10 Matching Annotations
  1. May 2019
    1. ammonium molybdate, respectively, to the assay buffer.For specific inhibition of vacuolar membrane H+-ATPaseactivity, vacuolar membrane fractions were incubatedwith 1-2.5 μM bafilomycin for 5 minprior to the activity assay.ATPase activity was initiatedby adding ATP to the assay buffer to afinal concentration of 5 mM and incubating the reactionat 30 ̊C for 30-60 min.Reaction was stopped by adding an equal volumeof a stop-developing solution (1% (w/v)SDS, 0.6 M H2SO4, 1.2%(w/v)ammonium molybdate and 1.6%(w/v)ascorbic acid). Amount of inorganic phosphate (Pi) liberated was measured at A750nmafter 10 minincubation at room temperature. Standard curve prepared with 0-50 micromoles of KH2PO4 was used for the determination of total Pi. The ATPase activity of the vacuolarmembrane H+-ATPase was expressed in micromoles of Pireleased per milligram protein per min
    2. Vacuolar membrane H+-ATPase activitywas measured inbothcrude membrane fraction and purifiedvacuolar membrane fraction asdescribed previously(Woolfordet al.,1990).Activity inthe crude membrane fractions was carried out with 2.5-10 μgprotein in 50 μl assay buffer (5 mM MgCl2, 25 mM MES/Tris-HCl(pH 6.9)and 25 mM KCl). For activity inthe purified vacuolar membrane fraction, a totalof300 μl reactionmix was setup with of 2.5-10 μgprotein samples.Residual activities from other ATPases such as mitochondrial ATPases, plasma membrane H+-ATPase and phosphataseswere inhibited by adding 2 mM NaN3, 200 μM NaVO4and 0.2 mM
    3. Vacuolar H+-ATPase activity measurement
    4. Vacuole membraneswere isolatedwith slight modifications of Cabrera’s method(Cabrera et.al.,2008). Log-phase, YPD medium-grown cells wereinoculated in 1 lt YPDmedium to an initialOD600of 0.1. Cells were incubated at 30 ̊C with shaking at 200 rpm till the cell density reached to OD600of 0.8-1.0.Cells were harvested by centrifugation at 5,000 g and washed once with 30 ml 2% ice-cold glucose solution. Cells were incubated in 15 ml solution containingglycine-NaOH(50 mM; pH10)andDTT(2 mM) at 30 ̊C for 10 min. After incubation, cells were normalized to adensity of1000OD600and resuspendedin 15 ml spheroplasting buffer containing 10-15mg of zymolyase20T.Cells were incubated at 30 ̊C for 45-60 minor till the spheroplasting was completed.Spheroplasts werecollected by centrifugation at 4,500 rpmfor 5 minat 4 ̊C, washed gently with15 ml 1.2 M sorbitol solutionandresuspendedin 3.5 ml 15%ficoll solution made in PS buffercontaining 1X protease inhibitor cocktail. This suspension was homogenized on ice with 20-25 strokes in a loose-fitting Dounce homogenizer. Homogenate was transferred to an ice-cold,ultra-clear Beckman ultracentrifuge tube, overlaid witha gradient of3 ml 8%ficoll solution, 2.5 ml 4%ficoll solutionand 2.5 ml PS buffer lacking ficoll and centrifuged at 1,10,000g(30,000 rpm)for 90 minat 4 ̊Cin a pre-cooled Beckman ultracentrifuge with SW41-Ti swinging bucket rotor.Centrifugation was carried out with slow acceleration and deceleration settings.White creamy vacuole membrane layer wascollected from the interfaceof 0and4% ficoll gradientwithout mixing the layers.Total protein concentration in thevacuole fraction was estimated using BCAprotein assay kit as described earlier
    5. Purified vacuole membrane isolation
    6. Crude fractionation of total membraneswas carried outviadifferential centrifugation asdescribed previously (Moranoand Klionsky,1994)with slight modifications. Cells grown tolog-phase in YPDmedium werecollected, washed,normalizedto 10 OD600and resuspendedin 1 ml spheroplast buffer containing 1-2mg of zymolyase20T (MP Biomedicals).Following incubation at 30 ̊Cfor 30-45 min,spherolplastswerecollected by centrifugation at 800 g for 3 minat 4 ̊C and resuspendedin 1 mlice-cold Tris-EDTA (pH 7.5). Spheroplastswere lysed with 100 μl 0.5mm glass beads on a vortex mixer with 10 secpulsegiven thricewith intermittent ice-breaks.Cellsuspension was centrifuged at 800 g for 5 minat 4 ̊C to pellet unbrokenspheroplastsdown andthesupernatant was centrifuged at 15,000 g for 5 minat 4 ̊C to obtainthemembrane fraction pellet.Pellet was washed once with ice-cold Tris-EDTA (pH 7.5), resuspendedin 50 μl of the samebuffer and stored at -20 ̊Ctill further use. Protein concentration of pellet fraction was estimated using BCAprotein assay kit with BSA as thestandard
    7. Crude vacuolar membrane extraction
    8. Vacuolar H+-ATPase activity measurement
    1. Four week old tomato S-22 cultivar (acts as non-host for Xanthomonas oryzae pv. oryzicola) were syringe-infiltrated with a suspension of Xocstrains and water control. Plants were incubated in green house for 24 h with minimum and maxium temperature of 26 and 28°C, respectively and relative humidity of 65%. Callose deposition assay was performed as a marker for hypersensitvity response in non host plant as described previously (Hauck et al., 2003). Leaf picture was captured at this stage to observe the HR browning of leaf. For assaying callose deposition by aniline blue staining, infilterated leaves were removed from plant,dipped in lactophenol solution and incubated at 65°C in water bath until the cholorohyll is completely removed. Leaves were rehydrated by washing with 50% ethanol, and finally rinsed with water. For aniline blue staining, leaves were incubated in 0.01% aniline blue solution, prepared in 100 mM K2HPO4(pH 9.5), for 15-20 min in dark. Subsequently, leaves were washed with water and observed for callose deposition in epifluorescence microscope (Stereo, Lumar V7, Zeiss) under UV illumination
    2. In plantahypersensitive response (HR) and callose deposition assay