50 Matching Annotations
  1. Aug 2020
  2. mgonzalezm.keybase.pub mgonzalezm.keybase.pub
    1. (a?—a + 1) (a*—a? + 1) (a% + a + 1). Comprobar el resultado ha- ciendo a = 2.
    2. (a2—ab+b2+a+b+1)(a+b—1).
    3. (a* + a% + a®b? +ab® + b*) (a—b).
    4. (x2—x—1)2(x2 + x + 1).
    5. (2 + xy—6)*) + (x+29).
    6. 2a*mx?y) + 6a?nyz?) + (20”y)

      Typo: Sobra el pimer parentesis ')'

      link

    7. (4abx — 8b%x?y) + (2bx?).
    8. (2 + 322 + 5) (x*—1 + 4x).
    9. (m3 —m? + m-—-1) (—m3 -+ m—m +1).
    10. (x2 4 y2 + 22— ay — az — yz) (x + y + 2).
    11. (a? — 2ab + 4b?) (a + 2b). Comprobar el resultado haciendo a = 2 3.
    12. (x2—3xy + y*) (2x— 3y + 2).
    13. (a? + 2ab — 2b*) (3a—7b).
    14. (2x2—5y) (4x + 2y*).
    15. xy(x2— 2y + 4).
    16. (—ab2c) (3a2bc) (2abc?).
    17. (8a2b) (—2ab2).
    18. Demostrar que la suma de cualquier número negativo con su valor abso- luto es igual a cero.
    19. Demostrar que la suma de todas las expresiones en los ejercicios 11-15 es igual a la expresión en el ejercicio 11.
    20. Calcular 4 —B—C.
    21. Calcular B— A4 —C.
    22. Calcular 4 —B + C.
    23. Calcular B—4 + C.
    24. Calcular 4 + B—C.
    25. m* + 6m$ — 7m? + 8m — 9, 2m? + Im?—4m — 3.
    26. 2a + 4by — 2ey? + dys, 2dy> — 2by —a + 30y”.
    27. a — 3a”b + 3ab? —b, a5 — 4a*b + 2ab? + b.
    28. x3—4x? + 2x—5, —a3 + 2x2—3x —3.
    29. 3a—2b + 4c — d, 20 + b—3c—d.
    30. E2 + 2cd — 2d, 3c — 3cd — 2d?, e? 4+ 4d — 2c + 2d?.
    31. 3x3 — 8x? + 9x, —a3 + 3x2—8, 2x3 — 2x?—7x 5.
    32. x2-—4xy + 3y, 2x? + 2xy-—2y?, 2xy — y? —22.
    33. 4m? — 3mn + 2n?, Gmn-—2n? + 5, 3n2 — 3—2m.
    34. 2a> — 2a?b + 2b5, Yu?b — 4ab? — 4b3, dab* —m.
    35. (x+a)(y +a)(z +a).
    36. Demostrar el Teorema 3 del Art. 2.4.
    37. esupone

      typo. supone

  3. Jul 2020
    1. f.real numbers.

      f. real numbers. \( \{ -9, -1.3, 0, 0.\overline{3}, \frac{\pi}{2}, \sqrt{9}, \sqrt{10} \} \)

    2. e.irrational numbers

      e. irrational numbers. \( \{ \frac{\pi}{2} , \sqrt{10} \} \)

    3. d.rational numbers

      d. rational numbers. \( \{ -9, -1.3, 0, 0.\overline{3}, \sqrt{9} \} \)

      \( 1.3 = \frac{13}{10} \)

      \( 0.\overline{3} = \frac{1}{3} \)

      \( 0 = \frac{0}{1} \)

      \( \sqrt{9} = \frac{3}{1} \)

    4. c.integers.

      c. integers \( \{ -9, 0, \sqrt{9} \} \)

    5. b.whole numbers

      b. whole numbers. \( \{ 0, \sqrt{9} \} \)

      0 is a whole number

    6. a.natural numbers

      a. natural numbers. \( \{ \sqrt{9} \} \)

      \( \{ \sqrt{9} \} = 3 \)

    7. Find the union:{3, 4, 5, 6, 7}∪{3, 7, 8, 9}.

      \( \{7,8,9,10,11\}\cup\{6,7,8,9,10,11,12\}=\{7,8,9,10,11,6,12\} \)

    8. Find the intersection:{3, 4, 5, 6, 7} ̈{3, 7, 8, 9}.

      \( \{3,4,5,6,7\}\cap\{3,7,8,9\}=\{3,7\} \)

    9. b.By how much does the formula underestimate or overestimate the actual cost shown in Figure P.1?

      \( 8893 - 8714 = 179 \)

      It underestimates by 179

    10. a.Use the formula T=4x2+330x+3310, described in Example 2, to find the average cost of tuition and fees at public U.S. colleges for the school year ending in 2014.

      \( T=4x^2 +330x +3310 \)

      Because 2014 is 14 years after 2000, we substitute 14 for x in the given formula.

      \( T=4(14)^2 + 330(14) +3310 \)

      \( T=4(196) +4620 +3310 \)

      \( T=784 +7930 \)

      \( T=8714 \)

    11. Evaluate 8+6(x-3)2 for x=13.

      Evaluate \( 8+6(x-3)^2 \) for \( x=13 \)

      \( 8 + 6 (13 - 3)^2 \)

      \( 8 + 6 (10)^2 \)

      \( 8 + 6 * 100 \)

      \( 8 + 600 \)

      \( 608 \)