13 Matching Annotations
  1. Jul 2022
  2. Aug 2019
  3. Jul 2019
    1. In practice, we found that it is not appropriate to use Aalen’s additive hazardsmodel for all datasets, because when we estimate cumulativeregression functionsB(t),they are restricted to the time interval where X (X has been defined in Chapter 3) is offull rank, that meansX0Xis invertible. Sometimes we found that X is not of full rank,which was not a problem with the Cox model.
    2. The effect ofthe covariates on survival is to act multiplicatively on some unknown baseline hazardrate, which makes it difficult to model covariate effects that change over time. Secondly,if covariates are deleted from a model or measured with a different level of precision, theproportional hazards assumption is no longer valid. These weaknesses in the Cox modelhave generated interest in alternative models. One such alternative model is Aalen’s(1989) additive model. This model assumes that covariates act in an additive manneron an unknown baseline hazard rate. The unknown risk coefficients are allowed to befunctions of time, so that the effect of a covariate may vary over time.
    1. Note that, the confidence limits are wide at the tail of the curves, making meaningful interpretations difficult. This can be explained by the fact that, in practice, there are usually patients who are lost to follow-up or alive at the end of follow-up. Thus, it may be sensible to shorten plots before the end of follow-up on the x-axis (Pocock et al, 2002).