Reviewer #1 (Public Review):
Summary:
This study examines how blood vessels exposed to the cytokine VEGF respond to vascular leakage when the VEGF receptor NRP1 is targeted. This study compares results in in two different body sites of the dermis and in a different organ, the trachea. The authors refer to the two different sites of the dermis as two different organs, but the dermis is one organ. The authors report that vascular leakage is differentially affected by NRP1 targeting in the ear skin compared to the trachea and back skin. They attribute these differences to NRP1 presence in cells other than the vascular endothelium, especially in the ear skin, where they observe higher perivascular NRP1 staining.
The manuscript states that the aim was to uncover the role of NRP1 in VEGF-mediated vascular permeability. This was misleading, because a lot is already known on NRP1 in this pathway, as is evidenced by a large number of publications the authors themselves quote (and sometimes misquote). The main information they wish to add is the possibility that NRP1 may also play a role in other cells to regulate permeability, as they previously suggested for blood vessel growth. Several technical issues and experimental limitations call into question whether the above conclusion can be reached with the data provided.
Strengths:
It is an interesting concept that NRP1 regulates vascular permeability by acting in perivascular cells.
Weaknesses:
(A) Technical limitations due to assay type:
A direct comparison of the skin in two body sites is not warranted given that the authors used different methods to study the two sites. Below is a list of differences reported in their methods section:
(A1) Different tracers were used to visualize VEGF165-induced leakage in different sites.<br />
Ear skin assay: 2 kDa FITC and two different dextrans, 10 kDa TRITC dextran, and another dextran whose molecular weight is not specified. It is not explained why 3 different tracers were used. Figures 1 and 2 report data with 2 kDa TRITC dextran.<br />
Back skin assay: They describe the Miles assay using Evans Blue, which binds to albumin, making it a 67 kDa tracer. However, Figure 1 suggests that 2 kDa dextran was used, and perhaps Evans Blue was only used for the supplemental data. This is relevant because current knowledge suggests that small dyes use the junctional pathway, whereas larger proteins such as albumin can use vesicular transport. The former is thought to be a fast pathway (hence, the authors measured dye extravasation 3 min after VEGF165 injection). The latter pathway is a slower one (hence, measured 30 min after VEGF165 injection in the Miles assay).
Quantification: For ear skin, the number of leakage sites and lag period is quantified, as well as leakage over time. For back skin, the amount of extravasated dye is quantified at a fixed time point. Such different measurements do not allow for direct comparison.
(A2) Mice were prepared in different ways for the different body sites studied:<br />
Ear skin assay: general anesthesia with ketamine-xylazine.<br />
Back skin assay: No anesthesia is described for the back skin Miles assay. This would be a concern because intradermal injections are considered to be painful. For back skin histology, they do report to have used isoflurane anesthesia before perfusion fixation. However, it is not advisable to use used isoflurane anesthesia for perfusion fixation if this has been done via the conventional cardiac route, because opening the chest cavity to access the heart for perfusion causes lung collapse, meaning that the mice cannot breathe the anaesthetic, and there is a risk of them regaining consciousness. The authors should clarify what exactly they have done, for ethical reasons and also because the type of anesthesia can affect vascular studies, for example, see PMID 36418078.
(A3) Differential histamine use:<br />
Back skin assay: uses anti-histamine, as is advised with intradermal injections to minimize vascular leakage due to histamine release after local trauma.<br />
Ear skin assay: no anti-histamine was used, so histamine-induced background leakage might have been present, independently of VEGF165. The authors suggest that the ear skin injection does not cause trauma, but it is unclear how this is possible, given that skin needs to be disrupted for the needle to enter the tissue.
(A4) Different VEGF165 concentration used:<br />
The ear skin assay uses 10 ng VEGF per injection, and the back skin assay 80 ng.
Given all these differences in experimental protocols, as well as different knockdown efficiency (see below), the results for the different sites are not directly comparable. Hence it cannot presently be concluded that the role of NRP1 in both sites is different, and further work is required to make a firm conclusion. In addition, the conflicts between the reported methods and figures need to be resolved.
(B) It is unclear whether appropriate controls were used:
(B1) What genotype and treatment are the control mice for NRP1 targeting? The ideal control would be wild-type mice with the same CreER, injected with tamoxifen according to the same timeline, to account for vehicle, tamoxifen, and tamoxifen-induced CreER toxicity (https://doi.org/10.1038/s44161-022-00125-6). This could be a littermate mouse or, alternatively, a separate experiment should be shown comparing wild-type mice carrying the same CreER as used for the ablation studies and injected with tamoxifen, versus wild-type mice injected with tamoxifen, to demonstrate that the induction regime does not in itself cause phenotypes.
(B2) Has a PBS injection been performed to compare baseline leakage between genotypes, independently of VEGF165 injections? This is an essential control.
(B3) The experimental protocol assays 4 days after 5 consecutive tamoxifen injections, which does not allow much time for drug washout. Moreover, this is a lot of tamoxifen (80 mg x 5 = 400 mg tamoxifen per kg). Due to the possibility that tamoxifen-induced effects might still be present and cause sex-differential effects, the corresponding sex for each individual data point should be indicated in all graphs.
(B4) i.p. peanut oil is used in undefined volumes; this vehicle was shown to cause inflammation if administered i.p. (PMID 33139505). Therefore, inflammation might be present, which might affect different body sites differently.
(C) Validation of NRP1 targeting:<br />
The authors have not performed an NRP1 knockout in the endothelium, as they repeatedly claim. In the lung, there is a good knockdown of around 75%; this may or may not be due to complete EC knockdown with preservation of NRP1 in other cell types. In the trachea, ear skin, and back skin, knockdown was not quantified, although qualitative comparisons by NRP1 immunostaining in Supplementary Figure 1 suggest that the back skin targeting worked better than the ear skin targeting, which would confound results, but in any case, it was neither a knockdown nor knockout. The staining for global targeting looks fainter than for the other genotypes, and the single-channel images seem to have different intensities than the overlays in Supplementary Figure 1 A.
(D) Systemic permeability studies:<br />
Organs have very different baseline permeability, due to the properties of the vascular barrier, i.e. tight barriers in the brain and retina and permeable endothelium in the liver and kidney. In this assay, VEGF is not delivered from the tissue side, as would be typical during inflammation but is delivered through the circulation, which has been shown to differentially affect the VEGF response, at least in some tissues (PMID 25175707). Nevertheless, this is a helpful readout, especially given that PBS controls appear not to have been performed above to establish baseline leakage between genotypes and tissues.
Figure Supplement 3 shows that VEGF induces vascular leakage in all body sites examined, independently of the size of the tracer used, and agreeing with current literature. An additional set of panels should be included with data shown without calculating the fold change relative to the control, set to 1, to account for the endothelium in different organs having different baseline vascular permeability. How do the authors explain that VEGF has the same effect in the ear and back skin in this assay, when NRP1 is present, given that they claim a role for perivascular NRP1 in the ear, but not back skin, for reducing VEGF/VEGFR2 signalling?
(E) Comparing results obtained with different tools:
- The endothelial NRP1 knockdown yielded different results for ear and back skin.<br />
- Anti-NRP1 yielded similar results for ear and back skin.<br />
- The global NRP1 ko yielded similar results for ear and back skin.<br />
Because anti-NRP1 and the global NRP1 knockdown gives similar results for all tissues, the authors deduce that the NRP1 acts in cell types other than endothelial cells to regulate permeability. This is an interesting idea, based on the lab's prior work in angiogenesis. In their trans-interaction scenario, NRP1 would have the same role in ECs in all sites, but non-endothelial NRP1 can override the function of the endothelial NRP1 function depending on its expression levels.
Confidence in this conclusion would require additional experiments:<br />
- Show that the endothelial knockdown works equally well in different body sites, via NRP1 staining and/or by checking recombination efficiency with a reporter.<br />
- Using an analogous assay to measure permeability in different body sites.<br />
- Perform a non-endothelial knockdown, i.e. in pericytes, which is hypothesized to be the source of NRP1 that affects vascular leakage signalling in endothelial cells in trans.
(F) Abstract, introduction, and references:<br />
The authors suggest controversy with regard to NRP1's roles in permeability. However, NRP1's function in VEGF signalling has been defined as being an accessory to VEGFR2, with a role in promoting SFK activation. This function relies on the NRP1 cytoplasmic domain, which mediates VEGFR2 trafficking and signalling; the relevant literature for the NRP1 cytoplasmic domain is mentioned for arteriogenesis (PMID 23639442), but not permeability (PMID 28289053). Another paper is mentioned which describes a VEGFR2-independent pathway for a CendR ligand, but this prior study did NOT make the claim that VEGF signalling is NRP1-independent or promotes it (PMID 27117252). In the eye, NRP1 has been implicated in both SEMA3A and VEGF165-induced permeability, which was also corroborated by the Miles assay in two prior studies (PMID 18180379, PMID 28289053). The last sentence in the abstract is incorrect, because differences in ear versus back skin do not constitute organotypic difference (as the organ is the dermis), and the potential role of perivascular cells is only inferred from the global endothelial NRP1 knockdown, which gives the same result as reported for the endothelial NRP1 knockdown in the literature.
(1) Lines 5/.53: The references for VEGF-NRP1 signalling in age-related macular degeneration are not helpful: Raimondi investigated VEGF-independent NRP1 pathways in angiogenesis, Fernandez-Robredo investigated NRP1 pathways in angiogenesis and showed that fewer vessels correlated with less leakage but did not test VEGF signaling specifically. A more suitable reference would have been PMID 28289053.
(2) Lines 63/64 and repeated in 84-89: The references quoted all showed that NRP1 inhibition reduces vascular permeability, and therefore do not provide evidence for the idea that NRP1 inhibition promotes permeability, as the authors report here for the ear skin; the only study supporting them is one using arterial endothelial cells, which are not permeability-relevant.
(3) Lines 106/107: The references used to underpin organ-specific barrier properties are correct, but as stated above, the dermis is the dermis, and therefore, these references would not be useful to provide support for the idea that the ear and back skin behave differently after NRP1 knockdown.
(G) Additional comments on the figures:<br />
Figure 4: The authors show that VEGFR2 is essential for permeability, and VEGF164 effects are VEGFR2 dependent - this is well established for VEGF164 in the Miles assay, including the accessory role of NRP1 (e.g. PMID 28289053). As the proposed trans function of NRP1 cannot make a difference in VEGFR2 signaling when VEGFR2 is not there, this experiment is only confirmatory of prior VEGFR2 knowledge.