Imagine you are deaf and blind
Imagínate vivir en condición de discapacidad visual y auditiva, dependiendo exclusivamente de otras personas para lograr una traducción del mundo que te rodea.
Tu percepción está moldeada por la información que otros eligen compartir contigo y cómo la interpretan. Esta traducción no es neutral; está impregnada de sesgos, prioridades, y limitaciones.
Los algoritmos de Inteligencia Artificial, actúan como traductores de datos a decisiones y también presentan sesgos. Pero, ¿qué sucede cuando esas traducciones fallan o privilegian ciertas perspectivas sobre otras?
Los algoritmos, en su esencia, son cuerpos digitales que interpretan, procesan y deciden. Sin embargo, estos cuerpos no existen en el vacío. Son creados por humanos, influenciados por sus propias experiencias, limitaciones, y sesgos. En este sentido, la Inteligencia Artificial no solo traduce datos, sino también las prioridades y omisiones de quienes la diseñan.
El sesgo algorítmico es un reflejo directo de cómo ciertos cuerpos son sistemáticamente silenciados o malinterpretados en los datos. Por ejemplo, los sistemas de reconocimiento facial han mostrado tasas significativamente más altas de error al identificar rostros de personas negras o mujeres, lo que deriva en daños irreversibles como acusaciones falsas o vigilancia excesiva. Estos errores no son solo técnicos; son éticos, porque los cuerpos afectados no solo son datos mal clasificados, sino personas que cargan con las consecuencias.
Las decisiones de diseño, como qué categorías incluir o qué diferencias ignorar, traducen las vidas de las personas en formatos legibles para una máquina, pero a menudo lo hacen de forma reductiva. Por ejemplo, nombres o características culturales pueden ser transformados o eliminados debido a limitaciones en la estructura del sistema. Estas decisiones, aunque aparentemente técnicas, tienen implicaciones en la forma en que los cuerpos son reconocidos o desestimados en los espacios sociales y legales.
La traducción sirve como intermediación no sólo lingüística sino como transformara de problemas complejos del mundo real en un modelo simplificado que una máquina pueda procesar. Sin embargo, esta traducción no es neutral ni universal. Es un proceso moldeado por el lenguaje, el contexto cultural, y las prioridades del equipo de desarrollo.
Al igual que en la traducción entre idiomas, traducir problemas sociales en modelos de Inteligencia Artificial implica decisiones sobre qué preservar, qué transformar, y qué descartar. Un equipo de desarrollo que no comprende las complejidades culturales del contexto que está modelando puede introducir sesgos significativos.
En muchas ocasiones, los sistemas de Inteligencia Artificial traducen las identidades humanas en categorías discretas, ignorando las complejas intersecciones de raza, género, clase y otras variables. Por ejemplo, una Inteligencia Artificial diseñada para ser justa con mujeres o con personas negras podría ignorar las experiencias específicas de las mujeres negras, perpetuando la exclusión de aquellos en las intersecciones de estas categorías.
Los algoritmos tienen un impacto físico y tangible en los cuerpos humanos. Desde negaciones de crédito hasta vigilancia injusta, estos sistemas afectan de manera desproporcionada a los grupos marginados.
La diversidad en los equipos de desarrollo debe ir más allá de una métrica. Es esencial incluir las voces y experiencias de aquellos más afectados por los sistemas algorítmicos.
Las decisiones de diseño deben basarse en un profundo entendimiento cultural y social. Esto implica consultar a expertos locales y a las comunidades afectadas para garantizar que la Inteligencia Artificial refleje sus realidades, en lugar de distorsionarlas.
Las instituciones que implementan IA deben abrir sus sistemas a auditorías públicas, permitiendo que las comunidades afectadas cuestionen y revisen los algoritmos que moldean sus vidas.
Ninguna Inteligencia Artificial es neutral ni perfecta. Las empresas deben ser transparentes sobre las limitaciones de sus modelos y educar a los usuarios en la identificación y mitigación de sesgos.