1,538 Matching Annotations
  1. May 2019
    1. Cells growing in culture medium were harvested by trypsinization and washed twice with ice cold PBS. Cells were fixed by adding ice cold 70% ethanol and stored at 4°C. Before harvesting cells were washed twice with PBS and re-suspended in adequate amount of PBS containing Propidium Iodide (PI) to a final concentration of 50μg/ml and RNase to a final concentration of 10μg/ml. Thereby the cell suspension was incubated at 37°C for 30 minutes in dark. Analysis was done by running the samples in BD FACS Vantage System according to the standard procedures after calibration of instrument with Calibrite beads
    2. Flow Cytometry
    3. The plates were kept in incubator gently and the colony formation was monitored every week. Media (500μl) was added to the plates every 4th-5th day to avoid drying. Colonies formed in soft agar photographed were taken without staining, under a microscope in light field
    4. Agar solution was prepared in a sterile 50ml Schott Duran Bottle and boiled in microwave until fully dissolved and kept at 55°C to 65°C. Master Mix with the rest of the components of bottom agar was made in a sterile corning 50ml tube prewarmed at 55°C and agar solution was added. The solution was once vortex briefly and then added (2ml) carefully to each well avoiding air bubbles. The plates were left undisturbed in laminar flow hood until the agar set fully. Two days before final assay, the bottom agar plates were kept in tissue culture incubator for equilibration. On the day of assay the following mix was prepared for Top Agar 4 dishes 5 dishes1.media with FBS, L-glutamine and Pen-Strep 4.8 ml 6 ml 2.fetal bovine serum 1.8 ml 2.5 ml 3.sterile water 1.8 ml 2.5 ml 4.agar 1.8% (1.8 g/100mLs) 1.8 ml 2.5 ml 5. cell suspension 1.0 X 105/ dish 100 to 350 μl 100 to 350 μl 6. Total 10.2 ml 13.5 ml Top agar mix without cells was first prepared and kept at 42°C. The cells were then trypsinized and re-suspended after counting in final volume of 100μl to 200 μl. Cells were then mixed with top agar and solution was quickly poured over the bottom agar.
    5. For soft agar assays 2x104, (A549) or 1x105 cells (E-10) were used in 1.5ml top agar. For preparing bottom agar plates (0.64% final con. of agar), a following mix was prepared for five dishes. 1.2X media with FBS, L-glutamine and Pen-Strep 10 ml 2.fetal bovine serum 5 ml 3.sterile water 1 ml 4.noble agar 1.8% (1.8 g/100mLs) 9 ml 5.Total 25 m
    6. Soft Agar Assay
    7. For clonogenic assays, 1x103 (A549) or 2x103 (E-10) cells were seeded per well of a six well tissue culture plate and grown for 15 days. For identification of signaling pathways various inhibitors were used viz, PI3K inhibitor LY294002 (10μM), MEK inhibitor PD98059 (10μM) or p38 inhibitor SB203580 (10μM). Cells were grown in the presence of inhibitor for seven days following which fresh medium was added. For staining, cells were washed twice with PBS and fixed in 10% formalin for 10 minutes, washed extensively with water and stained with 0.25% crystal violet prepared in 25% methanol for 4hrs at 4°C. Plates were then washed with milli Q water and dried before scanning
    8. Clonogenic Assay
    9. and fixed with 100μl of fixative solution per well, for 10 minutes at room temperature. The cells were then washed twice with PBS and 100μl of staining solution was added to each well. The plate was kept at 37° C, until the color development.
    10. 4x103-5x103 cells were plated in 96 well plate, well. Cells were transfected with reporter plasmid 18 -24 hrs after plating. After 48 hrs, cells were washed once with PBS
    11. Procedure:
    12. ml 1X PBS
    13. 1X PBS diluted in distilled water 1X fixative solution diluted in distilled water 2.4.12.3 Staining Solution25 μl Solution A 25 μl Solution B 25 μl Solution C 125 μl 20 mg/ml X-gal in DMF
    14. Working Solutions:
    15. 20 mg/ml X-gal in dimethylformamide Solution A as 40 mM potassium ferricyanide. Solution B as 40 mM potassium ferrocyanide. Solution C as 200mM magnesium chloride. 10X fixative (20% formaldehyde; 2% glutaraldehyde in 10X PBS) 10X PBS as 0.017 M KH2PO4, 0.05 M Na2HPO4, 1.5 M NaCl, pH 7

      .4

    16. Stock Solutions:
    17. This protocol is for the detection of β-gal expression in fixed cells. It was performed on 96-well plates for initial screening of tTA transfected clone, and is a modification of Sanes et al., 1986
    18. In situβ-gal staining of Transfected Cells
    19. Procedure:
    20. β- galactosidase assay was performed in a 96 well format. Briefly, 4000-5000 cells were plated in 96 well tissue culture coated plate. Cells were transfected with reporter plasmid after 18 -24 hrs and after 48 hrs the cells were washed once with D-PBS. 50μl of lysis buffer was added to the well and cells were lysed by freezing plate at -70°C and thawing at 37°C. Cells were pipette up and down and then the plate was centrifuged at 9000 X g for 5 minutes. The supernatant from each plate was transferred to clean eppendorf tube. Immediately prior to assay the ONPG cocktail was prepared as below: 47 μl 0.1 M sodium phosphate (pH 7.5)22 μl 4 mg/ml ONPG1 μl 100X Mg solution30μl of each well extract was added to microtitre well plate and70μl of ONPG cocktail was added to each well. The plate was kept on ice throughout the procedure. After addition of ONPG cocktail the plate was transferred to 37°C and the development of colour was monitored every 10 minutes for development of color. After development of yellow colour, the reaction was stopped by addition of 150μl of 1M sodium carbonate to each well
    21. Lysis Buffer: 0.1% Triton X-100/0.1 M Tris-HCl (pH 8.0). 450 ml distilled water 50 ml 1M Tris-HCl (pH 8.0) 0.5 ml Triton X-100 detergent • 100X Mg++ solution: 0.1 M magnesium chloride 4.5 M 2-mercaptoethanol Stored at 4°C. • 0.1 M sodium phosphate (pH 7.5)41 ml 0.2 M Na2HPO4 9 ml 0.2 M Na H2PO4 50 ml distilled water • 4 mg/ml ONPG (o-nitrophenyl-β-D-galactopyranoside) in 0.1 M sodium phosphate (pH 7.5) containing 2 mM β-mercaptoethanol, Stored at –20°C. • 0.1 mg/ml β-gal standard: 0.1 mg/ml β-gal in 0.1 M sodium phosphate (pH 7.5) containing 2 mM 2-mercaptoethanol Stored at 4°C. • 1 M sodium carbonate in water
    22. Solutions:
    23. β-gal assay in transfected cells
    24. normalized to the optical density at day 0 for the appropriate cell type. Growth curve was determined twice
    25. Growth curves were prepared for various cell lines using the modified method adopted by Serrano et al, 1997. Briefly, 10, 000 cells were seeded in a 24 well plate in quadruples. At the indicated times, cells were washed once with PBS and fixed in 10% formalin for 20 minutes and rinsed with distilled water. Cells were stained with 0.05% crystal violet for 30 minutes, rinsed extensively and dried. Cell associated dye was extracted with 1.0ml acetic acid. Aliquots were diluted 1:4 with water and transferred to 96 well microtitre plates and the optical density at 590nm determined. Values were
    26. Growth Curves:
    27. After PCR, 1 μl of Dpn1 enzyme (10U/μl) was added to the amplification mix and incubated at 37°C for 6hours. After that, 10ml of the amplification mix was taken to transform Dh5a cells. Positive clones were selected after confirming the sequence of plasmid DNA
    28. The PCR parameters were as follows
    29. The reaction mix included 2ml of PSKll(39+) (50ng) containing wild type K-Ras cDNA , 5ml 10x buffer, 20pmoles of primers , 1ml of 10mM dNTP mix and 1ml of deep vent polymerase (NEB).
    30. The following K-Ras-ras mutants were generated by site directed mutagenesis according to the protocol described in QuickChange site directed mutagenesis kit (Stratagene). The primers used are shown in the following table
    31. appropriate secondary antibody (conjugated with horse-radish peroxidase) diluted in 5% fat free milk solution (in PBST) and incubated for 45 minutes at room temperature. After incubation the membrane was washed and processed for the detection of protein bands using ECL-plus detection reagent (Amersham Biosciences) followed by detection of signal on X-ray film (Hyperfilm-ECL, Amersham Biosciences)
    32. Site Directed Mutagenesis
    33. The proteins were resolved using denaturing SDS-PAGE gel and after completion of the run, the gel was over laid on a nitrocellulose paper cut to the size of gel and kept in the blotting cassette in the presence of blotting buffer. Finally the cassette was put in the mini transblot apparatus (Bio Rad) and blotting was done for 4 hours at a constant voltage of 60 V. Then the membrane was taken out and rinsed in PBS containing 0.1% Tween - 20 (PBST) for 5 minutes by gentle shaking. Later the membrane was immersed in 5% non-fat milk solution in PBST with gentle shaking for 1 hour at 37°C. The membrane was washed off from the traces of the fat free milk with PBST and the membrane was over laid with primary antibody diluted in PBST for 3 hours at 4°C with shaking. After incubation the membrane was washed with PBST and layered with
    34. Immunobloting
    35. For adherent cells from which lysates have to be prepared , culture medium was removed and cells were washed with ice cold 1X PBS twice and then scraped with cell scraper in Cell Lysis buffer. Cells were rotated at 4°C for 30min at cold room and centrifuged at 13000 rpm for 10min at 4°C. The supernatant was collected and protein concentration was estimated using BCA assay. For standard western, 50-70μg of protein was loaded on to the gel
    36. Lysate Preparation for Immuno- blotting
    37. DTT. Then contents were then mixed and 1μl (200 units) of M-MLV was added. The mixture was then incubated at 37°C for 50 minutes. The reaction was stopped by incubating the mixture at 70°C for 15 minutes. The cDNA thus prepared was then used as a template for PCR. The expression of the investigated genes was determined by normalizing their expression against the expression of actin or GAPDH gene
    38. Semi-quantitative RT-PCR
    39. μg of total RNA was reverse-transcribed using poly-T oligonucleotide and M-MLV reverse transcriptase (Invitrogen) according to manufacturer’s protocol. Briefly, a 20μl reaction volume was made for 1μg of RNA. In a microcentrifuge tube, 1μl oligo (dT)(500μg/ml) , 1μg total RNA, 1μl 10mM dNTP mix and sterile water was added to afinal volume of 13μl. The mixture was then incubated at 65°C for 5 minutes ad quickly chilled on ice. To this mixture were added 4μl of 5X first strand buffer and 2μl of 0.1M

      1

    40. Total RNA was isolated by TRIzol method using the manufacturer’s protocol. Briefly, medium was removed, from 35mm dish and 1ml to TRIzol was added directly to the dish and kept at room temperature for 5 minutes. The cells were harvested by pipetting up and down three four times and transferred to a 1.5ml microfuge tube. For each 1mlTRIzol, 200μl of chloroform was added and tubes were shaken vigorously for 10 seconds to completely dissociate the nucleoprotein complexes, followed by vortexing for about 30 seconds. The mixture was kept for 3-5 minutes at room temperature and then centrifuged at maximum speed for 10 minutes. The upper aqueous phase was transferred into a fresh microcentrifuge tube and 500 μl of isopropanol was added and this was incubated at -20°C for 1 hour. The RNA was pelleted by centrifugation at maximum speed for 30 minutes at 4°C. The supernatant was decanted and the pellet washed with 1ml of 70% ethanol followed by a second wash with 1ml of 90% ethanol and centrifugation at maximum speed for 10 minutes. The supernatant was removed and the pellet air-dried for about 5 minutes and re-solubilized in 30-50 μl RNase free deionized (DEPC-treated Milli-Q) water and aliquots were stored at -70°C
    41. Total RNA isolation from cultured mammalian cells
    42. Transient transfection of plasmid DNA in culture cells was performed using Lipofectamine 2000 according to manufacturer’s protocol. Briefly, forty million cells were seeded in a 35mm tissue culture dish, one day before transfection. Transfection was performed 18-24 hrs after seeding the cells. 4μg DNA was mixed in 50μl of Opti-MEM in one eppendorf tube. In another tube, 5μl of Lipofectamine 2000 was diluted in 50μl Opti-MEM and incubated at room temperature for 5 minutes. After five minutes, DNA and Lipofectamine 2000 were mixed together and complexes, incubated for 30 minutes at room temperature. Meanwhile, the adherent cells were washed twice with PBS and 1ml of Opti-MEM was added. 100μl of complexes were then added to each dish containing cells and medium. After 6hrs, the medium containing complexes was removed and complete medium was added and transgene expression was accessed 24-48 hrs after transfection
    43. Transient transfections in adherent cells
    44. The quantity and purity of nucleic acids was determined by measuring the absorbance at 260 and 280 nm. The concentration of nucleic acids was calculated by taking 1 OD 260= 50 μg/ml for DNA, 40 μg/ml for RNA and 33 μg/ml for single stranded oligonucleotides. The purity of nucleic acids was checked by their A260/A280 ratio
    45. Spectro-photometric estimation of nucleic acids
    46. ethanol has dried. The pellet was resuspended in 20 μl of milliQ water and 20 μg/ml RNase added. The tube was incubated at 50°C for 45 min. the tube was vortexed for few seconds. Quality of the plasmid DNA was then accessed by running 1% agarose gel.
    47. stored. To prepare competent cells pre-inoculum was prepared. A single bacterial colony was picked from LB agar plate, inoculated into 3 ml LB medium, and incubated overnight at 37°C temperature with shaking at 200 rpm. 1% of this pre-inoculums was sub cultured in 100 ml LB-broth and incubated at 18°C with shaking until OD at 600nm reached 0.5 - 0.6 (approx.). Culture was kept on ice for 10 min. with constant shaking.Cells were pelleted by centrifugation at 2000 g at 4°C for 8 min. Pellet was resuspended in 40 ml of ice-cold TB buffer. Bacterial suspension was kept on ice for 30 min, re-spun at 2000 g at 4°C for 8 min. Pellet was resuspended in 8 ml of TB buffer in which final concentration of DMSO was 7% and left on ice for 10 min. 100 μl aliquots were made and snap frozen in liquid nitrogen and stored at -80°C
    48. All the salts (10 mM PIPES, 15 mM CaCl2.2H2O, 250 mM KCl, 55 mM MnCl2.2H2O) except MnCl2 were dissolved in milliQ water and pH was adjusted to 6.7 with 1N KOH. MnCl2 was dissolved separately in mill Q water. MnCl2 was added drop wise while stirring (MnCl2 if added directly will give a brown color to the solution and precipitate out, hence it needs to be dissolved separately). Solution was then filter sterilized and
    49. Overnight Grown culture was pelleted by centrifugation at 10,000g at 4°C for 3 min and the supernatant was discarded. Pellet was resuspended in 250 μl of ice-cold alkaline lysis solution 1. 300 μl of alkaline solution 2 was then added and the tube was inverted gently 3-4 times and incubated at room temperature for 5 min. 350 μl of ice cold solution 3 was added and mixed by inverting the tube rapidly for 3 or 5 times. Suspension was incubated on ice for 10 min. Bacterial lysate was spun at 10,000g for 12 min at 4°C. Supernatant was transferred to a fresh tube. 0.4 volume of phenol: chloroform was added to the supernatant and the contents mixed. It was then spun at 10,000g at 4°C for 12 min. Aqueous phase was taken out in a fresh tube and 0.6 volume of isopropanol was added, mixed properly and incubated at room temperature for half an hour followed by spinning at 10,000g at RT for 20 min. Supernatant was discarded. Pellet was washed with 70% ethanol. The tube was stored at room temperature until the
    50. Ultra Competent Cells Preparation
    51. Preparation of Plasmid DNA by alkaline lysis
    52. Experimental Procedures
    53. 250 mM KCl 55 mM MnCl2.4H20 50 x TAE (1 litre): 242 g of tris base 57.1 ml of glacial acetic acid 100 ml of 0.5 M EDTA Alkaline Lysis Solution 1: 50mM tris-HCl (pH 8.0) 10.0 mM EDTA 50 mM glucose Alkaline Lysis Solution 2: 0.2M NaOH 1% SDS Alkaline Lysis Solution 3: 3.0M Potassium acetate
    54. 2.7 mM KCl 10 mM Na2HPO42 mM KH2PO4Tris Buffer Saline (TBS) (10X): 12.1gm Trizma Base 40.0gm NaCl Adjust PH to 7.6; make up the volume to 1 lit with milli Q water. HEPES Buffer Saline: 20 mM HEPES (pH 7.5) 150 mM NaCl Blocking Buffer: 5% fat free milk or 2% BSA in PBST or TBST. Stripping Buffer: 100 mM β-mercaptoethanol 2% (w/v) SDS 62.5 mM Tris-HCl (pH6.7) Luria Broth: 10g tryptone 10g NaCl 5g yeast extract, make up the volume to 1 lit with water. TB buffer for preparation of competent cells: 10 mM PIPES (free acid) 15 mM CaCl2.2H20
    55. 2.5 ml of 1.5 M Tris-Cl (pH 8.8) 4.0 ml of 30% acrylamide; bisacrylamide (29:1) mix 50.0 μl of 20% SDS 3.35 ml of milli-Q water 100 μl of 10% APS 10.0 μl of TEMED. 2X SDS loading Buffer: 130 mM Tris-Cl (pH 8.0) 20% (v/v) glycerol 4.6% (w/v) SDS 0.02% bromophenol blue 2% DTT SDS PAGE Running Buffer: 25mM Tris base, 0.2M glycine 1% SDS Western Blot: 1 x Blotting Buffer (2Litres): 25mM tris base, 0.2M glycine 20% methanol Phosphate Buffer saline (PBS): 137 mM NaCl
    56. Whole cell lysis buffer: 20mM Tris (PH 7.5) 150mM NaCl 1mM EDTA 1mM EGTA 1 % triton X 100 2.5mM sodium pyrophosphate 1mM β-glycerophosphate 1mM Na3VO41μg/ml aprotinin, 1μg/ml leupeptin and 1μ.ml pepstatin SDS-PAGE: Stacking Gel Mix (4ml, 5%): 380μl of 1M Tris-Cl (pH 6.8) 500μl of 30% acrylamide ; bisacrylamide (29:1) Mix 15 μl of 20% SDS 2.1 ml of milli-Q water 30 μl of 10% APS 5 μl of TEMED. 12% Resolving Gel Mix (10ml):
    57. Buffers and Media
    58. Human lung epithelial type II cells (HPLD) were a kind gift from Dr. T Takahashi, Japan. All the cell lines were maintained in 5% CO2 with the recommended media containing 10% FBS (3% FBS for HPLD) and following the standard guidelines.
    59. A549 (human lung adenocarcinoma epithelial) and murine fibroblast cell line NIH3T3 was purchased from American Type Culture Collection. Murine lung epithelial cell line E-9 and E-10 were a kind gift from Dr. L.M.Anderson, (NCI-FCRDC, Frederick, Maryland)
    60. Cell Lines
    61. Monoclonal antibody against KRAS were purchased from Merck Research Laboratories, phospho p44/42 (ERK1/2)and total p44/42 (ERK1/2)antibodies were purchased from Cell Signaling Technologies. Anti tubulin antibody was obtained Sgima-Aldrich Chemicals. HRP conjugated anti-mouse and anti-rabbit secondary antibodies were purchased from Bangalore Genei Pvt. Ltd.
    62. Antibodies
    63. All the chemicals used for routine molecular biology work were procured from Sigma-Aldrich Chemicals (St Louis, MO, USA) unless otherwise mentioned. Taq polymerase for PCR and standard DNA markers and protein markers were purchased from MBI Fermentas. Tissue Culture materials like DMEM medium (for A549), Ham’s F-12 medium (for HPLD), Opti-MEM medium, 0.5% trypsin-EDTA, 100X antibiotic-antimycotic, freezing medium, fungizone, 200mM L-glutamine, fetal bovine serum (FBS), Lipofectamin-2000 and TRIzol were obtained from GIBCO BRL (Gaithersburg, Maryland, USA). CMRL medium was purchased from ICN laboratories. M-MLV reverse transcriptase, RNase inhibitor, dNTPs and MgCl2 were obtained from Invitrogen Corporation (Carlsbad, CA). ECL western detection kit and HybondTM- P were purchased from Amersham biosciences (GE Healthcare, UK).
    64. Chemicals and Reagents
    1. f. 5 μl of water was then spotted on each spot for 30 sec and removed using Whatman filter paper strips. This step was repeated once. g. 1-2 μl of SAP matrix was then applied to each spot and allowed to dry. h. The chip was then placed in the SELDI machine
    2. a. 5 μl of 10 mM HCl was added to each spot on the chip and removed after 5 min. using Whatman filter paper strips. b. Washing was given by spotting 3 μl of water for 30 sec on each spot followed by removal using Whatman filter paper strips. This step was repeated two times. c. 10 μl of low stringency/ high stringency buffer was then added to the spot and kept in humid chamber for 5 min. followed by removal using Whatman filter paper strips. d. 3 μl of sample prepared in low stringency/ high stringency buffer was then added to the spot and incubated in humid chamber for 30 min. e. Washed the spot with 5 μl of low stringency buffer/ high stringency buffer/ buffer of pH 3.0/ pH 5.0/ pH 7.0 for 30 sec and removed using Whatman filter paper strips. This step was repeated five times.
    3. Activation of CM10 (weak cation exchange ) array
    4. d. 3 μl of sample prepared in low stringency buffer was added to the spot activated with low stringency buffer and incubated in humid chamber for 30 min. and removed using whatman strips. (same protocol was repeated for the samples prepared in high stringency buffer on spots activated with high stringency buffer). e. Stringent washings were given to each spot with 5 μl of low stringency buffer/ high stringency buffer/ buffer of pH 3.0/ pH 5.0/ pH7.0 for 30 sec and removed using Whatman filter paper strips. f. 1-2 μl of SAP matrix was added to each spot and allowed to dry. g. The chip was then placed in the SELDI machine
    5. One set of cell extracts was prepared in low stringency buffer by mixing cell extracts and low stringency buffet in 1:1 ratio and another in high stringency buffer. b. 10 μl of low stringency/high stringency buffer was added to the spots on the chip and incubated in a humid chamber for 5 min. c. Buffer was removed using Whatman strips without touching the spot surface. This step was repeated once
    6. Activation of LSAX (strong anion exchange ) array
    7. Activation of H50 protein chip array
    8. b. 5 μl of ACN + TFA (25% ACN in PBS + 0.1% TFA) was added to the spot surface and removed after 30 sec. c. 5 μl of cell lysate sample was then spotted on the chip and kept in a humid chamber for 30 min. d. Stringent washes were given by spotting 5 μl water on the spot surface for 30 sec and removing using Whatman filter paper strips. This was followed with a 25% ACN wash or three washes with 25% ACN or 50% CAN or 75% ACN. e. Washing was performed by spotting 5 μl of water for 30 sec followed by removal using Whatman filter paper strips. f. Dried chip at room temperature. g. 1-2 μl of SAP matrix (5 mg of matrix + 200 μl ACN + 200 μl of 1% TFA) was then spotted on the chip surface and allowed to dry. h. The chip was then placed in the SELDI machine
    9. 5 μl of water was added to each spot on the chip and removed after 30 sec using Whatman filter paper strips. Care was taken not to touch the spot surface. This step was repeated once
    10. 5 μl of 0.1% TFA was applied to the spots on the SEND array and removed after 30 sec using Whatman paper (care was taken not to touch the spot surface). b. 5 μl of cell lysate sample was spotted on the SEND array and incubated in a humid chamber for 10 min. Removed after 30 min. c. 5 μl of 0.1% TFA was then added and removed after 30 sec. d. 2 μl of 25% ACN in 0.1% TFA was added to the spots and allowed to dry. e. The chip was then placed in the SELDI machine
    11. Activation of SEND arrays for peptide analysis
    12. Trypsinization: The decolourized bands were dried in a vacuum dryer for 1 hr until the gel pieces were completely dry. 5 μl of 0.1 μg/μl trypsin and 25 μl of 25 mM NH4HCO3 (pH 8.0) were then added to the dried gel pieces. The tubes were sealed with parafilm and kept in a water bath at 37 ̊C, overnight. Care was taken that the gel pieces in the tubes did not dry up. If the gel pieces got dried, 25 μl of NH4HCO3 was added on top. Peptide extraction: A 1:1 mixture of ACN:5% TFA in water was added (30 μl) to overnight tryptic digests and kept for 30 min. The elutant was removed in a separate low binding tube. The extraction step was repeated once more. The elutant was then dried in a vacuum dryer (1-2 hr) and reconstituted in 5 μl of 25% ACN in 0.1% TFA
    13. Destaining of gel bands: The protein bands of differentially expressed proteins were cut out from the gel and put in low binding microfuge tubes. 150 μl of 50:50 Acetonitrile:Ammonium bi carbonate pH 8.0 (NH4HCO3) was then added and kept under shaking for 30 min. Coloured liquid was discarded and the washing step repeated until the bands decolourised
    14. Destaining of gel, trypsinization and peptide extraction
    15. 12% resolving gel (for 25 ml)Water = 8.2 ml 30% Acrylamide = 10.0 ml 1.5 mM Tris (pH 8.8) = 6.3 ml 10% SDS = 0.25 ml 10% APS = 0.25 ml TEMED = 0.01 ml 5% stacking gel (for 10 ml)Water = 6.8 ml 30% Acrylamide = 1.7 ml 1.5 mM Tris (pH 6.8) = 1.25 ml 10% SDS = 0.1 ml 10% APS = 0.1 ml TEMED = 0.01 ml
    16. A double cylinder gradient former was used with 12% poly acrylamide gel mix in the inner cylinder and a 3% polyacrylamide gel mix in the outer cylinder that was stirred using a magnetic bead on a magnetic stirrer. A pump was connected to the flow tube and the flow rate adjusted at 5-8 to cast a 12-3% gradient gel. A 5% stacking gel was used. After the protein samples were run on the gradient gel, it was stained in instant blue over night under shaking. 3% resolving gel (for 25 ml)Water = 15.68 ml 30% Acrylamide = 2.5 ml 1.5 mM Tris (pH 8.8) = 6.3 ml 10% SDS = 0.25 ml 10% APS = 0.25 ml TEMED = 0.02 ml
    17. Casting a gradient SDS-polyacrylamide gel
    18. 1μl of the cell lysate was mixed with 200 μl of 5X Bradford reagent and 800 μl of water. O.D was measured at 595 nm. Standard curve of BSA was plotted using various dilutions of BSA protein by Bradford method. Protein estimation of the cell lysate samples was performed using the standard curve equation y=0.0695x + 0.0329 μg/μl
    19. Protein estimation by Bradford method
    20. microfuge tubes and snap frozen in liquid nitrogen and were stored at ─80 ̊C. Protein estimation was performed simultaneously with one of these aliquots
    21. The strains were grown to stationary phase in 500 ml LB supplemented with ampicillin (100 μg/ml) overnight. Cells were pelleted at 2100g for 30 min at 4 ̊C and dissolved in 5 ml of 1X PBS with 2X protease inhibitor and 3 mM DTT. Cells were lysed using French Press at 1500 psi for three cycles. The lysed cells were pelleted at 20,000g for 45 min at 4 ̊C. Clear supernatant was collected in sterile 2 ml
    22. Preparation of cell extracts
    23. These experiments were undertaken in the laboratories of Dr. Sylvie Rimsky and Dr. Malcolm Buckle at the Ecole Normale Superioure, Cachan, Paris (France)
    24. Methods for SELDI (Surface Enhanced Laser Desorption/Ionization)
    25. the membrane and sandwiched between 1 piece of buffer-soaked Whatman paper from Biorad on each side. The sandwich was placed between graphite electrodes with the membrane towards the anode. The transfer was done for 12-16 hr using a voltage of 40 V in the cold room. Protein transfer was viwed using Ponceau S staining. Blot was dipped in the Ponceau S stain under shaking and washed using PBST. After transfer, the membrane was blocked with 5% non-fat milk in PBST (1X PBS with 0.1% Tween-20) for 2 hr at room temperature. The membrane was then washed thrice with PBST under shaking and incubated with the primary antibody (1:1000 dilution in PBST) for 12-16 hr. The membrane was again washed thrice under shaking with PBST and incubated with 1:20000 dilution alkaline phosphatase conjugated anti-goat IgG secondary antibody (in PBST) for 2 hr. The membrane was once again washed thrice as described above and the signal developed using ECL kit from Amersham on X-ray films in a dark room. The reactive protein bands appeared as black bands upon gentle shaking at room temperature in 1X developer solution. The reaction was stopped by dipping and shaking the film in 1X Fixer solution followed by washing in water
    26. The protein samples separated on SDS-PAGE were transferred to PVDF (polyvinyledene difluoride) membrane (Amersham, Buckinghamshire, UK) electrophoretically by a semi-dry method using BioRad apparatus. The gel and the membrane (pre-wetted with methanol) were wetted with transfer and the gel was placed in contact with
    27. Western blotting with anti-Rho/anti-NusG antibody
    28. (ii) Stacking gel buffer: 1.0 M Tris-Cl pH 6.8 (iii) Resolving gel buffer: 1.5 M Tris-Cl pH 8.8 (iv) SDS stock: 10% (w/v) solution (v) Ammonium persulphate (APS) stock: 10% (w/v) solution made fresh (vi) Gel running buffer (1X) (vii) Loading dye (6X): (viii) Lysis buffer (RIPA) Gels of 1.5 mm thickness were cast in the Biorad small gel apparatus. Resolving gel of 10% (10 ml) was made by mixing 4.2 ml 10% acrylamide, 3.1 ml water, 2.5 ml of 1.5 M Tris-Cl pH 8.8 and 0.1 ml of 10% SDS. Stacking gel (2 ml) was made by mixing 0.33 ml of 30% acrylamide, 1.4 ml of water, 0.25 ml of 1 M Tris-Cl pH 6.8 and 0.02 ml of 10% SDS. Gels were polymerized by the addition of TEMED (N,N,N′, N′-tetramethyl ethylene diamine) and APS (1/100th volume of gel mix). Sample preparation for gel loading was done as follows. Mid log and late log phase 10 ml cultures were centrifuged at 26000g and the cell pellet was resuspended in 0.5 ml RIPA buffer. Cells were sonicated on ice for 1 min at output power of 5 to get a cleared lysate. The culture lysate was centrifuged at 26000g to recover the clear supernatant. Total cell protein was quantified in the lysates using BCA kit reagents (BioRad) using the manufacturers protocol. Appropriate volume of cell lysate was mixed with the loading dye in a final concentration of 1X and loaded onto the gel. The gel was run at constant voltage of 60 V for stacking and 80 V for resolving gel
    29. The method followed was as described in Sambrook and Russell (2001). The following solutions were used to cast and run SDS-PAGE gels. (i) Acrylamide stock: 29% (w/v) acrylamide and 1% N,N′-methylene bisacrylamide
    30. Sodium dodecyl sulphate-polyacrlyamide gel electrophoresis (SDS-PAGE)
    31. Automated DNA sequencing on plasmid templates or on PCR products was carried out with dye terminator cycle sequencing kits on an automated sequencer following the manufacturer's instructions by either CDFD or an outsourced sequencing facility
    32. DNA sequencing
    33. Inverse PCR is a technique to amplify unknown regions flanking the site of transposon insertion using the primers designed from the known sequence from one end of the transposon element. Genomic DNA was digested with a 4-base recognition restriction enzyme, Sau3A1 followed by intramolecular ligation set up at high dilutions. These ligated molecules were then used as templates for the PCR performed with a pair of divergently-oriented primers designed from one end of the transposon named AH1-AH2. The PCR product thus obtained was sequenced with the same set of primers to identify the junction sequence at the site of transposon insertion and hence the identity of the gene disrupted in each case. Typical PCR conditions used were as follows:- Annealing 55°C 2 min Elongation 72°C (1 min/kb of DNA template to be amplified) Denaturation 95°C 2 min After 30 cycles of PCR, the final elongation step was carried out again for 10 min at 72°C
    34. Inverse PCR
    35. Denaturation 95°C 1 min After 30 cycles of PCR, the final elongation step was carried out again for 10 min at 72°C
    36. The PCRs were normally performed using a PCR amplification kit from Fermentas/Sigma (USA), following the company's protocols. Approximately, 10 ng of chromosomal or 1-2 ng of plasmid DNA was used as template in a 50 μl reaction volume containing 0.2 mMM of each dNTP, 20 picomoles each of forward and reverse primer and 0.5 units of Taq DNA polymerase. In some cases, freshly streaked E.coli cells from a plate were resuspended in 50 μl of sterile Milli Q water to get a cell suspension (~ 109 cells/ml) and 10 μl from this was used as the source of DNA template. The samples were subjected to 30 cycles of amplification and the typical conditions of PCR were as follows (although there were slight modifications from one set of template/primers to another): The initial denaturation was done at 95°C for 3 min and the cycle conditions were as given below. Annealing 55°C 1 min Elongation 72°C (1 min/kb of DNA template to be amplified)
    37. Polymerase chain reaction (PCR)
    38. Fresh overnight culture of the E. coli strain (DH5α) was subcultured 1:100 in 250 ml LB/SOB media at 18 ̊C and 2500g and allowed to grow to an A600=0.55. Culture was chilled on ice and centrifuged at 2500g at 4 ̊C for 10 min. The cell pellet was redissolved in 80 ml ice-cold Inoue transformation buffer (55 mM MnCl2, 15 mM CaCl2, 250 mM KCl, 10 mM PIPES pH6.7). This cell suspension was centrifuged at 2500g at 4 ̊C for 10 min. and the cell pellet was resuspend in 20ml ice-cold Inoue buffer with 1.5 ml DMSO. This mixture was then placed on ice for 10 min. Aliquots of this suspension were dispensed into chilled, sterile microfuge tubes that were snap-frozen in a bath of liquid nitrogen. Tubes were stored at ─70 ̊C until required. For transformation the cells were thawed on ice and plasmid DNA was added followed by the standard transformation protocol
    39. Preparation of ultracompetent cells
    40. Overnight cell culture raised in LB medium was subcultured 1:100 in LB with 20 mM MgCl2. When the A600 reached 0.4-0.6, the culture was centrifuged at 2800g for 5 min at 4 ̊C. To the cell pellet 0.4 volumes of ice-cold TBF-I buffer was added and incubated on ice for 15 min. The cell suspension was centrifuged at 2800g for 5 min at 4 ̊C and the cells recovered were dissolved in 0.04 volume of ice-cold TBF-II buffer and kept on ice for 45 min. 100 μl aliquots of these competent cells were used for transformation using the normal transformation protocol
    41. TBF method for preparation of high competency cells
    42. For routine plasmid transformations, where high efficiency is not required, the following method which is a modification of that described by Sambrook and Russell (2001) was used. An overnight culture of the recipient strain was subcultured in fresh LB and grown till mid-exponential phase. The culture was chilled on ice for 15 min, and the steps hereafter were done on ice or at 4°C. The culture was centrifuged, and the pellet was resuspended in one third volume of cold 0.1 M CaCl2. After 15 min incubation on ice, the cells were again recovered by centrifugation, and resuspended in one tenth volume of cold 0.1 M CaCl2. The suspension (0.1 ml) was incubated on ice for 1 h after which DNA was added (~10-100 ng of DNA in less than 10 μl volume). The mixture was again incubated on ice for 30 min, and then heat shocked for 90 seconds at 42°C. Immediately 0.9 ml of LB broth was added to the tube and incubated at 37°C for 45 min for phenotypic expression of the antibiotic marker before being plated on selective medium at various dilutions. A negative control tube (with no plasmid DNA addition) was also routinely included in each of the experiments
    43. Calcium chloride method
    44. Transformation protocols
    45. Typically, 100-200 ng of DNA was used in each ligation reaction. The ratio of vector to insert was maintained between 1:3 and 1:5. The reactions were usually done in a 10 μl volume containing ligation buffer (provided by the manufacturer) and 0.05 Weiss units of T4 DNA ligase, at 16°C for 12-16 hr
    46. Ligation of DNA
    47. DNA fragments to be used for ligation were eluted from the agarose gel, after the electrophoresis. The gel piece containing the desired band of DNA was sliced out and the DNA was purified from the gel using the purification kits available for this purpose. The efficiency of elution was determined by checking a small aliquot of DNA sample on the gel
    48. Purification of DNA fragments by elution from the gel
    49. 0.5-1 μg of DNA was used for each restriction enzyme digestion. 2-4 units of the restriction enzymes with the appropriate 10X buffers supplied by the manufacturers were used in a total reaction volume of 20 μl. The digestion was allowed to proceed for 6 h or 10min. (for FAST digest enzymes) at the temperature recommended by the manufacturer. The DNA fragments were visualized by ethidium bromide staining following electrophoresis on 1-1.5% agarose gels. Commercially available DNA size markers were run along with the digestion samples to compare with and to estimate the sizes of the restriction fragments
    50. Restriction enzyme digestion and analysis
    51. The DNA samples were mixed with the appropriate volumes of the 6X loading dye (0.25% bromophenol blue, 0.25% xylene cyanol and 30% glycerol in water) and subjected to electrophoresis through 1-1.5% agarose gel in either 1X TBE or 1X TAE buffer. The gel was stained in 1 μg/ml of ethidium bromide solution for 30 min at room temperature and the bands were visualized by fluorescence under UV-light
    52. Agarose gel electrophoresis
    53. Quiagen/HiPura following the manufacturer's protocols
    54. The rapid alkaline lysis method of plasmid isolation, as described by Sambrook and Russel (2001), was followed with minor modifications. Bacterial pellet from 3 ml of stationary-phase culture was resuspended in 200 μl of ice-cold solution I (50 mM glucose, 25 mM Tris-Cl pH 8.0, 10 mM EDTA pH 8.0 containing 1 mg/ml lysozyme) by vortexing. After 5 min incubation at room temperature, 400 μl of freshly prepared solution II (0.2 N NaOH, 1% SDS) was added and the contents were mixed, by gently inverting the tube several times. This was followed by the addition of 300 μl of ice-cold solution III (5 M potassium acetate, pH 4.8) and gentle mixing. The tube was incubated on ice for 5 min and centrifuged at 20,0000g for 15 min at 4°C. The clear supernatant was removed into a fresh tube and, if required, was extracted with an equal volume of phenol:chloroform mixture. The supernatant was precipitated with either two volumes of cold 95% ethanol or 0.6 volumes of isopropanol at room temperature for 30 min. The nucleic acids were pelleted by centrifugation, washed with 70% ethanol, vacuum dried, and dissolved in appropriate volume of TE buffer. If required, the sample was treated for 30 min with DNase free RNase at a final concentration of 20 μg/ml. The plasmid DNA was checked on a 0.8% agarose gel and stored at −20°. The plasmid DNA thus isolated was suitable for procedures such as restriction digestion, ligation, and preparation of radiolabeled probes. Plasmid isolation was also done with any of the commercially available kits from
    55. Isolation of plasmid DNA
    56. and the aqueous phase transferred to a fresh tube. The aqueous phase was further extracted successively, first with phenol:chloroform:isoamyl alcohol (25:24:1) and then with chloroform:isoamyl alcohol (24:1). DNA was precipitated from the clear supernatant by the addition of 0.6 volumes of isopropanol. The chromosomal DNA was either spooled out or pelleted at this stage, washed with 70% ethanol, air-dried, and dissolved in suitable volume of TE buffer
    57. The method as described in the manual Current Protocols in Molecular Biology was followed for preparation of chromosomal DNA. Cells from 1.5 ml stationary phase culture were recovered by centrifugation and resuspended in 567 μl of TE buffer. To this, 30 μl of 10% SDS, and 3 μl of proteinase K (20 mg/ml) were added in that order and the cell suspension mixed and incubated at 37°C for 1 h. Next, when the suspension looked cleared, 100 μl of 5 M NaCl was added, thoroughly mixed, followed by the addition of 80 μl of CTAB/NaCl (10% cetyltrimethylammonium bromide in 7 M NaCl) and vigorous mixing (by inverting the microfuge tube). The suspension was incubated at 65°C for 10 min, brought to room temperature, extracted with an equal volume of chloroform-isoamyl alcohol (24:1 v/v)
    58. Extraction of chromosomal DNA from bacterial cells
    59. Molecular and genetic techniques
    60. The method followed is essentially the same as described by Jin et al. (1992). Overnight bacterial cultures grown in minimal A medium supplemented with 0.4% glycerol and 0.5% Casamino acids with the appropriate antibiotic were subcultured 1:100 in the same medium in a volume of 20 ml (0.2% arabinose was added for induction of the plasmid-borne gene downstream of Para, wherever required) at 37 ̊C. Cultures were induced with 1 mM IPTG at A600=0.3. 1 ml samples were aliquoted at time intervals of 0 sec, 20 sec, 40 sec, 1 min, 1.5 min, 2 min, 2.5 min, 3 min, 3.5 min, 4 min, 4.5 min, 5 min, 5.5 min and 6 min into 1 ml of 0.1 mg/ml ice cold chloramphenicol and the samples were put on ice. After sampling the cultures were incubated at 37 ̊C for 15 min. 0.5 ml of this culture was then taken in duplicate tubes for β-galactosidase assays
    61. RNA polymerase elongation rate measurement
    62. high osmolarity conditions (Gowrishankar, 1989; Csonka, 1989) for β-galactosidase assay
    63. Assays for determination of β-galactosidase enzyme activity in cultures were performed as described by Miller (1992) after permeabilizing the cells with SDS/chloroform, and the activity values were calculated in Miller units, as defined therein. For determination of proU activity from a proU::lac fusion that contains the proUpromoter cloned upstream of the lacZYA genes (as in plasmid pHYD272), cultures used were grown in LBON or K-medium (low osmolarity medium) since proU is also induced under
    64. β-Galactosidase assay
    65. Enzyme assays
    66. a very sensitive test and is often used for determining the viability of a strain in the presence or absence of a metabolite or a particular temperature. An EOP of ≤0.01 suggests lethality of the strain on the test medium. For strains carrying IPTG-dependent plasmids, EOP was determined by growing the strains overnight in medium containing IPTG and the appropriate antibiotic and plating an appropriate dilution (10─5 and 3X10─6) on +IPTG (permissive) and –IPTG (test) plates to observe growth. The ratio of the number of colonies obtained on the –IPTG plate to that on the +IPTG plate determined the efficiency of plating. The colonies from the test plate (that is, ─IPTG plate) were also subsequently subcultured on the same medium (─IPTG) to determine viability of the strain. Likewise, strains carrying Ts plasmids were cultured overnight at 30 ̊C with the appropriate antibiotic and dilutions of this culture (10─5 and 3X10─6) were plated at two temperatures 30 ̊C (permissive) and 37 ̊C or 39 ̊C (non-permissive or test). The ratio of the number of colonies obtained on the test temperature to that on the permissive temperature determined the efficiency of plating at the test temperature. Viability of the strain was subsequently confirmed after subculturing from the test plate as stated above
    67. Efficiency of plating (EOP) is a measure of the ratio of number of colonies (obtained from a given volume of a suitable culture dilution) on a test medium to those on a control or permissive medium, and is a measure of cell viability on the former. It is
    68. Efficiency of plating
    69. Strains were grown overnight in LB containing 0.4% maltose and 10 mM MgSO4,subcultured and grown to early stationary phase in the same medium. 100 μl of the culture was mixed with 2.5 ml of soft agar and overlaid on LB agar plates supplemented with 0.4% maltose and 10 mM MgSO4. Serial dilutions of λcI857 lysate were prepared (in LB) and 10 μl were spotted from each dilution (and the undiluted) on the soft agar lawn and allowed to dry. The plates were incubated at the appropriate temperature overnight, and the plating efficiency determined
    70. Determination of λ-plating efficiency
    71. The lacZ U118 is an amber nonsense mutation(Am) that confers Lac─phenotype and also polarity of the downstream lacYA genes in the operon due to premature Rho-dependent transcription termination within the untranslated region of lacZ. Melibiose is a sugar which can only be utilized in a lacZ (Am) strain at high temperature (39 ̊C, when the native melibiose permease is inactive) if the downstream gene lacY encoded permease is transcribed and translated. Therefore, in lacZ (Am) strains, growth on minimal melibiose plates (0.2%) at 39°C reflects transcriptional polarity relief at the lac locus, and the same was scored after streaking the relevant strains on such medium
    72. lacZ (Am) assay
    73. dependent transcription termination within the untranslated region of trpE. Anthranilate is a precursor of tryptophan, which is the product of trpE-encoded anthranilate synthase. Therefore, in trpE(fs) strains, growth on minimal glucose plates supplemented with anthranilate (100 μg/ml) reflects transcriptional polarity relief at the trp locus, and the same was scored after streaking the relevant strains on such medium
    74. The trpE9777 is a frameshift (fs) mutationconfers Trp auxotrophy and also polarity on the downstream trpDCBA genes in the operon due to premature Rho-
    75. trpE(fs) assay
    76. The galEp3 (galE490∗)mutation represents a 1.3 kb IS2 insertion in the gal leader region (between the promoter and structural genes of the galETKM operon). The mutation causes transcriptional polarity on the structural genes due to rho dependent transcription termination within IS2. In this assay, the gal operon expression in a galEp3mutant or its derivatives was monitored by one of two means. In the first, MacConkey galactose indicator plates (with 1% galactose) were used, where Gal+ colonies are red, and Gal− colonies are white. Therefore, the depth of color serves as an indicator of relative levels of gal expression. In the second method, growth of strains on minimal-galactose (0.2%) was used as a test for Gal+ phenotype
    77. galEp3 assay
    78. In vivo transcription termination assays
    79. Strains were streaked on LBON agar plates and after an overnight incubation at 42°C growth was monitored (compared to that on LBON at 30°C as control). Absence of single colony growth was taken to reflect temperature sensitivity. Whenever needed the phenotype was also quantitatively assessed by plating dilutions of cultures on LBON agar plates and the drop in plating efficiency was scored after overnight incubation at 30°C and 42°C
    80. LBON(Ts) phenotype
    81. This test was therefore used for two purposes: (i) to distinguish relA+ from relA− strains, and (ii) as a qualitative measure of transcriptional polarity relief at the ilv locus. Growth in the presence of amino acids Serine, Methionine, and Glycine (SMG) was scored on glucose-minimal A plates supplemented with each of the amino acids at 100 μg/ml and compared with the growth on non-supplemented glucose-minimal A plates to score for SMG phenotype
    82. The E. coli relA mutants exhibit SMG-sensitive (SMGS) phenotype i.e. growth-inhibition in the presence of Serine, Methionine and Glycine at 1 mM concentration each (Uzan and Danchin, 1978) and is proposed to be a consequence of transcriptional polarity exerted by a frameshift mutation in the ilvG gene on the expression of downstream genes of the ilvGMEDA operon (Lopes et al., 1989). It was observed in another study that the rho and nusG mutants that are defective for transcription termination conferred SMG-resistant (SMGR) phenotype in a relA1 strain (Harinarayanan and Gowrishankar, 2003)
    83. SMG resistance
    84. Lac+ colonies were distinguished from Lac− on MacConkey-lactose plates or on Xgal indicator plates. Xgal is a non-inducing colourless substrate of β-galactosidase enzyme which upon hydrolysis yields dark blue indolyl moieties and hence, the Lac+ colonies on Xgal indicator plates are seen as dark blue colonies. Xgal was prepared as a stock solution of 5 mg/ml in dimethyl formamide and used at a final concentration of 25 μg/ml. On MacConkey-lactose medium (pH around 7.1) on the other hand, Lac+ strains can utilize the lactose sugar present in the medium to lower the pH of the medium to 6.8, resulting in a pink coloured colony while Lac─ strains are unable to utilize lactose to give a white colour
    85. Lac phenotype
    86. Scoring for phenotypes
    87. colonies come up after 48 hr. A freshly grown overnight culture of the TetR strain was washed once with an equal volume of citrate buffer and resuspended at 10- or 100-fold dilution in the same buffer. 0.1 ml aliquots were then spread on Maloy plates. Colonies were obtained at a frequency of ~ 4 x 10−5/plated cell. The colonies from the selection plate were purified on medium of the same composition and then scored for the Tets phenotype
    88. The method described by Maloy and Nunn (Maloy and Nunn, 1981) was followed for obtaining spontaneous TetS mutants of a TetR strain. Freshly grown cells of the TetR strain of O.D 0.7-0.8 was washed once with an equal volume of citrate buffer and resuspended at 10- or 100-fold dilution in the same buffer. 0.1 ml aliquots were then spread on Maloy agar plates and TetS colonies, which came up after 48 hr of incubation at 37 ̊C with a frequency of 5-8 big colonies/106-107 cells plated were purified on the same medium. This is not a clean selection since in a background lawn of slow growing TetR colonies, few faster growing TetS
    89. Selection for Tets colonies on medium described by Maloy et al
    90. A single plaque of λ contains approximately 105-106 pfu/ml. The method of propagation of λ from a single plaque was as follows. The contents of a single isolated plaque were drawn into a 1-ml pipette tip and dispensed into 0.2 ml of LB broth. After addition of a drop of chloroform, the contents were vortexed and centrifuged. The clear supernatant was mixed with 50 μl of λ-sensitive cells and incubated for 20 min at room temperature for adsorption. 10 ml of Z-broth supplemented with 5 mM MgSO4 was then added to the infection mixture, and incubated at 37°C with shaking until lysis. The lysate thus obtained usually contained 109pfu/ml
    91. Preparation of λ lysate by propagation from a single isolated plaque
    92. The method used was essentially the same as that described for preparation of P1 lysate, except that the λ-sensitive C600 cells used for infection were grown in LB broth containing 0.4% maltose and 10 mM MgSO4. The lysate thus prepared was checked for supE+revertants by plaquing on both supE (C600) and supE+strains (MG1655) using various dilutions of the lysate. To be used for experimental purposes, a phage titre of the order of 1010 to 1011 on the supE strain and around four orders of magnitude lower on the supE+strain, indicating very less frequency of supE+ revertants in the lysate is ideal
    93. Preparation of lambda (λ) lysates
    94. Obtaining transpositions near a gene of interest was achieved in a two-step procedure. The population (pool) of cells carrying random transpositions (described in the previous Section) at different places on the chromosome was used to prepare a P1 phage lysate. This lysate was then used to infect a suitable recipient strain and transductants were sought in a simultaneous (double) selection for two markers, namely the antibiotic marker on the mini-transposon and selection for the phenotype of the gene or mutation which was intended to be linked with the antibiotic marker. The transductants so isolated were purified and further P1 phage preparations were made on these individual clones. By retransducing with these lysates into the same recipient cells and observing the segregation of phenotypes after selection for the transposon marker, the cotransduction values were obtained between the transposon insertion and the gene (or mutation) of interest
    95. Obtaining transposon insertions near gene of interest
    96. the phage (λ1098 for Tn10dTet transpositions and λNK1324 for Tn10dCm transpositions) at a multiplicity of infection (moi) of 0.05 in the presence of 5 mM MgSO4. This mixture was incubated for 15 min at 37°C to allow for phage adsorption. The unadsorbed phage was then removed by centrifugation and the pellet was resuspended in 10 ml of LB broth containing 5 mM sodium pyrophosphate. It was incubated without shaking at 37°C for 30 min for phenotypic expression. The rest of the mixture was diluted into 100 ml of LB broth with 5 mM sodium pyrophosphate carrying the required antibiotic and amplified overnight by growth at 30°C. This population of cells was used as a source of random transposon insertions. The λ lysates used for the transposition experiments carry amber mutations, and were propagated on a supE strain C600 by the protocol described below in section 2.14
    97. The method used was essentially the same as that described by Miller (Miller, 1992). The strain to be used for obtaining random Tn10dTet or Tn10dCm insertions was grown overnight in Z-broth containing 0.4% maltose. The culture was then diluted 50-fold in the same medium and grown to an A600 of 0.8. Two ml of the culture was infected with 107 pfu of
    98. Generation of random Tn10 insertions into the genome of E.coli
    99. To 2 ml of the fresh overnight culture of the recipient strain grown in Z-broth, 108 pfu of P1 lysate was added and incubated at 37°C without shaking for 15 min to facilitate phage adsorption. The unadsorbed phage particles were removed by centrifugation at 4000 rpm for 5 min and the pellet of bacterial cells was resuspended in 5 ml of LB broth containing 20 mM sodium citrate to prevent further phage adsorption. This was incubated at 37°C for 30 min with slow shaking to allow for phenotypic expression of the antibiotic resistance gene. The mixture was then centrifuged, and the pellet was resuspended in 0.3 ml of citrate buffer. 100 μl aliquots were plated on appropriate antibiotic containing plates supplemented with 2.5 mM sodium citrate. A control tube without the addition of the P1 lysate, was processed in the similar way as described above. In case of selection for nutritional requirements, the infection mixture was centrifuged, washed once in 5 ml of citrate buffer and plated without phenotypic expression
    100. P1 transduction
    101. To quantitate the P1 phage lysate preparations, titration was done using a P1-sensitive indicator strain such as MG1655. 100 μl each of serial dilutions of the phage (typically 10−5, 10−6) were mixed with 0.1 ml of the fresh culture grown in Z-broth. After 15 min adsorption at 37°C without shaking, each mixture was added in a soft agar overlay to Z agar plates, and incubated overnight at 37°C. The phage titre was calculated from the number of plaques obtained on the plates
    102. To 0.3 ml of infection mixture, 10 ml of Z-broth was added and incubated at 37°C with slow shaking until growth followed by the visible lysis of the culture occurred (in ~ 4-6 h). The lysate was treated with 1 ml of chloroform, centrifuged and the clear lysate was stored at 4°C with chloroform
    103. Broth method
    104. 0.3 ml of overnight culture of the donor strain in Z-broth was mixed with 107 plaque forming units (pfu) of a stock P1 lysate prepared on strain MG1655. Adsorption was allowed to occur at 37°C for 15 min and the lysate was prepared in the following ways
    105. Most chemicals were obtained from commercial sources. The sources for some of the fine chemicals used in this study are given below. Most of the chemicals such as amino acids, antibiotics, sugars, IPTG, ONPG and X-gal were obtained from Sigma Chemical Co. The media components for the growth of bacteria were routinely from Himedia. The materials used in the recombinant DNA experiments such as restriction endonucleases, T4 DNA ligase, DNA polymerases for PCR amplification and DNA size markers were obtained from companies including New England Biolabs and Fermentas. Quiagen or HiPura Kits used for plasmid isolation, purification of DNA fragments. The oligonucleotide primers used in this study were mainly synthesized on order by Ocimum Biosolutions or MWG Biotech Pvt. Ltd
    106. Phage P1 lysate preparation
    107. Chemicals
    108. PonceauS stain Instant Blue (Biorad)
    109. Protein loading dye (6X) Tris-Cl (pH 6.8) 300 mM SDS 12% (w/v) Bromophenol blue 0.6% (w/v) Glycerol 60% (v/v) 600 mM β-mercaptoethanol
    110. Stains and Dyes
    111. Antibiotics were used at the following final concentrations (μg/ml): Rich media Minimal media Ampicillin (for plasmids) 100 50 Ampicillin (chromosome) 30 30 Chloramphenicol (for plasmids) 50 25 Chloramphenicol (chromosome) 25 25 Kanamycin 50 25 Nalidixic acid 50 - Rifampicin 100 - Streptomycin 50 100 Streptomycin 100 200 Spectinomycin 50 100 Tetracycline 15 8 Trimethoprim (for plasmids) 60 30 Chloramphenicol 0.1mg/ml The 10 mg/ml chloramphenicol stock in ethanol was used to make 0.1mg/ml solution in water
    112. Antibiotics
    113. NP-40 1% Tris 50 mM Sodiun deoxycholate 0.5% SDS 0.1% pH adjusted to 8.0 Running buffer for Western blotting Glycine 14.4g/l Tris base 3.05g/l SDS 1.0g/l Transfer buffer for western blotting Glycine 14.4g/l Tris base 3.03g/l The above salts were dissolved in 800ml of miliQ water and 200ml of methanol was then added. The buffer was chilled before use. PBST for Western blot 10X PBS (1000 ml) Sodium chloride 80 g Potassium chloride 2 g Disodium hydrogen phosphate 14.1 g (Na2HPO4) Potassium dihydrogen phosphate 2.49 g (KH2PO4) 1 l of 1X PBS + 1 ml of Tween-20
    114. TBF-I buffer (200ml) Potassium acetate 0.588 g Calcium chloride 0.249 g Manganese chloride 1.98 g Rubidium chloride 2.418 g 15% Glycerol 30 ml pH adjusted to 5.8 with 1M acetic acid TBF-II buffer (100 ml) MOPS 0.209 g Calcium chloride 1.102 g Rubidium chloride 0.120 g 15% Glycerol 15 ml pH adjusted to 6.5 with 1M potassium hydroxide Acrylamide solution (30%) Acrylamide 29 g Bis-acrylamide 1 g H2O 100 ml Non denaturing polyacrylamide gel (12%) 30% acrylamide 38.6 ml H2O 40.6 ml TBE 20 ml 10% APS 0.7 ml RIPA buffer (Radio Immuno Precipitation Assay buffer): RIPA buffer for bacterial cell lysis Sodium chloride 150 mM
    115. Water to 1000 ml MacConkey lactose agar: MacConkey Agar Base (Difco) 51.5 g Lactose 1% Water to 1000 ml Maloy agar: Tryptone 5 g Yeast extract 5 g NaCl 10 g NaH2PO4 10 g Chlorotetracycline (12.5 mg/ml) 4 ml Water 1000 ml Bacto-agar 15 g After autoclaving, the following solutions were added, ZnCl2 (20 mM) 5 ml Quinaldic acid (10 mg/ml) 10 ml Citrate buffer: (0.1 M; pH 5.5) Citric acid (0.1 M) 4.7 volumes Sodium citrate (0.1 M) 15.4 volumes TBE and TAE buffers: TBE: 90 mM Tris-borate, 2 mM EDTA (pH 8.0) and TAE: 40 mM Tris-acetate, 2 mM EDTA (pH 8.0) were used as standard electrophoresis buffers. TBE and TAE were prepared as 10X and 50X concentrated stock solutions, respectively, and used at 1X concentration
    116. cto-agar 15 g LBON agar: LBON medium1000 mlBacto-agar 15 gLB soft agar: LB medium 100 ml Bacto-agar 0.6 gK-Medium: KH2PO4 1.0 mM FeSO4 0.5 mg/l (NH4)2SO4 1.5 mM MgCl2 0.08 mM Casamino acids 5 g/l Thiamine 2 mg/l pH was adjusted to 7.0 with Tris free base. K-medium is low osmolarity (70 mOsm) medium (Kennedy, 1982). Z broth: LB medium 100 ml CaCl2 (0.5 M) 0.5 ml MacConkey agar: MacConkey Agar (Difco) 51.5 g Water to 1000 ml MacConkey galactose agar: MacConkey Agar Base (Difco) 51.5 g Galactose 1%

      Ba

    117. Glucose/Glycerol-minimal A 19 amino acid medium: This medium is essentially the same as glucose/glycerol-minimal A medium described above except that all the 19 amino acids (except tryptophan) were added after autoclaving in a final concentration of 40 μg/ml from autoclaved 4mg/ml amino acid stock solutions. Minimal agar: Contained 1.5% Bacto-agar (Difco) in minimal A Medium. The plates were poured after mixing double strength minimal A medium with 4% agar (in water) that had been autoclaved separately. Wherever required, to test polaity relif at lacZ(am) or trpE(fs), meliobose (0.2%) was replaced for glucose and anthranilate at 100 μg/ml (4 mg/ml stock prepared in DMF) was replaced for tryptophan respectively. LB medium: Tryptone 10 g Yeast extract 5 g NaCl 10 g Water to 1000 ml pH adjusted to 7.0 - 7.2 with 1 N NaOH. LBON medium: Tryptone 10 g Yeast extract 5 g Water to 1000 ml pH adjusted to 7.0 - 7.2 with 1 N NaOH LB agar: LB medium 1000 ml
    118. All the media and buffers were sterilized by autoclaving for 15 minutes at 121°C. Media and buffers used in this study are described below. Glucose/Glycerol-minimal A medium: K2HPO4 10.5 g KH2PO4 4.5 g (NH4)2SO4 1 g Sodium citrate, 2H2O 0.5 g Water to 1000 ml After autoclaving the following solutions were added. MgSO4 (1 M) 1 ml Glucose (20%) 10 ml Or Glycerol (80%) 5ml Vitamin B1 (1%) 0.1 ml Amino acids and bases, when required, were added to a final concentration of 40 μg/ml. When growth on other carbon sources was to be tested, glucose was substituted by the appropriate sugar at 0.2%; when used as carbon source, the final concentration of Casamino acids was 0.5%
    119. Media and buffers
    120. Primers used in this study
    121. aStrain DH5α, MC4100 and MG1655 was from our laboratory stock collection. Strains described earlier include GJ3107, GJ3110, GJ3161, GJ3168, GJ3171 (Harinarayanan and Gowrishankar, 2003), and RS353 and RS445 (Chalissery et al., 2007). Strain GJ5147 is an Ilv+ derivative of GJ3073 (Chalissery et al., 2007). Strains GJ6504, GJ6509, GJ6511, GJ6516, GJ6520 and GJ6524 were constructed by S. Aisha (unpublished). Strains GJ5108, GJ5146, GJ5153 were constructed by K. Anupama (unpublished). b Genotype designations are as described in Berlyn (1998). cK7906 strain is described in Zheng and Friedman (1994). d MDS42 strain is as described in Posfai et al. (2006)
    122. Table 2.1 : List of E. coli K-12 strains
    123. Bacterial strains
    124. Plasmids constructed in this study
    125. genome cloned in a ColEI-based replicon, and obtained from Dr. Manjula Reddy. pHYD2556 is spectinomycin resistant and carries the minimal nusA+ open-reading frame with its native ribosome-binding site between genomic nucleotide co-ordinates 3314061and 3315548 cloned downstream of the ara regulatory region in a pSC101-based replicon, and obtained from Dr. Ranjan Sen. pHYD2557 is chloramphenicol resistant and carries a 2.3-kb PCR-amplified region between genomic nucleotide co-ordinates 3314061 and 3316393 (containing yhbC nusA region with its own promoter) cloned in a pSC101-based Ts replicon, and obtained from Dr. Ranjan.Plasmid DNA preparations were routinely prepared from recA strains such as DH5αand were stored in 10mM Tris-Cl (pH 8.0) plus 1mM EDTA at ─20 ̊C
    126. pWSK30 an Ampicillin resistant vector with pSC101 origin of replication and blue-white screening facility (Wang and Kushner, 1991). pHYD272 is a derivative of pMU575, an IncW-based single copy vector with Trimethoprim resistance marker carrying lacZYA reporter genes under proU promoter (Dattananda et al., 1991). pHYD751 a ColE1 replicon plasmid with ampicillin resistance marker and 2.1kb EcoRI-SalI fragment carrying nusG+cloned into EcoRI-SalI sites of pAM34 vector. The plasmid exhibits IPTG dependent replication (Harinarayanan and Gowrishankar, 2003). pHYD763 is a Ts (maintained at 30 ̊C but not at 37 ̊ or 39 ̊C), CmR, pSC101 derivative carrying 3.8 kb BamHI-SacI fragment of nusG+ cloned into BamHI-SacI sites of pMAK705 (Harinarayanan and Gowrishankar, 2003). pHYD1201 a ColE1 replicon plasmid with ampicillin resistance marker and 3.3kb HindIII-SalI fragment carrying rho+cloned into HindIII-SalI sites of pAM34 vector. The plasmid exhibits IPTG dependent replication (Harinarayanan and Gowrishankar, 2003). pHYD1622 is the derivative of pHYD1201 where the Ampicillin resistance marker has been replaced with Chloramphenicol using Wanner method of gene replacement. Cm gene was amplified from pKD3 plasmid (K. Anupama, unpublished). pHYD1623 is the derivative of pHYD751 where the Ampicillin resistance marker has been replaced with Chloramphenicol using Wanner method of gene replacement. Cm gene was amplified from pKD3 plasmid (K. Anupama, unpublished). pHYD2368 is a derivative of pBAD18 (AmpR) with 1.7 kb fragment encompassing RBS and coding region of uvsW from phage T4gt7 into SacI site of pBAD18 (K. Leela, unpublished). pHYD2554 is a derivative of pMBL18 with ampicillin resistance, carrying the 10-kb EcoRI-HindIII fragment between kilobase co-ordinates 3310.06 and 3320.08 of the E. coli
    127. to CCT mutation leading to a Glutamic acid to Glycine change at the 53rd amino acid and a Threonine to Proline change at the 55th amino acid in the H-NS protein (Willams et al., 1996). pLG-H-NS-I119T is a derivative of pLG-H-NS plasmid with ATC to ACC mutation leading to a Isoleucine to Threonine change at the 119th amino acid in the H-NS protein (Willams et al., 1996). pLG-H-NS-P116S is a derivative of pLG-H-NS plasmid with CCA to TCA mutation leading to a Proline to Serine change at the 116th amino acid in the H-NS protein (Willams et al., 1996). pLG-H-NS-Y97C is a derivative of pLG-H-NS plasmid with TAT to TGT mutation leading to a Tyrosine to Cysteine change at the 97th amino acid in the H-NS protein (Willams et al., 1996). pPMrhoCam is a Ts (maintained at 30 ̊C but not at 37 ̊ or 39 ̊C), CmR, pSC101 derivative carrying PuvII-HindIII fragment containing trxArho+ cloned into PuvII-HindIII sites of pPM103 (Martinez et al., 1996). pTrc99A an expression vector with ColE1 origin of replication and ampicillin resistance marker. Provides IPTG dependent induction of the insert (Amann et al., 1988). pUC19 is a high-copy-number ColE1 based E.coli cloning vector (500-700 copies/cell) with an Ampr selectable marker. It is one of a series of related plasmids constructed by Messing and co-workers and contains portions of pBR322 and M13mp19 (Yanisch-Perron et al., 1985). It carries a multiple-cloning site (MCS) region in the lacZα fragment, and therefore allows for blue-white screening of recombinant clones
    128. pAM34 is a pBR322-derived cloning vector with Ampr and Specr selectable markers. The replication of this plasmid is dependent on the presence of IPTG, the gratuitous inducer of the lac operon (Gil and Bouche, 1991). pBAD18 is an expression vector with a pBR322 derived origin of replication and allows for tightly regulated expression of the genes cloned under the PBAD promoter of the araBADoperon (Guzman et al., 1995). The vector also carries the araC gene, encoding the positive and negative regulator of this promoter. pBluescript II KS (pBKS) is also a high-copy-number ColE1 based cloning vector with Ampr selectable marker and blue-white screening facility (obtained from Stratagene). pCL1920 is a low-copy-number vector with pSC101 replicon (~ 5 copies/cell), that carries streptomycin (Str)/spectinomycin (Spec)-resistance marker (encoded by aadA) and also carries a MCS region within the lacZα that allows blue-white screening to detect recombinants (Lerner and Inouye, 1990). pCP20 pSC101-based Ts replicon, CmR AmpR, for in vivo expression of Flp recombinase (Datsenko and Wanner, 2000). pLG339 is a low-copy-number cloning vector with pSC101 replicon that has a Kanrselectable marker (Stoker et al., 1982). pLG-H-NS is a pLG339 derivative where the hns ORF had been cloned into the EcoRI-SalIsites of pLG339 vector (KanR, pSC101) (Willams et al., 1996). pLG-H-NSΔ64 is a derivative of pLG-H-NS plasmid with AT base pair deletion after codon 63 in the hns gene resulting in a frameshift (Willams et al., 1996). pLG-H-NS-L26P is a derivative of pLG-H-NS plasmid with CTG to CCG mutation leading to a Leucine to Proline change at the 26th amino acid in the H-NS protein (Willams et al., 1996). pLG-H-NS-E53G/T55P is a derivative of pLG-H-NS plasmid with GAG to GGG and ACT
    129. pACYC184 is a medium-copy-number cloning vector (~ 20 copies/cell) with Cmr and Tetrselectable markers. It carries the origin of replication from plasmid p15A (Chang and Cohen, 1978), which is related to and yet is compatible with that of ColE1. This property enables pACYC184 to co-exist in cells with ColE1 plasmid vectors, including all the ones mentioned above
    130. Plasmids that have been described elsewhere
    131. Plasmids
    132. The bacteriophage P1kc was from our laboratory collection and is referred to as P1 throughout this thesis. Phage λcI857 was also from our laboratory collection. Other bacteriophages that were used in this study included the following: (i) λNK1098 carries a Tn10 transposon with a tertracycline (Tet) ressistance marker. (ii) λNK1324 carries a mini-Tn10 transposon Tn10dCm with a chloramphenicol (Cm)-resistance marker, Cmr. The lambda phage vectors above (Kleckner et al., 1991) were used to make random transposon insertions in the chromosome either for the purpose of insertional mutagenesis or for tagging antibiotic resistance markers to point mutations
    133. Bacteriophages