3 Matching Annotations
  1. Nov 2024
    1. Eine neue Studie bestätigt, dass die Hauptursache des immer schnelleren Anstiegs des Methan-Gehalts der Atmosphäre die Aktivität von Mikroaorganismen ist, die durch die globale Erhitzung zunimmt. Damit handelt es sich um einen Feedback-Mechanismus, durch den sich die globale Erhitzung selbst verstärkt. https://taz.de/Zu-viel-Methan-in-der-Atmosphaere/!6045201/

      Studie: https://www.pnas.org/doi/10.1073/pnas.2411212121

      Vorangehende Studien: https://www.nature.com/articles/s41558-023-01629-0, https://www.nature.com/articles/s41558-022-01296-7.epdf?sharing_token=CDMa5-ti34UNBqv3kfuCB9RgN0jAjWel9jnR3ZoTv0NZRKXEI-7kyXEEvNI7duu65JLcZpmhGxWTeSfYcMCqxqYk5nUrdR60izmjToMNw56RgBqIcn3JXKxSjx13vmB9ZYndGTUMt-52Vs7HT_T6K9Oth4QFRyP51eOpz8pV8l65HFDo2VSfQ6xDXklMtmvt-HGwltAINb_2xgmtAR-V4g%3D%3D&tracking_referrer=taz.de

  2. Jun 2019
    1. Plutonium, like most metals, has a bright silvery appearance at first, much like nickel, but it oxidizes very quickly to a dull gray, although yellow and olive green are also reported.[1][2] At room temperature plutonium is in its α (alpha) form. This, the most common structural form of the element (allotrope), is about as hard and brittle as gray cast iron unless it is alloyed with other metals to make it soft and ductile. Unlike most metals, it is not a good conductor of heat or electricity. It has a low melting point (640 °C) and an unusually high boiling point (3,228 °C).[1] Alpha decay, the release of a high-energy helium nucleus, is the most common form of radioactive decay for plutonium.[3] A 5 kg mass of 239Pu contains about 12.5×1024 atoms. With a half-life of 24,100 years, about 11.5×1012 of its atoms decay each second by emitting a 5.157 MeV alpha particle. This amounts to 9.68 watts of power. Heat produced by the deceleration of these alpha particles makes it warm to the touch.[

      "Heat produced by the deceleration of these alpha particles makes it warm to the touch."

    1. Scientists say plutonium may be the worst of all the fission byproducts that could enter the environment as a result of the Fukushima nuclear disaster. That's why MOX fuel rods that are piled up in spent fuel pools near the Unit 3 reactor, which consist of a mix of plutonium and uranium isotopes, have become the number one concern of workers at the plant.