10 Matching Annotations
  1. Jul 2019
  2. May 2019
    1. hybridizations from biological replicates for each sample. Data was extracted with Feature Extraction software v 10.5 (Agilent) and normalizedwith GeneSpring GX v 11.0.1 (Agilent) software using the recommended Percentile shift Normalization to 75th percentile. Raw Data sets for this study are available at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=


    2. Log-phase wild-type and Cgyps1∆cells were grown in YNB and YNB-pH 2.0 medium. After 1 h incubation, yeast cells were collected, washed and were stored in RNAlater at -80°C. These frozen samples were sent to Genotypic Technology Ltd., Bangalore(http://www.genotypic.co.in) whichprovides services of global gene analysis on Agilent platform. A 8x15k GE array comprised of 60mer oligonucleotidesfor a total of C. glabrata5503 genes was used wherein average number of replicates for each probe was three. Labeling was done in single color and data is the average of two
    3. Microarray analysis
    1. Alipophilic styryl dye,FM4-64,is a vital stain which istakenupby cells viaendocytosis through plasma membrane(Vida and Emr, 1995). Therefore, it fluorescesonly in live cells. Importantly, neitherfixed cells canbe stained with FM 4-64norcells canbe fixed afterFM 4-64staining. For vacuole staining, single colony of the test strain grown onYPD plate was inoculated in 10 ml YPD medium for overnight. 100 μlovernight culture was inoculated in fresh YPD medium and incubated at 30ºC for 3 hto obtain log-phase cells. C. glabratacells from 1 ml log-phase culture were harvested at 4,000 rpm for 5 minin a table top centrifuge. Supernatant was aspirated out,cells were resuspended in 50 μl YPD medium and 1 μl FM 4-64 (16 μM final concentration) was added.C. glabratacells were incubated in a 30ºC water bath for 30 min. 1 mlYPD medium was added and cells were harvested at 4,000 rpm for 5 minin a table-top centrifuge. After discarding supernatant,C. glabratacells were washed with fresh YPD medium and resuspended in 1 ml YPD medium. C. glabratacells were incubated at 30ºC for 90 min, washed with 1 mlsterile water and were resuspended in 50 μl YNB medium. Labeled C. glabratacells were observed underfluorescence microscope in red filter(730nm)
    2. Stainingof C. glabratavacuoleswith FM4-64
    1. confirmed through PCR (by using primers SC11 and SC10) and squencing. Double mutant was complemented for DSF production by cloning whole rpfFgene of Xoo, cloned in HindIII and EcoRI sites of pHM1 (a broad host range vector for Xanthomonas) to get pSC6 plasmid. The resultant pSC6 plasmid was introduced into double mutant by electroporation
    2. To obtain the insertional nonpolar mutant in the motA (encodes flagellar motor stator protein)andfliC (flagellin)genes, a 321 bp internal fragment of the motAgene and a 450 bp internal fragment of fliC containing the EcoRI and XbaI site were amplified using respective primer listed in Table 2.2. These fragments were cloned in pk18mob suicide vector, in which the lacZpromoter drives the expression of downstream gene (Schäfer et al., 1994; Windgassen et al., 2000), to obtain pRR1 and pRR2,respectively (Table 2.2). The resulting plasmid (pRR1& pRR2) was introduced into XooBXO43 strain by electroporation. Single Kmrrecombinants were selected on PSA plate containing kanamycin. Insertion of the pK18mob vector in motA andfliCgene was confirmed with PCR and sequencing. To further confirm the mutation in the flagellar genes, we did swimming motility assay on 0.1% peptone-sucrose agar (PSA). Swimming plate assay indicated that both motA and fliCmutant of Xoowas deficient in motility. Further, to obtain motAand fliC insertional knock out mutants in rpfFbackground, we cloned spectinomycin cassette obtained from pUC1318Ω plasmid, into the HindIII site of pRR1 and pRR2 plasmid to obtain pRR3 and pRR4. The resulting plasmid (pRR3& pRR4) were transformed in rpfF. Single specrrecombinants were selected on PSA plate containing kanamycin and spectinomycin. Insertion of the vector was further confirmed by PCR and sequencing. T2SSrpfFdouble mutant was constructed by transforming the plasmid with rpfF::Tn7Kanamycin cassette in the T2SS (xpsF) mutant background, and Kmrrecombinants were selected on PSA plates containing kan

      amycin antibiotic and

    3. Construction of mutants in X. oryzaepv. oryzae