3 Matching Annotations
- May 2019
-
shodhganga.inflibnet.ac.in shodhganga.inflibnet.ac.in
-
All computer software facilities were provided by the NII computer centre.
-
Computer software.
-
-
sg.inflibnet.ac.in sg.inflibnet.ac.in
-
3.0–5.0, phosphate buffer for pH 6.0–8.0 and Tris-HCl buffer for pH 9.0) were used. •pH stability: The pH stability of the selected tannases was examined in the range of 3.0–9.0 by incubating the enzyme samples for 6 h in different buffers. Tannase activity was estimated under standard assay conditions. •Temperature tolerance: Temperature tolerance of the tannases was examined by assaying their activity at different temperatures in the range of 20 to 80ºC. •Temperature stability: Temperature stability of the tannases was determined by incubating them in the temperature range of 20 to 70 ºC for 6 h. After the incubation tannase activity (%) was determined under standard assay conditions. •Organic solvent stability: In order to determine the suitability of the selected tannases for organic synthesis, their stability was determined in different organic solvents. Experimentally, 10 mg of each of the crude lyophilized tannase from the selected cultures were mixed with 1.0 ml of the following organic solvent: a) Hexane b) Methanol c) Propanol d) Isoamyl alcohol e) Petroleum ether f ) Chloroform The mixture was incubated for 6 h at optimal temperature and the organic solvents were then decanted and the residues were dried in a vacuum desiccator. These dried samples were dissolved in 1.0 ml of citrate phosphate buffer (50 mM, pH 5.0) and the tannase activity was determined under standard assay conditions. The tannase activity thus obtained from each culture were compared with initial tannase activity. Finally, on the basis of tannase titres produced per ml and desirable biochemical properties, the best tannase producer was selected for further investigations
-