10,000 Matching Annotations
  1. Last 7 days
    1. Reviewer #1 (Public review):

      Multiple waves of follicles have been proven to exist in multiple species, and different waves of follicles contribute differently to oogenesis and fertility. This work characterizes the wave 1 follicles in mouse comprehensively and compares different waves of follicles regarding their cellular and molecular features. Elegant mouse genetics methods are applied to provide lineage tracing of the wave 1 folliculogenesis, together with sophisticated microscopic imaging and analyses. Single-cell RNA-seq is further applied to profile the molecular features of cells in mouse ovaries from week 2 until week 6. While extensive details about the wave 1 follicles, especially the atresia process, are provided, the authors also identified another group of follicles located in the medullary-cortical boundary, which could also be labeled by the FoxL2-mediated lineage tracing method. The "boundary" or "wave 1.5" follicles are proposed by the authors to be the earliest wave 2 follicles, which contribute to the early fertility of puberty mice, instead of the wave 1 follicles, which undergo atresia with very few oocytes generated. The wave 1 follicle atresia, which degrades most oocytes, on the other hand, expands the number of theca cells and generates the interstitial gland cells in the medulla, where the wave 1 follicles are located. These gland cells likely contribute to the generation of androgen and estrogen, which shape oogenesis and animal development. By comparing scRNA-seq data from cells collected from week 2 until week 6 ovaries, the author profiled the changes in numbers of different cells and identified key genes that differ between wave 1 and wave 2 follicles, which could potentially be another driver of different waves of folliculogenesis. In summary, the authors provide a high amount of new results with good quality that illustrate the molecular and cellular features of different waves of mouse follicles, which could be further reused by other researchers in related fields. The findings related to the boundary follicles could potentially bring many new findings related to oogenesis.

      This paper is overall well-written with solid and intriguing conclusions that are well supported. The reviewer only has some minor comments for the authors' consideration that could potentially help with the readability of the paper.

      (1) The authors identify the wave 1.5 follicles at the medullary-cortex boundary, which begin to develop shortly after 2 weeks. Since the authors already collected scRNA-seq data from week 2 until week 6, could any special gene expression patterns be identified that make wave 1.5 follicle cells different from wave 1 and wave 2?

      (2) Are Figures 1C and 1E Z projections from multiple IF slices? If so, please provide representative IF slice(s) from Figures 1C and 1E and clearly label wave 1 and wave 2 follicles to better illustrate how the wave 1 follicles are clarified and quantified.

      (3) For Figure 3D, please also provide an image showing the whole ovary section, like in Figures 3A and 3C, to better illustrate the localization and abundance of different cells.

      (4) In Figure 4H, expressions of HSD3B1 and PLIN1 seem to be detected in almost all medulla cells. Does this mean all medulla cells gain gland cell features? Or there is only a subset of the medulla cells that are actively expressing these 2 proteins. Please provide image(s) with higher magnification to show more clearly how the expression of these 2 proteins differs among different cells.

      (5) Figure 5: The authors discussed cell number changes for different types of cells from week 2 to week 6. A table, or some plots, visualizing numbers of different cell types, instead of just providing original clusters in Dataset S6, at different time points, would make the changes easier to observe.

      (6) Figure S7: It would be more helpful to directly show the number of wave 1 follicles.

      (7) Did the fluorescence cryosection staining (Line 587 - 595) use the same buffers as in the whole-mount staining (Line 575 - 586)? Please clarify.

      (8) In Line 618, what tissue samples were collected? Please point out clearly.

    1. Reviewer #1 (Public review):

      Summary:

      The authors have conducted the largest to date Mendelian Randomization (MR) analysis of the association between genetically predicted measures of adiposity and risk of head and neck cancer (HNC) overall and by subsites within HNC. MR uses genetic predictors of an exposure, such as gene variants associated with high BMI or tobacco use, rather than data from individual physical exams or questionnaires and if it can be done in its idealized state, there should be no problems with confounding. Traditional epidemiologic studies have reported a variety of associations between BMI (and a few other measures of adiposity) and risk of HNC that typically differs by the smoking status of the subjects. Those findings are controversial given the complex relationship between tobacco and both BMI and HNC risk. Tobacco smokers are often thinner than no-smokers so this could create an artificial ('confounded') association that may not be fully adjusted away in risk models. The findings of a BMI-HNC association are often attributed to residual confounding and this seems ripe for an MR approach if suitable genetic instrumental variables can be created. Here the authors built a variety of genetic instrumental variables for BMI and other measures of adiposity as well as two instrumental variables for smoking habits and then tested their hypotheses in a large case-controls set of HNC and controls with genetic data.

      The authors found that the genetic model for BMI was associated with HNC risk in simple models, but this association disappeared when using models that better accounted for pleiotropy, the condition when genetic variants are associated with more than one trait such as both BMI and tobacco use. When they used both adiposity and tobacco use genetic instruments in a single model, there was a strong association with genetically predicted tobacco use (as is expected) but there was no remaining association with genetic predictors of adiposity. They conclude that high BMI/adiposity is not a risk factor for HNC.

      Strengths:

      The primary strength was the expansive use of a variety of different genetic instruments for BMI/adiposity/body size along with employing a variety of MR model types, several of which are known to be less sensitive to pleiotropy. They also used the largest case-control sample size to date.

      Weaknesses:

      The lack of pleiotropy is an unconfirmable assumption of MR and the addition of those models is therefore quite important as this is a primary weakness of the MR approach. Given that concern, I read the sensitivity analyses using pleiotropy-robust models as the main result and in that case, they are more limited in their ability to test their hypothesis as these models do not show a robust BMI instrumental variable association.

      Comments on the revised manuscript:

      After the first round of review, the authors have improved the manuscript by (1) adding the requested power calculations and adding text to help the reader integrate that additional information; (2) adding the main effects for the tobacco instruments; (3) updating the comparison of their results to the prior literature; (4) and some other edits to the text. They have declined to include the smoking stratified estimates and provide a rationale for this decision that references the potential for collider bias. While true that yet another bias might be introduced, that gets added to the list and the careful reader would know that. Many important questions in cancer etiology can only be addressed via observational approaches and each observational approach has the potential for a long list of biases. The best inference comes from integrating the totality of the data and realizing that most conclusions are subject to updating as we conduct more work and learn more.

    1. Reviewer #1 (Public review):

      Summary:

      The authors use high-throughput gene editing technology in larval zebrafish to address whether microexons play important roles in the development and functional output of larval circuits. They find that individual microexon deletions rarely impact behavior, brain morphology, or activity, and raise the possibility that behavioral dysregulation occurs only with more global loss of microexon splicing regulation. Other possibilities exist: perhaps microexon splicing is more critical for later stages of brain development, perhaps microexon splicing is more critical in mammals, or perhaps the behavioral phenotypes observed when microexon splicing is lost are associated with loss of splicing in only a few genes.

      Strengths:

      - The authors provide a qualitative analysis of microexon inclusion during early zebrafish development

      - The authors provide comprehensive phenotyping of microexon mutants, addressing the role of individual microexons in the regulation of brain morphology, activity, and behavior.

    1. Reviewer #1 (Public review):

      This study aims to elucidate the mechanisms by which stress-induced α2A-adrenergic receptor (α2A-AR) internalization leads to cytosolic noradrenaline (NA) accumulation and subsequent neuronal dysfunction in the locus coeruleus (LC). While the manuscript presents an interesting but ambitious model involving calcium dynamics, GIRK channel rundown, and autocrine NA signaling, several key limitations undermine the strength of the conclusions.

      First, the revision does not include new experiments requested by reviewers to validate core aspects of the mechanism. Specifically, there is no direct measurement of cytosolic NA levels or MAO-A enzymatic activity to support the link between receptor internalization and neurochemical changes. The authors argue that such measurements are either not feasible or beyond the scope of the study, leaving a significant gap in the mechanistic chain of evidence.

      Second, the behavioral analysis remains insufficient to support claims of cognitive impairment. The use of a single working memory test following an anxiety test is inadequate to verify memory dysfunction behaviors. Additional cognitive assays, such as the Morris Water Maze or Novel Object Recognition, are recommended but not performed.

      Third, concerns regarding the lack of rigor in differential MAO-A expression in fluorescence imaging were not addressed experimentally. Instead of clarifying the issue, the authors moved the figure to supplementary data without providing further evidence (e.g., an enzymatic assay or quantitative reanalysis of Western blot, or re-staining of IF for MAO-A) to support their interpretation.

      Fourth, concerns regarding TH staining remain unresolved. In Figure S7, the α2A-AR signal appears to resemble TH staining, and vice versa, raising the possibility of labeling errors. It is recommended that the authors re-examine this issue by either double-checking the raw data or repeating the immunostaining to validate the staining.

      Overall, the manuscript offers a potentially interesting framework but falls short in providing the experimental rigor necessary to establish causality. The reliance on indirect reasoning and reorganizing existing data, rather than generating new evidence, limits the overall impact and interpretability of the study.

    1. Reviewer #1 (Public review):

      Summary:

      The authors developed a sequence-based method to predict drug-interacting residues in IDP, based on their recent work, to predict the transverse relaxation rates (R2) of IDP trained on 45 IDP sequences and their corresponding R2 values. The discovery is that the IDPs interact with drugs mostly using aromatic residues that are easy to understand, as most drugs contain aromatic rings. They validated the method using several case studies, and the predictions are in accordance with chemical shift perturbations and MD simulations. The location of the predicted residues serves as a starting point for ligand optimization.

      Strengths:

      This work provides the first sequence-based prediction method to identify potential drug-interacting residues in IDP. The validity of the method is supported by case studies. It is easy to use, and no time-consuming MD simulations and NMR studies are needed.

      Weaknesses:

      The method does not depend on the information of binding compounds, which may give general features of IDP-drug binding. However, due to the size and chemical structures of the compounds (for example, how many aromatic rings), the number of interacting residues varies, which is not considered in this work. Lacking specific information may restrict its application in compound optimization, aiming to derive specific and potent binding compounds.

      Comments on revised version:

      I'm satisfied with the authors' response and the public review does not need further changes.

    1. Reviewer #1 (Public review):

      Summary:

      The authors aim to explore the effects of the electrogenic sodium-potassium pump (Na+/K+-ATPase) on the computational properties of highly active spiking neurons, using the weakly-electric fish electrocyte as a model system. Their work highlights how the pump's electrogenicity, while essential for maintaining ionic gradients, introduces challenges in neuronal firing stability and signal processing, especially in cells that fire at high rates. The study identifies compensatory mechanisms that cells might use to counteract these effects, and speculates on the role of voltage dependence in the pump's behavior, suggesting that Na+/K+-ATPase could be a factor in neuronal dysfunctions and diseases

      Strengths:

      (1) The study explores a less-examined aspect of neural dynamics-the effects of Na+/K+-ATPase electrogenicity. It offers a new perspective by highlighting the pump's role not only in ion homeostasis but also in its potential influence on neural computation.

      (2) The mathematical modeling used is a significant strength, providing a clear and controlled framework to explore the effects of the Na+/K+-ATPase on spiking cells. This approach allows for the systematic testing of different conditions and behaviors that might be difficult to observe directly in biological experiments.

      (3) The study several interesting compensatory mechanisms, such as sodium leak channels and extracellular potassium buffering, which provide useful theoretical frameworks for understanding how neurons maintain firing rate control despite the pump's effects.

      Comments on revisions:proposes

      The revised manuscript is notably improved.

    1. Reviewer #1 (Public review):

      The authors previously reported that Heliconius, one genus of the Heliconiini butterflies, evolved to be efficient foragers to feed pollen of specific plants and have massively expanded mushroom bodies. Using the same image dataset, the authors segmented the central complex and associated brain regions and found that the volume of the central complex relative to the rest of the brain is largely conserved across the Heliconiini butterflies. By performing immunostaining to label a specific subset of neurons, the authors found several potential sites of evolutionary divergence in the central complex neural circuits, including the number of GABAergic ellipsoid body ring neurons and the innervation patterns of Allatostatin A expressing neurons in the noduli. These neuroanatomical data will be helpful to guide future studies to understand the evolution of the neural circuits for vector-based navigation.

      Strengths:

      The authors used a sufficiently large scale of dataset from 307 individuals of 41 species of Heliconiini butterflies to solidify the quantitative conclusions and present new microscopy data for fine neuroanatomical comparison of the central complex.

      Weaknesses:

      (1) Although the figures display a concise summary of anatomical findings, it would be difficult for non-experts to learn from this manuscript to identify the same neuronal processes in the raw confocal stacks. It would be helpful to have instructive movies to show a step-by-step guide for identification of neurons of interest, segmentations, and 3D visualizations (rotation) for several examples, including ER neurons (to supplement texts in line 347-353) and Allatostatin A neurons.

      (2) Related to (1), it was difficult for me to assess if the data in Figure 7 support the author's conclusions that ER neuron number increased in Heliconius Melpomene. By my understanding, the resolution of this dataset isn't high enough to trace individual axons and therefore authors do not rule out that the portion of "ER ring neurons" in Heliconius may not innervate the ER, as stated in Line 635 "Importantly, we also found that some ER neurons bypass the ellipsoid body and give rise to dense branches within distinct layers in the fan-shaped body (ER-FB)". If they don't innervate the ellipsoid body, why are they named as "ER neurons"?

      (3) Discussions around the lines 577-584 require the assumption that each ellipsoid body (EB) ring neuron typically arborises in a single microglomerulus to form a largely one-to-one connection with TuBu neurons within the bulb (BU), and therefore, the number of BU microglomeruli should provide an estimation of the number of ER neurons. Explain this key assumption or provide an alternative explanation.

      (4) The details of antibody information are missing in the Key resource table. Instead of citing papers, list the catalogue numbers and identifier for commercially available antibodies, and describe the antigen, and whether they are monoclonal or polyclonal. Are antigens conserved across species?

      (5) I did not understand why authors assume that foraging to feed on pollens is a more difficult cognitive task than foraging to feed on nectar. Would it be possible that they are equally demanding tasks, but pollen feeding allows Heliconius to pass more proteins and nucleic acids to their offspring and therefore they can develop larger mushroom bodies?

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors theoretically address the topic of interface resistance between a phase-separated condensate and the surrounding dilute phase. In a nutshell, "interface resistance" occurs if material in the dilute phase can only slowly pass through the interface region to enter the dense phase. There is some evidence from FRAP experiments that such a resistance may exist, and if it does, it could be biologically relevant insofar as the movement of material between dense and dilute phases can be rate-limiting for biological processes, including coarsening. The current study theoretically addresses interface resistance at two levels of description: first, the authors present a simple way of formulating interface resistance for a sharp interface model. Second, they derive a formula for interface resistance for a finite-width interface and present two scenarios where the interface resistance might be substantial.

      Strengths:

      The topic is of broad relevance to the important field of intracellular phase separation, and the work is overall credible.

      Weaknesses:

      There are a few problems with the study as presented - mainly that the key formula for the latter section has already been derived and presented in Reference 6 (notably also in this journal), and that the physical basis for the proposed scenarios leading to a large interface resistance is not clearly supported.

      (1) As noted, Equation 32 of the current study is entirely equivalent to Equation 8 of Reference 6, with a very similar derivation presented in Appendix 1 of that paper. In fact, Equation 8 in Reference 6 takes one more step by combining Equations 32 and 35 to provide a general expression for the interface resistance in an integral form. These prior results should be properly cited in the current work - the existing citations to Reference 6 do not make this overlap apparent.

      (2) The authors of the current study go on to examine cases where this shared equation (here Equation 32) might imply a large interface resistance. The examples are mathematically correct, but physically unsupported. In order to produce a substantial interface resistance, the current authors have to suppose that in the interface region between the dense and dilute phases, either there is a local minimum of the diffusion coefficient or a local minimum of the density. I am not aware of any realistic model that would produce either of these minima. Indeed, the authors do not present sufficient examples or physical arguments that would support the existence of such minima.

      In my view, these two issues limit the general interest of the latter portion of the current manuscript. While point 1 can be remedied by proper citation, point 2 is not so simple to address. The two ways the authors present to produce a substantial interface resistance seem to me to be mathematical exercises without a physical basis. The manuscript will improve if the authors can provide examples or compelling arguments for a minimum of either diffusion coefficient or density between the dense and dilute phases that would address point 2.

    1. Reviewer #1 (Public review):

      Summary:

      This work aims to elucidate the molecular mechanisms affected in hypoxic conditions, causing reduced cortical interneuron migration. They use human assembloids as a migratory assay of subpallial interneurons into cortical organoids and show substantially reduced migration upon 24 hours of hypoxia. Bulk and scRNA-seq show adrenomedullin (ADM) up-regulation, as well as its receptor RAMP2, confirmed atthe protein level. Adding ADM to the culture medium after hypoxic conditions rescues the migration deficits, even though the subtype of interneurons affected is not examined. However, the authors demonstrate very clearly that ineffective ADM does not rescue the phenotype, and blocking RAMP2 also interferes with the rescue. The authors are also applauded for using 4 different cell lines and using human fetal cortex slices as an independent method to explore the DLXi1/2GFP-labelled iPSC-derived interneuron migration in this substrate with and without ADM addition (after confirming that also in this system ADM is up-regulated). Finally, the authors demonstrate PKA-CREB signalling mediating the effect of ADM addition, which also leads to up-regulation of GABAreceptors. Taken together, this is a very carefully done study on an important subject - how hypoxia affects cortical interneuron migration. In my view, the study is of great interest.

      Strengths:

      The strengths of the study are the novelty and the thorough work using several culture methods and 4 independent lines.

      Weaknesses:

      The main weakness is that other genes regulated upon hypoxia are not confirmed, such that readers will not know until which fold change/stats cut-off data are reliable.

    1. Reviewer #1 (Public review):

      Summary:

      The authors used weighted ensemble enhanced sampling molecular dynamics (MD) to test the hypothesis that a double mutant of Abl favors the DFG-in state relative to the WT and therefore causes the drug resistance to imatinib.

      Strengths:

      The authors employed the state-of-the-art weighted ensemble MD simulations with three novel progress coordinates to explore the conformational changes the DFG motif of Abl kinase. The hypothesis regarding the double mutant's drug resistance is novel.

      Weaknesses:

      The study contains many uncertain aspects. A major revision is needed to strengthen the support for the conclusions.

      (1) Specifically, the authors need to define the DFG conformation using criteria accepted in the field, for example, see https://klifs.net/index.php.

      (2) Convergence needs to be demonstrated for estimating the population difference between different conformational states.

      (3) The DFG flip needs to be sampled several times to establish free energy difference.

      (4) The free energy plots do not appear to show an intermediate state as claimed.

      (5) The trajectory length of 7 ns in both Figure 2 and Figure 4 needs to be verified, as it is extremely short for a DFG flip that has a high free energy barrier.

      (6) The free energy scale (100 kT) appears to be one order of magnitude too large.

      (7) Setting the DFG-Asp to the protonated state is not justified, because in the DFG-in state, the DFG-Asp is clearly deprotonated.

      (8) Finally, the authors should discuss their work in the context of the enormous progress made in theoretical studies and mechanistic understanding of the conformational landscape of protein kinases in the last two decades, particularly with regard to the DFG flip.

    1. Reviewer #1 (Public review):

      Summary:

      The authors aimed to examine how the covariation between cognition (represented by a g-factor based on 12 features of 11 cognitive tasks) and mental health (represented by 133 diverse features) is reflected in MR-based neural markers of cognition, as measured through multimodal neuroimaging (structural, rsfMRI, and diffusion MR). To integrate multiple neuroimaging phenotypes across MRI modalities, they used a so-called stacking approach, which employs two levels of machine learning. First, they built a predictive model from each neuroimaging phenotype to predict a target variable. Next, in the stacking level, they used predicted values (i.e., cognition predicted from each neuroimaging phenotype) from the first level as features to predict the target variable. To quantify the contribution of the neural indicators of cognition explaining the relationship between cognition and mental health, they conducted commonality analyses. Results showed that when they stacked neuroimaging phenotypes within dwMRI, rsMRI, and sMRI, they captured 25.5%, 29.8%, and 31.6% of the predictive relationship between cognition and mental health, respectively. By stacking all 72 neuroimaging phenotypes across three MRI modalities, they enhanced the explanation to 48%. Age and sex shared substantial overlapping variance with both mental health and neuroimaging in explaining cognition, accounting for 43% of the variance in the cognition-mental health relationship.

      Strengths:

      (1) A big study population (UK Biobank with 14000 subjects).

      (2) The description of the methods (including Figure 1) is helpful in understanding the approach.

      (3) This revised manuscript is much improved compared to the previous version.

      Weaknesses:

      (1) Although the background and reason for the study are better described in this version of the manuscript, the relevance of the question is, in my opinion, still questionable. The authors aimed to determine whether neural markers of cognition explain the covariance between cognition and mental health and which of the 72 MRI-based features contribute to explaining most of the covariance. I would like to invite the authors to make a stronger case for the relevance, keeping the clinical and scientific relevance in mind (what would you explain to the clinician, what would you explain to the people with lived experience, and how can this knowledge contribute to innovation in mental health care?).

      (2) The discussion on the interpretation of the positive and negative PLRS loadings is not very convincing, and the findings are partly counterintuitive. For example (1) how to explain that distress has a positive loading and anxiety/trauma has a negative loading?; (2) how to explain that mental health features like wellbeing and happiness load in the same direction as psychosis and anxiety/trauma? From both a clinical and a neuroscientific perspective, this is hard to interpret.

      (3) The analysis plan has not been preregistered (e.g. at OSF).

      Note: the computational aspects of the methods fall beyond my expertise.

    1. Reviewer #1 (Public review):

      Summary:

      The experiment is interesting and well executed and describes in high detail fish behaviour in thermally stratified waters. The evidence is strong but the experimental design cannot distinguish between temperature and vertical position of the treatments.

      Strengths:

      High statistical power, solid quantification of behaviour.

      Weaknesses:

      A major issue with the experimental design is the vertical component of the experiment. Many thermal preference and avoidance experiments are run using horizontal division in shuttlebox systems or in annular choice flumes. These remove the vertical stratification component so that hot and cold can be compared equally, without the vertical layering as a confounding factor. The method chosen, with its vertical stratification, is inherently unable to control for this effect because warm water is always above, and cold water is always below. This complicates the interpretations.

    1. Reviewer #2 (Public review):

      Summary:

      Egawa et al describe the developmental timeline of the assembly of nodes of Ranvier in the chick brainstem auditory circuit. In this unique system, the spacing between nodes varies significantly in different regions of the same axon from early stages, which the authors suggest is critical for accurate sound localization. Egawa et al set out to determine which factors regulate this differential node spacing. They do this by using immunohistological analyses to test the correlation of node spacing with morphological properties of the axons, and properties of oligodendrocytes, glial cells that wrap axons with the myelin sheaths that flank the nodes of Ranvier. They find that axonal structure does not vary significantly, but that oligodendrocyte density and morphology varies in the different regions traversed by these axons, which suggests this is a key determinant of the region-specific differences in node density and myelin sheath length. They also find that differential oligodendrocyte density is partly determined by secreted neuronal signals, as (presumed) blockage of vesicle fusion with tetanus toxin reduced oligodendrocyte density in the region where it is normally higher. Based on these findings, the authors propose that oligodendrocyte morphology, myelin sheath length, and consequently nodal distribution are primarily determined by intrinsic oligodendrocyte properties rather than neuronal factors such as activity.

      Major comments:

      (1) The authors should test the efficiency of TeNT to validate that vesicular release is indeed inhibited from expressing neurons. Additionally, the authors should clarify if their TeNT expression system results in the whole tract being silenced, or results in sparse vesicular release inhibition in only a few neurons.

      (2) The authors should revise their statistical analyses throughout, and supply additional information to explain the rationale for the statistical tests used, including e.g. data normality, paired sampling, number of samples/independent biological replicates.

      (3) The main finding of the study is that the density of nodes differs between two regions of the chicken auditory circuit, probably due to morphological differences in the respective oligodendrocytes. Can the authors discuss if this finding is likely to be specific to the avian auditory circuit?

      (4) The study shows a correlation between node spacing and oligodendrocyte density, but the authors did not manipulate oligodendrocyte density per se (i.e. cell-autonomously). The authors should either include such experiments, or discuss their value in supporting the interpretation of their results.

      (5) The authors should discuss very pertinent prior studies, in particular to contextualize their findings with (a) known neuron-autonomous modes of node formation prior to myelination, (b) known effects of vesicular fusion directly on myelinating capacity and oligodendrogenesis, (c) known correlation of myelin length and thickness with axonal diameter, (d) regional heterogeneity in the oligodendrocyte transcriptome.

      Significance:

      In our view the study tackles a fundamental question likely to be of interest to a specialized audience of cellular neuroscientists. This descriptive study is suggestive that in the studied system, oligodendrocyte density determines the spacing between nodes of Ranvier, but further manipulations of oligodendrocyte density per se are needed to test this convincingly.

    1. Reviewer #1 (Public review):

      Summary:

      The electrocardiogram (ECG) is routinely used to diagnose and assess cardiovascular risk. However, its interpretation can be complicated by sex-based and anatomical variations in heart and torso structure. To quantify these relationships, Dr. Smith and colleagues developed computational tools to automatically reconstruct 3D heart and torso anatomies from UK Biobank data. Their regression analysis identified key sex differences in anatomical parameters and their associations with ECG features, particularly post-myocardial infarction (MI). This work provides valuable quantitative insights into how sex and anatomy influence ECG metrics, potentially improving future ECG interpretation protocols by accounting for these factors.

      Strengths:

      (1) The study introduces an automated pipeline to reconstruct heart and torso anatomies from a large cohort (1,476 subjects, including healthy and post-MI individuals).

      (2) The 3-stage reconstruction achieved high accuracy (validated via Dice coefficient and error distances).

      (3) Extracted anatomical features enabled novel analyses of disease-dependent relationships between sex, anatomy, and ECG metrics.

      (4) Open-source code for the pipeline and analyses enhances reproducibility.

      Weaknesses:

      (1) The linear regression approach, while useful, may not fully address collinearity among parameters (e.g., cardiac size, torso volume, heart position). Although left ventricular mass or cavity volume was selected to mitigate collinearity, other parameters (e.g., heart center coordinates) could still introduce bias.

      (2) The study attributes residual ECG differences to sex/MI status after controlling for anatomical variables. However, regression model errors could distort these estimates. A rigorous evaluation of potential deviations (e.g., variance inflation factors or alternative methods like ridge regression) would strengthen the conclusions.

      (3) The manuscript's highly quantitative presentation may hinder readability. Simplifying technical descriptions and improving figure clarity (e.g., separating superimposed bar plots in Figures 2-4) would aid comprehension.

      (4) Given established sex differences in QTc intervals, applying the same analytical framework to explore QTc's dependence on sex and anatomy could have provided additional clinically relevant insights.

    1. Reviewer #1 (Public review):

      Summary:

      This is a high-quality and extensive study that reveals differences in the self-assembly properties of the full set of 109 human death fold domains (DFDs). Distributed amphifluoric FRET (DAmFRET) is a powerful tool that reveals the self-assembly behaviour of the DFDs, in non-seeded and seeded contexts, and allows comparison of the nature and extent of self-assembly. The nature of the barriers to nucleation is revealed in the transition from low to high AmFRET. Alongside analysis of the saturation concentration and protein concentration in the absence of seed, the subset of proteins that exhibited discontinuous transitions to higher-order assemblies was observed to have higher concentrations than DFDs that exhibited continuous transitions. The experiments probing the ~20% of DFDs that exhibit discontinuous transition to polymeric form suggest that they populate a metastable, supersaturated form in the absence of cognate signal. This is suggestive of a high intrinsic barrier to nucleation.

      Strengths:

      The differences in self-assembly behaviour are significant and likely identify mechanistic differences across this large family of signalling adapter domains. The work is of high quality, and the evidence for a range of behaviours is strong. This is an important and useful starting point since the different assembly mechanisms point towards specific cellular roles. However, understanding the molecular basis for these differences will require further analysis.

      An impressive optogenetic approach was engineered and applied to initiate self-assembly of CASP1 and CASP9 DFDs, as a model for apoptosome initiation in these two DFDs with differing continuous or discontinuous assembly properties. This comparison revealed clear differences in the stability and reversibility of the assemblies, supporting the hypothesis that supersaturation-mediated DFD assembly underlies signal amplification in at least some of the DFDs.

      The study reveals interesting correlations between supersaturation of DFD adapters in short- and long-lived cells, suggestive of a relationship between the mechanism of assembly and cellular context. Additionally, the comprehensive nature of the study provides strong evidence that the interactions are almost all homomeric or limited to members of the same DFD subfamily or interaction network. Similar approaches with bacterial proteins from innate immunity operons suggest that their polymerisation may be driven by similar mechanisms.

      Weaknesses:

      Only a limited investigation of assembly morphology was conducted by microscopy. There was a tendency for discontinuous structures to form fibrillar structures and continuous to populate diffuse or punctate structures, but there was overlap across all categories, which is not fully explored. The methodology used to probe oligomeric assembly and stability (SDD-AGE) does not justify the conclusions drawn regarding stability and native structure within the assemblies.

      The work identifies important differences between DFDs and clearly different patterns of association. However, most of the detailed analysis is of the DFDs that exhibit a discontinuous transition, and important questions remain about the majority of other DFDs and why some assemblies should be reversible and others not, and about the nature of signalling arising from a continuous transition to polymeric form.

      Some key examples of well-studied DFDs, such as MyD88 and RIPK,1 deserve more discussion, since they display somewhat surprising results. More detailed exploration of these candidates, where much is known about their structures and the nature of the assemblies from other work, could substantiate the conclusions here and transform some of the conclusions from speculative to convincing.

      The study concludes with general statements about the relationship between stochastic nucleation and mortality, which provide food for thought and discussion but which, as they concede, are highly speculative. The analogies that are drawn with batteries and privatisation will likely not be clearly understood by all readers. The authors do not discuss limitations of the study or elaborate on further experiments that could interrogate the model.

    1. Reviewer #1 (Public review):

      Summary:

      This work shows that a specific adenosine deaminase protein in Dictyostelium generates the ammonia that is required for tip formation during Dictyostelium development. Cells with an insertion in the adgf gene aggregate but do not form tips. A remarkable result, shown by several different ways, is that the adgf mutant can be rescued by exposing the mutant to ammonia gas. The authors also describe other phenotypes of the adgf mutant such as increased mound size, altered cAMP signaling, and abnormal cell type differentiation. It appears that the adgf mutant has defects the expression of a large number of genes, resulting in not only the tip defect but also the mound size, cAMP signaling, and differentiation phenotypes.

      Strengths:

      The data and statistics are excellent.

      Weaknesses:

      The key weakness is understanding why the cells bother to use a diffusible gas like ammonia as a signal to form a tip and continue development. The rescue of the mutant by adding ammonia gas to the entire culture indicates that ammonia conveys no positional information within the mound. By the time the cells have formed a mound, the cells have been starving for several hours, and desperately need to form a fruiting body to disperse some of themselves as spores, and thus need to form a tip no matter what. One can envision that the local ammonia concentration is possibly informing the mound that some minimal number of cells are present (assuming that the ammonia concentration is proportional to the number of cells), but probably even a miniscule fruiting body would be preferable to the cells compared to a mound. This latter idea could be easily explored by examining the fate of the adgf cells in the mound - do they all form spores? Do some form spores? Or perhaps the ADGF is secreted by only one cell type, and the resulting ammonia tells the mound that for some reason that cell type is not present in the mound, allowing some of the cells to transdifferentiate into the needed cell type. Thus elucidating if all or some cells produce ADGF would greatly strengthen this puzzling story.

      Comments on revisions:

      Looks better, but I think you answered my questions (listed as weaknesses in the public review) in the reply to the reviewer but not in the paper. I'd suggest carefully thinking about my questions and addressing them in the Discussion. You did however do all of the things in the paper that were listed as "Recommendations for the authors"

    1. Reviewer #1 (Public review):

      Summary:

      The paper sets out to examine the social recognition abilities of a 'solitary' jumping spider species. It demonstrates that based on vision alone spiders can habituate and dishabituate to the presence of conspecifics. The data support the interpretation that these spiders can distinguish between conspecifics on the basis of their appearance.

      Strengths:

      The study presents two experiments. The second set of data recapitulates the findings of the first experiment with a independent set of spiders, highlighting the strength of the results. The study also uses a highly quantitative approach to measuring relative interest between pairs of spiders based on their distance.

      Weaknesses:

      The study design is overly complicated, while missing key controls, and the data presented in the figures are not clearly connected to study. The discussion is challenging to understand and appears to make unsupported conclusions.

      (1) Study design: The study design is rather complicated and as a result it is difficult to interpret the results. The spiders are presented with the same individual twice in a row, called a habituation trial. Then a new individual is presented twice in a row. The first of these is a dishabituation trial and the second another habituation trial (but now habituating to a second individual). This done with three pairings and then this entire structure is repeated over three sessions. The data appear to show the strong effects of differences between habituation and dishabituation trials in the first session. The decrease in differential behavior between the so-called habituation and dishabituation trials in sessions 2 and 3 are explained as a consequence of the spiders beginning to habituate in general to all of the individuals. The claim that the spiders remember specific individuals is somewhat undercut because all of the 'dishabituation' trials in session 2 are toward spiders they already met for 14 minute previously but seemingly do not remember in session 2. In session 3 it is ambiguous what is happening because the spiders no longer differentiate between the trial types. This could be due to fatigue or familiarity. A second experiment is done to show that introducing a totally novel individual, recovers a large dishabituation response, suggesting that the lack of differences between 'habituation' and 'dishabituation' trials in session 3 is the result of general habituation to all of the spiders in the session rather than fatigue. As mentioned before, these data do support the claim that the spiders differentiate among individuals.

      The data from session 1 are easy to interpret. The data from sessions 2 and 3 are harder to understand, but these are the trials in which they meet an individual again after a substantial period of separation. Other studies looking at recognition in ants and wasps (cited by the authors) have done a 4 trial design in which focal animal A meets B in the first trial, then meet C in the second trial, meets B again in the third trial, and then meets D in the last trial. In that scenario trials 1, 2 and 4 are between unfamiliar individuals and trial 3 is between potentially familiar individuals. In both the ants and wasps, high aggression is seen in species with and without recognition on trial 1, with low aggression specifically for trials with familiar individuals in species with recognition. Across different tests, species or populations that lack recognition have shown a general reduction in aggression towards all individuals that becomes progressively less aggressive over time (reminiscent of the session 2 and 3 data) while others have maintained modest levels of aggression across all individuals. The 4 session design used in those other studies provides an unambiguous interpretation of the data, while controlling for 'fatigue'. That all trials in sessions 2 and 3 are always with familiar individuals make it challenging to understand how much the spiders are habituating to each other versus having some kind of associative learning of individual identity and behavior.

      The data presentation is also very complicated. How is it the case that a negative proportion of time is spent? The methods reveal that this metric is derived by comparing the time individuals spent in each region relative to the previous time they saw that individual. At the very least, data showing the distribution of distances from the wall would be much easier to interpret for the reader.

      (2) "Long-term social memory": It is not entirely clear what is meant by the authors when they say 'long-term social memory', though typically long-term memory refers to a form of a memory that require protein synthesis. While the precise timing of memory formation varies across species and contexts, a general rule is that long term memory should last for > 24 hours (e.g., Dreier et al 2007 Biol Letters). The longest time that spider are apart in this trial set up is something like an hour. There is no basis to claim that spiders have long term social memory as they are never asked to remember anyone after a long time apart. The odd phrasing of the 'long-term dishabutation' trial makes it seem that it is testing a long-term memory, but it is not. The spiders have never met. The fact that they are very habituated to one set of stimuli and then respond to a new stimulus is not evidence of long-term memory. To clearly test memory (which is the part really lacking from the design), the authors would need to show that spiders - upon the first instance of re-encountering a previously encountered individual are already 'habituated' to them but not to some other individuals. The current data suggest this may be the case, but it is just very hard to interpret given the design does not directly test memory of individuals in a clear and unambiguous manner.

      (3) Lack of a functional explanation and the emphasis on 'asociality': It is entirely plausible that recognition is pleitropic byproduct of the overall visual cognition abilities in the spiders. However, the discussion that discounts territoriality as a potential explanation is not well laid out. First, many species that are 'asocial' nevertheless defend territories. It is perhaps best to say such species are not group living, but they have social lives because they encounter conspecifics and need to interact with them. Indeed, there are many examples of solitary living species that show the dear enemy effect, a form of individual recognition, towards familiar territorial neighbors. The authors in this case note that territorial competition is mediated by the size of color of the chelicerae (seemingly a trait that could be used to distinguish among individuals). Apparently because previous work has suggested that territorial disputes can be mediated by a trait in the absence of familiarity has led them to discount the possibility that keeping track of the local neighbors in a potentially cannibalistic species could be a sufficient functional reason. In any event, the current evidence presented certainly does not warrant discounting that hypothesis.

      Comments on Revision:

      The authors have not actually addressed my points and their comments conflate discrimination with recognition. The extensive discussion about how babies are tested for discrimination tasks in their rebuttal misses the point. I believe that the data do show that the spiders discriminate between individuals but whether individuals are recognized (i.e., remembered) is less clear. The authors defend their convoluted study design, but it is overly complex and challenging to interpret the data as a result.

      The main issue with the design is that they do not actually test for any kind of memory of specific individuals after a substantial time of separation. Instead they show that a new individuals is still surprising/dishabituating. That is nice evidence for discrimination but does not show memory in a clear and unambiguous way.

      My comments and critique are unchanged since they didn't really change the paper. New experiments were needed and they didn't do any. Perhaps it is hard to get the spiders where they are? I don't really understand why they didn't do additional experiments as part of this revision.

    1. Reviewer #1 (Public review):

      Summary:

      The authors aim to explore how interdisciplinarity and internationalization-two increasingly prominent characteristics of scientific publishing-have evolved over the past century. By constructing entropy-based indices from a large-scale bibliometric dataset (OpenAlex), they examine both long-term trends and recent dynamics in these two dimensions across a selection of leading disciplinary and multidisciplinary journals. Their goal is to identify field-specific patterns and structural shifts that can inform our understanding of how science has become more globally collaborative and intellectually integrated.

      Strengths and Weaknesses:

      The paper's primary strength lies in its comprehensive temporal scope and use of a rich, openly available dataset covering over 56 million articles. The interdisciplinary and internationalization indices are well-founded and allow meaningful comparisons across fields and time. Moreover, the distinction between disciplinary and multidisciplinary journals adds valuable nuance. However, some methodological choices, such as the use of a 5-year sliding window to compute trend values, are insufficiently justified and under-explained. The paper also does not fully address disparities in data coverage across disciplines and time, which may affect the reliability of historical comparisons. Finally, minor issues in grammar and clarity reduce the overall polish of the manuscript.

      Evaluation of Findings:

      Overall, the authors have largely succeeded in achieving their stated aims. The findings-such as the sharp rise in internationalization in fields like Physics, and the divergence in interdisciplinarity trends across disciplines-are clearly presented and generally well-supported by the data. The authors effectively demonstrate that scientific journals have not followed a uniform trajectory in terms of structural evolution. However, greater clarity in trend estimation methods and better acknowledgment of dataset limitations would help to further substantiate the conclusions and enhance their generalizability.

      Impact and Relevance:

      This study makes a timely and meaningful contribution to the fields of scientometrics, sociology of science, and science policy. Its combination of scale, historical depth, and field-level comparison offers a useful framework for understanding changes in scientific publishing practices. The entropy-based indicators are simple yet flexible, and the use of open bibliometric data enhances reproducibility and accessibility for future research. Policymakers, journal editors, and researchers interested in publication dynamics will likely find this work informative, and its methods could be applied or extended to other structural dimensions of scholarly communication.

    1. Reviewer #1 (Public review):

      Summary:

      This work investigated whether cytoplasmic poroelastic properties play an important role in cellular mechanical response over length scales and time scales relevant to cell physiology. Overall, the manuscript concludes that intracellular cytosolic flows and pressure gradients are important for cell physiology and that they act of time- and length-scales relevant to mechanotransduction and cell migration.

      Strengths:

      Their approach integrates both computational and experimental methods. The AFM deformation experiments combined with measuring z-position of beads is a challenging yet compelling method to determine poroelastic contributions to mechanical realization.

      The work is quite interesting and will be of high value to the field of cell mechanics and mechanotransduction.

      Weaknesses:

      The weaknesses I noted earlier were adequately addressed in the revised version.

    1. Reviewer #1 (Public review):

      The study presents significant findings on the role of mitochondrial depletion in axons and its impact on neuronal proteostasis. It effectively demonstrates how the loss of axonal mitochondria and elevated levels of eIF2β contribute to autophagy collapse and neuronal dysfunction. The use of Drosophila as a model organism and comprehensive proteome analysis adds robustness to the findings.

      In this revision, the authors have responded thoughtfully to previous concerns. In particular, they have addressed the need for a quantitative analysis of age-dependent changes in eIF2β and eIF2α. By adding western blot data from multiple time points (7 to 63 days), they show that eIF2β levels gradually increase until middle age, then decline. In milton knockdown flies, this pattern appears shifted, supporting the idea that mitochondrial defects may accelerate aging-related molecular changes. These additions clarify the temporal dynamics of eIF2β and improve the overall interpretation.

      Other updates include appropriate corrections to figures and quantification methods. The authors have also revised some of their earlier mechanistic claims, presenting a more cautious interpretation of their findings.

      Overall, this work provides new insights into how mitochondrial transport defects may influence aging-related proteostasis through eIF2β. The manuscript is now more convincing, and the revisions address the main points raised earlier. I find the updated version much improved.

    1. Reviewer #1 (Public review):

      Summary:

      Zhang and colleagues examine neural representations underlying abstract navigation in the entorhinal cortex (EC) and hippocampus (HC) using fMRI. This paper replicates a previously identified hexagonal modulation of abstract navigation vectors in abstract space in EC in a novel task involving navigating in a conceptual Greeble space. In HC, the authors claim to identify a three-fold signal of the navigation angle. They also use a novel analysis technique (spectral analysis) to look at spatial patterns in these two areas and identify phase coupling between HC and EC. Finally, the authors propose an EC-HPC PhaseSync Model to understand how the EC and HC construct cognitive maps. While the wide array of techniques used is impressive and their creativity in analysis is admirable, overall, I found the paper a bit confusing and unconvincing. I recommend a significant rewrite of their paper to motivate their methods and clarify what they actually did and why. The claim of three-fold modulation in HC, while potentially highly interesting to the community, needs more background to motivate why they did the analysis in the first place, more interpretation as to why this would emerge in biology, and more care taken to consider alternative hypotheses seeped in existing models of HC function. I think this paper does have potential to be interesting and impactful, but I would like to see these issues improved first.

      General comments:

      (1) Some of the terminology used does not match the terminology used in previous relevant literature (e.g., sinusoidal analysis, 1D directional domain).

      (2) Throughout the paper, novel methods and ideas are introduced without adequate explanation (e.g., the spectral analysis and three-fold periodicity of HC).

    1. Reviewer #1 (Public review):

      Summary:

      The aim of the experiment reported in this paper is to examine the nature of the representation of a template of an upcoming target. To this end, participants were presented with compound gratings (consisting of tilted to the right and tilted to the left lines) and were cued to a particular orientation - red left tilt or blue right tilt (counterbalanced across participants). There two directly compared conditions: (i) no ping: where there was a cue, that was followed by a 5.5-7.5s delay, then followed by a target grating in which the cued orientation deviated from the standard 45 degrees; and (ii) ping condition in which all aspects were the same with the only difference that a ping (visual impulse presented for 100ms) was presented after the 2.5 seconds following the cue. There was also a perception task in which only the 45 degrees to the right or to the left lines were presented. It was observed that during the delay, only in the ping condition, were the authors able to decode orientation of the to be reported target using the cross-task generalization. Attention decoding, on the other hand, was decoded in both ping and non-ping conditions. It is concluded that the visual system has two different functional states associated with a template during preparation: a predominantly non-sensory representation for guidance and a latent sensory-like for prospective stimulus processing.

      Strengths:

      There is so much to be impressed with in this report. The writing of the manuscript is incredibly clear. The experimental design is clever and innovative. The analysis is sophisticated and also innovative -the cross-task decoding, the use of Mahalanobis distance as a function of representational similarity, the fact that the question is theoretically interesting, the excellent figures.

      Comments on revisions:

      I have no further comments.

    1. Reviewer #1 (Public review):

      Summary:

      This study evaluates whether species can shift geographically, temporally, or both ways in response to climate change. It also teases out the relative importance of geographic context, temperature variability, and functional traits in predicting the shifts. The study system is large occurrence datasets for dragonflies and damselflies split between two time periods and two continents. Results indicate that more species exhibited both shifts than one or the other (or neither), and that geographic context and temperature variability were more influential than traits. The results have implications for future analyses (e.g. incorporating habitat availability) and for choosing winner and loser species under climate change. The results also seem to support climate vulnerability assessments for species that rely on geographic range size and geospatial climate data layers rather than more detailed information (like demographic rates, abundances, or traits) that may not be so readily available. The methodology would be useful for other taxa and study regions with strong participatory ("citizen") science and extensive occurrence data.

      Strengths:

      This is an organized and well written paper that builds on a popular topic and moves it forward. It has the right idea and approach, and the results are useful answers to the predictions and for conservation planning (i.e. identifying climate winners and losers). There is technical proficiency and analytical rigor driven by an understanding of the data and its limitations.

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript explores behavioral responses of C. elegans to hydrogen sulfide, which is known to exert remarkable effects on animal physiology in a range of contexts. The possibility of genetic and precise neuronal dissection of responses to H2S motivates the study of responses in C. elegans. The revised manuscript does not seem to have significantly addressed what was lacking in the initial version.

      The authors have added further characterization of possible ASJ sensing of H2S by calcium imaging but ASJ does not appear to be directly involved. Genetic and parallel analysis of O2 and CO2 responsive pathways do not reveal further insights regarding potential mechanisms underlying H2S sensing. Gene expression analysis extends prior work. Finally, the authors have examined how H2S-evoked locomotory behavioral responses are affected in mutants with altered stress and detoxification response to H2S, most notably hif-1 and egl-9. These data, while examining locomotion, are more suggestive that observed effects on animal locomotion are secondary to altered organismal toxicity as opposed to specific behavioral responedse

      Overall, the manuscript provides a wide range of intriguing observations, but mechanistic insight or a synthesis of disparate data is lacking.

    1. Reviewer #1 (Public review):

      The revised manuscript addresses several reviewer concerns, and the study continues to provide useful insights into how ZIP10 regulates zinc homeostasis and zinc sparks during fertilization in mice. The authors have improved the clarity of the figures, shifted emphasis in the abstract more clearly to ZIP10, and added brief discussion of ZIP6/ZIP10 interactions and ZIP10's role in zinc spark-calcium oscillation decoupling. However, some critical issues remain only partially addressed.

      (1) Oocyte health confound: The use of Gdf9-Cre deletes ZIP10 during oocyte growth, meaning observed defects could result from earlier disruptions in zinc signaling rather than solely from the absence of zinc sparks at fertilization. The authors acknowledge this and propose transcriptome profiling as a future direction. However, since mRNA levels often do not accurately reflect protein levels and activity in oocytes, transcriptomics may not be particularly informative in this context. Proteomic approaches that directly assess the molecular effects of ZIP10 loss seem more promising. Although current sensitivity limitations make proteomics from small oocyte samples challenging, ongoing improvements in this area may soon allow for more detailed mechanistic insights.

      (2) ZIP6 context and focus: The authors clarified the abstract to emphasize ZIP10, enhancing narrative clarity. This revision is appropriate and appreciated.

      (3) Follicular development effects: The biological consequences of ZIP6 and ZIP10 knockout during folliculogenesis are still unknown. The authors now say these effects will be studied in the future, but this still leaves a major mechanistic gap unaddressed in the current version.

      (4) Zinc spark imaging and probe limitations: The addition of calcium imaging enhances the clarity of Figure 3. However, zinc fluorescence remains inadequate, and the authors depend solely on FluoZin-3AM, a dye known for artifacts and limited ability to detect subcellular labile zinc. The suggestion that C57BL/6J mice may differ from CD1 in vesicle appearance is plausible but does not fully address concerns about probe specificity and resolution. As the authors acknowledge, future studies with more selective probes would increase confidence in both the spatial and quantitative analysis of zinc dynamics.

      (5) Mechanistic insight remains limited: The revised discussion now recognizes the lack of detailed mechanistic understanding but does not significantly expand on potential signaling pathways or downstream targets of ZIP10. The descriptive data are useful, but the inability to pinpoint how ZIP10 mediates zinc spark regulation remains a key limitation. Again, proteomic profiling would probably be more informative than transcriptomic analysis for identifying ZIP10-dependent pathways once technical barriers to low-input proteomics are overcome.

      Overall, the authors have reasonably revised and clarified key points raised by reviewers, and the manuscript now reads more clearly. However, the main limitation, lack of mechanistic insight and the inability to distinguish between developmental and fertilization-stage roles of ZIP10, remains unresolved. These should be explicitly acknowledged when framing the conclusions.

    1. Reviewer #1 (Public review):

      Summary:

      This study builds on earlier work showing that early-life odor exposure can trigger glial-mediated pruning of specific olfactory neuron terminals in Drosophila. Moving from indirect to direct functional imaging, the authors show that pruning during a narrow developmental window leads to long-lasting suppression of odor responses in one neuron type (Or42a) but not another (Or43b). The combination of calcium and voltage imaging with connectomic analysis is a strength, though the voltage imaging results are less straightforward to interpret and may not reflect synaptic output changes alone.

      Strengths:

      Biologically, one of the main strengths of this work is the direct comparison between two odor-responsive OSN types that differ in their long-term adaptation to early-life odor exposure. While Or42a OSNs undergo pruning and remain persistently suppressed into late adulthood, Or43b OSNs, which also respond to the same odor, show little lasting change. This contrast not only underscores the cell-type specificity of critical-period plasticity but also points to a potential role of inhibitory network architecture in determining susceptibility. The persistence of the Or42a suppression well beyond the developmental window provides compelling evidence that early glia-mediated pruning can imprint a stable, life-long functional state on selected sensory channels. By situating these functional outcomes within the context of detailed connectomic data, the study offers a framework for linking structural connectivity to long-term sensory coding stability or vulnerability.

      Weaknesses:

      The narrative begins with the absence of changes in PN dendrites and axons. While this establishes specificity, it is a relatively weak starting point compared to the novel OSN functional results. Calcium imaging with GCaMP, though widely used, is an indirect measure of synaptic function, and reduced signals could reflect changes in non-synaptic calcium influx as well as release probability. The interpretation of the voltage imaging results is also unclear: if suppression were solely due to impaired synaptic release, one might expect action potential-evoked voltage signals to remain unchanged. The reported changes raise the possibility of deficits in action potential initiation or propagation, which would shift the mechanistic explanation.

      The difference between Or42a and Or43b OSNs is attributed to varying inhibitory input densities from connectome data, but this remains speculative without functional tests such as manipulating GABA receptor expression in OSNs. In Or43b, there is essentially no strong phenotype, making it premature to ascribe the absence of suppression solely to inhibitory connectivity. Finally, the study does not connect circuit-level changes to behavioral outcomes; assays of odor-guided attraction or discrimination could place the findings in an organismal context. Some introduction material overlaps with the authors' 2024 paper, and the novelty of the present study could be signposted more clearly.

    1. Reviewer #1 (Public review):

      Summary:

      The authors performed an in-depth analysis of three mouse strains with different levels of susceptibility to metabolic disease. Transcriptomics analyses of relevant deep tissues revealed many strain-specific differences in response to diet. They used gene set enrichment analysis to highlight possible biological pathways that may be involved in obesity and its metabolic consequences. These results were then confirmed using public data in both mice and humans.

      Strengths:

      Overall, this is an interesting study into the biological basis of differing phenotypic outcomes in response to metabolic challenges. The findings uncover several pathways that may shed light on the etiology of obesity and the associated health risks, as well as offer potential therapeutic avenues to prevent them.

      Weaknesses:

      While the experimental design and analysis are mostly good, some aspects of the present paper could be improved.

      (1) Most results are insufficiently described. P-values are almost entirely absent in the main text. Sometimes the significance is indicated in the figures, and other times it is missing. For example, strains are sometimes described as having a higher XYZ, something that is never shown in the plots, and no p-value is ever given.

      (2) While the biological methods are meticulously described, statistical methods are barely mentioned in the methods section. For example, line 578, "multiple comparisons (...) were performed using the glht function of the multcomp package". What is this? What method does it use? And how was mediation analysis done? Line 575 mentions that models were compared, with no description of how this was done. Mentioning the package (or even function) is not sufficient. The package and function are an implementation; they are not the method. The actual method needs to be clearly mentioned and (at least minimally) described, in addition to having the reference for methods that are not ubiquitous (i.e., the Benjamin-Hochberg method is well-enough established to forgo this).

      (3) The methods should also be briefly introduced in the results section before describing the results of those methods.

      (4) The role of immune signaling pathways and associated phenotypes (e.g., monocyte fraction) is over-interpreted. While the differences shown are convincing, they do not convincingly show a role in either obesity or disease. The parsimonious explanation is that such changes happen as a consequence of dyslipidemia rather than a cause. It is possible that these pathways play a more direct role in this, but the authors do not present compelling evidence of this, and, failing this, the language in the text needs to be toned down.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Yamazaki et al. conducted multiple microscopy-based GFP localization screens, from which they identified proteins that are associated with PM/cell wall damage stress response. Specifically, the authors identified that bud-localized TMD-containing proteins and endocytotic proteins are associated with PM damage stress. The authors further demonstrated that polarized exocytosis and CME are temporally coupled in response to PM damage, and CME is required for polarized exocytosis and the targeting of TMD-containing proteins to the damage site. From these results, the authors proposed a model that CME delivers TMD-containing repair proteins between the bud tip and the damage site.

      Strengths:

      Overall, this is a well-written manuscript, and the experiments are well-conducted. The authors identified many repair proteins and revealed the temporal coordination of different categories of repair proteins. Furthermore, the authors demonstrated that CME is required for targeting of repair proteins to the damage site, as well as cellular survival in response to stress related to PM/cell wall damage. Although the roles of CME and bud-localized proteins in damage repair are not completely new to the field, this work does have conceptual advances by identifying novel repair proteins and proposing the intriguing model that the repairing cargoes are shuttled between the bud tip and the damaged site through coupled exocytosis and endocytosis.

      Weaknesses:

      While the results presented in this manuscript are convincing, they might not be sufficient to support some of the authors' claims. Especially in the last two result sessions, the authors claimed CME delivers TMD-containing repair proteins from the bud tip to the damage site. The model is no doubt highly possible based on the data, but caveats still exist. For example, the repair proteins might not be transported from one localization to another localization, but are degraded and resynthesized. Although the Gal-induced expression system can further support the model to some extent, I think more direct verification (such as FLIP or photo-convertible fluorescence tags to distinguish between pre-existing and newly synthesized proteins) would significantly improve the strength of evidence.

      Major experiment suggestions:

      (1) The authors may want to provide more direct evidence for "protein shuttling" and for excluding the possibility that proteins at the bud are degraded and synthesized de novo near the damage site. For example, if the authors could use FLIP to bleach bud-localized fluorescent proteins, and the damaged site does not show fluorescent proteins upon laser damage, this will strongly support the authors' model. Alternatively, the authors could use photo-convertible tags (e.g., Dendra) to differentiate between pre-existing repair proteins and newly synthesized proteins.

      (2) In line with point 1, the authors used Gal-inducible expression, which supported their model. However, the author may need to show protein abundance in galactose, glucose, and upon PM damage. Western blot would be ideal to show the level of full-length proteins, or whole-cell fluorescence quantification can also roughly indicate the protein abundance. Otherwise, we cannot assume that the tagged proteins are only expressed when they are growing in galactose-containing media.

      (3) Similarly, for Myo2 and Exo70 localization in CME mutants (Figure 4), it might be worth doing a western or whole-cell fluorescence quantification to exclude the caveat that CME deficiency might affect protein abundance or synthesis.

      (4) From the authors' model in Figure 7, it looks like the repair proteins contribute to bud growth. Does laser damage to the mother cell prevent bud growth due to the reduction of TMD-containing repair proteins at the bud? If the authors could provide evidence for that, it would further support the model.

      (5) Is the PM repair cell-cycle-dependent? For example, would the recruitment of repair proteins to the damage site be impaired when the cells are under alpha-factor arrest?

    1. Reviewer #1 (Public review):

      (1) In this study, the authors aimed at characterizing Huntington's Disease (HD) - related microstructural abnormalities in the basal ganglia and thalami as revealed using Soma and Neurite Density Imaging (SANDI) indices (apparent soma density, apparent soma size, extracellular water signal fraction, extracellular diffusivity, apparent neurite density, fractional anisotropy and mean diffusivity).

      (2) The study implements a novel biophysical diffusion model that extends up-to-date methodologies and presents a significant potential for quantifying neurodegenerative processes of the grey matter of the human brain in vivo. The authors comment on the usefulness of this technique in other pathologies, but they exemplify it only with multiple sclerosis. Further development of this, building evidence, should be provided.

      (3) The study found that HD-related neurodegeneration in the striatum accounted significantly for striatal atrophy and correlated with motor impairments. HD was associated with reduced soma density, increased apparent soma size, and extracellular signal fraction in the basal ganglia, but not in the thalami. Additionally, these effects were larger at the manifest stage.

      (4) The results of this work demonstrate the impact of HD on the basal ganglia and thalami, which can be further explored as a non-invasive biomarker of disease progression. Additionally, the study shows that SANDI can be used to explore grey matter microstructure in a variety of neurological conditions.

    1. Reviewer #3 (Public review):

      This is a fundamentally important study presenting cryo-EM structures of a human small conductance calcium-activated potassium (SK2) channel in the absence and presence of calcium, or with interesting pharmacological probes bound, including the bee toxin apamin, a small molecule inhibitor, and a small molecule activator. As efforts to solve structures of the wild-type hSK2 channel were unsuccessful, the authors engineered a chimera containing the intracellular domain of the SK4 channel, the subtype of SK channel that was successfully solved in a previous study (reference 13). The authors present many new and exciting findings, including opening of an internal gate (similar to SK4), for the first time resolving the S3-S4 linker sitting atop the outer vestibule of the pore and unanticipated plasticity of the ion selectivity filter, and the binding sites for apamin, one new small molecule inhibitor and another small molecule activator. Appropriate functional data are provided to frame interpretations arising from the structures of the chimeric protein; the data are compelling, the interpretations are sound, and the writing is clear. This high-quality study will be of interest to membrane protein structural biologists, ion channel biophysicists, and chemical biologists, and will be valuable for future drug development targeting SK channels.

      Comments on revisions:

      The authors have done a nice job of revising the manuscript to address the issues raised in the first round of review and I have no further suggestions.

    1. Reviewer #1 (Public review):

      While the structure of the melibiose permease in both outward and inward-facing forms has been solved previously, there remain unanswered questions regarding its mechanism. Hariharan et al set out to address this with further crystallographic studies complemented with ITC and hydrogen-deuterium exchange (HDX) mass spectrometry. They first report 4 different crystal structures of galactose derivatives to explore molecular recognition, showing that the galactose moiety itself is the main source of specificity. Interestingly, they observe a water-mediated hydrogen bonding interaction with the protein and suggest that this water molecule may be important in binding.

      The results from the crystallography appear sensible, though the resolution of the data is low, with only the structure with NPG better than 3Å. However, it is a bit difficult to understand what novel information is being brought out here and what is known about the ligands. For instance, are these molecules transported by the protein or do they just bind? They measure the affinity by ITC, but draw very few conclusions about how the affinity correlates with the binding modes. Can the protein transport the trisaccharide raffinose?

      The HDX also appears to be well done; however, in the manuscript as written, it is difficult to understand how this relates to the overall mechanism of the protein and the conformational changes that the protein undergoes.

    1. Reviewer #2 (Public review):

      General comment:

      This is a very valuable and unique comparative study. An excellent combination of scanning and histological data from three different species is presented. Obtaining the material for such a comparative study is never trivial. The study presents new data and thus provides the basis for an in-depth discussion about chondrichthyan mineralised skeletal tissues.

      Comments on previous revisions:

      The manuscript has been revised and improved and can be published. A very nice manuscript, indeed. My only recommendation (point of discussion, not a requirement) would still be to think about the claim of paedomorphosis in a holocephalan.

      Within the chondrichthyes, how distant holocephali are in relation to elasmobranchii remains uncertain, holocephali are quite a specialised group. Holocephali are also older than Batoidea and Selachii. As paedomorphosis is a derived character, I imagine it is difficult to establish that development in an extant holocephalan is derived compared to development in elasmobranchii. If this type of development would have been typical for the "older" holocephali it would not be paedomorphic. Also, the uncertainty how distant holocephali are from elasmobranchii makes it difficult to identify paedomorphosis with reference to chondrichthyes.

      [Editors note: the authors have made further revisions in response to the previous reviews.]

    1. Reviewer #1 (Public review):

      Summary:

      Participants learned a graph-based representation, but, contrary to the hypotheses, failed to show neural replay shortly after. This prompted a critical inquiry into temporally delayed linear modeling (TDLM)--the algorithm used to find replay. First, it was found that TDLM detects replay only at implausible numbers of replay events per second. Second, it detects replay-to-cognition correlations only at implausible densities. Third, there are concerning baseline shifts in sequenceness across participants. Fourth, spurious sequences arise in control conditions without a ground truth signal. Fifth, when reframing simulations previously published, similar evidence is apparent.

      Strengths:

      (1) This work is meticulous and meets a high standard of transparency and open science, with preregistration, code and data sharing, external resources such as a GUI with the task and material for the public.

      (2) The writing is clear, balanced, and matter-of-fact.

      (3) By injecting visually evoked empirical data into the simulation, many surface-level problems are avoided, such as biological plausibility and questions of signal-to-noise ratio.

      (4) The investigation of sequenceness-to-cognition correlations is an especially useful add-on because much of the previous work uses this to make key claims about replay as a mechanism.

      Weaknesses:

      Many of the weaknesses are not so much flaws in the analyses, but shortcomings when it comes to interpretation and a lack of making these findings as useful as they could be.

      (1) I found the bigger picture analysis to be lacking. Let us take stock: in other work, during active cognition, including at least one study from the Authors, TDLM shows significance sequenceness. But the evidence provided here suggests that even very strong localizer patterns injected into the data cannot be detected as replay except at implausible speeds. How can both of these things be true? Assuming these analyses are cogent, do these findings not imply something more destructive about all studies that found positive results with TDLM?

      (2) All things considered, TDLM seems like a fairly 'vanilla' and low-assumption algorithm for finding event sequences. It is hard to see intuitively what the breaking factor might be; why do the authors think ground truth patterns cannot be detected by this GLM-based framework at reasonable densities?

      (3) Can the authors sketch any directions for alternative methods? It seems we need an algorithm that outperforms TDLM, but not many clues or speculations are given as to what that might look like. Relatedly, no technical or "internal" critique is provided. What is it about TDLM that causes it to be so weak?

      Addressing these points would make this manuscript more useful, workable, and constructive, even if they would not necessarily increase its scientific breadth or strength of evidence.

    1. Reviewer #1 (Public review):

      Summary:

      The authors strived for an inventory of GPCRs and GPCR pathway component genes within the genomes of 23 choanoflagellates and other close relatives of metazoans.

      Strengths:

      The authors generated a solid phylogenetic overview of the GPCR superfamily in these species. Intriguingly, they discover novel GPCR families, novel assortments of domain combinations, novel insights into the evolution of those groups within the Opisthokonta clade. A particular focus is laid on adhesion GPCRs, for which the authors discover many hitherto unknown subfamilies based on Hidden Markov Models of the 7TM domain sequences, which were also reflected by combinations of extracellular domains of the homologs. In addition, the authors provide bioinformatic evidence that aGPCRs of choanoflagellates also contained a GAIN domain, which are self-cleavable thereby reflecting the most remarkable biochemical feat of aGPCRs.

      Weaknesses:

      The chosen classification scheme for aGPCRs may require reassessment and amendment by the authors in order to prevent confusion with previously issued classification attempts of this family.

    1. Reviewer #1 (Public review):

      Summary:

      Rolland and colleagues investigated the interaction between Vibrio bacteria and Alexandrium algae. The authors found a correlation between the abundance of the two in the Thau Lagoon and observed in the laboratory that Vibrio grows to higher numbers in the presence of the algae than in monoculture. Time-lapse imaging of Alexandrium in coculture with Vibrio enabled the authors to observe Vibrio bacteria in proximity to the algae and subsequent algae death. The authors further determine the mechanism of the interaction between the two and point out similarities between the observed phenotypes and predator-prey behaviours across organisms.

      Strengths:

      The study combines field work with mechanistic studies in the laboratory and uses a wide array of techniques ranging from co-cultivation experiments to genetic engineering, microscopy and proteomics. Further, the authors test multiple Vibrio and Alexandria species and claim a wide spread of the observed phenotypes.

      Weaknesses:

      In my view, the presentation of the data is in some cases not ideal. The phrasing of some conclusions (e.g., group-attacks and wolf-pack-hunting by the bacteria) is in my opinion too strong based on the herein provided data.

    1. Reviewer #1 (Public review):

      Summary

      In this manuscript, Singh, Wu and colleagues explore functional links between septins and the exocyst complex. The exocyst in a conserved octameric complex that mediates the tethering of secretory vesicles for exocytosis in eukaryotes. In fission yeast cells, the exocyst is necessary for cell division, where it localizes mostly at the rim of the division plane, but septins, which localize in a similar manner, are non-essential. The main findings of the work are that septins are required for the specific localization of the exocyst to the rim of the division plane, and the likely consequent localization of the glucanase Eng1 at this same location, where it is known to promote cell separation. In absence of septins, the exocyst still localizes to the division plane, but is not restricted to the rim. They also show some defect in the localization of secretory vesicles and glucan synthase cargo. They further show interactions between septins and exocyst subunits through coIP experiments.

      Strengths

      The septin, exocyst and Eng1 localization data are well supported, showing that the septin rim recruits the exocyst and (likely consequently) the Eng1 glucanase at this location. One important finding of the manuscript is that of a physical interaction between septins and exocyst subunits in co-immunoprecipitation experiments.

      Weaknesses

      While interactions are supported by coIP experiments, the AlphaFold-predicted septin-exocyst interactions are not very convincing and the predicted binding interfaces are not supported by mutation analysis. A further open question is whether septins interact with the intact exocyst complex or whether the interactions occur only with individual subunits. The two-hybrid and coIP data only show weak interactions with individual subunits, and some coIPs (for instance Sec3 and Exo70 with Spn1 and Spn4) are negative, suggesting that the exocyst complex may not remain intact in these experiments.

    1. Reviewer #1 (Public review):

      Summary:

      The authors make a bold claim that a combination of repetitive transcranial magnetic stimulation (intermittent theta burst-iTBS) and transcranial alternating current stimulation (gamma tACS) causes slight improvements in memory in a face/name/profession task.

      Strengths:

      The idea of stimulating the human brain non-invasively is very attractive because, if it worked, it could lead to a host of interesting applications. The current study aims to evaluate one such exciting application.

    1. Reviewer #1 (Public review):

      In this manuscript, Lau et al reported that KDM5 inhibition in luminal breast cancer cells results in R-loop-mediated DNA damage, reduced cell fitness and an increase in ISG and AP signatures as well as cell surface Major Histocompatibility Complex (MHC) class I, mediated by RNA:DNA hybrid activation of the CGAS/STING pathway.

      Their studies have shown that KDM5 inhibition/loss mediates a viral mimicry and DNA damage response through the generation of R-loops in genomic repeats. This is a different mechanism from the more well studied double-stranded RNA-induced "viral mimicry" response.

      More importantly, they have shown that KDM5 inhibition does not result in DNA damage or activation of the CGAS/STING pathway in normal breast epithelial cells, suggesting that KDM5 inhibitors may enable a wide therapeutic window in this setting, as compared to STING agonists or Type I Interferons.

      Their findings provide new insights into the interplay between epigenetic regulation of genomic repeats, R-loop formation, innate immunity, and cell fitness in the context of cancer evolution and therapeutic vulnerability.

      Comments on revised version:

      The authors have satisfactorily addressed my comments and revised the manuscript accordingly.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Shen et al. have improved upon the mitotic clone analysis tool MAGIC that their lab previously developed. MAGIC uses CRISPR/Cas9-mediated double-stranded breaks to induce mitotic recombination. The authors have replaced the sgRNA scaffold with a more effective scaffold to increase clone frequency. They also introduced modifications to positive and negative clonal markers to improve signal-to-noise and mark the cytoplasm of the cells instead of the nuclei. The changes result in increase in clonal frequencies and marker brightness. The authors also generated the MAGIC transgenics to target all chromosome arms and tested the clone induction efficacy.

      Strengths:

      MAGIC is a mitotic clone generation tool that works without prior recombination to special chromosomes (e.g., FRT). It can also generate mutant clones for genes for which the existing FRT lines could not be used (e.g., the genes that are between the FRT transgene and the centromere).

      This manuscript does a thorough job in describing the method and provides compelling data that support improvement over the existing method.

      Weaknesses:

      It would be beneficial to have a greater variety of clonal markers for nMAGIC. Currently, the only marker is BFP, which may clash with other genetic tools (e.g., some FRET probes) depending on the application. It would be nice to have far-red clonal markers.

    1. Reviewer #1 (Public review):

      Summary:

      The study by Bobola et al reports single-nucleus expression analysis with some supporting spatial expression data of human embryonic and fetal cardiac outflow tracts compared to adult aortic valves. The transcription factor GATA6 is identified as a top regulator of one of the mesenchymal subpopulations, and potential interacting factors and downstream target genes are identified bioinformatically. Additional bioinformatic tools are used to describe cell lineage relationships and trajectories for developmental and adult cardiac cell types.

      Strengths:

      The studies of human tissue and extensive gene expression data will be valuable to the field.

      Weaknesses:

      (1) The expression data are largely confirmatory of previous studies in humans and mice. Thus, it is not clear what novel biological insights are being reported. While there is some novelty and impact in using human tissue, there are extensive existing publications and data sets in this area.

      (2) Major conclusions regarding spatial localization, differential gene expression, or cell lineage relationships based on bioinformatic data are not validated in the context of intact tissues.

      (3) The conclusions regarding lineage relationships are based on common gene expression in the current study and may not reflect cellular origins or lineage relationships that have previously been reported in genetic mouse models.

      (4) An additional limitation is the exclusive examination of adult aortic valve leaflets that represent only a subset of outflow tract derivatives in the mature heart. The conclusion, as stated in the title regarding adult derivatives of the outflow tract, is not accurate based on the limited adult tissue evaluated, exclusive bioinformatic approach, and lack of experimental lineage analysis of cell origins.

    1. Reviewer #1 (Public review):

      Summary:

      In the study by Wang et al. entitled "Dissecting organoid-bacteria interaction highlights decreased contractile force as a key factor for heart infection", a simple cardiac organoid (CO) model was established, by combining a heterologous mixture of patient-specific human induced pluripotent stem cells (hiPSC)-derived cardiomyocytes (CMs) in combination with primary HUVECs (Human Umbilical Vein Endothelial Cells) and human mesenchymal stem cells (MSCs, representing stromal cells). This model was applied for investigating the interplay of COs' bacterial infections in vitro, aiming at revealing pathological mechanisms of bacterial infections of the heart in vivo, which may induce myocarditis and consequently heart failure in affected patients.

      Strengths:

      The paper is systematic, well written, and easy to follow.

      Based on their results, the authors state that: "In this study, by developing quantitative tools for analyzing bacterial-cardiac organoid interactions in a 3D, dynamic, clinically relevant setting, we discovered the significant role of cardiac contractility in preventing bacterial infection."

      In principle, the idea of establishing a simple yet functionally and physiologically relevant in vitro model and relevant analytical tools for enabling the study of complex pathological mechanisms of cardiovascular diseases is intriguing.

      Weaknesses:

      However, despite the combination of numerous analytical tools established and applied in the study, the work has substantial experimental limitations, indicating that the bold conclusions may represent a misinterpretation or overinterpretation of the findings.

      Key limitations and questions:

      (1) It seems that iPSCs from only one patient ("dilated cardiomyopathy (DCM) cells were derived from a 47-year-old Asian male with an LMNA gene mutation") were used in the study. Moreover, it seems that only one iPSC-line/clone from that DCM patient was used and compared to a single control iPSC line from a "healthy donor". Therefore, despite the different assays and experimental controls used in the study, there is a high risk that the observed phenomena reflect iPSC-line-/ clone-dependent effects, rather than revealing general pathophysiologic mechanisms. Thus, key experiments must be shown by cardiomyocytes/ cardiac organoids derived from additional independent iPSC-lines representing different patients and other non-diseased control lines as well. Moreover, it is established good experimental practice in the iPS cell field to generate and include isogenic iPSC controls i.e. iPSC lines of the same genetic background but with corrections of the hypothesised gene mutation underlying the respective e.g., cardiovascular disease.

      (2) In Figure 1 (A) immunohistochemical staining for cardiomyocytes for the cardiac marker Troponin is shown, apparently indicating successful cardiomyogenic differentiation of the applied hiPSC lines. In supplemental Figure S1, a flow cytometry analysis specific to cTnT is shown to reveal the CMs content resulting from the monolayer differentiation of respective iPSC lines. Already, the exemplified plots indicate that the CMs' content/ purity for DCM-CMs was notably lower compared to healthy cardiomyocytes (CM; control). This is an important issue, since the non-CMs ("contaminating bystander cells") may have a substantial effect on the functional (including contractile) properties of the COs.

      Interestingly, based on the method description, it seems that COs were generated from cryopreserved iPSC-CMs and iPSC-DCMs, including intermediate seeding and culture on Matrigel before COs formation. However, it remains unclear whether the CMs FACS analysis, which is apparently: "Representative FACS plots for analysis of the cell types in DCM monolayer culture after 33 days of differentiation" shows a CMs purity relevant to CO formation, or something different.

      The lineage phenotype of non-CMs in respective differentiations should also be clarified. Moreover, it should be noted in the results that the CMs content in COs is lower than the 6:2:2 (CM:ECs:MSC) ratio indicated by the authors, since the CMs purity is not 100%, and is particularly reduced in the iPSC-DCMs.

      Finally, to investigate the important latter questions of the "real CMs content" in COs, systematic technologies should be applied to quantify the lineage composition in COs (e.g. by IF staining for the 3 lineages plus DAPI, followed by COs clearance, confocal microscopy "3D stags" and automated, ImageJ-based quantitative cell counts for total cell number definition (see e.g. doi: 10.1038/s41596-024-00976-2) per CO, and quantification of respective lineage content as well.

      These questions are of key importance since the presence of non-CMs and their phenotype has profound consequences on the cardiac organoid model, its contractile/ biophysical properties, and, in general, on models' sensitivity to bacterial infections as well.

      (3) Figure 2: (F) Why is this figure (Confocal Observations) showing only healthy cardiac organoids (HCOs) but not DCM-COs?

      The overall quality of these pictures is poor and not informative regarding the structural identity and tissue composition of the COs, which actually is an important topic in the frame of the paper, as the 3D structure and tissue composition - and differences between HCOs and DCM-COs - are of key importance to their contractile properties.

      Moreover, the expective overlay of the cardiac markers alpha-actinin and MHC is not obvious from Figure 2F (see also comments on Figure 7, below).

      In Figure 2E: COs at later stages/days should be shown, in particular at that stage, which was used for the functional assays i.e., bacteria infections and contraction pattern monitoring.

      (4) Figure 7 (A) (B) - In the IF sections, it seems that there is no overlay between the expression of the cardiac marker MHC (seems to be expressed in the centre of COs only) and the cardiac markers alpha-actinin (which seems to be unexpectedly expressed in all cells on the sections) and Troponin (which seems to be vocally expressed on the outside, excluding the area of MHC expression).

      (F) Quantification of the mean area of gene expression, e.g., for MHC indicates a larger area after MHC expression; this seems to entirely contradict the IF pictures (in Figures 7 A-D) of MHC expression before and after infection. This contraction is deemed very critical to this reviewer as it may indicate that the IF staining, data analysis, and/or data interpretation in this part of the manuscript is poor, misleading, or simply wrong.

      (5) Overall, from the perspective of this reviewer, the CO-derived results do not reflect in a meaningful way the contractile and hydrodynamic conditions in the mouse heart or the human heart. Thus, it seems that the conclusions may rather represent a hypothesised outcome bias.

    1. Reviewer #1 (Public review):

      Summary:

      The authors aimed to investigate the cellular mechanisms underlying place field formation (PFF) in hippocampal CA1 pyramidal cells by performing in vivo two-photon calcium imaging in head-restrained mice navigating a virtual environment. Specifically, they sought to determine whether BTSP-like (behavioral time scale synaptic plasticity) events, characterized by large calcium transients, are the primary mechanism driving PFFs or if other mechanisms also play a significant role. Through their extensive imaging dataset, the authors found that while BTSP-like events are prevalent, a substantial fraction of new place fields are formed via non-BTSP-like mechanisms. They further observed that large calcium transients, often associated with BTSP-like events, are not sufficient to induce new place fields, indicating the presence of additional regulatory factors (possibly local dendritic spikes).

      Strengths

      The study makes use of a robust and extensive dataset collected from 163 imaging sessions across 45 mice, providing a comprehensive examination of CA1 place cell activity during navigation in both familiar and novel virtual environments. The use of two-photon calcium imaging allows the authors to observe the detailed dynamics of neuronal activity and calcium transients, offering insights into the differences between BTSP-like and non-BTSP-like PFF events. The study's ability to distinguish between these two mechanisms and analyze their prevalence under different conditions is a key strength, as it provides a nuanced understanding of how place fields are formed and maintained. The paper supports the idea that BTSP is not the only driving fore behind PFF, and other mechanisms are likely sufficient to drive PFF, and BTSP events may also be insufficient to drive PFF in some cases. The longer-than-usual virtual track used in the experiment allowed place cells to express multiple place fields, adding a valuable dimension to the dataset that is typically lacking in similar studies. Additionally, the authors took a conservative approach in classifying PFF events, ensuring that their findings were not confounded by noise or ambiguous activity.

      Weaknesses

      The stand out weakness of the paper is the lack of direct measures of BTSP events. Without direct confirmation that large calcium transients correspond to actual BTSP events (including associated complex spikes and calcium plateau potentials), concluding that BTSP is not necessary or sufficient for PFF formation is speculative (although I do believe it).

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Lu & Cui et al. observe that adult male zebrafish are more resistant to infection and disease following exposure to Spring Viremia of Carp Virus (SVCV) than female fish. The authors then attempt to identify some of the molecular underpinnings of this apparent sexual dimorphism and focus their investigations on a gene called cytochrome P450, family 17, subfamily A, polypeptide 2 (cyp17a2) because it was among the genes that they found to be more highly expressed in kidney tissue from males than in females. Their investigations lead them to propose a direct connection between cyp17a2 and modulation of interferon signaling as the key underlying driver of the difference between male and female susceptibility to SVCV.

      Strengths:

      Strengths of this study include the interesting observation of a substantial difference between adult male and female zebrafish in their susceptibility to SVCV, and also the breadth of experiments that were performed linking cyp17a2 to infection phenotypes and molecularly to the stability of host and virus proteins in cell lines. The authors place the infection phenotype in an interesting and complex context of many other sexual dimorphisms in infection phenotypes in vertebrates. This study succeeds in highlighting an unexpected factor involved in antiviral immunity that will be an important subject for future investigations of infection, metabolism, and other contexts.

      Weaknesses:

      Weaknesses of this study include an indirect connection between the majority of experiments and the proposed mechanism underlying the sexual dimorphism phenotype, widespread reliance on over-expression when investigating protein-protein interaction and localization, and an insufficient amount of description of the data presented in the figures. Specific examples of areas for clarification or improvement include:

      (1) Figure 10 outlines a mechanistic link between cyp17a2 and the sexual dimorphism the authors report for SVCV infection outcomes. The data presented on increased susceptibility of cyp17a2-/- mutant male zebrafish support this diagram, but this conclusion is fairly weak without additional experimentation in both males and females. The authors justify their decision to focus on males by stating that they wanted to avoid potential androgen-mediated phenotypes in the cpy17a2 mutant background (lines 152-156), but this appears to be speculation. It also doesn't preclude the possibility of testing the effects of increased cyp17a2 expression on viral infection in both males and females. This is of critical importance if the authors intend to focus the study on sexual dimorphism, which is how the introduction and discussion are currently structured.

      (2) The authors present data indicating an unexpected link between cyp17a2 and ubiquitination pathways. It is unclear how a CYP450 family member would carry out such activities, and this warrants much more attention. One brief paragraph in the discussion (starting at line 448) mentions previous implications of CYP450 proteins in antiviral immunity, but given that most of the data presented in the paper attempt to characterize cyp17a2 as a direct interactor of ubiquitination factors, more discussion in the text should be devoted to this topic. For example, are there any known domains in this protein that make sense in this context? Discussion of this interface is more relevant to the study than the general overview of sexual dimorphism that is currently highlighted in the discussion and throughout the text.

      (3) Figures 2-9 contain information that could be streamlined to highlight the main points the authors hope to make through a combination of editing, removal, and movement to supplemental materials. There is a consistent lack of clarity in these figures that could be improved by supplementing them with more text to accompany the supplemental figures. Using Figure 2 and an example, panel (A) could be removed as unnecessary, panel (B) could be exchanged for a volcano plot with examples highlighting why cyp17a2 was selected for further study and also the full dataset could be shared in a supplemental table, panel (C) could be modified to indicate why that particular subset was chosen for plotting along with an explanation of the scaling, panel (D) could be moved to supplemental because the point is redundant with panels (A) and (C), panel (E) could be presented as a heatmap, in panels (G) and (H) data from EPC cells could be moved to supplemental because it is not central to the phenotype under investigation, panels (J) to (L) and (N) to (P) could be moved to supplemental because they are redundant with the main points made in panels (M) and (Q). Similar considerations could be made with Figures 3-9

      (4) The data in Figure 3 (A)-(C) do not seem to match the description in the text. That is, the authors state that cyp17a2 overexpression increases interferon signaling activity in cells, but the figure shows higher increases in vector controls. Additionally, the data in panel (H) are not described. What genes were selected and why, and where are the data on the rest of the genes from this analysis? This should be shared in a supplemental table.

      (5) Some of the reagents described in the methods do not have cited support for the applications used in the study. For example, the antibody for TRIM11 (line 624, data in Figures 6 & 7) was generated for targeting the human protein. Validation for use of this reagent in zebrafish should be presented or cited. Furthermore, the accepted zebrafish nomenclature for this gene would be preferred throughout the text, which is bloodthirsty-related gene family, member 32.

    1. Reviewer #1 (Public review):

      Summary:

      In their manuscript, Metz Reed and colleagues present an exceptionally thorough analysis of three-dimensional genome reorganization during breast cancer progression using the well-characterized MCF10 model system. The integration of high-resolution Micro-C contact maps with multi-omics profiling provides compelling insights into stage-specific dynamics of chromatin compartments, TAD boundaries, and looping events. The discovery that stable chromatin loops enable epigenetic reprogramming of cancer genes, while structural changes selectively drive metastasis-associated pathways, represents a significant conceptual advance. This work substantially deepens our understanding of genome topology in malignancy. To further enhance this impactful study, we offer the following constructive suggestions.

      Strengths:

      This work sets a benchmark for integrative 3D genomics in oncology. Its methodological sophistication and conceptual advances establish a new paradigm for studying nuclear architecture in disease.

      Weaknesses:

      Major Issues

      (1) Functional tests would strengthen the observed links between structure and gene changes. For example, the COL12A1 gene loop formation correlates with its increased expression. Disrupting this loop using CRISPR-dCas9 at chr6 position 75280 kb could prove whether the loop causes COL12A1 activation. Such experiments would turn strong correlations into clear mechanisms.

      (2) The H3K27ac looping idea needs deeper validation. Data suggests H3K27ac loss weakens loops without affecting CTCF. Testing how cohesin proteins interact with H3K27ac-modified sites would clarify this process. Degron systems could rapidly remove H3K27ac to observe real-time effects. Also, the AP-1 motifs found at dynamic loop sites deserve functional tests. Knocking down AP-1 factors might show if they control loop formation.

      (3) Connecting findings to patient data would boost clinical relevance. The MCF10 model is excellent for controlled studies. Checking if TAD boundary weakening occurs in actual patient metastases would show real-world importance. Comparing primary and metastatic tumor samples from the same patients could reveal new structural biomarkers. If tissue is scarce, testing cancer cells with added stroma cells might mimic tumor environment effects.

      Minor Issues

      Adding a clear definition for static loops would help readers. For example, state that static loops show less than 10 percent contact change across replicates. In the ABC model analysis, removing promoter regions from the enhancer list would focus results on true long-range interactions. Briefly noting why this study sees TAD weakening while other cancer types show different patterns would provide useful context.

    1. Reviewer #1 (Public review):

      Summary:

      The question of how central nervous system lamination defects affect functional integrity is an interesting yet debated topic. The authors investigated the role of afadin, a key adherens junction scaffolding protein, in retinal lamination and function using a retina-specific conditional knockout mouse model. Their findings show that the loss of Afadin caused severe outer retinal lamination defects, disrupting photoreceptor morphology, synapse numbers, and cell positioning, as demonstrated by histological analysis. Despite these structural impairments, retinal function was partially preserved: mERG detected small a- and b-waves, retinal ganglion cells responded to light, and behavioral tests confirmed residual visual function. This research offers new insights into the relationship between retinal lamination and neural circuit function, suggesting that altered retinal morphology does not completely eliminate the capacity for visual information processing.

      Strengths:

      The study effectively employs the well-organized laminar structure of the retina as an accessible model for investigating afadin's role in lamination within the central nervous system. High-quality histological, immunostaining, and electron microscopy images clearly reveal structural defects in the conditional knockout mice. The revised manuscript significantly enhances the findings by incorporating robust quantitative analyses of cell positioning, retinal thickness, and cell numbers, as well as new assessments of developmental defects. Additionally, new behavioral tests, including the optomotor response and visual cliff tests, have been introduced. Together with electrophysiological recordings, these additions compellingly demonstrate the partial preservation of visual function despite severe structural disruptions.

      Weaknesses:

      Overall, the study of the mechanisms remains weak. While the authors addressed concerns about molecular mechanisms by examining cell proliferation potentially related to Notch and Wnt signaling (Figure S6C, lines 868-870), the findings are largely negative (no significant changes in progenitor cell numbers), and the discussion of alternative pathways remains speculative.

    1. Reviewer #1 (Public review):

      I applaud the authors' for providing a thorough response to my comments from the first round of review. The authors' have addressed the points I raised on the interpretation of the behavioral results as well as the validation of the model (fit to the data) by conducting new analyses, acknowledging the limitations where required and providing important counterpoints. As a result of this process, the manuscript has considerably improved. I have no further comments and recommend this manuscript for publication.

    1. Reviewer #2 (Public review):

      Summary:

      Septin caging has emerged as one of the innate immune response of eukaryotic cells to infections by intracellular bacteria. This fascinating assembly of eukaryotic proteins into complex structures restricts bacteria motility within the cytoplasm of host cells, thereby facilitating recognition by cytosolic sensors and components of the autophagy machinery. Given the different types of septin caging that have been described thus far, a single cell, unbiased approach to quantify and characterise septin recruitment at bacteria is important to fully grasp the role and function of caging. Thus, the authors have developed an automated image analysis pipeline allowing bacterial segmentation and classification of septin cages that will be very useful in the future, applied to study the role of host and bacterial factors, compare different bacterial strains or even compare infections by clinical isolates.

      Strengths:

      The authors developed a solid pipeline that has been thoroughly validated. When tested on infected cells, automated analysis corroborated previous observations and allowed the unbiased quantification of the different types of septin cages as well as the correlation between caging and bacterial metabolic activity. This approach will prove an essential asset in the further characterisation of septin cages for future studies.

      Weaknesses:

      As the main aim of the manuscript is to described the newly developed analysis pipeline, the results illustrated in the manuscript are essentially descriptive. The developed pipeline seems exceptionally efficient in recognising septin cages in infected cells but its application for a broader purpose or field of study remains limited.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors attempt to devise general rules for aptamer design based on structure and sequence features. The main system they are testing is an aptamer targeting a viral sequence.

      Strengths:

      The method combines a series of well-established protocols, including docking, MD, and a lot of system-specific knowledge, to design several new versions of the Ta aptamer with improved binding affinity.

      Weaknesses:

      The approach requires a lot of existing knowledge and, importantly, an already known aptamer, which presumably was found with Selex. In addition, although the aptamer may have a stronger binding affinity, it is not clear if any of it has any additional useful properties such as stability, etc.

    1. Reviewer #1 (Public review):

      This is my first review of this manuscript. The authors included previous reviews for a different journal with a length of 90 and 39 pages; I did not review this reply in my assessment of the paper itself. Influenza prediction is not my area of expertise.

      A major concern is that the model is trained in the midst of the COVID-19 pandemic and its associated restrictions and validated on 2023 data. The situation before, during, and after COVID is fluid, and one may not be representative of the other. The situation in 2023 may also not have been normal and reflective of 2024 onward, both in terms of the amount of testing (and positives) and measures taken to prevent the spread of these types of infections. A further worry is that the retrospective prospective split occurred in October 2020, right in the first year of COVID, so it will be impossible to compare both cohorts to assess whether grouping them is sensible.

      The outcome of interest is the number of confirmed influenza cases. This is not only a function of weather, but also of the amount of testing. The amount of testing is also a function of historical patterns. This poses the real risk that the model confirms historical opinions through increased testing in those higher-risk periods. Of course, the models could also be run to see how meteorological factors affect testing and the percentage of positive tests. The results only deal with the number of positive (only the overall number of tests is noted briefly), which means there is no way to assess how reasonable and/or variable these other measures are. This is especially concerning as there was massive testing for respiratory viruses during COVID in many places, possibly including China.

      (1) Although the authors note a correlation between influenza and the weather factors. The authors do not discuss some of the high correlations between weather factors (e.g., solar radiation and UV index). Because of the many weather factors, those plots are hard to parse.

      (2) The authors do not actually compare the results of both methods and what the LSTM adds.

      Minor comments:

      (3) The methods are long and meandering. They could be cleaned up and shortened. E.g., there is no need for 30 lines on PCR testing; the study area should come before the study design. The authors discuss similar elements in multiple places; this whole section can be shortened considerably without affecting the content.

      (4) How reliable is the "Our Word in Data" website for subnational coverage of restrictions? Some of the authors are from Putian and should be able to confirm the accuracy for both studied areas.

      (5) Figure 2A is hard to parse; it would make more sense to plot these as line plots (y=count, x=month).

    1. Reviewer #1 (Public review):

      Summary:

      Nahas et al. investigated the roles of herpes simplex virus 1 (HSV-1) structural proteins using correlative cryo-light microscopy and soft X-ray tomography. The authors generated nine viral variants with deletions or mutations in genes encoding structural proteins. They employed a chemical fixation-free approach to study native-like events during viral assembly, enabling observation of a wider field of view compared to cryo-ET. The study effectively combined virology, cell biology, and structural biology to investigate the roles of viral proteins in virus assembly and budding.

      Strengths:

      (1) The study presented a novel approach to studying viral assembly in cellulo.

      (2) The authors generated nine mutant viruses to investigate the roles of essential proteins in nuclear egress and cytoplasmic envelopment.

      (3) The use of correlative imaging with cryoSIM and cryoSXT allowed for the study of viral assembly in a near-native state and in 3D.

      (4) The study identified the roles of VP16, pUL16, pUL21, pUL34, and pUS3 in nuclear egress.

      (5) The authors demonstrated that deletion of VP16, pUL11, gE, pUL51, or gK inhibits cytoplasmic envelopment.

      (6) The manuscript is well-written, clearly describing findings, methods, and experimental design.

      (7) The figures and data presentation are of good quality.

      (8) The study effectively correlated light microscopy and X-ray tomography to follow virus assembly, providing a valuable approach for studying other viruses and cellular events.

      (9) The research is a valuable starting point for investigating viral assembly using more sophisticated methods like cryo-ET with FIB-milling.

      (10) The study proposes a detailed assembly mechanism and tracks the contributions of studied proteins to the assembly process.

      (11) The study includes all necessary controls and tests for the influence of fluorescent proteins.

      Weaknesses:

      Overall, the manuscript does not have any major weaknesses, just a few minor comments, which were mostly solved in the revised version of the manuscript.

      Comments on the latest version:

      I reviewed the responses and the updated manuscript, and I am very pleased with how the authors have revised it. The manuscript was already strong, but with the addition of the summary table and the separated images, it is now excellent.

    1. Reviewer #1 (Public review):

      Filamentous fungi are established work horses in biotechnology with Aspergillus oryzae as a prominent example with a thousand-year of history. Still the cell biology and biochemical properties of the production strains is not well understood. The paper of the Takeshita group describes the change in nuclear numbers and correlate it to different production capacities. They used microfluidic devices to really correlate the production with nuclear numbers. In addition, they used microdissection to understand expression profile changes and found an increase of ribosomes. The analysis of two genes involved in cell volume control in S. pombe did not reveal conclusive answers to explain the phenomenon. It appears that it is a multi-trait phenotype. Finally, they identified SNPs in many industrial strains and tried to correlate them to the capability of increasing their nuclear numbers.

      The methods used in the paper range from high quality cell biology, Raman spectroscopy to atomic force and electron microscopy and from laser microdissection to the use of microfluidic devices to study individual hyphae.

      This is a very interesting, biotechnologically relevant paper with the application of excellent cell biology.

      Comments on revised version:

      The authors addressed all suggestions satisfactorily.

    1. Reviewer #1 (Public review):

      Overall, the manuscript reveals the role for actin polymerization to drive fusion of myoblasts during adult muscle regeneration. This pathway regulates fusion in many contexts, but whether it was conserved in adult muscle regeneration remained unknown. Robust genetic tools and histological analyses were used to convincingly support the claims.

    1. Reviewer #1 (Public review):

      Summary:

      This computational modeling study builds on multiple previous lines of experimental and theoretical research to investigate how a single neuron can solve a nonlinear pattern classification task. The authors construct a detailed biophysical and morphological model of a single striatal medium spiny neuron, and endow excitatory and inhibitory synapses with dynamic synaptic plasticity mechanisms that are sensitive to (1) the presence or absence of a dopamine reward signal, and (2) spatiotemporal coincidence of synaptic activity in single dendritic branches. The latter coincidence is detected by voltage-dependent NMDA-type glutamate receptors, which can generate a type of dendritic spike referred to as a "plateau potential." In the absence of inhibitory plasticity, the proposed mechanisms result in good performance on a nonlinear classification task when specific input features are segregated and clustered onto individual branches, but reduced performance when input features are randomly distributed across branches. Interestingly, adding inhibitory plasticity improves classification performance even when input features are randomly distributed.

      Strengths:

      The integrative aspect of this study is its major strength. It is challenging to relate low-level details such as electrical spine compartmentalization, extrasynaptic neurotransmitter concentrations, dendritic nonlinearities, spatial clustering of correlated inputs, and plasticity of excitatory and inhibitory synapses to high-level computations such as nonlinear feature classification. Due to high simulation costs, it is rare to see highly biophysical and morphological models used for learning studies that require repeated stimulus presentations over the course of a training procedure. The study aspires to prove the principle that experimentally-supported biological mechanisms can explain complex learning.

      Weaknesses:

      The high level of complexity of each component of the model makes it difficult to gain an intuition for which aspects of the model are essential for its performance, or responsible for its poor performance under certain conditions. Stripping down some of the biophysical detail and comparing it to a simpler model may help better understand each component in isolation.

    1. Reviewer #1 (Public review):

      This revision of the computational study by Mondal et al addresses several issues that I raised in the previous round of reviews and, as such, is greatly improved. The manuscript is more readable, its findings are more clearly described, and both the introduction and the discussion sections are tighter and more to the point. And thank you for addressing the three timescales of half activation/inactivation parameters. It makes the mechanism clearer.

      Some issues remain that I bring up below.

      Comment:

      I still have a bone to pick with the claim that "activity-dependent changes in channel voltage-dependence alone are insufficient to attain bursting". As I mentioned in my previous comment, this is also the case for the gmax values (channel density). If you choose the gmax's to be in a reasonable range, then the statement above is simply cannot be true. And if, in contrast, you choose the activation/inactivation parameters to be unreasonable, then no set of gmax's can produce proper activity. So I remain baffled what exactly is the point that the authors are trying to make.

    1. Reviewer #1 (Public review):

      In this work, Ligneul and coauthors implemented diffusion-weighted MRS in young rats to follow longitudinally and in vivo the microstructural changes occurring during brain development. Diffusion-weighted MRS is here instrumental in assessing microstructure in a cell-specific manner, as opposed to the claimed gold-standard (manganese-enhanced MRI) that can only probe changes in brain volume. Differential microstructure and complexification of the cerebellum and the thalamus during rat brain development were observed non-invasively. In particular, lower metabolite ADC with increasing age were measured in both brain regions, reflecting increasing cellular restriction with brain maturation. Higher sphere (representing cell bodies) fraction for neuronal metabolites (total NAA, glutamate) and total creatine and taurine in the cerebellum compared to the thalamus were estimated, reflecting the unique structure of the cerebellar granular layer with a high density of cell bodies. Decreasing sphere fraction with age was observed in the cerebellum, reflecting the development of the dendritic tree of Purkinje cells and Bergmann glia. From morphometric analyses, the authors could probe non-monotonic branching evolution in the cerebellum, matching 3D representations of Purkinje cells expansion and complexification with age. Finally, the authors highlighted taurine as a potential new marker of cerebellar development.

      From a technical standpoint, this work clearly demonstrates the potential of diffusion-weighted MRS at probing microstructure changes of the developing brain non-invasively, paving the way for its application in pathological cases. Ligneul and coauthors also show that diffusion-weighted MRS acquisitions in neonates are feasible, despite the known technical challenges of such measurements, even in adult rats. They also provide all necessary resources to reproduce and build upon their work, which is highly valuable for the community.

      From a biological standpoint, claims are well supported by the microstructure parameters derived from advanced biophysical modelling of the diffusion MRS data.

      Specific strengths:

      (1) The interpretation of dMRS data in terms of cell-specific microstructure through advanced biophysical modelling (e.g. the sphere fraction, modelling the fraction of cell bodies versus neuronal or astrocytic processes) is a strong asset of the study, going beyond the more commonly used signal representation metrics such as the apparent diffusion coefficient, which lacks specificity to biological phenomena.

      (2) The fairly good data quality despite the complexity of the experimental framework should be praised: diffusion-weighted MRS was acquired in two brain regions (although not in the same animals) and longitudinally, in neonates, including data at high b-values and multiple diffusion times, which altogether constitutes a large-scale dataset of high value for the diffusion-weighted MRS community.

      (3) The authors have shared publicly data and codes used for processing and fitting, which will allow one to reproduce or extend the scope of this work to disease populations, and which goes in line with the current effort of the MR(S) community for data sharing.

      Specific weaknesses:

      Ligneul and coauthors have convincingly addressed and included my comments from the first and second round in their revised manuscript.

      I believe the following conceptual concerns, which are inherent to the nature of the study and do not require further adjustments of the manuscript, remain:

      (1) Metabolite compartmentation in one cell type or the other has often been challenged and is currently impossible to validate in vivo. Here, Ligneul and coauthors did not use this assumption a priori and supported their claims also with non-MR literature (eg. for Taurine), but the interpretation of results in that direction should be made with care.

      (2) Longitudinal MR studies of the developing brain make it difficult to extract parameters with an "absolute" meaning. Indirect assumptions used to derive such parameters may change with age and become confounding factors (brain structure, cell distribution, concentrations normalizing metabolites (here macromolecules), relaxation times...). While findings of the manuscript are convincing and supported with literature, the true underlying nature of such changes might be difficult to access.

      (3) Diffusion MRI in addition to diffusion MRS would have been complementary and beneficial to validate some of the signal contributions, but was unfeasible in the time constraints of experiments on young animals.

    1. Reviewer #3 (Public review):

      To summarize: The authors' overfilling hypothesis depends crucially on the premise that the very-quickly reverting paired-pulse depression seen after unusually short rest intervals of << 50 ms is caused by depletion of release sites whereas Dobrunz and Stevens (1997) concluded that the cause was some other mechanism that does not involve depletion. The authors now include experiments where switching extracellular Ca2+ from 1.2 to 2.5 mM increases synaptic strength on average, but not by as much as at other synapse types. They contend that the result supports the depletion hypothesis. I didn't agree because the model used to generate the hypothesis had no room for any increase at all, and because a more granular analysis revealed a mixed population with a subset where: (a) synaptic strength increased by as much as at standard synapses; and yet (b) the quickly reverting depression for the subset was the same as the overall population.

      The authors raise the possibility of additional experiments, and I do think this could clarify things if they pre-treat with EGTA as I recommended initially. They've already shown they can do this routinely, and it would allow them to elegantly distinguish between pv and pocc explanations for both the increases in synaptic strength and the decreases in the paired pulse ratio upon switching Ca2+ to 2.5 mM. Plus/minus EGTA pre-treatment trials could be interleaved and done blind with minimal additional effort.

      Showing reversibility would be a great addition too, because, in our experience, this does not always happen in whole-cell recordings in ex-vivo tissue even when electrical properties do not change. If the goal is to show that L2/3 synapses are less sensitive to changes in Ca2+ compared to other synapse types - which is interesting but a bit off point - then I would additionally include a positive control, done by the same person with the same equipment, at one of those other synapse types using the same kind of presynaptic stimulation (i.e. ChRs).

      Specific points (quotations are from the Authors' rebuttal)

      (1) Regarding the Author response image 1, I was instead suggesting a plot of PPR in 1.2 mM Ca2+ versus the relative increase in synaptic strength in 2.5 versus in 1.2 mM. This continues to seem relevant.

      (2) "Could you explain in detail why two-fold increase implies pv < 0.2?"

      a. start with power((2.5/(1 + (2.5/K1) + 1/2.97)),4) = 2*power((1.3/(1 + (1.3/K1) + 1/2.97)),4);

      b. solve for K1 (this turns out to be 0.48);

      c. then implement the premise that pv -> 1.0 when Ca2+ is high by calculating Max = power((C/(1 + (C/K1) + 1/2.97)),4) where C is [Ca] -> infinity.

      d. pv when [Ca] = 1.3. mM must then be power((1.3/(1 + (1.3/K1) + 1/2.97)),4)/Max, which is <0.2.

      Note that modern updates of Dodge and Rahamimoff typically include a parameter that prevents pv from approaching 1.0; this is the gamma parameter in the versions from Neher group.

      (3) "If so, we can not understand why depletion-dependent PPD should lead to PPF."

      When PPD is caused by depletion and pv < 0.2, the number of occupied release sites should not be decreased by more than one-fifth at the second stimulus so, without facilitation, PPR should be > 0.8. The EGTA results then indicate there should be strong facilitation, driving PPR to something like 1.2 with conservative assumptions. And yet, a value of < 0.4 is measured, which is a large miss.

      (4) Despite the authors' suggestion to the contrary, I continue to think there is a substantial chance that Ca2+-channel inactivation is the mechanism underlying the very quickly reverting paired-pulse depression. However, this is only one example of a non-depletion mechanism among many, with the main point being that any non-depletion mechanism would undercut the reasoning for overfilling. And, this is what Dobrunz and Stevens claimed to show; that the mechanism - whatever it is - does not involve depletion. The most effective way to address this would be affirmative experiments showing that the quickly reverting depression is caused by depletion after all. Attempting to prove that Ca2+-channel inactivation does not occur does not seem like a worthwhile strategy because it would not address the many other possibilities.

      (5) True that Kusick et al. observed morphological re-docking, but then vesicles would have to re-prime and Mahfooz et al. (2016) showed that re-priming would have to be slower than 110 ms (at least during heavy use at calyx of Held).

    1. Reviewer #1 (Public review):

      Summary:

      The authors investigate the effects of aging on auditory system performance in understanding temporal fine structure (TFS), using both behavioral assessments and physiological recordings from the auditory periphery, specifically at the level of the auditory nerve. This dual approach aims to enhance understanding of the mechanisms underlying observed behavioral outcomes. The results indicate that aged animals exhibit deficits in behavioral tasks for distinguishing between harmonic and inharmonic sounds, which is a standard test for TFS coding. However, neural responses at the auditory nerve level do not show significant differences when compared to those in young, normal-hearing animals. The authors suggest that these behavioral deficits in aged animals are likely attributable to dysfunctions in the central auditory system, potentially as a consequence of aging.To further investigate this hypothesis, the study includes an animal group with selective synaptic loss between inner hair cells and auditory nerve fibers, a condition known as cochlear synaptopathy (CS). CS is a pathology associated with aging and is thought to be an early indicator of hearing impairment. Interestingly, animals with selective CS showed physiological and behavioral TFS coding similar to that of the young normal-hearing group, contrasting with the aged group's deficits. Despite histological evidence of significant synaptic loss in the CS group, the study concludes that CS does not appear to affect TFS coding, either behaviorally or physiologically.

      Strengths:

      This study addresses a critical health concern, enhancing our understanding of mechanisms underlying age-related difficulties in speech intelligibility, even when audiometric thresholds are within normal limits. A major strength of this work is the comprehensive approach, integrating behavioral assessments, auditory nerve (AN) physiology, and histology within the same animal subjects. This approach enhances understanding of the mechanisms underlying the behavioral outcomes and provides confidence in the actual occurrence of synapse loss and its effects.The study carefully manages controlled conditions by including five distinct groups: young normal-hearing animals, aged animals, animals with CS induced through low and high doses, and a sham surgery group. This careful setup strengthens the study's reliability and allows for meaningful comparisons across conditions. Overall, the manuscript is well-structured, with clear and accessible writing that facilitates comprehension of complex concepts.

      Weakness:

      The stimulus and task employed in this study are very helpful for behavioral research, and using the same stimulus setup for physiology is advantageous for mechanistic comparisons. However, I have some concerns about the limitations in auditory nerve (AN) physiology. Due to practical constraints, it is not feasible to record from a large enough population of fibers that covers a full range of best frequencies (BFs) and spontaneous rates (SRs) within each animal. This raises questions about how representative the physiological data are for understanding the mechanism in behavioral data. I am curious about the authors' interpretation of how this stimulus setup might influence results compared to methods used by Kale and Heinz (2010), who adjusted harmonic frequencies based on the characteristic frequency (CF) of recorded units. While, the harmonic frequencies in this study are fixed across all CFs, meaning that many AN fibers may not be tuned closely to the stimulus frequencies. If units are not responsive to the stimulus further clarification on detecting mistuning and phase locking to TFS effects within this setup would be valuable. Given the limited number of units per condition-sometimes as few as three for certain conditions-I wonder if CF-dependent variability might impact the results of the AN data in this study and discussing this factor can help with better understanding the results. While the use of the same stimuli for both behavioral and physiological recordings is understandable, a discussion on how this choice affects interpretation would be beneficial. In addition a 60 dB stimulus could saturate high spontaneous rate (HSR) AN fibers, influencing neural coding and phase-locking to TFS. Potentially separating SR groups, could help address these issues and improve interpretive clarity.

      A deeper discussion on the role of fiber spontaneous rate could also enhance the study. How might considering SR groups affect AN results related to TFS coding? While some statistical measures are included in the supplement, a more detailed discussion in the main text could help in interpretation.

      Although Figure S2 indicates no change in median SR, the high-dose treatment group lacks LSR fibers, suggesting a different distribution based on SR for different animal groups, as seen in similar studies on other species. A histogram of these results would be informative, as LSR fiber loss with CS-whether induced by ouabain in gerbils or noise in other animals-is well documented (e.g., Furman et al., 2013).

      Although ouabain effects on gerbils have been explored in previous studies, since these data is already seems to be recorded for the animal in this study, a brief description of changes in auditory brainstem response (ABR) thresholds, wave 1 amplitudes, and tuning curves for animals with cochlear synaptopathy (CS) in this study would be beneficial. This would confirm that ouabain selectively affects synapses without impacting outer hair cells (OHCs). For aged animals, since ABR measurements were taken, comparing hearing differences between normal and aged groups could provide insights into the pathologies besides CS in aged animals. Additionally, examining subject variability in treatment effects on hearing and how this correlates with behavior and physiology would yield valuable insights. If limited space maybe a brief clarification or inclusion in supplementary could be good enough.

      Another suggestion is to discuss the potential role of MOC efferent system and effect of anesthesia in reducing efferent effects in AN recordings. This is particularly relevant for aged animals, as CS might affect LSR fibers, potentially disrupting the medial olivocochlear (MOC) efferent pathway. Anesthesia could lessen MOC activity in both young and aged animals, potentially masking efferent effects that might be present in behavioral tasks. Young gerbils with functional efferent systems might perform better behaviorally, while aged gerbils with impaired MOC function due to CS might lack this advantage. A brief discussion on this aspect could potentially enhance mechanistic insights.

      Lastly, although synapse counts did not differ between the low-dose treatment and NH I sham groups, separating these groups rather than combining them with the sham might reveal differences in behavior or AN results, particularly regarding the significance of differences between aged/treatment groups and the young normal-hearing group.

    1. Reviewer #1 (Public review):

      Summary:

      The authors present a nanobody-based pulse-labeling system to track yeast NPCs. Transient expression of a nanobody targeting Nup84 (fused to NeonGreen or an affinity tag) permits selective visualization and biochemical capture of NPCs. Short induction effectively labels NPCs, and the resulting purifications match those from conventional Nup84 tagging. Crucially, when induction is repressed, dilution of the labeled pool through successive cell cycles allows the visualization of "old" NPCs (and potentially individual NPCs), providing a powerful view of NPC lifespan and turnover without permanently modifying a core scaffold protein.

      Strengths:

      (1) A brief expression pulse labels NPCs, and subsequent repression allows dilution-based tracking of older (and possibly single) NPCs over multiple cell cycles.

      (2) The affinity-purified complexes closely match known Nup84-associated proteins, indicating specificity and supporting utility for proteomics.

      Weaknesses:

      (1) Reliance on GAL induction introduces metabolic shifts (raffinose → galactose → glucose) that could subtly alter cell physiology or the kinetics of NPC assembly. Alternative induction systems (e.g., β-estradiol-responsive GAL4-ER-VP16) could be discussed as a way to avoid carbon-source changes.

      (2) While proteomics is solid, a comprehensive supplementary table listing all identified proteins (with enrichment and statistics) would enhance transparency.

      (3) Importantly, the authors note that the method is particularly useful "in conditions where direct tagging of Nup84 interferes with its function, while sub-stoichiometric nanobody binding does not." After this sentence, it would be valuable to add concrete examples, such as experiments examining NPC integrity in aging or stress conditions where epitope tags can exacerbate phenotypes. These examples will help readers identify situations in which this approach offers clear advantages.

    1. Reviewer #2 (Public review):

      Summary:

      In this contribution, the authors investigate the degree of alternative splicing across the evolutionary tree, and identify a trend of increasing alternative splicing as you move from the base of the tree (here, only prokaryotes are considered) towards the tips of the tree. In particular, the authors investigate how the degree of alternative splicing (roughly speaking, the number of different proteins made from a single ORF (open reading frame) via alternative splicing) relates to three genomic variables: the genome size, the gene content (meaning the fraction of the genome composed of ORFs), and finally, the coding percentage of ORFs, meaning the ratio between exons and total DNA in the ORF.

      The revised manuscript addresses the problems identified in the first round of reviews and now serves as a guide to understand how alternative splicing has evolved within different phyla, as opposed to making unsubstantiated claims about overall trends.

    1. Reviewer #1 (Public review):

      Summary:

      The authors investigate how methicillin-resistant (MRSA) and sensitive (MSSA) Staphylococcus aureus adapt to a new host (C. elegans) in the presence or absence of a low dose of the antibiotic oxacillin. Using an "Evolve and Resequence" design with 48 independently evolving populations, they track changes in virulence, antibiotic resistance, and other fitness-related traits over 12 passages. Their key finding is that selection from both the host and the antibiotic together, rather than either pressure alone, results in the evolution of the most virulent pathogens. Genomically, they find that this adaptation repeatedly involves mutations in a small number of key regulatory genes, most notably codY, agr, and saeRS.

      Strengths:

      The main advantage of the research lies in its strong and thoroughly replicated experimental framework, enabling significant conclusions to be drawn based on the concept of parallel evolution. The study successfully integrates various phenotypic assays (virulence, growth, hemolysis, biofilm formation) with whole-genome sequencing, offering an extensive perspective on the adaptive landscape. The identification of certain regulatory genes as common targets of selection across distinct lineages is an important result that indicates a level of predictability in how pathogens adapt.

      Weaknesses:

      (1) The main limitation of the paper is that its findings on the function of specific genes are based on correlation, not cause-and-effect evidence. While the parallel evolution evidence is strong, the authors have not yet performed the definitive tests (i.e., reconstruction of ancestral genes) to ensure that the mutations identified in isolation are enough to account for the virulence or resistance changes observed. This makes the conclusions more like firm hypotheses, not confirmed facts.

      (2) In some instances, the claims in the text are not fully supported by the visual data from the figures or are reported with vagueness. For example, the display of phenotypic clusters in the PCA (Figure 6A) and the sweeping generalization about the effect of antibiotics on the mutation rates (Figure S5) can be more precise and nuanced. Such small deviations dilute the overall argument somewhat and must be corrected.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript presents an extensive body of work and an outstanding contribution to our understanding of the IFN type I and III system in chickens. The research started with the innovative approach of generating KO chickens that lack the receptor for IFNα/β (IFNAR1) or IFN-λ (IFNLR1). The successful deletion and functional loss of these receptors was clearly and comprehensively demonstrated in comparison to the WT. Moreover, the homozygous KO lines (IFNAR1-/- or IFNLR1-/- ) were found to have similar body weights, and normal egg production and fertility compared to their WT counterparts. These lines are a major contribution to the toolbox for the study of avian/chicken immunology.

      The significance of this contribution is further demonstrated by the use of these lines by the authors to gain insight into the roles of IFN type I and IFN-type III in chickens, by conducting in ovo and in vivo studies examining basic aspects of immune system development and function, as well as the responses to viral challenges conducted in ovo and in vivo.

      Based on solid, state-of the-art methods and convincing evidence from studies comparing various immune system related functions in the IFNAR1-/- or IFNLR1-/- lines to the WT, revealed that the deletion of IFNAR1 and/or IFNLR1 resulted in:<br /> (1) impaired IFN signaling and induction of anti-viral state;<br /> (2) modulation of immune cell profiles in the peripheral blood circulation and spleen;<br /> (3) modulation of the cecum microbiome;<br /> (4) reduced concentrations of IgM and IgY in the blood plasma before and following immunization with model antigen KLH, whereby also line differences in the time-course of the antibody production were observed;<br /> (5) decrease in MHCII+ macrophages and B cells in the spleen of IFNAR1 KO chickens, although the MHCII-expression per cell was not affected in this line; and<br /> (6) reduction in the response of αβ1 TCR+ T cells of IFNAR1 KO chickens as suggested by clonal repertoire analyses.

      These studies were then followed by examination of the role of type I and type III IFN in virus infection, using different avian influenza A virus strains as well as an avian gamma corona virus (IBV) in in ovo challenge experiments. These studies revealed: viral titers that reflect virus-species and strain-specific IFN responses; no differences in the secretion of IFN-α/β in both KO compared to the WT lines; a predominant role of type I IFN in inducing the interferon-stimulated gene (ISG) Mx; and that an excessive and unbalanced type I IFN response can harm host fitness (survival rate, length of survival) and contribute to immunopathology.

      Based on guidance from the in ovo studies, comprehensive in vivo studies were conducted on host-pathogen interactions in hens from the three lines (WT, IFNAR1 KO, or IFNLR1 KO). These studies revealed the early appearance of symptoms and poor survival of hens from the IFNR1 KO line challenged with H3N1 avian influenza A virus; efficient H#N1 virus replication in IFNAR1 KO hens, increased plasma concentrations of IFNα/β and mRNA expression of IFN-λ in spleens of the IFNAR1 KO hens; a pro-inflammatory role of IFN-λ in the oviduct of hens infected with H3N1 virus; increased proinflammatory cytokine expression in spleens of IFNAR1 KO hens, and Impairment of negative feedback mechanisms regulating IFN-α/β secretion in IFNAR1-KO hens and a significant decrease in this group's antiviral state; additionally it was demonstrated that IFN-α/β can compensate IFN-λ to induce an adequate antiviral state in the spleen during H3N1 infection, but IFN-λ cannot compensate for IFN-α/β signaling in the spleen.

      Strengths:

      (1) Both the methods and results from the comprehensive, well-designed, and well-executed experiments are considered excellent. The results are well and correctly described in the result narrative and well presented in both the manuscript and supplement Tables and Figures. Excellent discussion/interpretation of results.

      (2) The successful generation of the type I and type III IFN KO lines offers unprecedented insight and opens multiple new venues for exploring the IFN system in chickens. The new knowledge reported here is direct evidence of the high impact of this model system on effectively addressing a critical knowledge gap in avian immunology.

      (3) The thoughtful selection of highly relevant viruses to poultry and human health for the in ovo and in vivo challenge studies to examine and assess host-pathogen interactions in the IFNR KO and WT lines.

      (4) Making use of the unique opportunities in the chicken model to examine and evaluate the host's IFN system responses to various viral challenges in ovo, before conducting challenge studies in hens.

      (5) The new knowledge gained from the IFNAR1 and IFNLR1 KO lines will find much-needed application in developing more effective strategies to prevent health challenges like avian influenza and its devastating effects on poultry, humans, and other mammals.

      (6) The excellent cooperation and contributions of the co-authors and institutions.

      Weaknesses:

      No weaknesses were identified by this reviewer.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors reveal that the availability of extracellular asparagine (Asn) represents a metabolic vulnerability for the activation and differentiation of naive CD4+ T cells. To deplete extracellular Asn, they employed two orthogonal approaches: activating naive CD4+ T cells in either PEGylated asparaginase (PEG-AsnASE)-treated medium or custom-formulated RPMI medium specifically lacking Asn. Importantly, they demonstrate that Asn depletion not only impaired metabolic reprogramming associated with CD4+ T cell activation but also reduced CD4+ helper T cell lineage-specific cytokine production, thereby ameliorating the severity of experimental autoimmune encephalomyelitis.

      Strengths:

      The experiments presented here are comprehensive and well-designed, providing compelling evidence for the conclusions. The conclusions will be important to the field.

      Weaknesses:

      (1) EAE is the prototypic T cell-mediated autoimmune disease model, and both Th1 and Th17 cells are implicated in its pathogenesis. In contrast, Th2 and Treg cells and their associated cytokines (such as IL-4 and IL-10) have been shown to play a role in the resolution of EAE, and potentially in the modulation of disease progression. Thus, it will be important to determine whether Asn depletion affects the differentiation of naive CD4+ T cells into corresponding subsets under Th2 and Treg polarization conditions, as well as the expression of lineage-specific transcription factors and cytokine production.

      (2) EAE is characterized by inflammation and demyelination in the central nervous system (CNS), leading to neurological deficits. Myelin destruction is directly correlated with the severity of the disease. For Figure 6, did the authors perform spinal cord histological analysis by hematoxylin and eosin (H&E) or Luxol fast blue (LFB) staining? This is important to rigorously examine pathological EAE symptoms.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Xu et al. reported base-resolution mapping of RNA pseudouridylation in five bacterial species, utilizing recently developed BID-seq. They detected pseudouridine (Ψ) in bacterial rRNA, tRNA, and mRNA, and found growth phase-dependent Ψ changes in tRNA and mRNA. They then focused on mRNA and conducted a comparative analysis of Ψ profiles across different bacterial species. Finally, they developed a deep learning model to predict Ψ sites based on RNA sequence and structure.

      Strengths:

      This is the first comprehensive Ψ map across multiple bacterial species, and systematically reveals Ψ profiles in rRNA, tRNA, and mRNA under exponential and stationary growth conditions. It provides a valuable resource for future functional studies of Ψ in bacteria.

      Weaknesses:

      Ψ is highly abundant on non-coding RNA such as rRNA and tRNA, while its level on mRNA is very low. The manuscript focuses primarily on mRNA, which raises questions about the data quality and the rigor of the analysis. Many conclusions in the manuscript are speculative, based solely on the sequencing data but not supported by additional experiments.

    1. Reviewer #1 (Public review):

      Summary:

      Alveolar macrophages (AMs) are key sentinel cells in the lungs, representing the first line of defense against infections. There is growing interest within the scientific community in the metabolic and epigenetic reprogramming of innate immune cells following an initial stress, which alters their response upon exposure to a heterologous challenge. In this study, the authors show that exposure to extracellular ATP can shape AM functions by activating the P2X7 receptor. This activation triggers the relocation of the potassium channel TWIK2 to the cell surface, placing macrophages in a heightened state of responsiveness. This leads to the activation of the NLRP3 inflammasome and, upon bacterial internalization, to the translocation of TWIK2 to the phagosomal membrane, enhancing bacterial killing through pH modulation. Through these findings, the authors propose a mechanism by which ATP acts as a danger signal to boost the antimicrobial capacity of AMs.

      Strengths:

      This is a fundamental study in a field of great interest to the scientific community. A growing body of evidence has highlighted the importance of metabolic and epigenetic reprogramming in innate immune cells, which can have long-term effects on their responses to various inflammatory contexts. Exploring the role of ATP in this process represents an important and timely question in basic research. The study combines both in vitro and in vivo investigations and proposes a mechanistic hypothesis to explain the observed phenotype.

      Weaknesses:

      First, the concept of training or trained immunity refers to long-term epigenetic reprogramming in innate immune cells, resulting in a modified response upon exposure to a heterologous challenge. The investigations presented demonstrate phenotypic alterations in AMs seven days after ATP exposure; however, they do not assess whether persistent epigenetic remodeling occurs with lasting functional consequences. Therefore, a more cautious and semantically precise interpretation of the findings would be appropriate.

      Furthermore, the in vivo data should be strengthened by additional analyses to support the authors' conclusions. The authors claim that susceptibility to Pseudomonas aeruginosa infection differs depending on the ATP-induced training effect. Statistical analyses should be provided for the survival curves, as well as additional weight curves or clinical assessments. Moreover, it would be appropriate to complement this clinical characterization with additional measurements, such as immune cell infiltration analysis (by flow cytometry), and quantification of pro-inflammatory cytokines in bronchoalveolar lavage fluid and/or lung homogenates.

      Moreover, the authors attribute the differences in resistance to P. aeruginosa infection to the ATP-induced training effect on AMs, based on a correlation between in vivo survival curves and differences in bacterial killing capacity measured in vitro. These are correlative findings that do not establish a causal role for AMs in the in vivo phenotype. ATP-mediated effects on other (i.e., non-AM) cell populations are omitted, and the possibility that other cells could be affected should be, at least, discussed. Adoptive transfer experiments using AMs would be a suitable approach to directly address this question.

    1. Joint Public Review:

      Summary from an earlier round of review:

      This paper summarises responses from a survey completed by around 5,000 academics on their manuscript submission behaviours. The authors find several interesting stylised facts, including (but not limited to):- Women are less likely to submit their papers to highly influential journals (e.g., Nature, Science and PNAS).

      - Women are more likely to cite the demands of co-authors as a reason why they didn’t submit to highly influential journals.

      - Women are also more likely to say that they were advised not to submit to highly influential journals.

      The paper highlights an important point, namely that the submission behaviours of men and women scientists may not be the same (either due to preferences that vary by gender, selection effects that arise earlier in scientists’ careers or social factors that affect men and women differently and also influence submission patterns). As a result, simply observing gender differences in acceptance rates - or a lack thereof - should not be automatically interpreted as as evidence for or against discrimination (broadly defined) in the peer review process.

      Editor’s note: This is the third version of this article.

      Comments made during the peer review of the second version, along with author’s responses to these comments, are available below. Revisions made in response to these comments include changing the colour scheme used for the figures to make the figures more accessible for readers with certain forms of colour blindness.

      Comments made during the peer review of the first version, along with author’s responses to these comments, are available with previous versions of the article.

    1. Reviewer #1 (Public review):

      Summary:

      Chao et al. produced an updated version of the SpliceAI package using modern deep learning frameworks. This includes data preprocessing, model training, direct prediction, and variant effect prediction scripts. They also added functionality for model fine-tuning and model calibration. They convincingly evaluate their newly trained models against those from the original SpliceAI package and investigate how to extend SpliceAI to make predictions in new species. Their comparisons to the original SpliceAI models are convincing on the grounds of model performance and their evaluation of how well the new models match the original's understanding of non-local mutation effects. However, their evaluation of the new calibration functionality would benefit from a more nuanced discussion of the limitations of calibration.

      Strengths

      (1) They provide convincing evidence that their new implementation of SpliceAI matches the performance and mutation effect estimation capabilities of the original model on a similar dataset while benefiting from improved computational efficiencies. This will enable faster prediction and retraining of splicing models for new species as well as easier integration with other modern deep learning tools.

      (2) They produce models with strong performance on non-human model species and a simple well well-documented pipeline for producing models tuned for any species of interest. This will be a boon for researchers working on splicing in these species and make it easy for researchers working on new species to generate their own models.

      (3) Their documentation is clear and abundant. This will greatly aid the ability of others to work with their code base.

      Weaknesses

      (1) Their discussion of their package's calibration functionality does not adequately acknowledge the limitations of model calibration. This is problematic as this is a package intended for general use and users who are not experienced in modeling broadly and the subfield of model calibration specifically may not already understand these limitations. This could lead to serious errors and misunderstandings down the road. A model is not calibrated or uncalibrated in and of itself, only with respect to a specific dataset. In this case they calibrated with respect to the training dataset, a set of canonical transcript annotations. This is a perfectly valid and reasonable dataset to calibrate against. However, this is unlikely to be the dataset the model is applied to in any downstream use case, and this calibration is not guaranteed or expected to hold for any shift in the dataset distribution. For example, in the next section they use ISM based approaches to evaluate which sequence elements the model is sensitive to and their calibration would not be expected to hold for this set of predictions. This issue is particularly worrying in the case of their model because annotation of canonical transcript splice sites is a task that it is unlikely their model will be applied to after training. Much more likely tasks will be things such as predicting the effects of mutations, identification of splice sites that may be used across isoforms beyond just the canonical one, identification of regulatory sequences through ISM, or evaluation of human created sequences for design or evaluation purposes (such as in the context of an MPSA or designing a gene to splice a particular way), we would not expect their calibration to hold in any of these contexts. To resolve this issue, the authors should clarify and discuss this limitation in their paper (and in the relevant sections of the package documentation) to avoid confusing downstream users.

      (2) The clarity of their analysis of mutation effects could be improved with some minor adjustments. While they report median ISM importance correlation it would be helpful to see a histogram of the correlations they observed. Instead of displaying (and calculating correlations using) importance scores of only the reference sequence, showing the importance scores for each nucleotide at each position provides a more informative representation. This would also likely make the plots in 6B clearer.

    1. Reviewer #1 (Public review):

      This is an important, interesting, and in-depth study examining the role of Sp5/8 transcription factors in maintaining the neuromesodermal progenitor (NMP) niche. The authors first used Sp5/8 double conditional KO mouse embryos to establish that these factors function in the NMP niche to promote trunk elongation. They then conducted extensive single-cell analyses on embryos of various genetic mutant backgrounds to unravel the complex and intricate interactions between Wnt signaling and Sp5/8. The key conclusion from these experiments is that Sp5/8 function within an autoregulatory loop crucial for maintaining the NMP niche. The authors went on to identify and characterize a novel enhancer element downstream of the Wnt3a coding sequence, which mediates the effects of Sp5/8 on Wnt3a expression. Overall, the data presented are compelling and of high quality, and the study offers a prime example of how a relatively small set of signaling pathways and transcription factors can function in concert to impart robustness to developmental processes.

    1. Reviewer #1 (Public review):

      Summary:

      Using a combination of EEG and behavioural measurements, the authors investigate the degree to which processing of spatially-overlapping targets (coherent motion) and distractors (affective images) are sampled rhythmically and how this affects behaviour. They found that both target processing (via measurement of amplitude modulations of SSVEP amplitude to target frequency) and distractor processing (via MVPA decoding accuracy of bandpassed EEG relative to distractor SSVEP frequency) displayed a pronounced rhythm at ~1Hz, time-locked to stimulus onset. Furthermore, the relative phase of this target/distractor sampling predicted accuracy of coherent motion detection across participants.

      Strengths:

      - The authors are addressing a very interesting question with respect to sampling of targets and distractors, using neurophysiological measurements to their advantage in order to parse out target and distractor processing.<br /> - The general EEG analysis pipeline is sensible and well-described.<br /> - The main result of rhythmic sampling of targets and distractors is striking and very clear even on a participant-level.<br /> - The authors have gone to quite a lot of effort to ensure the validity of their analyses, especially in the Supplementary Material.<br /> - It is incredibly striking how the phase of both target and distractor processing are so aligned across trials for a given participant. I would have thought that any endogenous fluctuation in attention or stimulus processing like that would not be so phase aligned. I know there is literature on phase resetting in this context, the results seem very strong here and it is worth noting. The authors have performed many analyses to rule out signal processing artifacts, e.g. the sideband and beating frequency analyses.

      Weaknesses:

      - In general, the representation of target and distractor processing is a bit of a reach. Target processing is represented by SSVEP amplitude, which is going to most likely be related to the contrast of the dots, as opposed to representing coherent motion energy which is the actual target. These may well be linked (e.g. greater attention to the coherent motion task might increase SSVEP amplitude) but I would call it a limitation of the interpretation. Decoding accuracy of emotional content makes sense as a measure of distractor processing, and the supplementary analysis comparing target SSVEP amplitude to distractor decoding accuracy is duly noted. Overall, this limitation remains and has been noted in the Limitations section.<br /> - Then comparing SSVEP amplitude to emotional category decoding accuracy feels a bit like comparing apples with oranges. They have different units and scales and reflect probably different neural processes. Is the result the authors find not a little surprising in this context? This relationship does predict performance and is thus intriguing, but I think this methodological aspect needs to be discussed further. For example, is the phase relationship with behaviour a result of a complex interaction between different levels of processing (fundamental contrast vs higher order emotional processing)? Again, this has been noted in the Limitations section, but changing the data to z-scores doesn't really take care of the conceptual issue, i.e. that on-screen contrast changes would necessarily be distracting during emotional category decision-making.

    1. Reviewer #1 (Public review):

      Summary:

      This work presents an interesting circuit dissection of the neural system allowing a ctenophore to keep its balance and orientation in its aquatic environment by using a fascinating structure called the statocyst. By combining serial-section electron microscopy with behavioral recordings, the authors found a population of neurons that exists as a syncytium and could associate these neurons with specific functions related to controlling the beating of cilia located in the statocyst. The type A ANN neurons participate in arresting cilia beating, and the type B ANN neurons participate in resuming cilia beating and increasing their beating frequency.

      Moreover, the authors found that bridge cells are connected with the ANN neurons, giving them the role of rhythmic modulators.

      From these observations, the authors conclude that the control is coordination instead of feedforward sensory-motor function, a hypothesis that had been put forth in the past but could not be validated until now. They also compare it to the circuitry implementing a similar behavior in a species that belongs to a different phylum, where the nervous system is thought to have evolved separately.

      Therefore, this work significantly advances our knowledge of the circuitry implementing the control of the cilia that participate in statocyst function, which ultimately allows the animal to correct its orientation. It represents an example of systems neuroscience explaining how the nervous system allows an animal to solve a specific problem and puts it in an evolutionary perspective, showing a convincing case of convergent evolution.

      Strengths:

      The evidence for how the circuitry is connected is convincing. Pictures of synapses showing the direction of connectivity are clear, and there are good reasons to believe that the diagram inferred is valid, even though we can always expect that some connections are missing.

      The evidence for how the cilia change their beating frequency is also convincing, and the paradigm and recording methods seem pretty robust.

      The authors achieved their aims, and the results support their conclusions. This work impacts its field by presenting a mechanism by which ctenophores correct their balance, which will provide a template for comparison with other sensory systems.

      Weaknesses:

      The evidence supporting the claim that the neural circuitry presented here controls the cilia beating is more correlational because it only relies on the fact that the location of the two types of ANN neurons coincides with the quadrants that are affected in the behavioral recordings. Discussing ways by which causality could be established might be helpful.

      The explanation of the relevance of this work could be improved. The conclusion that the work hints at coordination instead of feedforward sensory-motor control is explained over only a few lines. The authors could provide a more detailed explanation of how the two models compete (coordination vs feedforward sensory-motor control), and why choosing one option over the other could provide advantages in this context.

      Since the fact that the ANN neurons form a syncytium is an important finding of this study, it would be useful to have additional illustrations of it. For instance, pictures showing anastomosing membranes could typically be added in Figure 2.

      Also, to better establish the importance of the study, it could be useful to explain why the balancers' cilia spontaneously beat in the first place (instead of being static and just acting as stretch sensors).

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript "Realistic coupling enables flexible macroscopic traveling waves in the mouse cortex" by Sun, Forger, and colleagues presents a novel computational framework for studying macroscopic traveling waves in the mouse cortex by integrating realistic brain connectivity data with large-scale neural simulations.

      The key contributions include:<br /> (1) developing an algorithm that combines spatial transcriptomic data (providing detailed neuron positions and molecular properties) with voxelized connectivity data from the Allen Brain Atlas to construct neuron-to-neuron connections across ~300,000 cortical neurons;<br /> (2) building a GPU-accelerated simulation platform capable of modeling this large-scale network with both excitatory and inhibitory Hodgkin-Huxley neurons;<br /> (3) extending phase-based analysis methods from 2D to 3D to quantify traveling wave activity in the realistic brain geometry; and<br /> (4) demonstrating that realistic Allen connectivity generates significantly higher levels of macroscopic traveling waves compared to simplified local or uniform connectivity patterns.

      The study reveals that wave activity depends non-monotonically on coupling strength and that slow oscillations (0.5-4 Hz) are particularly conducive to large-scale wave propagation, providing new insights into how anatomical connectivity enables flexible spatiotemporal dynamics across the cortex.

      Strengths:

      The authors leverage two existing dense datasets of spatial transcriptomic data and connection strength between pairwise voxels in the mouse cortex in a novel way, allowing for the computational model to capture molecular and functional properties of neurons as determined by their neurotransmitter profiles, rather than making arbitrary assignments of excitatory/inhibitory roles. Additionally, the author's expansion of 2D phase dynamics to 3D phase gradient analysis methods is important and can be widely applied to calcium imaging, LFP recordings, and likely other electrophysiological recordings.

      Weaknesses:

      Despite these important computational advancements, a few aspects of this model, particularly the inability to validate the model with experimental neural data, diminish my enthusiasm for this paper:

      (1) The model's Allen connectivity approach overlooks critical aspects of real cortical dynamics. Most importantly, it excludes subcortical structures, especially the thalamus, which drives cortical traveling waves through thalamocortical interactions. The authors' method of electrically stimulating all layer 4 neurons simultaneously to initiate waves is artificially crude and bears little resemblance to natural wave generation mechanisms.

      (2) The model handles voxel-to-voxel connections crudely when neurons have mixed excitatory/inhibitory properties and varying synaptic strengths. Real connectivity differs dramatically between neuron types (pyramidal cells vs. interneurons, across cortical layers), but the model only distinguishes excitatory and inhibitory neurons. Additionally, uniform synaptic weights ignore natural variations in connection strength based on neuron type, distance, and functional role. Integrating the updated thalamocortical dataset mentioned by the authors, even at regional resolution, would substantially improve the model.

      (3) While the authors bridge microscopic (single neuron) and mesoscopic (regional connectivity) data to study macroscopic (whole-cortex) waves, they don't integrate the distinct mechanisms operating at each scale. The framework demonstrates that realistic connectivity enables macroscopic waves but fails to connect how wave dynamics emerge and interact across spatial scales systematically.

      (4) Claims that Allen connectivity produces higher phase gradient directionality (PGD) than local connectivity appear limited to delta oscillations at very specific coupling strengths and applied currents. Few parameter combinations show significantly higher PGD for Allen connectivity, and these are generally low PGD values overall.

      (5) Broadly, it's unclear how this computational framework can study memory, learning, sleep, sensory processing, or disease states, given the disconnect between simulated intracellular voltages and the local field potentials or other electrophysiological measurements typically used to study cortical traveling waves. While computationally impressive, the practical research applications remain vague.

      (6) The paper needs a clearer explanation for why medium coupling (100%) eliminates waves in Allen connectivity (Figure 6) while stronger coupling (150%) restores them.

      (7) Does using a single connectivity parameter (ρ = 300) across all regions miss important regional differences in cortical connectivity density?

    1. Reviewer #1 (Public review):

      Summary: This study investigated how visuospatial attention influences the way people build simplified mental representations to support planning and decision-making. Using computational modeling and virtual maze navigation, the authors examined whether spatial proximity and the spatial arrangement of obstacles determine which elements are included in participants' internal models of a task. The study developed and tested an extension of the value-guided construal (VGC) model that incorporates features of spatial attention for selecting simpler task mental representation.

      Strengths:

      (1) Original Perspective: The study introduces an explicit attentional component to established models of planning, offering an approach that bridges perception, attention, and decision-making.

      (2) Methodological Approach: The combination of computational modeling, behavioral data, and eye-tracking provides converging measures to assess the relationship between attention and planning representations.

      (3) Cross-validated data: The study relies on the analysis of three separate datasets, two already published and an additional novel one. This allows for cross-validation of the findings and enhances the robustness of the evidence.

      (4) Focus on Individual Differences: Reports of how individual variability in attentional "spillover" correlates with the sparsity of task representations and spatial proximity add depth to the analysis.

      Weaknesses:

      (1) Clarity of the VGC model and behavioral task: The exposition of the VGC model lacks sufficient detail for non-expert readers. It is not clear how this model infers which maze obstacles are relevant or irrelevant for planning, nor how the maze tasks specifically operationalize "planning" versus other cognitive processes.

      The method for classifying obstacles as relevant or irrelevant to the task and connecting metacognitive awareness (i.e., participants' reports of noticing obstacles) to attentional capture is not well justified. The rationale for why awareness serves as a valid attention proxy, as opposed to behavioral or neurophysiological markers, should be clearer.

      (2) Attention framework: The account of attention is largely limited to the "spotlight" model. When solving a maze, participants trace the correct trail, following it mentally with their overt or covert attention. In this perspective, relevant concepts are also rooted in attention literature pertaining to object-based attention using tasks like curve tracing (e.g., Pooresmaeili & Roelfsema, 2014) and to mental maze solving (e.g., Wong & Scholl, 2024), which may be highly relevant and add nuance to the current work. This view of attention may be more pertinent to the task than models of simultaneously tracking multiple objects cited here. Prior work (notably from the Roelfsema group) indicates that attentional engagement in curve-tracing tasks may be a continuous, bottom-up process that progressively spreads along a trajectory, in time and space, rather than a "spotlight" that simply travels along the path. The spread of attention depends on the spatial proximity to distractors - a point that could also be pertinent to the findings here.

      Moreover, the tracing of a "solution" trail in a maze may be spontaneous and not only a top-down voluntary operation (Wong & Scholl, 2024), a finding that requires a more careful framing of the link to conscious perception discussed in the manuscript.

      Conceptualizing attention as a spatial spotlight may therefore oversimplify its role in navigation and planning. Perhaps the observed attentional modulation reflects a perceptual stage of building the trail in the maze rather than a filter for a later representation for more efficient decision making and planning. A fuller discussion of whether the current model and data can distinguish between these frameworks would benefit readers.

      (3) Lateralization of attention: The analysis considers whether relevant information is distributed bilaterally or unilaterally across the visual display, but does not sufficiently address evidence for attentional asymmetries across the left and right visual fields due to hemispheric specialization (e.g., Bartolomeo & Seidel Malkinson, 2019). Whether effects differ for left versus right hemifield arrangements is not made explicit in the presented findings.

      (4) Individual differences: Individual differences in attentional modulation are a strength of the work, but similar analyses exploring individual variation in lateralization effects could provide further insight, and the lack of such analyses may mask important effects.

      (5) Distinction between overt and covert attention: The current report at times equates eye movement patterns with the locus of attention. However, attention can be covertly shifted without corresponding gaze changes (see, for example, Pooresmaeili & Roelfsema, 2014).

      The implications for interpreting the relationship between eye movement, memory, and attention in this setting are not fully addressed. The potential dynamics of attention along a maze trajectory and their impact on lateralization analysis would benefit from further clarification.

      Appraisal of Aims and Results:

      The study sets out to determine how spatial attention shapes the construction of task representations in planning contexts. The authors provide evidence that spatial proximity and arrangement influence which environmental features are incorporated into internal models used for navigation, and that accounting for these effects improves model predictions. There is clear documentation of individual variation, with some participants showing greater attentional spillover and more sparse awareness profiles.

      However, some conceptual and methodological aspects would be clearer with greater engagement with the broader literature on attention dynamics, a more explicit justification of operational choices, and more targeted lateralization analyses.

    1. Reviewer #1 (Public review):

      This work provides a valuable toolkit for endogenous isolation of projection neuron subtypes. With further validation, it could present a solid method for low-input ribosome affinity purification using a ribosomal RNA (rRNA) antibody. The experimental evidence for the distinct ribosomal complexes is limited to this method and indirect support from complementary analyses of pre-existing data. However, with additional experimental data to support the specificity of ribosomal complex pulldown and confirmation of the putative ribosomal complex proteins of interest, the study would provide compelling evidence for translation regulation of neuronal development through compositional ribosome heterogeneity. This work would be of interest to neuroscientists, developmental biologists, and those studying translational networks underlying gene regulation.

      Strengths

      (1) This in vivo labeling of specific projection neurons and ribosomal rRNA affinity purification method accommodates a low input of <100K somata per replicate, which is useful for the study of neuronal subtypes with limited input. In principle, this set of techniques could work across different cell types with limited input, depending on the molecule used for cell type labeling.

      (2) The authors are also able to isolate endogenous neurons with minimal perturbation up to the point of collection, preserving the native state for the neuron in vivo as long as possible prior to processing.

      (3) This study identified over a dozen potential non-ribosomal proteins associated with SCPN ribosomal complexes, as well as a ribosomal protein enriched in CPN.

      Limitations

      (1) In this study, the authors address the advantages of their ribosomal complex isolation method in SCPN and CPN against RPL22-HA affinity purification. While this does show more pull-down of the ribosomal RNA by the Y10B rRNA antibody, the authors claim this method identifies cell-type-specific ribosomal complex proteins without demonstrating a positive control for the method's specificity. There are very limited experiments to truly delineate how "specific" this method is working and whether there could be contamination from other complexes bound by the antibody. I see this as the major limitation that should be addressed. To boost their claims of capturing cell-type-specific ribosomal complexes, the authors could consider applying their rRNA affinity purification pipeline to compare cell types with well-characterized ribosome-associated proteins, like mouse embryonic stem cells and HELA cells. The reviewer can completely appreciate the elegance in the neural characterization here, but it seems there needs to be a solid foothold on the specificity of the method, perhaps facilitated by cell types that can be more readily scaled up and tested.

      (2) The authors followed up on their differentially enriched ribosomal complex proteins by analyzing the ribosome association of these proteins in external datasets. While this analysis supports the ribosome-association of these proteins, there is limited experimental validation of physical association with the ribosome, much less any functional characterization. The reciprocal pulldown of PRKCE is promising; however, I would recommend orthogonal validation of several putative ribosomal complex proteins to increase confidence. Specifically, the authors could use sucrose gradient fractionation of SCPN and CPN, followed by a western blot to identify the putative interaction with the 80S monosome or polysomes. This would also provide evidence towards the pulldown capturing association with mature ribosome species, which is currently unclear. This experiment would provide substantial evidence for the direct association of these non-ribosomal proteins with subtype-specific ribosomal complexes.

      (3) The authors state interest in learning more about the differences underlying translational regulation of projection neuron development. This method only captures neuronal somata, which will only capture ribosomes in the main cell body. There are also ribosomes regulating local translation in the axons, which may also play a critical role in axonal circuit establishment and activity. These ribosomal complex interactions may also be rather transient and difficult to capture at only one developmental stage. Therefore, this method is currently limited to a single developmental snapshot of ribosomal complexes at P3 within the main cell body. It would be exciting to see the extended utility of this method to sample neurites and additional developmental stages to gain further resolution on the developmental translation regulation of these projection neurons.

      Likely impact of the work on the field, and the utility of the methods and data to the community:

      The authors introduce a unique pipeline of techniques to identify cell-type-specific ribosomal complex compositions. With more validation, there is certainly potential for those studying neuronal translation to leverage this method in limited primary cells as an alternative to existing methods that do not rely on ribosomal protein tagging, such as ARC-MS (Bartsch et al., 2023), RAPIDASH (Susanto and Hung et al., 2024), and RAPPL (Nature Communications, 2025).

  2. Sep 2025
    1. Reviewer #1 (Public review):

      Summary:

      Mazer & Yovel 2025 dissect the inverse problem of how echolocators in groups manage to navigate their surroundings despite intense jamming using computational simulations.

      The authors show that despite the 'noisy' sensory environments that echolocating groups present, agents can still access some amount of echo-related information and use it to navigate their local environment. It is known that echolocating bats have strong small and large-scale spatial memory that plays an important role for individuals. The results from this paper also point to the potential importance of an even lower-level, short-term role of memory in the form of echo 'integration' across multiple calls, despite the unpredictability of echo detection in groups. The paper generates a useful basis to think about the mechanisms in echolocating groups for experimental investigations too.

      Strengths:

      * The paper builds on biologically well-motivated and parametrised 2D acoustics and sensory simulation setup to investigate the various key parameters of interest

      * The 'null-model' of echolocators not being able to tell apart objects & conspecifics while echolocating still shows agents succesfully emerge from groups - even though the probability of emergence drops severely in comparison to cognitively more 'capable' agents. This is nonetheless an important result showing the direction-of-arrival of a sound itself is the 'minimum' set of ingredients needed for echolocators navigating their environment.

      * The results generate an important basis in unraveling how agents may navigate in sensorially noisy environments with a lot of irrelevant and very few relevant cues.

      * The 2D simulation framework is simple and computationally tractable enough to perform multiple runs to investigate many variables - while also remaining true to the aim of the investigation.

      Weaknesses:

      * Authors have not yet provided convincing justification for the use of different echolocation phases during emergence and in cave behaviour. In the previous modelling paper cited for the details - here the bat-agents are performing a foraging task, and so the switch in echolocation phases is understandable. While flying with conspecifics, the lab's previous paper has shown what they call a 'clutter response' - but this is not necessarily the same as going into a 'buzz'-type call behaviour. As pointed out by another reviewer - the results of the simulations may hinge on the fact that bats are showing this echolocation phase-switching, and thus improving their echo-detection. This is not necessarily a major flaw - but something for readers to consider in light of the sparse experimental evidence at hand currently.

      * The decision to model direction-of-arrival with such high angular resolution (1-2 degrees) is not entirely justifiable - and the authors may wish to do simulation runs with lower angular resolution. Past experimental paradigms haven't really separated out target-strength as a confounding factor for angular resolution (e.g. see the cited Simmons et al. 1983 paper). Moreover, to this reviewer's reading of the cited paper - it is not entirely clear how this experiment provides source-data to support the DoA-SNR parametrisation in this manuscript. The cited paper has two array-configurations, both of which are measured to have similar received levels upon ensonification. A relationship between angular resolution and signal-to-noise ratio is understandable perhaps - and one can formulate such a relationship, but here the reviewer asks that the origin/justification be made clear. On an independent line, also see the recent contrasting results of Geberl, Kugler, Wiegrebe 2019 (Curr. Biol.) - who suggest even poorer angular resolution in echolocation.

    1. Reviewer #1 (Public review):

      Summary:

      The authors provide a detailed ultrastructural analysis of the larval pharyngeal sensory organs, including the dorsal pharyngeal sensilla, dorsal pharyngeal organ, ventral pharyngeal sensilla, and posterior pharyngeal sensilla. Using electron microscopy and 3D reconstruction, Richter et al., present a comprehensive mapping and classification of pharyngeal sensory structures, defining mthe orphological type of pharyngeal sensilla based on ultrastructure and generating a neuron-to-sensillum map. These findings significantly advance our understanding of internal larval sensory systems and establish a robust framework for future functional studies in coordination with external sensory systems.

      Strengths:

      The application of high-resolution electron microscopy and 3D imaging analysis successfully overcomes technical challenges associated with visualizing deep internal structures. This enables an unprecedented level of anatomical detail of the larval pharyngeal sensory system. Thus, the study complements and completes existing maps of larval sensory circuits, contributing a comprehensive neuroanatomical characterization of larval sensory input pathways. These insights will inform future studies on larval behavior, sensory processing, and may also have applied relevance for insect control strategies.

      Weaknesses:

      While the manuscript is concise, clearly written, and methodologically rigorous, it primarily addresses a specialized readership with expertise in insect neuroanatomy.

    1. Reviewer #1 (Public review):

      Summary:

      This work provides important new evidence of the cognitive and neural mechanisms that give rise to feelings of shame and guilt, as well as their transformation into compensatory behavior. The authors use a well-designed interpersonal task to manipulate responsibility and harm, eliciting varying levels of shame and guilt in participants. The study combines behavioral, computational, and neuroimaging approaches to offer a comprehensive account of how these emotions are experienced and acted upon. Notably, the findings reveal distinct patterns in how harm and responsibility contribute to guilt and shame and how these factors are integrated into compensatory decision-making.

      Strengths:

      (1) Investigating both guilt and shame in a single experimental framework allows for a direct comparison of their behavioral and neural effects while minimizing confounds.

      (2) The study provides a novel contribution to the literature by exploring the neural bases underlying the conversion of shame into behavior.

      (3) The task is creative and ecologically valid, simulating a realistic social situation while retaining experimental control.

      (4) Computational modeling and fMRI analysis yield converging evidence for a quotient-based integration of harm and responsibility in guiding compensatory behavior.

      Weaknesses:

      (1) Post-experimental self-reports rely both on memory and on the understanding of the conceptual difference between the two emotions. Additionally, it is unclear whether the 16 scenarios were presented in random order; sequential presentation could have introduced contrast effects or demand characteristics.

      (2) In the neural analysis of emotion sensitivity, the authors identify brain regions correlated with responsibility-driven shame sensitivity and then use those brain regions as masks to test whether they were more involved in the responsibility-driven shame sensitivity than the other types of emotion sensitivity. I wonder if this is biasing the results. Would it be better to use a cross-validation approach? A similar issue might arise in "Activation analysis (neural basis of compensatory sensitivity)."

      Additional comments and questions:

      (1) Regarding the traits of guilt and shame, I appreciate using the scores from the subscales (evaluations and action tendencies) separately for the analyses (instead of a composite score). An issue with using the actions subscales when measuring guilt and shame proneness is that the behavioral tendencies for each emotion get conflated with their definitions, risking circularity. It is reassuring that the behavior evaluation subscale was significantly correlated with compensatory behavior (not only the action tendencies subscale). However, the absence of significant neural correlates for the behavior evaluation subscale raises questions: Do the authors have thoughts on why this might be the case, and any implications?

      (2) Regarding the computational model finding that participants seem to disregard self-interest, do the authors believe it may reflect the relatively small endowment at stake? Do the authors believe this behavior would persist if the stakes were higher? Additionally, might the type of harm inflicted (e.g., electric shock vs. less stigmatized/less ethically charged harm like placing a hand in ice-cold water) influence the weight of self-interest in decision-making?

      Taken together, the conclusions of the paper are well supported by the data. It would be valuable for future studies to validate these findings using alternative tasks or paradigms to ensure the robustness and generalizability of the observed behavioral and neural mechanisms.

    1. Reviewer #1 (Public review):

      Summary

      The authors previously published a study of RGC boutons in the dLGN in developing wild-type mice and developing mutant mice with disrupted spontaneous activity. In the current manuscript, they have broken down their analysis of RGC boutons according to the number of Homer/Bassoon puncta associated with each vGlut3 cluster.

      The authors find that, in the first post-natal week, RGC boutons with multiple active zones (mAZs) are about a third as common as boutons with a single active zone (sAZ). The size of the vGluT2 cluster associated with each bouton was proportional to the number of active zones present in each bouton. Within the author's ability to estimate these values (n=3 per group, 95% of results expected to be within ~2.5 standard deviations), these results are consistent across groups: 1) dominant eye vs. non-dominant eye, 2) wild-type mice vs. mice with activity blocked, and at 3) ages P2, P4, and P8. The authors also found that mAZs and sAZs also have roughly the same number (about 1.5) of sAZs clustered around them (within 1.5 um).

      However, the authors do not interpret this consistency between groups as evidence that active zone clustering is not a specific marker or driver of activity dependent synaptic segregation. Rather, the authors perform a large number of tests for statistical significance and cite the presence or absence of statistical significance as evidence that "Eye-specific active zone clustering underlies synaptic competition in the developing visual system (title)". I don't believe this conclusion is supported by the evidence.

      Strengths

      The source dataset is high resolution data showing the colocalization of multiple synaptic proteins across development. Added to this data is labeling that distinguishes axons from the right eye from axons from the left eye. The first order analysis of this data showing changes in synapse density and in the occurrence of multi-active zone synapses is useful information about the development of an important model for activity dependent synaptic remodeling.

      Weaknesses

      In my previous review I argued that it was not possible to determine, from their analysis, whether the differences they were reporting between groups was important to the biology of the system. The authors have made some changes to their statistics (paired t-tests) and use some less derived measures of clustering. However, they still fail to present a meaningfully quantitative argument that the observed group differences are important. The authors base most of their claims on small differences between groups. There are two big problems with this practice. First, the differences between groups appear too small to be biologically important. Second, the differences between groups that are used as evidence for how the biology works are generally smaller than the precision of the author's sampling. That is, the differences are as likely to be false positives as true positives.

      (1) Effect size. The title claims: "Eye-specific active zone clustering underlies synaptic competition in the developing visual system". Such a claim might be supported if the authors found that mAZs are only found in dominant-eye RGCs and that eye-specific segregation doesn't begin until some threshold of mAZ frequency is reached. Instead, the behavior of mAZs is roughly the same across all conditions. For example, the clear trend in Figure 4C and D is that measures of clustering between mAZ and sAZ are as similar as could reasonably be expected by the experimental design. However, some of the comparisons of very similar values produced p-values < 0.05. The authors use this fact to argue that the negligible differences between mAZ and sAZs explain the development of the dramatic differences in the distribution of ipsilateral and contralateral RGCs.

      (2) Sample size. Performing a large number of significance tests and comparing p-values is not hypothesis testing and is not descriptive science. At best, with large sample sizes and controls for multiple tests, this approach could be considered exploratory. With n=3 for each group, many comparisons of many derived measures, among many groups, and no control for multiple testing, this approach constitutes a random result generator.

      The authors argue that n=3 is a large sample size for the type of high resolution / large volume data being used. It is true that many electron microscopy studies with n=1 are used to reveal the patterns of organization that are possible within an individual. However, such studies cannot control individual variation and are, therefore, not appropriate for identifying subtle differences between groups.<br /> In response to previous critiques along these lines, the authors argue they have dealt with this issue by limiting their analysis to within-individual paired comparisons. There are several problems with their thinking in this approach. The main problem is that they did not change the logic of their arguments, only which direction they pointed the t-tests. Instead of claiming that two groups are different because p < 0.05, they say that two groups are different because one produced p < 0.05 and the other produced p > 0.05. These arguments are not statistically valid or biologically meaningful.

      To the best of my understanding, the results are consistent with the following model:

      • RGCs form mAZs at large boutons (known)

      • About a quarter of week-one RGC boutons are mAZs (new observation)

      • Vesicle clustering is proportional to active zone number (~new observation)

      • RGC synapse density increases during the first post-week (known)

      • Blocking activity reduces synapse density (known)

      • Contralateral eye RGCs for more and larger synapses in the lateral dLGN (known)

      • With n=3 and effect sizes smaller than 1 standard deviation, a statistically significant result is about as likely to be a false positive as a true positive.

      • A true-positive statistically significant result does is not evidence of a meaningful deviation from a biological model.

      Providing plots that show the number of active zones present in boutons across these various conditions is useful. However, I could find no compelling deviation from the above default predictions that would influence how I see the role of mAZs in activity dependent eye-specific segregation.

      Below are critiques of most of the claims of the manuscript.

      Claim (abstract): individual retinogeniculate boutons begin forming multiple nearby presynaptic active zones during the first postnatal week.

      Confirmed by data.

      Claim (abstract): the dominant-eye forms more numerous mAZ contacts,

      Misleading: The dominant-eye (by definition) forms more contacts than the non-dominant eye. That includes mAZ.

      Claim (abstract): At the height of competition, the non-dominant-eye projection adds many single active zone (sAZ) synapses

      Weak: While the individual observation is strong, it is a surprising deviation based on a single n=3 experiment in a study that performed twelve such experiments (six ages, mutant/wildtype, sAZ/mAZ)

      Claim (abstract): Together, these findings reveal eye-specific differences in release site addition during synaptic competition in circuits essential for visual perception and behavior.

      False: This claim is unambiguously false. The above findings, even if true, do not argue for any functional significance to active zone clustering.

      Claim (line 84): "At the peak of synaptic competition midway through the first postnatal week, the non-dominant-eye formed numerous sAZ inputs, equalizing the global synapse density between the two eyes"

      Weak: At one of twelve measures (age, bouton type, genotype) performed with 3 mice each, one density measure was about twice as high as expected.

      Claim (line 172): "In WT mice, both mAZ (Fig. 3A, left) and sAZ (Fig. 3B, left) inputs showed significant eye-specific volume differences at each age."

      Questionable: There appears to be a trend, but the size and consistency is unclear.

      Claim (line 175): "the median VGluT2 cluster volume in dominant-eye mAZ inputs was 3.72 fold larger than that of non-dominant-eye inputs (Fig. 3A, left)."

      Cherry picking. Twelve differences were measured with an n of 3, 3 each time. The biggest difference of the group was cited. No analysis is provided for the range of uncertainty about this measure (2.5 standard deviations) as an individual sample or as one of twelve comparisons.

      Claim (line 174): "In the middle of eye-specific competition at P4 in WT mice, the median VGluT2 cluster volume in dominant-eye mAZ inputs was 3.72 fold larger than that of non-dominant-eye inputs (Fig. 3A, left). In contrast, β2KO mice showed a smaller 1.1 fold difference at the same age (Fig. 3A, right panel). For sAZ synapses at P4, the magnitudes of eye-specific differences in VGluT2 volume were smaller: 1.35-fold in WT (Fig. 3B, left) and 0.41-fold in β2KO mice (Fig. 3B, right). Thus, both mAZ and sAZ input size favors the dominant eye, with larger eye-specific differences seen in WT mice (see Table S3)."

      No way to judge the reliability of the analysis and trivial conclusion: To analyze effect size the authors choose the median value of three measures (whatever the middle value is). They then make four comparisons at the time point where they observed the biggest difference in favor of their hypothesis. There is no way to determine how much we should trust these numbers besides spending time with the mislabeled scatter plots. The authors then claim that this analysis provides evidence that there is a difference in vGluT2 cluster volume between dominant and non-dominant RGCs and that that difference is activity dependent. The conclusion that dominant axons have bigger boutons and that mutants that lack the property that would drive segregation would show less of a difference is very consistent with the literature. Moreover, there is no context provided about what 1.35 or 1.1 fold difference means for the biology of the system.

      Claim (189): "This shows that vesicle docking at release sites favors the dominant-eye as we previously reported but is similar for like eye type inputs regardless of AZ number."

      Contradicts core claim of manuscript: Consistent with previous literature, there is an activity dependent relative increase in vGlut2 clustering of dominant eye RGCs. The new information is that that activity dependence is more or less the same in sAZ and mAZ. The only plausible alternative is that vGlut2 scaling only increases in mAZ which would be consistent with the claims of their paper. That is not what they found. To the extent that the analysis presented in this manuscript tests a hypothesis, this is it. The claim of the title has been refuted by figure 3.

      Claim (line 235): "For the non-dominant eye projection, however, clustered mAZ inputs outnumbered clustered sAZ inputs at P4 (Fig. 4C, bottom left panel), the age when this eye adds sAZ synapses (Fig. 2C)."

      Misleading: The overwhelming trend across 24 comparisons is that the sAZ clustering looks like mAZ clustering. That is the objective and unambiguous result. Among these 24 underpowered tests (n=3), there were a few p-values < 0.05. The authors base their interpretation of cell behavior on these crossings.

      Claim (line 328): "The failure to add synapses reduced synaptic clustering and more inputs formed in isolation in the mutants compared to controls."

      Trivially true: Density was lower in mutant.

      Claim (line 332): "While our findings support a role for spontaneous retinal activity in presynaptic release site addition and clustering..."

      Not meaningfully supported by evidence: I could not find meaningful differences between WT and mutant beside the already known dramatic difference in synapse density.

    1. Reviewer #1 (Public review):

      Summary:

      This computational study investigates the physical mechanisms underlying enhancer-promoter (E-P) interactions across genomic distances in Drosophila chromosomes, motivated by a previously published study that revealed unexpectedly frequent long-range contacts challenging classical polymer models. The authors performed coarse-grained polymer simulations testing three chromatin organization models: ideal polymers, loop extrusion, and compartmental segregation, comparing their predictions to experimental Hi-C contact maps, mean E-P distances, and two-locus mean-squared displacement dynamics. They found that compartmental segregation best captured both the structural and dynamic features observed experimentally, while neither ideal chains nor loop extrusion alone could reproduce all experimental observables. The combination of compartmental segregation with loop extrusion further improved agreement with experimental data, suggesting these mechanisms might be involved in Drosophila chromatin organization.

      Strengths:

      The paper has two primary strengths:

      (1) The simulations are based on biologically interpretable mechanisms (compartmentalization and loop extrusion), which may facilitate making specific experimentally testable predictions.

      (2) The work uses a systematic approach to increase model complexity by directly fitting to data, first establishing that simple models fail to capture the data until arriving at a more complex model that does capture the data.

      Weaknesses:

      I have two major concerns (detailed below) and multiple minor concerns.

      Major concerns:

      (1) While the upside of the mechanistic simulations is that they are interpretable, the downside is that specific choices for the considered mechanism were made, and conclusions drawn from it are necessarily biased by the initial choices. In this paper, only two mechanisms were considered: loop extrusion and compartmentalization. Yet, it is not clear why these are the most likely underlying mechanisms that might determine the chromosome dynamics. Indeed, previous work (not cited in this paper) showed that Drosophila chromosome structure is not determined by loop extrusion: https://elifesciences.org/articles/94070.

      This should be acknowledged, and the main reasons for choosing these particular mechanisms should be laid out. The conclusions of the paper must then necessarily always be seen under the caveat that only these two mechanisms were considered.

      (2) Even within the framework of the approach, insufficient evidence is given to support the title of the paper "Criticality-driven enhancer-promoter dynamics in Drosophila chromosomes" for two reasons:

      (a) The fact that the best-fit parameters are near a coil-globule transition does not mean that the resulting dynamics are criticality-driven. To claim criticality, one would usually expect much more direct evidence, such as diverging correlation lengths. Furthermore, it would need to be shown that the key features of the dynamics (which should be defined, presumably the static and dynamic exponents) indeed depend on the parameters being at this transition. i.e., when tuning the simulations away from this parameter point, does the behaviour disappear? Only in this case can it be claimed that the behaviour is driven by this phenomenon.

      (b) The results section actually contains no mention of the coil-globule transition, and it is not clear in what way the parameters are close to this transition.

      Thus, three things are necessary:

      (i) How the parameters are close to the transition needs to be explained in detail.

      (ii) The divergence of observed dynamics whenever the parameters are tuned away from the transition needs to be demonstrated.

      (iii) Even if 1 and 2 are fulfilled, a more careful title should be chosen, such as "Polymer simulations near the coil-globule transition are consistent with enhancer-promoter dynamics in Drosophila chromosomes."

      Many of the results in the figures and results section are rather repetitive and could be compressed. The main result of Figure 1 - that the data are not described by an ideal chain - was already fully shown and established in the original paper from which the data are taken. Figure 2 is a negative result with near-identical panels to Figure 3. Figure 4B is hard to interpret.

      The paper makes no concrete suggestions for new experiments to test the hypotheses formulated. Since the paper can only claim that the simulations are consistent with the data, it would significantly strengthen the paper if testable predictions could be made.

    1. Reviewer #1 (Public review):

      In this revised submission from Kapustin et al., the authors have made significant changes to the manuscript. Namely, the authors have addressed several of the major issues with the original submission, providing a more concrete link between fibronectin and the secretion of extracellular vesicles. Additionally, the authors have moderated some of the conclusions to better suit the rigor of the experimental results and limitations of their approach. Generally, the findings convey an interesting cell autonomous pathway in which smooth muscle cells sense fibronectin, which canonically is a proinflammatory substrate with activating properties in many tissues. Fibronectin-mediated integrin signaling stimulates secretion of small extracellular vesicles containing collagen VI which is deposited into the surrounding extracellular matrix. Collagen VI itself gleaned from extracellular vesicle secretion seems to further alter smooth muscle cell morphodynamics. For this later finding, much of the mechanism behind collagen VI vesicle loading and secretion has yet to be worked out. The authors provide evidence of extracellular vesicles containing collagen VI trapped in fibronectin in atherosclerotic plaques providing a nice validation of their in vitro findings in a diseased human cohort. Some limitations do still exist in the manuscript in its current form such as the assessment of the vesicle origins, contents and their association with the actin cytoskeleton; however, the rigor and execution are much improved from the preceding version. Overall, the pathobiology underlying vascular smooth muscle remodeling in disease states is a critical area of research that warrants further exploration.

    1. Reviewer #1 (Public review):

      Summary:

      This study examines how two common psychiatric treatments, antidepressant medication and cognitive distancing, influence baseline levels and moment-to-moment changes in happiness, confidence, and engagement during a reinforcement learning task. Combining a probabilistic selection task, trial-by-trial affect ratings, psychiatric questionnaires, and computational modeling, the authors demonstrate that each treatment has distinct effects on affective dynamics. Notably, the results highlight the key role of affective biases in how people with mental health conditions experience and update their feelings over time, and suggest that interventions like cognitive distancing and antidepressant medication may work, at least in part, by shifting these biases.

      Strengths:

      (1) Addresses an important question: how common psychiatric treatments impact affective biases, with potential translational relevance for understanding and improving mental health interventions.

      (2) The introduction is strong, clear, and accessible, making the study approachable for readers less familiar with the underlying literature.

      (3) Utilizes a large sample that is broadly representative of the UK population in terms of age and psychiatric symptom history, enhancing generalizability.

      (4) Employs a theory-driven computational modeling framework that links learning processes with subjective emotional experiences.

      (5) Uses cross-validation to support the robustness and generalizability of model comparisons and findings.

      Weaknesses:

      The authors acknowledge the limitations in the discussion section.

      Additional questions:

      (1) Group Balance & Screening for Medication Use: How many participants in the cognitive distancing and control groups were taking antidepressant medication? Why wasn't medication use included as part of the screening to ensure both groups had a similar number of participants taking medication?

      (2) Assessment of the Practice of Cognitive Distancing: Is there a direct or more objective method to evaluate whether participants actively engaged in cognitive distancing during the task, and to what extent? Currently, the study infers engagement indirectly through the outcomes, but does not include explicit measures of participants' use of the technique. Would including self-report check-ins throughout the task, asking participants whether they were actively engaging in cognitive distancing, have been useful? However, including frequent self-report check-ins would increase procedural differences between groups, making perhaps the tasks less comparable beyond the intended treatment manipulation. Maybe incorporating a question at the end of the task, asking how much they engaged in cognitive distancing, could offer a useful measure of subjective engagement without overly disrupting the task flow.

      Conclusion:

      This study advances our understanding of the mechanisms underlying mental health interventions. The combination of computational modeling with behavioral and affective data offers a powerful framework for understanding how treatments influence affective biases and dynamics. These findings are of broad interest across clinical and mental health sciences, cognitive and affective research, and applied translational fields focused on improving psychological well-being.

    1. Reviewer #1 (Public review):

      Allodynia is commonly measured in the pain field using von Frey filaments, which are applied to a body region (usually hindpaw if studying rodents) by a human. While humans perceive themselves as being objective, as the authors noted, humans are far from consistent when applying these filaments. Not to mention, odors from humans, including of different sexes, can influence animal behavior. There is thus a major unmet need for a way to automate this tedious von Frey testing process, and to remove humans from the experiment. I have no major scientific concerns with the study, as the authors did an outstanding job of comparing this automated system to human experimenters in a rigorous and quantitative manner. They even demonstrated that their automated system can be used in conjunction with in vivo imaging techniques.

      While it is somewhat unclear how easy and inexpensive this device will be, I anticipate everyone in the pain field will be clamoring to get their hands on a system like this. And given the mechanical nature of the device, and propensity for mice to urinate on things, I also wonder how frequently the device breaks/needs to be repaired. Perhaps some details regarding cost and reliability of the device would be helpful to include, as these are the two things that could make researchers hesitant to adopt immediately.

      The only major technical concern, which is easy to address, is whether the device generates ultrasounic sounds that rodents can hear when idle or operational, across the ultrasonic frequencies that are of biological relevance (20-110 kHz). These sounds are generally alarm vocalizations and can create stress in animals, and/or serve as cues of an impending stimulus (if indeed they are produced by the device).

      Comments on revisions:

      Was Fig. 1 updated with the new apparatus design? i.e. to address issue of animal waste affecting function over time?

      I have no further comments.

    1. Reviewer #1 (Public review):

      Summary:

      Ferreiro et al. present a method to simulate protein sequence evolution under a birth-death model where sequence evolution is guided by structural constraints on protein stability. The authors then use this model to explore the predictability of sequence evolution in several viral proteins. In principle, this work is of great interest to molecular evolution and phylodynamics, which has struggled to couple non-neutral models of sequence evolution to phylodynamic models like birth-death processes. Unfortunately, though, the model shows little improvement over neutral models in predicting protein sequence evolution, although it can predict protein stability better than models assuming neutral evolution. It appears that more work is needed to determine exactly what aspects of protein sequence evolution are predictable under such non-neutral phylogenetic models.

      Major concerns:

      (1) The authors have clarified the mapping between birth-death model parameters and fitness, but how fitness is modeled still appears somewhat problematic. The authors assume the death rate = 1 - birth rate. So a variant with a birth rate b = 1 would have a death rate d = 0 and so would be immortal and never die, which does not seem plausible. Also I'm not sure that this would "allow a constant global (birth-death) rate" as stated in line 172, as selection would still act to increase the population mean growth rate r = b - d. It seems more reasonable to assume that protein stability affects only either the birth or death rate and assume the other rate is constant, as in the Neher 2014 model.

      (2) It is difficult to evaluate the predictive performance of protein sequence evolution. This is in part due to the fact that performance is compared in terms of percent divergence, which is difficult to compare across viral proteins and datasets. Some protein sequences would be expected to diverge more because they are evolving over longer time scales, under higher substitution rates or under weaker purifying selection. It might therefore help to normalize the divergence between predicted and observed sequences by the expected or empirically observed amount of divergence seen over the timescale of prediction.

      (3) Predictability may also vary significantly across different sites in a protein. For example, mutations at many sites may have little impact on structural stability (in which case we would expect poor predictive performance) while even conservative changes at other sites may disrupt folding. I therefore feel that there remains much work to be done here in terms of figuring out where and when sequence evolution might be predictable under these types of models, and when sequence evolution might just be fundamentally unpredictable due to the high entropy of sequence space.

    1. Reviewer #1 (Public review):

      Summary:

      This study is an evaluation of patient variants in the kidney isoform of AE1 linked to distal renal tubular acidosis. Drawing on observations in the mouse kidney, this study extends findings to autophagy pathways in a kidney epithelial cell line.

      Strengths:

      Experimental data are convincing and nicely done.

      Weaknesses:

      Some data are lacking or not explained clearly. Mutations are not consistently evaluated throughout the study, which makes it difficult to draw meaningful conclusions.

    1. Reviewer #1 (Public review):

      Summary:

      Lysosomal damage is commonly found in many diseases including normal aging and age-related disease. However, the transcriptional programs activated by lysosomal damage has not been thoroughly characterized. This study aims to investigate lysosome damage-induced major transcriptional responses and the underlying signaling basis. The authors have convincingly shown that lysosomal damage activates a ubiquitination-dependent signaling axis involving TAB, TAK1, and IKK, which culminate in the activation of NF-kB and subsequent transcriptional upregulation of pro-inflammatory genes and pro-survival genes. Overall, the major aims of this study are successfully achieved.

      Strengths:

      This study is well-conceived and strictly executed, leading to clear and well-supported conclusions. Through unbiased transcriptomics and proteomics screens, the authors identifies NF-kB as a major transcriptional program activated upon lysosome damage. TAK1 activation by lysosome damage-induced ubiquitination is found to be essential for NF-kB activation and MAP kinase signaling. The transcriptional and proteomic changes are shown to be largely driven by TAK1 signaling. Finally, the TAK1-IKK signaling is shown to provide resistance to apoptosis during lysosomal damage response. The main signaling axis of this pathway has been convincingly demonstrated.

      Overall, this study identifies major transcriptional responses following lysosomal damage through unbiased approaches. It is important to consider the impact of these pathways in disease settings where lysosomal integrity is compromised.

      Comments on revisions:

      The authors have adequately addressed all previous comments. I have no further recommendations.

    1. Reviewer #1 (Public review):

      Summary:

      This study by Bushey et al., focuses on two newly released red-shifted anion-Channelrhodopsins (A1ACR and HfACR, referred as Ruby-ACRs) in Drosophila. Here, the authors use a combination of electrophysiology, calcium imaging, and behavioral analyses to demonstrate the advantages of Ruby-ACRs over previous optogenetic silencers like the green-shifted GtACR1 and the blue-shifted GtACR2: higher photocurrent, faster kinetics, and operating at a light spectrum range that prevents unwanted behavioral effects in the fly. The availability of these new red-shifted silencers constitutes a great addition to the Drosophila genetic toolkit.

      Strengths:

      (1) The authors generate both UAS and LexAop RubyACR reagents and test them in a variety of preparations (electrophysiological recordings, calcium imaging, different behavioral paradigms) that cover the breadth of the fly research environment.

      (2) The optical stimulation parameters are carefully measured and characterized. Especially impressive is that they managed to titrate over both wavelength and intensity across their various assays. This provides a comprehensive dataset to the community.

      (3) Tools are made available to the community through the stock center.

      Weaknesses:

      (1) The authors could better describe their construct and choice of parameters for the chosen construct. I am specifically wondering about the following points:

      a) Why use that particular backbone (not the most commonly used one across recent literature (pJFRC7 is more common).

      b) Why do the CsChrimson and GTACR1 have a Kir sequence in it, and why did the authors not put this in the RubyACRs? I would also prefer if authors don't refer to GtACR1 as GTACR-Kir in text (e.g., in line 72); instead, they should either refer to it as GtACR1 or GtACR1-kir-mVenus (based on the full genotype mentioned in their table at the end). Same for CsChrimson-kir. From what I understand, this is just a Kir trafficking sequence and not the entire Kir sequence, which can confuse the readers.

      c) Finally, I would also encourage authors to deposit plasmids on Addgene.

      (2) Figure 2 is interesting, but it is a bit unfortunate that there is a YFP baseline in most of the samples here (except Chrimson88; this should also be mentioned). I wonder how the YFP baseline impacts this data. Could the high intensity stimulation (red light) lead to bleaching of YFP or tdTomato that reduces the baseline in the green channel? All this also makes me wonder if authors tried tagging the RubyACRs with other fluorophores or non-fluorescent tags and how that impacted their functioning. Non-YFP-tagged versions would be more useful for applications involving GCaMP imaging.

      (3) Another point for Figure 2: Since RubyACRs seem to have such a broad activation range, I wonder how much the imaging light (920nm) impacts the baseline in these experiments. If there were plots without the red light stimulation and just varying imaging light intensity, that could be useful to the research community.

      (4) Also, for Figures 2C - D, in the methods authors indicate that the stimulation light intensities were progressively increased. Could this lead to desensitization of opsin? Wouldn't randomized intensities be a better way to do this? Perhaps it should be mentioned as a caveat.

      (5) In Figure 3E the bottom middle panel Vglut-Gal4,GtACR1 shows a major increase in walking at light onset. This seems very different than all other conditions, and I could not find any discussion of this. It would help if some explanation were provided for this.

    1. Reviewer #1 (Public review):

      Summary:

      Review of the manuscript titled " Mycobacterial Metallophosphatase MmpE acts as a nucleomodulin to regulate host gene expression and promotes intracellular survival".

      The study provides an insightful characterization of the mycobacterial secreted effector protein MmpE, which translocates to the host nucleus and exhibits phosphatase activity. The study characterizes the nuclear localization signal sequences and residues critical for the phosphatase activity, both of which are required for intracellular survival.

      Strengths:

      (1) The study addresses the role of nucleomodulins, an understudied aspect in mycobacterial infections.

      (2) The authors employ a combination of biochemical and computational analyses along with in vitro and in vivo validations to characterize the role of MmpE.

      Weaknesses:

      (1) While the study establishes that the phosphatase activity of MmpE operates independently of its NLS, there is a clear gap in understanding how this phosphatase activity supports mycobacterial infection. The investigation lacks experimental data on specific substrates of MmpE or pathways influenced by this virulence factor.

      (2) The study does not explore whether the phosphatase activity of MmpE is dependent on the NLS within macrophages, which would provide critical insights into its biological relevance in host cells. Conducting experiments with double knockout/mutant strains and comparing their intracellular survival with single mutants could elucidate these dependencies and further validate the significance of MmpE's dual functions.

      (3) The study does not provide direct experimental validation of the MmpE deletion on lysosomal trafficking of the bacteria.

      (4) The role of MmpE as a mycobacterial effector would be more relevant using virulent mycobacterial strains such as H37Rv.

    1. Reviewer #1 (Public review):

      From my reading, this study aimed to achieve two things:

      (1) A neurally-informed account of how Pieron's and Fechner's laws can apply in concert at distinct processing levels.

      (2) A comprehensive map in time and space of all neural events intervening between stimulus and response in an immediately-reported perceptual decision.

      I believe that the authors achieved the first point, mainly owing to a clever contrast comparison paradigm, but with good help also from a new topographic parsing algorithm they created. With this, they found that the time intervening between an early initial sensory evoked potential and an "N2" type process associated with launching the decision process varies inversely with contrast according to Pieron's law. Meanwhile, the interval from that second event up to a neural event peaking just before response increases with contrast, fitting Fechner's law, and a very nice finding is that a diffusion model whose drift rates are scaled by Fechner's law, fit to RT, predicts the observed proportion of correct responses very well. These are all strengths of the study.

      The second, generally stated aim above is, in the opinion of this reviewer, unconvincing and ill-defined. Presumably, the full sequence of neural events is massively task-dependent, and surely it is more in number than just three. Even the sensory evoked potential typically observed for average ERPs, even for passive viewing, would include a series of 3 or more components - C1, P1, N1, etc. So are some events being missed? Perhaps the authors are identifying key events that impressively demarcate Pieron- and Fechner-adherent sections of the RT, but they might want to temper the claim that they are finding ALL events. In addition, the propensity for topographic parsing algorithms to potentially lump together distinct processes that partially co-evolve should be acknowledged.

      To take a salient example, the last neural event seems to blend the centroparietal positivity with a more frontal midline negativity, some of which would capture the CNV and some motor-execution related components that are more tightly time-locked to, of course, the response. If the authors plotted the traditional single-electrode ERP at the frontal focus and centroparietal focus separately, they are likely to see very different dynamics and contrast- and SAT-dependency. What does this mean for the validity of the multivariate method? If two or more components are being lumped into one neural event, wouldn't it mean that properties of one (e.g., frontal burstiness at response) are being misattributed to the other (centroparietal signal that also peaks but less sharply at response)?

      Also related to the method, why must the neural events all be 50 ms wide, and what happens if that is changed? Is it realistic that these neural events would be the same duration on every trial, even if their duration was a free parameter? This might be reasonable for sensory and motor components, but unlikely for cognitive.

      In general, I wonder about the analytic advantage of the parsing method - the paradigm itself is so well-designed that the story may be clear from standard average event-related potential analysis, and this might sidestep the doubts around whether the algorithm is correctly parsing all neural events.

      In particular, would the authors consider plotting CPP waveforms in the traditional way, across contrast levels? The elegant design is such that the C1 component (which has similar topography) will show up negative and early, giving way to the CPP, and these two components will show opposite amplitude variations (not just temporal intervals as is this paper's main focus), because the brighter the two gratings, the stronger the aggregate early sensory response but the weaker the decision evidence due to Fechner. I believe this would provide a simple, helpful corroborating analysis to back up the main functional interpretation in the paper.

      The first component is picking up on the C1 component (which is negative for these stimulus locations), not a "P100". Please consult any visual evoked potential study (e.g., Luck, Hillyard, etc).

      It is unexpected that this does not vary in latency with contrast - see, for example. Gebodh et al (2017, Brain Topography) - and there is little discussion of this. Could it be that nonlinear trends were not correctly tested for?

      There is very little analysis or discussion of the second stage linked to attention orientation - what would the role of attention orientation be in this task? Is it spatial attention directed to the higher contrast grating (and if so, should it lateralise accordingly?), or is it more of an alerting function the authors have in mind here?

    1. Reviewer #2 (Public review):

      McDougal et al. describe the surprising finding that IFIT1 proteins from different mammalian species inhibit replication of different viruses, indicating that evolution of IFIT1 across mammals has resulted in host species-specific antiviral specificity. Before this work, research into the antiviral activity and specificity of IFIT1 had mostly focused on the human ortholog, which was described to inhibit viruses including vesicular stomatitis virus (VSV) and Venezuelan equine encephalitis virus (VEEV) but not other viruses including Sindbis virus (SINV) and parainfluenza virus type 3 (PIV3). In the current work, the authors first perform evolutionary analyses on IFIT1 genes across a wide range of mammalian species and reveal that IFIT1 genes have evolved under positive selection in primates, bats, carnivores, and ungulates. Based on these data, they hypothesize that IFIT1 proteins from these diverse mammalian groups may show distinct antiviral specificities against a panel of viruses. By generating human cells that express IFIT1 proteins from different mammalian species, the authors show a wide range of antiviral activities of mammalian IFIT1s. Most strikingly, they find several IFIT1 proteins that have completely different antiviral specificities relative to human IFIT1, including IFIT1s that fail to inhibit VSV or VEEV, but strongly inhibit PIV3 or SINV. These results indicate that there is potential for IFIT1 to inhibit a much wider range of viruses than human IFIT1 inhibits. Electrophoretic mobility shift assays (EMSAs) suggest that some of these changes in antiviral specificity can be ascribed to changes in direct binding of viral RNAs. Interestingly, they also find that chimpanzee IFIT1, which is >98% identical to human IFIT1, fails to inhibit any tested virus. Replacing three residues from chimpanzee IFIT1 with those from human IFIT1, one of which has evolved under positive selection in primates, restores activity to chimpanzee IFIT1. Together, these data reveal a vast diversity of IFIT1 antiviral specificity encoded by mammals, consistent with an IFIT1-virus evolutionary "arms race".

      Overall, this is a very interesting and well-written manuscript that combines evolutionary and functional approaches to provide new insight into IFIT1 antiviral activity and species-specific antiviral immunity. The conclusion that IFIT1 genes in several mammalian lineages are evolving under positive selection is supported by the data. The virology results, which convincingly show that IFIT1s from different species have distinct antiviral specificity, are the most surprising and exciting part of the paper. As such, this paper will be interesting for researchers studying mechanisms of innate antiviral immunity, as well as those interested in species-specific antiviral immunity. Moreover, it may prompt others to test a wide range of orthologs of antiviral factors beyond those from humans or mice, which could further the concept of host-specific innate antiviral specificity. Additional areas for improvement, which are mostly to clarify the presentation of data and conclusions, are described below.

      Strengths:

      (1) This paper is a very strong demonstration of the concept that orthologous innate immune proteins can evolve distinct antiviral specificities. Specifically, the authors show that IFIT1 proteins from different mammalian species are able to inhibit replication of distinct groups of viruses, which is most clearly illustrated in Figure 4G. This is an unexpected finding, as the mechanism by which IFIT1 inhibits viral replication was assumed to be similar across orthologs. While the molecular basis for these differences remains unresolved, this is a clear indication that IFIT1 evolution functionally impacts host-specific antiviral immunity and that IFIT1 has the potential to inhibit a much wider range of viruses than previously described.

      (2) By revealing these differences in antiviral specificity across IFIT1 orthologs, the authors highlight the importance of sampling antiviral proteins from different mammalian species to understand what functions are conserved and what functions are lineage- or species-specific. These results might therefore prompt similar investigations with other antiviral proteins, which could reveal a previously undiscovered diversity of specificities for other antiviral immunity proteins.

      (3) The authors also surprisingly reveal that chimpanzee IFIT1 shows no antiviral activity against any tested virus despite only differing from human IFIT1 by eight amino acids. By mapping this loss of function to three residues on one helix of the protein, the authors shed new light on a region of the protein with no previously known function.

      (4) Combined with evolutionary analyses that indicate that IFIT1 genes are evolving under positive selection in several mammalian groups, these functional data indicate that IFIT1 is engaged in an evolutionary "arms race" with viruses, which results in distinct antiviral specificities of IFIT1 proteins from different species.

      Weaknesses:

      (1) Some of the results and discussion text could be more focused on the model of evolution-driven changes in IFIT1 specificity. In particular, the majority of the residue mapping is on the chimpanzee protein, where it would appear that this protein has lost all antiviral function, rather than changing its antiviral specificity like some other examples in this paper. As such, the connection between the functional mapping of individual residues with the positive selection analysis and changes in antiviral specificity is not present. While the model that changes in antiviral specificity have been positively selected for is intriguing, it is not supported by data in the paper.

      (2) The strength of the differences in antiviral specificity could be highlighted to a greater degree. Specifically, the text describes a number of interesting examples of differences in inhibition of viruses from Figure 3C and 3D, and 4C-F. The revised version has added some clarity by at least providing raw data for 3C and 3D for the reader to make their own comparisons, but it is still difficult to quickly assess which are the most interesting comparisons to make (e.g. for future mapping of residues that might be important).

    1. Reviewer #1 (Public review):

      Summary:

      Weiss and co-authors presented a versatile probabilistic tool. aTrack helps in classifying tracking behaviors and understanding important parameters for different types of single particle motion types: Brwonian, Confined, or Directed motion. The tool can be used further to analyze populations of tracks and the number of motion states. This is a stand-alone software package, making it user-friendly for a broad group of researchers.

      Strengths:

      This manuscript presents a novel method for trajectory analysis.

      Comments on revisions:

      The authors have strengthened and improved the manuscript

    1. Reviewer #2 (Public review):

      Summary:

      The authors report that Arabidopsis short HSFs S-HsfA2, S-HsfA4c, and S-HsfB1 confer extreme heat. They have truncated DNA binding domains that bind to a new heat-regulated element. Considering Short HSFA2, the authors have highlighted the molecular mechanism by which S-HSFs prevent HSR hyperactivation via negative regulation of HSP17.6B. The S-HsfA2 protein binds to the DNA binding domain of HsfA2, thus preventing its binding to HSEs, eventually attenuating HsfA2-activated HSP17.6B promoter activity. This report adds insights to our understanding of heat tolerance and plant growth.

      Strengths:

      (1) The manuscript represents ample experiments to support the claim.

      (2) The manuscript covers a robust number of experiments and provides specific figures and graphs to in support of their claim.

      (3) The authors have chosen a topic to focus on stress tolerance in changing environment.

      (4) The authors have summarized the probable mechanism using a figure.

      Weaknesses:

      Quite minimum

      (1) Fig. 3. the EMSA to reveal binding

      (2) Alignment of supplementary figures 6-7.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript by Kolb and Hasseman et al. introduces a significantly improved GABA sensor, building on the pioneering work of the Janelia team. Given GABA's role as the main inhibitory neurotransmitter and the historical lack of effective optical tools for real-time in vivo GABA dynamics, this development is particularly impactful. The new sensor boasts an enhanced signal-to-noise ratio (SNR) and appropriate kinetics for detecting GABA dynamics in both in vitro and in vivo settings. The study is well-presented, with convincing and high-quality data, making this tool a valuable asset for future research into GABAergic signaling.

      Strengths:

      The core strength of this work lies in its significant advancement of GABA sensing technology. The authors have successfully developed a sensor with higher SNR and suitable kinetics, enabling the detection of GABA dynamics both in vitro and in vivo. This addresses a critical gap in neuroscience research, offering a much-needed optical tool for understanding the most important inhibitory neurotransmitter. The clear representation of the work and the convincing, high-quality data further bolster the manuscript's strengths, indicating the sensor's reliability and potential utility. We anticipate this tool will be invaluable for further investigation of GABAergic signaling.

      Weaknesses:

      Despite the notable progress, a key limitation is that the current generation of GABA sensors, including the one presented here, still exhibits inferior performance compared to state-of-the-art glutamate sensors. While this work is a substantial leap forward, it highlights that further improvements in GABA sensors would still be highly beneficial for the field to match the capabilities seen with glutamate sensors.

    1. Reviewer #1 (Public review):

      Summary:

      Hosack and Arce-McShane investigate how the 3D movement direction of the tongue is represented in the orofacial part of the sensory-motor cortex and how this representation changes with the loss of oral sensation. They examine the firing patterns of neurons in the orofacial parts of the primary motor cortex (MIo) and somatosensory cortex (SIo) in non-human primates (NHPs) during drinking and feeding tasks. While recording neural activity, they also tracked the kinematics of tongue movement using biplanar video-radiography of markers implanted in the tongue. Their findings indicate that many units in both MIo and SIo are directionally tuned during the drinking task. However, during the feeding task, directional turning was more frequent in MIo units and less prominent in SIo units. Additionally, in some recording sessions, they blocked sensory feedback using bilateral nerve block injections, which seemed to result in fewer directionally tuned units and changes in the overall distribution of the preferred direction of the units.

      Strengths:

      The most significant strength of this paper lies in its unique combination of experimental tools. The author utilized a video-radiography method to capture 3D kinematics of the tongue movement during two behavioral tasks while simultaneously recording activity from two brain areas. This specific dataset and experimental setup hold great potential for future research on the understudied orofacial segment of the sensory-motor area.

      Weaknesses:

      A substantial portion of the paper is dedicated to establishing directional tuning in individual neurons, followed by an analysis of how this tuning changes when sensory feedback is blocked. While such characterizations are valuable, particularly in less-studied motor cortical areas and behaviors, the discrepancies in tuning changes across the two NHPs, coupled with the overall exploratory nature of the study, render the interpretation of these subtle differences somewhat speculative. At the population level, both decoding analyses and state space trajectories from factor analysis indicate that movement direction (or spout location) is robustly represented. However, as with the single-cell findings, the nuanced differences in neural trajectories across reach directions and between baseline and sensory-block conditions remain largely descriptive. To move beyond this, model-based or hypothesis-driven approaches are needed to uncover mechanistic links between neural state space dynamics and behavior.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript describes the results of an experiment that demonstrates a disruption in statistical learning of room acoustics when transcranial magnetic stimulation (TMS) is applied to the dorsolateral prefrontal cortex in human listeners. The work uses a testing paradigm designed by the Zahorik group that has shown improvement in speech understanding as a function of listening exposure time in a room, presumably through a mechanism of statistical learning. The manuscript is comprehensive and clear, with detailed figures that show key results. Overall, this work provides an explanation for the mechanisms that support such statistical learning of room acoustics and, therefore, represents a major advancement for the field.

      Strengths:

      The primary strength of the work is its simple and clear result, that the dorsolateral prefrontal cortex is involved in human room acoustic learning.

      Weaknesses:

      A potential weakness of this work is that the manuscript is quite lengthy and complex.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors argue that defining higher visual areas (HVAs) based on reversals of retinotopic tuning has led to an over-parcellation of secondary visual cortices. Using retinotopic models, they propose that the HVAs are more parsimoniously mapped as a single area V2, which encircles V1 and exhibits complex retinotopy. They reanalyze functional data to argue that functional differences between HVAs can be explained by retinotopic coverage. Finally, they compare the classification of mouse visual cortex to that of other species to argue that our current classification is inconsistent with those used in other model species.

      Strengths:

      This manuscript is bold and thought-provoking, and is a must-read for mouse visual neuroscientists. The authors take a strong stance on combining all HVAs, with the possible exception of area POR, into a single V2 region. Although I suspect many in the field will find that their proposal goes too far, many will agree that we need to closely examine the assumptions of previous classifications to derive a more accurate areal map. The authors' supporting analyses are clear and bolster their argument. Finally, they make a compelling argument for why the classification is not just semantic, but has ramifications for the design of experiments and analysis of data.

      Weaknesses:

      Although I enjoyed the polemic nature of the manuscript, there are a few issues that weaken their argument.

      (1) Although the authors make a compelling argument that retinotopic reversals are insufficient to define distinct regions, they are less clear about what would constitute convincing evidence for distinct visual regions. They mention that a distinct area V3 has been (correctly) defined in ferrets based on "cytoarchitecture, anatomy, and functional properties", but elsewhere argue that none of these factors are sufficient to parcellate any of the HVAs in mouse cortex, despite some striking differences between HVAs in each of these factors. It would be helpful to clearly define a set of criteria that could be used for classifying distinct regions.

      (2) On a related note, although the authors carry out impressive analyses to show that differences in functional properties between HVAs could be explained by retinotopy, they glossed over some contrary evidence that there are functional differences independent of retinotopy. For example, axon projections to different HVAs originating from a single V1 injection - presumably including neurons with similar retinotopy - exhibit distinct functional properties (Glickfeld LL et al, Nat Neuro, 2013). As another example, interdigitated M2+/M2- patches in V1 show very different HVA connectivity and response properties, again independent of V1 location/retinotopy (Meier AM et al., bioRxiv). One consideration is that the secondary regions might be considered a single V2 with distinct functional modules based on retinotopy and connectivity (e.g., V2LM, V2PM, etc).

      (3) Some of the HVAs-such as AL, AM, and LI-appear to have redundant retinotopic coverage with other HVAS, such as LM and PM. Moreover, these regions have typically been found to have higher "hierarchy scores" based on connectivity (Harris JA et al., Nature, 2019; D'Souza RD et al., Nat Comm, 2022), though unfortunately, the hierarchy levels are not completely consistent between studies. Based on existing evidence, there is a reasonable argument to be made for a hybrid classification, in which some regions (e.g., LM, P, PM, and RL) are combined into a single V2 (though see point #2 above) while other HVAs are maintained as independent visual regions, distinct from V2. I don't expect the authors to revise their viewpoint in any way, but a more nuanced discussion of alternative classifications is warranted.

    1. Reviewer #1 (Public review):

      Summary:

      Parise presents another instantiation of the Multisensory Correlation Detector model that can now accept stimulus-level inputs. This is a valuable development as it removes researcher involvement in the characterization/labeling of features and allows analysis of complex stimuli with a high degree of nuance that was previously unconsidered (i.e. spatial/spectral distributions across time). The author demonstrates the power of the model by fitting data from dozens of previous experiments including multiple species, tasks, behavioral modality, and pharmacological interventions.

      Strengths:

      One of the model's biggest strengths, in my opinion, is its ability to extract complex spatiotemporal co-relationships from multisensory stimuli. These relationships have typically been manually computed or assigned based on stimulus condition and often distilled to a single dimension or even single number (e.g., "-50 ms asynchrony"). Thus, many models of multisensory integration depend heavily on human preprocessing of stimuli and these models miss out on complex dynamics of stimuli; the lead modality distribution apparent in figure 3b and c are provocative. I can imagine the model revealing interesting characteristics of the facial distribution of correlation during continuous audiovisual speech that have up to this point been largely described as "present" and almost solely focused on the lip area.

      Another aspect that makes the MCD stand out among other models is the biological inspiration and generalizability across domains. The model was developed to describe a separate process - motion perception - and in a much simpler organism - drosophila. It could then describe a very basic neural computation that has been conserved across phylogeny (which is further demonstrated in the ability to predict rat, primate, and human data) and brain area. This aspect makes the model likely able to account for much more than what has already been demonstrated with only a few tweaks akin to the modifications described in this and previous articles from Parise.

      What allows this potential is that, as Parise and colleagues have demonstrated in those papers since our (re)introduction of the model in 2016, the MCD model is modular - both in its ability to interface with different inputs/outputs and its ability to chain MCD units in a way that can analyze spatial, spectral, or any other arbitrary dimension of a stimulus. This fact leaves wide-open the possibilities for types of data, stimuli, and tasks a simplistic neutrally inspired model can account for.

      And so it's unsurprising (but impressive!) that Parise has demonstrated the model's ability here to account for such a wide range of empirical data from numerous tasks (synchrony/temporal order judgement, localization, detection, etc.) and behavior types (manual/saccade responses, gaze, etc.) using only the stimulus and a few free parameters. This ability is another of the model's main strengths that I think deserves some emphasis: it represents a kind of validation of those experiments - especially in the context of cross-experiment predictions.

      Finally, what is perhaps most impressive to me is that the MCD (and the accompanying decision model) does all this with very few (sometimes zero) free parameters. This highlights the utility of the model and the plausibility of its underlying architecture, but also helps to prevent extreme overfitting if fit correctly.

      Weaknesses:

      The model boasts an incredible versatility across tasks and stimulus configurations and its overall scope of the model is to understand how and what relevant sensory information is extracted from a stimulus. We still need to exercise care when interpreting its parameters, especially considering the broader context of top-down control of perception and that some multisensory mappings may not be derivable purely from stimulus statistics (e.g., the complementary nature of some phonemes/visemes).

    1. Reviewer #1 (Public review):

      Summary:

      This is a wonderful and landmark study in the field of human embryo modeling. It uses patterned human gastruloids and conducts a functional screen on neural tube closure, and identifies positive and negative regulators, and defines the epistasis among them.

      Strengths:

      The above was achieved following optimization of the micro-pattern-based gastruloid protocol to achieve high efficiency, and then optimized to conduct and deliver CRISPRi without disrupting the protocol. This is a technical tour de force as well as one of the first studies to reveal new knowledge on human development through embryo models, which has not been done before.

      The manuscript is very solid and well-written. The figures are clear, elegant, and meaningful. The conclusions are fully supported by the data shown. The methods are well-detailed, which is very important for such a study.

      Weaknesses:

      This reviewer did not identify any meaningful, major, or minor caveats that need addressing or correcting.

      A minor weakness is that one can never find out if the findings in human embryo models can be in vitro revalidated in humans in vivo. This is for obvious and justified ethical reasons. However, the authors acknowledge this point in the section of the manuscript detailing the limitations of their study.

    1. Reviewer #1 (Public review):

      Summary:

      Gao et al. has demonstrated that the the pesticide emamectin benzoate (EB) treatment of brown plathopper (BPH) leads to increased egg laying in the insect, which is a common agricultural pest. The authors hypothesize that EB upregulates JH titer resulting in increased fecundity.

      Strengths:

      The finding that a class of pesticide increases fecundity of brown planthopper is interesting.

      Comments on revisions:

      All my concerns have been addressed to reasonable level of satisfaction.

    1. Reviewer #1 (Public review):

      In this manuscript, Roy et al. used the previously published deep transfer learning tool, DEGAS, to map disease associations onto single-cell RNA-seq data from bulk expression data. The authors performed independent runs of DEGAS using T2D or obesity status and identified distinct β-cell subpopulations. β-cells with high obese-DEGAS scores contained two subpopulations derived largely from either non-diabetic or T2D donors. Finally, immunostaining using human pancreas sections from healthy and T2D donors validated the heterogeneous expression and depletion of DLK1 in T2D islets.

      Strengths:

      (1) This meta-analysis of previously published scRNA-seq data uses a deep transfer learning tool.

      (2) Identification of novel beta cell subclusters.

      (3) Identified a relatively innovative role of DLK1 in T2D disease progression.

      Comments on revisions:

      All previous concerns have been addressed.

    1. Reviewer #1 (Public review):

      This study established a C921Y OGT-ID mouse model, systematically demonstrating in mammals the pathological link between O-GlcNAc metabolic imbalance and neurodevelopmental disorders (cortical malformation, microcephaly) as well as behavioral abnormalities (hyperactivity, impulsivity, learning/memory deficits). However, critical flaws in the current findings require resolution to ensure scientific rigor.

      The most concerning finding appears in Figure S12. While Supplementary Figure S12 demonstrates decreased OGA expression without significant OGT level changes in C921Y mutants via Western blot/qPCR, previous reports (Florence Authier, et al., Dis Model Mech. 2023) described OGT downregulation in Western blot and an increase in qPCR in the same models. The opposite OGT expression outcomes in supposedly identical mouse models directly challenge the model's reliability. This discrepancy raises serious concerns about either the experimental execution or the interpretation of results. The authors must revalidate the data with rigorous controls or provide a molecular biology-based explanation.

      A few additional comments to the author may be helpful to improve the study.

      Major

      (1) While this study systematically validated multi-dimensional phenotypes (including neuroanatomical abnormalities and behavioral deficits) in OGT C921Y mutant mice, there is a lack of relevant mechanisms and intervention experiments. For example, the absence of targeted intervention studies on key signaling pathways prevents verification of whether proteomics-identified molecular changes directly drive phenotypic manifestations.

      (2) Although MRI detected nodular dysplasia and heterotopia in the cingulate cortex, the cellular basis remains undefined. Spatiotemporal immunofluorescence analysis using neuronal (NeuN), astrocytic (GFAP), and synaptic (Synaptophysin) markers is recommended to identify affected cell populations (e.g., radial glial migration defects or intermediate progenitor differentiation abnormalities).

      (3) While proteomics revealed dysregulation in pathways including Wnt/β-catenin and mTOR signaling, two critical issues remain unresolved: a) O-GlcNAc glycoproteomic alterations remain unexamined; b) The causal relationship between pathway changes and O-GlcNAc imbalance lacks validation. It is recommended to use co-immunoprecipitation or glycosylation sequencing to confirm whether the relevant proteins undergo O-GlcNAc modification changes, identify specific modification sites, and verify their interactions with OGT.

      (4) Given that OGT-ID neuropathology likely originates embryonically, we recommend serial analyses from E14.5 to P7 to examine cellular dynamics during critical corticogenesis phases.

      (5) The interpretation of Figure 8A constitutes overinterpretation. Current data fail to conclusively demonstrate impairment of OGT's protein interaction network and lack direct evidence supporting the proposed mechanisms of HCF1 misprocessing or OGA loss.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript presents a robust set of experiments that provide new fundamental insights into the role of STN neurons during active and passive avoidance tasks. These forms of avoidance have received comparatively less attention in the literature than the more extensively studied escape or freezing responses, despite being extremely relevant to human behaviour and more strongly influenced by cognitive control.

      Strengths:

      Understanding the neural infrastructure supporting avoidance behaviour would be a fundamental milestone in neuroscience. The authors employ sophisticated methods, including calcium imaging and optogenetics, to delineate the functions of STN neurons during avoidance behaviours. The work is extremely thorough, and the evidence presented is compelling. Experiments are carefully constructed, well-controlled, and the statistical analyses are appropriate.

      Points for Authors' Consideration:

      (1) Motoric role of STN:<br /> The authors interpret their findings within the context of active avoidance, a cognitively demanding process. An alternative interpretation is that STN activation enhances global motoric tone, facilitating general movement rather than specifically encoding cautious avoidance. Experimentally, this could be evaluated by examining STN-induced motoric tone in non-avoidance contexts, such as open field tests with bilateral stimulations. Alternatively, or additionally, the authors could explicitly discuss evidence for and against the possibility that increased motoric tone may account for aspects of the observed behaviours.

      (2) Temporal Dynamics in Calcium Imaging (AA2 vs. AA1):<br /> Based on previous work by this group, a delay (~1-2 sec) in neuronal response onset was anticipated in AA2 compared to AA1. Although a delay in peak response is observed, there is no clear evidence of a significant delay in response onset or changes in slope of neural activity. The authors could quantify calcium onset latencies and slopes and statistically compare these parameters across conditions.

      (3) Speed Differences (AA2 vs. AA1):<br /> Given the increased latency in AA2, and based on previous work from the group, one would expect faster movements following initiation. However, such differences are not evident in the presented data. The authors might want to discuss the absence of an expected speed increase and clarify whether this absence is consistent with previous findings.

      (4) Behavioural Differences Across Neuronal Classes (Figure 7):<br /> The manuscript currently does not compare responses of neuronal classes I, II, and III between AA1 and AA2 conditions separately or provide information regarding their activity during AA3.

      (5) Streamlining Narrative and Figures:<br /> Given the extensive amount of material presented, the manuscript and figures would benefit from streamlining. Many data points and graphs could be moved to supplementary materials without affecting the core interpretation and simplifying the reading of the work by a non-expert audience. Similarly, the main text could be refined to more clearly emphasise the key findings, which would improve both readability and impact. At the same time, certain aspects would benefit from additional clarification. For example, it would be helpful to explain the key features of the AA1-AA3 tasks at the point of introduction, rather than referring readers to previous literature. Overall, enhancing clarity and accessibility would serve the authors well and broaden the impact of the work.

    1. Reviewer #1 (Public review):

      Summary:

      Previous studies have shown that treatment with 17α-estradiol (a stereoisomer of the 17β-estradiol) extends lifespan in male mice but not in females. The current study by Li et al, aimed to identify cell-specific clusters and populations in the hypothalamus of aged male rats treated with 17α-estradiol (treated for 6 months). This study identifies genes and pathways affected by 17α-estradiol in the aged hypothalamus.

      Strengths:

      Using single-nucleus transcriptomic sequencing (snRNA-seq) on hypothalamus from aged male rats treated with 17α-estradiol they show that 17α-estradiol significantly attenuated age-related increases in cellular metabolism, stress, and decreased synaptic activity in neurons.

      Moreover, sc-analysis identified GnRH as one of the key mediators of 17α-estradiol's effects on energy homeostasis. Furthermore, they show that CRH neurons exhibited a senescent phenotype, suggesting a potential side effect of the 17α-estradiol. These conclusions are supported by supervised clustering by neuropeptides, hormones, and their receptors.

      Weaknesses:

      However, the study has several limitations that reduce the strength of the key claims in the manuscript. In particular:

      (1) The study focused only on males and did not include comparisons with females. However, previous studies have shown that 17α-estradiol extends lifespan in a sex-specific manner in mice, affecting males but not females. Without the comparison with the female data, it's difficult to assess its relevance to the lifespan.

      (2) Its not known whether 17α-estradiol leads to lifespan extension in male rats similar to male mice. Therefore, it is not possible to conclude that the observed effects in the hypothalamus, are linked to the lifespan extension. The manuscript cited in the introduction does not include lifespan data on rats.

      (3) The effect of 17α-estradiol on non-neuronal cells such as microglia and astrocytes is not well described (Fig.1). Previous studies demonstrated that 17α-estradiol reduces microgliosis and astrogliosis in the hypothalamus of aged male mice. Current data suggest that the proportion of oligo, and microglia were increased by the drug treatment, while the proportions of astrocytes were decreased. These data might suggest possible species differences, differences in the treatment regimen, or differences in drug efficiency. This has to be discussed.

      A more detailed analysis of glial cell types within the hypothalamus in response to drug should be provided.

      (4) The conclusion that CRH neurons are going into senescence is not clearly supported by the data. A more detailed analysis of the hypothalamus such as histological examination to assess cellular senescence markers in CRH neurons, is needed to support this claim.

      Revised submission:

      Some of the concerns were addressed in this revised version, and the authors responded and addressed study design limitations in both sexes/ages.

      However, there are still some concerns that were not sufficiently addressed:<br /> While the term "senescent" was changed to "stressed," some histological/ cellular validation of this phenotype is still needed.

      Some discussion on the sex-specific effects of 17α-estradiol in the hypothalamus is still required. Previous studies in mice demonstrated that 17α-estradiol reduced hypothalamic microgliosis and astrogliosis in male but not female UM-HET3 mice.

      Additionally, the provided analysis on astrocytes and microglia is superficial.

    1. Reviewer #1 (Public review):

      In this manuscript, Dillard and colleagues integrate cross-species genomic data with a systems approach to identify potential driver genes underlying human GWAS loci and establish the cell type(s) within which these genes act and potentially drive disease.

      Specifically, they utilize a large single cell RNA-seq (scRNA-seq) dataset from an osteogenic cell culture model - bone marrow-derived stromal cells cultured under osteogenic conditions (BMSC-OBs) - from a genetically diverse outbred mouse population called the Diversity Outbred (DO) stock to discover network driver genes that likely underlie human bone mineral density (BMD) GWAS loci. The DO mice segregate over 40M single nucleotide variants, many of which affect gene expression levels, therefore making this an ideal population for systems genetic and co-expression analyses.

      The current study builds on previous published work from the same group that used co-expression analysis to identify co-expressed "modules" of genes that were enriched for BMD GWAS associations. In this study, the authors utilized a much larger scRNA-seq dataset from 80 DO BMSC-OBs, inferred co-expression based on Bayesian networks for each identified mesenchymal cell type, focused on networks with dynamic expression trajectories that are most likely driving differentiation of BMSC-OBs, and then prioritized genes ("differentiation driver genes" or DDGs) in these osteogenic differentation networks that had known expression or splicing QTLs (eQTL/sQTLs) in any GTEx tissue that co-localized with human BMD GWAS loci. The systems analysis is impressive, the experimental methods are described in detail, and the experiments appear to be carefully done. The computational analysis of the single cell data is comprehensive and thorough, and the evidence presented in support of the identified DDGs, including Tpx2 and Fgfrl1, is for the most part convincing. Some limitations in the data resources and methods hamper enthusiasm somewhat and are discussed below.

      Overall, while this study will no doubt be valuable to the BMD community, the cross-species data integration and analytical framework may be more valuable and generally applicable to the study of other diseases, especially for diseases with robust human GWAS data but for which robust human genomic data in relevant cell types is lacking.

      Specific strengths of the study include the large scRNA-seq dataset on BMSC-OBs from 80 DO mice, the clustering analysis to identify specific cell types and sub-types, the comparison of cell type frequencies across the DO mice, and the CELLECT analysis to prioritize cell clusters that are enriched for BMD heritability (Figure 1). The network analysis pipeline outlined in Figure 2 is also a strength, as is the pseudotime trajectory analysis (results in Figure 3).

      Potential drawbacks of the authors' approach include their focus on genes that were previously identified as having an eQTL or sQTL in any GTEx tissue. The authors rightly point out that the GTEx database does not contain data for bone tissue, but reason that eQTLs can be shared across many tissues - this assumption is valid for many cis-eQTLs, but it could also exclude many genes as potential DDGs with effects that are specific to bone/osteoblasts. Indeed, the authors show that important BMD driver genes have cell-type specific eQTLs. Another issue concerns potential model overfitting in the iterativeWGCNA analysis of mesenchymal cell type-specific co-expression, which identified an average of 76 co-expression modules per cell cluster (range 26-153). Based on the limited number of genes that are detected as expressed in a given cell due to sparse per cell read depth (400-6200 reads/cell) and drop outs, it's surprising that as many as 153 co-expression modules could be distinguished within any cell cluster. I would suspect some degree of model overfitting is responsible for these results.

      Overall, though, these concerns are minor relative to the many strengths of the study design and results. Indeed, I expect the analytical framework employed by the authors here will be valuable to -- and replicated by -- researchers in other disease areas.

      Comments on revisions:

      Thank you for addressing my concerns. This is an impressive study and manuscript that you should be proud of.

    1. Reviewer #1 (Public review):

      Summary:

      The authors introduce a densely-sampled dataset where 6 participants viewed images and sentence descriptions derived from the MS Coco database over the course of 10 scanning sessions. The authors further showcase how image and sentence decoders can be used to predict which images or descriptions were seen, using pairwise decoding across a set of 120 test images. The authors find decodable information widely distributed across the brain, with a left-lateralized focus. The results further showed that modality-agnostic models generally outperformed modality-specific models, and that data based on captions was not explained better by caption-based models but by modality-agnostic models. Finally, the authors decoded imagined scenes.

      Strengths:

      (1) The dataset presents a potentially very valuable resource for investigating visual and semantic representations and their interplay.

      (2) The introduction and discussion are very well written in the context of trying to understand the nature of multimodal representations and present a comprehensive and very useful review of the current literature on the topic.

      Weaknesses:

      (1) The paper is framed as presenting a dataset, yet most of it revolves around the presentation of findings in relation to what the authors call modality-agnostic representations, and in part around mental imagery. This makes it very difficult to assess the manuscript, whether the authors have achieved their aims, and whether the results support the conclusions.

      (2) While the authors have presented a potential use case for such a dataset, there is currently far too little detail regarding data quality metrics expected from the introduction of similar datasets, including the absence of head-motion estimates, quality of intersession alignment, or noise ceilings of all individuals.

      (3) The exact methods and statistical analyses used are still opaque, making it hard for a reader to understand how the authors achieved their results. More detail in the manuscript would be helpful, specifically regarding the exact statistical procedures, what tests were performed across, or how data were pooled across participants.

      (4) Many findings (e.g., Figure 6) are still qualitative but could be supported by quantitative measures.

      (5) Results are significant in regions that typically lack responses to visual stimuli, indicating potential bias in the classifier. This is relevant for the interpretation of the findings. A classification approach less sensitive to outliers (e.g., 70-way classification) could avoid this issue. Given the extreme collinearity of the experimental design, regressors in close temporal proximity will be highly similar, which could lead to leakage effects.

      (6) The manuscript currently lacks a limitations section, specifically regarding the design of the experiment. This involves the use of the overly homogenous dataset Coco, which invites overfitting, the mixing of sentence descriptions and visual images, which invites imagery of previously seen content, and the use of a 1-back task, which can lead to carry-over effects to the subsequent trial.

      (7) I would urge the authors to clarify whether the primary aim is the introduction of a dataset and showing the use of it, or whether it is the set of results presented. This includes the title of this manuscript. While the decoding approach is very interesting and potentially very valuable, I believe that the results in the current form are rather descriptive, and I'm wondering what specifically they add beyond what is known from other related work. This includes imagery-related results. This is completely fine! It just highlights that a stronger framing as a dataset is probably advantageous for improving the significance of this work.

    1. Reviewer #1 (Public review):

      In this manuscript, the authors describe a new method to more accurately estimate the fitness advantage of new SARS-CoV-2 variants when they emerge. This was a key public health question during the pandemic and drove a number of important policy choices during the latter half of the acute phase of the pandemic. They attempt to link fitness to expected wave size. The analyses are tested on data from 33 different US states for which the data were considered sufficient. The main novelty of the method is that it links the frequency of variants to the number of cases and thus estimates fitness in terms of the reproduction number.

      The results with the new method appear to be more consistent estimates of fitness advantage over time, suggesting that the methods suggested are more accurate than the comparator methods.

      Given that the paper presents a methodological advancement, the absence of a simulation study is a weakness. I am satisfied that the trends estimated via the different approaches suggest a useful advancement for a difficult problem. However, the work would have been considerably stronger if synthetic data had been used to illustrate without doubt how the revised method better captures underlying, pre-specified differences in fitness.

    1. Reviewer #1 (Public review):

      This is a well-designed and very interesting study examining the impact of imprecise feedback on outcomes on decision-making. I think this is an important addition to the literature and the results here, which provide a computational account of several decision-making biases, are insightful and interesting.

      I do not believe I have substantive concerns related to the actual results presented; my concerns are more related to the framing of some of the work. My main concern is regarding the assertion that the results prove that non-normative and non-Bayesian learning is taking place. I agree with the authors that their results demonstrate that people will make decisions in ways that demonstrate deviations from what would be optimal for maximizing reward in their task under a strict application of Bayes rule. I also agree that they have built reinforcement learning models which do a good job of accounting for the observed behavior. However, the Bayesian models included are rather simple- per the author descriptions, applications of Bayes' rule with either fixed or learned credibility for the feedback agents. In contrast, several versions of the RL models are used, each modified to account for different possible biases. However more complex Bayes-based models exist, notably active inference but even the hierarchical gaussian filter. These formalisms are able to accommodate more complex behavior, such as affect and habits, which might make them more competitive with RL models. I think it is entirely fair to say that these results demonstrate deviations from an idealized and strict Bayesian context; however, the equivalence here of Bayesian and normative is I think misleading or at least requires better justification/explanation. This is because a great deal of work has been done to show that Bayes optimal models can generate behavior or other outcomes that are clearly not optimal to an observer within a given context (consider hallucinations for example) but which make sense in the context of how the model is constructed as well as the priors and desired states the model is given.

      As such, I would recommend that the language be adjusted to carefully define what is meant by normative and Bayesian and to recognize that work that is clearly Bayesian could potentially still be competitive with RL models if implemented to model this task. An even better approach would be to directly use one of these more complex modelling approaches, such as active inference, as the comparator to the RL models, though I would understand if the authors would want this to be a subject for future work.

      Abstract:

      The abstract is lacking in some detail about the experiments done, but this may be a limitation of the required word count? If word count is not an issue, I would recommend adding details of the experiments done and the results. One comment is that there is an appeal to normative learning patterns, but this suggests that learning patterns have a fixed optimal nature, which may not be true in cases where the purpose of the learning (e.g. to confirm the feeling of safety of being in an in-group) may not be about learning accurately to maximize reward. This can be accommodated in a Bayesian framework by modelling priors and desired outcomes. As such the central premise that biased learning is inherently non-normative or non-Bayesian I think would require more justification. This is true in the introduction as well.

      Introduction:

      As noted above the conceptualization of Bayesian learning being equivalent to normative learning I think requires either further justification. Bayesian belief updating can be biased an non-optimal from an observer perspective, while being optimal within the agent doing the updating if the priors/desired outcomes are set up to advantage these "non-optimal" modes of decision making.

      Results:

      I wonder why the agent was presented before the choice - since the agent is only relevant to the feedback after the choice is made. I wonder if that might have induced any false association between the agent identity and the choice itself. This is by no means a critical point but would be interesting to get the authors' thoughts.

      The finding that positive feedback increases learning is one that has been shown before and depends on valence, as the authors note. They expanded their reinforcement learning model to include valence; but they did not modify the Bayesian model in a similar manner. This lack of a valence or recency effect might also explain the failure of the Bayesian models in the preceding section where the contrast effect is discussed. It is not unreasonable to imagine that if humans do employ Bayesian reasoning that this reasoning system has had parameters tuned based on the real world, where recency of information does matter; affect has also been shown to be incorporable into Bayesian information processing (see the work by Hesp on affective charge and the large body of work by Ryan Smith). It may be that the Bayesian models chosen here require further complexity to capture the situation, just like some of the biases required updates to the RL models. This complexity, rather than being arbitrary, may be well justified by decision making in the real world.

      The methods mention several symptom scales- it would be interesting to have the results of these and any interesting correlations noted. It is possible that some of individual variability here could be related to these symptoms, which could introduce precision parameter changes in a Bayesian context and things like reward sensitivity changes in an RL context.

      Discussion:

      (For discussion, not a specific comment on this paper): One wonders also about participant beliefs about the experiment or the intent of the experimenters. I have often had participants tell me they were trying to "figure out" a task or find patterns even when this was not part of the experiment. This is not specific to this paper, but it may be relevant in the future to try and model participant beliefs about the experiment especially in the context of disinformation, when they might be primed to try and "figure things out".

      As a general comment, in the active inference literature, there has been discussion of state-dependent actions, or "habits", which are learned in order to help agents more rapidly make decisions, based on previous learning. It is also possible that what is being observed is that these habits are at play, and that they represent the cognitive biases. This is likely especially true given, as the authors note, the high cognitive load of the task. It is true that this would mean that full-force Bayesian inference is not being used in each trial, or in each experience an agent might have in the world, but this is likely adaptive on the longer timescale of things, considering resource requirements. I think in this case you could argue that we have a departure from "normative" learning, but that is not necessarily a departure from any possible Bayesian framework, since these biases could potentially be modified by the agent or eschewed in favor of more expensive full-on Bayesian learning when warranted. Indeed in their discussion on the strategy of amplifying credible news sources to drown out low-credibility sources, the authors hint to the possibility of longer term strategies that may produce optimal outcomes in some contexts, but which were not necessarily appropriate to this task. As such, the performance on this task- and the consideration of true departure from Bayesian processing- should be considered in this wider context. Another thing to consider is that Bayesian inference is occurring, but that priors present going in produce the biases, or these biases arise from another source, for example factoring in epistemic value over rewards when the actual reward is not large. This again would be covered under an active inference approach, depending on how the priors are tuned. Indeed, given the benefit of social cohesion in an evolutionary perspective, some of these "biases" may be the result of adaptation. For example, it might be better to amplify people's good qualities and minimize their bad qualities in order to make it easier to interact with them; this entails a cost (in this case, not adequately learning from feedback and potentially losing out sometimes), but may fulfill a greater imperative (improved cooperation on things that matter). Given the right priors/desired states, this could still be a Bayes-optimal inference at a social level and as such may be ingrained as a habit which requires effort to break at the individual level during a task such as this.

      The authors note that this task does not relate to "emotional engagement" or "deep, identity-related, issues". While I agree that this is likely mostly true, it is also possible that just being told one is being lied to might elicit an emotional response that could bias responses, even if this is a weak response.

      Comments on revisions:

      In their updated version the authors have made some edits to address my concerns regarding the framing of the 'normative' bayesian model, clarifying that they utilized a simple bayesian model which is intended to adhere in an idealized manner to the intended task structure, though further simulations would have been ideal.

      The authors, however, did not take my recommendation to explore the symptoms in the symptom scales they collected as being a potential source of variability. They note that these were for hypothesis generation and were exploratory, fair enough, but this study is not small and there should have been sufficient sample size for a very reasonable analysis looking at symptom scores.

      However, overall the toned down claims and clarifications of intent are adequate responses to my previous review.

    1. Reviewer #1 (Public review):

      Summary:

      The authors use a gambling task with momentary mood ratings from Rutledge et al. and compare computational models of choice and mood to identify markers of decisional and affective impairments underlying risk-prone behavior in adolescents with suicidal thoughts and behaviors (STB). The results show that adolescents with STB show enhanced gambling behavior (choosing the gamble rather than the sure amount), and this is driven by a bias towards the largest possible win rather than insensitivity to possible losses. Moreover, this group shows a diminished effect of receiving a certain reward (in the non-gambling trials) on mood. The results were replicated in an undifferentiated online sample where participants were divided into groups with or without STB based on their self-report of suicidal ideation on one question in the Beck Depression Inventory self-report instrument. The authors suggest, therefore, that adolescents with decreased sensitivity to certain rewards may need to be monitored more closely for STB due to their increased propensity to take risky decisions aimed at (expected) gains (such as relief from an unbearable situation through suicide), regardless of the potential losses.

      Strengths:

      (1) The study uses a previously validated task design and replicates previously found results through well-explained model-free and model-based analyses.

      (2) Sampling choice is optimal, with adolescents at high risk; an ideal cohort to target early preventative diagnoses and treatments for suicide.

      (3) Replication of the results in an online cohort increases confidence in the findings.

      (4) The models considered for comparison are thorough and well-motivated. The chosen models allow for teasing apart which decision and mood sensitivity parameters relate to risky decision-making across groups based on their hypotheses.

      (5) Novel finding of mood (in)sensitivity to non-risky rewards and its relationship with risk behavior in STB.

      Weaknesses:

      (1) The sample size of 25 for the S- group was justified based on previous studies (lines 181-183); however, all three papers cited mention that their sample was low powered as a study limitation.

      (2) Modeling in the mediation analysis focused on predicting risk behavior in this task from the model-derived bias for gains and suicidal symptom scores. However, the prediction of clinical interest is of suicidal behaviors from task parameters/behavior - as a psychiatrist or psychologist, I would want to use this task to potentially determine who is at higher risk of attempting suicide and therefore needs to be more closely watched rather than the other way around (predicting behavior in the task from their symptom profile). Unfortunately, the analyses presented do not show that this prediction can be made using the current task. I was left wondering: is there a correlation between beta_gain and STB? It is also important to test for the same relationships between task parameters and behavior in the healthy control group, or to clarify that the recommendations for potential clinical relevance of these findings apply exclusively to people with a diagnosis of depression or anxiety disorder. Indeed, in line 672, the authors claim their results provide "computational markers for general suicidal tendency among adolescents", but this was not shown here, as there were no models predicting STB within patient groups or across patients and healthy controls.

      (3) The FDR correction for multiple comparisons mentioned briefly in lines 536-538 was not clear. Which analyses were included in the FDR correction? In particular, did the correlations between gambling rate and BSI-C/BSI-W survive such correction? Were there other correlations tested here (e.g., with the TAI score or ERQ-R and ERQ-S) that should be corrected for? Did the mediation model survive FDR correction? Was there a correction for other mediation models (e.g., with BSI-W as a predictor), or was this specific model hypothesized and pre-registered, and therefore no other models were considered? Did the differences in beta_gain across groups survive FDR when including comparisons of all other parameters across groups? Because the results were replicated in the online dataset, it is ok if they did not survive FDR in the patient dataset, but it is important to be clear about this in presenting the findings in the patient dataset.

      (4) There is a lack of explicit mention when replication analyses differ from the analyses in the patient sample. For instance, the mediation model is different in the two samples: in the patient sample, it is only tested in S+ and S- groups, but not in healthy controls, and the model relates a dimensional measure of suicidal symptoms to gambling in the task, whereas in the online sample, the model includes all participants (including those who are presumably equivalent to healthy controls) and the predictor is a binary measure of S+ versus S- rather than the response to item 9 in the BDI. Indeed, some results did not replicate at all and this needs to be emphasized more as the lack of replication can be interpreted not only as "the link between mood sensitivity to CR and gambling behavior may be specifically observable in suicidal patients" (lines 582-585) - it may also be that this link is not truly there, and without a replication it needs to be interpreted with caution.

      (5) In interpreting their results, the authors use terms such as "motivation" (line 594) or "risk attitude" (line 606) that are not clear. In particular, how was risk attitude operationalized in this task? Is a bias for risky rewards not indicative of risk attitude? I ask because the claim is that "we did not observe a difference in risk attitude per se between STB and controls". However, it seems that participants with STB chose the risky option more often, so why is there no difference in risk attitude between the groups?

    1. Reviewer #1 (Public review):

      Summary:

      In the present study, Chen et al. investigate the role of Endophilin A1 in regulating GABAergic synapse formation and function. To this end, the authors use constitutive or conditional knockout of Endophilin A1 (EEN1) to assess the consequences on GABAergic synapse composition and function, as well as the outcome for PTZ-induced seizure susceptibility. The authors show that EEN1 KO mice show a higher susceptibility to PTZ-induced seizures, accompanied by a reduction in the GABAergic synaptic scaffolding protein gephyrin as well as specific GABAAR subunits and eIPSCs. The authors then investigate the underlying mechanisms, demonstrating that Endophilin A1 binds directly to gephyrin and GABAAR subunits, and identifying the subdomains of Endophilin A1 that contribute to this effect. Overall, the authors state that their study places Endophilin A1 as a new regulator of GABAergic synapse function.

      Strengths:

      Overall, the topic of this manuscript is very timely, since there has been substantial recent interest in describing the mechanisms governing inhibitory synaptic transmission at GABAergic synapses. The study will therefore be of interest to a wide audience of neuroscientists studying synaptic transmission and its role in disease. The manuscript is well written and contains a substantial quantity of data. In the revised version of the manuscript, the authors have increased the number of samples analyzed and have significantly improved the statistical analysis, thereby substantially strengthening the conclusions of their study.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript uses a diverse isolate collection of Streptococcus pneumoniae from hospital patients in the Netherlands to understand the population-level genetic basis of growth rate variation in this pathogen, which is a key determinant of S. pneumoniae within-host fitness. Previous efforts have studied this phenomenon in strain-specific comparisons, which can lack the statistical power and scope of population-level studies. The authors collected a rigorous set of in vitro growth data for each S. pneumoniae isolate and subsequently paired growth curve analysis with whole-genome analyses to identify how phylogenetics, serotype and specific genetic loci influence in vitro growth. While there were noticeable correlations between capsular serotype and phylogeny with growth metrics, they did not identify specific loci associated with altered in vitro growth, suggesting that these phenotypes are controlled by the collective effect of the entire genetic background of a strain. This is an important finding that lays the foundation for additional, more highly-powered studies that capture more S. pneumoniae genetic diversity to identify these genetic contributions.

      Strengths:

      The authors were able to completely control the experimental and genetic analyses to ensure all isolates underwent the same analysis pipeline to enhance the rigor of their findings.

      The isolate collection captures an appreciable amount of S. pneumoniae diversity and, importantly, enables disentangling the contributions of the capsule and phylogenetic background to growth rates.

      This study provides a population-level, rather than strain-specific, view of how genetic background influences growth rate in S. pneumoniae. This is an advance over previous studies that have only looked at smaller sets of strains.

      The methods used are well-detailed and robust to allow replication and extension of these analyses. Moreover, the manuscript is very well written and includes a thoughtful and thorough discussion of the strengths and limitations of the current study.

      Weaknesses:

      As acknowledged by the authors, the genetic diversity and sample size of this newly collected isolate set is still limited relative to the known global diversity of S. pneumoniae, which evidently limits the power to detect loci with smaller/combinatorial contributions to growth rate (and ultimately infection).

      The in vitro growth data is limited to a single type of rich growth medium, which may not fully reflect the nutritional and/or selective pressures present in the host.

      The current study does not use genetic manipulation or in vitro/in vivo infection models to experimentally test whether alteration of growth rates as observed in this study is linked to virulence or successful infection. The availability of a naturally diverse collection with phylogenetic and serotype combinations already identified as interesting by the authors provides a strong rationale for wet-lab studies of these phenotypes.

      Update on first revision:

      The authors have responded to all of my initial comments as well as those of the other reviewers, and I have no further concerns to be addressed.

    1. Reviewer #1 (Public review):

      Summary:

      This work by Govorunova et al. identified three naturally blue-shifted channelrhodopsins (ChRs) from ancyromonads, namely AnsACR, FtACR, and NlCCR. The phylogenetic analysis places the ancyromonad ChRs in a distinct branch, highlighting their unique evolutionary origin and potential for novel applications in optogenetics. Further characterization revealed the spectral sensitivity, ionic selectivity, and kinetics of the newly discovered AnsACR, FtACR, and NlCCR. This study also offers valuable insights into the molecular mechanism underlying the function of these ChRs, including the roles of specific residues in the retinal-binding pocket. Finally, this study validated the functionality of these ChRs in both mouse brain slices (for AnsACR and FtACR) and in vivo in Caenorhabditis elegans (for AnsACR), demonstrating the versatility of these tools across different experimental systems.<br /> In summary, this work provides a potentially valuable addition to the optogenetic toolkit by identifying and characterizing novel blue-shifted ChRs with unique properties.

      Strengths:

      This study provides a thorough characterization of the biophysical properties of the ChRs' properties and demonstrated the versatility of these tools in different ex vivo and in vivo experimental systems. The authors also explored the potential of AnsACR for multiplexed optogenetics. Finally, the mutagenesis experiments revealed the roles of key residues in the photoactive site that can affect the spectral and kinetic properties of the channelrhodopsins.

      Weaknesses:

      The revised manuscript has addressed most of the previous major weaknesses.

    1. Reviewer #1 (Public review):

      The authors report on a thorough investigation of the interaction of megakaryocytes (MK) with their associated ECM during maturation. They report convincing evidence to support the existence of a dense cage-like pericellular structure containing laminin γ1 and α4 and collagen IV, which interacts with integrins β1 and β3 on MK and serve to fix the perisinusoidal localization of MK and prevent their premature intravasation. As with everything in nature, the authors support a Goldilocks range of MK-ECM interactions - inability to digest the ECM via inhibition of MMPs leads to insufficient MK maturation and development of smaller MK. This important work sheds light into the role of cell-matrix interactions in MK maturation, and suggests that higher-dimensional analyses are necessary to capture the full scope of cellular biology in the context of their microenvironment. The authors have responded appropriately to the majority of my previous comments.

    1. Reviewer #1 (Public review):

      Summary:

      This study shows a novel role for SCoR2 in regulating metabolic pathways in the heart to prevent injury following ischemia/reperfusion. It combines a new multi-omics method to determine SCoR2 mediated metabolic pathways in the heart. This paper would be of interest to cardiovascular researchers working on cardioprotective strategies following ischemic injury in the heart.

      Strengths:

      (1) Use of SCoR2KO mice subjected to I/R injury.

      (2) Identification of multiple metabolic pathways in the heart by a novel multi-omics approach.

      Comments on revisions:

      Authors have addressed all concerns raised in the previous round of review. Substantial modifications have been made in response to those concerns. There are no further comments.

    1. Reviewer #1 (Public review):

      Summary:

      There is growing appreciation for the important of luminal (apical) ECM in tube development, but such matrices are much less well understood than basal ECMs. Here the authors provide insights into the aECM that shapes the Drosophila salivary gland (SG) tube and the importance of PAPSS-dependent sulfation in its organization and function.

      The first part of the paper focuses on careful phenotypic characterization of papss mutants, using multiple markers and TEM. This revealed reduced markers of sulfation and defects in both apical and basal ECM organization, Golgi (but not ER) morphology, number and localization of other endosomal compartments, plus increased cell death. The authors focus on the fact that papss mutants have an irregular SG lumen diameter, with both narrowed regions and bulged regions. They address the pleiotropy, showing that preventing the cell death and resultant gaps in the tube did not rescue the SG luminal shape defects and discussing similarities and differences between the papss mutant phenotype and those caused by more general trafficking defects. The analysis uses a papss nonsense mutant from an EMS screen - I appreciate the rigorous approach the authors took to analyze transheterozygotes (as well as homozygotes) plus rescued animals in order to rule out effects of linked mutations. Importantly, the rescue experiments also demonstrated that sulfation enzymatic activity is important.

      The 2nd part of the paper focuses on the SG aECM, showing that Dpy and Pio ZP protein fusions localize abnormally in papss mutants and that these ZP mutants (and Np protease mutants) have similar SG lumen shaping defects to the papss mutants. A key conclusion is that SG lumen defects correlate with loss of a Pio+Dpy-dependent filamentous structure in the lumen. These data suggest that ZP protein misregulation could explain this part of the papss phenotype.

      Overall, the text is very well written and clear. Figures are clearly labeled. The methods involve rigorous genetic approaches, microscopy, and quantifications/statistics and are documented appropriately. The findings are convincing.

      Significance:

      This study will be of interest to researchers studying developmental morphogenesis in general and specifically tube biology or the aECM. It should be particularly of interest to those studying sulfation or ZP proteins (which are broadly present in aECMs across organisms, including humans).

      This study adds to the literature demonstrating the importance of luminal matrix in shaping tubular organs and greatly advances understanding of the luminal matrix in the Drosophila salivary gland, an important model of tubular organ development and one that has key matrix differences (such as no chitin) compared to other highly studied Drosophila tubes like the trachea.

      The detailed description of the defects resulting from papss loss suggests that there are multiple different sulfated targets, with a subset specifically relevant to aECM biology. A limitation is that specific sulfated substrates are not identified here (e.g. are these the ZP proteins themselves or other matrix glycoproteins or lipids?); therefore, it's not clear how direct or indirect the effects of papss are on ZP proteins. However, this is clearly a direction for future work and does not detract from the excellent beginning made here.

    1. Reviewer #1 (Public review):

      Summary:

      The authors of this study propose a model in which NPY family regulators antagonize the activity of the pid mutation in the context of floral development and other auxin-related phenotypes. This is hypothesized to occur through regulation of or by PID and its action on the PIN1 auxin transporter.

      Strengths:

      The findings are intriguing.

      Weaknesses and Major Comments:

      (1) While the findings are indeed intriguing, the mechanism of action and interaction among these components remains poorly understood. The study would benefit from significantly more thorough and focused experimental analyses to truly advance our understanding of pid phenotypes and the interplay among PID, NPYs, and PIN1.

      (2) The manuscript appears hastily assembled, with key methodological and conceptual details either missing or inconsistent. Although issues with figure formatting and clarity (e.g., lack of scale bars and inconsistent panel layout) may alone warrant revision, the content remains the central concern and must take precedence over presentation.

      (3) Given that fertile progeny are obtained from pid-TD pin1/PIN1 and pid NPY OE lines, it would be important to analyze whether mutations and associated phenotypes are heritable. This is especially relevant since CRISPR lines can be mosaic. Comprehensive genotyping and inheritance studies are required.

      (4) The Materials and Methods section lacks essential information on how the lines were generated, genotyped, propagated, and scored. There is also generally no mention of how reproducible the observations were. These genetic experiments need to be described in detail, including the number of lines analyzed and consistency across replicates.

      (5) The nature of the pid alleles used in the study is not described. This is essential for interpretation.

      (6) The authors measure PIN1 phosphorylation in response to NPY overexpression and conclude that the newly identified phosphorylation sites are inhibitory because they do not overlap with known activating sites. This conclusion is speculative without functional validation. Functional assays are available and must be included to substantiate this claim.

      (7) Figure 5 implies that NPY1 acts downstream of PID, but there is no biochemical evidence supporting this hierarchy. Additional experiments are needed to demonstrate the epistatic or regulatory relationship.

      (8) The authors should align their genetic observations with cell biological data on PIN1, PIN2, and PID localization and distribution.

    1. Reviewer #1 (Public review):

      The authors use inducible Fz::mKate2-sfGFP to explore "cell-scale signaling" in PCP. They reach several conclusions. First, they conclude that cell-scale signaling does not depend on limiting pools of core components (other than Fz). Second, they conclude that cell-scale signaling does not depend on microtubule orientation, and third, they conclude that cell-scale signaling is strong relative to cell to cell coupling of polarity.

      There are some interesting inferences that can be drawn from the manuscript, but there are also some significant challenges in interpreting the results and conclusions from the work as presented. I suggest that the authors 1) define "cell-scale signaling," as the precise meaning must be inferred, 2) reconsider some premises upon which some conclusions depend, 3) perform an essential assay validation, and 4) explain some other puzzling inconsistencies.

      Major concerns:

      The exact meaning of cell-scale signaling is not defined, but I infer that the authors use this term to describe how what happens on one side of a cell affects another side. The remainder of my critique depends on this understanding of the intended meaning.

      The authors state that any tissue wide directional information comes from pre-existing polarity and its modification by cell flow, such that the de novo signaling paradigm "bypasses" these events and should therefore not be responsive to any further global cues. It is my understanding that this is not a universally accepted model, and indeed, the authors' data seem to suggest otherwise. For example, the image in Fig 5B shows that de novo induction restores polarity orientation to a predominantly proximal to distal orientation. If no global cue is active, how is this orientation explained? The 6 hr condition, that has only partial polarity magnitude, is quite disordered. Do the patterns at 8 and 10 hrs become more proximally-distally oriented? It is stated that they all show swirls, but please provide adult wing images, and the corresponding orientation outputs from QuantifyPolarity to help validate the notion that the global cues are indeed bypassed by this paradigm.

      It is implicit that, in the de novo paradigm, polarization is initiated immediately or shortly after heat shock induction. However, the results should be differently interpreted if the level of available Fz protein does not rise rapidly and then stabilize before the 6 hr time point, and instead continues to rise throughout the experiment. Western blots of the Fz::mKate2-sfGFP at time points after induction should be performed to demonstrate steady state prior to measurements. Otherwise, polarity magnitude could simply reflect the total available pool of Fz at different times after induction. Interpreting stability is complex, and could depend on the same issue, as well as the amount of recycling that may occur. Prior work from this lab using FRAP suggested that turnover occurs, and could result from recycling as well as replenishment from newly synthesized protein.

      From the Fig 3 results, the authors claim that limiting pools of core proteins do not explain cell-scale signaling, a result expected based on the lack of phenotypes in heterozygotes, but of course they do not test the possibility that Fz is limiting. They do note that some other contributing protein could be.

      In Fig 3, it is unclear why the authors chose to test dsh1/+ rather than dsh[null]/+. In any case, the statistically significant effect of Dsh dose reduction is puzzling, and might indicate that the other interpretation is correct. Ideally, a range including larger and smaller reductions would be tested. As is, I don't think limiting Dsh is ruled out.

      The data in Fig 5 are somewhat internally inconsistent, and inconsistent with the authors' interpretation. In both repolarization conditions, the authors claim that repolarization extends only to row 1, and row 1 is statistically different from non-repolarized row 1, but so too is row 3. Row 2 is not. This makes no sense, and suggests either that the statistical tests are inappropriate and/or the data is too sparse to be meaningful. For the related boundary intensity data in Fig 6, the authors need to describe exactly how boundaries were chosen or excluded from the analysis. Ideally, all boundaries would be classified as either meido-lateral (meaning anterior-posterior) or proximal-distal depending on angle.

      If the authors believe their Fig 5 and 6 analyses, how do they explain that hairs are reoriented well beyond where the core proteins are not? This would be a dramatic finding, because as far as I know, when core proteins are polarized, prehair orientation always follows the core protein distribution. Surprisingly, the authors do not so much as comment about this. The authors should age their wings just a bit more to see whether the prehair pattern looks more like the adult hair pattern or like that predicted by their protein orientation results.

  3. Aug 2025
    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Liu et al have tried to dissect the neural and molecular mechanisms that C. elegans use to avoid the digestion of harmful bacterial food. Liu et al show that C. elegans use ON-OFF state of AWC olfactory neurons to regulate the digestion of harmful gram-positive bacteria S. saprophyticus (SS). Authors show that when C. elegans are fed on SS food, AWC neurons switch to OFF fate, which prevents the digestion of S. saprophyticus, and this helps C. elegans avoid these harmful bacteria. Using genetic and transcriptional analysis as well as making use of previously published findings, Liu et al implicate p38 MAPK pathway (in particular, NSY-1, the C. elegans homolog of MAPKKK ASK1) and insulin signaling in this process.

      Strengths:

      The revised manuscript has improved significantly. The authors have addressed almost all the comments that I had in my initial review.

      Weaknesses:

      None.

    1. Reviewer #1 (Public review):

      The authors adequately addressed the concerns I raised in my initial review, which are noted below.

      (1) I suggest that the authors choose a different term in their title, abstract and manuscript to describe the phenotypes associated with ufd-1 and npl-4 knockdown other than an "inflammation-like response." Inflammation is a pathological term with four cardinal signs: redness (rubor), swelling (tumor), warmth (calor) and pain (dolor). These are not symptoms known to occur in C. elegans. The authors could consider using "inappropriate," "aberrant" or "toxic" immune activation in the title and abstract.

      (2) I think it is important to point out in the context of the authors novelty claim in the abstract and manuscript that the toxic effects of inappropriate immune activation in C. elegans has been widely catalogued. For example: doi.org/10.1371/journal.ppat.1011120 (2023); doi:10.1186/s12915-016-0320-z (2016).; doi:10.1126/science.1203411 (2011); doi:10.1534/g3.115.025650 (2016). In addition, doi:10.7554/eLife.74206 (2022) previously described a mutation that caused innate immune activation that reduced accumulation of P. aeruginosa in the intestine, but also caused animals to have a shortened lifespan.

      Thus, I do not think this study reveals the existence of inflammatory-like responses in C. elegans, as stated by the authors. Indeed, I think it is important for the authors to remove this novelty claim from their paper and discuss their work in the context of these studies in a paragraph in the introduction.

      (3) The authors rely on the use of RNAi of ufd-1 and npl-4 to study their effect on P. aeruginosa colonization and pathogen resistance throughout the manuscript. To address the possibility of off-target effects of the RNAi, the authors should consider both (i) showing with qRT-PCR that these genes are indeed targeted during RNAi, and (ii) confirming their phenotypes with an orthologous technique, preferably by studying ufd-1 and npl-4 loss-of-function mutants [both in the wild-type and sek-1(km4) backgrounds]. If mutation of these genes is lethal, the authors could use Auxin Inducible Degron (AID) technology to induce the degradation of these proteins in post-developmental animals.

      (4) I am confused about the author's explanation regarding their observation that inhibition of the UFD-1/ NPL-4 complex extends the lifespan of sek-1(km25) animals, but not pmk-1(km25) animals, as SEK-1 is the MAPKK that functions immediately upstream of the p38 MAPK PMK-1 to promote pathogen resistance.

      I am also confused why their RNA-seq experiment revealed a signature of intracellular pathogen response genes and not PMK-1 targets, which the authors propose is accounting for toxic immune activation. Activation of which immune response leads to toxicity?

      (5) The authors did not test alternative explanations for why UFD-1/ NPL-4 complex inhibition compromises survival during pathogen infection, other than exuberant immune activation. For example, it is possible that inhibition of this proteosome complex shortens lifespan by compromising the general health/ normal physiology of nematodes. Immune responses could be activated as a secondary consequence of this stress, and not be a direct cause of early mortality. Does sek-1(km4) mutant suppress the lifespan shortened lifespan of ufd-1 and npl-4 knockdown? This experiment should also be done with loss-of-function mutants, as noted in point 3.

      (6) The conclusion of Figure 6 hinges on an experiment that uses double RNAi to knockdown two genes at the same time (Fig. 6D and 6G), an approach that is inherently fraught in C. elegans biology owing to the likelihood that the efficiency of RNAi-mediated gene knockdown is compromised and may account for the observed phenotypes. The proper control for double RNAi is not empty vector + ufd-1(RNAi), but rather gfp(RNAi) + ufd-1(RNAi), as the introduction of a second hairpin RNA is what may compromise knockdown efficiency. In this context, it is important to confirm that knockdown of both genes occurs as expected (with qRT-PCR) and to confirm this phenotype using available elt-2 loss-of-function mutants.

      (7) A supplementary table with the source data for at least three replications (mean lifespan, n, statistical comparison) for each pathogenesis assay should be included in this manuscript.

      Comments on revisions:

      The authors adequately addressed the concerns I raised.

    1. Reviewer #1 (Public review):

      In the manuscript, Aldridge and colleagues investigate the role of IL-27 in regulating hematopoiesis during T. gondii infection. Using loss-of-function approaches, reporter mice, and the generation of serial chimeric mice, they elegantly demonstrate that IL-27 induction plays a critical role in modulating bone marrow myelopoiesis and monocyte generation to the infection site. The study is well-designed, with clear experimental approaches that effectively address the mechanisms by which IL-27 regulates bone marrow myelopoiesis and prevents HSC exhaustion. I have two minor comments that could enhance the conceptual framework of this study:

      (1) The authors indirectly show that IL-27R expression on HSPCs is necessary for regulating HSC proliferation and preventing exhaustion. However, given that they have access to IL-27RFlox mice, they could cross these with Fgd5Cre mice to specifically delete IL-27R on long-term HSCs. This would provide direct evidence for the role of IL-27 signaling in LTHSCs during infection.

      (2) Since memory T and B cells often home to the bone marrow, it would be interesting to consider the potential cross-talk between these cells, HSPCs, and IL-27 signaling during secondary T. gondii infection. A brief discussion of this possibility would strengthen the study's broader implications.

    1. Reviewer #1 (Public review):

      Summary:

      The authors were attempting to describe if trained innate immunity would modulate antibody dependent-cellular phagocytosis (ADCP) and/or efferocytosis.

      Strengths:

      The use of primary murine macrophages, and not a cell line, is considered a strength.

      The trained immunity mediated changes to phagocytosis affected both myeloma and breast cancer cells. The broad effect is consistent with trained immunity.

      In this revised manuscript, the authors now include in vivo data to show in vivo relevance.

      Weaknesses:

      There are many types of cancers so it would be helpful to focus the title more for the types of cancers included in the present study, the most relevant of course would be the type of cancer used for the in vivo model.

    1. Reviewer #1 (Public review):

      Summary:

      This fundamental work employed multidisciplinary approaches and conducted rigorous experiments to study how a specific subset of neurons in the dorsal striatum (i.e., "patchy" striatal neurons) modulates locomotion speed depending on the valence of naturalistic contexts.

      Strengths:

      The scientific findings are novel and original and significantly advance our understanding of how the striatal circuit regulates spontaneous movement in various contexts.

      Weaknesses:

      This is extensive research involving various circuit manipulation approaches. Some of these circuit manipulations are not physiological. This is discussed.

    1. Reviewer #1 (Public review):

      Summary:

      The authors have investigated the role of GAT3 in the visual system. First, they have developed a CRISPR/Cas9-based approach to locally knock out this transporter in the visual cortex. They then demonstrated electrophysiologically that this manipulation increases inhibitory synaptic input into layer 2/3 pyramidal cells. They further examined the functional consequences by imaging neuronal activity in the visual cortex in vivo. They found that absence of GAT3 leads to reduced spontaneous neuronal activity and attenuated neuronal responses and reliability to visual stimuli, but without an effect on orientation selectivity. Further analysis of this data suggests that Gat3 removal leads to less coordinated activity between individual neurons and in population activity patterns, thereby impaired information encoding. Overall, this is an elegant and technically advanced study that demonstrates a new and important role of GAT3 in controlling processing of visual information.

      Strengths:

      Development of a new approach for a local knockout (GAT3)

      Important and novel insights into visual system function and its dependence on GAT3

      Plausible cellular mechanism

      Weaknesses:

      No major weaknesses.

    1. Reviewer #1 (Public review):

      The manuscript by Yin and colleagues addresses a long-standing question in the field of cortical morphogenesis, regarding factors that determine differential cortical folding across species and individuals with cortical malformations. The authors present work based on a computational model of cortical folding evaluated alongside a physical model that makes use of gel swelling to investigate the role of a two-layer model for cortical morphogenesis. The study assesses these models against empirically derived cortical surfaces based on MRI data from ferret, macaque monkey, and human brains.

      The manuscript is clearly written and presented, and the experimental work (physical gel modeling as well as numerical simulations) and analyses (subsequent morphometric evaluations) are conducted at the highest methodological standards. It constitutes an exemplary use of interdisciplinary approaches for addressing the question of cortical morphogenesis by bringing together well-tuned computational modeling with physical gel models. In addition, the comparative approaches used in this paper establish a foundation for broad-ranging future lines of work that investigate the impact of perturbations or abnormalities during cortical development.

      The cross-species approach taken in this study is a major strength of the work. However, correspondence across the two methodologies did not appear to be equally consistent in predicting brain folding across all three species. The results presented in Figures 4 (and Figures S3 & S4) show broad correspondence in shape index and major sulci landmarks across all three species. Nevertheless, the results presented for the human brain lack the same degree of clear correspondence for the gel model results as observed in the macaque and ferret. While this study clearly establishes a strong foundation for comparative cortical anatomy across species and the impact of perturbations on individual morphogenesis, further work that fine-tunes physical modeling of complex morphologies, such as that of the human cortex, may help to further understand the factors that determine cortical functionalization and pathologies.

    1. Reviewer #1 (Public review):

      Summary:

      In this work, Wang et al. use a combination of genetic tools, novel experimental approaches and biomechanical models to quantify the contribution of passive leg forces in Drosophila. They also deduce that passive forces are not sufficient to support the body weight of the animal. Overall, the contribution of passive forces reported in this work is much less than what one would expect based on the size of the organism and previous literature from larger insects and mammals. This is an interesting finding, but some major caveats in their approach remain unanswered.

      Strengths:

      (1) The authors combine experimental measurements and modeling to quantify the contributions of passive forces at limb joints in Drosophila.

      (2) The authors replicate a previous experimental strategy (Hooper et al 2009, J. Neuro) to suspend animals in air for measuring passive forces and, as in previous studies, find that passive forces are much stronger than gravitational forces acting on the limbs. While in these previous studies using large insects, a lot of invasive approaches for accurately quantifying passive forces are possible (e.g., physically cutting of nerves, directly measuring muscle forces in isolated preparations, etc), the small size of Drosophila makes this difficult. The authors overcome this using a novel approach where they attach additional weight to the leg (changes gravitational force) and inactivate motor neurons (remove active forces). With a few approximations and assumptions, the authors then deduce the contribution of passive forces at each joint for each leg.

      (3) The authors find interesting differences in passive forces across different legs. This could have behavioral implications.

      (4) Finally, the authors compare experimental results of how a free-standing Drosophila is lowered ("falls down") on silencing motor neurons, to a biomechanical "OpenSim" model for deducing the role of passive forces in supporting the body weight of the fly. Using this approach, they conclude that passive forces are not sufficient to support the body weight of the fly.

      Weaknesses:

      (1) Line 65 "(Figure 1A). Inactivation causes a change in the leg's rest position; however, in preliminary experiments, the body rotation did not have a large effect on the rest positions of the leg following inactivation. This result is consistent with the one already reported for stick insects and shows that passive forces within the leg are much larger than the gravitational force on a leg and dominate limb position [1]." This is the direct replication of the previous work by Hooper et al 2009 and therefore authors should ideally show the data for this condition (no weight attached).

      (2) The authors use vglut-gal4, a very broad driver for inactivating motor neurons. The driver labels all glutamatergic neurons, including brain descending neurons and nerve cord interneurons, in addition to motor neurons. Additionally, the strength of inactivation might differ in different neurons (including motor neurons) depending on the expression levels of the opsins. As a result, in this condition, the authors might not be removing all active forces. This is a major caveat that authors do not address. They explore that they are not potentially silencing all inputs to muscles by using an additional octopaminergic driver, but this doesn't address the points mentioned above. At the very least, the authors should try using other motor neuron drivers, as well as other neuronal silencers. This driver is so broad that authors couldn't even use it for physiology experiments. Additionally, the authors could silence VGlut-labeled motor neurons and record muscle activity (potentially using GCaMP as has been done in several recent papers cited by the authors, Azevedo et al, 2020) as a much more direct readout.

      (3) Figure 4 uses an extremely simplified OpenSim model that makes several assumptions that are known to be false. For example, the Thorax-Coxa joint is assumed to be a ball and socket joint, which it is not. Tibia-tarsus joint is completely ignored and likely makes a major contribution in supporting overall posture, given the importance of the leg "claw" for adhering to substrates. Moreover, there are a couple of recent open-source neuromechanical models that include all these details (NeuromechFly by Lobato-Rios et al, 2022, Nat. Methods, and the fly body model by Vaxenburg et al, 2025, Nature). Leveraging these models to rule in or rule out contributions at other joints that are ignored in the authors' OpenSim model would be very helpful to make their case.

      (4) Figure 5 shows the experimental validation of Figure 4 simulations; however, it suffers from several caveats.

      a) The authors track a single point on the head of the fly to estimate the height of the fly. This has several issues. Firstly, it is not clear how accurate the tracking would be. Secondly, it is not clear how the fly actually "falls" on VGlut silencing; do all flies fall in a similar manner in every trial? Almost certainly, there will be some "pitch" and "role" in the way the fly falls. These will affect the location of this single-tracked point that doesn't reflect the authors' expectations. Unless the authors track multiple points on the fly and show examples of tracked videos, it is hard to believe this dataset and, hence, any of the resulting interpretations.

      b) As described in the previous point, the "reason" the fly falls on silencing all glutamatergic neurons could be due to silencing all sorts of premotor/interneurons in addition to the silencing of motor neurons.

      c) (line 175) "The first finding is that there was a large variation in the initial height of the fly (Figure 5C), consistent with a recent study of flies walking on a treadmill[20]." The cited paper refers to how height varies during "walking". However, in the current study, the authors are only looking at "standing" (i.e. non-walking) flies. So it is not the correct reference. In my opinion, this could simply reflect poor estimation of the fly's height based on poor tracking or other factors like pitch and role.

      d) "The rate at which the fly fell to the ground was much smaller in the experimental flies than it was in the simulated flies (Figure 5E). The median rate of falling was 1.3 mm/s compared to 37 mm/s for the simulated flies (Figure 5F). (Line 190) The most likely reason for the longer than expected time for the fly to fall is delays associated with motor neuron inactivation and muscle inactivation." I don't believe this reasoning. There are so many caveats (which I described in the above points) in the model and the experiment, that any of those could be responsible for this massive difference between experiment and modeling. Simply not getting rid of all active forces (inadequate silencing) could be one obvious reason. Other reasons could be that the model is using underestimates of passive forces, as alluded to in point 3.

      (5) Final figure (Figure 6) focuses on understanding the time course of neuronal silencing. First of all, I'm not entirely sure how relevant this is for the story. It could be an interesting supplemental data. But it seems a bit tangential. Additionally, it also suffers from major caveats.

      a) The authors now use a new genetic driver for which they don't have any behavioral data in any previous figures. So we do not know if any of this data holds true for the previous experiments. The authors perform whole-cell recordings from random unidentified motor neurons labeled by E49-Gal4>GtACR1 to deduce a time constant for behavioral results obtained in the VGlut-Gal4>GtACR1 experiments.

      b) The DMD setup is useful for focal inactivation, however, the appropriate controls and data are not presented. Line 200 "A spot of light on the cell body produces as much of the hyperpolarization as stimulating the entire fly (mean of 11.3 mV vs 13.1 mV across 9 neurons). Conversely, excluding the cell body produces only a small effect on the MN (mean of 2.6 mV)." First of all, the control experiment for showing that DMD is indeed causing focal inactivation would be to gradually move the spot of light away from the labeled soma, i.e. to the neighboring "labelled" soma and show that there is indeed focal inactivation. Instead authors move it quite a long distance into unlabeled neuropil. Secondly, I still don't get why the authors are doing this experiment. Even if we believe the DMD is functioning perfectly, all this really tells us is that a random subset motor neurons (maybe 5 or 6 cells, legend is missing this info) labeled by E49-Gal4 is strongly hyperpolarized by its own GtACR1 channel opening, rather than being impacted because of hyperpolarizations in other E49-Gal4 labeled neurons. This has no relevance to the interpretation of any of the VGlut-Gal4 behavioral data. VGLut-Gal4 is much broader and also labels all glutamatergic neurons, most of which are inhibitory interneurons whose silencing could lead to disinhibition of downstream networks.

    1. Reviewer #1 (Public review):

      The manuscript by Choi and colleagues investigates the impact of variation in cortical geometry and growth on cortical surface morphology. Specifically, the study uses physical gel models and computational models to evaluate the impact of varying specific features/parameters of the cortical surface. The study makes use of this approach to address the topic of malformations of cortical development and finds that cortical thickness and cortical expansion rate are the drivers of differences in morphogenesis.

      The study is composed of two main sections. First, the authors validate numerical simulation and gel model approaches against real cortical postnatal development in the ferret. Next, the study turns to modelling malformations in cortical development using modified tangential growth rate and cortical thickness parameters in numerical simulations. The findings investigate three genetically linked cortical malformations observed in the human brain to demonstrate the impact of the two physical parameters on folding in the ferret brain.

      This is a tightly presented study that demonstrates a key insight into cortical morphogenesis and the impact of deviations from normal development. The dual physical and computational modeling approach offers the potential for unique insights into mechanisms driving malformations. This study establishes a strong foundation for further work directly probing the development of cortical folding in the ferret brain. One weakness of the current study is that the interpretation of the results in the context of human cortical development is at present indirect, as the modelling results are solely derived from the ferret. However, these modelling approaches demonstrate proof of concept for investigating related alterations more directly in future work through similar approaches to models of the human cerebral cortex.

    1. Reviewer #1 (Public review):

      Summary:

      Foik et al. report that hypochlorous acid, a reactive chlorine species generated during host defense, activates the transcription of the froABCD in P. aeruginosa. This gene cluster had previously been associated with a potential role during the flow of fluids and appears to be regulated by the sigma factor FroR and its anti-sigma factor FroI. In the present study, the authors show that froABCD is expressed both in neutrophils and macrophages, which they claim is likely a result of HOCl but not H2O2 production. Fro expression is also induced in a murine model of corneal infection, which is characterized by immune cell invasion. Expression of the fro system can be quenched by several antioxidants, such as methionine, cysteine, and others. FroR-deficient cells that lack froABCD expression during HOCl stress appear more sensitive to the oxidant.

      Strengths:

      The authors provide a number of data supporting their claim that transcription of the froABCD system is induced by reactive chlorine species. This was shown by RNAseq, qRT-PCR, and through microscopy using a transcriptional reporter fusion. Likewise, elevated expression of froABCD was shown in vitro and in vivo, excluding potential in vitro artifacts. The manuscript, while mostly descriptive, is easy to follow, and the data were presented clearly.

      Weaknesses:

      (1) Lines 60-62: Some of the authors' conclusions are not supported by the data and thus appear unfounded. One example: "we determine that fro upregulation.....These data suggest a novel mechanism..." Their data do not show that MSR upregulation is a direct effect of FroABCD. Instead, it could be possible that the FroR sigma factor also controls the expression of msr genes, which would be independent of froABCD.

      (2) The authors show increased fro transcription both in neutrophils and macrophages; however, the two types of immune cells differ quite dramatically with respect to myeloperoxidase activation and HOCl production. Neither has this been discussed nor considered here.

      (3) With respect to the activation of fro expression upon challenge with conditioned media from stimulated neutrophils, does the conditioned media contain detectable amounts of HOCl? Do chloramines, which are byproducts of HOCl oxidation with amines, also stimulate expression?

      (4) A better control to prove that this fro expression is indeed induced by HOCl in activated neutrophils would be to conduct the experiments in the presence of a myeloperoxidase inhibitor.

      (5) The work was conducted with two different P. aeruginosa strains (i.e. AL143 and PAO1F). None of the figure legends provides details on which strain was used. For instance, in line 111, the authors refer to Figure S1B for data that I thought were done with PAO1F, while in 154, data were presented in the context of the infection model, which was conducted with the other strain.

      (6) It would be good if immune cell recruitment at 2hrs and 20hrs PI could be quantified.

      (7) The conclusions of Figure 4 are, in my opinion, weak (line 187-188; "It is possible that ....."). These antioxidants likely quench the low amounts of NaOCl directly. This would significantly reduce the NaOCl concentrations to a level that no longer activates expression of fro. There is no direct evidence provided that oxidized methionine induces fro expression. Do the authors postulate that this is free methionine, or could methionine and/or cysteine oxidation in FroR increase the binding affinity of the sigma factor to the promoter? Another possibility is that NaOCl deactivates the anti-sigma factor. None of these scenarios has been considered here.

      (8) Line 184: The reaction constants of HOCl with Cys and Met are similar.

      (9) Treatment with 16 uM NaOCl caused a growth arrest of ~15 hrs in the WT (Figure 5A), whereas no growth at all was recorded with 7.5 uM in Figure 3A.

      (10) The concentration range of NaOCl causing fro expression is extremely narrow, while oxidative burst rapidly generates HOCl at much higher concentrations. This should be discussed in more detail.

    1. Reviewer #1 (Public review):

      Summary:

      This study investigated the heterogeneous responses to Mycobacterium tuberculosis (Mtb) in 19 wild-derived inbred mouse strains collected from various geographic locations. The goal of this study is to identify novel mechanisms that regulate host susceptibility to Mtb infection. Using the genetically resistant C57BL/6 mouse strain as the control, they successfully identified a few mouse strains that revealed higher bacterial burdens in the lung, implicating increased susceptibility in those mouse strains. Furthermore, using flow cytometry analysis, they discovered strong correlations between CFU and various immune cell types, including T cells and B cells. The higher neutrophil numbers correlated with significantly higher CFU in some of the newly identified susceptible mouse strains. Interestingly, MANB and MANC mice exhibited comparable numbers of neutrophils but showed drastically different bacterial burdens. The authors then focused on the neutrophil heterogeneity and utilized a single-cell RNA-seq approach, which led to identifying distinct neutrophil subsets in various mouse strains, including C57BL/6, MANA, MANB, and MANC. Pathway analysis on neutrophils in susceptible MANC strain revealed a highly activated and glycolytic phenotype, implicating a possible mechanism that may contribute to the susceptible phenotype. Lastly, the authors found that a small group of neutrophil-specific genes are expressed across many other cell types in the MANC strain.

      Strengths:

      This manuscript has many strengths.

      (1) Utilizing and characterizing novel mouse strains that complement the current widely used mouse models in the field of TB. Many of those mouse strains will be novel tools for studying host responses to Mtb infection.

      (2) The study revealed very unique biology of neutrophils during Mtb infection. It has been well-established that high numbers of neutrophils correlate with high bacterial burden in mice. However, this work uncovered that some mouse strains could be resistant to infection even with high numbers of neutrophils in the lung, indicating the diverse functions of neutrophils. This information is important.

      Weaknesses:

      The weaknesses of the manuscript are that the work is relatively descriptive. It is unclear whether the neutrophil subsets are indeed functionally different. While single-cell RNA seq did provide some clues at transcription levels, functional and mechanistic investigations are lacking. Similarly, it is unclear how highly activated and glycolytic neutrophils in MANC strain contribute to its susceptibility.

    1. Reviewer #1 (Public review):

      Summary:

      The work by Pinon et al describes the generation of a microvascular model to study Neisseria meningitidis interactions with blood vessels. The model uses a novel and relatively high throughput fabrication method that allows full control over the geometry of the vessels. The model is well characterized from the vascular standpoint and shows improvements when exposed to flow. The authors show that Neisseria binds to the 3D model in a similar geometry that in the animal xenograft model, induces an increase in permeability short after bacterial perfusion, and endothelial cytoskeleton rearrangements including a honeycomb actin structure. Finally, the authors show neutrophil recruitment to bacterial microcolonies and phagocytosis of Neisseria.

      Strengths:

      The article is overall well written, and it is a great advancement in the bioengineering and sepsis infection field. The authors achieved their aim at establishing a good model for Neisseria vascular pathogenesis and the results support the conclusions. I support the publication of the manuscript. I include below some clarifications that I consider would be good for readers.

      One of the most novel things of the manuscript is the use of a relatively quick photoablation system. Could this technique be applied in other laboratories? While the revised manuscript includes more technical details as requested, the description remains difficult to follow for readers from a biology background. I recommend revising this section to improve clarity and accessibility for a broader scientific audience.

      The authors suggest that in the animal model, early 3h infection with Neisseria do not show increase in vascular permeability, contrary to their findings in the 3D in vitro model. However, they show a non-significant increase in permeability of 70 KDa Dextran in the animal xenograft early infection. As a bioengineer this seems to point that if the experiment would have been done with a lower molecular weight tracer, significant increases in permeability could have been detected. I would suggest to do this experiment that could capture early events in vascular disruption.

      One of the great advantages of the system is the possibility of visualizing infection-related events at high resolution. The authors show the formation of actin of a honeycomb structure beneath the bacterial microcolonies. This only occurred in 65% of the microcolonies. Is this result similar to in vitro 2D endothelial cultures in static and under flow? Also, the group has shown in the past positive staining of other cytoskeletal proteins, such as ezrin in the ERM complex. Does this also occur in the 3D system?

      Significance:

      The manuscript is comprehensive, complete and represents the first bioengineered model of sepsis. One of the major strengths is the carful characterization and benchmarking against the animal xenograft model. Beyond the technical achievement, the manuscript is also highly quantitative and includes advanced image analysis that could benefit many scientists. The authors show a quick photoablation method that would be useful for the bioengineering community and improved the state-of-the-art providing a new experimental model for sepsis.

      My expertise is on infection bioengineered models.

    1. Reviewer #1 (Public review):

      Summary:

      In this report, Yabaji et al describe studies designed to address the mechanism behind the TB susceptibility gene sst1. This locus is known to affect expression of IFN and synergizes with Myc to potentiate infectivity. Using a variety of molecular expression and imaging techniques, the authors demonstrate that mice harboring an sst1 transgene (compared to B6 controls) are highly susceptible to TB infection via a mechanism involving loss of antioxidant defense systems, the down regulation of key antioxidant genes and ferritin controlling intracellular iron levels. The combination of increased iron plus decreased antioxidant defense systems in turn increases lipid peroxidation and downstream sequelae. Inhibition of peroxidation diminishes infectivity increases ferritin levels. Furthermore, the authors demonstrate that Myc activation potentiates this process and that down regulation of NRF2 antioxidant defenses accompany potentiated infectivity. Increased peroxidation products (4-HNE) may activate the ASK1/JNK system leading to IFNb superinduction and diminished macrophage viability thereby diminishing ability to withstand TB infection. Extending these findings, additional mouse models plus some work in humans supports the peroxidation hypothesis. Overall, the work is significant for it introduces a molecular basis for TB infectivity and presents a potential novel therapeutic opportunity.

      Strengths:

      (1) Strengths of this study include a multi-omic analysis of infectivity combining gene expression analysis with biochemical and cell biological evaluation.

      (2) Novel identification of an iron-catalyzed lipid peroxidation based mechanism for why the sst1 locus is linked to TB infection.

      (3) Parallels to human biology are included via analysis of Myc upregulation in peripheral blood from patients.

      (4) Appropriate statistical analysis

      Weaknesses:

      (1) Lipid peroxidation is a broad phenotype process and the authors honed in on 4-HNE dependent processes as a likely mechanism because they can measure 4-HNE conjugated proteins. However, lipid peroxidation is a complex phenomenon and the work presented herein is largely descriptive.

      (2) The authors continually refer to increased 4HNE while they do not measure this 9 carbon lipid, they actually measure 4-HNE conjugated proteins immunochemically.

      (3) The authors do not distinguish between increased protein-HNE adducts and increased membrane peroxidation (or both) as mechanistically linked to infectivity.

    1. Reviewer #1 (Public review):

      Summary:

      The authors add to the body of evidence showing theta rhythmic modulations of neuronal activity and behavior.

      Strengths:

      Precise characterization of the effects of visual stimulation on theta-induced neuronal oscillations of spiking neurons in V1 and its relevance for behavior.

      The manuscript is well-written and clearly presented,

      Weaknesses:

      The advances are limited over the established body of evidence. Both theta-induced visual oscillations and their relevance for behavior have been firmly established by prior work, including prior work from the authors. There is no major new technique, data, finding, or insight that extends our knowledge in a majorly significant way beyond existing knowledge, in my opinion. I would suggest that the authors re-evaluate the body of existing work to more strongly place their work in the context of existing work. A study that targets fundamental holes or open questions in the field would have been viewed as more impactful.

    1. Reviewer #2 (Public review):

      This manuscript describes the role of the production of c-di-AMP on the chlamydial developmental cycle. The main findings remain the same. The authors show that overexpression of the dacA-ybbR operon results in increased production of c-di-AMP and early expression of transitionary and late genes. The authors also knocked down the expression of the dacA-ybbR operon and reported a modest reduction in the expression of both hctA and omcB. The authors conclude with a model suggesting the amount of c-di-AMP determines the fate of the RB, continued replication, or EB conversion.

      Overall, this is a very intriguing study with important implications however the data is very preliminary and the model is very rudimentary. The data support the observation that dramatically increased c-di-AMP has an impact on transitionary gene expression and late gene expression suggesting dysregulation of the developmental cycle. This effect goes away with modest changes in c-di-AMP (detaTM-DacA vs detaTM-DacA (D164N)). However, the model predicts that low levels of c-di-AMP delays EB production is not not well supported by the data. If this prediction were true then the growth rate would increase with c-di-AMP reduction and the data does not show this. The levels of of c-di-AMP at the lower levels need to be better validated as it seems like only very high levels make a difference for dysregulated late gene expression. However, on the low end it's not clear what levels are needed to have an effect as only DacAopMut and DacAopKD show any effects on the cycle and the c-di-AMP levels are only different at 24 hours.

      The data still do not support the overall model.

      In Figure 1 the authors show at 24 hpi.

      DacA overexpression increases cdiAMP to ~4000 pg/ml

      DacAmut overexpression reduces cdiAMP dramatically to ~256 pg/ml)

      DacATM overexpression increases cdiAMP to ~4000 pg/ml.

      DacAmutTM overexpression does not seem to change cdiAMP ~1500 pg/ml .

      dacAKD decreases cdiAMP to ~300 pg/ml .

      dacAKDcom increased cdiAMP to ~8000 pg/ml.

      DacA-ybbRop overexpression increased cdiAMP to ~500,000 pg/ml.

      DacA-ybbRopmut ~300 pg/ml.

      However in Figure 2 the data show that overexpression of DacA (cdiAMP ~4000 pg/ml) did not have a different phenotype than over expression of the mutant (cdiAMP ~256 pg/ml). HctA expression down, omcB expression down, euo not much change, replication down, and IFUs down. Additionally, Figure 3 shows no differences in anything measured although cdiAMP levels were again dramatically different. DacATM overexpression (~4000 pg/ml) and DacAmutTM (~1500). This makes it unclear what cdiAMP is doing to the developmental cycle.

      In Figure 4 the authors knockdown dacA (dacA-KD) and complement the knockdown (dacA-KDcom) dacAKD decreases cdiAMP (~300) while DacA-KDcom increases cdiAMP much above wt (~8000).<br /> KD decreased hctA and omcB at 24hpi. Complementation resulted in a moderate increase in hctA at a single time point but not at 24 hpi and had no effect on euo or omcB expression. Importantly, complementation decreased the growth rate. Based on the proposed model, growth rate should increase as the chlamydia should all be RBs and replicating and not exiting the cell cycle to become EBs (not replicating). Interestingly reducing cdiAMP levels by over expressing DacAmut (~256 pg/ml) did not have an effect on the cycle but the reduction in cdiAMP by knockdown of dacA (~300 pg/ml) did have a moderate effect on the cycle.

      For Figure 5 DacA-ybbRop was overexpressed and this increased cdiAMP dramatically ~500,000 pg/ml as compared to wt ~1500. This increased hctA only at an early timepoint and not at 24hpi and again had no effect on omcB or euo. Overexpression of the operon with the mutation DacA-ybbRopmut reduced cdiAMP to ~300 pg/ml and this showed a reduction in growth rate similar to dacAmut but a more dramatic decrease in IFUs.

      Overall:

      DacA overexpression increases cdiAMP to ~4000 pg/ml (decreased everything except euo)

      DacAmut overexpression reduces cdiAMP dramatically (~256 pg/ml). (decreased everything except euo)

      DacATM overexpression increases cdiAMP to ~4000 pg/ml (no changes noted)

      DacAmutTM overexpression does not seem to change cdiAMP ~1500 pg/ml (no changes noted)

      dacAKD decrease cdiAMP to ~300 pg/ml (decreased everything except euo)

      dacAKDcom increased cdiAMP to ~8000 pg/ml (decreases growth rate, increase hctA a little but not omcB)

      DacA-ybbRop overexpression increased cdiAMP to ~500,000 pg/ml (decreases growth rate, increase hctA a little but not omcB)

      DacA-ybbRopmut ~300 pg/ml (decreased everything except euo)

      Overall, the data show that increasing cdiAMP only has a phenotype if it is dramatically increased, no effect at 4000 pg/ml. Decreasing cdiAMP has a consistent effect, decreased growth rate, IFU, hctA expression and omcB expression. However, if their proposed model was correct and low levels of cdiAMP blocked EB conversion then more chlamydial cells would be RBs (dividing cells) and the growth rate should increase. Conversely, if cdiAMP levels were dramatically raised then all RBs would all convert and the growth rate would be very low. When cdiAMP was raised to ~4000 pg/ml there was no effect on the growth rate. However, an increase to ~8000 pg/ml resulted in a significant decrease but growth continued. Increasing cdAMP to ~500,000 pg/ml had less of an impact on the growth rate. Overall, the data does not cleanly support the proposed model.

    1. Reviewer #1 (Public review):

      Summary:

      This is a contribution to the field of developmental bioelectricity. How do changes of resting potential at the cell membrane affect downstream processes? Zhou et al. reported in 2015 that phosphatidylserine and K-Ras cluster upon plasma membrane depolarization and that voltage-dependent ERK activation occurs when constitutively active K-RasG12V mutants are overexpressed. In this paper, the authors advance the knowledge of this phenomenon by showing that membrane depolarization up-regulates mitosis and that this process is dependent on voltage-dependent activation of ERK. ERK activity's voltage-dependence is derived from changes in the dynamics of phosphatidylserine in the plasma membrane and not by extracellular calcium dynamics. This paper reports an interesting and important finding. It is somewhat derivative of Zhou et al., 2015. (https://www.science.org/doi/full/10.1126/science.aaa5619). The main novelty seems to be that they find quantitatively different conclusions upon conducting similar experiments, albeit with a different cell line (U2OS) than those used by Zhou et al. Sasaki et al. do show that increased K+ levels increase proliferation, which Zhou et al. did not look at. The data presented in this paper are a useful contribution to a field often lacking such data.

      Strengths:

      Bioelectricity is an important field for areas of cell, developmental, and evolutionary biology, as well as for biomedicine. Confirmation of ERK as a transduction mechanism and a characterization of the molecular details involved in the control of cell proliferation are interesting and impactful.

      Weaknesses:

      The authors lean heavily on the assumption that the Nernst equation is an accurate predictor of membrane potential based on K+ level. This is a large oversimplification that undermines the author's conclusions, most glaringly in Figure 2C. The author's conclusions should be weakened to reflect that the activity of voltage gated ion channels and homeostatic compensation are unaccounted for.

      There are grammatical tense errors are made throughout the paper (ex line 99 "This kinetics should be these kinetics")

      Line 71: Zhou et al. use BHK, N2A, PSA-3 cells, this paper uses U2OS (osteosarcoma) cells. Could that explain the differences in bioelectric properties that they describe? In general, there should be more discussion of the choice of cell line. Why were U2OS cells chosen? What are the implications of the fact that these are cancer cells, and bone cancer cells in particular? Does this paper provide specific insights for bone cancers? And crucially, how applicable are findings from these cells to other contexts?

      Line 115: The authors use EGF to calibrate 'maximal' ERK stimulation. Is this level near saturation? Either way is fine, but it would be useful to clarify.

      Line 121: Starting line 121 the authors say "Of note, U2OS cells expressed wild-type K-Ras but not an active mutant of K-Ras, which means voltage dependent ERK activation occurs not only in tumor cells but also in normal cells". Given that U2OS cells are bone sarcoma cells, is it appropriate to refer to these as 'normal' cells in contrast to 'tumor' cells?

      Line 101: These normalizations seem reasonable, the conclusions sufficiently supported and the requisite assumptions clearly presented. Because the dish-to-dish and cell-to-cell variation may reflect biologically relevant phenomena it would be ideal if non-normalized data could be added in supplemental data where feasible.

      Figure 2C is listed as Figure 2D in the text

      There is no Figure 2F (Referenced in line 148)

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Mack and colleagues investigate the role of posttranslational modifications, including lysine acetylation and ubiquitination, in methyltransferase activity of SETD2 and show that this enzyme functions as a tumor suppressor in a KRASG12C-driven lung adenocarcinoma. In contrast to H3K36me2-specific oncogenic methyltransferases, the deletion of SETD2, which is capable of H3K36 trimethylation, increases lethality in a KRASG12C-driven lung adenocarcinoma mouse tumor model. In vitro, the authors demonstrate that polyacetylation of histone H3, particularly of H3K27, H3K14 and H3K23, promotes the catalytic activity of SETD2, whereas ubiquitination of H2A and H2B has no effect.

      Strengths:

      Overall, this is a well-designed study that addresses an important biological question regarding the functioning of the essential chromatin component. The manuscript contains excellent quality data, and the conclusions are convincing and justified. This work will be of interest to many biochemists working in the field of chromatin biology and epigenetics.

      Comments on revisions:

      All previous comments are well addressed, and I enthusiastically support publication.

    1. Reviewer #1 (Public review):

      In this manuscript, Wolfson and co-authors demonstrate a combination of an injury-specific enhancer and engineered AAV that enhances transgene expression in injured myocardium. The authors characterize spatiotemporal dynamics of TREE-directed AAV expression in the injured heart using a non-invasive longitudinal monitoring system. They show that transgene expression is drastically increased 3 days post-injury, driven by 2ankrd1a. They reported a liver-detargeted capsid, AAV cc.84, with decreased viral entry into the liver while maintaining TREE transgene specificity. They further identified the IR41 serotype with enhanced transgene expression in injured myocardium from AAV library screening. This is an interesting study that optimizes the potential application of TREE delivery for cardiac repair.

      Comments on revisions:

      The authors are responsive and have addressed my concerns.

    1. Reviewer #2 (Public review):

      This is a timely and insightful study aiming to explore the general physical principles for the sub-compartmentalization--or lack thereof--in the phase separation processes underlying the assembly of postsynaptic densities (PSDs), especially the markedly different organizations in three-dimensional (3D) droplets on one hand and the two-dimensional (2D) condensates associated with a cellular membrane on the other. Simulation of a highly simplified model (one bead per protein domain) is apparently carefully executed. Based on a thorough consideration of various control cases, the main conclusion regarding the trade-off between repulsive excluded volume interactions and attractive interactions among protein domains in determining the structures of 3D vs 2D model PSD condensates is quite convincing. The novel results in this manuscript should be published.

      Comment on the revised manuscript:

      The authors have adequately addressed all my previous concerns. The manuscript is now much improved, ready for publication as a version of record.

    1. Joint Public Review:

      This manuscript reconsiders the "general form" of Hamilton's rule, in which "benefit" and "cost" are defined as regression coefficients. It points out that there is no reason to insist on Hamilton's rule of the form -c+br>0, and that, in fact, arbitrarily many terms (i.e. higher-order regression coefficients) can be added to Hamilton's rule to reflect nonlinear interactions. Furthermore, it argues that insisting on a rule of the form -c+br>0 can result in conditions that are true but meaningless and that statistical considerations should be employed to determine which form of Hamilton's rule is meaningful for a given dataset or model.

      Comments on latest version:

      The authors have provided a robust, valuable and detailed response to the previous reviews.

      Comments from Reviewer #1: I have nothing further to add.

      Comments from Reviewer #2: I appreciate the clarifications the author has made to the manuscript regarding (i) "sample covariance" terminology, (ii) the generality of the "generalized Price equation", and (iii) the distinction between the covariance and regression forms of the Price equation. I also appreciate that the ms now engages more deeply with some of the previous literature on regression-based Hamilton's rules (e.g. Smith et al., 2010; Rousset 2015). I feel these revisions make this contribution more valuable, and also more technically sound, since the term "sample covariance" is no longer used incorrectly.

      I also add that I agree with the substance of the authors' response to Reviewer #3. That is, the original submission was very clear that the regression-based Hamilton's rule is already completely general in the range of situations to which it applies, and that the added "generality" in the present ms refers to the variety of regression models that can be applied to these situations. In this way, the original ms already anticipates and addresses the criticism that Reviewer #3 raises.

      Reviewer #3 did not provide comments on the revised version.

    1. Reviewer #1 (Public review):

      Filamentous fungi are established work horses in biotechnology with Aspergillus oryzae as a prominent example with a thousand-year of history. Still the cell biology and biochemical properties of the production strains is not well understood. The paper of the Takeshita group describes the change in nuclear numbers and correlate it to different production capacities. They used microfluidic devices to really correlate the production with nuclear numbers. In addition, they used microdissection to understand expression profile changes and found an increase of ribosomes. The analysis of two genes involved in cell volume control in S. pombe did not reveal conclusive answers to explain the phenomenon. It appears that it is a multi-trait phenotype. Finally, they identified SNPs in many industrial strains and tried to correlate them to the capability of increasing their nuclear numbers.

      The methods used in the paper range from high quality cell biology, Raman spectroscopy to atomic force and electron microscopy and from laser microdissection to the use of microfluidic devices to study individual hyphae.

      This is a very interesting, biotechnologically relevant paper with the application of excellent cell biology.

      Comments on revised version:

      The authors addressed all suggestions satisfactorily.

    1. Reviewer #1 (Public review):

      Summary:

      The behaviour of cells expressing constitutively active HRas is examined in mosaic monolayers, both in MCF10a breast epithelial and Beas2b bronchial epithelial cell lines, mimicking the potential initial phase of development of carcinoma. Single HRas-positive cells are excluded from MCF10a but not Beas2b monolayers. Most interestingly, however, when in groups, these cells are not excluded, but rather sharply segregated within a MCF10a monolayer. In contrast, they freely mix with wt Beas2b cells. Biophysical analysis identifies high tension at heterotypic interfaces between HRas and wild-type cells as the likely reason for segregation of MCF10a cells. The hypothesis is supported experimentally, as myosin inhibition abolishes segregation. The probable reason for the lack of segregation in the bronchial epithelium is to be found in the different intrinsic properties of these cells, which form a looser tissue with lower basal actomyosin activity. The behaviour of single cells and groups is recapitulated in a vortex model based on the principle of differential interfacial tension, under the condition of high heterotypic interfacial tension.

      Strengths:

      Despite being long recognized as a crucial event during cancer development, segregation of oncogenic cells has been a largely understudied question. This nice work addresses the mechanics of this phenomenon through a straightforward experimental design, applying the biophysical analytical approaches established in the field of morphogenesis. Comparison between two cell types provides some preliminary clues on the diversity of effects in various cancers.

      Weaknesses:

      Although not calling into question the main message of this study, there are a few issues that one may want to address:

      (1) One may be careful in interpreting the comparison between MCF10a and Beas2b cells as used in this study. The conditions may not necessarily be representative of the actual properties of breast and bronchial epithelia. How much of the epithelial organization is reconstituted under these experimental conditions remains to be established. This is particularly obvious for bronchial cells, which would need quite specific culture conditions to build a proper bronchial layer. In this study, they seemed to be on the verge of a mesenchymal phenotype (large gaps, huge protrusions, cells growing on top of each other, as mentioned in the manuscript).

      As an alternative to Beas2b, comparison of MCF10a with another cell line capable of more robust in vitro epithelial organization, but ideally with different adhesive and/or tensile properties, would be highly interesting, as it may narrow down the parameters involved in segregation of oncogenic cells.

      (2) While the seminal description of tissue properties based on interfacial tensions (Brodland 2002) is clearly key to interpreting these data, the actual "Differential Interfacial Tension Hypothesis" poses that segregation results from global differences, i.e., juxtaposition of two tissues displaying different intrinsic tensions. On the contrary, the results of the present work support a different scenario, where what counts is the actual difference in tension ALONG the tissue boundary, in other words, that segregation is driven by high HETEROTYPIC interfacial tension. This is an important distinction that should be clarified.

      (3) Related: The fact that actomyosin accumulates at the heterotypic interface is key here. It would be quite informative to better document the pattern of this accumulation, which is not clear enough from the images of the current manuscript: Are we talking about the actual interface between mutant and wt cells (membrane/cortex of heterotypic contacts)? Or is it more globally overactivated in the whole cell layer along the border? Some better images and some quantification would help.

      (4) In the case of Beas2b cells, mutant cells show higher actin than wt cells, while actin is, on the contrary, lower in mutant MCF10a cells (Figure 2b). Has this been taken into account in the model? It may be in line with the idea that HRas may have a different action on the two cell types, a possibility that would certainly be worth considering and discussing.

      In conclusion, the study conveys an important message, but, as it stands, the strength of evidence is incomplete. It would greatly benefit from a more detailed and complete analysis of the experimental data, a better fit between this analysis and the corresponding vertex model, and a more in-depth discussion of biological and biophysical aspects. These revisions should be rather easily done, and would then make the evidence much more solid.

    1. Reviewer #1 (Public review):

      Summary:

      Sakelaris and Riecke used computational modeling to explore how neurogenesis and sequential integration of new neurons into a network support memory formation and maintenance. They focus on the integration of granule cells in the olfactory bulb, a brain area where adult neurogenesis is prominent. Experimental results published during recent years provide an excellent basis to address the question at hand by biologically constrained models. The study extends previous computational models and provides a coherent picture of how multiple processes may act in concert to enable rapid learning, high stability of memories, and high memory capacity. This computational model generates experimentally testable predictions and is likely to be valuable to understand roles of neurogenesis and related phenomena in memory. One of the key findings is that important features of the memory system depend on transient properties of adult-born granule cells such as enhanced excitability and apoptosis during specific phases the development of individual neurons. The model can explain many experimental observations, and suggests specific functions for different processes (e.g., importance of apoptosis for continual learning). While this model is obviously a massive simplification of the biological system, it conceptualizes diverse experimental observations into a coherent picture, it generates testable predictions for experiments, and it and will likely inspire further modeling and experimental studies.

      Strengths:

      - The model can explain diverse experimental observations

      - The model directly represents the biological network

      Weaknesses:

      - As many other models of biological networks, this model contains major simplifications.

    1. Reviewer #1 (Public review):

      Summary:

      This work provides a comprehensive analysis of how adult zebrafish show fear responses to conspecific alarm substances (CAS) and retain their associative memory. It shows that freezing is a more reliable measure of fear response and memory compared to evasive swimming, and that the reactivity and the type of responses depend on the zebrafish strain. It further suggests neuronal substrates of different fear responses based on c-Fos mapping.

      Strengths:

      The behavioral part is the most comprehensive and detailed yet in the zebrafish field, providing strong support for the authors' claim. The flow from Figure 1 to Figure 4 is very smooth. They provide extremely detailed, yet complementary and necessary, analyses of how different categories of behavior emerge over time during the CAS exposure and memory retrieval. I'm convinced that neuro researchers who study fear/stress responses will always refer to this paper to plan and interpret their future experiments.

      Weaknesses:

      The neural analysis part is very comprehensive. Figure 5 and Figure 6 are independent but complement each other very well. They together support that the cerebellar system is the key brain component for a freezing response. Their extreme focus on high-level analyses, however, came at the expense of biological intuitions. I suggest adding some figure panels and result/discussion paragraphs to help with that aspect.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors present a thorough mechanistic study of the J-domain protein Apj1 in Saccharomyces cerevisiae, establishing it as a key repressor of Hsf1 during the attenuation phase of the heat shock response (HSR). The authors integrate genetic, transcriptomic (ribosome profiling), biochemical (ChIP, Western), and imaging data to dissect how Apj1, Ydj1 and Sis1 modulate Hsf1 activity under stress and non-stress conditions. The work proposes a model where Apj1 specifically promotes displacement of Hsf1 from DNA-bound heat shock elements, linking nuclear PQC to transcriptional control.

      Strengths:

      Overall, the work is highly novel-this is the first detailed functional dissection of Apj1 in Hsf1 attenuation. It fills an important gap in our understanding of how Hsf1 activity is fine-tuned after stress induction, with implications for broader eukaryotic systems. I really appreciate the use of innovative techniques including ribosome profiling and time-resolved localization of proteins (and tagged loci) to probe Hsf1 mechanism. The overall proposed mechanism is compelling and clear-the discussion proposes a phased control model for Hsf1 by distinct JDPs, with Apj1 acting post-activation, while Sis1 and Ydj1 suppress basal activity.

      The manuscript is well-written and will be exciting for the proteostasis field and beyond.

      Comments on revised version:

      The authors have addressed all my concerns,

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript from Jones and colleagues investigates a previously described phenomenon in which P. falciparum malaria parasites display increased trafficking of proteins displayed on the surface of infected RBCs, as well as increased cytoadherence in response to febrile temperatures. While this parasite response was previously described, it was not uniformly accepted, and conflicting reports can be found in the literature. This variability likely arises due to differences in the methods employed and the degree of temperature increase to which the parasites were exposed. Here, the authors are very careful to employ a temperature shift that likely reflects what is happening in infected humans and that they demonstrate is not detrimental to parasite viability or replication. In addition, they go on to investigate what steps in protein trafficking are affected by exposure to increased temperature and show that the effect is not specific to PfEMP1 but rather likely affects all transmembrane domain-containing proteins that are trafficked to the RBC. They also detect increased rates of phosphorylation of trafficked proteins, consistent with overall increased protein export.

      Strengths:

      The authors used a relatively mild increase in temperature (39 degrees), which they demonstrate is not detrimental to parasite viability or replication. This enabled them to avoid potential complications of a more severe heat shock that might have affected previously published studies. They employed a clever method of fractionation of RBCs infected with a var2csa-nanoluc fusion protein expressing parasite line to determine which step in the export pathway was likely accelerating in response to increased temperature. This enabled them to determine that export across the PVM is being affected. They also explored changes in phosphorylation of exported proteins and demonstrated that the effect is not limited to PfEMP1 but appears to affect numerous (or potentially all) exported transmembrane domain-containing proteins.

      Weaknesses:

      All the experiments investigating changes resulting from increased temperature were conducted after an increase in temperature from 16 to 24 hours, with sampling or assays conducted at the 24 hr mark. While this provided consistency throughout the study, this is a time point relatively early in the export of proteins to the RBC surface, as shown in Figure 1E. At 24 hrs, only approximately 50% of wildtype parasites are positive for PfEMP1, while at 32 hrs this approaches 80%. Since the authors only checked the effect of heat stress at 24 hrs, it is not possible to determine if the changes they observe reflect an overall increase in protein trafficking or instead a shift to earlier (or an accelerated) trafficking. In other words, if a second time point had been considered (for example, 32 hrs or later), would the parasites grown in the absence of heat stress catch up?

    1. Reviewer #1 (Public review):

      Summary:

      In this article, Almeida and colleagues use a combination of NMR and ITC to study the interaction of the EBH domain of microtubule end-binding protein 1 (EB1) with SxIP peptides derived from the MACF plus-end tracking protein. EBH forms a dimer and in isolation has previously been shown to have a disordered C-terminal tail. Here, the authors use NMR to determine a solution structure of the EBH dimer bound to 11-mer SxIP peptides derived from MACF, and observe that the disordered C-terminal of EBH is recruited by residues C-terminal to the SxIP motif to fold into the final complex. By comparison of binding in different length peptides, and of EBH lacking the C-terminal tail, they show that these additional contacts increase binding affinity by an order of magnitude, greatly stabilising the interaction, in a binding mode they term 'dock-and-lock'.

      The authors also use their new structural knowledge to design peptides with higher affinities, and show in a cell model that these can be weakly recruited to microtubule ends - although a dimeric construct is necessary for efficient recruitment. Ultimately, by demonstrating the feasibility of targeting these proteins, this work points towards the possibility of designing small-molecules to block the interactions.

    1. Reviewer #1 (Public review):

      This paper presents a computational model of the evolution of two different kinds of helping ("work," presumably denoting provisioning, and defense tasks) in a model inspired by cooperatively breeding vertebrates. The helpers in this model are a mix of previous offspring of the breeder and floaters that might have joined the group, and can either transition between the tasks as they age or not. The two types of help have differential costs: "work" reduces "dominance value," (DV), a measure of competitiveness for breeding spots, which otherwise goes up linearly with age, but defense reduces survival probability. Both eventually might preclude the helper from becoming a breeder and reproducing. How much the helpers help, and which tasks (and whether they transition or not), as well as their propensity to disperse, are all evolving quantities. The authors consider three main scenarios: one where relatedness emerges from the model, but there is no benefit to living in groups, one where there is no relatedness, but living in larger groups gives a survival benefit (group augmentation, GA), and one where both effects operate. The main claim is that evolving defensive help or division of labor requires the group augmentation; it doesn't evolve through kin selection alone in the authors' simulations.

      This is an interesting model, and there is much to like about the complexity that is built in. Individual-based simulations like this can be a valuable tool to explore the complex interaction of life history and social traits. Yet, models like this also have to take care of both being very clear on their construction and exploring how some of the ancillary but potentially consequential assumptions affect the results, including robust exploration of the parameter space. I think the current manuscript falls short in these areas, and therefore, I am not yet convinced of the results.

      In this round, the authors provided some clarity, but some questions still remain, and I remain unconvinced by a main assumption that was not addressed.

      Based on the authors' response, if I understand the life history correctly, dispersers either immediately join another group (with 1-the probability of dispersing), or remain floaters until they successfully compete for a breeder spot or die? Is that correct? I honestly cannot decide because this seems implicit in the first response but the response to my second point raises the possibility of not working while floating but can work if they later join a group as a subordinate. If it is the case that floaters can have multiple opportunities to join groups as subordinates (not as breeders; I assume that this is the case for breeding competition), this should be stated, and more details about how.

      So there is still some clarification to be done, and more to the point, the clarification that happened only happened in the response. The authors should add these details to the main text. Currently, the main text only says vaguely that joining a group after dispersing " is also controlled by the same genetic dispersal predisposition" without saying how.

      In response to my query about the reasonableness of the assumption that floaters are in better condition (in the KS treatment) because they don't do any work, the authors have done some additional modeling but I fail to see how that addresses my point. The additional simulations do not touch the feature I was commenting on, and arguably make it stronger (since assuming a positive beta_r -which btw is listed as 0 in Table 1- would make floaters on average be even more stronger than subordinates). It also again confuses me with regard to the previous point, since it implies that now dispersal is also potentially a lifetime event. Is that true?

      Meanwhile, the simplest and most convincing robustness check, which I had suggested last round, is not done: simply reduce the increase in the R of the floater by age relative to subordinates. I suspect this will actually change the results. It seems fairly transparent to me that an average floater in the KS scenario will have R about 15-20% higher than the subordinates (given no defense evolves, y_h=0.1 and H_work evolves to be around 5, and the average lifespan for both floaters and subordinates are in the range of 3.7-2.5 roughly, depending on m). That could be a substantial advantage in competition for breeding spots, depending on how that scramble competition actually works. I asked about this function in the last round (how non-linear is it?) but the authors seem to have neglected to answer.

      More generally, I find that the assumption (and it is an assumption) floaters are better off than subordinates in a territory to be still questionable. There is no attempt to justify this with any data, and any data I can find points the other way (though typically they compare breeders and floaters, e.g.: https://bioone.org/journals/ardeola/volume-63/issue-1/arla.63.1.2016.rp3/The-Unknown-Life-of-Floaters--The-Hidden-Face-of/10.13157/arla.63.1.2016.rp3.full concludes "the current preliminary consensus is that floaters are 'making the best of a bad job'."). I think if the authors really want to assume that floaters have higher dominance than subordinates, they should justify it. This is driving at least one and possibly most of the key results, since it affects the reproductive value of subordinates (and therefore the costs of helping).

      Regarding division of labor, I think I was not clear so will try again. The authors assume that the group reproduction is 1+H_total/(1+H_total), where H_total is the sum of all the defense and work help, but with the proviso that if one of the totals is higher than "H_max", the average of the two totals (plus k_m, but that's set to a low value, so we can ignore it), it is replaced by that. That means, for example, if total "work" help is 10 and "defense" help is 0, total help is given by 5 (well, 5.1 but will ignore k_m). That's what I meant by "marginal benefit of help is only reduced by a half" last round, since in this scenario, adding 1 to work help would make total help go to 5.5 vs. adding 1 to defense help which would make it go to 6. That is a pretty weak form of modeling "both types of tasks are necessary to successfully produce offspring" as the newly added passage says (which I agree with), since if you were getting no defense by a lot of food, adding more food should plausibly have no effect on your production whatsoever (not just half of adding a little defense). This probably explains why often the "division of labor" condition isn't that different than the no DoL condition.

    1. Reviewer #1 (Public review):

      Jiang et al. present a measure of phenological lag by quantifying the effects of abiotic constraints on the differences between observed and expected phenological changes, using a combination of previously published phenology change data for 980 species, and associated climate data for study sites. They found that, across all samples, observed phenological responses to climate warming were smaller than expected responses for both leafing and flowering spring events. They also show that data from experimental studies included in their analysis exhibited increased phenological lag compared to observational studies, possibly as a result of reduced sensitivity to climatic changes. Furthermore, the authors present evidence that spatial trends in phenological responses to warming may differ than what would be expected from phenological sensitivity, due to the seasonal timing of when warming occurs. Thus, climate change may not result in geographic convergences of phenological responses. This study presents an interesting way to separate the individual effects of climate change and other abiotic changes on the phenological responses across sites and species.

      Strengths:

      A straightforward mathematical definition of phenological lag allows for this method to potentially be applied in different geographic contexts. Where data exists, other researchers can partition the effects of various abiotic forcings on phenological responses that differ from those expected from warming sensitivity alone.

      Identifying phenological lag, and associated contributing factors, provides a method by which more nuanced predictions of phenological responses to climate change can be made. Thus, this study could improve ecological forecasting models.

      Weaknesses:

      The analysis here could be more robust. A more thorough examination of phenological lag would provide stronger evidence that the framework presented has utility. The differences in phenologica lag by study approach, species origin, region, and growth form are interesting, and could be expanded. For example, the authors have the data to explore the relationships between phenological lag and the quantitative variables included in the final model (altitude, latitude, mean annual temperature) and other spatial or temporal variables. This would also provide stronger evidence for the author's claims about potential mechanisms that contribute to phenological lag.

      The authors include very little data visualizations, and instead report results and model statistics in tables. This is difficult to interpret and may obscure underlying patterns in the data. Including visual representations of variable distributions and between-variable relationships, in addition to model statistics, provides stronger evidence than model statistics alone.

    1. Reviewer #1 (Public review):

      This work provides a new Python toolkit for combining generative modeling of neural dynamics and inversion methods to infer likely model parameters that explain empirical neuroimaging data. The authors provided tests to show the toolkit's broad applicability, accuracy, and robustness; hence, it will be very useful for people interested in using computational approaches to better understand the brain.

      Strengths:

      The work's primary strength is the tool's integrative nature, which seamlessly combines forward modelling with backward inference. This is important as available tools in the literature can only do one and not the other, which limits their accessibility to neuroscientists with limited computational expertise. Another strength of the paper is the demonstration of how the tool can be applied to a broad range of computational models popularly used in the field to interrogate diverse neuroimaging data, ensuring that the methodology is not optimal to only one model. Moreover, through extensive in-silico testing, the work provided evidence that the tool can accurately infer ground-truth parameters even in the presence of noise, which is important to ensure results from future hypothesis testing are meaningful.

      Weaknesses

      The paper still lacks appropriate quantitative benchmarking relative to non-Bayesian-based inference tools, especially with respect to performance accuracy and computational complexity and efficiency. Without this benchmarking, it is difficult to fully comprehend the power of the software or its ability to be extended to contexts beyond large-scale computational brain modelling.

    1. Reviewer #1 (Public review):

      Summary:

      Ramirez Carbo et al. use the powerful M. xanthus spore morphogenesis model to address fundamental mechanisms in coordinated peptidoglycan remodeling and degradation. As peptidoglycan is an essential macromolecule and difficult to study in vivo, the authors use indirect but important methodology. The authors first identify two lytic transglycosylase (Ltg) enzymes necessary for spore morphogenesis using mutant phenotypic studies. They characterize these mutants for their role in coordinating spore morphogenesis induced either in fruiting bodies (starvation-dependent) or in liquid-rich media conditions (chemical-dependent). They conclude from these phenotypic and epistatic analyses that LtgA is necessary for morphogenesis during chemical-induced sporulation, and LtgB appears to be necessary to coordinate LtgA activity by interfering with LtgA function. Under starvation-induced sporulation, the absence of LtgB interferes with the building of fruiting bodies. LtgA does not appear to play a primary role in promoting aggregation into fruiting bodies, nor in degradation of peptidoglycan as assayed by loss of signal in anti-PG immunofluorescence. The authors demonstrate that the purified periplasmic domain of LtgA is highly active in degrading purified PG sacculi in vitro, while that of LtgB is highly reduced (relative to LtgA or lysozyme). The authors use photoactivated mCherry Lyt fusions and PALM to track the fusion protein mobility, which they state correlates with activity as immobilization results from PG binding. They demonstrate that in vegetative cells, a greater proportion of LtgA-PAmCh is more immobile (more active) than LtgB-PAmCh, but that directly after chemical-induction of sporulation, LtgB-PAmCh becomes more immobile (active). These analyses in the partner mutant backgrounds suggest that LtgA-PAmCh is more immobile (less active) in the absence of LtgB, but the reverse is not observed. Finally, the authors demonstrate that overexpression of LtgA in vegetative conditions leads to cell rounding, likely because of uncontrolled PG degradation, while overexpression of LtgB displays no phenotype.

      Strengths:

      This paper capitalizes on a novel spore morphogenesis mechanism to define proteins and mechanisms involved in peptidoglycan reorganization. The authors use the powerful PALM microscopy technique to assess Ltg activity in vivo by assaying for immobility as a proxy for PG binding. The authors elucidate a novel mechanism by which two Ltg's function together- with one (LtgB) seeming to regulate the activity of the other (the primary Ltg).

      Despite some weaknesses, there is no question that this study provides important insight into mechanisms of peptidoglycan remodeling- a difficult but highly impactful area of study with implications for the development of novel therapeutics and the discovery of mechanisms of fundamental bacterial physiology.

      Weaknesses:

      In many places, the authors do not adequately justify interpretations of their assays, leading to some apparently unjustified conclusions. Many of these are minor and may just require citations to demonstrate that the interpretations are justified by previous studies (detailed in recommendations below), but two bigger concerns are as follows:

      (1) It is not clear how the muropeptides listed in Figure 1 were assigned, and it is missing in the methods. In the sporulating conditions, the spectra look like combinations of multiple peaks, and the data, as stated, is not convincing to the non-specialist eye.

      (2) The observation that the lytB mutant prevents appropriate aggregation into fruiting bodies does not allow the interpretation that the absence of LytB prevents PG morphogenesis in the starvation-induced sporulation pathway, per se. It is more likely that in the lytB mutant, the morphogenesis program is not even triggered. This is because signaling proteins and regulators (specifically, C-signal accumulation/activated FruA), which are dependent on increased cell-cell signaling in the fruiting body, do not accumulate appropriately in shallow aggregates. C-signal/FruA are necessary to trigger the sporulation program in FBs. BTW: A hypothesis to explain the indirect effect of ltgB absence on aggregation could be that UDP-precursors are not regulated appropriately (unregulated LtyA??), so polysaccharides necessary for motility are not properly produced.

      Along these lines, fruiting body formation does not equal sporulation, and even "darkened" fruiting bodies can be misleading, as some mutants form polysaccharide-rich fruiting bodies (that appear dark under certain light conditions in the stereomicroscope) but do not sporulate efficiently. The wording in the text suggests that the authors assume that sporulation levels are normal because fruiting bodies are produced (see specific comments for details).

      (3) The authors repeatedly state that production of spore coat polysaccharides likely affects the PG IP staining (see below), but this is not well justified. A citation is needed if this has already been directly shown, or the language needs to be softened.

      (4) Better justification for the immobility of Lyt proteins in vivo as an assay for activity may be required. If this is well known in the field, it should be explicitly stated. The authors address this better in the discussion - but still state it is a correlation.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Chen et al. use cryo-electron tomography and an in vitro reconstitution system to demonstrate that the autoinhibited form of LRRK2 can assemble into filaments that wrap around microtubules. These filaments are generally shorter and less ordered than the previously characterized active-LRRK2 filaments. The structure reveals a novel interface involving the N-terminal repeats, which were disordered in the earlier active filament structure. Additionally, the autoinhibited filaments exhibit distinct helical parameters compared to the active form.

      Strengths:

      This study presents the highest-resolution structure of LRRK2 filaments obtained via subtomogram averaging, marking a significant technical advance over the authors' previous work published in Cell. The data are well presented, with high-quality visualizations, and the findings provide meaningful insights into the structural dynamics of LRRK2.

      Weaknesses and Suggestions:

      The revised manuscript by Chen et al. has fully addressed all of my previous suggestions regarding the rearrangement of the main figures.

    1. Reviewer #1 (Public review):

      This study examined the effect of blood pressure variability on brain microvascular function and cognitive performance. By implementing a model of blood pressure variability using intermittent infusion of AngII for 25 days, the authors examined different cardiovascular variables, cerebral blood flow and cognitive function during midlife (12-15-month-old mice). Key findings from this study demonstrate that blood pressure variability impairs baroreceptor reflex and impairs myogenic tone in brain arterioles, particularly at higher blood pressure. They also provide evidence that blood pressure variability blunts functional hyperemia and impairs cognitive function and activity. Simultaneous monitoring of cardiovascular parameters, in vivo imaging recordings, and the combination of physiological and behavioral studies reflect rigor in addressing the hypothesis. The experiments are well designed, and data generated are clear.

      A number of issues raised earlier were addressed by the authors in the revised manuscript. The responses are convincing. These included circadian rhythm considerations, baroreflex findings, BP fluctuations driven by animal movement, and data presentation.

      Overall, this is a solid study with huge physiological implications. I believe that it will be of great benefit to the field.

    1. Reviewer #1 (Public review):

      Summary:

      Meijer et al. sought to investigate the role of cortical layer 6b (L6b) neurons in modulating sleep-wake states and cortical oscillations under baseline and sleep deprived conditions and in response to orexin A and B. Using chronic EEG recordings in mice with silencing of Drd1a+ neurons (via constitutive Cre-dependent knockout of SNAP25), the authors report that while overall baseline sleep-wake architecture and response to sleep deprivation minimal/unchanged, "L6b silencing" leads to a slowing of theta activity during wakefulness and REM sleep, and a reduction in EEG power during NREM sleep. Additionally, orexin B-induced increases in theta activity were attenuated in L6b silenced mice, which the authors state suggests a modulatory role for L6b in orexin-mediated arousal regulation. The manuscript is generally well written with clarity and transparency. However, a major concern is the lack of specificity in the genetic manipulation, which targets Drd1a+ neurons not exclusive to L6b, undermining the attribution of observed effects solely to L6b. Verification of neuronal silencing is also unclear, and statistical inconsistencies between the main text and figures/tables make it difficult to effectively evaluate the text and stated outcomes.

      Strengths:

      (1) The text is well written.

      (2) The authors are transparent about methodological details.

      (3) The stated sleep, circadian, and orexin infusion experiments appear to be well designed, executed, and analyzed (with the exceptions of some statistical analyses detailed below).

      Weaknesses:

      (1) All outcomes are attributed specifically to L6b neurons, but the genetic manipulation is not specific to L6b neurons. The authors acknowledge this as a limitation, but in my view, this global manipulation is more than a limitation - it affects the overall interpretations of the data. The Hoerder-Suabedissen et al., 2018 paper shows sparse, but also dense, expression of Drd1a+ neurons in brain regions outside of the L6b. Given this issue, the results are largely overstated throughout the paper.

      (2) It is not clear to me that the "silencing" of Drd1a+ neurons was verified.

      (3) There were various discrepancies (and potentially misattributions) between the stated significant differences in Supplementary Table T1 data and Figure 3a & S2 spectral plots. This issue makes it difficult to effectively evaluate the main text and stated outcomes.

      Related, the authors stated that post hoc comparisons of EEG spectral frequency bins were not corrected for multiple testing. Instead, significance was only denoted if changes in at least two consecutive frequency bins were significant. However, there are multiple plots in which a single significance marker is placed over an isolated bin (i.e., 4c, 6, S5, S6). Unless each marker is equivalent to 2 consecutive frequency bins, these markers should be removed from the plots. Otherwise, please define the frequency and size of these markers in the main text.

      (4) A rainbow color scale, as in Figure 3, we've now learned, can be misleading and difficult to interpret. The viridis color scale or a different diverging color scale are good alternatives.

      (5) How much time elapsed between vehicle/orexin A & B infusions?

      (6) For Figure 6, there are statistical discrepancies between the main text and the plots (pg. 10):

      a) The text claims post hoc differences for relative ORXA frontal EEG, but there are no significance markers on the plot.<br /> b) The text states that there were no post hoc differences for the relative ORXA occipital EEG, but significance markers are on the plot.<br /> c) The main test for the relative ORXB frontal EEG was not significant, but there are post hoc significance markers on the plot.<br /> d) For relative ORXB occipital EEG, there are significant markers on the plot outside of the stated range in the text.

      (7) Some important details are only available in figure captions, making it difficult to understand the main text. For example, when describing Figure 3c in the main text on page 7, it is not clear what type of transitions are being discussed without reading the figure caption. Likewise, a "decrease," "shift," and "change" are mentioned, but relative to what? Similar comment for the EEG theta activity description on pages 7 - 8. Please add relevant details to the main text.

      (8) Statistical comparisons for data in Figure 3e, post hoc analyses for data in Figure S7a-b REM data, and post hoc analyses for Figure S7c (not b) occipital EEG should be included to support differences claims. Please denote these differences on the respective plots.

      (9) In the subsection titled "Layer 6b mediates effects of orexin on vigilance states (pg. 8)," there does not seem to be any stated differences between control and L6b silenced mice. A more accurate subtitle is needed.

    1. Joint Public Review:

      Summary:

      There has been extensive electrophysiological research investigating the relationship between local field potential patterns and individual cell spike patterns in the hippocampus. In this study, the authors used innovative imaging techniques to examine spike synchrony of hippocampal cells during locomotion and immobility states. The authors report that hippocampal place cells exhibit prominent synchronous spikes that co-occur with theta oscillations during exploration of novel environments.

      Strengths:

      The single cell voltage imaging used in this study is a highly novel method that may allow recordings that were not previously possible using traditional methods.

      Weaknesses:

      Local field potential recordings were obtained from the contralateral hemisphere for technical reasons, which limits some of the study's claims.

    1. Reviewer #1 (Public review):

      Summary:

      The work from this paper successfully mapped transcriptional landscape and identified EA-responsive cell types (endothelial, microglia). Data suggest EA modulates BBB via immune pathways and cell communication. However, claims of "BBB opening" are not directly proven (no permeability data).

      Strengths:

      First scRNA-seq atlas of EA effects on BBB, revealing 23 cell clusters and 8 cell types. High cell throughput (98,338 cells), doublet removal, and robust clustering (Seurat, SingleR). Comprehensive bioinformatics (GO/KEGG, CellPhoneDB for ligand-receptor interactions). Raw data were deposited in GEO (GSE272895) and can be accessed.

      Weaknesses:

      (1) No in vivo/in vitro assays confirm BBB permeability changes (e.g., Evans blue leakage, TEER).

      (2) Only male rats were used, ignoring sex-specific BBB differences.

      (3) Pericytes and neurons, critical for the BBB, were not captured, likely due to dissociation artifacts.

      (4) Protein-level validation (Western blot, IHC) absent for key genes (e.g., LY6E, HSP90).

      (5) Fixed stimulation protocol (2/100 Hz, 40 min); no dose-response or temporal analysis.

    1. Reviewer #1 (Public review):

      Summary:

      This work investigates the neural basis of continual motor learning, specifically how brains might accommodate new motor memories without interfering with previously learned behaviours. Mainly drawing inspiration from recent experimental studies in monkeys (Losey et al. and Sun, O'Shea et al.), the authors use recurrent neural networks (RNNs) to model sequential learning and examine the emergence and properties of two proposed neural signatures of motor memory: the "uniform shift" observed in preparatory activity and the "memory trace" observed in execution activity.

      Strengths:

      The work's main contribution is demonstrating that both uniform shifts and memory traces emerge in RNN models trained on a sequential BCI task, without requiring explicit additional mechanisms. The work explores the relationship between these signatures and behavioural savings, finding that the memory trace correlates with immediate retention savings in networks without context, while the uniform shift does not. The study also investigates how properties of the new task perturbation (within- vs. outside-manifold) and the presence of explicit context cues affect these signatures and their relationship to savings, generally finding that context signals and outside-manifold perturbations reduce savings by decreasing the inherent overlap in the neural strategies used to solve the task.

      Weaknesses:

      A primary weakness is the lack of clear definitions of the uniform shift and the memory trace, which are quite different metrics. Another primary weakness is that the task modelled is well-matched to the Losey et al. BCI paradigm, but not well-matched to the Sun, O'Shea et al.'s curl field paradigm, which is likely impacting some of the results, primarily the lack of a relationship between the uniform shift and motor memories. While there are improvements that could be made in this work, we think it is a demonstration that modeling learning in neural activity using neural network models continues to be a valuable tool, moving the field forward.

    1. Reviewer #1 (Public review):

      Summary:

      Bacterial species that frequently undergo horizontal gene transfer events tend to have genomes that approach linkage equilibrium, making it challenging to analyze population structure and establish the relationships between isolates. To overcome this problem, researchers have established several effective schemes for analyzing N. gonorrhoeae isolates, including MLST and NG-STAR. This report shows that Life Identification Number (LIN) Codes provide for a robust and improved discrimination between different N. gonorrhoeae isolates.

      Strengths:

      The description of the system is clear, the analysis is convincing, and the comparisons to other methods show the improvements offered by LIN Codes.

      Weaknesses:

      No major weaknesses were identified by this reviewer.

    1. Reviewer #1 (Public review):

      The authors try to investigate how the population of microtubules (LSPMB) that originate from sporozoite subpellicular microtubules (SSPM) and are remodelled during liver-stage development of malaria parasites. These bundles shrink over time and help form structures needed for cell division. The authors have used expansion microscopy, live-cell imaging, genetically engineered mutants, and pharmacological perturbation to study parasite development with liver cells.

      A major strength of the manuscript is the live cell imaging and expansion microscopy to study this challenging liver stage of parasite development. It gives important knowledge that PTMs of α-tubulin, such as polyglutamylation and tyrosination/detyrosination, are crucial for microtubule stability. Mutations in α-tubulin reduce the parasite's ability to move and proliferate in the liver cells. The drug oryzalin, which targets microtubules, also blocks parasite development, showing how important dynamic microtubules are at this stage.

      The major problem in the manuscript was the way it flows, as the authors keep shifting from the liver stage to the sporogony stages and then back to the liver stages. It was very confusing at times to know what the real focus of the study is, whether sporozoite development or liver stage development. The flow of the manuscript could be improved. Some of the findings reported here substantiate the previous electron microscopy.

      Overall, the study represents an important contribution towards understanding cytoskeletal remodelling during liver stage infection. The study suggests that tubulin modifications are key for the parasite's survival in the liver and could be targets for new malaria treatments. This is also the stage that has been used for vaccine development, so any knowledge of how parasites proliferate in the liver cells will be beneficial towards intervention approaches.

    1. Dipole-Dipole interactions occur between polar molecules. Polar covalent bonds occur between atoms of different electronegativity, where the more electronegative atom attracts the electrons more than the electropositive atom. This results in a molecule where the center of positive charge (defined by the nuclei) does not coincide with the center of negative charge (defined by the electron orbitals).

      Explanation for dipole-dipole interactions and the formation of polar molecules due to differences in electronegativity.

    1. Reviewer #1 (Public review):

      Summary:

      In the presented study, the authors aim to explore the role of nociceptors in the fine particulate matter (FPM) mediated Asthma phenotype, using rodent models of allergic airway inflammation. This manuscript builds on previous studies, and identify transciptomic reprogramming and an increased sensitivity of the jugular nodose complex (JNC) neurons, one of the major sensory ganglion for the airways, on exposure to FPM along with Ova during the challenge phase. The authors then use OX-314 a selectively permeable form of lidocaine, and TRPV1 knockouts to demonstrate that nociceptor blocking can reduce airway inflammation in their experimental setup.

      The authors further identify the presence of Gfra3 on the JNC neurons, a receptor for the protein Artemin, and demonstrate their sensitivity to Artmein as a ligand. They further show that alveolar macrophages release Artemin on exposure to FPM.

      Strengths:

      The study builds on results available from multiple previous works, and presents important results which allow insights into the mixed phenotypes of Asthma seen clinically. In addition, by identifying the role of nociceptors, they identify potential therapeutic targets which bear high translational potential.

      Weaknesses:

      While the results presented in the study are highly relevant, there is a need for further mechanistic dissection to allow better inferences. Currently, certain results seem associative. Also, certain visualisations and experimental protocols presented in the manuscript need careful assessment and interpretation.

      While Asthma is a chronic disease, the presented results are particularly important to explore Asthma exacerbations in response to acute exposure to air pollutants. This is relevant in today's age of increasing air pollution and increasing global travel.

      Comments on revisions:

      Thank you for addressing the suggestions. No further comments.

    1. Reviewer #1 (Public review):

      Summary:

      This paper presents evidence that a relatively common genetic variant tied to several disease phenotypes affects the interaction between the mRNA of CCL2 and the RNA binding protein HuR. CCL2 is an immune cell chemoattractant protein.

      Strengths:

      The study is well conducted with relevant controls. The techniques are appropriate, and several approaches provided concordant results were generally supportive of the conclusions reached. The impact of this work, identifying a genetic variant that works by altering the binding of an RNA-regulatory protein, has important implications given that the HuR protein could be a drug target to improve its function and over-ride this genetic change. This could have important implications for a number of diseases where this genetic variant contributes to disease risk.

      The authors have done a nice job of citing prior work. Details of the experimental protocols are well elaborated and the significance of the findings are well contextualized.

      Weaknesses:

      Authors have addressed prior weaknesses.

    1. Reviewer #1 (Public review):

      Summary:

      Chen et al. engineered and characterized a suite of next-generation GECIs for the Drosophila NMJ that allow for the visualization of calcium dynamics within the presynaptic compartment, at presynaptic active zones, and in the postsynaptic compartment. These GECIs include ratiometric presynaptic Scar8m (targeted to synaptic vesicles), ratiometric active zone localized Bar8f (targeted to the scaffold molecule BRP), and postsynaptic SynapGCaMP8m. The authors demonstrate that these new indicators are a large improvement on the widely used GCaMP6 and GCaMP7 series GECIs, with increased speed and sensitivity. They show that presynaptic Scar8m accurately captures presynaptic calcium dynamics with superior sensitivity to the GCaMP6 and GCaMP7 series and with similar kinetics to chemical dyes. The active-zone targeted Bar8f sensor was assessed for the ability to detect release-site-specific nanodomain changes, but the authors concluded that this sensor is still too slow to accurately do so. Lastly, the use of postsynaptic SynapGCaMP8m was shown to enable the detection of quantal events with similar resolution to electrophysiological recordings. Finally, the authors developed a Python-based analysis software, CaFire, that enables automated quantification of evoked and spontaneous calcium signals. These tools will greatly expand our ability to detect activity at individual synapses without the need for chemical dyes or electrophysiology.

      Strengths:

      (1) In this study, the authors rigorously compare their newly engineered GECIs to those previously used at the Drosophila NMJ, highlighting improvements in localization, speed, and sensitivity. These comparisons appropriately substantiate the authors' claim that their GECIs are superior to those currently in use.

      (2) The authors demonstrate the ability of Scar8m to capture subtle changes in presynaptic calcium resulting from differences between MN-Ib and MN-Is terminals and from the induction of presynaptic homeostatic potentiation (PHP), rivaling the sensitivity of chemical dyes.

      (3) The improved postsynaptic SynapGCaMP8m is shown to approach the resolution of electrophysiology in resolving quantal events.

      (4) The authors created a publicly available pipeline that streamlines and standardizes analysis of calcium imaging data.

      Weaknesses:

      (1) Given the superior performance of GCaMP8m in the vesicle-tethered and postsynaptic applications, an analysis of its functionality at individual active zones ("Bar8m") would be a useful addition to this compendium, especially since the authors show that the faster kinetics of GCaMP8f are still not fast enough to resolve active zone-specific calcium dynamics.

      (2) Description of the CaFire pipeline could be clearer (for example, what exactly is the role of Excel?), and the GitHub user guide could be more fleshed out (with the addition of example ImageJ scripts and analyzed images).

    1. Reviewer #1 (Public review):

      Summary:

      This study probes the role of the NF-κB inhibitor IκBa in the regulation of pluripotency in mouse embyronic stem cells (mESCs). It follows from previous work that identified a chromatin-specific role for IκBa in the regulation of tissue stem cell differentiation. The work presented here shows that a fraction of IκBa specifically associates with chromatin in pluripotent stem cells. Using three Nfkbia-knockout lines, the authors show that IκBa ablation impairs the exit from pluripotency, with embryonic bodies (an in vitro model of mESC multi-lineage differentiation) still expressing high levels of pluripotency markers after sustained exposure to differentiation signals. The maintenance of aberrant pluripotency gene expression under differentiation conditions is accompanied by pluripotency-associated epigenetic profiles of DNA methylation and histone marks. Using elegant separation of function mutants identified in a separate study, the authors generate versions of IκBa that are either impaired in histone/chromatin binding or NF-κB binding. They show that the provision of the WT IκBa, or the NF-κB-binding mutant can rescue the changes in gene expression driven by loss of IκBa, but the chromatin-binding mutant can not. Thus the study identifies a chromatin-specific, NF-κB-independent role of IκBa as a regulator of exit from pluripotency.

      Strengths:

      The strengths of the manuscript lie in:<br /> (a) the use of several orthogonal assays to support the conclusions on the effects of exit from pluripotency;<br /> (b) the use of three independent clonal Nfkbia-KO mESC lines (lacking IκBa), which increase confidence in the conclusions; and<br /> (c) the use of separation of function mutants to determine the relative contributions of the chromatin-associated and NF-κB-associated IκBa, which would otherwise be very difficult to unpick.

      Weaknesses:

      No notable weaknesses remain in this revised version.

    1. Reviewer #1 (Public review):

      Summary:

      The authors define the principles that, based on first principles, should be guiding the optimisation of transcription factors with intrinsically disordered regions (IDR). The authors introduce an original search process, coined "octopusing", that involves transcription factor IDR and their binding affinities to optimise search times and binding affinities. The first part concerns the optimal strategies to define binding affinities to the genome in the receiving region that is called the "antenna", highlighting the following: (i) reduce the target to IDR-binding distance on the genome, (ii) optimise the distance between the DNA binding domain and the binding sites on the IDR to be as close as possible to the distance between their binding sites on the genome; (iii) keep the same number of binding sites and their targets and modulate this number with binding strength, reducing them with increased strength; (iv) modulate the binding strength to be above a threshold that depends on the proportion of IDR binding sites in the antenna. The second part concerns the scaling of the search time in function of key parameters such as the volume of the nucleus, and the size of the antenna, derived as a combination of 3D search and 1D "octopusing". The third part focuses on validation, where the current results are compared to binding probability data from a single experiment, and new experiments are proposed to further validate the model as well as testing designed transcription factors.

      Strengths:

      The strength of this work is that it provides simple, interpretable and testable theoretical conclusions. This will allow the derived design principles to be understood, evaluated and improved in the future. The theoretical derivations are rigorous. The authors provide a comparison to experiments, and also propose new experiments to be performed in the future. This is a great value in the paper since it will set the stage and inspire new experimental techniques. Further, the field needs inspiration and motivation to develop these techniques, since they are required to benchmark the transcription factors designed with the methods presented in this paper, as well as to develop novel data based or in vivo methods that would greatly benefit the field. As such, this paper is a fundamental contribution to the field.

      Weaknesses:

      The model presents many first principles to drive the design of transcription factors, but arguably, other principles and mechanisms might also play a role by being beneficial to the search and binding process. These other principles are mentioned at the end of the discussion part of the paper. On the other hand, an important task left to do, is to critically consider these principles altogether, and analyse the available data to quantify which role is predominant among transcription factors IDRs functions. Further, since one function doesn't exclude another, a theoretical investigation of possible crosstalk, interaction, and cooperativity of those different hypothetical functions is still missing.

    1. Reviewer #1 (Public review):

      Summary:

      This paper describes a behavioral platform "BuzzWatch" and its application in long-term behavioral monitoring. The study tested the system with different mosquito species and Aedes aegypti colonies and monitored behavioral response to blood feeding, change in photoperiod, and host-cue application at different times of the day.

      Strengths:

      BuzzWatch is a novel, custom-built behavioral system that can be used to monitor time-of-day-specific and long-term mosquito behaviors. The authors provide detailed documentation of the construction of the assay and custom flight tracking algorithm on a dedicated website, making them accessible to other researchers in the field. The authors performed a wide range of experiments using the BuzzWatch system and discovered differences in midday activity level among Aedes aegypti colonies, and reversible change in the daily activity profile post-blood-feeding.

      Weaknesses:

      The authors report the population metric "fraction flying" as their main readout of the daily activity profile. It is worth explaining why conventional metrics like travel distance/activity level are not reported. Alternatively, these metrics could be shown, considering the development and implementation of a flight trajectory tracking pipeline in this paper.

      The authors defined the sugar-feeding index using occupancy on the sugar feeder. However, the correlation between landing on the sugar feeder and active sugar feeding is not mentioned or tested in this paper. Is sugar feeding always observed when mosquitoes land on the sugar feeder? Do they leave the sugar feeding surface once sugar feeding is complete? One can imagine that texture preference and prolonged occupancy may lead to inaccurate reporting of sugar feeding. While occupancy on the sugar feeder is an informative behavioral readout, its link with sugar feeding activity (consumption) needs to be evaluated. Otherwise, the authors should discuss the caveats that this method presents explicitly to avoid overinterpretation of their results.

      Throughout the manuscript, the authors mentioned existing mosquito activity monitoring systems and their drawbacks. However, many of these statements are misleading and sometimes incorrect. The authors claim that beam-break monitors are "limited to counting active versus inactive states". Though these systems provide indirect readouts that may underreport activity, the number of beam-breaks in a time interval is correlated with activity level, as is commonly used and reported in Drosophila and mosquitoes and a number of reports in mosquitoes an updated LAM system with larger behavioral arenas and multiple infrared beams. The authors also mentioned the newer, camera-based alternatives to beam-break monitors, but again referred to these systems as "only detecting activity when a moving insect blocks a light beam"; however, these systems actually use video tracking (e.g., Araujo et al. 2020).

      The fold change in behavior presented in Figure 4D is rather confusing. Under the two different photoperiods, it is not clear how an hourly comparison is justified (i.e., comparing the light-on activity in the 20L4D condition with scotophase activity in the 12L12D condition). The same point applies to Figure 4H.

      The behavioral changes after changing photoperiod (Figure 4) require a control group (12L12D throughout) to account for age-related effects. This is controlled for the experiment in Figure 3 but not for Figure 4.

    1. Reviewer #1 (Public review):

      In their manuscript, Michelson et al use a combination of mesoscopic 1p and single-cell resolution 2p imaging to characterise cortical encoding of grooming behaviour. Despite their subcortical locus of control (and non-reliance on cortex), the authors report that grooming movements are accompanied by widespread activation of dorsal cortex. Different grooming movements elicit distinct spatiotemporal cortical activity patterns. They find that cortical engagement is greater at the beginning of grooming episodes than at their end. They also report greater cortical activation for atypical unilateral grooming movements seen under head-restraint in comparison to cortical activity during bilateral movements typical of unrestrained or spontaneous grooming.

      While this is not the first study to report cortical representations of subcortically controlled behaviours, and the authors themselves cite many previous reports of cortical activation during locomotion and even grooming (Sjöbom et al 2020), the value of the present study lies in their use of imaging to reveal the widespread nature of cortical activation during execution of a complex, innate behaviour. I also appreciate the systematic approach used by the authors to break down grooming episodes into their constituent movements and reveal their transition structure.

      I do have concerns, however, that some of the authors' claims are insufficiently supported by their results, and more analysis is required to convincingly rule out alternative interpretations.

      (1) One possible explanation for the gradual decline in cortical activity is that unilateral movements associated with greater cortical activation dominate early in grooming episodes, whereas bilateral movements that elicit weaker cortical activity dominate later (Figure 3G and 2C). The authors could check whether cortical activity associated with the *same* grooming movement is constant or declines during such episodes. A related point: doesn't the regression analysis shown in Figure 3, Supplement 2, assume that a stationary relationship between movement and spatiotemporal patterns of cortical activity?

      (2) From the decline in cortical responses during long grooming episodes, the authors suggest that "mesoscale cortical activity mostly reflects the initiation of subcortically-mediated behaviors, rather than the behavior itself". The authors have taken a lot of trouble to come up with a rich, detailed segmentation and clustering of the grooming behaviour into its constituent movements (Figure 1). Therefore, I am somewhat surprised that they make this claim solely from analysis of averaged cortical activity during nearly minute-long grooming episodes rather than a higher time resolution analysis of transitions between distinct grooming movements (like the prior study by Sjöbom et al and related work in striatal encoding of innate movement sequences by Markowitz et al).

      (3) The authors find that unilateral, atypical grooming movements elicit cortical activity that is distinct from the more naturalistic bilateral movements. They interpret this as reflecting the temporal transition structure of the behaviour. However, an alternative explanation is that the differences (or similarities) in evoked activity simply reflect differences (or similarities) in the kinematics of these movements, with bilateral movements appearing more similar to each other than to unilateral movements. A related point: there is little description of the "non-grooming forelimb movements". Were these kinematically similar to the unilateral forelimb movements, which may explain why they cluster together in Figure 4H?

      (4) Page 13, last paragraph: the authors suggest that similar encoding of non-grooming forelimb movements and unilateral grooming movements may reflect a shared reliance on the cortex. This is rather speculative. Several studies have demonstrated that voluntary unilateral movements employed for reaching or lever pressing are not generally reliant on the cortex (Whishaw et al, Beh Brain Res, 1991; Kawai et al, 2015). There isn't, in my opinion, a broad consensus for the authors' statement that "reaching for food is a cortex-dependent action". Rather than extrapolating from past studies, could the authors not experimentally assess whether unilateral grooming movements are more sensitive to cortical silencing than bilateral ones, possibly revealing a cortical locus of control?

    1. Reviewer #2 (Public review):

      General comments

      We thank the reviewers and editor for their thoughtful feedback. We are glad that the minor comments appear resolved. In this revision, we added subject-specific analyses, further FC comparisons, and clarified our rationale for stimulation parameters. We acknowledge that two concerns remain: (1) the 1 mA-2 mA sequence may introduce confounds, and (2) electric field modeling was not included due to technical limitations. We now explicitly note these as limitations in the manuscript and provide justification and discussion accordingly.

      Major comments

      R.2.1. For the anesthetized monkeys, the anode location differs between subjects, with the electrode positioned to stimulate the left DLFPC in monkey R and the right DLPFC in monkey N. The authors mention that this discrepancy does not result in significant differences in the electric field due to the monkeys' small head size. However, this is incorrect, as placing the anode on the left hemisphere would result in a much lower EF in the right DLPFC than placing the anode on the right side. Running an electric field simulation would confirm this. Additionally, the small electrode size suggested by the Easy cap configuration for NHP appears sufficient to stimulate the targeted regions focally. If this interpretation is correct, the authors should provide additional evidence to support their claim, such as a computational simulation of the EF distribution.

      R.2.1 Authors' answer: We thank the Reviewer for the comments. First, regarding the reviewer's statement that placing the anode on the left hemisphere would result in a much lower EF in the right DLPFC than placing the anode on the right side, we would like to clarify that we did not use a typical 4 x 1 concentric ring high-definition setup (which consists of a small centre electrode surrounded by four return electrodes), but a two-electrode montage, with one electrode over the left or right PFC and the other one over the contralateral occipital cortex. According to EF modelling papers, a 4 x 1 high-definition setup would produce an EF that is focused and limited to the cortical area circumscribed by the ring of the return electrodes (Datta et al. 2009; Alam et al. 2016). Therefore, targeting the left or right DLPFC with a 4 x 1 setup would produce an EF confined to the targeted hemisphere of the PFC. In contrast, we expect the brain current flow generated with our 2-electrode setup to be broader, despite the small size of the electrodes, because there is no constraint from return electrodes. Thus, with our setup, the current is expected to flow between the PFC and the occipital cortex (see also our responses to comments R3.3., R.E.C.#2.1. and R.E.C.#2.2.).

      Second, we would like to point out that in awake experiments, in which we stimulated the right PFC of both monkeys, there was no gross evidence of left or right asymmetry in the computed functional connectivity patterns (Figure 3A, Figure 3 - figure supplement 2A; Figure 5A). These results, showing that our stimulation montages did not induce asymmetric dynamic FC changes in NHPs, support the idea that our setups did not generate EFs that were spatially focused enough to alter brain activity in one hemisphere substantially more than the other.

      Third, it is also worth noting that current evidence suggests that human brains are significantly more lateralized than those of macaques. Macaque monkeys have been found to have some degree of lateralized networks, but these are of lower complexity, and the lateralization is less pronounced and functionally organized than in humans. (Whey et al., 2014; Mantini et al., 2013). This suggests that, even if the stimulation were focal enough to stimulate the left or the right part of the PFC only, the behavioural effects would likely be similar.

      Follow-up comment: Thank you for the detailed response and for referencing both experimental data and prior literature. While I appreciate the discussion on the lack of functional asymmetry and reduced lateralization in macaques, my original concern was about the physical distribution of the electric field (EF) due to different anode placements. Functional connectivity outcomes do not necessarily reflect EF symmetry, and without EF modeling, it's difficult to determine whether the stimulation affected both hemispheres equally. I understand the challenges of NHP-specific modeling, but even a simplified simulation or acknowledgment of this limitation in the manuscript would help clarify the interpretability of your results.

      R.2.2. For the anesthetized monkeys, the authors applied 1 mA tDCS first, followed by 2 mA tDCS. A 20-minute stimulation duration of 1 mA tDCS is strong enough to produce after-effects that could influence the brain state during the 2 mA tDCS. This raises some concerns. Previous studies have shown that 1 mA tDCS can generate EF of over 1 V/m in the brain, and the effects of stimulation are sensitive to brain state (e.g., eye closed vs. eye open). How do the authors ensure that there are no after-effects from the 1 mA tDCS? This issue makes it challenging to directly compare the effects of 1 mA and 2 mA stimulation.<br /> R.2.2 Authors' answer: We agree with the reviewer's comment that 1 mA tDCS may induce aftereffects, as has been observed in several human studies (e.g., (Jamil et al. 2017, 2020). Although the differences between the 1 mA post-stimulation and baseline conditions were not significant in our analyses, it's still possible that the stimulation produced some effects below the threshold of significance that may contribute, albeit weakly, to the changes observed during

      Follow-up comment: Thank you for the clarification and for acknowledging the potential for 1 mA after-effects. While I appreciate the authors' transparency and the amendment to the manuscript, I still find it important that the limitation be clearly stated in the Discussion section. The fact that 2 mA stimulation always followed 1 mA introduces a potential confound, making it difficult to attribute observed changes uniquely to 2 mA. If a counterbalanced design was not feasible, I would recommend explicitly noting this as a limitation in the interpretation of dose-dependent effects.

      R.2.3. The occurrence rate of a specific structural-functional coupling pattern among random brain regions shows significant effects of tDCS. However, these results seem counterintuitive. It is generally understood that non-invasive brain stimulation tends to modulate functional connectivity rather than structural or structural-functional connectivity. How does the occurrence rate of structural-functional coupling patterns provide a more suitable measure of the effectiveness of tDCS than functional connectivity alone? I would recommend that the authors present the results based on functional connectivity itself. If there is no change in functional connectivity, the relevance of changes in structural-functional coupling might not translate into a meaningful alteration in brain function, making it unclear how significant this finding is without corresponding functional evidence.

      R.2.3. Authors' answer: First of all, we would like to make it clear that the occurrence rate of patterns as a function of their SFC is not intended to be used or seen as a 'better' measure of the efficacy of tDCS. Instead, it is one aspect of the effects of tDCS on whole-brain functional cortical dynamics, obtained from refined measures (phase-coherences), that specifically addresses the coupling between structure and function. This type of analysis is further motivated by its increasing use in the literature due to its suspected relationship to wakefulness (e.g., (Barttfeld et al. 2015, Demertzi et al. 2019; Castro et al. 2023)). Also, in our analysis, the structure is kept constant: the connectivity matrix used to correlate the functional brain states is always the same (CoCoMac82). Thus, the influence of tDCS on the structure-function side can only be explained by modulating the functional aspects, as suggested by intuition and previous results.

      Then, we agree with the reviewer that studying the functional changes induced by tDCS alone could be valuable. However, usual metrics used in FC analysis are usually done statistically: FC-states are either computed through averaging spatial correlations over time, then analyzed through graph-theoretical properties for instance (or by just directly computing the element-wise differences), or either by considering the properties of the different visited FC-states by computing spatial correlations over a sliding time-window, and then similar analysis can be done as previously explained. But these are static metrics, if the states visited are essentially the same (which is expected from non-invasive neuromodulations that haven't already demonstrated strong and/or characteristic impact), but the dynamical process of visiting said states changes, one would see no difference in that regard. As such, in the case of resting-state fMRI, differences in FCs are hard to interpret given that between-sessions within-condition differences are usually found with some degree of variance for the respective conditions. Trying then to interpret between-condition differences is quite tricky in the case of subtle modulations of the system's activity. On the other hand, more subtle differences can be captured by considering more detailed analysis, such as using phase-based methods like we did, by incorporating some statistical learning component with regard to the dynamicity of the system (supervised learning for instance like we did followed by temporal & transition-based methodology), and by adding some dimensions along which one will be able to give some interpretation to the analysis. In our case we were interested in characterizing resting-state differences between stimulation conditions, which have nuanced and subtle interactions with the biological system. As such, classical measures of differences between FC states are likely to not be refined and precise enough. In fact, we propose additional files investigating those classically used measures such as differences in average FC matrices, or changes in functional graph properties (like modularity, efficiency and density) of the visited FC states. These figures show that, for the first case, comparing region-to-region specific FCs provides very few statistically significant results. With respect to the second part, we show that virtually no differences are observed in the properties of the functional states visited. These results suggest, as expected, that the actual brain states visited across the different stimulation conditions are topologically quite similar, and that only very few region-specific pairwise functional connectivities are particularly modulated by specific tDCS montages while, on the other hand, the actual dynamical process dictating how the brain activity passes from one state to another is in fact being influenced as shown by the dynamical analysis presented in the main figures in a more apparent and meaningful way (in that it is dependent on the montage, somewhat consistent with regard to the post-stimulations conditions, and can be made sense of by considering the theoretical effect of near-anodal versus near-cathodal neuromodulatory effects).

      Actions in the text: We have added new supplementary files showing the effects of the stimulations on FC matrices and on classical functional graph properties in awake and anesthesia datasets (Supplementary Files 3 & 4). We have added new sentences about these new analyses on the effects of the stimulations on FC matrices and on classical functional graph properties in the Results section:<br /> Follow-up comment: Thank you for the detailed and comprehensive response. The clarification regarding the use of SFC dynamics and the additional analyses provided are convincing.

      R2.4. The authors recorded data from only two monkeys, which may limit the investigation of the group effects of tDCS. As the number of scans for the second monkey in each consciousness condition is lower than that in the first monkey, there is a concern that the main effects might primarily reflect the data from a single monkey. I suggest that the authors should analyze the data for each monkey individually to determine if similar trends are observed in both subjects.

      R.2.4. Authors' answer: We agree that the small number of subjects is a limitation of our study. However, we have already addressed these aspects by reporting statistical analyses that consider them, using linear models of such variables, and running them through ANOVA tests. In addition, we experimentally ensured that we recorded a relatively high number of sessions over a period of several years. Regardless, we agree that our study would benefit from further investigation into this matter. We have therefore prepared complementary figures showing the main analysis performed separately for the two monkeys as proposed, as well as further investigations into the inter-condition variability outmatching the inter-individual variability, itself being also outmatched by intra-individual changes.

      Actions in the text: We have added a supplementary file showing the main analyses performed separately for the two monkeys (Supplementary File 2) and further investigations into the inter-condition variability (Supplementary Files 3 & 4). We have added new sentences about these analyses performed separately for the two monkeys in the Results section:

      Follow-up comment: Thank you for addressing this concern and for providing the individual monkey analysis. The additional figures and statistical explanations are helpful and appreciated.

      R2.5. Anodal tDCS was only applied to anesthetized monkeys, which limits the conclusion that the authors are aiming for. It raises questions about the conclusion regarding brain state dependency. To address this, it would be better to include the cathodal tDCS session for anesthetized monkeys. If cathodal tDCS changes the connectivity during anesthesia, it becomes difficult to argue that the effects of cathodal tDCS vary depending on the state of consciousness as discussed in this paper. On the other hand, if cathodal tDCS would not produce any changes, the conclusion would then focus on the relationship between the polarity of tDCS and consciousness. In that case, the authors could maintain their conclusion but might need to refine it to reflect this specific relationship more accurately.

      R.2.5. Authors' answer: We agree with the reviewer that it would have been interesting to investigate the effects of cathodal tDCS in anesthetized monkeys. However, due to the challenging nature of the experimental procedures under anesthesia, we had to limit the investigations to only one stimulation modality. We chose to deliver anodal stimulation because, from a translational point of view, we aimed to provide new information on the effects of tDCS under anesthesia as a model for disorders of consciousness. It also made much more sense to increase the cortical excitability of the prefrontal cortex in an attempt to wake up the sedated monkeys rather than doing the opposite.

      Actions in the text: We have added a new sentence in the Results section:

      "Due to the challenging nature of the experimental procedures under anesthesia, we limited the investigations to only one stimulation modality. We chose to deliver anodal stimulation to provide new information on the effects of tDCS under anesthesia as a model for disorders of consciousness and to increase the cortical excitability of the PFC in an attempt to wake up the sedated monkeys."

      Follow-up comment: Thank you for clarifying the rationale behind applying only anodal stimulation under anesthesia. While I appreciate the experimental constraints and the translational motivation, I would still encourage the authors to explicitly acknowledge in the Discussion that the absence of a cathodal condition under anesthesia limits the ability to dissociate polarity-specific effects from state-dependent effects. This clarification would help temper the conclusions and better reflect the scope of the current dataset.

    1. Reviewer #1 (Public review):

      The manuscript by Sayeed et al. uses a comprehensive series of multi-omics approaches to demonstrate that late-stage human cytomegalovirus (HCMV) infection leads to a marked disruption of TEAD1 activity, a concomitant loss of TEAD1-DNA interactions, and extensive chromatin remodeling. The data are thoroughly presented and provide evidence for the role of TEAD1 in the cellular response to HCMV infection.

      However, a key question remains unresolved: is the observed disruption of TEAD1 activity a direct consequence of HCMV infection, or could it be secondary to the broader innate antiviral response? In this respect, the study would benefit from more in-depth experiments that assess the effect of TEAD1 overexpression or knockdown/deletion on HCMV replication dynamics. The new data provided by the authors in Reviewer Response Figures 1 and 2 suggest that the presence of constitutively expressed TEAD1 does not substantially impact HCMV replication and gene expression as assessed at 72 and 96 hours post-infection. However, this does not discount the fact that HCMV infection induces significant TEAD1-related chromatin changes that may impact other cellular functions.

    1. Reviewer #1 (Public review):

      Summary:

      There is growing appreciation for the important of luminal (apical) ECM in tube development, but such matrices are much less well understood than basal ECMs. Here the authors provide insights into the aECM that shapes the Drosophila salivary gland (SG) tube and the importance of PAPSS-dependent sulfation in its organization and function.

      The first part of the paper focuses on careful phenotypic characterization of papss mutants, using multiple markers and TEM. This revealed reduced markers of sulfation and defects in both apical and basal ECM organization, Golgi (but not ER) morphology, number and localization of other endosomal compartments, plus increased cell death. The authors focus on the fact that papss mutants have an irregular SG lumen diameter, with both narrowed regions and bulged regions. They address the pleiotropy, showing that preventing the cell death and resultant gaps in the tube did not rescue the SG luminal shape defects and discussing similarities and differences between the papss mutant phenotype and those caused by more general trafficking defects. The analysis uses a papss nonsense mutant from an EMS screen - I appreciate the rigorous approach the authors took to analyze transheterozygotes (as well as homozygotes) plus rescued animals in order to rule out effects of linked mutations. Importantly, the rescue experiments also demonstrated that sulfation enzymatic activity is important.

      The 2nd part of the paper focuses on the SG aECM, showing that Dpy and Pio ZP protein fusions localize abnormally in papss mutants and that these ZP mutants (and Np protease mutants) have similar SG lumen shaping defects to the papss mutants. A key conclusion is that SG lumen defects correlate with loss of a Pio+Dpy-dependent filamentous structure in the lumen. These data suggest that ZP protein misregulation could explain this part of the papss phenotype.

      Overall, the text is very well written and clear. Figures are clearly labeled. The methods involve rigorous genetic approaches, microscopy, and quantifications/statistics and are documented appropriately. The findings are convincing.

      Significance:

      This study will be of interest to researchers studying developmental morphogenesis in general and specifically tube biology or the aECM. It should be particularly of interest to those studying sulfation or ZP proteins (which are broadly present in aECMs across organisms, including humans).

      This study adds to the literature demonstrating the importance of luminal matrix in shaping tubular organs and greatly advances understanding of the luminal matrix in the Drosophila salivary gland, an important model of tubular organ development and one that has key matrix differences (such as no chitin) compared to other highly studied Drosophila tubes like the trachea.

      The detailed description of the defects resulting from papss loss suggests that there are multiple different sulfated targets, with a subset specifically relevant to aECM biology. A limitation is that specific sulfated substrates are not identified here (e.g. are these the ZP proteins themselves or other matrix glycoproteins or lipids?); therefore, it's not clear how direct or indirect the effects of papss are on ZP proteins. However, this is clearly a direction for future work and does not detract from the excellent beginning made here.

      Comments on revised version:

      Overall, I am pleased with the authors' revisions in response to my original comments and those of the other reviewers

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors use anatomical tracing and slice physiology to investigate the integration of thalamic (ATN) and retrosplenial cortical (RSC) signals in the dorsal presubiculum (PrS). This work will be of interest to the field, as postsubiculum is thought to be a key region for integrating internal head direction representations with external landmarks. The main result is that ATN and RSC inputs drive the same L3 PrS neurons, which exhibit superlinear summation to near-coincident inputs. Moreover, this activity can induce bursting in L4 PrS neurons, which can pass the signals LMN (perhaps gated by cholinergic input).

      Strengths:

      The slice physiology experiments are carefully done. The analyses are clear and convincing, and the figures and results are well composed. Overall, these results will be a welcome addition to the field.

      Weaknesses:

      The conclusions about the circuit-level function of L3 PrS neurons sometimes outstrip the data, and their model of the integration of these inputs is unclear. I would recommend some revision of the introduction and discussion. I also had some minor comments about the experimental details and analysis.

      Specific major comments:

      (1) I found that the authors' claims sometimes outstrip their data, given that there were no in vivo recordings during behavior. For example, in the abstract that their results indicate "that layer 3 neurons can transmit a visually matched HD signal to medial entorhinal cortex", and in the conclusion they state "[...] cortical RSC projections that carry visual landmark information converge on layer 3 pyramidal cells of the dorsal presubiculum". However, they never measured the nature of the signals coming from ATN and RSC to L3 PrS (or signals sent to downstream regions). Their claim is somewhat reasonable with respect to ATN, where the majority of neurons encode HD, but neurons in RSC encode a vast array of spatial and non-spatial variables other than landmark information (e.g., head direction, egocentric boundaries, allocentric position, spatial context, task history to name a few), so making strong claims about the nature of the incoming signals is unwarranted.

      (2) Related to the first point, the authors hint at, but never explain, how coincident firing of ATN and RSC inputs would help anchor HD signals to visual landmarks. Although the lesion data (Yoder et al. 2011 and 2015) support their claims, it would be helpful if the proposed circuit mechanism was stated explicitly (a schematic of their model would be helpful in understanding the logic). For example, how do neurons integrate the "right" sets of landmarks and HD signals to ensure a stable anchoring? Moreover, it would be helpful to discuss alternative models of HD-to-landmark anchoring, including several studies that have proposed that the integration may (also?) occur in RSC (Page & Jeffrey, 2018; Yan, Burgess, Bicanski, 2021; Sit & Goard, 2023). Currently, much of the Discussion simply summarizes the results of the study, this space could be better used in mapping the findings to the existing literature on the overarching question of how HD signals are anchored to landmarks.

      Comments on revised version:

      The authors addressed all of my major points and most of my minor points in the revised submission.

    1. Reviewer #1 (Public review):

      In this study, the authors identified an insect salivary protein LssaCA participating viral initial infection in plant host. LssaCA directly bond to RSV nucleocapsid protein and then interacted with a rice OsTLP that possessed endo-β-1,3-glucanase activity to enhance OsTLP enzymatic activity and degrade callose caused by insects feeding. The manuscript suffers from fundamental logical issues, making its central narrative highly unconvincing.

      (1) These results suggested that LssaCA promoted RSV infection through a mechanism occurring not in insects or during early stages of viral entry in plants, but in planta after viral inoculation. As we all know that callose deposition affects the feeding of piercing-sucking insects and viral entry, this is contradictory to the results in Fig. S4 and Fig 2. It is difficult to understand callose functioned in virus reproduction in 3 days post virus inoculation. And authors also avoided to explain this mechanism.

      (2) Missing significant data. For example, the phenotypes of the transgenic plants, the RSV titers in the transgenic plants (OsTLP OE, ostlp). The staining of callose deposition were also hard to convince. The evidence about RSV NP-LssaCA-OsTLP tripartite interaction to enhance OsTLP enzymatic activity is not enough.

      (3) Figure 4a, there was the LssaCA signal in the fourth lane of pull-down data. Did MBP also bind LsssCA? The characterization of pull-down methods was rough a little bit. The method of GST pull-down and MBP pull-down should be characterized more in more detail.

    1. Reviewer #1 (Public review):

      Summary:

      The paper reports an analysis of whole-genome sequence data from 40 Faroese. The authors investigate aspects of demographic history and natural selection in this population. The key findings are that the Faroese (as expected) have a small population size and are broadly of Northwest European ancestry. Accordingly, selection signatures are largely shared with other Northwest European populations, although the authors identify signals that may be specific to the Faroes. Finally, they identify a few predicted deleterious coding variants that may be enriched in the Faroes.

      Strengths:

      The data are appropriately quality-controlled and appear to be of high quality. Some aspects of the Faroese population history are characterized, in particular, by the relatively (compared to other European populations) high proportion of long runs of homozygosity, which may be relevant for disease mapping of recessive variants. The selection analysis is presented reasonably, although as the authors point out, many aspects, for example differences in iHS, can reflect differences in demographic history or population-specific drift and thus can't reliably be interpreted in terms of differences in the strength of selection.

      Weaknesses:

      The main limitations of the paper are as follows:

      (1) The data are not available. I appreciate that (even de-identified) genotype data cannot be shared; however, that does substantially reduce the value of the paper. Minimally, I think the authors should share summary statistics for the selection scans, in line with the standard of the field.

      (2) The insight into the population history of the Faroes is limited, relative to what is already known (i.e., they were settled around 1200 years ago, by people with a mixture of Scandinavian and British ancestry, have a small effective population size, and any admixture since then comes from substantially similar populations). It's obvious, for example, that the Faroese population has a smaller bottleneck than, say, GBR.

      More sophisticated analyses (for example, ARG-based methods, or IBD or rare variant sharing) would be able to reveal more detailed and fine-scale information about the history of the populations that is not already known. PCA, ADMIXTURE, and HaplotNet analysis are broad summaries, but the interesting questions here would be more specific to the Faroes, for example, what are the proportions of Scandinavian vs Celtic ancestry? What is the date and extent of sex bias (as suggested by the uniparental data) in this admixture? I think that it is a bit of a missed opportunity not to address these questions.

      (3) I don't really understand the rationale for looking at HLA-B allele frequencies. The authors write that "ankylosing spondylitis (AS) may be at a higher prevalence in the Faroe Islands (unpublished data), however, this has not been confirmed by follow-up epidemiological studies". So there's no evidence (certainly no published evidence) that AS is more prevalent, and hence nothing to explain with the HLA allele frequencies?

    1. Reviewer #1 (Public review):

      Summary:

      In the manuscript, Hallinan et al. describe off-target probe binding in the 10x Genomics Xenium platform, which results in invalid profiling of some genes in a spatial context. This was validated by comparing the Xenium results with Visium and scRNA-seq using human breast tissue, which are comprehensive and convincing. The authors also provide a dedicated tool to predict such off-target binding, Off-target Probe Tracker (OPT), which could be widely adopted in the field by researchers who are interested in validating the previously published results.

      Strengths:

      (1) This is the first study to suggest off-target binding of probes in the gene panels of the Xenium platform, which could be easily overlooked.

      (2) The results were rigorously validated with two different methods.

      (3) This paper will be a helpful resource for properly interpreting the results of previously published papers based on the Xenium platform (the signals could be mixed).

      Weaknesses:

      (1) The results were only tested with one tissue (human breast). However, this is not a major weakness, as one can easily extrapolate that this should be the case for any other tissue.

      (2) Once the 10X Genomics corrects their gene panels according to this finding, the tool (OPT) will not be useful for most people. Still, it can be used by those who want to design de novo probes from scratch.

    1. Reviewer #1 (Public review):

      Summary:

      This study aimed to investigate the effects of optically stimulating the A13 region in healthy mice and a unilateral 6-OHDA mouse model of Parkinson's disease (PD). The primary objectives were to assess changes in locomotion, motor behaviors, and the neural connectome. For this, the authors examined the dopaminergic loss induced by 6-OHDA lesioning. They found a significant loss of tyrosine hydroxylase (TH+) neurons in the substantia nigra pars compacta (SNc) while the dopaminergic cells in the A13 region were largely preserved. Then, they optically stimulated the A13 region using a viral vector to deliver the channelrhodopsine (CamKII promoter). In both sham and PD model mice, optogenetic stimulation of the A13 region induced pro-locomotor effects, including increased locomotion, more locomotion bouts, longer durations of locomotion, and higher movement speeds. Additionally, PD model mice exhibited increased ipsilesional turning during A13 region photoactivation. Lastly, the authors used whole-brain imaging to explore changes in the A13 region's connectome after 6-OHDA lesions. These alterations involved a complex rewiring of neural circuits, impacting both afferent and efferent projections. In summary, this study unveiled the pro-locomotor effects of A13 region photoactivation in both healthy and PD model mice. The study also indicates the preservation of A13 dopaminergic cells and the anatomical changes in neural circuitry following PD-like lesions that represent the anatomical substrate for a parallel motor pathway.

      Strengths:

      These findings hold significant relevance for the field of motor control, providing valuable insights into the organization of the motor system in mammals. Additionally, they offer potential avenues for addressing motor deficits in Parkinson's disease (PD). The study fills a crucial knowledge gap, underscoring its importance, and the results bolster its clinical relevance and overall strength.

      The authors adeptly set the stage for their research by framing the central questions in the introduction, and they provide thoughtful interpretations of the data in the discussion section. The results section, while straightforward, effectively supports the study's primary conclusion-the pro-locomotor effects of A13 region stimulation, both in normal motor control and in the 6-OHDA model of brain damage.

      Weaknesses:

      (1) Anatomical investigation. I have a major concern regarding the anatomical investigation of plastic changes in the A13 connectome (Figures 4 and 5). While the methodology employed to assess the connectome is technically advanced and powerful, the results lack mechanistic insight at the cell or circuit level into the pro-locomotor effects of A13 region stimulation in both physiological and pathological conditions. This concern is exacerbated by a textual description of results that doesn't pinpoint precise brain areas or subareas but instead references large brain portions like the cortical plate, making it challenging to discern the implications for A13 stimulation. Lastly, the study is generally well-written with a smooth and straightforward style, but the connectome section presents challenges in readability and comprehension. The presentation of results, particularly the correlation matrices and correlation strength, doesn't facilitate biological understanding. It would be beneficial to explore specific pathways responsible for driving the locomotor effects of A13 stimulation, including examining the strength of connections to well-known locomotor-associated regions like the Pedunculopontine nucleus, Cuneiformis nucleus, LPGi, and others in the diencephalon, midbrain, pons, and medulla. Additionally, identifying the primary inputs to A13 associated with motor function would enhance the study's clarity and relevance.

      The study raises intriguing questions about compensatory mechanisms in Parkinson's disease a new perspective with the preservation of dopaminergic cells in A13, despite the SNc degeneration, and the plastic changes to input/output matrices. To gain inspiration for a more straightforward reanalysis and discussion of the results, I recommend the authors refer to the paper titled "Specific populations of basal ganglia output neurons target distinct brain stem areas while collateralizing throughout the diencephalon from the David Kleinfeld laboratory." This could guide the authors in investigating motor pathways across different brain regions.

      (2) Description of locomotor performance. Figure 3 provides valuable data on the locomotor effects of A13 region photoactivation in both control and 6-OHDA mice. However, a more detailed analysis of the changes in locomotion during stimulation would enhance our understanding of the pro-locomotor effects, especially in the context of 6-OHDA lesions. For example, it would be informative to explore whether the probability of locomotion changes during stimulation in the control and 6-OHDA groups. Investigating reaction time, speed, total distance, and even kinematic aspects during stimulation could reveal how A13 is influencing locomotion, particularly after 6-OHDA lesions. The laboratory of Whelan has a deep knowledge of locomotion and the neural circuits driving it so these features may be instructive to infer insights on the neural circuits driving movement. On the same line, examining features like the frequency or power of stimulation related to walking patterns may help elucidate whether A13 is engaging with the Mesencephalic Locomotor Region (MLR) to drive the pro-locomotor effects. These insights would provide a more comprehensive understanding of the mechanisms underlying A13-mediated locomotor changes in both healthy and pathological conditions.

      (3) Figure 2 indeed presents valuable information regarding the effects of A13 region photoactivation. To enhance the comprehensiveness of this figure and gain a deeper understanding of the neurons driving the pro-locomotor effect of stimulation, it would be beneficial to include quantifications of various cell types:

      • cFos-Positive Cells/TH-Positive Cells: it can help determine the impact of A13 stimulation on dopaminergic neurons and the associated pro-locomotor effect in healthy condition and especially in the context of Parkinson's disease (PD) modeling.

      • cFos-Positive Cells /TH-Negative Cells: Investigating the number of TH-negative cells activated by stimulation is also important, as it may reveal non-dopaminergic neurons that play a role in locomotor responses. Identifying the location and characteristics of these TH-negative cells can provide insights into their functional significance.<br /> Incorporating these quantifications into Figure 2 would enhance the figure's informativeness and provide a more comprehensive view of the neuronal populations involved in the locomotor effects of A13 stimulation.

      (4) Referred to Figure 3. In the main text (page 5) when describing the animal with 6-OHDA the wrong panels are indicated. It is indicated in Figure 2A-E but it should be replaced with 3A-E. Please do that.

      Summary of the Study after revision

      The revised manuscript reflects significant efforts to improve clarity, organization, and data interpretation. The refinements in anatomical descriptions, behavioral analyses, and contextual framing have strengthened the manuscript considerably. However, the study still lacks direct causal evidence linking anatomical remodeling to behavioral improvements, and the small sample size in the anatomical analyses remains a concern. The authors have addressed many points raised in the initial review, but further acknowledgement of the exploratory nature of these findings would enhance the scientific rigor of the work.

      Key Improvements in the Revision

      The revised manuscript demonstrates considerable progress in clarifying data presentation, refining behavioral analyses, and improving the contextualization of anatomical findings. The restructuring of the anatomical section now provides greater precision in describing motor-related pathways, integrating terminology from the Allen Brain Atlas. The addition of new figures (Figures 4 and 5) strengthens the accessibility of these findings by illustrating key connectivity patterns more effectively. Furthermore, the correlation matrices have been adjusted to improve interpretability, ensuring that the presented data contribute meaningfully to the overall narrative of the study.

      The authors have also made significant improvements in their behavioral analyses, particularly in the organization and presentation of locomotor data. Figure 3 has been revised to distinctly separate results from 6-OHDA and sham animals, providing a clearer comparison of locomotor outcomes. Additional metrics, such as reaction time, locomotion bouts, and movement speed, further enhance the granularity of the analysis, making the results more informative.

      The discussion surrounding anatomical connectivity has also been strengthened. The revised manuscript now places greater emphasis on motor-related pathways and refines its analysis of A13 efferents and afferents. A newly introduced figure provides a concise summary of these connections, improving the contextualization of the anatomical data within the study's broader scope. Moreover, the authors have addressed the translational relevance of their findings by acknowledging the differences between optogenetic stimulation and deep brain stimulation (DBS). Their discussion now better situates the findings within existing literature on PD-related motor circuits, providing a more balanced perspective on the potential implications of A13 stimulation.

      Remaining Concerns

      Despite these substantial improvements, a number of critical concerns remain. The anatomical findings, though insightful, remain largely correlative and do not establish a causal link between structural remodeling and locomotor recovery. While the authors argue that these data will serve as a reference for future investigations, their necessity for the core conclusions of the study is not entirely clear. Additionally, while the anatomical data offer an interesting perspective on A13 connectivity, their direct relevance to the study's primary goal-demonstrating the role of A13 in locomotor recovery-remains uncertain. The authors emphasize that these data will be valuable for future research, yet their integration into the study's main narrative feels somewhat supplementary. Based on this last thought of the authors it is even more relevant another key limitation lying in the small sample size used for connectivity analyses. With only two sham and three 6-OHDA animals included, the statistical confidence in the findings is inherently limited. The absence of direct statistical comparisons between ipsilesional and contralesional projections further weakens the conclusions drawn from these anatomical studies. The authors have acknowledged that obtaining the necessary samples, acquiring the data, and analyzing them is a prolonged and resource-intensive process. While this may be a valid practical limitation, it does not justify the lack of a robust statistical approach. A more rigorous statistical framework should be employed to reinforce the findings, or alternative techniques should be considered to provide additional validation. Given these constraints, it remains unclear why the authors have not opted for standard immunohistochemistry, which could provide a complementary and more statistically accessible approach to validate the anatomical findings. Employing such an approach would not only increase the robustness of the results but also strengthen the study's impact by providing an independent confirmation of the observed structural changes.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, Bonnifet et al. profile the presence of L1 ORF1p in the mouse and human brain and report that ORF1p is expressed in the human and mouse brain specifically in neurons at steady state and that there is an age-dependent increase in expression. This is a timely report as two recent papers have extensively documented the presence of full-length L1 transcripts in the mouse and human brain (PMID: 38773348 & PMID: 37910626). Thus, the finding that L1 ORF1p is consistently expressed in the brain is important to document and will be of value to the field.

      Strengths:

      Several parts of this manuscript appear to be well done and include the necessary controls. In particular, the documentation of neuron-specific expression of ORF1p in the mouse brain is an interesting finding with nice documentation. This will be very useful information for the field.

      Weaknesses:

      The transcriptomic data using human postmortem tissue presented in Figures 4 and 5 are not convincing. Quantification of transposon expression on short read sequencing has important limitations. Longer reads and complementary approaches are needed to study the expression of evolutionarily young L1s (see PMID: 38773348 & PMID: 37910626 for examples of the current state of the art). As presented, the human RNA data is inconclusive due to the short read length and small sample size. The value of including an inconclusive analysis in the manuscript is difficult to understand. With this data set, the authors cannot investigate age-related changes in L1 expression in human neurons.

      In line with these comments, the title should be changed to better reflect the findings in the manuscript. A title that does not mention "L1 increase with aging" would be better.

      Comments on Revisions:

      It is notable that the expression of ORF1p in the human brain shows two strong bands in the WB. As the authors acknowledge in their discussion, some labs report only one band. The authors have performed a number of controls to address this issue, acknowledge remaining uncertainty, and discuss the discrepancy in the field.

    1. Reviewer #1 (Public review):

      Summary:

      The researchers aimed to identify which neurotransmitter pathways are required for animals to withstand chronic oxidative stress. This work thus has important implications for disease processes that are caused/linked to oxidative stress. This work identified specific neurotransmitters and receptors that coordinate stress resilience, both prior to and during stress exposure. Further, the authors identified specific transcriptional programs coordinated by neurotransmission that may provide stress resistance.

      Strengths:

      The manuscript is very clearly written with a well-formulated rationale. Standard C. elegans genetic analysis and rescue experiments were performed to identify key regulators of the chronic oxidative stress response. These findings were enhanced by transcriptional profiling that identified differentially expressed genes that likely affect survival when animals are exposed to stress.

      Weaknesses:

      Where the gar-3 promoter drives expression was not discussed in the context of the rescue experiments in Figure 7.

    1. Reviewer #1 (Public review):

      Summary:

      Lesser et al provide a comprehensive description of Drosophila wing proprioceptive sensory neurons at the electron microscopy resolution. This "tour-de-force" provides a strong foundation for future structural and functional research aimed at understanding wing motor control in Drosophila with implications for understanding wing control across other insects.

      Strengths:

      (1) The authors leverage previous research that described many of the fly wing proprioceptors, and combine this knowledge with EM connectome data such that they now provide a near-complete morphological description of all wing proprioceptors.

      (2) The authors cleverly leverage genetic tools and EM connectome data to tie the location of proprioceptors on the wings with axonal projections in the connectome. This enables them to both align with previous literature as well as make some novel claims.

      3) In addition to providing a full description of wing proprioceptors, the authors also identified a novel population of sensors on the wing tegula that make direct connections with the B1 wing motor neurons, implicating the role of the tegula in wing movements that was previously underappreciated.

      (4) Despite being the most comprehensive description so far, it is reassuring that the authors clearly state the missing elements in the discussion.

      Weaknesses:

      (1) The authors do their main analysis on data from the FANC connectome but provide corresponding IDs for sensory neurons in the MANC connectome. I wonder how the connectivity matrix compares across FANC and MANC if the authors perform a similar analysis to the one they have done in Figure 2. This could be a valuable addition and potentially also pick up any sexual dimorphism.

      (2) The authors speculate about the presence of gap junctions based on the density of mitochondria. I'm not convinced about this, given that mitochondrial densities could reflect other things that correlate with energy demands in sub-compartments.

      (3) I'm intrigued by how the tegula CO is negative for iav. I wonder if authors tried other CO labeling genes like nompc. And what does this mean for the nature of this CO. Some more discussion on this anomaly would be helpful.

      (4) The authors conclude there are no proprioceptive neurons in sclerite pterale C based on Chat-Gal4 expression analysis. It would be much more rigorous if authors also tried a pan-neuronal driver like nsyb/elav or other neurotransmitter drivers (Vglut, GAD, etc) to really rule this out. (I hope I didn't miss this somewhere.)

      Overall, I consider this an exceptional analysis that will be extremely valuable to the community.

    1. Reviewer #1 (Public review):

      Summary:

      In this study by Kitto et al., the authors set out to identify specific signaling components regulating the hypoxic response from the neurons to the periphery and which components are required for lifespan extension. Their previous work had shown that expression of a stabilized HIF-1 mutant in the nervous system extends lifespan through the serotonin receptor SER-7 and leads to the induction of fmo-2 in the intestine. In the current study, they mapped the precise neural circuits required for this response, as well as the signaling mediators. Their work reveals that neurotransmitters GABA and tyramine, and the neuropeptide NLP-17, act downstream of neuronal HIF-1 to convey a "hypoxic signal" to peripheral tissues. Through cell-type-specific expression studies, targeted knockouts, and comprehensive lifespan analysis, the authors provide robust evidence to support their conclusions. The insights gained from the study are both moving the field forward as they advance our understanding of neuro-peripheral hypoxic signaling, but they also lay the groundwork for potential therapeutic strategies aimed at the modulation of such signaling pathways.

      Strengths:

      (1) This study provides new evidence further delineating signaling components required for hypoxic signaling-mediated longevity, from the nervous system to the periphery. Using a rigorous approach where they express stabilized HIF-1 mutant selectively in ADF, NSM, and HSN serotonergic neurons, followed by cell-type-specific tph-1 knockouts to pinpoint ADF-dependent serotonin signaling as essential for both lifespan extension and intestinal fmo-2 induction.

      This was followed by generating 11 transgenic lines that drive SER-7 expression under distinct neuron-specific promoters, to systematically tease out in which of 27 candidate neurons SER-7 functions to mediate hypoxia-induced longevity. This ultimately highlighted the RIS interneuron as the required signaling hub.

      (2) As the intestine lacks direct neuronal innervation, the authors employ neuron-specific RNAi (TU3311 strain) and dense core vesicle analyses to identify that the neuropeptide NLP-17 is required to transmit the hypoxic signal from RIS to induce fmo-2 in the intestine.

      (3) Overall, the paper is very well written. The experiments were carried out carefully and thoroughly, and the conclusions drawn are also well supported by the results they are showing.

      Weaknesses:

      Overall, I don't see many weaknesses. One point relates to their read-outs, which rely heavily on lifespan measurements and fmo-2 induction without evaluating other physiological processes that serotonin or NLP-17 might affect. For translational relevance, it would be valuable to assess or mention potential adverse effects, such as changes in reproduction, pharyngeal pumping, or proteostasis capacity (proteostasis capacity specifically in the tissue showing fmo-2 upregulation).

      While lifespan assays and fmo-2 expression do provide strong evidence, incorporating additional markers of stress resistance could strengthen the link between hypoxic signaling and organismal health as well.

    1. Reviewer #1 (Public review):

      Summary:

      This study compares four models - VALOR (dynamic visual-text alignment), CLIP (static visual-text alignment), AlexNet (vision-only), and WordNet (text-only) - in their ability to predict human brain responses using voxel-wise encoding modeling. The results show that VALOR not only achieves the highest accuracy in predicting neural responses but also generalizes more effectively to novel datasets. In addition, VALOR captures meaningful semantic dimensions across the cortical surface and demonstrates impressive predictive power for brain responses elicited by future events.

      Strengths:

      The study leverages a multimodal machine learning model to investigate how the human brain aligns visual and textual information. Overall, the manuscript is logically organized, clearly written, and easy to follow. The results well support the main conclusions of the paper.

      Weaknesses:

      (1) My primary concern is that the performance difference between VALOR and CLIP is not sufficiently explained. Both models are trained using contrastive learning on visual and textual inputs, yet CLIP performs significantly worse. The authors suggest that this may be due to VALOR being trained on dynamic movie data while CLIP is trained on static images. However, this explanation remains speculative. More in-depth discussion is needed on the architectural and inductive biases of the two models, and how these may contribute to their differences in modeling brain responses.

      (2) The methods section lacks clarity regarding which layers of VALOR and CLIP were used to extract features for voxel-wise encoding modeling. A more detailed methodological description is necessary to ensure reproducibility and interpretability. Furthermore, discussion of the inductive biases inherent in these models-and their implications for brain alignment - is crucial.

      (3) A broader question remains insufficiently addressed: what is the purpose of visual-text alignment in the human brain? One hypothesis is that it supports the formation of abstract semantic representations that rely on no specific input modality. While VALOR performs well in voxel-wise encoding, it is unclear whether this necessarily indicates the emergence of such abstract semantics. The authors are encouraged to discuss how the computational architecture of VALOR may reflect this alignment mechanism and what implications it has for understanding brain function.

      (4) The current methods section does not provide enough details about the network architectures, parameter settings, or whether pretrained models were used. If so, please provide links to the pretrained models to facilitate reproducible science.

    1. Reviewer #1 (Public review):

      Summary:

      This study advances the lab's growing body of evidence exploring higher-order learning and its neural mechanisms. They recently found that NMDA receptor activity in the perirhinal cortex was necessary for integrating stimulus-stimulus associations with stimulus-shock associations (mediated learning) to produce preconditioned fear, but it was not necessary for forming stimulus-shock associations. On the other hand, basolateral amygdala NMDA receptor activity is required for forming stimulus-shock memories. Based on these facts, the authors assessed: (1) why the perirhinal cortex is necessary for mediated learning but not direct fear learning, and (2) the determinants of perirhinal cortex versus basolateral amygdala necessity for forming direct versus indirect fear memories. The authors used standard sensory preconditioning and variants designed to manipulate the novelty and temporal relationship between stimuli and shock and, therefore, the attentional state under which associative information might be processed. Under experimental conditions where information would presumably be processed primarily in the periphery of attention (temporal distance between stimulus/shock or stimulus pre-exposure), perirhinal cortex NMDA receptor activation was required for learning indirect associations. On the other hand, when information would likely be processed in focal attention (novel stimulus contiguous with shock), basolateral amygdala NMDA activity was required for learning direct associations. Together, the findings indicate that the perirhinal cortex and basolateral amygdala subserve peripheral and focal attention, respectively. The authors provide support for their conclusions using careful, hypothesis-driven experimental design, rigorous methods, and integrating their findings with the relevant literature on learning theory, information processing, and neurobiology. Therefore, this work will be highly interesting to several fields.

      Strengths:

      (1) The experiments were carefully constructed and designed to test hypotheses that were rooted in the lab's previous work, in addition to established learning theory and information processing background literature.

      (2) There are clear predictions and alternative outcomes. The provided table does an excellent job of condensing and enhancing the readability of a large amount of data.

      (3) In a broad sense, attention states are a component of nearly every behavioral experiment. Therefore, identifying their engagement by dissociable brain areas and under different learning conditions is an important area of research.

      (4) The authors clearly note where they replicated their own findings, report full statistical measures, effect sizes, and confidence intervals, indicating the level of scientific rigor.

      (5) The findings raise questions for future experiments that will further test the authors' hypotheses; this is well discussed.

      Weaknesses:

      As a reader, it is difficult to interpret how first-order fear could be impaired while preconditioned fear is intact; it requires a bit of "reading between the lines".

    1. slide 2 of 5 Architecture SEO Trends in 2025 – Navigating the Future of Digital Visibility How SEO is Changing for Architects in 2025 Your next big project won’t be discovered in a magazine spread—it will start with a search. Here’s the reality: In 2025, the way high-value clients find [...] 19 Aug 2025 5min read Common SEO Mistakes Architecture Firms Make and How to Fix Them Why Most Architecture Firms Fail at SEO You design beautiful buildings. But your website? Probably invisible. Here’s the truth: you can have award-winning projects, a polished portfolio, and a sleek [...]
      1. Background should be frosted background
      2. Make the description word count under two lines.
    2. OUR WORLD,IN OUR WORDS Here’s a peek at what we’re up to in terms oftechnology, design and intelligence.

      The Playbook for Winning High-Value Clients Online. Your step-by-step guide to turning search visibility into a steady flow of qualified project inquiries.

    1. Reviewer #1 (Public review):

      Summary and Strengths:

      The very well-written manuscript by Lövestam et al. from the Scheres/Goedert groups entitled "Twelve phosphomimetic mutations induce the assembly of recombinant full-length human tau into paired helical filaments" demonstrates the in vitro production of the so-called paired helical filament Alzheimer's disease (AD) polymorph fold of tau amyloids through the introduction of 12 point mutations that attempt to mimic the disease-associated hyper-phosphorylation of tau. The presented work is very important because it enables disease-related scientific work, including seeded amyloid replication in cells, to be performed in vitro using recombinant-expressed tau protein.

      Comments on revised version:

      The manuscript is significantly improved, as also indicated by Reviewer 2, with the 100% formation of the PHF and the additional experiments to elucidate on the potential mechanism by the PTMs. This is a great work.

    1. Reviewer #1 (Public review):

      Summary:

      The topic of tumor-immune co-evolution is an important, understudied topic with, as the authors noted, a general dearth of good models in this space. The authors have made important progress on the topic by introduced a stochastic branching process model of antigenicity / immunogenicity and measuring the proportion of simulated tumors which go extinct. The model is extensively explored and authors provide some nice theoretical results in addition to simulated results, including an analysis of increasing cancer/immune versus cyclical cancer/immune dynamics. The analysis appropriately builds upon the foundation of other work in the field of predicting site frequency spectrum, but extends the results into cancer-immune co-evolution in an intuitive computational framework.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Moret et al. details the development and characterisation of novel ER- and mitochondria-targeted genetically encoded chemogenic Ca2+ sensors.

      Strengths:

      Compared to existing probes, these sensors exhibited superior responsiveness, brightness, and photostability within the red and far-red emission spectrum, enabling triple compartment Ca2+ measurements (ER, mitochondria, cytosol) and the detection of Ca2+ dynamics in axons and dendrites.

      Weaknesses:

      The data are robust and convincing, although the manuscript text lacks precision.

    1. Reviewer #1 (Public review):

      Summary:

      This study investigates the molecular mechanism by which warm temperature induces female-to-male sex reversal in the ricefield eel (Monopterus albus), a protogynous hermaphroditic fish of significant aquacultural value in China. The study identifies Trpv4 - a temperature-sensitive Ca²⁺ channel - as a putative thermosensor linking environmental temperature to sex determination. The authors propose that Trpv4 causes Ca²⁺ influx, leading to activation of Stat3 (pStat3). pStat3 then transcriptionally upregulates the histone demethylase Kdm6b (aka Jmjd3), leading to increased dmrt1 gene expression and ovo-testes development. This work aims to bridge ecological cues with molecular and epigenetic regulators of sex change and has potential implications for sex control in aquaculture.

      Strengths:

      (1) This study proposes the first mechanistic pathway linking thermal cues to natural sex reversal in adult ricefield eel, extending the temperature-dependent sex determination paradigm beyond embryonic reptiles and saltwater fish.

      (2) The findings could have applications for aquaculture, where skewed sex ratios apparently limit breeding efficiency.

      Weaknesses:

      (A) Scientific Concerns:

      (1) There is insufficient replication and data transparency. First, the qPCR data are presented as bar graphs without individual data points, making it impossible to assess variability or replication. Please show all individual data points and clarify n (sample size) per group. Second, the Western blotting is only shown as single replicates. If repeated 2-3 times as stated, quantification and normalization (e.g., pStat3/Stat3, GAPDH loading control) are essential. The full, uncropped blots should be included in the supplementary data.

      (2) The biological significance of the results is not clear. Many reported fold changes (e.g., kdm6b modulation by Stat3 inhibition, sox9a in S3A) are modest (<2-fold), raising concerns about biological relevance. Can the authors define thresholds of functional relevance or confirm phenotypic outcomes in these animals?

      (3) The specificity of key antibodies is not validated. Key antibodies (Stat3, pStat3, Foxl2, Amh) were raised against mammalian proteins. Their specificity for ricefield eel proteins is unverified. Validation should include siRNA-mediated knockdown with immunoblot quantification with 3 replicates. Homemade antibodies (Sox9a, Dmrt1) also require rigorous validation.

      (4) Most of the imaging data (immunofluorescence) is inconclusive. Immunofluorescence panels are small and lack monochrome channels, which severely limits interpretability. Larger, better-contrasted images (showing the merge and the monochrome of important channels) and quantification would enhance the clarity of these findings.

      (B) Other comments about the science:

      (1) In S3A, sox9a expression is not dose-responsive to Trpv4 modulation, weakening the causal inference.

      (2) An antibody against Kdm6b (if available) should be used to confirm protein-level changes.

      In sum, the interpretations are limited by the above concerns regarding data presentation and reagent specificity.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript titled "Introduction of cytosine-5 DNA methylation sensitizes cells to oxidative damage" proposes that 5mC modifications to DNA, despite being ancient and wide-spread throughout life, represent a vulnerability, making cells more susceptible to both chemical alkylation and, of more general importance, reactive oxygen species. Sarkies et al take the innovative approach of introducing enzymatic genome-wide cytosine methylation system (DNA methyltransferases, DNMTs) into E. coli, which normally lacks such a system. They provide compelling evidence that the introduction of DNMTs increases the sensitivity of E. coli to chemical alkylation damage. Surprisingly they also show DNMTs increase the sensitivity to reactive oxygen species and propose that the DNMT generated 5mC presents a target for the reactive oxygen species that is especially damaging to cells. Evidence is presented that DNMT activity directly or indirectly produces reactive oxygen species in vivo, which is an important discovery if correct, though the mechanism for this remains obscure.

      I am satisfied that the points #2, #3 and #4 relating to non-addativity, transcriptional changes and ROS generation have been appropriately addressed in this revised manuscript. The most important point (previously #1) has not been addressed beyond the acknowledgement in the results section that: "Alternatively, 3mC induction by DNMT may lead to increased levels of ssDNA, particularly in alkB mutants, which could increase the risk of further DNA damage by MMS exposure and heighten sensitivity." This slightly miss-represents the original point that 5mC the main enzymatic product of DNMTs rather or in addition to 3mC is likely to lead to transient damage susceptible ssDNA, especially in an alkB deficient background. And more centrally to the main claims of this manuscript, the authors have not resolved whether methylated cytosine introduced into bacteria is deleterious in the context of genotoxic stress because of the oxidative modification to 5mC and 3mC, or because of oxidative/chemical attack to ssDNA that is transiently exposed in the repair processing of 5mC and 3mC, especially in an alkB deficient background. This is a crucial distinction because chemical vulnerability of 5mC would likely be a universal property of cytosine methylation across life, but the wide-spread exposure of ssDNA is expected to be peculiarity of introducing cytosine methylation into a system not evolved with that modification as a standard component of its genome.

      These two models make different predictions about the predominant mutation types generated, in the authors system using M.SssI that targets C in a CG context - if oxidative damage to 5mC dominates then mutations are expected to be predominantly in a CG context, if ssDNA exposure effects dominate then the mutations are expected to be more widely distributed - sequencing post exposure clones could resolve this.

      Strengths:

      This work is based on an interesting initial premise, it is well motivated in the introduction and the manuscript is clearly written. The results themselves are compelling.

      Weaknesses:

      I am not currently convinced by the principal interpretations and think that other explanations based on known phenomena could account for key results. Specifically the authors have not resolved whether oxidative modification to 5mC and 3mC, or chemical attack to ssDNA that is transiently exposed in the repair processing of 5mC and 3mC is the principal source of the observed genotoxicity. The authors acknowledge this potential alternative model in their discussion of the revised manuscript.

    1. Joint Public Review:

      In this work, the authors present DeepTX, a computational tool for studying transcriptional bursting using single-cell RNA sequencing (scRNA-seq) data and deep learning. The method aims to infer transcriptional burst dynamics-including key model parameters and the associated steady-state distributions-directly from noisy single-cell data. The authors apply DeepTX to datasets from DNA damage experiments, revealing distinct regulatory patterns: IdU treatment in mouse stem cells increases burst size, promoting differentiation, while 5FU alters burst frequency in human cancer cells, driving apoptosis or survival depending on dose. These findings underscore the role of burst regulation in mediating cell fate responses to DNA damage.

      The main strength of this study lies in its methodological contribution. DeepTX integrates a non-Markovian mechanistic model with deep learning to approximate steady-state mRNA distributions as mixtures of negative binomial distributions, enabling genome-scale parameter inference with reduced computational cost. The authors provide a clear discussion of the framework's assumptions, including reliance on steady-state data and the inherent unidentifiability of parameter sets, and they outline how the model could be extended to other regulatory processes.

      The revised manuscript addresses many of the original concerns, particularly regarding sample size requirements, distributional assumptions, and the biological interpretation of inferred parameters. However, the framework remains limited by the constraints of snapshot data and cannot yet resolve dynamic heterogeneity or causality. The manuscript would also benefit from a broader contextualisation of DeepTX within the landscape of existing tools linking mechanistic modelling and single-cell transcriptomics. Finally, the interpretation of pathway enrichment analyses still warrants clarification.

      Overall, this work represents a valuable contribution to the integration of mechanistic models with high-dimensional single-cell data. It will be of interest to researchers in systems biology, bioinformatics, and computational modelling.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, Meunier et al. investigated the functional role of IL-10 in avian mucosal immunity. While the anti-inflammatory role of IL-10 is well established in mammals, and several confirmatory Knock-out models available in mice, IL-10's role in avian mucosal immunity is so far correlative. In this study the authors generated two different models of IL-10 ablation in Chickens. A whole body knock-out model, and an enhancer KO model leading to reduced IL10 expression. The authors first performed in vitro LPS stimulation based experiments, and then in vivo two different infection models employing C. jejuni and E. tenella, to demonstrate that complete ablation of IL10 leads to enhanced inflammation related pathology and gene expression, and enhanced pathogen clearance. At a steady-state level, however, IL-10 ablation did not lead to spontaneous colitis.

      Strengths:

      Overall the study is well executed and establishes an anti-inflammatory role of IL-10 in birds. While the results are expected, and not surprising, this appears to be the first report to conclusively demonstrate IL-10's anti-inflammatory role upon its genetic ablation in avian model. Provided the applicability of this information in combating pathogen infection in livestock species in sustainable industries like poultry, the study is worth publishing.

      Weaknesses:

      The study is primarily a confirmation of the already established anti-inflammatory role of IL-10.

      Comments on revised version:

      The authors have incorporated most of the points raised, and provided a reasonable argument for not considering DSS mediated colitis as an additional model.

    1. Reviewer #1 (Public review):

      The authors present their new bioinformatic tool called TEKRABber, and use it to correlate expression between KRAB ZNFs and TEs across different brain tissues, and across species. While the aims of the authors are clear and there would be significant interest from other researchers in the field for a program that can do such correlative gene expression analysis across individual genomes and species, the presented approach and work display significant shortcomings. In the current state of the analysis pipeline, the biases and shortcomings mentioned below, for which I have seen no proof of that they are accounted for by the authors, are severely impacting the presented results and conclusions. It is therefore essential that the points below are addressed, involving significant changes in the TEKRABber progamm as well as the analysis pipeline, to prevent the identification of false positive and negative signals, that would severely affect the conclusions one can raise about the analysis.

      My main concerns are provided below:

      One important shortcoming of the biocomputational approach is that most TEs are not actually expressed, and others (Alus) are not a proxy of the activity of the TE class at all. I will explain: While specific TE classes can act as (species-specific) promoters for genes (such as LTRs) or are expressed as TE derived transcripts (LINEs, SVAs), the majority of other older TE classes do not have such behavior and are either neutral to the genome or may have some enhancer activity (as mapped in the program they refer to 'TEffectR'. A big focus is on Alus, but Alus contribute to a transcriptome in a different way too: They often become part of transcripts due to alternative splicing. As such, the presence of Alu derived transcripts is not a proxy for the expression/activity of the Alu class, but rather a result of some Alus being part of gene transcripts (see also next point). Bottom line is that the TEKRABber software/approach is heavily prone to picking up both false positives (TEs being part of transcribed loci) and false negatives (TEs not producing any transcripts at all) , which has a big implication for how reads from TEs as done in this study should be interpreted: The TE expression used to correlate the KRAB ZNF expression is simply not representing the species-specific influences of TEs where the authors are after.

      With the strategy as described, a lot of TE expression is misinterpreted: TEs can be part of gene-derived transcripts due to alternative splicing (often happens for Alus) or as a result of the TE being present in an inefficiently spliced out intron (happens a lot) which leads to TE-derived reads as a result of that TE being part of that intron, rather than that TE being actively expressed. As a result, the data as analysed is not reliably indicating the expression of TEs (as the authors intend too) and should be filtered for any reads that are coming from the above scenarios: These reads have nothing to do with KRAB ZNF control, and are not representing actively expressed TEs and therefore should be removed. Given that from my lab's experience in brain (and other) tissues, the proportion of RNA sequencing reads that are actually derived from active TEs is a stark minority compared to reads derived from TEs that happen to be in any of the many transcribed loci, applying this filtering is expected to have a huge impact on the results and conclusions of this study.

      Another potential problem that I don't see addressed is that due to the high level of similarity of the many hundreds of KRAB ZNF genes in primates and the reads derived from them, and the inaccurate annotations of many KZNFs in non-human genomes, the expression data derived from RNA-seq datasets cannot be simply used to plot KZNF expression values, without significant work and manual curation to safeguard proper cross species ortholog-annotation: The work of Thomas and Schneider (2011) has studied this in great detail but genome-assemblies of non-human primates tend to be highly inaccurate in appointing the right ortholog of human ZNF genes. The problem becomes even bigger when RNA-sequencing reads are analyzed: RNA-sequencing reads from a human ZNF that emerged in great apes by duplication from an older parental gene (we have a decent number of those in the human genome) may be mapped to that older parental gene in Macaque genome: So, the expression of human-specific ZNF-B, that derived from the parental ZNF-A, is likely to be compared in their DESeq to the expression of ZNF-A in Macaque RNA-seq data. In other words, without a significant amount of manual curation, the DE-seq analysis is prone to lead to false comparisons which make the stategy and KRABber software approach described highly biased and unreliable.

      There is no doubt that there are differences in expression and activity of KRAB-ZNFs and TEs repspectively that may have had important evolutionary consequences. However, because all of the network analyses in this paper rely on the analyses of RNA-seq data and the processing through the TE-KRABber software with the shortcomings and potential biases that I mentioned above, I need to emphasize that the results and conclusions are likely to be significantly different if the appropriate measures are taken to get more accurate and curated TE and KRAB ZNF expression data.

      Finally, there are some minor but important notes I want to share:

      The association with certain variations in ZNF genes with neurological disorders such as AD, as reported in the introduction is not entirely convincing without further functional support. Such associations could be merely happen by chance, given the high number of ZNF genes in the human genome and the high chance that variations in these loci happen associate with certatin disease associated traits. So using these associations as an argument that changes in TEs and KRAB ZNF networks are important for diseases like AD should be used with much more caution.

      There is a number of papers where KRAB ZNF and TE expression are analysed in parallel in human brain tissues. So the novelty of that aspect of the presented study may be limited.

      Additional note after reviewing the revised version of the manuscript:

      After reviewing the revised version of the manuscript, my criticism and concerns with this study are still evenly high and unchanged. To clarify, the revised version did not differ in essence from the original version; it seems that unfortunately, no efforts were taken to address the concerns raised on the original version of the manuscript, the results section as well as the discussion section are virtually unchanged.

    1. Reviewer #1 (Public review):

      The authors have implemented several clarifications in the text and improved the connection between their findings and previous work. As stated in my initial review, I had no major criticisms of the previous version of the manuscript, and I continue to consider this a solid and well-written study. However, the revised manuscript still largely reiterates existing findings and does not offer novel conceptual or experimental advances. It supports previous conclusions suggesting a likely conserved sex determination locus in aculeate hymenopterans, but does so without functional validation (i.e., via experimental manipulation) of the candidate locus in O. biroi. I also wish to clarify that I did not intend to imply that functional assessments in the Pan et al. study were conducted in more than one focal species; my previous review explicitly states that the locus's functional role was validated in the Argentine ant.

    1. Reviewer #1 (Public review):

      Summary:

      Axon growth is of course essential to formation of neural connections. Adhesion is generally needed to anchor and rectify such motion, but whether the tenacity or forces of adhesion must be optimal for maximal axon extension is unknown. Measurements and contributing factors are generally lacking and are pursued here with a laser-induced shock wave approach near the axon growth cone. The authors claim to make measurements of the pressure required to detach axon from low to high matrix density. The results seem to support the authors' conclusions, and the work -- with further support per below - is likely to impact the field of cell adhesion. In particular, there could be some utility of the methods for the adhesion and those interested in aspects of axon growth

      Strengths:

      A potential ability to control the pressure simply via proximity of the laser spot is convenient and perhaps responsible. The 0 to 1 scale for matrix density is a good and appropriate measure for comparing adhesion and other results. The attention to detachment speed, time, F-actin, and adhesion protein mutant provides key supporting evidence. Lastly, the final figure of traction force microscopy with matrix varied on a gel is reasonable and more physiological because neural tissue is soft (cite PMID: 16923388); an optimum in Fig.6 also perhaps aligns with axon length results in Fig.5.

      Weaknesses:

      The results seem incomplete and less than convincing. This is because the force calibration curve seems to be from a >10 yr old paper without any more recent checks or validating measurements. Secondly, the claimed effect of pressure on detachment of the growth cone does not consider other effects such as cavitation or temperature and certainly needs validation with additional methods that overcome such uncertainties. The authors need to check whether the laser perturbs the matrix, particularly local density. A relation between traction stresses of ~20-50 pN/um2 in Fig.6 and the adhesion pressure of 3-5 kPa of FIg.3 needs to be carefully explained; the former units equate to 0.02-0.05 kPa, and would perhaps suggest cells cannot detach themselves and move forward.

      The authors need to measure axon length on gels (Fig.6) as more physiological because neural tissue is soft. The studies are also limited to a rudimentary in vitro model without clear relevance to in vivo.

      Weaknesses concerning the laser method have been addressed, but alternative methods and relevance to in vivo remain lacking.

    1. Reviewer #1 (Public review):

      Summary:

      The Neuronal microtubule cytoskeleton is essential long long-range transport in axons and dendrites. The axon-specific plus-end out microtubule organization vs the dendritic-specific plus-end in organization allows for selective transport into each neurite, setting up neuronal polarity. In addition, the dendritic microtubule organization is thought to be important for dendritic pruning in Drosophila during metamorphosis. However, the precise mechanisms that organize microtubules in neurons are still incompletely understood.

      In the current manuscript, the authors describe the spectraplakin protein Shot as important in developmental dendritic pruning. They find that Shot has dendritic microtubule polarity defects, which, based on their rescues and previous work, is likely the reason for the pruning defect.

      Since Shot is a known actin-microtubule crosslinker, they also investigate the putative role of actin and find that actin is also important for dendritic pruning. Finally, they find that several factors that have been shown to function as a dendritic MTOC in C. elegans also show a defect in Drosophila upon depletion.

      Strengths:

      Overall, this work was technically well-performed, using advanced genetics and imaging. The author reports some interesting findings identifying new players for dendritic microtubule organization and pruning.

      Weaknesses:

      The evidence for Shot interacting with actin for its functioning is contradictory. The Shot lacking the actin interaction domain did not rescue the mutant; however, it also has a strong toxic effect upon overexpression in wildtype (Figure S3), so a potential rescue may be masked. Moreover, the C-terminus-only construct, which carries the GAS2-like domain, was sufficient to rescue the pruning. This actually suggests that MT bundling/stabilization is the main function of Shot (and no actin binding is needed). On the other hand, actin depolymerization leads to some microtubule defects and subtle changes in shot localization in young neurons (not old ones). More importantly, it did not enhance the microtubule or pruning defects of the Shot domain, suggesting these act in the same pathway. Interesting to note is that Mical expression led to microtubule defects but not to pruning defects. This argues that MT organization effects alone are not enough to cause pruning defects. This may be be good to discuss. For the actin depolymerization, the authors used overexpression of the actin-oxidizing Mical protein. However, Mical may have another target. It would be good to validate key findings with better characterized actin targeting tools.

      In analogy to C. elegans, where RAB-11 functions as a ncMTOC to set up microtubules in dendrites, the authors investigated the role of these in Drosophila. Interestingly, they find that rab-11 also colocalizes to gamma tubulin and its depletion leads to some microtubule defects. Furthermore, they find a genetic interaction between these components and Shot; however, this does not prove that these components act together (if at all, it would be the opposite). This should be made more clear. What would be needed to connect these is to address RAB-11 localization + gamma-tubulin upon shot depletion.

      All components studied in this manuscript lead to a partial reversal of microtubules in the dendrite. However, it is not clear from how the data is represented if the microtubule defect is subtle in all animals or whether it is partially penetrant stronger effect (a few animals/neurons have a strong phenotype). This is relevant as this may suggest that other mechanisms are also required for this organization, and it would make it markedly different from C. elegans. This should be discussed and potentially represented differently.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript uses primarily simulation tools to probe the pathway of cholesterol transport with the smoothened (SMO) protein. The pathway to the protein and within SMO is clearly discovered, and interactions deemed important are tested experimentally to validate the model predictions.

      Strengths:

      The authors have clearly demonstrated how cholesterol might go from the membrane through SMO for the inner and outer leaflets of a symmetrical membrane model. The free energy profiles, structural conformations, and cholesterol-residue interactions are clearly described.

      Weaknesses:

      (1) Membrane Model:

      The authors decided to use a rather simple symmetric membrane with just cholesterol, POPC, and PSM at the same concentration for the inner and outer leaflets. This is not representative of asymmetry known to exist in plasma membranes (SM only in the outer leaflet and more cholesterol in this leaflet). This may also be important to the free energy pathway into SMO. Moreover, PE and anionic lipids are present in the inner leaflet and are ignored. While I am not requesting new simulations, I would suggest that the authors should clearly state that their model does not consider lipid concentration leaflet asymmetry, which might play an important role.

      (2) Statistical comparison of barriers:

      The barriers for pathways 1 and 2 are compared in the text, suggesting that pathway 2 has a slightly higher barrier than pathway 1. However, are these statistically different? If so, the authors should state the p-value. If not, then the text in the manuscript should not state that one pathway is preferred over the other.

      (3) Barrier of cholesterol (reasoning):

      The authors on page 7 argue that there is an enthalpy barrier between the membrane and SMO due to the change in environment. However, cholesterol lies in the membrane with its hydroxyl interacting with the hydrophilic part of the membrane and the other parts in the hydrophobic part. How is the SMO surface any different? It has both characteristics and is likely balanced similarly to uptake cholesterol. Unless this can be better quantified, I would suggest that this logic be removed.

    1. Reviewer #1 (Public review):

      Summary:

      In this paper, the authors investigate the effects of Miro1 on VSMC biology after injury. Using conditional knockout animals, they provide the important observation that Miro1 is required for neointima formation. They also confirm that Miro1 is expressed in human coronary arteries. Specifically, in conditions of coronary diseases, it is localized in both media and neointima, and, in atherosclerotic plaque, Miro1 is expressed in proliferating cells.

      However, the role of Miro1 in VSMC in CV diseases is poorly studied, and the data available are limited; therefore, the authors decided to deepen this aspect. The evidence that Miro-/- VSMCs show impaired proliferation and an arrest in S phase is solid and further sustained by restoring Miro1 to control levels, normalizing proliferation. Miro1 also affects mitochondrial distribution, which is strikingly changed after Miro1 deletion. Both effects are associated with impaired energy metabolism due to the ability of Miro1 to participate in MICOS/MIB complex assembly, influencing mitochondrial cristae folding. Interestingly, the authors also show the interaction of Miro1 with NDUFA9, globally affecting super complex 2 assembly and complex I activity.

      Finally, these important findings also apply to human cells and can be partially replicated using a pharmacological approach, proposing Miro1 as a target for vasoproliferative diseases.

      Strengths:

      The discovery of Miro1 relevance in neointima information is compelling, as well as the evidence in VSMC that MIRO1 loss impairs mitochondrial cristae formation, expanding observations previously obtained in embryonic fibroblasts.

      The identification of MIRO1 interaction with NDUFA9 is novel and adds value to this paper. Similarly, the findings that VSMC proliferation requires mitochondrial ATP support the new idea that these cells do not rely mostly on glycolysis.

      Weaknesses:

      (1) Figure 3:

      I appreciate the system used to assess mitochondrial distribution; however, I believe that time-lapse microscopy to evaluate mitochondrial movements in real time should be mandatory. The experimental timing is compatible with time-lapse imaging, and these experiments will provide a quantitative estimation of the distance travelled by mitochondria and the fraction of mitochondria that change position over time. I also suggest evaluating mitochondrial shape in control and MIRO1-/- VSMC to assess whether MIRO1 absence could impact mitochondrial morphology, altering fission/fusion machinery, since mitochondrial shape could differently influence the mobility.

      (2) Figure 6:

      The evidence of MIRO1 ablation on cristae remodeling is solid; however, considering that the mechanism proposed to explain the finding is the modulation of MICOS/MIB complex, as shown in Figure 6D, I suggest performing EM analysis in each condition. In my mind, Miro1 KK and Miro1 TM should lead to different cristae phenotypes according to the different impact on MICOS/MIB complex assembly. Especially, Miro1 TM should mimic Miro1 -/- condition, while Miro1 KK should drive a less severe phenotype. This would supply a good correlation between Miro1, MICOS/MIB complex formation and cristae folding.

      I also suggest performing supercomplex assembly and complex I activity with each plasmid to correlate MICOS/MIB complex assembly with the respiratory chain efficiency.

      (3) I noticed that none of the in vitro findings have been validated in an in vivo model. I believe this represents a significant gap that would be valuable to address. In your animal model, it should not be too complex to analyze mitochondria by electron microscopy to assess cristae morphology. Additionally, supercomplex assembly and complex I activity could be evaluated in tissue homogenates to corroborate the in vitro observations.

      (4) I find the results presented in Figure S7 somewhat unclear. The authors employ a pharmacological strategy to reduce Miro1 and validate the findings previously obtained with the genetic knockout model. They report increased mitophagy and a reduction in mitochondrial mass. However, in my opinion, these changes alone could significantly impact cellular metabolism. A lower number of mitochondria would naturally result in decreased ATP production and reduced mitochondrial respiration. This, in turn, weakens the proposed direct link between Miro1 deletion and impaired metabolic function or altered electron transport chain (ETC) activity. I believe this section would benefit from additional experiments and a more in-depth discussion.

    1. Reviewer #1 (Public review):

      Summary:

      The study by the Obata group characterizes the dynamics of the canonical malate dehydrogenase-citrate synthase metabolon in yeast.

      Strengths:

      The study is well-written and appears to give clear demonstrations of this phenomenon.

      Studies of the dynamics of metabolon formation are rare; if the authors can address the concern detailed below, then they have provided such for one of the canonical metabolons in nature.

      Weaknesses:

      There is a fundamental issue with the study, which is that the authors do not provide enough support or information concerning the split luciferase system that they use. Is the binding reversible or not? How the data is interpreted is massively influenced by this fact. What are the pros and cons of this method in comparison to, for example, FLIM-FRET? The authors state that the method is semi-quantitative - can they document this? All of the conclusions are based on the quality of this method. I know that it has been used by others, but at least some preliminary documentation to address these questions is required.

    1. Reviewer #1 (Public review):

      Summary:

      In this paper, Behruznia and colleagues use long-read sequencing data for 339 strains of the Mycobacterium tuberculosis complex to study genome evolution in this clonal bacterial pathogen. They use both a "classical" pangenome approach that looks at the presence and absence of genes, and a pangenome graph based on whole genomes in order to investigate structural variants in non-coding regions. The comparison of the two approaches is informative and shows that much is missed when focusing only on genes. The two main biological results of the study are that 1) the MTBC has a small pangenome with few accessory genes, and that 2) pangenome evolution is driven by genome reduction. The second result is still questionable because it relies on a method that disregards paralogs.

      Strengths:

      The authors put together the so-far largest data set of long-read assemblies representing most lineages of the Mycobacterium tuberculosis context, and covering a large geographic area. They sequenced and assembled genomes for strains of M. pinnipedi, L9, and La2, for which no high-quality assemblies were available previously. State-of-the-art methods are used to analyze gene presence-absence polymorphisms (Panaroo) and to construct a pangenome graph (PanGraph). Additional analysis steps are performed to address known problems with misannotated or misassembled genes.

      Weaknesses:

      The main criticism regarding the dominance of genome reduction remains after two rounds of revisions. A method that systematically excludes paralogs is hardly suitable to draw conclusions about the relative importance of insertions/duplications and deletions in a clonal organism, where any insertion/duplication will result in a paralog. I understand that a re-analysis of the data might not be practical, and the authors have added a few sentences in the discussion that touch on this problem. However, the statements regarding the dominance of genome reduction remain too assertive given this basic flaw.

      Here are the more detailed argument from the previous review:

      In a fully clonal organism, any insertion/duplication will be an insertion/duplication of an existing sequence and thus produce a paralog. If I'm correctly understanding your methods section, paralogs are systematically excluded in the pangraph analysis. Genomic blocks are summarized at the sublineage level as follows (l.184 ): "The DNA sequences from genomic blocks present in at least one sub-lineage but completely absent in others were extracted to look for long-term evolution patterns in the pangenome." I presume this is done using blastn, as in other steps of the analysis.

      So a sublineage-specific copy of IS6110 would be excluded here, because IS6110 is present somewhere in the genome in all sublineages. However, the appropriate category of comparison, at least for the discussion of genome reduction, is orthology rather than homology: is the same, orthologous copy of IS6110, at the same position in the genome, present or absent in other sublineages? The same considerations apply to potential sublineage-specific duplicates of PE, PPE, and Esx genes. These gene families play important roles in host-pathogen interactions, so I'd argue that the neglect of paralogs is not a finicky detail, but could be of broader biological relevance.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors investigate mechanisms of acquired resistance (AR) to KRAS-G12C inhibitors (sotorasib) in NSCLC, proposing that resistance arises from signaling rewiring rather than additional mutations.

      Strengths:

      Using a panel of AR models - including cell lines, PDXs, CDXs, and PDXOs - they report activation of KRAS and PI3K/AKT/mTOR pathways, with elevated PI3K levels. Pharmacologic inhibition or CRISPR-Cas9 knockout of PI3K partially restores sotorasib sensitivity, and p-4EBP1 upregulation is implicated as an additional contributor, with dual mTORC1/2 inhibition more effective than mTORC1 inhibition alone.

      Weaknesses:

      While the study addresses an important clinical question, it is limited by several weaknesses in experimental rigor, data interpretation, and presentation. The mechanistic findings are not entirely novel, since the role of PI3K-AKT-mTOR signaling in therapeutic resistance is already well-established in the literature. Rather than uncovering new resistance mechanisms, the study largely confirms known pathways. Several key conclusions are not supported by the data, and critical alternative explanations - such as additional mutations or increased KRAS expression - are not thoroughly investigated or ruled out. Furthermore, while the authors use CRISPR-Cas9 to knock out PI3K and 4E-BP1 in H23-AR and H358-AR cells to restore sotorasib sensitivity, they do not perform reconstitution experiments to confirm that re-expressing PI3K or 4E-BP1 reverses the sensitization. This prevents full characterization of PI3K and p-4EBP1 upregulation as contributors to resistance. The manuscript also has several errors, poor figure quality, and a lack of proper quantification. Additional experimental validation, data improvement, and text revisions are required.

    1. Reviewer #1 (Public review):

      Summary:

      In this detailed study, Cohen and Ben-Shaul characterized the AOB cell responses to various conspecific urine samples in female mice across the estrous cycle. The authors found that AOB cell responses vary with strains and sexes of the samples. Between estrous and non-estrous females, no clear or consistent difference in responses was found. The cell response patterns, as measured by the distance between pairs of stimuli, are largely stable. When some changes do occur, they are not consistent across strains or male status. The authors concluded that AOB detects the signals without interpreting them. Overall, this study will provide useful information for scientists in the field of olfaction.

      Strengths:

      The study uses electrophysiological recording to characterize the responses of AOB cells to various urines in female mice. AOB recording is not trivial as it requires activation of VNO pump. The team uses a unique preparation to activate the VNO pump with electric stimulation, allowing them to record AOB cell responses to urines in anesthetized animals. The study comprehensively described the AOB cell responses to social stimuli and how the responses vary (or not) with features of the urine source and the reproductive state of the recording females. The dataset could be a valuable resource for scientists in the field of olfaction.

      Weaknesses:

      The study will be significantly strengthened by understanding the "distance" of chemical composition in different urine. This could be an important future direction.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Hao Jiang et al described a systematic approach to identify proline hydroxylation proteins. The authors implemented a proteomic strategy with HILIC-chromatographic separation and reported an identification of 4993 sites from HEK293 cells (4 replicates) and 3247 sites from RCC4 sites (3 replicates) with 1412 sites overlapping between the two cell lines. From the analysis, the authors identified 225 sites and 184 sites respectively from 293 and RCC4 cells with HyPro diagnostic ion. The identifications were validated by analyzing a few synthetic peptides, with a specific focus on Repo-man (CDCA2) through comparing MS/MS spectra, retention time, and diagnostic ions. With SILAC analysis and recombinant enzyme assay, the study showed that Repo-man HyPro604 is a target of the PHD1 enzyme.

      Strengths:

      The study involved extensive LC-MS analysis and was carefully implemented. The identification of over 4000 confident proline hydroxylation sites would be a valuable resource for the community. The characterization of Repo-man proline hydroxylation is a novel finding.

      Weaknesses:

      However, as a study mainly focused on methodology, the findings from the experimental data did not convincingly demonstrate the sensitivity and specificity of the workflow for site-specific identification of proline hydroxylation in global studies.

      Major concerns:

      (1) The study applied HILIC-based chromatographic separation with a goal of enriching and separating hydroxyproline-containing peptides. However, as the authors mentioned, such an approach is not specific to proline hydroxylation. In addition, many other chromatography techniques can achieve deep proteome fractionation such as high pH reverse phase fractionation, strong-cation exchange etc. There was no data in this study to demonstrate that the strategy offered improved coverage of proline hydroxylation proteins, as the identifications of the HyPro sites could be achieved through deep fractionation and a highly sensitive LCMS setup. The data of Figure 2A and S1A were somewhat confusing without a clear explanation of the heat map representations.

      (2) The study reported that the HyPro immonium ion is a diagnostic ion for HyPro identification. However, the data showed that only around 5% of the identifications had such a diagnostic ion. In comparison, acetyllysine immonium ion was previously reported to be a useful marker for acetyllysine peptides (PMID: 18338905), and the strategy offered a sensitivity of 70% with a specificity of 98%. In this study, the sensitivity of HyPro immonium ion was quite low. The authors also clearly demonstrated that the presence of immonium ion varied significantly due to MS settings, peptide sequence, and abundance. With further complications from L/I immonium ions, it became very challenging to implement this strategy in a global LC-MS analysis to either validate or invalidate HyPro identifications.

      (3) The study aimed to apply the HILIC-based proteomics workflow to identify HyPro proteins regulated by the PHD enzyme. However, the quantification strategy was not rigorous. The study just considered the HyPro proteins not identified by FG-4592 treatment as potential PHD targeted proteins. There are a few issues. First, such an analysis was not quantitative without reproducibility or statistical analysis. Second, it did not take into consideration that data-dependent LC-MS analysis was not comprehensive and some peptide ions may not be identified due to background interferences. Lastly, FG-4592 treatment for 24 hrs could lead to wide changes in gene expressions and protein abundances. Therefore, it is not informative to draw conclusions based on the data for bioinformatic analysis.

      (4) The authors performed an in vitro PHD1 enzyme assay to validate that Repo-man can be hydroxylated by PHD1. However, Figure 9 did not show quantitatively PHD1-induced increase in Repo-man HyPro abundance and it is difficult to assess its reaction efficiency to compare with HIF1a HyPro.

    1. Reviewer #2 (Public review):

      Summary:

      The authors of this study investigated the membrane-binding properties of bactofilin A from Caulobacter crescentus, a classic model organism for bacterial cell biology. BacA was the progenitor of a family of cytoskeletal proteins that have been identified as ubiquitous structural components in bacteria, performing a range of cell biological functions. Association with the cell membrane is a frequent property of the bactofilins studied and is thought to be important for functionality. However, almost all bactofilins lack a transmembrane domain. While membrane association has been attributed to the unstructured N-terminus, experimental evidence had yet to be provided. As a result, the mode of membrane association and the underlying molecular mechanics remained elusive.

      Liu at al. analyze the membrane binding properties of BacA in detail and scrutinize molecular interactions using in-vivo, in-vitro and in-silico techniques. They show that few N-terminal amino acids are important for membrane association or proper localization and suggest that membrane association promotes polymerization. Bioinformatic analyses revealed conserved lineage-specific N-terminal motifs indicating a conserved role in protein localization. Using HDX analysis they also identify a potential interaction site with PbpC, a morphogenic cell wall synthase implicated in Caulobacter stalk synthesis. Complementary, they pinpoint the bactofilin-interacting region within the PbpC C-terminus, known to interact with bactofilin. They further show that BacA localization is independent of PbpC.

      Although the phenotypic effects of an abolished BacA-PbpC interaction are mild, these data significantly advance our understanding of bactofilin membrane binding, polymerization, and function at the molecular level. The major strength of the comprehensive study is the combination of complementary in vivo, in vitro and bioinformatic/simulation approaches, the results of which are consistent.

    1. Reviewer #1 (Public review):

      Summary:

      The authors have studied how a virus (EMCV) uses its RNA (Type 2 IRES) to hijack the host's protein-making machinery. They use cryo-EM to extract structural information about the recruitment of viral Type 2 IRES to ribosomal pre-IC. The authors propose a novel interaction mechanism in which the EMCV Type 2 IRES mimics 28S rRNA and interacts with ribosomal proteins and initiator tRNA (tRNAi).

      Strengths:

      (1) Getting structural insights about the Type 2 IRES-based initiation is novel.

      (2) The study allows a good comparison of other IRES-based initiation systems.

      (3) The manuscript is well-written and clearly explains the background, methods, and results.

      Weaknesses:

      (1) The main weakness of the work is the low resolution of the structure. This limits the possibility of data interpretation at the molecular level.

      However, despite the moderate resolution of the cryo-EM reconstructions, the model fits well into the density. The analysis of the EMCV IRES-48S PIC structure is thorough and includes meaningful comparisons to previously published structures (e.g., PDB IDs - 7QP6 and 7QP7). These comparisons showed that Map B1 represents a closed conformation, in contrast to Map A in the open state (Figure 2). Additionally, the proposed 28S rRNA mimicry strategy supported by structural superposition with the 80S ribosome and sequence similarity between the I domain of the IRES and the h38 region of 28S rRNA (Fig. 4) is well-justified.

      (2) The lack of experimental validation of the functional importance of regions like the GNRA and RAAA loops is another limitation of this study.

      (3) Minor modifications related to data processing and biochemical studies will further validate and strengthen the findings.

      a) In the cryo-EM data section, the authors should include an image showing rejected particles during 2D classification. This would help readers understand why, despite having over 22k micrographs with sufficient particle distribution and good contrast, only a smaller number of particles were used in the final reconstruction. Additionally, employing map-sharpening tools such as Ewald sphere correction, Bayesian polishing, or reference-based motion correction might further improve the quality of the maps. Targeting high-resolution structures would be particularly informative.

      b) The strategic modelling of different IRES domains into the density, particularly the domain into the region above the 40S head, is appreciable. However, providing the full RNA tertiary structure (RNAfold) of the EMCV IRES (nucleotides 280-905) would better explain the logic behind the model building and its molecular interpretation.

      c) Although the authors compare their findings with other types of IRESs (Types 1, 3, and 4), there is no experimental validation of the functional importance of regions like the GNRA and RAAA loops. Including luciferase-based assays or mutational studies of these regions for validation of structural interpretations is strongly recommended.

    1. Reviewer #1 (Public review):

      Summary:

      The authors test the hypothesis that the contribution of the cerebellum to cognitive tasks is similar to motor tasks, and is related to the processing of prediction errors (here: violation of expectations, VE). In three experiments, they find that cerebellar patients show differences compared to controls in measures of VE, but not task complexity. The findings show that cerebellar disease results in deficits in VE processing in cognitive tasks, and makes a valuable contribution of the field. The authors were able to test a large number of patients with cerebellar disease which is known to primarily affect the cerebellum (i.e. SCA6).

      Strengths:

      A strength of the study is that it is hypothesis-driven and that the three experiments are very well thought out. Furthermore, a comparatively large group of patients with spinocerebellar ataxia type 6 (SCA6) was tested, a disease which affects primarily the cerebellum.

      Weaknesses:

      - Acquisition of brain MRI scans would have been useful to perform lesion-behaviour-mapping. But this does not limit the significance of the behavioural findings.<br /> - Exp. 1 and 2: The lack of difference in accuracy was that an unexpected finding? How meaningful are the used paradigms when accuracy was the same in cerebellar patients and controls?<br /> - Exp. 1 and 2: Cerebellar patients have motor dysfunction which impacts reaction time. Can the authors exclude that this contributed at least in part to their findings? Any correlations to SARA score (upper limb function) or oculomotor dysfunction (e.g. presence of nystagmus)?<br /> - Data on the attention probes which have been done would be of interest. Were there any differences in attention between patients and controls, any correlations with the findings?

      Comments on revisions:

      I am not sure if I can follow the interpretation of the authors that the cerebellum contributes to prediction errors, but not predictions; These two are tightly connected? It may rather be that in patients with slowly progressive chronic disease there is a lot of compensation? It is not so rare that in cognitive tasks cerebellar patients do not perform differently from controls, even though one would expect a difference (e.g. based on fMRI data in controls)? Another factor which likely adds is age, Patients and controls are often middle-aged and elderly, adding to variability, decreasing the chance to see group differences?