      It is essential to ensure that the data presented in the paper adequately supports the conclusions drawn. A more cautious approach in interpreting the results may lead to a stronger argument and a more robust understanding of the underlying mechanisms at play.

      Agreed.

      Reviewer #2 (Public Review):

      Synaptic scaling has long been proposed as a homeostatic mechanism for the regulation for the activity of individual neurons and networks. The question of whether homeostasis is controlled by neuronal spiking or by the activation of specific receptor populations in individual synapses has remained open. In a previous work, the Wenner group had shown that upscaling of glutamatergic transmission is triggered by direct blockade of glutamate receptors rather than by the concomitant reduction in firing rate (Nat Comm 2015). In this manuscript they investigate the mechanisms regulating scaling of GABA-mediated responses in cortical cell cultures using whole-cell recordings to detect GABAergic currents and multielectrode arrays to monitor global firing activity, and find that spiking plays a fundamental role in scaling.

      Initially, the authors show that chronic blockade (24 h) of glutamatergic transmission by CNQX first reduces spontaneous spiking (at 2 h), but later (24 h) firing grows back towards higher frequencies, suggesting a compensatory mechanism. Then it is shown that either chronic CNQX treatment or TTX cause a reduction in the amplitude of GABAergic mIPSCs. Effects of CNQX on IPSCs are then reverted by replacing spontaneous network firing by chronic optogenetic stimulation of the entire culture, also indicating that GABAergic transmission is homeostatically regulated by global firing. Enhancing glutamatergic transmission with CTZ increases mIPSC amplitude, while addition of TTX in the presence of CTZ causes the opposite effect. Finally, increasing spiking activity using bicuculline also increases mIPSC amplitude, and the authors conclude that spiking activity rather than neurotransmission control homeostatic GABA scaling. The manuscript shows interesting properties in the regulation of global GABAergic transmission and highlight the important role of spiking activity in triggering GABA scaling. However, it is strongly recommended to address some caveats in order to better support the conclusions presented in the manuscript.

      Major points:

      1) The reason why CNQX does not completely eliminate spiking is unclear (Fig. 1). What is the circuit mechanism by which spiking continues, although at lower frequency, in the absence of AMPA-mediated transmission and what the mechanism by which spiking frequency grows back after 24h (still in the absence of AMPA transmission)?

      Is it possible that NMDA-mediated transmission takes over and triggers a different type of network plasticity?

      The bursting in AMPAR blockade is due to the remaining NMDA receptor mediated transmission. We showed this in our previous study in Suppl. Figure 2 and 6 of Fong et al., 2015 Nat. Comm.. Our ability to optically induce normal looking bursts of spikes was also dependent NMDAR activation. Further, in Dr Fong’s PhD dissertation it was shown that the bursting activity was abolished when AMPA and NMDA receptors were both blocked. There are likely many factors that contribute to the recovery of activity, and certainly one of them is likely to be the weakening of inhibitory GABAergic currents. These points will be discussed in the resubmission.

      2) A possible activation of NMDARs should be considered. One would think that experiments involving chronic glutamatergic blockade could have been conducted in the presence of NMDAR blockers. Why this was not the case?

      Unfortunately, it was not possible to optogenetically restore normal bursting in the presence of NMDAR blockade (even when AMPAergic transmission was intact), as NMDARs appeared to be critical for the optical restoration of the normal duration of the burst (see Suppl. Figure 6 Fong et al., 2015 Nat. Comm). The reviewer raises an excellent point about a possible NMDAR contribution to altered synaptic strength, however. It is likely that NMDAR signaling is reduced in the presence of CNQX since burst frequency was reduced along with AMPAR-mediated depolarizations. We cannot rule out the possibility that NMDAR signaling could contribute to the alterations in GABAergic mIPSCs and will discuss this in the resubmission. However, previous work suggests that 24/48 hour block NMDARs (APV) did not trigger AMPAergic scaling in cortical or hippocampal cultures (see Figure 1 Turrigiano et al., 1998 Nature and Suppl. Figure 4 Sutton et al., 2006 Cell), moreover, our previous study showed that restoring NMDAergic transmission optogentically, at least to some point, had no influence on AMPAergic scaling (Fong et al., 2015, Nat. Comm.). Regardless, we cannot rule out a role for NMDAergic transmission in GABAergic scaling and this discussion will be included in the resubmission.

      Also, experiments with global ChR2 stimulation with coincident pre and postsynaptic firing might also activate NMDARs and result in additional effects that should be taken into consideration for the global scaling mechanism.

      To be clear, our optical stimulation was turned off before the vast majority of spiking that occurred in the bursts, which played out in a relatively natural manner (see lower panel of Figure 3B optogenetic stimulation – short duration only at onset of burst – we will make this clearer in resubmission). Therefore, we were unlikely to trigger significant synchronous activation that does not normally occur in network bursts.

      3) Cultures exposed to CTZ to enhance AMPA receptors generated variable results (Fig. 5), somewhat increasing spiking activity in a non-significant manner but, at the same time, strengthening mIPSC amplitude. This result seems to suggest that spiking might be involved in GABAergic scaling, but it does not seem to prove it.Then, addition of TTX that blocked spiking reduced mIPSC amplitude. It was concluded here that the ability of CTZ to enhance GABAergic currents was primarily due to spiking, rather than the increase in AMPA-mediated currents. However, in addition to blocking action potentials, TTX would also prevent activation of AMPARs in the presence of CTZ due to the lack of glutamatergic release. Therefore, under these conditions, an effect of glutamatergic activation on GABAergic scaling cannot be ruled out.

      These concerns were very similar to reviewer 1’s first comments. We will address these issues in the resubmission, but to briefly repeat our responses: We are going a step beyond most scaling studies by assessing MEA-wide firing rate, but this still provides an incomplete picture of the particular cells that we target for patch recordings in terms of their firing before and after a drug. Further, we see considerable variability in effect on firing rate from culture to culture, which we will better recognize in the resubmission. Finally, While the CTZ results are not conclusive, taken together with the optogenetic results we think our results are most consistent with idea that GABAergic scaling is a strong candidate as a spike rate homeostat.

      4) The sample size is not mentioned in any figure. How many cells/culture dishes were used in each condition?

      The individual dots represent either individual cells for mIPSC amplitude or individual cultures in MEA experiments. Number of cultures for figures were: Figure 2 – con = 10, TTX = 3, CNQX = 6, Figure 4 – CNQX = 4, con = 10, CNQX/photostim = 6, Figure 5 – ethanol = 3, CTZ = 3, CTZ + TTX =3, Figure 6 – con = 10, bicuculline = 4. We will include the number of cultures for mIPSC amplitude experiments in the figure legends upon resubmission.

      5) Cortical cultures may typically contain about 5-10% GABAergic interneurons and 90-95 % pyramidal cells. One would think that scaling mechanisms occurring in pyramidal cells and interneurons could be distinct, with different impact on the network. Although for whole-cell recordings the authors selected pyramidal looking cells, which might bias recordings towards excitatory neurons, naked eye selection of recording cells is quite difficult in primary cultures. Some of the variability in mIPSC amplitude values (Fig. 2A for example) might be attributed to the cell type? One could use cultures where interneurons are fluorescently labeled to obtain an accurate representation. The issue of the possible differential effects of scaling in pyramidal cells vs. interneurons and the consequences in the network should be discussed.

      We will include this discussion in the resubmission. Briefly, we chose large cells, which will be predominantly glutamatergic neurons as suggested by the reviewer. Ultimately, even among glutamatergic principal cells there may be variability in the response to drug application. All of these issues could contribute to variability and we will expand our description of the variability in our results, including that based on cellular heterogeneity.

      Reviewer #3 (Public Review):

      This paper concerns whether scaling (or homeostatic synaptic plasticity; HSP) occurs similarly at GABA and Glu synapses and comes to the surprising conclusion that these are regulated separately. This is surprising because these were thought to be co-regulated during HSP and in fact, the major mechanisms thought to underlie downscaling (TTX or CNQX driven), retinoic acid and TNF, have been shown to regulate both GABARs and AMPARs directly. (As a side note, it is unclear that the manipulations used in Josesph and Turrigiano represent HSP, and so might not be relevant). Thus the main result, that GABA HSP is dissociable from Glu HSP, is novel and exciting. This suggests either different mechanisms underlie the two processes, or that under certain conditions, another mechanism is engaged that scales one type of synapse and not the other.

      However, strong claims require strong evidence, and the results presented here only address GABA HSP, relying on previous work from this lab on Glu HSP (Fong, et al., 2015). But the previous experiments were done in rat cultures, while these experiments are done in mice and at somewhat different ages (DIV). Even identical culture systems can drift over time (possibly due to changes in the components of B27 or other media and supplements). Therefore it is necessary to demonstrate in the same system the dissociation. To be convincing, they need to show the mEPSCs for Fig 4, clearly showing the dissociation. Doing the same for Fig 5 would be great, but I think Fig 4 is the key.

      We understand the concern of the reviewer as we do see significant variability within our cultures and they were plated in different places, by different people, in different species (rat vs mouse). Therefore, in the resubmission to strengthen the conclusions we will repeat our optogenetic studies restoring activity in the presence of AMPAergic blockade in our mouse cortical cultures and measuring AMPA mEPSCs to assess scaling.

      The paper also suggests that only receptor function or spiking could control HSP, and therefore if it is not receptor function then it must be spiking. This seems like a false dichotomy; there are of course other options. Details in the data may suggest that spiking is not the (or the only) homeostat, as TTX and CNQX causes identical changes in mIPSC amplitude but have different effects on spiking. Further, in Fig 5, CTZ had a minimal effect on spiking but a large effect on mIPSCs. Similar issues appear in Fig 6, where the induction of increased spiking is highly variable, with many cells showing control levels or lower spiking rates. Yet the synaptic changes are robust, across all cells. Overall, this is not persuasive that spiking is necessarily the homeostat for GABA synapses.

      Together our results argue against AMPAR or GABAR activation as a trigger for GABAergic scaling and that this is different than our results for AMPAergic scaling. These points alone are important to recognize. While changes in spiking do not perfectly follow the changes in GABAergic scaling they do always trend in the right direction. As mentioned above, total spiking activity is only one measure of spiking. It is possible that these drugs alter the pattern of spiking that translates into an altered calcium transient that is important for triggering the plasticity. Again, it is important to note that we are going a step beyond most homeostatic plasticity studies that add a drug and simply assume it is having an effect on spiking (e.g. CNQX was initially thought to completely abolish spiking, but clearly does not). Based on the variability that we observe and the nature of our MEA recordings we cannot precisely determine how the total activity or pattern of activity changes with drug application in the specific cells that we target for whole cell recordings. However, we believe our results are more consistent with our proposal that GABAergic scaling is a strong candidate as a spike rate homeostat. Regardless, in the resubmission we will include a broader discussion about these possibilities, and the reality that there could be multiple homeostatic mechanisms that act to recover spiking activity.

      The paper also suggests that the timing of the GABA changes coincides with the spiking changes, but while they have the time course of the spiking changes and recovery, they only have the 24h time point for synaptic changes. It is impossible to conclude how the time courses align without more data.

      We can only say that by the 24 hour CNQX time point, when overall spiking is recovered, that GABAergic scaling has already occurred. We will state this more clearly in the resubmission.

    1. Author Response:

      We are grateful to the editors for getting our study reviewed, and are pleased that the reviewers found value in our findings. We plan to submit a revision that we believe can resolve much of the remaining doubt about the major conclusions.

      Our current understanding is that much of the uncertainty stems from extensive diversity among synapses. The FM-dye de-staining technique does have single synapse resolution, so it should be possible to develop new kinds of analysis that can make each of our points at the level of individual synapses. For a preview, see Figure 2D (explained in lines 126-141), and Figure 2-Figure supplement 5 of the current version.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their time in evaluating the strengths and weaknesses of our manuscript.

      We are pleased to see that all reviewers recognized the high significance of our work, noting that the manuscript addresses “longstanding question of which cell types are infected during congenital or perinatal rubella virus infection”. As noted by reviewer 1, “This study reveals a new cellular target that will have important implications for basic studies on rubella virus-host interactions and for the potential development of therapies or improved vaccines targeting this virus. As the rubella virus is a pathogen of high concern during human pregnancy, this study also has important implications in the field of neonatal infectious diseases”.

      Below, we provide responses (in blue) to specific critiques:

      Reviewer #1 (Public Review):

      A weakness is that the current data do not provide information on the full replicative potential of the rubella virus in microglia, or whether the virus persists in this system.

      See our response below. Briefly, we include new experimental evidence from primary tissue, microglia-transplanted organoids, and Vero cells to further characterize the dynamics of viral infection.

      Reviewer #1 (Recommendations for the authors):

      Most of the viral assays in the brain slices and organoids examine viral protein synthesis, which is a surrogate for genome replication. However, basic virological characterization is lacking and would improve the robustness of the model and its potential utility to understand better rubella virus-microglia interactions. Questions the authors should consider with new experiments include:

      Are new virions produced? Can viruses be detected in the media?

      Or, are the infections abortive, with viral protein synthesis occurring, but no virus production?

      We performed RV titering experiments in dissociated microglia co-cultured with other cell types, as well as Vero cells as a control. While we can detect a robust increase in viral titer from Vero cells, it fell below detection levels in microglia co-cultures. See Author response image 1. We now include these data in Supplementary Figure 2D.

      Author response image 1.

      Rubella virus titering experiment performed in Vero cells (positive control) or dissociated microglia co-cultures. In primary microglia co- cultures, viral titer falls below detection levels after several days of infection.

      While we could not detect an increase in the viral particles from microglia mixed cultures, we confirmed the presence of GFP from the RV-GFP reporter construct, and we believe it serves as a proof that the virus can infect microglia cells and lead to production of functional viral protein (Author response image 2, Figure 1E-F of the current manuscript):

      Author response image 2.

      We also observed an increase in RV RNA over time in tissue slice infections, using qPCR (Author response image 3, not included in the manuscript).

      Author response image 3.

      Modest increase in RV RNA over time in brain slice infections. Rubella virus RNA measured by qPCR relative to GAPDH gene, in n=3 samples (2 technical replicates each condition). Brain slices were exposed to RV, then collected at end of inoculation (4 hours post infection), or at 3 or 5 days post infection, and processed for RNA extraction and RT-qPCR.

      How long do the infections persist in the model? What is the fate of infected microglia over time? Time courses to monitor infection and cell health would be useful.

      We performed a longer infection with RV in organoids transplanted with microglia, and after two weeks of infection, we can detect multiple microglia cells positive for the RV capsid. These data are now included in Figure 4 of the current manuscript.

      Author response image 4.

      After 2 weeks post infection, microglia remain positive for RV capsid.

      Reviewer #2 (Public Review):

      Weaknesses

      The set of data is rather descriptive. It suggests that microglia are the predominant brain target of RV in vivo, without identifying the targeting mechanism that provides cell type specificity. Moreover, what are the diffusible cues released from the brain environment that increase microglia infection and RV replication?

      We agree with the reviewer that identifying molecular mechanisms that underlie this phenotype will be very interesting to explore in future research, and we acknowledge the limitation of the study in the Discussion.

      It is unclear why brain organoids not supplemented by microglia are susceptible to RV inoculation.

      We could not detect RV capsid in organoids without microglia after 72 hours of inoculation. We attribute any changes seen at the level of single cell transcriptomics in the absence of microglia transplantation to exposure to virus-associated particles, including but not limited to viral RNA species, viral proteins, or even other components of the viral stocks made in Vero cells. These factors may induce transcriptomic differences even in the absence of RV infection. In the text, we take care to refer to these condition as “Rubella virus-exposed” rather than “Rubella virus- infected”. We now include the following panel from Author response image 5 in Figure 4B of the current manuscript.

      Author response image 5.

      Organoids without microglia do not show positive RV immunofluorescence.

      Reviewer #2 (Recommendations for the authors):

      Several points could be further addressed to improve the data set and shed more light on some aspects of this manuscript:

      • Figure 1. Additional microglia markers should be used to reinforce the evidence that microglia cells are the principal RV targets. Since Iba1 is a marker of activated microglia, does RV have a selective tropism to all microglia or only to activated ones in human fetal brain slices?

      The reviewer brings up an interesting point that, in our mind, can be separated into two independent questions:

      1. Are Iba1-positive cells bona fide microglia, or are there other cell populations of macrophage/monocyte origin that are labeled with Iba1? Therefore, additional markers should be used for immunolabeling;

      2. Is RV infection selective for microglia “activation” status, when only 5mmune-primed cells can be infected?

      For the first point, we have previously shown that in the developing human brain, virtually all Iba1-positive cells are also P2RY12-positive (unpublished; Author response image 6). Therefore, in primary human brain slices, there is a negligible amount of non-microglia macrophages. However, in culture microglia quickly lose their “homeostatic” identity, including P2RY12 expression, as quickly as six hours after ex vivo extraction (Gosselin et al., 2017; DOI: 10.1126/science.aal3222).

      Author response image 6.

      P2RY12 co-localizes with Iba1 in primary brain tissue from gestational week 17.5, including cells with more ameboid morphology (arrows)

      However, in organoids at 2 weeks post-RV exposure, we found microglia with both ameboid and more ramified morphology (Author response image 7). It would be challenging and beyond the scope of this manuscript to use morphology or Iba1 intensity levels to determine cause and effect as microglia activation state relates to RV infectivity (i.e. do activated microglia preferentially get infected with the virus, or do infected microglia become activated and upregulate Iba1 levels and change morphology).

      Author response image 7.

      Examples of microglia with round (top) and ramified (bottom) morphology that co-localize with RV capsid staining.

      Regarding RV tropism in the 2D culture of microglia, some Iba- cells are infected by RV as they show capsid staining. What are these cells? Are neurons and/or glia also susceptible to RV in vitro infection? Are non-microglial cells getting RV infected in the absence of microglia?

      In the absence of microglia cells, a small proportion of non-microglia cells get infected with RV. There is no statistically significant difference in the number of cells that get infected with RV in the presence or absence of microglia across different cell types. We add these data as Supplement Figure 3.

      Author response image 8.

      Rubella infection in non-microglia cells. A. Representative images of different cell types depleted of microglia. Cell cultures were stained RV capsid (green) and DAPI. B. Quantification of total cells that are positive for RV capsid across conditions. C. Quantification of RV+ cells that are not microglia across different cell populations. No statistically significant difference was detected in RV infectivity in cells c-cultured with or without microglia.

      • Figure 3. The low rate of Rubella virus infection in homogenous CD11b+ cell culture raises the question of whether the Rubella virus can infect microglia at a specific activation stage. It is also surprising that there is no infection of such cell population (also CD11b+) alone while cultured in 2D, as reported in figure 2. Why such a difference?

      It is well established that culture of microglial cells isolated from brain tissue alters their molecular properties, which likely alters the cell surface protein composition. In the revised discussion, we include activation as a possible mechanism that will require further investigation.

      • Fig 4A-B, it is unclear whether organoids that are not engrafted with microglia get infected upon RV (with active viral replication) inoculation. If non-microglia-supplemented organoids are indeed infected and allow RV replication, this suggests that organoids might not be the ideal system to model human fetal brain RV infection at GW18-23.

      We could not detect RV capsid in organoids without microglia after 72 hours of inoculation. We include the following panel from Author respone image 9 in Figure 4 now.

      Author response image 9.

      Organoids without microglia do not show positive RV immunofluorescence.

      • Figure 4E, why are cells derived from microglia-free organoids so much enriched in the UMAP plots as compared to the other organoid condition? Is RV impacting cell fitness, proliferation, or neurodifferentiation?

      This perceived difference is due to data presentation. Based on cell proportions, cells from organoids that were treated with microglia are more represented in the scRNAseq data, and this difference most likely comes from user-introduced imbalance in cell loading and possible cell losses during demultiplexing (Author response image 10, panel A). Cell number composition across different conditions and cell types, including RV and MG treatment, are shown in Supplement Figure 4 of the current manuscript (Author response image 10, panel B).

      Contribution of each condition can be visualized via UCSC single cell data browser: https://cells.ucsc.edu/?ds=rubella-organoids

      Author response image 10.

      Data composition depending on condition. A. Cell number contribution from organoids with and without microglia. B. Contribution of each condition to each cluster composition.

      • Figure 4F-H. If microglia is the predominant target for RV in the brain, why are microglia-free organoids susceptible to RV and who are the other cellular targets, whose infection leads to activation of interleukin pathway genes and dysregulation of brain developmental markers in selected subpopulations (RGCs, ENs..).

      Thank you for bringing this point. We did not detect any appreciable RV genomic RNA in our published single cell data, nor did we identify RV capsid in the RV-exposed organoids without microglia. Our experiments on dissociated cell cultures show that a small population (~1-4%) of other cell types was positive for the RV capsid, including neuron-enriched and glial-enriched fractions (Author response image 11; Supplementary Figure 3C in current manuscript). We expect a similar proportion of non-microglia cells to be infected in the brain organoids. One possible explanation for the robust interferon response even in the absence of productive infection in other cell types is exposure to virions and virus-associated particles, including but not limited to viral RNA species, viral proteins, or even other components of the viral stocks made in Vero cells (which is a cell line that should not produce interferons, but may produce other unmeasured cytokines as a virally infected cell culture).

      Author response image 11.

      Quantification of RV+ cells that are not microglia across different cell populations. No statistically significant difference was detected in RV infectivity in cells cultured with or without microglia.

      • QRT-PCR validations of some of these key brain targets should be performed.

      We agree with the reviewer that further validation of the predicted molecular changes downstream of Rubella exposure would be valuable. We have opted to validate IFITM3 and NOVA1 expression differences using immunostaining, and the results are consistent with our predictions from scRNAseq, and the data is presented in revised Figure 5 and 6 of the current manuscript.

      Reviewer #3 (Public Review):

      Weaknesses of the paper: Overall, additional control experiments are needed to support the stated conclusions. Affinity chromatography is used to purify microglia and other cell types, but the overall cell enrichment is not quantified.

      We appreciate the reviewer concern. However, affinity based enrichments rarely guarantee purity of the enrichment, and we do not believe accurate estimation of the purification purity would alter the biological interpretation of the data.

      In cell mixing experiments, the authors do not rule out the possibility that the added non- microglia cells also become infected, releasing additional infectious viruses. The finding that a diffusible factor is required for RV infection would be unusual if not unprecedented; therefore, additional data are required to support this claim and rule out other interpretations.

      We provide quantification of non-microglia cells that are positive for RV capsid in the presence and absence of microglia. Small (~1-4%) of non-microglia cells get infected with the virus and can potentially release more of the virus (see Author response image 12), but we do not know how this newly produced virus would be different from the one that was applied to the cells directly. To follow up our co-culture experiments, we wanted to exclude a possibility of microglia engulfing RV- infected cells in co-cultures, therefore we separated the two cell fractions by a liquid-permeable membrane (Figure 3 of the current manuscript). It is possible that factors secreted by other cell populations in the transwell assay experiments act on microglia cells to upregulate a yet unidentified receptor on microglia surface or other infection-dependent molecule rendering them infectable by the virus.

      We re-phrase the text by de-emphasizing “soluble factors” and focusing on excluding phagocytosis of infected cells as a possible mechanism of RV capsid immunoreactivity in microglia cells.

      Author response image 12.

      Rubella infection in non-microglia cells. A. Representative images of different cell types depleted of microglia. Cell cultures were stained RV capsid (green) and DAPI. B. Quantification of total cells that are positive for RV capsid across conditions. C. Quantification of RV+ cells that are not microglia across different cell populations. No statistically significant difference was detected in RV infectivity in cells c-cultured with or without microglia.

      The methods section would be improved by including details about the iPSC line that was used.

      We include the following section in Materials and Methods:

      iPSC lines.

      All work related to human iPS cells has been approved by the UCSF Committee on Human Research and the UCSF GESCR (Gamete, Embryo, and Stem Cell Research) Committee. Human iPS cell line “WTC-10” derived from healthy 30-year-old Japanese male fibroblasts was from the Conklin Lab, UCSF (Bershteyn et al., 2017; Kreitzer et al., 2013). Human iPSC line “13325” was derived from 9-year-old female fibroblasts originally obtained from Coriell cell repository. Human iPSC line “1323-4” derived from healthy 48-year-old Caucasian female fibroblasts (gift from the Conklin Lab, UCSF) was used for immunofluorescence validation analysis as we found that this line generates more reproducible brain organoid differentiations.

      and by a more thorough description of virus-specific details, including the numbers of infectious particles added per volume of incubation media.

      We now include the following data in the Materials and Methods section:

      Rubella virus infection

      Cells cultured in 2D were inoculated by adding RV stock virus to culture media in 1:1 dilution (250 ul of media to the equal volume of viral stock, 1.75x105 total ffu/well) to achieve a multiplicity of infection (MOI) of 2. After four hours, media was exchanged with fresh cell culture media. Cortical brain slices were treated with 500 ul of RV viral stock (3.5x105 total ffu/slice) applied over the slice culture filter for four hours, and then the viral culture media was removed and replaced with fresh slice culture media. Organoids were treated in 6-well plates with 2ml of 1:1 dilution of viral stock:organoid maintenance media (7x105 total ffu) for four hours, and then viral media was exchanged for fresh media. For all experimental conditions, cells were fixed and processed for downstream analysis at 72 hours post infection. Supernatant from non-infected Vero cells (mock) or heat-inactivated RV (650C, 30 mins) was used as control.

      In addition to immunofluorescence, adding additional data to demonstrate and quantify virus infection (PCR and plaque assays. or immunofluorescence using an anti-double-stranded RNA antibody such as J2) from the infected brain slices and organoids would provide greater assurance that the virus is indeed replicating under the experimental conditions.

      We performed RV titering experiment in dissociated microglia co-cultured with other cell types, as well as Vero cells control. While we can detect a robust increase in viral titer from Vero cells, it fell below detection levels in microglia co-cultures. We now include these data in Supplementary Figure 2D.

      Author response image 13.

      Rubella virus titering experiment performed in Vero cells (positive control) or dissociated microglia co-cultures. In primary microglia co- cultures, viral titer falls below detection levels after several days of infection.

      Unfortunately, we did not find J2 staining informative because we could detect signal in both wild type RV infection conditions and in heat-inactivated RV, presumably due to native dsRNA species present in cells. We did not detect any increase or difference in the pattern of staining between RV and heat-inactivated virus-exposed conditions (Author response image 14; not included in the manuscript).

      Author response image 14.

      J2 antibody labels dsRNA in both RV-exposed and control heat- inactivated virus conditions, presumably due to native dsRNA that is not unique to the viral replication.

      Organoid imaging with immunofluorescence would be very informative in demonstrating the presence of microglia and also in showing which cells are virus-infected in the context of organoid structures.

      We provide images from 72hrs and 2 week RV infection, providing a zoomed-out view of organoids with microglia and RV capsid staining. We also provide images of 72hrs post- infection in organoids without microglia Author response image 15, Figure 4C in current manuscript).

      Author response image 15.

      Microglia in organoids co-localize with RV capsid staining.

      GenBank accession numbers are listed for the recombinant RV and GFP-RV reporter, but a search using those numbers did not locate the deposits--perhaps the deposits were very recent?

      Both viral construct information is now available on GenBank:

      M33 RV strain can be found here: https://www.ncbi.nlm.nih.gov/nuccore/OM816674

      RV-GFP can be found here: https://www.ncbi.nlm.nih.gov/nuccore/OM816675

      The authors incorrectly refer to the GFP virus as a new strain; it is not a viral strain and should be referred to as a reporter virus.

      Thank you, we changed the description to

      “To confirm functional transcription and translation of the viral genome, a new reporter construct of RV designed to express GFP within the non-structural P150 gene was generated (RV-GFP, GenBank Accession OM816675)”

      Given that the authors show that Vero cell cultures are infected by the Rubella virus in the absence of other cells, additional evidence is needed to demonstrate that a diffusible factor from other cells enables microglia to be infected by the Rubella virus.

      We have revised the manuscript to indicate that our data is consistent with the possibility that a diffusible factor is involved. Our experiment utilizing transwell assay argues against phagocytosis and physical interactions as primary drivers, but future studies will be needed to determine if soluble factors are involved.

      The authors did not detect Rubella virus transcripts in the single-cell RNA sequencing experiment, nor was a microglia cluster found.

      Indeed, microglia recovery using scRNAseq is very inefficient. We note this limitation in the discussion.

      Innate immune responses can be activated in the presence of viral particles but without virus replication, as in inactivated viral vaccines; therefore changes in interferon responses do not necessarily prove virus replication.

      We agree with the reviewer on this point, it is difficult, if at all possible, to entirely eliminate the possibility that some of the transcriptomic changes, particularly the interferon responses, are not induced by the exposure to viral particles. We have revised the manuscript to more rigorously described the conditions as “RV-exposed”.

      Figure 4: it would be helpful to define the abbreviations used in the figure legend (e.g. IPC, RG, EN). In the volcano plots, the gene names are blocked by the dots, and the figure becomes very pixelated when enlarged to read the text.

      We have added abbreviations and replaced the figure files with higher resolution images (Figure 6 in current manuscript).

      The value of including Supplemental Figure 2 (MOG) is not clear because it receives little mention in the text and also seems to be previously published data that could be cited.

      We have removed the figure and replaced it with a citation and a link to the Cell Browser.

      Supplemental Figure 4: In panel G, the legend shows "YH10" and "13325". These terms are not described in the Figure legend, nor did a search of the manuscript identify these terms. In its current form Supp. Fig. 4G is not interpretable. In addition, would be more clear to use the term "RV-infected" instead of "treated" to describe the addition of the virus.

      We have expanded the Methods section to include the description of different organoid lines and added a revised legend for Supplementary Figure 4. We do not provide evidence of RV infecting organoids without microglia, therefore we have revised the claims that organoid cells become infected with the virus and replaced it with “RV-exposed” to better reflect the conditions studied.

      Reviewer #3 (Recommendations for the authors):

      1) Demonstrate and quantify virus replication to provide data to complement the imaging. In order of data quality, plaque assays would be most convincing in demonstrating infection and release of infectious virus, while a time course of PCR on RV transcripts would support a conclusion of replicating virus. Further, staining with an anti-double-stranded RNA antibody (J2) would represent evidence of virus replication.

      In response to the reviewer’s comment, we performed an RV titering experiment in dissociated microglia co-cultured with other cell types, as well as Vero cells control. While we can detect a robust increase in viral titer from Vero cells, it fell below detection levels in microglia co-cultures. We now include these data in Supplementary Figure 2D.

      Author response image 16.

      Rubella virus titering experiment performed in Vero cells (positive control) or dissociated microglia co-cultures. In primary microglia co- cultures, viral titer falls below detection levels after several days of infection.

      We detected a very modest increase in RV RNA in infected brain slices over time using RT- qPCR (see Author response image 17, not included in current manuscript)

      Author response image 17.

      Modest increase in RV RNA over time in brain slice infections. Rubella virus RNA measured by qPCR relative to GAPDH gene, in n=3 samples (2 technical replicates each condition). Brain slices were exposed to RV, then collected at end of inoculation (4 hours post infection), or at 3 or 5 days post infection, and processed for RNA extraction and RT-qPCR.

      Unfortunately, we did not find J2 staining informative because we could detect signal in both wild type RV infection conditions and in heat-inactivated RV, presumably due to native dsRNA species present in cells. We did not detect any increase of difference in the pattern of staining between RV and heat-inactivated virus-exposed conditions (Author response image 18; not included in the manuscript).

      Author response image 18.

      J2 antibody labels dsRNA in both RV-exposed and control heat- inactivated virus conditions, presumably due to native dsRNA that is not unique to the viral replication.

      We utilized FISH to detect negative-stranded (non-genomic) RV RNA as an alternative to J2 to indicate RNA replication. However, it proved to be not very sensitive, as a small quantity of negative-strand RV RNA could be detected in highly infected Vero cells, but negative-strand RV RNA was not detected in more modestly infected microglia (based on positive-strand RV RNA quantification), as in Author response image 19, not included in current manuscript.

      Author response image 19.

      FISH probes to positive strand (genomic) and negative strand (replication template) RV RNA in Vero cells and microglia co-cultures. A: representative images of Vero cells infected with RV (top row) or Zika virus as control (bottom row). At 72hpi, cells were fixed and processed for immunofluorescence with anti-RV capsid antibody (RVcap) or Zika virus antibody (Zika4G2), and then FISH was performed using probes to positive strand (+) or negative strand (-) RV RNA. Negative strand RV RNA difficult to visualize at low-power magnification, and required quantification within cell borders defined by wheat germ agglutinin staining with results in panel B. B: In Vero cells, negative strand RV RNA is detected in strongly infected cells. Infection strength determined by intensity of RV capsid immunofluorescence staining and positive strand RV RNA (RVcap/(+) 2/3 indicates robust infection, RVcap/(+) 1 indicates weak infection). ZIKVinf = Zika virus infected control. C: In microglia co-cultures, positive strand RV RNA detected in cells with RV capsid immunopositivity (RVcap_pos). RVinf = RV infected. RVHI = heat-inactivated RV. D: In microglia co-cultures, negative strand RV RNA quantification not significantly different between mock, heat-inactivated RV (RVHI), or RV- infected conditions (RVinf), including cells with weak positive-strand RV RNA (RVinf, (+)<8) or cells with stronger positive-strand RV RNA ((RVinf, (+)>=8). Two biological replicates (bHR60 and bHR61), n indicates number of cells counted.

      While we could not detect an increase in the viral particles from microglia mixed cultures, we confirmed the presence of GFP from the RV-GFP reporter construct, and we believe it serves as a proof that the virus can infect microglia cells and lead to production of functional viral protein (see Author response image 20, Figure 1E-F of the current manuscript)

      Author response image 20.

      Thus, overall we detect replication of viral RNA and protein (qPCR, RV-GFP), but not an appreciable increase in released newly-made virions. The discussion now reflects this more clearly in the current manuscript.

      2) The claim of requiring a diffusible factor to enable RV infection requires additional data. A suggestion would be to include further characterization of affinity-purified cells to define the levels of cell enrichment and to determine which other cell types are present, It is also important to test the RV infection of the fractionated cell types alone before adding to the microglia, in order to demonstrate whether RV is replicating in cell types other than microglia.

      We performed quantifications of RV capsid-positive cells in each of the affinity-purified cell populations: neuron-enriched (purified with PSA-NCAM beads), glia-enriched (PSA-NCAM depleted cell fraction), or non-microglia fraction (“Flow through”, depleted of CD11b+ cells). We show that across each condition, we have low infectivity (ranging from ~1 to 4% of total cell population) after 72 hours post-infection. We include these data in Supplementary Figure 3.

      Author response image 21.

      Rubella infection in non-microglia cells. A. Representative images of different cell types depleted of microglia. Cell cultures were stained RV capsid (green) and DAPI. B. Quantification of total cells that are positive for RV capsid across conditions. C. Quantification of RV+ cells that are not microglia across different cell populations. No statistically significant difference was detected in RV infectivity in cells c-cultured with or without microglia.

      Another approach to limit cell heterogeneity would be to use iPSC-derived cells, which are highly enriched as a single cell type as a specific cell type, to test the requirement for additional cell types to achieve RV infection of microglia.

      In our prior publication (Popova et al. 2021) we have identified a number of molecular differences between primary and iPSC derived microglia. iPSC derived microglia like cells could show differences in infection tropism from primary microglia, and those results may be difficult to interpret biologically. We agree with the reviewer that iPSC derived cells would be an interesting model, there are now several distinct protocols for deriving microglia like cells from pluripotent stem cells and we feel that embarking on a protocol comparison project would fall outside the scope of the current manuscript.

      3) Consider a longer organoid infection. The authors did not identify viral RNA transcripts in their organoid scRNAseq data after a 72-hour infection. Although the 72-hour time point seems right for cells in 2D culture, it’s possible that the infection in the organoids is slower because the virus has to spread inwardly. It would be worth trying a time course out to 2 weeks, collecting organoids every few days and then imaging and doing pcr or plaque assays. Zoomed-out views that show immunofluorescence of the entire organoid would also be beneficial in assessing organoid quality and immunofluorescent staining to identify cell types,

      We performed longer RV infection for two weeks and now present data on RV capsid in microglia in 72 hrs and 2 weeks post-infection (Author response image 22, Figure 4C of the current manuscript). We have also validated one of the scRNAseq-generated gene candidates in combination with different cell type markers and present data on whole organoids immunostained with NeuN for neurons and EOMES for intermediate progenitor cells that demonstrate the overall structure of the organoids (Author response image 23; Figure 6 of the current manuscript).

      Author response image 22.

      Microglia in organoids co-localize with RV capsid staining. Organoid with microglia were exposed to RV for 72 hrs or two weeks.

      Author response image 23.

      Organoids labeled with splice regulator NOVA1 (magenta), neuronal marker NeuN (green) and intermediate progenitor cell marker EOMES (cyan).

    1. Author Response

      Reviewer #1 (Public Review):

      While the CTD human brain organoids show a decrease in Cr (in absence of Cr in the culture medium) as compared to control organoids (4 times less), they are not devoid of Cr. Do these organoids express the two enzymes allowing Cr synthesis (AGAT and GAMT), and in which brain cell types? If yes, how to explain the decrease in Cr in the CTD organoids?

      There is a lack of functional CRT in the CTD human brain organoids. The basal level of creatine in CTD human brain organoid is significantly lower than in healthy human brain organoids. The intracerebral creatine synthesis is due to different expression of the AGAT and GAMT enzymes and relies on functional CRT for the transport of the GAA intermediate Litterature pointed out that both enzymes are rarely co-expressed (Braissant et al., 2001, PMID: 11165387) meaning that GAA intermediate needs to be transported by CRT to neurones for complete creatine synthesis. Even if we evidenced a slight mRNA expression of AGAT and GAMT enzymes, the creatine synthesis is not effective since the GAA intermediate could not be transporterd in cell expressing GAMT due to the non functional creatine transporter in the CTD human brain organoids.

      The rescue experiment, re-establishing a functional Cr transporter (CRT or SLC6A8) in the CTD human brain organoids, is very interesting, as this may help the design and development of new treatments for CTD. However, authors claim that the functional CRT expressed in the rescued CTD organoids was expressed in each cell. This may be a difficulty in the development of new CTD treatments, as CRT should be expressed in neurons and oligodendrocytes, but not in astrocytes. Authors may want to comment on this point.

      As shown in Figure S2C, the whole brain organoid in the resue experiment shows the expression of the GFP protein, thus also the co-expressed wild-type CRT. In these experiments we did not make a detailed cellular characterization of the rescued organoids, and this may be a task in our next experiments for an exact characterization of the cell-specific CRT expresion and function in the rescued brain organoids. According to this, we will correct in the revision version of manuscript the statement on page 6: “SLC6A8 expressing brain organoids showed GFP fluorescence in the whole area of the organoid (Fig S2C).”

    1. Author Response

      Reviewer #2 (Public Review):

      The current work was basically a follow-up of a previous study in juvenile mice, and the results were also very similar to the juvenile results (Sommeijer et al., 2017). One possible interpretation of the results is that the lack of OD plasticity in adult V1 and dLGN was caused by an early blockade of the development of the inhibitory circuit in dLGN, which retains the dLGN in an immature stage till adulthood. The authors indeed claimed in the discussion that the 2-day OD shift is intact in juvenile dLGN and V1 in KO mice, and provided evidence in supplementary figure that GABAergic and cholinergic synapse amount are similar between WT and KO mice. However, the 7-day OD shift is indeed defected in juvenile V1 and dLGN in KO mice (Sommeijer et al., 2017), and it is possible that this early functional deficit didn't induce a structural remodeling in adulthood. To better support the author's claim that the lack of adult V1 OD plasticity is specifically due to reduced dLGN synaptic inhibition, the author should generate conditional KO mice that dLGN synaptic inhibition was only interfered in adulthood.

      In order to address this point it is important to discuss the plasticity deficits in dLGN and V1 separately.

      Concerning V1 plasticity: We have previously shown that brief MD during the standard critical period induces an OD shift in V1 of mice lacking thalamic synaptic inhibition in dLGN (Sommeijer et al, 2017). OD plasticity induced by brief MD is a hallmark of critical period plasticity in V1, and it thus seems unlikely that critical period onset in V1 is defective or that development of V1 is halted in an immature state that does not support OD plasticity in thalamus-specific GABRA1 deficient mice.

      The observed plasticity deficit during the critical period was limited to the second stage of the OD shift in V1, which requires long-term monocular deprivation. The straightforward explanation for this result and our current findings is that both during the critical period and in adulthood, the second stage of OD plasticity in V1 induced by long-term monocular deprivation requires thalamic plasticity or inhibition. The proposed alternative, that lack of thalamic synaptic inhibition during development results in a possible lack of structural change in V1 that would cause a lifelong deficiency selectively affecting OD plasticity induced by long-term monocular deprivation, is not impossible but requires many more assumptions.

      Concerning dLGN plasticity: The simplest explanation for the observed lack of OD plasticity in dLGN is that it is a direct consequence of the absence of synaptic inhibition in the KO mice. However, an alternative explanation could indeed be that dLGN is kept in an immature (pre-critical period-like) state due to the developmental absence of synaptic inhibition. This situation would be analogous to that in V1 of GAD65 deficient mice (which have reduced GABA release), in which OD plasticity cannot be induced by brief monocular deprivation during the critical period or in adulthood (Fagiolini and Hensch, 2000). Because this deficit can be reversed by treating the mice with benzodiazepines (positive allosteric modulators of GABA receptors) at any age, it is thought that development of V1 in GAD65 mice is halted in a pre-critical period-like state until inhibition is strengthened. We cannot exclude that something similar occurs in dLGN of mice lacking thalamic synaptic inhibition, although we did not observe any changes in hallmarks of dLGN maturity, such as reduced receptive field size (Fig. 1C), and increased cholinergic and inhibitory bouton densities (Suppl. Fig. 1).

      However, if the analogy with the developmental deficit in V1 of GAD65 deficient mice is valid, the reduced plasticity is still likely to be a direct consequence of reduced inhibition. In GAD65 deficient mice, long-term monocular deprivation during the critical period causes a full OD shift, showing that no additional deficits (besides reduced inhibition) limit OD plasticity in V1 of these mice (Fagiolini and Hensch, 2000). And, as already mentioned, increasing inhibition rescues OD plasticity in GAD65 KO mice. Thus, the immature state of V1 in these mice is probably a situation in which inhibition tone is too low to support efficient OD plasticity. In dLGN, knocking out GABRA1 at a later age could therefore also create a situation in which inhibition is too low to support thalamic OD plasticity, which is not different from the situation in which the gene is inactivated at birth. Only if lack of synaptic inhibition in thalamus affects another, unknown developmental process that is of importance later in life to support OD plasticity in dLGN, the proposed experiment would result in a different outcome. We are not convinced that this scenario is likely enough to justify repeating most of this study, but now using mice in which GABRA1 is inactivated in dLGN through bilateral AAV-cre injections.

      Independently of the exact cause of the plasticity deficit in dLGN, our results make clear that a cortical plasticity deficit in adulthood can have a thalamic origin, which we believe is an important insight that is highly relevant.

      2) The authors found that in juveniles, dLGN OD shift is dependent on V1 feedback, but not in adults. However, a recent work showed that the effects of V1 silencing on dLGN OD plasticity could differ with various starting points and duration of the V1 silencing and MD (Li et al., 2023). Could the authors provide more details of the MD and V1 silencing for an in-depth discussion?

      We would be happy to include some discussion about this interesting new paper in a revised manuscript. Some of the results may appear to contradict our findings. Most strikingly, the study by Li et al does not find evidence for OD plasticity in dLGN of 60-day old mice after 7 days of monocular deprivation. This seems to be at odds with the current work and with that of (Jaepel et al 2017) and (Huh et al. 2020). However, in the (Li et al, 2022) study, only the binocular neurons which responded to both contralateral and ipsilateral stimulus were included to measure the OD. This has important consequences for assessing OD and its plasticity. To illustrate: if dLGN neurons are monocularly responsive to the contralateral eye and become binocular after deprivation of the contralateral eye, they are excluded from analysis before deprivation but included after. This would cause an underestimation of the size of this OD shift. In our experiments, all dLGN neurons with receptive fields that were within 30o degrees away from the center of the visual field were included in the analysis, potentially explaining the different outcome of the studies.

      Also, Li et al observed that an OD shift in dLGN was still present after silencing V1 at p24. This observation is not necessarily at odds with our observation that the OD shift reduces at p30 upon silencing V1, as we find that the ODI does not return to normal but remains slightly lower (though not significantly so). Moreover, the age and the duration of deprivation were different and as mentioned before, analysis was performed differently.

      Interestingly, an excitotoxic lesion of V1 was found to alter OD in dLGN during development and affect OD plasticity in dLGN at various ages in the work of Li et al. This suggests that continuous crosstalk between thalamus and cortex during development guides plasticity, possibly optimizing thalamocortical and corticothalamic connections. The continued absence of corticothalamic feedback is likely to have a much larger impact on dLGN plasticity than the acute silencing we performed.

      Fagiolini M, Hensch TK. Inhibitory threshold for critical-period activation in primary visual cortex. Nature. 2000 Mar 9;404(6774):183-6.

      Huh CYL, Abdelaal K, Salinas KJ, Gu D, Zeitoun J, Figueroa Velez DX, Peach JP, Fowlkes CC, Gandhi SP. Long-term Monocular Deprivation during Juvenile Critical Period Disrupts Binocular Integration in Mouse Visual Thalamus. J Neurosci. 2020 Jan 15;40(3):585-604. doi: 10.1523/JNEUROSCI.1626-19.2019

      Jaepel J, Hübener M, Bonhoeffer T, Rose T. Lateral geniculate neurons projecting to primary visual cortex show ocular dominance plasticity in adult mice. Nat Neurosci. 2017 Dec;20(12):1708-1714

      Li N, Liu Q, Zhang Y, Yang Z, Shi X, Gu Y. Cortical feedback modulates distinct critical period development in mouse visual thalamus.. iScience. 2022 Dec 7;26(1):105752.

      Sommeijer JP, Ahmadlou M, Saiepour MH, Seignette K, Min R, Heimel JA, Levelt CN. Thalamic inhibition regulates critical-period plasticity in visual cortex and thalamus. Nat Neurosci. 2017 Dec;20(12):1715-1721.

    1. Author Response

      We sincerely appreciate the reviewers for investing their valuable time in assessing our manuscript. We understand the considerable effort involved in the review process, and we will make use of these suggestions in order to make the revised manuscript more complete in terms of explanation, discussion, additional simulations, experiments and analyses.

      -Specifically, we will experimentally and computationally investigate how activation via anti-CD3 antibodies relates to our mechanism.

      -We will also utilize a weaker pMHC binder in the pMHC-mediated T cell activation experiments.

      -We will improve the description of the function of the FG loop and the role of the connecting peptide (CP).

      -Furthermore, we will improve our description of and justification for the simulation methodology. We want to emphasize that all potentials have been described, and we will draw attention to these methodological descriptions where needed.

      The reviewers also suggested a number of additional simulations that are probably beyond our current capability. These include:

      -simulations of TCR in complex with a weaker agonist -simulations of the proline and alanine TCR mutants in complex with a pMHC.

      While we agree that such simulations would provide new insights into the mechanism of TCR triggering, they simply are not feasible at this time. We will give a more detailed explanation for these arguments in the revised manuscript.

      Below, please find our point-by-point planned action items:

      Reviewer #1 (Public Review):

      The manuscript entitled: "TCR-pMHC complex formation triggers CD3 dynamics" by Van Eerden et al. mainly uses coarse-grained molecular dynamics to probe the dynamic changes, in terms of CDε spatial arrangements around 226 TCRs, before and after the engagements of MCC/I-Ek. The broader distributions of CDε iso-occupancies after pMHC binding correlate with the decreases of TCR-CD3 contacts and extensions of TCR conformations. Given the observed release of motion restrictions upon antigen recognition, the authors proposed a "drawbridge" model to describe the initial triggering processes from pMHC association to TCR straightening, FG-loop getaway, and CD3 enhanced mobility. In addition, the authors briefly investigated the functional effects of the rigidified connecting peptide (CP) in T-cell activation using in silico and in vitro mutagenesis. The manuscript raises an important and exciting hypothesis about the allostery of TCR-CD3 during TCR triggering; however, due to current not-yet-convincing evidence, both computationally and experimentally, in supporting their conclusions.

      I would like to see additional work before supporting the publication of this manuscript in Life. See details below:

      1) As mentioned by the authors, the TCR triggering and T cell activation have been illustrated by a number of models, such as mechanosensing and kinetic proofreading, "in which TCRs discriminate agonistic from antagonistic pMHCs." However, the critical feature of antigen discrimination is lacking in the drawbridge model. So far, the CDε movements qualitatively distinguish on and off states. The simulation of the antagonist or weaker binder would strengthen the manuscript by demonstrating the relevance of CDε mobility in the triggering mechanism. 226 TCR associated with K99E/I-Ek has been resolved in Ref (DOI: 10.4049/jimmunol.1100197), which can potentially serve as the "intermediate" system to formulate the gradual increase of CDε dynamics.

      Planned actions:

      -Explain why the current study can not easily address pMHC discrimination

      -Explain why simulation of antagonist or weaker binding pMHC is technically difficult

      2) The linkage between conserved motifs in CP and CDε mobility is less apparent to this reviewer. The notion of the rigidified hinge (PP) requires further clarification. Computationally, the details of fine-grained simulations are required to justify the origin of the apparent mobility increase in PP. The direct comparison between Fig. 2 and Fig. 7 can help assess the relevance of CP through the alignment by FG-loop at a fixed direction in polar coordinates. Experimentally, anti-CD3 positive experiments and, ideally, another antagonist on 3A9 TCRs can strengthen the current functional assay. The baseline level of TCR expression (after positive selection) and 0h activation (Fig. S8) is missing.

      Planned actions:

      -Provide additional analysis of the role of CP as a hinge

      -Better clarify the FG simulation methodology

      -Align the CG and the FG polar plots

      -Perform experiments with anti-CD3 antibody 2C11

      -Perform additional experiment using weaker agonist (HEL peptide mutant)

      -Measure baseline-level TCR expression

      -Perform T cell activation experiments at t=0 h

      3) Regarding the section "The TCRβ FG loop acts as a gatekeeper," besides contact analysis, additional motion analysis, such as RMSF or PCA, can further establish the importance of FG loops.

      Planned actions:

      -Perform additional analyses of FG loop dynamics

      4) The discussion on anti-CD3 antibody effects and their potential contribution to CD3 mobility is highly recommended.

      Planned actions:

      -We will add the discussion of anti-CD3 antibody effects

      Reviewer #2 (Public Review):

      In this research article a new allosteric mechanism for T cell receptor (TCR) triggering upon peptide-MHC complex binding is presented in which conformational change in the TCR facilitates activation by controlling CD3 dynamics around the TCR. The authors find that the Cb FG loop acts as a gatekeeper and Cb connecting peptide acts as a hinge to control TCR flexibility.

      As an initial result, the authors set up two sets of simulations - TCR-CD3 and pMHC-TCR-CD3 in POPC bilayers and identified that the CD3e chains exhibit a wider range of mobility in the pMHC-TCR-CD3 system as compared to the TCR-CD3 system. Next, they examined the contacts between all subunits during the course of both simulations and established that CD3g and CD3eg made far fewer contacts with TCRb in the pMHC-TCR-CD3 simulations. Next, they identified that the TCR is extended in the pMHC-TCR-CD3 simulations with larger tilt angle of 150º and FG loop acts as gatekeeper that allows CD3 movements upon pMHC binding. Finally, Mutations in Cb connecting peptide regions indicated rigidified TCR leading to hypersensitive TCR, proved both by simulations and in vitro experiments.

      The following major concerns must be addressed.

      Major concerns:

      1) The simulations were performed with intracellular regions unfolded and free from the membrane. A more complete system should have the intracellular regions embedded in the membrane. An NMR structure of CD3e is available (Xu et al., Cell, 2008) and could have been modeled into the TCR-CD3 system before the simulation. Prakaash et al., (PLoS, Comput Biol, 2021) studied cytoplasmic domain motions during in their simulation experiments.

      Planned actions:

      -Explain why we can not perform adequate additional simulations of ITAMs

      2) Comparing Fig. 2C and Fig.7C, the movement of CD3eg is more restricted in Fig.7C. Is this because the simulation time is lower in the mutation experiments?

      Planned actions:

      -Explain the differences between the CG and FG polar plots

      3) Only TCR-CD3 simulation were performed for PP and AA mutants. A simulation with pMHC (pMHC-TCRmutants-CD3) should be performed to show increased CD3 mobility.

      Planned actions:

      -Explain why TCR-CD3-pMHC simulations of the mutants are not feasible at this time

      4) Using CD3e antibody, OKT3, for activation instead of pMHC as a separate experiment would add more value to this study. They can look at CD3 mobility and TCR elongation in the system with OKT3 antibody and compare it to the CD3 mobility and TCR elongation with the pMHC system. They can also use OKT3 with AA and PP mutants and perform both simulation and in vitro activation experiments.

      Planned actions:

      -Perform anti-CD3 (2C11) experiments

      -Perform CG simulation of TCR with CD3 Fab fragment

      -Explain why we cannot perform FG simulations of TCR mutants with CD3

      5) The activation experimental data is rather underwhelming. The difference between WT and PP in 2hr experiment at 0.016 ug/mL looks exceedingly low. A stronger TCR-pMHC system should be considered for the in vitro activation experiments.

      Planned actions:

      -Explain that this is a dilution curve, which is why at lower concentrations the effect is smaller, but at higher concentrations the effect is clear

      6) There is some concern that the scientific work lacks solid experimental functional data and lack of novelty due to earlier TCR-CD3 simulation studies (Pandey et al., 2021, eLife) that already reported flexibility and elongation of the complex.

      Planned actions:

      -Explain the similarities and difference between this and Pandey’s work; clarify how our study contributes novel findings

      Reviewer #3 (Public Review):

      The authors first explore structural differences of unbound TCR-CD3 complexes and pMHC-bound TCR-CD3 complexes with coarse-grained simulations. In the simulations with pMHC-bound complexes, the transmembrane (TM) domains of the TCR-CD3 complex and of pMHC are embedded in two opposing membrane patches. In the pMHC membrane patch, a pore is created and stabilised in the simulation setup with the aim to allow water transport in and out of the compartment between the membranes. The authors report a more upright conformation of the TCR extracellular (EC) domain in the simulations in which this EC domain is bound to pMHC, compared to simulations with unbound TCR, and postulate an allosteric signalling model based on these apparent conformational changes and associated changes in TCR-CD3 quaternary arrangements. Subsequently, the authors identify a GxxG motif in the TCRbeta connecting peptide between EC domain and TM domain as putative hinge in allosteric signalling, and explore the effect of double proline and double alanine substitutions in atomistic simulations and experiments.

      While these simulation and experimental setups and the addressed questions are of interest in the field, the following weaknesses prevail in my overall assessment of the work:

      (1) I am not convinced that the reported coarse-grained simulation results are sound or allow to draw the conclusions stated in the work. In the simulations with a pMHC-bound TCR-CD3 complex, the intermembrane distance in the setup shown in Figure S1 appears excessively large and likely leads to a rather strong force in the membrane-vertical direction and to the reported upright conformation of the TCR EC domain. This upright confirmation thus appears to be a consequence of force from the simulation setup, rather than a consequence of pMHC binding alone as suggested by the authors. While the membrane pore in principle allows water exchange, the relaxation of the intermembrane distance resulting from this water exchange in the 10 microsecond long simulation trajectories is not (but needs to be) addressed. This relaxation eventually would lead to an equilibrated membrane separation, in which essentially no force is exerted on the TCR-pMHC EC complex. However, I suspect that this computationally demanding equilibration is not achieved in the simulations, with the consequence that forces on the TCR-pMHC EC complex in the membrane-vertical direction remain.

      In addition, I am not convinced that the Martini force field of the coarse-grained simulations allows a reliable assessment of the quaternary interactions between the TCR and CD3 EC domains. Getting protein structures and interactions right in coarse-grained simulations is notoriously difficult. In simulations with the coarse-grained Martini force field, secondary protein structures are constrained as a standard procedure, and the authors also use a recommended Go-potential procedure, likely to stabilise tertiary protein structures. The quaternary interactions between the TCR EC domain and the pMHC EC domain are modelled by rather strong harmonic constraints to prevent dissociation. While the treatment of the quaternary interactions between the TCR EC domain and the CD3 EC domains in the simulations is not (but needs to be) addressed in detail, I suspect that there are no additional, or only weak constraints to stabilise these interactions. In any case, I think that a faithful representation of these quaternary interactions is beyond the reach of the Martini force field, as is the reported diffusion of the CD3 EC domains around the TCR EC domain, which plays a central role in the allosteric mechanism proposed by the authors (see Fig 2 and 5).

      Planned actions:

      -We will provide further description and justification for the CG simulations

      (2) The allosteric model suggested by the authors is motivated in an introduction that appears to omit central controversial aspects in the field, as well as experimental evidence that is not compatible with allosteric conformational changes in the TCR. These aspects are:

      • The mechanosensor model is controversial. In original versions of this model, a transversal force has been postulated to be required for T cell activation. However, more recent single-molecule force-sensor experiments reported in J Goehring et al., Nat Commun 12, 1 (2021) provide no evidence for a scenario in which transversal forces beyond 2 pN are associated with T cell activation.

      • The role of catch bonds is controversial. Evidence for TCR catch bonds has been mainly obtained in experimental setups using the biomembrane force probe, in which force is applied to TCRs on the surface of T cells, but is not reproduced in experimental setups using isolated TCRs, see e.g. L Limozin et al., PNAS 116, 16943 (2019)

      • Ref. 1 of the manuscript prominently discusses the kinetic segregation model of T cell activation, which is not (but needs to be) addressed in the introduction. In this model, exclusion of CD45 from close-contact zones around pMHC-bound TCRs triggers T cell activation. The model is supported by evidence from diverse experiments, see for example M Aramesh et al., PNAS 118, e2107535118 (2021) and Ref. 1. At least part of this evidence is not compatible with mechanosensing or allosteric models of T cell activation.

      Planned actions:

      -We will add the requested literature references and include a better description of the kinetic segregation model

    1. Author Response:

      The major criticism from the reviewers is that factors other than high-impact rare variants – such as environmental factors or epistasis – could have produced the complex tail architecture that we test for and detect. While we did explain this point in the Discussion, we agree with the reviewers that this should have been emphasized more and earlier in the manuscript.

      Regarding suggestions for more complex simulations and methods, we absolutely agree that much more work is needed here to produce optimised inference of all the causes of complex tail architecture. We are performing multiple projects at various stages of completion that we hope will contribute to this, but we felt that this was a good stopping-point in this project to publish what we had completed so far, in order to: (1) introduce the idea of inferring complex genetic architecture from siblings without requiring genetic data, (2) outline an initial theoretical framework for inferring complex tail architecture from sibling data, (3) provide simple tests powered to identify enrichments of de novo or ‘Mendelian’ variants in the tails (albeit tests that make several strong simplifying assumptions), (4) enable others interested in the topic to build upon this work now. However, we plan to expand our simulations and analyses in a revised manuscript based on reviewer feedback.

      We thank the reviewers for their comments about the value of our work, its mathematical robustness and the promise of our method.

    1. Author Response:

      The following is the authors' response to the original reviews.

      Reviewer #1 (Public Review):

      […] Overall, the authors build a convincing case for TEs being an important source of regulatory information. I don't have any issues with the analysis, but I am concerned about the sweeping claims made in the title. Once you get rid of eQTLs that could be altered by either SNPs or TIPs and include only those insertions that show strong evidence of selection, the number of genes is reduced to only 30. And even in those cases, the observed linkage is just that, not definitive evidence for the involvement of TEs. Although clearly beyond the scope of this analysis, transgenic constructs with the TEs present or removed, or even segregating families, would have been far more convincing. 

      We notice that the referee thinks that we "built a convincing case for TEs being an important source of regulatory information". This is what we wanted to convey in the title, were we were cautious to not claiming that TEs are the most important contributor to gene expression variability in rice populations. However, we agree with the referee that the title may be improved to better describe the results presented. We have therefore changed the title to "Transposons are an important contributor to gene expression variability under selection in rice populations".

      With respect to demonstrating causality by removing or introducing the TEs, this is indeed a work we plant to do but that, as stated by the referee, is beyond the scope of this analysis.

      The fact that many of the eQTL-TIPs were relatively old is interesting because it suggests that selection in domesticated rice was on pre-existing variation rather than new insertions. This may strengthen the argument because those older insertions are less likely to be purged due to negative effects on gene expression. Given that the sequence of these TEs is likely to have diverged from others in the same family, it would have been interesting to see if selection in favor of a regulatory function had caused these particular insertions to move away from more typical examples of the family. 

      The TIP-eQTL are from different classes, superfamilies and families and the number of TIP-eQTLs of the same family is too small to deduce sequence communalities (4.6 TIP-eQTLs/family in indica and 3.6 TIP-eQTLs/family in japonica). On the other hand the effect of TIPs on expression can be positive or negative (we show actually that it is often negative). In the later case, a plausible scenario would be of the insertion inactivating a promoter element, and in this case it would be the insertion itself, and not the actual sequence of the TE what would be selected.

      Also, previous work done in our lab has shown that TEs can amplify and mobilize transcription factor binding sites that are bound by the TF even when they are not close to a gene and therefore probably not directly affecting gene expression (Hénaff et al.,2014. The Plant Journal). In that case, the sequence of the eQTL TEs and those that are far away from genes will not necessarily differ. 

      Reviewer #2 (Public Review):

      In this manuscript, Castanera et al. investigated how transposable elements (TEs) altered gene expression in rice and how these changes were selected during the domestication of rice. Using GWAS, the authors found many TE polymorphisms in the proximity of genes to be correlated to distinct gene expression patterns between O. sativa ssp. japonica and O. sativa ssp. indica and between two different growing conditions (wet and drought). Thereby, the authors found some evidence of positive selection on some TE polymorphisms that could have contributed to the evolution of the different rice subspecies. These findings are underlined by some examples, which illustrate how changes in the expression of some specific genes could have been advantageous under different conditions. In this work, the authors manage to show that TEs should not be ignored when investigating the domestication of rise as they could have played an important role in contributing to the genetic diversity that was selected. However, this study stops short of identifying causations as the used method, GWAS, can only identify promising correlations. Nevertheless, this study contributes interesting insights into the role TEs played during the evolution of rice and will be of interest to a broader audience interested in the role TEs played during the evolution of plants in general. 

      We agree with the referee that the results presented do not allow concluding on causality, and we have been careful not to pretend they would in the manuscript. We plan to perform analysis of adding or removing TEs by CRIPR/Cas 9 approaches to address this, but, in line with referee's 1 comment, we think this is beyond the scope of this analysis.

      ---------- 

      Reviewer #1 (Recommendations For The Authors): 

      Everything that I need to say is provided in the public portion of my review. 

      Reviewer #2 (Recommendations For The Authors): 

      Major concerns:

      1. The authors compare the proportion of the variance explained by the most significant TIP and SNP on the observed eQLTs associated with TIPs and SNPs. Thereby the authors conclude that TIPs explain more variance than SNPs. If I am not mistaken the GWAS was run separately for TIPs and SNPs, however, I am wondering if running the GWAS on the combined TIP and SNP dataset might be the better way to compare the variance explained by TIPs and SNPs on gene expression differences. It would be nice to see if these results also hold true if a TIP and SNP combined dataset is used as the most significant marker in a GWAS might not be the causal mutation but might just be linked to the causal mutation. Further in the TIP dataset, the number of markers is only 45k and in the SNP dataset, it is 1 000k, which could bias the GWAS toward finding markers that explain more of the variation in the dataset with fewer markers. 

      We addressed the reviewer concern by using two complementary approaches, whose results are described in the text (lines 119-121) and in the new Figure 1-figure supplement 1.

      First, we addressed the concern regarding the independent GWAS for TIPs and SNPs vs a combined strategy. For this, we built new japonica/indica genotype matrices containing all TIP and SNP matrix together and ran eQTL mapping again. Using the same strategy (association + FDR adjust), we found 100% of the previous TIP-eQTLs and 99% of the previous SNP-eQTLs. We repeated the same analysis (proportion of expression variance), and the results were mostly the same (Figure 1-figure supplement 1A).

      Second, we addressed the two concerns (combined genotypes and different amount of TIP and SNP markers) using a single approach. SNP matrices were LD pruned using a r2 = 0.9 and later subsampled to the exact number of TIPs (Indica = 30,396, Japonica = 25,168). We verified that these SNPs covered well the 12 rice chromosomes. SNP and TIP genotypes were later merged into a single matrix, and eQTL mapping was repeated for each of the subspecies and conditions using the same parameters as in the previous version of the manuscript. 100 % of the previously reported TIP-eQTL associations were found using this new approach. Nevertheless, we found a very important drop of sensitivity in the SNP-eQTLs (only 15-20% of the previous associations were detected), possibly due to the strong reduction in the number of SNPs (> 95 %), which results in much lower number of markers at < 5Kb from genes). We repeated the analysis of Figure 1D, and observed very similar results (Figure 1-figure supplement 1D). There is a very important number of TIP-eQTL associations that do not coincide with SNP-eQTLs, (74% in indica, 83% in japonica) indicating that TIP-eQTL mapping is complementary to SNP-eQTL mapping as it uncovers additional associations (note that in this case the overlap between TIP-eQTLs and SNP-eQTLs is lower than in the previous analysis due to the lower sensitivity of SNP-eQTL mapping using less markers). In the cases were both a TIP and a SNP coincide as eQTL, TIPs explained slightly more variance than SNPs in both indica and japonica (in 54% of the cases TIP variance > SNP variance).

      2. Line 146 to 152: in this section, the authors describe overlaps between TIP-eQTLs in two different growth conditions, however, in the text it is not mentioned if the TIPs have the same effect on gene expression in the two conditions or if the gene expression is up-regulated in one condition but down-regulated in the other. This information would be interesting to have here, especially as the authors go on to say that only a small number of TIP-eQTLs are stress-specific. The same comment also goes for the eQTL overlap described on lines 167 to 170. 

      We checked the effect type (positive or negative) of TIP-eQTLs in both scenarios (associations shared between wet/dry conditions, and associations shared between subspecies). In both cases, 100 % of the shared TIP-eQTLs have the same effect type in the two conditions or subspecies. We have updated the text accordingly (Lines 55-157 and Lines 179-181)

      3. Lines 192 to 196: the authors mention that the frequency of non-eQTL-TIPs was at the same frequency in indica and japonica, which is in contrast to eQTL-TIPs. However, on line 132 it is mentioned that eQTL-TIPs were overrepresented in 1 kb regions upstream of genes. Hence, is the pattern of the frequency of non-eQTL-TIPs being at the same frequency in indica and japonica also observed in the 1 kb regions upstream of genes and/or if the distribution of non-eQTL-TIPs is matched to one of the eQTL-TIPs? Or is this pattern driven by non-eQTL-TIPs far away from genes?

      We checked the frequencies of TIPs at 1Kb upstream genes and found that the general pattern is maintained, with the frequencies of TIP no-eQTLs being more correlated than that of TIP-eQTLs. We have included this information (lines 204-206) an added a new supplementary file (Figure 2-figure supplement 2)

      4. In the discussion, the authors could briefly discuss how linked selection affecting TIPs could contribute to the observed results. After reading the second example in the result section where one of the example TIPs (TIP_50059) is found on the Hap B which contains "some additional structural differences" (line 290), I was left wondering how much of the increase in TIP frequency can be attributed to genetic hitchhiking? And how much of the results could be caused by linked selection, especially when considering that structural variations are not included in the GWAS analyses. 

      We agree with the referee in that some of the TIP eQTLs here described might be not the actual cause of expression variability (ej, TIP linked with the causal mutation), although we cannot know the exact fraction. This is stated in several places of the results and discussion sections. However, the fact that TIPs tend to explain more variance than SNPs and that TIP eQTL, but not SNP eQTL, tend to concentrate in the upstream proximal region of genes where most transcription regulatory sequences are located (Figure 1), suggest that TIP eQTLs could be more frequently the causal than SNP eQTLs. We revised the text to ensure that we convey this message appropriately.

      Minor comments: 

      • Lines 80 to 83: the description of the rice phylogeny should be moved to the introduction. 

      Done (Lines 68-72)

      • Line 177 to 186: It was unclear to me if the authors checked in the ancestral rice population laced the TIPs described in this section as recently inserted in the indica and japonica ssp. It would be nice to add this information to this section. 

      Thanks to the referee comment we noted an imprecision in the text. The approximate 1/3 of subspecies specific TIP-eQTLs refers to the TIPs at 3% MAF (ie, some of these insertions could be present at > 3% in indica, but at < 3% MAF in japonica). We now indicate only the TIPs that are truly specific to any of the two subspecies (frequency is zero in one of the two) and looked for their presence in rufipogon:

      59 insertions are indica-specific. Of those, 33 are present in rufipogon.

      21 insertions are japonica-specific. Of those, 5 are present in rufipogon.

      We have incorporated this information in the manuscript (Lines 185-189). The species-specific TIPs are also available in the Supplementary File 3.

      • Line 353: "have two of more TIPs" should be "two or more" 

      Done (Line 369)

      • Figure 1D: Using a square layout instead of a rectangle layout for the plot will make it easier to interpret. 

      Done.

    1. Author Response:

      The following is the authors' response to the original reviews.

      Reviewer #1 (Public Review):

      […] This novel system could serve as a powerful tool for loss-of-function experiments that are often used to validate a drug target. Not only this tool can be applied in exogenous systems (like EGFRdel19 and KRASG12R in this paper), the authors successfully demonstrated that ARTi can also be used in endogenous systems by CRISPR knocking in the ARTi target sites to the 3'UTR of the gene of interest (like STAG2 in this paper).

      We thank the referee for highlighting the novelty and potential of the ARTi system.

      ARTi enables specific, efficient, and inducible suppression of these genes of interest, and can potentially improve therapeutic target validations. However, the system cannot be easily generalized as there are some limitations in this system:

      • The authors claimed in the introduction sections that CRISPR/Cas9-based methods are associated with off-target effects, however, the author's system requires the use CRISPR/Cas9 to knock out a given endogenous genes or to knock-in ARTi target sites to the 3' UTR of the gene of interest. Though the authors used a transient CRISPR/Cas9 system to minimize the potential off-target effects, the advantages of ARTi over CRISPR are likely less than claimed.

      We thank the reviewer for raising these very valid concerns about potential off-target effects related to the CRISPR/Cas9-based gene knockout or engineering of endogenous ARTi target sites. In contrast to conventional RNAi- and CRISPR-based approaches, such off-target effects can be investigated prior to loss-of-function experiments through comparison between parental and engineered cells, which in the absence of CRISPR-induced off-target events are expected to be identical. Subsequent ARTi experiments provide full control over RNAi-induced off-target activities through comparison of target-site engineered and parental cells. However, we agree that undetected CRISPR/Cas9-induced off-target events cannot be ruled out in a definitive way, which we have pointed out in our revised manuscript.

      • Instead of generating gene-specific loss-of-function triggers for every new candidate gene, the authors identified a universal and potent ARTi to ensure standardized and controllable knockdown efficiency. It seems this would save time and effort in validating each lost-of-function siRNAs/sgRNAs for each gene. However, users will still have to design and validate the best sgRNA to knock out endogenous genes or to knock in ARTi target sites by CRISPR/Cas9. The latter is by no-means trivial. Users will need to design and clone an expression construct for their cDNA replacement construct of interest, which will still be challenging for big proteins.

      We fully agree that the required design of gene-specific sgRNAs and subsequent CRISPR-engineering steps are by no means trivial. However, we believe that decisive advantages of the method, in particular the robustness of LOF perturbations and additional means for controlling off-target activities, can make ARTi an investment that pays off. In our experience, much time can be lost in the search for effective LOF reagents, and even when these are found, questions about off-target activity remain. While ARTi overcomes many of these challenges by providing a standardized experimental workflow, we do not propose to replace all other LOF approaches by this method. Instead, we would position ARTi as a unique orthogonal approach for the stringent validation and in-depth characterization of candidate target genes, as we have highlighted in our revised discussion.

      • The approach of knocking-out an endogenous gene followed by replacement of a regulatable gene can also be achieved using regulated degrons, and by tet-regulated promoters included in the gene replacement cassette. The authors should include a discussion of the merits of these approaches compared with ARTi.

      We thank the reviewer for pointing out these alternative LOF methods. We had already included a brief discussion of chemical-genetic LOF methods based on degron tags. While we certainly share the current excitement about degron technologies, they inevitably require changes to the coding sequence of target proteins, which can alter their regulation and function in ways that are hard to control for. In our revised discussion, we have added a brief comparison to conventional tet-regulatable expression systems, which unlike ARTi require the use of ectopic tet-responsive promoters. Overall, we would position ARTi as an orthogonal tool that enables inducible and reversible LOF perturbations without changing the coding sequence and the endogenous transcriptional control of candidate target genes.

      Reviewer #2 (Public Review):

      […] The ARTi system is based on expression of a transgene with an artificial RNAi target site in the 3'-UTR as well as a TET-inducible miR-E-based shRNAi. Using this system, the authors convincingly show that they can target strong oncogenes such as EGFRdel19 or KRasG12 as well as synthetic lethal interactions (STAG1/2) in various human cancer cell lines in vivo and in vitro.

      The system is very innovative, likely easy to be established and used by the scientific community and thus very meaningful.

      We thank the reviewer for her/his enthusiasm about ARTi.

      Reviewer #1 (Recommendations For The Authors):

      • The authors claimed that ARTi enables specific, efficient, inducible, and reversible suppression of any gene of interest. However, there are no experiments supporting the reversible suppression of their gene of interest. Data are required to support this statement.

      We thank the reviewer for pointing this out. The statement about the reversibility ARTi-mediated effects was based on a rich body of literature that has demonstrated the reversibility of Tet-shRNAmir-induced LOF perturbations and associated phenotypes. As ARTi employs the same Tet-shRNAmir expression vectors, we have no reason to believe that this feature would be lost. However, since we have not demonstrated this in our study, we have removed this statement in our revised manuscript.

      • In Figure 1E, the authors did make the point by including trametinib treated samples as positive controls. However, the trametinib treated samples also made the transcriptome changes in the ARTi groups hard to read. I wonder what the PCA analysis will look like if the authors exclude the trametinib treated groups.

      In Figure 1E, we used PCA as a common and easy-to-digest visualization tool to showcase the neutrality of ARTi shRNAmirs. Given the complete absence of significantly deregulated genes for all three ARTi shRNAmirs (Figure 1F), we believe that a PCA analysis of just these samples would merely represent experimental noise and not yield additional insights.

      • This universal and potent ARTi should ensure standardized and controllable knockdown efficiency, however, the knockdown efficiency for KRASG12R is not as potent as that for EGFRdel19. The authors should discuss the differences.

      We thank the reviewer for pointing this out. The exact level of knockdown on the protein level is hard to determine due to detection limits of the used method. The differences in the extent to mRNA knockdown could be attributable to cleavage efficiencies due to potential secondary structures in the respective mRNAs. We suspect that the KRASG12R transgene expresses at higher levels, compared to EGFRdel19. We might therefore still be looking at the same overall magnitude of knockdown. As we did not perform a detailed analysis of the respective knockdown levels, we do not feel comfortable in stating differences in knockdown levels and therefore do not think that addressing potential differences are justified.

      • It is interesting to see that, unlike other cancer types, tumor burdens did not decrease after inducing knockdown of STAG1 in STAG2 knockout HCT116 lines in Figure 2L. Have the authors examined senescence markers in this set of mice?

      We have not investigated these markers and thank the reviewer for this suggestion. More detailed analyses of the phenotype are planned.

      • Have the authors carefully examined the transcriptome changes induced or if not across all targets at least in the case of ARTi knock into the 3'UTR of STAG1?

      We thank the reviewer for this suggestion. This would indeed be interesting to conduct for STAG1/2, especially for genes with an integration of the ARTi into the 3’UTR. The reason why we did not perform this analysis with our cell lines is that we used a construct that also adds an AID tag to STAG1 (STAG1_AID_V5_P2A_Blasti_STOP_ARTi), as outlined in the methods section. After the engineering, STAG1 carries the ARTi sequence in the 3’UTR but is also fused to AID::V5. In addition a P2A::Blasticidin_resistance Protein is made from the same transcript. We chose to use this complex strategy with the aim of comparing AID mediated degradation with ARTi-mediated knockdown. Unfortunately, the AID-based approach did not work, and we were not able to observe a reduction in protein levels. We however observed lower expression of STAG1 in the engineered versus the parental cells, likely caused by the tag, and consequently did not conduct gene expression analyses, as we would not be able to assess if transcriptome changes could be solely ascribed to the changes in the 3’UTR. The knockdown levels are hence only analyzed on the protein level.

      Reviewer #2 (Recommendations For The Authors):

      This is a fantastic paper, easy to read and provides a very meaningful new and innovative approach for drug target validation. I think the manuscript could be further improved by adding a section to the discussion outlining other approaches that could be used to solve the same problem. For example, Bill Kaelin came up with a strategy of expressing shRNA- or sgRNA-resistant and rtTA- or tTA-regulated cDNAs of essential gene-of-interest followed by sh/sgRNA-mediated ablation of the endogenous gene (e.g.PMID: 28082722), which is conceptually quite similar to the ARTi approach. Similarly, people have used conditional degron tags such as AID tags, dTags, HALOTags, IHZF3 degrons or SMASh either knocked into the endogenous locus or as rescue transgene. Comparing and contrasting the pros and cons of these methods to the ARTi-based approach would be certainly beneficial to the readers.

      We thank the referee for pointing out these alternative LOF methods. We certainly share the current excitement about various degron tags and are applying them in our own research. In our view, a major downside of these strategies is that they inevitably require changes to the coding sequence of target proteins, which can alter their regulation and function in ways that are hard to predict and control for. We had briefly mentioned this distinguishing feature in our discussion. The strategy proposed by Bill Kaelin, i.e. rescue of the the endogenous gene through Tet-regulated expression of sh/sgRNA-resistant cDNAs, indeed shares many features of the ARTi system, but requires expression of the candidate target from an ectopic promoter element. In contrast, ARTi enables similar perturbations of candidate genes without altering their endogenous transcriptional regulations – a feature that we have highlighted in our revised discussion.

      All my other comments outlined below should be considered minor and are not essential.

      1, Suppl Fig.1 C: Please explain what the red star means. How can the knock-out be more than 100%. Please specify what the controls are. Why does shRNA660 exhibit no knockdown at all?

      The red star indicates ARTi-shRNAmirs that were selected for further characterization. Depicted GFP knockdown levels are normalized to the performance of shRen.713, a well-characterized potent control shRNA targeting Renilla Luciferase. Values of more than 100% mean that the respective shRNA exceeded effects of shRNA.713. shRNA.660 served as a neutral control – its target site was not included in the reporter construct. We thank the reviewer for bringing up these points, which we have clarified in the legend.

      2, x-axis label in Suppl Fig. 1D is missing

      We thank the referee for spotting this and have added this information to the figure and its legend.

      3, I would argue that ARTi6634 also has a slight effect in MV4-11 similar to its effect to RN2. Maybe add that to the text.

      We thank the reviewer and have added this observation to our revised text.

      4, Suppl. Figure Legend 1F - specify which cell line was used (HT-1080 presumably)

      We apologize for this mistake and now have indicated the cell line in the legend.

      5, Fig. 2A and E, it might be nice to add the dsRED fusion to the schematics so that the reader sees the difference between the endogenous and the endogenous. One could then also change the color to red instead of blue.

      We thank the reviewer for this suggestion and adapted the figure accordingly.

      6, Fig. 2B - In the third lane, there appears to be a residual band of the endogenous EGFR despite the fact that it should be KO. Is this a EGFR wt lysate with EGFR::dsRED::ARTi overexpression and as such a type in the legend or is this a non-complete KO? It might be beneficial to label the legend with EGFR::dsRED::ARTi instead of EGFR::ARTi have one arrow depicting EGFR and one additional arrow showing the EGFR::dsRED fusion (as in Fig. 1F).

      We thank the reviewer for this insightful comment. We interpret the WB signal in lane three as potential cleavage/degradation products of the transgene as all signal disappears upon ARTi-mediated knockdown. Due to space reasons, we would prefer to keep the label as it is. The exact nature of the transgene is stated in the text and in the methods section.

      7, Suppl Fig. 2d: It is interesting that there is such a huge upregulation of DUSP6 in cells that express EGFR::ARTi compared to parental? The figure legend states: expression levels of DUSP6 in parental and engineered PC-9 cells. I assume the first box (EGFR::ARTi -/ dox -) is the parental line? Is there really a 5x upregulation of DUSP6 upon overexpression of EGFR::ARTi compared to parental (despite the fact that the endogenous EGFR::ARTi is expressed to similar levels compared to the endogenous EGFR)? Please clarify a little better which of the cells are parental and which are EGFR KO and which are transduced with EGFR::ARTi. Might suffice to just explain in the supplmental figure legend that expression of the exogenous EGFR::ARTi in EGFR KO cells leads to increased expression of ERK targets such as DUSP6 and EPHA2 etc.

      We thank the reviewer for this comment. We ascribe the increased expression of DUSP6 to the forced expression of the oncogenic variant of EGFR (EGFRdel19) while only a subset of EGFR genes in PC-9 cells is mutated and the rest is wild-type. Therefore, the net-output of EGFR signaling would be higher, even if the EGFR protein levels were exactly the same, as the EGFR gene is only present in the oncogenic form in the engineered cells but a mixture of mutant and wild-type proteins would make up the EGFR pool in the parental cells. The figure legend was changed accordingly, highlighting that DUSP6 is a MAPK downstream gene.

      8, Suppl Fig. 2e: Similar to my comment #7. Expression of endogenous EGFR is lost upon KO of EGFR, but cylcinD1 expression as well as expression of other ERK target genes increases upon loss of the endogenous EGFR gene with concomitant expression of EGFR::ARTi . It is nice to see that most of those genes are down-regulated upon DOX treatment. However, CyclinD1 is strongly up-regulated - any idea why? Might be nice to comment on this in the supplemental material to make it easy for the reader to interpret the data.

      We agree with the reviewer that the direct MAPK target genes follow the expected pattern of strong downregulation. We have not studied the expression of CCND1 in detail and therefore cannot comment on the mechanistic basis of this observation.

      9, Fig. 2F - might be nice to provide some densitometry data to quantify the effect of ARTi-mediated KRasG12R knock-down.

      We thank the reviewer for this suggestion and apologize that this data is not available for this study. We will include densitometry data in upcoming studies involving ARTi. As the observed knockdown was almost complete and hence readily observable by eye, we did not measure the effects using densitometry. In addition, we would like to mention that the sensor assay contains a quantitative analysis of the knockdown levels.

      10, Fig. 2I, it might be nice to add the V5 tag to the schematic and mention the V5 tag in the text: ... and homozygously inserted ARTi target sites into the 3'-UTR as well as a V5 tag to the endogenous STAG1 alleles (Fig. 2i)

      We thank the reviewer for the suggestion and explained the exact makeup of the construct better in the main text. We would however like to keep the figure as simple as possible and put the focus on the endogenous engineering here.

      11, Fig. 2J - might be nice to provide some densitometry data to quantify the effect of ARTi-mediated STAT1::V5 knock-down.

      We thank the reviewer for this suggestion and apologize that this data is not available for this study. We will include densitometry data in upcoming studies involving ARTi. As the observed knockdown was almost complete and hence readily observable by eye, we did not measure the effects using densitometry. In addition, we would like to mention that the sensor assay contains a quantitative analysis of the knockdown levels.

      12, Suppl. Fig 4B: the authors write: 'Western blotting confirmed ... the homozygous insertion of the targeting cassette into the STAG1 locus, ...' . I think the WB nicely shows insertion of the V5 tag into the STAG1 locus, but it I think WB cannot show homozygous insertion. The fact that in Suppl Fig 1B STAG1 expression is (almost) completely ablated, is a good indication, but in Fig. 2J, there is still about 50% expression. As such, proofing homozygous insertion by PCR/Sanger sequencing or densitometry over several experiments or just rephrasing the text a little might be beneficial.

      We agree with the reviewer and have adapted the respective passage in the main text.

      Competing interests statement: A patent application related to the design and use of the ARTi system entitled ‘Methods and molecules for RNA interference (RNAi)’ has been submitted by T.H., M.H., J.Z. and R.N. to the European Patent Office (application EP21217407.2).

    1. Author Response:

      The following is the authors' response to the original reviews.

      Reply to Public Reviews:

      Reply to Reviewer #1:

      This is a carefully performed and well-documented study to indicate that the FUS protein interacts with the GGGGCC repeat sequence in Drosophila fly models, and the mechanism appears to include modulating the repeat structure and mitigating RAN translation. They suggest FUS, as well as a number of other G-quadruplex binding RNA proteins, are RNA chaperones, meaning they can alter the structure of the expanded repeat sequence to modulate its biological activities.

      Response: We would like to thank the reviewer for her/his time for evaluating our manuscript. We are very happy to see the reviewer for highly appreciating our manuscript.

      1. Overall this is a nicely done study with nice quantitation. It remains somewhat unclear from the data and discussions in exactly what way the authors mean that FUS is an RNA chaperone: is FUS changing the structure of the repeat or does FUS binding prevent it from folding into alternative in vivo structure?

      Response: We appreciate the reviewer’s constructive comments. Indeed, we showed that FUS changes the higher-order structures of GGGGCC [G4C2] repeat RNA in vitro, and that FUS suppresses G4C2 RNA foci formation in vivo. According to the established definition of RNA chaperone, RNA chaperones are proteins changing the structures of misfolded RNAs without ATP use, resulting in the maintenance of proper RNAs folding (Rajkowitsich et al., 2007). Thus, we consider that FUS is classified into RNA chaperone. To clarify these interpretations, we revised the manuscript as follows.

      (1) On page 10, line 215-219, the sentence “These results were in good agreement with our previous study on SCA31 showing the suppressive effects of FUS and other RBPs on RNA foci formation of UGGAA repeat RNA as RNA chaperones …” was changed to “These results were in good agreement with … RNA foci formation of UGGAA repeat RNA through altering RNA structures and preventing aggregation of misfolded repeat RNA as RNA chaperones …”.

      (2) On page 17, line 363-366, the sentence “FUS directly binds to G4C2 repeat RNA and modulates its G-quadruplex structure, as evident by CD and NMR analyses (Figure 5), suggesting its functional role as an RNA chaperone.” was changed to “FUS directly binds to G4C2 repeat RNA and modulates its G-quadruplex structure as evident by CD and NMR analyses (Figure 5, Figure 5—figure supplement 2), and suppresses RNA foci formation in vivo (Figures 3A and 3B), suggesting its functional role as an RNA chaperone.”

      Reply to Reviewer #2:

      Fuijino et al. provide interesting data describing the RNA-binding protein, FUS, for its ability to bind the RNA produced from the hexanucleotide repeat expansion of GGGGCC (G4C2). This binding correlates with reductions in the production of toxic dipeptides and reductions in toxic phenotypes seen in (G4C2)30+ expressing Drosophila. Both FUS and G4C2 repeats of >25 are associated with ALS/FTD spectrum disorders. Thus, these data are important for increasing our understanding of potential interactions between multiple disease genes. However, further validation of some aspects of the provided data is needed, especially the expression data.

      Response: We would like to thank the reviewer for her/his time for evaluating our manuscript and also for her/his important comments that helped to strengthen our manuscript.

      Some points to consider when reading the work:

      1. The broadly expressed GMR-GAL4 driver leads to variable tissue loss in different genotypes, potentially confounding downstream analyses dependent on viable tissue/mRNA levels.

      Response: We thank the reviewer for this constructive comment. In the RT-qPCR experiments (Figures 1E, 3C, 4G, 6D and Figure 1—figure supplement 1C), the amounts of G4C2 repeat transcripts were normalized to those of gal4 transcripts expressed in the same tissue, to avoid potential confounding derived from the difference in tissue viability between genotypes, as the reviewer pointed out. To clarify this process, we have made the following change to the revised manuscript.

      (1) On page 30, line 548-550, the sentence “The amounts of G4C2 repeat transcripts were normalized to those of gal4 transcripts in the same sample” was changed to “The amounts of G4C2 repeat transcripts were normalized to those of gal4 transcripts expressed in the same tissue to avoid potential confounding derived from the difference in tissue viability between genotypes”.

      2. The relationship between FUS and foci formation is unclear and should be interpreted carefully.

      Response: We appreciate the reviewer’s important comment. We apologize for the lack of clarity. We showed the relationship between FUS and RNA foci formation in our C9-ALS/FTD fly, that is, FUS suppresses RNA foci formation (Figures 3A and 3B), and knockdown of endogenous caz, a Drosophila homologue of FUS, enhanced it conversely (Figures 4E and 4F). We consider that FUS suppresses RNA foci formation through altering RNA structures and preventing aggregation of misfolded G4C2 repeat RNA as an RNA chaperone. To clarify these interpretations, we revised the manuscript as follows.

      (1) On page 10, line 215-219, the sentence “These results were in good agreement with our previous study on SCA31 showing the suppressive effects of FUS and other RBPs on RNA foci formation of UGGAA repeat RNA as RNA chaperones …” was changed to “These results were in good agreement with … RNA foci formation of UGGAA repeat RNA through altering RNA structures and preventing aggregation of misfolded repeat RNA as RNA chaperones …”.

      (2) On page 17, line 363-366, the sentence “FUS directly binds to G4C2 repeat RNA and modulates its G-quadruplex structure, as evident by CD and NMR analyses (Figure 5), suggesting its functional role as an RNA chaperone.” was changed to “FUS directly binds to G4C2 repeat RNA and modulates its G-quadruplex structure as evident by CD and NMR analyses (Figure 5, Figure 5—figure supplement 2), and suppresses RNA foci formation in vivo (Figures 3A and 3B), suggesting its functional role as an RNA chaperone.”

      Reply to Reviewer #3:

      In this manuscript Fujino and colleagues used C9-ALS/FTD fly models to demonstrate that FUS modulates the structure of (G4C2) repeat RNA as an RNA chaperone, and regulates RAN translation, resulting in the suppression of neurodegeneration in C9-ALS/FTD. They also confirmed that FUS preferentially binds to and modulates the G-quadruplex structure of (G4C2) repeat RNA, followed by the suppression of RAN translation. The potential significance of these findings is high since C9ORF72 repeat expansion is the most common genetic cause of ALS/FTD, especially in Caucasian populations and the DPR proteins have been considered the major cause of the neurodegenerations.

      Response: We would like to thank the reviewer for her/his time for evaluating our manuscript. We are grateful to the reviewer for the insightful comments, which were very helpful for us to improve the manuscript.

      1. While the effect of RBP as an RNA chaperone on (G4C2) repeat expansion is supposed to be dose-dependent according to (G4C2)n RNA expression, the first experiment of the screening for RBPs in C9-ALS/FTD flies lacks this concept. It is uncertain if the RBPs of the groups "suppression (weak)" and "no effect" were less or no ability of RNA chaperone or if the expression of the RBP was not sufficient, and if the RBPs of the group "enhancement" exacerbated the toxicity derived from (G4C2)89 RNA or the expression of the RBP was excessive. The optimal dose of any RBPs that bind to (G4C2) repeats may be able to neutralize the toxicity without the reduction of (G4C2)n RNA.

      Response: We appreciate the reviewer’s constructive comments. We employed the site-directed transgenesis for the establishment of RBP fly lines, to ensure the equivalent expression levels of the inserted transgenes. We also evaluated the toxic effects of overexpressed RBPs themselves by crossbreeding with control EGFP flies, showing in Figure 1A. To clarify them, we have made the following changes to the revised manuscript.

      (1) On page 8, line 166-168, the sentence “The variation in the effects of these G4C2 repeat-binding RBPs on G4C2 repeat-induced toxicity may be due to their different binding affinities to G4C2 repeat RNA, and their different roles in RNA metabolism.” was changed to “The variation in the effects of these G4C2 repeat-binding RBPs on G4C2 repeat-induced toxicity may be due to their different binding affinities to G4C2 repeat RNA, and the different toxicity of overexpressed RBPs themselves.”.

      (2) On page 29, line 519-522, the sentence “By employing site-specific transgenesis using the pUASTattB vector, each transgene was inserted into the same locus of the genome, and was expected to be expressed at the equivalent levels.” was added.

      2. In relation to issue 1, the rescue effect of FUS on the fly expressing (G4C2)89 (FUS-4) in Figure 4-figure supplement 1 seems weaker than the other flies expressing both FUS and (G4C2)89 in Figure 1 and Figure 1-figure supplement 2. The expression level of both FUS protein and (G4C2)89 RNA in each line is important from the viewpoint of therapeutic strategy for C9-ALS/FTD.

      Response: We appreciate the reviewer’s important comment. The FUS-4 transgene is expected to be expressed at the equivalent level to the FUS-3 transgene, since they are inserted into the same locus of the genome by the site-directed transgenesis. Thus, we suppose that the weaker suppressive effect of FUS-4 coexpression on G4C2 repeat-induced eye degeneration can be attributed to the C-terminal FLAG tag that is fused to FUS protein expressed in FUS-4 fly line. Since the caz fly expresses caz protein also fused to FLAG tag at the C-terminus, we used this FUS-4 fly line to directly compare the effect of caz on G4C2 repeat-induced toxicity to that of FUS.

      3. While hallmarks of C9ORF72 are the presence of DPRs and the repeat-containing RNA foci, the loss of function of C9ORF72 is also considered to somehow contribute to neurodegeneration. It is unclear if FUS reduces not only the DPRs but also the protein expression of C9ORF72 itself.

      Response: We thank the reviewer for this comment. We agree that not only DPRs, but also toxic repeat RNA and the loss-of-function of C9ORF72 jointly contribute to the pathomechanisms of C9-ALS/FTD. Since Drosophila has no homolog corresponding to the human C9orf72 gene, the effect of FUS on C9orf72 expression cannot be assessed. Our fly models are useful for evaluating gain-of-toxic pathomechanisms such as RNA foci formation and RAN translation, and the association between FUS and loss-of function of C9ORF72 is beyond the scope of this study.

      4. In Figure 5E-F, it cannot be distinguished whether FUS binds to GGGGCC repeats or the 5' flanking region. The same experiment should be done by using FUS-RRMmut to elucidate whether FUS binding is the major mechanism for this translational control. Authors should show that FUS binding to long GGGGCC repeats is important for RAN translation.

      Response: We would like to thank the reviewer for these insightful comments. Following the reviewer’s suggestion, we perform in vitro translation assay again using FUS-RRMmut, which loses the binding ability to G4C2 repeat RNA as evident by the filter binding assay (Figure 5A), instead of BSA. The results are shown in the figures of Western blot analysis below. The addition of FUS to the translation system suppressed the expression levels of GA-Myc efficiently, whereas that of FUS-RRMmut did not. FUS decreased the expression level of GA-Myc at as low as 10nM, and nearly eliminated RAN translation activity at 100nM. At 400nM, FUS-RRMmut weakly suppressed the GA-Myc expression levels probably because of the residual RNA-binding activity. These results suggest that FUS suppresses RAN translation in vitro through direct interactions with G4C2 repeat RNA.

      Unfortunately, RAN translation from short G4C2 repeat RNA was not investigated in our translation system, although the previous study reported the low efficacy of RAN translation from short G4C2 repeat RNA (Green et al., 2017).

      Author response image 1.

      (A) Western blot analysis of the GA-Myc protein in the samples from in vitro translation.

      (B) Quantification of the GA-Myc protein levels.

      We have made the following changes to the revised manuscript.

      (1) Figure 5F was replaced to new Figures 5F and 5G.

      (2) On page 14-15, line 326-330, the sentence “Notably, the addition of FUS to this system decreased the expression level of GA-Myc in a dose-dependent manner, whereas the addition of the control bovine serum albumin (BSA) did not (Figure 5F).” was changed to “Notably, upon the addition to this translation system, FUS suppressed RAN translation efficiently, whereas FUS-RRMmut did not. FUS decreased the expression levels of GA-Myc at as low as 10nM, and nearly eliminated RAN translation activity at 100nM. At 400nM, FUS-RRMmut weakly suppressed the GA-Myc expression levels probably because of the residual RNA-binding activity (Figure 5F and 5G).”.

      (3) On page 15, line 330-332, the sentence “Taken together, these results indicate that FUS suppresses RAN translation from G4C2 repeat RNA in vitro as an RNA chaperone.” was changed to “Taken together, these results indicate that FUS suppresses RAN translation in vitro through direct interactions with G4C2 repeat RNA as an RNA chaperone.”.

      (4) On page 37, line 720-723, the sentence “For preparation of the FUS protein, the human FUS (WT) gene flanked at the 5¢ end with an Nde_I recognition site and at the 3¢ end with a _Xho_I recognition site was amplified by PCR from pUAST-_FUS.” was changed to “For preparation of the FUS proteins, the human FUS (WT) and FUS-RRMmut genes flanked at the 5¢ end with an Nde_I recognition site and at the 3¢ end with a _Xho_I recognition site was amplified by PCR from pUAST-_FUS and pUAST- FUS-RRMmut, respectively.”.

      (5) On page 41, line 816-819, the sentence “FUS or BSA at each concentration (10, 100, and 1,000 nM) was added for translation in the lysate.” was changed to “FUS or FUS-RRMmut at each concentration (10, 100, 200, 400, and 1,000 nM) was preincubated with mRNA for 10 min to facilitate the interaction between FUS protein and G4C2 repeat RNA, and added for translation in the lysate.”.

      5. It is not possible to conclude, as the authors have, that G-quadruplex-targeting RBPs are generally important for RAN translation (Figure 6), without showing whether RBPs that do not affect (G4C2)89 RNA levels lead to decreased DPR protein level or RNA foci.

      Response: We appreciate the reviewer’s critical comment. Following the suggestion by the reviewer, we evaluate the effect of these G-quadruplex-targeting RBPs on RAN translation. We additionally performed immunohistochemistry of the eye imaginal discs of fly larvae expressing (G4C2)89 and these G-quadruplex-targeting RBPs. As shown in the figures of immunohistochemistry below, we found that coexpression of EWSR1, DDX3X, DDX5, and DDX17 significantly decreased the number of poly(GA) aggregates. The results suggest that these G-quadruplex-targeting RBPs regulate RAN translation as well as FUS.

      Author response image 2.

      (A) Immunohistochemistry of poly(GA) in the eye imaginal discs of fly larvae expressing (G4C2)89 and the indicated G-quadruplex-targeting RBPs.

      (B) Quantification of the number of poly(GA) aggregates.

      We have made the following changes to the revised manuscript.

      (1) Figures 6E and 6F were added.

      (2) On page 6-7, line 135-137, the sentence “In addition, other G-quadruplex-targeting RBPs also suppressed G4C2 repeat-induced toxicity in our C9-ALS/FTD flies.” was changed to “In addition, other G-quadruplex-targeting RBPs also suppressed RAN translation and G4C2 repeat-induced toxicity in our C9-ALS/FTD flies.”.

      (3) On page 15, line 344-346, the sentence “As expected, these RBPs also decreased the number of poly(GA) aggregates in the eye imaginal discs (Figures 6E and 6F).” was added.

      (4) On page 15, line 346-347, the sentence “Their effects on G4C2 repeat-induced toxicity and repeat RNA expression were consistent with those of FUS.” was changed to “Their effects on G4C2 repeat-induced toxicity, repeat RNA expression, and RAN translation were consistent with those of FUS.”

      (5) On page 16, line 355-357, the sentence “Thus, some G-quadruplex-targeting RBPs regulate G4C2 repeat-induced toxicity by binding to and possibly by modulating the G-quadruplex structure of G4C2 repeat RNA.” was changed to “Thus, some G-quadruplex-targeting RBPs regulate RAN translation and G4C2 repeat-induced toxicity by binding to and possibly by modulating the G-quadruplex structure of G4C2 repeat RNA.”

      (6) On page 19, line 417-421, the sentence “We further found that G-quadruplex-targeting RNA helicases, including DDX3X, DDX5, and DDX17, which are known to bind to G4C2 repeat RNA (Cooper-Knock et al., 2014; Haeusler et al., 2014; Mori et al., 2013a; Xu et al., 2013), also alleviate G4C2 repeat-induced toxicity without altering the expression levels of G4C2 repeat RNA in our Drosophila models.” was changed to “We further found that G-quadruplex-targeting RNA helicases, … ,also suppress RAN translation and G4C2 repeat-induced toxicity without altering the expression levels of G4C2 repeat RNA in our Drosophila models.”.

      Reply to Recommendations For The Authors:

      1) It is not clear from the start that the flies they generated with the repeat have an artificial vs human intronic sequence ahead of the repeat. It would be nice if they presented somewhere the entire sequence of the insert. The reason being that it seems they also tested flies with the human intronic sequence, and the effect may not be as strong (line 234). In any case, in the future, with a new understanding of RAN translation, it would be nice to compare different transgenes, and so as much transparency as possible would be helpful regarding sequences. Can they include these data?

      Response: We thank the editors and reviewers for this comment. We apologize for the lack of clarity. We used artificially synthesized G4C2 repeat sequences when generating constructs for (G4C2)n transgenic flies, so these constructs do not contain human intronic sequence ahead of the G4C2 repeat in the C9orf72 gene, as explained in the Materials and Methods section. To clarify the difference between our C9-ALS/FTD fly models and LDS-(G4C2)44GR-GFP fly model (Goodman et al., 2019), we have made the following change to the revised manuscript.

      (1) Schema of the LDS-(G4C2)44GR-GFP construct was presented in Figure 3—figure supplement 1.

      Furthermore, to maintain transparency of the study, we have provided the entire sequence of the insert as the following source file.

      (2) The artificial sequences inserted in the pUAST vector for generation of the (G4C2)n flies were presented in Figure 1—figure supplement 1—source data 1.

      2) It is really nice how they quantitated everything and showed individual data points.

      Response: We thank the editors and reviewers for appreciating our data analysis method. All individual data points and statistical analyses are summarized in source data files.

      3) So when they call FUS an RNA chaperone, are they simply meaning it is changing the structure of the repeat, or could it just be interacting with the repeat to coat the repeat and prevent it from folding into whatever in vivo structures? Can they speculate on why some RNA chaperones lead to presumed decay of the repeat and others do not? Can they discuss these points in the discussion? Detailed mechanistic understanding of RNA chaperones that ultimately promote decay of the repeat might be of highly significant therapeutic benefit.

      Response: We appreciate these critical comments. Indeed, we showed that FUS changes the higher-order structures of G4C2 repeat RNA in vitro, and that FUS suppresses G4C2 RNA foci formation. According to the established definition of RNA chaperone, RNA chaperones are proteins changing the structures of misfolded RNAs without ATP use, resulting in the maintenance of proper RNAs folding (Rajkowitsich et al., 2007). Thus, we consider that FUS is classified into RNA chaperone. To clarify these interpretations, we revised the manuscript as follows.

      (1) On page 10, line 215-219, the sentence “These results were in good agreement with our previous study on SCA31 showing the suppressive effects of FUS and other RBPs on RNA foci formation of UGGAA repeat RNA as RNA chaperones …” was changed to “These results were in good agreement with … RNA foci formation of UGGAA repeat RNA through altering RNA structures and preventing aggregation of misfolded repeat RNA as RNA chaperones …”.

      (2) On page 17, line 363-366, the sentence “FUS directly binds to G4C2 repeat RNA and modulates its G-quadruplex structure, as evident by CD and NMR analyses (Figure 5), suggesting its functional role as an RNA chaperone.” was changed to “FUS directly binds to G4C2 repeat RNA and modulates its G-quadruplex structure as evident by CD and NMR analyses (Figure 5, Figure 5—figure supplement 2), and suppresses RNA foci formation in vivo (Figures 3A and 3B), suggesting its functional role as an RNA chaperone.”

      Besides these RNA chaperones, we observed the expression of IGF2BP1, hnRNPA2B1, DHX9, and DHX36 decreased G4C2 repeat RNA expression levels. In addition, we recently reported that hnRNPA3 reduces G4C2 repeat RNA expression levels, leading to the suppression of neurodegeneration in C9-ALS/FTD fly models (Taminato et al., 2023). We speculate these RBPs could be involved in RNA decay pathways as components of the P-body or interactors with the RNA deadenylation machinery (Tran et al., 2004; Katahira et al., 2008; Geissler et al., 2016; Hubstenberger et al., 2017), possibly contributing to the reduced expression levels of G4C2 repeat RNA. To clarify these interpretations, we revised the manuscript as follows.

      (3) On page 18, line 392-398, the sentences “Similarly, we recently reported that hnRNPA3 reduces G4C2 repeat RNA expression levels, leading to the suppression of neurodegeneration in C9-ALS/FTD fly models (Taminato et al., 2023). Interestingly, these RBPs have been reported to be involved in RNA decay pathways as components of the P-body or interactors with the RNA deadenylation machinery (Tran et al., 2004; Katahira et al., 2008; Geissler et al., 2016; Hubstenberger et al., 2017), possibly contributing to the reduced expression levels of G4C2 repeat RNA.” was added.

      4) What is the level of the G4C2 repeat when they knock down caz? Is it possible that knockdown impacts the expression level of the repeat? Can they show this (or did they and I miss it)?

      Response: We thank the editors and reviewers for this comment. The expression levels of G4C2 repeat RNA in (G4C2)89 flies were not altered by the knockdown of caz, as shown in Figure 4G.

      5) A puzzling point is that FUS is supposed to be nuclear, so where is FUS in the brain in their lines? They suggest it modulates RAN translation, and presumably, that is in the cytoplasm. Is FUS when overexpressed now in part in the cytoplasm? Is the repeat dragging it into the cytoplasm? Can they address this in the discussion? If FUS is never found in vivo in the cytoplasm, then it raises the point that the impact they find of FUS on RAN translation might not reflect an in vivo situation with normal levels of FUS.

      Response: We appreciate these important comments. We agree with the editors and reviewers that FUS is mainly localized in the nucleus. However, FUS is known as a nucleocytoplasmic shuttling RBP that can transport RNA into the cytoplasm. Indeed, FUS is reported to facilitate transport of actin-stabilizing protein mRNAs to function in the cytoplasm (Fujii et al., 2005). Thus, we consider that FUS binds to G4C2 repeat RNA in the cytoplasm and suppresses RAN translation in this study.

      6) When they are using 2 copies of the driver and repeat, are they also using 2 copies of FUS? These are quite high levels of transgenes.

      Response: We thank the editors and reviewers for this comment. We used only 1 copy of FUS when using 2 copies of GMR-Gal4 driver. Full genotypes of the fly lines used in all experiments are described in Supplementary file 1.

      7) In Figure5-S1, FUS colocalizing with (G4C2)RNA is not clear. High-magnification images are recommended.

      Response: We appreciate this constructive comment on the figure. Following the suggestion, high-magnification images are added in Figure 5—figure supplement 1.

      8) I also suggest that the last sentence of the Discussion be revised as follows: Thus, our findings contribute not only to the elucidation of C9-ALS/FTD, but also to the elucidation of the repeat-associated pathogenic mechanisms underlying a broader range of neurodegenerative and neuropsychiatric disorders than previously thought, and it will advance the development of potential therapies for these diseases.

      Response: We appreciate this recommendation. We have made the following change based on the suggested sentence.

      (1) On page 20-21, line 455-459, “Thus, our findings contribute not only towards the elucidation of repeat-associated pathogenic mechanisms underlying a wider range of neuropsychiatric diseases than previously thought, but also towards the development of potential therapies for these diseases.” was changed to “Thus, our findings contribute to the elucidation of the repeat-associated pathogenic mechanisms underlying not only C9-ALS/FTD, but also a broader range of neuromuscular and neuropsychiatric diseases than previously thought, and will advance the development of potential therapies for these diseases.”.

      Authors’ comment on previous eLife assessment:

      We thank the editors and reviewers for appreciating our study. We mainly evaluated the function of human FUS protein on RAN translation and G4C2 repeat-induced toxicity using Drosophila expressing human FUS in vivo, and the recombinant human FUS protein in vitro. To validate that FUS functions as an endogenous regulator of RAN translation, we additionally evaluated the function of Drosophila caz protein as well. We are afraid that the first sentence of the eLife assessment, that is, “This important study demonstrates that the Drosophila FUS protein, the human homolog of which is implicated in amyotrophic lateral sclerosis (ALS) and related conditions, …” is somewhat misleading. We would be happy if you modify this sentence like “This important study demonstrates that the human FUS protein, which is implicated in amyotrophic lateral sclerosis (ALS) and related conditions, …”.

    1. Author Response:

      The following is the authors' response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      This is a list of suggestions the authors could use to improve the details of the manuscript:<br /> - it is not immediately clear what is meant by "modular" on line 38 and the corresponding paragraph. This aspect is not mentioned or developed in the Results.<br /> - the discussion of remapping vectors on lines 119-137 is particularly illuminating. It could have been interesting to generate surrogate manifolds separated by arbitrary remapping vectors and see how much the alignment metric (Procrustes shape) is sensitive to the dimensionality or amplitude of remapping vectors.<br /> - A visual comparison between Fig 1 D and H suggests a difference between the manifold geometry in experiments and in the model. It seems that the embedding dimensionality of ring manifolds is higher in the data than in the model. Is that the case? It could have been interesting to explore how much embedding dimensionality influences the alignment metric.<br /> - I could not find information about the initialization of the connectivity weights. An important possibility is that the degree of alignment (and the organization of remapping vectors) depends on the strength of initial random connectivity.<br /> - It might have been interesting to comment on the relationship between the top three PCS in Fig1 and the three readout vectors. To which extent are they aligned?<br /> - I found panels C and G in Fig 1 somewhat difficult to read. In panel C, the remapping seems to be aligned to the same position across all trials. This is not the case in panel G. I am not certain what the comparison is meant to convey, but it would help to have a similar alignment in C and G. Similarly, I was not sure what to conclude from the matrix in the right part of panel C, perhaps the legend should be expanded.<br /> - the comparison with remapping models of Misha Tsodyks could be expanded. The current discussion implies that the model of Romani & Tsodyks leads to less alignment than found in trained networks, but no direct evidence is given for that statement as far as I can tell.

      Reviewer #2 (Recommendations For The Authors):

      Minor points:

      All mentions of 'modularity' should be replaced with 'compositionality'.

      I found Supplementary Figure 2 highly confusing. I thought it was meant to help understand the analysis in Figure 1K and related figures. In the end, I never really understood what was happening in these figures. Do authors make perturbations along these different coding dimensions and compare the resulting maps? I wasn't sure what exactly the authors were calculating cosine similarity for. Maybe more exposition on this in the methods would help other readers as well.

      Was there any behavioral difference when the maps were not aligned?

      Why did the authors only go up to 10 contexts? Was this dependent on size of the network? Sorry if I missed this.

      Are remapping event aligned to unit axes? Would this change with different nonlinearities? This could be interesting in the context of (Driscoll et all 2022) and (Wittington et al 2022).

      Reviewer #3 (Recommendations For The Authors):

      Cueva, Ardalan, et al. 2021 arXiv:2111.01275 showed that RNNs trained to remember two circular variables develop a toroidal geometry to store this information, so consider citing this in your section on the toroidal manifolds.

      We thank the reviewers for their thoughtful comments. We appreciate that all three reviewers affirmed the importance of our work and the rigor of our approach. We believe that no major weaknesses were identified by the reviews. In our view, the comparisons between recurrent neural network models and experimental data are one of the most important contributions of our work, and all reviewers agreed that this was a core strength of the manuscript.

      The reviewers highlighted several future modeling directions that are raised by our results and that we did not explore in the manuscript. For example, Reviewer 2 suggests that we train networks on a navigation task alone, freeze the weights, and then train on a context discrimination task. We agree that this kind of contextual learning paradigm is of interest and could provide insight into biological remapping, such as that observed by Low et al. (2021). We also agree with Reviewer 3’s broader point that “There are many choices that must be made when simulating RNNs and there is a growing awareness that these choices can influence the kinds of solutions RNNs develop.” It is notable that we were able to reproduce the qualitative features of the experimental data without finely tuning hyperparameters (we used default settings in PyTorch layers), using a very basic training protocol (gradient descent with gradient clipping), and without adding any hand crafted regularization (though we agree that regularization could make the RNN solution look even more like the data).

      We believe that readers will benefit from reading the reviewers' suggestions, which are insightful and well-motivated. Having weighed the reviewer comments carefully, we feel that our manuscript stands as a complete scientific story. We hope that the public reviewer comments will inspire future investigations to fully explore these possibilities and unpack their outcomes at a level of detail that would not be possible in the context of our manuscript.

      Thus, we have chosen to implement the following minor changes suggested by the reviewers, which we hope will improve the clarity of the text and figures (summarized below). These changes do not alter the fundamental content of the manuscript.

      Text:

      • We corrected a few minor typos.

      • We updated the citations to follow the eLife citation style.

      • To address comments from Reviewers 1 and 2: we reworded the final paragraph of the Introduction (p. 3) to remove the term “modularity” and clarify our main finding. Those sentences now read, “The RNN geometry and algorithmic principles readily generalized from a simple task to more complex settings. Furthermore, we performed a new analysis of experimental data published in Low et al.26 and found a similar geometric structure in neural activity from a subset of sessions with more than two stable spatial maps.”

      • To address comments from Reviewer 1: in the first paragraph of the Results section A recurrent neural network model of 1D navigation and context inference remaps between aligned ring manifolds (p. 3), we added the sentence, “Remapping was not aligned to particular track positions, rewards, or landmarks.” to clarify that experimental result from Low et al. (2021).

      • To address comments from Reviewer 3: in the final paragraph of the Results section Aligned toroidal manifolds emerge in a 2D generalization of the task (p. 11) we clarified that models were trained “to estimate position on a 2D circular track.” We also added a citation to Cueva, Ardalan et al. (2021) with the following sentence, “Notably, each toroidal manifold alone is reminiscent of networks trained to store two circular variables without remapping.”

      • To address a question from Reviewer 2: in the final paragraph of the Results section Manifold alignment generalizes to three or more maps (p. 13), we added the following clarification: “In Supplemental Figure 3, we show that RNNs are capable of solving this task with larger numbers of latent states (more than three; for simplicity, we consider up to 10 states).”

      • To address a comment from Reviewer 1: in the fourth paragraph of the Discussion (p. 17), we removed the sentence, “Notably, our model captured aspects of the data that these previous forward-engineered models did not explore—namely, that the ring manifolds corresponding to the correlated spatial maps were much more aligned than expected by chance and than strictly required by the task.” to focus on the key point in the following sentence that, “forward-engineered models provide insights into how neural circuits may remap, but do not answer why they do so.”

      • To address comments from Reviewers 1 and 2: we reworded the penultimate paragraph of the Discussion (p. 17–18) to clarify our findings and remove the term “modularity” (except when referencing papers that themselves use that term (Driscoll et al., 2022; Yang et al., 2019)). Those sentences now read:

      “When RNN architecture is explicitly designed to include dedicated neural subpopulations, these subpopulations can improve model performance on particular types of tasks (Beiran et al., 2021; Dubreuil et al., 2022). Thus, there is an emerging conclusion that RNNs use simple dynamical motifs as building blocks for more general and complex computations, which our results support. In particular, aligned ring attractors are a recurring, dynamical motif in our results, appearing first in a simple task setting (2 maps of a 1D environment) and subsequently as a component of RNN dynamics in more complex settings (e.g., as sub-manifolds of toroidal attractors in a 2D environment, see Figure 4). We can therefore conceptualize a pair of aligned ring manifolds as a dynamical “building block” that RNNs utilize to solve higher-dimensional generalizations of the task. Intriguingly, our novel analysis of neural data from Low et al. (2021) revealed that similar principles may hold in biological circuits—when three or more spatial maps were present in a recording, the pairs of ring manifolds tended to be aligned.”

      • To address questions from Reviewers 2 and 3: in the first paragraph of the Methods section RNN Model and Training Procedure (p. 21), we added the sentence: “The connection weights were randomly initialized from the uniform distribution 𝑈(−√1/N, √1/N), which is the default initialization scheme in PyTorch.”

      • To address a question from Reviewer 2: we added a third paragraph to the Methods section Manifold Geometry Analysis (p. 23), as follows:

      “In Figure 1K, 4G, 5G, and Supplementary Figure 2B, we calculate the angles between the input and output weights and the position subspace or remapping dimension. To find this angle, we calculated the cosine similarity between each weight vector and each subspace. Cosine similarity of 0 indicates that the weights were orthogonal to the subspace, while a similarity of 1 indicates that the weight vector was contained within the subspace.”

      • To address a question from Reviewer 1: we added the following sentence to the second paragraph of the Methods section Experimental Data (p. 24), “We performed the same analysis of trial-by-trial spatial stability to obtain the similarity matrices in Figure 1C and G.”

      Figures and legends:

      • To address a question from Reviewer 1: in Figure 1C and G, we added x-axis labels to the similarity matrices to clarify that these are trial-by-trial correlations.

      • To address a question from Reviewer 1: we expanded the Figure 1C legend to clarify the experimental results as follows:

      Old legend:

      (C, left) An example medial entorhinal cortex neuron switches between two maps of the same track (top, raster; bottom, average firing rate by position; red, map 1; black, map 2). (C, right/top) Network-wide trial-by-trial correlations for the spatial firing pattern of all co-recorded neurons in the same example session (colorbar indicates correlation). (C, right/bottom) k-means map assignment.

      New legend:

      (C, left) An example medial entorhinal cortex neuron switches between two maps of the same track (top, spikes by trial and track position; bottom, average firing rate by position across trials from each map; red, map 1; black, map 2). (C, right/top) Correlation between the spatial firing patterns of all co-recorded neurons for each pair of trials in the same example session (dark gray, high correlation; light gray, low correlation). The population-wide activity is alternating between two stable maps across blocks of trials. (C, right/bottom) K-means clustering of spatial firing patterns results in a map assignment for each trial.

      • To address comments from Reviewer 3: in the legend of Figure 4C, we added the sentence “Note that the true tori are not linearly embeddable in 3 dimensions, so this projection is an approximation of the true torus structure.”

      • To address a question from Reviewer 2: we expanded the legend for Supplementary Figure 2 to clarify the purpose of the figure schematics as follows:

      Old legend:

      (A)  Schematic showing the orthogonalization of the position and context input and output weights.

      (B)  Reproduced from Figure 1K.

      (C-D) Schematic: How a single velocity input (blue arrows) updates the position estimate (yellow to red points) from the starting position (blue points).

      (C)  Velocity input lies in the position tuning subspace (gray plane)(hypothetical). Note that the same velocity input results in different final positions.

      (D)  Velocity input is orthogonal to the position tuning subspace (observed).

      (E)  Schematic of possible flow fields in each of the three planes (numbers correspond to planes in C and D), which would result in the correct positional estimate given orthogonal velocity inputs at different positions (D).

      New legend:

      (A)  Schematic showing the relative orientation of the position output weights and the context input and output weights to the position and state tuning subspaces.

      (B)  Reproduced from Figure 1K.

      (C-D) Schematic to interpret why the position input weights are orthogonal to the position tuning subspace. These schematics illustrate how a single velocity input (blue arrows) updates the position estimate (yellow to red points) from a given starting position (blue points).

      (C, not observed) Velocity input lies in the position tuning subspace (gray plane). Note that the same velocity input pushes the network clockwise or counterclockwise along the ring depending on the circular position

      (D, observed) Velocity input is orthogonal to the position tuning subspace and pushes neural activity out of the subspace.

      (E) Schematic of possible flow fields in each of three planes (numbers correspond to planes in C and D). We conjecture that these dynamics would enable a given orthogonal velocity input to nonlinearly update the position estimate, resulting in the correct translation around the ring regardless of starting position (as in D).

    1. Author Response:

      The following is the authors' response to the original reviews.

      We thank both reviewers for their comments, which have suggested changes that have improved the manuscript.

      Reviewer #1 (Public Review): 

      […] A weakness in the methodology is the link to tissue tension and conclusions about tissue mechanics. Methods that directly affect tissue tension and a more thorough and systematic application of laser ablation experiments would be needed to profoundly investigate mechanosensation and consequential effects on tissue tension by the various genetic perturbations.

      Response: In revision, we have added some additional experiments that examine altered tension.

      While the in-silico analysis of competing for F-actin binding sites for βH-Spec and myosin appears logical and supports the authors' claims, no point mutation or truncations were used to test these results in vivo.

      In its current structure the manuscript's strength, the genetic perturbations, is compromised by missing clear assessments of knockdown efficiencies early in the manuscript and other controls such as the actual effect on myosin by ROCK overactivation. 

      Response: In revision, we reorganized the manuscript and figures to document the knockdown efficiency earlier in the manuscript, and have added additional figure panels illustrating the effects of altered tension on myosin levels.

      Reviewer #2 (Public Review):

      […] The authors suggest that Ajuba is required for the effect of beta-heavy spectrin. However, it is still formally possible that this could be a parallel pathway that is being masked by the strong phenotype of Ajuba RNAi flies. 

      Response: While it is formally true that the genetic requirement for Jub could reflect a role in parallel to, rather than downstream of, spectrins, our conclusion that spectrins act through Jub is based not only on the genetic requirement for Jub, but also on the influence of spectrins on junctional tension and Jub localization, which indicate that spectrins influence Jub activity in a manner consistent with their affecting the Hippo pathway through Jub.

      One of the major points of the manuscript is the observation that alpha- and beta-heavy-spectrin are potentially working independently and not as part of a spectrin tetramer. This is mostly dependent on the observation that alpha- and beta-heavy-spectrin appear to have non-overlapping localizations at the membrane and the fact that alpha- and beta-heavy-spectrin localize at the membrane seemingly independently. It is not entirely obvious that a potential lack of colocalization and the fact that protein localization at the membrane is not affected when the other partner is absent is sufficient to argue that alpha- and beta-heavy-spectrin do not form a complex. Moreover, it is possible that the spectrin complexes are only formed in specific conditions (e.g. by modulating tissue tension). 

      Response: Our results argue that alpha- and beta-heavy-spectrin do not form a detectable complex in the wing disc under the conditions examined, and thus that they act independently is this context. However, we agree that it is possible that they could function together contexts, eg in other tissues or under different conditions, and we have revised the text in the Discussion to note this.

      If indeed spectrins function independently, would it not be expected to see additive effects when both spectrins are depleted? 

      Response: Not necessarily, since both alpha- and beta-heavy-spectrin act through Jub, and there may be a limit as to how much Yki activity can be increased by Jub (eg the increases in wing size induced by spectrin RNAi are similar to the increases in wing size observed with constitutive recruitment of Jub through alpha-catenin mutation (Alegot et al 2019).

      Related to the two previous points, the fact that the authors suggest that both alpha- and beta-heavy-spectrin regulate Hippo signaling via Ajuba would be consistent with the necessity of an alpha- and beta-heavy-spectrin complex being formed. How would the authors explain that both spectrins require Ajuba function but work independently? 

      Response: The different spectrins both affect Jub because they both affect cytoskeletal tension, but our results suggest that they act in different ways to affect tension. We have made some revisions to the Discussion section to try to make this clearer.

      Another major point of the manuscript is the potential competition between beta-heavy-spectrin and myosin for F-actin binding. The authors suggest that there is a mutual antagonism between the two proteins regarding apical F-actin. However, this has not been formally assessed. Moreover, despite the arguments put forward in the discussion, it seems hard to justify a competition for F-actin when beta-heavy-spectrin seems to be unable to compete with myosin. Myosin can displace beta-heavy-spectrin from F-actin but the reciprocal effect seems unlikely given the in vitro data. 

      Response: We show in vivo, in vitro, and in silico data that are all consistent with the inference that beta-heavy-spectrin and myosin compete for binding to F-actin. As the reviewer notes, and as we discuss, the in vitro competition experiments were limited because, for technical reason, we were unable to increase the protein concentrations higher. We also note that our in vitro experiments used an active form of myosin, which binds F-actin much more strongly than inactive myosin.

      Reviewer #1 (Recommendations For The Authors): <br /> While the flow of experiments is logical in general, I see major problems regarding the structure of the manuscript and essential controls: 

      • It is very confusing to have samples (kst-CRISPRa) in figures 1-3 that were not introduced in the text until the second-last paragraph of the results. I would suggest introducing this elegant overexpression experiment early in the manuscript as it fits well in the scope of these experiments or alternatively (if the authors prefer) make a new figure containing all the data regarding the overexpression in the end. 

      Response: We have now moved these results to a new figure (new Fig 7) that is described later in the text.

      • At the beginning of the manuscript, essential controls regarding the knockdown efficiency are missing in the main figure. Many of the key experiments are based on KD and as a reader, I want to assess their efficiency. Only in Figure 4, at the end of the manuscript, KST and α-Spec KD efficiency is revealed - this should be shown earlier and quantified properly. While reading the manuscript in its current form, the doubt remains that differences e.g. in α-Spec and KST KD can be explained by varying knockdown efficiencies as their levels can't be assessed. 

      Response: We have now moved these results to a new supplemental figure (Fig 1-supplement 1) that is cited earlier in the text.

      • On a similar line, in Figure 5 where myosin activity is perturbed, induction or repression of myosin activity is only suggested but not formally shown. The authors have to demonstrate that this is indeed the case by showing the myosin signal, ideally accompanied by measurement of tissue tension. 

      Response: This was not included because we and others have assessed these manipulations in earlier publications. However, as requested we have now added a supplemental figure (Fig 6 supplement 1) showing myosin levels in these genotypes.

      • On p. 7, the authors claim that "The epistasis of jub to kst suggests that βH-Spec regulates wing size through its tension-dependent regulation of Jub." While the authors show that KST KD increases myosin and junctional Jub, and that the wing overgrowth phenotype of KST KD depends on Jub, the tension-dependency was not demonstrated. To make that claim, the tension profile should be perturbed e.g. by overexpression of rok, myosin mutants (as the authors do in Fig 5) and the effect on Jub should be analyzed. Induction of tension in these conditions should be measured by laser ablation or a suitable alternative method. It might well be that the induction of Jub in KST KD is not via tension but an alternative mechanism such as the release of steric hindrance, interaction competition, etc. Also: Does KD of Jub affect spectrin localization? 

      Response: The effect of tension on Jub, and the effects of the myosin activity changes we employed on tension, have been analyzed in prior publications (eg Rauskolb et al 2014). To further address the issue raised by the reviewer here as to whether Kst affects Jub and wing growth via tension, we have also now added an additional experiment (Fig 3 supplement 1) in which we decreased tension in a βH-Spec RNAi wing disc by simultaneously expressing RNAi targeting Rok. The results show that the wing growth and Jub accumulation associated with βH-Spec RNAi are suppressed by Rok RNAi, consistent with our conclusion that these effects are mediated via cytoskeletal tension.

      As KD of Jub alters the pattern of myosin accumulation in wing discs (Rauskolb et al 2019) it could be expected to have a complementary influence on βH-Spec localization, but we have not examined this.

      • The authors make a very strong point in saying "The influence of βH-Spec on junctional tension is thus a direct consequence of its competition with myosin for overlapping binding sites on F-actin." While the authors provide some in vitro and in silico evidence, it was for example not possible to outcompete myosin by increasing levels of KST CH1-CH2 domains in vitro (for possible reasons the authors discuss). More importantly, the hypothesis that competition for actin binding is the definite cause of the antagonizing effect was not tested in vivo. Overexpression of a mutant version of KST that is unable to bind F-actin, or that has an increased affinity (etc) for actin was not tested. Such an experiment would be very valuable to enrich this manuscript but at least, claims like that have to be less bold and need to be written in a more speculative language. 

      Response: We consider creating and analyzing mutant forms of Kst in vivo to be beyond the scope of this manuscript, but as suggested we have now modified the text highlighted by the Reviewer to be more cautious.

      Further points: 

      • Why does the thickness of the wing disc epithelium change due to KST and α Spec KD, the authors should introduce this experiment better and draw a proper conclusion. Is there any relocalization of myosin along the apical-basal axis? Can the authors speculate about the differences between KST and α Spec KD? 

      Response: The epithelium thickness changes with α-Spec KD, but does not change with Kst KD. We think the explanation is provided by work from the Pan lab (done mainly in pupal eyes), which reported decreased cortical tension and increased apical area when α-Spec is lost. The interpretation in essence is that with the loss of attachment of F-actin to membranes along the lateral sides of the cells, the sides of the cells are "softer" and the cells expand laterally and thus also (by conservation of volume) shorten apical-basally. This is somewhat speculative, and it's not a focus of our study, but we have added some text to try to explain this better. Myosin along apical-basal axis was not visibly altered, but it is harder to analyze as it is very weak compared to junctional myosin.

      • Given the authors' observation of differences in the relative localization of KST and α Spec (Figure 4), proper quantification of KST, α Spec and myosin levels along the apical-basal cell axis would be important. This would also ease data interpretation. 

      Response: We have now added a higher resolution image and also a line scan of Kst, α-Spec  and Myo in a new supplemental figure (Fig 6 supplement 1)

      • KD of α Spec seems to induce myosin activity more, causes a bigger reduction of wing thickness, a stronger induction of Jub, and a similar effect on wing size. What lead the authors to focus on KST rather than α Spec regarding the detailed analysis of myosin competition? 

      Response: Our observations identify a competition between Kst and myosin, but we have no indication that α-Spec competes with myosin. (It's conceivable that β-Spec might also compete with myosin in some contexts, but wing discs would not be a good place to examine this because the localization profiles of β-Spec and Myosin are so different).

      • A big criticism regarding the figures is the bad color choice which makes it difficult to decipher the fluorescent signals. Likewise, the labels are difficult to read with the present coloring. They should really be changed. 

      Response: We have now changed the single color images to gray scale (for multi-color images we retain RGB coloring).

      A minor point: 

      • To make the manuscript more accessible for researchers outside the Drosophila field, I'd suggest adding explanatory labels for Drosophila-specific terms such as hyperactive myosin for sqhEE, a scheme to show where UAS-dcr2 is active, explain the purpose of Rfp expression as a control for tissue specificity, etc. 

      Response: We have added some explanations to the text to try to make this clearer.

      Reviewer #2 (Recommendations For The Authors): <br /> Major points: 

      In lines 99-101, the authors mention that Deng et al., 2015 report that the depletion of spectrins leads to an increase in pMLC, with no associated changes in the colocalization of myosin and F-actin. It is more accurate to mention that Deng et al. suggest that the levels of a GFP-tagged rescue construct of MLC (Sqh) are unchanged in alpha-spectrin mutants, although this was not formally quantified. Moreover, there was not a formal assessment of colocalization between MLC and F-actin, but rather a suggestion that F-actin levels are unaffected by the alpha-spectrin mutation. Finally, Deng et al. mostly analyzed alpha-spectrin so it remains possible that the new results shown by the authors are compatible with the initial observations from Deng and colleagues. 

      Response: As suggested, we revised the text to note that Deng et al., 2015 specifically examined Sqh:GFP. While we agree that our focus is more on Kst and Deng et al focused on α-Spec, we also examined α-Spec, and as described our results examining Myosin and Jub differ from what was reported by Deng et al 2015.

      As mentioned above, it is still possible that spectrins and Ajuba are working in parallel and Ajuba is not necessarily downstream of spectrins. The strong phenotype of Ajuba RNAi flies in adult wings could mask the effect of spectrins. Are the results similar in other settings, such as in the absence of Dicer2? Also, can Ajuba RNAi phenotypes be modified by overexpression of spectrins? This would provide further evidence of a link to Ajuba function. 

      Response: While formally it is true that the genetic requirement for Jub could reflect a role in parallel to, rather than downstream of, spectrins, our conclusion that spectrins act through Jub is based not only on the genetic requirement for Jub, but also on the influence of spectrins on junctional tension and Jub localization, which indicate that spectrins influence Jub activity in a manner consistent with their affecting the Hippo pathway through Jub.

      We would not expect over-expression of spectrins in a jub RNAi background to further reduce Hippo signaling, and as the jub RNAi phenotype is much stronger than the Kst over-expression phenotype even if there were an effect it would likely be difficult to detect.

      Regarding the potential independent functions of spectrins, it would be interesting to determine if alpha- and beta-heavy-spectrin can still interact at the level of the AJ despite the fact that their distributions appear to be partly non-overlapping. Would it be possible to assess this using PLA? If an interaction is not detected via PLA, it would be more convincing that spectrins are functioning independently. 

      Response: We have now performed this experiment, and no significant signal was detected by PLA. As a control, we used identical antibodies (GFP and α-Spec) to conduct PLA on α-Spec and β-Spec, and we did detect signal by PLA. These results (included in a revised Figure 4) further support the conclusion that α-Spec and βH-Spec are not physically associated in wing discs.

      Related to this point, if the spectrins work independently, it is reasonable to assume that they could display additive effects. Is this the case? If alpha- and beta-heavy-spectrin are simultaneously depleted are the phenotypes more severe than either depletion alone? 

      Response: We disagree here. Since both alpha- and beta-heavy-spectrin act through tension and Jub, and there is likely a limit as to how much Yki activity can be increased by this pathway. For example, the increases in wing size induced by spectrin RNAi are similar to the increases in wing size observed with constitutive recruitment of Jub through alpha-catenin mutation (Alegot et al 2019), which may thus represent the maximum increase that can be induced through this pathway (as there are multiple, independent factors that regulate Hippo signaling).

      Authors should modulate membrane tension and assess if this affects the localization of alpha- and beta-heavy-spectrin and, specifically, their colocalization, as their interaction could be regulated. 

      Response: As reported, we do see effects of tension on βH-Spec localization. We would not expect significant effects of membrane tension on α-Spec localization, but we consider analysis of this outside the scope of this manuscript.

      In lines 185-187, the authors mention that beta-spectrin depletion does not affect beta-heavy-spectrin localization. Interestingly, Figure 4E appears to show that the levels of Kst-YFP appear to be lower in the beta-spectrin-depleted tissue. The localization of beta-heavy-spectrin is not necessarily affected but the overall levels could be. 

      Response: Indeed the levels appear slightly lower, but elucidating the reason for this will require further experiments that are beyond the scope of this manuscript (we suspect it is because cytoskeletal tension increases in β-Spec-depleted tissue as it does in α-Spec depleted tissue, which based on our observations should decrease levels of Kst at near junctions). The key point of these experiments was to show that α-Spec localization does not require βH-Spec, but does require β-Spec, which supports our conclusion that in wing discs α-Spec forms a complex with β-Spec but not with βH-Spec.

      In lines 200-203, the authors state that beta-heavy-spectrin and myosin colocalize extensively at the apical region. However, this colocalization is not as clear as stated. Do the authors have alternative data that suggests that the two proteins are indeed colocalizing? Would it be possible to perform PLA to detect a potential colocalization? 

      Response: Unfortunately we do not have antibodies against both proteins that work well enough for PLA. However, we quantified the co-localization by analysis of Pearson's correlation coefficient, as reported in the manuscript. We also added an additional higher magnification image, and a line scan, in a supplemental figure (Fig. 6 supplement 1).

      Authors should try to assess and quantify colocalization with F-actin for both beta-heavy-spectrin and myosin in wild-type conditions and when the levels (and/or activity) for each of them are modulated. 

      Response: We have added quantification of the co-localization of βH-Spec with F-actin and of myosin with F-actin to the revised manuscript.

      Minor points: 

      In lines 122-124, the authors should clarify the relevance of the observation that alpha-spectrin knockdown affects the thickness of the wing disc epithelium. 

      Response: We have added some text to try to elaborate on this.

      In the intro, it is perhaps necessary to mention that there are conflicting reports regarding the role of spectrins in the regulation of cell proliferation, at least in the follicular epithelium. For instance, Ng et al., 2016 argued that spectrins do not regulate cell proliferation in FECs. 

      Response: Rather than wading into a detailed discussion of issues that are peripheral to this study, we modified the text in the Introduction to avoid implying that spectrins control cell proliferation in the ovary.

      In Figures 1, 2, 3, and 4 (and respective supplements), it is encouraged that, wherever appropriate, the authors mark the different compartments or the relevant boundary using dashed lines, to more clearly indicate the regions to compare. 

      Response: We have now done this.

      In Figure 2, supplement 1 panels C and D should have an indication of the genotype for clarity. 

      Response: We have now added this.

      In lines 362-367, the authors suggest that other actin-binding proteins are likely to influence the role of beta-heavy-spectrin. Have the authors tested the role of spectrin interactors such as Ankyrin and Adducin?

      Response: No, we have not examined this.

    1. Author Response:

      The following is the authors' response to the original reviews.

      We were pleased with the overall enthusiastic comments of the reviewers:

      • Reviewer #1: “This manuscript by Mahlandt, et al. presents a significant advance in the manipulation of endothelial barriers with spatiotemporal precision”

      • Reviewer #2: “The immediate and repeatable responses of barrier integrity changes upon light-on and light-off switches are fascinating and impressive.”

      • Reviewer #3: “, these molecular tools will be of broad interest to cell biologists interested in this family of GTPases.”

      We thank the reviewers for their fair and constructive comments that helped us to improve the manuscript.

      Reviewer #1 (Recommendations For The Authors):

      1) This paper is likely to attract a diverse audience. However, the order of data presented in this manuscript can be confusing or challenging to follow for the naive reader. This is because the tool characterization is split into two parts: before the barrier strength assay (selection of optogenetic platform and tool expression) and after (characterization of cell morphology with global and local optogenetic stimulation). Reorganizing the results such that the barrier strength results follows from an understanding of individual cell responses to stimulation may improve the ability of this readership to understand the factors at play in the changes in barrier strength observed when opto-RhoGEFs are activated.

      We appreciate this idea, and we initially structured the paper in the proposed order and then decided, that we wanted to put more focus on the barrier strength results by already presenting them in the second figure. Therefore, we prefer to keep this order of figures.

      2) While the description of the selection of iLID as the study's optogenetic platform is clear, a better job could be done motivating the need for engineering new optogenetic tools for the control of GEF recruitment. Given that iLID-based tools for GEFs of RhoA, Rac1, and Cdc42 already exist, some of which are cited in the introduction, more information on why these tools were not used would be helpful-were these tools tested in endothelial cells and found lacking.

      The original system has the domain structure DHPH-tagRFP-SspB. But we wanted to work with a SspB-FP-GEF construct, which would allow easy exchange of the FP and the DHPH domain. This modular approach allowed us to generate and compare the mCherry, iRFP647 and HaloTag version. We don’t want to claim that we engineered an entirely new optogenetic tool but rather optimized an existing one with different tags. To make this more clear we added : ‘The membrane tag of the original iLID was changed to an optimized anchor. In addition, we modified the sequence of the domains to SspB, tag, GEF to simplify the exchange of GEF and genetically encoded tag. A set of plasmids with different fluorescent tags was created for more flexibility in co-imaging.’

      3) Comment on the reason behind using DHPH vs. DH domains for each GEF is needed.

      We have previously found (and this is supported by biochemical analysis of GEF activity) that the selected domains provide the best activity. We will add reference and the following to the text: ‘Their catalytic active DHPH domains were used for ITSN1 and TIAM1 (Reinhard et al., 2019).  In case of p63 the DH domain only was used, because the PH domain of p63 inhibits the GEF activity (Van Unen et al., 2015) (Fig. 1E).

      4) Since multiple Rho GTPases (e.g., RhoA, RhoB, RhoC) exist and Rho is used as the name of the GTPase family, please use RhoA where applicable for clarity.

      Since the RhoGEFp63 will activate RhoA/B/C we would rather not refer to RhoA only. We will clarify this in the text: ‘Three GEFs were selected, ITSN1, TIAM1 and RhoGEFp63, which are known to specifically activate respectively Cdc42, Rac and Rho and their isoforms.’

      5) A brief comment on the use of HeLa cells for protein engineering and characterization (versus the endothelial cells motivated in the introduction) may be helpful.

      We added the following to the text: ‘HeLa cells were used for the tool optimization because of easier handling and  higher transfection rate in comparison to endothelial cells.

      Minor suggestions:

      In figure 1C, line sections showing intensity profiles before and after protein dimerization might further emphasize the change in biosensor localization.

      We are not a fan of intensity profiles as the profile depends strongly on the position of the line and it basically turns a 2D image in 1D data, for a single image. So, we prefer to stick to the quantification as shown in panel 1B (which shows data from multiple cells).

      Reviewer #2 (Recommendations For The Authors):

      1)The study has analyzed the effects of light-induced activation of the three optogenetic constructs in endothelial cells on their barrier function (electrical resistance) at high cell density and correlated the findings with the cellular overlap-producing effects on endothelial cells cultured at sparse cell density. It should be tried to show these effects at a cell density where these light-induced effects increase electrical resistance. Lifeact with different chromophores in adjacent cells might be useful.

      We had attempted to measure the overlap in a monolayer by taking advantage of the Halotag and the variety of dyes available by staining one pool of cells red with JF 552 nm and the other far red with the JF 635 nm dye. However, the cells need at least 24 h to form a monolayer and by then they had exchanged the dye and red and far red pool could not be distinguished any longer.

      Therefore, we used the Lck-mTq2-iLID construct, which already marks the plasma membrane of the cells. We created a mosaic monolayer of cells expressing mScarlet-CaaX and cells expressing Lck-mTq2-iLID + SspB-HaloTag-TIAM(DHPH). We observed and increase in the overlap between cells under this condition. The results have been added to figure 4 - figure supplement 2I&J. To the text we added:

      'Additionally, cell-cell membrane overlap increased about 20 %, up on photo-activation of OptoTIAM, in a mosaic expression monolayer (figure 4 - figure supplement 2I,J, Animation 22)‘

      2) The authors correctly state that some reports have shown that S1P can increase endothelial barrier function in VE-cadherin independent ways and these are related to Rac and Cdc42. This was also shown for Tie-2 in vitro and even in vitro in the absence of VE-cadherin and should also be mentioned.

      We added the following to the text: ‘Not only S1P promotes endothelial barrier independent from VE-cadherin, also Tie2 can increase barrier resistance in the absence of VE-cadherin (Frye et al. 2015).

      Since a blocking antibody against VE-cadherin was used, a negative control antibody should be tested which also binds to endothelial cells.

      To visualize the cell-cell junctions in the experiment shown in Supplemental Fig 3.1, we added a non-blocking VE-cadherin antibody that is directly labeled with ALEXA 647 and shows normal junction morphology. These experiments already give an indication that the live labeling antibody of VE-cadherin does not disturb the junction morphology. However, when we added the blocking antibody against VE-cadherin, known to interfere with the trans-interactions of VE-cadherin, a rapid disruption of the junctions is observed.

      Additionally, previous work has shown, that VE-cadherin labeling antibody does not interfere with junction dynamics and function (see Figure 2.A, Kroon et al. 2014 ‘Real-time imaging of endothelial cell-cell junctions during neutrophil transmigration under physiological flow’, jove.). We have added the figures below, showing that addition of the control IgG and VE-cadherin 55-7H1 Abs at the timepoint where the dotted line is, did not interfere with the resistance whereas the blocking Ab drastically reduced resistance. We have added this reference to the results. ‘Previous work has shown the specific blocking effect of this antibody in comparison to the VE-cadherin (55-7H1) labeling antibody (Kroon et al., 2014).’

      Author response image 1.

      Reviewer #3 (Recommendations For The Authors):

      Additional comments for the authors:

      1) The introduction is very long and would benefit from a more concise emphasis on the information required to put the work and results in context and understand their importance.

      Comment: we appreciate the comment of the reviewer. However, we wish to introduce the topic and the tools thoroughly and therefore we chose to keep the introduction as it is.

      2) The N-terminal membrane-binding domain does not homogeneously translocate to the plasma membrane, since lck is a raft-associated kinase. Please comment on this.

      In our hands, the Lck is among the most selective and efficient tags for plasma membrane localization (https://doi.org/10.1101/160374). We do observe homogeneous translocation, but our resolution is limited to ~200 nm and so we cannot exclude that the Lck concentrates in structures smaller than 200 nm. Given the robust performance of the lck-based iLID anchor in the optogenetics experiments, we think that the Lck anchor is a good choice.

      3) Figure 1D is not very clear. What does 25 or 36% change mean? If iLID tg is conjugated to these sequences, its cytosolic localization should be reduced versus iLID alone. Is this what the graph wants to express? If so, please, label properly the ordinate axis in the graph (% of non-tagged iLID values?)

      The graph is representing the recruitment efficiency of SspB to the plasma membrane for the two different membrane tags, targeting iLID to the plasma membrane. The recruitment efficiency was measured by the depletion of SspB-mScarlet intensity in the cytosol, up on light activation, and represented as a change in percentage.

      We added the following to the title of the graph_: SspB recruitment efficiency for Plasma Membrane tagged iLID._

      4) Supplemental figures in the main text. Fig S1D in the text refers to data in Fig S1E and Fig S1E is supposed to be Fig S1F? (page 11).

      That is correct. The mistakes have been corrected (and this is now renamed to figure 1 - figure supplement 1E and 1F).

      5) Figure 3. Contribution of VE-cadherin. Other junctional complexes, such as tight junctions may also intervene. However, these results would also suggest that cell-substrate adhesion rather than cell-cell junctions may modulate the barrier properties, as it has been previously demonstrated for example by imatinib-mediated activation of Rac1 (Aman et al. Circulation 2012). The ECIS system used to measure TEER in the quantitative barrier function assays can modulate these measurements and discriminate between paracellular permeability (Rb) and cell-substrate adhesion (alpha). Please, provide whether the optogenetic modulation of these GTPases does indeed regulate Rb or alpha.

      The measured impedance is made up of two components: capacitance and resistance. At relatively high AC frequencies (> 32,000 Hz) more current capacitively couples directly through the plasma membranes. At relatively low frequencies (≤ 4000 Hz), the current flows in the solution channels under and between adjacent endothelial cells’ (https://www.biophysics.com/whatIsECIS.php).

      Therefore, the high frequency impedance is representing cell-substrate adhesion whereas the low frequency responds more strongly to changes in cell-cell junction connections.

      We only measured at 4000 Hz, representing the paracellular permeability. We chose a single frequency to maximize time resolution.

      We have added this extra comment to the legend of the figure: ‘(B) Resistance of a monolayer of BOECs stably expressing Lck-mTurquoise2-iLID, solely as a control (grey), and either SspB-HaloTag-TIAM1(DHPH)(purple)/ ITSN1(DHPH) (blue) or p63RhoGEF(DH) (green) measured with ECIS at 4000 Hz, representing paracellular permeability, every 10 s.

    1. Author Response

      eLife assessment

      In this work, the authors provide important mechanistic insights into how the intracellular effector protein Calcineurin B homologous protein 3 (CHP3) can be regulated in a calcium-independent manner to expose its lipid binding site. Compelling evidence demonstrates a binding partner protein (NHE1) triggers a conformation change and exposure of the myristoyl group in CHP3 resulting in membrane association. This provides mechanistic insight into the signalling mechanisms achieved by CHP3 in a target-dependent manner, which will be of broad scientific interest.

      Thank you for providing an accompanying eLife assessment. As we slightly modified the name of the novel mechanism to meet the suggestion of reviewer 2, and to emphasize the binding to a lipid membrane, we suggest the following update:

      “In this work, the authors provide important mechanistic insights into how the intracellular effector protein Calcineurin B homologous protein 3 (CHP3) can be regulated in a calcium-independent manner to expose its lipid membrane binding site. Compelling evidence demonstrates a binding partner protein (NHE1) triggers a conformation change and exposure of the myristoyl group in CHP3 resulting in membrane association. This provides mechanistic insight into the signalling mechanisms achieved by CHP3 in a target-binding dependent manner, which will be of broad scientific interest.

      Reviewer #1 (Public Review):

      This study examines the effects of Ca2+ and NHE1 peptide binding on the conformation of CHP3, one of three related calcineurin-homologous proteins. One question that is addressed is whether Ca2+ binding triggers membrane association of the myristoyl group, a so-called "Ca2+-myristoyl switch". This is convincingly demonstrated to not be the case by the experiment in Figure 6B: unlike myristoylated recoverin, mCHP3 does not show enhanced association with liposomes. In the presence of a target peptide, however, myristoylation enhances membrane association. Curiously, this interaction is not Ca2+ dependent, but the membrane association of the non-myristoylated CHP3 is Ca2+-dependent.

      My concerns with this study relate to physiological relevance. First, it is unclear if Ca2+ binding has a regulatory function in any of the CHP proteins. The authors state that CHP1 and CHP2 have Ca2+ binding affinities <100 nM, so these proteins are likely saturated with Ca2+ under all physiological conditions. On the other hand, CHP3 binds Ca2+ with a Kd of 8 micromolar (in the presence of physiological concentrations of Mg2+) so it will be largely unbound under most normal cellular concentrations of Ca2+ which are in the submicromolar range. Free Ca2+ rarely reaches 1 micromolar under non-pathological concentrations, and if it does, the fraction of CHP3 bound to Ca2+ should be estimated for context. Given these caveats, I am not convinced that experiments done with millimolar concentrations of Ca2+ (e.g., Figures 2, 3, 6) are physiologically informative.

      Precise knowledge on the distinct and isoform-specific molecular basis of the important physiological roles of calcineurin homologous proteins is only emerging. Here, we ruled out the suggested Ca2+-myristoyl switch and showed that instead, target-binding (NHE1-peptide) induces membrane association of myristoylated CHP3. In respect to Ca2+ response, we showed in this work and previous studies that all CHPs undergo Ca2+-induced conformational changes, a feature that is required for EFCaBPs to act as Ca2+ sensor. Millimolar Ca2+ concentrations are commonly used in this type of in vitro characterization to ensure uniform conformational states of the protein, thus we followed this approach. We agree that in future studies, the distinct molecular responses to Ca2+ signals have to be studied in cellular context. So far, one can state that for CHP1 and CHP2, affinities for Ca2+ were reported with Kd values of ~90 nM determined in vitro in the absence of Mg2+. This is close to the cellular Ca2+ concentration in the resting cell, but would not lead to saturation of all CHP1 or CHP2 molecules in the cell with Ca2+. The presence of Mg2+ in the cell may further attenuate the affinity of CHPs for Ca2+. One cannot exclude, that CHP1 and CHP2 could respond to Ca2+ signals in the cell. For target-free CHP3, a Kd of 3.5 µM for Ca2+ in the presence of Mg2+ was reported, so it is unlikely to respond to Ca2+-signals. However, target binding (at least for NHE1) does not require the presence of Ca2+ (as shown in the present study), and target binding can increase Ca2+-binding affinity of EFCaBPs up to 100 fold (reported 45-fold for CHP1 and 42-fold for CHP2). Target-bound CHP3 might have an affinity for Ca2+ that enables a response to Ca2+-signals.

      Reviewer #2 (Public Review):

      The manuscript by Becker and coworkers describes a target-binding myristoyl switch in the calcium-binding EF hand protein CHP3 using one of its targets, the NHE1. The work uses a suite of biophysical methods including SEC, nanoDSF, fluorescence, and native MS, to address conformations, ligand binding (Ca2+, Mg2+, NHE1), and liposome association, pinpointing a conformation switch which they term a target-dependent myristoyl switch. The strength of the manuscript is a convincing mapping of the different conformations and the conclusion that target binding, and not Ca2+ binding is necessary to expel the lipid from the protein, and that this jointly enhances membrane binding. It would have been even stronger if additional structural data had been included to address the properties of the different states and hence support if there indeed are changes in dynamics and flexibility.

      We are thankful to Reviewer #2 for a number of valuable comments on our manuscript which we addressed systematically to enhance description and discussion of our results. Specifically, we clarified the use of conformation, flexibility, state, dynamics and now consistently refer to distinct states of the protein (Ca2+-, Mg2+- and apo-state) as well as defined conformations (open, closed and target-bound). We agree that structural characterization is important, yet, it is beyond the focus of the present biochemical and biophysical characterization and needs to be addressed in future studies.

      Reviewer #3 (Public Review):

      This work provides new insights into the regulation of the intracellular effector protein Calcineurin B homologous protein 3 (CHP3). The authors precisely delineate how intracellular calcium signals and myristoylation affect the binding of CHP3 to lipid membranes and the sodium/proton exchanger NHE1. Different mechanisms are known to trigger the exposure of the myristoyl-moiety in the calcium-binding protein family and CHP3 was proposed to use a "calcium-myristoyl switch", which leads to exposure of the myristoyl group due to conformational changes in the protein triggered by calcium-binding. Becker and Fuchs et al. now demonstrate that CHP3 uses a novel mechanism, in which not calcium-binding but binding to the target protein NHE1 triggers exposure of its myristoyl-group. This paper represents a detailed functional characterization of CHP3 and the maximum level of mechanistic interpretation that can be achieved without high-resolution structural information.

      The conclusions of this paper are fully supported by the data.

      Strengths

      The protein biochemistry is of an exceptionally high level, both with respect to the quality of the material and the stringency with which the authors assess and assure the protein quality. The authors purify CHP3 without any affinity tags, and thus in its most representative relevant state. Their validations indicate that complete myristoylation of CHP3 is achieved and that all protein is functional with respect to calcium binding.

      The authors go to extensive lengths to convince themselves of the quality of their data and their interpretation. They use an extensive amount of replicates, including both biological and technical replicates. Assays and experimental procedures are verified using model proteins, such as Recoverin. In addition, the authors employ an extensive set of complementary approaches to assure their observations are universal.

      We highly appreciate the positive feedback of Reviewer #3 on our experimental design and quality of biochemical data.

      Weaknesses

      A small weakness is the fact that the interpretation in terms of mechanistic insights contributed by some of the assays employed is rather limited, resulting in comparably unprecise descriptions of the state of the protein such as "affects the conformation and/or flexibility of CHP3" or the "open" and "closed" conformations. As indicated by the authors, structural studies are required to precisely detail the conformational states and delineate their mechanism of action.

      We updated the manuscript for a stringent use of the descriptions “conformation”, “state” and “flexibility” to match terminology commonly used for EFCaBPs.

      The authors imply that the major form of CHP3 is the myristoylated state. However, it remains unclear whether the source of the biological material, which appears to be membrane-only, already implies a significant experimental bias that only allows (or highly favors) the identification of myristoylated CHP3. Without a calcium-signal, unmyristoylated CHP may not associate with membranes, or be less strong, resulting in its depletion upon isolation of the vesicles.

      We agree that our data are based on membrane fractions, so referring to the “major form of CHP3” was misleading. We updated two sentences as follows: “Finally, we investigated the N-terminal myristoylation status of membrane associated CHP3 in vivo using liquid-chromatography coupled mass spectrometry (LC-MS/MS). ………Together, this suggests that myristoylated CHP3 is both NHE1-associated and membrane-anchored in agreement with a target-induced exposure and membrane integration of the N-terminal myristoyl moiety.”

    1. Author Response

      Reviewer #1 (Public Review):

      The Introduction starts by setting up a straw-man argument, claiming that the assumption is that gene expression is set up as stable expression domains that undergo little or no subsequent change. I don't think that any current developmental biologist thinks this is true. The references used to support this claim are from the 1990s up to the early 2000s. There are numerous examples since then that show that developmental gene expression is dynamic as a rule.

      Our argument might seem like a strawman for certain sector of developmental biologists who work in the field of pattern formation, or aware of the latest advances in the field. However, a look at current publications on developmental enhancers reveals that the dominant model with which enhancer biologists interpret their data is still the French Flag model (specifically, the eve-stripe-2 model of enhancer function). We meant to address this audience, and attempted to clarify this from the very beginning by stating that “Much of our models of how enhancers work during development relies on the assumption that …”. Please, note here that we are talking about “models of how enhancers work”, not models of pattern formation in general.

      The Introduction then continues as a rather detailed review of enhancers, Tribolium methodology, tools for identifying enhancers, and more. The Introduction cites 99 references, which seems excessive for what is essentially an experimental paper. Significant parts of the Introduction can be trimmed or removed. There is no need to mention all the tools available for Tribolium if they are not used in the described experiments. A thorough analysis of the advantages and disadvantages of different modes of ATAC-seq is also beyond the scope of the Introduction. The authors should explain why they chose the tools they chose without excessive background.

      In the revised manuscript, we shortened the discussion of Tribolium methodologies and imaging techniques. However, we think that the paragraph discussing ATAC-seq strategies are important to justify our choices as why we took the effort to cut the embryos to perform tissue-specific ATAC-seq analysis, instead of performing whole-embryo ATAC-seq.

      Having said that, the Introduction actually overlooks a lot of significant work that is relevant to the subject of the paper. Specifically, the authors completely ignore all of the work on development in hemimetabolous insects such as Oncopeltus and Gryllus - the omission is glaring. There has been a lot of relevant work on dynamic gene expression patterns coming out of these species.

      You are right indeed. We apologize for that. We added now citations to relevant works from those to insect to the manuscript.

      The experimental setup involves cutting embryos into three sections at two time points. The results then discuss differences in "space" and "time" but there is no discussion of the embryological meaning of these terms. What is happening at the two time points from a developmental perspective? What is the difference between the three sections? There is a lot of relevant development going on at these stages and important regional differences, which have been well-studied in Tribolium and in other insects but are not even mentioned.

      A good point. Correlating chromatin landscape changes with embryological events is an interesting point that needs further analysis and the application of ATAC-seq to further timepoints. We chose leaving this to future work (possibly using single cell ATAC-seq). In this work, we restricted our analysis to the benefits of applying time- and tissue-specific ATAC-seq in predicting active enhancers. We added a note on this point in the discussion.

      In the preliminary results of the ATAC-seq analysis, it is clear that there are significant differences between the sections, which should come as no surprise, but fairly minor differences between the same section at the two time points. This could be because the two time points are pretty close together at a stage when there is a lot of repetitive patterning going on. A possible interpretation, which the authors don't mention because it goes against their main thesis, is that maybe most of the processes that are taking place at this stage are not dynamic enough to show up at the temporal resolution they have applied. This is worth at least a mention.

      We agree with this observation. We would like to draw the reviewer’s attention to our statement “Together, our findings indicate that changes in chromatin accessibility in Tribolium at this developmental stage are primarily associated with space rather than time…””. Detailed analysis of the chromatin dynamics across time would need taking more datapoints, which is something we plan to do in future work.

      The authors link each accessible site to the nearest gene when looking at putative enhancer function. This is a risky assumption since there are many examples of enhancer sites that are far upstream or downstream of the target gene and often closer to an unrelated gene than to the target gene. The authors should at least acknowledge this problem with their functional annotation.

      The reviewer is correct in that, in particular for large eukaryotic genomes, enhancers are often located far away from their target genes. We have no comprehensive enhancer-target data that would enable us to perform a more accurate analysis. Furthermore, the assumption that at least for some of the enhancers the nearest genes will also be their targets, and hence, provide insight into the function of the enhancers themselves seems reasonable given the relatively compact organization of the Tribolium genome. In any case, the analysis was just presented as one of several sanity checks for our ATAC-seq data; for the sake of streamlining the manuscript we no longer include this analysis in the current version of the manuscript.

      In the Discussion, the authors claim that contrary to how it may seem, the question they are addressing is not a "fringe problem". Once again, I think this is a straw man. No active researcher thinks that the question of dynamic regulation of gene expression during development is a fringe problem. On the contrary, most researchers will accept that this is one of the most interesting and important questions in current developmental biology.

      This whole argument was removed from the Discussion in the revised manuscript.

      Perhaps the most significant problem with the manuscript is that it is all built around the premise of enhancer switching between dynamic enhancers and static enhancers. The authors find one site that is consistent with their prediction for a dynamic enhancer and one site - regulating a different gene - that is consistent with their prediction for a static enhancer and claim that they have provided support for their model. I think this claim is grossly exaggerated. They present data that can be seen as consistent with their model but are a long way from providing evidence for it.

      We actually thought we were cautious enough about this. Nowhere in our text did we mention that our data “support” the enhancer switching model. We stated quite early (in the abstract, actually) that:

      “We found our data consistent with a model in which the timing of gene expression during embryonic pattern formation is mediated by a balancing act between enhancers that induce rapid changes in gene expressions (that we call ‘dynamic enhancers’) and enhancers that stabilizes gene expressions (that we call ‘static enhancers’).”

      To make this message clearer, we added the following sentence to the abstract of the revised manuscript: “However, more data is needed for a strong support for this or any other alternative models.” And again at the end of the Introductions: “While these data are in line with our Enhancer Switching model, more data is needed as a strong support for the model.” Also, at the end of the Results section examining runB enhancer dynamics, we stated: “However, this merely shows that runB activity dynamics are consistent with our model, but is still far from strongly supporting the model (more on that in the Discussion).” Also for the Results section on enhancer hbA dynamics: “Again, this merely shows that hbA activity dynamics are consistent with our model, but is still far from strongly supporting it.”.

      Moreover, in the opening paragraph of the Discussion, we explicitly and quite openly addressed this point, and suggested what kind of observations and experiments needed in the future to qualify as a “strong support” for the model. We even ran simulations for what kind of observation should one expect in enhancer deletion experiments if the model is correct (Figure 7).

      But it seems like discussing the enhancer switching model in detail gives the impression of its central importance to the paper. In our view, our experimental system is quite general and does not depend on that model, but the point of mentioning it is that it is an example of how could an alternative model of enhancer regulation be of relevance to the problem of dynamic gene expression. This wouldn’t be obvious without this or a similar model that is showing this, even if it is hypothetical. But since our presentation is obviously giving the impression that our claims are stronger that they really are, we altered our phrasing in the introduction of the revised manuscript to make our point clearer:

      “Despite its potential inaccuracies, the Enhancer Switching model exemplifies the type of alternative frameworks we need to explore in order to elucidate the mechanisms driving the generation of gene expression waves during development. Consequently, an appropriate model system is required, allowing us to test not only the Enhancer Switching model but also any other prospective model that provides a satisfactory explanation for the initiation of gene expression waves at the enhancer level.”

      We hope that this addresses the reviewer’s quite legitimate concerns.

      Like the Introduction, the Discussion includes long paragraphs (lines 450-480) that are more suitable for a review/hypothesis paper. The data presented in this manuscript has little relevance to the question of kinematic vs. trigger waves, and therefore there is no real reason for the question to be discussed here.

      We have now significantly shortened the discussion.

      Reviewer #2 (Public Review):

      Open questions:

      What happens with the runB enhancer at later stages of embryogenesis? With what kind of dynamics do the anterior-most stripes fade and does that agree with the model? Do they show the same dynamics throughout segmentation? I think later stages need to be shown because the prediction from the model would be that the dynamics are repeated with each wave. I am not so sure about the prediction for ageing stripes – yet it would have been interesting to see the model prediction and the activity of the static enhancer.

      Yes, the dynamics repeats in the germband. This is shown in Supplementary Figure 8. The dynamics in germband were shown by visualizing yellow mRNA and intronic probes. MS2 imaging was not possible to be used because the embryo dive into the yolk for a while, and then it becomes difficult to capture the germband in the right orientation for imaging. We are currently working to use light sheet microscopy for imaging germband stages.

      I understand that the mRNA of the reporter gene yellow is more stable than the runt mRNA. This might interfere with the possibility to test your prediction for static enhancers: The criterion is that the stripes should increase in strength as the wave migrates towards the anterior. You show this for runB – but given that yellow has a more stable transcript – could this lead to a “false positive” increase in intensity with the slower migration and accumulation of transcripts? I would feel more comfortable with the statement that this is a static enhancer if you could exclude that the signal is blurred by an artifact based on different mRNA stability. What about re-running the simulation (with the p–rameters that have shown to well reflect endogenous –unt mRNA levels) but i“creasing the parameter for the stability of the mRNA? Are static and dynamic enhancers still distinguishable? The claim of having found a static enhancer rests on this increase in signal, hence, other explanations need to be excluded carefully.

      Good questions. Note that runB reporter dynamics were examined not only by visualizing yellow mRNAs (which indeed seem to be more stable than endogenous run mRNA; see Supplementary Figure 10), but also using MS2 (with virtually zero mRNA stability; although stability was simulated in the shown movies to show virtual mRNA dynamics), and intronic yellow mRNA (showing de novo transcription; Supplementary Figure 10; you will need to zoom in to see intronic de novo transcripts). The expected dynamics of a static enhancer reporter is quite unique: it progressively increases initially as it propagates from posterior to anterior, then it progressively decreases as it slows down and stabilizes at the anterior. Then they eventually fade. These full range of dynamics is obvious in germband embryos stained for intronic yellow to show de novo transcription of runB enhancer reporter (Supplementary Figure 10; you will need to zoom in to see intronic de novo transcripts).

      Running the simulation for the model using different degradation rates for the enhancer reporter made the static enhancer’s expression either less or more persistent, but gave the same overall result: the static enhancer expression has diminished expression at the very posterior, but high expression as its expression wave exiting the growth-zone/SAZ. This is consistent with not only yellow mRNA expressions of runB, but with its intronic expression as well (Supplementary Figure 10; you will need to zoom in to see intronic de novo transcripts).

      What about the head domain of the runB enhancer (e.g. Fig. 6A lowest row): This seems to be different from endogenous expression in your work and in Choe et al. Is that aspect different from endogenous expression and can this be reconciled with your model?

      Yes, indeed this aspect cannot be explained by our model. We believe that head patterning in insects is regulated by a different regulatory network. This network might be (de)-activated by missing repressors in the selected DNA segment for runB enhancer. We mentioned this issue in the revised manuscript.

      The claim of similar dynamics of expression visualized by in situ and MS2 in vivo relies on comparing Fig. 6C with 6A. To compare these two panels, I would need to know to what stage in A the embryo in C should be compared. Actually, the stripe in 6C appears more crisp than the stripes in 6A.

      Were the enhancer dynamics tested in vivo at later stages as well? I would appreciate a clear statement on what stages can be visualized and where the technical boundaries are because this will influence any considerations by others using this system.

      One really cannot be that super-precise about the timing of a very dynamic process in space and time like this one we are studying. We believe that Figure 6D shows clearly that runB activity dynamics are similar to endogenous run expression.

      How do the reported accessibility dynamics of runA enhancer correlate with the activity of the reporter: E.g. is the enhancer open in the middle body region but closed at the posterior part of the embryo? Or is it closed at the anterior – and if so: why is there a signal of the reporter in the head?

      You show that chromatin accessibility dynamics help in identifying active enhancers. Is this idea new or is it based on previous experience with Drosophila (e.g. PMID: 29539636 or works cited in https://doi.org/10.1002/bies.201900188)? Or in what respect is this novel?

      Our manuscript contributes to the growing body of evidence confirming that accessibility per se does not imply activity. Of course, this is not a new idea, but given the widely use of accessibility as a proxy for enhancer activity in the genomics community, we do feel it is important to reiterate the message. As the reviewer correctly indicates, several published findings point to a correlation between accessibility dynamics and enhancer activity. However, to our knowledge, this is the first example in Tribolium. It is important to point out that what “dynamic” means strongly depends on the experimental design. Even in Drosophila, not enough studies have been conducted to fully understand the relationship (e.g., ideally, this should be done on a continuous time scale and at single cell level). We acknowledge in the manuscript that this relationship has been observed before in other species (and have added the references suggested by the reviewer, for which we are very grateful), but still believe that our observations are highly significant to the Tribolium community.

      Reviewer #3 (Public Review):

      I have two major concerns: First, the claim about differential accessibility being related to enhancer activity is not really established from the presented data, in my view. This needs to be clarified. (I do believe in the claim to some extent, but not based on presented evidence.)

      We agree with the reviewer that more data – and, more importantly, independent replication – are necessary to confirm this finding. Please, refer to our response to your comment regarding the statistical significance of the findings.

      Second, the evidence in support of the Enhancer Switching model for runt should be accompanied by identification of and spatiotemporal profiling of the “speed regulator”, if this is not established yet.

      Experiments supporting the role of Cad as a speed regulator for both pair-rule and gap genes have been published in El-Sherif et al PLOS Genetics 2014 and Zhu et al PNAS 2017. We added a comment stressing this fact.

      In addition to these two concerns, the simulations of the Enhancer Switching model need to be described, at least in the outline, in the Methods section.

      Done

    1. Author Response

      Reviewer #1 (Public Review):

      Specifically, the authors define "efficacy" (eta) of a ligand as the fractional change in binding free energy between the open and the closed states of the channel.

      We assume that the word in quotes is a typo; ղ is efficiency, not efficacy (now given the symbol λ). We now emphasize the distinction immediately after Eq. 2.

      1) One concern regards the clustering of the data sets in Fig. 5 into exactly 5 eta-classes. First, two clusters contain only two data points each. Second, the proposed "catch&hold LFER model" (Fig. 2) does not predict the existence of a discrete number of such eta-classes. How strong is the evidence that there are exactly 5 classes as opposed to a continuum of possible eta values.

      Statistical (x means cluster) analysis indicates that the 23 agonists segregate into 5 ղ classes. Groups with only 2 members (plus the intercept) are less well defined (Fig 4) but are supported by the 5 mutational ղ classes (Fig. 7). (see above)

      2) The authors do not discuss the uniqueness of the proposed model.

      see above. Ln 405 Induced fits are common.

      In fact, it seems to me that the existence of eta-classes might be explained just as well by an alternative model which assumes a single gating mechanism for the receptor,

      We are not sure what a “single gating mechanism” means. Does non-single refer to i) the2 stage induced fits (catch-hold LFER)? … ղ classes makes this conclusion unavoidable. ii) our conjecture that are there are 5 different C versus O binding site structural pairs…? Energy derives from structure, so we the 5 energy ratios indicate 5 structural pairs. iii) multiple steps inside gating (ϕ)? …So far there have not been any alternative explanations for the organized map of ϕ. iv) catch itself?... Evidence for this induced fit is given in Fig 2 and 7 SI, and on Ln 528-547 we discuss the implications of kon to C versus O. Ln 405 Local ‘Induced fit’ rearrangements in enzymes are common. We think the evidence is strong for the bottom scheme in Fig 2A.

      but distinct patterns of ligand-protein interactions for the different agonists.

      ղ classes derive from distinct interactions for different agonists, but what these are and whether the ‘contact number’ idea is useful are uncertain (see above).

      The pore opening-associated increase in agonist affinity is typically caused by a tightening of the substrate binding site (often called clamshell closure) …

      Ln 379-386 In the Discussion we now relate catch-hold to induced fit

      Ln 455, 461-463, 471-474 Fig 2SI and the induced fit to clamshell closure

      Reviewer #2 (Public Review):

      This is an interesting manuscript with a worthwhile approach to receptor mechanisms. The paper contains an impressive amount of new data. These single molecule concentration response curves have been compiled with care and the authors deserve great credit for obtaining these data.

      Ln 233 ղ can be estimated from a CRC built from whole-cell currents…

      Ln 150 …or indeed any method that estimates KdC and KdO (for example binding assays, or perhaps in silico simulations of AC and AO structures)

      I judge the main result to be that there are different values of the recently-proposed agonist-related quantity "efficiency".

      Ln 21, 26-27, 535-547 OK, but to us the most interesting insight is that in AChRs binding IS gating.

      These values are clustered into 5 quite closely spaced groups. The authors propose that these groups are the same whether considering mutations in the binding site or different agonists.

      see above

      It was unclear to me in several places, what new data and what old data are included in each figure. Therefore readers may have difficulty judging the claimed advance. This difficulty is not helped by the discussion, which includes some previous findings as "results".

      see above.

      A further weakness is that it is unclear how general or how specific these concepts are. The authors assert that they are, by definition, completely universal. However, we do not have reference to previous work or current data on any other receptor than the muscle nicotinic. I could not square the concept that "every receptor works like this" with the evident lack of desire to demonstrate this for any other receptor.

      Ln 132-136 There are reasons to think that receptors in general work according to Figure 1A. A thermalized ligand (for instance TriMA, MW 60) has the momentum of only ~3 water molecules. A momentum sensor would have terrible signal/noise.

      Reviewer #3 (Public Review):

      This work attempts to introduce a new attribute of the receptor- efficiency, a fraction of an agonist binding energy consumed by conformational transition of the receptor from resting to active (open) states. Furthermore, the authors use an impressive set of experimental data (single channel recordings with 23 agonists and 53 mutations) to measure the efficiency for each agonist and mutant receptor. All the estimated efficiencies fall into a few groups and inside each of the efficiency groups there is a strong correlation between agonist affinity and receptor opening efficacy.

      The main finding in this study is that estimated efficiencies fall into 5 groups.

      see above.

      There is no clear description of the method how the efficiencies were allocated into different groups. Most importantly, it is not clear if the method used takes into account the uncertainty of the efficiency estimate. The study does not show any statistical metrics of the efficiency estimates as well as any other calculated variable such as dissociation equilibrium constants to resting or open states. Surely, the uncertainty of the efficiency should matter especially considering how near the efficiency group values are (eg. difference about 10% between 0.51 and 0.56 or 0.41 and 0.45).

      see above

      All the tested agonists fell into groups according to the efficiency value attributed to them. It is difficult to see why some of the agonists belong to the same group. For example, it is not obvious at all why such agonists as epibatidine, decamethonium and TMP are in the same group. The question, I guess, arises if this grouping based on efficiency has any predictability value. Furthermore, if a series of mutations with the same agonist fall into different groups, the prediction power of this approach is very limited if one attempts to design a new agonist or look for a new mutation.

      see above and Ln 548-561 (last para of text). Efficiency is a relatively new idea. This report is one of only a few on the subject. More experiments with different receptors by more labs using other approaches are needed to ascertain whether ղ is general.

    1. Author Response

      Reviewer #1 (Public Review):

      This manuscript will interest cognitive scientists, neuroimaging researchers, and neuroscientists interested in the systems-level organization of brain activity. The authors describe four brain states that are present across a wide range of cognitive tasks and determine that the relative distribution of the brain states shows both commonalities and differences across task conditions.

      The authors characterized the low-dimensional latent space that has been shown to capture the major features of intrinsic brain activity using four states obtained with a Hidden Markov Model. They related the four states to previously-described functional gradients in the brain and examined the relative contribution of each state under different cognitive conditions. They showed that states related to the measured behavior for each condition differed, but that a common state appears to reflect disengagement across conditions. The authors bring together a state-of-the-art analysis of systemslevel brain dynamics and cognitive neuroscience, bridging a gap that has long needed to be bridged.

      The strongest aspect of the study is its rigor. The authors use appropriate null models and examine multiple datasets (not used in the original analysis) to demonstrate that their findings replicate. Their thorough analysis convincingly supports their assertion that common states are present across a variety of conditions, but that different states may predict behavioural measures for different conditions. However, the authors could have better situated their work within the existing literature. It is not that a more exhaustive literature review is needed-it is that some of their results are unsurprising given the work reported in other manuscripts; some of their work reinforces or is reinforced by prior studies; and some of their work is not compared to similar findings obtained with other analysis approaches. While space is not unlimited, some of these gaps are important enough that they are worth addressing:

      We appreciate the reviewer’s thorough read of our manuscript and positive comments on its rigor and implications. We agree that the original version of the manuscript insufficiently situated this work in the existing literature. We have made extensive revisions to better place our findings in the context of prior work. These changes are described in detail below.

      1) The authors' own prior work on functional connectivity signatures of attention is not discussed in comparison to the latest work. Neither is work from other groups showing signatures of arousal that change over time, particularly in resting state scans. Attention and arousal are not the same things, but they are intertwined, and both have been linked to large-scale changes in brain activity that should be captured in the HMM latent states. The authors should discuss how the current work fits with existing studies.

      Thank you for raising this point. We agree that the relationship between low-dimensional latent states and predefined activity and functional connectivity signatures is an important and interesting question in both attention research and more general contexts. Here, we did not empirically relate the brain states examined in this study and functional connectivity signatures previously investigated in our lab (e.g., Rosenberg et al., 2016; Song et al., 2021a) because the research question and methodological complexities deserved separate attention that go beyond the scope of this paper. Therefore, we conceptually addressed the reviewer’s question on how functional connectivity signatures of attention are related to the brain states that were observed here. Next, we asked how arousal relates to the brain states by indirectly predicting arousal levels of each brain state based on its activity patterns’ spatial resemblance to the predefined arousal network template (Goodale et al., 2021).

      Latent states and dynamic functional connectivity

      Previous work suggested that, on medium time scales (~20-60 seconds), changes in functional connectivity signatures of sustained attention (Rosenberg et al., 2020) and narrative engagement (Song et al., 2021a) predicted changes in attentional states. How do these attention-related functional connectivity dynamics relate to latent state dynamics, measured on a shorter time scale (1 second)?

      Theoretically, there are reasons to think that these measures are related but not redundant. Both HMM and dynamic functional connectivity provide summary measures of the whole-brain functional interactions that evolve over time. Whereas HMM identifies recurring low-dimensional brain states, dynamic functional connectivity used in our and others’ prior studies captures high-dimensional dynamical patterns. Furthermore, while the mixture Gaussian function utilized to infer emission probability in our HMM infers the states from both the BOLD activity patterns and their interactions, functional connectivity considers only pairwise interactions between regions of interests. Thus, with a theoretical ground that the brain states can be characterized at multiple scales and different methods (Greene et al., 2023), we can hypothesize that the both measures could (and perhaps, should be able to) capture brain-wide latent state changes. For example, if we were to apply kmeans clustering methods on the sliding window-based dynamic functional connectivity as in Allen et al. (2014), the resulting clusters could arguably be similar to the latent states derived from the HMM.

      However, there are practical reasons why the correspondence between our prior dynamic functional connectivity models and current HMM states is difficult to test directly. A time point-bytime point matching of the HMM state sequence and dynamic functional connectivity is not feasible because, in our prior work, dynamic functional connectivity was measured in a sliding time window (~20-60 seconds), whereas the HMM state identification is conducted at every TR (1 second). An alternative would be to concatenate all time points that were categorized as each HMM state to compute representative functional connectivity of that state. This “splicing and concatenating” method, however, disrupts continuous BOLD-signal time series and has not previously been validated for use with our dynamic connectome-based predictive models. In addition, the difference in time series lengths across states would make comparisons of the four states’ functional connectomes unfair.

      One main focus of our manuscript was to relate brain dynamics (HMM state dynamics) to static manifold (functional connectivity gradients). We agree that a direct link between two measures of brain dynamics, HMM and dynamic functional connectivity, is an important research question. However, due to some intricacies that needed to be addressed to answer this question, we felt that it was beyond the scope of our paper. We are eager, however, to explore these comparisons in future work which can more thoroughly address the caveats associated with comparing models of sustained attention, narrative engagement, and arousal defined using different input features and methods.

      Arousal, attention, and latent neural state dynamics

      Next, the reviewer posed an important question about the relationship between arousal, attention, and latent states. The current study was designed to assess the relationship between attention and latent state dynamics. However, previous neuroimaging work showed that low-dimensional brain dynamics reflect fluctuations in arousal (Raut et al., 2021; Shine et al., 2016; Zhang et al., 2023). Behavioral studies showed that attention and arousal hold a non-linear relationship, for example, mind-wandering states are associated with lower arousal and externally distracted states are associated with higher arousal, when both these states indicate low attention (Esterman and Rothlein, 2019; Unsworth and Robison, 2018, 2016).

      To address the reviewer’s suggestion, we wanted to test if our brain states reflected changes in arousal, but we did not collect relevant behavioral or physiological measures. Therefore, to indirectly test for relationships, we predicted levels of arousal in brain states by applying the “arousal network template” defined by Dr. Catie Chang’s group (Chang et al., 2016; Falahpour et al., 2018; Goodale et al., 2021). The arousal network template was created from resting-state fMRI data to predict arousal levels indicated by eye monitoring and electrophysiological signals. In the original study, the arousal level at each time point was predicted by the correlation between the BOLD activity patterns of each TR to the arousal template. The more similar the whole-brain activation pattern was to the arousal network template, the higher the participant was predicted to be aroused at that moment. This activity pattern-based model was generalized to fMRI data during tasks (Goodale et al., 2021).

      We correlated the arousal template to the activity patterns of the four brain states that were inferred by the HMM. The DMN state was positively correlated with the arousal template (r=0.264) and the SM state was negatively correlated with the arousal template (r=-0.303) (Author response image 1). These values were not tested for significance because they were single observations. While speculative, this may suggest that participants are in a high arousal state during the DMN state and a low arousal state during the SM state. Together with our results relating brain states to attention, it is possible that the SM state is a common state indicating low arousal and low attention. On the other hand, the DMN state, a signature of a highly aroused state, may benefit gradCPT task performance but not necessarily in engaging with a sitcom episode. However, because this was a single observation and we did not collect a physiological measure of arousal to validate this indirect prediction result, we did not include the result in the manuscript. We hope to more directly test this question in future work with behavioral and physiological measures of arousal.

      Author response image 1.

      Changes made to the manuscript

      Importantly, we agree with the reviewer that a theoretical discussion about the relationships between functional connectivity, latent states, gradients, as well as attention and arousal was a critical omission from the original Discussion. We edited the Discussion to highlight past literature on these topics and encourage future work to investigate these relationships.

      [Manuscript, page 11] “Previous studies showed that large-scale neural dynamics that evolve over tens of seconds capture meaningful variance in arousal (Raut et al., 2021; Zhang et al., 2023) and attentional states (Rosenberg et al., 2020; Yamashita et al., 2021). We asked whether latent neural state dynamics reflect ongoing changes in attention in both task and naturalistic contexts.”

      [Manuscript, page 17] “Previous work showed that time-resolved whole-brain functional connectivity (i.e., paired interactions of more than a hundred parcels) predicts changes in attention during task performance (Rosenberg et al., 2020) as well as movie-watching and story-listening (Song et al., 2021a). Future work could investigate whether functional connectivity and the HMM capture the same underlying “brain states” to bridge the results from the two literatures. Furthermore, though the current study provided evidence of neural state dynamics reflecting attention, the same neural states may, in part, reflect fluctuations in arousal (Chang et al., 2016; Zhang et al., 2023). Complementing behavioral studies that demonstrated a nonlinear relationship between attention and arousal (Esterman and Rothlein, 2019; Unsworth and Robison, 2018, 2016), future studies collecting behavioral and physiological measures of arousal can assess the extent to which attention explains neural state dynamics beyond what can be explained by arousal fluctuations.”

      2) The 'base state' has been described in a number of prior papers (for one early example, see https://pubmed.ncbi.nlm.nih.gov/27008543). The idea that it might serve as a hub or intermediary for other states has been raised in other studies, and discussion of the similarity or differences between those studies and this one would provide better context for the interpretation of the current work. One of the intriguing findings of the current study is that the incidence of this base state increases during sitcom watching, the strongest evidence to date is that it has a cognitive role and is not merely a configuration of activity that the brain must pass through when making a transition.

      We greatly appreciate the reviewer’s suggestion of prior papers. We were not aware of previous findings of the base state at the time of writing the manuscript, so it was reassuring to see consistent findings. In the Discussion, we highlighted the findings of Chen et al. (2016) and Saggar et al. (2022). Both studies highlighted the role of the base state as a “hub”-like transition state. However, as the reviewer noted, these studies did not address the functional relevance of this state to cognitive states because both were based on resting-state fMRI.

      In our revised Discussion, we write that our work replicates previous findings of the base state that consistently acted as a transitional hub state in macroscopic brain dynamics. We also note that our study expands this line of work by characterizing what functional roles the base state plays in multiple contexts: The base state indicated high attentional engagement and exhibited the highest occurrence proportion as well as longest dwell times during naturalistic movie watching. The base state’s functional involvement was comparatively minor during controlled tasks.

      [Manuscript, page 17-18] “Past resting-state fMRI studies have reported the existence of the base state. Chen et al. (2016) used the HMM to detect a state that had “less apparent activation or deactivation patterns in known networks compared with other states”. This state had the highest occurrence probability among the inferred latent states, was consistently detected by the model, and was most likely to transition to and from other states, all of which mirror our findings here. The authors interpret this state as an “intermediate transient state that appears when the brain is switching between other more reproducible brain states”. The observation of the base state was not confined to studies using HMMs. Saggar et al. (2022) used topological data analysis to represent a low-dimensional manifold of resting-state whole-brain dynamics as a graph, where each node corresponds to brain activity patterns of a cluster of time points. Topologically focal “hub” nodes were represented uniformly by all functional networks, meaning that no characteristic activation above or below the mean was detected, similar to what we observe with the base state. The transition probability from other states to the hub state was the highest, demonstrating its role as a putative transition state.

      However, the functional relevance of the base state to human cognition had not been explored previously. We propose that the base state, a transitional hub (Figure 2B) positioned at the center of the gradient subspace (Figure 1D), functions as a state of natural equilibrium. Transitioning to the DMN, DAN, or SM states reflects incursion away from natural equilibrium (Deco et al., 2017; Gu et al., 2015), as the brain enters a functionally modular state. Notably, the base state indicated high attentional engagement (Figure 5E and F) and exhibited the highest occurrence proportion (Figure 3B) as well as the longest dwell times (Figure 3—figure supplement 1) during naturalistic movie watching, whereas its functional involvement was comparatively minor during controlled tasks. This significant relevance to behavior verifies that the base state cannot simply be a byproduct of the model. We speculate that susceptibility to both external and internal information is maximized in the base state—allowing for roughly equal weighting of both sides so that they can be integrated to form a coherent representation of the world—at the expense of the stability of a certain functional network (Cocchi et al., 2017; Fagerholm et al., 2015). When processing rich narratives, particularly when a person is fully immersed without having to exert cognitive effort, a less modular state with high degrees of freedom to reach other states may be more likely to be involved. The role of the base state should be further investigated in future studies.”

      3) The link between latent states and functional connectivity gradients should be considered in the context of prior work showing that the spatiotemporal patterns of intrinsic activity that account for most of the structure in resting state fMRI also sweep across functional connectivity gradients (https://pubmed.ncbi.nlm.nih.gov/33549755/). In fact, the spatiotemporal dynamics may give rise to the functional connectivity gradients (https://pubmed.ncbi.nlm.nih.gov/35902649/). HMM states bear a marked resemblance to the high-activity phases of these patterns and are likely to be closely linked to them. The spatiotemporal patterns are typically obtained during rest, but they have been reported during task performance (https://pubmed.ncbi.nlm.nih.gov/30753928/) which further suggests a link to the current work. Similar patterns have been observed in anesthetized animals, which also reinforces the conclusion of the current work that the states are fundamental aspects of the brain's functional organization.

      We appreciate the comments that relate spatiotemporal patterns, functional connectivity gradients, and the latent states derived from the HMM. Our work was also inspired by the papers that the reviewer suggested, especially Bolt et al.’s (2022), which compared the results of numerous dimensionality and clustering algorithms and suggested three spatiotemporal patterns that seemed to be commonly supported across algorithms. We originally cited these studies throughout the manuscript, but did not discuss them comprehensively. We have revised the Discussion to situate our findings on past work that used resting-state fMRI to study low-dimensional latent brain states.

      [Manuscript, page 15-16] “This perspective is supported by previous work that has used different methods to capture recurring low-dimensional states from spontaneous fMRI activity during rest. For example, to extract time-averaged latent states, early resting-state analyses identified task-positive and tasknegative networks using seed-based correlation (Fox et al., 2005). Dimensionality reduction algorithms such as independent component analysis (Smith et al., 2009) extracted latent components that explain the largest variance in fMRI time series. Other lines of work used timeresolved analyses to capture latent state dynamics. For example, variants of clustering algorithms, such as co-activation patterns (Liu et al., 2018; Liu and Duyn, 2013), k-means clustering (Allen et al., 2014), and HMM (Baker et al., 2014; Chen et al., 2016; Vidaurre et al., 2018, 2017), characterized fMRI time series as recurrences of and transitions between a small number of states. Time-lag analysis was used to identify quasiperiodic spatiotemporal patterns of propagating brain activity (Abbas et al., 2019; Yousefi and Keilholz, 2021). A recent study extensively compared these different algorithms and showed that they all report qualitatively similar latent states or components when applied to fMRI data (Bolt et al., 2022). While these studies used different algorithms to probe data-specific brain states, this work and ours report common latent axes that follow a long-standing theory of large-scale human functional systems (Mesulam, 1998). Neural dynamics span principal axes that dissociate unimodal to transmodal and sensory to motor information processing systems.”

      Reviewer #2 (Public Review):

      In this study, Song and colleagues applied a Hidden Markov Model to whole-brain fMRI data from the unique SONG dataset and a grad-CPT task, and in doing so observed robust transitions between lowdimensional states that they then attributed to specific psychological features extracted from the different tasks.

      The methods used appeared to be sound and robust to parameter choices. Whenever choices were made regarding specific parameters, the authors demonstrated that their approach was robust to different values, and also replicated their main findings on a separate dataset.

      I was mildly concerned that similarities in some of the algorithms used may have rendered some of the inter-measure results as somewhat inevitable (a hypothesis that could be tested using appropriate null models).

      This work is quite integrative, linking together a number of previous studies into a framework that allows for interesting follow-up questions.

      Overall, I found the work to be robust, interesting, and integrative, with a wide-ranging citation list and exciting implications for future work.

      We appreciate the reviewer’s comments on the study’s robustness and future implications. Our work was highly motivated by the reviewer’s prior work.

      Reviewer #3 (Public Review):

      My general assessment of the paper is that the analyses done after they find the model are exemplary and show some interesting results. However, the method they use to find the number of states (Calinski-Harabasz score instead of log-likelihood), the model they use generally (HMM), and the fact that they don't show how they find the number of states on HCP, with the Schaeffer atlas, and do not report their R^2 on a test set is a little concerning. I don't think this perse impedes their results, but it is something that they can improve. They argue that the states they find align with long-standing ideas about the functional organization of the brain and align with other research, but they can improve their selection for their model.

      We appreciate the reviewer’s thorough read of the paper, evaluation of our analyses linking brain states to behavior as “exemplary”, and important questions about the modeling approach. We have included detailed responses below and updated the manuscript accordingly.

      Strengths:

      • Use multiple datasets, multiple ROIs, and multiple analyses to validate their results

      • Figures are convincing in the sense that patterns clearly synchronize between participants

      • Authors select the number of states using the optimal model fit (although this turns out to be a little more questionable due to what they quantify as 'optimal model fit')

      We address this concern on page 30-31 of this response letter.

      • Replication with Schaeffer atlas makes results more convincing

      • The analyses around the fact that the base state acts as a flexible hub are well done and well explained

      • Their comparison of synchrony is well-done and comparing it to resting-state, which does not have any significant synchrony among participants is obvious, but still good to compare against.

      • Their results with respect to similar narrative engagement being correlated with similar neural state dynamics are well done and interesting.

      • Their results on event boundaries are compelling and well done. However, I do not find their Chang et al. results convincing (Figure 4B), it could just be because it is a different medium that explains differences in DMN response, but to me, it seems like these are just altogether different patterns that can not 100% be explained by their method/results.

      We entirely agree with the reviewer that the Chang et al. (2021) data are different in many ways from our own SONG dataset. Whereas data from Chang et al. (2021) were collected while participants listened to an audio-only narrative, participants in the SONG sample watched and listened to audiovisual stimuli. They were scanned at different universities in different countries with different protocols by different research groups for different purposes. That is, there are numerous reasons why we would expect the model should not generalize. Thus, we found it compelling and surprising that, despite all of these differences between the datasets, the model trained on the SONG dataset generalized to the data from Chang et al. (2021). The results highlighted a robust increase in the DMN state occurrence and a decrease in the base state occurrence after the narrative event boundaries, irrespective of whether the stimulus was an audiovisual sitcom episode or a narrated story. This external model validation was a way that we tested the robustness of our own model and the relationship between neural state dynamics and cognitive dynamics.

      • Their results that when there is no event, transition into the DMN state comes from the base state is 50% is interesting and a strong result. However, it is unclear if this is just for the sitcom or also for Chang et al.'s data.

      We apologize for the lack of clarity. We show the statistical results of the two sitcom episodes as well as Chang et al.’s (2021) data in Figure 4—figure supplement 2 in our original manuscript. Here, we provide the exact values of the base-to-DMN state transition probability, and how they differ across moments after event boundaries compared to non-event boundaries.

      For sitcom episode 1, the probability of base-to-DMN state transition was 44.6 ± 18.8 % at event boundaries whereas 62.0 ± 10.4 % at non-event boundaries (FDR-p = 0.0013). For sitcom episode 2, the probability of base-to-DMN state transition was 44.1 ± 18.0 % at event boundaries whereas 62.2 ± 7.6 % at non-event boundaries (FDR-p = 0.0006). For the Chang et al. (2021) dataset, the probability of base-to-DMN state transition was 33.3 ± 15.9 % at event boundaries whereas 58.1 ± 6.4 % at non-event boundaries (FDR-p < 0.0001). Thus, our result, “At non-event boundaries, the DMN state was most likely to transition from the base state, accounting for more than 50% of the transitions to the DMN state” (pg 11, line 24-25), holds true for both the internal and external datasets.

      • The involvement of the base state as being highly engaged during the comedy sitcom and the movie are interesting results that warrant further study into the base state theory they pose in this work.

      • It is good that they make sure SM states are not just because of head motion (P 12).

      • Their comparison between functional gradient and neural states is good, and their results are generally well-supported, intuitive, and interesting enough to warrant further research into them. Their findings on the context-specificity of their DMN and DAN state are interesting and relate well to the antagonistic relationship in resting-state data.

      Weaknesses:

      • Authors should train the model on part of the data and validate on another

      Thank you for raising this issue. To the best of our knowledge, past work that applied the HMM to the fMRI data has conducted training and inference on the same data, including initial work that implemented HMM on the resting-state fMRI (Baker et al., 2014; Chen et al., 2016; Vidaurre et al., 2018, 2017) as well as more recent work that applied HMMs to the task or movie-watching fMRI (Cornblath et al., 2020; Taghia et al., 2018; van der Meer et al., 2020; Yamashita et al., 2021). That is, the parameters—emission probability, transition probability, and initial probability—were estimated from the entire dataset and the latent state sequence was inferred using the Viterbi algorithm on the same dataset.

      However, we were also aware of the potential problem this may have. Therefore, in our recent work asking a different research question in another fMRI dataset (Song et al., 2021b), we trained an HMM on a subset of the dataset (moments when participants were watching movie clips in the original temporal order) and inferred latent state sequence of the fMRI time series in another subset of the dataset (moments when participants were watching movie clips in a scrambled temporal order). To the best of our knowledge, this was the first paper that used different segments of the data to fit and infer states from the HMM.

      In the current study, we wanted to capture brain states that underlie brain activity across contexts. Thus, we presented the same-dataset training and inference procedure as our primary result. However, for every main result, we also showed results where we separated the data used for model fitting and state inference. That is, we fit the HMM on the SONG dataset, primarily report the inference results on the SONG dataset, but also report inference on the external datasets that were not included in model fitting. The datasets used were the Human Connectome Project dataset (Van Essen et al., 2013), Chang et al. (2021) audio-listening dataset, Rosenberg et al. (2016) gradCPT dataset, and Chen et al. (2017) Sherlock dataset.

      However, to further address the concern of the reviewer whether the HMM fit is reliable when applied to held-out data, we computed the reliability of the HMM inference by conducting crossvalidations and split-half reliability analysis.

      (1) Cross-validation

      To separate the dataset used for HMM training and inference, we conducted cross-validation on the SONG dataset (N=27) by training the model with the data from 26 participants and inferring the latent state sequence of the held-out participant.

      First, we compared the robustness of the model training by comparing the mean activity patterns of the four latent states fitted at the group level (N=27) with the mean activity patterns of the four states fitted across cross-validation folds. Pearson’s correlations between the group-level vs. cross-validated latent states’ mean activity patterns were r = 0.991 ± 0.010, with a range from 0.963 to 0.999.

      Second, we compared the robustness of model inference by comparing the latent state sequences that were inferred at the group level vs. from held-out participants in a cross-validation scheme. All fMRI conditions had mean similarity higher than 90%; Rest 1: 92.74 ± 5.02 %, Rest2: 92.74 ± 4.83 %, GradCPT face: 92.97 ± 6.41 %, GradCPT scene: 93.27 ± 5.76 %, Sitcom ep1: 93.31 ± 3.92 %, Sitcom ep2: 93.13 ± 4.36 %, Documentary: 92.42 ± 4.72 %.

      Third, with the latent state sequences inferred from cross-validation, we replicated the analysis of Figure 3 to test for synchrony of the latent state sequences across participants. The crossvalidated results were highly similar to manuscript Figure 3, which was generated from the grouplevel analysis. Mean synchrony of latent state sequences are as follows: Rest 1: 25.90 ± 3.81%, Rest 2: 25.75 ± 4.19 %, GradCPT face: 27.17 ± 3.86 %, GradCPT scene: 28.11 ± 3.89 %, Sitcom ep1: 40.69 ± 3.86%, Sitcom ep2: 40.53 ± 3.13%, Documentary: 30.13 ± 3.41%.

      Author response image 2.

      (2) Split-half reliability

      To test for the internal robustness of the model, we randomly assigned SONG dataset participants into two groups and conducted HMM separately in each. Similarity (Pearson’s correlation) between the two groups’ activation patterns were DMN: 0.791, DAN: 0.838, SM: 0.944, base: 0.837. The similarity of the covariance patterns were DMN: 0.995, DAN: 0.996, SM: 0.994, base: 0.996.

      Author response image 3.

      We further validated the split-half reliability of the model using the HCP dataset, which contains data of a larger sample (N=119). Similarity (Pearson’s correlation) between the two groups’ activation patterns were DMN: 0.998, DAN: 0.997, SM: 0.993, base: 0.923. The similarity of the covariance patterns were DMN: 0.995, DAN: 0.996, SM: 0.994, base: 0.996.

      Together the cross-validation and split-half reliability results demonstrate that the HMM results reported in the manuscript are reliable and robust to the way we conducted the analysis. The result of the split-half reliability analysis is added in the Results.

      [Manuscript, page 3-4] “Neural state inference was robust to the choice of 𝐾 (Figure 1—figure supplement 1) and the fMRI preprocessing pipeline (Figure 1—figure supplement 5) and consistent when conducted on two groups of randomly split-half participants (Pearson’s correlations between the two groups’ latent state activation patterns: DMN: 0.791, DAN: 0.838, SM: 0.944, base: 0.837).”

      • Comparison with just PCA/functional gradients is weak in establishing whether HMMs are good models of the timeseries. Especially given that the HMM does not explain a lot of variance in the signal (~0.5 R^2 for only 27 brain regions) for PCA. I think they don't report their own R^2 of the timeseries

      We agree with the reviewer that the PCA that we conducted to compare with the explained variance of the functional gradients was not directly comparable because PCA and gradients utilize different algorithms to reduce dimensionality. To make more meaningful comparisons, we removed the data-specific PCA results and replaced them with data-specific functional gradients (derived from the SONG dataset). This allows us to directly compare SONG-specific functional gradients with predefined gradients (derived from the resting-state HCP dataset from Margulies et al. [2016]). We found that the degrees to which the first two predefined gradients explained whole-brain fMRI time series (SONG: 𝑟! = 0.097, HCP: 0.084) were comparable to the amount of variance explained by the first two data-specific gradients (SONG: 𝑟! = 0.100, HCP: 0.086). Thus, the predefined gradients explain as much variance in the SONG data time series as SONG-specific gradients do. This supports our argument that the low-dimensional manifold is largely shared across contexts, and that the common HMM latent states may tile the predefined gradients.

      These analyses and results were added to the Results, Methods, and Figure 1—figure supplement 8. Here, we only attach changes to the Results section for simplicity, but please see the revised manuscript for further changes.

      [Manuscript, page 5-6] “We hypothesized that the spatial gradients reported by Margulies et al. (2016) act as a lowdimensional manifold over which large-scale dynamics operate (Bolt et al., 2022; Brown et al., 2021; Karapanagiotidis et al., 2020; Turnbull et al., 2020), such that traversals within this manifold explain large variance in neural dynamics and, consequently, cognition and behavior (Figure 1C). To test this idea, we situated the mean activity values of the four latent states along the gradients defined by Margulies et al. (2016) (see Methods). The brain states tiled the two-dimensional gradient space with the base state at the center (Figure 1D; Figure1—figure supplement 7). The Euclidean distances between these four states were maximized in the two-dimensional gradient space, compared to a chance where the four states were inferred from circular-shifted time series (p < 0.001). For the SONG dataset, the DMN and SM states fell at more extreme positions of the primary gradient than expected by chance (both FDR-p values = 0.004; DAN and SM states, FDRp values = 0.171). For the HCP dataset, the DMN and DAN states fell at more extreme positions on the primary gradient (both FDR-p values = 0.004; SM and base states, FDR-p values = 0.076). No state was consistently found at the extremes of the secondary gradient (all FDR-p values > 0.021).

      We asked whether the predefined gradients explain as much variance in neural dynamics as latent subspace optimized for the SONG dataset. To do so, we applied the same nonlinear dimensionality reduction algorithm to the SONG dataset’s ROI time series. Of note, the SONG dataset includes 18.95% rest, 15.07% task, and 65.98% movie-watching data whereas the data used by Margulies et al. (2016) was 100% rest. Despite these differences, the SONG-specific gradients closely resembled the predefined gradients, with significant Pearson’s correlations observed for the first (r = 0.876) and second (r = 0.877) gradient embeddings (Figure 1—figure supplement 8). Gradients identified with the HCP data also recapitulated Margulies et al.’s (2016) first (r = 0.880) and second (r = 0.871) gradients. We restricted our analysis to the first two gradients because the two gradients together explained roughly 50% of the entire variance of functional brain connectome (SONG: 46.94%, HCP: 52.08%), and the explained variance dropped drastically from the third gradients (more than 1/3 drop compared to second gradients). The degrees to which the first two predefined gradients explained whole-brain fMRI time series (SONG: 𝑟! = 0.097, HCP: 0.084) were comparable to the amount of variance explained by the first two data-specific gradients (SONG: 𝑟! = 0.100, HCP: 0.086; Figure 1—figure supplement 8). Thus, the low-dimensional manifold captured by Margulies et al. (2016) gradients is highly replicable, explaining brain activity dynamics as well as data-specific gradients, and is largely shared across contexts and datasets. This suggests that the state space of whole-brain dynamics closely recapitulates low-dimensional gradients of the static functional brain connectome.”

      The reviewer also pointed out that the PCA-gradient comparison was weak in establishing whether HMMs are good models of the time series. However, we would like to point out that the purpose of the comparison was not to validate the performance of the HMM. Instead, we wanted to test whether the gradients introduced by Margulies et al. (2016) could act as a generalizable lowdimensional manifold of brain state dynamics. To argue that the predefined gradients are a shared manifold, these gradients should explain SONG data fMRI time series as much as the principal components derived directly from the SONG data. Our results showed comparable 𝑟!, both in predefined gradient vs. data-specific PC comparisons and predefined gradient vs. data-specific gradient comparisons, which supported our argument that the predefined gradients could be the shared embedding space across contexts and datasets.

      The reviewer pointed out that the 𝑟2 of ~0.5 is not explaining enough variance in the fMRI signal. However, we respectfully disagree with this point because there is no established criterion for what constitutes a high or low 𝑟2 for this type of analysis. Of note, previous literature that also applied PCA to fMRI time series (Author response image 4A and 4B) (Lynn et al., 2021; Shine et al., 2019) also found that the cumulative explained variance of top 5 principal components is around 50%. Author response image 4C shows cumulative variances to which gradients explain the functional connectome of the resting-state fMRI data (Margulies et al., 2016).

      Author response image 4.

      Finally, the reviewer pointed out that the 𝑟! of the HMM-derived latent sequence to the fMRI time series should be reported. However, there is no standardized way of measuring the explained variance of the HMM inference. There is no report of explained variance in the traditional HMMfMRI papers (Baker et al., 2014; Chen et al., 2016; Vidaurre et al., 2018, 2017). Rather than 𝑟!, the HMM computes the log likelihood of the model fit. However, because log likelihood values are dependent on the number of data points, studies do not report log likelihood values nor do they use these metrics to interpret the goodness of model fit.

      To ask whether the goodness of the HMM fit was significant above chance, we compared the log likelihood of the HMM to the log likelihood distribution of the null HMM fits. First, we extracted the log likelihood of the HMM fit with the real fMRI time series. We iterated this 1,000 times when calculating null HMMs using the circular-shifted fMRI time series. The log likelihood of the real model was significantly higher than the chance distribution, with a z-value of 2182.5 (p < 0.001). This indicates that the HMM explained a large variance in our fMRI time series data, significantly above chance.

      • Authors do not specify whether they also did cross-validation for the HCP dataset to find 4 clusters

      We apologize for the lack of clarity. When we computed the Calinski-Harabasz score with the HCP dataset, three was chosen as the most optimal number of states (Author response image 5A). When we set K as 3, the HMM inferred the DMN, DAN, and SM states (Author response image 5C). The base state was included when K was set to 4 (Author response image 5B). The activation pattern similarities of the DMN, DAN, and SM states were r = 0.981, 0.984, 0.911 respectively.

      Author response image 5.

      We did not use K = 3 for the HCP data replication because we were not trying to test whether these four states would be the optimal set of states in every dataset. Although the CalinskiHarabasz score chose K = 3 because it showed the best clustering performance, this does not mean that the base state is not meaningful to this dataset. Likewise, the latent states that are inferred when we increase/decrease the number of states are also meaningful states. For example, in Figure 1—figure supplement 1, we show an example of the SONG dataset’s latent states when we set K to 7. The seven latent states included the DAN, SM, and base states, the DMN state was subdivided into DMN-A and DMN-B states, and the FPN state and DMN+VIS state were included. Setting a higher number of states like K = 7 would mean that we are capturing brain state dynamics in a higher dimension than when using K = 4. Because we are utilizing a higher number of states, a model set to K = 7 would inevitably capture a larger variance of fMRI time series than a model set to K = 4.

      The purpose of latent state replication with the HCP dataset was to validate the generalizability of the DMN, DAN, SM, and base states. Before characterizing these latent states’ relevance to cognition, we needed to verify that these latent states were not simply overfit to the SONG dataset. The fact that the HMM revealed a similar set of latent states when applied to the HCP dataset suggested that the states were not merely specific to SONG data.

      To make our points clearer in the manuscript, we emphasized that we are not arguing for the four states to be the exclusive states. We made edits to Discussion as follows.

      [Manuscript, page 16] “Our study adopted the assumption of low dimensionality of large-scale neural systems, which led us to intentionally identify only a small number of states underlying whole-brain dynamics. Importantly, however, we do not claim that the four states will be the optimal set of states in every dataset and participant population. Instead, latent states and patterns of state occurrence may vary as a function of individuals and tasks (Figure 1—figure supplement 2). Likewise, while the lowest dimensions of the manifold (i.e., the first two gradients) were largely shared across datasets tested here, we do not argue that it will always be identical. If individuals and tasks deviate significantly from what was tested here, the manifold may also differ along with changes in latent states (Samara et al., 2023). Brain systems operate at different dimensionalities and spatiotemporal scales (Greene et al., 2023), which may have different consequences for cognition. Asking how brain states and manifolds—probed at different dimensionalities and scales—flexibly reconfigure (or not) with changes in contexts and mental states is an important research question for understanding complex human cognition.”

      • One of their main contributions is the base state but the correlation between the base state in their Song dataset and the HCP dataset is only 0.399

      This is a good point. However, there is precedent for lower spatial pattern correlation of the base state compared to other states in the literature.

      Compared to the DMN, DAN, and SM states, the base state did not show characteristic activation or deactivation of functional networks. Most of the functional networks showed activity levels close to the mean (z = 0). With this flattened activation pattern, relatively low activation pattern similarity was observed between the SONG base state and the HCP base state.

      In Figure 1—figure supplement 6, we write, “The DMN, DAN, and SM states showed similar mean activity patterns. We refrained from making interpretations about the base state’s activity patterns because the mean activity of most of the parcels was close to z = 0”.

      A similar finding has been reported in a previous work by Chen et al. (2016) that discovered the base state with HMM. State 9 (S9) of their results is comparable to our base state. They report that even though the spatial correlation coefficient of the brain state from the split-half reliability analysis was the lowest for S9 due to its low degrees of activation or deactivation, S9 was stably inferred by the HMM. The following is a direct quote from their paper:

      “To the best of our knowledge, a state similar to S9 has not been presented in previous literature. We hypothesize that S9 is the “ground” state of the brain, in which brain activity (or deactivity) is similar for the entire cortex (no apparent activation or deactivation as shown in Fig. 4). Note that different groups of subjects have different spatial patterns for state S9 (Fig. 3A). Therefore, S9 has the lowest reproducible spatial pattern (Fig. 3B). However, its temporal characteristics allowed us to distinguish it consistently from other states.” (Chen et al., 2016)

      Thus, we believe our data and prior results support the existence of the “base state”.

      • Figure 1B: Parcellation is quite big but there seems to be a gradient within regions

      This is a function of the visualization software. Mean activity (z) is the same for all voxels within a parcel. To visualize the 3D contours of the brain, we chose an option in the nilearn python function that smooths the mean activity values based on the surface reconstructed anatomy.

      In the original manuscript, our Methods write, “The brain surfaces were visualized with nilearn.plotting.plot_surf_stat_map. The parcel boundaries in Figure 1B are smoothed from the volume-to-surface reconstruction.”

      • Figure 1D: Why are the DMNs further apart between SONG and HCP than the other states

      To address this question, we first tested whether the position of the DMN states in the gradient space is significantly different for the SONG and HCP datasets. We generated surrogate HMM states from the circular-shifted fMRI time series and positioned the four latent states and the null DMN states in the 2-dimensional gradient space (Author response image 6).

      Author response image 6.

      We next tested whether the Euclidean distance between the SONG dataset’s DMN state and the HCP dataset’s DMN state is larger than would be expected by chance (Author response image 7). To do so, we took the difference between the DMN state positions and compared it to the 1,000 differences generated from the surrogate latent states. The DMN states of the SONG and HCP datasets did not significantly differ in the Gradient 1 dimension (two-tailed test, p = 0.794). However, as the reviewer noted, the positions differed significantly in the Gradient 2 dimension (p = 0.047). The DMN state leaned more towards the Visual gradient in the SONG dataset, whereas it leaned more towards the Somatosensory-Motor gradient in the HCP dataset.

      Author response image 7.

      Though we cannot claim an exact reason for this across-dataset difference, we note a distinctive difference between the SONG and HCP datasets. Both datasets largely included resting-state, controlled tasks, and movie watching. The SONG dataset included 18.95% of rest, 15.07% of task, and 65.98% of movie watching. The task only contained the gradCPT, i.e., sustained attention task. On the other hand, the HCP dataset included 52.71% of rest, 24.35% of task, and 22.94% of movie watching. There were 7 different tasks included in the HCP dataset. It is possible that different proportions of rest, task, and movie watching, and different cognitive demands involved with each dataset may have created data-specific latent states.

      • Page 5 paragraph starting at L25: Their hypothesis that functional gradients explain large variance in neural dynamics needs to be explained more, is non-trivial especially because their R^2 scores are so low (Fig 1. Supplement 8) for PCA

      We address this concern on page 21-23 of this response letter.

      • Generally, I do not find the PCA analysis convincing and believe they should also compare to something like ICA or a different model of dynamics. They do not explain their reasoning behind assuming an HMM, which is an extremely simplified idea of brain dynamics meaning they only change based on the previous state.

      We appreciate this perspective. We replaced the Margulies et al.’s (2016) gradient vs. SONGspecific PCA comparison with a more direct Margulies et al.’s (2016) gradient vs. SONG-specific gradient comparison as described on page 21-23 of this response letter.

      More broadly, we elected to use HMM because of recent work showing correspondence between low-dimensional HMM states and behavior (Cornblath et al., 2020; Taghia et al., 2018; van der Meer et al., 2020; Yamashita et al., 2021). We also found the model’s assumption—a mixture Gaussian emission probability and first-order Markovian transition probability—to be the most suited to analyzing the fMRI time series data. We do not intend to claim that other data-reduction techniques would not also capture low-dimensional, behaviorally relevant changes in brain activity. Instead, our primary focus was identifying a set of latent states that generalize (i.e., recur) across multiple contexts and understanding how those states reflect cognitive and attentional states.

      Although a comparison of possible data-reduction algorithms is out of the scope of the current work, an exhaustive comparison of different models can be found in Bolt et al. (2022). The authors compared dozens of latent brain state algorithms spanning zero-lag analysis (e.g., principal component analysis, principal component analysis with Varimax rotation, Laplacian eigenmaps, spatial independent component analysis, temporal independent component analysis, hidden Markov model, seed-based correlation analysis, and co-activation patterns) to time-lag analysis (e.g., quasi-periodic pattern and lag projections). Bolt et al. (2022) writes “a range of empirical phenomena, including functional connectivity gradients, the task-positive/task-negative anticorrelation pattern, the global signal, time-lag propagation patterns, the quasiperiodic pattern and the functional connectome network structure, are manifestations of the three spatiotemporal patterns.” That is, many previous findings that used different methods essentially describe the same recurring latent states. A similar argument was made in previous papers (Brown et al., 2021; Karapanagiotidis et al., 2020; Turnbull et al., 2020).

      We agree that the HMM is a simplified idea of brain dynamics. We do not argue that the four number of states can fully explain the complexity and flexibility of cognition. Instead, we hoped to show that there are different dimensionalities to which the brain systems can operate, and they may have different consequences to cognition. We “simplified” neural dynamics to a discrete sequence of a small number of states. However, what is fascinating is that these overly “simplified” brain state dynamics can explain certain cognitive and attentional dynamics, such as event segmentation and sustained attention fluctuations. We highlight this point in the Discussion.

      [Manuscript, page 16] “Our study adopted the assumption of low dimensionality of large-scale neural systems, which led us to intentionally identify only a small number of states underlying whole-brain dynamics. Importantly, however, we do not claim that the four states will be the optimal set of states in every dataset and participant population. Instead, latent states and patterns of state occurrence may vary as a function of individuals and tasks (Figure 1—figure supplement 2). Likewise, while the lowest dimensions of the manifold (i.e., the first two gradients) were largely shared across datasets tested here, we do not argue that it will always be identical. If individuals and tasks deviate significantly from what was tested here, the manifold may also differ along with changes in latent states (Samara et al., 2023). Brain systems operate at different dimensionalities and spatiotemporal scales (Greene et al., 2023), which may have different consequences for cognition. Asking how brain states and manifolds—probed at different dimensionalities and scales—flexibly reconfigure (or not) with changes in contexts and mental states is an important research question for understanding complex human cognition.”

      • For the 25- ROI replication it seems like they again do not try multiple K values for the number of states to validate that 4 states are in fact the correct number.

      In the manuscript, we do not argue that the four will be the optimal number of states in any dataset. (We actually predict that this may differ depending on the amount of data, participant population, tasks, etc.) Instead, we claim that the four identified in the SONG dataset are not specific (i.e., overfit) to that sample, but rather recur in independent datasets as well. More broadly we argue that the complexity and flexibility of human cognition stem from the fact that computation occurs at multiple dimensions and that the low-dimensional states observed here are robustly related to cognitive and attentional states. To prevent misunderstanding of our results, we emphasized in the Discussion that we are not arguing for a fixed number of states. A paragraph included in our response to the previous comment (page 16 in the manuscript) illustrates this point.

      • Fig 2B: Colorbar goes from -0.05 to 0.05 but values are up to 0.87

      We apologize for the confusion. The current version of the figure is correct. The figure legend states, “The values indicate transition probabilities, such that values in each row sums to 1. The colors indicate differences from the mean of the null distribution where the HMMs were conducted on the circular-shifted time series.”

      We recognize that this complicates the interpretation of the figure. However, after much consideration, we decided that it was valuable to show both the actual transition probabilities (values) and their difference from the mean of null HMMs (colors). The values demonstrate the Markovian property of latent state dynamics, with a high probability of remaining in the same state at consecutive moments and a low probability of transitioning to a different state. The colors indicate that the base state is a transitional hub state by illustrating that the DMN, DAN, and SM states are more likely to transition to the base state than would be expected by chance.

      • P 16 L4 near-critical, authors need to be more specific in their terminology here especially since they talk about dynamic systems, where near-criticality has a specific definition. It is unclear which definition they are looking for here.

      We agree that our explanation was vague. Because we do not have evidence for this speculative proposal, we removed the mention of near-criticality. Instead, we focus on our observation as the base state being the transitional hub state within a metastable system.

      [Manuscript, page 17-18] “However, the functional relevance of the base state to human cognition had not been explored previously. We propose that the base state, a transitional hub (Figure 2B) positioned at the center of the gradient subspace (Figure 1D), functions as a state of natural equilibrium. Transitioning to the DMN, DAN, or SM states reflects incursion away from natural equilibrium (Deco et al., 2017; Gu et al., 2015), as the brain enters a functionally modular state. Notably, the base state indicated high attentional engagement (Figure 5E and F) and exhibited the highest occurrence proportion (Figure 3B) as well as the longest dwell times (Figure 3—figure supplement 1) during naturalistic movie watching, whereas its functional involvement was comparatively minor during controlled tasks. This significant relevance to behavior verifies that the base state cannot simply be a byproduct of the model. We speculate that susceptibility to both external and internal information is maximized in the base state—allowing for roughly equal weighting of both sides so that they can be integrated to form a coherent representation of the world—at the expense of the stability of a certain functional network (Cocchi et al., 2017; Fagerholm et al., 2015). When processing rich narratives, particularly when a person is fully immersed without having to exert cognitive effort, a less modular state with high degrees of freedom to reach other states may be more likely to be involved. The role of the base state should be further investigated in future studies.”

      • P16 L13-L17 unnecessary

      We prefer to have the last paragraph as a summary of the implications of this paper. However, if the length of this paper becomes a problem as we work towards publication with the editors, we are happy to remove these lines.

      • I think this paper is solid, but my main issue is with using an HMM, never explaining why, not showing inference results on test data, not reporting an R^2 score for it, and not comparing it to other models. Secondly, they use the Calinski-Harabasz score to determine the number of states, but not the log-likelihood of the fit. This clearly creates a bias in what types of states you will find, namely states that are far away from each other, which likely also leads to the functional gradient and PCA results they have. Where they specifically talk about how their states are far away from each other in the functional gradient space and correlated to (orthogonal) components. It is completely unclear to me why they used this measure because it also seems to be one of many scores you could use with respect to clustering (with potentially different results), and even odd in the presence of a loglikelihood fit to the data and with the model they use (which does not perform clustering).

      (1) Showing inference results on test data

      We address this concern on page 19-21 of this response letter.

      (2) Not reporting 𝑹𝟐 score

      We address this concern on page 21-23 of this response letter.

      (3) Not comparing the HMM model to other models

      We address this concern on page 27-28 of this response letter.

      (4) The use of the Calinski-Harabasz score to determine the number of states rather than the log-likelihood of the model fit

      To our knowledge, the log-likelihood of the model fit is not used in the HMM literature. It is because the log-likelihood tends to increase monotonically as the number of states increases. Baker et al. (2014) illustrates this problem, writing:

      “In theory, it should be possible to pick the optimal number of states by selecting the model with the greatest (negative) free energy. In practice however, we observe that the free energy increases monotonically up to K = 15 states, suggesting that the Bayes-optimal model may require an even higher number of states.”

      Similarly, the following figure is the log-likelihood estimated from the SONG dataset. Similar to the findings of Baker et al. (2014), the log-likelihood monotonically increased as the number of states increased (Author response image 8, right). The measures like AIC or BIC, which account for the number of parameters, also have the same issue of monotonic increase.

      Author response image 8.

      Because there is “no straightforward data-driven approach to model order selection” (Baker et al., 2014), past work has used different approaches to decide on the number of states. For example, Vidaurre et al. (2018) iterated over a range of the number of states to repeat the same HMM training and inference procedures 5 times using the same hyperparameters. They selected the number of states that showed the highest consistency across iterations. Gao et al. (2021) tested the clustering performance of the model output using the Calinski-Harabasz score. The number of states that showed the highest within-cluster cohesion compared to the across-cluster separation was selected as the number of states. Chang et al. (2021) applied HMM to voxels of the ventromedial prefrontal cortex using a similar clustering algorithm, writing: “To determine the number of states for the HMM estimation procedure, we identified the number of states that maximized the average within-state spatial similarity relative to the average between-state similarity”. In our previous paper (Song et al., 2021b), we reported both the reliability and clustering performance measures to decide on the number of states.

      In the current manuscript, the model consistency criterion from Vidaurre et al. (2018) was ineffective because the HMM inference was extremely robust (i.e., always inferring the exact same sequence) due to a large number of data points. Thus, we used the Calinski-Harabasz score as our criterion for the number of states selected.

      We agree with the reviewer that the selection of the number of states is critical to any study that implements HMM. However, the field lacks a consensus on how to decide on the number of states in the HMM, and the Calinski-Harabasz score has been validated in previous studies. Most importantly, the latent states’ relationships with behavioral and cognitive measures give strong evidence that the latent states are indeed meaningful states. Again, we are not arguing that the optimal set of states in any dataset will be four nor are we arguing that these four states will always be the optimal states. Instead, the manuscript proposes that a small number of latent states explains meaningful variance in cognitive dynamics.

      • Grammatical error: P24 L29 rendering seems to have gone wrong

      Our intention was correct here. To avoid confusion, we changed “(number of participantsC2 iterations)” to “(#𝐶!iterations, where N=number of participants)” (page 26 in the manuscript).

      Questions:

      • Comment on subject differences, it seems like they potentially found group dynamics based on stimuli, but interesting to see individual differences in large-scale dynamics, and do they believe the states they find mostly explain global linear dynamics?

      We agree with the reviewer that whether low-dimensional latent state dynamics explain individual differences—above and beyond what could be explained by the high-dimensional, temporally static neural signatures of individuals (e.g., Finn et al., 2015)—is an important research question. However, because the SONG dataset was collected in a single lab, with a focus on covering diverse contexts (rest, task, and movie watching) over 2 sessions, we were only able to collect 27 participants. Due to this small sample size, we focused on investigating group-level, shared temporal dynamics and across-condition differences, rather than on investigating individual differences.

      Past work has studied individual differences (e.g., behavioral traits like well-being, intelligence, and personality) using the HMM (Vidaurre et al., 2017). In the lab, we are working on a project that investigates latent state dynamics in relation to individual differences in clinical symptoms using the Healthy Brain Network dataset (Ji et al., 2022, presented at SfN; Alexander et al., 2017).

      Finally, the reviewer raises an interesting question about whether the latent state sequence that was derived here mostly explains global linear dynamics as opposed to nonlinear dynamics. We have two responses: one methodological and one theoretical. First, methodologically, we defined the emission probabilities as a linear mixture of Gaussian distributions for each input dimension with the state-specific mean (mean fMRI activity patterns of the networks) and variance (functional covariance across networks). Therefore, states are modeled with an assumption of linearity of feature combinations. Theoretically, recent work supports in favor of nonlinearity of large-scale neural dynamics, especially as tasks get richer and more complex (Cunningham and Yu, 2014; Gao et al., 2021). However, whether low-dimensional latent states should be modeled nonlinearly—that is, whether linear algorithms are insufficient at capturing latent states compared to nonlinear algorithms—is still unknown. We agree with the reviewer that the assumption of linearity is an interesting topic in systems neuroscience. However, together with prior work which showed how numerous algorithms—either linear or nonlinear—recapitulated a common set of latent states, we argue that the HMM provides a strong low-dimensional model of large-scale neural activity and interaction.

      • P19 L40 why did the authors interpolate incorrect or no-responses for the gradCPT runs? It seems more logical to correct their results for these responses or to throw them out since interpolation can induce huge biases in these cases because the data is likely not missing at completely random.

      Interpolating the RTs of the trials without responses (omission errors and incorrect trials) is a standardized protocol for analyzing gradCPT data (Esterman et al., 2013; Fortenbaugh et al., 2018, 2015; Jayakumar et al., 2023; Rosenberg et al., 2013; Terashima et al., 2021; Yamashita et al., 2021). The choice of this analysis is due to an assumption that sustained attention is a continuous attentional state; the RT, a proxy for the attentional state in the gradCPT literature, is a noisy measure of a smoothed, continuous attentional state. Thus, the RTs of the trials without responses are interpolated and the RT time courses are smoothed by convolving with a gaussian kernel.

      References

      Abbas A, Belloy M, Kashyap A, Billings J, Nezafati M, Schumacher EH, Keilholz S. 2019. Quasiperiodic patterns contribute to functional connectivity in the brain. Neuroimage 191:193–204.

      Alexander LM, Escalera J, Ai L, Andreotti C, Febre K, Mangone A, Vega-Potler N, Langer N, Alexander A, Kovacs M, Litke S, O’Hagan B, Andersen J, Bronstein B, Bui A, Bushey M, Butler H, Castagna V, Camacho N, Chan E, Citera D, Clucas J, Cohen S, Dufek S, Eaves M, Fradera B, Gardner J, Grant-Villegas N, Green G, Gregory C, Hart E, Harris S, Horton M, Kahn D, Kabotyanski K, Karmel B, Kelly SP, Kleinman K, Koo B, Kramer E, Lennon E, Lord C, Mantello G, Margolis A, Merikangas KR, Milham J, Minniti G, Neuhaus R, Levine A, Osman Y, Parra LC, Pugh KR, Racanello A, Restrepo A, Saltzman T, Septimus B, Tobe R, Waltz R, Williams A, Yeo A, Castellanos FX, Klein A, Paus T, Leventhal BL, Craddock RC, Koplewicz HS, Milham MP. 2017. Data Descriptor: An open resource for transdiagnostic research in pediatric mental health and learning disorders. Sci Data 4:1–26.

      Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD. 2014. Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex 24:663–676.

      Baker AP, Brookes MJ, Rezek IA, Smith SM, Behrens T, Probert Smith PJ, Woolrich M. 2014. Fast transient networks in spontaneous human brain activity. Elife 3:e01867.

      Bolt T, Nomi JS, Bzdok D, Salas JA, Chang C, Yeo BTT, Uddin LQ, Keilholz SD. 2022. A Parsimonious Description of Global Functional Brain Organization in Three Spatiotemporal Patterns. Nat Neurosci 25:1093–1103.

      Brown JA, Lee AJ, Pasquini L, Seeley WW. 2021. A dynamic gradient architecture generates brain activity states. Neuroimage 261:119526.

      Chang C, Leopold DA, Schölvinck ML, Mandelkow H, Picchioni D, Liu X, Ye FQ, Turchi JN, Duyn JH. 2016. Tracking brain arousal fluctuations with fMRI. Proc Natl Acad Sci U S A 113:4518–4523.

      Chang CHC, Lazaridi C, Yeshurun Y, Norman KA, Hasson U. 2021. Relating the past with the present: Information integration and segregation during ongoing narrative processing. J Cogn Neurosci 33:1–23.

      Chang LJ, Jolly E, Cheong JH, Rapuano K, Greenstein N, Chen P-HA, Manning JR. 2021. Endogenous variation in ventromedial prefrontal cortex state dynamics during naturalistic viewing reflects affective experience. Sci Adv 7:eabf7129.

      Chen J, Leong YC, Honey CJ, Yong CH, Norman KA, Hasson U. 2017. Shared memories reveal shared structure in neural activity across individuals. Nat Neurosci 20:115–125.

      Chen S, Langley J, Chen X, Hu X. 2016. Spatiotemporal Modeling of Brain Dynamics Using RestingState Functional Magnetic Resonance Imaging with Gaussian Hidden Markov Model. Brain Connect 6:326–334.

      Cocchi L, Gollo LL, Zalesky A, Breakspear M. 2017. Criticality in the brain: A synthesis of neurobiology, models and cognition. Prog Neurobiol 158:132–152.

      Cornblath EJ, Ashourvan A, Kim JZ, Betzel RF, Ciric R, Adebimpe A, Baum GL, He X, Ruparel K, Moore TM, Gur RC, Gur RE, Shinohara RT, Roalf DR, Satterthwaite TD, Bassett DS. 2020. Temporal sequences of brain activity at rest are constrained by white matter structure and modulated by cognitive demands. Commun Biol 3:261.

      Cunningham JP, Yu BM. 2014. Dimensionality reduction for large-scale neural recordings. Nat Neurosci 17:1500–1509.

      Deco G, Kringelbach ML, Jirsa VK, Ritter P. 2017. The dynamics of resting fluctuations in the brain: Metastability and its dynamical cortical core. Sci Rep 7:3095.

      Esterman M, Noonan SK, Rosenberg M, Degutis J. 2013. In the zone or zoning out? Tracking behavioral and neural fluctuations during sustained attention. Cereb Cortex 23:2712–2723.

      Esterman M, Rothlein D. 2019. Models of sustained attention. Curr Opin Psychol 29:174–180.

      Fagerholm ED, Lorenz R, Scott G, Dinov M, Hellyer PJ, Mirzaei N, Leeson C, Carmichael DW, Sharp DJ, Shew WL, Leech R. 2015. Cascades and cognitive state: Focused attention incurs subcritical dynamics. J Neurosci 35:4626–4634.

      Falahpour M, Chang C, Wong CW, Liu TT. 2018. Template-based prediction of vigilance fluctuations in resting-state fMRI. Neuroimage 174:317–327.

      Finn ES, Shen X, Scheinost D, Rosenberg MD, Huang J, Chun MM, Papademetris X, Constable RT. 2015. Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity. Nat Neurosci 18:1664–1671.

      Fortenbaugh FC, Degutis J, Germine L, Wilmer JB, Grosso M, Russo K, Esterman M. 2015. Sustained attention across the life span in a sample of 10,000: Dissociating ability and strategy. Psychol Sci 26:1497–1510.

      Fortenbaugh FC, Rothlein D, McGlinchey R, DeGutis J, Esterman M. 2018. Tracking behavioral and neural fluctuations during sustained attention: A robust replication and extension. Neuroimage 171:148–164.

      Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. 2005. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102:9673–9678.

      Gao S, Mishne G, Scheinost D. 2021. Nonlinear manifold learning in functional magnetic resonance imaging uncovers a low-dimensional space of brain dynamics. Hum Brain Mapp 42:4510–4524.

      Goodale SE, Ahmed N, Zhao C, de Zwart JA, Özbay PS, Picchioni D, Duyn J, Englot DJ, Morgan VL, Chang C. 2021. Fmri-based detection of alertness predicts behavioral response variability. Elife 10:1–20.

      Greene AS, Horien C, Barson D, Scheinost D, Constable RT. 2023. Why is everyone talking about brain state? Trends Neurosci.

      Greene DJ, Marek S, Gordon EM, Siegel JS, Gratton C, Laumann TO, Gilmore AW, Berg JJ, Nguyen AL, Dierker D, Van AN, Ortega M, Newbold DJ, Hampton JM, Nielsen AN, McDermott KB, Roland JL, Norris SA, Nelson SM, Snyder AZ, Schlaggar BL, Petersen SE, Dosenbach NUF. 2020. Integrative and Network-Specific Connectivity of the Basal Ganglia and Thalamus Defined in Individuals. Neuron 105:742-758.e6.

      Gu S, Pasqualetti F, Cieslak M, Telesford QK, Yu AB, Kahn AE, Medaglia JD, Vettel JM, Miller MB, Grafton ST, Bassett DS. 2015. Controllability of structural brain networks. Nat Commun 6:8414.

      Jayakumar M, Balusu C, Aly M. 2023. Attentional fluctuations and the temporal organization of memory. Cognition 235:105408.

      Ji E, Lee JE, Hong SJ, Shim W (2022). Idiosyncrasy of latent neural state dynamic in ASD during movie watching. Poster presented at the Society for Neuroscience 2022 Annual Meeting.

      Karapanagiotidis T, Vidaurre D, Quinn AJ, Vatansever D, Poerio GL, Turnbull A, Ho NSP, Leech R, Bernhardt BC, Jefferies E, Margulies DS, Nichols TE, Woolrich MW, Smallwood J. 2020. The psychological correlates of distinct neural states occurring during wakeful rest. Sci Rep 10:1–11.

      Liu X, Duyn JH. 2013. Time-varying functional network information extracted from brief instances of spontaneous brain activity. Proc Natl Acad Sci U S A 110:4392–4397.

      Liu X, Zhang N, Chang C, Duyn JH. 2018. Co-activation patterns in resting-state fMRI signals. Neuroimage 180:485–494.

      Lynn CW, Cornblath EJ, Papadopoulos L, Bertolero MA, Bassett DS. 2021. Broken detailed balance and entropy production in the human brain. Proc Natl Acad Sci 118:e2109889118.

      Margulies DS, Ghosh SS, Goulas A, Falkiewicz M, Huntenburg JM, Langs G, Bezgin G, Eickhoff SB, Castellanos FX, Petrides M, Jefferies E, Smallwood J. 2016. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc Natl Acad Sci U S A 113:12574–12579.

      Mesulam MM. 1998. From sensation to cognition. Brain 121:1013–1052.

      Munn BR, Müller EJ, Wainstein G, Shine JM. 2021. The ascending arousal system shapes neural dynamics to mediate awareness of cognitive states. Nat Commun 12:1–9.

      Raut R V., Snyder AZ, Mitra A, Yellin D, Fujii N, Malach R, Raichle ME. 2021. Global waves synchronize the brain’s functional systems with fluctuating arousal. Sci Adv 7.

      Rosenberg M, Noonan S, DeGutis J, Esterman M. 2013. Sustaining visual attention in the face of distraction: A novel gradual-onset continuous performance task. Attention, Perception, Psychophys 75:426–439.

      Rosenberg MD, Finn ES, Scheinost D, Papademetris X, Shen X, Constable RT, Chun MM. 2016. A neuromarker of sustained attention from whole-brain functional connectivity. Nat Neurosci 19:165–171.

      Rosenberg MD, Scheinost D, Greene AS, Avery EW, Kwon YH, Finn ES, Ramani R, Qiu M, Todd Constable R, Chun MM. 2020. Functional connectivity predicts changes in attention observed across minutes, days, and months. Proc Natl Acad Sci U S A 117:3797–3807.

      Saggar M, Shine JM, Liégeois R, Dosenbach NUF, Fair D. 2022. Precision dynamical mapping using topological data analysis reveals a hub-like transition state at rest. Nat Commun 13.

      Schaefer A, Kong R, Gordon EM, Laumann TO, Zuo X-N, Holmes AJ, Eickhoff SB, Yeo BTT. 2018. Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI. Cereb Cortex 28:3095–3114.

      Shine JM. 2019. Neuromodulatory Influences on Integration and Segregation in the Brain. Trends Cogn Sci 23:572–583.

      Shine JM, Bissett PG, Bell PT, Koyejo O, Balsters JH, Gorgolewski KJ, Moodie CA, Poldrack RA. 2016. The Dynamics of Functional Brain Networks: Integrated Network States during Cognitive Task Performance. Neuron 92:544–554.

      Shine JM, Breakspear M, Bell PT, Ehgoetz Martens K, Shine R, Koyejo O, Sporns O, Poldrack RA. 2019. Human cognition involves the dynamic integration of neural activity and neuromodulatory systems. Nat Neurosci 22:289–296.

      Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF. 2009. Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci 106:13040–13045.

      Song H, Emily FS, Rosenberg MD. 2021a. Neural signatures of attentional engagement during narratives and its consequences for event memory. Proc Natl Acad Sci 118:e2021905118.

      Song H, Park B-Y, Park H, Shim WM. 2021b. Cognitive and Neural State Dynamics of Narrative Comprehension. J Neurosci 41:8972–8990.

      Taghia J, Cai W, Ryali S, Kochalka J, Nicholas J, Chen T, Menon V. 2018. Uncovering hidden brain state dynamics that regulate performance and decision-making during cognition. Nat Commun 9:2505.

      Terashima H, Kihara K, Kawahara JI, Kondo HM. 2021. Common principles underlie the fluctuation of auditory and visual sustained attention. Q J Exp Psychol 74:705–715.

      Tian Y, Margulies DS, Breakspear M, Zalesky A. 2020. Topographic organization of the human subcortex unveiled with functional connectivity gradients. Nat Neurosci 23:1421–1432.

      Turnbull A, Karapanagiotidis T, Wang HT, Bernhardt BC, Leech R, Margulies D, Schooler J, Jefferies E, Smallwood J. 2020. Reductions in task positive neural systems occur with the passage of time and are associated with changes in ongoing thought. Sci Rep 10:1–10.

      Unsworth N, Robison MK. 2018. Tracking arousal state and mind wandering with pupillometry. Cogn Affect Behav Neurosci 18:638–664.

      Unsworth N, Robison MK. 2016. Pupillary correlates of lapses of sustained attention. Cogn Affect Behav Neurosci 16:601–615.

      van der Meer JN, Breakspear M, Chang LJ, Sonkusare S, Cocchi L. 2020. Movie viewing elicits rich and reliable brain state dynamics. Nat Commun 11:1–14.

      Van Essen DC, Smith SM, Barch DM, Behrens TEJ, Yacoub E, Ugurbil K. 2013. The WU-Minn Human Connectome Project: An overview. Neuroimage 80:62–79.

      Vidaurre D, Abeysuriya R, Becker R, Quinn AJ, Alfaro-Almagro F, Smith SM, Woolrich MW. 2018. Discovering dynamic brain networks from big data in rest and task. Neuroimage, Brain Connectivity Dynamics 180:646–656.

      Vidaurre D, Smith SM, Woolrich MW. 2017. Brain network dynamics are hierarchically organized in time. Proc Natl Acad Sci U S A 114:12827–12832.

      Yamashita A, Rothlein D, Kucyi A, Valera EM, Esterman M. 2021. Brain state-based detection of attentional fluctuations and their modulation. Neuroimage 236:118072.

      Yeo BTT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zöllei L, Polimeni JR, Fisch B, Liu H, Buckner RL. 2011. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106:1125–1165.

      Yousefi B, Keilholz S. 2021. Propagating patterns of intrinsic activity along macroscale gradients coordinate functional connections across the whole brain. Neuroimage 231:117827.

      Zhang S, Goodale SE, Gold BP, Morgan VL, Englot DJ, Chang C. 2023. Vigilance associates with the low-dimensional structure of fMRI data. Neuroimage 267.

    1. Author Response

      Reviewer #1 (Public Review):

      Here the authors set out to disentangle neural responses to acoustic and linguistic aspects of speech. Participants heard a short story, which could be in a language they understood or did not (French vs. Dutch stories, presented to Dutch listeners). Additional predictors included a combination of acoustic and linguistic factors: Acoustic, Phoneme Onsets, Phoneme Surprisal, Phoneme Entropy and, Word Frequency. Accuracy of reconstruction of the acoustic amplitude envelope was used as an outcome measure.

      The use of continuous speech and the use of comprehended vs. uncomprehended speech are both significant strengths of the approach. Overall, the analyses are largely appropriate to answer the questions posed.

      1) The reconstruction accuracies (e.g., R^2 values Figure 1) seem lower perhaps than might be expected - some direct comparisons with prior literature would be welcome here. Specifically, the accuracies in Figure 1A are around .002-.003 whereas the range seen in some other papers is about an order of magnitude or more larger (e.g. Broderick et al. 2019 J Neurosci; Ding and Simon 2013 J Neurosci).

      We thank the reviewer for their constructive comments and careful review of our paper. The important point the reviewer makes stems from whether the reconstruction accuracies presented are from the whole brain/sensor space (as in our submission) or from selected channels (Broderick) or selected sources (Ding & Simon). Moreover, we used R2 score for reconstruction accuracy which is generally of a different order of magnitude than correlation coefficients (as used in Ding and Simon 2013). Crucially when we now selected the “auditory cortex,” we can also report reconstruction accuracies around the language network on the same scale as in the previous studies. In Figure 2 A and B (Figure 1 in the first version of the manuscript), we took the average of model accuracies of each source point over whole brain, without selecting any region of interest, to investigate if each speech feature is incrementally increasing the averaged model accuracy which was a more conservative method than selecting the sources with a stronger response to the stimuli (e.g., the average R2 value over all participants of acoustic model in auditory cortex for French stories is 0.01187 and it is 0.01315 for Dutch stories, which is similar in magnitude to e.g. Broderick et al. 2019 J Neuroscience). TRF accuracies on the brain regions outside of the language network are quite small, so the average accuracy on Figure 2 A and B is almost an order of magnitude lower than previous studies. (Ding and Simon 2013 J Neurosci : “To reduce computational complexity, the MEG sensors in each hemisphere were compressed into 3 components using denoising source separation”, averaged accuracy over all subjects is around 0.2 because they used both correlation as a measure of accuracy (not R2) and backward modeling (decoding) instead of forward modeling. Reconstruction accuracy of decoding models are usually higher than forward models; Broderick et al. 2019 J Neurosci: Averaged across frontocentral channels, averaged R2 over all subjects is 0.0171) Figure 2 C shows sources where accuracies of base acoustic model were significantly different than 0. Reconstruction accuracies around the language network is in the similar scale with the previous studies. Figure 2 D shows the sources where each feature significantly improved the reconstruction accuracy compared to the previous model. Accuracy values are smaller than the accuracies of base acoustic model because they are the values that shows how much each speech feature incrementally increased the accuracy. (E.g Phoneme onset accuracy = (Accuracy of the model Acoustic features + Phoneme Onset) – (Accuracy of the model Acoustic Features). Figure captions are updated on the manuscript.

      Figure 2. A) Accuracy improvement (averaged over the sources in whole brain) by each feature for Dutch Stories B) Accuracy improvement (averaged over the sources in whole brain) by each feature for French Stories (Braces in Figure A and B shows the significance values of the contrasts (difference between consecutive models, ** <0.0001, *** <0.001, <0.01, * < 0.05) in linear mixed effect models (Table 2 and 3) C) Source points where accuracies of base acoustic model were significantly different than 0 D) Source points where reconstruction accuracies of the model were significantly different than previous model. Accuracy values shows how much each linguistic feature increased the reconstruction accuracy compared to the previous model.

      2) One theoretical point relevant to this and similar studies concerns the use of acoustic envelope reconstruction accuracy as the dependent measure. On the one hand, reconstruction accuracy provides an objective measure of "success", and a satisfying link between stimulus and brain activity. On the other hand, as the authors point out, envelope reconstruction is probably not the primary goal of listeners in a conversation: comprehension is. Some discussion of the implications of envelope reconstruction accuracy might be useful in guiding interpretation of the current work, and importantly, helping the field as a whole grapple with this issue.

      Overall, the results support the authors' conclusions that acoustic edges and phoneme features are treated differently depending on whether a listener comprehends the language being spoken. In particular, phoneme features contribute to a greater degree when language is comprehended, whereas acoustic edges contribute similarly regardless of comprehension. These findings are important in part because of prior work suggesting that acoustic edges are critically important for "chunking" continuous speech into linguistic units; the current results re-center language units (phonemes) as critical to comprehension.

      Reviewer #2 (Public Review):

      In this study, the authors used an audiobook listening paradigm and encoding analysis of MEG to examine the independent contributions to MEG responses of putative acoustic and phoneme-level linguistic features in speech and their modulation by higher-level sentence/discourse constraints and language proficiency. The results indicate that:

      1) Acoustic and phoneme features do indeed make independent contributions to MEG responses in frontotemporal language regions (with a left-hemisphere bias for phoneme features).

      2) Brain responses to acoustic and phoneme features are enhanced when sentence/discourse constraints are low (i.e. when word entropy is high).

      3) While brain responses to phoneme features are enhanced when the language is comprehended (or word entropy is high), the opposite is observed for acoustic features.

      These results are taken to support widely held views on the nature of information flow during language processing. On the one hand, processing is hierarchical, consistent with finding 1 above. On the other hand, information flow between lower and high-levels of language processing is also flexible and interactive (finding 2) and modulated by behavioural goals (finding 3).

      This is a methodologically sophisticated study with useful findings that I think will be of interest to the burgeoning community investigating 'neural speech tracking' and also to the wider community interested in language processing and predictive coding. Moreover, the evidence appears convincing.

      I thought the impact was somewhat limited by the results presentation, which I think missed some key details and made the study somewhat hard to follow (but this issue can be addressed).

      Perhaps more major, I do wonder about the novelty of the study as each of the main findings has precedent in the literature. Finding 1 (e.g. Brodbeck, Simon et al.), Finding 2 (e.g. Broderick, Lalor et al.; Molinaro et al.), Finding 3 (e.g. Brodbeck, Simon et al. although here the manipulation of behavioural goals was through a cocktail party listening manipulation and there were was no opposing modulation of acoustic vs phoneme level representations). Thus, while the study appears well executed, overall I am unsure how significant the advance is. Related to this point, the study's findings and theoretical interpretations (e.g. the brain as a hierarchical 'filter') are consistent with widely held views of language processing (at least within cognitive neuroscience) and so again I question the potential advance of the study.

      We are thanking the reviewer for bringing this up. While we started our work with the aim to replicate these patterns seem in the literature – which is especially important in the burgeoning area of neural tracking of speech and language - our key extension of these findings is that we can show that phonemic features are encoded more strongly both in a comprehended language compared to an uncomprehended language, and as a function of word-level statistical information, and that there is a tradeoff between acoustic and linguistic features encoding. As the Reviewer mentions, there is a patchwork of consistent findings from very different experimental circumstances, but in order to have strong evidence for the “tradeoff” of hierarchical feature encoding, it is even more crucial to have a design where features can directly compared as we do, and where acoustic differences are carefully controlled in contrast to the presence of linguistic features and language comprehension.

      While our results are consistent with Molinaro et al. (2021). – as we also provide support for a cost minimization perspective rather than the perception facilitation perspective discussed in Molinaro et al. - it is important to note that Molinaro et al. only examined the tracking of acoustic features, specifically the speech envelope, using the Phase Locking Value, and did not examine the contribution of lower-level linguistic features. Secondly, Molinaro et al. use a condition-based experimental design in contrast to our naturalistic stimulus approach. In our study, our aim was to investigate the dynamics of encoding both acoustic and linguistic features, and we utilized a multivariate linear regression method on low and high constraining words which ‘naturally’ occurred in our audiobook stimulus across languages. Our results revealed a trade-off between the encoding of acoustic and linguistic features that was dependent on the level of comprehension. Specifically, in the comprehended language, the predictability of the following word had a greater influence on the tracking of phoneme features as opposed to acoustic features, while in the uncomprehended language, this trend was reversed. To best of our knowledge, Brodbeck et al. (2020) showed an effect of attention on the tracking of acoustic features only in cocktail party problem but didn’t investigate the encoding of linguistic features. Brodbeck et al. (2018) showed that linguistic features are represented only in the attended speech but they didn’t explicitly compare the acoustics features as in the previous study. Both studies used a mixed speech and investigated the effect of attention rather than comprehension. In our study, we investigated the effect of comprehension where both stimuli were attended. We found that even in the uncomprehended language, linguistic features are represented as opposed to unattended speech in Brodbeck et al. (2018) study, however it was less strong than the comprehended language. Additionally, one of the goals in this study was to investigate the effect of context on the representations of acoustic and phoneme level features. Opposing modulation of acoustic and phonemic features in our study was driven by the contextual information. However, as we also mentioned in the discussion, we don’t expect the effect of context on the uncomprehended language so the modulation of acoustic features could be related to statistical chunking of acoustic signal for frequent words, essentially reflecting recognition of those single function words such as le, la, un, une.

      We have now revised the Discussion (we revised manuscript as highlighted in red in this text) to clarify the advance of this study and how this study adds more on previous studies.

    1. Author Response

      eLife assessment

      Mizukami et al. propose a scenario for the evolutionary origin of the coronary artery in amniotes by comparing the morphologies of the vasculatures across several species and developmental timepoints. They show that the coronary arteries of non-amniotes most closely resemble embryonic amniote aortic subepicardial vessels (ASVs), which are replaced by the true coronary arteries during amniote development. While the identification of common vascular structures in diverse taxa is a valuable contribution, additional developmental evidence is needed to confirm that such vessels are truly homologous.

      We have extensively revised our paper by including additional animal data and references. While we were unable to obtain useful data on lungfish or coelacanth, we have obtained new data related to the physiology of coronary artery, which has been added to Fig. 7. We have also attempted to compare blood vessels at the molecular level, but found that gene expression patterns in blood vessels throughout the body were not always conserved between lineages, making it difficult to make comparisons between amphibians and amniotes. However, based on comparative morphological analysis using newly added three-dimensional data, it is reasonable to consider the amniotes' ASVs and amphibians' ASV-like vessels to be homologous.

      Reviewer #3 (Public Review):

      Mizukami et al. compare the structure of the coronary arteries in multiple species of amniotes, amphibians, and fish. By selecting species from each of these taxa, the authors were able to evaluate modifications to the coronary arteries during key evolutionary transitions. In mice and quail, they show two populations of vessels that are visible on the developing heart-true coronary arteries on the ventricle and a second population of vessels on the outflow tract known as the ASV., They found that in amphibians, outflow tract vessels were present but ventricular coronary arteries were completely absent. In zebrafish (a more ancestral species) an arterial branch off the rostral section of the hypobranchial artery was shown to have similar anatomical features to outflow tract vessels found in higher organisms. These zebrafish outflow tract arteries also appeared conserved in several chondriichthyes specimens. The authors conclude that rearrangement of the outflow tract vasculature or hypobranchial arteries in fish during evolution, could be homologous to the ASV population of coronary arteries in amphibians and amniotes. These data give new insight into the evolutionary origins of the coronary vasculature. 

      Major Points

      1) The manuscript presents important data on the coronary vascular structure of several different species. However, these data alone do not conclusively demonstrate whether the developmental origins of ASV like vessels are homologous. Therefore, care should be taken when concluding that the outflow tract vessels found in all different species are conserved features. While this is a reasonable hypothesis and should be presented, the manuscript could be improved by also discussing alternate explanations. For example, ASVs in mice originate during embryonic development, while in fish and amphibians outflow tract vessels are formed only in mature animals.

      We have added data on mice and amphibians (e.g., Fig. 2) and substantially revised the overall development and discussion of the paper. Morphological homology is evident for ASVs and amphibian ASV-like vessels, but the homologous relationship with the hypobranchial artery only suggests a similarity in the embryonic region.

      Comparisons of developmental timings of the various structures among diferent lineages of vertebrates reveal that heterochronical shifts are not uncommon. For example, ossification of the head skeleton and vertebrae occurs during the fetal stage in amniotes, but after hatching in larval amphibians and teleosts. A similar trend is observed in the development of the limb bud (paired fins). Overall, the larval stages of amphibians and teleosts are comparable to the fetal stages of amniotes for many structures. We did not suppose this to be particularly unusual, and we did not include it in the text.

      2) Figure 3 A-D: The authors state that "the ASV ran through the outflow tract, then entered the aortic root before reaching the ventricle to form a secondary orifice". Do the authors have serial sections to conclude that the vessel branching off the carotid runs the length of the aorta and is continuous with an orifice at the aortic root? The endothelial projection off the aorta in panel C could reasonably be an independent projection. For example, Chen et al., described similar looking projections in the base of the aorta that were not attached to external vessels. A whole mount approach would be the most convincing to show the attachments of the ASV vessel.

      We added the data of the whole-mount immunohistochemistry. Please refer Figs. 2 and S2.

      3) Figure 3E: Similar as above, how is it concluded that the orifice is continuous with the ASV and that this projection is not the coronary artery stem?

      As for quail, we could not achieve as a clear whole-mount staining as in mice. It was also difficult to trace the route in sections because in quail, ASVs are not restricted to a few lines as in mice, but are the plexus of small vessels. Thus, we added the detailed data from mice (Fig. 2, S2) and we emphasized that the position of orifice in quail is exactly same as that in mice.

      4) The discussion section could be improved by making some statements more consistent, using more precise or appropriate terminology accepted in the field, and being more cognizant of how the authors' findings fit within the history of the field. For example, when referring to coronary arteries, please clarify whether this refers to ASV/ outflow tract coronary arteries, or true ventricular coronary arteries. In addition, the first sentence of the discussion makes it seem like the origins of coronary arteries were unknown prior to this study, however, their origins have been described in multiple papers previously. The authors could revise their statement to acknowledge these previous findings.

      We rewrote the entire text to clarify what each "coronary artery" refers to. We also changed the first section of the discussion as suggested by the reviewer.

    1. Author Response:

      The following is the authors' response to the current reviews.

      We appreciate the thoughtful critiques of the reviewers. While we agree that performing additional experiments and analyses probing the sensitivity of the technique would be useful for future studies, we are unable to perform additional experiments as our lab has closed. We share this technique as a starting point for further investigation, but it may need to be modified for success in other contexts. We have provided details of the scenarios (life stage, feeding, day, number of ticks) where we successfully sequenced B. burgdorferi from ticks, as well as one where we did not (unfed nymphs) as a starting point. We will clarify in proofing that our qPCR experiments show that we capture the vast majority of B. burgdorferi flaB mRNA from our input samples, suggesting that we are likely capturing the majority of the B. burgdorferi.

      In this work, we were most interested in using RNA-seq to perform differential expression analysis between annotated mRNAs across our timepoints. We have provided the number of genes detected in each sample (92% of annotated transcripts on average) as well as the median number of reads covering each gene (604 on average) in the supplemental file containing sequencing statistics. This coverage is highly reproducible across replicates, with an average Pearson correlation of 0.99 between gene expression levels (as Transcripts Per Million) between any two replicates. These data and the fact that many of the gene expression changes we observed align with previous observations of others give us confidence in our differential expression analysis. For those interested in tRNAs or sRNAs, we think that it would be best to modify the protocol to focus specifically on capturing those sequences in the library preparation. We encourage others interested in other aspects of our data to download it and explore it.

      We will correct remaining wording issues in proofing.

      —————

      The following is the authors' response to the original reviews.

      Dear Reviewing Editor,

      We thank you and the reviewers for the thoughtful comments on our manuscript, and we are excited to submit a revised version of our manuscript “Longitudinal map of transcriptome changes in the Lyme pathogen Borrelia burgdorferi during tick-borne transmission.” In response to the reviews, we have made the following changes to our manuscript:

      1. We updated the text for increased clarity around experimental details, including statistical analyses.

      2. We added additional details about the mapping of non-Bb reads as well as more information about Bb read coverage.

      3. We compared our differentially expressed genes to 4 previous studies of global transcriptional changes in different tick feeding contexts.

      4. We updated the discussion to address these comparisons as well as caveats of our study more directly.

      Please see our responses to individual comments below.

      Reviewer #1 (Public Review):

      In this study, Sapiro et al sought to develop technology for a transcriptomic analysis of B. burgdorferi directly from infected ticks. The methodology has exciting implications to better understand pathogen RNA profiles during specific infection timepoints, even beyond the Lyme spirochete. The authors demonstrate successful sequencing of the B. burgdorferi transcriptome from ticks and perform mass spectrometry to identify possible tick proteins that interact with B. burgdorferi. This technology and first dataset will be useful for the field. The study is limited in that no transcripts/proteins are followed-up by additional experiments and no biological interactions/infectious-processes are investigated.

      Critiques and Questions:

      We thank the reviewer for these thoughtful critiques and helping us improve our manuscript.

      This study largely develops a method and is a resource article. This should be more directly stated in the abstract/introduction.

      We edited the abstract and introduction to more directly state that we are sharing a new method and a resource for future investigations. (Lines 29-32; 101-103)

      Details of the infection experiment are currently unclear and more information in the results section is warranted. State the species of tick and life-stage (larval vs nymphal ticks) used for experiments. For RNA-seq, are mice are infected and ticks are naïve or are ticks infected and transmitting Borrelia to uninfected mice?

      We updated the results section to more clearly state the tick species and life stage and to make it more clear that infected ticks are transmitting Bb to naïve mice. (Lines 113-115)

      What is the limit of detection for this protocol? Experimental data should be provided about the number of B. burgdorferi required to perform this approach.

      We performed this protocol on pools of 6 (for later feeding stages) to 14 (for early stages) infected nymphs. Published studies (PMID: 7485694, PMID: 11682544) suggest that one day after attachment, there may be a few thousand Bb per tick, suggesting what we’ve measured here may come from on the order of 104 Bb. We were not able to capture consistent data from Bb from unfed ticks, which may be due to lower numbers or to an altered transcriptional state caused by lack of nutrients in the unfed tick. We updated the discussion to reflect some of these limitations and uncertainties. (Lines 461-465)

      More information regarding RNA-seq coverage is required. Line 147-148 "read coverage was sufficient"; what defines sufficient? Browser images of RNA-seq data across different genes would be useful to visualize the read coverage per gene. What is the distribution of reads among tRNAs, mRNAs, UTRs, and sRNAs?

      As we were interested in differential expression analysis, we defined sufficient as the number of reads needed per gene to determine statistically significant expression changes across days, which with DESeq2 is typically 10 reads. We reworded this section for clarity and added additional information about the median number of reads per gene which is also useful in thinking about differential expression analysis. (Lines 163-170) As we chose to focus on differential expression analysis here, we believe these are most relevant metrics to cover.

      My lab group was excited about the data generated from this paper. Therefore, we downloaded the raw RNA-seq data from GEO and ran it through our RNA-seq computational pipeline. Our QC analysis revealed that day 4 samples have a different GC% pattern and that a high percentage of E. coli sequences were detected. This should be further investigated and addressed in the paper: Are other bacteria being enriched by this method? Why would this be unique to day 4 samples? Does this affect data interpretation?

      We appreciate the interest in our data and pointing out this anomaly. We found that the day 4 samples do have a high percentage of reads that mapped to a bacterial species, Pseudomonas fulva, rather than ticks as we expected. (The reads that map to E. coli also map to P. fulva.) We have updated the results to include this information (Lines 156-165). We believe this is likely due to contamination from collecting ticks after they have fallen off mice in cages on day 4, rather than pulling ticks off the mice as in days 1-3. Unfortunately, as our lab has shut down, we cannot investigate the source further. We do think the high percentage of P. fulva reads suggests that other bacteria can be enriched with the anti-Bb antibody we used. We’ve updated the discussion to highlight this caveat. (Lines 459-460)

      While the presence of these bacterial reads did lower our overall Bb mapping rate and necessitate deeper sequencing for the day 4 samples, the Bb sequencing coverage of these samples is on par with samples from the other days in terms of percentage of genes with at least 10 reads and median number of reads per gene. Fewer than 0.0002% of the reads that map to Bb genes in any day 4 sample also map to P. fulva. We found that this small fraction of reads is dispersed across 334 genes in which an average of 0.05% (maximally 2.3%) of day 4 reads also map to P. fulva. Therefore, these bacterial reads do not change our interpretation of the results comparing gene expression across days, including day 4.

      Comprehensive data comparisons of this study and others are warranted. While the authors note examples of known differentially expressed genes (like lines 235-241), how does this global study compare to other global approaches? Are new expression patterns emerging with this RNA-seq approach compared to other methods? What differences emerged from day 1 to day 4 ticks compared to differences observed in unfed to fed ticks or fed ticks to DMC experiments? Directly compare to the following studies (PMID: 11830671; PMID: 25425211; PMID: 36649080.

      We added comparisons of our list of DE genes to those noted to change between “unfed tick” and “fed tick” culture conditions (PMID: 11830671 and 12654782), as well as fed nymph to DMC (PMID: 25425211 and 36649080) (Lines 231-252, Figure S4). These comparisons pointed us to two main findings: that global changes to Bb in different culture conditions generally agreed with the most dramatic changes we saw in our data, and that the timing of expression increases during feeding may relate to whether genes are more highly expressed in fed ticks or in mammalian conditions. Overall, the majority of our DE genes have been identified in at least one of these studies or in the other studies we compared to outlining RpoS, Rrp1, and RelBbu regulons. As many of these studies were asking slightly different questions and using different conditions and vastly different technology, we would expect some differences to arise from different contexts and some to be purely technical. The genes that were not seen in these previous studies tended to follow the same functional patterns we saw overall, heavily skewing towards genes of unknown function, outer surface proteins, and a handful of genes related to other functions. With the current state of the functional annotation of the genome, it is difficult to assess whether these amount to new expression patterns in and of themselves, so we focused on the overall trends in our data rather than those that were different from other studies.

      Details about the categorization of gene functions should be further described. The authors use functional analysis from Drechtrah et al., 2015, but that study also lacks details of how that annotation file was generated. Here, the authors have seemed to supplement the Drechtrah et al., 2015 list with bacteriophage and lipoprotein predictions - which are the same categories they focus their findings. Have they introduced a bias to these functional groups? While it can be noted that many lipoproteins are upregulated (or comment on specific genes classes), there are even more "unknown" proteins upregulated. I argue that not much can be inferred from functional analysis given the current annotation of the B. burgdorferi genome.

      We strongly agree that the current annotation of the Bb genome makes it difficult to perform meaningful global functional analysis, but we feel it is useful to get a general overview of gene functions. We described our methods for classifying genes into functional categories in the methods, in which we relied on previously published papers to make our best estimate of gene category (noted for each gene in the Table S4). Due to the lack of annotations for many genes, we focused on the relatively well-defined category of lipoproteins, as these are overrepresented as a group in our upregulated genes, as well as phage genes, which are not necessarily overrepresented, but are still interesting to us. We hope that others will look at the data (particular in Table S4, but also Table S3, or download the raw data and do their own analysis) with their own interests and biases and dig more into genes that we did not highlight specifically. We provide this data as a resource with the hope that some of the genes of unknown function that we see change here will be the subject of future functional studies so that this is less of problem in the future.

      Reviewer #1 (Recommendations For The Authors):

      In general, the paper is well written and digestible for a broad audience. However, some of the figure graphics are unnecessary and take away from the data. Please label tick species and tick life-stage in Figure 1 drawings. The legend of Figure 1 requires citations. The Figure 4B graphic is unnecessary and the colors are confusing as they are too similar to the color palette of Figure 4A, where the colors have meaning. The Figure 5A graphic is unnecessary and takes away from the data embedded within it.

      We more clearly labeled the species in Figure 1 and added citations to the legend. We have simplified Figures 4A and 5A for clarity.

      Clarify lines 220-259 and Figure 3. What days are being compared? Downregulated genes should also be commented on.

      We considered our set of differentially expressed genes as those that changed two-fold (multiple hypothesis adjusted p-value < 0.05) in any of the three comparisons shown in Figure 2 (day1 to day2, day1 to day3, day1 to day4). We clarified this at multiple points in the results (i.e Line 273). We commented on downregulated genes throughout, although as there were fewer genes and the magnitude of change was smaller, we focused more on upregulated genes.

      Line 327-329, state numbers not percentages. How many Bb proteins were actually detected?

      We updated this section to include numbers (Lines 371-374). In concordance with our sequencing data, we found (and were looking for) mainly tick proteins in this experiment.

      Data availability: B. burgdorferi and tick oligo sequences used for DASH should be provided in a supplemental table.

      We added a supplemental table of these sequences (Table S9). Please note they have been previously published in Dynerman et al. 2020 and Ring et al. 2022.

      Reviewer #2 (Recommendations For The Authors):

      The manuscript is overall well written and easy to follow. The data are compelling and support the conclusions. The discussion of this work is however highly insufficient and needs to be thoroughly edited:

      - Statistical analysis: The authors mention that DESeq2 was used. Please provide information on the type and the stringency of the tests used for differential gene expression analysis, including any additional potential correction for p-values (Bonferroni). The authors mention that genes with fold changes >2 were used for analysis, yet there is no information on the p-value cut off or if the genes with fold changes >2 were statistically significant. Please provide detail and rationale for the analysis.

      We clarified in the results and methods (Lines 200, 642-644) that we required a adjusted p-value < 0.05 from DESeq2’s Wald test with Benjamini-Hochberg correction along with a two-fold change when determining our genes of interest. As small fold changes showed statistically significant differences, we chose to set a fold change cutoff in most of our analysis to help us focus on the most highly expressed genes, like other studies we compared our data to. We included all of the DESeq2 results in Table S3 so that others may explore the data with different cutoffs if desired.

      - The field has been generating data on gene expression in ticks for decades. Yet, many of these studies are not referenced here. There is no discussion of how the data described here compares to what is known in the literature. For example, Venn diagrams or tables could be included for comparison with the data described lines 208-216. Extensive description and comparison of the data to the literature should be added in the discussion, and similarities/discrepancies should be discussed appropriately.

      We added additional comparisons to four different papers looking at global gene expression in Bb in the fed tick or tick-like culture conditions (Lines 231-252, Figure S4). This information as well as comparisons to transcriptional regulons (Figure S3) is available in Table S4. In addition to discussing some examples in the results, we added more information in the discussion regarding these comparisons (Lines 420-425). The majority of the genes that we see change over feeding have been previously noted to change expression during the enzootic cycle or be regulated by transcriptional programs active during this timeframe, and we have more clearly stated that. We focused on similarities here as these papers all ask slightly different questions in different contexts and use different technology which could all account for the many differences in individual genes between all of them and our work.

      - There is no discussion of the caveats of the study: for example, the authors are using an anti-OspA antibody, which could induce bias. The authors provide in-vitro pull down data supporting that this should not be an issue, but the pull down is performed from BSK-grown bacteria. This caveat should be discussed.

      We’ve added a paragraph to the discussion including this caveat and others (Lines 453-463).

      - Timing of RNA extraction: There is over 1h of delay between initial tick collection and RNA fixation. The effects of time on gene expression should be discussed.

      Although we were able to show that this timeframe did not affect cultured Bb gene expression, we added this to the discussion.

      - Gene expression is compared to Day 1. This introduces analyses bias as it does not allow identification of transcripts that first change upon initial feeding. This caveat should also be discussed

      We added this caveat – that we may miss gene expression changes in the first 24 hours of feeding – to the discussion.

      - This study is performed with 1 strain of B. burgdorferi on one tick species. Please provide perspective on the impact of these findings on Lyme disease causing spirochetes and their vectors broadly.

      We believe this method could be easily adaptable to study gene expression in other spirochete/vector pairs to determine similarities and differences and we added a comment to the discussion.

      - The discussion should also include insights on how to build on this work and include additional areas of method development to increase the recovery of B. burgforferi from ticks or other organisms and facilitate future transcriptomic studies.

      We added a few ideas to the discussion noting that this protocol could be modified for use in other timeframes, with other antibodies, or in other organisms. We also highlight the recent advent of TBDCapSeq by Grassmann et al. that may be used in conjunction with this type of protocol.

      Minor comments:

      - Consider re-wording the description of the methods and findings to the third person for coherence.

      The majority of the methods are now written in third person.

      - Over 90% of the reads did not map to B. burgdorferi: please provide additional information on what these reads mapped to (tick or mouse), and if the data reflects what is known in the literature

      We have updated the results and discussion with information about the reads that do not map to Bb (Lines 156-166). The majority of reads mapped the tick genome, which is what we expected. While a large number of reads in our day 4 samples unexpectedly mapped to Pseudomonas fulva, we do not believe this affects the interpretation of our data as we were still able to get broad genome coverage of Bb in these samples.

      - Please be more clear in the result section on the life stage of the ticks used for these studies.

      We have updated the results to clarify throughout.

      - Indicate how many total reads were generated for each sample

      This information is present in Table S1.

      - Provide statistical analyses for Figures 1C and D.

      We added t tests to determine statistical differences for these panels.

      Reviewing Editor (Recommendations for The Authors):

      1. It is important to mention in the abstract (line 27) that 'upregulated genes' is in comparison to day 1. This is also true in the introduction (lines 92-93).

      We updated in the results and introduction to more clearly include that day 1 is our baseline measurement.

      2. It is also important to discuss in the manuscript that because your 'controls' are day 1 samples, initial transcriptome changes in response to the tick environment might be missed.

      This has been added in the discussion as a caveat (Lines 460-463).

      3. As someone who does not work with Bb, I would like to have seen a clearer description of what the feeding event looks like. Although there is some text in the introduction that touches on that ('prolonged nature of I. scapularis feeding'), I would like to see something even clearer. Maybe stating that feeding may take from x-y days would clarify that for the non-specialist.

      We updated the results to more clearly state that the tick falls off of the mice by around 4 days after feeding, our last time point (Lines 113-115). Additional details of tick feeding are also in the Figure 1 legend.

      4. In Fig. 3 linear DNA molecules seem to be drawn to scale. Is that also the case for plasmids? This could be clarified in the legend.

      The genome is drawn approximately to scale. We noted this and updated the legend with more information about how linear and circular plasmid names denote their size.

      5. Figure 5C: Colors are a bit confusing here. The legend indicates that they refer to fold changes, but the scale in the panel shows expression levels, not fold changes. Please clarify. Also, is this really TPM or RPKM? If comparisons of relative levels between different genes are made, number of reads should be normalized by gene length.

      The heatmap in Figure 4C does show expression levels, and we updated the legend to more clearly state this. The highlighted gene names are meant to show which genes change two-fold during this time (those present in panel A). The data are presented as TPM (transcripts per million), which, like RPKM, is normalized by gene length (PMID: 20022975).

    1. Author Response:

      The following is the authors' response to the original reviews.

      We have now incorporated the changes recommended by the reviewers to improve the interpretations and clarity of the manuscript. We are grateful for their thoughtful comments and suggestions, which have significantly strengthened the manuscript.

      Reviewer #1 (Public Review):

      Park et al demonstrate that cells on either side of a BM-BM linkage strengthen their adhesion to that matrix using a positive feedback mechanism involving a discoidin domain receptor (DDR-2) and integrin (INA-1 + PAT-3). In response to its extracellular ligand (Collagen IV/EMB-9), DDR-2 is endocytosed and initiates signaling that in turn stabilizes integrin at the membrane. DDR-2 signaling operates via Ras/LET-60. This work's strength lies in its excellent in vivo imaging, especially of endogenously tagged proteins. For example, tagged DDR-2:mNG could be seen relocating from seam cell membranes to endosomes. I also think a second strength of this system is the ability to chart the development of BM-BM linkage over time based on the stages of worm larval development. This allows the authors to show DDR signaling is needed to establish linkage, rather than maintain it. It likely is relevant to many types of cells that use integrin to adhere to BM and left me pondering a number of interesting questions.

      We thank the reviewer for highlighting the strengths and impact of our work in expanding our understanding of tissue linkages and how DDR and integrins might work in other contexts.

      For example: (1) Does DDR-2 activation require integrin? Perhaps integrin gets the process started and DDR-2 positively reinforces that (conversely is DDR-2 at the top of a linear pathway)?

      DDR activation by receptor clustering upon exposure to its ligand collagen is well documented (Juskaite et al., 2017 eLife PMID: 285ti0245). Clustered DDR is rapidly internalized into endocytic vesicles, where full activation of tyrosine kinase activity is thought to occur (Fu et al., 2013 J Biol Chem PMID: 23335507). Supporting this model, we found that concentrated type IV collagen is required for vesicular DDR-2 localization in the utse and seam cells at the utse-seam connection. Whether DDR-2 activation requires integrin has not been fully established. However, one study using mouse and human cell lines showed that DDR1 activation occurs independent of integrin (Vogel et al., 2000 J Biol Chem PMID: 10681566), consistent with the latter possibility raised by the reviewer that DDR-2 is upstream of integrin.

      To test these hypotheses, we require an experimental condition where loss or near complete loss of INA- 1 integrin is achieved by the mid-to-late L4 larval stage, when DDR-2 is activated by collagen and taken into endocytic vesicles. Currently, we can only partially deplete INA-1 by RNAi (Figure 5—figure supplement 2E), and strong loss of function mutations in ina-1 result in early larval arrest and lethality (Baum and Garriga, 1titi7 Neuron PMID: ti247263). To overcome these obstacles, we are adapting the new FLP-ON::TIR1 system developed for precise spatiotemporal protein degradation in worms (Xiao et al., 2023 Genetics PMID: 36722258). We hope to achieve a near complete knockdown of ina-1 with this timed depletion strategy. In the future, we will use this system to block DDR-2 and integrin function specifically in the utse or seam cells, to complement our current dominant negative mis-expression approach.

      (2) In ddr-2(qy64) mutants, projections seem to form from the central portion of the utse cell. Does this reveal a second function for DDR-2, regulating perhaps the cytoskeleton?

      We thank the reviewer for their observation and agree with their interpretation. We think it is important to comment on this and have stated in the results text, lines 208-212: “In addition, membrane projections emanating from the central body of the utse were detected in ddr-2(qy64) animals. These projections were first observed at the mid L4 stage and persisted to young adulthood (Figure 2C). These observations suggest that DDR-2 functions around the mid L4 to late L4 stages to promote utse-seam attachment, and that DDR-2 may also regulate utse morphology.”

      And (3) can you use the forward genetic tools available in C. elegans to find new genes connecting DDR-2 and integrin?

      This is an excellent suggestion. We found that loss of ddr-2 strongly enhanced the uterine prolapse (Rup) defect caused by RNAi mediated depletion of integrin. To find new genes connecting DDR-2 and integrin, a targeted screen for the Rup phenotype could be performed in an integrin reduction of function condition. As we cannot work with null or strong loss-of-function ina-1 alleles (described above), the screen could be conducted with either timed depletion of INA-1 with candidate RNAi treatments, or combinatorial ina-1 RNAi with candidate RNAi treatments.

      I do see two areas where the manuscript could be improved. First, the authors rely on imprecise genetic methods to reach their conclusions (i.e. systemic RNAi, or expression of dominant negative constructs.) I think their conclusion would be stronger if they used tissue specific degradation to block ddr-2 function specifically in the utse or seam cells. Methods to do this are now regularly used in C. elegans and the authors have already developed the necessary tissue-specific promoters.

      We agree with the reviewer that tissue specific degradation of DDR-2 in the utse and seam cells will complement and strengthen our evidence for the site of action of DDR-2. As described earlier, we are currently adapting the FLP-ON::TIR1 tissue degradation system to perform these experiments and will provide our findings in a follow-up manuscript.

      Second, the manuscript is presented in the introduction as a study on formation and function of BM-BM linkage. The authors start the discussion in a similar manner. But their results are about adhesion between cells and BM. In fact they show the BM-BM linkage forms normally in ddr-2 mutants. Thus it seems like what they have really uncovered is an adhesion mechanism that works in parallel to the BM-BM linkage. Since ddr-2 appears to function equally in both utse + seam cells (based on their dominant negative data), there are likely three layers of adhesion (utse-BM, BM-BM, BM-seam) and if any of those break down, you get a partially penetrant rupture phenotype.

      The reviewer raises an important and interesting point, and we agree that we did not articulate the organization of the utse-seam tissue connection clearly. The utse-seam connection is comprised of the utse and seam BMs each ~50nm thick, and a connecting matrix bridging the two BMs, which is ~100nm thick (Vogel and Hedgecock, 2001 Development PMID: 11222143). Type IV collagen builds up to high levels within the connecting matrix and links the utse and seam BMs, and its concentration is required for DDR-2 vesiculation. An important point we did not highlight is that type IV collagen is approximately 400 nm long (Timpl et al. 1ti81, Eur J Biochem PMID: 6274634). Thus, collagen molecules within the connecting matrix could span the entire length of the utse-seam connection and project into the utse and seam BMs to interact with cell surface receptors. Consistent with this possibility, we found that buildup of type IV collagen that spans the utse-seam BM-BM linkage correlated with the timing of DDR-2 activation/vesiculation within utse and seam cells. In addition, super-resolution imaging of the mouse kidney glomerular basement membrane (GBM), a tissue connection between endothelial BM and epithelial (podocyte) BM, showed type IV collagen, which spans the BMs, projects into the endothelial and podocyte BMs (Suleiman et al., 2013 eLife PMID: 24137544 ). We carefully considered these points to generate the schematics in Figure 1A and Figure 8, but failed to articulate this point in the manuscript. We are grateful for the reviewer for bringing up our error and have now stated these details in the text to address the reviewer’s concern as outlined below.

      In the introduction (lines ti3-ti6): “A BM-BM tissue connection between the large, multinucleated uterine utse cell and epidermal seam cells stabilizes the uterus during egg laying. The utse-seam connection is formed by BMs of the utse and the seam cells, each ~50 nm thick, which are bridged by an ~100 nm connecting matrix (Vogel and Hedgecock 2001, Morrissey, Keeley et al. 2014, Gianakas, Keeley et al. 2023).”

      In the discussion (lines 507-520): “We also found that internalization of DDR-2 at the utse-seam connection correlated with the assembly of type IV collagen at the BM-BM linkage and was dependent on type IV collagen deposition. Type IV collagen is ~400 nm in length and the utse-seam connecting matrix spans ~100 nm, while the utse and seam BMs are each ~50 nm thick (Timpl, Wiedemann et al. 1ti81, Vogel and Hedgecock 2001). Thus, collagen molecules in the connecting matrix could project into the utse and seam BMs to interact with DDR-2 on cell surfaces. Consistent with this possibility, super- resolution imaging of the mouse kidney glomerular basement membrane (tiBM), a tissue connection between podocytes and endothelial cells, showed type IV collagen within the tiBM projecting into the podocyte and endothelial BMs (Suleiman, Zhang et al. 2013). As DDR-2 is activated by ligand-induced clustering of the receptor (Juskaite, Corcoran et al. 2017, Corcoran, Juskaite et al. 201ti), it suggests that the BM-BM linking type IV collagen network, which is specifically assembled at high levels, clusters and activates DDR-2 in the utse and seam cells to coordinate cell-matrix adhesion at the tissue linkage site.”

      These concerns do not undercut the significance of this work, which identifies an interesting mechanism cells use to strengthen adhesion during BM linkage formation. In fact, I am excited to read future papers detailing the connection between DDR-2 and integrin. But before undertaking those experiments the authors should be certain which cells require DDR-2 activity, and that should not be determined based solely on mis expression of a dominant negative.

      We thank the reviewer for recognizing the significance of our work and reiterate that we will use tissue-specific degradation for site of action experiments in future studies on the biology of the utse- seam tissue linkage.

      Reviewer #2 (Public Review):

      This paper explores the mechanisms by which cells in tissues use the extracellular matrix (ECM) to reinforce and establish connections. This is a mechanistic and quantitative paper that uses imaging and genetics to establish that the Type IV collagen, DDR-2/collagen receptor discoidin domain receptor 2, signaling through Ras to strengthen an adhesion between two cell types in C. elegans. This connection needs to be strong and robust to withstand the pressure of the numerous eggs that pass through the uterus. The major strengths of this paper are in crisply designed and clear genetic experiments, beautiful imaging, and well supported conclusions. I find very few weaknesses, although, perhaps the evidence that DDR-2 promotes utse-seam linkage through regulation of MMPs could be stronger. This work is impactful because it shows how cells in vivo make and strengthen a connection between tissues through ECM interactions involving collaboration between discoidin and integrin.

      We appreciate the reviewer’s assessment of the impact of our work in detailing a mechanism for how cells increase their adhesion to the ECM to establish connections between adjacent tissues. We have softened the interpretation of our MMP localization data to address the reviewer’s concern (detailed below).

      Reviewer #1 (Recommendations For The Authors):

      Regarding Figure 1D, is it possible to show when the BM forms on the cartoons more clearly (something like the 3rd section of Fig 3A)? I can see it in the timeline but it's hard to follow in the diagrams.

      We agree with the reviewer that we could show when the BM-BM connecting matrix forms more clearly in Figure 1D. Hemicentin and fibulin, the earliest components of the connecting matrix, are detected at very low levels at the utse-seam connection during the mid-L4 stage and are more prominently localized by the mid-to-late L4 stage (Gianakas et al., 2023 J Cell Biol PMID: 36282214). For this reason, we only show the connecting matrix in yellow from the mid-to-late L4 stages onward. We have now made the BM-BM connection more prominent in the figure 1D cartoons with boxed outlines (similar to Figure 3A as the reviewer suggested). We also added a label for the time window when the BM-BM connection forms.

      Regarding the RNAi induced prolapse phenotype, looking at 2B, it appears that between 5% and 10% of animals have uterine prolapse when fed control RNAi. Is this correct, it seems very high? This prolapse in control animals was not observed other RNAi experiments such as Figure 5C.

      We thank the reviewer for pointing this out. For Figure 2B, the control used was wild-type N2 animals fed with OP50 E. coli bacteria, rather than HT115 bacteria carrying the L4440 empty vector (control RNAi). This is because the main comparisons were to five ddr-1 and ddr-2 mutant strains. We did notice a slightly higher baseline uterine prolapse frequency (5% on average, detailed in Figure 2—Source data 1) in wild-type animals fed OP50 bacteria, compared to HT115 bacteria fed animals (approximately 1-2% on average). It is possible this could be linked to the nutritional differences in the two bacterial strains. However, we are confident of our data in Figure 2B as we carried out 3 independent trials, and the uterine prolapse frequencies in ddr-1 mutant animals matched the baseline in wild-type animals, while the frequencies for ddr-2 mutants were all increased over the baseline in all trials (as detailed in Figure 2—Source data 1).

      Relating to the point above, in reading the methods to try to understand how they did the RNAi, I noticed that they measure prolapse continually over five days. I didn't realize it takes a long time to occur. I think they should explain this in the text and in the figures. Reading the manuscript I thought prolapse occurred as soon as mutant animals began laying eggs. In the text they should explain this when they first assay the phenotype (page 7), and for figures the Y axis on the graphs could say "% uterine prolapse after 5 days."

      We thank the reviewer for their suggestions. We did not articulate clearly that the utse-seam connection is able to withstand some mechanical stress, even when key components are lost. It’s only over time and repeated use that the connection breaks down. This is likely because a number of components contribute to the connection and as we have shown previously, there is feedback, such that when one components is reduced, such as collagen, hemicentin is increased in levels at the BM-BM connection. Since ruptures arising from utse-seam detachments typically occur sometime after the onset

      of egg-laying, we screened the entire egg-laying period (days two to five post-L1) as described in Gianakas et al. 2023. We have now incorporated these points in the text and figures as follows:

      In the introduction, we clarified that utse-seam BM-BM connection breaksdown over time, by adding (lines titi-105): “Hemicentin promotes the recruitment of type IV collagen, which accumulates at high levels at the BM-BM tissue connection and strengthens the adhesion, allowing it to resist the strong mechanical forces of egg-laying. The utse-seam connection is robust, with each component of the tissue- spanning matrix contributing to the BM-BM connection (Gianakas, Keeley et al. 2023). This likely accounts for the ability of the utse-seam connection to initially resist mechanical forces after loss of any one of these components, delaying the uterine prolapse phenotype until sometime after the initiation of egg-laying.”

      We expanded the results text when we first describe the Rup phenotype (lines 183-184): “We first screened for the Rup phenotype caused by uterine prolapse, observing animals every day during the egg-laying period, from its onset (48 h post-L1) to end (120 h) (Methods)”.

      We provided more detail in the Methods section (lines 784-7ti0): “Uterine prolapse frequency was assessed as described previously (Gianakas et al 2023). Briefly, synchronized L1 larvae were plated (~20 animals per plate) and after 24 h, the exact number of worms on each plate was recorded. Plates were then visually screened for ruptured worms (uterine prolapse) every 24 h during egg-laying (between 48 h to 120 h post-L1). We chose to examine the entire egg-laying period as ruptures arising from utse-seam detachments do not usually occur at the onset of egg-laying, but after cycles of egg-laying that place repeated mechanical stress on the utse-seam connection (Gianakas et al 2023).”

      Finally, we modified the Y-axes of graphs in Figure 2B and 5C and the respective figure legends as suggested by the reviewer.

      Then I went back and compared to the previous publication (Gianakas, 2023). I would be interested to see a time course of how many animals prolapse after 1 day, 2 days, etc.? Is this consistent with their data on hemicentrin?

      We agree with the reviewer that a time course of uterine prolapse would be interesting as we saw ruptures occur throughout the egg-laying period. However, for the hemicentin knockdown experiments in Gianakas et al. 2023 as well as the experiments in this study, we recorded only the pooled number of animals with ruptures at the end of the experimental window. In future studies we will also record the uterine prolapse frequencies on each day to generate time courses that will provide more insight into the function of proteins at the utse-seam connection.

      Lines 183-184: I'm not sure what it means to say "trended towards displaying a significant Rup phenotype?" Since the difference was not statistically significant, it would be better to say something like "increased but not statistically significant."

      We agree with the reviewer and have now modified this sentence (lines 190-193): “Animals carrying the ddr-2(ok574) allele, which deletes a portion of the intracellular kinase domain (Unsoeld, Park et al. 2013),also showed an increased frequency of the Rup phenotype compared to wild-type animals, although this difference was not statistically significant (Figure 2A and B)”.

      Line 186: 'penetrant' needs a qualifier to indicate the magnitude of the proportion of individuals with the phenotype.

      As we provide the Rup frequency numbers in Figure 2—Source data 1, we modified the sentence as follows (lines 1ti3-1ti5): “We further generated a full-length ddr-2 deletion allele, ddr-2(qy64), and confirmed that complete loss of ddr-2 led to a significant uterine prolapse defect (Figure 2A and B).”

      Lines 206-208; could the mounting/imaging procedure (which I assume requires squeezing the worm between agarose pad and coverslip) alter the occurrence of prolapse? I would think prolapse would occur more frequently under these conditions as compared to worms laying eggs on a plate.

      The reviewer brings up an important concern. The mounting and imaging procedure does require placing the worm between an agarose pad and a coverslip. However, this did not alter the occurrence of uterine prolapse in this experiment. We were careful to perform the same procedure on both wild-type and ddr- 2(qy64) animals to control for this. As detailed in the manuscript, none of the eight wild-type animals we mounted underwent uterine prolapse after recovery off the coverslip, and among the ddr-2(qy64) mutants we mounted, only the ones that exhibited utse-seam detachments went on to rupture later.

      We articulated these points more clearly by modifying lines 214-216 as follows: “Wild-type and ddr- 2(qy64) animals were mounted and imaged at the L4 larval stage for utse-seam attachment defects, recovered, and tracked to the 72-hour adult stage, where they were examined for the Rup phenotype.”

      In seam cells you can see that DDR-2:mNG is present at membranes from early to mid L4, which makes sense. But I cannot see it on the membrane at any time point in the utse. Perhaps it is obscured by the yellow dotted line. Should it be visible on utse membranes before it is endocytosed?

      The reviewer raises an interesting question. We think it is likely that DDR-2 is initially on the membrane of the utse like it is on the seam cells. However, we have not observed this, possibly due to the complex shape and thin membrane extensions of the utse. We are unable even to detect clear membrane enrichment of membrane markers in the utse (for example, compare the utse and seam membrane markers in Figure 3B). Thus, we refrained from speculating on DDR-2 utse membrane localization in the manuscript, and instead focused on the pattern of vesicular DDR-2 peaking at the late L4 stage, which was clearly visible in both the utse and seam cells.

      Sup Fig 3A - please show quantification of seam cells not contacting utse at the same Y-axis scale as for regions that do contact utse.

      We have modified the Y-axis scale for the quantification of the seam region not contacting the utse.

      Figure 4A - I don't see a difference between WT and ok574 - what am I missing?

      In the representative ok574 animal shown, a portion of the utse arm on the top right is detached from the seam. To make this phenotype clearer, we have recropped the image panels, readjusted the brightness and contrast of the utse and the seam, and redrawn the outline of the detachment to make this clearer.

      Figure 4C+D, and lines 296-298: I'd bet that both are needed to recruit DDR-2 to membranes. But him-4 has a more severe phenotype because the RNAi knockdown is much more effective (perhaps b/c they are using the newer t444t vector).

      We agree with the reviewer that the him-4 knockdown phenotype is likely more severe than emb-9 knockdown. Type IV collagen at the utse-seam connection is very stable compared to hemicentin (Gianakas et al 2023, J Cell Biol PMID: 36282214, see Fig. 5C), which could explain the lower knockdown efficiency.

      We modified our interpretation of the data in the text as follows (lines 308-312): “In addition, we did not detect DDR-2 at the cell surface, suggesting that hemicentin has a role in recruiting DDR-2 to the site of utse-seam attachment. It is possible that collagen could also function in DDR-2 recruitment, but we could not assess this definitively due to the lower knockdown efficiency of emb-9 RNAi (Figure 4—figure supplement 1A).”

      Reviewer #2 (Recommendations For The Authors):

      Line 218 DDR-2 (typo)

      We have corrected this typo.

      Evidence (line 344-348) may not be strong enough to say whether or not DDR-2 promotes utse- seam linkage through regulation of MMPs.

      We agree with the reviewer and have softened our conclusions as follows (lines 356-363): “The C. elegans genome harbors six MMP genes, named zinc metalloproteinase 1-6 (zmp-1-6) (Altincicek, Fischer et al. 2010). We examined four available reporters of ZMP localization (ZMP-1::tiFP, ZMP-2::tiFP, ZMP-3::tiFP, and ZMP-4::tiFP) (Kelley, Chi et al. 201ti).Only ZMP-4 was detected at the utse-seam connection and its localization was not altered by knockdown of ddr-2 (Figure 5—figure supplement 1F). These observations suggest that DDR-2 does not promote utse-seam linkage through regulation of MMPs, although we cannot rule out roles for DDR-2 in promoting the expression or localization of ZMP-5 or ZMP-6.”

      The authors show the critical period is in late L4, however, is the signaling needed later too? For example, is the linkage strengthening moderated by DDR-2 important as more eggs accumulate?

      The reviewer raises an interesting question. We observed that the vesicular localization of DDR-2 sharply declined before the onset of egg-laying. By young adulthood, very few punctate structures of DDR-2 were observed in the seam cells, and none in the utse (Figure 3B). Furthermore, the frequency of utse- seam detachments in ddr-2 mutant animals peaked by the late L4 stage and did not increase after this time, suggesting DDR function is no longer required after the late L4 stage (Figure 2D). Thus, we believe that DDR-2 signaling strengthens tissue linkage only during the early formation of the utse-seam connection between the mid and late L4 stage.

      We incorporated these points in the discussion (lines 477-485): “Through analysis of genetic mutations in the C. elegans receptor tyrosine kinase (RTK) DDR-2, an ortholog to the two vertebrate DDR receptors (DDR1 & DDR2) (Unsoeld, Park et al. 2013), we discovered that loss of ddr-2 results in utse-seam detachment beginning at the mid L4 stage. The frequency of detachments in ddr-2 mutant animals peaked around the late L4 stage and did not increase after this time. This correlated with the levels of DDR-2::mNG at the utse-seam connection, which peaked at the late L4 stage and then sharply declined by adulthood. Together, these findings suggest that DDR-2 promotes utse-seam attachment in the early formation of the tissue connection between the mid and late L4 stage.”

      Fig. 3B is the fluorescence quantification normalized to the area?

      Yes, it is. We used mean fluorescence intensity for all fluorescence quantifications to normalize for the area where the signal was measured. We added a line in Methods to emphasize this (lines 73ti-740): “We measured mean fluorescence intensity for all quantifications in order to account for linescan area.”

      Fig. 4B a statistical assessment of the degree of co-localization of DDR-2::mNG and the endosomal markers might be a nice addition.

      We believe the reviewer is referring to Figure 3—figure supplement 1B. We have now added the statistical assessment of the degree of co-localization of DDR-2::mNG and the endosomal markers.

      We want to sincerely thank the two reviewers for their thoughtful comments and suggestions. The changes we have made in response to these comments have substantially improved the manuscript.

    1. Author Response:

      The following is the authors' response to the original reviews.

      We appreciate the in depth review of our manuscript, and the excellent suggestions from the two reviewers. We have addressed all concerns as described in the point by point response below. We have also added all of these changes to a revised version posted to biorxiv on May 23rd 2023 (BIORXIV/2023/536585).

      Reviewer #1 (Recommendations For The Authors):

      It is sometimes difficult to connect the rationalizations behind the transitions between NB7 binding interaction, the compare/contrast of p84 and p101 effectors, and the synergy with phosphorylation. More explanation of the rationalizations behind these transitions in the Results would be helpful.

      We agree that the manuscript would benefit from better transitions between the sections. We have added a new paragraph in the final section describing the nanobody structure before the helical domain phosphorylation that fully describes the rationale for how both inform on the critical role of helical domain dynamics in kinase activity. This paragraph is shown below.

      ‘The interface of NB7 with p110_g _is distant from both the putative membrane binding surface, as well as the catalytic machinery of the kinase domain. To further understand how this nanobody could so potently inhibit PI3K activity we examined any other potential modulators of PI3K activity localised in this region. There are two regulatory phosphorylation sites in the helical (Walser et al., 2013) and kinase domain (Perino et al., 2011) localised at the NB7 interface. This is intriguing as helical domain phosphorylation is activating, and kinase domain phosphorylation is inhibitory. This suggested a critical role in the regulation of p110_g _is the dynamics of this kinase-helical interface. To fully define the role of NB7 in altering the dynamics of the helical domain we needed to study other modulators of helical domain dynamics.’

      The Methods section would benefit from careful copy editing for clarity and consistency.

      We have gone through the methods section and edited for clarity and consistency throughout.

      There's a minor ambiguity throughout when referring to the phosphorylation of S594/S595. Although close inspection makes it clear that this refers to the monophosphorylation of either site S594 or S595, there are several references to "S594/S595" that could be interpreted as phosphorylation of both residues.

      We agree that this was ambiguous in the original text. We have added an explicit statement describing this as a single phosphorylation event.

      ‘The modification at this site results in a single phosphorylation event , but due to CID MS/MS fragmentation we cannot determine which site is modified, and will be described as S594/S595 throughout the manuscript.’

      In Figure 2B, the authors show the cryo-EM density map and the structural model based on this map. It would be helpful to also include an image of the structural model fit in the density map to allow readers to evaluate the quality of the map and model. The 2F panel provides an important view of this fit, but CD3 models are difficult to discern.

      We agree that this would help interpret model quality. We have added a new supplemental figure showing the fit of both p110 and NB7 into this Cryo EM density (see new Fig S2).

      Paragraph starting at line 258: The shift to monitoring ATPase activity is confusing here. ATPase activity indicates production of ADP + phosphate (rather than ADP + PIP3). However, an explanation is provided that states that measuring ADP production serves as a surrogate for measuring PIP3 production. The apparent absence of membrane PIP2 substrate in Figure 4E (left) suggests that there is a true ATPase background activity in this kinase. If so, does the increase in ADP production in Fig. 4E reflect the inclusion of PIP2 substrate, increased background ATPase activity, or both?

      We agree that this was worded confusingly in the original version. We have now clarified exactly what we are observing in these ATPase assays. The new paragraph is appended below

      ‘To further explore the potential role of phosphorylation in mediating p110g activity, we examined the kinase activity of p110g under two conditions: basal ATP turnover, and with PIP2 containing lipid membranes. The experiments in the absence of PIP2 measure turnover of ATP into ADP and phosphate, and is a readout of basal catalytic competency.  Experiments with PIP2, measured ATP consumed in the generation of PIP3, as well as in non-productive ATP turnover. The p110g enzyme in the absence of stimulators is very weakly active towards PIP2 substrate with only ~2 fold increased ATP turnover compared to in the absence of membranes. This is consistent with very weak membrane recruitment of p110g complexes in the absence of lipid activators (Rathinaswamy et al., 2023). PKCb-mediated phosphorylation enhanced the ATPase activity of p110g ~2-fold in both the absence and presence of membranes (Fig. 4E). This suggests that the effect of phosphorylation is to change the intrinsic catalytic efficiency of phosphorylated p110g, with limited effect on membrane binding.’

      In the section "Nanobody blocks p110gamma phosphorylation," it's not entirely convincing that "the presence of NB7 showed even lower phosphorylation than p110gamma-p101." This does not seem to be subject to a significance test in Figure 5A/B. The follow-up point about "complete abrogation of phosphorylation," however, is readily apparent.

      We agree that we could have been more precise with our language, as this is not a complete block of phosphorylation, it is merely a significant decrease in phosphorylation. We have removed the comparison to p110-p101, and also removed the statement about complete abrogation of phosphorylation. This is now reworded to

      ‘The presence of NB7 showed a significant decrease in p110g phosphorylation at both sites (Fig. 5A-B).’

      Figure 1: Legend needs to include more detail to define the data. (1A) Representations of variance need to be clarified (e.g., replicates, error bar meaning). Consider "Normalized lipid kinase activity" as a y-axis label and expand on the activity measurement and normalization in the legend. (1B) How was error calculated? (1C) Mislabeled as 1B? Also, consider clarifying the first title highlighting the comparison to class IA PI3Ks. (1D) Typo: "Y647-p84/p110gamma." Also, would it not be more accurate to say "effect of nanobody NB7 on PI3K displacement..." for this experiment?

      We apologise for these oversights. See details on what has been changed in Fig 1A, 1B, 1C, and 1D.

      For Fig 1A we now show the data where each replicate is indicated in the graph in the absence of error bars, and have also more clearly expanded on this activity measurement in the figure legend and also stated the replicate number.

      For Fig 1B we now clearly state how the error was generated.

      For Fig 1C we have fixed the typo

      For Fig 1D, we have fixed this typo and also changed the sub-heading as suggested.

      New figure legend is below as well

      Figure 1. The inhibitory nanobody NB7 binds tightly to all p110γ complexes and inhibits kinase activity, but does not prevent membrane binding

      A. Cartoon schematic depicting nanobody inhibition of activation by lipidated Gβγ (1.5 µM final concentration). Lipid kinase assays show a potent inhibition of lipid kinase activity with increasing concentrations of NB7 (3-3000 nM) for the different complexes. Experiments are carried out in triplicate (n=3) with each replicate shown. The y-axis shows lipid kinase activity normalised for each complex activated by Gβγ in the absence of nanobody. Concentrations of each protein were selected to give a lipid kinase value in the detectable range of the ATPase transcreener assay. The protein concentration of p110γ (300 nM), p110γ-p84 (330 nM) and p110γ-p101 (12 nM) was different due to intrinsic differences of each complex to be activated by lipidated Gβγ, and is likely mainly dependent for the difference seen in NB7 response.

      B. Association and dissociation curves for the dose response of His-NB7 binding to p110γ, p110γ-p84 and p110γ-p101 (50 – 1.9 nM) is shown. A cartoon schematic of BLI analysis of the binding of immobilized His-NB7 to p110γ is shown on the left. Dissociation constants (KD) were calculated based on a global fit to a 1:1 model for the top three concentrations and averaged with error shown. Error was calculated from the association and dissociation value (n=3) with standard deviation shown. Full details are present in the source data.

      C. Association and dissociation curves for His-NB7 binding to p110γ, p110a-p85a, p110b-p85b, and p110d-p85b. Experiments were performed in duplicate with a final concentration of 50 nM of each class I PI3K complex.

      D. Effect of NB7 on PI3K recruitment to supported lipid bilayers containing H-Ras(GTP) and farnesyl-Gbg as measured by Total Internal Reflection Fluorescence Microscopy (TIRF-M). DY647-p84/p110g displays rapid equilibration kinetics and is insensitive to the addition of 500 nM nanobody (black arrow, 250 sec) on supported lipid bilayers containing H-Ras(GTP) and farnesyl-Gbg.

      E. Kinetics of 50 nM DY647-p84/p110g membrane recruitment appears indistinguishable in the absence and presence of nanobody. Prior to sample injection, DY647-p84/p110g was incubated for 10 minutes with 500 nM nanobody.

      F. Representative TIRF-M images showing the localization of 50 nM DY647-p84/p110g visualized in the absence or presence of 500 nM nanobody (+NB7). Membrane composition for panels C-E: 93% DOPC, 5% DOPS, 2% MCC-PE, Ras(GTP) covalently attached to MCC-PE, and 200 nM farnesyl-Gbg.

      Figure 2: (1A) For consistency with the rest of the paper, p110g can be updated with the Greek character. (1B) This may have been intentional to attract attention to subdomains interacting with NB7, but "colored according to the schematic" omits the purple RBD. (2F) the figure legend should specify whether p110gamma surfaces depicted are the cryo-EM density or a surface rendition of the structural model.

      We agree and have fixed the p110 typo, and have also colored the schematic the same as shown in the cartoon model.

      The data shown in Fig 1B is indeed the Cryo EM density and this is now clearly indicated in the legend.

      Figure 3: (3B) Specifying the [M+H] as [M+2H]2+ and [M+4H]4+ would help the reader understand the delta mass for monophosphorylation here. Given the broad readership of this journal, it would be useful to define 't' and 'e' as 'theoretical' and 'experimental' in the legend. It may also help to be explicit about the meaning of the red spectra and residues in the legend. (3C-E) autocorrect typo for "(C)" and an opportunity to update "b" for Greek character beta.

      We agree that clearly defining the charge state of each spectra will make it more obvious that we are dealing with a mono-phosphorylation and have made this change as suggested in the figure. We have also clearly define m/z t and m/z e in the figure legend, as well as the black and red lines, and characters. Finally we have added PKCb for all descriptions of PKC treatment in the figure, and fixed the incorrect PKC’b’ in the legend.

      Figure 4: (4C) Given the common use of "ND" for other terms, it would be useful to spell out "no deuterium" or "undeuterated." (4E) the parenthetical "(concentration, 12nM to 1000nM)" could be clarified. How are the (presumably p100gamma) concentration ranges reflected in the three plotted data points per treatment? See also Figure 5E.

      We agree and have redefined ND as undeuterated. We apologise for the typo in the figure legend, as the concentrations of p110 gamma were the same for both phosphorylated and non-phosphorylated, with this being a typo (all concentrations of enzyme were 1000 nM). This has been changed here and in Fig 5E.

      Figure 5: (5A/B) Some clarification that we're looking at extracted ion chromatograms would be very useful in this figure legend. On a related note, the experimental details on the LC-MS methodology for this data appear to be split between two sections of the Methods: the "Phosphorylation analysis" paragraph (line 526) and the HDX-MS section. Some more explicit cross-referencing would clarify this experiment. (5E) Clarify inclusion of PIP2 membranes here.

      We have clearly described that we are looking at extracted ion chromatograms in both panel A and B. We also have normalized the experimental methods in the LC-MS as these used exactly the same procedure. Finally, we now clearly describe the assays shown in Fig 5E were performed in the absence of PIP2 membranes.

      Miscellaneous typos:<br /> Line 205: reference omitted for "Previous study.."

      We have added this reference

      Line 196: "unambiguous"

      Fixed to unambiguously

      Reviewer #2 (Recommendations For The Authors):

      The only mistake I spotted was that on line 729 there is a reference to Fig 3C that should actually be Fig. 4C

      We have changed this to the correct Fig 4C.

    1. Author Response

      eLife assessment

      In this valuable study, the authors investigate the mechanism of amyloid nucleation in a cellular system using their novel ratiometric measurements and uncover interesting insights regarding the role of polyglutamine length and the sequence features of glutamine-rich regions on amyloid formation. Overall, the problem is significant and being able to assess nucleation in cells is of considerable relevance. The data, as presented and analyzed, are currently still incomplete. The specific claims would be stronger if based on in vitro measurements that avoid the intricacies of specific cellular systems and that are more suitable for assessing sequence-intrinsic properties.

      We are pleased that the editors find our study valuable. We find that the reviewers’ criticisms largely arise from misunderstandings inherent to the conceptually challenging nature of the topic, rather than fundamental flaws, as we will elaborate here. We are grateful for the opportunity afforded by eLife to engage reviewers in a constructive public dialogue.

      Reviewer #1 (Public Review):

      The authors take on the challenge of defining the core nucleus for amyloid formation by polyglutamine tracts. This rests on the assertion that polyQ forms amyloid structures to the exclusion of all other forms of solids. Using their unique assay, deployed in yeast, the authors attempt to infer the size of the nucleus that templates amyloid formation by polyQ. Further, through a series of sequence titrations, all studied using a single type of assay, the authors converge on an assertion stating that a single polyQ molecule is the nucleus for amyloid formation, that 12-residues make up the core of the nucleus, that it takes ca. 60 Qs in a row to unmask this nucleation potential, and that polyQ amyloid formation belongs to the same universality class as self-poisoned crystallization, which is the hallmark of crystallization from polymer melts formed by large, high molecular weight synthetic polymers. Unfortunately, the authors have decided to lean in hard on their assertions without a critical assessment of whether their findings stand up to scrutiny. If their findings are truly an intrinsic property of polyQ molecules, then their findings should be reconstituted in vitro. Unfortunately, careful and rigorous experiments in vitro show that there is a threshold concentration for forming fibrillar solids. This threshold concentration depends on the flanking sequence context on temperature and on solution conditions. The existence of a threshold concentration defies the expectation of a monomer nucleus. The findings disagree with in vitro data presented by Crick et al., and ignored by the authors. Please see: https://doi.org/10.1073/pnas.1320626110. These reports present data from very different assays, the importance of which was underscored first by Regina Murphy and colleagues. The work of Crick et al., provides a detailed thermodynamic framework - see the SI Appendix. This framework dove tails with theory and simulations of Zhang and Muthukumar, which explains exactly how a system like polyQ might work (https://doi.org/10.1063/1.3050295). The picture one paints is radically different from what the authors converge upon. One is inclined to lean toward data that are gleaned using multiple methods in vitro because the test tube does not have all the confounding effects of a cellular milieu, especially when it comes to focusing on sequence-intrinsic conformational transitions of a protein. In addition to concerns about the limitations of the DAmFRET method, which based on the work of the authors in their collaborative paper by Posey et al., are being stretched to the limit, there is the real possibility that the cellular milieu, unique to the system being studied, is enabling transitions that are not necessarily intrinsic to the sequence alone. A nod in this direction is the work of Marc Diamond, which showed that having stabilized the amyloid form of Tau through coacervation, there is a large barrier that limits the loss of amyloid-like structure for Tau. There may well be something similar going on with the polyQ system. If the authors could show that their data are achievable in vitro without anything but physiological buffers one would have more confidence in a model that appears to contradict basic physical principles of how homopolymers self-assemble. Absent such additional evidence, numerous statements seem to be too strong. There are also several claims that are difficult to understand or appreciate.

      Rebuttal to the perceived necessity of in vitro experiments

      The overarching concern of this reviewer and reviewing editor is whether in-cell assays can inform on sequence-intrinsic properties. We understand this concern. We believe however that the relative merit of in-cell assays is largely a matter of perspective. The truly sequence-intrinsic behavior of polyQ, i.e. in a vacuum, is less informative than the “sequence-intrinsic” behaviors of interest that emerge in the presence of extraneous molecules from the appropriate biological context. In vitro experiments typically include a tiny number of these -- water, ions, and sometimes a crowding agent meant to approximate everything else. Obviously missing are the myriad quinary interactions with other proteins that collectively round out the physiological solvent. The question is what experimental context best approximates that of a living human neuron under which the pathological sequence-dependent properties of polyQ manifest. We submit that a living yeast cell comes closer to that ideal than does buffer in a test tube.

      The reviewer’s statements that our findings must be validated in vitro ignores the fact -- stressed in our introduction -- that decades of in vitro work have not yet generated definitive evidence for or against any specific nucleus model. In addition to the above, one major problem concerns the large sizes of in vitro systems that obscure the effects of primary nucleation. For example, a typical in vitro experimental volume of e.g. 1.5 ml is over one billion-fold larger than the femtoliter volume of a cell. This means that any nucleation-limited kinetics of relevant amyloid formation are lost, and any alternative amyloid polymorphs that have a kinetic growth advantage -- even if they nucleate at only a fraction the rate of relevant amyloid -- will tend to dominate the system (Buell, 2017). Novel approaches are clearly needed to address these problems. We present such an approach, stretch it to the limit (as the reviewer notes) across multiple complementary experiments, and arrive at a novel finding that is fully and uniquely consistent with all of our own data as well as the collective prior literature.

      That the preceding considerations are collectively essential to understand relevant amyloid behavior is evident from recent cryoEM studies showing that in vitro-generated amyloid structures generally differ from those in patients (Arseni et al., 2022; Bansal et al., 2021; Radamaker et al., 2021; Schmidt et al., 2019; Schweighauser et al., 2020; Yang et al., 2022). This is highly relevant to the present discourse because each amyloid structure is thought to emanate from a different nucleating structure. This means that in vitro experiments have broadly missed the mark in terms of the relevant thermodynamic parameters that govern disease onset and progression. Note that the rules laid out via our studies are not only consistent with structural features of polyQ amyloid in cells, but also (as described in the discussion) explain why the endogenous structure of a physiologically relevant Q zipper amyloid differs from that of polyQ.

      A recent collaboration between the Morimoto and Knowles groups (Sinnige et al.) investigated the kinetics of aggregation by Q40-YFP expressed in C. elegans body wall muscle cells, using quantitative approaches that have been well established for in vitro amyloid-forming systems of the type favored by the reviewer. They calculate a reaction order of just 1.6, slightly higher than what would be expected for a monomeric nucleus but nevertheless fully consistent with our own conclusions when one accounts for the following two aspects of their approach. First, the polyQ tract in their construct is flanked by short poly-Histidine tracts on both sides. These charges very likely disfavor monomeric nucleation because all possible configurations of a four-stranded bundle position the beginning and end of the Q tract in close proximity, and Q40 is only just long enough to achieve monomeric nucleation in the absence of such destabilization. Second, the protein is fused to YFP, a weak homodimer (Landgraf et al., 2012; Snapp et al., 2003). With these two considerations, our model -- which was generated from polyQ tracts lacking flanking charges or an oligomeric fusion -- predicts that amyloid nucleation by their construct will occur more frequently as a dimer than a monomer. Indeed, their observed reaction order of 1.6 supports a predominantly dimeric nucleus. Like us and others, Sinnige et al. did not observe phase separation prior to amyloid formation. This is important because it not only argues against nucleation occurring in a condensate, it also suggests that the reaction order they calculated has not been limited by the concentration-buffering effect of phase separation.

      While we agree that our conclusions rest heavily on DAmFRET data (for good reason), we do provide supporting evidence from molecular dynamics simulations, SDD-AGE, and microscopy.

      To summarize, given the extreme limitations of in vitro experiments in this field, the breadth of our current study, and supporting findings from another lab using rigorous quantitative approaches, we feel that our claims are justified without in vitro data.

      Rebuttal to the perceived incompatibility of monomeric nucleation with the existence of a critical concentration for amyloid

      We appreciate that the concept of a monomeric nucleus can superficially appear inconsistent with the fact that crystalline solids such as polyQ amyloid have a saturating concentration, but this is only true if one neglects that polyQ amyloids are polymer crystals with intramolecular ordering. The perceived discrepancy is perhaps most easily dispelled by protein crystallography. Folded proteins form crystals. These crystals have critical concentrations, and the protein subunits within them each have intramolecular crystalline order (in the form of secondary structure). To extrapolate these familiar examples to our present finding with polyQ, one need only appreciate the now well-established phenomenon of secondary nucleation, whereby transient interactions of soluble species with the ordered species leads to their own ordering (Törnquist et al., 2018). Transience is important here because it implies that intramolecular ordering can in principle propagate even in solutions that are subsaturated with respect to bulk crystallization. This is possible in the present case because the pairing of sufficiently short beta strands (equivalent to “stems” in the polymer crystal literature) will be more stable intramolecularly than intermolecularly, due to the reduced entropic penalty of the former. Our elucidation that Q zipper ordering can occur with shorter strands intramolecularly than intermolecularly (Fig. S4C-D) demonstrates this fact. It is also evident from published descriptions of single molecule “crystals” formed in sufficiently dilute solutions of sufficiently long polymers (Hong et al., 2015; Keller, 1957; Lauritzen and Hoffman, 1960).

      In suggesting that a saturating concentration for amyloid rules out monomeric nucleation, the reviewer assumes that the Q zipper-containing monomer must be stable relative to the disordered ensemble. This is not inherent to our claim and in fact opposes the definition of a nucleus. The monomeric nucleating structure need not be more stable than the disordered state, and monomers may very well be disordered at equilibrium at low concentrations. To be clear, our claim requires that the Q zipper-containing monomer is both on pathway to amyloid and less stable than all subsequent species that are on pathway to amyloid. The former requirement is supported by our extensive mutational analysis. The latter requirement is supported by our atomistic simulations showing the Q zipper-containing monomer is stabilized by dimerization (see our 2021 preprint). Hence, requisite ordering in the nucleating monomer is stabilized by intermolecular interactions. We provide in Author response image 1 an illustration to clarify what we believe to be the discrepancy between our claim and the reviewer’s interpretation.

      Author response image 1.

      That the rate-limiting fluctuation for a crystalline phase can occur in a monomer can also be understood as a consequence of Ostwald’s rule of stages, which describes the general tendency of supersaturated solutes, including amyloid forming proteins (Chakraborty et al., 2023), to populate metastable phases en route to more stable phases (De Yoreo, 2022; Schmelzer and Abyzov, 2017). Our findings with polyQ are consistent with a general mechanism for Ostwald’s rule wherein the relative stabilities of competing polymorphs differ with the number of subunits (De Yoreo, 2022; Navrotsky, 2004). As illustrated in Fig. 6 of Navrotsky, a polymorph that is relatively stable at small particle sizes tends to give way to a polymorph that -- while initially unstable -- becomes more stable as the particles grow. The former is analogous to our early stage Q zipper composed of two short sheets with an intramolecular interface, while the latter is analogous to the later stage Q zipper composed of longer sheets with an intermolecular interface. Subunit addition stabilizes the latter more than the former, hence the initial Q zipper that is stabilized more by intra- than intermolecular interactions will mature with growth to one that is stabilized more by intermolecular interactions.

      We apologize to the Pappu group for neglecting to cite Crick et al. 2013 in the current preprint. Contrary to the reviewer’s assessment, however, we find that the conclusions of this valuable study do more to support than to refute our findings. Briefly, Crick et al. investigated the aggregation of synthetic Q30 and Q40 peptides in vitro, wherein fibrils assembled from high concentrations of peptide were demonstrated to have saturating concentrations in the low micromolar range. As explained above, this finding of a saturating concentration does not refute our results. More relevant to the present work are their findings that “oligomers” accumulated over an hours-long timespan in solutions that are subsaturated with respect to fibrils, and these oligomers themselves have (nanomolar) critical concentrations. The authors postulated that the oligomers result from liquid–liquid demixing of intrinsically disordered polyglutamine. However, phase separation by a peptide is expected to fix its concentration in both the solute and condensed phases, and, because disordered phase separation is inherently faster than amyloid formation, the postulated explanation removes the driving force for any amyloid phase with a critical solubility greater than that of the oligomers. In place of this interpretation that truly does appear to -- in the reviewer’s words -- “contradict basic physical principles of how homopolymers self-assemble”, we interpret these oligomers as evidence of our Q zipper-containing self-poisoned multimers, rounded as an inherent consequence of self-poisoning (Ungar et al., 2005), and likely akin to semicrystalline spherulites that have been observed in other polymer crystal and amyloid-forming systems (Crist and Schultz, 2016; Vetri and Foderà, 2015). That Crick et al. also observed the formation of a relatively labile amyloid phase when the reactions were started with 50 uM peptide is unsurprising in light of the aforementioned kinetic advantage that large reaction volumes can confer to labile polymorphs, and that high concentrations (in this case, orders of magnitude higher than the likely physiological concentration of polyQ (Wild et al., 2015)) can favor the formation of labile amyloid polymorphs (Ohhashi et al., 2010). Indeed, a contemporaneous study by the Wetzel group using very similar peptide constructs and polyQ lengths -- but beginning with lower concentrations -- found that the relevant saturating concentrations for amyloid lie below their limit of detection of 100 nM (Sahoo et al., 2014).

      Rebuttals to other critiques

      The reviewer states that we found nucleation potential to require 60 Qs in a row. Our data are collectively consistent with nucleation occurring at and above approximately 36 Qs, a point repeated in the paper. The reviewer may be referring to our statement, ”Sixty residues proved to be the optimum length to observe both the pre- and post-nucleated states of polyQ in single experiments”. The purpose of this statement is simply to describe the practical consideration that led us to use 60 Qs for the bulk of our assays. We do appreciate that the fraction of AmFRET-positive cells is very low for lengths just above the threshold, especially Q40. They are nevertheless highly significant (p = 0.004 in [PIN+] cells, one-tailed T-test), and we will modify the figure and text to clarify this.

      The reviewer characterizes self-poisoning as the hallmark of crystallization from polymer melts, which would be problematic for our conclusions if self-poisoning were limited to this non-physiological context. In fact the term was first used to describe crystallization from solution (Organ et al., 1989), wherein the phenomenon is more pronounced (Ungar et al., 2005).

      Reviewer #2 (Public Review):

      Numerous neurodegenerative diseases are thought to be driven by the aggregation of proteins into insoluble filaments known as "amyloids". Despite decades of research, the mechanism by which proteins convert from the soluble to insoluble state is poorly understood. In particular, the initial nucleation step is has proven especially elusive to both experiments and simulation. This is because the critical nucleus is thermodynamically unstable, and therefore, occurs too infrequently to directly observe. Furthermore, after nucleation much faster processes like growth and secondary nucleation dominate the kinetics, which makes it difficult to isolate the effects of the initial nucleation event. In this work Kandola et al. attempt to surmount these obstacles using individual yeast cells as microscopic reaction vessels. The large number of cells, and their small size, provides the statistics to separate the cells into pre- and post-nucleation populations, allowing them to obtain nucleation rates under physiological conditions. By systematically introducing mutations into the amyloid-forming polyglutamine core of huntingtin protein, they deduce the probable structure of the amyloid nucleus. This work shows that, despite the complexity of the cellular environment, the seemingly random effects of mutations can be understood with a relatively simple physical model. Furthermore, their model shows how amyloid nucleation and growth differ in significant ways, which provides testable hypotheses for probing how different steps in the aggregation pathway may lead to neurotoxicity.

      In this study Kandola et al. probe the nucleation barrier by observing a bimodal distribution of cells that contain aggregates; the cells containing aggregates have had a stochastic fluctuation allowing the proteins to surmount the barrier, while those without aggregates have yet to have a fluctuation of suitable size. The authors confirm this interpretation with the selective manipulation of the PIN gene, which provides an amyloid template that allows the system to skip the nucleation event.

      In simple systems lacking internal degrees of freedom (i.e., colloids or rigid molecules) the nucleation barrier comes from a significant entropic cost that comes from bringing molecules together. In large aggregates this entropic cost is balanced by attractive interactions between the particles, but small clusters are unable to form the extensive network of stabilizing contacts present in the larger aggregates. Therefore, the initial steps in nucleation incur an entropic cost without compensating attractive interactions (this imbalance can be described as a surface tension). When internal degrees of freedom are present, such as the conformational states of a polypeptide chain, there is an additional contribution to the barrier coming from the loss of conformational entropy required to the adopt aggregation-prone state(s). In such systems the clustering and conformational processes do not necessarily coincide, and a major challenge studying nucleation is to separate out these two contributions to the free energy barrier. Surprisingly, Kandola et al. find that the critical nucleus occurs within a single molecule. This means that the largest contribution to the barrier comes from the conformational entropy cost of adopting the beta-sheet state. Once this state is attained, additional molecules can be recruited with a much lower free energy barrier.

      There are several caveats that come with this result. First, the height of the nucleation barrier(s) comes from the relative strength of the entropic costs compared to the binding affinities. This balance determines how large a nascent nucleus must grow before it can form interactions comparable to a mature aggregate. In amyloid nuclei the first three beta strands form immature contacts consisting of either side chain or backbone contacts, whereas the fourth strand is the first that is able to form both kinds of contacts (as in a mature fibril). This study used relatively long polypeptides of 60 amino acids. This is greater than the 20-40 amino acids found in amyloid-forming molecules like ABeta or IAPP. As a result, Kandola et al.'s molecules are able to fold enough times to create four beta strands and generate mature contacts intramolecularly. The authors make the plausible claim that these intramolecular folds explain the well-known length threshold (L~35) observed in polyQ diseases. The intramolecular folds reduce the importance of clustering multiple molecules together and increase the importance of the conformational states. Similarly, manipulating the sequence or molecular concentrations will be expected to manipulate the relative magnitude of the binding affinities and the clustering entropy, which will shift the relative heights of the entropic barriers.

      The reviewer correctly notes that the majority of our manipulations were conducted with 60-residue long tracts (which corresponds to disease onset in early adulthood), and this length facilitates intramolecular nucleation. However, we also analyzed a length series of polyQ spanning the pathological threshold, as well as a synthetic sequence designed explicitly to test the model nucleus structure with a tract shorter than the pathological threshold, and both experiments corroborate our findings.

      The authors make an important point that the structure of the nucleus does not necessarily resemble that of the mature fibril. They find that the critical nucleus has a serpentine structure that is required by the need to form four beta strands to get the first mature contacts. However, this structure comes at a cost because residues in the hairpins cannot form strong backbone or zipper interactions. Mature fibrils offer a beta sheet template that allows incoming molecules to form mature contacts immediately. Thus, it is expected that the role of the serpentine nucleus is to template a more extended beta sheet structure that is found in mature fibrils.

      A second caveat of this work is the striking homogeneity of the nucleus structure they describe. This homogeneity is likely to be somewhat illusory. Homopolymers, like polyglutamine, have a discrete translational symmetry, which implies that the hairpins needed to form multiple beta sheets can occur at many places along the sequence. The asparagine residues introduced by the authors place limitations on where the hairpins can occur, and should be expected to increase structural homogeneity. Furthermore, the authors demonstrate that polyglutamine chains close to the minimum length of ~35 will have strict limitations on where the folds must occur in order to attain the required four beta strands.

      We are unsure how to interpret the above statements as a caveat. We agree that increasing sequence complexity will tend to increase homogeneity, but this is exactly the motivation of our approach. We explicitly set out to determine the minimal complexity sequence sufficient to specify the nucleating conformation, which we ultimately identified in terms of secondary and tertiary structure. We do not specify which parts of a long polyQ tract correspond to which parts of the structure, because, as the reviewer points out, they can occur at many places. Hence, depending on the length of the polyQ tract, the nucleus we describe may have any length of sequence connecting the strand elements. We do not think that the effects of N-residue placement can be interpreted as a confounding influence on hairpin position because the striking even-odd pattern we observe implicates the sides of beta strands rather than the lengths. Moreover, we observe this pattern regardless of the residue used (Gly, Ser, Ala, and His in addition to Asn).

      A novel result of this work is the observation of multiple concentration regimes in the nucleation rate. Specifically, they report a plateau-like regime at intermediate regimes in which the nucleation rate is insensitive to protein concentration. The authors attribute this effect to the "self-poisoning" phenomenon observed in growth of some crystals. This is a valid comparison because the homogeneity observed in NMR and crystallography structures of mature fibrils resemble a one-dimensional crystal. Furthermore, the typical elongation rate of amyloid fibrils (on the order of one molecule per second) is many orders of magnitude slower than the molecular collision rate (by factors of 10^6 or more), implying that the search for the beta-sheet state is very slow. This slow conformational search implies the presence of deep kinetic traps that would be prone to poisoning phenomena. However, the observation of poisoning in nucleation during nucleation is striking, particularly in consideration of the expected disorder and concentration sensitivity of the nucleus. Kandola et al.'s structural model of an ordered, intramolecular nucleus explains why the internal states responsible for poisoning are relevant in nucleation.

      We thank the reviewer for noting the novelty and plausibility of the self-poisoning connection. We would like to elaborate on our finding that self-poisoning inhibits nucleation (in addition to elongation), as this could prove confusing to some readers. While self-poisoning is claimed to inhibit primary nucleation in the polymer crystal literature (Ungar et al., 2005; Zhang et al., 2018), the semantics of “nucleation” in this context warrants clarification. Technically, the same structure can be considered a nucleus in one context but not in another. The Q zipper monomer, even if it is rate-limiting for amyloid formation at low concentrations (and is therefore the “nucleus”), is not necessarily rate-limiting when self-poisoned at high concentrations. Whether it comprises the nucleus in this case depends on the rates of Q zipper formation relative to subunit addition to the poisoned state. If the latter happens slower than Q zipper formation de novo, it can be said that self-poisoning inhibits nucleation, regardless of whether the Q zipper formed. We suspect this to be the mechanism by which preemptive oligomerization blocks nucleation in the case of polyQ, though other mechanisms may be possible.

      To achieve these results the authors used a novel approach involving a systematic series of simple sequences. This is significant because, while individual experiments showed seemingly random behavior, the randomness resolved into clear trends with the systematic approach. These trends provided clues to build a model and guide further experiments.

      Reviewer #3 (Public Review):

      Kandola et al. explore the important and difficult question regarding the initiating event that triggers (nucleates) amyloid fibril growth in glutamine-rich domains. The researchers use a fluorescence technique that they developed, dAMFRET, in a yeast system where they can manipulate the expression level over several orders of magnitude, and they can control the length of the polyglutamine domain as well as the insertion of interfering non-glutamine residues. Using flow cytometry, they can interrogate each of these yeast 'reactors' to test for self-assembly, as detected by FRET.

      In the introduction, the authors provide a fairly thorough yet succinct review of the relevant literature into the mechanisms of polyglutamine-mediated aggregation over the last two decades. The presentation as well as the illustrations in Figure 1A and 1B are difficult to understand, and unfortunately, there is no clear description of the experimental technique that would allow the reader to connect the hypothetical illustrations to the measurement outcomes. The authors do not explain what the FRET signal specifically indicates or what its intensity is correlated to. FRET measures distance between donor and acceptor, but can it be reliably taken as an indicator of a specific beta-sheet conformation and of amyloid? Does the signal increase with both nucleation and with elongation, and is the signal intensity the same if, e.g., there were 5 aggregates of 10 monomers each versus 50 monomeric nuclei? Is there a reason why the AmFRET signal intensity decreases at longer Q even though the number of cells with positive signal increases? Does the number of positive cells increase with time? The authors state later that 'non-amyloid containing cells lacked AmFRET altogether', but this seems to be a tautology - isn't the lack of AmFRET taken as a proof of lack of amyloid? Overall, a clearer description of the experimental method and what is actually measured (and validation of the quantitative interpretation of the FRET signal) would greatly assist the reader in understanding and interpreting the data.

      We believe the difficulty in understanding the illustrations in Figure 1A and 1B is inherent to the subject. We agree that elaborating how DAmFRET works would help the reader, and will add a few sentences to this end. Beyond this, we refer the reviewer and readers to our cited prior work describing the theory and interpretation of DAmFRET. Note that the y-axes of DAmFRET plots are not raw FRET but rather “AmFRET”, a ratio of FRET to total expression level. As explained thoroughly in our cited prior work, the discontinuity of AmFRET with expression level indicates that the high AmFRET-population formed via a disorder-to-order transition. When the query protein is predicted to be intrinsically disordered, the discontinuous transition to high AmFRET invariably (among hundreds of proteins tested in prior published and unpublished work) signifies amyloid formation as corroborated by SDD-AGE and tinctorial assays.

      When performed using standard flow cytometry as in the present study, every AmFRET measurement corresponds to a cell-wide average, and hence does not directly inform on the distribution of the protein between different stoichiometric species. As there is only one fluorophore per protein molecule, monomeric nuclei have no signal. DAmFRET can distinguish cells expressing monomers from stable dimers from higher order oligomers (see e.g. Venkatesan et al. 2019), and we are therefore quite confident that AmFRET values of zero correspond to cells in which a vast majority of the respective protein is not in homo-oligomeric species (i.e. is monomeric or in hetero-complexes with endogenous proteins). The exact value of AmFRET, even for species with the same stoichiometry, will depend both on the effect of their respective geometries on the proximity of mEos3.1 fluorophores, and on the fraction of protein molecules in the species. Hence, we only attempt to interpret the plateau values of AmFRET (where the fraction of protein in an assembled state approaches unity) as directly informing on structure, as we did in Fig. S3A.

      We believe that AmFRET decreases with longer polyQ because the mass fraction of fluorophore decreases in the aggregate, simply because the extra polypeptide takes up volume in the aggregate.

      Yes, the fraction of positive cells in a discontinuous DAmFRET plot does increase with time. However, given the more laborious data collection and derivation of nucleation kinetics in a system with ongoing translation, especially across hundreds of experiments with other variables, ours is a snapshot measurement to approximately derive the relative contributions of intra- and intermolecular fluctuations to the nucleation barrier, rather than the barrier’s magnitude.

      We will revise the tautological statement by removing “non-amyloid containing”.

      The authors demonstrate that their assay shows that the fraction of cells with AmFRET signal increases strongly with an increase in polyQ length, with a 'threshold around 50-60 glutamines. This roughly correlates with the Q-length dependence of disease. The experiments in which asparagine or other amino acids are inserted at variable positions in the glutamine repeat are creative and thorough, and the data along with the simulations provide compelling support for the proposed Q zipper model. The experiments shown in Figure 5 are strongly supportive of a model where formation of the beta-sheet nucleus is within a monomer. This is a potentially important result, as there are conflicting data in the literature as to whether the nucleus in polyQ is monomer.

      We thank the reviewer for these comments. We wish to clarify one important point, however, concerning the correlation of our data with the pathological length threshold. As we state in the first results section, “Our data recapitulated the pathologic threshold -- Q lengths 35 and shorter lacked AmFRET, indicating a failure to aggregate or even appreciably oligomerize, while Q lengths 40 and longer did acquire AmFRET in a length and concentration-dependent manner”. Hence, most of our experiments were conducted with 60Q not because it resembles the pathological threshold, but rather because it was most convenient for DAmFRET experiments.

      I did not find the argument, that their data shows the Q zipper grows in two dimensions, compelling; there are more direct experimental methods to answer this question. I was also confused by the section that Q zippers poison themselves. It would be easier for the reader to follow if the authors first presented their results without interpretation. The data seem more consistent with an argument that, at high concentrations, non-structured polyQ oligomers form which interfere with elongation into structured amyloid assemblies - but such oligomers would not be zippers.

      Self-poisoning is a widely observed and heavily studied phenomenon in polymer crystal physics, though it seems not yet to have entered the lexicon of amyloid biologists. We were new to this concept before it emerged as an extremely parsimonious explanation for our results. As described in the text, two pieces of evidence exclude the alternative mechanism suggested by the reviewer -- that non-structured oligomers form and subsequently engage and inhibit the template. Specifically, 1) inhibition occurs without any detectable FRET, even at high total protein concentration, indicating the species do not form in a concentration-dependent manner that would be expected of disordered oligomers; and 2) inhibition itself has strict sequence requirements that match those of Q zippers. Hence our data collectively suggest that inhibition is a consequence of the deposition of partially ordered molecules onto the templating surface.

      Although some speculation or hypothesizing is perfectly appropriate in the discussion, overall the authors stretch this beyond what can be supported by the results. A couple of examples: The conclusion that toxicity arises from 'self-poisoned polymer crystals' is not warranted, as there is no relevant data presented in this manuscript. The authors refer to findings 'that kinetically arrested aggregates emerge from the same nucleating event responsible for amyloid formation', but I cannot recall any evidence for this statement in the results section.

      We restricted any mention of toxicity to the introduction and a section in the discussion that is not worded as conclusive. Nevertheless, we will soften the subheading and text of the relevant section in the discussion to more clearly indicate the speculative nature of the statements.

      We stand by our statement 'that kinetically arrested aggregates emerge from the same nucleating event responsible for amyloid formation', as this follows directly from self-poisoning.

      Bibliography

      Arseni D, Hasegawa M, Murzin AG, Kametani F, Arai M, Yoshida M, Ryskeldi-Falcon B. 2022. Structure of pathological TDP-43 filaments from ALS with FTLD. Nature 601:139–143. doi:10.1038/s41586-021-04199-3

      Bansal A, Schmidt M, Rennegarbe M, Haupt C, Liberta F, Stecher S, Puscalau-Girtu I, Biedermann A, Fändrich M. 2021. AA amyloid fibrils from diseased tissue are structurally different from in vitro formed SAA fibrils. Nat Commun 12:1013. doi:10.1038/s41467-021-21129-z

      Buell AK. 2017. The Nucleation of Protein Aggregates - From Crystals to Amyloid Fibrils. Int Rev Cell Mol Biol 329:187–226. doi:10.1016/bs.ircmb.2016.08.014

      Chakraborty D, Straub JE, Thirumalai D. 2023. Energy landscapes of Aβ monomers are sculpted in accordance with Ostwald’s rule of stages. Sci Adv 9:eadd6921. doi:10.1126/sciadv.add6921 Crist B, Schultz JM. 2016. Polymer spherulites: A critical review. Prog Polym Sci 56:1–63. doi:10.1016/j.progpolymsci.2015.11.006

      De Yoreo JJ. 2022. Casting a bright light on Ostwald’s rule of stages. Proc Natl Acad Sci USA 119. doi:10.1073/pnas.2121661119

      Hong Y, Yuan S, Li Z, Ke Y, Nozaki K, Miyoshi T. 2015. Three-Dimensional Conformation of Folded Polymers in Single Crystals. Phys Rev Lett 115:168301. doi:10.1103/PhysRevLett.115.168301

      Keller A. 1957. A note on single crystals in polymers: Evidence for a folded chain configuration. Philosophical Magazine 2:1171–1175. doi:10.1080/14786435708242746

      Landgraf D, Okumus B, Chien P, Baker TA, Paulsson J. 2012. Segregation of molecules at cell division reveals native protein localization. Nat Methods 9:480–482. doi:10.1038/nmeth.1955

      Lauritzen JI, Hoffman JD. 1960. Theory of Formation of Polymer Crystals with Folded Chains in Dilute Solution. J Res Natl Bur Stand A Phys Chem 64A:73–102. doi:10.6028/jres.064A.007

      Navrotsky A. 2004. Energetic clues to pathways to biomineralization: precursors, clusters, and nanoparticles. Proc Natl Acad Sci USA 101:12096–12101. doi:10.1073/pnas.0404778101

      Ohhashi Y, Ito K, Toyama BH, Weissman JS, Tanaka M. 2010. Differences in prion strain conformations result from non-native interactions in a nucleus. Nat Chem Biol 6:225–230. doi:10.1038/nchembio.306

      Organ SJ, Ungar G, Keller A. 1989. Rate minimum in solution crystallization of long paraffins. Macromolecules 22:1995–2000. doi:10.1021/ma00194a078

      Radamaker L, Baur J, Huhn S, Haupt C, Hegenbart U, Schönland S, Bansal A, Schmidt M, Fändrich M. 2021. Cryo-EM reveals structural breaks in a patient-derived amyloid fibril from systemic AL amyloidosis. Nat Commun 12:875. doi:10.1038/s41467-021-21126-2

      Sahoo B, Singer D, Kodali R, Zuchner T, Wetzel R. 2014. Aggregation behavior of chemically synthesized, full-length huntingtin exon1. Biochemistry 53:3897–3907. doi:10.1021/bi500300c

      Schmelzer JWP, Abyzov AS. 2017. How do crystals nucleate and grow: ostwald’s rule of stages and beyond In: Šesták J, Hubík P, Mareš JJ, editors. Thermal Physics and Thermal Analysis, Hot Topics in Thermal Analysis and Calorimetry. Cham: Springer International Publishing. pp. 195–211. doi:10.1007/978-3-319-45899-1_9

      Schmidt M, Wiese S, Adak V, Engler J, Agarwal S, Fritz G, Westermark P, Zacharias M, Fändrich M. 2019. Cryo-EM structure of a transthyretin-derived amyloid fibril from a patient with hereditary ATTR amyloidosis. Nat Commun 10:5008. doi:10.1038/s41467-019-13038-z

      Schweighauser M, Shi Y, Tarutani A, Kametani F, Murzin AG, Ghetti B, Matsubara T, Tomita T, Ando T, Hasegawa K, Murayama S, Yoshida M, Hasegawa M, Scheres SHW, Goedert M. 2020. Structures of α-synuclein filaments from multiple system atrophy. Nature 585:464–469. doi:10.1038/s41586-020-2317-6

      Snapp EL, Hegde RS, Francolini M, Lombardo F, Colombo S, Pedrazzini E, Borgese N, Lippincott-Schwartz J. 2003. Formation of stacked ER cisternae by low affinity protein interactions. J Cell Biol 163:257–269. doi:10.1083/jcb.200306020

      Törnquist M, Michaels TCT, Sanagavarapu K, Yang X, Meisl G, Cohen SIA, Knowles TPJ, Linse S. 2018. Secondary nucleation in amyloid formation. Chem Commun 54:8667–8684. doi:10.1039/c8cc02204f

      Ungar G, Putra EGR, de Silva DSM, Shcherbina MA, Waddon AJ. 2005. The Effect of Self-Poisoning on Crystal Morphology and Growth Rates In: Allegra G, editor. Interphases and Mesophases in Polymer Crystallization I, Advances in Polymer Science. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 45–87. doi:10.1007/b107232

      Vetri V, Foderà V. 2015. The route to protein aggregate superstructures: Particulates and amyloid-like spherulites. FEBS Lett 589:2448–2463. doi:10.1016/j.febslet.2015.07.006

      Wild EJ, Boggio R, Langbehn D, Robertson N, Haider S, Miller JRC, Zetterberg H, Leavitt BR, Kuhn R, Tabrizi SJ, Macdonald D, Weiss A. 2015. Quantification of mutant huntingtin protein in cerebrospinal fluid from Huntington’s disease patients. The Journal of Clinical Investigation.

      Yang Y, Arseni D, Zhang W, Huang M, Lövestam S, Schweighauser M, Kotecha A, Murzin AG, Peak-Chew SY, Macdonald J, Lavenir I, Garringer HJ, Gelpi E, Newell KL, Kovacs GG, Vidal R, Ghetti B, Ryskeldi-Falcon B, Scheres SHW, Goedert M. 2022. Cryo-EM structures of amyloid-β 42 filaments from human brains. Science 375:167–172. doi:10.1126/science.abm7285

      Zhang X, Zhang W, Wagener KB, Boz E, Alamo RG. 2018. Effect of Self-Poisoning on Crystallization Kinetics of Dimorphic Precision Polyethylenes with Bromine. Macromolecules 51:1386–1397. doi:10.1021/acs.macromol.7b02745

    1. Author Response

      Reviewer #1 (Public Review):

      This study by Park et al. describes an interesting approach to disentangle gene-environment pathways to cognitive development and psychotic-like experiences in children. They have used data from the ABCD study and have included PGS of EA and cognition, environmental exposure data, cognitive performance data and self-reported PLEs. Although the study has several strengths, including its large sample size, interesting approach and comprehensive statistical model, I have several concerns:

      • The authors have included follow-up data from the ABCD Study. However, it is not very clear from the beginning that longitudinal paths are being explored. It would be very helpful if the authors would make their (analysis) approach clearer from the introduction. Now, they describe many different things, which makes the paper more difficult to read. It would be of great help to see the proposed path model in a Figure and refer to that in the Method.

      We clarified the specific longitudinal paths explored in our study in the end of the Introduction section (line 149~160). We also added a figure of the proposed path model (Figure 1) and refer to it in the Method section (line 232~239).

      • There is quite a lot of causal language in the paper, particularly in the Discussion. My advice would be to tone this down.

      We corrected and tone-downed all causal languages used in our manuscript. Per your suggestion, we deleted statements like ‘unbiased estimates’ and used expressions such as ‘adjustment for observed/unobserved confounding’ instead.

      • I feel that the limitation section is a bit brief, and can be developed further.

      We specified additional potential constraints of our study, including limited representativeness, limited periods of follow-up data, possible sample selection bias, and the use of non-randomized, observational data. These corrections can be found in line 518~538.

      • I like that the assessment of CP and self-reports PEs is of good quality. However, I was wondering which 4 items from the parent-reported CBCL were used and how did they correlate with the child-reported PEs? And how was distress taken into account in the child self-reported PEs measurement? Which PEs measures were used?

      We believe that the Reviewer #1’s comment for the correlations between PLEs derived from PQ-BC (total score and distress score PLEs) and from CBCL (parent-rated PLEs) might have been due to the fact that she/he was referring to the prior version of our manuscript submitted to a different journal. We obtained Pearson’s correlation coefficients between the PLEs (baseline year: r = 0.095~0.0989, p<0.0001; 1-year follow-up: r = 0.1322~0.1327, p<0.0001; 2-year follow-up: r = 0.1569~0.1632, p<0.0001) and added this information in the Method section for PLEs (line 198~201).

      • What was the correlation between CP and EA PGSs?

      We also added the Pearson’s correlation between the two PGSs (r =0.4331, p<0.0001) in the Methods section for PGS (line 214~215).

      • Regarding the PGS: why focus on cognitive performance and EA? It should be made clearer from the introduction that EA is not only measuring cognitive ability, but is also a (genetic) marker of social factors/inequalities. I'm guessing this is one of the reasons why the EA PGS was so much more strongly correlated with PEs than the CP PGS. See the work bij Abdellaoui and the work by Nivard.

      We thank the reviewer for the feedback to clarify that educational attainment (EA) is not only a genetic marker of cognitive ability but also that of socioeconomic outcomes. Per your suggestion, we included the associations of EA PGS with multiple biological and socioeconomic outcomes found in prior studies (e.g., Abdellaoui et al., 2022) in the Introduction (line 131~142).

      Abdellaoui, A., Dolan, C. V., Verweij, K. J. H., & Nivard, M. G. (2022). Gene–environment correlations across geographic regions affect genome-wide association studies. Nature Genetics. doi:10.1038/s41588-022-01158-0

      • Considering previous work on this topic, including analyses in the ABCD Study, I'm not surprised that the correlation was not very high. Therefore, I don't think it makes a whole of sense to adjust for the schizophrenia PGS in the sensitivity analyses, in other words, it's not really 'a more direct genetic predictor of PLEs'.

      We conducted this adjustment considering that PLEs often precede the onset of schizophrenia. In addition, prior studies found that schizophrenia PGS is significantly associated with cognitive intelligence within psychosis patients (Shafee et al., 2018) and individuals at-risk of psychosis (He et al., 2021), and that significant distress psychotic-like experiences had greater positive correlation with schizophrenia PGS than PGS for psychotic-like experiences (Karcher et al., 2018).

      For these reasons, we thought that it is necessary to assess whether the effects of cognitive phenotypes PGS (i.e., CP PGS and EA PGS) in the linear mixed model are significant after adjusting for schizophrenia PGS. We believe our results from the mixed linear model showed the sensitivity and specificity of the association between cognitive phenotype PGS and PLEs.

      He, Q., Jantac Mam-Lam-Fook, C., Chaignaud, J., Danset-Alexandre, C., Iftimovici, A., Gradels Hauguel, J., . . . Chaumette, B. (2021). Influence of polygenic risk scores for schizophrenia and resilience on the cognition of individuals at-risk for psychosis. Translational Psychiatry, 11(1). doi:10.1038/s41398-021-01624-z

      Karcher, N. R., Paul, S. E., Johnson, E. C., Hatoum, A. S., Baranger, D. A. A., Agrawal, A., . . . Bogdan, R. (2021). Psychotic-like Experiences and Polygenic Liability in the Adolescent Brain Cognitive Development Study. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. doi:https://doi.org/10.1016/j.bpsc.2021.06.012

      Shafee, R., Nanda, P., Padmanabhan, J. L., Tandon, N., Alliey-Rodriguez, N., Kalapurakkel, S., . . . Robinson, E. B. (2018). Polygenic risk for schizophrenia and measured domains of cognition in individuals with psychosis and controls. Translational Psychiatry, 8(1). doi:10.1038/s41398-018-0124-8

      • How did the FDR correction for multiple testing affect the results?

      For all analysis results presented in our study, False Discovery Rate (FDR) correction for multiple testing compared p-values of nine key study variables: PGS (cognitive performance or educational attainment), family income, parental education, family’s financial adversity, Area Deprivation Index, years of residence, proportion of population below -125% of the poverty line, positive parenting behavior, and positive school environment. An exception was the sensitivity analysis that included schizophrenia PGS in the linear mixed model for adjustment: with another PGS variable added, FDR correction compared p-values of ten key variables. Overall, the effects of FDR correction on the results were limited; i.e., the majority of associations between the key variables and the outcomes, which were deemed highly significant, remained unchanged after the FDR correction.

      Overall, I feel that this paper has the potential to present some very interesting findings. However, at the moment the paper misses direction and a clear focus. It would be a great improvement if the readers would be guided through the steps and approach, as I think the authors have undertaken important work and conducted relevant analyses.

      We express our appreciation to the reviewer for the constructive feedback and guidance, which has significantly contributed to the improvement of our manuscript. As addressed in the preceding sections, we have implemented the necessary corrections and clarifications in response to the reviewer's suggestions. We remain open to making further amendments as needed, and thus invite any additional comments should any aspect of our revisions be deemed inadequate or inappropriate.

      Reviewer #2 (Public Review):

      This paper tried to assess the link between genetic and environmental factors on psychotic-like experiences, and the potential mediation through cognitive ability. This study was based on data from the ABCD cohort, including 6,602 children aged 9-10y. The authors report a mediating effect, suggesting that cognitive ability is a key mediating pathway in the link between several genetic and environmental (risk and protective) factors on psychotic-like experiences.

      While these findings could be potentially significant, a range of methodological unclarities and ambiguities make it difficult to assess the strength of evidence provided.

      Strengths of the methods:

      The authors use a wide range of validated (genetic, self- and parent-reported, as well as cognitive) measures in a large dataset with a 2-year follow-up period. The statistical methods have the potential to address key limitations of previous research.

      We sincerely thank the reviewer for recognizing these methodological strengths of our study. The reviewer’s positive comments are highly supportive and encouraging for us.

      Weaknesses of the methods:

      The rationale for the study is not completely clear. Cognitive ability is probably a more likely mediator of traits related to negative symptoms in schizophrenia, rather than positive symptoms (e.g., psychosis, psychotic-like symptom). The suggestion that cognitive ability might lead to psychotic-like symptoms in the general population needs further justification.

      We sincerely thank and highly appreciate the concerns that the reviewer has raised regarding our proposal that cognitive ability may serve as a mediator of psychotic-like experiences. To the best of our knowledge, it has been proposed that cognitive ability can be a mediator of positive symptoms in schizophrenia (including psychotic-like experiences), as well as negative symptoms. This mediating role of cognitive ability was proposed in several prior studies on cognitive model of schizophrenia/psychosis. Per your suggestion, we included further justification in the Introduction section of our study (line 104~107). Specifically, we highlighted that cognitive ability has been theoretically proposed as a potential mediator of genetic & environmental influence on positive symptoms of schizophrenia such as psychotic-like experiences. We refer to studies conducted by Howes & Murray (2014) and Garety et al. (2001).

      Howes, O. D., & Murray, R. M. (2014). Schizophrenia: an integrated sociodevelopmental-cognitive model. The Lancet, 383(9929), 1677-1687. doi:https://doi.org/10.1016/S0140-6736(13)62036-X

      Garety, P. A., Kuipers, E., Fowler, D., Freeman, D., & Bebbington, P. E. (2001). A cognitive model of the positive symptoms of psychosis. Psychological Medicine, 31(2), 189-195. doi:10.1017/S0033291701003312

      Terms are used inconsistently throughout (e.g., cognitive development, cognitive capacity, cognitive intelligence, intelligence, educational attainment...). It is overall not clear what construct exactly the authors investigated.

      Thank you for your comment. We corrected the term ‘cognitive capacity’ to ‘cognitive phenotypes’ throughout our manuscript. We also added in the Introduction (line 141~143) that we will collectively refer to these two PGSs of focus as ‘cognitive phenotypes PGSs’, which is similar to the terms used in prior research (Joo et al., 2022; Okbay et al., 2022; Selzam et al., 2019).

      Joo, Y. Y., Cha, J., Freese, J., & Hayes, M. G. (2022). Cognitive Capacity Genome-Wide Polygenic Scores Identify Individuals with Slower Cognitive Decline in Aging. Genes, 13(8), 1320. doi:10.3390/genes13081320

      Okbay, A., Wu, Y., Wang, N., Jayashankar, H., Bennett, M., Nehzati, S. M., . . . Young, A. I. (2022). Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals. Nature Genetics, 54(4), 437-449. doi:10.1038/s41588-022-01016-z

      Selzam, S., Ritchie, S. J., Pingault, J.-B., Reynolds, C. A., O’Reilly, P. F., & Plomin, R. (2019). Comparing Within- and Between-Family Polygenic Score Prediction. The American Journal of Human Genetics, 105(2), 351-363. doi:https://doi.org/10.1016/j.ajhg.2019.06.006

      Not the largest or most recent GWASes were used to generate PGSes.

      Thank you for mentioning this point. The reason why we were not able to use the largest GWAS for cognitive intelligence, educational attainment and schizophrenia is because (unfortunately) our study started earlier than the point when the GWAS studies by Okbay et al. (2022) and Trubetskoy et al. (2022) were published. We corrected that our study used ‘a GWAS of European-descent individuals for educational attainment and cognitive performance’ instead of the largest GWAS (line 206~208).

      It is not fully clear how neighbourhood SES was coded (higher or lower values = risk?). The rationale, strengths, and assumptions of the applied methods are not fully clear. It is also not clear how/if variables were combined into latent factors or summed (weighted by what). It is not always clear when genetic and when self-reported ethnicity was used. Some statements might be overly optimistic (e.g., providing unbiased estimates, free even of unmeasured confounding; use of representative data).

      Consistent with the illustration of neighborhood SES in the Methods section, higher values of neighborhood SES indicate risk. In the original Figure 2, higher values of neighborhood SES links to lower intelligence (direct effects: β=-0.1121) and higher PLEs (indirect effects: β=-0.0126~ -0.0162). We think such confusion might have been caused by the difference between family SES (higher values = lower risk) neighborhood SES (higher values = higher risk). Thus, we changed the terms to ‘High Family SES’ and ‘Low Neighborhood SES’ in the corrected figure (Figure 3) for clarification.

      Considering that shorter duration of residence may be associated with instability of residency, it may indicate neighborhood adversity (i.e., higher risk). This definition of the ‘years of residence’ variable is in line with the previous study by Karcher et al. (2021).

      We represented PGSs, family SES, neighborhood SES, positive family and school environment, and PLEs as composite indicators (derived from a weighted sum of relevant observed variables). To the best of our knowledge, it has been suggested from prior studies that these variables are less likely to share a common factor and were assessed as a composite index during analyses. For instance, Judd et al. (2020) and Martin et al. (2015) analyze genetic influence of educational attainment and ADHD as composite indicators. Also, as mentioned in Judd et al. (2020), socioenvironmental influences are often analyzed as composite indicators. Studies on psychosis continuum (e.g., van Os et al., 2009) suggest that psychotic disorders are likely to have multiple background factors instead of having a common factor, and notes that numerous prior research uses composite indices to measure psychotic symptoms. These are the reasons why we used components for these constructs instead of generating latent factors (which is done in the standard SEM method). On the contrary, we represented general intelligence as a common factor that determines the underlying covariance pattern of fluid and crystallized intelligence, based on the classical g theory of intelligence. We added this explanation in line 269~285.

      Moreover, during estimation, the IGSCA determines weights of each observed variable in such a way as to maximize the variances of all endogenous indicators and components. We added this explanation in the description about the IGSCA method (line 266~268).

      We deleted overly optimistic statements like ‘unbiased estimates’ and used expressions such as ‘adjustment for observed/unobserved confounding’ instead, throughout our manuscript.

      Judd, N., Sauce, B., Wiedenhoeft, J., Tromp, J., Chaarani, B., Schliep, A., ... & Klingberg, T. (2020). Cognitive and brain development is independently influenced by socioeconomic status and polygenic scores for educational attainment. Proceedings of the National Academy of Sciences, 117(22), 12411-12418.

      Karcher, N. R., Schiffman, J., & Barch, D. M. (2021). Environmental Risk Factors and Psychotic-like Experiences in Children Aged 9–10. Journal of the American Academy of Child & Adolescent Psychiatry, 60(4), 490-500. doi:10.1016/j.jaac.2020.07.003

      Martin, J., Hamshere, M. L., Stergiakouli, E., O'Donovan, M. C., & Thapar, A. (2015). Neurocognitive abilities in the general population and composite genetic risk scores for attention‐deficit hyperactivity disorder. Journal of Child Psychology and Psychiatry, 56(6), 648-656.

      van Os, J., Linscott, R., Myin-Germeys, I., Delespaul, P., & Krabbendam, L. (2009). A systematic review and meta-analysis of the psychosis continuum: Evidence for a psychosis proneness–persistence–impairment model of psychotic disorder. Psychological Medicine, 39(2), 179-195. doi:10.1017/S0033291708003814

      It appears that citations and references are not always used correctly.

      We thoroughly checked all citations and specified the references for each statement. We deleted Plomin & von Stumm (2018) and Harden & Koellinger (2020) and cited relevant primary studies (e.g., Lee et al., 2018; Okbay et al., 2022; Abdellaoui et al., 2022) instead. We also specified the references supporting the statement that educational attainment PGS links to brain morphometry (Judd et al., 2020; Karcher et al., 2021). As Okbay et al. (2022) use PGS of cognitive intelligence (which mentions the analyses results in their supplementary materials) as well as educational attainment, we decided to continue citing this reference. These corrections can be found in line 131~141.

      Strengths of the results:

      The authors included a comprehensive array of analyses.

      We thank the reviewer for the positive comment.

      Weaknesses of the results:

      Many results, which are presented in the supplemental materials, are not referenced in the main text and are so comprehensive that it can be difficult to match tables to results. Some of the methodological questions make it challenging to assess the strength of the evidence provided in the results.

      As you rightly identified, we inadvertently failed to reference Table S2 in the main text. We have since corrected this omission in the Results section for the IGSCA (SEM) analysis (line 375). The remainder of the supplementary tables (Table S1, S3~S7) have been appropriately cited in the main manuscript. We recognize that the quantity of tables provided in the supplementary materials is substantial. However, given the comprehensiveness and complexity of our analyses, which encompass a wide array of study variables, these tables offer intricate results from each analysis. We deem these results, which include valuable findings from sensitivity analyses and confound testing, too significant to exclude from the supplementary materials. That said, we are open to, and would greatly welcome, any further suggestions on how to present our supplementary results in a more accessible and digestible format. We are ready and willing to implement any necessary modifications to ensure clarity and ease of comprehension. Your guidance in this matter is highly valued.

      Appraisal:

      The authors suggest that their findings provide evidence for policy reforms (e.g., targeting residential environment, family SES, parenting, and schooling). While this is probably correct, a range of methodological unclarities and ambiguities make it difficult to assess whether the current study provides evidence for that claim.

      Impact:

      The immediate impact is limited given the short follow-up period (2y), possibly concerns for selection bias and attrition in the data, and some methodological concerns.

      We added as study limitations (line 518~538) that the impact of our findings for understanding cognitive and psychiatric development during later childhood may be limited due to the relatively short follow-up period, the possibility of sample selection bias, and the problems of interpreting analyses results from an observational study as causality (despite the novel causal inference methods, designed for non-randomized, observational data, that we used).

      As responded above, we made necessary corrections and clarifications for the points suggested by the reviewer. As we are willing to make additional revisions, please feel free to give comments if you feel that our corrections are insufficient or inappropriate.

    1. Author Response

      Reviewer #1 (Public Review):

      This manuscript reports new findings about the role of the glutamate transporter EAAC1 in controlling neural activity in the striatum. The significance is two-fold - it addresses gaps in knowledge about the functional significance of EAAC1, as well as provides a potential explanation for how EAAC1 mutations contribute to striatal hyperexcitability and OCD-associated behaviors. The manuscript is clearly presented, and the well-designed experiments are rigorously performed and analyzed. The main results showing that EAAC1 deletion increases the dendritic arbor of MSN D1 neurons and increases excitatory synaptic connectivity, as well as reduces D1-to-D1 mediated IPSCs are convincing. These results clearly demonstrate that EAAC1 deletion can alter excitatory and inhibitory synaptic function. Modelling the potential consequences for these changes on D1 MSN neural activity, and the behavior changes are interesting. Minor weaknesses include incomplete support for the conclusions about how EAAC1 regulates GABAergic transmission.

      We would like to take this opportunity to thank the reviewer. New sets of pharmacology experiments now address the minor concern about supporting the conclusions about the regulation of GABAergic transmission by EAAC1. The revised manuscript also includes new behavioral assays that allow us to examine in more depth the cell- and region-specificity of the effects of EAAC1.

      Reviewer #2 (Public Review):

      The manuscript by Petroccione et al., examines the modulatory role of the neuronal glutamate transporter EAAC1 on glutamatergic and GABAergic synaptic strength at D1- and D2-containing medium spiny neurons within the dorsolateral striatum. They find that pharmacological and genetic disruption of EAAC1 function increases glutamatergic synaptic strength specifically at D1-MSNs. They show that this is due to a structural change in release sites, not release probability. They also show that EAAC1 is critical in maintaining lateral inhibition specifically between D1-MSNs. Taken together, the authors conclude that EAAC1 functions to constrain D1-MSN excitation. Using a computational modeling technique, they posit that EAAC1's modulatory role at glutamatergic and GABAergic inputs onto D1-MSNs ultimately manifests as a reduction of gain of the input-output firing relationship and increases the offset. They go on to show that EAAC1 deletion leads to enhanced switching behavior in a probabilistic operant task. They speculate that this is due to a dysregulated E/I balance at D1-MSNs in the DLS. Overall, this is a very interesting study focused on an understudied glutamate transporter. Generally, the study is done in a very thorough and methodical manner and the manuscript is well written.

      We thank the reviewer for the thorough analysis and insightful comments on the manuscript. Our point-to-point responses to the concerns raised on the initial submission of this work are reported below:

      Major Comments/Concerns:

      Regional/Local manipulations in behavior study: The manuscript would be greatly improved if they provided data linking the ex vivo electrophysiological findings within the DLS with the behavior. Although they are using a DLS-dependent task, they are nonetheless, using a constitutive EAAC1 KO mouse. Thus, they cannot make a strong conclusion that the behavioral deficits are due to the EAAC1 dysfunction in the DLS (despite the strong expression levels in the DLS).

      Corrected - We concur with the reviewer. To address this concern, we performed new experiments to assess the cell- and regional-specificity of the effects of EAAC1 on task-switching behaviors.

      First, we repeated the behavioral assays described in Fig. 8 in two mouse lines (D1Cre/+:EAAC1f/f and A2ACre/+:EAAC1f/f) lacking EAAC1 expression in D1- or D2-MSNs, respectively (Supp. Fig. 8-1). As in the case of EAAC1+/+ and EAAC1-/- mice, when the switch time was short (<15 s), D1Cre/+:EAAC1f/f and A2ACre/+:EAAC1f/f mice collected a similar number of rewards (Supp. Fig. 8-1K, L) and performed a similar number of lever presses (Supp. Fig. 8-1M, N). As the switch time increased (30-75 s), D1Cre/+:EAAC1f/f mice collected more rewards than A2ACre/+:EAAC1f/f mice, at low and high reward probabilities (Supp. Fig. 8-1L, N). Overall, the task switching behavior of D1Cre/+:EAAC1f/f mice was similar to that of EAAC1-/- mice, whereas that of A2ACre/+:EAAC1f/f mice was similar to that of EAAC1+/+ mice (cf. Supp. Fig. 8 and Supp. Fig. 8-1). This suggests that loss of expression of EAAC1 from D1-MSNs is sufficient to reproduce the task switching behavior of EAAC1-/- mice. Because EAAC1 limits excitation onto D1-MSNs (Fig. 2, 3) and lateral inhibition between D1-MSNs (Fig. 4-6), these findings suggest that increased excitation onto D1-MSNs and reciprocal inhibition among D1-MSNs limit execution of reward-based behaviors with task-switching intervals >30s.

      Second, as noted by the reviewer, another potential limitation of the experiments performed on constitutive EAAC1-/- mice is that , on their own, they do not allow us to say whether they are due to changes in E/I onto D1MSNs within a specific domain of the striatum like the DLS. Although the DLS is recruited during task-switching, reward-based flexibility in executive control relies on neuronal activity in the VMS (Wallis 2007; Gu et al. 2008). Therefore, we asked whether limiting excitation in D1-MSNs and strengthening D1-D1 lateral inhibition via EAAC1 in the VMS could also alter reward-based task-switching behaviors. To address this question, we repeated the task switching test in EAAC1f/f mice that received stereotaxic injections of a Cre-dependent viral construct (AAV-D1Cre) that we used to remove EAAC1 expression from D1-MSNs in the DLS or VMS, respectively (Supp. Fig. 8-2). The results showed that the task switching behaviors of EAAC1f/f mice receiving AAV-D1Cre injections in the DLS or VMS were similar to each other and to those of EAAC1-/- mice, while being statistically different from those of EAAC1+/+ mice. This finding is important, as it suggests that: (i) the DLS and VMS are both recruited for the execution of task switching behaviors; (ii) the modulation of E/I onto D1-MSNs by EAAC1 may not be limited to the DLS but could extend to the VMS.

      Third, we performed further tests to examine the regional-specificity of the effects of EAAC1 in D1-MSNs. D1 receptor expressing cells are present not only throughout the striatum, but also in the substantia nigra (pars compacta and reticulata; SN) and ventral tegmental area (VTA) (Cadet et al. 2010; Savasta, Dubois, and Scatton 1986; Boyson, McGonigle, and Molinoff 1986; Wamsley et al. 1989). To determine whether lack of EAAC1 in D1expressing cells in the SN/VTA could also contribute to increased compulsivity, we repeated the task switching behavioral assays in EAAC1f/f mice that received injections of AAV-D1Cre in the SN/VTA (Supp Fig. 8-3). The task switching behavior of these mice was similar to that of EAAC1+/+ , not EAAC1-/- mice, suggesting that altering EAAC1 expression in D1-MSNS of the DLS/VMS, but not the SN/VTA, is implicated with the control of task switching of reward-based behaviors in mice.

      The results of these new sets of experiments are included in the revised version of the manuscript and their implications are reported in the Discussion section of the paper.

      Statistics used in the study: There are some missing details regarding the precise stats using for the different comparisons. I am particularly concerned that the electrophysiology studies that were a priori designed as a 2-factor analysis did not have 2-way ANOVAs performed, but rather a series of t-tests. For example, in Figure 3b, the two factors are 1) cell type and 2) genotype. Was a 2-way ANOVA performed? It is hard for me to tell from the text.

      Corrected - We apologize for any potential confusion. The statistical analysis for the experiments included in this work includes paired and unpaired t-tests, one-way ANOVA, two-way ANOVA, and ANOVA for repeated measures tests followed by post hoc t-test comparisons (reported in the text). To ensure both accuracy and readability of the manuscript, we report the results of the statistical comparisons in the main text of the manuscript, but also provide a fully detailed statistical analysis across all datasets performed in the data repository for this manuscript deposited on Open Science Framework. We revised the methods section to clarify the use of different statistical tests and values reported in the manuscript.

      Moderate Concerns:

      Control mice: I am moderately concerned that littermates were not used for controls for the EAAC1 KO, but rather C57Bl/6NJ presumably ordered from a vendor. It has been shown that issues like transit and rearing conditions can have long term effects on behavior. Were the control mice reared in house? How long was the acclimation time before use?

      Corrected - Sorry for the potential confusion. The EAAC1-/- mice are bred in house and have been backcrossed with C57BL/6J for more than 10 generations. We perform backcrossing regularly and routinely in our animal colony. The C57BL/6J are also bread in house. They are replaced every 10 generations to avoid genetic drift. Therefore, there is no concern about transit from vendors and rearing affecting the results of our experiments. This information has been added to the Methods section of the paper.

      OCD framework: I generally find the OCD framework unnecessary, particularly in the Introduction. Compulsive behaviors are not restricted to OCD. Indeed, the link between the behavioral observations and OCD phenotype seems a bit tenuous. In addition, studying the mechanisms of behavioral flexibility in and of itself is interesting. I do not think such a strong link needs to be made to OCD throughout the entirety of the paper. The authors should consider tempering this language or restricting it to the discussion and end of the abstract.

      Corrected - We concur with the reviewer and have revised the manuscript accordingly. At the end of the Abstract, we refer only to behavior flexibility. We have toned down our emphasis on OCD in the Introduction, broadening the genetic link between the gene encoding EAAC1 (SLC1A1) and neuropsychiatric diseases like OCD, ADHD and ASD. This is now limited to a single sentence. We also revised the Discussion section because we agree with the reviewer on the fact that compulsive behaviors are not limited to OCD.

    1. Author Response

      Reviewer #1 (Public Review):

      1) The model's cortical neurons had no contralateral encoding, unlike their neuroimaging data.

      This is a common point of confusion. In fact, this comment has prompted us to clarify our modeling decisions. For the CBGT pathways, we use a simplified model of isolated "action channels" that represent unique actions without specifying the true laterality of representations in the brain. As long as relatively distinct representations compete, which is what we observed in our human neuroimaging data, and as long as the populations representing the action are unique, regardless of hemisphere, our model assumptions are applicable despite the complicated lateralization of unimanual actions in reality.

      We now specify this in the main text:

      “It is important to note that, for the sake of parsimony, we adopt a simple and canonical model of CBGT pathways, with action channels that are agnostic as to the location of representations (e.g., lateralization), simply assuming that actions have unique population-level representations.”

      2) Another concern with this work is that it was unclear why the spiking neuronal network model with so many model parameters was used to account for coarse-scale fMRI data - a simple firing-rate neural population model would perhaps do the work.

      We see how using a complex, biologically realistic neural network has arguable scientific value when comparisons are coarse and made against macroscopic hemodynamic responses. However, it does have clear value for setting the stage for future work that can unravel the nuances of the mechanism involved.

      To explain our rationale, we take an upward mapping perspective, where implementation-level models at lower levels represent the detailed biophysical properties of neurons and synapses, and models at higher levels represent the emergent properties of neural networks. This approach facilitates prediction at various levels of abstraction, including molecular, cellular, behavioral, and cognitive, by leveraging lower-level models to inform higher-level ones. For example, in other work, we are testing our model in mice using D1 and D2 optogenetic stimulation. We plan to use the same neural network to inform our predictions about these results. So, the complexity of the model does have a clear purpose for informing ongoing and future work by acting as a theoretical bridge between experiments across levels of analysis and spatiotemporal resolution. In our paper, the fMRI findings are compared with predicted dynamics at a common level of abstraction. Given the difference in resolution between these two approaches, our comparison is coarse.

      To the reviewer’s concern about the number of parameters in the model, we make sure to address the dimensionality of our model in our analysis approach in the Results section:

      “To test whether these shifts in v are driven by competition within and between action channels, we predicted the network's decision on each trial using a LASSO-PCR trained on the pre-decision firing rates of the network (see Measuring neural action representations). The choice of LASSO-PCR was based on prior work building reliable classifiers from whole-brain evoked responses that maximizes inferential utility (see Wager et al. 2011). The method is used when models are over-parameterized, as when there are more voxels than observations, relying on a combination of dimensionality reduction and sparsity constraints to find the true, effective complexity of a given model. While these are not considerations with our network model, they are with the human validation experiment that we describe next. Thus, we used the same classifier on our model as on our human participants to directly compare theoretical predictions and empirical observations.”

      3) Moreover, the activity dynamics of the fMRI were not shown. It would have been more rigorous to show the fMRI (BOLD) signals in different (particularly CBGT) brain regions and compare that with the CBGT model simulations.

      The timing of the trials and the autocorrelational structure of the BOLD response make such fine-grained analysis unproductive, as the entire trial is subsumed under a single evoked response. While we sympathize with this question, the limitations of the fMRI signal restrict our resolution for evaluating intra-trial dynamics. Our follow-up work with neurophysiological recordings in rodents may help address this. Given these limitations, we now show averaged node-by-node comparisons for the simulated and human data in Fig. 3 - Fig. Supp. 5.

      4) The association between classier uncertainty and drift rate (by participants) was an order of magnitude difference between the simulated and actual participants (compare Figure 2E with Figure 4B).

      You make a valid point about the difference in effect magnitude between the model and data. The greater effect observed in the simulated data is due to several factors: 1) simulated data is not affected by the same sources of noise as human data, 2) the model is not susceptible to non-task related variance, 3) the model was used to predict associations seen in humans, and fine-tuning the model using human data would result in circular inference, and 4) the simulations used only a single experimental condition with deterministic volatility, while human experiments varied the relative value of the two options and volatility, leading to increased variance in human responses. The goal was to compare the qualitative pattern of results, and the discrepancy in magnitude is addressed in the Discussion section of the revised manuscript:

      “Careful attention to the effect size of our correlations between channel competition and drift rate shows that the effect is substantially smaller in humans than in the model. This is not surprising and due to several factors. Firstly, the simulated data is not affected by the same sources of noise as the hemodynamic signal, whose responses can be greatly influenced by factors such as heterogeneity of cell populations and properties of underlying neurovascular coupling. Additionally, our model is not susceptible to non-task related variance, such as fatigue or lapses of attention, which the humans likely experienced. We could have fine tuned the model results based on the empirical human data, but that would contaminate the independence of our predictions. Finally, our simulations only used a single experimental condition, whereas human experiments varied the relative value of options and volatility, which led to more variance in human responses. Yet, despite these differences we see qualitative similarities in both the model and human results, providing confirmation of a key aspect of our theory.”

      5) There was also a weak effect on human reaction times (Supp. Fig. 2).

      Trial-by-trial reaction times are indeed noisy. However, our estimates rely on the distribution of reaction times, rather than trial-by-trial values.

      6) There were only 4 human participants that performed the experiment - the results would perhaps be better with more human participants.

      We see where this comment arises from and we are sympathetic to the initial thought, but we should point out that our experimental design mirrors the type used in non-human primate research: collect an entire experiment’s worth of data from a single participant and replicate the effects across new participants. We have a total of 2,700 trials per participant (for a total of 10,800 trials across all participants). Each participant has the equivalent number of trials as what would be conducted per experiment in typical single run or single session experiments with a sample of ~40 participants. Our statistical power was focused on within-subjects replication, meaning that each participant can be thought of as their own independent experiment, with sufficient statistical power to address our primary research hypothesis. Thus, in our experimental design, each run is an observation, as opposed to each participant as in typical fMRI experiments, and each participant is then considered a replication test of the other participants.

      We now emphasize the statistical power on a single-subject basis in the Results section:

      “Crucially, we designed this experiment such that each participant acted as an out-of-set replication test, having performed thousands of trials individually. Specifically, to ensure we had the statistical power to detect effects on a participant-by-participant basis, we collected an extensive data set comprising 2700 trials over 45 runs from nine separate imaging sessions for each of four participants. Consequently, we amassed a grand total of 36 hours of imaging data over all participants, which was used to evaluate the replicability of our findings at the participant-by-participant level. Therefore, our statistical analyses were able to estimate effects on a single-participant basis.”

      7) For such a complex biophysical computational model, there could perhaps have been more model predictions provided.

      Using a biologically realistic neural network may not be useful for finer-grained comparisons, but it can inform future work. By mapping upward from lower-level to higher-level models, we can predict emergent properties at different levels of abstraction. The model's complexity is necessary for informing ongoing and future work, such as testing the model in other organisms. While the comparison with fMRI findings is coarse, we address the dimensionality of our model in our analysis approach.

      Reviewer #2 (Public Review):

      1) In this paper, Bond et al. build on previous behavioral modeling of a reversal-learning task. They replicate some features of human behavior with a spiking neural network model of cortical basal ganglia thalamic circuits, and they link some of these same behavioral patterns to corresponding areas with BOLD fMRI. I applaud the authors for sharing this work as a preprint, and for publicly sharing the data and code.

      Thank you for your thoughtful comments on our work! We also appreciate your recognition of our efforts to openly share our data and code.

      2) While the spiking neural network model offers a helpful tool to complement behavior and neuroimaging, it is not very clear which predictions are specific to this model (and thus dissociate it from, or go beyond, previous work). Thus, the main strength of this work (combining behavior, brain, and in silico experiments) is not fully fleshed out and could be stronger in the conclusions we can draw from them.

      We agree that further exploration of the specific predictions that our spiking neural network model offers would be valuable in order to fully delineate its contribution to the field. In our current work, we link our simulated neural network dynamics with whole-brain hemodynamic data, which limits the temporal resolution and complexity of our comparisons. We recognize that a more detailed investigation of the unique contributions of our spiking neural network model would be an important next step in order to better understand the mechanisms underlying the observed behavioral patterns. Indeed – we are currently conducting follow-up work in mice to test finer-grained predictions of cellular dynamics.

      3) It would be helpful to know more about which features of the spiking NN model are crucial in precisely replicating the behavioral patterns of interest (and to be more precise in which behaviors are replicated from previous work with the same task, vs. which ones are newly acquired because the task has changed - or the spiking CBGT model has afforded new predictions for behavior). Throughout, I am wondering if the authors can compare their results to a reasonable 'null model' which can then be falsified (e.g. Palminteri et al. 2017, TICS); this would give more intuition about what it is about this new CBGT model that helps us predict behavior. The same question about model comparison holds for the behavior: beyond relying on DIC score differences, what features of behavior can and cannot be explained by the family of DDMs?

      You raise a crucial point. In our original manuscript, we only compared the single and pairwise variants of the HDDM model and a null model predicting no change in decision policy. The drift rate model best fit the data among these comparisons.

      However, our main claim relies on the link between neural data, behavior, and the underlying cognitive process. Previously, we did not test other variants of this central linking hypothesis. To address this, we tested an alternative linking hypothesis using boundary height instead of drift rate as our target variable. We found a null association with classifier uncertainty. This definitely provides a more rigorous test of our primary hypothesis, and we thank the reviewer for raising this point.

    1. Author Response

      Reviewer #2 (Public Review):

      1) The authors in reality do not analyze oscillations themselves in this manuscript but only the power of signals filtered at determined frequency bands. This is particularly misleading when the authors talk about "spindles". Spindles are classically defined as a thalamico-cortical phenomenon, not recorded from hippocampus LFPs. Thus, the fact that you filter the signal in the same frequency range matching cortical spindles does not mean you are analyzing spindles. The terminology, therefore, is misleading. I would recommend the authors to change spindles to "beta", which at least has been reported in the hippocampus, although in very particular behavioral circumstances. However, one must note that the presence of power in such bands does not guarantee one is recording from these oscillations. For example, the "fast gamma" band might be related to what is defined as fast gamma nested in theta, but it might also be related to ripples in sleep recordings. The increase of "spindle" power in sleep here is probably related to 1/f components arising from the large irregular activity of slow wave sleep local field potentials. The authors should avoid these conceptual confusions in the manuscript, or show that these band power time courses are in fact matching the oscillations they refer to (for example, their spindle band is in fact reflecting increased spindle occurrence).

      We thank the reviewer for allowing us to clarify this subject. We completely agree with concerns raised in the comments. To avoid any confusion, we have replaced throughout the manuscript the word ‘spindle’ with ‘beta’.

      2) The shuffling procedure to control for the occupancy difference between awake and sleep does not seem to be sufficient. From what I understand, this shuffling is not controlling for the autocorrelation of each band which would be the main source of bias to be accounted for in this instance. Thus, time shifts for each band would be more appropriate. Further, the controls for trial durations should be created using consecutive windows. If you randomly sample sleep bins from distant time points you are not effectively controlling for the difference in duration between trial types. Finally, it is not clear from the text if the UMAP is recomputed for each duration-matched control. This would be a rigorous control as it would remove the potential bias arising from the unbalance between awake and sleep data points, which could bias the subspace to be more detailed for the LFP sleep features. It is very likely the results will hold after these controls, given it is not surprising that sleep is a more diverse state than awake, but it would be good practice to have more rigorous controls to formalize these conclusions.

      We are grateful to the reviewer for suggesting alternative analysis. We have used this direction, to create surrogate datasets obtained by time shifting each band and obtained their respective UMAP projections (see modified Figure 2D). Additionally, as suggested, for duration-matched controls, we have selected consecutive windows, rather than random points (Figure 2 – figure supplement 1C). UMAP projections were obtained for each duration-matched control and occupancy was computed. The text in the method section has been modified to indicate the analysis. As expected, the results were identical.

      3) Lots of the observations made from the state space approach presented in this manuscript lack any physiological interpretation. For example, Figure 4F suggests a shift in the state space from Sleep1 to Sleep2. The authors comment there is a change in density but they do not make an effort to explain what the change means in terms of brain dynamics. It seems that the spectral patterns are shifting away from the Delta X Spindle region (concluding this by looking at Fig4B) which could be potentially interesting if analyzed in depth. What is the state space revealing about the brain here? It would be important to interpret the changes revealed by this method otherwise what are we learning about the brain from these analyses? This is similar to the results presented in Figure 5, which are merely descriptions of what is seen in the correlation matrix space. It seems potentially interesting that non-REM seems to be split into two clusters in the UMAP space. What does it mean for REM that delta band power in pyramidal and lm layers is anti-correlated to the power within the mid to fast gamma range? What do the transition probabilities shown in Figures 6B and C suggest about hippocampal functioning? The authors just state there are "changes" but they don't characterize these systematically in terms of biology. Overall, the abstract multivariate representation of the neural data shown here could potentially reveal novel dynamics across the awake-sleep cycle, but in the current form of this manuscript, the observations never leave the abstract level.

      We thank the reviewer for allowing us to clarify this aspect of the manuscript. We have now edited the main text to include considerations on the biological relevance of the findings of Figure 4, 5 and 6.

      Additions to figure 4: In particular, non-REM states in sleep2 tended to concentrate in a region of increased power in the delta and beta bands, which could be the results of increased interactions with cortical activity modulated in the same range. It is also likely that such effect was induced by the exposure to relevant behavioral experience. In fact, changes in density of individual oscillations after learning have been reported using traditional analytical methods and are thought to support memory consolidation (Bakker et al., 2015; Eschenko et al., 2008, 2006). Nevertheless, while traditional methods provide information about individual components, the novel approach used here provides additional information about the combinatorial shift in the dynamics of network oscillations after learning or exploration. Thus, it provides the basis for identifying how coordinated activity among different oscillations supports memory consolidation processes, as those occurring during non-REM sleep after exploration, which cannot be elucidated using traditional analytical methods.

      Additions to figure 5: Gamma segregation and delta decoupling offer a picture of hippocampal REM sleep as being more akin to awake locomotion (with the major difference of a stronger medium gamma presence) while also suggesting a substantial independence from cortical slow oscillations. On the other hand, the across-scale coherence of non-REM sleep is consistent with this sleep stage being dominated by brain-wide collective fluctuations engaging oscillations at every range. Distinct cross frequency coupling among various individual pairs of oscillations such as theta-gamma, delta-gamma etc., have been already reported (Bandarabadi et al., 2019; Clemens et al., 2009; Hammer et al., 2021; Scheffzük et al., 2011). However, computing cross frequency coupling on the state space provides the additional information on how multiple oscillations, obtained from distinct CA1 hippocampal layers (stratum pyramidale, stratum radiatum and stratum lacunosum moleculare), are coupled with each other during distinct states of sleep and wakefulness. Furthermore, projecting the correlation matrices on 2D plane, provides a compact tool that allows to visualize the cross-frequency interactions among various hippocampal oscillations. Altogether, this approach reveals the complex nature of coupling dynamics occurring in hippocampus during distinct behavioral states

      Additions to Figure 6: We found that transitions occurring from REM-to-REM sleep and non-REM-to-non-REM sleep (intra-state transitions) are more vulnerable to plasticity after exploration as compared to inter-state transitions (such as non-REM to REM, REM-to-intermediate etc.) (Fig 6E, F). These changes in intra-state transitions were observed to be beyond randomness (Fig S9 E, F) indicating a specificity in plastic changes in state transitions after exploration. In particular, while the average REM period duration is unaltered after exploration (Fig 4G), REM temporal structure is reorganized. In fact, increased probability of REM to REM transitions indicates a significant prolongation of REM bout duration. Similarly, the increase in non-REM to non-REM transition probability reflects an increased duration of non-REM bouts. Therefore, environment exploration was accompanied by an increased separation between REM and non-REM periods, possibly as a response to increased computational demands. More in general, the network state space allows to characterize the state transitions in hippocampus and how they are affected by novel experience or learning. By observing the state transition patterns, this analytical framework allows to detect and identify state-specific changes in the hippocampal oscillatory dynamics, beyond the possibilities offered by more traditional univariate and bivariate methods. We next investigated how fast the network flows on the state space and assessed whether the speed is uniform, or it exhibits specific region-dependent characteristics.

      Reviewer #3 (Public Review):

      1) My primary concern is to provide clear evidence that this approach will provide key insights of high physiological significance, especially for readers who may think the traditional approaches are advantageous (for example due to their simplicity). I think the authors' findings of distinct sleep state signatures or altered organization of the NLG3-KO mouse could serve this purpose. However, right now the physiological significance of these results is unclear. For example, do these sleep state signatures predict later behavior performance, or is altered organization related to other functional impairments in the disease model? Do neurons with distinct sleep state signatures form distinct ensembles and code for related information?

      We are thankful to the reviewer for raising a very interesting line of questioning regarding sleep signatures and distinct ensemble. In this study, we show that sleep state signatures can predict how individual cells may participate in information processing during open field exploration. However, further analysis exploring the recruitment of neuronal ensembles are in preparation for another manuscript and is beyond the scope of this article.

      We have further modified the description of the results (as also suggested by other reviewers) to highlight the key advantages of this approach over traditional methods.

      Regarding functional impairment: as described in the manuscript, the altered organization in animal model of autism could possibly due to alterations in cellular and synaptic mechanisms as those described in previous reports (Modi et al 2019, Foldy et al 2013)

      2) For cells with different mean firing rates during exploration: is that because they are putative fast-spiking interneurons and pyramidal cells? From the reported mean firing rates, I think some of these cells are interneurons. Since mean firing rates are well known to vary with cell type, this should be addressed. For example, the sleep state signatures may be distinct for different putative pyramidal cells and interneurons. This would be somewhat expected considering prior work that has shown different cell types have different oscillatory coupling characteristics. I think it would be more interesting to determine if pyramidal cells had distinct sleep state signatures and, if so, whether pyramidal cells from the same sleep state signature have similar properties like they code for similar things or commonly fire together in an ensemble ms the number of cells in Fig. 8 may be limited for this analysis. The authors could use the hc-11 data in addition, which was also tested in this work.

      We thank the reviewer for suggesting this additional analysis to better describe the data. To this end, we have added an additional Figure in supplementary data (analysis of hc11 dataset: Figure Figure 8 – figure supplement 3), to demonstrate that interneurons and pyramidal cells have distinct sleep signatures. These findings are in agreement with dataset presented in Figure 8D, E.

      As shown in the manuscript, the spatial firing (sparsity) has large variability for cells having similar network signatures (Fig 8E). Thus, additional parameters beside oscillations may be involved in cells encoding. Different network state spaces are required to be explored in future studies to further understand this phenomenon in detail.

      We agree that investigating neuronal ensembles and state space are an interesting direction to follow. In another study (in preparation) which are investigating in detail the recruitment of neuronal ensemble by oscillatory state space. Thus, those findings are beyond the scope of this introductory article.

      3) Example traces are needed to show how LFPs change over the state-space. Example traces should be included for key parts of the state-space in Figures 2 and 3.

      We thank the reviewer for this key insight on data representation. Example traces of how LFP varies on the state space have been added (see Figure 4 – figure supplement 1).

      4) What is the primary rationale for 200ms time bins? Is this time scale sufficient to capture the slow dynamics of delta rhythm (1-5Hz) with a maximum of 1s duration?

      Time scale of binning depends on the scale of investigation. We also replicated the results with different time bins (such as 50 ms and 1 seconds) and the results are identical. For delta rhythms, with 200 ms time bins, the dynamics will be captured across multiple bins. Additionally, the binned power time series are also smoothed before obtaining projections.

      5) Since oscillatory frequency and power are highly associated with running speed, how does speed vary over the state space. Is the relationship between speed and state-space similar to the results of previous studies for theta (Slawinska and Kasicki, Brain Res 1998; Maurer et al, Hippocampus 2005) and gamma oscillations (Ahmed and Mehta J. Neurosci 2012; Kemere et al PLOS ONE 2013), or does it provide novel insights?

      We thank the reviewer for highlighting this crucial link between oscillation and locomotion. While various articles have focused on individual oscillations, the combinatorial effects of multiple oscillations from multiple brain areas in regulating the speed of the animal during exploration is definitely worth exploring with this novel approach. These set of results will be introduced in another study, currently in preparation.

      6) The separation of 9 states (Fig. 6ABC) seems arbitrary, where state 1 (bin 1) is never visited. I suggest plotting the density distribution of the data in Fig. 2A or Fig. 6A to better determine how many states are there within the state space. For example, five peaks in such a density plot might suggest five states. Alternately, clustering methods could be useful to determine how the number of states.

      We thank the reviewer for this this useful suggestion. We agree that additional clustering methods can be used to identify non-canonical sleep states. These are currently being explored in our lab and will be part of future studies. As for this dataset, the density plots are available in figure 4E, which determines how many states are in each part of the state space.

      7) The results in Fig. 4G are very interesting and suggest more variation of sub-states during non REM periods in sleep1 than in sleep2. What might explain this difference? Was it associated with more frequent ripple events occurring in sleep2?

      The reviewer is right in looking for the source of the decreased of state variability in sleep2. Considering the distribution of relative frequency power in the state space, the higher concentration in sleep 2 corresponds to higher content in the slower delta and spindle frequency bands, rather than the higher frequencies of SWRs. This result can be interpreted in the light of enhanced cortical activity (which is known to heavily recruit those bands) and possibly of enhanced cortical-hippocampal communication following relevant behavioral experience. In fact, it is also necessary to mention that with our recording setup we cannot rule out the effects of volume conductance completely, and thus we cannot exclude that the increase in the delta and spindle bands in the hippocampus were a spurious effect of purely cortical frequency modulations.

      8) The state transition results in Fig. 6 are confusing because they include two fundamentally different timescales: fast transitions between oscillatory states and slow dynamics of sleep states. I recommend clarifying the description in the results and the figure caption. Furthermore, how can an animal transition between the same sleep state (Fig. 6EF)? Would they both be in a single sleep state?

      The transitions capture the fast oscillatory scales (as they are investigated over a timeframe of 1 second). The sleep stages (REM, non-REM etc.) are used as labels from which the states originate on the state space. This allows us to characterize fast oscillatory dynamics in various sleep stages.

      Regarding same state transition: An increase in same state transition probability corresponds to increase in prolongation of that particular state, thereby altering the temporal structure of a given sleep state.

    1. Author Response

      Reviewer #1 (Public Review):

      The paper describes a robotic system that can be used for prolonged recording of forced activity in crawling Drosophila larvae. This is mostly intended to be a proof of principle description of a tool potentially useful for the community. The system - whose value lies completely in its reproducibility and adoption - is only superficially described in the paper, but a more detailed description is made available through Github, along with the software used for the collection and analysis of data.

      There is good, convincing evidence this can work as some sort of "larval conveyor belt", used to artificially prolong food crawling behaviour in the animals. More could be said about the ecological implications of the assay (for instance: how relevant is it to an animal's natural behaviour? Does the system introduce artifactual distortions in the analysis, driven by the fact that animals crawl greater distances than they would normally crawl in nature? Will this extensive activity affect their development to pupation or adulthood?).

      In addition all our code being available on GitHub, we have added substantially to Materials and Methods in the manuscript (1-1.5 pages) detailing the analysis pipeline more thoroughly.

      We agree that a more thorough comparison of ecological vs. laboratory conditions was warranted here, and have addressed this in new Discussion section material (6th paragraph especially). The developmental effect due to prolonged locomotion is a very good point – with only a single animal measured for more than 24 hours, we do not yet know whether instar molting or pupation is delayed, but this could certainly be a concern in longer experiments moving forward.

      Reviewer #3 (Public Review):

      "Continuous, long-term crawling behavior characterized by a robotic transport system" by Yu et al. presents their new robotic device to track, reposition, and feed Drosophila larvae as they crawl on an arena. By using a water droplet (or if necessary, suction) to transport larvae from the edge of the arena to the middle, long behavior trajectories can be recorded without losing larvae from the arena or camera field of view. The picker robot is also able to dispense small amounts of apple juice at precise locations to keep larvae alive for extended periods although the food was not sufficient to trigger molting and the development to the next instar stage.

      The approach is interesting, but the authors could provide more details on why the approach is necessary for non-expert readers. For example, what are the advantages of using the robot picker compared to simply confining larvae in a closed arena? It's not obvious (to me) that being picked back to the center of the arena is a smaller perturbation compared to running into a chamber wall and changing direction.

      Thank you for this suggestion, it’s a very good point. We have expanded our Introduction considerably, and directly address this issue (4th paragraph in particular). We do quantify the perturbation due to robot pick-ups and drop-offs (Fig. 3D), but that only addresses the short term. We prefer not to use a closed arena for three reasons: (1) in a gradient navigation experiment, reaching the edge would effectively end “navigation” and we would be unable to study that behavior over longer times, (2) larvae can crawl up the sides of walls and will be lost to the tracker (they do this all the time in the Petri dishes they are raised in), and (3) larvae often do not bounce off walls and resume crawling, they tend to dwell near edges they find. To this last point, we have added a new Supplemental figure (Figure 1 – supplement 1) illustrating this effect with a representative example.

      The first paragraph of the introduction emphasizes the multiple time scales that are relevant for behavior from rapid stimulus response up to developmental times. This is to set the context of the authors' contribution but I'm not sure it's a fair representation of the state of the art. For example, the authors state that high-bandwidth measurement over long times is prohibitive and cite three Drosophila papers, but there are home-cage monitoring systems that allow continuous recording of mouse behavior over long times with high resolution. At the other end of the spectrum, there have been some long-term behaviour experiments done on worm behaviour with reasonably high time resolution (e.g Stern et al. 10.1016/j.cell.2017.10.041).

      This is absolutely correct, the context needed to be much broader than our own prior larva results. We have overhauled that section and written a wider introduction that includes the C. elegans paper you mentioned, and also brings in other model systems like adult flies, mice, and rats. We frame our own work as (1) in a new animal, for long term measurements; (2) investigating non-confined free locomotion over a long time scale.

      The authors train a neural network to segment and track the larvae, however, little information is given on the training process and I don't think it would be possible to reproduce the model based on the description. More details of the network, hyperparameters, and training data would be required to evaluate it.

      Definitely! We have added a new section to Materials and Methods (1-1.5 pages in length), detailing our analysis pipeline, with sections for position tracking, postural analysis, and behavioral classification.

      The authors also state several times that larval identity is maintained throughout the recording, but this isn't quantified. It's not clear whether identity is maintained across collisions of two or more animals by the tracking algorithm or whether these collisions simply don't happen in their data because density is low.

      This has also been addressed and clarified in the same new part of the Materials and Methods section. We quantify collision rates and give the accuracy maintaining identity after collisions.

      The environment is nominally isotropic, but once larvae have been crawling on the surface for hours, including periodic feeding, there will likely be multiple gradients the larvae may sense. This may not be observable in the data, but should perhaps be mentioned in the text.

      This is certainly true. Other than the single animal 30-hour experiment described in the manuscript, there is no food introduced to the larvae during our 6-hour experiments. Looking ahead, the presence of food remnants in the arena could become a serious confounding factor in nominally isotropic experiments, as the reviewer points out. We have added substantially to the Discussion section to discuss various limitations of the design and experiments, and directly talk about the odor/taste stimuli being introduced by food (second to last paragraph in Discussion).

      The authors show that the picking action results in a small but detectable increase in speed. The degree of perturbation overall depends on the picking frequency so some quantification of the inter-pick time interval would help to interpret whether this perturbation is relevant for a particular experiment. Is there a difference in excitation when larvae are picked successfully on the first try compared to when multiple tries or suction are required?

      We have now quantified the amount of time between pickups and added that in the Materials and Methods section directly (it’s 0.87 pick-ups per hour per animal). We do not have a sufficient amount of data to determine whether there is a statistically significant difference in behavior for multiple pickup attempts – this can also be confounded because sometimes an unsuccessful pickup is one that does not touch the larva at all (so would presumably not introduce additional perturbations).

      From the reconstructed trajectory in Figure 4, this interval looks very long compared to speed increase after picking. When reconstructing the trajectory, how are the segments joined? Is it simply by resetting the xy position or also updating rotating to match the previous direction of travel? (I'm guessing the larva can rotate during transport?)

      We have updated the Figure 4 caption to make it clear that the segments are only joined translationally, by resetting the xy position.

      The authors present a simple model in Figure 6 to illustrate the differences between individuals that can be hidden when looking at population distributions. However, the differences they show in the simulation don't seem relevant to the differences they observe in the experiments. Specifically, Fig. 6A and B show a contrast between individuals with similar mean speeds compared to individuals with different (but still unimodal) mean speeds. In contrast, the experimental data in Fig. D shows individual distributions that are quite similar but that are bimodal. So, there is indeed a difference between the individual distributions that is obscured in the population distribution, but is there evidence of larval personality types (line 444)? Similarly, the sentence beginning line 381 doesn't seem right either.

      We are really glad this was brought up so that we could clarify better in the text, as it’s an important point. We have edited the text in the Results subsection related to Figure 6 and the Figure 6 caption to clear things up. The individual distributions in 6D are not bimodal, there are 38 traces shown that are all essentially unimodal. In addition to stating this directly in the text, we have quantified this by adding the average BC for individuals in both isotropic and thermal gradient contexts (they are essentially the same, i.e. equally unimodal in both cases).

    1. Author Response

      Reviewer #1 Public Review:

      1) “…The authors make reasonable assertions, but all of these need to be validated by electrophysiological studies before they can be treated as fact. Instead, they should be treated as predictions. For example, in the conclusions from the model section, that endbulb size does not strictly predict synaptic efficacy should be modified from an assertion to a prediction.”

      The reviewer makes an important point. We realize that, despite describing the data as the output of a model, we needed to be clearer that the model output is in fact a set of predictions to be tested experimentally. In the reorganization of the results, we collect the model output explicitly in a section named “Model Predictions”, and list five classes of predictions that describe explorations of bushy cells. The fifth set of predictions was previously a separate section but should now be better appreciated as conveying hypotheses since it is incorporated into this newly named section. Please note that the hypotheses are constrained to varying extents by the high-resolution structural data we present, such as the estimation of synaptic weights from the counts of synapses. The compartmental models for each bushy cell also are constrained by the structural data and published biophysical and electrophysiological properties of the cells. The pipeline to create the models is described in its own section now using that terminology: “A pipeline for translating high-resolution neuron segmentation into compartmental models consistent with in vitro and in vivo data.”, which we hope conveys the notion that the modeling framework is indeed a template that can be applied to future experimental data. We explicitly make this latter point in the new Discussion section “Toward a complete computational model for globular bushy cells: strengths and limitations”.

      Reviewer #2 Public Review:

      1) …” While this is technically impressive (in regards to both the structure and modelling) there are significant weaknesses because this integration makes massive assumptions and lacks a means of validation; for example, by checking that the results of the structural modelling recapitulate the single-cell physiology of the neuron(s) under study. This would require the integration of in vivo recorded data, which would not be possible (unless combined with a third high throughput method such as calcium imaging) and is well beyond the present study.

      We appreciate the support for our approach, and we now make explicit in the manuscript that the output of the models should be interpreted as predictions for eventual experimental testing. We also consider in the Discussion some experimental procedures that might be used to test the predictions. Ca2+ imaging is currently too slow a reporter for the rapid synaptic events and integration time constant for bushy cells, as the reviewer knows, and we think (and present in the Discussion, section 2) that focal optical stimulation simultaneous with recording from fast voltage sensors are potential avenues to achieve this goal.

      2) The authors need to be more open about the limitations of their observations and their interpretations and focus on the key conclusions that they can glean from this impressive data set.

      As indicated in response to a similar comment from Reviewer 1, we have collected and discuss the primary limitations in a new section within the Discussion, entitled “Toward a complete computational model for globular bushy cells: strengths and limitations”.

      3) The manuscript would be considerably improved by re-writing to focus the science on the most important results and provide clear declarations of limitations in interpretation.

      We have extensively re-organized and re-written the text to highlight the key structural observations (Figures 1-3, 7-8), the pipeline from structure to model (Figure 4) and interleave structural observations with the outputs of the model (Figures 5-6, 8). The latter are explicitly detailed in a new section called “Model Predictions”. These predictions are organized into five classes. We think that this new organization will improve communication of the key results, and further highlights the key discoveries from structural analysis and predicted functional mechanisms as explored in the compartmental models.

      Reviewer #3 Public Review:

      1) The authors extract here from the longer introductory commentary a one-sentence summary of the strengths of the manuscript, and thereafter focus on the weaknesses, since this document emphasizes our response to those critiques. To quote reviewer #3: “The strengths of this paper are that the authors obtained unprecedented high-resolution 3-D images of the AN-bushy cell circuit, and they implemented a biophysical model to simulate the neural processing of AN inputs based on these structural data. … The biophysical modeling, although lacking comparison with in vivo physiological data due to the chosen species (mice), is also solid and well documented.”

      We appreciate that the reviewer acknowledges the attention to detail that entered into the nanoscale imaging, cell reconstructions, building the modeling pipeline and constructing the compartmental models.

      2) Despite the high quality of the data, the paper is marred by the species they chose: there are very few published in vivo single-unit results from mouse bushy cells, so it is hard to evaluate how well the model predictions fit the real-world data, and how the structural findings address the “fundamental questions” in physiology. … No rationale (e.g. use of molecular tools or in vitro physiology) is given why the authors focus on the mouse. It seems that the analyses provided here could as well have done on a species with good low-frequency hearing, which may have provided a much more interesting case for understanding the spectacular temporal transformation performed by bushy cells.

      We now report our reasons, in the first paragraph of the Results, for selecting the mouse. One reason for choosing mouse was that biophysical properties of bushy cells, which were important parameters to constrain the compartmental models, were collected from mice. These data are collected from dissociated cells and from brain slices, and these experiments continue to be more tractable in mice. The second reason is that mice are used in nanoscale and light microscopy connectomic studies because their neurons, cell groups and entire brain are smaller, so that a given volume of imaged brain will contain more cellular elements. These other connectomic studies provide a template for eventual comparisons among brain regions. Our overall goal is to image the entire cochlear nucleus, and the size of the mouse brain makes this goal tractable given current technology. Indeed, we are currently analyzing an image volume of the more rostral ventral cochlear nucleus that is about 5x larger than this image volume and collected with a much better signal to noise ratio. The third reason for choosing mouse was so that the current project could be augmented by genetic tools to further classify cochlear nucleus (CN) neurons and their extrinsic inputs, and potentially manipulate neural circuits in future studies. For example, the atoh7 (math5) and hhip gene products are markers for subsets of bushy cells, suggesting the presence of molecular subtypes of this cell class (Jing et al. 2023).

      3) If we look at data from other animals such as cats and gerbils, it is true that high-frequency (globular) bushy cells show envelope phase locking, but compared to ANs they are at best only moderately enhanced (gerbils: Frisina et al. 1990: Fig 7 and 10; cats: Joris and Yin 1998 Fig 4); the most prominent enhancement is actually to the temporal fine structures of low-frequency bushy cells (cells tuned to < 1 kHz), which mice lack. Furthermore, the temporal modulation transfer function (tMTF, i.e. the vector strengths vs modulation frequency plots in Fig 7O of the paper) of (globular) bushy cells are mostly low-pass filtered, with a cutoff frequency close to 1 kHz, and the highest vector strength rarely surpasses 0.9 (cats: Rhode 1994 Fig 9, 16, Rhode 2008 Fig 8G, Joris and Yin 1998 Fig 7; and there's one report from mice: Kopp-Scheinpflug et al 2003 Fig 8). Thus, the band-pass tMTFs tuned to 100-200 Hz with vector strengths > 0.9 or 0.95 in this paper (Fig 7O, Fig 8M) do not really match known physiology (in non-mouse species). Again, we know very little about in vivo physiology of mouse (globular) bushy cells and there is of course a possibility that responses in mice may be closer to the predictions of this paper.

      We agree that there are (unfortunately) few studies in mouse that can be compared with our simulations. With regard to the tMTFs, we can make a couple of points. First, we note that the stimulus used for all the panels except P2 in Figure 6 (previous Figure 7) were at 15 dB SPL, which is the level where maximal envelope phase-locking occurs in the low-threshold ANF inputs. This choice was based on previous experimental work that examined the intensity dependence for SAM stimuli in the auditory nerve (Smith and Brachman, 1980; Joris and Yin, 1992; Cooper et al, 1993; Dreyer and Delgutte, 2006, Figure 2B, Figure 3). Second, Figure 6, Supplemental Figure 1 confirms the behavior of the auditory nerve model used for input to the bushy cells (Rudnicki and Hemmert (2017) implementation), replicating Zilany et al., 2009, Figure 13D. These results show that phase-locking decreases at higher intensities as expected from the experimental work. Relevant to this topic, the lone report of responses to SAM stimuli in mice (Kopp-Scheinpflug et al. 2003) used 100% SAM at CF at 80 dB SPL. At this high intensity, it is expected that the envelope phase locking at CF will be less than at lower intensities because of rate saturation in the high and medium spontaneous rate ANFs (Carney, JARO 2019; Joris and Yin, 1998). In guinea pig, envelope phase locking is greater in low-SR fibers at 80 dB SPL than in medium and high SR fibers, but it is still lower than at its peak at about 50 dB SPL (Cooper et al., 1993). All of these experimental observations therefore lead to the prediction that the SAM envelope locking in Kopp-Scheinpflug et al. (2003) should be lower than in our simulations.

      In addition, Kopp-Scheinpflug et al. (2003) did not report which VCN cell populations cells were recorded. If the recorded cells were a heterogenous mixture of bushy and multipolar cells, then their data are not directly comparable to our model predictions. The stimulus intensity also needs to be considered for comparison with the work of Rhode (1994), whose lowest stimulus level is 30 dB SPL (Figure 9), and who also used a different stimulus, 200% SAM, and with the work of Frisina et al. (1990), who used 50 dB SPL. Interestingly, Figure 14D in Rhode (1994) shows a synchrony coefficient ranging from 0.5 to 0.9 at 30 dB SPL at 300 Hz modulation, which is similar to what we predict in Figure 6P2. We also remind the reviewer that our simulations did not include the effects of feed-back inhibition at CF (Caspary and Palombi, 1994; Campagnola and Manis, 2014; Xie and Manis, 2014, Keine et al. eLife 2016), which may affect phase synchrony in complex ways (Gai and Carney, 2008). One important feedback pathways arises from the tuberculoventral cells of the DCN (Wickesberg and Oertel, 1991; Campagnola and Manis, 2014), but the envelope synchrony behavior of those cells is not known.

      Thus, we now emphasize in the revised manuscript (in the Discussion) considerations of stimulus intensity used across published studies, citing the works above, the relatively high vector strengths at low modulation frequency, and that these simulation results are currently predictive. The simulations are also limited in that we used only one configuration of ANF inputs (low-threshold, high SR). This ANF SR category was selected to be consistent with the suggestion by Liberman (1991) that the globular BCs receive input principally from the low-threshold high-SR fibers. Mixtures of input SR classes would be expected to change the envelope representation at higher intensities. Finally, the parameter space is quite large (intensity x frequency x [ANF distributions], x inhibition) and is better explored in a separate study once we are able to provide better or additional constraints to the modeling framework. Also, to put the selection of SAM stimuli in context, we indicate that mice can encode temporal fine structure although only as low at 1 kHz, but at similar VS to larger rodents such as guinea pig (Taberner and Liberman 2005; Palmer and Russell 1986).

      Reviewer 4: Public comments

      1) The authors have collected an impressive array of physiological data and provided some beautiful 3D images of SBCs with dendrites. These are clearly strengths. The computational models for mechanisms of SBC responses, however, are made to fit what may be inadequate anatomical data. Instead of conclusions, perhaps they need to reword their discussions to refer to the anatomy as hypothetical substrates.

      It is true that the SBEM image volumes have strengths and limitations. We now collect these considerations in the second section of the Discussion, “Toward a complete computational model for globular bushy cells: strengths and limitations”. One limitation of this volume is that we do not have sufficient resolution to categorize synaptic vesicles by shape and must infer their excitatory or inhibitory nature. Note that tracing inputs to a source neuron, such as tracing the endbulbs to parent auditory nerve fibers, solves this problem, but the smaller terminals remain problematic in this regard. The goal is to not only assign excitatory or inhibitory phenotype, but also a cell type of origin, so that actual spike patterns, evoked by sound, can be provided as inputs to the model. The compartmental model is detailed, and amenable to mapping this information from other experiments as it becomes available. Nanoscale imaging does provide detailed structural information in terms of surface areas, volumes and process diameters that is important in constraining the compartmental models, and that is not attainable by standard light microscopy approaches. These points are now made in the Results and in the Discussion, as mentioned earlier in this paragraph. And, as indicated in the responses to other reviewers, we highlight the model outputs as predictions to be tested experimentally.

    1. Author Response

      Reviewer #1 (Public Review):

      Ichinose et al., utilize a mixture of cultured hippocampal neurons and non-neuronal cells to identify the role of the transmembrane protein teneurin-2 (TEN-2) in the formation of inhibitory synapses along the dendritic shaft. First, they identify distinct clusters of gephyrin that are either actin-rich, microtubule-rich or contain neither actin nor microtubules and find that TEN-2 is enriched in microtubule-rich gephyrin clusters. This leads the authors to hypothesize that TEN-2 recruits microtubules (MTs) through the plus end binding protein EB1 when successfully matched with a pre-synaptic partner, and perform a variety of experiments to test this hypothesis. The authors then extend this finding to state quite strongly throughout the paper, including in the title, that TEN-2 acts as a signpost for the unloading of cargo from motor proteins without providing any supporting evidence. They use previous work to justify this conclusion, but without actual experiments to back up the claim, it seems like a reach.

      The strength of the paper lies in the various lines of evidence that the authors employ to assess the role of TEN-2 in MT recruitment and synaptogenesis. They have also been very thorough in validating the expression and functionality of various knock-in constructs, knock-down vectors and antibodies that were generated during the study. However, there are some discrepancies in the findings that have not been addressed satisfactorily, as well as some instances where the data presented is not of sufficient quality to support the conclusions derived from them.

      Firstly, we would like to express our sincere appreciation to Reviewer #1 for providing valuable feedback. We have carefully considered Reviewer #1 suggestions and have made significant improvements to the manuscript in response. Additionally, we have conducted an additional experiment to address the missing aspects identified in the initial submission. Furthermore, we have refined the focus of our investigation by narrowing down the number of aspects we aimed to prove and instead increased the number of confirmatory experiments. Specifically, we decided to give up on two aspects: the relationship between kinesins and cargo, and the immobilization of TEN2 in synapses (i.e., extracellular binding of TEN2). Instead, we focused on emphasizing the role of TEN2 as a platform for exocytosis. These modifications have significantly enhanced the quality of our research.

      1) The emphasis placed on the clustering analysis presented in figure 1 and the two associated supplementary figures is puzzling, since the conclusion derived from the results presented would be that Neuroligin 2 (NLGN2) is the strongest candidate to test for a relationship to MT recruitment at inhibitory post synapses. Instead, the authors cite prior evidence to exclude NLGN2 from subsequent analysis and choose to focus on TEN2 instead.

      We fully agree on the importance of studying NLGN2, as highlighted in the DISCUSSION section (line 463-471). While the cluster analysis suggests a correlation between NLGN2 and microtubules, previous research has reported microtubule localization outside the NLGN2 region (Uchigashima et al., 2016). However, this interpretation is based on EM observations at a single time point, so it will be important to evaluate it over time. Conversely, we had believed that further investigations are needed to explore the potential interactions between TEN2 and microtubules, because of its relatively limited characterization (line 156-161).

      2) It is difficult to reach the same conclusion as the authors from the images and intensity plot shown on Figure 2 E and F. While there seems to be an obvious reduction in expression levels between the TEN2N-L and TEN2TM constructs, neither seem to co-localize with EB1.

      As Reviewer #1 pointed out, the previous plots on Figure 2 were of very poor quality. Due to the dynamics of microtubules, evaluating interactions using fixed cells has limitations. Therefore, we decided to shift to live-imaging. Firstly, we observed a tendency for EB3 comets to pause at inhibitory postsynapses (Figures 1D-H). This suggests the presence of a microtubule recruiter at inhibitory synapses. Next, in dendrites expressing TEN2N-L, the velocity of EB3 comets was significantly faster compared to dendrites expressing TEN2TM or TEN2N-L2mut (Figures 7A-E). This suggests that the dominant-negative effect of TEN2N-L inhibits the function of endogenous microtubule recruiters. Additionally, the interaction between TEN2 and EB1/3 has been confirmed by GST pull-down (Figure 6A). Based on these reasoning, we propose that TEN2 present in inhibitory synapses plays a role as a microtubule recruiter through its interaction with EB1/3.

      3) The authors mimic the activity of TEN-2 at the inhibitory post synapse in non-neuronal cells by immobilizing HA- tagged TEN constructs in COS-7 cells as a proxy for synaptic partner matching. Using this model, they find that by immobilizing TEN2N-L, which contains EB1 binding motifs, MTs are excluded from the cell periphery (Figure 3D). This contradicts their conclusion that MTs are recruited through EB1 by TEN-2 on synaptic partner matching. Later in the paper, when they use the same TEN2N-L construct as a dominant negative in neuronal cells, they find that MTs are recruited the membrane, even if TEN2N-L is not immobilized by synaptic partner matching (Figure 6C). Taken together, these findings call into question the sequence of events driven by TEN-2 during synaptogenesis.

      We believe that the differences in the results between the COS-7 and neuron experiments are influenced by variations in the intracellular protein composition and distribution between COS-7 cells and neurons. Therefore, we consider it inappropriate to directly apply the results from COS-7 to neurons. Additionally, we attempted to replicate the experiments in neurons; however, it is worth mentioning that the culture of neurons on antibodies led to a significant decrease in cell viability. As a result, we have decided to withdraw the experiment of immobilized TEN2 using antibodies.

      4) It is unclear how the authors could conclude that TEN-2 is at the semi-periphery (?) of inhibitory post synapses from the STORM data that is presented in the paper. Figure 4D and 4F show comparisons of Bassoon and TEN-2 localization vs TEN-2 and gephyrin, but the image quality is not sufficient to adequately portray a strong distinction in the distance of center of mass, which is also only depicted for the TEN2-Gephyrin pair and not the TEN2-Bassoon pair in Figure 4J.

      The quality limitations of attempting a three-color dSTORM of TEN2-bassoon-gephyrin were addressed by modifying it to a two-color dSTORM. To confirm this modification, a two-color STORM was performed using VGAT instead of Bassoon (Figure 3E). The statement that TEN2 localizes to half of the synapse is supported by the observation of TEN2-gephyrin in the postsynaptic area. This observation aligns with the localization of microtubules at the postsynapse as observed by electron microscopy (Gulley & Reese, 1981; Linsalata et al., 2014).

      5) The authors do not satisfactorily explain why gephyrin appears to have completely disappeared in the TEN2N-L condition (Figure 6A), instead of appearing uniformly distributed as one would expect if MTs are indiscriminately recruited to the membrane by the dominant negative construct that remains unanchored.

      As pointed out by Reviewer #1, it needed to be adequately proven, and we mistakenly conflated dominant-negative and gain-of-function effects. However, through the examination of live imaging of EB3, observation of the localization of gephyrin, and the additional investigation of GABAAR localization in neurons expressing partial domains of TEN2, we found that TEN2N-L functions as a dominant-negative, inhibiting the microtubule recruitment function of endogenous TEN2 (Figure 7). On the other hand, it does not exhibit a gain-of-function effect in inducing exocytosis of GABAAR because both gephyrin and GABAAR were found to be reduced in the neurons expressing TEN2N-L (Figure 7F-H). Therefore, we have corrected this point.

      6) In a similar critique to that of Figure 2E and F, the distinction that the authors wish to portray between the effect of TEN2TM and TEN2N-L constructs on EGFP-TEN-2 and MAP2 colocalization (Figure 6 E and F) appear to be driven by a difference in overall expression levels of EGFP-TEN2 rather that a true difference in localization of TEN-2 and MTs.

      Regarding the previous co-localization of TEN2 and microtubules after permeabilization with saponin, we have removed it from the analysis because it is not possible to perform accurate quantitative analysis in this case. We speculate that this is a combination of two factors: the variation in transfection efficiency and the inherent variability in permeabilization between neurons. Specifically, it is particularly challenging to standardize and quantify the variability in permeabilization. Instead, the current version proposes TEN2-MT interaction via EBs by live imaging of EB3 in neurons expressing each partial domain. As observed in COS-7 cells where EB was overexpressed, whether TEN2 engages in continuous binding with microtubules or if it is a transient interaction remains an interesting topic for future investigation. We have mentioned this in the DISCUSSION section as well (line 415-422).

      Reviewer #2 (Public Review):

      Maturation of inhibitory synapses requires multiple vital biological steps including, i) translocation of cargos containing GABAARs and scaffolds (e.g. gephyrin) through microtubules (MTs), ii) exocytosis of inhibitory synapse proteins from cargo followed by the incorporation to the plasma membrane for lateral diffusion, and iii) incorporation of proteins to inhibitory synaptic sites where gephyrin and GABAARs are associated with actin. A number of studies have elucidated the molecular mechanisms for GABAARs and gephyrin translocation in each step. However, the molecular mechanisms underlying the transition between steps, particularly from exocytosis to lateral diffusion of inhibitory proteins, still need to be elucidated. This manuscript successfully characterizes three stages of inhibitory synapses during maturation, cluster1: an initial stage that receptors are being brought in and out by the MT system; cluster2: lateral diffusion stage; cluster 3: matured postsynapses anchored by gephyrin and actin, by quantifying the abundance of MAP2 or Actin in inhibitory synapse labeled by gephyrin. Importantly, the authors' findings suggest that TEN2, a trans-synaptic adhesion molecule that has two EB1 binding motifs, plays an important role in the transition from clusters 1 to 2, and inhibitory synapse maturation. The imaging results are impressive and compelling, these data will provide new insights into the mechanisms of protein transport during synapse development. However, the present study contains several loose ends preventing convincing conclusions. Most importantly, (1) it remains more TEN2 domain characterization on inhibitory synapse maturation, (2) further validation of the HA knock-in TEN2 mouse model is required, and (3) it requires additional physiology data that complement the authors' findings.

      First we would like to thank Reviewer #2 very much for the efforts and numerous suggestions. While it is highly appealing to comprehensively explain the function of a single synapse organizer in a step-by-step manner during synapse formation, we believe that it requires the identification of changing binding partners at each step, which is currently a challenging task. Therefore, in this paper, we have focused solely on the interaction between TEN2 and microtubules. As a result, we have discovered that TEN2 provides a platform for the exocytosis of GABAR, and this process relies on the interaction between TEN2 and microtubules. The analysis of the immobilization of TEN2, which was included in the previous version, will be part of a future publication. We also plan to continue detailed analysis of other domains. Thus, issues remain regarding the analysis of TEN2, but in order to confirm what is happening in just specific one step, we have made significant revisions in this revised manuscript, including analysis in HA knock-in neurons and electrophysiological analysis. We would greatly appreciate it if Reviewer #2 would reconsider the revised manuscript.

      Reviewer #3 (Public Review):

      In this paper, Ichinose et al. examine mechanisms that contribute to building inhibitory synapses through differential protein release from microtubules. They find that tenurin-2 plays a role in this process in cultured hippocampal neurons via EB1 using a variety of genetic and imaging methods. Overall, the experiments are generally designed well, but it is unclear whether their findings offer a significant advance. The experimental logic flow and rational difficult for readers to follow in the manuscript's current form.

      Strengths:

      1) The experiments are generally well designed overall, and appropriate to the questions posed.

      2) Several experimental methods are combined to validate key results.

      3) Use of cutting-edge technologies (i.e. STORM imaging) to help answer key questions in the paper.

      We thank Reviewer #3 for reviewing our manuscript. We sincerely appreciate the valuable feedback. The previous version of the manuscript contained numerous claims, some of which were not thoroughly validated, making it prone to reader misinterpretation. Based on the results of additional experiments, we have revised the manuscript by focusing solely on the findings that were adequately confirmed, specifically highlighting the role of TEN2 in providing a platform for GABAAR exocytosis. We are grateful for your time and effort in revisiting the revised manuscript, and we believe it meets the necessary requirements.

      Weakness:

      1) Simplifying the text and story line would go a long way to ensure the study results are more effectively communicated. Additional specific suggestions are provided in the recommendations for the authors.

      Thank you for providing valuable suggestions. Based on the results of additional experiments, we have revised our claims accordingly.

      2) The introduction overall would benefit from simplification so that the reader is given only the information they need to know to understand the question at hand.

      We selected essential information from previous studies that we believe readers should be aware of before reading our manuscript.

      3) MT dynamics are important for paper results, but the background in the paper does not appropriately introduce this topic.

      We have provided some information in lines 57-64 of the INTRODUCTION section.

      4) It is a bit unclear from the abstract and introduction how the findings of this paper have significantly advanced the field or taught something fundamentally new about how inhibitory synapses are regulated.

      Thank you for your valuable feedback. In the new version, we have thoroughly examined and emphasized the significance of our research findings.

      5) Figure 1 - Line 109, it is obscure why "it was found appropriate" to divide the data into three clusters. This section would better justified by starting with cellular functions and then basing the clusters on these functions.

      As Reviewer #3 pointed out, we have revised the classification to be based on past knowledge rather than data-driven.

      6) The proteomic screen and candidate selection is not well justified and the logic steps for arriving at TEN2 are a bit weak. Again, less is more here.

      As Reviewer #3 mentioned, we have made revisions in the new version. We have not completely excluded NLGN2, but rather believe that further examination and consideration of NLGN2 are necessary going forward (lines 463-471).

      7) Fig. 2 - The authors should consider whether EB1 overexpression would have functional consequences that alter the results and colocalization.

      The previous Figure 2, which is now Figure 6, is intended to demonstrate protein-protein interactions rather than provide functional implications. It is likely that the original function of EB1, which should be located at the plus ends of MTs, is compromised by its presence in the MT lattice. As an alternative method to demonstrate protein-protein interactions, we have also conducted GST pull-down assays (Figure 6A). From these two experimental results, we infer that the intracellular domain of TEN2 interacts with EB1. However, we have not discussed the functional implications of the TEN2-EB1 complex based on these experimental findings. The function was discussed from the results performed in Figure 7.

      8) Fig. 3 - Is immobilization of COS cells using HA tag antibodies a relevant system for study of these questions?

      We agree with this suggestion regarding the replication of the experimental systems to neurons, as the results have been successful in COS-7 cells. However, when we attempted to culture neurons on antibody-coated cover glass, the survival rate was significantly reduced. We were unable to directly replicate these systems to neurons. Therefore, we have decided to withdraw this claim from the publication.

      9) Fig. 4 - The authors should confirm post-synaptic localization in vivo (brain).

      We agree with this suggestion. Currently, our research group does not have an effective immune-labeling method for synaptic protein in the brain. This is a future challenge that we should address.

      10) Figure 4D-E - The way the STORM results are presented is confusing. The authors state is shows that TEN2 is postsynaptic but before this say that the Abs are the same size as the synaptic cleft so that the results cannot be considered conclusive. This issue should be resolved.

      To improve the quality of our dSTORM experiments, we abandon three color dSTORM and instead focused on two color dSTORM to draw conclusions (Figure 3E). We utilized VGAT to detect presynaptic sites. VGAT is an inhibitory presynaptic-specific molecule that is present at the center of presynaptic terminals, eliminating concerns about the size of the antibodies used.

      11) Figure 5 -The authors should examine the levels of gephyrin relative to the levels of knockdown given the knockdown variability.

      Thank you for your suggestion. As shown in Figure 4D of the current version, we were able to simultaneously quantify the knockdown efficiency and synaptic density. We obtained results indicating a decrease in synaptic density associated with a decrease in TEN2 expression levels.

      12) Functional validation of a reduction in inhibition following TEN2 manipulation would elevate the paper.

      We conducted live imaging of EBs to measure the changes when introducing the partial domain of TEN2 (Figures 7A-E). By observing the decrease in synaptic density and the impaired MT recruitment function of endogenous TEN2 due to the dominant-negative effect of TEN2N-L, we concluded that the TEN2-MT interaction serves as the platform for GABAR exocytosis.

      13) Figure 6E - The expression levels of TEN2TM and TEN2NL are important to the outcome of these experiments. How did the authors ensure that the levels of two proteins were the same to begin with?

      As it was also mentioned by Reviewer #1, we reply with the same answer as follows: Regarding the previous co-localization of TEN2 and microtubules after permeabilization with saponin, we have removed it from the analysis because it is not possible to perform accurate quantitative analysis in this case. We speculate that this is a combination of two factors: the variation in transfection efficiency and the inherent variability in permeabilization between neurons. Specifically, it is particularly challenging to standardize and quantify the variability in permeabilization. Instead, the current version proposes TEN2-MT interaction via EBs by live imaging of EB3 in neurons expressing each partial domain. As observed in COS-7 cells where EB was overexpressed, whether TEN2 engages in continuous binding with microtubules or if it is a transient interaction remains an interesting topic for future investigation. We have mentioned this in the DISCUSSION section as well (line 415-422).

    1. Author Response

      Reviewer #2 (Public Review):

      In this manuscript, the authors have proposed that the suppression of hepatic GPR110, known as a tumorigenic gene, could improve non-alcoholic fatty liver disease (NALFD). With AAV-mediated GPR110 overexpression or a GalNAc-siGPR110 experiment, they have suggested that GPR110 could increase hepatic lipids through SCD1.

      Major comments

      1) Although the authors claimed that GPR110 could enhance SCD1-mediated hepatic de novo lipogenesis, the level of GPR110 expression was decreased in obese mice (Figure 1E-F). However, it has been reported that the levels of de novo lipogenic genes, including SCD1, are upregulated in HFDfed mice (PMID: 18249166, PMID: 31676768). Thus, they should show the levels of hepatic lipids and lipogenic gene expression, including SCD-1, in liver tissues from NCD vs. HFD-fed mice, which will provide insights between GPR110 level and hepatic lipogenic activity.

      Thank you for the comment. The levels of hepatic lipids and lipogenic gene expression, including SCD-1, in liver tissues from NCD vs. HFD-fed mice are summarized in Supplementary Table 4 on page 63. Additionally, we measured the de novo lipogenic activity of primary hepatocytes with varying levels of GPR110 using stable isotopes 3H-acetate. The data are presented in Figure 5D on page 36 of the revised manuscript. These findings suggest that the HFD diet may affect hepatic lipid metabolism through changes in gene expression and lipid accumulation.

      2) In Figure 2, the authors have characterized metabolic phenotypes of hepatic GPR110 overexpression upon HFD, exhibiting significant phenotypes (including GTT, ITT, HOMA-IR, serum lipids, and hepatic lipid level). However, it is likely that these phenotypes could stem from increased body weight gain. Since they cannot explain how hepatic GPR110 overexpression could increase body weight, it is hard to conclude that the increased hepatic lipid level would be a direct consequence of GPR110 overexpression. Also, given the increased fat mass in GPR110 overexpressed mice, they should test whether GPR110 overexpression would affect adipose tissue. Along the same line, they have to carefully investigate the reason of increased body weight gain in GPR110 overexpressed mice (ex., food intake, and energy expenditure).

      Thank you for the comment. Firstly, we checked the expression of GPR110 in the adipose tissues of rAAV-GPR110 mice. We did not observe any change in the mRNA expression level of GPR110 in adipose tissues including SWAT, EWAT and BAT as compared to their controls (Supplementary Figure 3A on page 50). All the Ct levels for adipose GPR110 mRNA were over 40. As suggested, we use metabolic cage system to explore whether the metabolic phenotypic differences between rAAV-GFP and rAAV-GPR110 mice were due to other factors. However, we did not observe any difference in the locomotion, distance in cage locomotion, energy expenditure, daily food intake, daily water intake and respiratory exchange ratio remained similar in these two groups as shown in Supplementary Figure 3.B-G on page 50. Therefore, they shall not be the root cause of the reason of increased body weight gain in GPR110 overexpressed mice.

      3) GPR110 enhances hepatic lipogenesis via SCD1 expression (Figures 5 and 6). To verify whether GPR110 would specifically regulates SCD1 transcript, they have to provide the expression levels of other lipogenic genes, including Srebf1, Chrebp, Acaca, and Fasn.

      Thank you for the comment. As suggested, we added the expression levels of these lipogenic genes in Figure 5B-C on page 36 of the revised manuscript. In addition, we also measured the de novo lipogenic activity using primary hepatocytes with either overexpressing or knockdown of GPR110 to confirm that GPR110 enhances hepatic lipogenesis.

      4) In Figure 6, the author should provide the molecular mechanisms how GPR110 signaling could enhance SCD-1 transcription.

      Thank you for the comment. SREBP1 is a key transcription factor that regulates the expression levels of the SCD1 gene [21]. A study published in March (at the time of revising this manuscript) showed that GPR110 plays a role in mediating the activation of SREBP1 pathways by palmitic acid. This ultimately promotes the synthesis of fats in mammary gland tissues [10]. In our RNA sequencing analysis, we also found that the expression of hepatic SREBP1 was correlated with the expression of GPR110. To further investigate this relationship, we added the mRNA levels of SREBP1 in our experiments, as shown in Figure 5B-C on page 36 of the revised manuscript. Specifically, we found that the expression level of SREBP1 was increased in the GPR110 overexpression group and decreased after using ASOs to knock down hepatic GPR110 levels. These findings suggest that GPR110 regulates hepatic lipid metabolism through the SREBP1-SCD1 pathway.

      5) Figure 9C shows the increased level of GPR110 with NAFLD severity. They should test whether the levels of hepatic GPR110 and SCD-1 might be elevated in a severe NAFLD mouse model. If it is the case, it would be better to show the beneficial effects of GPR110 suppression against NAFLD progression using a severe NAFLD (ex., NASH) mouse model.

      Thank you for the comment. To further explore the expression pattern of GPR110 in a more severe NAFLD mouse model, we injected either CCl4 or STZ to induce NAFLD severity in HFD-fed mice. We found that after treating with CCl4 or STZ, the expression levels of GPR110 and SCD1 mRNAs were significantly increased compared to the control group without treatment with CCl4 or STZ (please see Figure 9F-G). We attempted to knock down the expression of hepatic GPR110 in the CCl4 or STZtreated HFD-fed mice. However, our ASOs were only effective in knocking down high levels of GPR110 mRNA in the virus mediated GPR110 expression systems (please see Figure 5 and 6). The expression level of hepatic GPR110 mRNA in HFD-fed mice after CCl4 or STZ treatment was too low to be effectively knocked down by ASOs. However, a previous study demonstrated that Gpr110-/- mice were resistant to liver tumorigenesis induced by DEN plus CCl4 injection [22]. We believe that GPR110 suppression also can prevent the progression of NAFLD in these severe NAFLD mouse models.

      Reviewer #3 (Public Review):

      In this study, the authors examined the expression of GPR110 in a HFD-fed mouse model and validated their findings in human samples. They then performed both gain- and loss-of-function studies on the cellular and systemic metabolic effects of manipulating the levels of GPR110. They further demonstrated that SCD-1 was a downstream effector of GPR110, and the effects of GPR110 could be mediated by SCD-1. This study provides a novel target in NAFLD. Overall, the data and analyses well performed and convincing. As the GPR110-SCD1-lipid metabolic phenotype axis is a central theme of the study, I would suggest that the authors further discuss the connection between GPR110 and SCD1, especially the persistent upregulation of SCD1 at late stage of HFD-fed mice (obese mouse model) when GPR110 is very low, for example, whether another regulator plays a more relevant role at this time point.

      Thank you for the comment. As SCD1 is the rate limiting enzyme catalysing the biosynthesis of monounsaturated fatty acids, a very tight and complex regulation of SCD1 gene expression in response to various parameters including hormonal and nutrient factors is reported [23]. HFD treatment itself can induce the expression of hepatic SCD1 [21, 23, 24], and our study demonstrated that the expression of SCD1 can be further increased by overexpressing GPR110 in the liver of HFDfed mice (Fig. 9F and G on page 44) that will contribute to the acceleration and aggravation of NAFLD. The discussion of the connection between GPR110 and SCD1was presented on page 21, lines 455-464.

    1. Author Response

      Reviewer #1 (Public Review):

      The manuscript by Huang, Li, et al. describes the identification of variants in the gene coding for p31 comet, a protein required for silencing the spindle assembly checkpoint or SAC, in women with recurrent pregnancy loss upon IVF. In three families mutations affecting splicing or expression of full-length protein were identified. The authors show that oocytes of the patients arrest in meiosis I, are most likely to fail to inactivate the SAC without a fully functional p31 comet. Indeed, the metaphase I arrest occurring in mouse oocytes upon overexpression of Mad2 can be rescued by overexpression of wild-type p31 comet, but not a truncated version. Injection of wt p31 comet into 6 human oocytes from one patient rescued the meiosis I arrest.

      Main points:

      The fact that inactivation of the SAC is required for anaphase I onset in human oocytes is not novel. Biallelic mutations of TRIP13 were shown to lead to the same phenotype (Zhang et al. Am J. Hum Gen., 2020).

      As pointed out by the editors and both other reviewers, the strength of this study is highlighted by the identification of genetic variants responsible for oocyte meiosis I arrest in human patients. As a fact, very few genetic variants that cause female oocyte meiotic failure are identified (Ref: Qing Sang, et al. Understanding the genetics of human infertility. Science. 2023). In this study, we for the first time reported the novel deleterious p31comet variants causing human oocyte MI arrest. Without exploring the etiological landscape of human genetic variants, it is impossible to comprehensively invent diagnostic and therapeutic approaches for female patients.

      No new mechanistic insights are obtained.

      To gain the molecular mechanism, we have optimized and performed a modified Smart-seq2 protocol using frozen single-cell human oocytes (Page 11 and Figure 4-figure supplement 1). These data were in well agreement with the phenotypes as reported.

      The authors propose a role for female fertility, however, also a male patient with a p31 comet variant is sterile.

      This manuscript focuses on screening the genetics variants responsible for the oocyte failure in female patients, rather than male patients. In addition, we had difficulties with collection of more detailed information from this male patient because he rejected to provide the consent to us. We currently only have limited information after we tried every effort to get in touch with the male patient. We have added more discussion in the MS. Certainly, further exploration of the roles of MAD2L1BP variants in the male meiosis, for example, by collection of a cohort of male patients’ samples with meiotic defects, would be an interesting direction in the future, but this is beyond the scope of this study.

      The fact that the C-terminus of p31 comet is required for interaction with Mad2 and hence, turning off the SAC, is already known.

      The interaction between p31comet and Mad2 is known in somatic cells, but not in oocytes. As it is widely known that the oocytes are distinct from somatic cells in that the SAC in oocytes is not effective because oocytes can proceed to anaphase I in the presence of even one unattached kinetochore, as compared with somatic cells. We provided evidence that the overexpression of Mad2 can only be rescued by overexpression of wild-type p31comet, but not the truncated p31comet variant in both mouse and human oocytes (Fig.3 and 4), which sufficiently characterized the causative roles of p31comet variants underlying female infertility.

      Reviewer #2 (Public Review):

      In this manuscript by Huang et al. the authors explore the genetic underpinnings that may cause human oocyte meiotic arrest. The meiotic arrest of oocytes can cause female infertility leading patients to seek treatment at IVF clinics to assist in having genetically related babies. However, because oocytes fail to develop to MII, oocytes from these patients cannot be fertilized, leaving no current options for genetically related babies for patients with this pathology. Huang et al identified 50 IVF patients with this phenotype, and after the whole exome sequence, 3 patients had mutations in a spindle assembly checkpoint regulator, Mad1bp1. This study describes these mutations in detail, shows how these mutations affect Mad1bp1 expression, evaluates gross function in mouse oocytes, and explores therapeutic treatment in human oocytes. Overall, this is an important translational study that adds to the growing body of literature that genetic mutations impact oocyte quality and fertility.

      Thank you for your favorable comments.

      In its current form, I find that the strengths exist in the analysis of the patients' genomes and pedigree information. This is unique data and is important for the field. The expression in oocytes, structure modeling, and conservation in evolution, while not essential for this study, add interesting information for the reader to consider. I sometimes find these distracting in manuscripts, but appreciate them here in this context. The conclusion using human oocytes to propose possible treatment takes the study to completion and is not an easy approach to carry out.

      Thank you for your positive comments on this manuscript.

      I do find some weaknesses that weaken the conclusions. The conclusion described is that the SAC is not satisfied in oocytes from these patients. The authors attempt to show this by analysis of mouse oocytes using polar body extrusion and its timing as an assay. There could be many reasons contributing to arrest, therefore a singular assay is not ideal to justify the conclusions. While I do suspect the authors are correct, an intact SAC should be shown at the molecular level to fully justify this conclusion. There are many assays routinely performed in mouse oocytes that the authors can consider (check papers by authors from Wassmann, FitzHarris, and Schindler labs for example).

      Thanks for your good comments. Following your advice, we have performed the immunofluorescence assay to evaluate the SAC integrity using mouse oocytes by microinjection of WT and Mut Mad2l1bp cRNA, which clearly validated the intact SAC activation with Mut Mad2l1bp cRNA injection. Please see the reply as detailed below.

      Reviewer #3 (Public Review):

      The spindle checkpoint ensures the accuracy of chromosome segregation by sensing unattached kinetochores during mitosis and meiosis and delays the onset of anaphase. Unattached kinetochores catalyze the conformational activation of the latent open MAD2 (O-MAD2) to the active closed MAD2 (C-MAD2). C-MAD2 is then incorporated into the mitotic checkpoint complex (MCC), which inhibits the anaphase-promoting complex or cyclosome (APC/C) to delay anaphase. When all kinetochores are properly unattached, the MAD2-binding protein p31comet and the ATPase TRIP13 extract C-MAD2 from the MCC, leading to MCC disassembly and the conversion of C-MAD2 back to O-MAD2. This action turns off the spindle checkpoint, resulting in APC/C activation and anaphase onset. Cells deficient in p31comet exhibit mitotic delays.

      In the current study, Huang et al. have linked p31comet mutations to female infertility. Biallelic loss-of-function alleles of p31comet cause delays in the exiting metaphase of meiosis I and polar body extrusion. The p31comet mutant proteins contain C-terminal truncations and fail to bind to MAD2. Reintroducing full-length p31comet into patient oocytes can bypass the metaphase arrest. Together with a previous study that showed biallelic mutations of TRIP13 caused female infertility, this work established a critical role of the p31comet-TRIP13 module in regulating meiotic progression during oogenesis. As such, this is a significant study.

      Thank you for the very positive comments on this manuscript.

    1. Author Response

      Reviewer #1 (Public Review):

      This work reports an important demonstration of how to predict the mutational pathways to antimicrobial resistance (AMR) emergence, particularly in the enzyme DHFR (dihydrofolate reductase). Epistasis, or non-additive effects of mutations due to their background dependence, is a major confounding factor in the predictability of protein evolution, including proteins that confer antimicrobial resistance. In the first approach, they used the Rosetta to predict the mutant DHFRdrug binding affinity and the resulting selection coefficient, which then became inputs to a population genetics model. In the second approach, they use the observed clinical/environmental frequency of the variants to estimate the selection coefficient. Overall, this work is a compelling demonstration that a mechanistic model of the fitness landscape could recapitulate AMR evolution; however, considering that the number of mutations and pathways is small, a more compelling description of the robustness of the results and/or limitations of the model is needed.

      Major strengths:

      1) This is a compelling multi-disciplinary work that combines a mechanistic fitness landscape of DHFR (previously articulated in literature and cited by the authors), Rosetta to determine the biophysical effects of mutations, and a population genetics model.

      2) The study takes advantage of extensive data on the clinical/environmental prevalence of DHFR mutations.

      3) Provides a careful review of the surrounding literature.

      Major weakness:

      1) Considering that the number of mutations and pathways being recapitulated is rather small, I would suggest a more detailed description of the robustness of the results. For example:

      a) Please report the P-value for the correlation of the predicted DDG_{binding, theory} and DDG_{binding, experimental}.

      We thank the reviewer for the suggestion. We agree the available experimental data is small, limiting the statistical power of the Pearsons correlation test to determine how well Flex ddG predicts binding free energy change. However, as highlighted in the manuscript, two earlier studies by Aldeghi et al. 2018 & 2019 considered much larger datasets and found a correlation in a similar range to the one we found here. Furthermore, as suggested by the Reviewer, we carried out a onesided T-test with alternative hypothesis that the correlation is greater than 0 and found a p-value of 0.040, suggesting the correlation we observed is significant. We have included this test and p-value to the Results section.

      If interested in showing the correct assignment of mutational effects, perhaps use a contingency matrix to derive a P-value.

      As suggested by the Reviewer, we used a contingency matrix known as a confusion matrix to determine how accurate Flex ddG is at classifying mutations as stabilising or destabilising. This gave an accuracy of 0.89, sensitivity of 0.83 and a specificity of 1. The p-value associated with this continency table was 0.14, despite the high accuracy, sensitivity and specificity. This is likely due to the small sample size making it difficult to determine significance. This analysis has been included in the Results section.

      b) Although the DDG_binding calculation in Rosetta seems to converge (Appendix figures 3 and 4), I do not think the DDG values before equilibration should be included in the final DDG estimate. In practice, there is a "burn in" number of runs where the force field optimizes the calculation to account for potential clashes in the structure, etc. This is particularly important since the starting structures are modeled from homology. Consequently, the distributions of DDG that include the equilibration runs are multimodal (Appendix figure 2), which means that calculating an average may be inappropriate.

      Each Flex ddG prediction is independent (see Figure 1 of Barlow et al. 2018 for a summary of the Flex ddG method), i.e. the distribution of values does not represent a MCMC process in which there is a burn-in in order to equilibrate. The structures of both the wild-type and mutant are equilibrated in each run using the backrub algorithm. The reason so many runs are required is because each prediction is from a distribution of possible ddG values associated with that specific mutation and the authors of Flex ddG suggest running 35 runs or more and taking the average of the distribution. Therefore, in order to get an accurate prediction, enough simulations must be run per mutation to adequately characterise the distribution so that the average converges to a constant value.

      2) The geographical areas over which the mutational pathways are independently estimated are not isolated, allowing for the potential that an AMR variant in one region arose due to "migration" from another area. For example, the S58R-S117N is the most frequent double mutant of PvDHFR in geographically proximate Southern/Southeastern Asia (Fig. 4). To a certain extent, similar mutational patterns occur for PfDHFR in Southern/Southeastern Asia (Fig. 3). Although accounting for mutant migration in the model may be beyond the scope of the study, a clear argument for the validity of the "isolated island" assumption is needed.

      The Reviewer is correct that some variants in one region may have arisen due to “migration” from another area. This would impact the method for inferring mutational pathways from regional isolate frequency data but not when considering the worldwide population. If this occurred, we would expect to see a multiple mutant appearing in a region without the precursor (single, double etc) mutations, even in the case of large sample size. However, this does not seem to have been an issue for the pathways we have been predicting here. If it were the case that a variant migrated, and the precursor mutations could not be found in that region, we could look to mutations from neighbouring regions to infer the pathway, under the assumption of migration.

      We have added some discussion on this between lines 517-523:

      “When inferring pathways at a regional level, it is possible we may encounter instances where genotypes with multiple mutations are observed in a specific region, but the precursor mutations in the pathway are absent. This could happen either due to insufficient sampling of the region or due to "migration" of the variant from a neighbouring region. To infer pathways in the former case more samples would be required, whereas in the latter case we can look to the data from neighbouring regions where the variant is present and use the frequency data of the precursor mutations.”

    1. Author Response

      Reviewer #2 (Public Review):

      1) Analytical approaches are in the current form preliminary and not enough to draw firm biological conclusions. While the datasets are large (which is highly appreciated), they represent a relatively early stage of ENS development and possible differences between vagal and sacral-derived populations could partially be attributed to difference in maturity. Maturity will surely not explain the whole difference observed but needs to be factored into the interpretation. As scRNA-seq datasets from the mature chicken ENS are lacking (as well as detailed IHC-based neural classification system) the inference made in the paper between molecular classes and functional types are premature.

      We appreciate this comment and think it is an excellent suggestion that we definitely plan to do. This made us realize that we failed to clarify in the text why we chose this particular time point for our study, which is two-fold.

      First, we are particularly interested in how neural crest cells choose their prospective fates. E10 is a time when the post-umbilical gut has been completely populated by both vagal and sacral neural crest cells for 2 days so cells are in the process of differentiation but there still exists a large precursor pool. For this reason, we can capture both precursors and some differentiated neuronal subtypes. We have clarified this point in the revised manuscript and now focus much more on the precursor population to identify both genes that are common to vagal and sacral neural crest cells as well as those that are distinct. This enables us to formulate testable hypotheses for the role of potential role of particular transcription factors is allocation of cell fate. Of particular interest, we find that at E10, the sacral neuronal precursor pool is largely depleted whereas the vagal crest has a substantial neuronal precursor pool. Thus, we believe this is the perfect time point for initial analysis.

      Second and perhaps even more important, in the US, chick embryos are not considered vertebrates until after E10. Thus, E10 represents the last timepoint we can raise embryos without animal approvals which are not currently in hand. We completely agree that performing experiments at later timepoints will be incredibly valuable and therefore are now applying for approvals. But realistically, these take several months and thus would delay publication of our datasets (already delayed due to Covid restrictions) for at least another year. Therefore, we propose to publish the mature dataset as a Research Advance that would focus on differences between mature neuronal subtypes between preumbilical vagal, post-umbilical vagal and sacral datasets that would nicely complement the current work. Instead, we have refocused this paper on the precursor to differentiated neuron transition.

      I should mention that this refocusing seems particularly important given that our original aim was to explore differences between vagal and sacral neural crest contributions to the gut. However, the single cell data reveals strong overlap between sacral and vagal neural crest contributions to the postumbilical gut, suggesting a strong environmental influence on cell fate decisions.

      Specific concerns:

      1) Analysis of scRNA-sequenced sacral- versus vagal-derived ENS reveals clusters consistent with a non-ENS identity (endothelial, muscle, vascular and more). Previous studies in mouse using the neural crest tracing line Wnt1-Cre has not demonstrated such diverse progenies of neural crest from any region. An exception being a small population of mesenchymal-like cells (Ling and Sauka-Spengler, Nat Cell Biol. 2019; Zeisel et al., Cell 2018; Morarach et al., 2021; Soldatov et al., Science 2019). Therefore, the claimed broad potential of 6 of 13 neural crest giving rise to diverse gut cell populations warrants more validating experiments.

      We thank the reviewer for this comment. We clarify that hematopoetic clusters have dropped out upon reanalysis. The other clusters we believe are real based on gene markers used in previous studies to identify cell types such as neural crest-derived melanocytes like Mlana, Dct, and Mitf.

      2) Several earlier studies have revealed that parts of the ENS is derived from neural crest that attach to nerve bundles, obtain a schwann cell precursor-like identity and thereafter migrate into the gut (Uesaka et al. J Neurosci 2015 and Espinosa-Medina et al, PNAS 2017). The current work in chicken needs to be interpretated in the light of these findings and the publications should be discussed in relevant sections of the introduction and discussion.

      Thank you for this suggestion. We agree and indeed our data cannot differentiate between SCPs, which are neural crest-derived, versus early migrating neural crest cells. We have added this point to the discussion and also discuss these papers in more detail.

      3) The analysis indicates the presence of melanocytes. It is not clear why they are part of the GI-tract preparations. Could they correspond to another cell type, with partially overlapping gene expression profile as melanocytes?

      We have assigned these as melanocytes based on expression of Mlana, Mitf, and Dct as highly upregulated genes. These have been used in previous studies to identify neural crest derived melanocytes in the heart (Chen et al., 2021)

      4) As evident, the sacral- and vagal-derived ENS are not clonally related. To decipher differentiation paths and relations between clusters, individual analysis of the different datasets are needed. With only one UMAP representing the merged datasets combined with little information on markers, it is hard to evaluate the soundness of the conclusions regarding cell-identities of clusters and lineage differentiation.

      This is an excellent suggestion and we apologize for not including this previously. We have now added individual pre-umbilical vagal, post-umbilical vagal and sacral neural crest datasets as well as trajectory analysis for each.

      5) E10 is a relatively early stage in chicken ENS development. Around E7, the intestines do not contain differentiated neurons even. The relative high expression of Hes5 (marking mature enteric glia in the mouse; Morarach et al., 2021) in the vagal neural crest population might be explained by the more mature state of vagal versus sacral ENS. As also outlined below, Th/Dbh are known to be transiently expressed in the developing ENS why they could indicate the relative immaturity of sacral neural crest rather than differential neural identities. These issues need to be taken into account when interpreting biology from scRNA-seq data.

      We completely agree. We now clarify that we are particularly interested in how neural crest cells choose their prospective fates. We chose the E10 time point because this reflects a time point when the post-umbilical gut has been completely populated by both vagal and sacral neural crest cells for 2 days so cells are in the process of differentiation but there still exists a large precursor pool. For this reason, we can capture both precursors and some differentiated neuronal subtypes. Notably, the sacral derived precursors seem to be glial in flavor whereas neuronal precursors appear to be absent. We have clarified this point in the revised manuscript.

      6) Unlike the guineapig, and to some extent pig and murine ENS, the physiology of chicken enteric neurons has not been well characterized yet. Therefore, it is highly advisable to refrain from a nomenclature of clusters designating functions. Several key molecular markers are known to differ between murine, guineapig, rat and human systems. IPANs are a good example where differential expression is seen (SST in human but not mice; CGRP labels some IPANS in mouse, but not in guineapig, where Tac1 instead is expressed). IPANs are not defined in the chicken very well, and molecular markers found in other species may not be valid. Adrenergic and noradrenergic neurons have not been validated in the ENS (although, TH and Dbh have been observed in the especially in the submucosal ENS). Cholinergic neurons are also mentioned in the text, but do not appear in the figures as a defined group.

      Another reason to refrain from functional nomenclature is that a rather early stage is analysed in the present study, without possibilities to compare with scRNA-seq data from the mature chicken ENS (which was performed in Morarach et al, 2021 for the mouse). Recent data suggest that considerable differentiation may occur even in postmitotic neurons, and several markers are known to display a transient expression pattern (TH, DBH and NOS1; Baetge and Gershon 1990; Bergner et al., 2014; Morarach et al., 2021) why caution should be taken to infer neuronal identities to clusters.

      This is an excellent point and we thank the reviewer for this valuable input. Accordingly, we have now renamed the clusters based on prominent gene expression rather than neuronal or precursor subtype. Indeed we struggled with finding appropriate names making this comment all the more useful.

      7) The immunohistochemical analysis (Figure 5,6) is an essential complementary addition and validation of scRNA-seq. However, it is very difficult to discern staining when magenda and red are combined to display coexpression.

      Good point. This has been changed to be more readily discernible and higher magnification views have been added.

      8) To give more information to the field and body of evidence for claims made, quantifications relating to the analysis in Figures 5 and 6 are warranted as well as an expanded set of marker genes that align with the scRNA-seq results.

      Good point. We have added additional markers as suggested. In terms of quantitation, we can include numbers of labeled cells in a particular region but this may give a false impression of degree of contribution since we are using different viruses for vagal vs sacral that may have different titers making it a bit like comparing apples and oranges. We now emphasize that our labeling approach does not mark the entire population and that the degree of labeling can be variable.

      9) Correlations between genes and functions/neuron class are in many cases wrong (including Grm3, Gad1, Nts, Gfra3, Myo9d, Cck and more).

      Good point. We have toned this down.

      10) Attempts to subcluster neuronal populations are needed (Figure 7). However, to understand the biology, it is important to address which cells are sacral versus vagal-derived. Additionally, related to previous comment, as the vagal and sacral neurons are not clonally related, it would be important to make separate analysis of neurons relating to each region.

      Good point. We have added additional analysis to address this important point in what is now Fig 6 and in particular validated sacral contributions to glial cells (new Fig 8).

    1. Author Response

      Reviewer #2 (Public Review):

      In this study, Yang et al. used single-cell technology to construct the cell profiles of normal and pathological ligaments and identified the critical cell subpopulations and signaling pathways involved in ligament degeneration. The authors identified four major cell types: fibroblasts, endothelial cells, pericytes, and immune cells from four normal and four pathological human ligament samples. They further revealed the increased number of fibroblast subpopulations associated with ECM remodelling and inflammation in pathological ligaments. In addition, the authors further resolved the heterogeneity of endothelial and immune cells and identified an increase in pericyte subpopulations with muscle cell characteristics and macrophages in pathological ACL. Ligand-receptor interaction analysis revealed the involvement of FGF7 and TGFB signaling in interactions between pathological tendon subpopulations. Spatial transcriptome data analysis also validated the spatial proximity of disease-specific fibroblast subpopulations to endothelial and macrophages, suggesting their interactions in pathological ligaments. This study offers a comprehensive atlas of normal and pathological cells in human ligaments, providing valuable data for understanding the cellular composition of ligaments and screening for critical pathological targets. However, more in-depth analyses and experimental validation are needed to enhance the study.

      1) In this study, the authors performed deconvolution analysis between bulk RNA sequencing results and scRNA-seq results (L204-L208). However, the analysis of this section is not sufficiently in-depth and the authors failed to present the proportion of different cell subpopulations of the bulk sequencing samples to further increase the reliability of the results of the single cell data analysis.

      Thank you for the suggestion. We selected the top 50 Degs in each subpopulation of scRNA-seq, and scored the gene sets at the bulk RNA sequencing data level by GSVA method, so as to present the proportion of different cell subpopulations of the bulk sequencing samples to some extent. The results illustrated that, in the bulk RNA-seq data, fibroblast subpopulations (fibroblast 1,2,8,9) scored higher in the diseased group than in the normal group and fibroblast subpopulations (fibroblast 3,4) scored higher in the normal group than in the diseased group, which are consistent with the results of scRNA-seq.

      2) In results 5, the authors should clearly describe whether the analysis is based only on pathological subpopulations of ligament cells or includes a mixture of normal and pathological subpopulations; the corresponding description should also be indicated in Figure 5. Besides, although the authors claimed that "the TGF-β pathway was involved in many cell-cell interactions among fibroblasts subpopulations and macrophages", Figure 5C displayed that the CD8+NKT-like cells displayed the most TGFB signaling interactions with fibroblasts subpopulations.

      Thank you for your great questions. In results 5, our analysis is based on the mixture of normal and diseased subpopulations. We have also added a description of the data sample in the corresponding position in our manuscript.

      As for the question of the TGF-β pathway in cell-cell interaction analysis, we claimed that “the TGF-β pathway was involved in many cell-cell interactions among fibroblasts subpopulations and macrophages”, because we took into account the proportion of each subpopulation of immune cells. Macrophages are the largest subpopulation of immune cells, and the number of macrophages is significantly increased in the degenerative group, suggesting that they are closely related to disease progression. However, the proportion of CD8+NKT-like cells in immune cells was very small, and the number of them was basically unchanged between the normal and diseased groups. So, macrophages are the focus of our attention, and after comprehensive analysis, we did not mention the strength TGFB signaling interactions of CD8+NKT-like cells.

      3) In result 6, the authors performed spatial transcriptome sequencing, however, the sample numbers were relatively limited, with only one sample from each group; in addition, the results of this part failed to correlate and correspond well with the single-cell results. The subgroups labelled in L382 and L384 should be carefully checked. Besides, expression data of FGF7 and TGFB ligand and receptor molecules based on the spatial transcriptomes should be added to further confirm the critical signalling pathway in regulating the cellular interactions in pathological ACL.

      Thanks for your reminding. The purpose of our spatial transcriptome sequencing (spRNA-seq) was to verify the scRNA-seq results, so only one representative sample from each group was selected for spRNA-seq. We believe that the results of our spRNA-seq were correlated and corresponded well with the scRNA-seq results. The scRNA-seq results were validated on the spRNA-seq data using marker transfer and spotlight methods, respectively. The results showed that more fibroblast4 in the normal group and more fibroblast9 in the diseased group of the scRNA-seq data were also consistent in the distribution of spRNA-seq samples. As shown in the spotlight plots, the more fibroblast subsets (fibroblast1,2,8,9) identified in the scRNA-seq data of the disease group were more widely distributed in the spRNA-seq sample of the disease group, and were closer to endothelial cells and immune cells in spatial location. We have revised the subgroups labelled in L382 and L384.

      According to your suggestions, FGF7 and TGFB related ligand and receptor genes were mapped on spRNA-seq data, and the results were consistent with the results of cellchat analysis in scRNA-seq.