10,000 Matching Annotations
  1. Last 7 days
    1. Reviewer #3 (Public review):

      Summary:

      This manuscript by McDougal et al, demonstrates species-specific activities of diverse IFIT1 orthologs, and seeks to utilize evolutionary analysis to identify key amino acids under positive selection that contribute to antiviral activity of this host factor. While the authors identify amino acid residues important for antiviral activity of some orthologs, and propose a possible mechanism by which these residues may function, the significance or applicability of these findings to other orthologs is unclear. However, the subject matter is of interest to the field, and these findings contribute to the body of knowledge regarding IFIT1 evolution.

      Strengths:

      Assessment of multiple IFIT1 orthologs shows the wide variety of antiviral activity of IFIT1, and identification of residues outside of the known RNA binding pocket in the protein suggests additional novel mechanisms which may regulate IFIT1 activity.

      Weaknesses:

      Given that there appears to be very little overlap observed in orthologs that inhibited the viruses tested, it's possible that other amino acids may be key drivers of antiviral activity in these other orthologs. Thus, it's difficult to conclude whether the findings that residues 362/4/6 are important for IFIT1 activity can be broadly applied to other orthologs, or whether these are unique to human and chimpanzee IFIT1. While additional molecular studies of the impact of these mutations on IFIT1 function (e.g. impact on IFIT complex formation) would lend further insight, as it stands, these findings demonstrate a role for these residues in IFIT1 activity.

    1. Reviewer #2 (Public review):

      Summary:

      The authors present a software package "aTrack" for identification of motion types and parameter estimation in single-particle tracking data. The software is based on maximum likelihood estimation of the time-series data given an assumed motion model and likelihood ratio tests for model selection. They characterized the performance of the software mostly on simulated data and showed that it is applicable to experimental data.

      Strengths:

      Although many tools exist in the single-particle tracking (SPT) field, this particular software package is developed using an innovative mathematical model and a probabilistic approach. It also provide inference of motion types, which are critical to answer biological questions in SPT experiments.

      (1) The authors adopt a novel mathematical framework, which is unique in the SPT field.

      (2) The authors have validated their method extensively using simulated tracks and compared to existing methods when appropriate.

      (3) The code is freely available

      Weaknesses:

      The authors did a good job during the revision to address most of the weaknesses in my (as well as other reviewer's) first round of review. Nevertheless, the following issue is still not fully addressed.<br /> The hypothesis testing method presented here lacks rigorous statistical foundation. The authors improved on this point after the revision, but in their newly added SI section "Statistical Test", only justified their choices using "hand-waving" arguments (i.e. there is not a single reference to proper statistical textbooks or earlier works in this important section). I understand that sometimes mathematical rigor comes later after some intuition-guided choices of critical parameters seems to work, but nevertheless need to point it out as a remaining weakness.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript presents the development and characterization of iGABASnFR2, a genetically encoded GABA sensor with markedly improved performance over its predecessor, iGABASnFR1. The study is comprehensive and methodologically rigorous, integrating high-throughput mutagenesis, functional screening, structural analysis, biophysical characterization, and in vivo validation. iGABASnFR2 represents a significant advancement in GABA sensor engineering and application in imaging GABA transmission in slice and in vivo. This is a timely and technically strong contribution to the molecular toolkit for neuroscience.

      Strengths:

      The authors apply a well-established sensor optimization pipeline and iterative engineering strategy from single-site to combinatorial mutants to engineer iGABASnFR2. The development of both positive and negative going variants (iGABASnFR2 and iGABASnFR2n) offers experimental flexibility. The structure and interpretation of the key mutations provide insights into the working mechanism of the sensor, which also suggest optimization strategies. Although individual improvements in intrinsic properties are incremental, their combined effect yields clear functional gains, enabling detection of direction-selective GABA release in the retina and volume-transmitted GABA signaling in somatosensory cortex, which were challenging or missed using iGABASnFR1.

      Weaknesses:

      With minor revisions and clarifications, especially regarding membrane trafficking, this manuscript will be a valuable resource for probing inhibitory transmission.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript by Hosack and Arce-McShane examines the directional tuning of neurons in macaque primary motor (MIo) and somatosensory (SIo) cortex. The neural basis of tongue control is far less studied than, for example, forelimb movements, partly because the tongue's kinematics and kinetics are difficult to measure. A major technical advantage of this study is using biplanar video-radiography, processed with modern motion tracking analysis software, to track the movement of the tongue inside the oral cavity. Compared to prior work, the behaviors are more naturalistic behaviors (feeding and licking water from one of three spouts), although the animals were still head-fixed.

      The study's main findings are that:

      • A majority of neurons in MIo and a (somewhat smaller) percentage of SIo modulated their firing rates during tongue movements, with different modulation depending on the direction of movement (i.e., exhibited directional tuning). Examining the statistics of tuning across neurons, there was anisotropy (e.g., more neurons preferring anterior movement) and a lateral bias in which tongue direction neurons preferred that was consistent with the innervation patterns of tongue control muscles (although with some inconsistency between monkeys).<br /> • Consistent with this encoding, tongue position could be decoded with moderate accuracy even from small ensembles of ~28 neurons.<br /> • There were differences observed in the proportion and extent of directional tuning between the feeding and licking behaviors, with stronger tuning overall during licking. This potentially suggests behavioral context-dependent encoding.<br /> • The authors then went one step further and used a bilateral nerve block to the sensory inputs (trigeminal nerve) from the tongue. This impaired the precision of tongue movements and resulted in an apparent reduction and change in neural tuning in Mio and SIo.

      Strengths:

      The data are difficult to obtain and appear to have been rigorously measured, and provide a valuable contribution to this under-explored subfield of sensorimotor neuroscience. The analyses adopt well-established methods especially from the arm motor control literature, and represent a natural starting point for characterizing tongue 3D direction tuning.

      Weaknesses:

      There are alternative explanations from some of the interpretations, but those interpretations are described in a way that clearly distinguishes results from interpretations, and readers can make their own assessments. Some of these limitations are described in more detail below.

      One weakness of the current study is that there is substantial variability in results between monkeys.

      This study focuses on describing directional tuning using the preferred direction (PD) / cosine tuning model popularized by Georgopoulous and colleagues for understanding neural control of arm reaching in the 1980s. This is a reasonable starting point and a decent first order description of neural tuning. However, the arm motor control field has moved far past that viewpoint, and in some ways an over-fixation on static representational encoding models and PDs held that field back for many years. The manuscript benefit from drawing the readers' attention (perhaps in their Discussion) that PDs are a very simple starting point for characterizing how cortical activity relates to kinematics, but that there is likely much richer population-level dynamical structure and that a more mechanistic, control-focused analytical framework may be fruitful. A good review of this evolution in the arm field can be found in Vyas S, Golub MD, Sussillo D, Shenoy K. 2020. Computation Through Neural Population Dynamics. Annual Review of Neuroscience. 43(1):249-75. A revised version of the manuscript incorporates more population-level analyses, but with inconsistent use of quantifications/statistics and without sufficient contextualization of what the reader is to make of these results.

      The described changes in tuning after nerve block could also be explained by changes in kinematics between these conditions, which temper the interpretation of these interesting results.

      I am not convinced of the claim that tongue directional encoding fundamentally changes between drinking and feeding given the dramatically different kinematics and the involvement of other body parts like the jaw (e.g., the reference to Laurence-Chasen et al. 2023 just shows that there is tongue information independent of jaw kinematics, not that jaw movements don't affect these neurons' activities). I also find the nerve block results inconsistent (more tuning in one monkey, less in the other?) and difficult to really learn something fundamental from, besides that neural activity and behavior both change - in various ways - after nerve block (not at all surprising but still good to see measurements of).

      The manuscript states that "Our results suggest that the somatosensory cortex may be less involved than the motor areas during feeding, possibly because it is a more ingrained and stereotyped behavior as opposed to tongue protrusion or drinking tasks". An alternative explanation be more statistical/technical in nature: that during feeding, there will be more variability in exactly what somatosensation afferent signals are being received from trial to trial (because slight differences in kinematics can have large differences in exactly where the tongue is and the where/when/how of what parts of it are touching other parts of the oral cavity)? This variability could "smear out" the apparent tuning using these types of trial-averaged analyses. Given how important proprioception and somatosensation are for not biting the tongue or choking, the speculation that somatosensory cortical activity is suppressed during feedback is very counter-intuitive to this reviewer. In the revised manuscript the authors note these potential confounds and other limitations in the Discussion.

    1. Reviewer #2 (Public review):

      Summary:

      This study investigated how listeners adapt to and utilize statistical properties of different acoustic spaces to improve speech perception. The researchers used repetitive TMS to perturb neural activity in DLPFC, inhibiting statistical learning compared to sham conditions. The authors also identified the most effective room types for the effective use of reverberations in speech in noise perception, with regular human-built environments bringing greater benefits than modified rooms with lower or higher reverberation times.

      Strengths:

      The introduction and discussion sections of the paper are very interesting and highlight the importance of the current study, particularly with regard to the use of ecologically valid stimuli in investigating statistical learning. However, they could be condensed into parts. TMS parameters and task conditions were well-considered and clearly explained.

      Weaknesses

      (1) The Results section is difficult to follow and includes a lot of detail, which could be removed. As such, it presents as confusing and speculative at times.

      (2) The hypotheses for the study are not clearly stated.

      (3) Multiple statistical models are implemented without correcting the alpha value. This leaves the analyses vulnerable to Type I errors.

      (4) It is confusing to understand how many discrete experiments are included in the study as a whole, and how many participants are involved in each experiment.

      (5) The TMS study is significantly underpowered and not robust. Sample size calculations need further explanation (effect sizes appear to be based on behavioural studies?). I would caution an exploratory presentation of these data, and calculate a posteriori the full sample size based on effect sizes observed in the TMS data.

    1. Reviewer #2 (Public review):

      Summary:

      The study by Rowley and Sedigh-Sarvestani presents modeling data suggesting that map reversals in mouse lateral extrastriate visual cortex do not coincide with areal borders, but instead represent borders between subregions within a single area V2. The authors propose that such an organization explains the partial coverage in higher-order areas reported by Zhuang et al., (2017). The scheme revisits an organization proposed by Kaas et al., (1989), who interpreted the multiple projection patches traced from V1 in the squirrel lateral extrastriate cortex as subregions within a single area V2. Kaas et al's interpretation was challenged by Wang and Burkhalter (2007), who used a combination of topographic mapping of V1 connections and receptive field recordings in mice. Their findings supported a different partitioning scheme in which each projection patch mapped a specific topographic location within single areas, each containing a complete representation of the visual field. The area map of mouse visual cortex by Wang and Burkhalter (2007) has been reproduced by hundreds of studies and has been widely accepted as ground truth (CCF) (Wang et al., 2020) of the layout of rodent cortex. In the meantime, topographic mappings in marmoset and tree shew visual cortex made a strong case for map reversals in lateral extrastriate cortex, which represent borders between functionally diverse subregions within a single area V2. These findings from non-rodent species raised doubts about whether during evolution, different mammalian branches have developed diverse partitioning schemes of the cerebral cortex. Rowley and Sedigh-Sarvestani favor a single master plan in which, across evolution, all mammalian species have used a similar blueprint for subdividing the cortex.

      Strengths:

      The story illustrates the enduring strength of science in search of definitive answers.

      Weaknesses:

      To me, it remains an open question whether Rowley and Sedigh-Sarvestani have written the final chapter of the saga. A key reason for my reservation is that the areas the maps used in their model are cherry-picked. The article disregards published complementary maps, which show that the entire visual field is represented in multiple areas (i.e. LM, AL) of lateral extrastriate cortex and that the map reversal between LM and AL coincides precisely with the transition in m2AChR expression and cytoarchitecture (Wang and Burkhalter, 2007; Wang et al., 2011). Evidence from experiments in rats supports the gist of the findings in the mouse visual cortex (Coogan and Burkhalter, 1993).

      (1) The selective use of published evidence, such as the complete visual field representation in higher visual areas of lateral extrastriate cortex (Wang and Burkhalter, 2007; Wang et al., 2011) makes the report more of an opinion piece than an original research article that systematically analyzes the area map of mouse visual cortex we have proposed. No direct evidence is presented for a single area V2 with functionally distinct subregions.

      (2) The article misrepresents evidence by commenting that m2AChR expression is mainly associated with the lower field. This is counter to published findings showing that m2AChR spans across the entire visual field (Gamanut et al., 2018; Meier et al., 2021). The utility of markers for delineating areal boundaries is discounted, without any evidence, in disregard of evidence for distinct areal patterns in early development (Wang et al., 2011). Pointing out that markers can be distributed non-uniformly within an area is well-familiar. m2AChR is non-uniformly expressed in mouse V1, LM and LI (Ji et al., 2015; D'Souza et al., 2019; Meier et al., 2021). Recently, it has been found that the patchy organization within V1 plays a role in the organization of thalamocortical and intracortical networks (Meier et al., 2025). m2AChR-positive patches and m2AChR-negative interpatches organize the functionally distinct ventral and dorsal networks, notably without obvious bias for upper and lower parts of the visual field.

      (3) The study has adopted an area partitioning scheme, which is said to be based on anatomically defined boundaries of V2 (Zhuang et al., 2017). The only anatomical borders used by Zhuang et al. (2017) are those of V1 and barrel cortex, identified by cytochrome oxidase staining. In reality, the partitioning of the visual cortex was based on field sign maps, which are reproduced from Zhuang et al., (2017) in Figure 1A. It is unclear why the maps shown in Figures 2E and 2F differ from those in Figure 1A. It is possible that this is an oversight. But maintaining consistent areal boundaries across experimental conditions that are referenced to the underlying brain structure is critical for assigning modeled projections to areas or sub-regions. This problem is evident in Figure 2F, which is presented as evidence that the modeling approach recapitulates the tracings shown in Figure 3 of Wang and Burkhalter (2007). The dissimilarities between the modeling and tracing results are striking, unlike what is stated in the legend of Figure 2F.

      (4) The Rowley and Sedigh-Sarvestani find that the partial coverage of the visual field in higher order areas shown by Zhuang et al (2017) is recreated by the model. It is important to caution that Zhuang et al's (2017) maps were derived from incomplete mappings of the visual field, which was confined to -25-35 deg of elevation. This underestimates the coverage we have found in LM and AL. Receptive field mappings show that LM covers 0-90 deg of azimuth and -30-80 elevation (Wang and Burkhalter, 2007). AL covers at least 0-90 deg of azimuth and -30-50 deg of elevation (Wang and Burkhalter, 2007; Wang et al., 2011). These are important differences. Partial coverage in LM and AL underestimates the size of these areas and may map two projection patches as inputs to subregions of a single area rather than inputs to two separate areas. Complete, or nearly complete, visual representations in LM and AL support that each is a single area. Importantly, both areas are included in a callosal-free zone (Wang and Burkhalter, 2007). The surrounding callosal connections align with the vertical meridian representation. The single map reversal is marked by a transition in m2AChR expression and cytoarchitecture (Wang et al., 2011).

      (5) The statement that the "lack of visual field overlap across areas is suggestive of a lack of hierarchical processing" is predicated on the full acceptance of the mappings by Zhuang et al (2017). Based on the evidence reviewed above, the reclassification of visual areas proposed in Figure 1C seems premature.

      (6) The existence of lateral connections is not unique to rodent cortex and has been described in primates (Felleman and Van Essen, 1991).

      (7) Why the mouse and rat extrastriate visual cortex differ from those of many other mammals is unclear. One reason may be that mammals with V2 subregions are strongly binocular.

    1. Reviewer #2 (Public review):

      Summary:

      Building on previous models of multisensory integration (including their earlier correlation-detection framework used for non-spatial signals), the author introduces a population-level Multisensory Correlation Detector (MCD) that processes raw auditory and visual data. Crucially, it does not rely on abstracted parameters, as is common in normative Bayesian models," but rather works directly on the stimulus itself (i.e., individual pixels and audio samples). By systematically testing the model against a range of experiments spanning human, monkey, and rat data - the authors show that their MCD population approach robustly predicts perception and behavior across species with a relatively small (0-4) number of free parameters.

      Strengths:

      (1) Unlike prior Bayesian models that used simplified or parameterized inputs, the model here is explicitly computable from full natural stimuli. This resolves a key gap in understanding how the brain might extract "time offsets" or "disparities" from continuously changing audio-visual streams.

      (2) The same population MCD architecture captures a remarkable range of multisensory phenomena, from classical illusions (McGurk, ventriloquism) and synchrony judgments, to attentional/gaze behavior driven by audio-visual salience. This generality strongly supports the idea that a single low-level computation (correlation detection) can underlie many distinct multisensory effects.

      (3) By tuning model parameters to different temporal rhythms (e.g., faster in rodents, slower in humans), the MCD explains cross-species perceptual data without reconfiguring the underlying architecture.

      (4) The authors frame their model as a plausible algorithmic account of the Bayesian multisensory-integration models in Marr's levels of hierarchy.

      Weaknesses:

      What remains unclear is how the parameters themselves relate to stimulus quantities (like stimulus uncertainty), as is often straightforward in Bayesian models. A theoretical missing link is the explicit relationship between the parameters of the MCD models and those of a cue combination model, thereby bridging Marr's levels of hierarchy.

      Likely Impact and Usefulness

      The work offers a compelling unification of multiple multisensory tasks-temporal order judgments, illusions, Bayesian causal inference, and overt visual attention-under a single, fully stimulus-driven framework. Its success with natural stimuli should interest computational neuroscientists, systems neuroscientists, and machine learning scientists. This paper thus makes an important contribution to the field by moving beyond minimalistic lab stimuli, illustrating how raw audio and video can be integrated using elementary correlation analyses.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript is a technical report on a new model of early neurogenesis, coupled to a novel platform for genetic screens. The model is more faithful than others published to date, and the screening platform is an advance over existing ones in terms of speed and throughput.

      Strengths:

      It is novel and useful.

      Weaknesses:

      The novelty of the results is limited in terms of biology, mainly a proof of concept of the platform and a very good demonstration of the hierarchical interactions of the top regulators of GRNs.

      The value of the manuscript could be enhanced in two ways:

      (1) by showing its versatility and transforming the level of neural tube to midbrain and hindbrain, and looking at the transcriptional hierarchies there.

      (2) by relating the patterning of the organoids to the situation in vivo, in particular with the information in reference 49. The authors make a statement "To compare our findings with in vivo gene expression patterns, we applied the same approach to published scRNA-seq data from 4-week-old human embryos at the neurula stage" but it would be good to have a more nuanced reference: what stage, what genes are missing, what do they add to the information in that reference?

    1. Reviewer #2 (Public review):

      Summary:

      The manuscript by Gitanjali Roy et al. applies deep transfer learning (DEGAS) to assign patient-level disease attributes (metadata) to single cells of T2D and non-diabetic patients, including obese patients. This led to the identification of a singular cluster of T2D-associated β-cells; and two subpopulations of obese- β-cells derived from either non-diabetic or T2D donors. The objective was to identify novel and established genes implicated in T2D and obesity. Their final goal is to validate their findings at the protein level using immunohistochemistry of pancreas tissue from non-diabetic and T2D organ donors.

      Strengths:

      This paper is well-written, and the findings are relevant for β-cell heterogeneity in T2D and obesity.

      Weaknesses:

      The validation they provide is not sufficiently strong: no DLK1 immunohistochemistry is shown of obese patient-derived sections. Additional presumptive relevant candidates from this transcriptomic analysis should be screened for, at the protein level.

      Comments on revisions:

      The authors have largely addressed my comments. No further experiments are requested.

    1. Reviewer #2 (Public review):

      Summary:

      The authors are trying to understand why certain mutants of O-GlcNAc transferase (OGT) appear to cause developmental disorders in humans. As an important step towards that goal, the authors generated a mouse model with one of these mutations that disrupts OGT activity. They then go on to test these mice for behavioral differences, finding that the mutant mice exhibit some signs of hyperactivity and differences in learning and memory. They then examine alterations to the structure of the brain and skull, and again find changes in the mutant mice that have been associated with developmental disorders. Finally, they identify proteins that are up- or down-regulated between the two mice as potential mechanisms to explain the observations.

      Strengths:

      The major strength of this manuscript is the creation of this mouse model, as a key step in beginning to understand how OGT mutants cause developmental disorders. This line will prove important for not only the authors but other investigators as well, enabling the testing of various hypotheses and potentially treatments. The experiments are also rigorously performed, and the conclusions are well supported by the data.

      Weaknesses:

      The only weakness identified is a lack of mechanistic insight. However, this certainly may come in the future through more targeted experimentation using this mouse model.

    1. Reviewer #2 (Public review):

      Summary:

      Zhou, Sajid et al. present a study investigating the STN involvement in signaled movement. They use fiber photometry, implantable lenses, and optogenetics during active avoidance experiments to evaluate this. The data are useful for the scientific community, and the overall evidence for their claims is solid, but many aspects of the findings are confusing and seemingly contradictory. For example, STN activity increases with contraversive turning in the fiber photometry experiments, but optogenetic stimulation of the STN evokes ipsiversive turning. While the authors present a huge collection of data, it is somewhat difficult to extract the key information and the meaningful implications resulting from this data.

      Strengths:

      The study is comprehensive in using many techniques, stimulation powers, frequencies, and configurations.

      Weaknesses:

      Here are the specific weaknesses of the paper.

      (1) Vglut2 isn't a very selective promoter for the STN. Did the authors verify every injection across brain slices to ensure the para-subthalamic nucleus, thalamus, lateral hypothalamus, and other Vglut2-positive structures were never infected?

      (2) The authors say in the methods that the high vs low power laser activation for optogenetic experiments was defined by the behavioral output. This is misleading, and the high vs low power should be objectively stated and the behavioral results divided according to the power used, not according to the behavioral outcome.

      (3) In the fiber photometry experiments exposing mice to the range of tones, it is impossible to separate the STN response to the tone from the STN response to the movement evoked by the tone. The authors should expose the mouse to the tones in a condition that prevents movement, such as anesthetized or restrained, to separate out the two components.

      (4) The claim 'STN activation is ideally suited to drive active avoids' needs more explanation. This claim comes after the fiber photometry experiments during active avoidance tasks, so there has been no causality established yet.

      (5) The statistical comparisons in Figure 7E need some justification and/or clarification. The 9 neuron types are originally categorized based on their response during avoids, then statistics are run showing that they respond differently during avoids. It is no surprise that they would have significantly different responses, since that is how they were classified in the first place. The authors must explain this further and show that this is not a case of circular reasoning.

      (6) The authors show that neurons that have strong responses to orientation show reduced activity during avoidance. What are the implications of this? The author should explain why this is interesting and important.

      (7) It is not clear which conditions each mouse experienced in which order. This is critical to the interpretation of Figure 9 and the reduction of passive avoids during STN stimulation. Did these mice have the CS1+STN stimulation pairing or the STN+US pairing prior to this experiment? If they did, the stimulation of the STN could be strongly associated with either punishment or with the CS1 that predicts punishment. If that is the case, stimulating the STN during CS2 could be like presenting CS1+CS2 at the same time and could be confusing.

      (8) The experiments in Figure 10 are used to say that STN stimulation is not aversive, but they only show that STN stimulation cannot be used as punishment in place of a shock. This doesn't mean that it is not aversive; it just means it is not as aversive as a shock. The authors should do a simpler aversion test, such as conditioned or real-time place preference, to claim that STN stimulation is not aversive. This is particularly surprising as previous work (Serra et al., 2023) does show that STN stimulation is aversive.

      (9) In the discussion, the idea that the STN encodes 'moving away' from contralateral space is pretty vague and unsupported. It is puzzling that the STN activates more strongly to contraversive turns, but when stimulated, it evokes ipsiversive turns; however, it seems a stretch to speculate that this is related to avoidance. In the last experiments of the paper, the axons from the STN to the GPe and to the midbrain are selectively stimulated. Do these evoke ipsiversive turns similarly?

      (10) In the discussion, the authors claim that the STN is essential for modulating action timing in response to demands, but their data really only show this in one direction. The STN stimulation reliably increases the speed of response in all conditions (except maximum speed conditions such as escapes). It seems to be over-interpreting the data to say this is an inability to modulate the speed of the task, especially as clear learning and speed modulation do occur under STN lesion conditions, as shown in Figure 12B. The mice learn to avoid and increase their latency in AA2 vs AA1, though the overall avoids and latency are different from controls. The more parsimonious conclusion would be that STN stimulation biases movement speed (increasing it) and that this is true in many different conditions.

      (11) In the discussion, the authors claim that the STN projections to the midbrain tegmentum directly affect the active avoidance behavior, while the STN projections to the SNr do not affect it. This seems counter to their results, which show STN projections to either area can alter active avoidance behavior. What is the laser power used in these terminal experiments? If it is high (3mW), the authors may be causing antidromic action potentials in the STN somas, resulting in glutamate release in many brain areas, even when terminals are only stimulated in one area. The authors could use low (0.25mW) laser power in the terminals to reduce the chance of antidromic activation and spatially restrict the optical stimulation.

      (12) Was normality tested for data prior to statistical testing?

      (13) Why are there no error bars on Figure 5B, black circles and orange triangles?

    1. They generated migration and employment networks in which they matched femalefriends and family with their employer’s contacts. Sandoval-Cervantes (2017) findsthat this helped migrant women develop a sense of autonomy and independence notfound in other migrant contexts at the time.

      Perhaps a blueprint for what woukd eventually happen in america?

    Tags

    Annotators

    1. Reviewer #2 (Public review):

      Summary:

      Li et al. investigated the potential anti-ageing role of 17α-Estradiol on the hypothalamus of aged rats. To achieve this, they employed a very sophisticated method for single-cell genomic analysis that allowed them to analyze effects on various groups of neurons and non-neuronal cells. They were able to sub-categorize neurons according to their capacity to produce specific neurotransmitters, receptors, or hormones. They found that 17α-Estradiol treatment led to an improvement in several factors related to metabolism and synaptic transmission by bringing the expression levels of many of the genes of these pathways closer or to the same levels to those of young rats, reversing the ageing effect. Interestingly, among all neuronal groups, the proportion of Oxytocin-expressing neurons seems to be the one most significantly changing after treatment with 17α-Estradiol, suggesting an important role of these neurons on mediating its anti-ageing effects. This was also supported by an increase in circulating levels of oxytocin. It was also found that gene expression of corticotropin-releasing hormone neurons was significantly impacted by 17α-Estradiol even though it was not different between aged and young rats, suggesting that these neurons could be responsible for side effects related to this treatment. This article revealed some potential targets that should be further investigated in future studies regarding the role of 17α-Estradiol treatment in aged males.

      Strengths:

      • The single nucleus mRNA sequencing is a very powerful method for gene expression analysis and clustering. The supervised clustering of neurons was very helpful in revealing otherwise invisible differences between neuronal groups and helped identify specific neuronal populations as targets.

      • There is a variety of functions used that allowed the differential analysis of a very complex type of data. This led to a better comparison between the different groups in many levels.

      • There were some physiological parameters measured such as circulating hormone levels that helped the interpretation of the effects of the changes in hypothalamic gene expression.

      Weaknesses:

      • One main control group is missing from the study, the young males treated with 17α-Estradiol.

      • Even though the technical approach is a sophisticated one, analyzing the whole rat hypothalamus instead of specific nuclei or subregions makes the study weaker.

      • Although the authors claim to have several findings, the data fail to support these claims.

      • The study is about improving ageing but no physiological data from the study demonstrated such claim with the exception of the testes histology which was not properly analyzed and was not even significantly different between the groups.

      • Overall, the study remains descriptive with no physiological data to demonstrate that any of the effects on hypothalamic gene expression is related to metabolic, synaptic or other function.

      Comments on revisions:

      The authors revised part of the manuscript to address some of the reviewers' comments. This improved the language and the text flow to a certain extent. They also added an additional analysis including glial cells. However, they failed to address the main weaknesses brought up by the reviewers and did not add any experimental demonstration of their claims on lifespan expansion induced by 17α-estradiol in rats (the cited study does not include lifespan in rats). In addition, they insisted i keeping parts in the discussion that are not directly linked to any of the papers' findings.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Farber and colleagues have performed single cell RNAseq analysis on bone marrow derived stem cells from DO Mice. By performing network analysis, they look for driver genes that are associated with bone mineral density GWAS associations. They identify two genes as potential candidates to showcase the utility of this approach.

      Strengths:

      The study is very thorough and the approach is innovative and exciting. The manuscript contains some interesting data relating to how cell differentiation is occurring and the effects of genetics on this process. The section looking for genes with eQTLs that differ across the differentiation trajectory (Figure 4) was particularly exciting.

      Weaknesses:

      The manuscript is, in parts, hard to read due to the use of acronyms and there are some questions about data analysis that still need to be addressed.

      Comments on revisions:

      Dillard et al have made several improvements to their manuscript.

      (1) We previously asked the authors to determine whether any cell types were enriched for BMD-related traits since the premise of the paper is that 'many genes impacting BMD do so by influencing osteogenic differentiation or ... adipogenic differentiation'. Given the potential for the cell culture method to skew the cell type distribution non-physiologically, it is important to establish which cell types in their assay are most closely associated with BMD traits. The new CELLECT analysis and Figure 1E address this point nicely. However, it would still be nice to see the correlations between these cell types and BMD traits in the mice as this would provide independent evidence to support their physiological importance more broadly.

      (2) Shortening the introduction.

      (3) Addressing limitations that arise from not accounting for founder genome SNPs when aligning scRNA-seq data.

      (4) The main take-away of this paper is, to us, the development of a single cell approach to studying BMD-related traits. It is encouraging that the cells post-culture appear to be representative of those pre-culture (supplemental figure 3).

      However, the authors seem to have neglected several comments made by both reviewers. While we share the authors' enthusiasm for the single cell analytical approach, we do not understand their reluctance to perform further statistical tests. We feel that the following comments have still not been addressed:

      (1) The manuscript still contains the following:

      "To provide further support that tradeSeq-identified genes are involved in differentiation, we performed a cell type-specific expression quantitative trait locus (eQTL) analysis for each mesenchymal cell type from the 80 DO mice. We identified 563 genes (eGenes) regulated by a significant cis-eQTL in specific cell types of the BMSC-OB scRNA-seq data (Supplementary Table S14). In total, 73 eGenes were also tradeSeq-identified genes in one or more cell type boundaries along their respective trajectories (Supplementary Table S9)."

      The purpose of this paragraph is to convince readers that the eGenes approach aligns with the tradeSeq approach (and that their approach can therefore be trusted). It is essential that such claims are supported by statistical reasoning. Given that it would be very simple to perform permutation/enrichment analyses to address this point, and both reviewers requested similar analyses, we do not understand the author's reluctance here. Otherwise, this section should be rewritten so that it does not imply that the identification of these genes provides support for their approach.

      (2) Given that a central purpose of this manuscript is to establish a systematic workflow for identifying candidate genes, the manuscript could still benefit from more explanation as to why the authors chose to highlight Tpx2 and Fgfrl1. Tpx2 does already have a role in bone physiology through the IMPC. The authors should comment on why they did not explore Kremen1, for instance, as this gene seems important for the transition to both OB1 and 2.

      A final minor comment is that it would be very helpful if the authors could indicate if the DDGs in Table 1 are also eGenes for the relevant cell type. This is much more meaningful than looking through GTEx.

    1. Reviewer #2 (Public review):

      Summary:

      This study introduces SemReps-8K, a large multimodal fMRI dataset collected while subjects viewed natural images and matched captions, and performed mental imagery based on textual cues. The authors aim to train modality-agnostic decoders--models that can predict neural representations independently of the input modality - and use these models to identify brain regions containing modality-agnostic information. They find that such decoders perform comparably or better than modality-specific decoders and generalize to imagery trials.

      Strengths:

      (1) The dataset is a substantial and well-controlled contribution, with >8,000 image-caption trials per subject and careful matching of stimuli across modalities - an essential resource for testing theories of abstract and amodal representation.

      (2) The authors systematically compare unimodal, multimodal, and cross-modal decoders using a wide range of deep learning models, demonstrating thoughtful experimental design and thorough benchmarking.

      (3) Their decoding pipeline is rigorous, with informative performance metrics and whole-brain searchlight analyses, offering valuable insights into the cortical distribution of shared representations.

      (4) Extension to mental imagery decoding is a strong addition, aligning with theoretical predictions about the overlap between perception and imagery.

      Weaknesses:

      While the decoding results are robust, several critical limitations prevent the current findings from conclusively demonstrating truly modality-agnostic representations:

      (1) Shared decoding ≠ abstraction: Successful decoding across modalities does not necessarily imply abstraction or modality-agnostic coding. Participants may engage in modality-specific processes (e.g., visual imagery when reading, inner speech when viewing images) that produce overlapping neural patterns. The analyses do not clearly disambiguate shared representational structure from genuinely modality-independent representations. Furthermore, in Figure 5, the modality-agnostic encoder did not perform better than the modality-specific decoder trained on images (in decoding images), but outperformed the modality-specific decoder trained on captions (in decoding captions). This asymmetry contradicts the premise of a truly "modality-agnostic" encoder. Additionally, given the similar performance between modality-agnostic decoders based on multimodal versus unimodal features, it remains unclear why neural representations did not preferentially align with multimodal features if they were truly modality-independent.

      (2) The current analysis cannot definitively conclude that the decoder itself is modality-agnostic, making "Qualitative Decoding Results" difficult to interpret in this context. This section currently provides illustrative examples, but lacks systematic quantitative analyses.

      (3) The use of mental imagery as evidence for modality-agnostic decoding is problematic. Imagery involves subjective, variable experiences and likely draws on semantic and perceptual networks in flexible ways. Strong decoding in imagery trials could reflect semantic overlap or task strategies rather than evidence of abstraction.

      The manuscript presents a methodologically sophisticated and timely investigation into shared neural representations across modalities. However, the current evidence does not clearly distinguish between shared semantics, overlapping unimodal processes, and true modality-independent representations. A more cautious interpretation is warranted. Nonetheless, the dataset and methodological framework represent a valuable resource for the field.

    1. Reviewer #2 (Public review):

      Summary:

      This study develops a joint epidemiological and population genetic model to infer variant-specific effective reproduction numbers Rt and growth advantages of SARS-CoV-2 variants using US case counts and sequence data (Jan 2021-Mar 2022). For this, they use the commonly used renewal equation framework, observation models (negative binomial with zero inflation and Dirichlet-multinomial likelihoods, both to account for overdispersion). For the parameterization of Rt, again, they used a classic cubic spline basis expansion. Additionally, they use Bayesian Inference, specifically SVI. I was reassured to see the sensitivity analysis on the generation time to check effects on Rt.

      This is an incredibly robust study design. Integrating case and sequence data enables estimation of both absolute and relative variant fitness, overcoming limitations of frequency-only or case-only models. This reminds me of https://www.medrxiv.org/content/10.1101/2023.01.02.23284123v4.full

      I also really appreciated the flexible and interpretable parameterization of the renewal equations with splines. But I may be biased since I really like splines!

      The approach is justified, however, it has some big limitations. Specifically, there are some notable weaknesses, that I detail below.

      (1) The model does not account for demographic stochasticity or transmission overdispersion (superspreading), which are known to affect SARS-CoV-2 dynamics and can bias Rt, especially in low incidence or early introduction phases.

      (2) While the authors explore the sensitivity of generation time, the reliance on fixed generation time parameters (with some adjustments for Delta/Omicron) may still bias results

      (3) There is no explicit adjustment for population immunity, which limits the ability to disentangle intrinsic variant fitness (even though the model allows for inclusion of covariates - this to me is one of two major flaws in the study.

      (4) The second major flaw in my opinion is that there is no hierarchical pooling across states - each state is modeled independently. A hierarchical Bayesian model could borrow strength across states, improving estimates for states with sparse data and enabling more robust inference of shared variant effects.

      I would strongly recommend the following things in order of priority, where the first two points I consider critical.

      (1) Implement a hierarchical model for variant growth advantages and Rt across states.

      (2) Include time-varying covariates for vaccination rates, prior infection, and non-pharmaceutical interventions directly. This would help disentangle intrinsic variant transmissibility from changes in population susceptibility and behavior.

      (3) Extend the renewal model to a stochastic or branching process framework that explicitly models overdispersed transmission.

      (4) It would be good to allow for multiple seeding events per variant and per state. This can be informed by phylogeography in a minimum effort way and would improve the accuracy of Rt.

      (5) By now, I don't think it will be a surprise that addressing sampling bias is standard, reweighting sequence data or comparing results with independent surveillance data to assess the impact of non-representative sequencing.

    1. Reviewer #2 (Public review):

      This important paper studies the problem of learning from feedback given by sources of varying credibility. The convincing combination of experiment and computational modeling helps to pin down properties of learning, while opening unresolved questions for future research.

      Summary:

      This paper studies the problem of learning from feedback given by sources of varying credibility. Two bandit-style experiments are conducted in which feedback is provided with uncertainty, but from known sources. Bayesian benchmarks are provided to assess normative facets of learning, and alternative credit assignment models are fit for comparison. Some aspects of normativity appear, in addition to possible deviations such as asymmetric updating from positive and negative outcomes.

      Strengths:

      The paper tackles an important topic, with a relatively clean cognitive perspective. The construction of the experiment enables the use of computational modeling. This helps to pinpoint quantitatively the properties of learning and formally evaluate their impact and importance. The analyses are generally sensible, and advanced parameter recovery analyses (including cross-fitting procedure) provide confidence in the model estimation and comparison. The authors have very thoroughly revised the paper in response to previous comments.

      Weaknesses:

      The authors acknowledge the potential for cognitive load and the interleaved task structure to play a meaningful role in the results, though leave this for future work. This is entirely reasonable, but remains a limitation in our ability to generalize the results. Broadly, some of the results obtain in cases where the extent of generalization is not always addressed and remains uncertain.

    1. Reviewer #2 (Public review):

      Summary:

      This article addresses a very pertinent question: what are the computational mechanisms underlying risky behaviour in patients who have attempted suicide? In particular, it is impressive how the authors find a broad behavioural effect whose mechanisms they can then explain and refine through computational modeling. This work is important because, currently, beyond previous suicide attempts, there has been a lack of predictive measures. This study is the first step towards that: understanding the cognition on a group level. This is before being able to include it in future predictive studies (based on the cross-sectional data, this study by itself cannot assess the predictive validity of the measure).

      Strengths:

      (1) Large sample size.

      (2) Replication of their own findings.

      (3) Well-controlled task with measures of behaviour and mood + precise and well-validated computational modeling.

      Weaknesses:

      I can't really see any major weakness, but I have a few questions:

      (1) I can see from the parameter recovery that the parameters are very well identified. Is it surprising that this is the case, given how many parameters there are for 90 trials? Could the authors show cross-correlations? I.e., make a correlation matrix with all real parameters and all fitted parameters to show that not only the diagonal (i.e., same data is the scatter plots in S3) are high, but that the off-diagonals are low.

      (2) Could the authors clarify the result in Figure 2B of a correlation between gambling rate and suicidal ideation score, is that a different result than they had before with the group main effect? I.e., is your analysis like this: gambling rate ~ suicide ideation + group assignment? (or a partial correlation)? I'm asking because BSI-C is also different between the groups. [same comment for later analyses, e.g. on approach parameter].

      (3) The authors correlate the impact of certain rewards on mood with the % gambling variable. Could there not be a more direct analysis by including mood directly in the choice model?

      (4) In the large online sample, you split all participants into S+ and S-. I would have imagined that instead, you would do analyses that control for other clinical traits. Or, for example, you have in the S- group only participants who also have high depression scores, but low suicide items.

    1. Reviewer #2 (Public review):

      Summary:

      The function of neural circuits relies heavily on the balance of excitatory and inhibitory inputs. Particularly, inhibitory inputs are understudied when compared to their excitatory counterparts due to the diversity of inhibitory neurons, their synaptic molecular heterogeneity, and their elusive signature. Thus, insights into these aspects of inhibitory inputs can inform us largely on the functions of neural circuits and the brain.

      Endophilin A1, an endocytic protein heavily expressed in neurons, has been implicated in numerous pre- and postsynaptic functions, however largely at excitatory synapses. Thus, whether this crucial protein plays any role in inhibitory synapse, and whether this regulates functions at the synaptic, circuit, or brain level remains to be determined.

      The three remaining concerns are:

      (1) The use of one-way ANOVA is not well justified.

      (2) The use of superplots to show culture to culture variability would make it more transparent.

      (3) Change EEN1 in Figure 8B to EndoA1.

      Comments on revised version:

      The authors addressed the concerns adequately.

    1. Reviewer #2 (Public review):

      The study by Chaguza et al. presents a novel perspective on pneumococcal growth kinetics, suggesting that the overall genetic background of Streptococcus pneumoniae, rather than specific loci, plays a more dominant role in determining growth dynamics. Through a genome-wide association study (GWAS) approach, the authors propose a shift in how we understand growth regulation, differing from earlier findings that pinpointed individual genes, such as wchA or cpsE, as key regulators of growth kinetics. This study highlights the importance of considering the cumulative impact of the entire genetic background rather than focusing solely on individual genetic loci.

      The study emphasizes the cumulative effects of genetic variants, each contributing small individual impacts, as the key drivers of pneumococcal growth. This polygenic model moves away from the traditional focus on single-gene influences. Through rigorous statistical analyses, the authors persuasively advocate for a more holistic approach to understanding bacterial growth regulation, highlighting the complex interplay of genetic factors across the entire genome. Their findings open new avenues for investigating the intricate mechanisms underlying bacterial growth and adaptation, providing fresh insights into bacterial pathogenesis.

      Strengths:

      This study exemplifies a holistic approach to unraveling key factors in bacterial pathogenesis. By analyzing a large dataset of whole-genome sequences and employing robust statistical methodologies, the authors provide strong evidence to support their main findings. Which is a leap forward from previous studies focused on a relatively smaller number of strains. Their integration of genome-wide association studies (GWAS) highlights the cumulative, polygenic influences on pneumococcal growth kinetics, challenging the traditional focus on individual loci. This comprehensive strategy not only advances our understanding of bacterial growth regulation but also establishes a foundation for future research into the genetic underpinnings of bacterial pathogenesis and adaptation. The amount of data generated and corresponding approaches to analyze the data are impressive as well as convincing. The figures are convincing and comprehensible too. The revised version of the manuscript, after the addition and including explanations, is more convincing and acceptable.

      Weaknesses:

      This study suggests evidence that the genetic background significantly influences bacterial growth kinetics. However, the absence of experimental validation remains a critical limitation. Although the authors acknowledge in their response to reviewers that bench-experiments were beyond the scope of this work and are planned, this gap of experimental validation weakens the current conclusions. Demonstrable validation will be essential to corroborate the associations identified through the GWAS approach. Future experimental efforts will be critical to substantiate these findings and to deepen our understanding of the genetic determinants governing bacterial growth dynamics.

    1. Reviewer #2 (Public review):

      Summary:

      Govorunova et al present three new anion opsins that have potential applications silencing neurons. They identify new opsins by scanning numerous databases for sequence homology to known opsins, focusing on anion opsins. The three opsin identified, are uncommonly fast, potent, and are able to silence neuronal activity. The authors characterize numerous parameters of the opsins and compare these opsins to the existing and widely used GtACR opsins.

      Strengths:

      This paper follows the tradition of the Spudich lab, presenting and rigorously characterizing potentially valuable opsins. Furthermore, they explore several mutations of the identified opsin that may make these opsins even more useful for the broader community. The opsins AnsACR and FtACR are particularly notable having extraordinarily fast onset kinetics that could have utility in many domains. Furthermore, the authors show AnsACR is useable in multiphoton experiments having a peak photocurrent in a commonly used wavelength. Overall, the author's detailed measurements and characterization make for an important resource - both presenting new opsins that may be important for future experiment, and providing characterizations to expand our understanding of opsin biophysics in general.

    1. Reviewer #2 (Public review):

      Summary:

      This study makes a significant contribution to understanding the microenvironment of megakaryocytes (MKs) in the bone marrow, identifying an extracellular matrix (ECM) cage structure that influences MK localization and maturation. The authors provide compelling evidence for the presence of this ECM cage and its role in MK homeostasis, employing an array of sophisticated imaging techniques and molecular analyses.

      The authors have addressed most of the concerns raised in the previous review, providing clarifications and additional data that strengthen their conclusions

      More broadly, this work adds to a growing recognition of the ECM as an active participant in haematopoietic cell regulation in the bone marrow microenvironment. This work could pave the way to future studies investigating how the megakaryocytes' ECM cage affects their function as part of the haematopoietic stem cell niche, and by extension, influences global haematopoiesis.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript addresses the gap in knowledge related to the cardiac function of the S-denitrosylase SNO-CoA Reductase 2 (SCoR2; product of the Akr1a1 gene). Genetic variants in SCoR2 have been linked to cardiovascular disease, yet its exact role in heart remains unclear. This paper demonstrates that mice deficient in SCoR2 show significant protection in a myocardial infarction (MI) model. SCoR2 influenced ketolytic energy production, antioxidant levels, and polyol balance through the S-nitrosylation of crucial metabolic regulators.

      Strengths:

      Addresses a well-defined gap in knowledge related to the cardiac function of SNO-CoA Reductase 2. Besides the in-depth case for this specific player, the manuscripts sheds more light on the links between S-nytrosylation and metabolic reprogramming in heart.

      Rigorous proof of requirement through the combination of gene knockout and in vivo myocardial ischemia/reperfusion

      Identification of precise Cys residue for SNO-modification of BDH1 as SCoR2 target in cardiac ketolysis

      Weaknesses:

      The experiments with BDH1 stability were performed in mutant 293 cells. Was there a difference in BDH1 stability in myocardial tissue or primary cardiomyocytes from SCoR2-null vs -WT mice? Same question extends to PKM2.

      In the absence of tracing experiments, the cross-sectional changes in ketolysis, glycolysis or polyol intermediates presented in Figures 4 and 5 are suggestive at best. This needs to be stressed while describing and interpreting these results.

      The findings from human samples with ischemic and non-ischemic cardiomyopathy do not seem immediately or linearly in line with each other and with the model proposed from the KO mice. While the correlation holds up in the non-ischemic cardiomyopathy (increased SNO-BDH1, SNO-PKM2 with decreased SCoR2 expression), how do the Authors explain the decreased SNO-BDH1 with preserved SCoR2 expression in ischemic cardiomyopathy? This seems counterintuitive as activation of ketolysis is a quite established myocardial response to the ischemic stress. It may help the overall message clarity to focus the human data part on only NICM patients.

      (partially linked to the point above) an important proof that is lacking at present is the proof of sufficiency for SCoR2 in S-Nytrosylation of targets and cardiac remodeling. Does SCoR2 overexpression in heart or isolated cardiomyocytes reduce S-nitrosylation of BDH1 and other targets, undermining heart function at baseline or under stress?

      Comments on revisions:

      Some of my points have been addressed. However, the points related to 1) BDH1 stability effect in cardiomyocytes; 2) human relevance of SNO-BDH1; 3) SCoR2 sufficiency remain unclear. That said, this manuscript will provide useful information to the field as such.

    1. Reviewer #2 (Public review):

      Summary

      This study provides new insights into organ morphogenesis using the Drosophila salivary gland (SG) as a model. The authors identify a requirement for sulfation in regulating lumen expansion, which correlates with several effects at the cellular level, including regulation of intracellular trafficking and the organization of Golgi, the aECM and the apical membrane. In addition, the authors show that the ZP proteins Dumpy (Dpy) and Pio form an aECM regulating lumen expansion. Previous reports already pointed to a role for Papss in sulfation in SG and the presence of Dpy and Pio in the SG. Now this work extends these previous analyses and provides more detailed descriptions that may be relevant to the fields of morphogenesis and cell biology (with particular focus on ECM research and tubulogenesis). This study nicely presents valuable information regarding the requirements of sulfation and the aECM in SG development.

      Strengths:

      - The results supporting a role for sulfation in SG development are strong. In addition, the results supporting the involvement of Dpy and Pio in the aECM of the SG, their role in lumen expansion, and their interactions, are also strong.

      - The authors have made an excellent job in revising and clarifying the many different issues raised by the reviewers, particularly with the addition of new experiments and quantifications. I consider that the manuscript has improved considerably.

      - The authors generated a catalytically inactive Papss enzyme, which is not able to rescue the defects in Papss mutants, in contrast to wild type Papss. This result clearly indicates that the sulfation activity of Papss is required for SG development.

    1. Reviewer #2 (Public review):

      Summary:

      The study is well-conducted, revealing that NPY1, with previously less-characterized molecular functions, can suppress pid mutant phenotypes with a phosphorylation-based mechanism. Overexpression of NPY1 (NPY1-OE) results in PIN phosphorylation at unique sites and bypasses the requirement for PID for this event. Conversely, a C-terminal deleted form of NPY1 (NPY1-dC) fails to rescue pid despite promoting a certain phospho-profile in PIN proteins.

      Strengths:

      (1) The careful genetic analyses of pid suppression by NPY1-OE and the inability of NPY1dC to do the same.

      (2) Phospho-proteomics approaches reveal that NPY1-OE induces phosphorylation of PINs at non-canonical sites, independent of PID.

      Weaknesses:

      (1) The native role of NPY1 is not tested by phospho-proteomics in loss-of-function npy1 mutants. Such analysis would be crucial to demonstrate that NPY1 is required for the observed phosphorylation events.

      (2) The functional consequences of the newly identified phosphorylation sites in PINs remain speculative. Site-directed mutagenesis (phospho-defective and phospho-mimetic) would help clarify their physiological roles.

      (3) The kinase responsible for NPY1-mediated phosphorylation remains unidentified. Since NPY1 is a non-kinase protein, a model involving recruitment of partner kinases (e.g., PIN-phosphorylating kinases other than PID) should be considered or discussed.

    1. Reviewer #2 (Public Review):

      This paper aims to dissect the relative importance of the various cues that establish PCP in the wing disc of Drosophila, which remains a prominent and relevant model for PCP. The authors suggest that one must consider cues at three scales (molecular, cell and tissue) and specifically design tests for the importance of cell-level cues, which they call non-local cell scale signalling. They develop clever experimental approaches that allow them to track complex stability and also to induce polarity at experimentally defined times. In a first set of experiments, they restore PCP after the global cues have disappeared (de novo polarisation) and conclude from the results that another (cell scale) cue must exist. In another set of experiments, they show that de novo repolarization is robust to the dosage of various components of core PCP, leading them to conclude that there must be an underlying cell scale polarity, which, apparently, has nothing to do with microtubule or cell shape polarity. They then describe nice evidence that de novo polarisation is relatively short range both in a polarised and unpolarised field. They conclude that there is a strong cell-intrinsic polarity that remains to be characterised.

      Major concerns:

      (1) The first set of repolarisation experiments is performed after the global cell rearrangements that have been shown to act as global signals. However, this approach does not exclude the possible contribution of an unknown diffusible global signal.

      (2) The putative non-local cell scale signal must be more precisely defined (maybe also given a better name). It is not clear to me that one can separate cell-scale from molecular-scale signal. Local signals can redistribute within a cell (or membrane) so local signals are also cell-scale. Without a clear definition, it is difficult to interpret the results of the gene dosage experiments. The link between gene dosage and cell-scale signal is not rigorously stated. Related to this, the concluding statement of the introduction is too cryptic.

      Critique:

      The experiments described in this paper are of high quality with a sophisticated level of design and analysis. However, there needs to be some recalibration of the extent of the conclusions that can be drawn. Moreover, a limitation of this paper is that, despite the quality of their data, they cannot give a molecular hint about the nature of their proposed cell-scale signal.

    1. Reviewer #2 (Public review):

      Summary:

      Using C. elegans as a model, the authors present an interesting story demonstrating a new regulatory connection between olfactory neurons and the digestive system. Mechanistically, they identified key factors (NSY-1, STR-130 et.al) in neurons, as well as critical 'signaling factors' (INS-23, DAF-2) that bridge different cells/tissues to execute the digestive shutdown induced by poor-quality food (Staphylococcus saprophyticus, SS).

      Strengths:

      The conclusions of this manuscript are mostly well supported by the experimental results shown.

      Weaknesses:

      The authors have done a nice job in addressing my comments.

    1. Reviewer #2 (Public review):

      Summary:

      The authors aimed to uncover what role, if any, the UFD1/NPL4 complex might play in innate immune responses of the nematode C. elegans. The authors find that loss of the complex renders animals more sensitive to both pathogenic and non-pathogenic bacteria. However, there appears to be a complex interplay with known innate immune pathways since loss of UFD1/NPL4 actually results in increased survival of animals lacking the canonical innate immune pathways.

      Strengths:

      The authors perform robust genetic analysis to exclude and include possible mechanisms by which the UFD1/NPL4 pathway acts in the innate immune response.

      Weaknesses:

      The argument that the loss of the UFD1/NPL4 complex triggers a response that mimics that of an intracellular pathogen is not thoroughly investigated. Additionally, the finding of a role of the GATA transcription factor, ELT-2, in this response is suggestive, but experiments showing sufficiency in the context of loss of the UFD1/NPL4 complex need to be explored.

      Comments on revisions:

      The authors have performed several control experiments for their RNAi based experiments and also tested the requirement for xbp-1s in their paradigm. The findings and their interpretations are acceptable.

    1. Reviewer #3 (Public review):

      Summary:

      This study investigates the role of the host protein RBMX2 in regulating the response to Mycobacterium bovis infection and its connection to epithelial-mesenchymal transition (EMT), a key pathway in cancer progression. Using bovine and human cell models, the authors have wisely shown that RBMX2 expression is upregulated following M. bovis infection and promotes bacterial adhesion, invasion, and survival by disrupting epithelial tight junctions via the p65/MMP-9 signaling pathway. They also demonstrate that RBMX2 facilitates EMT and is overexpressed in human lung cancers, suggesting a potential link between chronic infection and tumor progression. The study highlights RBMX2 as a novel host factor that could serve as a therapeutic target for both TB pathogenesis and infection-related cancer risk.

      Strengths:

      The major strengths lie in its multi-omics integration (transcriptomics, proteomics, metabolomics) to map RBMX2's impact on host pathways, combined with rigorous functional assays (knockout/knockdown, adhesion/invasion, barrier tests) that establish causality through the p65/MMP-9 axis. Validation across bovine and human cell models and in clinical tissue samples enhances translational relevance. Finally, identifying RBMX2 as a novel regulator linking mycobacterial infection to EMT and cancer progression opens exciting therapeutic avenues.

      Weaknesses:

      There are a few minor weaknesses like grammatical errors, spelling mistakes. Also, the manuscript is too dense; improving the narratives in the Results and Discussion section could help readers follow the logic of the experimental design and conclusions.

    1. Reviewer #2 (Public review):

      Aldridge et al. demonstrate the important role of IL-27 in limiting emergency myelopoiesis in response to Toxoplasma gondii infection. Interestingly, IL-27 acts specifically at the level of early haematopoietic progenitors, inducing STAT signalling, which, in this case, dampens proliferation and preserves HSC fitness.

      They used different mouse genetic models such as HSC lineage tracing, IL27 and IL27R-deficient mice to show that :

      HSCs actively participate in emergency myelopoiesis during Toxoplasma gondii infection.

      The absence of IL27 and IL27R increases monocyte progenitors and monocytes, mainly inflammatory monocytes CCR2hi.

      At steady state, loss of IL27 impairs HSC fitness as competitive transplantation shows long-term engraftment deficiency of IL27 BM cells. This impairment is exacerbated after infection.

      IL27 is produced by various BM and other tissue cells at steady state and its expression increases with infection, mainly by increasing the number of monocytes producing it.

      This article highlights a new mechanism that acts directly at the level of early hematopoietic cells to limit over-inflammation during infection.

    1. Reviewer #3 (Public review):

      Summary:

      Chatzis et al showed that β-glucan trained macrophages have decreased phagocytic activity of apoptotic tumor cells and that is accompanied by lower levels of secreted IL-1β using mouse model.

      Strengths:

      This finding has potential impact on designing new cancer immunotherapeutic approaches by targeting macrophage efferocytosis.

      The concerns have been addressed.

    1. Reviewer #2 (Public review):

      Hawes et al. investigated the role of striatal neurons in the patch compartment of the dorsal striatum. Using Sepw1-Cre line, the authors combined a modified version of the light/dark transition box test that allows them to examine locomotor activity in different environmental valence with a variety of approaches, including cell-type-specific ablation, miniscope calcium imaging, fiber photometry, and opto-/chemogenetics. First, they found ablation of patchy striatal neurons resulted in an increase in movement vigor when mice stayed in a safe area or when they moved back from more anxiogenic to safe environments. The following miniscope imaging experiment revealed that a larger fraction of striatal patchy neurons was negatively correlated with movement speed, particularly in an anxiogenic area. Next, the authors investigated differential activity patterns of patchy neurons' axon terminals, focusing on those in GPe, GPi, and SNr, showing that the patchy axons in SNr reflect movement speed/vigor. Chemogenetic and optogenetic activation of these patchy striatal neurons suppressed the locomotor vigor, thus demonstrating their causal role in the modulation of locomotor vigor when exposed to valence differentials. Unlike the activation of striatal patches, such a suppressive effect on locomotion was absent when optogenetically activating matrix neurons by using the Calb1-Cre line, indicating distinctive roles in the control of locomotor vigor by striatal patch and matrix neurons. Together, they have concluded that nigrostriatal neurons within striatal patches negatively regulate movement vigor, dependent on behavioral contexts where motivational valence differs.

      The strengths of this work include the use of multiple experimental approaches, including genetic/viral ablation of patch neurons, miniscope single-cell imaging, as well as projection-specific recording of axonal activity by fiber photometry, and causal manipulation of the neurons by chemogenetic and optogenetics. Although similar findings were reported previously, the authors' results will be of value owing to multiple levels of investigation. In my view, this study will add to the important literature by demonstrating how patch (striosomal) neurons in the striatum controls movement vigor.

    1. Reviewer #2 (Public review):

      Summary:

      Park et al. has made a tool for spatiotemporally restricted knockout of the astrocytic GABA transporter GAT3 leveraging CRISPR/Cas9 and viral transduction in adult mice, and evaluated the effects of GAT3 on neural encoding of visual stimulation.

      Strengths:

      This concise manuscript leverages state-of-the-art gene CRISPR/Cas9 technology for knocking out astrocytic genes. This has to a little degree been preformed previously in astrocytes and represents an important development in the field. Moreover they utilize in vivo two-photon imaging of neural responses to visual stimuli as a readout of neural activity, in addition to validating their data with ex vivo electrophysiology. Lastly, they use advanced statistical modeling to analyze the impact on GAT3 knockout. Overall, the study comes across as rigorous and convincing.

      Weaknesses:

      Adding the following experiments would potentially have strengthened the conclusions and helped interpret the findings, although may be considered outside the scope of this manuscript, and be pursued in future work:

      (1) Neural activity is quite profoundly influenced by GAT3 knockout. Corroborating these relatively large changes to neural activity with in vivo electrophysiology of some sort as an additional readout would have strengthened the conclusions.

      (2) Given the quite large effects on neural coding in visual cortex assessed with jRGECO imaging it would have been interesting the mouse groups could have been subjected to behavioral testing assessing the visual system.

    1. Reviewer #2 (Public review):

      This manuscript explores the mechanisms underlying cerebral cortical folding using a combination of physical modelling, computational simulations, and geometric morphometrics. The authors extend their prior work on human brain development (Tallinen et al., 2014; 2016) to a comparative framework involving three mammalian species: ferrets (Carnivora), macaques (Old World monkeys), and humans (Hominoidea). By integrating swelling gel experiments with mathematical differential growth models, they simulate sulcification instability and recapitulate key features of brain folding across species. The authors make commendable use of publicly available datasets to construct 3D models of fetal and neonatal brain surfaces: fetal macaque (ref. [26]), newborn ferret (ref. [11]), and fetal human (ref. [22]).

      Using a combination of physical models and numerical simulations, the authors compare the resulting folding morphologies to real brain surfaces using morphometric analysis. Their results show qualitative and quantitative concordance with observed cortical folding patterns, supporting the view that differential tangential growth of the cortex relative to the subcortical substrate is sufficient to account for much of the diversity in cortical folding. This is a very important point in our field, and can be used in the teaching of medical students.

      Brain folding remains a topic of ongoing debate. While some regard it as a critical specialization linked to higher cognitive function, others consider it an epiphenomenon of expansion and constrained geometry. This divergence was evident in discussions during the Strüngmann Forum on cortical development (Silver et al., 2019). Though folding abnormalities are reliable indicators of disrupted neurodevelopmental processes (e.g., neurogenesis, migration), their relationship to functional architecture remains unclear. Recent evidence suggests that the absolute number of neurons varies significantly with position-sulcus versus gyrus-with potential implications for local processing capacity (e.g., https://doi.org/10.1002/cne.25626). The field is thus in need of comparative, mechanistic studies like the present one.

      This paper offers an elegant and timely contribution by combining gel-based morphogenesis, numerical modelling, and morphometric analysis to examine cortical folding across species. The experimental design - constructing two-layer PDMS models from 3D MRI data and immersing them in organic solvents to induce differential swelling - is well-established in prior literature. The authors further complement this with a continuum mechanics model simulating folding as a result of differential growth, as well as a comparative analysis of surface morphologies derived from in vivo, in vitro, and in silico brains.

      I offer a few suggestions here for clarification and further exploration:

      Major Comments

      (1) Choice of Developmental Stages and Initial Conditions

      The authors should provide a clearer justification for the specific developmental stages chosen (e.g., G85 for macaque, GW23 for human). How sensitive are the resulting folding patterns to the initial surface geometry of the gel models? Given that folding is a nonlinear process, early geometric perturbations may propagate into divergent morphologies. Exploring this sensitivity-either through simulations or reference to prior work-would enhance the robustness of the findings.

      (2) Parameter Space and Breakdown Points

      The numerical model assumes homogeneous growth profiles and simplifies several aspects of cortical mechanics. Parameters such as cortical thickness, modulus ratios, and growth ratios are described in Table II. It would be informative to discuss the range of parameter values for which the model remains valid, and under what conditions the physical and computational models diverge. This would help delineate the boundaries of the current modelling framework and indicate directions for refinement.

      (3) Neglected Regional Features: The Occipital Pole of the Macaque

      One conspicuous omission is the lack of attention to the occipital pole of the macaque, which is known to remain smooth even at later gestational stages and has an unusually high neuronal density (2.5× higher than adjacent cortex). This feature is not reproduced in the gel or numerical models, nor is it discussed. Acknowledging this discrepancy-and speculating on possible developmental or mechanical explanations-would add depth to the comparative analysis. The authors may wish to include this as a limitation or a target for future work.

      (4) Spatio-Temporal Growth Rates and Available Human Data

      The authors note that accurate, species-specific spatio-temporal growth data are lacking, limiting the ability to model inhomogeneous cortical expansion. While this may be true for ferret and macaque, there are high-quality datasets available for human fetal development, now extended through ultrasound imaging (e.g., https://doi.org/10.1038/s41586-023-06630-3). Incorporating or at least referencing such data could improve the fidelity of the human model and expand the applicability of the approach to clinical or pathological scenarios.

      (5) Future Applications: The Inverse Problem and Fossil Brains

      The authors suggest that their morphometric framework could be extended to solve the inverse growth problem-reconstructing fetal geometries from adult brains. This speculative but intriguing direction has implications for evolutionary neuroscience, particularly the interpretation of fossil endocasts. Although beyond the scope of this paper, I encourage the authors to elaborate briefly on how such a framework might be practically implemented and validated.

      Conclusion

      This is a well-executed and creative study that integrates diverse methodologies to address a longstanding question in developmental neurobiology. While a few aspects-such as regional folding peculiarities, sensitivity to initial conditions, and available human data-could be further elaborated, they do not detract from the overall quality and novelty of the work. I enthusiastically support this paper and believe that it will be of broad interest to the neuroscience, biomechanics, and developmental biology communities.

      Note: The paper mentions a companion paper [reference 11] that explores the cellular and anatomical changes in the ferret cortex. I did not have access to this manuscript, but judging from the title, this paper might further strengthen the conclusions.

    1. Reviewer #2 (Public review):

      Summary:

      The authors aim to quantify passive muscle forces in the legs of Drosophila, and test the hypothesis that these forces would be sufficient to support body weight in small insects. They take advantage of the genetic tools available in Drosophila, and use a combination of genetic silencing (optogenetic inactivation of motor neurons), kinematic measurements, and simulations using OpenSim. This integrative toolkit is used to examine the role of passive torques across multiple leg joints. They find that passive forces are weaker than expected - in particular, passive forces were found to be too weak to support the body weight of the fly. This challenges previous scaling assumptions derived from studies in larger insects and has potential implications for our understanding of motor control in small animals.

      Strengths:

      The primary strength of this work lies in its integration of multiple analyses. By pulling together simulations, kinematic measurements from high-resolution videos, and genetic manipulation, they are able to overcome limitations of past studies. In particular, optogenetic manipulation allowed for measurements to be made in whole animals, and the modeling component is valuable because it both validates experimental findings and elucidates the mechanism behind some of the observed dynamic consequences (e.g., the rapid fall after motor inactivation). The conclusions made in the study are well-supported by the data and could have an impact on a number of fields, including invertebrate neurobiology and bioinspired design.

      Weaknesses:

      While (as mentioned above) the study's conclusions are well-supported by the results and modeling, limitations arise because of the assumptions made. For instance, using a linear approximation may not hold at larger joint angles, and future studies would benefit from accounting for nonlinearities. Future studies could also delve into the source of passive forces, which is important for more deeply understanding the anatomical and physical basis of the results in this study. For instance, assessments of muscle or joint properties to correlate stiffness values with physical structure might be an area of future consideration

    1. Reviewer #2 (Public review):

      Summary:

      Based on MRI data of the ferret (a gyrencephalic non-primate animal, in whom folding happens postnatally), the authors create in vitro physical gel models and in silico numerical simulations of typical cortical gyrification. They then use genetic manipulations of animal models to demonstrate that cortical thickness and expansion rate are primary drivers of atypical morphogenesis. These observations are then used to explain cortical malformations in humans.

      Strengths:

      The paper is very interesting and original, and combines physical gel experiments, numerical simulations, as well as observations in MCD. The figures are informative, and the results appear to have good overall face validity.

      Weaknesses:

      On the other hand, I perceived some lack of quantitative analyses in the different experiments, and currently, there seems to be rather a visual/qualitative interpretation of the different processes and their similarities/differences.

      Ideally, the authors also quantify local/pointwise surface expansion in the physical and simulation experiments, to more directly compare these processes. Time courses of eg, cortical curvature changes, could also be plotted and compared for those experiments.

      I had a similar impression about the comparisons between simulation results and human MRI data. Again, face validity appears high, but the comparison appeared mainly qualitative.

      I felt that MCDs could have been better contextualized in the introduction.

    1. Reviewer #2 (Public review):

      Summary:

      Foik et al. studied the regulation of the fro operon in response to HOCl, an oxidant derived from immune cells, especially neutrophils. They use a transcriptional fusion of YFP to the froA promoter in an mCherry-expressing P. aeruginosa strain to determine fro-induction under the microscope. They use this system to study fro expression in medium, in the presence of neutrophils and macrophages, neutrophil-conditioned medium, and several chemical stimuli, including NaCl, HOCl, hydrogen peroxide, nitric acid, hydrochloric acid, and sodium hydroxide. They also use a corneal infection model to demonstrate that froA is upregulated in P. aeruginosa 20 h post-infection and perform transcriptional analyses in WT and a froR mutant in response to HOCl.

      Strengths:

      Their data clearly shows that HOCl is a strong inducer of the fro Operon. The addition of HOCl-quenching chemicals together with HOCl abrogates the response. They also show that a froR mutant is more susceptible to HOCl than WT. Their transcriptomic data reveal genes under control of the FroR/FroI sigma factor/anti sigma factor system.

      Weaknesses:

      Although the presented evidence is mostly solid, some of their findings need to be evaluated more carefully; explaining the rationale behind some of the experiments might enhance the article, and some of the models proposed by the authors seem far-fetched, as outlined below:

      (1) In line 76 the authors claim "Relative to P. aeruginosa that were incubated in host cell-free media, P. aeruginosa in close proximity to human neutrophils or that were engulfed in mouse macrophages appeared to increase fro expression (Fig. 1C)". Counting bacterial cells in Figure 1C shows that 1 in 17 bacteria (5.8%) induce the froA-promotor in media in the absence of immune cells, while 4 in 72 bacteria (only 5.5%) do the same in the presence of neutrophils. Contrary to the authors' claims, it appears that P. aeruginosa actually decreases fro-expression in close proximity to neutrophils. There is a slight increase in fro-expression in bacteria co-incubated with macrophages (3 in 21, or 14.3%). A more rigorous statistical analysis might substantiate the authors' claim, but, as is, the claim "neutrophils increase fro expression" is untenable.

      (2) The authors should explain the rationale behind some of the chemicals used. Why did they use nitric acid? Especially at these high concentrations, a strong acid such as nitric acid might have a significant influence on the medium pH. I understand that the medium is phosphate-buffered, but 25 mM nitric acid in an unbuffered medium would shift the pH well below 2. Similar considerations apply to hydrochloric acid and sodium hydroxide.

      (3) In line 187, the authors state that "It is possible that oxidized methionine increases fro expression" and they suggest a model to that effect in Figure 5D. It is unclear why the authors singled out methionine sulfoxide, since a number of other things get oxidized by HOCl. In line 184, the authors state, in the same vein, that "HOCl oxidizes methionine residues 100-fold more rapidly than other cellular components". The authors should state which other cellular compounds they are referring to. Certainly not cysteine and other thiols, which react equally fast and are highly abundant in the cell: P. aeruginosa contains 340 µM GSH, 140 µM CoA-SH (https://doi.org/10.1074/jbc.RA119.009934) plus free cysteine and cysteines in proteins (based on codon usage, 1.34% of amino acids in proteins are cysteine, while methionine is only slightly more present at 2.10%, although a number of starting methionines are removed from mature proteins).

      (4) Overall (and this is probably not addressable with the authors' data), some very interesting questions remain unanswered: what is the molecular mechanism of fro-induction? How is the FroR/FroI system modulated by HOCl? Does the system sense free or protein-bound methionine-sulfoxide? Are certain methionine residues in these proteins directly oxidized by HOCl? Many "HOCl-sensing" proteins are also modified at cysteine residues or amino groups; could those play a role? And lastly: what is the connection between shear/fluid flow and HOCl, or are these totally separate mechanisms of fro-induction?

    1. Reviewer #2 (Public review):

      Summary:

      These studies investigate the phenotypic variability and roles of neutrophils in tuberculosis (TB) susceptibility by using a diverse collection of wild-derived inbred mouse lines. The authors aimed to identify new phenotypes during Mycobacterium tuberculosis infection by developing, infecting, and phenotyping 19 genetically diverse wild-derived inbred mouse lines originating from different geographic regions in North America and South America. The investigators achieved their main goals, which were to show that increasing genetic diversity increases the phenotypic spectrum observed in response to aerosolized M. tuberculosis, and further to provide insights into immune and/or inflammatory correlates of pulmonary TB. Briefly, investigators infected wild-derived mice with aerosolized M. tuberculosis and assessed early infection control at 21 days post-infection. The time point was specifically selected to correspond to the period after infection when acquired immunity and antigen-specific responses manifest strongly, and also early susceptibility (morbidity and mortality) due to M. tuberculosis infection has been observed in other highly susceptible wild-derived mouse strains, some Collaborative Cross inbred strains, and approximately 30% of individuals in the Diversity Outbred mouse population. Here, the investigators normalized bacterial burden across mice based on inoculum dose and determined the percent of immune cells using flow cytometry, primarily focused on macrophages, neutrophils, CD4 T cells, CD8 T cells, and B cells in the lungs. They also used single-cell RNA sequencing to identify neutrophil subpopulations and immune phenotypes, elegantly supplemented with in vitro macrophage infections and antibody depletion assays to confirm immune cell contributions to susceptibility. The main results from this study confirm that mouse strains show considerable variability to M. tuberculosis susceptibility. Authors observed that enhanced infection control correlated with higher percentages of CD4 and CD8 T cells, and B cells, but not necessarily with the percentage of interferon-gamma (IFN-γ) producing cells. High levels of neutrophils and immature neutrophils (band cells) were associated with increased susceptibility, and the mouse strain with the most neutrophils, the MANC line, exhibited a transcriptional signature indicative of a highly activated state, and containing potentially tissue-destructive, mediators that could contribute to the strain's increased susceptibility and be leveraged to understand how neutrophils drive lung tissue damage, cavitation, and granuloma necrosis in pulmonary TB.

      Strengths:

      The strengths are addressing a critically important consideration in the tuberculosis field - mouse model(s) of the human disease, and taking advantage of the novel phenotypes observed to determine potential mechanisms. Notable strengths include,

      (1) Innovative generation and use of mouse models: Developing wild-derived inbred mice from diverse geographic locations is innovative, and this approach expands the range of phenotypic responses observed during M. tuberculosis infection. Additionally, the authors have deposited strains at The Jackson Laboratory making these valuable resources available to the scientific community.

      (2) Potential for translational research: The findings have implications for human pulmonary TB, particularly the discovery of neutrophil-associated susceptibility in primary infection and/or neutrophil-mediated disease progression that could both inform the development of therapeutic targets and also be used to test the effectiveness of such therapies.

      (3) Comprehensive experimental design: The investigators use many complementary approaches including in vivo M. tuberculosis infection, in vitro macrophage studies, neutrophil depletion experiments, flow cytometry, and a number of data mining, machine learning, and imaging to produce robust and comprehensive analyses of the wild-derives d strains and neutrophil subpopulations in 3 weeks after M. tuberculosis infection.

      Weaknesses:

      The manuscript and studies have considerable strengths and very few weaknesses. One minor consideration is that phenotyping is limited to a single limited-time point; however, this time point was carefully selected and has a strong biological rationale provided by investigators. This potential weakness does not diminish the overall findings, exciting results, or conclusions.

    1. Reviewer #2 (Public review):

      Pinon and colleagues have developed a Vessel-on-Chip model showcasing geometrical and physical properties similar to the murine vessels used in the study of systemic infections. The vessel was created via highly controllable laser photoablation in a collagen matrix, subsequent seeding of human endothelial cells, and flow perfusion to induce mechanical cues. This model could be infected with Neisseria meningitidis as a model of systemic infection. In this model, microcolony formation and dynamics, and effects on the host were very similar to those described for the human skin xenograft mouse model (the current gold standard for systemic studies) and were consistent with observations made in patients. The model could also recapitulate the neutrophil response upon N. meningitidis systemic infection.

      The claims and the conclusions are supported by the data, the methods are properly presented, and the data is analyzed adequately. The most important strength of this manuscript is the technology developed to build this model, which is impressive and very innovative. The Vessel-on-Chip can be tuned to acquire complex shapes and, according to the authors, the process has been optimized to produce models very quickly. This is a great advancement compared with the technologies used to produce other equivalent models. This model proves to be equivalent to the most advanced model used to date (skin xenograft mouse model). The human skin xenograft mouse model requires complex surgical techniques and has the practical and ethical limitations associated with the use of animals. However, the Vessel-on-chip model is free of ethical concerns, can be produced quickly, and allows to precisely tune the vessel's geometry and to perform higher resolution microscopy. Both models were comparable in terms of the hallmarks defining the disease, suggesting that the presented model can be an effective replacement of the animal use in this area. In addition, the Vessel-on-Chip allows to perform microscopy with higher resolution and ease, which can in turn allow more complex and precise image-based analysis.

      A limitation of this model is that it lacks the multicellularity that characterizes other similar models, which could be useful to research disease more extensively. However, the authors discuss the possibilities of adding other cells to the model, for example, fibroblasts. It is also not clear whether the technology presented in the current paper can be adopted by other labs. The methodology is complex and requires specialized equipment and personnel, which might hinder its widespread utilization of this model by researchers in the field.

      This manuscript will be of interest for a specialized audience focusing on the development of microphysiological models. The technology presented here can be of great interest to researchers whose main area of interest is the endothelium and the blood vessels, for example, researchers on the study of systemic infections, atherosclerosis, angiogenesis, etc. This manuscript can have great applications for a broad audience and it can present an opportunity to begin collaborations, aimed at answering diverse research questions with the same model.

    1. Reviewer #2 (Public review):

      Summary:

      Schmid & colleagues test an interesting hypothesis that V1 neurons might act as theta-tuned filters to incoming sensory information, and thereby influence downstream processing and detection performance.

      Strengths:

      The authors report that circular stimuli elicit theta oscillations in V1 single units and population activity. They also report that the phase of the theta oscillations influences performance in a change detection task.

      Weaknesses:

      The results are reported in terms of specific stimulus sizes. To truly reflect general-purpose spatial computations in the primary visual cortex, it will be important to establish a relationship between stimulus size and receptive field size.

      I have several major concerns that I would like the authors to address:

      (1) First paragraph of Results: The results are presented at very specific stimulus sizes: 0.3-degree, 1-degree, 4-degree, and so on. A key missing piece of information is the size of the receptive fields (RFs) that were recorded from. A related missing information is at what eccentricity these RFs were recorded from. Since there is nothing magical about a 1-degree stimulus, any general-purpose computation in the primary visual cortex has to establish a relationship between RF size and stimulus size.

      (2) Second paragraph of Results: The authors state that "specific stimulus sizes consistently induced strong theta rhythmic activity: 1{degree sign} in MUA and 2{degree sign} in LFP". What is the interpretation of these specific sizes? Given that the LFP and MUAe reflect different aspects of neural activity, how does one interpret the discrepancy?

      (3) Third paragraph of Results: Again related to (1), what is the relationship between the stimulus size that elicited the largest theta peaks and RF size at the population level? (1)-(3) taken together, there seems to be an opportunity to reveal something more fundamental about V1 processing that the authors might have missed here.

      (4) Change detection task: It was not clear to me whether the timing of the luminance change, which varied from 500ms to 1500ms, was drawn from an exponential distribution or a uniform distribution. Only an exponential distribution has the property of a flat hazard function, which will be important to establish that the animal could not anticipate the timing of the upcoming change.

      (5) Figure 3D: Have the authors tried to fit the data separately for each animal? There seems to be an inconsistency in the results between the 2 animals. The circular data points ('AL') seem positively correlated, similar to the overall trend, but the diamond data points ('DP') seem to have a negative slope.

    1. Reviewer #2 (Public review):

      Sasaki et al. use a combination of live-cell biosensors and patch-clamp electrophysiology to investigate the effect of membrane potential on the ERK MAPK signaling pathway, and probe associated effects on proliferation. This is an effect that has long been proposed, but a convincing demonstration has remained elusive, because it is difficult to perturb membrane potential without disturbing other aspects of cell physiology in complex ways. The time-resolved measurements here are a nice contribution to this question, and the perforated patch clamp experiments with an ERK biosensor are fantastic - they come closer to addressing the above difficulty of perturbing voltage than any prior work. It would have been difficult to obtain these observations with any other combination of tools.

      However, there are still some concerns as detailed in specific comments below:

      Specific comments:

      (1) All the observations of ERK activation, by both high extracellular K+ and voltage clamp, could be explained by cell volume increase (more discussion in subsequent comments). There is a substantial literature on ERK activation by hypotonic cell swelling (e.g. https://doi.org/10.1042/bj3090013, https://doi.org/10.1002/j.1460-2075.1996.tb00938.x, among others). Here are some possible observations that could demonstrate that ERK activation by volume change is distinct from the effects reported here:

      i) Does hypotonic shock activate ERK in U2OS cells?

      ii) Can hypotonic shock activate ERK even after PS depletion, whereas extracellular K+ cannot?

      iii) Does high extracellular K+ change cell volume in U2OS cells, measured via an accurate method such as fluorescence exclusion microscopy?

      iv) It would be helpful to check the osmolality of all the extracellular solutions, even though they were nominally targeted to be iso-osmotic.

      (2) Some more details about the experimental design and the results are needed from Figure 1:

      i) For how long are the cells serum-starved? From the Methods section, it seems like the G1 release in different K+ concentration is done without serum, is this correct? Is the prior thymidine treatment also performed in the absence of serum?

      ii) There is a question of whether depolarization constitutes a physiologically relevant mechanism to regulate proliferation, and how depolarization interacts with other extracellular signals that might be present in an in vivo context. Does depolarization only promote proliferation after extended serum starvation (in what is presumably a stressed cell state)? What fraction of total cells are observed to be mitotic (without normalization), and how does this compare to the proliferation of these cells growing in serum-supplemented media? Can K+ concentration tune proliferation rate even in serum-supplemented media?

      (3) In Figure 2, there are some possible concerns with the perfusion experiment:

      i) Is the buffer static in the period before perfusion with high K+, or is it perfused? This is not clear from the Methods. If it is static, how does the ERK activity change when perfused with 5 mM K+? In other words, how much of the response is due to flow/media exchange versus change in K+ concentration?

      ii) Why do there appear to be population-average decreases in ERK activity in the period before perfusion with high K+ (especially in contrast to Fig. 3)? The imaging period does not seem frequent enough for photobleaching to be significant.

      (4) Figure 3 contains important results on couplings between membrane potential and MAPK signaling. However, there are a few concerns:

      i) Does cell volume change upon voltage clamping? Previous authors have shown that depolarizing voltage clamp can cause cells to swell, at least in the whole-cell configuration:

      https://www.cell.com/biophysj/fulltext/S0006-3495(18)30441-7 . Could it be possible that the clamping protocol induces changes in ERK signaling due to changes in cell volume, and not by an independent mechanism?

      ii) Does the -80 mV clamp begin at time 0 minutes? If so, one might expect a transient decrease in sensor FRET ratio, depending on the original resting potential of the cells. Typical estimates for resting potential in HEK293 cells range from -40 mV to -15 mV, which would reach the range that induces an ERK response by depolarizing clamp in Fig. 3B. What are the resting potentials of the cells before they are clamped to -80 mV, and why do we not see this downward transient?

      (5) The activation of ERK by perforated voltage clamp and by high extracellular K+ are each convincing, but it is unclear whether they need to act purely through the same mechanism - while additional extracellular K+ does depolarize the cell, it could also be affecting function of voltage-independent transporters and cell volume regulatory mechanisms on the timescales studied. To more strongly show this, the following should be done with the HEK cells where there is already voltage clamp data:

      i) Measure resting potential using the perforated patch in zero-current configuration in the high K+ medium. Ideally this should be done in the time window after high K+ addition where ERK activation is observed (10-20 minutes) to minimize the possibility of drift due to changes in transporter and channel activity due to post-translational regulation.

      ii) Measure YFP/CFP ratio of the HEK cells in the high K+ medium (in contrast to the U2OS cells from Fig. 2 where there is no patch data).

      iii) The assertion that high K+ is equivalent to changes in Vmem for ERK signaling would be supported if the YFP/CFP change from K+ addition is comparable to that induced by voltage clamp to the same potential. This would be particularly convincing if the experiment could be done with each of the 15 mM, 30 mM, and 145 mM conditions.

      (6) Line 170: "ERK activity was reduced with a fast time course (within 1 minute) after repolarization to -80 mV." I don't see this in the data: in Fig. 3C, it looks like ERK remains elevated for > 10 min after the electrical stimulus has returned to -80 mV

      Comments on revisions:

      The authors have done a good job addressing the comments on the previous submission.

    1. Reviewer #2 (Public review):

      Summary:

      Human histone H3K36 methyltransferase Setd2 has been previously shown to be a tumor suppressor in lung and pancreatic cancer. In this manuscript by Mack et al., the authors first use a mouse KRASG12D-driven lung cancer model to confirm in vivo that Setd2 depletion exacerbates tumorigenesis. They then investigate the enzymatic regulation of the Setd2 SET domain in vitro, demonstrating that H2A, H3, or H4 acetylation stimulates Setd2-SET activity, with specific enhancement by mono-acetylation at H3K14ac or H3K27ac. In contrast, histone ubiquitination has no effect. The authors propose that H3K27ac may regulate Setd2-SET activity by facilitating its binding to nucleosomes. This work provides insight into how cross-talk between histone modifications regulates Setd2 function.

      Comments on revisions:

      (1) Regarding New Figure 2F lane 1, please reference PMID: 33972509 Fig 4D bottom. Setd2-SET is a well-known robust K36 trimethylase. Why, under the authors' conditions, do WT nucleosomes show a significant amount of K36me1 and K36me2 accumulation, whereas K36me3 is not as pronounced? As a comparison, the authors should also report the evidence for the efficiency of each chemical modification that generates K36 methylation mimic.

      (2) The bottom panel of Figure 2B does not match the top one; the number of repeats should be indicated in the figure legends.

      (3) In Figure 4E, the differences between Setd2-bound WT and acetylated nucleosomes are minimal, as judged by both the decreasing trend of unbound nucleosomes and the increasing trend of bound fractions. This experiment needs to be quantified based on multiple repeats.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript by Wolfson et al., various adeno-associated viruses (AAVs) were delivered to mice to assess the cardiac-specificity, injury border-zone cardiomyocyte transduction rate, and temporal dynamics in the goal to find better AAVs for gene therapies targeting the heart. The authors delivered tissue regeneration enhancer elements (TREEs) controlling luciferase expression and used IVIS imaging to examine transduction in the heart and other organs. They found that luciferase expression increased in the first week after injury when using AAV9-TREE-Hsp68 promoter, waning to baseline levels by 7 weeks. However, AAV9 vectors transduced the liver, which was significantly reduced by using an AAV.cc84 liver de-targeting capsid. The authors then performed in vivo screening of AAV9 capsids and found AAV-IR41 to preferentially transduce injured myocardium when compared to AAV9. Finally, the authors combined TREEs with AAV-IR41 to show improved luciferase expression compared to AAV9-TREE at 7, 14 and 21 days after injury.

      Overall, this manuscript provides insights into TREE expression dynamics when paired with various heart-targeting capsids, which can be useful for researchers studying ischemic injury of murine hearts. While the authors have shown the success of using AAV9-TREEs in porcine hearts, it is unknown whether the expression dynamics would be similar in pigs or humans, as mentioned in the limitations.

      Strengths:

      Important contribution to the AAV gene therapy literature.

      Comments on revised version:

      My concerns have been adequately addressed.

    1. Reviewer #3 (Public review):

      Summary:

      In this work, Yamada, Brandani and Takada have developed a mesoscopic model of the interacting proteins in the postsynaptic density. They have performed simulations, based on this model and using the software ReaDDy, to study the phase separation in this system in 2D (on the membrane) and 3D (in the bulk). They have carefully investigated the reasons behind different morphologies observed in each case, and have looked at differences in valency, specific/non-specific interactions and interfacial tension.

      Strengths:

      The simulation model is developed very carefully, with strong reliance on binding valency and geometry, experimentally measured affinities, and physical considerations like the hydrodynamic radii. The presented analyses are also thorough, and great effort has been put into investigating different scenarios that might explain the observed effects.

      Weaknesses:

      The biggest weakness of the study, in my opinion, has been a lack of more in-depth and quantitative physical insights about phase separation theories. In the revised version, the authors have added text to point the interested reader to the respective theories, and have included a qualitative assessment of their findings in the light of said theories. This better positions their discussion. I still believe the role of entropic effects need more attention, which can be the subject of future studies.

      The authors have revised their Introduction and added text to the Discussion, to enrich their view on the attractive and repulsive forces as well as mixing entropy. This version better covers the physics of phase separation.

      I appreciate the added discussion about the different diffusive behavior in the membrane in contrast to the bulk (i.e. the Saffman-Delbrück model). This paves the way for future studies, including realistic kinetics of the studied system.

    1. Reviewer #2 (Public review):

      Summary:

      In the study presented by Itani and colleagues it is shown that some strains of Aspergillus oryzae - especially those used industrially for the production of sake and soy sauce - develop hyphae with a significantly increased number of nuclei and cell volume over time. These thick hyphae are formed by branching from normal hyphae and grow faster and therefore dominate the colonies. The number of nuclei positively correlates with the thicker hyphae and also the amount of secreted enzymes. The addition of nutrients such as yeast extract or certain amino acids enhanced this effect. Genome and transcriptome analyses identified genes, including rseA, that are associated with the increased number of nuclei and enzyme production. The authors conclude from their data involvement of glycosyltransferases, calcium channels and the tor regulatory cascade in regulation of cell volume and number of nuclei. Thicker hyphae and an increased number of nuclei was also observed in high-production strains of other industrially used fungi such as Trichoderma reesei and Penicillium chrysogenum, leading to the hypothesis that the mentioned phenotypes are characteristic of production strains which is of significant interest for fungal biotechnology.

      Strengths:

      The study is very comprehensive and involves application of divers state-of-the-art cell biological, biochemical and genetical methods. Overall, the data are properly controlled and analyzed, figures and movies are of excellent quality.<br /> The results are particularly interesting with regard to the elucidation of molecular mechanisms that regulate the size of fungal hyphae and their number of nuclei. For this, the authors have discovered a very good model: (regular) strains with a low number of nuclei and strains with high number of nuclei. Also, the results can be expected to be of interest for the further optimization of industrially relevant filamentous fungi.

      In the revision the authors addressed all my comments and as a result produced an even stronger study.

    1. Reviewer #2 (Public review):

      Summary:

      The authors investigate the behavior of oncogenic cells in mammary and bronchial epithelia. They observe that individual oncogenic cells are preferentially excluded from the mammary epithelium, but they remain integrated in the bronchial epithelium. They also observe that clusters of oncogenic cells form a compact cluster in the mammary epithelium, but they disperse in the bronchial epithelium. The authors demonstrate experimentally and in the vertex model simulations that the difference in observed behavior is due to the differential tension between the mutant and wild-type cells due to a differential expression of actin and myosin.

      Strengths:

      (1) Very detailed analysis of experiments to systematically characterize and quantify differences between mammary and bronchial epithelia.

      (2) Detailed comparison between the experiments and vertex model simulations to identify the differential cell line tension between the oncogenic and wild-type cells as one of the key parameters that are responsible for the different behavior of oncogenic cells in mammary and bronchial epithelia

      Weaknesses:

      (1) It is unclear what the mechanistic origin of the shape-tension coupling is, which is used in the vertex model, and how important that coupling is for the presented results. The authors claim that the shape-tension coupling is due to the anisotropic distribution of stress fibers when cells are under external stress. It is unclear why the stress fibers should affect an effective line tension on the cell boundaries and why the stress fibers should be sensitive to the magnitude of the internal isotropic cell pressure. In experiments, it makes sense that stress fibers form when cells are stretched. Similar stress fibers form when the cytoskeleton or polymer networks are stretched. It is unclear why the stress fibers should be sensitive to the magnitude of internal isotropic cell pressure. If all the surrounding cells have the same internal pressure, then the cell would not be significantly deformed due to that pressure, and stress fibers would not form. The authors should better justify the use of the shape-tension coupling in the model and also present simulation results without that coupling. I expect that most of the observed behavior is already captured by the differential tension, even if there is no shape-tension coupling.

      (2) The observed difference of shape indices between the interfacial and bulk cells in simulations in the absence of differential line tension is concerning. This suggests that either there are not enough statistics from the simulations or that something is wrong with the simulations. For all presented simulation results, the authors should repeat multiple simulations and then present both averages and standard deviations. This way, it would be easier to determine whether the observed differences in simulations are statistically significant.

      (3) The authors should also analyze the cell line tension data in simulations and make a comparison with experiments.

    1. Reviewer #2 (Public review):

      Summary:

      The authors propose a mechanism to provide flexibility to learn new information while preserving stability in neural networks by combining structural plasticity and synaptic plasticity.

      Strengths:

      An intriguing idea, well embedded in experimental data.

      Authors have done a great job addressing reviewers' concerns

      Weaknesses:

      None

    1. Reviewer #2 (Public review):

      In this study, Fontana et al. develop a paradigm for associative conditioning by pairing exposure to an alarm substance with a novel tank. Exposure to conspecific alarm substance (CAS) in the novel tank triggers freezing and what they characterize as evasive swimming behaviour, which is subsequently seen in a re-exposure to the novel tank without the CAS present. Importantly, these states are identified via automated processes, including postural tracking and a random forest classification process, which could be very useful tools for subsequent studies.

      In their experiments, they focus on the differences in behaviour among strains of zebrafish (both males and females), and among individual zebrafish. For males and females of different strains, they find some differences, though the clearest message seems to be that the most robust measure of the behaviour in response to both the CAS and in the memory trials is the freezing behaviour, while evasive behaviour is more variable. and not always seen. This may relate to their observation of significant "evasiveness" in vehicle control experiments (discussed further below).

      Moving on to individual variation from within this multi-strain male/female dataset, they first examine transition matrices between states and find tthat his is not dramatically altered by stimulus exposure. They then use clustering to identify 4 different "classes" of zebrafish that differ in their expression (or not) of two types of behaviour: freezing and/or evasive behaviour. They show that over the three exposure epochs of the experiment, this classification is somewhat stable in an individual fish, though many fish change their behaviour - e.g., evading + freezing -> only freezing.

      In the final set of experiments, the authors move beyond behavioural analyses and perform whole-brain cFos mapping of these individual zebrafish. They perform analyses aimed at identifying correlations between individual behavioural expression and the number of cFos-positive cells in different brain regions. Using partial least squares analysis, they find areas associated with two types of behavioural contrasts, which differ in their weighting of different behavioural expression during the Memory trials. Covariation and network structure analysis within different classes of larvae also find some differences in covariation among brain areas, providing hypotheses as to underlying network effects that may govern the expression of freezing and/or evasive behavior in the memory trial phases.

      Overall, I find this to be an interesting study that employs state of the are methods of behavioural analyses and whole-brain cFos analyses, but I am left a little bit confused as to what the take home message is and what can be concluded from this complex study that mixes in analyses of strain, sex, and individuality within a quite complex assay with multiple behavioural parameters.

      My suggestions are as follows:

      (1) My first concern relates to the claim in the abstract that "We found that fear memory behavior fell into four distinct groups: non-reactive, evaders, evading freezers, and freezers".

      In my opinion, the "freezing" aspect is well supported as being both triggered by the CAS and for memory effect upon re-exposure to the tank, but I am less convinced about the "evasive" behaviour. In Figure 2, it appears that "evasiveness" is generally not increased in both the Exposure or Memory phases for many groups, and in Figure 5, it appears that "evasiveness" is expressed by nearly 50% of the fish in the pre-exposure condition before CAS addition and in all phases in the vehicle condition. Therefore, it appears that most of the expression of this behaviour is independent of any memory-based effect.

      (2) My second concern relates to the claim in the abstract that "background strain and sex influenced how fish respond to CAS, with males more likely to increase evasive behaviors than females and the TU strain more likely to be non-reactive."

      My understanding, based on the introduction and on the methods, is that it is likely important that the CAS be prepared from conspecifics of the same strain and sex, and for this reason, they prepared different CAS specific for each strain and each sex. Therefore, the "CAS" that is applied is necessarily different for each condition, and I am concerned about if the differences observed could relate more to variation in the quality, purity, concentration, etc. of the specific CAS samples for different groups, rather than their reactivity to the substance or their ability to form memories based on such experiences.

      (3) My third concern relates to the interpretation of the cFos data.

      As I mentioned above, I feel as though the behavioural analysis is perhaps more complex than is warranted via the inclusion of evasiveness, and I wonder if the conclusions from the experiments would be simpler if analyzed only from the perspective of freezing.

      But considering the presented analyses: while I dont think there is anything wrong with the partial least squares approach and the network analyses, I am concerned that the simple messaging in the text does not reflect the complexity of this analysis combining different weightings of different behavioural characteristics in a behavioural contrast, or covariations among many regions and what such analyses mean at the level of brain function. For these reasons, I feel like statements along the lines of "Behavioral variation is driven by differences in the activity of brain regions outside the telencephalon, such as the cerebellum, preglomerular nuclei, preoptic area and hypothalamus" are not well supported.

    1. Reviewer #2 (Public review):

      Summary:

      Overall, the work is exceptionally well done and controlled and the results properly and appropriately interpreted. While several of the approaches, while powerful, are somewhat indirect (i.e., following gene expression via ribosomal profiling) additional experiments utilizing traditional gene expression assays added in revision combine to ultimately provide a compelling answer to the main questions being asked.

      The key finding from this work is the discovery that Apj1 regulates Hsf1 attenuation in a manner that includes Hsp70. That finding is strongly supported by the experimental data. While it would be ideal to also demonstrate Apj1-controlled differential binding of Ssa1/2 to Hsf1 at either the N- or C-terminal binding sites during attenuation, the Hsp70-Hsf1 interactions are difficult to reproducibly assess in cell extracts and are likely beyond the scope of this study. However, this work paves the way in the future for potential biochemical reconstitution assays that could elucidate both Hsp70-Hsf1 interactions as well as the distinct JDP-Hsf1 interactions reported here.

      This discovery raises additional new questions about JDP specificity in HSR regulation and the role of JDPs in navigating protein aggregation and sensing of proteostatic challenge in the nucleus, thus advancing the field and opening new, exciting avenues for exploration.

    1. Reviewer #2 (Public review):

      This manuscript describes experiments characterising how malaria parasites respond to physiologically relevant heat-shock conditions. The authors show, quite convincingly, that moderate heat-shock appears to increase cytoadherance, likely by increasing trafficking of surface proteins involved in this process.

      While generally of a high quality and including a lot of data, I have a few small questions and comments, mainly regarding data interpretation.

      (1) The authors use sorbitol lysis as a proxy for trafficking of PSAC components. This is a very roundabout way of doing things and does not, I think, really show what they claim. There could be a myriad of other reasons for this increased activity (indeed, the authors note potential PSAC activation under these conditions). One further reason could be a difference in the membrane stability following heat shock, which may affect sorbitol uptake, or the fragility of the erythrocytes to hypotonic shock. I really suggest that the authors stick to what they show (increased PSAC) without trying to use this as evidence for increased trafficking of a number of non-specified proteins that they cannot follow directly.

      (2) Supplementary Figure 6C/D: The KAHRP signal does not look like it should. In fact, it doesn't look like anything specific. The HSP70-X signal is also blurry and overexposed. These pictures cannot be used to justify the authors' statements about a lack of colocalisation in any way.

      (3) Figure 6: This experiment confuses me. The authors purport to fractionate proteins using differential lysis, but the proteins they detect are supposed to be transmembrane proteins and thus should always be found associated with the pellet, whether lysis is done using equinatoxin or saponin. Have they discovered a currently unknown trafficking pathway to tell us about? Whilst there is a lot of discussion about the trafficking pathways for TM proteins through the host cell, a number of studies have shown that these proteins are generally found in a membrane-bound state. The authors should elaborate, or choose an experiment that is capable of showing compartment-specific localisation of membrane-bound proteins (protease protection, for example).

      (4) The red blood cell contains, in addition to HSP70-X, a number of human HSPs (HSP70 and HSP90 are significant in this current case). As the name suggests, these proteins non-specifically shield exposed hydrophobic domains revealed upon partial protein unfolding following thermal insult. I would thus have expected to find significantly more enrichment following heat shock, but this is not the case. Is it possible that the physiological heat shock conditions used in this current study are not high enough to cause a real heat shock?

  2. Aug 2025
    1. Reviewer #2 (Public review):

      Summary:

      The C-terminal region of EB1 is responsible for protein-protein interactions, thereby recruiting the binding partners of EB1 to microtubules; the coiled-coil region (EBH) and the acidic tail are critical for their binding partners. The authors demonstrated by using NMR that the binding mode of EBH with the SxIP motif, which is a two-step process termed "dock-and-lock". The ITC analysis supports the results obtained from NMR. The initial version of the manuscript contained ambiguities on the ITC data; however, the results of the revised manuscript are convincing and support the two-step binding model.

      Strength:

      The authors propose a novel model of "dock-and-lock" by using multiple methods of NMR, ITC and cell biology.

    1. Reviewer #2 (Public review):

      Summary:

      This paper formulates an individual-based model to understand the evolution of division of labor in vertebrates. The model considers a population subdivided in groups, each group has a single asexually-reproducing breeder, other group members (subordinates) can perform two types of tasks called "work" or "defense", individuals have different ages, individuals can disperse between groups, each individual has a dominance rank that increases with age, and upon death of the breeder a new breeder is chosen among group members depending on their dominance. "Workers" pay a reproduction cost by having their dominance decreased, and "defenders" pay a survival cost. Every group member receives a survival benefit with increasing group size. There are 6 genetic traits, each controlled by a single locus, that control propensities to help and disperse, and how task choice and dispersal relate to dominance. To study the effect of group augmentation without kin selection, the authors cross-foster individuals to eliminate relatedness. The paper allows for the evolution of the 6 genetic traits under some different parameter values to study the conditions under which division of labour evolves, defined as the occurrence of different subordinates performing "work" and "defense" tasks. The authors envision the model as one of vertebrate division of labor.

      The main conclusion of the paper is that group augmentation is the primary factor causing the evolution of vertebrate division of labor, rather than kin selection. This conclusion is drawn because, for the parameter values considered, when the benefit of group augmentation is set to zero, no division of labor evolves and all subordinates perform "work" tasks but no "defense" tasks.

      Strengths:

      The model incorporates various biologically realistic details, including the possibility to evolve age polytheism where individuals switch from "work" to "defence" tasks as they age or vice versa, as well as the possibility of comparing the action of group augmentation alone with that of kin selection alone.

      Weaknesses:

      The model and its analysis is limited, which makes the results insufficient to reach the main conclusion that group augmentation and not kin selection is the primary cause of the evolution of vertebrate division of labor. There are several reasons.

      First, the model strongly restricts the possibility that kin selection is relevant. The two tasks considered essentially differ only by whether they are costly for reproduction or survival. "Work" tasks are those costly for reproduction and "defense" tasks are those costly for survival. The two tasks provide the same benefits for reproduction (eqs. 4, 5) and survival (through group augmentation, eq. 3.1). So, whether one, the other, or both tasks evolve presumably only depends on which task is less costly, not really on which benefits it provides. As the two tasks give the same benefits, there is no possibility that the two tasks act synergistically, where performing one task increases a benefit (e.g., increasing someone's survival) that is going to be compounded by someone else performing the other task (e.g., increasing that someone's reproduction). So, there is very little scope for kin selection to cause the evolution of labour in this model. Note synergy between tasks is not something unusual in division of labour models, but is in fact a basic element in them, so excluding it from the start in the model and then making general claims about division of labour is unwarranted. I made this same point in my first review, although phrased differently, but it was left unaddressed.

      Second, the parameter space is very little explored. This is generally an issue when trying to make general claims from an individual-based model where only a very narrow parameter region has been explored of a necessarily particular model. However, in this paper, the issue is more evident. As in this model the two tasks ultimately only differ by their costs, the parameter values specifying their costs should be varied to determine their effects. Instead, the model sets a very low survival cost for work (yh=0.1) and a very high survival cost for defense (xh=3), the latter of which can be compensated by the benefit of group augmentation (xn=3). Some very limited variation of xh and xn is explored, always for very high values, effectively making defense unevolvable except if there is group augmentation. Hence, as I stated in my previous review, a more extensive parameter exploration addressing this should be included, but this has not been done. Consequently, the main conclusion that "division of labor" needs group augmentation is essentially enforced by the limited parameter exploration, in addition to the first reason above.

      Third, what is called "division of labor" here is an overinterpretation. When the two tasks evolve, what exists in the model is some individuals that do reproduction-costly tasks (so-called "work") and survival-costly tasks (so-called "defense"). However, there are really no two tasks that are being completed, in the sense that completing both tasks (e.g., work and defense) is not necessary to achieve a goal (e.g., reproduction). In this model there is only one task (reproduction, equation 4,5) to which both "tasks" contribute equally and so one task doesn't need to be completed if the other task compensates for it. So, this model does not actually consider division of labor.

    1. Reviewer #3 (Public review):

      Summary:

      The authors developed a new phenological lag metric and applied this analytical framework to a global dataset to synthesize shifts in spring phenology and assess how abiotic constraints influence spring phenology.

      Strengths:

      The dataset developed in this study is extensive, and the phenological lag metric is valuable.

      Weaknesses:

      The stability of the method used in this study needs improvement, particularly in the calculation of forcing requirements. In addition, the visualization of the results (such as Table 1) should be enhanced.

    1. Reviewer #2 (Public review):

      Summary:

      Whole-brain network modeling is a common type of dynamical systems-based method to create individualized models of brain activity incorporating subject-specific structural connectome inferred from diffusion imaging data. This type of model has often been used to infer biophysical parameters of the individual brain that cannot be directly measured using neuroimaging but may be relevant to specific cognitive functions or diseases. Here, Ziaeemehr et al introduce a new toolkit, named "Virtual Brain Inference" (VBI), offering a new computational approach for estimating these parameters using Bayesian inference powered by artificial neural networks. The basic idea is to use simulated data, given known parameters, to train artificial neural networks to solve the inverse problem, namely, to infer the posterior distribution over the parameter space given data-derived features. The authors have demonstrated the utility of the toolkit using simulated data from several commonly used whole-brain network models in case studies.

      Strength:

      - Model inversion is an important problem in whole-brain network modeling. The toolkit presents a significant methodological step up from common practices, with the potential to broadly impact how the community infers model parameters.<br /> - Notably, the method allows the estimation of the posterior distribution of parameters instead of a point estimation, which provides information about the uncertainty of the estimation, which is generally lacking in existing methods.<br /> - The case studies were able to demonstrate the detection of degeneracy in the parameters, which is important. Degeneracy is quite common in this type of models. If not handled mindfully, they may lead to spurious or stable parameter estimation. Thus, the toolkit can potentially be used to improve feature selection or to simply indicate the uncertainty.<br /> - In principle, the posterior distribution can be directly computed given new data without doing any additional simulation, which could improve the efficiency of parameter inference on the artificial neural network is well-trained.

      Weaknesses:

      - The z-scores used to measure prediction error are generally between 1-3, which seems quite large to me. It would give readers a better sense of the utility of the method if comparisons to simpler methods, such as k-nearest neighbor methods, are provided in terms of accuracy.<br /> - A lot of simulations are required to train the posterior estimator, which is computationally more expensive than existing approaches. Inferring from Figure S1, at the required order of magnitudes of the number of simulations, the simulation time could range from days to years, depending on the hardware. The payoff is that once the estimator is well-trained, the parameter inversion will be very fast given new data. However, it is not clear to me how often such use cases would be encountered. It would be very helpful if the authors could provide a few more concrete examples of using trained models for hypothesis testing, e.g., in various disease conditions.

    1. Reviewer #2 (Public review):

      Summary:

      The authors' initial goal was to demonstrate loss of PG during the slow sporulation process of Myxococcus xanthus, with examination of the PG degradation products in order to implicate possible enzymes involved. Upon finding a predominance of LGT products, they examined sporulation in strains lacking each of the 14 candidate LGTs encoded in the genome, leading to the identification of two sporulation-linked LGTs. An extensive characterization of the roles played by these LGTs. One LGT is responsible for the slow sporulation PG degradation, while another is required for the rapid sporulation process. Interestingly, the "slow" LGT seems to provide an important regulatory brake on the rapid enzyme. Single-molecule fluorescent tracking of these enzymes was used to develop a model for their interaction with PG that mimics their observed activity. The rate of PG synthesis activity was also shown to impact the rate of PG degradation, suggesting potential interplay between the synthetic and degradative enzymes.

      Strengths:

      The genetic analysis to identify sporulation-linked LGTs and their effects on growth, sporulation, and spore properties was well done and productive. The fluorescence microscopy to track LGT mobility, presumably tied to activity, produced a convincing argument about the mechanism of regulation of one LGT by another.

      Weaknesses:

      While the impact of LGTs on sporulation was clearly demonstrated, the PG analysis that resulted from the study of LGTs raised some important unanswered questions. The analyses suggest that the PG is degraded to quite small fragments, which would normally be lost during the purification of PG. How these small fragments were thus detected is unclear, and this suggests a more complex story concerning PG metabolism during sporulation. An anti-PG antibody is used to quantify PG in the spores, but it is not made clear what the specificity of this antibody is, and thus whether it would recognize the LGT-altered PG of the spore. The authors suggest a "new mechanism of sporulation" when they have actually simply identified an important factor (PG degradation by LGTs) within a complex "process of sporulation".

    1. Reviewer #2 (Public review):

      The authors of this paper have done much pioneering work to decipher and understand LRRK2 structure and function and uncover the mechanism by which LRRK2 binds to microtubules and to study the roles that this may play in biology. Their previous data demonstrated that LRRK2 in the active conformation (pathogenic mutation or Type I inhibitor complex) bound to microtubule filaments in an ordered helical arrangement. This they showed induced a "roadblock" in the microtubule impacting vesicular trafficking. The authors have postulated that this is a potentially serious flaw with Type 1 inhibitors and that companies should consider generating Type 2 inhibitors in which the LRRK2 is trapped in the inactive conformation. Indeed the authors have published much data that LRRK2 complexed to Type 2 inhibitors does not seem to associate with microtubules and cause roadblocks in parallel experiments to those undertaken with type 1 inhibitors published above.

      In the current study the authors have undertaken an in vitro reconstitution of microtubule bound filaments of LRRK2 in the inactive conformation, which surprisingly revealed that inactive LRRK2 can also interact with microtubules in its auto-inhibited state. The authors' data shows that while the same interphases are seen with both the active LRRK2 and inactive microtubule bound forms of LRRK2, they identified a new interphase that involves the WD40-ARM-ANK- domains that reportedly contributes to the ability of the inactive form of LRRK2 to bind to microtubule filaments. The structures of the inactive LRRK2 complexed to microtubules are of medium resolution and do not allow visualisation of side chains.

      This study is extremely well written and the figures incredibly clear and well presented. The finding that LRRK2 in the inactive autoinhibited form can associate with microtubules is an important observation that merits further investigation. This new observation makes an important contribution to the literature and builds upon the pioneering research that this team of researchers has contributed to the LRRK2 fields.

      Comments on revised version:

      The authors have adequately addressed my questions and those of the other Reviewers in my opinion.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Meijer and colleagues investigated the effects of inactivation (conditional silencing) of cortical layer 6b neurons on sleep-wake states and EEG spectral power under the following three conditions: during natural sleep-wake states, after sleep deprivation, or after intracerebroventricular administration of orexin A and B. The authors report that silencing of L6b neurons did not have a significant effect on the total time spent in sleep-wake states, duration, or number of state epochs, or the response to sleep deprivation. However, silencing of L6b neurons did slow down theta-frequency (6-9 Hz) during wake and REM sleep, and reduced the total EEG power during NREM sleep. Infusion of orexin A in the mice in which cortical layer 6b neurons were inactivated produced an increase in wakefulness. A similar effect was observed after infusion of orexin A in the mice in which these neurons were not silenced, but the effect (i.e., increase in wakefulness) was of a smaller magnitude. Silencing of cortical layer 6b neurons attenuated the effect of orexin B in increasing theta activity, as was observed in the control mice. The authors conclude that the cortical neurons in layer 6b play an essential role in state-dependent dynamics of brain activity, vigilance state control, and sleep regulation.

      Strengths:

      (1) A focus on cortical layer 6b neurons, which are an understudied neuronal population, especially in the context of brain and behavioral state transitions.

      (2) The authors used a well-established mouse model to study the effect of inactivation of cortical layer 6b neurons.

      Weaknesses:

      (1) Although the authors used a highly selective approach to silence layer 6b neurons, the observed changes in EEG oscillations cannot be solely attributed to layer 6b neurons because of the ICV route for orexin administration.

      (2) The rationale for using only male rats is not provided.

    1. Reviewer #2 (Public review):

      Summary:

      This study uses single-cell RNA sequencing to explore how electroacupuncture (EA) stimulation alters the brain's cellular and molecular landscape after blood-brain barrier (BBB) opening. The authors aim to identify changes in gene expression and signaling pathways across brain cell types in response to EA stimulation using single-cell RNA sequencing. This direction holds promise for understanding the consequences of noninvasive methods of BBB opening for therapeutic drug delivery across the BBB.

      Strengths:

      (1) The study addresses an emerging and potentially important application of noninvasive stimulation methods to manipulate BBB permeability.

      (2) The dataset provides broad transcriptional profiling across multiple brain cell types using single-cell resolution, which could serve as a valuable community resource.

      (3) Analyses of receptor-ligand signaling and cell-cell communication are included and have the potential to offer mechanistic insight into BBB regulation.

      Weaknesses:

      (1) The work falls short in its current form. The experimental design lacks a clear justification, and readers are not provided with sufficient background information on the extent, timing, or regional specificity of BBB opening in this EA model. These details, established in prior work, are critical to understanding the rationale behind the current transcriptomic analyses.

      (2) Further, the results are often presented with minimal context or interpretation. There is no model of intercellular or molecular coordination to explain the BBB-opening process, despite the stated goal of identifying such mechanisms. The statement that EA induces a "unique frontal cortex-specific transcriptome signature" is not supported, as no data from other brain regions are presented. Biological interpretation is at times unclear or inaccurate - for instance, attributing astrocyte migration effects to endothelial cell clusters or suggesting microglial tight junction changes without connecting them meaningfully to endothelial function.

      (3) The study does include analyses of receptor-ligand signaling and cell-cell communication, which could be among its most biologically rich outputs. However, these are relegated to supplementary material and not shown in the leading figures. This choice limits the utility of the manuscript as a hypothesis-generating resource.

      (4) Overall, while the dataset may be of interest to BBB researchers and those developing technologies for drug delivery across the BBB, the manuscript in its current form does not yet fulfill its interpretive goals. A more integrated and biologically grounded analysis would be beneficial.

    1. Reviewer #2 (Public review):

      Summary:

      Chang et al. develop an RNN model of a BCI sequential learning task to examine the emergence of motor memory in the network. They use this system to quantify signatures of memory in continual learning, comparing their model with experimental observations from monkeys in prior publications. They show that the RNN model has signatures of shifts associated with sequential learning without any non-standard learning rules. This convincing study contributes to the knowledge of how motor memories are formed and shaped so that they are flexible in acquiring multiple behaviors.

      Strengths:

      This paper describes a well-designed numerical experiment that comes to a clear interpretation of a set of neural BCI experiments. The learning signatures the authors describe are interesting and well laid out, and the paper is well written. I find it insightful that the neural signature of motor learning emerges in a trained network without special learning rules.

      Weaknesses:

      The paper could be stronger if it made a stronger interpretation of how memory traces and uniform shifts are related. These two observations are taken from the BCI sequential learning literature and introduced by two different prior experimental papers on two different tasks, so it seems like there is an opportunity here to use the RNN model to unite these concepts, or define another metric for signatures of learning from a more normative approach.

    1. Reviewer #2 (Public review):

      Summary:

      This paper describes a new approach for analyzing genome sequences.

      Strengths:

      The work was performed with great rigor and provides much greater insights than earlier classification systems.

      Weaknesses:

      A minor weakness is that the clinical application of LIN coding could be articulated in a more in-depth way. The LIN coding system is very impressive and is certainly superior to other protocols. My recommendation, although not necessary for this paper, is that the authors expand their analysis to noncoding sequences, especially those upstream of open reading frames. In this respect, important cis-acting regulatory mutations that might help to further distinguish strains could be identified.

    1. Reviewer #2 (Public review):

      Summary:

      The authors investigated microtubule distribution and their possible post-translational modifications (PTM) in Plasmodium berghei during development of the liver stage, using either hepatocytes or HeLa cells as models. They used conventional immunofluorescence assays and expansion microscopy with various antibodies recognising tubulin and, in the second part of the work, its candidate PTMs, as well as markers of Plasmodium, in addition to live imaging with a fluorescent marker for tubulin. In the third part of the study, they generated 3 mutants deprived of either the last four residues or the last 11 residues, or where a candidate polyglutamylation site was substituted by an alanine residue.

      Strengths:

      In the first part, microtubules are monitored by a combination of two approaches (IFA and live), revealing nicely the evolution of the sporozoite subpellicular microtubules (SSPM, the sporozoite is the developmental stage present in salivary glands of the mosquitoes and that infects hepatocytes) into a different structure termed liver-stage parasite microtubule bundle (LSPMB). The LSPMB shrinks during the course of parasite development and finally disappears while hemi-spindles emerge over time. Contact points between these two structures are observed frequently in live cells and occasionally in fixed cells, suggesting the intriguing possibility that tubulin might be recycled from the LSPMB to contribute to hemi-spindle formation.

      In the second part, antibodies recognising (1) the final tyrosine found at the C-terminal tail and (2) a stretch of 3 glutamate residues in a side chain are used to monitor these candidate PTMs. Signals are positive at the SSPM, and while it remains positive for polyglutamylation, it becomes negative for the final tyrosine at the LSPM, while a positive signal emerges at hemi-spindles at later stages of development.

      In the last part, the three mutants are fed to mosquitoes, where they show reduced development, the one lacking the alpha-tubulin tail even failing to reach the salivary glands. However, the two other mutants infect HeLa cells normally, whereas sporozoites with the C-terminal tail deletion recovered from the haemolymph did not develop in these cells.

      The first part provides convincing evidence that microtubules are extensively remodelled during the infection of hepatocytes and HeLa cells, in agreement with the spectacular Plasmodium morphogenetic changes accompanying massive and rapid proliferation. The third part brings further confirmation that the C-terminal tail of alpha-tubulin is essential for multiple stages of parasite development, in agreement with previous work (50). Since it is the region where several post-translational modifications take place in other organisms (detyrosination, polyglutamylation, glycylation), it makes sense to propose that the essential function is related to these PTMs also in Plasmodium.

      Weaknesses:

      The significance of tubulin PTM relies on two antibodies whose reactivity to Plasmodium tubulins is unclear (see below). The interpretation of the literature on detyrosination and polyglutamylation is confusing in several places, meaning that the statements about the possible role of these PTMs need to be carefully revisited.

      The authors use the term "tyrosination" but the alpha1-tubulin studied here possesses the final tyrosine when it is synthesised, so it is "tyrosinated" by default. It could potentially be removed by a tyrosine carboxypeptidase of the vasoinhibin family (VASH) as reported in other species. After removal, this tyrosine can be added again by a tubulin-tyrosine ligase (TTL) enzyme. It is therefore more appropriate to talk about detyrosination-retyrosination rather than tyrosination (this confusion is unfortunately common in the literature, see Janke & Magiera, 2020).

      The difficulty here is that there is so far no evidence that detyrosination takes place in Plasmodium. Neither VASH nor TTL could be identified in the Plasmodium genome (ref 31, something we can confirm with our unsuccessful BLAST analyses), and mass spectrometry studies of purified tubulin, albeit from blood stages, did not find evidence for detyrosination (reference 43). Western blots using an antibody against detyrosinated tubulin did not produce a positive signal, neither on purified tubulin, nor on whole parasites (43). Of course, the situation could be different in liver stages, but the question of the detyrosinating enzyme is still there. The existence of a unique Plasmodium system for detyrosination cannot be formally ruled out, but given the high degree of conservation of these PTMs and their associated enzymes, it sounds difficult to imagine.

      The fact that the anti-tyrosinated antibody still produced a signal in the cell line where the final tyrosine is deleted raises issues about its specificity. A cross-reactivity with beta-tubulin is proposed, but the Plasmodium beta-tubulin does not carry a final tyrosine, further raising concerns about antibody specificity.

      The interpretation of these results should therefore be considered carefully. There also seems to be some confusion in the function of detyrosination cited from the literature. It is said in line 229 that "tyrosination has been associated with stable microtubules" (33, 34, 50, 55). References 33 and 34 actually show that tyrosinated microtubules turn over faster in neurons or in epithelial cells, respectively, while references 50 and 55 do not study de/retyrosination. The general consensus is that tyrosinated microtubules are more dynamic (see reference 24).

      The situation is a bit different for polyglutamylation since several candidate poly- or mono-glutamylases have been identified in the Plasmodium genome, and at least mono-glutamylation of beta-tubulin has been formally proven, still in bloodstream stages (ref 43). The authors propose that the residue E445 is the polyglutamylation site. To our knowledge, this has not been demonstrated for Plasmodium. This residue is indeed the favourite one in several organisms such as humans and trypanosomes (Eddé et al., Science 1990; Schneider et al., JCS, 1997), and it is tempting to propose it would be the same here. However, TTLLs bind the tubulin tails from their C-terminal end like a glove on a finger (Garnham et al., Cell, 2015), and the presence of two extra residues in Plasmodium tubulins would mean that the reactive glutamate might be in position E447 rather than E445. This is worth discussing.<br /> On the positive side, it is encouraging to see that signals for both anti-tyrosinated tail and poly-glutamylated side chain are going down in the various mutants, but this would need validation with a comparison for alpha-tubulin signal.

      Line 316: polyglutamylation "is commonly associated with dynamic microtubule behavior (78-80)". Actually, references 78 and 79 show the impact of this PTM on interaction with spastin, and reference 80 discusses polyglutamylation as a marker of stable microtubules in the context of cilia and flagella. The consensus is that polyglutamylated microtubules tend to be more stable (ref24).

      Conclusion:

      The first and the third parts of this manuscript - evolution of microtubules and importance of the C-terminal tails for Plasmodium development - are convincing and well supported by data. However, the presence and role of tubulin PTM should be carefully reconsidered.

      Plasmodium tubulins are more closely related to plant tubulins and are sensitive to inhibitors that do not affect mammalian microtubules. They therefore represent promising drug targets as several well-characterised compounds used as herbicides are available. The work produced here further defines the evolution of the microtubule network in sporozoites and liver stages, which are the initial and essential first steps of the infection. Moreover, Plasmodium has multiple specificities that make it a fascinating organism to study both for cell biology and evolution. The data reported here are elegant and will attract the attention of the community working on parasites but also on the cytoskeleton at large. It will be interesting to have the feedback of other people working on tubulin PTMs to figure out the significance of this part of the work.

    1. Reviewer #2 (Public review):

      Summary:

      The authors sought to investigate the role of nociceptor neurons in the pathogenesis of pollution-mediated neutrophilic asthma. The authors overall achieved the aim of demonstrating that nociceptor neurons are important to the pathogenesis of pollution-exacerbated asthma. Their results support their conclusions overall, although there are ways the study findings can be strengthened. This work further evaluates how nociceptor neurons contribute to asthma pathogenesis important for consideration while proposing treatment strategies for under treated asthma endotypes.

      Strengths:

      The authors utilize TRPV1 ablated mice to confirm the effects of intranasally administered QX-314 utilized to block sodium currents.

      Use of intravital microscopy to track alveolar macrophage and neutrophil motility in their model

      The authors demonstrate that via artemin, which is upregulated in alveolar macrophages in response to pollution, sensitizes JNC neurons thereby increasing their responsiveness to pollution. Ablation or inactivity of nociceptor neurons prevented the pollution induced increase in inflammation.

      Weaknesses:

      While neutrophilic, unclear of the endotype of asthma represented by the model

      Comments on revisions:

      The authors have addressed or commented on all concerns.

    1. Reviewer #2 (Public review):

      This study focuses on the differential binding of the RNA-binding protein HuR to CCL2 transcript (genetic variants rs13900 T or C). The study explores how this interaction influences the stability and translation of CCL2 mRNA. Employing a combination of bioinformatics, reporter assays, binding assays, and modulation of HuR expression, the study proposes that the rs13900T allele confers increased binding to HuR, leading to greater mRNA stability and higher translational efficiency. These findings indicate that rs13900T allele might contribute to heightened disease susceptibility due to enhanced CCL2 expression mediated by HuR. The study is interesting and most results are convincing, however the interpretation relative to RNA transcription and/or stability must be modified, and some data need better presentation or interpretation.

      Major Points

      Figure 2C:<br /> The authors describe an experiment to assess mRNA stability by labeling nascent RNA with EU for 3 hours, followed by washout of EU, and then incubation with or without actinomycin D for an additional 4 hours before measuring the remaining EU-labeled RNA. While the approach to label nascent RNA with EU is appropriate for tracking RNA decay, I have concerns regarding the use and interpretation of actinomycin D in this context.<br /> After EU washout, the pool of EU-labeled RNA is fixed and no new EU incorporation can occur. Therefore, the addition of actinomycin D at this stage should not affect the decay rate of the already labeled RNA, as transcription of EU-labeled RNA has effectively ceased. In this design, measuring the decrease in EU-labeled RNA over time reflects mRNA stability (even in absence of actinomycin D) rather than transcriptional activity.<br /> Therefore, the authors' statement that the non-actinomycin D treatment group represents transcriptional changes is not accurate here. Since EU labeling was stopped prior to the 4-hour incubation, any changes in EU-labeled RNA levels during this period reflect RNA decay, not new transcription.

      In summary:<br /> To assess transcriptional changes, one would compare the amount of EU-labeled RNA synthesized during the initial labeling period (the first 3 hours), before washout.<br /> If the authors wish to use actinomycin D to block transcription, this should be done in a separate decay assay without EU labeling.<br /> In the current experimental setup, actinomycin D is unnecessary after EU washout and does not influence the decay of the labeled RNA.<br /> I recommend the authors reconsider the interpretation of their data accordingly. I recommend to remove the data points relative to the presence of actinomycin D, as the non-actinomycin D samples are already representative of post-transcriptional changes given that EU was washed out. If Authors want to assess transcriptional changes, they would have to assess the levels during the initial labeling period (before the washout). Transcriptional differences were not assessed, therefore I would modify the text accordingly.<br /> In this context, any changes observed in the actinomycin D-treated samples are likely attributable to general cellular stress induced by actinomycin D, which is known to be highly stressful for cells. This stress could indirectly influence the decay rates of already-labeled EU-RNA.

      Figure 4C and 4D:<br /> The Author provided an updated gel with relative quantification - which effectively show the enhanced binding of CCL2 mRNA carrying the T variant to HuR - but they only provided it as data for reviewers (Figure R1). I highly recommend to use these data in the final manuscript instead of the data currently presented in Figure 4C and 4D. This would be important in order not to not create confusion in the reader or concerns regarding probe degradation or saturation.

      Minor points<br /> For the IP, I recommend to explain in the final version why the input was not provided (lack of material) and to clarify that the specific binding of Actin was used as a loading control in absence of input. This would be highly beneficial for the readers.

    1. Reviewer #2 (Public review):

      Summary

      Calcium ions play a key role in synaptic transmission and plasticity. To improve calcium measurements at synaptic terminals, previous studies have targeted genetically encoded calcium indicators (GECIs) to pre- and postsynaptic locations. Here, Chen et al. improve these constructs by incorporating the latest GCaMP8 sensors and a stable red fluorescent protein to enable ratiometric measurements. In addition, they develop a new analysis platform, 'CaFire', to facilitate automated quantification. Using these tools, the authors demonstrate favorable properties of their sensors relative to earlier constructs. Impressively, by positioning postsynaptic GCaMP8m near glutamate receptors, they show that their sensors can report miniature synaptic events with speed and sensitivity approaching that of intracellular electrophysiological recordings. These new sensors and the analysis platform provide a valuable tool for resolving synaptic events using all-optical methods.

      Strengths:

      The authors present a rigorous characterization of their sensors using well-established assays. They employ immunostaining and super-resolution STED microscopy to confirm correct subcellular targeting. Additionally, they quantify response amplitude, rise and decay kinetics, and provide side-by-side comparisons with earlier-generation GECIs. Importantly, they show that the new sensors can reproduce known differences in evoked Ca²⁺ responses between distinct nerve terminals. Finally, they present what appears to be the first simultaneous calcium imaging and intracellular mEPSP recording to directly assess the sensitivity of different sensors in detecting individual miniature synaptic events.

      Weaknesses:

      Major points:

      (1) While the authors rigorously compared the response amplitude, rise, and decay kinetics of several sensors, key parameters like brightness and photobleaching rates are not reported. I feel that including this information is important as synaptically tethered sensors, compared to freely diffusible cytosolic indicators, can be especially prone to photobleaching, particularly under the high-intensity illumination and high-magnification conditions required for synaptic imaging. Quantifying baseline brightness and photobleaching rates would add valuable information for researchers intending to adopt these tools, especially in the context of prolonged or high-speed imaging experiments.

      (2) In several places, the authors compare the performance of their sensors with synthetic calcium dyes, but these comparisons are based on literature values rather than on side-by-side measurements in the same preparation. Given differences in imaging conditions across studies (e.g., illumination, camera sensitivity, and noise), parameters like indicator brightness, SNR, and photobleaching are difficult to compare meaningfully. Additionally, the limited frame rate used in the present study may preclude accurate assessment of rise times relative to fast chemical dyes. These issues weaken the claim made in the abstract that "...a ratiometric presynaptic GCaMP8m sensor accurately captures .. Ca²⁺ changes with superior sensitivity and similar kinetics compared to chemical dyes." The authors should clearly acknowledge these limitations and soften their conclusions. A direct comparison in the same system, if feasible, would greatly strengthen the manuscript.

      (3) The authors state that their indicators can now achieve measurements previously attainable with chemical dyes and electrophysiology. I encourage the authors to also consider how their tools might enable new measurements beyond what these traditional techniques allow. For example, while electrophysiology can detect summed mEPSPs across synapses, imaging could go a step further by spatially resolving the synaptic origin of individual mEPSP events. One could, for instance, image MN-Ib and MN-Is simultaneously without silencing either input, and detect mEPSP events specific to each synapse. This would enable synapse-specific mapping of quantal events - something electrophysiology alone cannot provide. Demonstrating even a proof-of-principle along these lines could highlight the unique advantages of the new tools by showing that they not only match previous methods but also enable new types of measurements.

      (4) For ratiometric measurements, it is important to estimate and subtract background signals in each channel. Without this correction, the computed ratio may be skewed, as background adds an offset to both channels and can distort the ratio. However, it is not clear from the Methods section whether, or how, background fluorescence was measured and subtracted.

      (5) At line 212, the authors claim "... GCaMP8m showing 345.7% higher SNR over GCaMP6s....(Fig. 3D and E) ", yet the cited figure panels do not present any SNR quantification. Figures 3D and E only show response amplitudes and kinetics, which are distinct from SNR. The methods section also does not describe details for how SNR was defined or computed.

      (6) Lines 285-287 "As expected, summed ΔF values scaled strongly and positively with AZ size (Fig. 5F), reflecting a greater number of Cav2 channels at larger AZs". I am not sure about this conclusion. A positive correlation between summed ΔF values and AZ size could simply reflect more GCaMP molecules in larger AZs, which would give rise to larger total fluorescence change even at a given level of calcium increase.

      (7) Lines 313-314: "SynapGCaMP quantal signals appeared to qualitatively reflect the same events measured with electrophysiological recordings (Fig. 6D)." This statement is quite confusing. In Figure 6D, the corresponding calcium and ephys traces look completely different and appear to reflect distinct sets of events. It was only after reading Figure 7 that I realized the traces shown in Figure 6D might not have been recorded simultaneously. The authors should clarify this point.

      (8) Lines 310-313: "SynapGCaMP8m .... striking an optimal balance between speed and sensitivity", and Lines 314-316: "We conclude that SynapGCaMP8m is an optimal indicator to measure quantal transmission events at the synapse." Statements like these are subjective. In the authors' own comparison, GCaMP8m is significantly slower than GCaMP8f (at least in terms of decay time), despite having a moderately higher response amplitude. It is therefore unclear why GCaMP8m is considered 'optimal'. The authors should clarify this point or explain their rationale for prioritizing response amplitude over speed in the context of their application.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript investigates the role of IκBα in regulating mouse embryonic stem cell (ESC) pluripotency and differentiation. The authors demonstrate that IκBα knockout impairs the exit from the naïve pluripotent state during embryoid body differentiation. Through mechanistic studies using various mutants, they show that IκBα regulates ESC differentiation through chromatin-related functions, independent of the canonical NF-κB pathway.

      Strengths:

      The authors nicely investigate the role of IκBα in pluripotency exit, using embryoid body formation and complementing the phenotypic analysis with a number of genome-wide approaches, including transcriptomic, histone marks deposition, and DNA methylation analyses. Moreover, they generate a first-of-its-kind mutant set that allows them to uncouple IκBα's function in chromatin regulation versus its NF-κB-related functions. This work contributes to our understanding of cellular plasticity and development, potentially interesting a broad audience including developmental biologists, chromatin biology researchers, and cell signaling experts.

      Weaknesses:

      Future experiments will likely help establish a more direct mechanistic link between IκBα activity and the chromatin remodeling events observed in pluripotent cells.

    1. Reviewer #2 (Public review):

      Summary:

      This is an interesting theoretical exploration of how a flexible protein domain, which has multiple DNA-binding sites along it, affects the stability of the protein-DNA complex. It proposes a mechanism ("octopusing") for protein doing a random walk while bound to DNA which simultaneously enables exploration of the DNA strand and stability of the bound state.

      Strengths:

      Stability of the protein-DNA bound state and the ability of the protein to perform 1d diffusion along the DNA are two properties of a transcription factor that are usually seen as being in opposition of each other. The octopusing mechanism is an elegant resolution of the puzzle of how both could be accommodated. This mechanism has interesting biological implications for the functional role of intrinsically disordered domains in transcription factor (TF) proteins. They show theoretically how these domains, if flexible and able to make multiple weak contacts with the DNA, can enhance the ability of the TF to efficiently find their binding site on the DNA from which they exert control over the transcription of their target gene. The paper concludes with a comparison of model predictions with experimental data which gives further support to the proposed mechanism. Overall, this is an interesting and well-executed theoretical paper that proposes an interesting idea about the functional role for IDR domains in TFs.

      Weaknesses:

      It is not clear how ubiquitous among eukaryotic transcription factors are the DNA binding sites for multiple subdomains along the IDR, which are assumed by the model. These assumptions though, provide interesting points of departure for further experiments.

    1. Reviewer #2 (Public review):

      Summary:

      This study establishes a platform for studying mosquito flight activity over the course of several weeks and demonstrates key applications of such a paradigm: the comparison of daily activity profiles across different Aedes aegypti populations and the quantification of responses to physiological and environmental perturbations.

      Strengths:

      (1) Overall, the authors succeed in setting up a low-cost, scalable tracking system that stably records mosquito flight activity for several weeks and uses it to demonstrate compelling use cases.

      (2) The text is organized well, is easy to read, and is understandable for a broad audience.

      (3) Instructions for constructing housing and for performing tracking with a dedicated GUI are available on an accompanying website, with open-source (and well-organized) code.

      (4) A complementary pair of methods (one testing for activity signals at specific times of the day, and the other capturing broader daily patterns) is used effectively.

      Weaknesses:

      (1) In the interval-based GLMM results, since each time interval is tested independently, p-values should be corrected for multiple hypotheses (for instance, through controlling the false discovery rate).

      (2) The accompanying GUI application needs some modifications to fully work out of the box on a sample video.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Michelson, Gupta, and Murphy use calcium imaging to map the distribution of neural activity across the cerebral cortex of grooming, head-restrained mice. Animals groomed spontaneously and in response to wetting of the face. Individual movement elements, such as bilateral strokes across the face, resembled those observed in freely-moving animals. Sequencing of movement elements was structured, but did not consist of full "syntactic grooming chains." Widefield imaging across the cortex revealed distinct patterns of activity for distinct movement elements. Individual neurons responded strongly during movement and had largely similar properties across cortical areas.

      Strengths:

      In my opinion, this is a solid paper that will be of interest to the mouse sensorimotor neuroscience community. The experiments are technically sound, the text is well-written, and the figures are clear. The activity maps are presented in standardized Allen Atlas coordinates, and I expect they will be very useful for future studies of orofacial and limb movement.

      Weaknesses:

      While the manuscript provides a valuable description of cortical activity during head-restrained grooming, I think it could engage a bit more with contemporary theories and debates in cortical physiology and motor control. The Abstract nicely highlights an apparent paradox: the motor cortex sends strong projections to the spinal cord, and is strongly modulated during behaviors like grooming. Nevertheless, blocking corticospinal traffic by inactivating or lesioning the motor cortex leaves such behaviors intact. There are several potential resolutions to this paradox. First, cortical activity during grooming could be confined to an "output-null" subspace that is responsible for monitoring sensorimotor events and preparing voluntary movements, but does not drive muscle activity (c.f. work in the macaque: Kaufman et al., Nature Neuroscience 2014; Churchland & Shenoy, Nature Reviews Neuroscience 2024). Second, cortical activity during grooming could be transmitted to lower centers, but gated out through inhibition. Third, it is possible that cortical activity in intact animals does contribute to muscle activation during grooming, but following a lesion or inactivation, other descending pathways compensate for the cortical deficit. The authors might wish to discuss their findings in light of these considerations.

      In the first paragraph of the Introduction, it could be made clearer which results are specific to mice. The Niell & Stryker finding, for example, holds in mice, but not marmosets (Liska et al., eLife 2024).

      The "hotspots" in Figure 3G appear to be more anterior during bilateral elliptical than unilateral elliptical movements. How do the authors interpret this finding?

      The distribution of single-neuron responses looks relatively similar across cortical areas, including forelimb, hindlimb, and trunk somatosensory cortex, and primary and secondary forelimb motor cortex. What do the authors make of this?

    1. Reviewer #2 (Public review):

      Summary:

      This work uses genomic and biochemical approaches for HCMV infection in human fibroblasts and retinal epithelial cell lines, followed by comparisons and some validations using strategies such as immunoblots. Based on these analyses, they propose several mechanisms that could contribute to the HCMV-induced diseases, including closing of TEAD1-occupying domains and reduced TEAD1 transcript and protein levels, decreased YAP1 and phospho-YAP1 levels, and exclusion of TEAD1 exon 6. Some functional assays, using over-expression of TEAD1, are provided.

      Strengths:

      The genomics experiments were done in duplicates and data analyses show good technical reproducibility. Data analyses are performed to show changes at the transcript and chromatin level changes, followed by some Western blot validations.

      Weaknesses:

      For readers who are outside the field, some clarifications of the system and design would be helpful.

    1. Reviewer #2 (Public review):

      Summary

      This study provides new insights into organ morphogenesis using the Drosophila salivary gland (SG) as a model. The authors identify a requirement for sulfation in regulating lumen expansion, which correlates with several effects at the cellular level, including regulation of intracellular trafficking and the organization of Golgi, the aECM and the apical membrane. In addition, the authors show that the ZP proteins Dumpy (Dpy) and Pio form an aECM regulating lumen expansion. Previous reports already pointed to a role for Papss in sulfation in SG and the presence of Dpy and Pio in the SG. Now this work extends these previous analyses and provides more detailed descriptions that may be relevant to the fields of morphogenesis and cell biology (with particular focus on ECM research and tubulogenesis). This study nicely presents valuable information regarding the requirements of sulfation and the aECM in SG development.

      Strengths

      -The results supporting a role for sulfation in SG development are strong. In addition, the results supporting the involvement of Dpy and Pio in the aECM of the SG, their role in lumen expansion, and their interactions, are also strong.

      -The authors have made an excellent job in revising and clarifying the many different issues raised by the reviewers, particularly with the addition of new experiments and quantifications. I consider that the manuscript has improved considerably.

      -The authors generated a catalytically inactive Papss enzyme, which is not able to rescue the defects in Papss mutants, in contrast to wild type Papss. This result clearly indicates that the sulfation activity of Papss is required for SG development.

      Weaknesses

      -The main concern is the lack of clear connection between sulfation and the phenotypes observed at the cellular level, and, importantly, the lack of connection between sulfation and the Pio-Dpy matrix. Indeed, the mechanism/s by which sulfation affects lumen expansion are not elucidated and no targets of this modification are identified or investigated. A direct (or instructive) role for sulfation in aECM organization is not clearly supported by the results, and the connection between sulfation and Pio/Dpy roles seems correlative rather than causative. As it is presented, the mechanisms by which sulfation regulates SG lumen expansion remains elusive in this study.

      -In my opinion the authors overestimate their findings with several conclusions, as exemplified in the abstract:

      "In the absence of Papss, Pio is gradually lost in the aECM, while the Dpy-positive aECM structure is condensed and dissociates from the apical membrane, leading to a thin lumen. Mutations in dpy or pio, or in Notopleural, which encodes a matriptase that cleaves Pio to form the luminal Pio pool, result in a SG lumen with alternating bulges and constrictions, with the loss of pio leading to the loss of Dpy in the lumen. Our findings underscore the essential role of sulfation in organizing the aECM during tubular organ formation and highlight the mechanical support provided by ZP domain proteins in maintaining luminal diameter."

      The findings leading to conclude that sulfation organizes the aECM and that the absence of Papss leads to a thin lumen due to defects in Dpy/Pio are not strong. The authors certainly show that Papss is required for proper Pio and Dpy accumulation. They also show that Pio is required for Dpy accumulation, and that Pio and Dpy form an aECM required for lumen expansion. However, the absence of Pio and Dpy do not fully recapitulate Papss mutant defects (thin lumen). I wonder whether other hypothesis and models could account for the observed results. For instance, a role for Papss affecting secretion, in which case sulfation would have an indirect role in aECM organization. This study does not address the mechanical properties of Dpy in normal and mutant salivary glands.

      -Minor issues relate to the genotype/phenotype analysis. It is surprising that the authors detect only mild effects on sulfation in Papss mutants using an anti-sulfoTyr antibody, as Papss is the only Papss synthathase. Generating germ line clones (which is a feasible experiment) would have helped to prove that this minor effect is due to the contribution of maternal product. The loss of function allele used in this study seems problematic, as it produces effects in heterozygous conditions difficult to interpret. Cleaning the chromosome or using an alternative loss of function condition (another allele, RNAi, etc...) would have helped to present a more reliable explanation.

    1. Reviewer #2 (Public review):

      Richevaux et al investigate how anterior thalamic (AD) and retrosplenial (RSC) inputs are integrated by single presubicular (PrS) layer 3 neurons. They show that these two inputs converge onto single PrS layer 3 principal cells. By performing dual wavelength photostimulation of these two inputs in horizontal slices, the authors show that in most layer 3 cells, these inputs summate supra-linearly. They extend the experiments by focusing on putative layer 4 PrS neurons and show that they do not receive direct anterior thalamic nor retrosplenial inputs; rather, they are (indirectly) driven to burst firing in response to strong activation of the PrS network.

      This is a valuable study, which investigates an important question - how visual landmark information (possibly mediated by retrosplenial inputs) converges and integrates with HD information (conveyed by the AD nucleus of the thalamus) within PrS circuitry. The data indicate that near-coincident activation of retrosplenial and thalamic inputs leads to non-linear integration in target layer 3 neurons, thereby offering a potential biological basis for landmark + HD binding.

      Main limitations relate to the anatomical annotation of 'putative' PrS L4 neurons, and to the presentation of retrosplenial / thalamic input modularity. Specifically, more evidence should be provided to convincingly demonstrate that the 'putative L4 neurons' of the PrS are not distal subicular neurons (as the authors' anatomy and physiology experiments seem to indicate). The modularity of thalamic and retrosplenial inputs could be better clarified in relation to the known PrS modularity.

    1. Reviewer #2 (Public review):

      In this paper, Hamid et al present 40 genomes from the Faroe Islands. They use these data (a pilot study for an anticipated larger-scale sequencing effort) to discuss the population genetic diversity and history of the sample, and the Faroes population. I think this is an overall solid paper; it is overall well-polished and well-written. It is somewhat descriptive (as might be expected for an explorative pilot study), but does make good use of the data.

      The data processing and annotation follows a state-of-the-art protocol, and at least I could not find any evidence in the results that would pinpoint towards bioinformatic issues having substantially biased some of the results, and at least preliminary results lead to the identification of some candidate disease alleles, showing that small, isolated cohorts can be an efficient way to find populations with locally common, but globally rare disease alleles.

      I also enjoyed the population structure analysis in the context of ancient samples, which gives some context to the genetic ancestry of Faroese, although it would have been nice if that could have been quantified, and it is unfortunate that the sampling scheme effectively precludes within-Faroes analyses.

      I am unfortunately quite critical of the selection analysis, both on a statistical level and, more importantly, I do not believe it measures what the authors think it does.

      Major comments:

      (1) Admixture timing/genomic scaling/localization:<br /> As the authors lay out, the Faroes were likely colonized in the last 1,000-1,500 years, i.e., 40-60 generations ago. That means most genomic processes that have happened on the Faroese should have signatures that are on the order of ~1-2cM, whereas more local patterns likely indicate genetic history predating the colonization of the islands. Yet, the paper seems to be oblivious to this (to me) fascinating and somewhat unique premise. Maybe this thought is wrong, but I think the authors miss a chance here to explain why the reader should care beyond the fact that the small populations might have high-frequency risk alleles and the Faroes are intrinsically interesting, but more importantly, it also makes me think it leads to some misinterpretations in the selection analysis

      (2) ROH:<br /> Would the sampling scheme impact ROH? How would it deal with individuals with known parental coancestry? As an example of what I mean by my previous comment, 1MB is short enough in that I would expect most/many 1MB ROH-tracts to come from pedigree loops predating the colonization of the Faroes. (i.e, I am actually quite surprised that there isn't much more long ROH, which makes me wonder if that would be impacted by the sampling scheme).

      (3) Selection scan:

      We are talking about a bottlenecked population that is recently admixed (Faroese), compared to a population (GBR) putatively more closely related to one of its sources. My guess would be that selection in such a scenario would be possibly very hard to detect, and even then, selection signals might not differentiate selection in Faroese vs. GBR, but rather selection/allele frequency differences between different source populations. I think it would be good to spell out why XP-EHH/iHS measures selection at the correct time scale, and how/if these statistics are expected to behave differently in an admixed population.

      (4) Similarly, for the discussion of LCT, I am not convinced that the haplotypes depicted here are on the right scale to reflect processes happening on the Faroes. Given the admixture/population history, it at the very least should be discussed in the context of whether the 13910 allele frequency on the Faroes is at odds with what would be expected based on the admixture sources.

      (5) I am lacking information to evaluate the procedure for turning the outliers into p-values. Both iHS and XP-EHH are ratio statistics, meaning they might be heavy-tailed if one is not careful, and the central limit theorem may not apply. It would be much easier (and probably sufficient for the points being made here) to reframe this analysis in terms of empirical outliers.

      (6) Oldest individual predating gene flow: It seems impossible to make any statements based on a single individual. Why is it implausible that this person (or their parents), e.g., moved to the Faroes within their lifetime and died there?

    1. Reviewer #2 (Public review):

      This paper describes an analysis of a commercially available panel for a spatial transcriptomic approach and introduces a computational tool to predict potential off-target binding sites for the type of probe used in the aforementioned panel. The performance of the prediction tool was validated by examining a dataset that profiled the same cancer tissue with multiple modalities. Finally, a detailed analysis of the potential pitfalls in a published study communicated by the company that commercialized the spatial transcriptomic platform in question is provided, along with best practice guidelines for future studies to follow.

      Strengths:

      The manuscript is clearly written and easy to follow.

      The authors provide clean, organized, and well-documented code in the associated GitHub repository.

      Weaknesses:

      The manuscript section on the software tool feels underdeveloped.

    1. Reviewer #2 (Public review):

      Summary:

      The paper by Kim et al. investigates the potential of stimulating the dopaminergic A13 region to promote locomotor restoration in a Parkinson's mouse model. Using wild-type mice, 6-OHDA injection depletes dopaminergic neurons in the substantia nigra pars compacta, without impairing those of the A13 region and the ventral tegmentum area, as previously reported in humans. Moreover, photostimulation of presumably excitatory (CAMKIIa) neurons in the vicinity of the A13 region improves bradykinesia and akinetic symptoms after 6-OHDA injection. Whole-brain imaging with retrograde and anterograde tracers reveals that the A13 region undergoes substantial changes in the distribution of its afferents and projections after 6-OHDA injection, thus suggesting a remodeling of the A13 connectome. Whether this remodelling contributes to pro-locomotor effects of the photostimulation of the A13 region remains unknown as causality was not addressed.

      Strengths:

      Photostimulation of presumably excitatory (CAMKIIa) neurons in the vicinity of the A13 region promotes locomotion and locomotor recovery of wild-type mice 1 month after 6-OHDA injection in the medial forebrain bundle, thus identifying a new potential target for restoring motor functions in Parkinson's disease patients. The study also provides a description of the A13 region connectome pertaining to motor behaviors and how it changes after a dopaminergic lesion. Although there is no causal link between anatomical and behavioral data, it raises interesting questions for further studies.

      Weaknesses:

      Although CAMKIIa is a marker of presumably excitatory neurons and can be used as an alternative marker of dopaminergic neurons, some uncertainty remains regarding the phenotype of neurons underlying recovery of akinesia and improvement of bradykinesia.

      Figure 4 is improved, but the results from the correlation analyses remain difficult to interpret, as they may reflect changes in various impaired brain regions independently of the A13 region. While the analysis offers a snapshot of correlated changes within the connectome, it does not identify which specific cell or axonal populations are actually increasing or decreasing. Although functional MRI connectome analyses are well-established, anatomical data seem less suitable for this purpose. How can one interpret correlated changes in anatomical inputs or outputs between two distinct regions?

      Figure 5 is also improved, but there is room for further enhancement. As currently presented, it is difficult to distinguish the differences between the sham and 6-OHDA groups. The first column could compare afferents, while the second column could compare efferents. Given the small sample size, it would be more appropriate to present individual data rather than the mean and standard deviation.

      Appraisal and impact

      Although the behavioral experiments are convincing, the low number of animals in the anatomical studies is insufficient to make any relevant statistical conclusions due to extremely low statistical power.

    1. Reviewer #2 (Public review):

      Summary:

      Bonnifet et al. sought to characterize the expression pattern of L1 ORF1p expression across the entire mouse brain, in young and aged animals and to corroborate their characterization with Western blotting for L1 ORF1p and L1 RNA expression data from human samples. They also queried L1 ORF1p interacting partners in the mouse brain by IP-MS.

      Strengths:

      A major strength of the study is the use of two approaches: a deep-learning detection method to distinguish neuronal vs. non-neuronal cells and ORF1p+ cells vs. ORF1p- cells across large-scale images encompassing multiple brain regions mapped by comparison to the Allen Brain Atlas, and confocal imaging to give higher resolution on specific brain regions. These results are also corroborated by Western blotting on six mouse brain regions. Extension of their analysis to post-mortem human samples, to the extent possible, is another strength of the paper. The identification of novel ORF1p interactors in brain is also a strength in that it provides a novel dataset for future studies.

      Weaknesses:

      The main weakness of the IP-MS portion of the study is that none of the interactors were individually validated or subjected to follow-up analyses. The list of interactors was compared to previously published datasets, but not to ORF1p interactors in any other mouse tissue.

      Comments on revisions:

      The co-staining of Orf1p with Parvalbumin (PV) presented in Supplemental Figure S5 is a welcome addition exploring the cell type-specificity of Orf1p staining, and broadly corroborates the work of Bodea et al. while revealing that Orf1p also is expressed in non-PV+ cells, consistent with L1 activity across a range of neuronal subtypes. The authors also have strengthened their findings regarding the increased intensity of ORF1p staining in aged compared to young animals, and the newly presented results are indeed more convincing. The prospect of increased neuronal L1 activity with age is exciting, and the results in this paper have provided the groundwork for ongoing discoveries in this area. While it is disappointing that no Orf1p interactors were followed up, this is understandable and the data are nonetheless valuable and will likely prove useful to future studies.

    1. Reviewer #2 (Public review):

      In this paper, Biswas et al. describe the role of acetylcholine (ACh) signaling in protection against chronic oxidative stress in C. elegans. They showed that disruption of ACh signaling in either unc-17 mutants or gar-3 mutants led to sensitivity to toxicity caused by chronic paraquat (PQ) treatment. Using RNA seq, they found that approximately 70% of the genes induced by chronic PQ exposure in wild type failed to upregulate in these mutants. The overexpression of gar-3 selectively in cholinergic neurons was sufficient to promote protection against chronic PQ exposure in an ACh-dependent manner. The study points to a previously undescribed role for ACh signaling in providing organism-wide protection from chronic oxidative stress, likely through the transcriptional regulation of numerous oxidative stress-response genes. The paper is well-written, and the data are robust, though some conclusions seem preliminary and do not fully support the current data. While the study identifies the muscarinic ACh receptor gar-3 as an important regulator of the response to PQ, the specific neurons in which gar-3 functions were not unambiguously identified, and the sources of ACh that regulate GAR-3 signaling and the identities of the tissues targeted by gar-3 were not addressed, limiting the scope of the study.

      Major Comments:

      (1) The site of action of cholinergic signaling for protection from PQ was not adequately explored. The authors' conclusion that cholinergic motor neurons are protective is based on studies using overexpression of gar-3 and an unc-17 allele that may selectively disrupt ACh in cholinergic motor neurons (Figure 9F), but these approaches are indirect. To more directly address the site of action, the authors should conduct rescue experiments using well-defined heterologous promoters. Figure 7G shows that gar-3 expressed under a 7.5 kb promoter fragment fully rescues the defect of gar-3 mutants, but the authors did not report where this promoter fragment is expressed, nor did they conduct rescue experiments of the specific tissues where gar-3 is known to be expressed (cholinergic neurons, GABAergic neurons, pharynx, or muscles). UNC-17 rescue experiments could also be useful to address the site of action. Does expression of unc-17 selectively in cholinergic motor neurons rescue the stress sensitivity of unc-17 mutants (or restore resistance to gar-3(OE); unc-17 mutants)? These experiments may also address whether ACh acts in an autocrine or paracrine manner to activate gar-3, which would be an important mechanistic insight to this study that is currently lacking.

      (2) The genetic pan-neuronal silencing experiments presented in Figure 1 motivated the subsequent experiments, but the authors did not relate these observations to ACh/gar-3 signaling. For example, the authors did not address whether silencing just the cholinergic motor neurons at the different times tested has the same effects on survival as pan-neuronal silencing.

      (3) It is assumed that protection occurs through inter-tissue signaling of ACh to target tissues, where it impacts gene expression. While this is a reasonable assumption, it has not been directly shown here. It is recommended that the authors examine GFP reporter expression of a sampling of the genes identified in this study (including proteasomal genes that the authors highlight) that are regulated by unc-17 and gar-3. This would serve to independently confirm the RNAseq data and to identify target tissues that are subject to gene expression regulation by ACh, which would significantly strengthen the study.

    1. Reviewer #2 (Public review):

      Summary:

      Lesser et al. present an atlas of Drosophila wing sensory neurons. They proofread the axons of all sensory neurons in the wing nerve of an existing electron microscopy dataset, the female adult fly nerve cord (FANC) connectome. These reconstructed sensory axons were linked with light microscopy images of full-scale morphology to identify their origin in the periphery of the wing and encoded sensory modalities. The authors described the morphology and postsynaptic targets of proprioceptive neurons as well as previously unknown sensory neurons.

      Strengths:

      The authors present a valuable catalogue of wing sensory neurons, including previously undescribed sensory axons in the Drosophila wing. By providing both connectivity information with linked genetic drive lines, this research facilitates future work on the wing motor-sensory network and applications relating to Drosophila flight. The findings were linked to previous research as well as their putative role in the proprioceptive and nerve cord circuitry, providing testable hypotheses for future studies.

      Weaknesses:

      (1) With future use as an atlas, it should be noted that the evidence is based on sensory neurons on only one side of the nerve cord. Fruit flies have stereotyped left/right hemispheres in the brain and left/right hemisegments in the nerve cord. The comparison of left and right neurons of the nervous system can give a sense of how robust the morphological and connectivity findings are. Here, the authors have not compared the left and right side sensory axons from the wing nerve, leaving potential for developmental variability across samples and left/right hemisegments.

      (2) Not all links between the EM reconstructions and driver lines are convincing. To strengthen these, for all EM-LM matches in Figures 3-7, rotated views of the driver line (matching the rotated EM views) should be shown to provide a clearer comparison of the data. In particular, Figure 3G and Figure 7B are not very convincing based on the images shown. MCFO imaging of the driver lines in Figure 3G and 7B would make this position stronger if a clone that matches the EM reconstruction could be identified.

      (3) Figure 7B looks like the driver line might have stochastic expression in the sensory neuron, which further reduces confidence in the result shown in Figure 7C. Is this expression pattern in the wing consistently seen? Many split-GAL4s have stochastic expressions. The evidence would be strengthened if the authors presented multiple examples (~4-5) of each driver line's expression pattern in the supplement.

      (4) Certain claims in this work lack quantitative evidence. On line 128, for instance, "Overall, our comprehensive reconstruction revealed many morphological subgroups with overlapping postsynaptic partners, suggesting a high degree of integration within wing sensorimotor circuits." If a claim of subgroups having shared postsynaptic partners is being made, there should have been quantitative evidence. For example, cosine similar amongst members of each group compared to the cosine similarity of shuffled/randomised sets of axons from different groups. The heat map of cosine similarity in Figure 2B alone is not sufficient.

      (5) Similarly, claims about putative electrical connections to b1 motor neurons are very speculative. The authors state that "their terminals contain very densely packed mitochondria compared to other cells", without providing a quantitative comparison to other sensory axons. There is also no quantitative comparison to the one example of another putative electrical connection from the literature. Further, it should be noted that this connection from Trimarchi and Murphey, 1997, is also stated as putative on line 167, which further weakens this evidence. Quantification would strongly strengthen this position. Identification of an example of high mitochondrial density at a confirmed electrical connection would be even better. In the related discussion section "A potential metabolic specialization for flight circuitry", it should be more clearly noted that the dense mitochondria could be unrelated to a putative electrical connection. If the authors have an alternative hypothesis about the mitochondria density, this should be stated as well.

      (6) It would be appropriate to cite previous work using a similar strategy to match sensory axons to their cell bodies/dendrites at the periphery using driver lines and connectomics (see Figure 5 for example in the following paper: https://doi.org/10.7554/eLife.40247 ).

      The methods section is very sparse. For the sake of replicability, all sections should be expanded upon.

    1. Reviewer #2 (Public review):

      Summary:

      The authors aimed to identify the specific neurons, neurotransmitters, and neuropeptides that mediate the longevity effects of the hypoxic response in C. elegans. By genetically dissecting the pathway downstream of HIF-1, they define a neural circuit involving ADF serotonergic neurons, the SER-7 receptor in the RIS interneuron, tyraminergic signaling from RIM, and neuropeptide NLP-17, ultimately linking neuronal hypoxic sensing to pro-longevity signaling in the intestine.

      Strengths:

      The study employs a diverse genetic toolkit, including neuron-specific transgenes, tissue-specific knockouts and rescues, RNAi knockdowns, allowing the authors to pinpoint causality, sufficiency, and necessity with high resolution. The comprehensive mapping of cell-nonautonomous signaling adds depth to our understanding of how HIF and serotonin signaling interface with aging pathways. The conclusions are supported by consistent survival assays and fmo-2 gene expression analyses.

      Weaknesses:

      A key limitation is the lack of clear evidence showing epistasis of so many identified molecular/neuronal components downstream of HIF-1 and serotonin. Thus, the mechanisms of how a diverse set of molecules/neurons coordinate and mediate neuronal HIF-1 effects on intestinal fmo-2 and longevity remain murky. Some rescue strategies may inadvertently cause non-physiological expression. Additionally, environmental hypoxia was not tested in parallel, so the claim on "hypoxia respone" throughout the manuscript is not justified by genetic manipulation alone, and the translational relevance of the genetic manipulations remains somewhat uncertain.

    1. Reviewer #2 (Public review):

      Summary:

      Fu and colleagues have shown that VALOR, a model of multimodal and dynamic stimulus features, better predicts brain responses compared to unimodal or static models such as AlexNet, WordNet, or CLIP. The authors demonstrated the robustness of their findings by generalizing encoding results to an external dataset. They demonstrated the models' practical benefit by showing that semantic mappings were comparable to another model that required labor-intensive manual annotation. Finally, the authors showed that the model reveals predictive coding mechanisms of the brain, which held a meaningful relationship with individuals' fluid intelligence measures.

      Strengths:

      Recent advances in neural network models that extract visual, linguistic, and semantic features from real-world stimuli have enabled neuroscientists to build encoding models that predict brain responses from these features. Higher prediction accuracy indicates greater explained variance in neural activity, and therefore a better model of brain function. Commonly used models include AlexNet for visual features, WordNet for audio-semantic features, and CLIP for visuo-semantic features; these served as comparison models in the study. Building on this line of work, the authors developed an encoding model using VALOR, which captures the multimodal and dynamic nature of real-world stimuli. VALOR outperformed the comparison models in predicting brain responses. It also recapitulated known semantic mappings and revealed evidence of predictive processing in the brain. These findings support VALOR as a strong candidate model of brain function.

      Weaknesses:

      The authors argue that this modeling contributes to a better understanding of how the brain works. However, upon reading, I am less convinced about how VALOR's superior performance over other models tells us more about the brain. VALOR is a better model of the audiovisual stimulus because it processes multimodal and dynamic stimuli compared to other unimodal or static models. If the model better captures real-world stimuli, then I almost feel that it has to better capture brain responses, assuming that the brain is a system that is optimized to process multimodal and dynamic inputs from the real world. The authors could strengthen the manuscript if the significance of their encoding model findings were better explained.

      In Study 3, the authors show high alignment between WordNet and VALOR feature PCs. Upon reading the method together with Figure 3, I suspect that the alignment almost has to be high, given that the authors projected VALOR features to the Huth et al.'s PC space. Could the authors conduct non-parametric permutation tests, such as shuffling the VALOR features prior to mapping onto Huth et al.'s PC space, and then calculating the Jaccard scores? I imagine that the null distribution would be positively shifted. Still, I would be convinced if the alignment is higher than this shifted null distribution for each PC. If my understanding of this is incorrect, I suggest editing the relevant Method section (line 508) because this analysis was not easy to understand.

      In Study 4, the authors show that individuals whose superior parietal gyrus (SPG) exhibited high prediction distance had high fluid cognitive scores (Figure 4C). I had a hard time believing that this was a hypothesis-driven analysis. The authors motivate the analysis that "SPG and PCu have been strongly linked to fluid intelligence (line 304)". Did the authors conduct two analyses only-SPG-fluid intelligence and PCu-fluid intelligence-without relating other brain regions to other individual differences measures? Even if so, the authors should have reported the same r-value and p-value for PCu-fluid intelligence. If SPG-fluid intelligence indeed holds specificity in terms of statistical significance compared to all possible scenarios that were tested, is this rationally an expected result, and could the authors explain the specificity? Also, the authors should explain why they considered fluid intelligence to be the proxy of one's ability to anticipate upcoming scenes during movie watching. I would have understood the rationale better if the authors had at least aggregated predictive scores for all brain regions that held significance into one summary statistic and found a significant correlation with the fluid intelligence measure.

    1. Reviewer #2 (Public review):

      Summary:

      This paper continues the authors' research on the roles of the basolateral amygdala (BLA) and the perirhinal cortex (PRh) in sensory preconditioning (SPC) and second-order conditioning (SOC). In this manuscript, the authors explore how prior exposure to stimuli may influence which regions are necessary for conditioning to the second-order cue (S2). The authors perform a series of experiments which first confirm prior results shown by the author - that NMDA receptors in the PRh are necessary in SPC during conditioning of the first-order cue (S1) with shock to allow for freezing to S2 at test; and that NMDA receptors in the BLA are necessary for S1 conditioning during the S1-shock pairings. The authors then set out to test the hypothesis that the PRh encodes associations in a peripheral state of attention, whereas the BLA encodes associations in a focal state of attention, similar to the A1 and A2 states in Wagner's theory of SOP. To do this, they show that BLA is necessary for conditioning to S2 when the S2 is first exposed during a serial compound procedure - S2-S1-shock. To determine whether pre-exposure of S2 will shift S2 to a peripheral focal state, the authors run a design in which S2-S1 presentations are given prior to the serial compound phase. The authors show that this restores NMDA receptor activity within the PRh as necessary for the fear response to S2 at test. They then test whether the presence of S1 during the serial compound conditioning allows the PRh to support the fear responses to S2 by introducing a delay conditioning paradigm in which S1 is no longer present. The authors find that PRh is no longer required and suggest that this is due to S2 remaining in the primary focal state.

      Strengths:

      As with their earlier work, the authors have performed a rigorous series of experiments to better understand the roles of the BLA and PRh in the learning of first- and second-order stimuli. The experiments are well-designed and clearly presented, and the results show definitive differences in functionality between the PRh and BLA. The first experiment confirms earlier findings from the lab (and others), and the authors then build on their previous work to more deeply reveal how these regions differ in how they encode associations between stimuli. The authors have done a commendable job of pursuing these questions.

      Table 1 is an excellent way to highlight the results and provide the reader with a quick look-up table of the findings.

      Weaknesses:

      The authors have attempted to resolve the question of the roles of the PRh and BLA in SPC and SOC, which the authors have explored in previous papers. Laudably, the authors have produced substantial results indicating how these two regions function in the learning of first- and second-order cues, providing an opportunity to narrow in on possible theories for their functionality. Yet the authors have framed this experiment in terms of an attentional framework and have argued that the results support this particular framework and hypothesis - that the PRh encodes peripheral and the BLA encodes focal states of learning. This certainly seems like a viable and exciting hypothesis, yet I don't see why the results have been completely framed and interpreted this way. It seems to me that there are still some alternative interpretations that are plausible and should be included in the paper.

    1. How SEO is Changing for Architects in 2025 Your next big project won’t be discovered in a magazine spread—it will start with a search. Here’s the reality: In 2025, the way high-value clients find architecture firms has completely changed. AI-generated answers, zero-click search results, and image-driven discovery are rewriting the rules. Awards, referrals, and portfolios […]

      Make the description word count under two lines

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript addresses an important impediment in the field of Alzheimer's disease (AD) and tauapathy research by showing that 12 specific phosphomimetic mutations in full-length tau allow the protein to aggregate into fibrils with the AD fold and the fold of chronic traumatic encephalopathy fibrils in vitro. The paper presents comprehensive structural and cell based seeding data indicating the improvement of their approach over previous in vitro attempts on non-full-length tau constructs. The main weaknesses of this work results from the fact that only up to 70% of the tau fibrils form the desired fibril polymorphs. In addition, some of the figures are of low quality and confusing.

      Strengths:

      This study provides significant progress towards a very important and timely topic in the amyloid community, namely the in vitro production of tau fibrils found in patients.

      The 12 specific phosphomimetic mutations presented in this work will have an immediate impact in the field since they can be easily reproduced.

      Multiple high-resolution structures support the success of the phosphomimetic mutation approach.

      Additional data show the seeding efficiency of the resulting fibrils, their reduced tendency to bundle, and their ability to be labeled without affecting core structure or seeding capability.

      Comments on revised version:

      Generally, I am satisfied with the revisions. Specifically, the new results showing 100% formation of PHF is a significant improvement.

    1. Reviewer #2 (Public review):

      Summary:

      Moret et al. present an engineered family of fluorescent calcium indicators based on HaloCamp, a HaloTag-based sensor system that utilizes Janelia Fluorophores (JF dyes) to report calcium dynamics. By introducing single or multiple amino acid substitutions, the authors reduce HaloCamp's calcium affinity, making these low-affinity variants well-suited for imaging calcium transients in high-calcium environments such as the endoplasmic reticulum (ER) and mitochondria. The study validates the sensors' dissociation constants (Kd), spectra, and multiplex capabilities. It demonstrates improved performance compared to existing tools when targeted to subcellular compartments in mammalian cells and cultured neurons. The sensors can be tuned across the red-to-far-red spectrum via JF585 and JF635 labeling, enabling flexible multiplexed imaging. For example, the authors show that HaloCamp can be targeted to mitochondria and used alongside other green and red sensors, allowing simultaneous imaging of calcium dynamics in the cytosol, ER, and mitochondria. Overall, they achieve their goals, and the data demonstrate that HaloCamp variants are effective for detecting ER and mitochondrial calcium changes under physiological conditions. The presented experiments support the conclusions. However, some key aspects, such as sensor kinetics and axonal validation, would benefit from further analysis.

      This work is likely to have an important impact on the fields of calcium imaging and organelle physiology. The modular design of HaloCamp and its compatibility with a wide range of fluorophores offer a broad application range for cell biologists and neuroscientists.

      Strengths:

      (1) The authors introduce the first tunable, dye-based, low-affinity HaloTag calcium sensors for subcellular imaging, addressing a significant unmet need for ER and mitochondrial calcium detection.

      (2) The ability to pair HaloCamp with JF585 and JF635 extends the spectral range, facilitating multiplexed imaging with existing calcium indicators.

      (3) The sensors are validated in a range of subcellular compartments (ER, mitochondria, cytosol) in both mammalian cells and neurons.

      (4) The authors successfully demonstrate simultaneous imaging of three compartments using orthogonal sensors, a technically impressive feat.

      (5) Kd values are measured, and fluorescent responses are tested under physiologically relevant stimulation.

      Weaknesses:

      (1) The authors do not quantify the kinetics (e.g., decay tau or off-rate) of the fluorescent signals, particularly after stimulation. For example, in the ER imaging experiments in neurons, the decay of the HaloCamp fluorescence after field stimulation (20 APs @ 20 Hz) is not analyzed or compared to ER-GCaMP6-210 or R-CEPIer.

      (2) It remains unclear whether the observed decay represents the sensor's off-kinetics or actual physiological calcium clearance from the ER. A comparison between sensors or an independent measurement of ER clearance rates in vitro would clarify this.

      (3) The choice of 20 APs at 20 Hz is not justified. Specifically, single APs or low-frequency stimulations are not tested, leaving unclear what the detection threshold of the new sensors is.

      (4) In neuron experiments, the authors report measuring ER calcium in axons based presumably on morphology, but no specific justification for selection, markers, or post hoc labeling is described.

      (5) Figure 5 assumes that all three indicators (cytosolic, ER, and mitochondrial) are fast enough to report calcium dynamics in response to histamine. This assumption is not fully validated. Cross-controls (e.g., expressing GCaMP6-210 in mitochondria and HaloCamp in the ER) would strengthen confidence that the sensors are correctly reporting dynamic changes.

      (6) It is not clear why Thapsigargin leads to depletion in HeLa cells and neurons in experiments shown in Figure 1E, but not in 2B upon field stimulation.

    1. Reviewer #2 (Public review):

      Summary:

      This study presents valuable findings on the molecular mechanisms driving the female-to-male transformation in the ricefield eel (Monopterus albus) during aging. The authors explore the role of temperature-activated TRPV4 signaling in promoting testicular differentiation, proposing a TRPV4-Ca²⁺-pSTAT3-Kdm6b axis that facilitates this gonadal shift.

      Strengths:

      The manuscript describes an interesting mechanism potentially underlying sex differentiation in M. albus.

      Weaknesses:

      The current data are insufficient to fully support the central claims, and the study would benefit from more rigorous experimental approaches.

      (1) Overstated Title and Claims:

      The title "TRPV4 mediates temperature-induced sex change" overstates the evidence. No histological confirmation of gonadal transformation (e.g., formation of testicular structures) is presented. Conclusions are based solely on molecular markers such as dmrt1 and sox9a, which, although suggestive, are not definitive indicators of functional sex reversal.

      (2) Temperature vs Growth Rate Confounding (Figure 1E):

      The conclusion that warm temperature directly induces gonadal transformation is confounded by potential growth rate effects. The authors state that body size was "comparable" between 25{degree sign}C and 33{degree sign}C groups, but fail to provide supporting data. In ectotherms, growth is intrinsically temperature-dependent. Given the known correlation between size and sex change in M. albus, growth rate-rather than temperature per se-may underlie the observed sex ratio shifts. Controlled growth-matched comparisons or inclusion of growth rate metrics are needed.

      (3) TRPV4 as a Thermosensor-Insufficient Evidence:

      The characterisation of TRPV4 as a direct thermosensor lacks biophysical validation. The observed transcriptional upregulation of Trpv4 under heat (Figure 2) reflects downstream responses rather than primary sensor function. Functional thermosensors, including TRPV4, respond to heat via immediate ion channel activity-typically measurable within seconds-not mRNA expression over hours. No patch-clamp or electrophysiological data are provided to confirm TRPV4 activation thresholds in eel gonadal cells. Additionally, the Ca²⁺ imaging assay (Figure 2F) lacks essential details: the timing of GSK1016790A/RN1734 administration relative to imaging is unclear, making it difficult to distinguish direct channel activity from indirect transcriptional effects.

      (4) Cellular Context of TRPV4 Activity Is Unclear:

      In situ hybridisation suggests TRPV4 expression shifts from interstitial to somatic domains under heat (Figures. 2H, S2C), implying potential cell-type-specific roles. However, the study does not clarify: (i) whether TRPV4 plays the same role across these cell types, (ii) why somatic cells show stronger signal amplification, or (iii) the cellular composition of explants used in in vitro assays. Without this resolution, conclusions from pharmacological manipulation (e.g., GSK1016790A effects) cannot be definitively linked to specific cell populations.

      (5) Rapid Trpv4 mRNA Elevation and Channel Function:

      The authors report a dramatic increase in Trpv4 mRNA within one day of heat exposure (Figures 4D, S2B). Given that TRPV4 is a membrane channel, not a transcription factor, its rapid transcriptional sensitivity to temperature raises mechanistic questions. This finding, while intriguing, seems more correlational than functional. A clearer explanation of how TRPV4 senses temperature at the molecular level is needed.

      (6) Inconclusive Evidence for the Ca<sup>2+</sup> -pSTAT3-Kdm6b Axis:

      Although the authors propose a TRPV4-Ca<sup>2+</sup> -pSTAT3-Kdm6b-dmrt1 pathway, intermediate steps remain poorly supported. For example, western blot data (Figures 3C, 4B) do not convincingly demonstrate significant pSTAT3 elevation at 34{degree sign}C. Higher-resolution and properly quantified blots are essential. The inferred signalling cascade is based largely on temporal correlation and pharmacological inhibition, which are insufficient to establish direct regulatory relationships.

      (7) Species-Specific STAT3-Kdm6b Regulation Is Unresolved:

      The proposed activation of Kdm6b by pSTAT3 contrasts with findings in the red-eared slider turtle (Trachemys scripta), where pSTAT3 represses Kdm6b. This divergence in regulatory direction between the two TSD species is surprising and demands further justification. Cross-species differences in binding motifs or epigenetic context should be explored. Additional evidence, such as luciferase reporter assays (using wild-type and mutant pSTAT3 binding motifs in the Kdm6b promoter) is needed to confirm direct activation. A rescue experiment-testing whether Kdm6b overexpression can compensate for pSTAT3 inhibition-would also greatly strengthen the model.

      (8) Immunofluorescence-Lack of Structural Markers:

      All immunofluorescence images should include structural markers to delineate gonadal boundaries. Furthermore, image descriptions in the figure legends and main text lack detail and should be significantly expanded for clarity.

      (9) Pharmacological Reagents-Mechanisms and References:

      The manuscript lacks proper references and mechanistic descriptions for the pharmacological agents used (e.g., GSK1016790A, RN1734, Stattic). Established literature on their specificity and usage context should be cited to support their application and interpretation in this study.

      (10) Efficiency of Experimental Interventions:

      The percentage of gonads exhibiting sex reversal following pharmacological or RNAi treatments should be reported in the Results. This is critical for evaluating the strength and reproducibility of the interventions.

    1. Reviewer #2 (Public review):

      5-methylcytosine (5mC) is a key epigenetic mark in DNA and plays a crucial role in regulating gene expression in many eukaryotes including humans. The DNA methyltransferases (DNMTs) that establish and maintain 5mC, are conserved in many species across eukaryotes, including animals, plants, and fungi, mainly in a CpG context. Interestingly, 5mC levels and distributions are quite variable across phylogenies with some species even appearing to have no such DNA methylation.

      This interesting and well-written paper discusses continuation of some of the authors' work published several years ago. In that previous paper, the laboratory demonstrated that DNA methylation pathways coevolved with DNA repair mechanisms, specifically with the alkylation repair system. Specifically, they discovered that DNMTs can introduce alkylation damage into DNA, specifically in the form of 3-methylcytosine (3mC). (This appears to be an error in the DNMT enzymatic mechanism where the generation 3mC as opposed to its preferred product 5-methylcytosine (5mC), is caused by the flipped target cytosine binding to the active site pocket of the DNMT in an inverted orientation.) The presence of 3mC is potentially toxic and can cause replication stress, which this paper suggests may explain the loss of DNA methylation in different species. They further showed that the ALKB2 enzyme plays a crucial role in repairing this alkylation damage, further emphasizing the link between DNA methylation and DNA repair.

      The co-evolution of DNMTs with DNA repair mechanisms suggest there can be distinct advantages and disadvantages of DNA methylation to different species which might depend on their environmental niche. In environments that expose species to high levels of DNA damage, high levels of 5mC in their genome may be disadvantageous. This present paper sets out to examine the sensitivity of an organism to genotoxic stresses such as alkylation and oxidation agents as the consequence of DNMT activity. Since such a study in eukaryotes would be complicated by DNA methylation controlling gene regulation, these authors cleverly utilize Escherichia coli (E.coli) and incorporate into it the DNMTs from other bacteria that methylate the cytosines of DNA in a CpG context like that observed in eukaryotes; the active sites of these enzymes are very similar to eukaryotic DNMTs and basically utilize the same catalytic mechanism (also this strain of E.coli does not specifically degrade this methylated DNA) .

      The experiments in this paper more than adequately show that E. coli expression of these DNMTs (comparing to the same strain without the DNMTS) do indeed show increased sensitivity to alkylating agents and this sensitivity was even greater than expected when a DNA repair mechanism was inactivated. Moreover, they show that this E. coli expressing this DNMT is more sensitive to oxidizing agents such as H2O2 and has exacerbated sensitivity when a DNA repair glycosylase is inactivated. Both propensities suggest that DNMT activity itself may generate additional genotoxic stress. Intrigued that DNMT expression itself might induce sensitivity to oxidative stress, the experimenters used a fluorescent sensor to show that H2O2 induced reactive oxygen species (ROS) are markedly enhanced with DNMT expression. Importantly, they show that DNMT expression alone gave rise to increased ROS amounts and both H2O2 addition and DNMT expression has greater effect that the linear combination of the two separately. They also carefully checked that the increased sensitivity to H2O2 was not potentially caused by some effect on gene expression of detoxification genes by DNMT expression and activity. Finally, by using mass spectroscopy, they show that DNMT expression led to production of the 5mC oxidation derivatives 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC) in DNA. 5fC is a substrate for base excision repair while 5hmC is not; more 5fC was observed. Introduction of non-bacterial enzymes that produce 5hmC and 5fC into the DNMT expressing bacteria again showed a greater sensitivity than expected. Remarkedly, in their assay with addition of H2O2, bacteria showed no growth with this dual expression of DNMT and these enzymes.

      Overall, the authors conduct well thought-out and simple experiments to show that a disadvantageous consequence of DNMT expression leading to 5mC in DNA is increased sensitivity to oxidative stress as well as alkylating agents.

      Again, the paper is well-written and organized. The hypotheses are well-examined by simple experiments. The results are interesting and can impact many scientific areas such as our understanding of evolutionary pressures on an organism by environment to impacting our understanding about how environment of a malignant cell in the human body may lead to cancer.

      In a new revised version of the paper, the authors have adequately addressed issues put forth by other reviewers.

    1. Reviewer #2 (Public review):

      This paper presents interesting and fresh approach as it investigates whether female moths utilize plant-emitted ultrasounds, particularly those associated with dehydration stress, in their egg-laying decision-making process. It provides the first empirical evidence suggesting that acoustic information may contribute to insect-plant interactions.

      The revised version is significantly strengthened by the addition of supplementary data and improved explanations. The authors present robust results across multiple experiments, enhancing the credibility of their conclusions.

      Female moths showed a preference for moist, fresh plants over dehydrated ones in experiments using actual plants. Additionally, when both plants were fresh but ultrasonic sounds specific to dehydrated plants were presented from one side, the moths chose the silent plant. However, in experiments without plants, contrary to the hypothesis derived from the above results, the moths preferred to oviposit near ultrasonic playback mimicking the sounds of dehydrated plants. 

      These results clearly indicate that moths can perceive plant presence through sound. The findings also highlight the need for future investigation into the multi-modal nature of moth decision-making, as acoustic cues alone may not fully explain the behavioral choices observed across different contexts.

      Overall, the results are intriguing, and I think the experiments are very well designed. The authors successfully demonstrate that plant-derived acoustic signals influence oviposition behavior in female moths, thereby achieving the study's objectives. The experimental design and analysis protocols are reproducible and well suited for adaptation to other species.

    1. Reviewer #2 (Public review):

      Summary:

      The authors were to investigate functional role of IL10 on mucosal immunity in chickens. CRISPR technology was employed to generate IL10 knock out chickens in both exon and putative enhancer regions. IL10 expressions were either abolished (knockout in exon) or reduced (enhancer knock-out). IL-10 play an important role in the composition of the caecal microbiome. Through various enteric pathogens challenge, deficient IL10 expression was associated with enhanced pathogen clearance, but with more severe lesion score and body weight loss.

      Strengths:

      Both in vitro and in vivo knock-out in abolished and reduced IL10 expression and broad enteric pathogens were challenged in vivo and various parameters were examined to evaluate the functional role of IL10 on mucosal immunity.

      Weaknesses:

      Overexpression of IL10 either in vitro or in vivo may further support the findings from this study.

      Comments on revised version:

      The authors' response and justifications are appropriate.

    1. Reviewer #3 (Public review):

      The authors have made considerable efforts to conduct functional analyses to the fullest extent possible in this study; however, it is understandable that meaningful results have not yet been obtained. In the revised version, they have appropriately framed their claims within the limits of the current data and have adjusted their statements as needed in response to the reviewers' comments.

    1. Reviewer #3 (Public review):

      Summary:

      Yamada et al. build on classic and more recent studies (Chen et al., 2023; Lemmon et al., 1992; Nichol et al., 2016; Zheng et al., 1994; Schense and Hubbell, 2000) to better understand the relationship between substrate adhesion and neurite outgrowth.

      Strengths:

      The primary strength of the manuscript lies in developing a method for investigating the role of adhesion in axon outgrowth and traction force generation using a femtosecond laser technique. The most exciting finding is that both outgrowth and traction force generation have a biphasic relationship with laminin concentration.

      Weaknesses:

      The primary weaknesses, as written, are a lack of discussion of prior studies that have directly measured the strength of growth cone adhesions to the substrate (Zheng et al., 1994) and traction forces (Koch et al., 2012), the inverse correlation between retrograde flow rate and outgrowth (Nichol et al., 2016), and prior studies noting a biphasic effect of substrate concentration of neurite outgrowth (Schense and Hubbell, 2000).

      Overall, the claims and conclusions are well justified by the data. The main exception is that the data is more relevant to how the rate of neurite outgrowth is controlled rather than axonal guidance.

      This manuscript will help foster interest in the interrelationship between neurite outgrowth, traction forces, and substrate adhesion, and the use of a novel method to study this problem.

      The authors did an excellent job in addressing my original concerns in the revision.

    1. Reviewer #2 (Public review):

      Summary:

      In their manuscript, the authors reveal that the spectraplakin Shot, which can bind both microtubules and actin, is essential for the proper pruning of dendrites in a developing Drosophila model. A molecular basis for the coordination of these two cytoskeletons during neuronal development has been elusive, and the authors' data point to the role of Shot in regulating microtubule polarity and growth through one of its actin-binding domains. The authors also propose an intriguing new activity for a spectraplakin: functioning as part of a microtubule-organizing center (MTOC).

      Strengths:

      (1) A strength of the manuscript is the authors' data supporting the idea that Shot regulates dendrite pruning via its actin-binding CH1 domain and that this domain is also implicated in Shot's ability to regulate microtubule polarity and growth (although see comments below); these data are consistent with the authors' model that Shot acts through both the actin and microtubule cytoskeletons to regulate neuronal development.

      (2) Another strength of the manuscript is the data in support of Rab11 functioning as an MTOC in young larvae but not older larvae; this is an important finding that may resolve some debates in the literature. The finding that Rab11 and Msps coimmunoprecipitate is nice evidence in support of the idea that Rab11(+) endosomes serve as MTOCs.

      Weaknesses:

      (1) A significant, major concern is that most of the authors' main conclusions are not (well) supported, in particular, the model that Shot functions as part of an MTOC. The story has many interesting components, but lacks the experimental depth to support the authors' claims.

      (2) One of the authors' central claims is that Shot functions as part of a non-centrosomal MTOC, presumably a MTOC anchored on Rab11(+) endosomes. For example, in the Introduction, last paragraph, the authors summarize their model: "Shot localizes to dendrite tips in an actin-dependent manner where it recruits factors cooperating with an early-acting, Rab11-dependent MTOC." This statement is not supported. The authors do not show any data that Shot localizes with Rab11 or that Rab11 localization or its MTOC activity is affected by the loss of Shot (or otherwise manipulating Shot). A genetic interaction between Shot and Rab11 is not sufficient to support this claim, which relies on the proteins functioning together at a certain place and time. On a related note, the claim that Shot localization to dendrite tips is actin-dependent is not well supported: the authors show that the CH1 domain is needed to enrich Shot at dendrite tips, but they do not directly manipulate actin (it would be helpful if the authors showed the overexpression of Mical disrupted actin, as they predict).

      (3) The authors show an image that Shot colocalizes with the EB1-mScarlet3 comet initiation sites and use this representative image to generate a model that Shot functions as part of an MTOC. However, this conclusion needs additional support: the authors should quantify the frequency of EB1 comets that originate from Shot-GFP aggregates, report the orientation of EB1 comets that originate from Shot-GFP aggregates (e.g., do the Shot-GFP aggregates correlate with anterogradely or retrogradely moving EB1 comets), and characterize the developmental timing of these events. The genetic interaction tests revealing ability of shot dsRNA to enhance the loss of microtubule-interacting proteins (Msps, Patronin, EB1) and Rab11 are consistent with the idea that Shot regulates microtubules, but it does not provide any spatial information on where Shot is interacting with these proteins, which is critical to the model that Shot is acting as part of a dendritic MTOC.

      (4) It is unclear whether the authors are proposing that dendrite pruning defects are due to an early function of Shot in regulating microtubule polarity in young neurons (during 1st instar larval stages) or whether Shot is acting in another way to affect dendrite pruning. It would be helpful for the authors to present and discuss a specific model regarding Shot's regulation of dendrite pruning in the Discussion.

      (5) The authors argue that a change in microtubule polarity contributes to dendrite pruning defects. For example, in the Introduction, last paragraph, the authors state: "Loss of Shot causes pruning defects caused by mixed orientation of dendritic microtubules." The authors show a correlative relationship, not a causal one. In Figure 4, C and E, the authors show that overexpression of Mical disrupts microtubule polarity but not dendrite pruning, raising the question of whether disrupting microtubule polarity is sufficient to cause dendrite pruning defects. The lack of an association between a disruption in microtubule polarity and dendrite pruning in neurons overexpressing Mical is an important finding.

      (6) The authors show that a truncated Shot construct with the microtubule-binding domain, but no actin-binding domain (Shot-C-term), can rescue dendrite pruning defects and Khc-lacZ localization, whereas the longer Shot construct that lacks just one actin-binding domain ("delta-CH1") cannot. Have the authors confirmed that both proteins are expressed at equivalent levels? Based on these results and their finding that over-expression of Shot-delta-CH1 disrupts dendrite pruning, it seems possible that Shot-delta-CH1 may function as a dominant-negative rather than a loss-of-function. Regardless, the authors should develop a model that takes into account their findings that Shot, without any actin-binding domains and only a microtubule-binding domain, shows robust rescue.

      (7) The authors state that: "The fact that Shot variants lacking the CH1 domain cannot rescue the pruning defects of shot[3] mutants suggested that dendrite tip localization of Shot was important for its function." (pages 10-11). This statement is not accurate: the Shot C-term construct, which lacks the CH1 domain (as well as other domains), is able to rescue dendrite pruning defects.

      (8) The authors state that: "In further support of non-functionality, overexpression of Shot[deltaCH1] caused strong pruning defects (Fig. S3)." (page 8). Presumably, these results indicate that Shot-delta-CH1 is functioning as a dominant-negative since a loss-of-function protein would have no effect. The authors should revise how they interpret these results. This comment is related to another comment about the ability of Shot constructs to rescue the shot[3] mutant.

    1. Reviewer #2 (Public review):

      Summary:

      In this work, the authors applied a range of computational methods to probe the translocation of cholesterol through the Smoothened receptor. They test whether cholesterol is more likely to enter the receptor straight from the outer leaflet of the membrane or via a binding pathway in the inner leaflet first. Their data reveal that both pathways are plausible but that the free energy barriers of pathway 1 are lower, suggesting this route is preferable. They also probe the pathway of cholesterol transport from the transmembrane region to the cysteine-rich domain (CRD).

      Strengths:

      (1) A wide range of computational techniques is used, including potential of mean force calculations, adaptive sampling, dimensionality reduction using tICA, and MSM modelling. These are all applied in a rigorous manner, and the data are very convincing. The computational work is an exemplar of a well-carried out study.

      (2) The computational predictions are experimentally supported using mutagenesis, with an excellent agreement between their PMF and mRNA fold change data.

      (3) The data are described clearly and coherently, with excellent use of figures. They combine their findings into a mechanism for cholesterol transport, which on the whole seems sound.

      (4) The methods are described well, and many of their analysis methods have been made available via GitHub, which is an additional strength.

      Weaknesses:

      (1) Some of the data could be presented a little more clearly. In particular, Figure 7 needs additional annotation to be interpretable. Can the position of the cholesterol be shown on the graph so that we can see the diameter change more clearly?

      (2) In Figure 3C, it doesn't look like the Met is constricting the tunnel at all. What residue is constricting the tunnel here? Can we see the Ala and Met panels from the same angle to compare the landscapes? Or does the mutation significantly change the tunnel? Why not A283 to a bulkier residue? Finally, the legend says that the figure shows that cholesterol can still pass this residue, but it doesn't really show this. Perhaps if the HOLE graph was plotted, we could see the narrowest point of the tunnel and compare it to the size of cholesterol.

      (3) The PMF axis in 3b and d confused me for a bit. Looking at the Supplementary data, it's clear that, e.g., the F455I change increases the energy barrier for chol entering the receptor. But in 3d this is shown as a -ve change, i.e., favourable. This seems the wrong way around for me. Either switch the sign or make this clearer in the legend, please.

      (4) The impact of G280V is put down to a decrease in flexibility, but it could also be a steric hindrance. This should be discussed.

      (5) Are the reported energy barriers of the two pathways (5.8{plus minus}0.7 and 6.5{plus minus}0.8 kcal/mol) significantly and/or substantially different enough to favour one over the other? This could be discussed in the manuscript.

      (6) Are the energy barriers consistent with a passive diffusion-driven process? It feels like, without a source of free energy input (e.g., ion or ATP), these barriers would be difficult to overcome. This could be discussed.

      (7) Regarding the kinetics from MSM, it is stated that the values seen here are similar to MFS transporters, but this then references another MSM study. A comparison to experimental values would support this section a lot.

    1. Reviewer #2 (Public review):

      Summary:

      This study identifies the outer‑mitochondrial GTPase MIRO1 as a central regulator of vascular smooth muscle cell (VSMC) proliferation and neointima formation after carotid injury in vivo and PDGF-stimulation ex vivo. Using smooth muscle-specific knockout male mice, complementary in vitro murine and human VSMC cell models, and analyses of mitochondrial positioning, cristae architecture, and respirometry, the authors provide solid evidence that MIRO1 couples mitochondrial motility with ATP production to meet the energetic demands of the G1/S cell cycle transition. However, a component of the metabolic analyses is suboptimal and would benefit from more robust methodologies. The work is valuable because it links mitochondrial dynamics to vascular remodelling and suggests MIRO1 as a therapeutic target for vasoproliferative diseases, although whether pharmacological targeting of MIRO1 in vivo can effectively reduce neointima after carotid injury has not been explored. This paper will be of interest to those working on VSMCs and mitochondrial biology.

      Strengths:

      The strength of the study lies in its comprehensive approach, assessing the role of MIRO1 in VSMC proliferation in vivo, ex vivo, and importantly in human cells. The subject provides mechanistic links between MIRO1-mediated regulation of mitochondrial mobility and optimal respiratory chain function to cell cycle progression and proliferation. Finally, the findings are potentially clinically relevant given the presence of MIRO1 in human atherosclerotic plaques and the available small molecule MIRO1.

      Weaknesses:

      (1) There is a consistent lack of reporting across figure legends, including group sizes, n numbers, how many independent experiments were performed, or whether the data is mean +/- SD or SEM, etc. This needs to be corrected.

      (2) The in vivo carotid injury experiments are in male mice fed a high-fat diet; this should be explicitly stated in the abstract, as it's unclear if there are any sex- or diet-dependent differences. Is VSMC proliferation/neointima formation different in chow-fed mice after carotid injury?

      (3) The main body of the methods section is thin, and it's unclear why the majority of the methods are in the supplemental file. The authors should consider moving these to the main article, especially in an online-only journal.

      (4) Certain metabolic analyses are suboptimal, including ATP concentration and Complex I activity measurements. The measurement of ATP/ADP and ATP/AMP ratios for energy charge status (luminometer or mass spectrometry), while high-resolution respirometry (Oroboros) to determine mitochondrial complex I activity in permeabilized VSMCs would be more informative.

      (5) The statement that 'mitochondrial mobility is not required for optimal ATP production' is poorly supported. XF Seahorse analysis should be performed with nocodazole and also following MIRO1 reconstitution +/- EF hands.

      (6) The authors should consider moving MIRO1 small molecule data into the main figures. A lot of value would be added to the study if the authors could demonstrate that therapeutic targeting of MIRO1 could prevent neointima formation in vivo.

    1. Reviewer #2 (Public review):

      This study explores the dynamic association between malate dehydrogenase (MDH1) and citrate synthase (CIT1) in Saccharomyces cerevisiae, with the aim of linking this interaction to respiratory metabolism. Utilizing a NanoBiT split-luciferase system, the authors monitor protein-protein interactions in vivo under various metabolic conditions.

      Major Concerns:

      (1) NanoBiT Signal May Reflect Protein Abundance Rather Than Interaction Strength

      In Figure 1C, the authors report increased MDH1-CIT1 interaction under respiratory (acetate) conditions and decreased interaction during fermentation (glucose), as indicated by NanoBiT luminescence. However, this signal appears to correlate strongly with the expression levels of MDH1 and CIT1, raising the possibility that the observed luminescence reflects protein abundance rather than specific interaction dynamics. To resolve this, NanoBiT signals should be normalized to the expression levels of both proteins to distinguish between abundance-driven and interaction-driven changes.

      (2) Lack of Causal Evidence

      The study presents a series of metabolic perturbation experiments (e.g., arsenite, AOA, antimycin A, malonate) and correlates changes in metabolite levels with NanoBiT signals. However, these data are correlative and do not establish a functional role for the MDH1-CIT1 interaction in metabolic regulation. To demonstrate causality, the authors should implement approaches to specifically disrupt the MDH1-CIT1 interaction. One strategy could involve using a 15-residue peptide (Pept1) derived from the Pro354-Pro366 region of CIT1, previously shown to mediate the interaction, or introducing the cit1Δ3 (Arg362Glu) mutation, which perturbs binding. Metabolic flux analysis using ^13C-labeled glucose and mitochondrial respiration assays (e.g., Seahorse) could then assess functional consequences.

      (3) Absence of Protein Expression Controls Under Perturbation Conditions

      In experiments involving acetate, arsenite, AOA, antimycin A, and malonate, the authors infer changes in MDH1-CIT1 association based solely on NanoBiT signals. However, no accompanying data are provided on MDH1 and CIT1 protein levels under these conditions. This omission weakens the conclusions, as altered expression rather than interaction strength could underlie the observed luminescence changes. Immunoblotting or quantitative proteomics should be used to confirm constant protein expression across conditions.

      Conclusion:

      Although the central question is compelling and the use of NanoBiT in live cells is a strength, the manuscript requires additional experimental rigor. Specifically, normalization of interaction signals, introduction of causative perturbations, and validation of protein expression are essential to substantiate the study's claims.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors focus on the identification of the mechanisms involved in the acquired resistance to Sotorasib in non-small lung KRASG12C mutant cells. To perform this study, the authors generate different clones of cell lines, cell-derived xenografts, patient-derived xenograft organoids, and patient-derived xenografts. In all these models, the authors generate resistant forms (i.e., resistant cell lines PDXs and organoids) and the genetic and molecular changes were characterised using whole-exome sequencing, proteomics, and phospho-proteomics. This analysis led to the identification of an important role of the PI3K/AKT/mTORC1/2 signalling network in the acquisition of resistance in several of the models tested. Molecular characterisation identified changes in the expression of some of the proteins in this network as key changes for the acquisition of resistance, and in particular, the authors show that changes in 4E-BP1 are common to some of the cells downstream of PI3K. Using pharmacological testing, they show that different drugs targeting PI3K, AKT, and MTORC1/2 sensitise some of the resistant models to Sotorasib. The analyses showed that the PI3K inhibitor copanlisib has an effect in NSCLC cells that, in some cases, seems to be synergistic with Sotorasib. Based on the work performed, the authors conclude that the PI3K/mTORC1/2 mediated 4E-BP1 phosphorylation is one of the mechanisms associated with the acquisition of resistance to Sotorasib and that targeting this signalling module could result in effective treatments for NSCLC patients.

      The work as presented in the current manuscript is very interesting, provides cell models that benefit the community, and can be used to expand our knowledge of the mechanism of resistance to KRAS targeting therapies. Overall, the techniques and methodology seem to be performed in agreement with standard practice, and the results support most of the conclusions made by the authors. However, there are some points that, if addressed, would increase the value and relevance of the findings and further extend the impact of this work. Some of the recommendations for changes relate to the way things are explained and presented, which need some work. Other changes might require the performance of additional experiments or reanalysis of the existing data.

      Strengths:

      (1) One of the stronger contributions of this article is the different models used to study the acquisition of resistance to Sotorasib. The resistant cell lines, PDXs and PDXOs, and the fact that the authors have different clones for each, made this collection especially relevant, as they seem to show different mechanisms that the cells used to become resistant to Sotorasib. Although logically, the authors focus on one of these mechanisms, the differential responses of the different clones and models to the treatments used in this work show that some of the clones used additional mechanisms of resistance that can be explored in other studies. Importantly, as they use in vitro and in vivo models, the results also consider the tumour microenvironment and other factors in the response to the treatments.

      (2) Another strength is the molecular characterisation of the different Sotorasib-resistant tumour cells by WES, which shows that these cells do not seem to acquire secondary mutations.

      (3) The use of MS-based proteomics also identifies proteome signatures that are associated with the acquisition of resistance, including PI3K/mTORC1/2. The combination of proteomics and phospho-proteomics results should allow the identification of several mechanisms that are deregulated in Sotorasib-resistant cells.

      (4) The results show a strong response of the NSCLC cells and PDXs to copanlisib, a drug for which there is limited information in this cancer type.

      (5) The way they develop the PDX-resistant and the PDXO seems to be appropriate.

      Weaknesses:

      In general, the data is of good quality, but due to the sheer amount of data included and the way it is presented and discussed, several of the claims or conclusions are not clear.

      (1) The abstract is rather long and gives details that are not usually included in one. This makes it very complicated to identify the most relevant findings of the work. The use of acronyms PDX, PDXO, and CDX without defining them makes it complicated for the non-specialist to know what the models are. Rewriting and reorganisation of the abstract would benefit the manuscript.

      (2) Expression, presentation, and grammar should be reviewed in all sections of the manuscript.

      (3) In the different parts of the result section where the models shown in Figure 2 are described the authors indicate "Whole-exome sequencing (WES) confirmed that XXX model retained the KRASG12C mutation with no additional KRAS mutations detected" however, it is not indicated where this data is shown and in not all the cases there is explanation to other possible modifications that might relate to mechanisms of resistance. This information should be included in the manuscript, and the WES made publicly available.

      (4) The way the proteomics analysis of the TC303 and TC314 parental and resistant PDX is described in the text is confusing. The addition of an experimental layout figure would facilitate the understanding. As it is written, it is not obvious that the parental PDX were also analysed. For instance, the authors say, "The global and phosphoproteomic analyses identified over 8,000 and 4,000 gene protein products (GPPs), respectively". Is this comparing only resistant cells, or from the comparison of the parental and resistant pairs? And where are these numbers presented in the figures? Also, there is information that seems more adequate for the materials and methods sections, i.e., "Samples were analyzed using label-free nanoscale liquid chromatography coupled with tandem mass spectrometry (nanoLC-MS/MS) on a Thermo Fusion Mass Spectrometer. The resulting data were processed and quantified using the Proteome Discoverer 2.5 interface with the Mascot search engine, referencing the NCBI RefSeq protein database (Saltzman, Ruprecht). Two-component analysis is better named principal component analysis."

      (5) While the presentation of the proteomics data could be done in different ways, the way the data is presented in Figure 3 does not allow the reader to get an idea of many of the findings from this experiment. Although it is indicated that a table with the data will be made available, this should be central to the way the data is presented and explained. A table (ie, Excel doc) where the raw data and all the analysis are presented should be included and referenced. Additionally, heat maps for the whole proteomes identified should be included. In the text, it is said, "Global proteomic heatmap analysis revealed unique protein profiles in TC303AR and TC314AR PDXs compared to their sensitive counterparts (Figure 3C)." However, this figure only shows the histogram of the differentially regulated cells. Inclusion of the histogram showing all the cells is necessary, and it might be informative to include the histogram comparing the two isogenic pairs, which could identify common mechanisms and differences between both sets. In Figure 3C, the protein names should be readable, or a reference to tables where the proteins are listed should be included.

      (6) In Figure 3, the pathway enrichment tool and GO used should be mentioned in the text. The tables with all significant tables should also be provided. The proteomics data seems to convincingly identify mTOR as one of the pathways deregulated in resistant cells, but there is little explanation of what is considered a significant FDR value and if there are other pathways or networks that are also modified, which might not be common to both isogenic models. In MS-based Phosphoproteome could help with the identification of differentially regulated pathways, but it is not really presented in the current manuscript. Most of the analysis of phospho-proteomics comes from the RPPA analysis, which is targeted proteomics. With the way the data is presented, the authors show evidence for a role of mTOR in the acquisition of resistance, but unfortunately, they do not discuss or allow the reader to explore if other pathways might also contribute to this change.

      (7) Where is the proteomics data going to be deposited, and will it be made public to comply with FAIR principles?

      (8) The authors claim that the resistance shown for H23AR and H353AR cells is due to reactivation of KRAS signalling. This is done by looking to phosphorylation of ERK as a surrogate, as they claim, "KRAS inhibition is commonly assessed by evaluating the inhibition of ERK phosphorylation (p-ERK)". While this might be true in many cases, the data presented does not demonstrate that the increase in p-ERK is due to reactivation of KRAS. To make this claim, the authors should measure activation of KRAS (and possibly H- and NRAS) using GST-pull down or an image-based method.

      (9) The experiments in Figure 4 are very confusing, and some controls are missing. There is no blot where they show the effect of Sotorasib treatment in H23 and H358 parental cells. Is the increase shown in resistant cells shown in parental or is it exclusive for resistant cells only (and therefore acquired)? Experiment 4B should include this control. What is clear is that there is an increase in the expression of AKT and PI3K.

      (10) The main point here is whether this is acquired resistance or the sensitivity to the drug is already there, and there was no need to do an omics experiment to find this. In some cases, it seems that the single treatment with PI3K inhibitors is as effective as Sotorasib treatment, promoting the death of the parental cells. This is in line with previous data in H23 and H353 that show sensitivity to PI3K inhibition ( i.e., H358 10.1016/j.jtcvs.2005.06.051 ; 10.1016/j.jtcvs.2005.06.051H23 10.20892/j.issn.2095-3941.2018.0361). The data is clear, especially for copanlisib, but would it be the case that this treatment could be used for the treatment of NSCLC alone or directly in combination with Sotorasib and prevent resistance? The results shown in Figure 4C strongly support that a single treatment might be effective in cases that do not respond to Sotorasib. The data in figure 4D-F (please correct typo "inhibition" in labels) seem to support that PI3K treatment of parental cells is as effective as in the resistant cells.

      (11) The experiments presented in Figure 7 show synergy between Sotorasib and copanlisib treatment in some of the resistant cells. But in Figure 7G, the single treatment of H23AR is as effective as the combination. Did the authors check the effect of this drug on the parental cells? As they do not include this control, it is not possible to know if this is acquired sensitivity to PI3K inhibition or if the parental cells were already sensitive (as indicated by the Figure 4 results).

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Jiang et al. developed a robust workflow for identifying proline hydroxylation sites in proteins. They identified proline hydroxylation sites in HEK293 and RCC4 cells, respectively. The authors found that the more hydrophilic HILIC fractions were enriched in peptides containing hydroxylated proline residues. These peptides showed differences in charge and mass distribution compared to unmodified or oxidized peptides. The intensity of the diagnostic hydroxyproline iminium ion depended on parameters including MS collision energy, parent peptide concentration, and the sequence of amino acids adjacent to the modified proline residue. Additionally, they demonstrate that a combination of retention time in LC and optimized MS parameter settings reliably identifies proline hydroxylation sites in peptides, even when multiple proline residues are present

      Strengths:

      Overall, the manuscript presents an advanced, standardized protocol for identifying proline hydroxylation. The experiments were well designed, and the developed protocol is straightforward, which may help resolve confusion in the field.

      Weaknesses:

      (1) The authors should provide a summary of the standard protocol for identifying proline hydroxylation sites in proteins that can easily be followed by others.

      (2) Cockman et al. proposed that HIF-α is the only physiologically relevant target for PHDs. Their approach is considered the gold standard for identifying PHD targets. Therefore, the authors should discuss the major progress they made in this manuscript that challenges Cockman's conclusion.

    1. Reviewer #2 (Public review):

      Summary:

      The field of protein translation has long sought the structure of a Type 2 Internal Ribosome Entry Site (IRES). In this work, Das and Hussain pair cryo-EM with algorithmic RNA structure prediction to present a structure of the Type 2 IRES found in Encephalomyocarditis virus (EMCV). Using medium to low resolution cryo-EM maps, they resolve the overall shape of a critical domain of this Type 2 IRES. They use algorithmic RNA prediction to model this domain onto their maps and attempt to explain previous results using this model.

      Strengths:

      (1) This study reveals a previously unknown/unseen binding modality used by IRESes: a direct interaction of the IRES with the initiator tRNA.

      (2) Use of an IRES-associated factor to assemble and pull down an IRES bound to the small subunit of the ribosome from cellular extracts is innovative.

      (3) Algorithmic modeling of RNA structure to complement medium to low resolution cryo-EM maps, as employed here, can be implemented for other RNA structures.

      Weaknesses:

      (1) Maps at the resolution presented prevent unambiguous modelling of the EMCV-IRES. This, combined with the lack of any biochemical data, calls into question any inferences made at the level of individual nucleotides, such as the GNRA loop and CAAA loop (Figure 4).

      (2) The EMCV IRES contains an upstream AUG at position 826, where the PIC can assemble (Pestova et al 1996; PMID 8943341). It is unclear if this start codon was mutated in this study. If it were not mutated, placement of AUG-834 over AUG-826 in the P-site is unexplained.

      (3) The claims the authors make about (i) the general overall shape and binding site of the IRES, (ii) its gross interaction with the two ribosomal proteins, (iii) the P-in state of the 48S, (iv) the rearrangement of the ternary complex are all warranted. Their claims about individual nucleotides or smaller stretches of the IRES-without any supporting biochemical data-is not warranted by the data.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript presents a well-conceived and concise study that significantly advances our understanding of polyphosphate (polyP) metabolism and its role in cytosolic phosphate (Pi) homeostasis in a model unicellular eukaryote. The authors provide evidence that yeast vacuoles function as dynamic regulatory buffers for Pi homeostasis, integrating polyP synthesis, storage, and hydrolysis in response to cellular metabolic demands. The work is methodologically sound and offers valuable insights into the conserved mechanisms of phosphate regulation across eukaryotes.

      Strengths:

      The results demonstrate that the vacuolar transporter chaperone (VTC) complex, in conjunction with luminal polyphosphatases (Ppn1/Ppn2) and the Pi exporter Pho91, establishes a finely tuned feedback system that balances cytosolic Pi levels. Under Pi-replete conditions, inositol pyrophosphates (InsPPs) promote polyP synthesis and storage while inhibiting polyP hydrolysis, leading to vacuolar Pi accumulation.

      Conversely, Pi scarcity triggers InsPP depletion, activating Pho91-mediated Pi export and polyP mobilization to sustain cytosolic phosphate levels. This regulatory circuit ensures metabolic flexibility, particularly during critical processes such as glycolysis, nucleotide synthesis, and cell cycle progression, where phosphate demand fluctuates dramatically.

      From my viewpoint, one of the most important findings is the demonstration that vacuoles act as a rapidly accessible Pi reservoir, capable of switching between storage (as polyP) and release (as free Pi) in response to metabolic cues. The energetic cost of polyP synthesis-driven by ATP and the vacuolar proton gradient-highlights the evolutionary importance of this buffering system. The study also draws parallels between yeast vacuoles and acidocalcisomes in other eukaryotes, such as Trypanosoma and Chlamydomonas, suggesting a conserved role for these organelles in phosphate homeostasis.

      Weaknesses:

      While the manuscript is highly insightful, referring to yeast vacuoles as "acidocalcisome-like" may warrant further discussion. Canonical acidocalcisomes are structurally and chemically distinct (e.g., electron-dense, in most cases spherical, and not routinely subjected to morphological changes, and enriched with specific ions), whereas yeast vacuoles have well-established roles beyond phosphate storage. A comment on this terminology could strengthen the comparative analysis and avoid potential confusion in the field.

    1. Reviewer #2 (Public review):

      Summary:

      The authors aimed to find out how and how well adult and adolescent mice discriminate tones of different frequencies and whether there are differences in processing at the level of the auditory cortex that might explain differences in behavior between the two groups. Adolescent mice were found to be worse at sound frequency discrimination than adult mice. The performance difference between the groups was most pronounced when the sounds are close in frequency and thus difficult to distinguish and could, at least in part, be attributed to the younger mice' inability to withhold licking in no-go trials. By recording the activity of individual neurons in the auditory cortex when mice performed the task or were passively listening as well as in untrained mice the authors identified differences in the way that the adult and adolescent brains encode sounds and the animals' choice that could potentially contribute to the differences in behavior.

      Strengths:

      The study combines behavioural testing in freely-moving and head-fixed mice, optogenetic manipulation and high density electrophysiological recordings in behaving mice to address important open questions about age differences in sound-guided behavior and sound representation in the auditory cortex.

      Weaknesses:

      The weaknesses listed by this reviewer were addressed by adequate revisions.

    1. Reviewer #2 (Public review):

      Summary:

      The authors study the influence of tasks on the representational geometry of the lPFC and auditory cortex (AC). In particular, they use two context-dependent tasks: a task with a hierarchical structure and a task with a flat structure, in which each context/stimulus maps to a specific response. Their primary finding is that the representational geometry in the lPFC, in contrast to AC, aligns with the optimal organization of the task. They conclude that the geometry of representations adapts, or is tailored, to the task in the lPFC, therefore supporting control processes.

      Strengths:

      (1) Dataset:<br /> The dataset is impressive and well-sampled. Having data from both tasks collected in the same subjects is a great property. If it is publicly available, it will be a significant contribution to the community.

      (2) Choice of methods:<br /> The choice of analyses are largely well-suited towards the questions at hand - cross-condition generalization, RSA + regression, in combination with ANOVAs, are well-suited to characterizing task representations.

      (3) I found some of their results, in particular, those presented in Figures 4 and 5, to be particularly compelling.

      (4) The correlation analysis with behavior is also a nice result.

      Weaknesses:

      (1) Choice of ROIs:<br /> A strength of fMRI is its spatial coverage of the whole brain. In this study, however, the authors focus on only two ROIs: the lPFC and auditory cortex. Though I understand the justification for choosing lPFC from decades of research, the choice of AC as a control feels somewhat arbitrary - AC is known to have worse SNR in fMRI data, and limiting a 'control' to a single region seems arbitrary. For example, why not also include visual regions, given that the task also involves two visual features?

      (2) Construction of ROIs:<br /> The choice and construction of the ROIs feel a bit arbitrary, as the lPFC region was constructed out of 10 parcels from Schaefer, while the AC was constructed from a different methodology (neurosynth). Did both parcels have the same number of voxels/vertices? It would be helpful to include a visualization of these masks as a figure.

      (3) Task dimensionality:<br /> In some ways, the main findings - that representation dimensionality is tailored to the task - seem to obviously follow from the choice of two tasks, particularly from a normative modeling perspective. For example, the flat task is effectively a memorization task, and is incompressible in the sense that there are no heuristics to solve it. In contrast, the hierarchical task can have several strategies, an uncompressed (memorized) strategy, and a compressed strategy. This is analogous to other studies evaluating representations during 'rich' vs. 'lazy'/kernel learning in ANNs. However, it seems unlikely (if not impossible) to form a 'rich' representation in the flat task. Posed another way, the flat task will always necessarily have a higher dimensionality than the hierarchical task. Thus, is their hypothesis - that representational geometry is tailored to the task - actually falsifiable? I understand the authors posit alternative hypotheses, e.g., "a fully compressed global axis with no separation among individual stimulus inputs could support responding [in the flat task]" (p. 36). But is this a realistic outcome, for example, in the space of all possible computational models performing this task? I understand that directly addressing this comment is challenging (without additional data collection or modeling work), but perhaps some additional discussion around this would be helpful.

      (4) Related to the above:<br /> The authors have a section on p. 27: "Local structure of lPFC representational geometry of the flat task shows high separability with no evidence for abstraction" - I understand a generalization analysis can be done in the feature space, but in practice, the fact that the flat task doubles as a memorization task implies that there are no useful abstractions, so it seems to trivially follow that there would be no abstract representations. In fact, the use of task abstractions in the stimulus space would be detrimental to task performance here. I could understand the use of this analysis as a control, but the phrasing of this section seems to indicate that this is a surprising result.

      (5) Statistical inferences:<br /> Throughout the manuscript, the authors appear to conflate failure to reject the null with acceptance of the null. For example, p. 24: "However, unlike left lPFC, paired t-tests showed no reliable difference in the separability of the task-relevant features vs the orthogonal, task-irrelevant features... Therefore, the overall separability of pAC representations is not shaped by either task-relevance of task structure."

    1. Reviewer #2 (Public review):

      Summary:

      The study introduces new tools for measuring intracellular Ca2+ concentration gradients around retinal rod bipolar cell (rbc) synaptic ribbons. This is done by comparing the Ca2+ profiles measured with mobile Ca2+ indicator dyes versus ribbon-tethered (immobile) Ca2+ indicator dyes. The Ca2+ imaging results provide a straightforward demonstration of Ca2+ gradients around the ribbon and validate their experimental strategy. This experimental work is complemented by a coherent, open-source, computational model that successfully describes changes in Ca2+ domains as a function of Ca2+ buffering. In addition, the authors try to demonstrate that there is heterogeneity among synaptic ribbons within an individual rbc terminal.

      Strengths:

      The study introduces a new set of tools for estimating Ca2+ concentration gradients at ribbon AZs, and the experimental results are accompanied by an open-source, computational model that nicely describes Ca2+ buffering at the rbc synaptic ribbon. In addition, the dissociated retinal preparation remains a valuable approach for studying ribbon synapses. Lastly, excellent EM.

      Comments on revisions:

      Several concerns were raised about the kinetic analyses, and the authors have carefully acknowledged the critiques. The ideal outcome would have been a more complete kinetic readout and analyses (in particular a better readout of risetime would have improved the results). In the absence of a suitable readout of the risetime, the authors scaled back their claims and improved on the description of the falling phase of the signals. The authors have given a reasonable response under the circumstances.

      In addition, the authors provided more context to their results.

      I have no further concerns.

    1. Reviewer #2 (Public review):

      Summary:

      Sakagiannis et al. propose a hierarchically layer architecture to larval locomotion and foraging. They go from exploration to chemotaxis and odour preference test after associative learning.

      Strengths:

      A new locomotion model based on two oscillators that also incorporates peristaltic strides.

      Weaknesses:

      • The model is not always clearly or sufficiently explained (chemotaxis and odour test).

      • Data analysis of the model movement is not very thorough.

      • Comparisons with locomotion of behaving animals missing in chemotaxis and odour preference test after associative learning.

      • Overall it is hard to judge the descriptive and predictive value of the model.

    1. Reviewer #2 (Public review):

      Summary

      The past several years has seen publication of both new (Witvliet et al., 2021) and newly analyzed (Cook et al., 2019; Moyle et al., 2021; Brittin et al., 2021) data for the C. elegans connectome. The increase in data availability for a single species allows researchers to examine variability due to both stochastic events and due to changes over development. The quantity of these data are huge. To help the community make these data more accessible, the authors present a new online tool that allows examination of 3D models for C. elegans neurons in the central neuropil across development. In addition to visualizing the overall structure of the neuronal processes and locations of synapses, the NeuroSC tool also allows users to probe into the C-PHATE visualization results, which this group previously pioneered to describe similarities in neuron adjacency (Moyle et al., 2021).

      Strengths

      The ability to visualize the data from both a connectomics and contactomics perspective across developmental time has significant power. The original C. elegans connectome (White et al., 1986) presented their circuits as line drawings with chemical and electrical synapses indicated through arrows and bars. While these line drawings are incredibly useful, they were necessary simplifications for a 2D publication and lack details of the complex architecture seen within each EM image. Koonce et al takes advantage of their own and others segmented image data of each neuronal process within the nerve ring to create a web interface where users can visualize 3D models for their neuron of choice. The C-PHATE visualization is intended to allow users to explore similarities among different neurons in terms of adjacency and then go directly to the 3D model for these neurons. The 3-D models it generates are beautiful and will likely be showing up in many future presentations and publications. The tool doesn't require any additional downloading and is open source. This revision includes an option where hovering over an individual neurons, synapse, or contact will pull up a statistics panel. The addition of text to the video tutorials in the revision is very useful.

      Weaknesses

      There are several bugs with this tool, which make it a bit clunky to use and suggest a lack of rigorous testing. There are also issues with data availability. I was disappointed that my "recommendations for the authors", which focused on the user interface, were not addressed in the response to reviewers.

    1. Reviewer #2 (Public review):

      Summary:

      This study provides a comprehensive evaluation of the association between polygenic indices (PGIs) for 35 lifestyle and behavioral traits and all-cause mortality, using data from Finnish population- and family-based cohorts. The analysis was stratified by sex, cause of death (natural vs. external), age at death, and participants' educational attainment. Additional analyses focused on the six most predictive PGIs, examining their independent associations after mutual adjustment and adjustment for corresponding directly measured baseline risk factors.

      Strengths:

      Large sample size with long-term follow-up.

      Use of both population- and family-based analytical approaches to evaluate associations.

      Weaknesses:

      It is unclear whether the PGIs used for each trait represent the most current or optimal versions based on the latest GWAS data.

      If the Finnish data used in this study also contributed to the development of some of the PGIs, there is a risk of overestimating their associations with mortality due to overfitting or "double-dipping." Similar inflation of effect sizes has been observed in studies using the UK Biobank, which is widely used for PGI construction.

    1. Reviewer #2 (Public review):

      Summary:

      The Garbett et al. identified a critical need to begin to understand the interplay between the assembly, maturation, and elimination of excitatory and inhibitory synapses. They also detail the lack of reliable tools to address this gap in knowledge. Here, the authors developed synaptic reporters expressed by lentiviruses (mClover3-Homer1c, HaloTag-Syb2, and tdTomato-Gephyrin). They combined these reporters with resonance scanning confocal imaging to measure synapses over a 15-hour period during neuron development and in mature neurons in primary hippocampal cultures. Using these reporters in the same neuron, the authors compared the ratios of postsynaptic excitatory and inhibitory specializations that co-localize with presynaptic terminals during development and in mature neurons and found that they are stable across time points. Finally, the authors developed CRISPR/Cas9 tools (TKIT) to knock-in endogenous fluorescent tags (GFP/tdTomato-Gephyrin) or epitope tags (HA-Bassoon and HA-Homer1) to begin to study synapse dynamics using endogenous proteins. I believe this paper highlights an important gap in knowledge and begins to offer methodologies to determine the dynamic coordination between excitatory and inhibitory synapses.

      Strengths:

      (1) The experiments are well-designed and carefully controlled.

      (2) The authors carefully validated the reporter and TKIT constructs.

      (3) The authors provide strong proof-of-principle for the use of the reporter constructs to track synapse formation, maintenance, and elimination over a 15-hour period.

      (4) Ingenious use of technologies (reporters, TKIT, and resonance scanning confocal microscopy) to develop a platform for future studies of synapse dynamics.

      (5) Strong evidence supporting that the ratio of excitatory and inhibitory synapses (those that oppose syb2) stays constant through development.

      Weaknesses:

      Overall, this is a well-executed study that develops tools to simultaneously image excitatory and inhibitory synapse dynamics and represents an important first step to address the fundamental question regarding the coordination between these two types of synapses.

      Minor weaknesses of the manuscript include:

      (1) The lack of a characterization of endogenous Homer1-positive excitatory synapses using TKIT.

      (2) Discussion about other approaches to study excitatory and inhibitory synapses using endogenous proteins (e.g., intrabodies - FingR or nanobodies) should be included.

      (3) The activity state of a neuron and/or a synapse might alter the dynamic properties (formation, maintenance, and/or elimination). A discussion on whether the overexpression of Homer1 and/or gephyrin might alter synapse/neuron activity would provide greater interpretability of the results. A discussion of the potential limitations and benefits of the reporter and TKIT approaches would be beneficial.

      (4) A description and interpretation of the computational approach to calculate particle tracking would be helpful. I found that particle tracking figures, while elegant, are difficult to interpret.

    1. Reviewer #2 (Public review):

      Summary:

      Noise invariance is an essential computation in sensory systems for stable perception across a wide range of contexts. In this paper, Landemard et al. perform functional ultrasound imaging across primary, secondary and tertiary auditory cortex in ferrets to uncover the mesoscale organization of background invariance in auditory cortex. Consistent with previous work, they find that background invariance increases throughout the cortical hierarchy. Importantly, they find that background invariance is largely explained by progressive changes in spectro-temporal tuning across cortical stations which are biased towards foreground sound features. To test if these results are broadly relevant, they then re-analyze human fMRI data and find that spectro-temporal tuning fails to explain background invariance in human auditory cortex.

      Strengths:

      (1) Novelty of approach: Though the authors have published on this technique previously, functional ultrasound imaging offers unprecedented temporal and spatial resolution in a species where large-scale calcium imaging is not possible and electrophysiological mapping would take weeks or months. Combining mesoscale imaging with a clever stimulus paradigm, they address a fundamental question in sensory coding.

      (2) Quantification and execution: the results are generally clear and well supported by statistical quantification.

      (3) Elegance of modeling: The spectrotemporal model presented here is explained clearly and most importantly, provides a compelling framework for understanding differences in background invariance across cortical areas.

      Comments on revised version:

      The authors have addressed all of my previous concerns and their publicly shared data is easy to view, this is a nice contribution to the field.

    1. Reviewer #2 (Public review):

      Summary:

      Wang et al. measure from 10 cortical and subcortical brain as mice learn a go/no-go visual discrimination task. They found that during learning, there is a reshaping of inter-areal connections, in which a visual-frontal subnetwork emerges as mice gain expertise. Also visual stimuli decoding became more widespread post-learning. They also perform silencing experiments and find that OFC and V2M are important for the learning process. The conclusion is that learning evoked a brain-wide dynamic interplay between different brain areas that together may promote learning.

      Strengths:

      The manuscript is written well and the logic is rather clear. I found the study interesting and of interest to the field. The recording method is innovative and requires exceptional skills to perform. The outcomes of the study are significant, highlighting that learning evokes a widespread and dynamics modulation between different brain areas, in which specific task-related subnetworks emerge.

      Weaknesses:

      I had several major concerns:

      (1) The number of mice was small for the ephys recordings. Although the authors start with 7 mice in Figure 1, they then reduce to 5 in panel F. And in their main analysis, they minimize their analysis to 6/7 sessions from 3 mice only. I couldn't find a rationale for this reduction, but in the methods they do mention that 2 mice were used for fruitless training, which I found no mention in the results. Moreover, in the early case, all of the analysis is from 118 CR trials taken from 3 mice. In general, this is a rather low number of mice and trial numbers. I think it is quite essential to add more mice.

      (2) Movement analysis was not sufficient. Mice learning a go/no-go task establish a movement strategy that is developed throughout learning and is also biased towards Hit trials. There is an analysis of movement in Figure S4, but this is rather superficial. I was not even sure that the 3 mice in Figure S4 are the same 3 mice in the main figure. There should be also an analysis of movement as a function of time to see differences. Also for Hits and FAs. I give some more details below. In general, most of the results can be explained by the fact that as mice gain expertise, they move more (also in CR during specific times) which leads to more activation in frontal cortex and more coordination with visual areas. More needs to be done in terms of analysis, or at least a mention of this in the text.

      (3) Most of the figures are over-detailed, and it is hard to understand the take-home message. Although the text is written succinctly and rather short, the figures are mostly overwhelming, especially Figures 4-7. For example, Figure 4 presents 24 brain plots! For rank input and output rank during early and late stim and response periods, for early and expert and their difference. All in the same colormap. No significance shown at all. The Δrank maps for all cases look essentially identical across conditions. The division into early and late time periods is not properly justified. But the main take home message is positive Δrank in OFC, V2M, V1 and negative Δrank in ThalMD and Str. In my opinion, one trio map is enough, and the rest could be bumped to the Supplementary section, if at all. In general, the figure in several cases do not convey the main take home messages. See more details below.

      (4) The analysis is sometimes not intuitive enough. For example, the rank analysis of input and output rank seemed a bit over complex. Figure 3 was hard to follow (although a lot of effort was made by the authors to make it clearer). Was there any difference between the output and input analysis? Also, the time period seems redundant sometimes. Also, there are other network analysis that can be done which are a bit more intuitive. The use of rank within the 10 areas was not the most intuitive. Even a dimensionality reduction along with clustering can be used as an alternative. In my opinion, I don't think the authors should completely redo their analysis, but maybe mention the fact that other analyses exist.

    1. Reviewer #2 (Public review):

      Summary:

      The authors show that A. japonicus calcitonins (AjCT1 and AjCT2) activate not only the calcitonin/calcitonin-like receptor, but they also activate the two "PDF receptors", ex vivo. They also explore secondary messenger pathways that are recruited following receptor activation. They determine the source of CT1 and CT2 using qPCR and in situ hybridization and finally test the effects of these peptides on tissue contractions, feeding and growth. This study provides solid evidence that CT1 and CT2 act as ligands for calcitonin receptors; however, evidence supporting cross-talk between CT peptides and "PDF receptors" is weak.

      Strengths:

      This is the first study to report pharmacological characterization of CT receptors in an echinoderm. Multiple lines of evidence in cell culture (receptor internalization and secondary messenger pathways) support this conclusion.

      Weaknesses:

      The authors claim that A. japonicus CTs activate "PDF" receptors and suggest that this cross-talk is evolutionary ancient since similar phenomenon also exists in the fly Drosophila melanogaster. These conclusions are not fully supported. The authors perform phylogenetic analysis to show that the two "PDF" receptors form an independent clade. The bootstrap support is quite low in a lot of instances, especially for the deuterostomian and protostomian PDFR clades which is below 30. With such low support, it is unclear if the clade comprising deuterostomian "PDFR" is in fact PDFRs and not another receptor type whose endogenous ligand (besides CT) remains to be discovered.

    1. Reviewer #2 (Public review):

      The manuscript by Sarkar et al has demonstrated the infection of liver cells/hepatocytes with Mtb and the significance of liver cells in the replication of Mtb by reprogramming lipid metabolism during tuberculosis. Besides, the present study shows that similar to Mtb infection of macrophages (reviewed in Chen et al., 2024; Toobian et al., 2021), Mtb infects liver cells but with a greater multiplication owing to consumption of enhanced lipid resources mediated by PPARg that could be cleared by its inhibitors. The strength of the study lies in clinical evaluation of the presence of Mtb in human autopsied liver samples from individuals with miliary tuberculosis and presence of a clear granuloma-like structure. The interesting observation is of granuloma-like structure in liver which prompts further investigations in the field.

      The modulation of lipid synthesis during Mtb infection, such as PPARg upregulation, appears generic to different cell types including both liver cells and macrophage cells. It is also known that infection affect PPARγ expression and activity in hepatocytes. It is also known that this can lead to lipid droplet accumulation in the liver and the development of fatty liver disease (as shown for HCV). This study is in similar line for M.tb infection. As liver is the main site for lipid regulation, the availability of lipid resources is greater and higher is the replication rate. In short, the observations from the study confirm the earlier studies with these additional cell types. It is known that higher the lipid content, greater are Lipid Droplet-positive Mtb and higher is the drug resistance (Mekonnen et al., 2021). The DMEs of liver cells add further to the phenotype.

      Comments on revised version:

      The authors noted that even in experiments where mice were infected with lower CFUs, the presence of Mtb colonies could still be detected in the liver. It would be beneficial to include some experimental data related to this in the supplementary information, as it could provide valuable insights for the research field.

    1. Reviewer #2 (Public review):

      Summary:

      This study elucidated the impact of GATA4 on aging- and injury-induced cartilage degradation and osteoarthritis (OA) progression, based on the team's finding that GATA expression is positively correlated with aging in human chondrocytes. By integrating cell culture of human chondrocytes, gene manipulation tools (siRNA, lentivirus), biological/biochemical analyses and murine models of post-traumatic OA, the team found that increasing GATA4 levels reduced anabolism and increased catabolism of chondrocytes from young donors, likely through upregulation of the BMP pathway, and that this impact is not correlated with TGF-β stimulation. Conversely, silencing GATA4 by siRNA attenuated catabolism and elevated aggrecan/collagen II biosynthesis of chondrocytes from old donors. The physiological relevance of GATA4 was further validated by the accelerated OA progression observed in lentivirus-infected mice in the DMM model.

      Strengths:

      This is a highly significant and innovative study that provides new molecular insights into cartilage homeostasis and pathology in the context of aging and disease. The experiments were performed in a comprehensive and rigorous manner. The data were interpreted thoroughly in the context of the current literature.

      Weaknesses:

      The only aspect that would benefit from further clarification is a more detailed discussion of aging-associated ECM changes in the context of prior literature.

    1. Reviewer #2 (Public review):

      Summary:

      Goal of the study. The authors tried to pinpoint the origins of transient and sustained responses measured at retinal ganglion cells (rgcs), which is the output layer of the retina. Response characteristics of rgcs are used to group them into different types. The diversity of rgc types represents the ability of the retina to transform visual inputs into distinct output channels. They find that the physical dimensions of bipolar cell's synaptic ribbons (specialized release sites/active zones) vary across the different types of cone on-bpcs, in ways that they argue could facilitate transient or sustained release. This diversity of release output is what they argue underlies the differences in on-rgcs response characteristics, and ultimately represents a mechanism for creating parallel cone-driven channels.

      Strengths:

      The major strengths of the study are the anatomical approaches employed and the use of the "glutamate sniffer" to assay synaptic glutamate levels. The outline of the study is elegant and reflects the strengths of the authors.

      Comments on revised version:

      The authors have addressed my comments either through new experiments and/or with additional citations.

      Explanation of the studies significance. I think the study provides a solid set of data, acquired through exceptional methodologies, and delivers a compelling hypothesis. This is an exceptionally talented group of systems level thinkers and experimentalists, who are now pointing to smaller scale biophysical principles of synaptic transmission.

    1. Reviewer #2 (Public review):

      Summary:

      This paper explores a highly interesting question regarding how species migration success relates to phenology shifts, and it finds a positive relationship. The findings are significant, and the strength of the evidence is solid. However, there are substantial issues with the writing, presentation, and analyses that need to be addressed. First, I disagree with the conclusion that species that don't migrate are "losers" - some species might not migrate simply because they have broad climatic niches and are less sensitive to climate change. Second, the results concerning species' southern range limits could provide valuable insights. These could be used to assess whether sampling bias has influenced the results. If species are truly migrating, we should observe northward shifts in their southern range limits. However, if this is an artifact of increased sampling over time, we would expect broader distributions both north and south. Finally, Figure 1 is missed panel B, which needs to be addressed.

      Comments on revised version:

      The revision has substantially improved the paper.

    1. Reviewer #2 (Public review):

      Summary:

      The fly visual circuit and its behavioral response to simple visual stimuli have been well investigated, yet how they respond to more complex visual patterns is less understood. Canelo et al. first characterized a fly's steering to simple stimuli and examined how the combination of those stimuli impacts behavior. Combining behavioral experiments and simulation, the authors found that, for some combinations, a behavioral response can be explained by a linear summation of responses to individual stimuli. However, for looming and background motion combinations, the behavioral response to one was suppressed by the other. Furthermore, the effect was dependent on the onset timing of the pair of stimuli.

      Strength:

      The authors tested various visual stimulus patterns and time delays between combinations of visual stimuli and found novel interactions in behavior. Their findings support the idea that, depending on the visual context, additional mechanisms kick into the visual-motor circuit to coordinate steering behavior flexibly.

      Weakness:

      The manuscript does not provide conclusive evidence on the presence of an efference copy signal, though there appears to be an intention to associate it with the result. However, demonstrating it is likely to be beyond the main scope of the revised version.

      The goal of this manuscript is to understand how the fly's steering behavior is coordinated upon complex visual stimuli, and a number of experiments and simulations support their conclusion.

      The behavioral findings presented in this paper will be helpful in further dissecting the underlying neural mechanisms of contextual sensory processing and in understanding visual processing in other species.

    1. Reviewer #2 (Public review):

      The information provided in the current version of the manuscript is not sufficient to assess the scientific significance of the study.

      (1) In many cases, the details of the experiments or behavioral tasks described in the main text are not consistent with those provided in the Materials and Methods section. Below, I list only a few of these discrepancies as examples:

      a) For Experiment 1, the Methods section states that the detection stimulus was presented for 2000 ms (lines 494 and 498), but Figure 1 in the main text indicates a duration of 1500 ms.

      b) For Experiment 2, not only is the range of SOAs mentioned in the Methods section inconsistent with that shown in the main text and the corresponding figure, but the task design also differs between sections.

      c) For Experiment 3, the main text indicates that EEG recordings were conducted, but in the Methods section, the EEG recording appears to have been part of Experiment 2 (lines 538-540).

      (2) The results described in the text often do not match what is shown in the corresponding figure. For example:

      a) In lines 171-178, the SOAs at which a significant difference was found between the two conditions do not appear to match those shown in Figure 2A.

      b) In Figure 4, the figure legend (lines 225-228) does not correspond to the content shown in the figure.

      c) In Figure 9, not sufficient information is provided within the figure or in the text, making it difficult to understand. Consequently, the results described in the text cannot be clearly linked to the figure.

      (3) Insufficient information is provided regarding the data analysis procedures, particularly the permutation tests used for the data presented in Figures 2B, 4, and 10. The results shown in these figures are critical for the main conclusions drawn in the manuscript.

      Given these issues, it is not possible to provide a detailed review of the study, particularly regarding its scientific significance.

    1. Reviewer #2 (Public review):

      Summary:

      Shahbazi et al. trained recurrent neural networks (RNNs) to simulate human upper limb movement during adaptation to a force field perturbation. They demonstrated that throughout adaptation, the pattern of motor commands to the muscles of the simulated arm changed, allowing the perturbed movements to regain their typical, perturbation-free straight-line paths. After this initial learning block (FF1), the network encountered null-fields to wash out the adaptation, before re-experiencing the force in a second learning block (FF2). Upon re-exposure, the network learned faster than during initial learning, consistent with the savings observed in behavioral studies of adaptation. They also found that as the number of hidden units in the RNN increased, so did the probability of exhibiting savings. The authors concluded that these results propose a neural basis for savings that is independent of context and strategic processes.

      Strengths:

      The paper addresses an important and controversial topic in motor adaptation: the mechanism underlying motor memory. The RNN simulation reproduces behavioral hallmarks of adaptation, and it provides a useful illustration of the pattern of muscle activity underlying human-like movements under both normal and perturbing conditions. While the savings effect produced by the network, though significant, appears somewhat small, the simulation demonstrating an increase in savings with a greater number of hidden units is particularly intriguing.

      Weaknesses:

      (1) To be transparent, savings in motor adaptation have been a primary focus of my own research. Some core findings presented in this paper are at odds with the ideas I and others have previously put forward. While I don't want to impose my agenda on the authors of this paper, I do think the authors should address these issues.

      a) The authors acknowledge the ongoing debate in the literature regarding the mechanisms underlying savings, particularly whether it stems from explicit or implicit learning processes. However, it remains unclear how the current work addresses this debate. There is already a considerable body of research, particularly in visuomotor adaptation, demonstrating that savings is predominantly driven by explicit strategies. For example, when people are asked to report their strategy, they recall a strategy that was useful during the first learning block (Morehead et al. 2015). Furthermore, savings are abolished under experimental manipulations designed to eliminate strategic contributions (e.g., Haith et al., 2015; Huberdeau et al., 2019; Avraham et al., 2021). The authors briefly state that their findings support the hypothesis that a neural basis of memory retention underlying savings can be independent of cognitive or strategic learning components, and that savings can be characterized as implicit. While these statements may be true, it is not clear how this work substantiates these claims.<br /> b) Our research has also demonstrated that if implicit adaptation is completely washed out after the initial learning block, it not only fails to exhibit savings but is actually attenuated relative to the first learning block (Avraham et al., 2021). This phenomenon of attenuation upon relearning can also be seen in other studies of visuomotor adaptation (e.g., Leow et al., 2020; Yin and Wei, 2020; Hamel et al., 2021; Hamel et al., 2022; Wang and Ivry, 2023; Hadjiosif et al., 2023). More recently, we have shown that this attenuation is due to anterograde interference arising from the experience with the washout block experience (Avraham and Ivry, 2025). We illustrated that the implicit system is highly susceptible to interference; it doesn't require exposure to salient opposite errors and can occur even following prolonged exposure to veridical feedback. The central thesis of this paper, namely that implicit savings can emerge through RNNs, is at odds with these empirical results. The authors should address this discrepancy.

      (2) This brings me to the question about neural correlates: The results are linked to activity in the primary motor cortex. How does that align with the well-established role of the cerebellum in implicit motor adaptation? And with the studies showing that savings are due to explicit strategies, which are generally associated with prefrontal regions?

      (3) The analysis on the complexity of the neural network (i.e., the number of hidden units) and its relationship to savings is very interesting. It makes sense to me that more complex networks would show more savings. I'm not sure I follow the author's explanation, but my understanding is that increased network complexity makes it more difficult to override the formed memory through interference (e.g., from the experience with NF2). Also, the results indicate that a network with 32 units led to a less-than-chance level of networks exhibiting savings (Figure 3b). What behavioral output does this configuration produce? Could this behavior manifest as attenuation upon relearning? Furthermore, if one were to examine an even smaller, simpler network (perhaps one more closely reflecting cerebellar circuits), would such a model predict attenuation rather than savings?

      (4) The authors emphasize that their network did not receive any explicit contextual signals related to the presence or absence of the force field (FF), thus operating in a 'context-free' manner. From my understanding, some existing models of context's role in motor memories (e.g., Oh and Schweighofer, 2019; Heald et al., 2021) propose that memory-related changes can be observed even without explicit contextual information, as contextual changes can be inferred from sudden or significant environmental shifts (e.g., the introduction or removal of perturbations). Given this, could the observed savings in the current simulation be explained by some form of contextual retrieval, inferred by the network from the re-presentation of the perturbation in FF2?

      (5) If there is residual hidden unit activity related to the FF at the end of the NF2 phase, how does the simulated movement revert back to baseline? Are there any differences in the movement trajectory, beyond just lateral deviation, between NF1 and NF2? The authors state that "changes in the preparatory hidden unit activity did not result in substantive changes in the motor commands (Figure 5b), which emphasizes that the uniform shift resides in the null space of motor output." However, Figure 5b appears to show visible changes in hidden unit activity. Don't these changes reflect a pattern of muscle activity that is the basis for behavior? These changes are indeed small, but it seems that so is the effect size for savings (Figure 3a). Could this suggest that there is not, in fact, a complete washout of initial learning during NF2 within the network?

    1. Reviewer #2 (Public review):

      Summary:

      This study investigated whether the identity of a peripheral saccade target object is predictively fed back to the foveal retinotopic cortex during saccade preparation, a critical prediction of the foveal prediction hypothesis proposed by Kroell & Rolfs (2022). To achieve this, the authors leveraged a gaze-contingent fMRI paradigm, where the peripheral saccade target was removed before the eyes landed near it, and used multivariate decoding analysis to quantify identity information in the foveal cortex. The results showed that the identity of the saccade target object can be decoded based on foveal cortex activity, despite the fovea never directly viewing the object, and that the foveal feedback representation was similar to passive viewing and not explained by spillover effects. Additionally, exploratory analysis suggested IPS as a candidate region mediating such foveal decodability. Overall, these findings provide neural evidence for the foveal cortex processing the features of the saccade target object, potentially supporting the maintenance of perceptual stability across saccadic eye movements.

      Strengths:

      This study is well-motivated by previous theoretical findings (Kroell & Rolfs, 2022), aiming to provide neural evidence for a potential neural mechanism of trans-saccadic perceptual stability. The question is important, and the gaze-contingent fMRI paradigm is a solid methodological choice for the research goal. The use of stimuli allowing orthogonal decoding of stimulus category vs stimulus shape is a nice strength, and the resulting distinctions in decoded information by brain region are clean. The results will be of interest to readers in the field, and they fill in some untested questions regarding pre-saccadic remapping and foveal feedback.

      Weaknesses:

      The conclusions feel a bit over-reaching; some strong theoretical claims are not fully supported, and the framing of prior literature is currently too narrow. A critical weakness lies in the inability to test a distinction between these findings (claiming to demonstrate that "feedback during saccade preparation must underlie this effect") and foveal feedback previously found during passive fixation (Williams et al., 2008). Discussions (and perhaps control analysis/experiments) about how these findings are specific to the saccade target and the temporal constraints on these effects are lacking. The relationship between the concepts of foveal prediction, foveal feedback, and predictive remapping needs more thorough treatment. The choice to use only 4 stimuli is justified in the manuscript, but remains an important limitation. The IPS results are intriguing but could be strengthened by additional control analysis. Finally, the manuscript claims the study was pre-registered ("detailing the hypotheses, methodology, and planned analyses prior to data collection"), but on the OSF link provided, there is just a brief summary paragraph, and the website says "there have been no completed registrations of this project".

      Specifics:

      (1) In the eccentricity-dependent decoding results (Figure 2B), are there any statistical tests to support the results being a U-shaped curve? The dip isn't especially pronounced. Is 4 degrees lower than the further ones? Are there alternative methods of quantifying this (e.g., fitting it to a linear and quadratic function)?

      (2) In the parametric modulation analysis, the evidence for IPS being the only region showing stronger fovea vs peripheral beta values was weak, especially given the exploratory nature of this analysis. The raw beta value can reflect other things, such as global brain fluctuations or signal-to-noise ratio. I would also want to see the results of the same analysis performed on the control condition decoding results.

      (3) Many of the claims feel overstated. There is an emphasis throughout the manuscript (including claims in the abstract) that these findings demonstrate foveal prediction, specifically that "image-specific feedback during saccade preparation must underlie this effect." To my understanding, one of the key aspects of the foveal prediction phenomenon that ties it closely to trans-saccadic stability is its specificity to the saccade target but not to other objects in the environment. However, it is not clear to what degree the observed findings are specific to saccade preparation and the peripheral saccade target. Should the observers be asked to make a saccade to another fixation location, or simply maintain passive fixation, will foveal retinotopic cortex similarly contain the object's identity information? Without these control conditions, the results are consistent with foveal prediction, but do not definitively demonstrate that as the cause, so claims need to be toned down.

      (4) Another critical aspect is the temporal locus of the feedback signal. In the paradigm, the authors ensured that the saccade target object was never foveated via the gaze-contingent procedure and a conservative data exclusion criterion, thus enabling the test of feedback signals to foveal retinotopic cortex. However, due to the temporal sluggishness of fMRI BOLD signals, it is unclear when the feedback signal arrives at the foveal retinotopic cortex. In other words, it is possible that the feedback signal arrives after the eyes land at the saccade target location. This possibility is also bolstered by Chambers et al. (2013)'s TMS study, where they found that TMS to the foveal cortex at 350-400 ms SOA interrupts the peripheral discrimination task. The authors should qualify their claims of the results occurring "during saccade preparation" (e.g., pg 1 ln 22) throughout the manuscript, and discuss the importance of temporal dynamics of the effect in supporting stability across saccades.

      (5) Relatedly, the claims that result in this paradigm reflect "activity exclusively related to predictive feedback" and "must originate from predictive rather than direct visual processes" (e.g., lines 60-65 and throughout) need to be toned down. The experimental design nicely rules out direct visual foveal stimulation, but predictive feedback is not the only alternative to that. The activation could also reflect mental imagery, visual working memory, attention, etc. Importantly, the experiment uses a block design, where the same exact image is presented multiple times over the block, and the activation is taken for the block as a whole. Thus, while at no point was the image presented at the fovea, there could still be more going on than temporally-specific and saccade-specific predictive feedback.

      (6) The authors should avoid using the terms foveal feedback and foveal prediction interchangeably. To me, foveal feedback refers to the findings of Williams et al. (2008), where participants maintained passive fixation and discriminated objects in the periphery (see also Fan et al., 2016), whereas foveal prediction refers to the neural mechanism hypothesized by Kroell & Rolfs (2022), occurring before a saccade to the target object and contains task irrelevant feature information.

      (7) More broadly, the treatment of how foveal prediction relates to saccadic remapping is overly simplistic. The authors seem to be taking the perspective that remapping is an attentional phenomenon marked by remapping of only attentional/spatial pointers, but this is not the classic or widely accepted definition of remapping. Within the field of saccadic remapping, it is an ongoing debate whether (/how/where/when) information about stimulus content is remapped alongside spatial location (and also whether the attentional pointer concept is even neurophysiologically viable). This relationship between saccadic remapping and foveal prediction needs clarification and deeper treatment, in both the introduction and discussion.

      (8) As part of this enhanced discussion, the findings should be better integrated with prior studies. E.g., there is some evidence for predictive remapping inducing integration of non-spatial features (some by the authors themselves; Harrison et al., 2013; Szinte et al., 2015). How do these findings relate to the observed results? Can the results simply be a special case of non-spatial feature integration between the currently attended and remapped location (fovea)? How are the results different from neurophysiological evidence for facilitation of the saccade target object's feature across the visual field (Burrow et al., 2014)? How might the results be reconciled with a prior fMRI study that failed to find decoding of stimulus content in remapped responses (Lescroart et al, 2016)? Might this reflect a difference between peripheral-to-peripheral vs peripheral-to-foveal remapping? A recent study by Chiu & Golomb (2025) provided supporting evidence for peripheral-to-fovea remapping (but not peripheral-to-peripheral remapping) of object-location binding (though in the post-saccadic time window), and suggested foveal prediction as the underlying mechanism.

    1. Reviewer #2 (Public review):

      Summary:

      This paper examines infants' learning in a novel gaze-contingent cued reversal learning task. The study provides strong evidence that infants learn in the task, and they characterize individual differences in learning using computational modeling. The best-fitting model of the set compared reflects a learning of mappings between context cues and outcomes that do not carry over across blocks. Infants are then clustered into two groups based on model parameter estimates capturing primacy bias and reward sensitivity. These groupings exhibited differences in infant temperament and other developmental measures. The modeling is rigorous, with model predictions accounting for substantial variance in infants' choices, and parameter estimates showing high recoverability. This study is important in that it demonstrates that such rigorous standards in computational modeling of behavior can be successfully deployed in infant studies.

      Strengths:

      The study provides evidence that infants exhibit cognitive flexibility within a reversal learning task and do not simply perseverate.

      The methods used within the novel gaze-contingent will be useful for other groups interested in studying learning and decision-making in infants.

      The study applies rigorous computational modeling approaches to infants' choices (inferred from gaze) and their physiological responses (i.e., pupil dilation) in the task, demonstrating that infants' reward learning is well-captured by an error-driven learning process.

      The authors conduct model comparison, posterior predictive checks, and parameter recoverability analyses and demonstrate that model parameters can be well estimated and that the model can recapitulate infant choice behavior.

      Physiological pupil dilation measures that correlate with prediction error signals from the model further validate the model as capturing the learning process.

      Weaknesses:

      It is not entirely clear that the individual differences in reversal learning identified between the two clusters of infants (ostensibly reflecting differences in cognitive flexibility) have construct validity or specificity for the associated developmental abilities that differ between groups (daily living, communication, motor function, and socialization).

      Similarly, it's not clear why the paper is framed as an advance for infant computational *psychiatry* rather than simply an advance in computational modeling of infant behavior. It seems to me that a more general framing is warranted. Basic cognitive development research can also benefit from cognitive hypothesis testing via computational model comparison and precise measurement of infants' behavior in reward learning tasks. Is there reason to believe that infants' behavior in this task might have construct validity for mental health problems related to cognitive flexibility later in development? Do the Vineland or IBQ-R-VSF prospectively predict clinical symptoms?

      A large proportion of the recruited infants (14 of 55) were excluded, but few details are provided on why and when they were excluded. Did the excluded infants differ on any of the non-task measures? This information would be helpful to understand limitations in the utility of the task or the generalizability of the findings.

      It is stated that: "The infants who completed at least three trials following the reversal were included in the analysis, as it is more likely that their expectations were violated in this interval." Are three trials post-reversal sufficient to obtain reliable estimates of model parameters? More details should be provided on the number of trials completed for all of the included/excluded infants.

    1. Reviewer #2 (Public review):

      Summary:

      The authors investigate the dependence of phage adsorption rates on host metabolic state, using 5 coliphages that differ in their infection cycles and host receptors. They find that four of the 5 phages showed significantly reduced infection under low metabolic states, with phages that generally have weaker adsorption being more strongly affected by low metabolism. The authors complement their findings with a 2-step infection model where phages can disengage from their hosts after initial adsorption. The paper illustrates the power of standardized experimental protocols for quantitative trait comparisons and highlights the dependence of phage infection success on host physiology.

      Strengths:

      The paper is well written and clearly structured.

      The experiments are well-designed, and particularly commendable is the diligent use of control scenarios to allow for quantitative comparison between phages. This standardized protocol will be valuable for the entire phage community.

      The authors convincingly show the impact of host physiology on phage adsorption success. This dependence has so far mainly been considered for intracellular phage replication, and the paper shows that host physiology has to be taken into account at all steps of phage infection.

      Weaknesses:

      There are some concerns about the experimental setup and which conclusions can be drawn from it:

      Before phage infection, bacterial cultures are grown to exponential growth, washed, and then resuspended with glucose or arsenate-azide for 10min. It is however, questionable that 10 minutes is enough to simulate high and low metabolic states realistically. 10 minutes seems to be quite short to go from exponential growth to a low metabolic state, given the transcriptional memory of previous environments. It seems more likely that the population will be quite heterogeneous, with cells in various states of transition towards low metabolic states.

      Given that arsenate and azide inhibit cellular metabolism, i.e., have antimicrobial effects, cells might not just downregulate metabolism but also activate the stress response, and this causes some of the observed effects on phage adsorption. Therefore, the 'low metabolic state' of the cells in this paper could mean that cells are starved or that they are stressed or both.

      The abundance of receptors could change between the high and low metabolic media conditions and contribute to the observed differences in adsorption, while the authors seem to assume in their model that the initial adsorption rate always remains the same.

    1. Reviewer #2 (Public review):

      Summary:

      The author's central hypothesis was that the strength of cortico-respiratory coupling in infants is negatively associated with apnoea rate. To prove this, they first investigated the existence of cortico-respiratory coupling in premature and term-born infants, the spatial localisation of the cortical activity and its relationship with the phase of the respiratory cycle, and the directionality of coupling.

      Strengths:

      The researchers used synchronised EEG and impedance pneumography to detect the phase amplitude coupling.

      They have studied a wide range of gestations, from 28 weeks to 42 weeks, including males and females. Their exclusion criteria ensured that healthy babies were studied and potential confounders of impaired respiratory activity were avoided. Their sequential approach in addressing the objectives was appropriate.

      Weaknesses:

      As a neonatal clinician and neuroscientist, I have commented based on my expertise. I have not commented on signal processing.

      I did not identify any major weaknesses in the study. Some minor weaknesses include:

      (1) Data relating to the cortical oscillations and the respiratory phase is given. However, whether this would lead to their hypothesis that the strength of cortico-respiratory coupling is negatively associated with apnoea rate is unclear. What preceding data enabled the authors to link the strength of coupling to the rate of apnoea?

      (2) If we did not know of data showing the existence of cortico-respiratory coupling in newborn infants, then should it not be the first research question to examine?

      (3) What are the characteristics of the infants who contributed data to establish the cortico-respiratory coupling (Figures 2 and 3)?

      (4) Although it is the most plausible direction of the relationship, with neural activation driving respiratory muscle contraction, how can the authors prove this with their data? Given that they show coherence between signals, how do we know that the cortical signal precedes the respiratory muscle contraction?

      (5) Apgar score is an ordinal variable. The authors should summarise this as median (range).

    1. Reviewer #2 (Public review):

      Summary:

      The authors investigated whether the total DNA concentration in gastric fluid (gfDNA), collected via routine esophagogastroduodenoscopy (EGD), could serve as a diagnostic and prognostic biomarker for gastric cancer. In a large patient cohort (initial n=1,056; analyzed n=941), they found that gfDNA levels were significantly higher in gastric cancer patients compared to non-cancer, gastritis, and precancerous lesion groups. Unexpectedly, higher gfDNA concentrations were also significantly associated with better survival prognosis and positively correlated with immune cell infiltration. The authors proposed that gfDNA may reflect both tumor burden and immune activity, potentially serving as a cost-effective and convenient liquid biopsy tool to assist in gastric cancer diagnosis, staging, and follow-up.

      Strengths:

      This study is supported by a robust sample size (n=941) with clear patient classification, enabling reliable statistical analysis. It employs a simple, low-threshold method for measuring total gfDNA, making it suitable for large-scale clinical use. Clinical confounders, including age, sex, BMI, gastric fluid pH, and PPI use, were systematically controlled. The findings demonstrate both diagnostic and prognostic value of gfDNA, as its concentration can help distinguish gastric cancer patients and correlates with tumor progression and survival. Additionally, preliminary mechanistic data reveal a significant association between elevated gfDNA levels and increased immune cell infiltration in tumors (p=0.001).

      Weaknesses:

      The study has several notable weaknesses. The association between high gfDNA levels and better survival contradicts conventional expectations and raises concerns about the biological interpretation of the findings. The diagnostic performance of gfDNA alone was only moderate, and the study did not explore potential improvements through combination with established biomarkers. Methodological limitations include a lack of control for pre-analytical variables, the absence of longitudinal data, and imbalanced group sizes, which may affect the robustness and generalizability of the results. Additionally, key methodological details were insufficiently reported, and the ROC analysis lacked comprehensive performance metrics, limiting the study's clinical applicability.

    1. Reviewer #2 (Public review):

      Summary:

      The study investigates whether β-glucan (BG) can reprogram the innate immune system to protect against intestinal inflammation. The authors show that mice pretreated with BG prior to DSS-induced colitis experience reduced colitis severity, including less weight loss, colon damage, improved gut repair, and lowered inflammation. These effects were independent of adaptive immunity and were linked to changes in monocyte function.

      The authors show that the BG-trained monocytes not only help control inflammation but confer non-specific protection against experimental infections (Salmonella), suggesting the involvement of trained immunity (TI) mechanisms. Using single-cell RNA sequencing, they map the transcriptional changes in these cells and show enhanced differentiation of monocytes into reparative CX3CR1⁺ macrophages. Importantly, these protective effects were transferable to other mice via adoptive cell transfer and bone marrow transplantation, suggesting that the innate immune system had been reprogrammed at the level of stem/progenitor cells.

      Overall, this study provides evidence that TI, often associated with heightened inflammatory programs, can also promote tissue repair and resolution of inflammation. Moreover, this BG-induced functional reprogramming can be further harnessed to treat chronic inflammatory disorders like IBD.

      Strengths:

      (1) The authors use advanced experimental approaches to explore the potential therapeutic use of myeloid reprogramming by β-glucan in IBD.

      (2) The authors follow a data-to-function approach, integrating bulk and single-cell RNA sequencing with in vivo functional validation to support their conclusions.

      (3) The study adds to the growing evidence that TI is not a singular pro-inflammatory program, but can adopt distinct functional states, including anti-inflammatory and reparative phenotypes, depending on the context.

      Weaknesses:

      (1) The epigenetic and metabolic basis of TI is not explored, which weakens the mechanistic claim of TI. This is especially relevant given that a novel reparative, anti-inflammatory TI program is proposed.

      (2) The absence of a BG-only group limits interpretation of the results. Since the authors report tissue-level effects such as enhanced mucosal repair and transcriptional shifts in intestinal macrophages (colonic RNA-Seq), it is important to rule out whether BG alone could influence the gut independently of DSS-induced inflammation.<br /> Without a BG-only control, it is hard to distinguish a true trained response from a potential modulation caused directly by BG.

      (3) Although monocyte transfer experiments show protection in colitis, the fate of the transferred cells is not described (e.g., homing or differentiation into Cx3cr1⁺ macrophage subsets). This weakens the link between specific monocyte subsets and the observed phenotype.

      (3) While scRNA-seq reveals distinct monocyte/macrophage subclusters (Mono1-3..), their specific functional roles remain speculative. The authors assign reparative or antimicrobial functions based on transcriptional signatures, but do not perform causal experiments (depletion or in vitro assays). The biological roles of these cells remain correlative.

      (4) While Rag1⁻/⁻ mice were used to rule out adaptive immunity, the potential role of innate lymphoid cells (ILCs), particularly ILC2s and ILC3s, which are known to promote mucosal repair (PMID: 27484190), was not explored. Given the reparative phenotype observed, the contribution of ILCs remains a confounding factor.

    1. Reviewer #2 (Public review):

      Summary:

      In the manuscript, the authors aim to determine the molecular mechanisms involved in wiring the segmentally homologous a- and p -Wave neurons distinctively and thus are functionally different in modulating forward or backward locomotion. The genetic screen focused on Wnt/Fz-signaling due to its known anterior-to-posterior guidance roles in mammals and nematodes.

      Strengths:

      The conclusion that Frizzled receptors DFz2 and DFz4 as well as the DWnt4 ligand is essential for normal segment-specific axon projections of Wave command neurons is strongly supported by the elaborate morphological analyses of numerous Wnt/Fz in gain and loss of function mutants. The distinctive Wnt/Fz ligand-receptor gradients also imply that they contribute to the diversification of Wave neurons in a location-dependent manner and that DFz2 and DFz4 may have opposing effects on axon extension.

      Labeling of synaptic marker Bruchpilot in DFz2 mutants in this revised manuscript, now supports that the ectopic projections in a-Wave neurons make synaptic connections. Finally, the altered responses in two behavioral assays (optogenetic stimulation of all Wave neurons or tactile stimuli on heads using a von Frey filament) further strongly support the main conclusion, that Wnt/Fz-signaling is essential for the guidance of both Wave neurons and in diversifying their protection pattern in a segment-specific manner.

      Weaknesses:

      There are no major weaknesses in the revised version of this work.

      Re-analysis of DFz2 expression now shows it is bidirectionally distributed. This new result does not affect the previous and current conclusions for the a-Wave neurons but leaves alternative interpretations for p-Wave neurons, which the author now included in their discussions. Evidently, it seems unlikely that the complex wiring of the numerous segmental a- and p-Wave neurons will be solely dependent on Wnt4-DFz2/4 but are likely to also involve other Wnt/Fz (see, Figure 1-figure supplement 2) or distinct guidance signaling pathways. However, unraveling all factors involved is certainly beyond the scope of this study, and the main conclusions made by the authors are well supported by the data provided.

    1. Reviewer #2 (Public review):

      Summary

      The manuscript presents valuable findings, particularly in the crystal structure of the Sld3CBD-Cdc45 interaction and the identification of additional sequences involved in their binding. The modeling of the Sld7-Sld3CBD-CDC45 subcomplex is novel, and the results provide insights into potential conformational changes that occur upon interaction. Although the single-stranded DNA binding data from Sld3 of different species is a minor weakness, the experiments support a model in which the release of Sld3 from the complex may be promoted by its binding to origin single-stranded DNA exposed by the helicase.

    1. Reviewer #2 (Public review):

      Summary:

      This study presents a valuable characterization of the effects of intracranial theta-burst stimulation of the basolateral amygdala on single units spiking activity in several areas in the human brain, associated with memory processing. It is written clearly and concisely, allowing readers to fully understand the analysis used.

      The authors used a visual recognition memory task previously employed by their group to characterize the effects of basolateral amygdala stimulation upon memory consolidation (Inman et al, 2018). This current report presents an interesting analysis that complements the results reported in the 2018 paper.

      Strengths:

      Rare combination of human neurophysiology and behavior -<br /> The type of experiment performed in the manuscript, which contains both neurophysiological data, behavior, and a deep brain stimulation intervention (DBS), is incredibly rare, takes many years to accomplish with tight collaboration between clinical and research teams. Our understanding of spiking dynamics of human neurons is very limited, and this report is an important piece in the puzzle that allows DBS to be used in future interventions that will benefit patients' health.

      Multiple brain areas included -<br /> It's important to note that the report analyzes brain areas with which the Amygdala has extensive connections (Fig. 1A) - Hippocampus, OFC, Amygdala, ACC. It seems that neurons in all these areas were modulated by the stimulation, except the ACC, in which firing rates were so low that only a handful of neurons were included in the analysis. This is an important demonstration that low-amplitude stimulation (even when reduced to 0.5mA) can travel far and wide across the human brain.

      The experiment is cleverly designed to tease apart responses due to visual stimuli (image presentation) and electrical stimulation. Authors suggest that the units modulated by stimulation are largely distinct from those responsive to image offset during trials without stimulation. The subpopulation that responds strongly also tends to have a higher baseline firing rate. It's important to add that the chosen modulation index is more likely to be significant in neurons with higher firing rates (Figure S8). The authors discuss the tradeoff of using a nonparametric modulation index for vs. other methods (for example, percent change in trial-averaged firing rate from baseline).

    1. Reviewer #2 (Public review):

      Summary:

      Soham Mukhopadhyay et al. investigated the protein folding of the secretome from gall-forming microbes using the AI-based structure-modeling tool AlphaFold2. Their study analyzed six gall-forming species, including two Plasmodiophorid species and four others spanning different kingdoms, along with one non-gall-forming Plasmodiophorid species, Polymyxa betae. The authors found no effector fold specifically conserved among gall-forming pathogens, leading to the conclusion that their virulence strategies are likely achieved through diverse mechanisms. However, they identified an expansion of the Ankyrin repeat family in two gall-forming Plasmodiophorid species, with a less pronounced presence in the non-gall-forming Polymyxa betae. Additionally, the study revealed that known effectors such as CCG and AvrSen1 belong to sequence-unrelated but structurally similar (SUSS) effector clusters.

      Strengths:

      (1) The bioinformatics analyses presented in this study are robust, and the AlphaFold2-derived resources deposited in Zenodo provide valuable resources for researchers studying plant-microbe interactions. The manuscript is also logically organized and easy to follow.

      (2) The inclusion of the non-gall-forming Polymyxa betae strengthens the conclusion that no effector fold is specifically conserved in gall-forming pathogens and highlights the specific expansion of the Ankyrin repeat family in gall-forming Plasmodiophorids.

      (3) Figure 4a and 4b effectively illustrate the SUSS effector clusters, providing a clear visual representation of this finding.

      (4) Figure 1 is a well-designed, comprehensive summary of the number and functional annotations of putative secretomes in gall-forming pathogens. Notably, it reveals that more than half of the analyzed effectors lack known protein domains in some pathogens, yet some were annotated based on their predicted structures, despite the absence of domain annotations.

      Weaknesses:

      (1) The effector families discussed in this paper remain hypothetical in terms of their functional roles, which is understandable given the challenges of demonstrating their functions experimentally. However, this highlights the need for experimental validation as a next step.

      Authors' response: Thank you. Yes, there is a lot of work to do in the coming years.

      Reviewer's response: Incorporating experimental validation substantially strengthened the manuscript. Did you try the AlphaFold-Multimer prediction of the interaction between PBTT_00818 and the GroES-like protein? Does the model indicate a high-confidence interface?

      (2) Some analyses, such as those in Figure 4e, emphasize motifs derived from sequence alignments of SUSS effector clusters. Since these effectors are sequence-unrelated, sequence alignments might be unreliable. It would be more rigorous to perform structure-based alignments in addition to sequence-based ones for motif confirmation. For instance, methods described in Figure 3E of de Guillen et al. (2015, https://doi.org/10.1371/journal.ppat.1005228) or tools like Foldseek could be useful for aligning structures of multiple sequences.

      Authors' response: In Fig. 4e, we highlight the conserved cysteine residues. While there is no clearly conserved overall motif, the figure illustrates that despite the high sequence divergence, the key cysteines involved in disulfide-bridge formation are consistently conserved across the sequences.

      Reviewer's response: Understood. Nevertheless, if a reliable sequence alignment can indeed be generated, I would interpret this to mean that the CCG effectors constitute a highly diversified family rather than being truly sequence unrelated. By comparison, members of the MAX effector family share a common fold, yet their sequences are so divergent that sequence alignment is impossible.

      (3) When presenting AlphaFold-generated structures, it is essential to include confidence scores such as pLDDT and PAE. For example, in Figure 1D of Derbyshire and Raffaele (2023, https://doi.org/10.1038/s41467-023-40949-9), the structural representations were colored red due to their high pLDDT scores, emphasizing their reliability.

      Authors' response: Thank you for the observation. Due to the restrictive parameters used in our analysis, over 90 % of the structure would appear red. For this reason, we chose not to include the color scale, as it would not provide additional informative value in this context.

      Reviewer's response: Understood.

    1. Reviewer #2 (Public review):

      Summary:

      This work aims to study the evolution of nitrogenanses, understanding how their structure and function adapted to changes in environment, including oxygen levels and changes in metal availability.

      The study predicts > 3000 structures of nitrogenases, corresponding to extant, ancestral and alternative ancestral sequences. It is observed that structural variations in the nitrogenases correlate with phylogenetic relationships. The amount of data generated in this study represents a massive and admirable undertaking. The study also provides strong insight into how structural evolution correlates with environmental and biological phenotypes.

    1. Reviewer #3 (Public review):

      Summary:

      The authors have studied the mechanics of bolalipid and archaeal mixed-lipid membranes via comprehensive molecular dynamics simulations. The Cooke-Deserno 3-bead-per-lipid model is extended to bolalipids with 6 bead. Phase diagrams, bending rigidity, mechanical stability of curved membranes, and cargo uptake are studied. Effects such as formation of U-shaped bolalipids, pore formation in highly curved regions, and changes in membrane rigidity are studied and discussed. The main aim has been to show how the mixture of bolalipids and regular bilayer lipids in archaeal membrane models enhances the fluidity and stability of these membranes.

      The authors have presented a wide range of simulation results for different membrane conditions and conformations. Analyses and findings are presented clearly and concisely. Figures, supplementary information and movies are of very high quality and very well present what has been studied. The manuscript is well written and is easy to follow.

      The authors have provided detailed response to the points I raised on the first version and have revised their manuscript accordingly. Hence, I only mention what, in my opinion, still deserves to be noted.

      Comments:

      I previously raised an issue with respect to the resort to the Hamm-Kozlov model for fitting the power spectrum of membrane undulations. The authors provided very nice arguments against my concerns. For the sake of completeness, I include a simple scenario, which will better highlight the issue:

      The tilt contribution to the Helfrich Hamiltonian can be written as a quadratic term 1/2 k_t |T|^2, where T is a tilt vector field. This field is written as the difference between the surface normal and the director field aligned with the lipid orientations. In the small deviation Monge description with z=h(x, y) as the height function, the surface normal has the form N=(-dh/dx, -dh/dy, 1). Now assume the director field, n = (b_x, b_y, 1) with small b_x and b_y components. The tilt contribution to the energy thus reads as 1/2 k_t (N - n)^2 ~= 1/2 k_t [|grad h|^2 + 2 b . grad h]. The first term, 1/2 k_t |grad h|^2, is indeed similar to a surface tension term, \sigma |grad h|^2 that you get from the (1 + 1/2 |grad h|^2) approximation to the area element. Therefore, if you only look at height fluctuations, while your membrane actually has some surface tension, it will make distinguishing the tilt contributions to the fluctuations in the linear Monge gauge impossible.

      However, considering that the authors have made sure that the membrane is indeed tensionless, this argument is settled.

      I had also raised an issue about the correct NpT sampling in the simulations, and I'm glad that the authors also set up more rigorously thermostatted/barostatted simulations to check the validity of their findings.

      Also, from the SI, I previously noted that the authors had neglected the longest wavelength mode because it was not equilibrated. This was an important problem and the authors looked into it and ran more simulations that were better equilibrated.

      The analysis of energy of U-shaped lipids with the linear model E=c_0 + c_1 * k_bola is indeed very interesting. I am glad that the authors have expanded this analysis and included mean energy measurements.

    1. Reviewer #2 (Public review):

      Summary:

      This is a concise and interesting article on the role of PHD1-mediated proline hydroxylation of proline residue 604 on RepoMan and its impact on RepoMan-PP1 interactions with phosphatase PP2A-B56 complex leading to dephosphorylation of H3T3 on chromosomes during mitosis. Through biochemical and imaging tools, the authors delineate a key mechanism in the regulation of the progression of the cell cycle. The experiments performed are conclusive with well-designed controls.

      Strengths:

      The authors have utilized cutting-edge imaging and colocalization detection technologies to infer the conclusions in the manuscript.

      Weaknesses:

      Lack of in vitro reconstitution and binding data.

    1. Reviewer #2 (Public review):

      Summary:

      In the present study, the authors, using a mouse model of Fragile X syndrome, explore the intriguing hypothesis that restricting food access over the daily schedule will improve sleep patterns and subsequently enhance behavioral capacities. By restricting food access from 12h to 6h over the nocturnal period (the active period for mice), they show, in these KO mice, an improvement in the sleep pattern accompanied by reduced systemic levels of inflammatory markers and improved behavior. These data, using a classical mouse model of neurodevelopmental disorder (NDD), suggest that modifying eating patterns might improve sleep quality, leading to reduced inflammation and enhanced cognitive/behavioral capacities in children with NDD.

      Overall, the paper is well-written and easy to follow. The rationale of the study is generally well introduced. Data are globally sound. The interpretation is overall supported by the provided data.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Li et al investigates the combined role of diacylglycerol (DAG) kinases (DGK) a and z in Foxp3+ Treg cells function that prevent autoimmunity. The authors generated DGK a and z Treg-specific double knock out mice (DKO) by crossing Dgkalpha-/- mice to DgKzf/f and Foxp3YFPCre/+ mice. The resulting "DKO" mice thus lack DGK a in all cells and DGK and z in Foxp3+Treg cells. The authors show that the DKO mice spontaneously develop autoimmunity, characterized by multiorgan inflammatory infiltration and elevated anti double strand DNA (dsDNA), -single strand DNA (ssDNA), and -nuclear autoantibodies. The authors attribute the DKO mice phenotype to Foxp3+Treg dysfunction, including accelerated conversion into "exTreg" cells with pathogenic activity. Interestingly, the combined deficiency of DGK a and z seems to release Treg cell dependence on CD28-mediated costimulatory signals, which the authors show by crossing their DKO mice to CD28-/- mice (TKO mice), which also develop autoimmunity.

      Strengths:

      The phenotypes of the mutant mice described in the manuscript are striking, and the authors provide a comprehensive analysis of the functional processes alters by the lack of DGKs.

      Weaknesses:

      One aspect that could be better explored is the direct role of "ex-Tregs" in causing pathogenesis in the models utilized.

      But overall, this is an important report that makes a significant addition to the understanding of DAG kinases to Treg cells biology.

    1. Reviewer #2 (Public review):

      Summary:

      This work is one of the best instances of a well-controlled experiment and theoretically impactful findings within the literature on templates guiding attentional selection. I am a fan of the work that comes out of this lab and this particular manuscript is an excellent example as to why that is the case. Here, the authors use fMRI (employing MVPA) to test whether during the preparatory search period, a search template is invoked within the corresponding sensory regions, in the absence of physical stimulation. By associating faces with scenes, a strong association was created between two types of stimuli that recruit very specific neural processing regions - FFA for faces and PPA for scenes. The critical results showed that scene information that was associated with a particular cue could be decoded from PPA during the delay period. This result strongly supports invoking of a very specific attentional template.

      Strengths:

      There is so much to be impressed with in this report. The writing of the manuscript is incredibly clear. The experimental design is clever and innovative. The analysis is sophisticated and also innovative. The results are solid and convincing.

      Weaknesses:

      I only have a few weaknesses to point out.<br /> This point is not so much of a weakness, but a further test of the hypothesis put forward by the authors. The delay period was long - 8 seconds. It would be interesting to split the delay period into the first 4seconds and the last 4seconds and run the same decoding analyses. The hypothesis here is that semantic associations take time to evolve, and it would be great to show that decoding gets stronger in the second delay period as opposed to the period right after the cue. I think it would be a stronger test of the template hypothesis.

      Typo in the abstract "curing" vs "during."

      It is hard to know what to do with significant results in ROIs that are not motivated by specific hypotheses. However, for Figure 3, what are explanations for ROIs that show significant differences above and beyond the direct hypotheses set out by the authors?

      Following the revision, I have no further comments or concerns.

    1. It depends in my opinion. Many variables with this company and what you seek as well as preferences. Do you want a three bank typewriter? I would go with an Erika 2 for a three bank typewriter. Do you want a more modern typewriter? Perhaps an Erika 10 is a good choice.  Do you want a certain font? Maybe Fraktur? (Good luck finding one for cheap however) Erika 5 would be a good choice for fonts maybe. Do you want a rare and collectable model? Go with an Erika 20. They have basket shift too. I would personally avoid the newer models, such as the Erika 50. They aren't great in my preference, but you decide! There are many different models for different people, but the main company that produced Erikas, which is Seidel & Naumann, also created the "Ideal" brand of typewriters. S&N is responsible for a lot of typewriters.

      https://www.reddit.com/r/typewriters/comments/1mqcu0f/erika_typewriters_i_am_looking_to_potentially_get/<br /> via LeSwiss1886

    1. Reviewer #2 (Public review):

      This study investigates the role of cDC1 in atherosclerosis progression using Xcr1Cre-Gfp Rosa26LSL-DTA ApoE-/- mice. The authors demonstrate that selective depletion of cDC1 reduces atherosclerotic lesions in hyperlipidemic mice. While cDC1 depletion did not alter macrophage populations, it suppressed T cell activation (both CD4+ and CD8+ subsets) within aortic plaques. Further, targeting the chemokine Xcl1 (ligand of Xcr1) effectively inhibits atherosclerosis. The manuscript is well-written, and data are clearly presented. The data provided in the article can well support the author's conclusion.

      Comments on revised version:

      The authors have addressed all previous concerns and made appropriate revisions to the data. I have no further questions.

    1. Reviewer #2 (Public review):

      Summary:

      The manuscript by Meng et al. describes a role for the coronavirus helicase NSP13 in the regulation of YAP-TEAD-mediated transcription. The authors present data that NSP13 expression in cells reduces YAP-induced TEAD luciferase reporter activity and that NSP13 transduction in cardiomyocytes blocks hyperactive YAP-mutant phenotypes in vivo. Mechanisms by which viral proteins (particularly those from coronaviruses) intersect with cellular signaling events is an important research topic, and the intersection of NSP13 with YAP-TEAD transcriptional activity (independent of upstream Hippo pathway mediated signals) offers new knowledge that is of interest to a broad range of researchers.

      Strengths:

      The manuscript presents convincing data mapping the effects of NSP13 on YAP-TEAD reporter activity to the helicase domain. Moreover, the in vivo data demonstrating that NSP13 expression in YAP5SA mouse cardiomyocytes increased survival animal rates, and restored cardiac function is striking and is supportive of the model presented.

      Weaknesses:

      While there are some hints at the mechanisms by which NSP13 regulates YAP-TEAD activity through the identification of NSP13-associated proteins by mass spec, the relationships and functions of these factors in the context of YAP-TEAD regulation requires further study in the future.

    1. Reviewer #2 (Public review):

      Summary:

      This study explores how gene regulatory networks that include intra- and extracellular signaling can give rise to spatial patterns of gene expression in cells. The authors investigate this question in a simplified theoretical framework, where all cells are assumed to respond identically to signals, and spatial details such as cell boundaries and extensions are abstracted away. Within this setting, they identify three distinct signaling topologies, referred to as L and H types, and combine them into three minimal subnetworks capable of generating patterns. The study analyzes possible combinations of these topologies and examines how each subnetwork behaves under three different initial conditions. Combining the analyses with mathematical proofs and heuristic arguments, the authors define necessary conditions under which such networks can produce non-trivial spatial patterns.

      Strengths:

      The authors break down larger gene regulatory networks into smaller subnetworks, which allows for a more tractable analysis of pattern formation. These minimal subnetworks are examined under different initial conditions, providing a range of examples for how patterns can emerge in simplified settings. The study also proposes necessary conditions for pattern formation, which may be useful for identifying relevant network structures. In addition, the manuscript offers heuristic explanations for the emergence of patterns in each subnetwork, which help to interpret the simulation results and analytical criteria.

      Weaknesses:

      (1) We have serious concerns regarding the validity of the simulation results presented in the manuscript. Rather than simulating the full nonlinear system described by Equation (1), the authors base their results on a truncated expansion (Equation S.8.2) that captures only the time evolution of small deviations around a spatially homogeneous steady state. However, it remains unclear how this reduced system is derived from the full equations - specifically, which terms are retained or neglected and why - and how the expansion of the nonlinear function can be steady-state independent, as claimed. Additionally, in simulations involving the spike plus homogeneous initial condition, it is not evident - or, where equations are provided, it is not correct - that the assumed global homogeneous background actually corresponds to a steady state of the full dynamics. We elaborate on these concerns in the following:

      It is assumed that the homogeneous steady states are given by g_i=0 and g_i=c_i, where 1/c_i = \mu_i or \hat{\mu}_i​, independently of the specific network structure. However, the basis for this assumption is unclear, especially since some of the functions do not satisfy this condition - for example, f5​ as defined below Eq. S8.10.5. Moreover, if g_i=c_i does not correspond to a true steady state, then the time evolution of deviations from this state is not correctly described by Eq. S8.2, as the zeroth-order terms do not vanish in that case.

      Additionally, the equations used contain only linear terms and a cubic degradation term for each species g_i, while neglecting all quadratic terms and cubic terms involving cross-species interactions (i≠j). An explanation for this selective truncation is not provided, and without knowledge of the full equation (f), it is impossible to assess whether this expansion is mathematically justified. If, as suggested in the Supplementary Information, the linear and cubic terms are derived from f, then at the very least, the Jacobian matrix should depend on the background steady-state concentration. However, the equations for the small deviation around a steady state (including the Jacobian matrix) used in the simulations appear to be independent of the particular steady state concentration.

      This is why we believe that the differences observed between the spike-only initial condition and the spike superimposed on a homogeneous background are not due to the initial conditions themselves, but rather result from a modified reaction scheme introduced through a questionable cutoff.

      "In simulations with spike initial patterns, the reference value g≡0 represents an actual concentration of 0 and therefore, we must add to (S8.2) a Heaviside function Φ acting of f (i.e., Φ(f(g))=f(g) if f(g)>0 , Φ(f(g))=0 if f(g){less than or equal to}0 ) to prevent the existence of negative concentrations for any gene product (i.e., g_i<0 for some i )." (SI chapter S8).

      This cutoff alters the dynamics (no inhibition) and introduces a different reaction scheme between the two simulations. The need for this correction may itself reflect either a problem in the original equations (which should fulfill the necessary conditions and prevent negative concentrations (R4 in main text)) or the inappropriateness of using an expanded approximation which assumes independence on the steady state concentration. It is already questionable if the linearized equations with a cubic degradation term are valid for the spike initial conditions (with different background concentration values), as the amplitude of this perturbation seems rather large.

      Lastly, we note that under the current simulation scheme, it is not possible to meaningfully assess criteria RH2a and RH2b, as they rely on nonlinear interactions that are absent from the implemented dynamics.

      (2) Most of the proofs presented in the Supplementary Information rely on linearized versions of the governing equations, and it remains unclear how these results extend to the fully nonlinear system. We are concerned that the generality of the conclusions drawn from the linear analysis may be overstated in the main text. For example, in Section S3, the authors introduce the concept of dynamic equivalence of transitive chains (Proposition S3.1) and intracellular transitive M-branching (Proposition S3.2), which pertains to the system's steady-state behavior. However, the proof is based solely on the linearized equations, without additional justification for why the result should hold in the presence of nonlinearities. Moreover, the linearized system is used to analyze the response to a "spike initial pattern of arbitrary height C" (SI Chapter S5.1), yet it is not clear how conclusions derived from the linear regime can be valid for large perturbations, where nonlinear effects are expected to play a significant role. We encourage the authors to clarify the assumptions under which the linearized analysis remains valid and to discuss the potential limitations of applying these results to the nonlinear regime.

      (3) Several statements in the main text are presented without accompanying proof or sufficient explanation, which makes it difficult to assess their validity. In some cases, the lack of justification raises serious doubts about whether the claims are generally true. Examples are:

      "For the purpose of clarity we will explain our results as if these cells have a simple arrangement in space (e.g., a 1D line or a 2D square lattice) but, as we will discuss, our results shall apply with the same logic to any distribution of cells in space." (Main text l.145-l.148).

      "For any non-trivial pattern transformation (as long as it is symmetric around the initial spike), there exists an H gene network capable of producing it from a spike initial pattern." (Main text l.366f).

      "In 2D there are no peaks but concentric rings of high gene product concentration centered around the spike, while in 3D there are concentric spherical shells." (Main text l. 447ff).

      (4) The study identifies one-signal networks and examines how combinations of these structures can give rise to minimal pattern-forming subnetworks. However, the analysis of the combinations of these minimal pattern-forming subnetworks remains relatively brief, and the manuscript does not explore how the results might change if the subnetworks were combined in upstream and downstream configurations. In our view, it is not evident that all possible gene regulatory networks can be fully characterized by these categories, nor that the resulting patterns can be reliably predicted. Rather, the approach appears more suited to identifying which known subnetworks are present within a larger network, without necessarily capturing the full dynamics of more complex configurations.

      (5) The definition of non-trivial pattern formation is provided only in the Supplementary Information, despite its central importance for interpreting the main results. It would significantly improve clarity if this definition were included and explained in the main text. Additionally, it remains unclear how the definition is consistently applied across the different initial conditions. In particular, the authors should clarify how slope-based measures are determined for both the random noise and sharp peak/step function initial states. Furthermore, the authors do not specify how the sign function is evaluated at zero. If the standard mathematical definition sgn(0)=0 is used, then even a simple widening of a peak could fulfill the criterion for non-trivial pattern transformation.

      (6) The manuscript lacks a clear and detailed explanation of the underlying model and its assumptions. In particular, it is not well-defined what constitutes a "cell" in the context of the model, nor is it justified why spatial features of cells - such as their size or boundaries - can be neglected. Furthermore, the concept of the extracellular space in the one-dimensional model remains ambiguous, making it unclear which gene products are assumed to diffuse.

    1. Reviewer #2 (Public review):

      Summary:

      In this work, the authors introduce DIRseq, a fast, sequence-based method that predicts drug-interacting residues (DIRs) in IDPs without requiring structural or drug information. DIRseq builds on the authors' prior work looking at NMR relaxation rates, and presumes that those residues that show enhanced R2 values are the residues that will interact with drugs, allowing these residues to be nominated from the sequence directly. By making small modifications to their prior tool, DIRseq enables the prediction of residues seen to interact with small molecules in vivo.

      Strengths:

      The preprint is well written and easy to follow

      Weaknesses:

      (1) The DIRseq method is based on SeqDYN, which itself is a simple (which I do not mean as a negative - simple is good!) statistical predictor for R2 relaxation rates. The challenge here is that R2 rates cover a range of timescales, so the physical intuition as to what exactly elevated R2 values mean is not necessarily consistent with "drug interacting". Presumably, the authors are not using the helix boost component of SeqDYN here (it would be good to explicitly state this). This is not necessarily a weakness, but I think it would behove the authors to compare a few alternative models before settling on the DIRseq method, given the somewhat ad hoc modifications to SeqDYN to get DIRseq.

      Specifically, the authors previously showed good correlation between the stickiness parameter of Tesei et al and the inferred "q" parameter for SeqDYN; as such, I am left wondering if comparable accuracy would be obtained simply by taking the stickiness parameters directly and using these to predict "drug interacting residues", at which point I'd argue we're not really predicting "drug interacting residues" as much as we're predicting "sticky" residues, using the stickiness parameters. It would, I think, be worth the authors comparing the predictive power obtained from DIRseq with the predictive power obtained by using the lambda coefficients from Tesei et al in the model, local density of aromatic residues, local hydrophobicity (note that Tesei at al have tabulated a large set of hydrophobicity scores!) and the raw SeqDYN predictions. In the absence of lots of data to compare against, this is another way to convince readers that DIRseq offers reasonable predictive power.

      (2) Second, the DIRseq is essentially SeqDYN with some changes to it, but those changes appear somewhat ad hoc. I recognize that there is very limited data, but the tweaking of parameters based on physical intuition feels a bit stochastic in developing a method; presumably (while not explicitly spelt out) those tweaks were chosen to give better agreement with the very limited experimental data (otherwise why make the changes?), which does raise the question of if the DIRseq implementation of SeqDYN is rather over-parameterized to the (very limited) data available now? I want to be clear, the authors should not be critiqued for attempting to develop a model despite a paucity of data, and I'm not necessarily saying this is a problem, but I think it would be really important for the authors to acknowledge to the reader the fact that with such limited data it's possible the model is over-fit to specific sequences studied previously, and generalization will be seen as more data are collected.

      (3) Third, perhaps my biggest concern here is that - implicit in the author's assumptions - is that all "drugs" interact with IDPs in the same way and all drugs are "small" (motivating the change in correlation length). Prescribing a specific lengthscale and chemistry to all drugs seems broadly inconsistent with a world in which we presume drugs offer some degree of specificity. While it is perhaps not unexpected that aromatic-rich small molecules tend to interact with aromatic residues, the logical conclusion from this work, if one assumes DIRseq has utility, is that all IDRs bind drugs with similar chemical biases. This, at the very least, deserves some discussion.

      (4) Fourth, the authors make some general claims in the introduction regarding the state of the art, which appear to lack sufficient data to be made. I don't necessarily disagree with the author's points, but I'm not sure the claims (as stated) can be made absent strong data to support them. For example, the authors state: "Although an IDP can be locked into a specific conformation by a drug molecule in rare cases, the prevailing scenario is that the protein remains disordered upon drug binding." But is this true? The authors should provide evidence to support this assertion, both examples in which this happens, and evidence to support the idea that it's the "prevailing view" and specific examples where these types of interactions have been biophysically characterized.

      Similarly, they go on to say:

      "Consequently, the IDP-drug complex typically samples a vast conformational space, and the drug molecule only exhibits preferences, rather than exclusiveness, for interacting with subsets of residues." But again, where is the data to support this assertion? I don't necessarily disagree, but we need specific empirical studies to justify declarative claims like this; otherwise, we propagate lore into the scientific literature. The use of "typically" here is a strong claim, implying most IDP complexes behave in a certain way, yet how can the authors make such a claim?

      Finally, they continue to claim:

      "Such drug interacting residues (DIRs), akin to binding pockets in structured proteins, are key to optimizing compounds and elucidating the mechanism of action." But again, is this a fact or a hypothesis? If the latter, it must be stated as such; if the former, we need data and evidence to support the claim.

    1. Reviewer #4 (Public review):

      The revised manuscript from Chen et al. implements many of the changes requested by the 3 reviewers of the initial submission. These changes are well-described in the corresponding Response to Reviews document. Of course, not every request from the reviewers was addressed, and the following major concerns remain:

      (1) The authors argue that MCAK binds to the same region as EB proteins, which they refer to as the "EB cap". Reviewers asked for experiments that would increase the size of the EB cap to create "comets" (e.g. by increasing the microtubule growth rate); the prediction is that the MCAK signal should increase in size as well. The authors declined to pursue these experiments. As a result, the EB signals and MCAK signals are diffraction-limited spots, as opposed to the predicted exponential decay signals characteristic of EB comets. The various diffraction-limited spots are then aligned with the diffraction-limited signal of the microtubule end. These alignments and sub-pixel comparisons are technically challenging. The revised manuscript does not go far enough to provide compelling evidence that all technical challenges were overcome. Thus, while the authors can safely conclude that MCAK, EBs, and the microtubule end do occupy the same diffraction-limited spot, more precise conclusions are not supported.

      (2) The reviewers criticized the initial manuscript for neglecting key references, particularly Kinoshita et al., Science 2001. Indeed, I cannot fathom writing a manuscript about MCAK and XMAP215 without putting a citation to such a landmark paper front and center. The authors have responded by including more discussion of the relevant literature (and citing Kinoshita et al.). However, the revised manuscript is often still cursory in giving credit where credit is due, contextualizing the new data, and generally engaging with the scholarship on MCAK.

      (3) The data presented does not include a simple measurement of the impact of MCAK on the catastrophe frequency of microtubules. The authors explain this absence by pointing out that their movies are short (5 min) and high frame rate (10 fps). While I understand that such imaging parameters are necessary to capture single molecule end-binding events, I do not understand why a separate set of experiments could not be performed. This type of "positive control" is often missing, as pointed out by the 3 reviewers.

      (4) Salt conditions, protein concentrations, and other key experimental parameters are not varied, even when varying them would provide excellent tests of the authors' hypotheses.

      In summary, the revised manuscript is improved in many ways, but the interested reader should look carefully at the previous reviews and compare the measurements presented here with those of other labs.

    1. Reviewer #2 (Public review):

      Summary:

      The manuscript is fundamental due to the significance of its findings. The strength of the evidence is compelling, and the manuscript is publishable since the corrections have been made.

      Strengths:

      Using a Novel SHERLOCK4AAT toolkit for diagnosis.

      Identification of various sub-species of Trypanosomes.

      Differentiating the animal sub-species from the human one.

      Corrections Made:

      Definite articles have been removed from the title.

      The words of the title have been reduced to 15.

      Typographical errors have been corrected.

      Weaknesses:

      None

    1. Reviewer #3 (Public review):

      Strengths:

      The paper describes a new perspective on friction perception, with the hypothesis that humans are sensitive to the instabilities of the surface rather than the coefficient of friction. The paper is very well written and with a comprehensive literature survey.

      One of the central tools used by the author to characterize the frictional behavior is the frictional instabilities maps. With these maps, it becomes clear that two different surfaces can have both similar and different behavior depending on the normal force and the speed of exploration. It puts forward that friction is a complicated phenomenon, especially for soft

      The psychophysics study is centered around an odd-one-out protocol, which has the advantage of avoiding any external reference to what would mean friction or texture for example. The comparisons are made only based on the texture being similar or not.

      The results show a significant relationship between the distance between frictional maps and the success rate in discriminating two kinds of surface.

      Weaknesses:

      The main weakness of the paper comes from the fact that the frictional maps and the extensive psychophysics study are not made at the same time, nor with the same finger. The frictional maps are produced with an artificial finger made out of PDMS which is a poor substitute for the complex tribological properties of skin.

      The evidence would have been much stronger if the measurement of the interaction was done during the psychophysical experiment. In addition, because of the protocol, the correlation is based on aggregates rather than on individual interactions. However the current data already bring new light on the nature of frictional oscillation and their link to perception.

      The authors compensate with a third experiment where they used a 2AFC protocol and an online force measurement. But the results of this third study fail to solidify the relation.

      No map of the real finger interaction is shown, bringing doubt to the validity of the frictional map for something as variable as human fingers.

    1. Reviewer #2 (Public review):

      Summary:

      This study uses a coarse-grained model for double stranded DNA, cgNA+, to assess nucleosome sequence affinity. cgNA+ coarse-grains DNA on the level of bases and accounts also explicitly for the positions of the backbone phosphates. It has been proven to reproduce all-atom MD data very accurately. It is also ideally suited to be incorporated into a nucleosome model because it is known that DNA is bound to the protein core of the nucleosome via the phosphates.

      It is still unclear whether this harmonic model parametrized for unbound DNA is accurate enough to describe DNA inside the nucleosome. Previous models by other authors, using more coarse-grained models of DNA, have been rather successful in predicting base pair sequence dependent nucleosome behavior. This is at least the case as long as DNA shape is concerned whereas assessing the role of DNA bendability (something this paper focuses on) has been consistently challenging in all nucleosome models to my knowledge.

      It is thus of major interest whether this more sophisticated model is also more successful in handling this issue. As far as I can tell the work is technically sound and properly accounts for not only the energy required in wrapping DNA but also entropic effects, namely the change in entropy that DNA experiences when going from the free state to the bound state. The authors make an approximation here which seems to me to be a reasonable first step.

      Of interest is also that the authors have the parameters at hand to study the effect of methylation of CpG-steps. This is especially interesting as this allows to study a scenario where changes in the physical properties of base pair steps via methylation might influence nucleosome positioning and stability in a cell-type specific way.

      Overall, this is an important contribution to the questions of how sequence affects nucleosome positioning and affinity. The findings suggest that cgNA+ has something new to offer. But the problem is complex, also on the experimental side, so many questions remain open. Despite of this, I highly recommend publication of this manuscript.

      Strengths:

      The authors use their state-of-the-art coarse grained DNA model which seems ideally suited to be applied to nucleosomes as it accounts explicitly for the backbone phosphates.

      Weaknesses:

      The authors introduce penalty coefficients c_i to avoid steric clashes between the two DNA turns in the nucleosome. This requires c_i-values that are so high that standard deviations in the fluctuations of the simulation are smaller than in the experiments.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors investigate the functional requirements for glutamine and glutaminolysis in antibody responses. The authors first demonstrate that the concentrations of glutamine in lymph nodes are substantially lower than in plasma, and that at these levels, glutamine is limiting for plasma cell differentiation in vitro. The authors go on to use genetic mouse models in which B cells are deficient in glutaminase 1 (Gls), the glucose transporter Slc2a1, and/or mitochondrial pyruvate carrier 2 (Mpc2) to test the importance of these pathways in vivo.

      Interestingly, deficiency of Gls alone showed clear antibody defects when ovalbumin was used as the immunogen, but not the hapten NP. For the latter response, defects in antibody titers and affinity were observed only when both Gls and either Mpc2 or Slc2a1 were deleted. These latter findings form the basis of the synthetic auxotrophy conclusion. The authors go on to test these conclusions further using in vitro differentiations, Seahorse assays, pharmacological inhibitors, and targeted quantification of specific metabolites and amino acids. Finally, the authors document reduced STAT3 and STAT1 phosphorylation in response to IL-21 and interferon (both type 1 and 2), respectively, when both glutaminolysis and mitochondrial pyruvate metabolism are prevented.

      Strengths:

      (1) The main strength of the manuscript is the overall breadth of experiments performed. Orthogonal experiments are performed using genetic models, pharmacological inhibitors, in vitro assays, and in vivo experiments to support the claims. Multiple antigens are used as test immunogens--this is particularly important given the differing results.

      (2) B cell metabolism is an area of interest but understudied relative to other cell types in the immune system.

      (3) The importance of metabolic flexibility and caution when interpreting negative results is made clear from this study.

      Weaknesses:

      (1) All of the in vivo studies were done in the context of boosters at 3 weeks and recall responses 1 week later. This makes specific results difficult to interpret. Primary responses, including germinal centers, are still ongoing at 3 weeks after the initial immunization. Thus, untangling what proportion of the defects are due to problems in the primary vs. memory response is difficult.

      (2) Along these lines, the defects shown in Figure 3h-i may not be due to the authors' interpretation that Gls and Mpc2 are required for efficient plasma cell differentiation from memory B cells. This interpretation would only be correct if the absence of Gls/Mpc2 leads to preferential recruitment of low-affinity memory B cells into secondary plasma cells. The more likely interpretation is that ongoing primary germinal centers are negatively impacted by Gls and Mpc2 deficiency, and this, in turn, leads to reduced affinities of serum antibodies.

      (3) The gating strategies for germinal centers and memory B cells in Supplemental Figure 2 are problematic, especially given that these data are used to claim only modest and/or statistically insignificant differences in these populations when Gls and Mpc2 are ablated. Neither strategy shows distinct flow cytometric populations, and it does not seem that the quantification focuses on antigen-specific cells.

      (4) Along these lines, the conclusions in Figure 6a-d may need to be tempered if the analysis was done on polyclonal, rather than antigen-specific cells. Alum induces a heavily type 2-biased response and is not known to induce much of an interferon signature. The authors' observations might be explained by the inclusion of other ongoing GCs unrelated to the immunization.

    1. Reviewer #2 (Public Review):

      The authors evaluate whether non time reversible models fit better data presenting strand-specific substitution biases than time reversible models. Specifically, the authors consider what they call NREV6 and NREV12 as candidate non time-reversible models. On the one hand, they show that AIC tends to select NREV12 more often than GTR on real virus data sets. On the other hand, they show using simulated data that NREV12 leads to inferred trees that are closer to the true generating tree when the data incorporates a certain degree of non time-reversibility. Based on these two experimental results, the authors conclude that "We show that non-reversible models such as NREV12 should be evaluated during the model selection phase of phylogenetic analyses involving viral genomic sequences". This is a valuable finding, and I agree that this is potentially good practice. However, I miss an experiment that links the two findings to support the conclusion: in particular, an experiment that solves the following question: does the best-fit model also lead to better tree topologies?

      [Editors' note: the reviewers were sent the revised submission and rebuttal and based on their response, an amended eLife Assessment has been formulated.]

    1. Reviewer #2 (Public review):

      Summary:<br /> The authors responded to my previous concerns with additional arguments and discussion. While I do not object to the publication of this work, two critical experiments are still missing.

      Weaknesses:<br /> First, biochemical assays using recombinant proteins should be conducted to determine whether CCDC32 binds to the full AP2 adaptor or to specific AP2 intermediates, such as hemicomplexes. The current co-IP data from mammalian cell lysates are too complex to interpret conclusively. Second, cell fractionation should be performed to assess whether, and how, CCDC32 associates with membrane-bound AP2.

    1. Reviewer #2 (Public review):

      Context and significance:

      Distal renal tubular acidosis (dRTA) can be caused by mutations in a Cl-/HCO3- exchanger (kAE1) encoded by the SLC4A1 gene. The precise mechanisms underlying the pathogenesis of the disease due to these mutations are unclear, but it is thought that loss of the renal intercalated cells (ICs) that express kAE1 and/or aberrant autophagy pathway function in the remaining ICs may contribute to the disease. Understanding how mutations in SLC4A1 affect cell physiology and cells within the kidney, a major goal of this study, is an important first step to unraveling the pathophysiology of this complex heritable kidney disease.

      Summary:

      The authors identify a number of new mutations in the SLC4A1 gene in patients with diagnosed dRTA that they use for heterologous experiments in vitro. They also use a dRTA mouse model with a different SLC4A1 mutation for experiments in mouse kidneys. Contrary to previous work that speculated dRTA was caused mainly by trafficking defects of kAE1, the authors observe that their new mutants (with the exception of Y413H, which they only use in Figure 1) traffic and localize at least partly to the basolateral membrane of polarized heterologous mIMCD3 cells, an immortalized murine collecting duct cell line. They go on to show that the remaining mutants induce abnormalities in the expression of autophagy markers and increased numbers of autophagosomes, along with an alkalinized intracellular pH. They also reported that cells expressing the mutated kAE1 had increased mitochondrial content coupled with lower rates of ATP synthesis. The authors also observed a partial rescue of the effects of kAE1 variants through artificially acidifying the intracellular pH. Taken together, this suggests a mechanism for dRTA independent of impaired kAE1 trafficking and dependent on intracellular pH changes that future studies should explore.

      Strengths:

      The authors corroborate their findings in cell culture with a well-characterized dRTA KI mouse and provide convincing quantification of their images from the in vitro and mouse experiments.

      Weaknesses:

      The data largely support the claims as stated, with some minor suggestions for improving the clarity of the work. Some of the mutants induce different strengths of effects on autophagy and the various assays than others, and it is not clear why this is from the present manuscript, given that they propose pHi and the unifying mechanism.

    1. Reviewer #2 (Public review):

      Summary:

      The manuscript provides a comparison of nickase-based (PE2) and nuclease-based (PEn) Prime Editors in zebrafish, evaluating their efficiencies for substitutions, short insertions (3-30 bp), and germline transmission.

      Strengths:

      The manuscript has demonstrated for the first time that nuclease-based PEn more efficiently inserts nucleotide sequences up to 30 bp (nuclear localization sequence) than PE2, providing an improvement for the application of gene editing in functional genetics research. Additionally, the demonstration of stable zebrafish lines with edited ror2 and smyhc1:gfp loci is well-supported by sequencing and phenotypic data, confirming functional consequences of edits.

      Weaknesses:

      The study lacks conceptual innovation, as the central methodology-RNP-based Prime Editor delivery in zebrafish-was previously established by Petri et al. (2022). The present study extends this by testing longer insertions (30 bp) with nuclease-based PEn, but this incremental advance does not substantially shift the field's understanding or capabilities. The manuscript does not sufficiently differentiate its contributions from these precedents.

      The comparative analysis between PE2 and PEn systems suffers from limited evidentiary support. The comparison relies on single loci for substitutions (crbn) and insertions (ror2), raising concerns about generalizability. Additional validation across multiple loci is necessary to support broad conclusions about PE2/PEn performance.

    1. Reviewer #2 (Public review):

      Summary:

      This work by Kadeřábková and Furniss et al. demonstrates the importance of a specific protein folding system to effectively folding β-lactamase proteins, which are responsible for resistance to β-lactam antibiotics, and shows that inhibition of this system sensitize multidrug-resistant pathogens to β-lactam treatment. In addition, the authors extend these observations to a two-species co-culture model where β-lactamases provided by one pathogen can protect another, sensitive pathogen from β-lactam treatment. In this model, disrupting the protein folding system also disrupted protection of the sensitive pathogen from antibiotic killing. Overall, the data presented provide a convincing foundation for subsequent investigations and development of inhibitors for β-lactamases and other resistance determinants. This and similar strategies may have application to polymicrobial contexts when molecular interactions are suspected to confer resistance to natively antibiotic-sensitive pathogens.

      Strengths:

      The authors use clear and reliable molecular biology strategies to show that β-lactamase proteins from P. aeruginosa and Burkholderia species, expressed in E. coli in the absence of the dsbA protein folding system, are variably less capable of resisting the effects of different β-lactam antibiotics compared to the dsbA-competent parent strain (Figure 1). The appropriate control is included in the supplemental materials to demonstrate that this effect is specifically dependent on dsbA, since complementing the mutant with an intact dsbA gene restores antibiotic resistance (Figure S1). The authors subsequently show that this lack of activity can be explained by significantly reduced protein levels and loss-of-function protein misfolding in the dsbA mutant background (Figure 2). These data support the importance of this protein folding mechanism in the activity of multiple clinically relevant β-lactamases.

      Native bacterial species are used for subsequent experiments, and the authors provide important context for their antibiotic choices and concentrations by referencing the breakpoints that guide clinical practice. In Figure 4, the authors show that loss of the DsbA system in P. aeruginosa significantly sensitizes clinical isolates expressing different classes of β-lactamases to clinically relevant antibiotics. The appropriate control showing that the dsbA1 mutation does not result in sensitivity to a non-β-lactam antibiotic is included in Figure S2. The authors further show, using an in vivo model for antibiotic treatment, that treatment of a dsbA1 mutant results in moderate and near-complete survival of the infected organisms. The importance of this system in S. maltophilia is then investigated similarly (Figure 5), showing that a dsbA dsbL mutant is also sensitive to β-lactams and colistin, another antibiotic whose resistance mechanism is dependent on the DsbA protein folding system. Importantly, the authors show that a small-molecule inhibitor that disrupts the DsbA system, rather than genetic mutations, is also capable of sensitizing S. maltophilia to these antibiotics. It should be noted that while the sensitization is less pronounced, this molecule has not been optimized for S. maltophilia and would be expected to increase in efficacy following optimization. Together, the data support that interference with the DsbA system in native hosts can sensitize otherwise resistant pathogens to clinically relevant antibiotic therapy.

      Finally, the authors investigate the effects of co-culturing S. maltophilia and P. aeruginosa (Figure 5E). These assays are performed in synthetic cystic fibrosis sputum medium (SCFM), which provides a nutritional context similar to that in CF but without the presence of more complex components such as mucin. The authors show that while P. aeruginosa alone is sensitive to the antibiotic, it can survive moderate concentrations in the presence of S. maltophilia and even grow in higher concentrations where S. maltophilia appears to overproduce its β-lactamases. However, this protection is lost in S. maltophilia without the DsbA protein folding system, showing that the protective effect depends on functional production of β-lactamase in the presence of viable S. maltophilia. The authors further achieved the difficult task of labeling these multi-drug resistant pathogens with selection markers to determine co-infection CFUs in the supplemental materials. Overall, the data support a protective role for DsbA-dependent β-lactamase under these co-culture conditions.

      Weaknesses:

      No significant weaknesses are noted beyond the limitations identified and discussed by the authors.

    1. Reviewer #2 (Public review):

      Summary:

      In this study the authors suggest that the structure of Piezo2 in a tensionless simulation is flatter compared to the electron microscopy structure. This is an interesting observation and highlights the fact that the membrane environment is important for Piezo2 curvature. Additionally, the authors calculate the excess area of Piezo2 and Piezo1, suggesting that it is significantly smaller compared the area calculated using the EM structure or simulations with restrained Piezo2. Finally, the authors propose an elastic model for Piezo proteins. Those are very important findings, which would be of interest to the mechanobiology field.

      Whilst I like the suggestion that the membrane environment will change Piezo2 flatness, could this be happening because of the lower resolution of the MARTINI simulations? In other words, would it be possible that MARTINI is not able to model such curvature due to its lower resolution?

      Related to my comment above, the authors say that they only restrained the secondary structure using an elastic network model. Whilst I understand why they did this, Piezo proteins are relatively large. How can the authors know that this type of elastic network model restrains, combined with the fact that MARTINI simulations are perhaps not very accurate in predicting protein conformations, can accurately represent the changes that happen within Piezo channel during membrane tension?

      Modelling or Piezo1, seems to be based on homology to Piezo2. However, the authors need to further evaluate their model, e.g. how it compares with an Alphafold model.

      To calculate the tension induce flattening of Piezo channel, the authors "divide all simulation trajectories into 5 equal intervals and determine the nanodome shape in each interval by averaging over the conformations of all independent simulation runs in this interval.". However, probably the change in the flattening of Piezo channel happens very quickly during the simulations, possibly within the same interval. Is this the case? and if yes does this affects their calculations?

      Finally, the authors use a specific lipid composition, which is asymmetric. Is it possible that the asymmetry of the membrane causes some of the changes in the curvature that they observe? Perhaps more controls, e.g. with a symmetric POPC bilayer is needed to identify whether membrane asymmetry plays a role in the membrane curvature they observe.

    1. Reviewer #2 (Public review):

      Summary:

      This study makes a significant contribution to understanding the microenvironment of megakaryocytes (MKs) in the bone marrow, identifying an extracellular matrix (ECM) cage structure that influences MK localization and maturation. The authors provide compelling evidence for the presence of this ECM cage and its role in MK homeostasis, employing an array of sophisticated imaging techniques and molecular analyses.

      The authors have addressed most of the concerns raised in the previous review, providing clarifications and additional data that strengthen their conclusions

      More broadly, this work adds to a growing recognition of the ECM as an active participant in haematopoietic cell regulation in the bone marrow microenvironment. This work could pave the way to future studies investigating how the megakaryocytes' ECM cage affects their function as part of the haematopoietic stem cell niche, and by extension, influences global haematopoiesis.

    1. Reviewer #2 (Public review):

      In this manuscript Luo et al uncover that the ZNRF3/RNF43 E3 ubiquitin ligases participate in the selective endocytosis and degradation of FZD5/8 receptors in response to Wnt stimulation. In my opinion there are three significant findings of this study: 1) Wnt proteins are required for ZNRF3/RNF43 mediated endocytosis and degradation of FZD receptors and this constitutes an important negative regulatory loop. 2) Wnt can induce FZD endocytosis in the absence of ZNRF3/RNF43 but this does not influence total or cell surface levels. 3) The ZNRF3/RNF43 substrate selectivity for FZD5/8 over the other 8 Frizzleds. Of course, many questions remain, and new ones emerge as it is often the case, but these findings challenge our dogmatic view on how the ZNRF3/RNF43 regulate Wnt signaling and emphasize their role in Wnt-dependent Frizzled endocytosis/degradation and beta-catenin signaling.

      This is an elegant study employing several CRISPR-edited cell lines to tag endogenous Frizzled receptors and to knockout ZNRF3/RNF43 and all three Dishevelled proteins. One major strength of the study is therefore the careful assessment of the roles of RNF43 and ZNFR3 in endogenous expression contexts. This is especially relevant since overexpression of membrane E3 ligases have been shown to ectopically degrade membrane proteins and could have blurred previous interpretations. A second strength is clarifying the role of Dishevelled proteins in FZD endocytosis. Indeed, although previous studies suggested that the Wnt-promoted interaction between FZD and RNF43/ZNFR3 was mediated through Dvl, the authors clearly show that this is not the case (using Dvl knockout cells and functional assays). Dvl proteins, on the other han,d are still required for ligand-independent FZD-endocytosis.

      The only weakness pertains to the difference in signaling outcome, comparing elevated signaling seen when FZD levels are upregulated following ZNFR3/RNF43 KO vs ectopic overexpression. Indeed, the authors suggest that in the absence of RNF43/ZNFR3 the receptors could be recycled back to the PM and thereby contribute to increased signaling seen in the mutant cells. This has not been directly demonstrated.

    1. Reviewer #2 (Public review):

      Summary:

      This study introduces an exciting dataset of single-unit responses in humans during a naturalistic and dynamic movie stimulus, with recordings from multiple regions within the medial temporal lobe. The authors use both a traditional firing-rate analysis as well as a sophisticated decoding analysis to connect these neural responses to the visual content of the movie, such as which character is currently on screen.

      Strengths:

      The results reveal some surprising similarities and differences between these two kinds of analyses. For visual transitions (such as camera angle cuts), the neurons identified in the traditional response analysis (looking for changes in firing rate of an individual neuron at a transition) were the most useful for doing population-level decoding of these cuts. Interestingly, this wasn't true for character decoding; excluding these "responsive" neurons largely did not impact population-level decoding, suggesting that the population representation is distributed and not well-captured by individual-neuron analyses.

      The methods and results are well-described both in the text and in the figures. This work could be an excellent starting point for further research on this topic to understand the complex representational dynamics of single neurons during naturalistic perception.

      Weaknesses:

      (1) I am unsure what the central scientific questions of this work are, and how the findings should impact our understanding of neural representations. Among the questions listed in the introduction is "Which brain regions are informative for specific stimulus categories?". This is a broad research area that has been addressed in many neuroimaging studies for decades, and it's not clear that the results tell us new information about region selectivity. "Is the relevant information distributed across the neuronal population?" is also a question with a long history of work in neuroscience about localist vs distributed representations, so I did not understand what specific claim was being made and tested here. Responses in individual neurons were found for all features across many regions (e.g., Table S1), but decodable information was also spread across the population.

      (2) The character and indoor/outdoor labels seem fundamentally different from the scene/camera cut labels, and I was confused by the way that the cuts were put into the decoding framework. The decoding analyses took a 1600ms window around a frame of the video (despite labeling these as frame "onsets" like the feature onsets in the responsive-neuron analysis, I believe this is for any frame regardless of whether it is the onset of a feature), with the goal of predicting a binary label for that frame. Although this makes sense for the character and indoor/outdoor labels, which are a property of a specific frame, it is confusing for the cut labels since these are inherently about a change across frames. The way the authors handle this is by labeling frames as cuts if they are in the 520ms following a cut (there is no justification given for this specific value). Since the input to a decoder is 1600ms, this seems like a challenging decoding setup; the model must respond that an input is a "cut" if there is a cut-specific pattern present approximately in the middle of the window, but not if the pattern appears near the sides of the window. A more straightforward approach would be, for example, to try to discriminate between windows just after a cut versus windows during other parts of the video. It is also unclear how neurons "responsive" to cuts were defined, since the authors state that this was determined by looking for times when a feature was absent for 1000ms to continuously present for 1000ms, which would never happen for cuts (unless this definition was different for cuts?).

      (3) The architecture of the decoding model is interesting but needs more explanation. The data is preprocessed with "a linear layer of same size as the input" (is this a layer added to the LSTM that is also trained for classification, or a separate step?), and the number of linear layers after the LSTM is "adapted" for each label type (how many were used for each label?). The LSTM also gets to see data from 800 ms before and after the labeled frame, but usually LSTMs have internal parameters that are the same for all timesteps; can the model know when the "critical" central frame is being input versus the context, i.e., are the inputs temporally tagged in some way? This may not be a big issue for the character or location labels, which appear to be contiguous over long durations and therefore the same label would usually be present for all 1600ms, but this seems like a major issue for the cut labels since the window will include a mix of frames with opposite labels.

      (4) Because this is a naturalistic stimulus, some labels are very imbalanced ("Persons" appears in almost every frame), and the labels are correlated. The authors attempt to address the imbalance issue by oversampling the minority class during training, though it's not clear this is the right approach since the test data does not appear to be oversampled; for example, training the Persons decoder to label 50% of training frames as having people seems like it could lead to poor performance on a test set with nearly 100% Persons frames, versus a model trained to be biased toward the most common class. There is no attempt to deal with correlated features, which is especially problematic for features like "Summer Faces" and "Summer Presence", which I would expect to be highly overlapping, making it more difficult to interpret decoding performance for specific features.

      (5) Are "responsive" neurons defined as only those showing firing increases at a feature onset, or would decreased activity also count as responsive? If only positive changes are labeled responsive, this would help explain how non-responsive neurons could be useful in a decoding analysis.

      (6) Line 516 states that the scene cuts here are analogous to the hard boundaries in Zheng et al. (2022), but the hard boundaries are transitions between completely unrelated movies rather than scenes within the same movie. Previous work has found that within-movie and across-movie transitions may rely on different mechanisms, e.g., see Lee & Chen, 2022 (10.7554/eLife.73693).

    1. Reviewer #2 (Public review):

      Summary:

      This study examines how activating specific G protein-coupled receptors (GPCRs) affects the microRNA (miRNA) profiles within extracellular vesicles (EVs). The authors seek to identify whether different GPCRs produce unique EV miRNA signatures and what these signatures could indicate about downstream cellular processes and pathological processes.

      Methods:

      (1) Used U2OS human osteosarcoma cells, which naturally express multiple GPCR types.

      (2) Stimulated four distinct GPCRs (ADORA1, HRH1, FZD4, ACKR3) using selective agonists.

      (3) Isolated EVs from culture media and characterized them via size exclusion chromatography, immunoblotting, and microscopy.

      (4) Employed qPCR-based miRNA profiling and bioinformatics analyses (e.g., KEGG, PPI networks) to interpret expression changes.

      Key Findings:

      (1) No significant change in EV quantity or size following GPCR activation.

      (2) Each GPCR triggered a distinct EV miRNA expression profile.

      (3) miRNAs differentially expressed post-stimulation were linked to pathways involved in cancer, insulin resistance, neurodegenerative diseases, and other physiological/pathological processes.

      (4) miRNAs such as miR-550a-5p, miR-502-3p, miR-137, and miR-422a emerged as major regulators following specific receptor activation.

      Conclusions:

      The study offers evidence that GPCR activation can regulate intercellular communication through miRNAs encapsulated within extracellular vesicles (EVs). This finding paves the way for innovative drug-targeting strategies and enhances understanding of drug side effects that are mediated via GPCR-related EV signaling.

      Strengths:

      (1) Innovative concept: The idea of linking GPCR signaling to EV miRNA content is novel and mechanistically important.

      (2) Robust methodology: The use of multiple validation methods (biochemical, biophysical, and statistical) lends credibility to the findings.

      (3) Relevance: GPCRs are major drug targets, and understanding off-target or systemic effects via EVs is highly valuable for pharmacology and medicine.

      Weaknesses:

      (1) Sample Size & Scope: The analysis included only four GPCRs. Expanding to more receptor types or additional cell lines would enhance the study's applicability.

      (2) Exploratory Nature: This study is primarily descriptive and computational. It lacks functional validation, such as assessing phenotypic effects in recipient cells, which is acknowledged as a future step.

      (3) EV heterogeneity: The authors recognize that they did not distinguish EV subpopulations, potentially confounding the origin and function of miRNAs.

    1. Reviewer #2 (Public review):

      Summary:

      The authors employ a novel CRISPRi FACS screen and uncover the lysosomal transport complex BORC as a regulator of TDP-43 protein levels in iNeurons. They also find that BORC subunit knockouts impair lysosomal function, leading to slower protein turnover and implicating lysosomal activity in the regulation of TDP-43 levels. This is highly significant for the field given that a) other proteins could also be regulated in this way, b) understanding mechanisms that influence TDP-43 levels are significant given that its dysregulation is considered a major driver of several neurodegenerative diseases and c) the novelty of the proposed mechanism.

      Strengths:

      The novelty and information provided by the CRISPRi screen. The authors provide evidence indicating that BORC subunit knockouts impair lysosomal function, leading to slower protein turnover and implicating lysosomal activity in the regulation of TDP-43 levels and show a mechanistic link between lysosome mislocalization and TDP-43 dysregulation. The study highlights the importance of localized lysosome activity in axons and suggests that lysosomal dysfunction could drive TDP-43 pathologies associated with neurodegenerative diseases like FTD/ALS. Further, the methods and concepts will have an impact to the larger community as well. The work also sets up for further work to understand the somewhat paradoxical findings that even though the tagged TDP-43 protein is reduced in the screen, it does not alter cryptic exon splicing and there is a longer TDP-43 half-life with BORC KD.

    1. Reviewer #3 (Public review):

      Summary:

      This is an important paper using a novel paradigm to examine how observation affects social contagion of risk preferences. There is a lot of interest in the field on the mechanisms of social influence, and adding in the factor of whether observation also influences these contagion effects is intriguing.

      Strengths:

      There is an impressive combination of a multi-stage behavioural task as well as computational modelling and neuroimaging. The analyses are well conducted and the sample size is reasonable.

      Comments on revised version:

      Thank you for your helpful responses to my concerns. The manuscript is much improved and will make an important contribution to the literature. I have one remaining clarification. My request was for the authors to speculate in the discussion about lifespan differences in susceptibility to social influence, because the paper talks about how observing others' choices makes people riskier. I think it is important to explicitly acknowledge in the discussion that the sample tested was young adults, and it may be that the effects they observe are not the same in adolescents or older adults, as suggested in recent work (e.g. Reiter et al., 2019 Nat Comms, Su et al., 2024, Comms Psych). This is important to qualify general statements about how humans behave when observing others' risky decisions.

    1. Reviewer #2 (Public review):

      Summary:

      This study focuses on Orf9b, a SARS-COV1/2 protein that regulates innate signaling through interaction with Tom70. San Felipe et al use a combination of biophysical methods to characterize the coupling between lipid-binding, dimerization, conformational change, and protein-protein-interaction equilibria for the Orf9b-Tom70 system. Their analysis provides a detailed explanation for previous observations of Orf9b function. In a cellular context, they find other factors may also be important for the biological functioning of Orf9b.

      Strengths:

      San Felipe et al elegantly combine structural biology, biophysics, kinetic modelling, and cellular assays, allowing detailed analysis of the Orf9b-Tom70 system. Such complex systems involving coupled equilibria are prevalent in various aspects of biology, and a quantitative description of them, while challenging, provides a detailed understanding and prediction of biological outcomes. Using SPR to guide initial estimates of the rate constants for solution measurements is an interesting approach.

      Weaknesses:

      This study would benefit from a more quantitative description of uncertainties in the numerous rate constants of the models, either through a detailed presentation of the sensitivity analysis or another approach such as MCMC. Quantitative uncertainty analysis, such as MCMC is not trivial for ODEs, particularly when they involve many parameters and are to be fitted to numerous data points, as is the case for this study. The authors use sensitivity analysis as an alternative, however, the results of the sensitivity analysis are not presented in detail, and I believe the authors should consider whether there is a way to present this analysis more quantitatively. For example, could the residuals for each +/-10% parameter change for the peptide model be presented as a supplementary figure, and similarly for the more complex models? Further details of the range of rate constants tested would be useful, particularly for the ka and kB parameters.

      The authors build a model that incorporates an α-helix-β-sheet conformational change, but the rate constant for the conversion to the α-helix conformation is required to be second order. Although the authors provide some rationale, I do not find this satisfactorily convincing given the large number of adjustable parameters in the model and the use of manual model fitting. The authors should discuss whether there is any precedence for second-order rate constants for conformational changes in the literature. On page 14, the authors state this rate constant "had to be non-linear in the monomer β-sheet concentration" - how many other models did the authors explore? For example, would αT↔α↔αα↔ββ (i.e., conformational change before dimer dissociation) or α↔βαT↔ββ (i.e., Tom70 binding driving dimer dissociation) be other plausible models for the conformational change that do not require assumptions of second-order rate constants for the conformational change?

      Overall, this study progresses the analysis of coupled equilibria and provides insights into Orf9b function.

      Comments on revisions:

      The authors have done a satisfactory job addressing my concerns.

      Regarding my recommendations to the authors - point 7: "Orf9b-FITC:Tom70" and "PT", representing the same species, are still both used in the equations on page 14, which is confusing for anyone who may wish to re-use the model. I appreciate this is quite a subtle point but given the importance of the model for the manuscript I feel the authors should do their due diligence to ensure it is presented as clearly as possible.

    1. Reviewer #3 (Public review):

      Hapel et al. present an article entitled Quantifying the shape of cells - from Minkowski tensors to p-atic order. The paper reports the p-atic quantitative method - established in physics - to extract cell full shapes in biological experiments using their images of epithelial MDCK cells (phase contrast) and also images reported in another paper as well as their own simulations based on active vertex model and multiphase phase fields approaches. Authors present the rationale of this new strategy for quantification. They adapt the method of Minkowski tensors and they extract distributions of cell shapes readouts with plots of their distributions. An emphasis is given to changes in cell shapes captured by this method. Higher rank tensors are considered as well as representations with intuitive meanings and q_i orders and their potential correlations or absence of correlations - for example q_2 and q_6, leading to statements about nematic and hexatic orders.

      This analysis and its strength are contrasted with Armengol-Collade et al. (2023) quoted in the paper, who consider polygonal shapes for cells and their shape function 𝛾_p. Authors support the notion of a key improvement thanks to Minkowski tensors approach and doing so, they challenge the former crossovers correlations statements reported in Armengol-Collade et al. (2023). In this context, they defend that nematic liquid crystals approach is not sufficient to capture cell dynamics in tissues. Also they propose that q_2 and q_6 could serve as readout for activity and deformability of cells among other statements related to their approach.

      A variety of analytical methods have been realised to track cells in monolayers in vitro and in vivo during morphogenesis - for example, shear decomposition (from MPI-PKS Dresden) or links joining centroids and their neighbours approach (MSC/Curie Paris) to name few examples. It will be interesting in the future that systematic comparisons between these analytical methods are performed with highlights on their respective advantages and drawbacks. This will allow experimentalists to identify the best relevant methods to address their morphogenetic questions.

    1. Reviewer #2 (Public review):

      In the present manuscript, Dannulat Frazier et al. provide a novel and advanced protocol for obtaining almost pure populations of neural rosette stem cells (NRSCs) expressing the general markers NES and SOX2. These NSCs are expandable and exhibit dorsal forebrain properties and markers that are maintained throughout passages in culture (at least until passage 12). The authors also demonstrate the multipotency of these NSCs by their ability to differentiate into functional neurons, and precursors of astrocytes and oligodendrocytes.

      This method does not require the usual step of manual rosette selection and allows a greater homogeneity of the NSCs obtained and the standardization of the protocol, which will allow greater advances in the applications of these NSCs in research and as models of disease or compound testing. The manuscript is of great interest for the research area, since it describes a new methodology that can facilitate the research and therapeutic application of NSCs.

      The manuscript is well-written; the results are clear, robust, and well-explained. The conclusions reached in this paper are well-supported by the data, but some aspects could be better clarified.

      (1) The results presented in the present manuscript of the NSCS are performed up to passage 12; it would be interesting to know up to which passages these cells can be expanded, maintaining their initial properties. Have the authors analyzed passages beyond 12?

      (2) In Figure 2A, where different markers are shown in NSCs at different passages, it seems that at passage 12, there is a decrease in TJP1+ zones in relation to earlier passages, which could indicate a reduction in the potential to generate rosettes. Have the authors done any quantification along these lines? Could this be the case, or is it just an effect of the image chosen?

      (3) In Figure 3A, it is very striking and intriguing that the decrease in the expression of the PAX6 gene in passage 8 in relation to passage 2, which does not correspond to what is observed at the protein level. Have the authors verified this result using another technique, such as for example RT-q-PCR?

      (4) In Figure 5B, the labeling for GFAP, appears rather nuclear, despite being a cytoskeleton protein. How can the authors explain this?

    1. Reviewer #2 (Public review):

      The chemoreceptor proteins expressed by olfactory sensory neuron differ in their selectivity such that glomeruli vary in the breadth of volatile chemicals to which they respond. Prior work assessing the relationship between tuning breadth and the demographics of principal neuron types that innervate a glomerulus demonstrated that narrowly tuned glomeruli are innervated more projection neurons (output neurons) and fewer local interneurons relative to more broadly tuned glomeruli. The present study used high resolution electron microscopy to determine which synaptic relationships between principal cell types also vary with glomerulus tuning breadth using a narrowly tuned glomerulus (DA2) and a broadly tuned glomerulus (DL5). The strength of this study lies in the comprehensive, synapse-level resolution of the approach. Furthermore, the authors implement a very elegant approach of using a 2-photon microscope to score the upper and lower bounds of each glomerulus thus defining the bounds of their restricted regions of interest. Using the approach, the authors identify several architectural motifs that differ between glomeruli with different tuning properties

      In the revised version of this study the authors discuss several important limitations. There was a technical need to group all local interneurons, centrifugal neurons and multiglomerular projection neurons into one category ("multiglomerular neurons") which complicates interpretations as even multiglomerular projection neurons are very diverse. With only 2 narrowly tuned glomeruli and 1 broadly tuned glomerulus, architecture differences may reflect more than just differences in tuning breadth. Finally, the degree to which inter-animal variability may contribute to differences between glomeruli is discussed. If these caveats are kept in mind, this work reveals some very interesting potential differences in circuit architecture associated with glomerular tuning breadth.

      This work establishes specific hypotheses about network function within the olfactory system that can be pursued using targeted physiological approaches. It also identifies key traits that can be explored using other high resolution EM datasets and other glomeruli that vary in their tuning selectivity. Finally, the laser "branding" technique used in this study establishes a reduced cost procedure for obtaining smaller EM datasets from targeted volumes of interest by leveraging the ability to transgenically label brain regions in Drosophila.

      Comments on revisions:

      I appreciate the thoughtful responses that the authors made regarding the initial assessment of their study. The authors discuss these limitations in their manuscript which should not be viewed as criticisms, but rather caveats to be considered for this study specifically and in some instances, for all connectomics studies.

      I still believe there is a lost opportunity to make use of the FlyWire dataset to make specific strategic comparisons. I do not propose attempting to replicate the comprehensive nature of the main study, but querying cell type based on glomerular innervation would allow the authors to address consistency of observed differences between glomeruli as ORNs and uPNs have been thoroughly annotated and analysis can be limited by neuropil. I agree that it is unclear how many individuals would need to be examined to achieve sufficient statistical power, but some of the circuit motifs revealed in this study can be readily tested in the FlyWire dataset. For instance, the observation from this study that narrowly tuned ORNs receive less synaptic input from LNs is supported in FlyWire, with DL5 ORNs getting far more synaptic input from LNs relative to DA2 and VA1v. I'm not proposing repeating all of the analyses from this study, and there is no doubt that inter-animal variability and technical differences can explain different observations across datasets, but I believe these are considerations of which the readers (who can query these synaptic relationships in FlyWire) should be made aware.

    1. Reviewer #2 (Public review):

      Summary:

      This study explores how gene expression evolves in response to seasonal environments, using four evergreen Fagaceae species growing in similar habitats in Japan. By combining chromosome-scale genome assemblies with a two-year RNA-seq time series in leaves and buds, the authors identify seasonal rhythms in gene expression and examine both conserved and divergent patterns. A central result is that winter bud expression is highly conserved across species, likely due to shared physiological demands under cold conditions. One of the intriguing implications of this study is that seasonal cycles might play a role similar to ontogenetic stages in animals. The authors touch on this by comparing their findings to the developmental hourglass model, and indeed, the recurrence of phenological states such as winter dormancy may act as a cyclic form of developmental canalization, shaping expression evolution in a way analogous to embryogenesis in animals.

      Strengths:

      (1) The evolutionary effects of seasonal environments on gene expression are rarely studied at this scale. This paper fills that gap.

      (2) The dataset is extensive, covering two years, two tissues, and four tree species, and is well suited to the questions being asked.

      (3) Transcriptome clustering across species (Figure 2) shows strong grouping by season and tissue rather than species, suggesting that the authors effectively controlled for technical confounders such as batch effects and mapping bias.

      (4) The idea that winter imposes a shared constraint on gene expression, especially in buds, is well argued and supported by the data.

      (5) The discussion links the findings to known concepts like phenological synchrony and the developmental hourglass model, which helps frame the results.

      Weaknesses:

      (1) While the hierarchical clustering shown in Figure 2A largely supports separation by tissue type and season, one issue worth noting is that some leaf samples appear to cluster closely with bud samples. The authors do not comment on this pattern, which raises questions about possible biological overlap between tissues during certain seasonal transitions or technical artifacts such as sample contamination. Clarifying this point would improve confidence in the interpretation of tissue-specific seasonal expression patterns.

      (2) While the study provides compelling evidence of conserved and divergent seasonal gene expression, it does not directly examine the role of cis-regulatory elements or chromatin-level regulatory architecture. Including regulatory genomic or epigenomic data would considerably strengthen the mechanistic understanding of expression divergence.

      (3) The manuscript includes a thoughtful analysis of flowering-related genes and seasonal GO enrichment (e.g., Figure 3C-D), providing an initial link between gene expression timing and phenological functions. However, the analysis remains largely gene-centric, and the study does not incorporate direct measurements of phenological traits (e.g., flowering or bud break dates). As a result, the connection between molecular divergence and phenotypic variation, while suggestive, remains indirect.

      (4) Although species were sampled from similar habitats, one species (Q. acuta) was collected at a higher elevation, and factors such as microclimate or local photoperiod conditions could influence expression patterns. These potential confounding variables are not fully accounted for, and their effects should be more thoroughly discussed or controlled in future analyses.

      (5) Statistical and Interpretive Concerns Regarding Δφ and dN/dS Correlation (Figures 5E and 5F):

      (a) Statistical Inappropriateness: Δφ is a discrete ordinal variable (likely 1-11), making it unsuitable for Pearson correlation, which assumes continuous, normally distributed variables. This undermines the statistical validity of the analysis.

      (b) Biological Interpretability: Even with the substantial statistical power afforded by genome-wide analysis, the observed correlations are extremely weak. This suggests that the relationship, if any, between temporal divergence in expression and protein-coding evolution is negligible.

      Taken together, these issues weaken the case for any biologically meaningful association between Δφ and dN/dS. I recommend either omitting these panels or clearly reframing them as exploratory and statistically limited observations.

    1. Reviewer #2 (Public review):

      This work introduces a new version of the state-of-the-art idtracker.ai software for tracking multiple unmarked animals. The authors aimed to solve a critical limitation of their previous software, which relied on the existence of "global fragments" (video segments where all animals are simultaneously visible) to train an identification classifier network, in addition to addressing concerns with runtime speed. To do this, the authors have both re-implemented the backend of their software in PyTorch (in addition to numerous other performance optimizations) as well as moving from a supervised classification framework to a self-supervised, contrastive representation learning approach that no longer requires global fragments to function. By defining positive training pairs as different images from the same fragment and negative pairs as images from any two co-existing fragments, the system cleverly takes advantage of partial (but high-confidence) tracklets to learn a powerful representation of animal identity without direct human supervision. Their formulation of contrastive learning is carefully thought out and comprises a series of empirically validated design choices that are both creative and technically sound. This methodological advance is significant and directly leads to the software's major strengths, including exceptional performance improvements in speed and accuracy and a newfound robustness to occlusion (even in severe cases where no global fragments can be detected). Benchmark comparisons show the new software is, on average, 44 times faster (up to 440 times faster on difficult videos) while also achieving higher accuracy across a range of species and group sizes. This new version of idtracker.ai is shown to consistently outperform the closely related TRex software (Walter & Couzin, 2021\), which, together with the engineering innovations and usability enhancements (e.g., outputs convenient for downstream pose estimation), positions this tool as an advancement on the state-of-the-art for multi-animal tracking, especially for collective behavior studies.

      Despite these advances, we note a number of weaknesses and limitations that are not well addressed in the present version of this paper:

      (1) The contrastive representation learning formulation

      Contrastive representation learning using deep neural networks has long been used for problems in the multi-object tracking domain, popularized through ReID approaches like DML (Yi et al., 2014\) and DeepReID (Li et al., 2014). More recently, contrastive learning has become more popular as an approach for scalable self-supervised representation learning for open-ended vision tasks, as exemplified by approaches like SimCLR (Chen et al., 2020), SimSiam (Chen et al., 2020\), and MAE (He et al., 2021\) and instantiated in foundation models for image embedding like DINOv2 (Oquab et al., 2023). Given their prevalence, it is useful to contrast the formulation of contrastive learning described here relative to these widely adopted approaches (and why this reviewer feels it is appropriate):

      (1.1) No rotations or other image augmentations are performed to generate positive examples. These are not necessary with this approach since the pairs are sampled from heuristically tracked fragments (which produces sufficient training data, though see weaknesses discussed below) and the crops are pre-aligned egocentrically (mitigating the need for rotational invariance).

      (1.2) There is no projection head in the architecture, like in SimCLR. Since classification/clustering is the only task that the system is intended to solve, the more general "nuisance" image features that this architectural detail normally affords are not necessary here.

      (1.3) There is no stop gradient operator like in BYOL (Grill et al., 2020\) or SimSiam. Since the heuristic tracking implicitly produces plenty of negative pairs from the fragments, there is no need to prevent representational collapse due to class asymmetry. Some care is still needed, but the authors address this well through a pair sampling strategy (discussed below).

      (1.4) Euclidean distance is used as the distance metric in the loss rather than cosine similarity as in most contrastive learning works. While cosine similarity coupled with L2-normalized unit hypersphere embeddings has proven to be a successful recipe to deal with the curse of dimensionality (with the added benefit of bounded distance limits), the authors address this through a cleverly constructed loss function that essentially allows direct control over the intra- and inter-cluster distance (D\_pos and D\_neg). This is a clever formulation that aligns well with the use of K-means for the downstream assignment step.

      No concerns here, just clarifications for readers who dig into the review. Referencing the above literature would enhance the presentation of the paper to align with the broader computer vision literature.

      (2) Network architecture for image feature extraction backbone

      As most of the computations that drive up processing time happen in the network backbone, the authors explored a variety of architectures to assess speed, accuracy, and memory requirements. They land on ResNet18 due to its empirically determined performance. While the experiments that support this choice are solid, the rationale behind the architecture selection is somewhat weak. The authors state that:

      "\[W\]e tested 23 networks from 8 different families of state-of-the-art convolutional neural network architectures, selected for their compatibility with consumer-grade GPUs and ability to handle small input images (20 × 20 to 100 × 100 pixels) typical in collective animal behavior videos."

      (2.1) Most modern architectures have variants that are compatible with consumer-grade GPUs. This is true of, for example, HRNet (Wang et al., 2019), ViT (Dosovitskiy et al., 2020), SwinT (Liu et al., 2021), or ConvNeXt (Liu et al., 2022), all of which report single GPU training and fast runtime speeds through lightweight configuration or subsequent variants, e.g., MobileViT (Mehta et al., 2021). The authors may consider revising that statement or providing additional support for that claim (e.g., empirical experiments) given that these have been reported to outperform ResNet18 across tasks.

      (2.2) The compatibility of different architectures with small image sizes is configurable. Most convolutional architectures can be readily adapted to work with smaller image sizes, including 20x20 crops. With their default configuration, they lose feature map resolution through repeated pooling and downsampling steps, but this can be readily mitigated by swapping out standard convolutions with dilated convolutions and/or by setting the stride of pooling layers to 1, preserving feature map resolution across blocks. While these are fairly straightforward modifications (and are even compatible with using pretrained weights), an even more trivial approach is to pad and/or resize the crops to the default image size, which is likely to improve accuracy at a possibly minimal memory and runtime cost. These techniques may even improve the performance with the architectures that the authors did test out.

      (2.3) The authors do not report whether the architecture experiments were done with pretrained or randomly initialized weights.

      (2.4) The authors do not report some details about their ResNet18 design, specifically whether a global pooling layer is used and whether the output fully connected layer has any activation function. Additionally, they do not report the version of ResNet18 employed here, namely, whether the BatchNorm and ReLU are applied after (v1) or before (v2) the conv layers in the residual path.

      (3) Pair sampling strategy

      The authors devised a clever approach for sampling positive and negative pairs that is tailored to the nature of the formulation. First, since the positive and negative labels are derived from the co-existence of pretracked fragments, selection has to be done at the level of fragments rather than individual images. This would not be the case if one of the newer approaches for contrastive learning were employed, but it serves as a strength here (assuming that fragment generation/first pass heuristic tracking is achievable and reliable in the dataset). Second, a clever weighted sampling scheme assigns sampling weights to the fragments that are designed to balance "exploration and exploitation". They weigh samples both by fragment length and by the loss associated with that fragment to bias towards different and more difficult examples.

      (3.1) The formulation described here resembles and uses elements of online hard example mining (Shrivastava et al., 2016), hard negative sampling (Robinson et al., 2020\), and curriculum learning more broadly. The authors may consider referencing this literature (particularly Robinson et al., 2020\) for inspiration and to inform the interpretation of the current empirical results on positive/negative balancing.

      (4) Speed and accuracy improvements

      The authors report considerable improvements in speed and accuracy of the new idTracker (v6) over the original idTracker (v4?) and TRex. It's a bit unclear, however, which of these are attributable to the engineering optimizations (v5?) versus the representation learning formulation.

      (4.1) Why is there an improvement in accuracy in idTracker v5 (L77-81)? This is described as a port to PyTorch and improvements largely related to the memory and data loading efficiency. This is particularly notable given that the progression went from 97.52% (v4; original) to 99.58% (v5; engineering enhancements) to 99.92% (v6; representation learning), i.e., most of the new improvement in accuracy owes to the "optimizations" which are not the central emphasis of the systematic evaluations reported in this paper.

      (4.2) What about the speed improvements? Relative to the original (v4), the authors report average speed-ups of 13.6x in v5 and 44x in v6. Presumably, the drastic speed-up in v6 comes from a lower Protocol 2 failure rate, but v6 is not evaluated in Figure 2 - figure supplement 2.

      (5) Robustness to occlusion

      A major innovation enabled by the contrastive representation learning approach is the ability to tolerate the absence of a global fragment (contiguous frames where all animals are visible) by requiring only co-existing pairs of fragments owing to the paired sampling formulation. While this removes a major limitation of the previous versions of idtracker.ai, its evaluation could be strengthened. The authors describe an ablation experiment where an arc of the arena is masked out to assess the accuracy under artificially difficult conditions. They find that the v6 works robustly up to significant proportions of occlusions, even when doing so eliminates global fragments.

      (5.1) The experiment setup needs to be more carefully described.<br /> What does the masking procedure entail? Are the pixels masked out in the original video or are detections removed after segmentation and first pass tracking is done?<br /> What happens at the boundary of the mask? (Partial segmentation masks would throw off the centroids, and doing it after original segmentation does not realistically model the conditions of entering an occlusion area.)<br /> Are fragments still linked for animals that enter and then exit the mask area?<br /> How is the evaluation done? Is it computed with or without the masked region detections?

      (5.2) The circular masking is perhaps not the most appropriate for the mouse data, which is collected in a rectangular arena.

      (5.3) The number of co-existing fragments, which seems to be the main determinant of performance that the authors derive from this experiment, should be reported for these experiments. In particular, a "number of co-existing fragments" vs accuracy plot would support the use of the 0.25(N-1) heuristic and would be especially informative for users seeking to optimize experimental and cage design. Additionally, the number of co-existing fragments can be artificially reduced in other ways other than a fixed occlusion, including random dropout, which would disambiguate it from potential allocentric positional confounds (particularly relevant in arenas where egocentric pose is correlated with allocentric position).

      (6) Robustness to imaging conditions

      The authors state that "the new idtracker.ai can work well with lower resolutions, blur and video compression, and with inhomogeneous light (Figure 2 - figure supplement 4)." (L156).

      Despite this claim, there are no speed or accuracy results reported for the artificially corrupted data, only examples of these image manipulations in the supplementary figure.

      (7) Robustness across longitudinal or multi-session experiments

      The authors reference idmatcher.ai as a compatible tool for this use case (matching identities across sessions or long-term monitoring across chunked videos), however, no performance data is presented to support its usage.

      This is relevant as the innovations described here may interact with this setting. While deep metric learning and contrastive learning for ReID were originally motivated by these types of problems (especially individuals leaving and entering the FOV), it is not clear that the current formulation is ideally suited for this use case. Namely, the design decisions described in point 1 of this review are at times at odds with the idea of learning generalizable representations owing to the feature extractor backbone (less scalable), low-dimensional embedding size (less representational capacity), and Euclidean distance metric without hypersphere embedding (possible sensitivity to drift).

      It's possible that data to support point 6 can mitigate these concerns through empirical results on variations in illumination, but a stronger experiment would be to artificially split up a longer video into shorter segments and evaluate how generalizable and stable the representations learned in one segment are across contiguous ("longitudinal") or discontiguous ("multi-session") segments.

    1. Reviewer #2 (Public review):

      Summary:

      Massenberg and colleagues aimed to understand how Human papillomavirus particles that bind to the extracellular matrix (ECM) transfer to the cell body for later uptake, entry, and infection. The binding to ECM is key for getting close to the virus's host cell (basal keratinocytes) after a wounding scenario for later infection in a mouse vaginal challenge model, indicating that this is an important question in the field.

      Strengths:

      The authors take on a conceptually interesting and potentially very important question to understand how initial infection occurs in vivo. The authors confirm previous work that actin-based processes contribute to virus transport to the cell body. The superresolution microscopy methods and data collection are state-of-the art and provide an interesting new way of analysing the interaction with host cell proteins on the cell surface in certain infection scenarios. The proposed hypothesis is interesting and, if substantiated, could significantly advance the field.

      Weaknesses:

      As a study design, the authors use infection of HaCaT keratinocytes, and follow virus localisation with and without inhibition of actin polymerisation by cytochalasin D (cytoD) to analyse transfer of virions from the ECM to the cell by filopodial structures using important cellular proteins for cell entry as markers.

      First, the data is mostly descriptive besides the use of cytoD, and does not test the main claim of their model, in which virions that are still bound to heparan sulfate proteoglycans are transferred by binding to tetraspanins along filopodia to the cell body.

      Second, using cytoD is a rather broad treatment that not only affects actin retrograde flow, but also virus endocytosis and further vesicular transport in cells, including exocytosis. Inhibition of myosin II, e.g., by blebbistatin, would have been a better choice as it, for instance, does not interfere with endocytosis of the virus.

      Third, the authors aim to study transfer from ECM to the cell body and the effects thereof. However, there are substantial, if not the majority of, viruses that bind to the cell body compared to ECM-bound viruses in close vicinity to the cells. This is in part obscured by the small subcellular regions of interest that are imaged by STED microscopy, or by the use of plasma membrane sheets. As a consequence, the obtained data from time point experiments is skewed, and remains for the most part unconvincing due to the fact that the origin of virions in time and space cannot be taken into account. This is particularly important when interpreting association with HS, the tetraspanin CD151, and integral alpha 6, as the low degree of association could originate from cell-bound and ECM-transferred virions alike.

      Fourth, the use of fixed images in a time course series also does not allow for understanding the issue of a potential contribution of cell membrane retraction upon cytoD treatment due to destabilisation of cortical actin. Or, of cell spreading upon cytoD washout. The microscopic analysis uses an extension of a plasma membrane stain as a marker for ECM-bound virions, which may introduce a bias and skew the analysis.

      Fifth, while the use of randomisation during image analysis is highly recommended to establish significance (flipping), it should be done using only ROIs that have a similar density of objects for which correlations are being established. For instance, if one flips an image with half of the image showing the cell body, and half of the image ECM, it is clear that association with cell membrane structures will only be significant in the original. I am rather convinced that using randomisation only on the plasma membrane ROIs will not establish any clear significance of the correlating signals. Also, there should be a higher n for the measurements.

    1. Reviewer #2 (Public Review):

      The authors have been studying the mechanism of breadth expansion in antibody responses with repeated vaccinations using their own mathematical model. In this study, they applied this mathematical model to a cohort data analyzing anti-HA antibody responses after multiple influenza virus vaccination and investigated the mechanism of antibody breadth expansion to diversified target viral strains.<br /> The manuscript is well written, and the mathematical model is well built that incorporates various parameters related to B cell activation in GC and EGC based on experimental data.

      Strengths:

      By carefully reanalyzing the published cohort data (Nunez IA et al 2017 PLoS One), they have clearly demonstrated that the repeated influenza virus vaccinations result in an expansion of the breadth to unmatched viral strains.

      Using their mathematical model, they have determined the major factors for the breadth expansion following multiple immunizations.

      Weaknesses:

      The overall concept of their model has already been published (Yang L et al 2023 Cell Reports) with a SRAS-CoV-2 vaccine model, and they have applied it to influenza virus vaccine in this study, with the conclusions being largely the same.

      It is unclear how the re-evaluation of public data in the first half part is related to the validation of their model in the later part.

      Other points:

      In the original data by Nurez LA et al., HAI (the inhibitory effect of anti-HA antibodies on the binding of HA to sialic acid on erythrocytes) was used as the lead-out. The authors conclude that the breadth expansion with repeated vaccinations is primarily due to the activation of B cells with BCRs that recognize minor common epitopes, induced by covering up of strain specific major epitopes by pre-existing antibodies. However, as they themselves show in Fig 1, once the sialic acid-binding region is covered, it seems difficult for another BCR to bind to this region. When the target epitope is limited like this, the effect of increasing antigen supply to DCs by pre-existing antibodies and the effect of increasing the presentation of minor epitopes appears to compete with each other. Could the author please explain this point? In relation to this point, please explain the meaning of analysis of the entire ectodomain when the original data's lead-out is HAI.

      Minor point:

      The description "The purpose of this model is ...." starting at line 171 and the description of "we obtain results in harmony with the clinical findings ...." starting at line 478 sound to be contradictory. As the authors themselves state at line 171, if the purpose of this model is not to fit the data but to demonstrate the principle, then the prudent sampling and reanalyzing data itself seems to have less meaning.

    1. Reviewer #2 (Public review):

      Summary:

      Here, the authors studied the molecular mechanisms by which the chemoreceptor cluster and flagella motor of Pseudomonas aeruginosa (PA) are spatially organized in the cell. They argue that FlhF is involved in localizing the receptors and motor to the cell pole, but a separate mechanism colocalizes them. Finally, the authors argue that the functional reason for this colocalization is to insulate chemotactic signaling from other signaling pathways, such as cyclic-di-GMP signaling.

      Strengths:

      The experiments and data are high quality. It is clear that the motor and receptors co-localize, and that elevated CheY levels lead to elevated c-di-GMP. The signaling crosstalk argument is plausible.

    1. Reviewer #2 (Public review):

      Summary:

      In this study, Mondal and co-authors present the development of a computational model of homeostatic plasticity incorporating activity-dependent regulation of gating properties (activation, inactivation) of ion channels. The authors show that, similar to what has been observed for activity-dependent regulation of ion channel conductances, implementing activity-dependent regulation of voltage sensitivity participates in the achievement of a target phenotype (bursting or spiking). The results however suggest that activity-dependent regulation of voltage sensitivity is not sufficient to allow this and needs to be associated with the regulation of ion channel conductances in order to reliably reach target phenotype. Although the implementation of this biologically relevant phenomenon is undeniably relevant, a few important questions are left unanswered.

      Strengths:

      (1) Implementing activity-dependent regulation of gating properties of ion channels is biologically relevant.

      (2) The modeling work appears to be well performed and provides results that are consistent with previous work performed by the same group.

      Weaknesses:

      (1) The main question not addressed in the paper is the relative efficiency and/or participation of voltage-dependence regulation compared to channel conductance in achieving the expected pattern of activity. Is voltage-dependence participating to 50% or 10%. Although this is a difficult question to answer (and it might even be difficult to provide a number), it is important to determine whether channel conductance regulation remains the main parameter allowing the achievement of a precise pattern of activity (or its recovery after perturbation).

      (2) Another related question is whether the speed of recovery is significantly modified by implemeting voltage-dependence regulation (it seems to be the case looking at Figure 3). More generally, I believe it would be important to give insights into the overall benefit of implementing voltage-dependence regulation, beyond its rather obvious biological relevance.

      (3) Along the same line, the conclusion about how voltage-dependence regulation and channel conductance regulation interact to provide the neuron with the expected activity pattern (summarized and illustrated in Figure 6) is rather qualitative. Consistent with my previous comments, one would expect some quantitative answers to this question, rather than an illustration that approximately places a solution in parameter space.

    1. Reviewer #2 (Public review):

      Summary:

      Klug et al. use monosynaptic rabies tracing of inputs to D1- vs D2-SPNs in the striatum to study how separate populations of cortical neurons project to D1- and D2-SPNs. They use rabies to express ChR2, then patch D1-or D2-SPNs to measure synaptic input. They report that cortical neurons labeled as D1-SPN-projecting preferentially project to D1-SPNs over D2-SPNs. In contrast, cortical neurons labeled as D2-SPN-projecting project equally to D1- and D2-SPNs. They go on to conduct pathway-specific behavioral stimulation experiments. They compare direct optogenetic stimulation of D1- or D2-SPNs to stimulation of MCC inputs to DMS and M1 inputs to DLS. In three different behavioral assays (open field, intra-cranial self-stimulation, and a fixed ratio 8 task), they show that stimulating MCC or M1 cortical inputs to D1-SPNs is similar to D1-SPN stimulation, but that stimulating MCC or M1 cortical inputs to D2-SPNs does not recapitulate the effects of D2-SPN stimulation (presumably because both D1- and D2-SPNs are being activated by these cortical inputs).

      Strengths:

      Showing these same effects in three distinct behaviors is strong. Overall, the functional verification of the consequences of the anatomy is very nice to see. It is a good choice to patch only from mCherry-negative non-starter cells in the striatum. This study adds to our understanding of the logic of corticostriatal connections, suggesting a previously unappreciated structure.

      Weaknesses:

      One limitation is that all inputs to SPNs are expressing ChR2, so they cannot distinguish between different cortical subregions during patching experiments. Their results could arise because the same innervation patterns are repeated in many cortical subregions or because some subregions have preferential D1-SPN input while others do not. There are also some caveats with respect to the efficacy of rabies tracing. Although they only patch non-starter cells in the striatum, only 63% of D1-SPNs receive input from D1-SPN-projecting cortical neurons. It's hard to say whether this is "high" or "low," but one question is how far from the starter cell region they are patching. Without this spatial indication of where the cells that are being patched are relative to the starter population, it is difficult to interpret if the cells being patched are receiving cortical inputs from the same neurons that are projecting to the starter population. The authors indicate they are patching from mCherry-negative neurons within the region of the mCherry-positive neurons, but since the mCherry population will include both true starter cells and monosynaptically connected cells, this is not perfectly precise. Convergence of cortical inputs onto SPNs may vary with distance from the starter cell region quite dramatically, as other mapping studies of corticostriatal inputs have shown specialized local input regions can be defined based on cortical input patterns (Hintiryan et al., Nat Neurosci, 2016, Hunnicutt et al., eLife 2016, Peters et al., Nature, 2021). A caveat for the optogenetic behavioral experiments is that these optogenetic experiments did not include fluorophore-only controls, although a different control (with light delivered in M1) is provided in Supplementary Figure 3. Another point of confusion is that other studies (Cui et al, J Neurosci, 2021) have reported that stimulation of D1-SPNs in DLS inhibits rather than promotes movement. This study may have given different results due to subtly different experimental parameters, including fiber optic placement and NA.

    1. Reviewer #2 (Public review):

      In this manuscript, Hes et al. present a comprehensive multi-species atlas of the dorsal vagal complex (DVC) using single-nucleus RNA sequencing, identifying over 180,000 cells and 123 cell types across five levels of granularity in mice and rats. Intriguingly, the analysis uncovered previously uncharacterized cell populations, including Kcnj3-expressing astrocytes, neurons co-expressing Th and Cck, and a population of leptin receptor-expressing neurons in the rat area postrema, which also express the progenitor marker Pdgfra. These findings suggest species-specific differences in appetite regulation. This study provides a valuable resource for investigating the intricate cellular landscape of the DVC and its role in metabolic control, with potential implications for refining obesity treatments targeting this hindbrain region.

      In line with previous work published by the PI, the topic is of clear scientific relevance, and the data presented in this manuscript are both novel and compelling. Additionally, the manuscript is well-structured, and the conclusions are robust and supported by the data. Overall, this study significantly enhances our understanding of the DVC and sheds light on key differences between rats and mice.

      I have reviewed the revised manuscript and am pleased to confirm that the authors have addressed my previous comments and concerns.

    1. Reviewer #2 (Public review):

      Congratulations on this thorough manuscript on the phylogenetic affinities of Cryptovaranoides. Recent interpretations of this taxon, and perhaps some others, have greatly changed the field's understanding of reptile origins- for better and (likely) for worse.

      This manuscript offers a careful review of the features used to place Cryptovaranoides within Squamata and adequately demonstrates that this interpretation is misguided, and therefore reconciles morphological and molecular data, which is an important contribution to the field of paleontology. The presence of any crown squamate in the Permian or Triassic should be met with skepticism, the same sort of skepticism provided in this manuscript.

      I have outlined some comments addressing some weaknesses that I believe will further elevate the scientific quality of the work. A brief, fresh read‑through to refine a few phrases, particularly where the discussion references Whiteside et al. could also give the paper an even more collegial tone.

      This manuscript can be largely improved by additional discussion and figures, where applicable. When I first read this manuscript, I was a bit surprised at how little discussion there was concerning both non-lepidosauromorph lepidosaurs as well as stem-reptiles more broadly. This paper makes it extremely clear that Cryptovaranoides is not a squamate, but would greatly benefit in explaining why many of the characters either suggested by former studies to be squamate in nature or were optimized as such in phylogenetic analyses are rather widespread plesiomorphies present in crownward sauropsids such as millerettids, younginids, or tangasaurids. I suggest citing this work where applicable and building some of the discussion for a greatly improved manuscript. In sum:

      (1) The discussion of stem-reptiles should be improved. Nearly all of the supposed squamate features in Cryptovaranoides are present in various stem-reptile groups. I've noted a few, but this would be a fairly quick addition to this work. If this manuscript incorporates this advice, I believe arguments regarding the affinities of Cryptovaranoides (at least within Squamata) will be finished, and this manuscript will be better off for it.

      (2) I was also surprised at how little discussion there was here of putative stem-squamates or lepidosauromorphs more broadly. A few targeted comparisons could really benefit the manuscript. It is currently unclear as to why Cryptovaranoides could not be a stem-lepidosaur, although I know that the lepidosaur total-group in these manuscripts lacks character sampling due to their scarcity.

      (3) This manuscript can be improved by additional figures, such as the slice data of the humerus. The poor quality of the scan data for Cryptovaranoides is stated during this paper several times, yet the scan data is often used as evidence for the presence or absence of often minute features without discussion, leaving doubts as to what condition is true. Otherwise, several sections can be rephrased to acknowledge uncertainty, and probably change some character scorings to '?' in other studies.

    1. Reviewer #2 (Public review):

      Summary:

      How corticostriatal synaptic connectivity gives rise to SPN encoding of sensory information is an important and currently unanswered question. The authors utilize a clever slice preparation in combination with electrophysiology and glutamate uncaging to dissect the synaptic connectivity between barrel cortex and individual striatal SPNs. In addition to mapping connectivity across major anatomical axes and cortical layers, the authors provide data showing that SPNs uniquely integrate sparse input from variable stretches across barrel cortex.

      Strengths:

      The methodology shows impressive rigor and the data robustly support the authors conclusions. Overall, the manuscript addresses its core question, provides valuable insights into corticostriatal architecture, and is a welcomed addition to the field.

    1. Reviewer #2 (Public review):

      Summary:

      In this paper, entitled "SpikeMAP: An unsupervised spike sorting pipeline for cortical excitatory and inhibitory 2 neurons in high-density multielectrode arrays with ground-truth validation", the authors are presenting spikeMAP, a pipeline for the analysis of large-scale recordings of in vitro cortical activity. According to the authors, spikeMAP not only allows for the detection of spikes produced by single neurons (spike sorting), but also allows for the reliable distinction between genetically determined cell types by utilizing viral and optogenetic strategies as ground-truth validation. While I find that the paper is nicely written, and easy to follow, I find that the algorithmic part of the paper is not really new and should have been more carefully compared to existing solutions. While the GT recordings to assess the possibilities of a spike sorting tool to distinguish properly between excitatory and inhibitory neurons is interesting, spikeMAP does not seem to bring anything new to state of the art solutions, and/or, at least, it would deserve to be properly benchmarked. This is why I would suggest the authors to perform a more intensive comparison with existing spike sorters.

      Strengths:

      The GT recordings with optogenetic activation of the cells, based on the opsins is interesting and might provide useful data to quantify how good spike sorting pipelines are, in vitro, to discriminate between excitatory and inhibitory neurons. Such an approach can be quite complementary with artificially generated ground truth.

      Weaknesses:

      The global workflow of spikeMAP, described in Figure 1, seems to be very similar to the one of [Hilgen et al, 2020, 10.1016/j.celrep.2017.02.038.]. Therefore, the first question is what is the rationale of reinventing the wheel, and not using tools that are doing something very similar (as mentioned by the authors themselves). I have a hard time, in general, believing that spikeMAP has something particularly special, given its Methods, compared to state-of-the-art spike sorters. This is why at the very least, the title of the paper is misleading, because it let the reader think that the core of the paper will be about a new spike sorting pipeline. If this is the main message the authors want to convey, then I think that numerous validations/benchmarks are missing to assess first how good spikeMAP is, w.r.t. spike sorting in general, before deciding if this is indeed the right tool to discriminate excitatory vs inhibitory cells. The GT validation, while interesting, is not enough to entirely validate the paper. The details are a bit too scarce to me, or would deserve to be better explained (see other comments after)

      Regarding the putative location of the spikes, it has been shown that center of mass, while easy to compute, is not the most accurate solution [Scopin et al, 2024, 10.1016/j.jneumeth.2024.110297]. For example, it has an intrinsic bias for finding positions within the boundaries of the electrodes, while some other methods such as monopolar triangulation or grid-based convolution might have better performances. Can the authors comment on the choice of Center of Mass as a unique way to triangulate the sources?

      Still in Figure 1, I am not sure to really see the point of Spline Interpolation. I see the point of such a smoothing, but the authors should demonstrate that it has a key impact on the distinction of Excitatory vs. Inhibitory cells. What's special with the value of 90kHz for a signal recorded at 18kHz? What is the gain with spline enhancement compared to without? Does such a value depend on the sampling rate, or is it a global optimum found by the authors?

      Figure 2 is not really clear, especially panel B. The choice of the time scale for the B panel might not be the most appropriate, and the legend filtered/unfiltered with a dot is not clear to me in Bii. In panel E, the authors are making two clusters with PCA projections on single waveforms. Does this mean that the PCA is only applied to the main waveforms, i.e. the ones obtained where the amplitudes are peaking the most? This is not really clear from the methods, but if this is the case, then this approach is a bit simplistic and not really matching state-of-the-art solutions. Spike waveforms are quite often, especially with such high-density arrays, covering multiple channels at once and thus the extracellular patterns triggered by the single units on the MEA are spatio-temporal motifs occurring on several channels. This is why, in modern spike sorters, the information in a local neighbourhood is often kept to be projected, via PCA, on the lower dimensional space before clustering. Information on a single channel only might not be informative enough to disambiguate sources. Can the authors comment on that, and what is the exact spatial resolution of the 3Brain device? The way the authors are performing the SVD should be clarified in the methods section. Is it on a single channel, and/or on multiple channels in a local neighbourhood?

      About the isolation of the single units, here again, I think the manuscript lacks some technical details. The authors are saying that they are using a k-means cluster analysis with k=2. This means that the authors are explicitly looking for 2 clusters per electrodes. If so, this is a really strong assumption that should not be held in the context of spike sorting, because since it is a blind source separation technique, one cannot pre-determine in advance how many sources are present in the vicinity of a given electrode. While the illustration on Figure 2E is ok, there is no guarantee that one cannot find more clusters, so why this choice of k=2? Again, this is why most modern spike sorting pipelines are not relying on k-means, to avoid any hard coded number of clusters. Can the authors comment on that?

      I'm surprised by the linear decay of the maximal amplitude as a function of the distance from soma, as shown in Figure 2H. Is it really what should be expected? Based on the properties of the extracellular media, shouldn't we expect a power law for the decay of the amplitude? This is strange that up to 100um away from the some, the max amplitude only dropped from 260 to 240 uV. Can the authors comment on that? It would be interesting to plot that for all neurons recorded, in a normed manner V/max(V) as function of distances, to see what the curve looks like

      In Figure 3A, it seems that the total number of cells is rather low for such a large number of electrodes. What are the quality criteria that are used to keep these cells? Did the authors exclude some cells from the analysis, and if yes, what are the quality criteria that are used to keep cells? If no criteria are used (because none is mentioned in the Methods), then how come so few cells are detected, and can the authors convince us that these neurons are indeed "clean" units (RPVs, SNRs, ...)

      Still in Figure 3A, it looks like there is a bias to find inhibitory cells at the borders, since they do not appear to be uniformly distributed over the MEA. Can the authors comment on that? What would be the explanation for such a behaviour? It would be interesting to see some macroscopic quantities on Excitatory/Inhibitory cells, such as mean firing rates, averaged SNRs, ... Because again, in Figure 3C, it is not clear to me that the firing rates of inhibitory cells is higher than Excitatory ones, while it should be in theory.

      For Figure 3 in general, I would have performed an exhaustive comparison of putative cells found by spikeMAP and other sorters. More precisely, I think that to prove the point that spikeMAP is indeed bringing something new to the field of spike sorting, the authors should have compared the performances of various spike sorters to discriminate Exc vs Inh cells based on their ground truth recordings. For example, either using Kilosort [Pachitariu et al, 2024, 10.1038/s41592-024-02232-7], or some other sorters that might be working with such large high-density data [Yger et al, 2018, 10.7554/eLife.34518]

      Figure 4 has a big issue, and I guess the panels A and B should be redrawn. I don't understand what the red rectangle is displaying.

      I understand that Figure 4 is only one example, but I have a hard time understanding from the manuscript how many slices/mice were used to obtain the GT data? I guess the manuscript could be enhanced by turning the data into an open access dataset, but then some clarification is needed. How many flashes/animals/slices are we talking about. Maybe this should be illustrated in Figure 4, if this figure is devoted to the introduction of the GT data.

      While there is no doubt that GT data as the ones recorded here by the authors are the most interesting data from a validation point of view, the pretty low yield of such experiments should not discourage the use of artificially generated recordings such as the ones made in [Buccino et al, 2020, 10.1007/s12021-020-09467-7] or even recently in [Laquitaine et al, 2024, 10.1101/2024.12.04.626805v1]. In these papers, the authors have putative waveforms/firing rates patterns for excitatory and inhibitory cells, and thus the authors could test how good they are in discriminating the two subtypes

      Comments on revised version:

      While I must thank the authors for their answers, I still think that they miss an important one, and only partially answering some of my concerns.

      I truly think that SpikeMAP would benefit with a comparison with a state-of-the-art spike sorting pipeline, for example Kilosort. The authors said that they made the sorter modular enough such that only the E/I classification step can be compared. I think this would be worth it, just to be sure that SpikeMAP spike sorting, which might be more simple than other recent solution (with template matching), is not missing some cells, and thus degrading the E/I classification performances. I know that such a comparison is not straightforward, because there is no clear ground truth, but I would still need to be convinced that the sorting pipelines is bringing something, on its own. While there is no doubt that the E/I classification layer can be interesting, especially given the recordings shared by the authors, I'm still a bit puzzled by the sorting step. Thus maybe either a Table, a figure, or even as Supplementary one. Or the authors could try to generate fake GT data with MEArec for example, with putative E/I cells (discriminated via waveforms and firing rates) and show on such (oversimplified) data that SpikeMAP is performing similarly to modern spike sorters. Otherwise, this is a bit hard to judge...

    1. Reviewer #2 (Public review):

      Summary:

      The main goal of this study is to examine how information about odor concentration is encoded by second-order neurons in the invertebrate and vertebrate olfactory system. In many animal models, the overall mean firing rates across the second-order neurons appear to be relatively flat or near constant with increasing odor intensity. While such compression of concentration information could aid in achieving concentration invariant recognition of odor identity, how this observation could be reconciled with the need to preserve information about the changes in stimulus intensity is a major focus of the study. The authors show that second-order neurons have 'diverse' dose-response curves and that the combinations of neurons activated (particularly the rank-order) differ with concentration. Further, they argue that a single circuit-level computation, termed 'divisive normalization,' where the individual neural response is normalized by the total activity across all neurons, could help explain the coding properties of neurons at this stage of processing in all model organisms examined. They present approaches to read out the concentration information using spike rates or timing-based approaches. Finally, the authors reveal that tufted cells in the mouse olfactory bulb provide an exception to this coding approach and encode concentration information with a monotonic increase in firing rates.

      Strengths:

      (1) Comparative analysis of odor intensity coding across four different species, revealing the common features in encoding stimulus-driven features, is highly valuable.

      (2) Showing how mitral and tufted cells differ in encoding odor intensity is potentially very important to the field.

      (3) How to preserve concentration information while compressing the same with divisive normalization is also a novel and important problem in the field of sensory coding.

      Weaknesses:

      (1) The encoding problem:

      The main premise that divisive normalization generates this diversity of dose-response curves in the second-order neurons is a little problematic. The authors acknowledge this as part of their analysis in Figure 3.

      "Therefore, divisive normalization mostly does not alter the relative contribution (rank order) of each neuron in the ensemble." (Page 4, last paragraph, lines 6-8).

      The analysis in this figure indicates that divisive normalization does what it is supposed to do, i.e., compresses concentration information and not alter the rank-order of neurons or the combinatorial patterns. Changes in the combinations of neurons activated with intensity arise directly from the fact that the first-order neurons did not have monotonic responses with odor intensity (i.e., crossovers). This was the necessary condition, and not the divisive normalization for changes in the combinatorial code.

      There seems to be a confusion/urge to attribute all coding properties found in the second-order neurons to 'divisive normalization.' If the input from sensory neurons is monotonic (i.e., no crossovers), then divisive normalization did not change the rank order, and the same combinations of neurons are activated in a similar fashion (same vector direction or combinatorial profile) to encode for different odor intensities. Concentration invariance is achieved, and concentration information is lost. However, when the first-order neurons are non-monotonic (i.e., with crossovers), that causes the second-order neurons to have different rank orders with different concentrations. Divisive normalization compresses information about concentrations, and rank-order differences preserve information about the odor concentration. Does this not mean that the non-monotonicity of sensory neuron response is vital for robustly maintaining information about odor concentration?

      Naturally, the question that arises is whether many of the important features of the second-order neuron's response simply seem to follow the input. Or is my understanding of the figures and the write-up flawed, and are there more ways in which divisive normalization contributes to reshaping the second-order neural response? This must be clarified.

      Lastly, the tufted cells in the mouse OB are also driven by this sensory input with crossovers. How does the OB circuit convert the input with crossovers into one that is monotonic with concentration? I think that is an important question that this computational effort could clarify.

      (2) The decoding problem.

      The way the decoding results and analysis are presented does not add a lot of information to what has already been presented. For example, based on the differences in rank-order with concentration, I would expect the combinatorial code to be different. Hence, a very simple classifier based on cosine or correlation distance would work well. However, since divisive normalization (DN) is applied, I would expect a simple classification scheme that uses the Euclidean distance metric to work equally as well after DN. Is this the case?<br /> Leave-one-trial/sample-out seems too conservative. How robust are the combinatorial patterns across trials? Would just one or two training trials suffice for creating templates for robust classification? Based on my prior experience (https://elifesciences.org/reviewed-preprints/89330), I do expect that the combinatorial patterns would be more robust to adaptation and hence also allow robust recognition of odor intensity across repeated encounters.

      Lastly, in the simulated data, since the affinity of the first-order sensory neurons to odorants is expected to be constant across concentration, and "Jaccard similarity between the sets of highest-affinity neurons for each pair of concentration levels was > 0.96," why would the rank-order change across concentration? DN should not alter the rank order.

      If the set of early responders does change, how will the decoder need to change, and what precise predictions can be made that can be tested experimentally? The lack of exploration of this aspect of the results seems like a missed opportunity.

      (3) Analysis of existing data.

      I had a couple of issues related to the presentation and analysis of prior results.

      i) Based on the methods, for Figures 1 and 2, it appears the responses across time, trials, and odorants were averaged to get a single data point per neuron for each concentration. Would this averaging not severely dilute trends in the data? The one that particularly concerns me is the averaging across different odorants. If you do odor-by-odor analysis, is the flattening of second-order neural responses still observable? Because some odorants activate more globally and some locally, I would expect a wide variety of dose-response relationships that vary with odor identity (more compressed in second-order neurons, of course). It would be good to show some representative neural responses and show how the extracted values for each neuron are a faithful/good representation of its response variation across intensities.

      ii) A lot of neurons seem to have responses that flat line closer to zero (both firing rate and dF/F in Figure 1). Are these responsive neurons? The mean dF/F also seems to hover not significantly above zero. Hence, I was wondering if the number of neurons is reducing the trend in the data significantly.

      iii) I did not fully understand the need to show the increase in the odor response across concentrations as a polar plot. I see potential issues with the same. For example, the following dose-response trend at four intensities (C4 being the highest concentration and C1 the lowest): response at C3 > response at C1 and response at C4 > response at C2. But response at C3 < response at C2. Hence, it will be in the top right segment of the polar plot. However, the responses are not monotonic with concentrations. So, I am not convinced that the polar plot is the right way to characterize the dose-response curves. Just my 2 cents.

      (4) Simulated vs. Actual data.

      In many analyses, simulated data were used (Figures 3 and 4). However, there is no comparison of how well the simulated data fit the experimental data. For example, the Simulated 1st order neuron in Figure 3D does not show a change in rank-order for the first-order neuron. In Figure 3E, temporal response patterns in second-order neurons look unrealistic. Some objective comparison of simulated and experimental data would help bolster confidence in these results.

    1. Reviewer #2 (Public review):

      Summary:

      The manuscript by Zhang and colleagues describes a study that investigated whether the deletion of PTBP1 in adult astrocytes in mice led to an astrocyte-to-neuron conversion. The study revisited the hypothesis that reduced PTBP1 expression reprogrammed astrocytes to neurons. More than 10 studies have been published on this subject, with contradicting results. Half of the studies supported the hypothesis while the other half did not. The question being addressed is an important one because if the hypothesis is correct, it can lead to exciting therapeutic applications for treating neurodegenerative diseases such as Parkinson's disease.

      In this study, Zhang and colleagues conducted a conditional mouse knockout study to address the question. They used the Cre-LoxP system to specifically delete PTBP1 in adult astrocytes. Through a series of carefully controlled experiments, including cell lineage tracing, the authors found no evidence for the astrocyte-to-neuron conversion.

      The authors then carried out a key experiment that none of the previous studies on the subject did: investigating alternative splicing pattern changes in PTBP1-depleted cells using RNA-seq analysis. The idea is to compare the splicing pattern change caused by PTBP1 deletion in astrocytes to what occurs during neurodevelopment. This is an important experiment that will help illuminate whether the astrocyte-to-neuron transition occurred in the system. The result was consistent with that of the cell staining experiments: no significant transition was detected.

      These experiments demonstrate that, in this experimental setting, PTBT1 deletion in adult astrocytes did not convert the cells to neurons.

      Strengths:

      This is a well-designed, elegantly conducted, and clearly described study that addresses an important question. The conclusions provide important information to the field.<br /> To this reviewer, this study provided convincing and solid experimental evidence to support the authors' conclusions.

      Weaknesses:

      The Discussion in this manuscript is short and can be expanded. Can the authors speculate what led to the contradictory results in the published studies? The current study, in combination with the study published in Cell in 2021 by Wang and colleagues, suggests that observed difference is not caused by the difference of knockdown vs. knockout. Is it possible that other glial cell types are responsible for the transition? If so, what cells? Oligodendrocytes?

    1. Reviewer #2 (Public review):

      Summary:

      The authors developed a method that automatically processes bioluminescent tumor images for quantitative analysis and used it to describe the spatiotemporal distribution of tumor cells in response to CD19-targeting CAR-T cells, comprising CD28 or 4-1BB costimulatory domains. The conclusion highlights the dependence of tumor decay and relapse on the number of injected cells, the type of cells, and the initial growth rate of tumors ( where initial is intended from the first day of therapy). The authors also determined the spatiotemporal analysis of tumor response to CAR T therapy in different regions of the mouse body in a model of acute lymphoblastic leukemia (ALL).

      Strengths:

      The analysis is based on a large number of images and accounts for many variables. The results of the analysis largely support their claims that the kinetics of tumor decay and relapse are dependent on the CAR T co-stimulatory domain and number of cells injected and tumor growth rates.

      Weaknesses:

      The study does not specify how a) differences in mouse positioning (and whether they excluded not-aligned mice) and b) tumor spread at the start of therapy influenced their data. The study does not take into account the potential heterogeneity of CAR T cells in terms of CAR T expression or T cell immunophenotype ( differentiation, exhaustion, fitness...).

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Ramirez-Diaz and colleagues set out to examine key physical mechanisms of bacterial cell division, using the Gram-positive model Bacillus subtilis. Specifically, they investigate the hypothesis that condensation of polymers of the master regulator of division FtsZ can deform membranes to initiate division, but that this is limited by membrane tension. They test this by modulating both membrane tension and FtsZ condensation genetically. To modulate membrane tension, they overexpress accDA to increase the rate of phospholipid synthesis and increase the "hidden membrane reservoir", thereby decreasing membrane tension. To modulate FtsZ condensation, they deplete the bundling protein EzrA in a background lacking a second bundling protein, SepF. They confirm the effects of accDA overexpression on membrane tension using two different sensors before assessing the relationship between membrane tension, FtsZ condensation, and division. They demonstrate that cells with excess membrane (reduced membrane tension) can divide with reduced bundling protein abundance, suggesting that FtsZ condensation driven by ZBPs normally serves to overcome membrane tension to initiate division. In addition, they find an inverse relationship between membrane tension and FtsZ ring constriction rate, but no effect of membrane tension on FtsZ treadmilling. Estimation of physical parameters leads them to conclude that very small membrane fluctuations are sufficient to initiate division in unperturbed cells and that the membrane contributes only ~0.1% of the total surface tension strength, maintaining cell shape.

      Strengths:

      The highly quantitative approach of this work is a strength, as is the rigorous assessment of membrane tension with multiple sensors. The model proposed is largely consistent with existing data and provides a mechanism for further study and validation. The study tackles a major outstanding question in bacterial cell biology, and provides a potential mechanism for a key step in replication with broad implications in other organisms.

      Weaknesses:

      The authors only use one method (overexpression of accDA) to perturb membrane tension, which could influence division in unanticipated ways (e.g., metabolic adaptations and/or activation of signaling pathways). The proposed model for initiation of division posits that FtsZ condensation bends membranes, which is supported by in vitro evidence, but there is no in vivo evidence that FtsZ condensation can bend membranes in cells. It remains possible that the function of FtsZ condensation is to localize sufficient cell wall synthetic activity to build peptidoglycan that rectifies membrane fluctuations.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript presents the computational design and experimental validation of Neo-7, an engineered variant of interleukin-7 (IL-7) with improved folding efficiency, expression yield, and therapeutic activity. The authors employed a rational protein design approach using Rosetta loop remodeling to reconnect IL-7's functional helices through shorter, more efficient loops, resulting in a protein with superior stability and binding affinity compared to wild-type IL-7. The work demonstrates promising translational potential for cancer immunotherapy applications.

      Strengths:

      (1) The integration of Rosetta loop remodeling with AlphaFold validation represents an established computational pipeline for rational protein design. The iterative refinement process, using both single-sequence and multimer AlphaFold predictions, is methodologically sound.

      (2) The authors provide thorough characterization across multiple platforms (yeast display, bacterial expression, mammalian cell expression) and assays (binding kinetics, thermostability, bioactivity), strengthening the robustness of their findings.

      (3) The identification of the critical helix 1 kink stabilized by disulfide bonding and its recreation through G4C/L96C mutations demonstrates deep structural understanding and successful problem-solving.

      (4) The MC38 tumor model results show clear therapeutic advantages of Neo-7 variants, with compelling immune profiling data supporting CD8+ T cell-mediated anti-tumor mechanisms.

      (5) The transcriptomic profiling provides valuable mechanistic insights into T cell activation states and suggests reduced exhaustion markers, which are clinically relevant.

      Weaknesses:

      (1) While computational predictions are extensive, the manuscript lacks experimental structural validation of the designed Neo-7 variants. The term "Structural Validation" should not be used in the header.

      (2) The authors observe slower on/off-rates for Neo-7 variants compared to wild-type IL-7. Could the authors speculate about the potential biological impacts of the slow off-rate, especially focusing on downstream signaling pathways that might be differentially affected by the altered binding kinetics of Neo-7 variants?

      (3) While computational immunogenicity prediction is provided, these methods are very limited.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript investigates the mechanism by which chronic stress induces degeneration of locus coeruleus (LC) neurons. The authors demonstrate that chronic stress leads to the internalization of α2A-adrenergic receptors (α2A-ARs) on LC neurons, causing increased cytosolic noradrenaline (NA) accumulation and subsequent production of the neurotoxic metabolite DOPEGAL via monoamine oxidase A (MAO-A). The study suggests a mechanistic link between stress-induced α2A-AR internalization, disrupted autoinhibition, elevated NA metabolism, activation of asparagine endopeptidase (AEP), and Tau pathology relevant to Alzheimer's disease (AD). The conclusions of this paper are largely well-supported by the data, but some aspects of image acquisition require further examination.

      Strengths:

      This study clearly demonstrates the effects of chronic stimulation on the excitability of LC neurons using electrophysiological techniques. It also elucidates the role of α2-adrenergic receptor (α2-AR) internalization and the associated upstream and downstream signaling pathways of GIRK-1, using a range of pharmacological agents, highlighting the innovative nature of the work. Additionally, the study identifies the involvement of the MAO-A-DOPEGAL-AEP pathway in this process. The topic is timely, the proposed mechanistic pathway is compelling, and the findings have translational relevance, particularly about therapeutic strategies targeting α2A-AR internalization in neurodegenerative diseases.

      Weaknesses:

      (1) The manuscript reports that chronic stress for 5 days increases MAO-A levels in LC neurons, leading to the production of DOPEGAL, activation of AEP, and subsequent tau cleavage into the tau N368 fragment, ultimately contributing to neuronal damage. However, the authors used wild-type C57BL/6 mice, and previous literature has indicated that AEP-mediated tau cleavage in wild-type mice is minimal and generally insufficient to cause significant behavioral alterations. Please clarify and discuss this apparent discrepancy.

      (2) It is recommended that the authors include additional experiments to examine the effects of different durations and intensities of stress on MAO-A expression and AEP activity. This would strengthen the understanding of stress-induced biochemical changes and their thresholds.

      (3) Please clarify the rationale for the inconsistent stress durations used across Figures 3, 4, and 5. In some cases, a 3-day stress protocol is used, while in others, a 5-day protocol is applied. This discrepancy should be addressed to ensure clarity and experimental consistency.

      (4) The abbreviation "vMAT2" is incorrectly formatted. It should be "VMAT2," and the full name (vesicular monoamine transporter 2) should be provided at first mention.

      Comments on revisions:

      The authors have addressed all of the reviewers' comments.

    1. Reviewer #2 (Public review):

      Summary:

      In this paper, Fan et al. aim to characterize how neural representations of facial emotions evolve from childhood to adulthood. Using intracranial EEG recordings from participants aged 5 to 55, the authors assess the encoding of emotional content in high-level cortical regions. They report that while both the posterior superior temporal cortex (pSTC) and dorsolateral prefrontal cortex (DLPFC) are involved in representing facial emotions in older individuals, only the pSTC shows significant encoding in children. Moreover, the encoding of complex emotions in the pSTC appears to strengthen with age. These findings lead the authors to suggest that young children rely more on low-level sensory areas and propose a developmental shift from reliance on lower-level sensory areas in early childhood to increased top-down modulation by the prefrontal cortex as individuals mature.

      Strengths:

      (1) Rare and valuable dataset: The use of intracranial EEG recordings in a developmental sample is highly unusual and provides a unique opportunity to investigate neural dynamics with both high spatial and temporal resolution.

      (2) Developmentally relevant design: The broad age range and cross-sectional design are well-suited to explore age-related changes in neural representations.

      (3) Ecological validity: The use of naturalistic stimuli (movie clips) increases the ecological relevance of the findings.

      (4) Feature-based analysis: The authors employ AI-based tools to extract emotion-related features from naturalistic stimuli, which enables a data-driven approach to decoding neural representations of emotional content. This method allows for a more fine-grained analysis of emotion processing beyond traditional categorical labels.

      Weaknesses:

      (1) The emotional stimuli included facial expressions embedded in speech or music, making it difficult to isolate neural responses to facial emotion per se from those related to speech content or music-induced emotion.

      (2) While the authors leveraged Hume AI to extract facial expression features from the video stimuli, they did not provide any validation of the tool's accuracy or reliability in the context of their dataset. It remains unclear how well the AI-derived emotion ratings align with human perception, particularly given the complexity and variability of naturalistic stimuli. Without such validation, it is difficult to assess the interpretability and robustness of the decoding results based on these features.

      (3) Only two children had relevant pSTC coverage, severely limiting the reliability and generalizability of results.

      (4) The rationale for focusing exclusively on high-frequency activity for decoding emotion representations is not provided, nor are results from other frequency bands explored.

      (5) The hypothesis of developmental emergence of top-down prefrontal modulation is not directly tested. No connectivity or co-activation analyses are reported, and the number of participants with simultaneous coverage of pSTC and DLPFC is not specified.

      (6) The "post-childhood" group spans ages 13-55, conflating adolescence, young adulthood, and middle age. Developmental conclusions would benefit from finer age stratification.

      (7) The so-called "complex emotions" (e.g., embarrassment, pride, guilt, interest) used in the study often require contextual information, such as speech or narrative cues, for accurate interpretation, and are not typically discernible from facial expressions alone. As such, the observed age-related increase in neural encoding of these emotions may reflect not solely the maturation of facial emotion perception, but rather the development of integrative processing that combines facial, linguistic, and contextual cues. This raises the possibility that the reported effects are driven in part by language comprehension or broader social-cognitive integration, rather than by changes in facial expression processing per se.

    1. Reviewer #2 (Public review):

      Summary:<br /> The authors set out to characterise the GPCR family in choanoflagellates (and other unicellular holozoans). GPCRs are the most abundant gene family in many animal genomes, playing crucial roles in a wide range of physiological processes. Although they are known to evolve rapidly, GPCRs are an ancient feature of eukaryotic biology. Identifying conserved elements across the animal-protist boundary is therefore a valuable goal, and the increasing availability of genomes from non-animal holozoans provides new opportunities to explore evolutionary patterns that were previously obscured by limited taxon sampling. This study presents a comprehensive re-examination of GPCRs in choanoflagellates, uncovering examples of differential gene retention and revealing the dynamic nature of the GPCR repertoire in this group. As GPCRs are typically involved in environmental sensing, understanding how these systems evolved may shed light on how our unicellular ancestors adapted their signalling networks in the transition to complex multicellularity.

      Strengths:<br /> The paper combines a broad taxonomic scope with the use of both established and recently developed tools (e.g. Foldseek, AlphaFold), enabling a deep and systematic exploration of GPCR diversity. Each family is carefully described, and the manuscript also functions as an up-to-date review of GPCR classification and evolution. Although similar attempts of understanding GPCR evolution were done over the last decade, the authors build on this foundation by identifying new families and applying improved computational methods to better predict structure and function. Notably, the presence of Rhodopsin-like GPCRs in some choanoflagellates and ichthyosporeans is intriguing, even though they do not fall within known animal subfamilies. The computational framework presented here is broadly applicable, offering a blueprint for surveying GPCR diversity in other non-model eukaryotes (and even in animal lineages), potentially revealing novel families relevant to drug discovery or helping revise our understanding of GPCR evolution beyond model systems.

      Weaknesses:<br /> While the study contributes several interesting observations, it does not radically revise the evolutionary history of the GPCR family. However, in an era increasingly concerned with the reproducibility of scientific findings, this is arguably a strength rather than a weakness. It is encouraging to see that previously established patterns largely hold, and that with expanded sampling and improved methods, new insights can be gained-especially at the level of specific GPCR subfamilies. Then, no functional follow ups are provided in the model system Salpingoeca rosetta, but I am sure functional work on GPCRs in choanoflagellates is set to reveal very interesting molecular adaptations in the future.

      Comments on the latest version:

      The authors have done a good job answering my questions and suggestions.

    1. Reviewer #2 (Public review):

      Summary:

      The paper by Khanna et al. describes global vs local beta synchrony between a cortical premotor area (PMv) and subcortical structures during motor tasks in the non-human primate, specifically investigating the progression following M1 injury. They found that increases in global beta synchrony between PMv and subcortical structures during the sub-acute phase of injury, and that global synchrony was associated with relatively slower motor movements. As recovery progressed, they report a shift from global synchrony to local synchrony and a subsequent reduction in the movement time. The authors suggest that global changes in subcortical and cortical beta synchrony may generally underpin a variety of movement disorders, including Parkinson's disease, and that shifting from global to local (or reducing global synchrony) might improve functional outcomes.

      Strengths:

      Ischemic insults and other acquired brain injuries have a significant public health impact. While there is a large body of clinical and basic science studies describing the behavioral, neurophysiological, and mechanistic outcomes of such injury, there is a significant lack studies looking at longitudinal, behaviorally-related neurophysiological measures following cortical injury, so any information has outsized contribution to understanding how brain injury disrupts underlying neural activity and how this may contribute to injury presentation and recovery.

      A significant percentage of pre-clinical stroke studies tend to focus on peri-infarct or other cortical structures and their role in recovery. The addition of subcortical recordings allows for the investigation of the role of thalamo-basal gangliar-cortical loops that may be contributing to the degree of impairment or to the recovery process is important for the field. Here, there are longitudinal (up to 3 months post-injury) recordings in the ventral premotor area (PMv) and either the internal capsule or sensorimotor thalamus that can be synchronized with phases of behavioral recovery.

      The methods are well described and can act as a framework for assessing synchrony across other data sets with similar recording locations. Limitations in methodology, recordings, and behavior were noted.

      Weaknesses:

      A major limitation of this paper is that it is a set of case studies rather than a well-designed, well-controlled study of beta synchrony following motor cortex injury. While non-human primate neurophysiological studies are almost always limited by extremely low animal numbers, they are made up for by the fact that they can acquire significant numbers of units or channels, and in the case of normal behavior, can obtain many behavioral trials over months of individual sessions. Here, there were two NHPs used, but they had different subcortical implant locations (thalamus vs internal capsule). They had different injury outcomes, with one showing a typical recovery curve following injury while one had complications and worsening behavior before ultimately recovering. Further, there were significant differences in the ability to record at different times, with one NHP having poor recordings early in the recovery process while one had poor recordings late in the process. Due to the injury, the authors report sessions in which they were not able to record many trials (~10). Assuming that recovery after a cortical injury is an evolving process, breaking analysis into "Early" and "Late" phases reduces the interpretation of where these shifts occur relative to recovery on the task, especially given different thresholds for recovery were used between animals. Because of this, despite a careful analysis of the data and an extensive discussion, the conclusions derived are not particularly compelling. To overcome this, the authors present data from neurotypical NHPs, but with electrodes in M1 rather than PMv, doing a completely different task with no grasping component, again making accurate conclusions about the results difficult. Even with low numbers, the study would have been much stronger if there were within-animal longitudinal data prior to and after the injury on the same task, so the impact of M1 injury could be better assessed.

      It is unclear to what extent the subpial aspiration used is a stroke model. While it is much more difficult to perform a pure ischemic motor injury using electrocoagulatory methods in animal models that do not have a lissencephalic cortex, the suction ablation method that the authors use leads to different outcomes than an ischemic injury alone. For instance, in rat models, ischemic vs suction ablation leads to very different electrophysiological profiles and differences in underlying anatomical reorganization (see Carmichael and Chesselet, 2002), even if the behavioral outcomes were similar. There is a concern that the effects shown may be an artifact of the lesion model rather than informing underlying mechanisms of recovery.

      The injury model leads to seemingly mild impairments in grasp (but not reach), with rapid and complete recovery occurring within 2-3 weeks from the time of injury. Because of the rapid recovery, relating the physiological processes of recovery to beta synchronization becomes challenging to interpret - Are the global bursts the result of the loss of M1 input to subcortical structures? Are they due to the lack of M1 targets, so there is a more distributed response? Is this due to other post-injury sub-acute mechanisms? How specific is this response - is it limited to peri-infarct areas (and to what extent is the PMv electrode truly in peri-infarct cortex), or would this synchrony be seen anywhere in the sensorimotor networks? Are the local bursts present because global synchrony wanes over time as a function of post-injury homeostatic mechanisms, or is local beta synchrony increasing as new motor plans are refined and reinforced during task re-acquisition? How coupled are they related to recovery - if it is motor plan refinement, the shift from global to local seemingly should lag the recovery? While the study has significant limitations in design that reduce the impact of the results, it should act as a useful baseline/pilot data set in which to build a more complete picture of the role of subcortical-cortical beta synchrony following cortical injury.

    1. Reviewer #2 (Public review):

      Summary:

      This article aims to demonstrate that local production of CO₂ at the axonal node opens Cx32 hemichannels in the Schwann cell paranode, and that CO₂ diffuses through the AQP1 channel to reach Cx32 and trigger its opening. The authors also present evidence supporting a physiological role for this regulatory mechanism. They propose that CO₂-dependent Cx32 activation mediates activity-dependent Ca²⁺ influx into the paranode, and by increasing the leak current across the myelin sheath, it contributes to a slowing of action potential conduction velocity.

      The study presents a very interesting and novel mechanism for the physiological regulation of Cx32 hemichannels. The findings are relevant to the field, and the methods and results are of good quality, with some improvements in interpretation and explanation required, and some minor experimental suggestions.

      Strengths:

      The article is solid in terms of the novelty of the findings and relevance for the physiology of myelinated axons. In addition, it is of major interest for the Connexin field because it explores a physiological way to open Cx32 hemichannels. The experiments are well elaborated, and most of them are sufficient for the main points described by the authors. The finding that nervous activity will trigger the mechanism of hemichannel opening by CO2 is probably the most relevant biological mechanism derived from this article.

      Weaknesses:

      Throughout the manuscript, the authors interpret their findings as if the described mechanism specifically occurs in the node and paranode regions. However, there is no direct evidence identifying the precise site of CO₂ production or the activation site of Cx32 hemichannels. Therefore, statements such as the one in the title ("activity-dependent CO₂ production in the axonal node opens Cx32 in the Schwann cell paranode") should be reconsidered or removed, as they may be misleading and are not essential to the interpretation of the data. In addition, the participation of aquaporin AQP1 as the main conduit for CO2 diffusion through the plasma membrane could have another interpretation.

    1. Reviewer #2 (Public review):

      Summary:

      The study investigated the distinct roles of phasic and tonic pain in adaptive behavior. Phasic pain was proposed to function as a teaching signal, promoting avoidance of further injury, while tonic pain was hypothesized to support recuperative behavior by reducing motivational vigor. This hypothesis was tested using an immersive virtual reality (VR) EEG foraging task, in which participants harvested fruit in a forest environment. Some fruits triggered brief phasic pain to the grasping hand, which in turn reduced the likelihood of choosing those fruits. Concurrently, tonic pressure pain applied to the contralateral upper arm was associated with reduced action velocities. The authors employed a free-operant computational framework to quantify how phasic and tonic pain modulate motivational vigor and decision value. Importantly, model parameters were found to correlate with EEG responses, providing neurophysiological support for the hypothesized functional distinctions.

      Strengths:

      Overall, this study aims to address an important topic and is generally well written.

      Weaknesses:

      Two critical issues require clarification or justification.

      First, phasic pain was induced using electrical stimulation, which typically elicits somatosensory evoked potentials (SEPs). These responses may not reflect pain-specific processes and thus complicate interpretation. This issue bears directly on the study's conclusions, especially when discussing interactions between phasic and tonic pain. For example, tonic pain is known to reduce perceived intensity or cortical responses to phasic pain stimuli delivered elsewhere on the body - an effect not expected for SEPs elicited by electrical stimuli.

      Second, additional control experiments are necessary to rule out alternative explanations. For instance, the authors are suggested to deliver phasic pain to the contralateral arm (e.g., at 1-2 Hz), which might also reduce action velocity. Similarly, tonic pain applied to the grasping hand should be tested to disentangle hand-specific effects.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors describe the development of a new hemogenic gastruloid (hGX) system, which they claim recapitulates the sequential generation of various hematopoietic cell types. A key proposed advantage of this system is its ability to more faithfully model the spatiotemporal emergence of hematopoietic progenitors within a physiologically relevant niche, as compared to existing in vitro platforms. While the authors provide some initial characterisation and demonstrate the utility of the system in studying infant leukemia, the presented data are not fully conclusive and fall short of robustly supporting several of their key assertions.

      Strengths:

      The development of a novel in vitro system to model hematopoietic development is innovative and could potentially address important limitations of existing platforms.

      Weaknesses:

      The characterization of the hematopoietic progenitors generated by the hGX system is not fully convincing. The evidence supporting the emergence of late yolk sac (YS) progenitors, including lymphoid cells, and AGM-like pre-hematopoietic stem cells (pre-HSCs), is incomplete and relies heavily on transcriptomic profiling and a limited set of markers.

      The identification of lymphoid or pre-HSC-like populations is primarily inferred from scRNA-seq data. The lack of robust functional validation (e.g., lymphoid differentiation assays or long-term repopulation experiments) significantly weakens the manuscript's main claims.

      In the revised manuscript, the authors incorporate single-cell RNA-seq analyses indicating that their cells resemble AGM-derived endothelial-to-hematopoietic transition (EHT) populations. However, they do not test whether these cells might more closely resemble YS-derived EHT, which remains an unresolved and critical question. Additionally, the claim in line 263 that Cluster 8 (CD45⁺ cells at 192-216 h) expresses lymphoid markers is not clearly supported by the provided supplemental data (Supplemental File S1-S2).

      While the authors respond that they did not claim to generate bona fide HSCs, they do state at the end of the Introduction (lines 116-121) that their system captures AGM hematopoiesis. The current data do not support this conclusion and instead suggest that the system recapitulates the generation of multipotent lymphoid progenitors (MLPs) akin to those found in the YS.

      The engraftment data presented are not particularly convincing. It is unclear why the analysis was terminated at 8 weeks post-transplant, especially given that a minimum of 12 weeks is generally required to meaningfully assess the presence of pre-HSCs or bona fide HSCs with long-term repopulating potential.

      Given the uncertainties discussed above, the interpretability of the MNX1 overexpression study is limited.

      The authors could have more directly tested their claim of capturing multiple hematopoietic waves by performing kinetic analyses of colony-forming potential, with the expectation that more multipotent colonies would emerge at later time points. Additionally, isolating and characterizing the potential of hemogenic endothelium at different time points corresponding to the putative waves would have strengthened their conclusions. In the absence of such data, it remains unclear whether the system recapitulates sequential waves of hematopoiesis or merely reflects the progressive maturation of cells originating from a single wave.

    1. Reviewer #2 (Public review):

      Summary:

      In the manuscript, "Prophage regulation of Shewanella fidelis 3313 motility and biofilm formation: implications for gut colonization dynamics in Ciona robusta", the authors are experimentally investigating the idea that integrated viruses (prophages) within a bacterial colonizer of the host Ciona robusta affect both the colonizer and the host. They found a prophage within the Ciona robusta colonizing bacterium Shewanella fidelis 3313, which affected both the bacteria and host. This prophage does so by regulating the phosphodiesterase gene pdeB in the bacterium when the bacterium has colonized the host. The prophage also regulates the activity of the host immune gene VCBP-C during early bacterial colonization. Prophage effects on both these genes affect the precise localization of the colonizing bacterium, motility of the bacterium, and bacterial biofilm formation on the host. Interestingly, VCBP-C expression also suppressed a prophage structural protein, creating a tripartite feedback loop in this symbiosis. This is exciting research that adds to the emerging body of evidence that prophages can have beneficial effects not only on their host bacteria but also on how that bacteria interacts in its environment. This study establishes the evolutionary conservation of this concept with intriguing implications of prophage effects on tripartite interactions.

      Strengths:

      This research effectively shows that a prophage within a bacterium colonizing a model ascidian affects both the bacterium and the host in vivo. These data establish the prophage effects on bacterial activity and expand these effects to the natural interactions within the host animal. The effects of the prophage through deletion on a suite of host genes are a strength, as shown by striking microscopy.

      Weaknesses:

      Unfortunately, global transcriptomics of the bacteria and the host during colonization by the prophage-containing and prophage-deleted bacteria (1 hour and 24 hours) would be suggested to better understand the tripartite interactions.

      Impact:

      The authors are correct to speculate that this research can have a significant impact on many animal microbiome studies, since bacterial lysogens are prevalent in most microbiomes. Screening for prophages, determining whether they are active, and "curing" the host bacteria of active prophages are effective tools for understanding the effects these mobile elements have on microbiomes. There are many potential effects of these elements in vivo, both positive and negative, this research is a good example of why this research should be explored.

      Context:

      The research area of prophage effects on host bacteria in vitro has been studied for decades, while these interactions in combination with animal hosts in vivo have been recent. The significance of this research shows that there could be divergent effects based on whether the study is conducted in vitro or in vivo. The in vivo results were striking. This is particularly so with the microscopy images. The benefit of using Ciona is that it has a translucent body which allows for following microbial localization. This is in contrast to mammalian studies where following microbial localization would either be difficult or near impossible.

      Comments on revisions:

      I am satisfied with the great amount of work that went into the comments provided by the reviewers. The figure presentations are more compelling for the story, and this latest revision is a very interesting read that should be considered for future microbiome studies.

    1. Reviewer #2 (Public review):

      Summary:

      The authors show that in E. coli, the initiator protein DnaA oscillates post-translationally: its activity rises and peaks exactly when DNA replication begins, even if dnaA transcription is held constant. To explain this, they propose an "extrusion" mechanism in which nucleoid-associated proteins such as H-NS, whose amount grows with cell volume, dislodge DnaA from chromosomal binding sites; modelling and H-NS perturbations reproduce the observed drop in initiation mass and extra initiations seen after dnaA shut-down. Together, the data and model link biomass growth to replication timing through chromosome-driven, post-translational control of DnaA, filling gaps left by classic titration and ATP/ADP-switch models.

      Strengths:

      (1) Introduces an "extrusion" model that adds a new post-translational layer to replication control and explains data unexplained by classic titration or ATP/ADP-switch frameworks.

      (2) A major asset of the study is that it bridges the longstanding gap between DnaA oscillations and DNA-replication initiation, providing direct single-cell evidence that pulses of DnaA activity peak exactly at the moment of initiation across multiple growth conditions and genetic perturbations.

      (3) A tunable dnaA strain and targeted H-NS manipulations shift initiation mass exactly as the model predicts, giving model-driven validation across growth conditions.

      (4) A purpose-built Psyn66 reporter combined with mRNA-FISH captures DnaA-activity pulses with cell-cycle resolution, providing direct, compelling data.

      Weaknesses:

      (1) What happens to the (C+D) period and initiation time as the dnaA mRNA level changes? This is not discussed in the text or figure and should be addressed.

      (2) It is unclear what is meant by "relative dnaA mRNA level." Relative to what? Wild-type expression? Maximum expression? This should be explicitly defined.

      (3) It would be helpful to provide some intuition for why an increase in dnaA mRNA level leads to a decrease in initiation mass per ori and an increase in oriC copy number.

      (4) The titration and switch models do not explicitly include dnaA mRNA in the dynamics of DnaA protein. Yet, in Figure 2G, initiation mass is shown to decrease linearly with dnaA mRNA level in these models. How was dnaA mRNA level represented or approximated in these simulations?

      (5) Is Schaechter's law (i.e., exponential scaling of average cell size with growth rate) still valid under the different dnaA mRNA expression conditions tested?

      (6) The manuscript should explain more explicitly how the extrusion model implements post-translational control of DnaA and, in particular, how this yields the nonlinear drop in relative initiation mass versus dnaA mRNA seen in Figure 6E. Please provide the governing equation that links total DnaA, the volume-dependent "extruder" pool, and the threshold of free DnaA at initiation, and show - briefly but quantitatively - how this equation produces the observed concave curve.

      (7) Does this Extrusion model give well well-known adder per origin, i.e., initiation to initiation is an adder.

      (8) DnaA protein or activity is never measured; mRNA is treated as a linear proxy. Yet the authors' own narrative stresses post-translational (not transcriptional) control of DnaA. Without parallel immunoblots or activity readouts, it is impossible to know whether a six-fold mRNA increase truly yields a proportional rise in active DnaA.

      (9) Figure 2 infers both initiation mass and oriC copy number from bulk measurements (OD₆₀₀ per cell and rifampicin-cephalexin run-out) instead of measuring them directly in single cells. Any DnaA-dependent changes in cell size, shape, or antibiotic permeability could skew these bulk proxies, so the plotted relationships may not accurately reflect true initiation events.

    1. Reviewer #2 (Public review):

      Summary:

      Sereesongsaeng et al. aimed to develop degraders for LMO2, an intrinsically disordered transcription factor activated by chromosomal translocation in T-ALL. The authors first focused on developing biodegraders, which are fusions of an anti-LMO2 intracellular domain antibody (iDAb) with cereblon. Following demonstrations of degradation and collateral degradation of associated proteins with biodegraders, the authors proceeded to develop PROTACs using antibody paratopes (Abd) that recruit VHL (Abd-VHL) or cereblon (Abd-CRBN). The authors show dose-dependent degradation of LMO2 in LMO2+ T-ALL cell lines, as well as concomitant dose-dependent degradation of associated bHLH proteins in the DNA-binding complex. LMO2 degradation via Abd-VHL was also determined to inhibit proliferation and induce apoptosis in LMO2+ T-ALL cell lines.

      Strengths:

      The topic of degrader development for intrinsically disordered proteins is of high interest, and the authors aimed to tackle a difficult drug target. The authors evaluated methods, including the development of biodegraders, as well as PROTACs that recruit two different E3 ligases. The study includes important chemical control experiments, as well as proteomic profiling to evaluate selectivity.

      Weaknesses:

      The overall degradation is relatively weak, and the mechanism of potential collateral degradation is not thoroughly evaluated. In addition, experiments comparing the authors' prior work with their anti-LMO2 iDAb or Abl-L are lacking, which would improve our understanding of the potential advantages of a degrader strategy for LMO2.

    1. Reviewer #2 (Public review):

      Summary:

      The authors investigated the effect of prolonged iron limitation (which does stop growth but does not lead to cell death), altering central metabolism in M. tuberculosis. The major tool they used is metabolomics combined with stable isotope tracing. They show that the Krebs cycle is still active, despite the fact that it is dependent on some iron-dependent enzymes. They show that carbon flux through the oxidative branch of the Krebs cycle is stalled, resulting in the accumulation of metabolites, such as malate and alpha-ketoglutarate, that are partially secreted. Apparently, the carbon flux from glycolysis is partially diverted to the reductive branch of the Krebs cycle. This is not achieved by using the glyoxylate shunt but probably through the GABA shunt. This unprecedented split of the Krebs cycle and malate secretion allows a continuous flow of carbon through the core of carbon metabolism, overcoming the metabolic stalling triggered by iron starvation.

      Strengths:

      Novel insight into the central metabolism of a major pathogen and its adaptation to iron starvation. Carefully conducted experimentation. The paper ends with a clear and helpful model.

      Weaknesses:

      The authors show some surprising and important findings, but they would need a little more effort to really substantiate these. Especially the role of the GABA shunt should be genetically tested, as they did for ICL and the glyoxylate shunt.

      Also, dataset 1 is not very convincing, it is only based on transcriptomics and shown with up or down; this is not a strong base for major conclusions. As a minimum, one would want actual differences, preferably on the protein level, where it really counts.

    1. Reviewer #2 (Public review):

      Summary:

      This paper reports on the discovery of calcarins, a protein family that seems involved in calcification in the sponge Sycon ciliatum, based on specific expression in sclerocytes and detection by mass spectrometry within spicules. Two aspects stand out: (1) the unexpected similarity between Sycon calcarins and the galaxins of stony corals, which are also involved in mineralization, suggesting a surprising, parallel co-option of similar genes for mineralization in these two groups; (2) the impressively cell-type-specific expression of specific calcarins, many of which are restricted to either founder or thickener cells, and to either diactines, triactines, or tetractines. The finding that calcarins likely diversified at least partly by tandem duplications (giving rise to gene clusters) is a nice bonus.

      Strengths:

      I enjoyed the thoroughness of the paper, with multiple lines of evidence supporting the hypothesized role of calcarins: spatially and temporally resolved RNAseq, mass spectrometry, and whole-mount in situ hybridization using CISH and HCR-FISH (the images are really beautiful and very convincing). The structural predictions and the similarity to galaxins are very surprising and extremely interesting, as they suggest parallel evolution of biomineralization in sponges and cnidarians during the Cambrian explosion by co-option of the same "molecular bricks".

      Weaknesses:

      I did not detect any major weakness, beyond those inherent to working with sponges (lack of direct functional inhibition of these genes) or with fast-evolving gene families with complex evolutionary histories (lack of a phylogenetic tree that would clarify the history of galaxins/calcarins and related proteins).

      Comments on revisions:

      I am fully satisfied with the revision, and notably with the new Figure 3 which is now extremely informative and readable. Congratulations on a job well done.

    1. Reviewer #2 (Public review):

      Summary:

      Germ cells go on to form sperm and eggs and are, therefore, critical for the survival of the species. This work addresses the question of how 'leading' and 'lagging' PGCs differ, molecularly, during their migration to the mouse genital ridges/gonads during fetal life (E9.5, E10.5, E11.5), and how this is regulated by different somatic environments encountered during the process of migration. E9.5 and E10.5 cells differed in expression of genes involved in canonical WNT signaling and focal adhesions. Differences in cell adhesion, actin cytoskeletal dynamics were identified between leading and lagging cells, at E9.5, before migration into the gonads. At E10.5, when some PGCs have reached the genital ridges, differences in Nodal signaling response genes and reprogramming factors were identified. This last point was verified by whole mount IF for proteins downstream of Nodal signaling, Lefty1/2. At E11.5, there was upregulation of genes associated with chromatin remodeling and oxidative phosphorylation. Some aspects of the findings were also found to be likely true in human development, established via analysis of a dataset previously published by others.

      Strengths:

      The work is strong in that a large number of PGCs were isolated and sequenced, along with associated somatic cells. The authors dealt with the problem of a very small number of migrating mouse PGCs by pooling cells from embryos (after ascertaining age matching using somite counting). 'Leading' and 'lagging' populations were separated by anterior and posterior embryo halves and the well-established Oct4-deltaPE-eGFP reporter mouse line was used.

      The most likely possible use of this fundamental information will be the incorporation of some aspects (e.g. the potential importance of Nodal signaling) into protocols for generation of in vitro derived gametes.

    1. Reviewer #2 (Public review):

      In this manuscript, Tiedje and colleagues longitudinally track changes in parasite number across four time points as a way of assessing the effect of malaria control interventions in Ghana. Some of the study results have been reported previously, and in this publication, the authors focus on age-stratification of the results. Malaria prevalence was lower in all age groups after IRS. Follow-up with SMC, however, maintained lower parasite prevalence in the targeted age group but not the population as a whole. Additionally, they observe that diversity measures rebound more slowly than prevalence measures. This adds to a growing literature that demonstrates the relevance of asymptomatic reservoirs.

      Overall, I found these results clear, convincing, and well presented. There is growing interest in developing an expanded toolkit for genomic epidemiology in malaria, and detecting changes in transmission intensity is one major application. As the authors summarize, there is no one-size-fits-all approach, and the Bayesian MOIvar estimate developed here has the potential to complement currently used methods, particularly in regions with high diversity/transmission. I find its extension to a calculation of absolute parasite numbers appealing as this could serve as both a conceptually straightforward and biologically meaningful metric.

      As the authors address, their use of the term "census population size" is distinct from how the term is used in the population genetics literature. I therefore anticipate that parasite count will be most useful in an epidemiological context where the total number of sampled parasites can be contrasted with other metrics to help us better understand how parasites are divided across hosts, space, and time.

    1. Reviewer #2 (Public review):

      Summary:

      Here the authors show a novel direct neuronal reprogramming model using a very pure culture system of oligodendrocyte progenitor cells and demonstrate hallmarks of corticospinal neurons to be induced when using Neurogenin2, a dominant-negative form of Olig2 in combination with the CSN master regulator Fezf2.

      Strengths:

      This is a major achievement as the specification of reprogrammed neurons towards adequate neuronal subtypes is crucial for repair and is still largely missing. The work is carefully done, and the comparison of the neurons induced only by Neurogenin 2 versus the NVOF cocktail is very interesting and convincingly demonstrates a further subtype specification by the cocktail.

      Weaknesses:

      As carefully as it is done in vitro, the identity of projection neurons can best be assessed in vivo. If this is not possible, it could be interesting to co-culture different brain regions and see if these neurons reprogrammed with the cocktail, indeed preferentially send out axons to innervate a co-cultured spinal cord versus other brain region tissue.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript investigates the inhibition of Aurora A and its impact on β-glucan-induced trained immunity via the FOXO3/GNMT pathway. The study demonstrates that inhibition of Aurora A leads to overconsumption of SAM, which subsequently impairs the epigenetic reprogramming of H3K4me3 and H3K36me3, effectively abolishing the training effect.

      Strengths:

      The authors identify the role of Aurora A through small molecule screening and validation using a variety of molecular and biochemical approaches. Overall, the findings are interesting and shed light on the previously underexplored role of Aurora A in the induction of β-glucan-driven epigenetic change.

      Weaknesses:

      Given the established role of histone methylations, such as H3K4me3, in trained immunity, it is not surprising that depletion of the methyl donor SAM impairs the training response. Nonetheless, this study provides solid evidence supporting the role of Aurora A in β-glucan-induced trained immunity in murine macrophages. The part of in vivo trained immunity antitumor effect is insufficient to support the final claim as using Alisertib could inhibits Aurora A other cell types other than myeloid cells.

      Revision:

      The authors have satisfactorily addressed the majority of my concerns. In particular, the new bone marrow transplantation data convincingly demonstrate that Aurora A inhibition with Alisertib abolishes the β-glucan-trained antitumor effect-an essential finding supporting the manuscript's conclusions.

    1. Reviewer #2 (Public review):

      Summary:

      The goal of this study was to find evidence for local adaptation in survival and fecundity of the model plant Arabidopsis thaliana. The authors grew a large set of Swedish Arabidopsis accessions at four common garden sites in northern and southern Sweden. Accessions were grown from seed in trays, which were laid on the ground at each site in late summer, screened for survival in fall and the following spring, and fecundity was determined from rosette size and seed production in spring. Experiments were complemented by 'selection experiments', in which seeds of the same accessions were sown in plots, and after two years of growth, plants were sampled to determine fitness from genotype frequencies, providing a more comprehensive evaluation of lifetime fitness than can be gleaned from fecundity alone.

      As the main result, southern accessions had higher mortality in northern sites in one of two years, but also suffered more slug damage in southern sites in one year, indicating a potential link between frost tolerance and herbivore resistance. Fecundity of accession was highest when growing close to the 'home' environment, but while accessions from one sand dune population in southern Sweden had among the lowest fecundities overall, they consistently had the highest fitness in the selection experiment. Accessions from this population had large seed size and rapid root growth, which might be related to establishment success when arriving in a new, partially occupied habitat. However, neither trait could fully explain the very high fitness of this population, suggesting the presence of other, unmeasured traits.

      Overall, the authors could provide clear evidence of local adaptation in different traits for some of their experiments, but they also highlight high temporal and spatial variability that makes prediction of microevolutionary change so challenging.

      Strengths:

      A major strength of this study is the highly comprehensive evaluation of different fitness-related traits of Arabidopsis under natural conditions. The evaluation of survival and fecundity in common garden experiments across four sites and two years provides an estimate of variability and consistency of results. The addition of the 'selection experiment' provides an extended view on plant fitness that is both original and interesting, in particular highlighting potential limitations of 'fitness-proxies' such as seed production that don't take into account seedling establishment and competitive exclusion.

      Throughout the study, the authors have gone to impressive depths in exploring their data, and particularly the discovery of 'native volunteers' in selection experiment plots and their statistical treatment is very elegant and has resulted in compelling conclusions. Also, while the authors are careful in the interpretation of their GWAS results, they nonetheless highlight a few interesting gene candidates that may be underlying the observed plant adaptations, and which likely will stimulate further research.

      Overall, the authors provide a rich new resource that is relevant and interesting both in the context of general evolutionary theory as well as more specifically for molecular biology.

      Weaknesses:

      While the repetition of the common garden experiments over two years is certainly better than no repetition (hence its mention also under 'strengths'), the very high variability found between the two years highlights the need for more extensive temporal replication. In this context, two temporal replicates are the bare minimum, and more repeats in time would be necessary to draw any kind of conclusion about the role of 'high mortality' and 'low mortality' years for the microevolution of Arabidopsis. It also seems that the authors missed an opportunity to explore potentially causal variation among years, as they did not attempt to relate winter mortality to actual climatic variables, even though they discuss winter harshness as a potential predictor.

      The low temporal variation also makes the accidental slug herbivory appear somewhat random. Potted plants are notoriously susceptible to slug herbivory, and while it is certainly nice that slug damage predominantly affected one group of accessions, it nonetheless raises the question whether this reflects a 'real' selection pressure that plants commonly face in their respective local environments.

      The addition of the 'selection experiment' is certainly original and provides valuable additional insights, but again, it seems a bit questionable which natural process really has affected this outcome. While the genetic and statistical analysis of this experiment seems to be state-of-the-art, the experimental design is rather rudimentary compared to more standard selection experiments. Specifically, the authors added seeds from greenhouse-grown mothers to experimental plots and only sampled plants two years later. This means that, potentially,y the first very big bottleneck was germination under natural conditions, which may have already excluded many of the accessions before they had a chance to grow. While this certainly is one type of selection, it is not exactly the type of selection that a 2-year selection experiment is set up to measure. Either initially establishing the selection experiment from plants instead of seeds, or genotyping the population over several generations, would have substantially strengthened the conclusions that could be drawn from this experiment. Also, the complete lack of information on population density is a bit problematic. It is not clear if there were other (non-Arabidopsis) plants present in the plots, how many Arabidopsis plants were established, if numbers changed over the year, etc. Given all of these limitations, calling this a 'selection experiment' is in fact somewhat misleading.

      Despite these weaknesses, the authors could achieve their main goals, and despite the somewhat minimal temporal replication, they were lucky to sample two fairly distinct years that provided them with interesting variation, which they could partially explain using the variation among their accessions. Overall, this study will likely make an important contribution to the field of evolutionary biology, and it is another very strong example of how the extensive molecular tools in Arabidopsis can be leveraged to address fundamental questions in evolution and ecology, to an extent that is not (yet) possible in other plant systems.

    1. Reviewer #2 (Public review):

      Summary

      Artiushin et al. created the first three-dimensional atlas of a synganglion in the hackled orb-weaver spider, which is becoming a popular model for web-building behavior. Immunohistochemical analysis with an impressive array of antisera reveals subcompartments of neuroanatomical structures described in other spider species as well as two previously undescribed arachnid structures, the protocerebral bridge, hagstone, and paired tonsillar neuropils. The authors describe the spider's neuroanatomy in detail and discuss similarities and differences from other spider species. The final section of the discussion examines the homology between onychophoran and chelicerate arcuate bodies and mandibulate central bodies.

      Strengths

      The authors set out to create a detailed 3D atlas and accomplished this goal.

      Exceptional tissue clearing and imaging of the nervous system reveal the three-dimensional relationships between neuropils and some connectivity that would not be apparent in sectioned brains.

      A detailed anatomical description makes it easy to reference structures described between the text and figures.

      The authors used a large palette of antisera which may be investigated in future studies for function in the spider nervous system and may be compared across species.

      Weaknesses

      It would be useful for non-specialists if the authors would introduce each neuropil with some orientation about its function or what kind of input/output it receives, if this is known for other species. Especially those structures that are not described in other arthropods, like the opisthosomal neuropil. Are there implications for neuroanatomical findings in this paper on the understanding of how web-building behaviors are mediated by the brain?

      Likewise, where possible, it would be helpful to have some discussion of the implications of certain neurotransmitters/neuropeptides being enriched in different areas. For example, GABA would signal areas of inhibitory connections, such as inhibitory input to mushroom bodies, as described in other arthropods. In the discussion section on relationships between spider and insect midline neuropils, are there similarities in expression patterns between those described here and in insects?

    1. Reviewer #2 (Public review):

      Summary:

      The manuscript by Ratchinski et al presents a comprehensive analysis of developmental and life history gene expression patterns in brown algal species. The manuscript shows that the degree of generation bias or generation-specific gene expression correlates with the degree of dimorphism. It also reports conservation of life cycle features within generations and marked changes in gene expression patterns in Ectocarpus in the transition between gamete and early sporophyte. The manuscript also reports considerable conservation of gene expression modules between two representative species, particularly in genes associated with conserved functional characteristics.

      Strengths:

      The manuscript represents a considerable "tour de force" dataset and analytical effort. While the data presented is largely descriptive, it is likely to provide a very useful resource for studies of brown algal development and for comparative studies with other developmental and life cycle systems.

      Weaknesses:

      Notwithstanding the well-known issues associated with inferring function from transcriptomics-only studies, no major weaknesses were identified by this reviewer.

    1. Reviewer #2 (Public review):

      Summary:

      Yamashiro et al. investigated how the transient absence of visual input (i.e., darkness) impacts tactile neural encoding in the rat primary somatosensory cortex (S1). They recorded local field potentials (LFPs) using a 32-channel array implanted in forelimb and hindlimb primary somatosensory cortex while rats walked on smooth or rough textures under illuminated and dark conditions. Employing a convolutional neural network (CNN), they successfully decoded both texture and lighting conditions from the LFPs. The authors conclude that the subtle differences in LFP patterns underlie tactile representation of surface roughness and become more distinct in darkness, suggesting a rapid cross-modal reorganization of the neural code for this sensory feature.

      Strengths:

      (1) The manuscript addresses a valuable question regarding how sensory cortices adapt dynamically to changes in sensory context.

      (2) Utilization of machine learning (CNNs) allowed the authors to go beyond conventional amplitude-based analyses, potentially uncovering a subtle but interesting phenomenon.

      Weaknesses:

      (1) Despite applying explainability techniques to the CNN-based decoder, the study does not clearly demonstrate the precise "subtle, high-dimensional patterns" exploited by the CNN for surface roughness decoding, limiting the physiological interpretability of the results. Additional analyses (e.g., detailed waveform morphology analysis on grand averages, time-frequency decompositions, or further use of explainability methods) are necessary to clarify the exact nature of the discriminative activity features enabling the CNN to decode surface roughness and how these change with the sensory context (i.e., in light or darkness).

      (2) The claim regarding cross-modal representation reorganization heavily relies on a silhouette analysis (Figure 5C), which shows a modest effect size and borderline statistical significance (p≈0.05 with n=9+2). More rigorous statistical quantification, such as permutation tests and reporting underlying cluster distances for all animals, would strengthen confidence in this finding.

      (3) While the authors recorded in the somatosensory cortex, primarily known for its tactile responsivity, I would be cautious not to rule out a priori the presence of crossmodal (visual) responses in the area. In this case, the stronger texture separation in darkness might be explained by the absence of some visually-evoked potentials (VEPs) rather than genuine cross-modal reorganization. Clarification is needed to rule out visual interference and this would strengthen the claim.

      (4) Behavioural controls are limited to gross gait parameters; more detailed analyses of locomotor behavior and additional metrics (e.g., pupil size or locomotor variance) would robustly rule out potential arousal or motor confounds.

      (5) The consistent ordering of trials (10 minutes of light then 10 minutes of dark) could introduce confounds such as fatigue or satiation (and also related arousal state), which should be controlled by analyzing sessions with reversed condition ordering.

      (6) The focus on forelimb-aligned LFP analyses raises the possibility that hindlimb-aligned data might yield different conclusions, suggesting alignment effects might bias the results.

      (7) The authors' dismissal of amplitude-based metrics as ineffective is inadequately substantiated. A clearer demonstration (e.g., event-related waveforms averaged by conditions, presented both spatially and temporally) would support this claim.

      (8) Wording ambiguity regarding "attribution score" versus "activation amplitude" (Figure 5) complicates the interpretation of key findings. This distinction must be clarified for proper assessment of the results.

      (9) Generalization across animals remains unaddressed. The current within-subject decoding setup limits conclusions regarding shared neural representations across individuals. Adopting cross-validation strategies and exploring between-animal analyses would add significant value to the manuscript.

    1. Reviewer #2 (Public review):

      Summary

      Le Roy et al quantify wing morphology and wing kinematics across twenty eight and eight hoverfly species, respectively; the aim is to identify how weight support during hovering is ensured across body sizes. Wing shape and relative wing size vary non-trivially with body mass, but wing kinematics are reported to be size-invariant. On the basis of these results, it is concluded that weight support is achieved solely through size-specific variations in wing morphology, and that these changes enabled hoverflies to decrease in size. Adjusting wing morphology may be preferable compared to the alternative strategy of altering wing kinematics, because kinematics may be subject to stronger evolutionary and ecological constraints, dictated by the highly specialised flight and ecology of the hoverflies.

      Strengths

      The study deploys a vast array of challenging techniques, including flight experiments, morphometrics, phylogenetic analyses, and numerical simulations; it so illustrates both the power and beauty of an integrative approach to animal biomechanics. The question is well motivated, the methods appropriately designed, and the discussion elegantly places the results in broad biomechanical, ecological, and evolutionary context. In many ways, this work provides a blueprint for work in evolutionary biomechanics; the breadth of both the methods and the discussion reflects outstanding scholarship.

      Weaknesses

      The work presents a mechanical analysis that is focused solely on aerodynamics; but these aerodynamic demands impose no less relevant demands on the primary engine that drives wing movement: muscle. The relation between the assumed null hypotheses, the observed empirical allometric relations, and the power and work demand they place on muscle remains unclear. Though this is clearly a minor weakness, future work will have to address the link between aerodynamics, wing shape, wing dynamics, and musculoskeletal system in more detail, as discussed briefly by the authors.