Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
__Reviewer #1 (Evidence, reproducibility and clarity (Required)):
__
Summary
In this work, the authors present a careful study of the lattice of the indirect flight muscle (IFM) in Drosophila using data from a morphometric analysis. To this end, an automated tool is developed for precise, high-throughput measurements of sarcomere length and myofibril width, and various microscopy techniques are used to assess sub-sarcomeric structures. These methods are applied to analyze sarcomere structure at multiple stages in the process of myofibrillogenesis. In addition, the authors present various factors and experimental methods that may affect the accurate measurement of IFM structures. Although the comprehensive structural study is appreciated, there are major issues with the presentation/scope of the work that need to be addressed:
Major Comments
1. The main weakness of the paper is in its claim of presenting a model of the sarcomere. Indeed, the paper reports a structural study that is drawn onto a 3D schematic. There is no myofibrillogenesis model that would provide insights into mechanisms. Therefore, the use of the word model is grossly overstated.
In biology, the term “model” is used in various contexts, but it generally refers to a simplified representation of a biological system, a structure or a process. Accordingly, we consider “model” the most fitting phrase for what we present in Figure 4 (Figure 7 in the revised manuscript). These are not arbitrary 3D schematics; they are scaled representations in which the length, the number and the relative three-dimensional arrangement of thin and thick filaments are based on measurements. These measurements are primarily based on our own data (presented in the main text and provided in the supplementary materials), as published data were either lacking or inconsistent. Moreover, we would like to highlight that we do not claim to present a conceptual or mechanistic model of myofibrillogenesis, but we do present structural reconstructions or models for four developmental time points. Therefore, we disagree with the remark that “the use of the word model is grossly overstated”, as our wording fully corresponds to the common sense.
In general, the major focus and contribution of the work is unclear. How does the comprehensive nature of the measurements contribute to existing literature?
We significantly revised the text to highlight the main points more firmly, and added an additional section to help non-specialist readers to better understand our aims and findings.
Figure labels are often rather confusing - for example it is unclear why there is a B, B', B' etc instead of B,C,D, etc.
The figure labels have been revised in accordance with the reviewer’s recommendation.
Some comments in the text are not clearly tied to the figures. For example, in lines 108-109, are the authors referring to the shadow along the edges of the myofibril when saying they are not clearly defined (Figure 1C)?
The lines refer to the fact that identifying the boundary of an “object” in a fluorescence microscopy image is inherently challenging - even under ideal conditions where the object’s image is not affected by nearby signals or background noise. To improve clarity, we revised this section and now it reads: The other key parameter - myofibril diameter - is typically measured using phalloidin staining. However, accurately delineating their boundaries in micrographs is difficult - even under optimal conditions (high signal‑to‑noise ratio, no overlapping fibers, etc.; Fig. 1C). This limitation arises from the fundamental nature of light microscopy as the image produced is a blurred version of the actual structure, due to convolution with the microscope’s point spread function.
In line 116, it is unclear what "surrounding structures" the authors are referring to if the myofibrils are isolated.
We revised the text for clarity. It now states: Once isolated, myofibrils lie flat on the coverslip, aligning with the focal plane of the objective lens. This orientation allows for high-resolution, undistorted imaging and accurate two-dimensional measurements, free from interference by neighboring biological structures (e.g.: other myofibrils).
In lines 141-142, there is no reference of data to back up the claim of validation.
We addressed this mistake by including a reference to Fig. S1E (Fig. S1D in the revised manuscript).
In line 170, the authors mention the mef2-Gal4/+ strain as a Gal4 driver line but do not clearly state how this strain is different from the wildtypes or how this impacts their results.
Mef2-Gal4 is a muscle-specific Gal4 driver, often used in Drosophila muscle studies. It is a convention between Drosophila geneticists that presence of a transgene (i.e. Mef2-Gal4) changes the genetic background, and although it does not necessariliy cause any phenotypic effect, it is clearly distinguished from the wild type situation, and whenever relevant, Mef2-Gal4/+ is the preferred choice (if not the correct choice) as a control instead of wild type. As clear from our data, presence of the Mef2-Gal4 driver line does not affect the length or width of IFM sarcomeres as compared to wild type.
In lines 182-185, the authors discuss the effects of tissue embedding on morphometrics. Were factors such as animal sex, age, fiber type, etc. conserved in these experiments? If not, any differences in results may be confounding.
We fully agree with the reviewer that when testing the effect of a single variable, all other variables should remain constant. This is actually one of the main points emphasized in the results section. Additionally, this information is already provided in the Source Data files for each panel.
In lines 199-201, the authors discuss results of myofibril diameter using different preparation methods, yet no data is cited to support the claims. In line 220, the phrase "6 independent experiments" is unclear. Is each independent experiment performed using a different animal? Furthermore, are 6 experiments performed for each time point?
We substantially revised the relevant paragraphs and ensured that the corresponding data (Figure 2A in the revised manuscript) is cited each time when it is discussed. We conducted six independent experiments at each time point. This is consistently indicated in the figures and can be verified in the SourceData files (specifically, Fig3SourceData in this case). To clarify what we mean by "independent experiments," we added the following sentence to the Methods section: Experiments were considered independent when specimens came from different parental crosses, and each experiment included approximately six animals to capture individual variability.
In line 254, the authors refer to "number of sarcomeres". It must be clearly stated if this refers to sarcomeres per myofibril, image area, etc.
It is now clearly stated as: "number of sarcomeres per myofibril".
In line 274, the authors refer to "myofilament number". It must be clearly stated if this refers to myofilaments per myofibril, image area, etc.
We counted the number of myofilaments in developing myofibrils, and this is now clearly stated in the text and in the legend of Figure 3 (Figure 4 in the revised manuscript).
In line 299, the authors mention that thin filaments measured less than 560 nm in length, yet no data is cited to support this.
The previously missing reference to Figure 4 (Figure 7 in the revised manuscript) has now been added in addition to the revised Supplementary Figure 5.
In the "Quantifying sarcomere growth dynamics" section of the summary (starting from line 402) the authors introduce data that would be more naturally placed in the results and discussion section.
As suggested by the reviewer, we incorporated the key aspects of sarcomere growth dynamics into the Results and Discussion section.
In lines 422-423, it is not mentioned what the controls are for.
This was already explained in the main text between lines 167 and 173.
In the caption of Figure 1C, it is not mentioned what the red dashed lines in the microscope images represent.
The caption has been updated to include the following clarification: The red dashed lines border the ROI used for generating the intensity profiles.
In the caption of Figure 1D, the difference between the lighter and darker grey points is not mentioned.
This was already explained in each relevant figure legend. In this specific case, it is stated between lines 850 and 852: “Light gray dots represent individual measurements of sarcomere length and myofibril diameter, while the larger dots indicate the mean values from independent experiments.”
In line 849, the stated p-value (0.003) does not match that mentioned in the figure (0.0003).
We thank the reviewer for noticing this small mistake; correction was made to display the accurate p-value of 0.0003 at both places.
In line 874, it is not clear what an "independent experiment" refers to (different animal, etc.?).
We refer the reviewer to point 9, where this question has already been addressed.
Figure 2A is hard to read. Using different colored dots for different time points might help.
As suggested by the reviewer, we generated a plot with the individual points color-coded by time.
The significant figures presented in Figure 4 give a completely inaccurate representation of the variability of the measurements achieved with these techniques.
Certainly, each measured parameter exhibits inherent biological and technical variability. We have made all the raw data available to the reader through the SourceData files, and this variability is also evident in Figures 1, 2, 3, Supplementary Figure 1, 3, and 5 (Figure 1, 2, 3, 4, 6, and Supplementary Figure 1 in the revised manuscript). Also we have included an additional plot (Supplementary Figure 5 in the revised manuscript) that presents the calculated thin and thick filament lengths and their uncertainty. However, in Figure 4 (Figure 7 in the revised manuscript), our goal was to present an easily understandable visual representation of the sarcomeric structures for each time point, based on the averages of the relevant measurements.
In line 877, it should be mentioned that the number of filaments is counted per myofibril. The y-axes in the figure should also be adjusted to clarify this.
As suggested by the reviewer, both the figure legend and the plot have been updated to clearly indicate that the filament count refers to the number per myofibril.
In line 883, it is not clear what an "independent experiment" refers to (different animal, etc.?).
We refer the reviewer to point 9, where this question has already been addressed.
The statement of sample sizes in all figures is a little confusing.
Following general guidelines, we used SuperPlots to effectively present the data, as nicely demonstrated in the JCB viewpoint article by Lord et al., 2020 (PMID: 32346721). Individual measurements are shown as pooled data points, allowing readers to appreciate the spread, distribution and number of measurements. Overlaid on these pooled dot plots are the mean values from each independent experiment, with error bars representing variability between independent experiments. Sample sizes are provided for both individual measurements and independent experiments. This is now clearly explained in the Materials and Methods section, and we corrected the legends to improve clarity (“n” indicates the number of independent experiments/individual measurements).
In lines 1007-1008, the authors imply that the lattice model is needed for calculation of myofilament length. However, from the equations and previous data, it seems that this can be estimated using the confocal and dSTORM images.
As the reviewer correctly noted, myofilament length can be estimated using measurements from confocal and dSTORM images, following the equations provided. However, constructing even a simplified model requires multiple constraints to be defined and applied in a specific order. In practice, one must first determine the number and arrangement of myofilaments in a cross-sectional view of an “average sarcomere” before attempting to build a longitudinal model, where length calculations become relevant. This is now clarified in the text.
A more specific discussion of future directions is needed to put this paper in context. For example: Can anything from the overall process be used to better understand sarcomere dynamics in larger animals/humans? Can this be applied to disease modelling?
To address these questions, we have added a section titled STUDY LIMITATIONS, which states: “Our study is focused on describing the growth of IFM sarcomeres during myofibrillogenesis at the level of individual myofilaments. Additionally, we developed a user-friendly software tool for precise sarcomere size measurements and demonstrate that these measurements are sensitive to varying conditions. Whereas, this tool can be used successfully on whole muscle fiber preparations as well, our pipeline was intentionally optimized for individual IFM myofibrils ensuring higher measurement precision in our hands than other type of preparations. Thus, we predict that future work will be required to extend it to sarcomeres from other muscle tissues or species. Nevertheless, our study exemplifies a workflow how to measure sarcomere dimensions precisely. With some variations, it should be possible to adopt it for other muscles, including vertebrate and human striated muscles. To facilitate this and to enhance the accessibility and usability of this dataset, we welcome any feedback and suggestions from researchers in the field.”
One of the major claims of the paper is that there is a measurable variability with sex and other parameters. However, this data is never clearly summarized, presented (except for supplement), or discussed for its implications.
We followed the suggestion of the reviewer, and we moved this supplementary data into a main figure, and thoroughly revised the corresponding paragraphs to present and discuss the findings more clearly.
Minor Comments:
1. Lines 60-65 seem to break the flow of the introduction. As the authors discuss existing methods in literature for IFM analysis in the previous couple sentences, the following sentences should clearly state the limitations of existing methods/current gap in literature and a general idea of what the current work is contributing.
We agree with this remark, and we substantially revised the Introduction to clearly define the existing gap in the literature and to articulate how our work addresses this gap.
In line 104, the acronym for ZASPs is not spelled out.
The acronym has now been spelled out for clarity.
**Referee Cross-commenting**
I agree as well.
Reviewer #1 (Significance (Required)):
In summary, this paper provides a multi-scale characterization of Drosophila flight muscle sarcomere structure under a variety of conditions, which is potentially a significant contribution for the field. However, the paper scope is overstated in that it does not provide an actual sarcomere model. Further, there are multiple issues with data presentation that impact the readability of the manuscript.
Although it is somewhat unclear what would be “an actual sarcomere model” for the reviewer, but we cannot accept that we made on overstatement by using the word “model”, because one of the main outcomes of our work are indeed the myofilament level sarcomere models depicted in Figure 4 (Figure 7 in the revised manuscript). As said above, we do not claim that these would be molecular models, or mechanistic models or developmental models, but it makes absolutely nonsense (even in common terms!) that our scaled graphical representations (based on a wealth of measurements) should not be or cannot be called models.
As to the comment with data presentation, we thank the reviewer for the numerous suggestions, and we substantially revised the manuscript to increase clarity and overall readability.
__Reviewer #2 (Evidence, reproducibility and clarity (Required)):
__
Summary:
In this manuscript titled "A myofilament lattice model of Drosophila flight muscle sarcomeres based on multiscale morphometric analysis during development," Görög et al. perform a detailed analysis of morphological parameters of the indirect flight muscle (IFM) of D. melanogaster. The authors start by illustrating the range of measurements reported in the literature for mature IFM sarcomere length and width, showing a need to revisit and determine a standardized measurement. They develop a new Python-based tool, IMA, to analyze sarcomere lengths from confocal micrographs of isolated myofibrils stained with phalloidin and a z-disc marker. Using this tool, they demonstrate that sample preparation (especially mounting medium), as well as fiber type, sex, and age influence sarcomere measurements. Combining IMA, TEM, and STORM data, they measure sarcomere parameters across development, providing a comprehensive and up-to-date set of "standardized" sarcomere measurements. Using these data, they generate a model integrating all of the parameters to model sarcomeres at four discrete timepoints of development, recapitulating key phases of sarcomere formation and growth.
Major comments:
Line 200 & 901 - Figure S1B - The authors make a strong statement about the use of liquid versus hardening media, and it is clear from the image provided in Figure S1 that there is a difference in the apparent sarcomere width. The identity of the "liquid media" versus the "hardening media" should be clearly identified in the Results, in addition to the legend for Figure S1. The authors show that "glycerol-based solutions" increase sarcomere width, but the Materials only list 90% glycerol and PBS. However, a frequently used liquid mounting media is Vectashield. Based on the literature, measurements in liquid Vectashield show diameters significantly less than 2.2 microns observed here with presumably 90% glycerol or PBS. Can the authors qualify this statement, or provide data that all forms of liquid mounting media cause this effect? Does this also apply to hemi-thorax and sectioned preparations, or just isolated myofibrils?
We used a PBS-based solution containing 90% glycerol as our liquid medium, as now stated in the main text. In response to the reviewer’s suggestion, we also tested a non-hardening version of Vectashield (H-1000). Myofibrils in Vectashield were significantly thicker than those in ProLong Gold but still thinner than those in the 90% glycerol–PBS solution, shown in Figure 2B. The mechanisms that could potentially explain these observations have been described in several studies (Miller et al., 2008; Tanner et al., 2011, 2012). Briefly, IFM is a densely packed macromolecular assembly. Upon removal of the cell membrane, myofibrillar proteins attract water, leading to overhydration of the myofilament lattice. This increases the spacing between filaments, resulting in an expansion of overall myofibril diameter. The extent of hydration depends on the osmolarity of the surrounding medium, as the system eventually reaches osmotic equilibrium. While both liquid media induced significant swelling, the observed differences likely reflect variations in their osmotic properties. In contrast, dehydration - an essential step in electron microscopy sample preparation - reduces the spacing between filaments, making myofibrils appear thinner. This explains why EM micrographs consistently show significantly smaller myofibril diameters (Chakravorty et al., 2017).
Hardening media such as ProLong Gold introduce additional artifacts: during polymerization, these media shrink, exerting compressive forces on the tissue (Jonkman et al., 2020). We therefore propose that isolated myofibrils first expand due to overhydration in the dissection solution, and are then compressed back toward their *in vivo* dimensions during incubation in ProLong Gold. The average *in vivo* diameter of IFM myofibrils can be estimated without direct measurements, as it is determined by two key factors: (i) the number of myofilaments, which has been quantified in EM cross-sections in several studies (Fernandes & Schöck, 2014; Shwartz et al., 2016; Chakravorty et al., 2017) including our own, and (ii) the spacing between filaments, which can be measured by X-ray diffraction even in live *Drosophila* or under various experimental conditions (Irving & Maughan, 2000; Miller et al., 2008; Tanner et al., 2011, 2012). Our findings suggest that the effects of lattice overhydration and media-induced shrinkage are most pronounced in isolated myofibrils. In larger tissue preparations, the inter-myofibrillar space likely acts as a mechanical and osmotic buffer, reducing the extent of such distortions
Can the authors comment on whether the length of fixation or fixation buffer solution, in addition to the mounting medium, make a difference on sarcomere length and diameter measurements? This is another source of variation in published protocols.
The effect of fixation time on sarcomere morphometrics in whole-mount IFM preparations has been previously demonstrated by DeAguero et al. (2019), as briefly noted in our manuscript. To extend these findings, we performed a comparison using isolated myofibrils, assessing morphometric parameters after fixation for 10, 20 (standard) and 60 minutes. We found no difference between the 10- and 20-minute fixation conditions; however, fixation for 60 minutes resulted in significantly increased myofibril diameter (and these data are now shown in Supplementary Figure 1C). A comparable increase in thickness was also observed when using a glutaraldehyde-based fixative. These results suggest that more extensively fixed myofibrils may better resist the compressive forces exerted by hardening media.
Line 237-238. The authors conclude that premyofibrils are much thinner than previously measured. The use of Airyscan to more accurately measure myofibril width at this timepoint is a good contribution, as indeed diffraction and light scatter likely contribute to increased width measured in light microscopy images. I also wonder, though, how well the IMP software performs in measuring width at 36h APF, given how irregular the isolated myofibrils at this stage look (wide z-lines but thinner and weaker H and I bands as shown in Fig. 2B)?
The reviewer is correct that measurements during the early stages of myofibrillogenesis require additional effort. However, in addition to its automatic mode, IMA can also operate in semi-automatic or manual modes, ensuring complete control over the measurements. Myofibril width is determined from the phalloidin channel at the Z-line (as described in the software’s User Guide and Supplementary Figure 2), where it is at its thickest.
Also, how much of the difference in sarcomere width arises due to effects of "stripping" components off of the sarcomere at the earliest timepoint (for example alpha-actinin or Zasp proteins)?
A comparison between isolated myofibrils and those from microdissected muscles (Supplementary Figure 3B, Figure 3C in the revised manuscript) shows that the isolation process does not alter the morphometric measurements of sarcomeres. Moreover, the measured myofibril width aligns well with what we expect based on the number of myofilaments observed in TEM cross-sections of myofibrils at 36 hours APF (Figure 3A, now Figure 4A in the revised manuscript), supporting the consistency of our model.
Myofibrils at early timepoints do contain more than 4-12 sarcomeres in a line (they extend the full length of the myofiber), so it is possible they are breaking due to the detergent and mechanical disruption induced by the isolation method.
The reviewer is correct - myofibrils likely span the full length of the myofiber from the onset of myofibrillogenesis. However, during the isolation of individual myofibrils, they often break, and even mature myofibrils typically fragment into pieces of about 300 µm in length (illustrated in Figure 1E, now Figure 2A in the revised manuscript). Importantly, our measurements show that this fragmentation does not affect the assessed sarcomere length or width (as shown in Supplementary Figure 3B, now Figure 3C in the revised manuscript).
Line 312 - What does "stable association" mean in this context? The authors mention early timepoints lack stable association of alpha-Actinin or Zasp52, and they reference Fig. S4C, but this figure only shows 72h and 24 AE, not 36h and 48 h APF. Previous reports have seen localization of both alpha-Actinin and Zasp52, so presumably the detergent or mechanical isolation is stripping these components off of the isolated myofibrils up until 72h.
In agreement with previous reports, we also detected both α-Actinin (as shown in former Supplementary Figure 3B, now Figure 3C) and Zasp52 in microdissected IFM starting from 36 hours APF. However, these markers were largely absent from the isolated myofibrils of young pupae (36 to 60 hours APF). By 60 hours APF, strong α-Actinin and Zasp52 staining became evident in isolated myofibrils, whereas dTitin epitopes were clearly detectable from the earliest time point examined. This indicates that some proteins, such as α-Actinin and Zasp52, can be lost during the isolation process, whereas others like dTitin are retained and this differential sensitivity appears to depend on developmental stage. A likely explanation is that α-Actinin and Zasp52 are recruited early to Z-bodies but are only fully incorporated as more mature Z-disks form between 48 and 60 hours APF. This incomplete incorporation at the earlier stages could account for their loss during the isolation process. This interpretation is supported by our morphological analysis of the Z-discs, as shown in the dSTORM dataset (former Figure 3B, B’’, now Figure 4C, E) and in longitudinal TEM sections (former Supplementary Figure 5B, now in Figure 6B). Because α-Actinin and Zasp52 are not detected in isolated myofibrils at 36 and 48 hours APF, they are not included in Figure S4C (Figure 5C in the revised manuscript). This is explained in the updated figure legend.
This same type of issue comes up again in Lines 325-334, where the authors talk about 3E8 and MAC147. They state that 3E8 signal significantly declines in later stages and that MAC147 is not suitable to label myofibrils in young pupae, but they only show data from 72 APF and 24 AE (which looks to have decent staining for both 3E8 and MAC147). A clearer explanation here would be helpful.
To put it simply: we used one myosin antibody to label the A-band in the IFM of 36h APF and 48h APF animals, and a different antibody for the 72h APF and 24h AE stages. In more detail: Myosin 3E8 is a monoclonal antibody targeting the myosin heavy chain and labels the entire length of mature thick filaments except for the bare zone (former Supplementary Figure 4D, now in Figure 5D), suggesting its epitope is near the head domain. As a result, we expect a uniform A-band staining - excluding the bare zone - which is exactly what we observe in the IFM of young pupae (36h APF and 48h APF; formerly Figure 3B, now Figure 4C in the revised manuscript). However, at 72h APF and 24h AE, Myosin 3E8 produces a different staining pattern: two narrow stripes flanking the bare zone and two broader, more diffuse stripes near the A/I band junction (former Supplementary Figure 4D, now Figure 5D). This change is likely due to restricted antigen accessibility at these later developmental stages - a common issue in the densely packed IFM - making this antibody unsuitable for reliably measuring thick filament length in these stages.
MAC147 is another monoclonal antibody against Mhc that recognizes an epitope near the head domain. However, it only works reliably in more mature myofibrils (72h APF and 24h AE; formerly Figure 3B, now Figure 4C in the revised manuscript), likely due to its specificity for a particular Mhc isoform. This is why we do not include images from earlier developmental stages using this antibody. We added a revised, concise explanation in the main text for general readers, and provided a more detailed description for specialist readers in the legend of Supplementary Figure 4D (updated as Figure 5D in the revised manuscript).
Figure 3B. The authors show the H, Z, and I lengths in B', B', and B' and discuss these lengths in the text (lines 305-320). It would also be nice to actually have the plots showing the measured/calculated lengths for thin and thick filaments. These are mentioned in the results, but I cannot find the plots in the figures and there is no panel reference.
A summary table of the measured and calculated parameters is provided in Fig4SourceData (Fig7Source Data in the revised manuscript). However, following the reviewer’s suggestion, we also generated an additional plot (Supplementary Figure 5 in the revised manuscript) that displays the calculated thin and thick filament lengths.
Line 400. Does the model in Figure 4 actually have molecular resolution as the authors claim? From these views, thick and thin filaments appear to be represented by cylindrical objects. Localization of specific molecules would require further modeling with individual proteins. Or do the authors mean localization from STORM imaging relative to the ends of the thick and/or thin filaments? The model itself is a useful contribution, but based on Figure 4, resolution of individual molecules is not evident.
The reviewer is correct; and we fully agree that we do not present a molecular model of sarcomeres in this study - nor do we claim to. Instead we present a myofilament level model. Nevertheless, the scaled myofilament lattice model we introduce could serve as a geometric constraint when constructing supramolecular models of sarcomeres. As the reviewer rightly notes, implementing such an approach would require additional effort.
The main Results section of the text is condensed into 4 figures. However, I found myself flipping back and forth between the main figures and the supplement continuously, especially parts of Supplemental Figures 1, 3, 4, and 5. With such large amounts of detail in the Results relying on the supplement, it may be worth considering reorganizing the main and supplemental figures, and having 7 main figures, to include important panels that are currently in the supplement (esp. Fig S1B, S1C, S1D, S3B, S4, S5).
We found it a very useful suggestion, and we substantially reorganized the figures in the revised manuscript according to the recommendations of the reviewer.
Minor comments:
On the plots in Fig. S1B, D, and F, it is hard to see the color of the dots because the red error bars are on top of them. Can the other distribution dots be tinted the correct color or the x-axis labels be added, so it is clear which dataset is which?
We significantly enlarged the dots to enhance visual clarity.
Line 142 needs a reference to Figure S1, Panel E, which shows the accuracy and precision measurements.
The requested panel reference has now been included in the revised manuscript.
Lines 198 - is this range from the above publications? Needs to be clearly cited.
The range has indeed been estimated using measurements from the aforementioned publications, and this point is now further clarified in the revised text.
Figure S3B is confusing - why do the blow-ups overlap both the top (presumably microdissected) and the bottom (presumably isolated) images? The identity of microdissected images should be labeled, as they are hard to see underneath of the blown-up images and the identity of individual image planes wasn't immediately obvious.
We refined the panel structure of Figure S3B (Figure 3C in the revised manuscript) to enhance clarity as the reviewer suggested.
Line 298. By "misaligned," do the authors mean the pointed ends are not uniformly anchored in the z-disc, leading to the wide z-disc measurements? At this early stage, I'm not sure "misaligned" is the right word - perhaps "were not yet aligned in register at the z-disc" or something similar.
We revised the text for clarity. It now reads: At 36 hours APF, thin filaments had not yet aligned in perfect register at the Z-disc, with most measuring less than 560 nm in length - and exhibiting considerable variability.
Figure S6 - spelling mistake in label of panel A, "sarcomer" should be "sarcomere"
The typo is corrected.
Line 487. Spelling "Zaps52" should be "Zasp52"
The typo is corrected.
Line 887. Spelling "Myofilement" should be "Myofilament"
The typo is corrected.
Line 946-947. In the legend for Supp. Fig. 3., the authors should specify which published datasets on sarcomere length are shown in the figure by including the references in the legend. Presumably the "isolated individual myofibrils" are the blue "this study" lines, leaving the "microdissected muscles" as the magenta "previous reports" on the figure. Without the reference, it is not clear if these are microdissected, isolated myofibrils, hemi-thorax sections, cryosections, or another preparation method for the "previous reports" data.
The references have now been added to both the figure and its legend.
**Referee Cross-commenting**
I agree with the comments from the other reviewers. Many of the major themes are consistent across the reviews, including regarding the model, preparation methods, and the software tool.
Reviewer #2 (Significance (Required)):
Strengths: This manuscript is an important contribution to the field of sarcomere development. The authors use modern technologies to revisit variation in morphometric measurements in the literature, and they identify parameters that influence this variation. Notably, sex-specific differences, DLM versus DVM measurements, and mouting media are potential contributors to the variability. Combining TEM and STORM with a confocal timecourse of isolated myofibrils, they refine previously published values of sarcomere length and width, and add more comprehensive data for filament length, number and spacing. This highly accurate timecourse demonstrates continual growth of sarcomeres after 48 h APF, and correct some inconsistencies from previous large-scale timecourse datasets. These data are very valuable to the field, especially Drosophila muscle biologists, and will serve as a comparative resource for future studies.
Weaknesses: At early timepoints, loss of sarcomere components through mechanical or detergent-mediated artifacts may influence the authors' measurements. In addition, isolating myofibrils is not always the most ideal approach, as it loses information on myofiber structure as well as organization and structure of the myofibrils in vivo.
We believe that the control experiments we presented here adequately demonstrate that sarcomere measurements are not affected by the myofibril isolation process at early timepoints (Figure 3C). Nevertheless, we certainly agree with the reviewer that isolated myofibrils alone cannot capture the entire complexity of muscle tissues, and additional approaches should also be applied in complex projects. Yet, we are confident that our approach offers the most reliable and efficient method for precise morphometric analysis of the sarcomeres, and although alone it is very unlikely to be sufficient to address all questions of a muscle development project, it can still be applied as a very useful and robust tool.
The point regarding liquid versus hardening mounting media is valuable, but remains to be tested and validated with the diverse liquid and hardening media used by other labs.
Whereas it would not be feasible for us to test all possible liquid and hardening media used by others in all possible conditions, we tested the effect of Vectashield (the most commonly used liquid media) according to the suggestion of the reviewer, and the results are now included in the manuscript. We think that this is a valuable extension of the list of the materials and conditions we tested, although we need to point out that our primary goal was not necessarily to test as many conditions as possible (because the number of those conditions is virtually endless), rather to raise awareness among colleagues that these variables can significantly impact the data obtained and affect their comparability.
The IMA software seems to be designed specifically for analysis of isolated myofibrils, and it is unclear if it would work for other types of IFM preparations.
As stated in the manuscript, IMA is a specialized tool designed for the analysis of individual myofibrils. While it can also process other types of IFM preparations in semi-automatic or manual modes, we believe these approaches compromise both efficiency and accuracy. This is further clarified in the revised manuscript.
A last point is that TEM and STORM may not be available on a regular basis to many labs, hindering wide implementation of the approach used in this manuscript to generate very accurate and detailed measurements of sarcomere morphometrics.
Regarding the availability of TEM and STORM, we acknowledge that these techniques are not universally accessible. However, that is exactly one major value of our work that our open-source software tool now allows researchers to generate valuable data using only a confocal microscope in combination with our published datasets.
Audience: Scientists who study sarcomerogenesis or Drosophila muscle biology.
My expertise: I study muscle development in the Drosophila model.
__Reviewer #3 (Evidence, reproducibility and clarity (Required)):
__
Summary:
This manuscripts presents a computational tool to quantify sarcomere length and myofibril width of the Drosophila indirect flight muscles, including developmental samples. This tool was applied to confocal and STORM super-resolution images of isolated myofibrils from adult and developing flight muscles. Thick filament numbers per myofibril were counted during development of flight muscles. A myofilament model of developing flight muscle myofibrils is presented that remains speculative for the early developmental stages.
Major comments:
1. The title of the manuscript appears unclear. What is a lattice model? Lattice is an ordered array. The filament array parameters for mature flight muscles was aready measured. It appears that the authors speculate how this order might be generated during sarcomere assembly, which is not studied in this manuscript as it is limited to periodic arrays after 36h APF.
As the reviewer correctly points out, a lattice refers to an ordered array - in the case of IFM sarcomeres, this includes both thin and thick filaments. Therefore, the phrase "myofilament lattice model of Drosophila flight muscle sarcomeres" specifically describes a model representing the spatial organization of these filament arrays within the sarcomere. To provide additional clarity for readers, we have revised the title to include more context. It now reads: Developmental Remodeling of Drosophila Flight Muscle Sarcomeres: A Scaled Myofilament Lattice Model Based on Multiscale Morphometrics
To create a model of these arrays, three essential pieces of information are required:
1) The length of the filaments,
2) The number of filaments, and
3) The relative position of the filaments.
While some direct measurements are available in the literature, and others can be used to calculate the necessary values, available data is often contradictory or simply different from each other (as described in our ms) making them unsuitable for constructing scaled models of the myofilament arrays. In contrast to that, here we present a comprehensive and consistent set of measurements that enabled us to build models not only of mature sarcomeres but also of sarcomeres at three other significant developmental time points.
Regarding the mention of "sarcomere assembly" in line 37, we intended it to refer to the growth of the sarcomeres, not their initial formation. We do not speculate about sarcomere assembly anywhere in the text. In fact, we have clearly stated multiple times that our focus is on the growth of the IFM myofilament array during myofibrillogenesis. Nevertheless, to avoid confusion, we revised the phrase in line 37 to "sarcomere growth".
The authors review the flight muscle sarcomere length literature and conclude it is variable because of imprecise measurements. Likely this is partially true, however, more importantly is that the sarcomere length and width changes during isolation methods of the myofibrils, as well as by various embedding methods, as the authors show here as well in Figure 1B-E.
We dedicated two sections of the Results - “An automated method to accurately measure sarcomeric parameters” and “IFM sarcomere morphometrics are affected by sex, age, fiber type, and sample preparation” - to exploring potential sources of variability in published IFM sarcomere measurements. Based on these analyses, we conclude that such variability stems from both measurement imprecision and biological or technical factors, including sex, age, fiber type and, of foremost, sample preparation. Because it is difficult to quantify the relative impact of each variable across published studies, we have refrained from speculations about the relative contribution of the different factors in the revised manuscript.
Hence, I find the strongly claims the authors make here surprising, while they are isolating the myofibrils. Hence, these myofibrils are ruptured at the ends, relaxed or contracted, depending on buffer choice and passive tension is released. On page 8, the authors correctly state that the embedding medium causes shrinkage of the myofibrils.
While isolation is state of the art for electron microscopy techniques, other methods including sectioning or even whole mount preparation have been developed for high resolution microscopy of IFMs that avoid these artifacts. Unfortunately, this manuscript only uses isolated myofibrils that were fixed and then mechanically dissociated by pipetting. This method likely induces variations as seen by the large spread of sarcomere length reported in Figure 1C (2.8-3.9µm?) and even bigger spreads for myofibril widths. Are these also seen in tissue without dissections? Unfortunately, no comparision to intact flight muscles are reported with the here presented quantification tool.
The sarcomere length spread in the developmental samples is even larger.
The major issue raised in this paragraph is the use of isolated myofibril versus intact flight muscle preparations. The reviewer claims that the latter might be superior because the isolated myofibrils are ruptured at their ends. Clearly, the intact IFMs cannot be imaged in vivo by light microscopy because the adult fly cuticle is opaque. To visualize these muscles, one must open the thorax, but neither microdissection nor sectioning preserves them perfectly, even the cleanest longitudinal cuts sever some myofibrils, and dissection itself can damage the tissue. Although published images often show only the most pristine regions, the practice of selective cropping cannot be taken as a scientific argument. Here, by comparing sarcomere lengths measured in isolated myofibrils with those from whole-mount longitudinal DLM sections and microdissected IFM myofibers, we demonstrate that isolation does not alter sarcomere length (Figure 1E, now Figure 2A in the revised manuscript). As to myofibril width, it is determined by two parameters: the number of myofilaments and the spacing between them. In vivo filament spacing has been measured directly, and filament counts can be obtained from EM cross-sections of DLM fibers. Combining these values gives an expected in vivo myofibril diameter. While isolated myofibrils measure thinner than those in whole-mount or microdissected samples (Figure 1E, now Figure 2A in the revised manuscript), their diameter closely matches this in vivo estimate (see manuscript, lines 187–198). Therefore, we conclude that isolated myofibrils (even if it seems counterintuitive for this reviewer) are superior for sarcomere measurements than whole-mount preparations - and that is why we primarily rely on them here.
Despite that, we certainly recognize that isolated myofibrils cannot recapitulate every aspect of an IFM fiber, and the need for whole-mount preparations during our IFM studies is not questioned by us.
In addition to this general answer to the issues raised in the above paragraph of the reviewer, we would like to specifically reflect for some of the remarks:
„Unfortunately, this manuscript only uses isolated myofibrils that were fixed and then mechanically dissociated by pipetting.”
This is a false statement that “this manuscript only uses isolated myofibrils” as we used different preparation methods for initial comparisons (see Figure 1E, now Figure 2A in the revised manuscript). Additionally, unlike the reviewer assumed, the myofibrils were first dissociated and then fixed, and not vice versa (as described in the Materials and Methods section).
„This method likely induces variations as seen by the large spread of sarcomere length reported in Figure 1C (2.8-3.9µm?) and even bigger spreads for myofibril widths. Are these also seen in tissue without dissections?”
This remark makes absolutely no sense, as we do not report sarcomere length values in Figure 1C at all. By assuming that the reviewer meant to refer to Figure 1B, it still remains a misunderstanding or a false statement, because that panel refers to the variations found in published data (not in our current data), and this is clearly explained both in the figure legend and the main text. Regardless of that, the stated spread does not appear unusual. In the article by Spletter et al. (2018), the authors report a similar spread (2.576–3.542 µm) for sarcomere length in mature IFM using whole-mount DLM cross-sections. As to the second question here, we do observe a comparable spread in other preparations as well (see Figure 1E, now Figure 2A in the revised manuscript), which is again the opposite conclusion as compared to the (clearly false) assumption of the reviewer.
„Unfortunately, no comparision to intact flight muscles are reported with the here presented quantification tool. „
This is also a false statement; as we do report comparison to whole mount cross sections which we belive the reviewer considers „intact” in Figure 1E (Figure 2A in the revised manuscript).
„The sarcomere length spread in the developmental samples is even larger.”
The spread is not larger at all than in previous reports, as clearly shown in Supplementary Figure 3A.
The authors suggest that there are sex differences in sarcomere length and pupal development duration. This is potentially interesting, unfortunately they then use mixed sex samples to analyse sarcomeres during flight muscle development.
In the revised manuscript, we now provide a more detailed description of a subtle post-eclosion difference in IFM sarcomere metrics between male and female Drosophila. We attribute this variation to the well-established observation that female pupae develop slightly faster than males, a property that may last till shortly after eclosion. Confirming this experimentally would require considerable effort with limited scientific benefit. Nonetheless, the subtle nature of this sex-linked variation reinforced our decision to include IFM sarcomeres from both male and female flies in our comprehensive developmental analysis.
The IMA software tool lacks critical assessment of its performance compared to other tools and the validation presented is too limited. IMA seems to generate systematic errors, based on Fig S1E, as it does not report the ground truth. These have to be discussed and compared to available tools. The principles of fitting used in IMA seem well adapted to IFM myofibrils in low noise conditions, but may not be usable in other situations. This should be assessed and discussed.
IMA is a specialized software tool developed to address a specific need, notably, to accurately and efficiently measure sarcomere length and myofibril diameter in individual IFM myofibril images labeled with both phalloidin and Z-disc markers. For our purposes, it remains the most suitable and reliable option, and we are confident that IMA outperforms all other available tools. To demonstrate this, we have included a table comparing the few alternatives (MyofibrilJ, SarcGraph, and sarcApp) capable of both measurements, which further supports our conclusion. Given IMA's focused application, extensive validation under artificially low signal-to-noise conditions is unnecessary. While IMA may introduce minor systematic errors (~0.01 µm for sarcomere length and ~0.03 µm for myofibril diameter), these are negligible errors relative to the limitations of the simulated ground truth data used for benchmarking. This point is now addressed in the manuscript.
It is claimed that validation was achieved on simulated IFM images: do the authors rather mean simulated isolated IFM myofibril images? This is not quite the same in terms of algorithm complexity and this should be corrected if this is the case.
Indeed, we used simulated individual IFM myofibril images, where both phalloidin labeling and Z-disc labeling are present. This is clearly shown in Supplementary Figure 1A, and stated in the text when first introduced: „we generated artificial images of IFM myofibrils with known dimensions, simulating the image formation process”
The authors need to revise their comparison to other tools. It is incomplete and seemingly incorrect. It should be clearly stated that IMA is limited to isolated myofibrils, which is a far easier segmentation task than what other tools can do, such as sarcApp (Neininger-Castro et al. 2023, PMID: 37921850). Defining the acronym would be valuable in that sense. The claim line 129-130 "none can adequately measure myofibril diameter from regular side view images" is unclear. What do the authors refer to as "side view images"? Sarc-Graph from Zhao et al 2021, PMID: 34613960, and sarcApp from Neininger-Castro et al. 2023 provide sarcomere width, in conditions that are very similar to what IMA does, e.g. on xy images based on the documentation provided on github. A performance comparison with these tools would be valuable. Does installation and use of IMA require computational skills?
Motivated by the reviewer’s comments, we revised the section introducing IMA. However, we chose not to include an extensive comparison with other software tools, as this would divert the manuscript’s focus without impacting the main conclusions. Instead, we added a summary table highlighting the key requirements for analyzing IFM sarcomere morphometrics from Z-stacks of phalloidin- and Z-line-labeled individual myofibrils and compared the available tools accordingly. In our experience, most software tools are developed to address very specific problems, even those marketed as general-purpose solutions. Consequently, applying them beyond their intended scope often results in reduced efficiency and suboptimal performance. Although sarcApp was initially available as a free tool, one of its dependencies (PySimpleGUI 5) has since adopted a commercial license model. Using a trial version of PySimpleGUI 5, we evaluated sarcApp on our dataset. The software is limited to single-plane image input, hence raw image stacks must be preprocessed into a suitable format, which is a time consuming step. Furthermore, implementation requires basic programming proficiency, as parameter adjustments must be performed directly within the source code to accommodate dataset-specific configurations. Once appropriately configured, sarcApp reliably quantifies both sarcomere length and myofibril width with accuracy comparable to that of IMA. However, it lacks built-in diagnostic feedback or visualization tools to facilitate measurement verification or troubleshooting during batch processing. SarcGraph also supports only single-plane image inputs and requires prior image preprocessing. Additionally, images must be loaded manually one by one, which further reduces processing efficiency. Parameter optimization relies on direct code modification through a trial-and-error process, demanding a certain level of programming proficiency. Even with these adjustments, the software frequently introduces artifacts - such as Z-line splitting - when applied to our dataset. Even when segmentation is successful, sarcomere length is often overestimated, whereas myofibril diameter is consistently underestimated. As compared to these issues, IMA was designed for ease of use and does not require any programming experience to install or operate. It can automatically handle raw microscopic image formats without the need for preprocessing. Segmentation is fully automated, with no requirement for parameter tuning. The tool provides visual feedback during both the segmentation and fitting steps, allowing users to confidently assess and validate the results. IMA produces accurate and precise measurements of sarcomere length and diameter. Batch processing is enabled by default, significantly improving efficiency when analyzing multiple images. Finally, unlike the reviewer stated, IMA is not limited to isolated myofibrils. It is optimized for isolated myofibrils (i.e. full performance is achieved on these samples), but it can also work on whole-mount preparations in semi-automatic and manual mode, which still allow precise measurements (with some reduction in processing efficiency).
As to the minor comments, the acronym IMA was already defined in lines 541 and 917–918 of the original submission, as well as on the software’s GitHub page. Additionally, we replaced the phrase "side view images" with "longitudinal myofibril projections" to improve clarity.
How do the authors know that the bright phallodin signal visible that the Z-disc at 36h and 48h APF is due to actin filament overlap, as suggested? An alternative solution are more short actin filaments at the early Z-discs.
It is widely accepted that the bright phalloidin signal at the Z-line in mature sarcomeres reflects actin filament overlap (e.g., Littlefield and Fowler, 2002; PMID: 11964243). Accordingly, in slightly stretched myofibrils, this bright signal diminishes, and in more significantly stretched myofibrils, a small gap appears (e.g., Kulke et al., 2001; PMID: 11535621). The width of this bright phalloidin signal corresponds to the electron-dense band seen in longitudinal EM sections (Figure 3B and Supplementary Figure 5B, now Figure 4B and Figure 6B in the revised manuscript) and matches the actin filament overlap observed in Z-disc cryo-EM reconstructions from other species (Yeganeh et al., 2023; Rusu et al., 2017), where individual thin filaments can be resolved. By extension, we interpret the bright phalloidin signals at the Z-discs observed at 36 h and 48 h APF as arising from similar actin filament overlaps, given their comparable width to the electron-dense Z-bodies described both in our study (Supplemantary Figure 5B, now Figure 6B in the revised manuscript) and by Reedy and Beall (1993). While we cannot fully rule out the reviewer’s alternative interpretation, for the time being it remains a bold speculation without supporting evidence, and therefore we prefer to stay with the conventional view.
The authors seem to doubt their own interpretation that actin filaments shrink when reading line 304 and following. This is obviously critical for the "model" presented.
Unlike the reviewer implies, we certainly do not doubt our own interpretation, but to avoid confusion we revised the corresponding paragraph in the manuscript and provided more details on our explanation, and we also provide a brief overview of it here. Between 36 h and 48 h APF we observe a pronounced structural transition in the IFM sarcomeres. In EM cross-sections, the previously irregular myofilament lattice becomes organized into a regular hexagonal pattern (Figure 3A, now Figure 4A in the revised manuscript) with filament spacing typical of mature myofibrils (Supplementary Figure 5A, now Figure 6A in the revised manuscript). In longitudinal EM sections, the elongated, amorphous Z-bodies condense along the myofibril axis to form well-defined, adult-like Z-discs (Supplementary Figure 5B, now Figure 6B in the revised manuscript). Similarly, dSTORM imaging shows that the Z-disc associated D-Titin epitopes become more compact and organized during this period (Supplementary Figure 4E, now Figure 5E in the revised manuscript). The edges of the thick filament arrays also become more sharply defined, and the appearance of a distinct bare zone indicates the establishment of a regular register (Figure 3B, now Figure 4B in the revised manuscript). By assuming that a similar reorganization occurs within the thin filament array, the apparent length of the thin filament array would decrease—not due to shortening of individual filaments, rather due to improved alignment. Although we cannot directly resolve single thin filaments, this reorganization offers the most plausible explanation for the observed change.
Minor comments:
1. Figure S1B is not called out in the text.
The reviewer might have missed this, but in fact, it is explicitly called out in line 181.
Fig. 1: Please state whenever images are simulations?
We appreciate the reviewer’s observation that the simulated IFM myofibril images are indistinguishable from the real ones, as this confirms the adequacy of these images for testing our software tool. However, this is already clearly indicated: Figure 1B features simulated images, as noted in the figure legend (line 824), and Supplementary Figure 1A similarly shows simulated images, as stated both in the legend (line 886) and in the figure.
Fig. 2: Length-width correlation - please provide individual points color-coded by time point?
As suggested by the reviewer, we generated a plot with the individual points color-coded by time.
"newly eclosed males and females, we observed that males have slightly shorter sarcomeres and narrower myofibrils". Please provide a statistical test supporting the difference.
In the revised manuscript, we compared sarcomere length and myofibril width between males and females from 0 to 96 hours AE using a two-way ANOVA with Sidak’s multiple comparisons test. We expanded our description of these observations in the main text, and details of the statistical analysis are now included in the revised figure legend (Figure 1E). Briefly, newly eclosed males showed slightly shorter sarcomeres than females - a consistent but non-significant trend (p = 0.9846) - which resolved by 12 h AE, with sarcomere lengths remaining similar thereafter (p = 0.1533; Figure 1E). In contrast, myofibril width was significantly narrower in the newly eclosed males (p = 0.0374), but this difference disappeared between 24 and 48 h AE as myofibrils expanded in diameter during post-eclosion development (p
Were statistical tests performed using animals as sample numbers? Please clarify in the images what are animal and what are sarcomere numbers.
Following standard guidelines, statistical tests were performed using the means of independent experiments, as noted in the figure legends. For each experiment, we used approximately 6 animals, and this information is now included in the Materials and Methods section.
mef2-Gal4 should be spelled Mef2-GAL4 according to Flybase.
This has been corrected in the revised text and figures.
Are the images shown in Figure 2B representative? 96h AE appears thicker than 24h AE but the graph reports no difference.
We aimed to show representative images, however, in the case of 96h APF we may have selected a wrong example. We now changed the image for a more appropriate one.
The authors only found Zasp52 and alpha-Actinin at the Z-discs from 72h APF onwards, which is different to what others have reported.
Similarly to former reports, we detected both α-Actinin (see Supplementary Figure 3B, now Figure 3C in the revised manuscript) and Zasp52 in microdissected IFMs as early as 36 hours APF. However, these markers were largely absent in isolated myofibrils from the early pupal stages (36–60 hours APF). By 60 hours APF, strong α-Actinin and Zasp52 signals were clearly visible in isolated myofibrils (the closest timepoint captured by dSTORM is 72h APF). As discussed in the manuscript, a likely explanation is that α-Actinin and Zasp52 are recruited to developing Z-bodies early on but are only fully incorporated into mature Z-discs between 48 and 60 hours APF. Their incomplete integration at earlier stages may lead to their loss during the isolation procedure.
Thick filament length during development has also been estimated by Orfanos and Sparrow, which should be cited (PMID: 23178940)
Contrary to the reviewer’s claim, the article 'Myosin isoform switching during assembly of the Drosophila flight muscle thick filament lattice' does not provide any measurements or estimates of thick filament length; it only includes a schematic illustration where the length of the thick filaments is not based on empirical data.
**Referee Cross-commenting**
I also agree with my colleagues comments, which are largely consistent.
Reviewer #3 (Significance (Required)):
This paper introduces a tool to measure sarcomere length. Easy to use tools that do this as well already exist. The tool can also measure sarcomere width, which it claims as unique point, which is not the case, see above comment.
We are aware that other tools exist to measure sarcomere parameters (and we did not claim the opposite in our ms), nevertheless, we need to emphasize that based on our comparisons, IMA is superior to all three alternatives. Three software tools could, in principle, be used to measure both sarcomere length and myofibril diameter: MyofibrilJ, SarcGraph, and sarcApp. However, two of them - MyofibrilJ and SarcGraph - consistently under- or overestimate these values. The only tool capable of performing these measurements reliably, sarcApp, is no longer freely available, it requires programming expertise, and it does not support raw image file formats, making it difficult to use in practice (see above comments for more details). In contrast, IMA is user-friendly and does not require any programming expertise to install or operate. It can automatically process raw microscopic image formats without the need for preprocessing. Segmentation is fully automated, and no parameter tuning is necessary. The tool offers visual feedback on both the segmentation and fitting processes, enabling users to validate results with confidence. IMA delivers accurate and precise measurements of sarcomere length and diameter. Additionally, batch processing is enabled by default, significantly enhancing workflow efficiency.
This manuscript shows that depending on the isolation and embedding media sarcomere and myofibrils width changes and hence artifacts can be introduced. While this is not suprising, it has not been well controlled in a number of previous publications.
Furthermore, this paper measures sarcomere length and width during flight muscle development and consolidates what was already known from previous publications. Sarcomeres are added until 48 h APF, then they grow in diameter. Despite strong claims in the text, I do not see any significant novel findings how sarcomeres grow in length or width or any significant deviations from what has been published before. This is even documented in the supplementary graphs by comparing to published data. It is close to identical.
The overall process has been quantitatively described in four previous studies (Reedy and Beall, 1993, Orfanos et al., 2015, Spletter et al., 2018, Nikonova et al., 2024). While there is general agreement on the pattern of sarcomere development, significant discrepancies exist among these datasets; differences that become particularly problematic when attempting to build structural models. More specifically: Reedy and Beall (1993) report substantially shorter sarcomeres compared to all other datasets, including ours. This discrepancy likely stems from two factors: (i) their use of longitudinal EM sections, where sample preparation is known to cause considerable tissue shrinkage; and (ii) the maintenance of their flies at 23 °C, a temperature that clearly delays development relative to the more commonly used 25 °C. Interestingly, Spletter et al. (2018) and Nikonova et al. (2024) conducted their experiments at 27 °C, which also deviates from standard conditions and may complicate comparisons. Orfanos et al. (2015) suggested that mature sarcomere length is reached by approximately 88 hours after puparium formation (APF). In contrast, our measurements show that sarcomeres continue to elongate beyond this point, reaching mature length between 12 and 24 hours post-eclosion. All four earlier studies report a mature sarcomere length around 3.2-3.3 µm, only slightly longer than the ~3.2 µm length of thick filaments (Katzemich et al., 2012; Gasek et al., 2016). This would imply an I-band length below ~100 nm, which is an implausibly short distance. In contrast, our data, along with several recent studies (González-Morales et al., 2019; Deng et al., 2021; Dhanyasi et al., 2020; DeAguero et al., 2019), support a mature sarcomere length of approximately 3.45 µm, placing the length of the I-band at around 250 nm. This estimate is more consistent with high-resolution structural observations from longitudinal EM sections and fluorescent nanoscopy (Szikora et al., 2020; Schueder et al., 2023). Although Reedy and Beall (1993) provide limited data on myofibril diameter during myofibrillogenesis, a more detailed quantitative analysis is presented by Spletter et al. (2018) and by Nikonova et al. (2024). Interestingly, Spletter et al. report two separate datasets - one based on longitudinal sections and another on cross-sections of DLM fibers. While the measurements are consistent during early pupal stages, they diverge significantly in mature IFMs (1.116 ± 0.1025 µm vs. 1.428 ± 0.0995 µm), a discrepancy that is not addressed in their publication. Nikonova et al. (2024) report even narrower myofibril widths (0.9887 ± 0.1273 µm). Moreover, the reported diameters of early myofibrils in all three datasets are nearly twice as large as those reported by Reedy and Beall (1993) and in our own measurements, directly contradicting the reviewer's claim that the values are “close to identical.” Finally, our data clearly demonstrate that both the length and diameter of IFM sarcomeres reach a plateau in young adults, which is a key developmental feature not examined in previous studies.
In summary, we did not and we do not intend to claim that our conclusions are novel as to the general mechanisms of myofibril and sarcomere growth. Rather, our contribution lies in providing a high-precision, robust analysis of the growth process using a state-of-the-art toolkit, resulting in a comprehensive description that aligns with structural data obtained from TEM and dSTORM. We therefore believe that expert readers will recognize numerous valuable aspects of our approaches that will advance research in the field.
Counting the total number of thick filaments during myofibril development is nice, however, this also has been done (REEDY, M. C. & BEALL, C. 1993, PMID: 8253277). In this old study, the authors reported the amount of filament across one myofibril. How does this compare to the new data here counting all filaments? Unfortunatley, this is not discussed.
Indeed, the study by Reedy and Beall (1993) was primarily based on longitudinal DLM sections, which were used to estimate myofibril width and count the number of thick filaments on this lateral view images (e.g., ~15 thick filaments wide at 75 hours APF), but total thick filament numbers were not provided. While such data could theoretically be used to estimate the number of myofilaments per myofibril, these estimations would depend on the unverified assumption that the section includes the full width of the myofibril. Additionally, the study did not provide standard deviations or the number of measurements, limiting the interpretability and reproducibility of their findings. These points highlight the need for a more rigorous and quantitative approach. For these reasons, we chose to quantify myofilament number using cross-sections, providing more accurate and reliable assessments.
Besides the difference between the lateral versus cross sections, a direct comparison of our studies is further complicated by differences in the developmental time points and experimental conditions used. Reedy and Beall (1993) reports data from pupae aged 42, 60, 75 and 100 hours, as well as from adults, whereas we present data from 36, 48, and 72 hours APF, and from 24 hours after eclosion, which corresponds to approximately 124 hours APF. Moreover, their experiments were carried out at 23 °C, a temperature that somewhat slows down pupal development and results in adult eclosion at around 112 hours APF, as stated in their study. In contrast, our experiments were carried out at the more commonly used 25 °C, where adults typically emerge around 100 hours APF.
Collectively, these differences prevented meaningful comparisons between the two datasets, and therefore we preferred to avoid lengthy discussions on this issue.