- Aug 2020
-
mgonzalezm.keybase.pub mgonzalezm.keybase.pubUntitled37
-
(a?—a + 1) (a*—a? + 1) (a% + a + 1). Comprobar el resultado ha- ciendo a = 2.
-
(a2—ab+b2+a+b+1)(a+b—1).
-
(a* + a% + a®b? +ab® + b*) (a—b).
-
(x2—x—1)2(x2 + x + 1).
-
(2 + xy—6)*) + (x+29).
-
2a*mx?y) + 6a?nyz?) + (20”y)
Typo: Sobra el pimer parentesis ')'
-
(4abx — 8b%x?y) + (2bx?).
-
(2 + 322 + 5) (x*—1 + 4x).
-
(m3 —m? + m-—-1) (—m3 -+ m—m +1).
-
(x2 4 y2 + 22— ay — az — yz) (x + y + 2).
-
(a? — 2ab + 4b?) (a + 2b). Comprobar el resultado haciendo a = 2 3.
-
(x2—3xy + y*) (2x— 3y + 2).
-
(a? + 2ab — 2b*) (3a—7b).
-
(2x2—5y) (4x + 2y*).
-
xy(x2— 2y + 4).
-
(—ab2c) (3a2bc) (2abc?).
-
(8a2b) (—2ab2).
-
Demostrar que la suma de cualquier número negativo con su valor abso- luto es igual a cero.
-
Demostrar que la suma de todas las expresiones en los ejercicios 11-15 es igual a la expresión en el ejercicio 11.
-
Calcular 4 —B—C.
-
Calcular B— A4 —C.
-
Calcular 4 —B + C.
-
Calcular B—4 + C.
-
Calcular 4 + B—C.
-
m* + 6m$ — 7m? + 8m — 9, 2m? + Im?—4m — 3.
-
2a + 4by — 2ey? + dys, 2dy> — 2by —a + 30y”.
-
a — 3a”b + 3ab? —b, a5 — 4a*b + 2ab? + b.
-
x3—4x? + 2x—5, —a3 + 2x2—3x —3.
-
3a—2b + 4c — d, 20 + b—3c—d.
-
E2 + 2cd — 2d, 3c — 3cd — 2d?, e? 4+ 4d — 2c + 2d?.
-
3x3 — 8x? + 9x, —a3 + 3x2—8, 2x3 — 2x?—7x 5.
-
x2-—4xy + 3y, 2x? + 2xy-—2y?, 2xy — y? —22.
-
4m? — 3mn + 2n?, Gmn-—2n? + 5, 3n2 — 3—2m.
-
2a> — 2a?b + 2b5, Yu?b — 4ab? — 4b3, dab* —m.
-
(x+a)(y +a)(z +a).
-
Demostrar el Teorema 3 del Art. 2.4.
-
esupone
typo. supone
-
- Jul 2020
-
mgonzalezm.keybase.pub mgonzalezm.keybase.pubUntitled2
-
expreisón,
typo: expresión
-
cumpletos
typo: complejos
-
-
mgonzalezm.keybase.pub mgonzalezm.keybase.pub
-
f.real numbers.
f. real numbers. \( \{ -9, -1.3, 0, 0.\overline{3}, \frac{\pi}{2}, \sqrt{9}, \sqrt{10} \} \)
-
e.irrational numbers
e. irrational numbers. \( \{ \frac{\pi}{2} , \sqrt{10} \} \)
-
d.rational numbers
d. rational numbers. \( \{ -9, -1.3, 0, 0.\overline{3}, \sqrt{9} \} \)
\( 1.3 = \frac{13}{10} \)
\( 0.\overline{3} = \frac{1}{3} \)
\( 0 = \frac{0}{1} \)
\( \sqrt{9} = \frac{3}{1} \)
-
c.integers.
c. integers \( \{ -9, 0, \sqrt{9} \} \)
-
b.whole numbers
b. whole numbers. \( \{ 0, \sqrt{9} \} \)
0 is a whole number
-
a.natural numbers
a. natural numbers. \( \{ \sqrt{9} \} \)
\( \{ \sqrt{9} \} = 3 \)
-
Find the union:{3, 4, 5, 6, 7}∪{3, 7, 8, 9}.
\( \{7,8,9,10,11\}\cup\{6,7,8,9,10,11,12\}=\{7,8,9,10,11,6,12\} \)
-
Find the intersection:{3, 4, 5, 6, 7} ̈{3, 7, 8, 9}.
\( \{3,4,5,6,7\}\cap\{3,7,8,9\}=\{3,7\} \)
-
b.By how much does the formula underestimate or overestimate the actual cost shown in Figure P.1?
\( 8893 - 8714 = 179 \)
It underestimates by 179
-
a.Use the formula T=4x2+330x+3310, described in Example 2, to find the average cost of tuition and fees at public U.S. colleges for the school year ending in 2014.
\( T=4x^2 +330x +3310 \)
Because 2014 is 14 years after 2000, we substitute 14 for x in the given formula.
\( T=4(14)^2 + 330(14) +3310 \)
\( T=4(196) +4620 +3310 \)
\( T=784 +7930 \)
\( T=8714 \)
-
Evaluate 8+6(x-3)2 for x=13.
Evaluate \( 8+6(x-3)^2 \) for \( x=13 \)
\( 8 + 6 (13 - 3)^2 \)
\( 8 + 6 (10)^2 \)
\( 8 + 6 * 100 \)
\( 8 + 600 \)
\( 608 \)
-