- May 2022
-
222.198.118.211 222.198.118.211
-
成果导向教育(OBE):教学设计和教学实施目标是,学生通过教学过程最后所取得的学习成果。
成果导向教育思想
-
管理数据:学校教务部掌握的诸如选课学生人数数据,专业及学科课程体系数据,以及学生各科课程成绩等数据等,这些也可用来作为混合教学的数据基础。此外,餐饮数据和社交数据也在管理数据范畴,餐饮数据涉及学生就餐的时间等。
管理数据
-
宏观环境数据:这类数据包括产业数据和社会热点数据等,我们在教学过程、教学设计过程中也能用到。
宏观环境数据
-
学习过程的数据:是学生在学习过程中积累的大量数据。这类数据有线上与线下之分。线上的学习数据有线上登录、浏览、收藏、播放、暂停、快进、停止,有交互中的提问、回答、质疑、检讨,还有在测试环节中的答题时长、提交次数、正确率等;线下的课堂表现数据,包括通过摄像头、捕捉监测学生的情绪动作,分析他们的表情、动作,并基于此判断学生的情绪,再综合判断学生的学习态度、效果。
学习过程的数据
-
-
pan.baidu.com pan.baidu.com
-
of “Rawlsian blindness” (Harvey, 2012, para. 12) where students’ demographic and prior educational records are not used from the outset to predict their chances of success and failure. On the other hand, is it ethical to ignore the predictive value of research evidence in particular contexts?
罗尔斯盲症
-
Higher education cannot afford to not use data
学习分析道德框架的原则6
-
Transparency
学习分析道德框架的原则5
-
tudent success is a complex and multidimensional phenomenon
学习分析道德框架的原则4
-
Student identity and performance are temporal dynamic constructs
学习分析道德框架的原则3
-
Students as agents
学习分析道德框架的原则2
-
Learning analytics as moral practice
学习分析道德框架的原则1
-
A learning analytics approach may make education both personal and relevant, and allow students to retain their own identities within the bigger system. Optimal use of student-generated data may result in institutions having an improved comprehension of the life-worlds and choices of students, allowing both institution and students to make better and informed choices, and respond faster to actionable and identified needs
学习分析的作用
-
learning analytics as the collection, analysis, use and appropriate dissemination of student-generated, actionable data with the purpose of creating appropriate cognitive, administrative and effective support for learners.
本文关于学习分析的定义
-
students and their learning behaviors, gathering data from course management and student information systems in order to improve student success
学习分析
-
Ethical issues for learning analytics fall into the following broad, often overlapping categories:
1.The location and interpretation of data 2. Informed consent, privacy and the de-identification of data 3. The management, classification and storage of data
Tags
Annotators
URL
-
-
pan.baidu.com pan.baidu.com
-
he purpose of this survey was two fold: 1) to measure the use of learning analytics on higher education campuses , and 2) to measure awareness of and attitudes towards the use of learning analytics-designed tools at the course-level; specifically, to identify disparities and drive interventions to achieve academic equity.
-
equity within the context of higher education as access, opportunity, and advancement for all students to eliminate race and income as predictors of student success
公平
-
l earning analytics is the intentional collection and analysis of student data within the l earning context in order to understand and optimize learning
学习分析
Tags
Annotators
URL
-
- Apr 2022
-
pan.baidu.com pan.baidu.com
-
The results indicated that outdegree centrality of a student, being in a group with higher average grade, communicating with the tutors, are the factors most correlated with better learning.
与更好的成绩相关的SNA因素
-
the data extracted for each post were the id of the sender, the id of the receiver, time the post was written, time it was modified, the content of the post, and forum and thread IDs. For each user we extracted user Id, role, PBL group and the posts he contributed. All participant IDs were removed to protect their confidentiality and
数据收集
-
exploratory case study
探究性案例研究
-
The SNA mathematical analysis quantifies network parameters on individual actor levels, as well as group level. The mathematical analysis of SNA uses graph theory concepts to calculate metrics representing the nodes, the links or the network. Such as the distance to other actors in the network, the number of interactions with other actors, or how many times it bridged interac tions between communities.
SNA数学分析
-
SNA visualization renders relationships between actors in social networks by graphs known as sociograms;
SNA可视化
-
can be implemented in two main ways, visualization, and mathematical analysis.
SNA可以通过可视化、数学分析两种方式实现
-
Social network analysis (SNA) is a collection of methods and tools that could be used to study the relationships, interactions and communications.
SNA定义
Tags
Annotators
URL
-
-
pan.baidu.com pan.baidu.com
-
provide automated feedback on performance, inter vene during learning, provide scaffolding or support, UHFRPPHQGWXWRULQJSHUVRQDOL]HOHDUQLQJDQGVRRQ
数据的其他用途
-
7KHPRVWFRPPRQ1/3DSSURDFKWRDQDO\]LQJVWXGHQW ODQJXDJHLQ022&6KDVEHHQWKURXJKWRROVWKDWDQDO\]H HPRWLRQV
分析学生语言的方法
-
iSTART (Interactive Strategy Training for Active Reading and Thinking)
交互式主动阅读和思考策略培训 依靠NLP技术
-
linear regression, dis FULPLQDQWIXQFWLRQFODVVLāHUV1D°YH%D\HVFODVVLāHUV support vector machines, logistic regression classi āHUVDQGGHFLVLRQWUHHFODVVLāHU
linear regression, dis-criminant function classifiers, Naive-Bayes classifiers,support vector machines,logistic regression classi-fiers, and decision tree classifiers.
-
/DWHQW6HPDQWLF$QDO\VLV
隐含语义分析
-
identify n-grams
-
WKHSULPDU\ SXUSRVHRI1/3WRROVLVWKHDXWRPDWHGLQWHUSUHWDWLRQ of human language input.
Tags
Annotators
URL
-
-
viewer.mosoteach.cn viewer.mosoteach.cn
-
Advisor level allows any member of staff, at Ulster, who has completed the training course to view a student's aggregated predictions of passing their course, in the current year, with a grade of 50% or higher. Data can be accessed by: looking up an individual student viewing a specific module cohort viewing a particular programme cohort sorting by a number of variables (risk level, level of study, year of study, tariff point scores)
顾问级别访问数据方法
-
“随机森林”机器学习算法
-
-
-
The largest methodological difference between the two modelling approaches is in how they address the issue RIJHQHUDOL]DELOLW\,QH[SODQDWRU\PRGHOOLQJDOORIWKH data collected from a sample (e.g., students enrolled in a given course) is used to describe a population more generally (e.g., all students who could or might enroll in DJLYHQFRXUVH7KHLVVXHVUHODWHGWRJHQHUDOL]DELOLW\ are largely based on sampling techniques. Ensuring the sample represents the general population by reducing VHOHFWLRQELDVRIWHQWKURXJKUDQGRPRUVWUDWLāHGVDP pling, and determining the amount of power needed to ensure an appropriate sample, through an analysis RISRSXODWLRQVL]HDQGOHYHOVRIHUURUWKHLQYHVWLJDWRU is willing to accept. In a predictive model, a hold out dataset is used to evaluate the suitability of a model IRUSUHGLFWLRQDQGWRSURWHFWDJDLQVWWKHRYHUāWWLQJ of models to data being used for training. There are several different strategies for producing hold out datasets, including k-fold cross validation, leave-one RXWFURVVYDOLGDWLRQUDQGRPL]HGVXEVDPSOLQJDQG DSSOLFDWLRQVSHFLāFVWUDWHJLHV
两模型在方法论上的不同
-
预测分析算法: 1.线性回归:预测属性的线性组合的连续数值输出。 2.逻辑回归:预测两个或更多结果的概率,允许分类预测。 3.最近邻分类器:仅使用训练数据集中最接近的标记数据点来确定新数据的适当预测标签。 4.决策树:是基于一系列单属性的“测试”对数据进行重复划分,每个测试都经过算法选择,以最大化每个划分中分类的纯度 5.朴素贝叶斯分类器:假设给定分类的每个属性的统计独立性,并提供分类的概率解释。 6.贝叶斯网络:伪造人工构建的实用模型并提供分类的概率解释。 7.支持向量机:使用高维数据投影,以便在不同类之间找到最大分离的超平面。 8.神经网络:是受生物启发的算法,它通过一系列稀疏互联的计算节点(神经元)层传播数据输入,并产生输出。在深度学习的标签下,人们对神经网络方法越来越感兴趣。 9.集成方法:使用同构或异构分类器的投票池。两个突出的技术是自举聚合技术,即从数据集的随机子样本中构建多个预测模型,以及Boosting技术,即设计连续的预测模型来考虑先验模型的误分类。
-
预测模型工作流程: Problem Identification Problem Identification Classification and Regression Classification and Regression
-
([SODQDWRU\ PRGHOOLQJLVDSRVWKRFDQGUHĂHFWLYHDFWLYLW\DLPHG at generating an understanding of a phenomenon. 3UHGLFWLYHPRGHOOLQJLVDQLQVLWXDFWLYLW\LQWHQGHGWR make systems responsive to changes in the underlying data.
连模型的不同
-
-
pan.baidu.com pan.baidu.com
-
Predictions are calculated in two steps. First, predictive models are constructed by machine learning methods from legacy data recorded in the previous presentation of the same course. Second, student performance is predicted by the predictive models and the student data of the current presentation.
预测的两步计算
-
OUA employs three machine learning methods: (1) Naïve Bayes classifer (NB), (2) Classifcation and regression tree (CART), (3) k-Nearest Neighbours (k-NN).
OUA采用的的三种机器学习方法
-
machine learning algorithms
机器学习算法。该算法使用两种类型的数据:(a)静态数据:人口统计数据,如年龄、性别、地理区域、先前教育;(b)行为数据:学生在VLE主办的课程中的互动。这些数据来源被证明是预测学生提交作业的重要指标。
-
OU analyse (OUA
预测学习分析系统
-
Learning analytics dashboard
学习分析仪表板
-
. TAM is more focused on the design and use of a technology whereas ARM on individuals’ attitudes to change.
TAM和ARM的区别: TAM更关注技术的设计和使用,而ARM则关注个人对改变的态度。
-
Academic resistance model
学习阻力模型
-
(a) data-gathering of students’ activities in VLE, (b) data collection and data mining using learning analytics techniques, (c) visualisation of student activities in a widget, application, or VLE, and (d) refection by the teacher.
分析工具可视化模型四个使用阶段
-
态度维度: (a)认知态度是指用户对一项技术的评价是积极的、消极的还是中性的; (b)情感态度是指在使用该技术时所经历的感觉和情绪; (c)有意态度是指在未来抵制或计划使用该技术的意图。
Tags
Annotators
URL
-
-
viewer.mosoteach.cn viewer.mosoteach.cn
-
NLP is the analysis of human language using computers,providing the means to automate discourse analysis.
-
Latent Semantic Analysis
-
bag-of-words identify n-grams
-
the primary purpose of NLP tools is the automated interpretation of human language input
Tags
Annotators
URL
-
-
viewer.mosoteach.cn viewer.mosoteach.cn
-
ensemble methods
-
neural networks
-
support vector machine
-
bayesian networks
-
naive bayes classifiers
-
decision trees
-
nearest neighbours classifiers
-
logistic regression
-
linear regression
-
-
viewer.mosoteach.cn viewer.mosoteach.cn
-
linear regression logistic regression
-
-
viewer.mosoteach.cn viewer.mosoteach.cn
-
The “Random Forest” machine learning algorithm
-
-
viewer.mosoteach.cn viewer.mosoteach.cn
-
方法: linear regression lojistic regression nearest neighbours classifiers decision tress naive bayes classifiers bayesian networks support vector machine neural networks ensemble methods
-
classification algorithms 分类算法
-
There are several different strategies for producing hold outdatasets, including k-fold cross validation, leave-one-out cross validation, randomized subsampling, and application-specific strategies.
-
explanatory modelling and predictive modelling
-
-
viewer.mosoteach.cn viewer.mosoteach.cn
-
The “Random Forest” machine learning algorithm
随机深林机器学习算法
-
- Mar 2022
-
pan.baidu.com pan.baidu.com
-
LAK和EDM的共同目标是通过改善评估来改善教育,如何理解教育中的问题,以及如何规划和选择干预措施。管理者、教育者和学习者对教育过程中产生的数据的广泛使用,提出了基于研究的模型和策略的需要。这两个社区的目标都是提高大规模教育数据分析的质量,以支持基础研究和教育实践。
-
学习分析是测量、收集、分析和报告关于学习者及其上下文的数据,以理解和优化学习及其发生的环境。 --------学习分析研究学会
-
教育数据挖掘是一门新兴的学科,关注于开发方法来探索来自教育背景的独特类型的数据,并使用这些方法来更好地理解学生和他们学习的背景。
-
-
pan.baidu.com pan.baidu.com
-
Multimodal learning analytic
多模态学习分析倾向于捕捉学习相关数据的补充来源,为学习过程的健壮理解提供基础。这种方法往往会超越传统的跟踪和调查数据,结合各种传感器数据流,捕捉手势、眼神或讲话。
-
Learning design: A missing piece in learning analytics
学习设计:学习分析中缺失的一块
-
Discourse analytics: Understanding student communications
话语分析:理解学生交流
-
Social learning analytics: understanding student interactions through social network analysis
社会学习分析:通过社会网络分析了解学生的互动。
-
Predictive analytics: Supporting student learning by predicting future
预测分析:通过预测未来来支持学生学习
-
l earning characteristic of the present-day l earning environment (Skrypnyk, Joksimovi ć , Kovanovi ć , Dawson, et al., 2015).
当代学习环境的学习特征图表
-
Pressey
智能辅导开端
-
Learning analytics draws on theories and methods from machine learning and data science, education, cognitive psychology, statistics, computer science, neuroscience, and social and learning sciences to name but a few
学习分析借鉴了机器学习和数据科学、教育、认知心理学、统计学、计算机科学、神经科学、社会和学习科学等领域的理论和方法
-
-
-
What Kinds of Pedagogical Uses Can Learning Analytics Serve and How Do They Support Learning?
Tailoring Educational Experiences Informing Student Self‐Direction Supporting Instructor Planning and Orchestration
-
social network analysis (SNA)
社会网络分析
-
Topic modelling
主题建模
-
Clustering, social network analysis, and topic modelling
聚类、社会网络分析和主题建模
-
Factor analysis
因子分析
-
Correlation and association rule mining
相关性和关联规则挖掘
-
Learning Analytics is the development and application of data science methods to the distinct characteristics, needs, and concerns of educational contexts and the data streams they generate for the purpose of better understanding and supporting learning processes and outcomes (see also an earlier definition by Siemens et al., 2011).
-
When prediction targets continuous variables (e.g. the delayed assessment score in Svihla et al., (2015), models such as linear regression, support vector machines and regression trees are commonly used. For categorical (including binary) outcome variables,
When prediction targets continuous variables (e.g. the delayed assessment score in Svihla et al., (2015), models such as linear regression, support vector machines and regression trees are commonly used. For categorical (including binary) outcome variables,classfication models.
-
Learning analytics is not defined primarily by the source of data but by its size
数据的大小的两个特征:数据的总体数量、数据点本身的粒度
Tags
Annotators
URL
-