2 Matching Annotations
  1. Jul 2018
    1. On 2017 Jun 19, Martine Crasnier-Mednansky commented:

      Novick A, 1957 reaffirmed a fully induced culture could be maintained fully induced at low inducer concentrations. In this paper, the authors reported preinduced cells with melibiose do not maintain induction of the melibiose (mel) operon in the presence of 1 mM TMG. However, experimental conditions and data interpretation are both questionable in view of the following.

      The authors used a lacY strain whose percentage of induction by 1 mM TMG is less than 0.2%, 100% being for melibiose as the inducer (calculated from data in Table 1 and 3). They transfer the cells from a minimal-medium-melibiose to a minimal-medium-glycerol supplemented with 1 mM TMG. The cells therefore have to 'enzymatically adapt' to glycerol while facing pyrimidine starvation (Jensen KF, 1993, Soupene E, 2003). Under these conditions, cells are unlikely to maintain induction of the mel operon (even if they could, see below) because uninduced cells have a significant growth advantage over induced cells. Incidentally, Novick A, 1957 noted, "the fact that a maximally induced culture can be maintained maximally induced for many generations [by using a maintenance concentration of inducer] shows that the chance of a bacterium becoming uninduced under these conditions is very small. Were any uninduced organisms to appear, they would be selected for by their more rapid growth". Advancing further, the percentage of induction by TMG for the mel operon in a wild type strain (lacY<sup>+</sup>) is 16% (calculated as above). This induction is due mostly to TMG transport by LacY considering the sharp decrease in the percentage of induction with a lacY strain (to <0.2%). Consequently, in the presence of TMG, any uninduced lacY cells remain uninduced. Thus, it appears a population of uninduced cells is likely to 'take over' rapidly under the present experimental conditions.

      In the presence of LacY, the internal TMG concentration is about 100 times the medium one, and under these conditions, induction of the mel operon by TMG is only 16%. Therefore, the cells could not possibly maintain their full level of induction simply because TMG is a relatively poor inducer of the mel operon. It seems the rationale behind this experiment does not make much sense.

      Note: The maintenance concentration of inducer is the concentration of inducer added to the medium of fully induced cells and allowing maintenance of the enzyme level for at least 25 generations (Figure 3 in Novick A, 1957). It is not the intracellular level of inducer, as used in this paper.


      This comment, imported by Hypothesis from PubMed Commons, is licensed under CC BY.

  2. Feb 2018
    1. On 2017 Jun 19, Martine Crasnier-Mednansky commented:

      Novick A, 1957 reaffirmed a fully induced culture could be maintained fully induced at low inducer concentrations. In this paper, the authors reported preinduced cells with melibiose do not maintain induction of the melibiose (mel) operon in the presence of 1 mM TMG. However, experimental conditions and data interpretation are both questionable in view of the following.

      The authors used a lacY strain whose percentage of induction by 1 mM TMG is less than 0.2%, 100% being for melibiose as the inducer (calculated from data in Table 1 and 3). They transfer the cells from a minimal-medium-melibiose to a minimal-medium-glycerol supplemented with 1 mM TMG. The cells therefore have to 'enzymatically adapt' to glycerol while facing pyrimidine starvation (Jensen KF, 1993, Soupene E, 2003). Under these conditions, cells are unlikely to maintain induction of the mel operon (even if they could, see below) because uninduced cells have a significant growth advantage over induced cells. Incidentally, Novick A, 1957 noted, "the fact that a maximally induced culture can be maintained maximally induced for many generations [by using a maintenance concentration of inducer] shows that the chance of a bacterium becoming uninduced under these conditions is very small. Were any uninduced organisms to appear, they would be selected for by their more rapid growth". Advancing further, the percentage of induction by TMG for the mel operon in a wild type strain (lacY<sup>+</sup>) is 16% (calculated as above). This induction is due mostly to TMG transport by LacY considering the sharp decrease in the percentage of induction with a lacY strain (to <0.2%). Consequently, in the presence of TMG, any uninduced lacY cells remain uninduced. Thus, it appears a population of uninduced cells is likely to 'take over' rapidly under the present experimental conditions.

      In the presence of LacY, the internal TMG concentration is about 100 times the medium one, and under these conditions, induction of the mel operon by TMG is only 16%. Therefore, the cells could not possibly maintain their full level of induction simply because TMG is a relatively poor inducer of the mel operon. It seems the rationale behind this experiment does not make much sense.

      Note: The maintenance concentration of inducer is the concentration of inducer added to the medium of fully induced cells and allowing maintenance of the enzyme level for at least 25 generations (Figure 3 in Novick A, 1957). It is not the intracellular level of inducer, as used in this paper.


      This comment, imported by Hypothesis from PubMed Commons, is licensed under CC BY.