32 Matching Annotations
- May 2019
-
shodhganga.inflibnet.ac.in shodhganga.inflibnet.ac.in
-
β- galactosidase assay was performed in a 96 well format. Briefly, 4000-5000 cells were plated in 96 well tissue culture coated plate. Cells were transfected with reporter plasmid after 18 -24 hrs and after 48 hrs the cells were washed once with D-PBS. 50μl of lysis buffer was added to the well and cells were lysed by freezing plate at -70°C and thawing at 37°C. Cells were pipette up and down and then the plate was centrifuged at 9000 X g for 5 minutes. The supernatant from each plate was transferred to clean eppendorf tube. Immediately prior to assay the ONPG cocktail was prepared as below: 47 μl 0.1 M sodium phosphate (pH 7.5)22 μl 4 mg/ml ONPG1 μl 100X Mg solution30μl of each well extract was added to microtitre well plate and70μl of ONPG cocktail was added to each well. The plate was kept on ice throughout the procedure. After addition of ONPG cocktail the plate was transferred to 37°C and the development of colour was monitored every 10 minutes for development of color. After development of yellow colour, the reaction was stopped by addition of 150μl of 1M sodium carbonate to each well
-
ethanol has dried. The pellet was resuspended in 20 μl of milliQ water and 20 μg/ml RNase added. The tube was incubated at 50°C for 45 min. the tube was vortexed for few seconds. Quality of the plasmid DNA was then accessed by running 1% agarose gel.
-
Overnight Grown culture was pelleted by centrifugation at 10,000g at 4°C for 3 min and the supernatant was discarded. Pellet was resuspended in 250 μl of ice-cold alkaline lysis solution 1. 300 μl of alkaline solution 2 was then added and the tube was inverted gently 3-4 times and incubated at room temperature for 5 min. 350 μl of ice cold solution 3 was added and mixed by inverting the tube rapidly for 3 or 5 times. Suspension was incubated on ice for 10 min. Bacterial lysate was spun at 10,000g for 12 min at 4°C. Supernatant was transferred to a fresh tube. 0.4 volume of phenol: chloroform was added to the supernatant and the contents mixed. It was then spun at 10,000g at 4°C for 12 min. Aqueous phase was taken out in a fresh tube and 0.6 volume of isopropanol was added, mixed properly and incubated at room temperature for half an hour followed by spinning at 10,000g at RT for 20 min. Supernatant was discarded. Pellet was washed with 70% ethanol. The tube was stored at room temperature until the
-
-
shodhganga.inflibnet.ac.in shodhganga.inflibnet.ac.in
-
Protein concentrations were estimated by the method of Bradford (1976). The A595wasmeasured after complexation with Bradford reagent. Bovine serum albumin was usedas standard against whichthe unknown protein concentrations were estimated
-
TheDNA samples were mixed with appropriate volumes of 6 X loading dye (0.25%bromophenol blue and 0.25% xylene cyanol and 30% glycerol in water) and subjectedto electrophoresis through 0.8 to 1 % agarose gel in TAE buffer. The gel was stained in1 μg/ml ethidium bromide solution for 15-min at room temperature and visualised byfluorescence under UV-light in a UV-transilluminator
-
Competent cells for high efficiency transformations were prepared by a method ofInoue et al. (1990) with few modifications. An overnight culture of the strain (routinelyDH5α) was sub-cultured into fresh sterile LB-brothin 1:100 dilutions and grown at 18ºC to an A600of 0.55. The cells were harvested by centrifugation at 2500 rpm for 10-min at 4ºC. This was re-suspended in 0.4 volumes of INOUE buffer and incubated inice for 10 min. The cells were recovered by centrifugation at 2500 rpm at 4ºC for 10-min and finally re-suspended in 0.01 volume of the same buffer. Sterile DMSO wasadded to a final concentration of 7%. After incubating for 10-min in ice, the cells werealiquoted in 100 μl volumes, snap frozen in liquid nitrogen and stored at –70ºC
-
-
sg.inflibnet.ac.in sg.inflibnet.ac.in
-
For TEM, C. glabrata cells were digested with zymolyase 20T for 3 h at 30◦C, centrifuged at 1,000 g and washed with YPD medium. Cell fixation was performed as described for SEM and dehydrated samples were embedded in araldite 6005 resin. After complete polymerization at 80 ̊C for 72 h, ultra-thin (50-70 nm) sections were preparedwith a glass knife on Leica Ultra cut (UCT-GA-D/E-1/00)microtomeand mounted on copper grids. Aqueous uranyl acetate-stained and Reynolds lead citrate-counterstained samples were viewed under Hitachi H-7500 transmission electron microscope
-
Cell wall β-glucan measurement was carried out as describedpreviously with some modifications(Kapteynet.al.,2001). Briefly, cell wall fractions were washed multiple times with 1 N NaCl. Washed cell walls were boiled twice in 50 mM Tris-HCl(pH 7.8) containing 2% SDS, 100 mM Na-EDTA and 40 mM β-mercaptoethanol for 5 min to remove non-covalently linked proteins and other contaminants. SDS-treated cell wall fraction was collected and rinsed thrice with water. For β-glucan isolation, cell wallswere extracted three times, each for 1 h, in 0.5 ml 3% NaOH at 75 ̊C and centrifuged at 1,200 g.All 3% NaOH supernatant fractions were saved for isolation of mannan as described below. 3% NaOH-extractable cell wall pelletwasneutralized twice in 100 mM Tris-HCl (pH 7.5) and once in 10 mM Tris-HCl (pH 7.5) and digested with 5 mg/ml zymolyase-20T in 10 mM Tris-HCl (pH 7.5) for 14-16 h at 37 ̊C. This treatment liberates approximately 90-95% glucose into the supernatant. Total glucan content in the cell wall was measured by estimating glucose from both the solubilised supernatant and zymolyase-20T insoluble pellet fractions with phenol-sulphuric acid carbohydrate estimation method using purified glucose as the standard
-
Vacuole membraneswere isolatedwith slight modifications of Cabrera’s method(Cabrera et.al.,2008). Log-phase, YPD medium-grown cells wereinoculated in 1 lt YPDmedium to an initialOD600of 0.1. Cells were incubated at 30 ̊C with shaking at 200 rpm till the cell density reached to OD600of 0.8-1.0.Cells were harvested by centrifugation at 5,000 g and washed once with 30 ml 2% ice-cold glucose solution. Cells were incubated in 15 ml solution containingglycine-NaOH(50 mM; pH10)andDTT(2 mM) at 30 ̊C for 10 min. After incubation, cells were normalized to adensity of1000OD600and resuspendedin 15 ml spheroplasting buffer containing 10-15mg of zymolyase20T.Cells were incubated at 30 ̊C for 45-60 minor till the spheroplasting was completed.Spheroplasts werecollected by centrifugation at 4,500 rpmfor 5 minat 4 ̊C, washed gently with15 ml 1.2 M sorbitol solutionandresuspendedin 3.5 ml 15%ficoll solution made in PS buffercontaining 1X protease inhibitor cocktail. This suspension was homogenized on ice with 20-25 strokes in a loose-fitting Dounce homogenizer. Homogenate was transferred to an ice-cold,ultra-clear Beckman ultracentrifuge tube, overlaid witha gradient of3 ml 8%ficoll solution, 2.5 ml 4%ficoll solutionand 2.5 ml PS buffer lacking ficoll and centrifuged at 1,10,000g(30,000 rpm)for 90 minat 4 ̊Cin a pre-cooled Beckman ultracentrifuge with SW41-Ti swinging bucket rotor.Centrifugation was carried out with slow acceleration and deceleration settings.White creamy vacuole membrane layer wascollected from the interfaceof 0and4% ficoll gradientwithout mixing the layers.Total protein concentration in thevacuole fraction was estimated using BCAprotein assay kit as described earlier
-
Estimation of total glycogen in cells was performed asdescribed previously (Parrou et al., 1997) with slightmodifications.Briefly, YPD medium-grown C. glabratacells were harvested, washed once with 1 ml ice-cold waterandresuspendedin 250 μl sodium carbonate(0.25 M)solution. After incubation at95 ̊C for 4 hin water bath with occasional stirring, cell suspension was cooled and pH of the suspension was adjusted to 5.2 by adding 150 μl 1 M acetic acid. Tothis suspension,600 μl 0.2M sodium acetatewas added and cell suspension was incubated with 1-2 U/ml of α-amyloglucosidase from A.niger(Sigma #A7420)at 57 ̊C for overnight with constant agitation.Resultant glucose liberated by α-amyloglucosidase digestion was collected in the supernatant fraction and quantifiedby phenol-sulphuric acid methodof carbohydratedetermination.For quantification, commercially available purified glucose was used as a standard and total glycogen incells was expressed as μg/2 x 107cells tonormalizeagainstcell density
-
dithiothreitol and1X protease inhibitor cocktail. Cell suspension was rapidly frozen at -80 ̊C,thawed and lysed with 0.5mm acid-washed glass beadsin a homogenizer (FastPrep®-24,MP Biomedicals)at maximum speed of 60 secfive times. Homogenate wasdiluted with 5mlTris-HCl (0.1M; pH 8.0)solutioncontaining 0.33M sucrose, 5mM EDTAand 2mM dithiothreitoland centrifuged at 1,000g for 3 minat 4 ̊C. Supernatant was collected and centrifuged again at 3,000g for 5 minat 4 ̊C to remove unbrokencells. The resulting supernatant was centrifuged at 19,000g for 45 minat 4 ̊C to obtain total membrane fraction. Total membrane pellet was resuspendedin 100μl membrane suspension buffer and stored at -80 ̊Ctill further use. Total protein concentration in the membrane fraction was estimated using BCAprotein assay kit (Thermo Scientific, US) with bovine serum albumin (BSA) used as astandard
-
Isolation of total membrane fractions from C. glabratastrains were carried out as described previously (Fernandes et al., 1998). Cells grown to log-phase under different environmental conditionswere harvested, washed and suspended to afinal density of 20 OD600cells in 1 ml solution containing100mM Tris (pH 10.7),5mM EDTA,2mM
-
SDS-PAGEwas performed as described previously (Laemilli, 1970).10-40 μg protein samples were mixed with 4X SDS loading buffer and either incubated at 50 ̊C or 90 ̊C for 10 min. Denatured samples were loaded either on8%or 10%SDS-PAGEgel and run in Tris-Glycine-SDSgel running buffer at 70-100 Volts for 2-3 hin a Mini-PROTEAN®3electrophoresis unit(Bio-Rad).After electrophoresis,gels were either visualized by coomassie brilliant blue (CBB) stainingor processedfor western blotting as described below
-
1 μg good quality RNA was treated with DNase I (amplification grade, Invitrogen) to remove DNA contamination and used for complementary DNA (cDNA) synthesis using reverse transcriptase enzyme and oligo-dT primers.SuperScript®III First-Strand Synthesis System (Invitrogen) was used to carry out cDNA synthesis reaction according to the manufacturer’s instructions. cDNA was stored at -20 ̊C
-
Themethod was used for isolation of good quality genomic DNA that wasused to map Tn7insertionin C. glabratamutants.Briefly,10 mlsaturated yeast culturewasharvested, resuspendedin 1 ml sterile water and transferred toa2 ml microcentrifuge tube. Cells were pelleteddown by centrifugation at 4,000 rpm for 5 min. Supernatant was discarded and the pellet was resuspendedin 500 μl freshly prepared solutioncontaining100mM EDTAand 5% β-mercaptoethanol andincubated at 42 ̊C for 10 min. After incubation,cells were spun down at 5,000 rpm for 1 minand resuspendedin 500μl freshly-prepared BufferB. One tip full of lyticase(Sigma # L4025) was added and cellsuspension was incubated at 37 ̊C for 1 h. Following incubation,cell suspension was spun down at 6,000 rpm to recover spheroplasts.Spheroplasts weregently resuspendedin 500μl BufferCand DNA was twice extracted with 500μl phenol:chloroform:isoamyl alcohol (25:24:1)solution.Aqueous layer was collected in a new 2ml microcentrifuge tube and DNA was precipitated with 1ml ethanol and 1/10thvolume of 3M sodium acetate (pH 5.2)by centrifugation at 13,000 rpm for 5 min. Pellet was resuspendedin 200 μl TE containing 0.3 μl of RNase Cocktail™and incubated at 37 ̊C for 30 min.After incubation, 300 μl additional TE was added and DNAwas re-precipitated withethanol and 3 M sodium acetateas described above. Pellet was washed with 70% ethanol anddried under air. DNA pellet was finally suspended in 100 μl TE and stored at -20 ̊C
-
-
sg.inflibnet.ac.in sg.inflibnet.ac.in
-
E. colistrains containing plasmids with unique oligonucleotide signature sequences were inoculated in LBmedium containing ampicillin and grown overnight at 37°Cand 200 rpm. Plasmids were extracted, quantitated anddenatured in alkaline denaturing solution. Approximately, 200 ng of each plasmid DNA was transferred to theHybond-Nmembraneusing96-well Dot Blot apparatus. Membranes were neutralized in 2X SSC and denatured plasmids were cross-linked to Hybond-N membranes usingUV cross linker
-
at 30°C andimages were captured after 2-8daysof incubationdepending upon the medium used
-
Yeast strains were grown in YPD medium for 14-16 hat 30°Cunder continuous shaking at 200 rpm. Cells were harvested from 1 mlculture, washed with PBS and were diluted to an OD600of 1. Five ten-fold serial dilutions were preparedfrom aninitial culture of 1OD600.4 μl cultureof each dilution was spotted onYNB-agar plates containing different carbon sources. For spotting on YPD plates containing different compounds, 3 μl cultureof each dilution was spotted. Plates were incubated
-
-
sg.inflibnet.ac.in sg.inflibnet.ac.in
-
For restriction digestion(either single or double), 0.5 to 1μg of DNA was used in a reaction containing2 to 5units of commercially available restriction enzyme(s)and 5μl of the recommended buffer (suppliedas 10X concentrationsby the vendor)in atotal reaction volume of 50μl. The reaction mixture was incubated for 2 h or overnight at 37°C. The digested DNA fragments were then visualised by ethidium bromide staining after electrophoresis on agarose gels. Commercially available DNA size markers were loaded along with the samples to ascertain or estimate the sizes of the digestedfragments
-
2μg of total RNA was reverse-transcribed using SuperScript III Reverse Transcriptase which is a commercially available version of M-MLVRT with reduced RNase H activity and increased thermal stability.According to manufacturer’s protocol1μg of RNA,1μl oligo(dT)(500ng),1μl 10mM dNTPand nuclease freewater was added to afinal volume of 13μlin a PCR tube.Thismixture was then incubated at 65°C for 5 minutesin a thermo cyclerand then quicklytransferredtoicefor 1minute. To this 4μl of 5X first strand buffer 1μl of 0.1MDTTand1μl ofRNaseOUT (40U/μl) were added. Then contents were then mixed and 1μl (200 units/μl) of SuperScript III RT was added. Themixture was then incubated at 50°C for 60 minutesin a thermo cycler.Lastlythe reaction was stopped byincubating the mixture at 70°C for 15 minutes. The cDNA thus prepared was then usedas a template for PCR
-
-
shodhganga.inflibnet.ac.in shodhganga.inflibnet.ac.in
-
developer solution for appropriate time and immediately kept in fixer solution to see the protein band. For alkaline phosphatase method, blot was incubated with 5 ml of BCIP/NBT solution (Amresco) under dark condition. After incubation, blot was washed with water to see the blue-violet color protein band
-
volume of 50 mM acetate buffer (pH-5.4), and dialyzed overnight with 10 mM Tris buffer, pH 7.5. Pellet was used for dilution plating for calculating CFUs. For whole cell protein isolation, bacterial pellet was dissolved in 50 mM sodium acetate buffer (pH-5.4) and sonicated for 30 min (1 min on and off, Amplitude 32) by adding phenylmethylsulfonyl fluoride (PMSF) at a final concentration of 1 mM in ice-cold solution. Both extracellular proteins and whole cell lysate fractions were aliquoted in 1.5 ml microcentrifuge tube, and protein quantification was performed using a Pierce BCA protein assay kit (Thermo Scientific) as per manufacturer’s instructions using bovine serum albumin as standard and stored at -80°C for further use. Cell normalized extracellular and whole cell lysate proteins fractions from different strains were resolved on 12% SDS-PAGE gel at 90 V till the dye front reached the bottom. One gel was processed for silver staining (Sambrook et al., 1989), and other for western-blot analysis by using anti-GFP antibody. For western blot analysis, resolved proteins were transferred to Hybond-ECL membrane (Amersham biosciences) at 35 V for overnight in the cold room. Transfer of the proteins were visually confirmed by examining marker’s lane and membranes were incubated in small box for 2-3 h in 5% fat free milk prepared in 1X PBST for blocking. Blocking solutions were discarded, and primary antibody, appropriately diluted in 5% fat free milk prepared in 1X PBST, was added to the box containing membrane. After 2-3 h incubation in primary antibody, membranes were washed thrice with 1X PBST for 10 min. Membranes were incubated for 2 h in appropriate secondary antibody (anti-Rabbit antibody)diluted in 5% fat free milk prepared in 1X PBST. Blots were either developed by chemiluminescence based ECL-plus western detection system or alkaline phosphatase method. For HRP based chemiluminescence method, detection was performed using the ECL plus kit (Amersham biosciences) and incubated for 3 min. Blot was exposed to the film and developed i
-
For protein extraction, Xanthomonas oryzaepv. oryzaestrains with eGFP plasmid were grown for 24-30 h in PS medium to an OD of 0.8 as described above and centrifuged at 12,000 g for 10 min. The supernatant was taken as extracellular fraction and protein was extracted as described previously (Ray et al., 2000). Extracellular proteins were precipitated from this fraction by constantly adding 50% (wt/vol) ammonium sulphate at 4°C. After precipitation, the solution was kept on ice for 15-20 min and centrifuged at 12,000 g for 30 min at 4°C. The pellet was dissolved in s
-
work were autoclaved twice and dried at 80°C for overnight before use. RNA was isolated from Xanthomonasculture using Trizol method. Xanthomonascells were harvested at 12,000 g for 5 min at 4°C, resuspended in approximately 1 ml Trizol (Invitrogen),mixed properly and incubated at room temperature (RT) for 5 min. 200 μl chloroform was added to the tube, shaken for 15 seconds and incubated at RT for 2-15 seconds. Next, tubes were centrifuged at 13,000 g for 15 min at 4°C. Aqueous phase was transferred to new 1.5 ml microcentrifuge tube and RNA was precipitated by adding 500 μl isopropanol and incubated for 5-10 min at RT. Precipitated RNA was collected by centrifugation at 10,000 gfor 10 min at 4°C. RNA pellet was washed with 70% ethanol and resuspended in 20 μl nuclease-free water. RNA concentration was determined by measuring absorbance at 260 nm. Quality of RNA was examined by gel electrophoresis on 0.8% agarose gel with TAE buffer prepared in DEPC treated water
-
For RNA experiments, all solutions were prepared in RNase free diethylpyrocarbonate (DEPC) treated water. Microcentrifuge and tips u
-
-
sg.inflibnet.ac.in sg.inflibnet.ac.in
-
microcentrifuge tube. For precipitation of RNA, 1/10thvolume of 3 M sodium acetate (pH 5.3) and 2.5 volume of 100% ice-coldethanol was added. In order to facilitate precipitation, tubes werekept at -20°C for 20 min. Tubes were centrifuged at 13,000 rpm for 10 min in a refrigerated centrifuge. The RNA pellet was washed with 70% ethanol,resuspendedin 100-200 μl of nuclease-free water and stored at -20°C untiluse.Care was taken to keep allreagents and tubes on ice to maintain the cold temperature throughout theRNA extractionprocess
-
All reagents required for RNA extraction were preparedin DEPC-treated water. RNasecontamination from non-autoclavable items wasremoved by wiping them with RNaseZap® (Ambion). Total RNA from yeast cells was extractedusing acid phenolextractionmethod. Briefly, yeast cells were grown underappropriate conditions and at suitabletime points,cells were harvested by centrifugation at 4,000 rpm for 5 min. The cell pellet was washed twice with ice-cold DEPC-treated water, resuspended in 350 μl of AE buffer and transferred toa1.5 ml microcentrifuge tube. To this,40 μl of 10% SDS and 400 μl of acid phenol (pH 4.3) was added. The cell suspension was mixed well by vortexing thrice, short pulsesof10 seconds each,and incubated at 65°C for 15 min with continuous agitation at 800 rpm. Post incubation, cells were kepton ice for 5 min and centrifuged at 13,000 rpm in a refrigerated centrifuge set at 4°C for 10 min. After centrifugation, aqueous layer was transferred to a new1.5 ml microcentrifuge tube and 400 μl of chloroform was added. Tubes were mixed well by gentlyinverting them 4-5 times and centrifuged at 13,000 rpm for 10 min. The aqueous layer was separated and transferred to a new1.5 ml
-
This method was used to isolate highly pure genomic DNA. Briefly, 10 ml overnight grownC. glabratacultures were spun downandwashed with 10 ml sterile water. Washed cells wereresuspended in500 μl sterile water and transferred toa1.5 ml microcentrifuge tube. Tubes were spundownat 4,000 rpm for 5 min, supernatant was discarded andcell pellet was resuspended in 500 μl of buffer containing 100 mM EDTA and 5% β-mercaptoethanol and incubatedat 42°C for 10 min. Post incubation, cells were spun down at 4,000 rpm for 5 min and resuspended in freshly prepared Buffer B. To this, one tip-full of lyticase (Sigma, L4025) was added and incubated at 37°C for 1 h.After incubation, spheroplasts were collected by spinning downtubes at 6,000 rpm for 5 min, supernatant was discarded and the pellet was resuspended in 500 μl of Buffer C. DNA was extracted twice with 500 μl of PCI (25:24:1) solution and the aqueous layer was transferred toa new1.5 ml microcentrifuge tube. To this, 2.5 volume of absolute ethanol and 1/10thvolume of 3 M sodium acetate (pH 5.3) wereadded. Tubes were spundownat 13,000 rpm for 10 min, DNA pellet was resuspended in 200 μl of 1X TE buffer containing0.3 μl of RNase cocktail (Ambion) and incubated at 37°C for30 min. DNA was precipitated again by adding absolute ethanol and sodium acetate as mentioned above. DNA pellet was washed once with 70% ethanol, centrifuged at 13,000 rpm for 10 min, air-dried at room temperature and was resuspended in 100-200 μl of 1X TE buffer by gently tapping the tube. DNAwas stored at -20°C until use
-
microcentrifuge tube. For precipitation of RNA, 1/10thvolume of 3 M sodium acetate (pH 5.3) and 2.5 volume of 100% ice-coldethanol was added. In order to facilitate precipitation, tubes werekept at -20°C for 20 min. Tubes were centrifuged at 13,000 rpm for 10 min in a refrigerated centrifuge. The RNA pellet was washed with 70% ethanol,resuspendedin 100-200 μl of nuclease-free water and stored at -20°C untiluse.Care was taken to keep allreagents and tubes on ice to maintain the cold temperature throughout theRNA extractionprocess
-
All reagents required for RNA extraction were preparedin DEPC-treated water. RNasecontamination from non-autoclavable items wasremoved by wiping them with RNaseZap® (Ambion). Total RNA from yeast cells was extractedusing acid phenolextractionmethod. Briefly, yeast cells were grown underappropriate conditions and at suitabletime points,cells were harvested by centrifugation at 4,000 rpm for 5 min. The cell pellet was washed twice with ice-cold DEPC-treated water, resuspended in 350 μl of AE buffer and transferred toa1.5 ml microcentrifuge tube. To this,40 μl of 10% SDS and 400 μl of acid phenol (pH 4.3) was added. The cell suspension was mixed well by vortexing thrice, short pulsesof10 seconds each,and incubated at 65°C for 15 min with continuous agitation at 800 rpm. Post incubation, cells were kepton ice for 5 min and centrifuged at 13,000 rpm in a refrigerated centrifuge set at 4°C for 10 min. After centrifugation, aqueous layer was transferred to a new1.5 ml microcentrifuge tube and 400 μl of chloroform was added. Tubes were mixed well by gentlyinverting them 4-5 times and centrifuged at 13,000 rpm for 10 min. The aqueous layer was separated and transferred to a new1.5 ml
-
This method was used to isolate highly pure genomic DNA. Briefly, 10 ml overnight grownC. glabratacultures were spun downandwashed with 10 ml sterile water. Washed cells wereresuspended in500 μl sterile water and transferred toa1.5 ml microcentrifuge tube. Tubes were spundownat 4,000 rpm for 5 min, supernatant was discarded andcell pellet was resuspended in 500 μl of buffer containing 100 mM EDTA and 5% β-mercaptoethanol and incubatedat 42°C for 10 min. Post incubation, cells were spun down at 4,000 rpm for 5 min and resuspended in freshly prepared Buffer B. To this, one tip-full of lyticase (Sigma, L4025) was added and incubated at 37°C for 1 h.After incubation, spheroplasts were collected by spinning downtubes at 6,000 rpm for 5 min, supernatant was discarded and the pellet was resuspended in 500 μl of Buffer C. DNA was extracted twice with 500 μl of PCI (25:24:1) solution and the aqueous layer was transferred toa new1.5 ml microcentrifuge tube. To this, 2.5 volume of absolute ethanol and 1/10thvolume of 3 M sodium acetate (pH 5.3) wereadded. Tubes were spundownat 13,000 rpm for 10 min, DNA pellet was resuspended in 200 μl of 1X TE buffer containing0.3 μl of RNase cocktail (Ambion) and incubated at 37°C for30 min. DNA was precipitated again by adding absolute ethanol and sodium acetate as mentioned above. DNA pellet was washed once with 70% ethanol, centrifuged at 13,000 rpm for 10 min, air-dried at room temperature and was resuspended in 100-200 μl of 1X TE buffer by gently tapping the tube. DNAwas stored at -20°C until use
-
To phenotypically characterize C. glabratamutants,serial dilution spot growth assays were performed. Briefly, the optical density of overnight-grown C. glabratacultures wasnormalized to OD600of 1.0andnormalized cultures were further diluted 10-fold in 1X sterile PBS five times. 3 μl of serially diluted culture were spotted on test plates. Plates were incubated at 30°C (unless mentioned otherwise) for 24-48hand growth was recorded by capturing plate images. For experiments involvingchecking theability of mutants to utilize non-fermentable carbon sources,growth was scoredafter 6-7 days of incubation
-