10,000 Matching Annotations
  1. Jun 2025
    1. Reviewer #2 (Public review):

      Summary

      This study investigates the role of the human posterior inferotemporal cortex (hPIT) in attentional control, proposing that hPIT serves as an attentional priority map that integrates both top-down (endogenous) and bottom-up (exogenous) attentional processes. The authors conducted three types of fMRI experiments and collected resting-state data from 15 participants. In Experiment 1, using three different spatial attention tasks, they identified the hPIT region and demonstrated that this area is modulated by attention across tasks. In Experiment 2, by manipulating the presence or absence of visual stimuli, they showed that hPIT exhibits strong attentional modulation in both conditions, suggesting its involvement in both bottom-up and top-down attention. Experiment 3 examined the sensitivity of hPIT to stimulus features and attentional load, revealing that hPIT is insensitive to stimulus category but responsive to task load - further supporting its role as an attentional priority map. Finally, resting-state functional connectivity analyses showed that hPIT is connected to both dorsal and ventral attention networks, suggesting its potential role as a bridge between the two systems. These findings extend prior work on monkey PITd and provide new insights into the integration of endogenous and exogenous attention.

      Strengths

      (1) The study is innovative in its use of specially designed spatial attention tasks to localize and validate hPIT, and in exploring the region's role in integrating both endogenous and exogenous attention, as prior works focus primarily on its involvement in endogenous attention.

      (2) The authors provided very comprehensive experiment designs with clear figures and detailed descriptions.

      (3) A broad range of analyses was conducted to support the hypothesis that hPIT functions as an attentional priority map -- including experiments of attentional modulation under both top-down and bottom-up conditions, sensitivity to stimulus features and task load, and resting-state functional connectivity. These analyses showed consistent results.

      (4) Multiple appropriate statistical analyses - including t-tests, ANOVAs, and post-hoc tests - were conducted, and the results are clearly reported.

      Weaknesses

      (1) The sample size is relatively small (n = 15), and inter-subject variability is big in Figures 5 and 6, as seen in the spread of individual data points and error bars. The analysis of attention-modulated voxel map intersections appears to be influenced by multiple outliers.

      (2) The authors acknowledge important limitations, including the lack of exploration of feature-based attention and the temporal constraints inherent to fMRI.

      (3) Prior research has established that regions such as the prefrontal cortex (PFC) and posterior parietal cortex (PPC) are involved in both endogenous and exogenous attention and have been proposed as attentional priority maps. It remains unclear what is uniquely contributed by hPIT, how it functionally interacts with these classical attentional hubs, and whether its role is complementary or redundant. The study would benefit from more direct comparisons with these regions.

      (4) The functional connectivity analysis is only performed on resting-state data, and this approach does not capture context-dependent interactions. Task-based data analysis can provide stronger evidence.

      (5) The study does not report whether attentional modulation in hPIT is consistent across the two hemispheres. A comparison of hemispheric effects could provide important insight into lateralization and inter-individual variability, especially given the bilateral localization of hPIT.

    1. Reviewer #1 (Public review):

      Summary:

      Charonitakis and co-authors characterize dishabituation in adult flies, where they use olfactory habituation to octanol, then dishabituate the flies with disruptions of electric shock or yeast odors. They systematically investigate the neurotransmitters and neural circuits involved in dishabituation and figure out a lot about how this process works in the brain, as an independent circuit. I like the paper, and I like the very structured approach to figuring out the problem.

      Strengths:

      The introduction nicely sets the stage for the work presented, bringing in knowledge from other organisms and motivating the study.

      The results section lays out a logical set of experiments, using a common set of behavioral assays in many flies exposed to thermogenetic or optogenetic manipulation. The paper systematically figures out the necessity and/or sufficiency of specific brain regions and neurotransmitters, culminating in a new understanding of how the important process of dishabituation works.

      I like the bar graph representation for the data throughout, with the helpful icons - if a paper figures are going to be 90% bar graphs, it helps when they are super clear like this! And I like how all the parts build up to the conclusion in the last figure, nicely summarizing the thorough characterization of dishabituation.

      Weaknesses:

      There are no major concerns, but some material could be added for clarity and to make the work more accessible to a more general scientific audience. A figure clearly showing the habituation protocol and the use of the dishabituators would be a good addition, even if the procedure has been done before and is cited. There can always be readers who are seeing this for the first time.

      It would also be nice to comment on other ways dishabituation can happen (for example, when the stimulus is removed for a short time and returns) and what their time scales are.

      And more generally, the paper could perhaps improve by making a stronger case for why the results are important not just for flies but for neuroscience in general.

    2. Reviewer #2 (Public review):

      This is an interesting study in Drosophila comparing potentially differential requirements for subsets of Kenyon Cells (KCs) and Dopaminergic neurons (DANS) in olfactory dishabituation driven by either a novel odor ("homosensory") or footshock ("heterosensory). The authors measure olfactory aversion to Octanol (OCT) in a T-maze, induce olfactory habituation with a 4-minute prior exposure to OCT, and use either brief yeast odor (YO) or footshock (FS) to achieve dishabituation. The major observation that YO-mediated dishabituation is mediated by reward-activated DANs (PAM cluster), while FS-mediated dishabituation is mediated by punishment-activated PPL-DANs is generally solid and convincing. Also convincing are experiments showing the involvement of KCs in the pathway for YO and FS-induced dishabituation, and the argument that KCs drive DAN activation that causes dishabituation, though not experimentally shown, is more than reasonable. The work is significant because, as the authors take pains to point out, circuits and pathways for dishabituation have been very lightly studied, and clear identification of dopaminergic neuron subsets in dishabituation achieved by different means represents unique and interesting progress.

      However, the claim that this represents a fundamental difference between homosensory and heterosensory pathways for dishabituation is overstated. The introductory section does not adequately present current broad models for habituation and dishabituation. There are many different time scales, even for Drosophila olfactory habituation. These, as well as potential underlying mechanistic differences, need to be acknowledged; any claim should be specifically qualified for the time scales being studied here. Additionally, there are several unclear, vague, and inaccurate sections and statements. A more careful, precise, and considered presentation of current views, as well as more measured claims of the impact of the findings, would substantially enhance my enthusiasm.

    3. Reviewer #3 (Public review):

      Summary:

      In this manuscript, Charonitakis, Pasadaki et al. investigated the neural circuits underlying homosensory/within-modal and heterosensory/cross-modal dishabituation of the olfactory avoidance response in Drosophila. Taking advantage of the accessible and sophisticated gene expression manipulation tools in the flies, this study traced neural pathways underlying response facilitation caused by different types of sensory stimuli and revealed both distinct and convergent neural components underlying these different forms of behavioral plasticity. The study first demonstrated that olfactory habituation of the octanol avoidance response can be facilitated by either a different odor (homosensory stimulus) or a foot shock (heterosensory stimulus). Then, the flies' nervous system was manipulated with gene expression tools to identify key neural components involved in mediating the behavioral facilitation caused by different types of sensory stimuli. It was found that different sensory stimuli are input into different parts of the nervous system, and signals converge in the mushroom bodies to generate response facilitation. It was also found that these facilitatory pathways are different from the olfactory habituation pathway in the lateral horns.

      Strengths:

      The authors took full advantage of the advanced genetic tools in flies and performed a series of experiments to pinpoint neural components in each pathway.

      Weaknesses:

      The key issue is that the main concepts of this manuscript appear to be based on a misunderstanding/misinterpretation of the literature. As the authors set out to settle the debate "whether the novel dishabituating stimulus elicits sensitization of the habituated circuits, or it engages distinct neuronal routes to bypass habituation reinstating the naïve response", it seems that the authors based their investigation on the premise that "sensitization" is mediated by a facilitatory process within the S-R pathway, and "dishabituation" by a facilitatory process outside the S-R pathway. This is not the status quo in the field, particularly with the prevailing theory like the Dual-Process Theory.

      The original version of Dual-Process Theory (Groves and Thompson 1970, but also see Thompson 2008, Neurobiol Learn Mem) already hypothesized that habituation happens within the specific S-R pathway, and sensitization occurs separately in an "organism-wide" state system that modulates the output of all S-R pathways. Dishabituation is recognized by the Dual-Process Theory as sensitization (organism-wide facilitation) manifested on top of existing habituation (depressed S-R pathway). This notion has been supported by a wide range of studies, including cat spinal cord reflex (e.g. Spencer et al. 1966) and work in Aplysia on heterosynaptic facilitation for both sensitization and dishabituation. Therefore, simply showing that the newly identified facilitatory pathways are outside the S-R habituation pathway is insufficient to demonstrate dishabituation.

      As behavioral facilitation of a habituated response can be achieved by dishabituating (specific recovery of the S-R pathway) and/or superimposed sensitizing (organism-wide) processes, dishabituation and sensitization of this olfactory response must be first dissociated; however, the study provided no evidence for the dissociation. Without this piece of evidence, the claim of this paper that the newly identified pathways mediate dishabituation is not fully supported.

      The literature review of this manuscript has some discrepancies. In the introduction, the authors wrote "initial studies in Aplysia were consistent with the "dual-process theory" (Groves and Thompson 1979), where response recovery due to dishabituation appeared to result from sensitization superimposed on habituation, thus driving reversal of the attenuated response (Carew, Castellucci et al. 1971, Hochner, Klein et al. 1986, Marcus, Nolen et al. 1988, Ghirardi, Braha et al. 1992, Cohen, Kaplan et al. 1997, Antonov, Kandel et al. 1999, Hawkins, Cohen et al. 2006)." Hochner 1986 and Marcus 1988 in fact indicated otherwise. Hochner 1986 suggests that dishabituation and sensitization involve different molecular processes, while Marcus 1988 showed that dishabituation and sensitization have different behavioral characteristics. Therefore, the authors' statement is not supported by the cited literature.

    1. Reviewer #1 (Public review):

      Summary:

      The authors note that while many software packages exist for spike sorting, these do not automatically differentiate with known accuracy between excitatory and inhibitory neurons. Moreover, most existing spike sorting packages are for in vivo use, where the majority of electrodes are separated from each other by several hundred microns or more. There is a need for spike sorting packages that can take advantage of high-density electrode arrays where all electrodes are within a few tens of microns of other electrodes. Here, the authors offer such a software package with SpikeMAP, and they validate its performance in identifying parvalbumin interneurons that were optogenetically stimulated.

      Strengths:

      The main strength of this work is that the authors use ground truth measures to show that SpikeMAP can take features of spike shapes to correctly identify known parvalbumin interneurons against a background of other neuron types. They use spike width and peak to peak distance as the key features for distinguishing between neuron types, a method that has been around for many years (Barthó, Peter, et al. "Characterization of neocortical principal cells and interneurons by network interactions and extracellular features." Journal of neurophysiology 92.1 (2004): 600-608.), but whose performance has not been validated in the context of high density electrode arrays.

      Another strength of this approach is that it is automated - a necessity if your electrode array has 4096 electrodes. Hand-sorting or even checking such a large number of channels is something even the cruelest advisor would not wish upon a graduate student. With such large channel counts, it is essential to have automated methods that are known to work accurately. Hence, the combination of validation and automation is an important advance.

      A nice feature of this work is that with high-density electrode arrays, the spike waveforms appear on multiple nearby electrodes simultaneously. And since spike amplitudes fall off with distance, this allows triangulation of neuron locations within the regular electrode array. Thus, spike correlations between neuron types, or within neuron types, can be plotted as a function of distance. While SpikeMAP is not the first to do this (Peyrache, Adrien, et al. "Spatiotemporal dynamics of neocortical excitation and inhibition during human sleep." Proceedings of the National Academy of Sciences 109.5 (2012): 1731-1736.), it is a welcome capability of this package.

      It is also good that the code for this package is open-source, allowing a community of people (I expect in vitro labs will especially want to use this) to use the code and further improve it.

      Weaknesses:

      As this code was developed for use with a 4096 electrode array, it is important to be aware of double-counting neurons across the many electrodes. I understand that there are ways within the code to ensure that this does not happen, but care must be taken in two key areas. Firstly, action potentials traveling down axons will exhibit a triphasic waveform that is different from the biphasic waveform that appears near the cell body, but these two signals will still be from the same neuron (for example, see Litke et al., 2004 "What does the eye tell the brain: Development of a System for the Large-Scale Recording of Retinal Output Activity"; figure 14). I did not see anything that would directly address this situation, so it might be something for you to consider in updated versions of the code. Secondly, spike shapes are known to change when firing rates are high, like in bursting neurons (Harris, K.D., Hirase, H., Leinekugel, X., Henze, D.A. & Buzsáki, G. Temporal interaction between single spikes and complex spike bursts in hippocampal pyramidal cells. Neuron 32, 141-149 (2001)). I did not see this addressed in the present version of the manuscript.

      Another area for possible improvement would be to build on the excellent validation experiments you have already conducted with parvalbumin interneurons. Although it would take more work, similar experiments could be conducted for somatostatin and vasoactive intestinal peptide neurons against a background of excitatory neurons. These may have different spike profiles, but your success in distinguishing them can only be known if you validate against ground truth, like you did for the PV interneurons.

      Appraisal:

      This work addresses the need for an automated spike sorting software package for high-density electrode arrays. Although no spike sorting software is flawless, the package presented here, SpikeMAP, has been validated on PV interneurons, inspiring a degree of confidence. This is a good start, and further validation on other neuron types could increase that confidence. Groups doing in vitro experiments, where 4096 electrode arrays are more common, could find this system particularly helpful.

    2. Reviewer #2 (Public review):

      Summary:

      In this paper, entitled "SpikeMAP: An unsupervised spike sorting pipeline for cortical excitatory and inhibitory 2 neurons in high-density multielectrode arrays with ground-truth validation", the authors present spikeMAP, a pipeline for the analysis of large-scale recordings of in vitro cortical activity. According to the authors, spikeMAP not only allows for the detection of spikes produced by single neurons (spike sorting), but also allows for the reliable distinction between genetically determined cell types by utilizing viral and optogenetic strategies as ground-truth validation. While I find that the paper is nicely written and easy to follow, I find that the algorithmic part of the paper is not really new and should have been more carefully compared to existing solutions. While the GT recordings to assess the possibilities of a spike sorting tool to distinguish properly between excitatory and inhibitory neurons are interesting, spikeMAP does not seem to bring anything new to state-of-the-art solutions, and/or, at least, it would deserve to be properly benchmarked. I would suggest that the authors perform a more intensive comparison with existing spike sorters.

      Strengths:

      The GT recordings with optogenetic activation of the cells, based on the opsins, is interesting and might provide useful data to quantify how good spike sorting pipelines are, in vitro, to discriminate between excitatory and inhibitory neurons. Such an approach can be quite complementary to artificially generated ground truth.

      Weaknesses:

      (1) The global workflow of spikeMAP, described in Figure 1, seems to be very similar to that of Hilgen et al. 2020 (10.1016/j.celrep.2017.02.038). Therefore, the first question is what is the rationale of reinventing the wheel, and not using tools that are doing something very similar (as mentioned by the authors themselves). I have a hard time, in general, believing that spikeMAP has something particularly special, given its Methods, compared to state-of-the-art spike sorters. This is why, at the very least, the title of the paper is misleading, because it lets the reader think that the core of the paper will be about a new spike sorting pipeline. If this is the main message the authors want to convey, then I think that numerous validations/benchmarks are missing to assess first how good spikeMAP is, with reference to spike sorting in general, before deciding if this is indeed the right tool to discriminate excitatory vs inhibitory cells. The GT validation, while interesting, is not enough to entirely validate the paper. The details are a bit too scarce for me, or would deserve to be better explained (see other comments after).

      (2) Regarding the putative location of the spikes, it has been shown that the center of mass, while easy to compute, is not the most accurate solution [Scopin et al, 2024, 10.1016/j.jneumeth.2024.110297]. For example, it has an intrinsic bias for finding positions within the boundaries of the electrodes, while some other methods, such as monopolar triangulation or grid-based convolution,n might have better performances. Can the authors comment on the choice of the Center of Mass as a unique way to triangulate the sources?

      (3) Still in Figure 1, I am not sure I really see the point of Spline Interpolation. I see the point of such a smoothing, but the authors should demonstrate that it has a key impact on the distinction of Excitatory vs. Inhibitory cells. What is special about the value of 90kHz for a signal recorded at 18kHz? What is the gain with spline enhancement compared to without? Does such a value depend on the sampling rate, or is it a global optimum found by the authors?

      (4) Figure 2 is not really clear, especially panel B. The choice of the time scale for the B panel might not be the most appropriate, and the legend filtered/unfiltered with a dot is not clear to me in Bii. In panel E, the authors are making two clusters with PCA projections on single waveforms. Does this mean that the PCA is only applied to the main waveforms, i.e. the ones obtained where the amplitudes are peaking the most? This is not really clear from the methods, but if this is the case, then this approach is a bit simplistic and does not really match state-of-the-art solutions. Spike waveforms are quite often, especially with such high-density arrays, covering multiple channels at once, and thus the extracellular patterns triggered by the single units on the MEA are spatio-temporal motifs occurring on several channels. This is why, in modern spike sorters, the information in a local neighbourhood is often kept to be projected, via PCA, on the lower-dimensional space before clustering. Information on a single channel only might not be informative enough to disambiguate sources. Can the authors comment on that, and what is the exact spatial resolution of the 3Brain device? The way the authors are performing the SVD should be clarified in the methods section. Is it on a single channel, and/or on multiple channels in a local neighbourhood?

      (5) About the isolation of the single units, here again, I think the manuscript lacks some technical details. The authors are saying that they are using a k-means cluster analysis with k=2. This means that the authors are explicitly looking for 2 clusters per electrode? If so, this is a really strong assumption that should not be held in the context of spike sorting, because, since it is a blind source separation technique, one can not pre-determine in advance how many sources are present in the vicinity of a given electrode. While the illustration in Figure 2E is ok, there is no guarantee that one can not find more clusters, so why this choice of k=2? Again, this is why most modern spike sorting pipelines do not rely on k-means, to avoid any hard-coded number of clusters. Can the authors comment on that?

      (6) I'm surprised by the linear decay of the maximal amplitude as a function of the distance from the soma, as shown in Figure 2H. Is it really what should be expected? Based on the properties of the extracellular media, shouldn't we expect a power law for the decay of the amplitude? This is strange that up to 100um away from the soma, the max amplitude only dropped from 260 to 240 uV. Can the authors comment on that? It would be interesting to plot that for all neurons recorded, in a normed manner V/max(V) as function of distances, to see what the curve looks like.

      (7) In Figure 3A, it seems that the total number of cells is rather low for such a large number of electrodes. What are the quality criteria that are used to keep these cells? Did the authors exclude some cells from the analysis, and if yes, what are the quality criteria that are used to keep cells? If no criteria are used (because none are mentioned in the Methods), then how come so few cells are detected, and can the authors convince us that these neurons are indeed "clean" units (RPVs, SNRs, ...)?

      (8) Still in Figure 3A, it looks like there is a bias to find inhibitory cells at the borders, since they do not appear to be uniformly distributed over the MEA. Can the authors comment on that? What would be the explanation for such a behaviour? It would be interesting to see some macroscopic quantities on Excitatory/Inhibitory cells, such as mean firing rates, averaged SNRs... Because again, in Figure 3C, it is not clear to me that the firing rates of inhibitory cells are higher than Excitatory ones, whilst they should be in theory.

      (9) For Figure 3 in general, I would have performed an exhaustive comparison of putative cells found by spikeMAP and other sorters. More precisely, I think that to prove the point that spikeMAP is indeed bringing something new to the field of spike sorting, the authors should have compared the performances of various spike sorters to discriminate Exc vs Inh cells based on their ground truth recordings. For example, either using Kilosort [Pachitariu et al, 2024, 10.1038/s41592-024-02232-7], or some other sorters that might be working with such large high-density data [Yger et al, 2018, 10.7554/eLife.34518].

      (10) Figure 4 has a big issue, and I guess the panels A and B should be redrawn. I don't understand what the red rectangle is displaying.

      (11) I understand that Figure 4 is only one example, but I have a hard time understanding from the manuscript how many slices/mices were used to obtain the GT data? I guess the manuscript could be enhanced by turning the data into an open-access dataset, but then some clarification is needed. How many flashes/animals/slices are we talking about? Maybe this should be illustrated in Figure 4, if this figure is devoted to the introduction of the GT data.

      (12) While there is no doubt that GT data as the ones recorded here by the authors are the most interesting data from a validation point of view, the pretty low yield of such experiments should not discourage the use of artificially generated recordings such as the ones made in [Buccino et al, 2020, 10.1007/s12021-020-09467-7] or even recently in [Laquitaine et al, 2024, 10.1101/2024.12.04.626805v1]. In these papers, the authors have putative waveforms/firing rate patterns for excitatory and inhibitory cells, and thus, the authors could test how good they are in discriminating the two subtypes.

    1. Joint Public Review:

      This manuscript presents an algorithm for identifying network topologies that exhibit a desired qualitative behaviour, with a particular focus on oscillations. The approach is first demonstrated on 3-node networks, where results can be validated through exhaustive search, and then extended to 5-node networks, where the search space becomes intractable. Network topologies are represented as directed graphs, and their dynamical behaviour is classified using stochastic simulations based on the Gillespie algorithm. To efficiently explore the large design space, the authors employ reinforcement learning via Monte Carlo Tree Search (MCTS), framing circuit design as a sequential decision-making process.

      This work meaningfully extends the range of systems that can be explored in silico to uncover non-linear dynamics and represents a valuable methodological advance for the fields of systems and synthetic biology.

      Strengths

      The evidence presented is strong and compelling. The authors validate their results for 3-node networks through exhaustive search, and the findings for 5-node networks are consistent with previously reported motifs, lending credibility to the approach. The use of reinforcement learning to navigate the vast space of possible topologies is both original and effective, and represents a novel contribution to the field. The algorithm demonstrates convincing efficiency, and the ability to identify robust oscillatory topologies is particularly valuable. Expanding the scale of systems that can be systematically explored in silico marks a significant advance for the study of complex gene regulatory networks.

      Weaknesses

      The principal weakness of the manuscript lies in the interpretation of biological robustness. The authors identify network topologies that sustain oscillatory behaviour despite perturbations to the system or parameters. However, in many cases, this persistence is due to the presence of partially redundant oscillatory motifs within the network. While this observation is interesting and of clear value for circuit design, framing it as evidence of evolutionary robustness may be misleading. The "mutant" systems frequently exhibit altered oscillatory properties, such as changes in frequency or amplitude. From a functional cellular perspective, mere oscillation is insufficient - preservation of specific oscillation characteristics is often essential. This is particularly true in systems like circadian clocks, where misalignment with environmental cycles can have deleterious effects. Robustness, from an evolutionary standpoint, should therefore be framed as the capacity to maintain the functional phenotype, not merely the qualitative behaviour.

      A secondary limitation is that, despite the methodological advances, the scale of the systems explored remains modest. While moving from 3- to 5-node systems is non-trivial, five elements still represent a relatively small network. It is somewhat surprising that the algorithm does not scale further, particularly when considering the performance of MCTS in other domains - for instance, modern chess engines routinely explore far larger decision trees. A discussion on current performance bottlenecks and potential avenues for improving scalability would be valuable.

      Finally, it is worth noting that the emergence of oscillations in a model often depends not only on the topology but also critically on parameter choices and the nature of the nonlinearities. The use of Hill functions and high Hill coefficients is a common strategy to induce oscillatory dynamics. Thus, the reported results should be interpreted within the context of the modelling assumptions and parameter regimes employed in the simulations.

    1. Reviewer #1 (Public review):

      Summary:

      Animal behavior is continuously influenced by the internal state moment-by-moment, including emotion primitives, as the authors pointed out. Although emotion is a more human-related state, evolutionary conservation is undeniable, which can be inferred by the behavioral manifestation. To further elaborate on the neuronal mechanisms of emotion primitives, the simplest behavioral parameter related to emotional primitives should be well-characterized. In this study, the authors described in detail wall-following behavior (WAFO) and the total walking distance (TOWA) using flies after subjecting them to various conditions or flies being genetically manipulated according to the previous reports that could affect emotion primitives. Overall, the study is well designed and structured. In addition, the discussion on emotion primitives will be of value to the field.

      Strengths:

      The strength of this study is its use of a simple behavioral parameter, TOWA, and also a simple design of behavior, WAFO. The importance of the behavioral assay is reproducibility and comparability. In fact, the author demonstrated a summary of comparisons where different treatments result in scalable behavioral changes in WAFO and TOWA.

      Weaknesses:

      The weakness of the study is the lack of further experiments to support their assumption related to TOWA.

      The authors suggested that TOWA can be interpreted as a behavioral proxy for exogenously induced arousal. However, it could be interpreted as higher activity, although the authors argued that the circadian clock increasing locomotor activity around ZT0 and ZT12 does not affect TOWA, and therefore TOWA is not related to the locomotor activity per se. As the author cited, flies lose locomotor activity in the circular arena of 6.6 cm in diameter, whereas they continuously move during a 1-h recording in the authors' arena of 1 cm in diameter.

      I would agree that the arena of 1 cm in diameter, but not 6.6 cm in diameter, serves as an exogenous stimulus inducing arousal, and TOWA is manifested by arousal. However, TOWA would also be affected by other behavioral parameters, including the activity, motivation for exploration, or perception of the space. Therefore, it could be reasonable to re-examine some of the flies tested in this study in the circular arena of 6.6 cm in diameter. If arousal is biased by the components presented in Figure 6 and TOWA can assess mainly exogenously induced arousal, the treatment altering TOWA in the arena of 1 cm in diameter would not affect their behavior in the arena of 6.6 cm in diameter. My concern is that Figure 6 may demonstrate too simplistic a diagram to interpret the results. I would suggest adding the experiments using the arena of 6.6 cm diameter or softening the argument.

    2. Reviewer #2 (Public review):

      Summary:

      This work seeks to establish the Open Field Test (OFT) as a paradigm to measure emotion-like states in the fruit fly Drosophila. To do this, the authors first applied various stressors and aversive stimuli to wild-type flies and tracked their locomotion. By measuring wall-following (WAFO) and total walking (TOWA), they showed that these behaviors are generally increased by stressors, but return to baseline levels after their removal. Then, they used the same approach to analyze the effects of pharmacological, genetic, and neuronal activity manipulations, showing that diazepam, serotonin, dopamine, and neuropeptide F affect locomotion in the OFT in largely expected ways that are consistent with their functions in rodents. Finally, the authors demonstrate that wild-type fly strains from the laboratory or caught in the wild differ significantly in their OFT behavior, with wild-caught flies generally behaving as if more 'stressed'. Given the numerous advantages of Drosophila, this study can form the foundation for using the OFT in conjunction with this animal model to elucidate the molecular and neuronal mechanisms that underlie emotion primitives.

      Strengths:

      The main strength of the paper is the rigorous use of several stressful or aversive treatments and their subsequent removal to show that WAFO is a robust proxy for stress-like emotional primitives across multiple stimuli. The pharmacological, molecular, and neuronal activity manipulations, although more limited in scope, lend further credence to the authors' central claim.

      Weaknesses:

      The conceptual advance of this research is unclear, as previous work (Mohammad et al., 2016, Curr Biol.) carried out similar treatments and manipulations and reached largely similar conclusions. Moreover, while WAFO is a good proxy for 'stress', I am not convinced that TOWA necessarily represents an emotional state in all cases. Indeed, as the authors themselves acknowledge, changes in total walking may be associated with other factors, such as starvation-induced hyperactivity, physical exhaustion after sleep deprivation, increased sex drive after mating, alcohol sedation, etc. Another unclear point is the interpretation of some unexpected results, such as the finding that both serotonin transporter overexpression and its knockdown give the same phenotype. Finally, there are some issues with the use of the OFT in rodent research (e.g., inconsistent effects of anxiolytic drugs; see Rosso et al., 2022, Neurosci Biobehav Rev., for a meta-analysis). These should be explained to place the Drosophila findings in their appropriate context.

    1. Reviewer #3 (Public review):

      Summary:

      This is a valuable study providing solid evidence that the putative non-canonical initiation factor eIF2A has little or no role in the translation of any expressed mRNAs in cultured human (primarily HeLa) cells. Previous studies have implicated eIF2A in GTP-independent recruitment of initiator tRNA to the small (40S) ribosomal subunit, a function analogous to canonical initiation factor eIF2, and in supporting initiation on mRNAs that do not require scanning to select the AUG codon or that contain near-cognate start codons, especially upstream ORFs with non-AUG start codons, and may use the cognate elongator tRNA for initiation. Moreover, the detected functions for eIF2A were limited to, or enhanced by, stress conditions where canonical eIF2 is phosphorylated and inactivated, suggesting that eIF2A provides a back-up function for eIF2 in such stress conditions. CRISPR gene editing was used to construct two different knock-out cell lines that were compared to the parental cell line in a large battery of assays for bulk or gene-specific translation in both unstressed conditions and when cells were treated with inhibitors that induce eIF2 phosphorylation. None of these assays identified any effects of eIF2A KO on translation in unstressed or stressed cells, indicating little or no role for eIF2A as a back-up to eIF2 and in translation initiation at near-cognate start codons, in these cultured cells.

      The study is very thorough and generally well executed, examining bulk translation by puromycin labeling and polysome analysis and translational efficiencies of all expressed mRNAs by ribosome profiling, with extensive utilization of reporters equipped with the 5'UTRs of many different native transcripts to follow up on the limited number of genes whose transcripts showed significant differences in translational efficiencies (TEs) in the profiling experiments. They also looked for differences in translation of uORFs in the profiling data and examined reporters of uORF-containing mRNAs known to be translationally regulated by their uORFs in response to stress, going so far as to monitor peptide production from a uORF itself. The high precision and reproducibility of the replicate measurements instil strong confidence that the myriad of negative results they obtained reflects the lack of eIF2A function in these cells rather than data that would be too noisy to detect small effects on the eIF2A mutations. They also tested and found no evidence for a recent claim that eIF2A localizes to the cytoplasm in stress and exerts a global inhibition of translation. Given the numerous papers that have been published reporting functions of eIF2A in specific and general translational control, this study is important in providing abundant, high-quality data to the contrary, at least in these cultured cells.

      Strengths:

      The paper employed two CRISPR knock-out cell lines and subjected them to a combination of high-quality ribosome profiling experiments, interrogating both main coding sequences and uORFs throughout the translatome, which was complemented by extensive reporter analysis, and cell imaging in cells both unstressed and subjected to conditions of eIF2 phosphorylation, all in an effort to test previous conclusions about eIF2A functioning as an alternative to eIF2.

      Weaknesses:

      No major issues were observed as the authors have provided additional evidence of the extent of ISR induction by tunicamycin. The discussion was also expanded to address concerns stemming from the previous version of the manuscript.

      [Editors note: Reviewers and editors concluded that the authors revised the article in a satisfactory manner and no further concerns were raised]

    2. Reviewer #2 (Public review):

      Summary

      Roiuk et al describe a work in which they have investigated the role of eIF2A in translation initiation in mammals without much success. Thus, the manuscript focuses on negative results. Further, the results, while original, are generally not novel, but confirmatory, since related claims have been made before independently in different systems with Haikwad et al study recently published in eLife being the most relevant.

      Despite this, we find this work highly important. This is because of a massive wealth of unreliable information and speculations regarding eIF2A role in translation arising from series of artifacts that began at the moment of eIF2A discovery. This, in combination with its misfortunate naming (eIF2A is often mixed up with alpha subunit of eIF2, eIF2S1) has generated a widespread confusion among researchers who are not experts in eukaryotic translation initiation. Given this, it is not only justifiable but critical to make independent efforts to clear up this confusion and I very much appreciate the authors' efforts in this regard.

      Strengths

      The experimental investigation described in this manuscript is thorough, appropriate and convincing.

      Weaknesses

      No major weaknesses as the authors have improved their presentation.

    3. Reviewer #1 (Public review):

      Summary:

      Beyond what is stated in the title of this paper, not much needs to be summarized. eIF2A in HeLa cells promotes translation initiation of neither the main ORFs nor short uORFs under any of the conditions tested.

      Strengths:

      Very comprehensive, in fact, given the huge amount of purely negative data, an admirably comprehensive and well-executed analysis of the factor of interest.

      Weaknesses:

      The study is limited to the HeLa cell line, which is now addressed and clearly stated by the authors.

    1. Reviewer #1 (Public review):

      I congratulate the authors on this beautiful work.

      This manuscript introduces a biologically informed RNN (bioRNN) that predicts the effects of optogenetic perturbations in both synthetic and in vivo datasets. By comparing standard sigmoid RNNs (σRNNs) and bioRNNs, the authors make a compelling case that biologically grounded inductive biases improve generalization to perturbed conditions. This work is innovative, technically strong, and grounded in relevant neuroscience, particularly the pressing need for data-constrained models that generalize causally.

      I have some suggestions for improvement, which I present in the order of re-reading the paper.

      Major

      (1) In line 76, the authors make a very powerful statement: 'σRNN simulation achieves higher similarity with unseen recorded trials before perturbation, but lower than the bioRNN on perturbed trials.' I couldn't find a figure showing this. This might be buried somewhere and, in my opinion, deserves some spotlight - maybe a figure or even inclusion in the abstract.

      (2) It's mentioned in the introduction (line 84) and elsewhere (e.g., line 259) that spiking has some advantage, but I don't see any figure supporting this claim. In fact, spiking seems not to matter (Figure 2C, E). Please clarify how spiking improves performance, and if it does not, acknowledge that. Relatedly, in line 246, the authors state that 'spiking is a better metric but not significant' when discussing simulations. Either remove this statement and assume spiking is not relevant, or increase the number of simulations.

      (3) The authors prefer the metric of predicting hits over MSE, especially when looking at real data (Figure 3). I would bring the supplementary results into the main figures, as both metrics are very nicely complementary. Relatedly, why not add Pearson correlation or R2, and not just focus on MSE Loss?

      (4) I really like the 'forward-looking' experiment in closed loop! But I felt that the relevance of micro perturbations is very unclear in the intro and results. This could be better motivated: why should an experimentalist care about this forward-looking experiment? Why exactly do we care about micro perturbation (e.g., in contrast to non-micro perturbation)? Relatedly, I would try to explain this in the intro without resorting to technical jargon like 'gradients'.

      Minor

      (1) In the intro, the authors refer to 'the field' twice. Personally, I find this term odd. I would opt for something like 'in neuroscience'.

      (2) Line 45: When referring to previous work using data-constrained RNN models, Valente et al. is missing (though it is well cited later when discussing regularization through low-rank constraints).

      (3) Line 11: Method should be methods (missing an 's').

      (4) In line 250, starting with 'So far', is a strange choice of presentation order. After interpreting the results for other biological ingredients, the authors introduce a new one. I would first introduce all ingredients and then interpret. It's telling that the authors jump back to 2B after discussing 2C.

      (5) The black dots in Figure 3E are not explained, or at least I couldn't find an explanation.

    2. Reviewer #2 (Public review):

      Sourmpis et al. present a study in which the importance of including certain inductive biases in the fitting of recurrent networks is evaluated with respect to the generalization ability of the networks when exposed to untrained perturbations.

      The work proceeds in three stages:<br /> (1) a simple illustration of the problem is made. Two reference (ground-truth) networks with qualitatively different connectivity, but similar observable network dynamics, are constructed, and recurrent networks with varying aspects of design similarity to the reference networks are trained to reproduce the reference dynamics. The activity of these trained networks during untrained perturbations is then compared to the activity of the perturbed reference networks. It is shown that, of the design characteristics that were varied, the enforced sign (Dale's law) and locality (spatial extent) of efference were especially important.<br /> (2) The intuition from the constructed example is then extended to networks that have been trained to reproduce certain aspects of multi-region neural activity recorded from mice during a detection task with a working-memory component. A similar pattern is demonstrated, in which enforcing the sign and locality of efference in the fitted networks has an influence on the ability of the trained networks to predict aspects of neural activity during unseen (untrained) perturbations.<br /> (3) The authors then illustrate the relationship between the gradient of the motor readout of trained networks with respect to the net inputs to the network units, and the sensitivity of the motor readout to small perturbations of the input currents to the units, which (in vivo) could be controlled optogenetically. The paper is concluded with a proposed use for trained networks, in which the models could be analyzed to determine the most sensitive directions of the network and, during online monitoring, inform a targeted optogenetic perturbation to bias behavior.

      The authors do not overstate their claims, and in general, I find that I agree with their conclusions. A couple of points to be made:

      (1) Some aspects of the methods are unclear. For comparisons between recurrent networks trained from randomly initialized weights, I would expect that many initializations were made for each model variant to be compared, and that the performance characteristics are constructed by aggregating over networks trained from multiple random initializations. I could not tell from the methods whether this was done or how many models were aggregated.

      2) It is possible that including perturbation trials in the training sets would improve model performance across conditions, including held-out (untrained) perturbations (for instance, to units that had not been perturbed during training). It could be noted that if perturbations are available, their use may alleviate some of the design decisions that are evaluated here.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors describe a good-quality ancient maize genome from 15th-century Bolivia and try to link the genome characteristics to Inca influence. Overall, the manuscript is below the standard in the field. In particular, the geographic origin of the sample and its archaeological context is not well evidenced. While dating of the sample and the authentication of ancient DNA have been evidenced robustly, the downstream genetic analyses do not support the conclusion that genomic changes can be attributed to Inca influence. Furthermore, sections of the manuscript are written incoherently and with logical mistakes. In its current form, this paper is not robust and possibly of very narrow interest.

      Strengths:

      Technical data related to the maize sample are robust. Radiocarbon dating strongly evidenced the sample age, estimated to be around 1474 AD. Authentication of ancient DNA has been done robustly. Spontaneous C-to-T substitutions, which are present in all ancient DNA, are visible in the reported sample with the expected pattern. Despite a low fraction of C-to-T at the 1st base, this number could be consistent with the cool and dry climate in which the sample was preserved. The distribution of DNA fragment sizes is consistent with expectations for a sample of this age.

      Weaknesses:

      (1) Archaeological context for the maize sample is weakly supported by speculation about the origin and has unreasonable claims weighing on it. Perhaps those findings would be more convincing if the authors were to present evidence that supports their conclusions: i) a map of all known tombs near La Paz, ii) evidence supporting the stone tomb origins of this assemblage, and iii) evidence supporting non-Inca provenance of the tomb.

      (2) Dismissal of the admixture in the reported samples is not evidenced correctly. Population f3 statistic with an outgroup is indeed one of the most robust metrics for sample relatedness; however, it should not be used as a test of admixture. For an admixture test, the population f3 statistic should be used in the form: i) target population, ii) one possible parental population, iii) another possible parental population. This is typically done iteratively with all combinations of possible parental populations. Even in such a form, the population f3 statistic is not very sensitive to admixture in cases of strong genetic drift, and instead population f4 statistic (with an outgroup) is a recommended test for admixture.

      (3) The geographic placement of the sample based on genetic data is not robust. To make use of the method correctly, it would be necessary to validate that genetic samples in this region follow the assumption of the 'isolation-by-distance' with dense sampling, which has not been done. Additionally, the authors posit that "This suggests that aBM might not only be genetically related to the archaeological maize from ancient Peru, but also in the possible geographic location." The method used to infer the location is based on pure genetic estimation. The above conclusion is not supported by this method, and it directly contradicts the authors' suggestion that the sample comes from Bolivia.

      (4) The conclusion that Ancient Andean maize is genetically similar to European varieties and hence shares a similar evolutionary history is not well supported. The PCA plot in Figure 4 merely represents sample similarity based on two components (jointly responsible for about 20% of the variation explained), and European samples could be very distant based on other components. Indeed, the direct test using the outgroup f3 statistic does not support that European varieties are particularly closely related to ancient Andean maize. Perhaps these are more closely related to Brazil? We do not know, as this has not been measured.

      (5) The conclusion that long branches in the phylogenetic tree are due to selection under local adaptation has no evidence. Long branches could be the result of missing data, nucleotide misincorporations, genetic drift, or simply due to the inability of phylogenetic trees to model complex population-level relationships such as admixture or incomplete lineage sorting. Additionally, captions to Figure S3, do not explain colour-coding.

      (6) The conclusion that selection detected in aBM sample is due to Inca influence has no support. Firstly, selection signature can be due to environmental or other factors. To disentangle those, the authors would need to generate the data for a large number of samples from similar cultural contexts and from a wide-ranging environmental context, followed by a formal statistical test. Secondly, allele frequency increase can be attributed to selection or demographic processes, and alone is not sufficient evidence for selection. The presented XP-EHH method seems more suitable. Overall, methods used in this paper raise some concerns: i) how accurate are allele-frequency tests of selection when only single individual is used as a proxy for a whole population, ii) the significance threshold has been arbitrary fixed to an absolute number based on other studies, but the standard is to use, for example, top fifth percentile. Finally, linking selection to particular GO terms is not strong evidence, as correlation does not imply causation, and links are unclear anyway.

      In sum, this manuscript presents new data that seems to be of high quality, but the analyses are frequently inappropriate and/or over-interpreted.

    2. Reviewer #2 (Public review):

      Summary:

      The manuscript presents valuable new datasets from two ancient maize seeds that contribute to our growing understanding of the maize evolution and biodiversity landscape in pre-colonial South America. Some of the analyses are robust, but the selection elements are not supported.

      Strengths:

      The data collection is robust, and the data appear to beof sufficiently high quality to carry out some interesting analytical procedures. The central finding that aBM maize is closely related to maize from the core Inca region is well supported, although the directionality of dispersal is not supported.

      Weaknesses:

      The selection results are not justified, see examples in the detailed comments below.

      (1) The manuscript mentions cultural and natural selection (line 76), but then only gives a couple of examples of selecting for culinary/use traits. There are many examples of selection to tolerate diverse environments that could be relevant for this discussion, if desired.

      (2) I would be extremely cautious about interpreting the observations of a Spanish colonizer (lines 95-99) without very significant caveats. Indigenous agriculture and foodways would have been far more nuanced than what could be captured in this context, and the genocidal activities of the Europeans would have impacted food production activities to a degree, and any contemporaneous accounts need to be understood through that lens.

      (3) The f3 stats presented in Figure 2 are not set up to test any specific admixture scenarios, so it is unsupported to conclude that the aBM maize is not admixed on this basis (lines 201-202). The original f3 publication (Patterson et al, 2012) describes some scenarios where f3 characteristics associate with admixture, but in general, there are many caveats to this approach, and it's not the ideal tool for admixture testing, compared with e.g., f4 and D (abba-baba) statistics.

      (4) I'm a little bit skeptical that the Locator method adds value here, given the small training sample size and the wide geographic spread and genetic diversity of the ancient samples that include Central America. The paper describing that method (Battey et al 2020 eLife) uses much larger datasets, and while the authors do not specifically advise on sample sizes, they caution about small sample size issues. We have already seen that the ancient Peruvian maize has the most shared drift with aBM maize on the basis of the f3 stats, and the Locator analysis seems to just be reiterating that. I would advise against putting any additional weight on the Locator results as far as geographic origins, and personally I would skip this analysis in this case.

      (5) The overlap in PCA should not be used to confirm that aBM is authentically ancient, because with proper data handling, PCA placement should be agnostic to modern/ancient status (see lines 224-226). It is somewhat unexpected that the ancient Tehuacan maize (with a major teosinte genomic component) falls near the ancient South American maize, but this could be an artifact of sampling throughout the PCA and the lack of teosinte samples that might attract that individual.

      (6) What has been established (lines 250-251) is genetic similarity to the Inca core area, not necessarily the directionality. Might aBM have been part of a cultural region supplying maize to the Inca core region, for example? Without a specific test of dispersal directionality, which I don't think is possible with the data at hand, this is somewhat speculative.

      (7) Singleton SNPs are not a typical criterion for identifying selection; this method needs some citations supporting the exact approach and validation against neutral expectations (line 278). Without Datasets S2 and S3, which are not included with this submission, it is difficult to assess this result further. However, it is very unexpected that ~18,000 out of ~49,000 SNPs would be unique to the aBM lineage. This most likely reflects some data artifact (unaccounted damage, paralogs not treated for high coverage, which are extremely prevalent in maize, etc). I'm confused about unique SNPs in this context. How can they be unique to the aBM lineage if the SNPs used overlap the Grzybowski set? The GO results do not include any details of the exact method used or a statistical assessment of the results. It is not clear if the GO terms noted are statistically enriched.

      (8) The use of XP-EHH with pseudohaplotype variant calls is not viable (line 293). It is not clear what exact implementation of XP-EHH was used, but this method generally relies on phased or sometimes unphased diploid genotype calls to observe shared haplotypes, and some minimum population size to derive statistical power. No implementation of XP-EHH to my knowledge is appropriate for application to this kind of dataset.

    3. Reviewer #3 (Public review):

      Summary:

      The authors seek to place archaeological maize samples (2 kernels) from Bolivia into genetic and geographical context and to assess signatures of selection. The kernels were dated to the end of the Incan empire, just prior to European colonization. Genetic data and analyses were used to characterize the distance from other ancient and modern maize samples and to predict the origin of the sample, which was discovered in a tomb near La Paz, Bolivia. Given the conquest of this region by the Incan empire, it is possible that the sample could be genetically similar to populations of maize in Peru, the center of the Incan empire. Signatures of selection in the sample could help reveal various environmental variables and cultural preferences that shaped maize genetic diversity in this region at that time.

      Strengths:

      The authors have generated substantial genetic data from these archaeological samples and have assembled a data set of published archaeological and modern maize samples that should help to place these samples in context. The samples are dated to an interesting time in the history of South America during a period of expansion of the Incan empire and just prior to European colonization. Much could be learned from even this small set of samples.

      Weaknesses:

      (1) Sample preparation and sequencing:<br /> Details of the quality of the samples, including the percentage of endogenous DN,A are missing from the methods. The low percentage of mapped reads suggests endogenous DNA was low, and this would be useful to characterize more fully. Morphological assessment of the samples and comparison to morphological data from other maize varieties is also missing. It appears that the two kernels were ground separately and that DNA was isolated separately, but data were ultimately pooled across these genetically distinct individuals for analysis. Pooling would violate assumptions of downstream analysis, which included genetic comparison to single archaeological and modern individuals.

      (2) Genetic comparison to other samples:<br /> The authors did not meaningfully address the varying ages of the other archaeological samples and modern maize when comparing the genetic distance of their samples. The archaeological samples were as old as >5000 BP to as young as 70 BP and therefore have experienced varying extents of genetic drift from ancestral allele frequencies. For this reason, age should explicitly be included in their analysis of genetic relatedness.

      (3) Assessment of selection in their ancient Bolivian sample:<br /> This analysis relied on the identification of alleles that were unique to the ancient sample and inferred selection based on a large number of unique SNPs in two genes related to internode length. This could be a technical artifact due to poor alignment of sequence data, evidence supporting pseudogenization, or within an expected range of genetic differentiation based on population structure and the age of the samples. More rigor is needed to indicate that these genetic patterns are consistent with selection. This analysis may also be affected by the pooling of the Bolivian archaeological samples.

      (4) Evidence of selection in modern vs. ancient maize: In this analysis, samples were pooled into modern and ancient samples and compared using the XP-EHH statistic. One gene related to ovule development was identified as being targeted by selection, likely during modern improvement. Once again, ancient samples span many millennia and both South, Central, and North America. These, and the modern samples included, do not represent meaningfully cohesive populations, likely explaining the extremely small number of loci differentiating the groups. This analysis is also complicated by the pooling of the Bolivian archaeological samples.

    1. Reviewer #1 (Public review):

      Summary:

      The authors note that it is challenging to perform diffusion MRI tractography consistently in both humans and macaques, particularly when deep subcortical structures are involved. The scientific advance described in this paper is effectively an update to the tracts that the XTRACT software supports. The claims of robustness are based on a very small selection of subjects from a very atypical dMRI acquisition (n=50 from HCP-Adult) and an even smaller selection of subjects from a more typical study (n=10 from ON-Harmony).

      Strengths:

      The changes to XTRACT are soundly motivated in theory (based on anatomical tracer studies) and practice (changes in seeding/masking for tractography), and I think the value added by these changes to XTRACT should be shared with the field. While other bundle segmentation software typically includes these types of changes in release notes, I think papers are more appropriate.

      Weaknesses:

      The demonstration of the new tracts does not include a large number of carefully selected scans and is only compared to the prior methods in XTRACT. The small n and limited statistical comparisons are insufficient to claim that they are better than an alternative. Qualitatively, this method looks sound.

      Subject selection at each stage is unclear in this manuscript. On page 5 the data are described as "Using dMRI data from the macaque (𝑁 = 6) and human brain (𝑁 = 50)". Were the 50 HCP subjects selected to cover a range of noise levels or subject head motion? Figure 4 describes 72 pairs for each of monozygotic, dizygotic, non-twin siblings, and unrelated pairs - are these treated separately? Similarly, NH had 10 subjects, but each was scanned 5 times. How was this represented in the sample construction?

      In the paper, the authors state "the mean agreement between HCP and NH reconstructions was lower for the new tracts, compared to the original protocols (𝑝 < 10^−10). This was due to occasionally reconstructing a sparser path distribution, i.e., slightly higher false negative rate," - how can we know this is a false negative rate without knowing the ground truth?

    2. Reviewer #2 (Public review):

      Summary:

      In this article, Assimopoulos et al. expand the FSL-XTRACT software to include new protocols for identifying cortical-subcortical tracts with diffusion MRI, with a focus on tracts connecting to the amygdala and striatum. They show that the amygdalofugal pathway and divisions of the striatal bundle/external capsule can be successfully reconstructed in both macaques and humans while preserving large-scale topographic features previously defined in tract tracing studies. The authors set out to create an automated subcortical tractography protocol, and they accomplished this for a subset of specific subcortical connections for users of the FSL ecosystem.

      Strengths:

      A main strength of the current study is the translation of established anatomical knowledge to a tractography protocol for delineating cortical-subcortical tracts that are difficult to reconstruct. Diffusion MRI-based tractography is highly prone to false positives; thus, constraining tractography outputs by known anatomical priors is important. Key additional strengths include 1) the creation of a protocol that can be applied to both macaque and human data; 2) demonstration that the protocol can be applied to be high quality data (3 shells, > 250 directions, 1.25 mm isotropic, 55 minutes) and lower quality data (2 shells, 100 directions, 2 mm isotropic, 6.5 minutes); and 3) validation that the anatomy of cortical-subcortical tracts derived from the new method are more similar in monozygotic twins than in siblings and unrelated individuals.

      Weaknesses:

      Although this work validates the general organizational location and topographic organization of tractography-derived cortical-subcortical tracts against prior tract tracing studies (a clear strength), the validation is purely visual and thus only qualitative. Furthermore, it is difficult to assess how the current XTRACT method may compare to currently available tractography approaches to delineating similar cortical-subcortical connections. Finally, it appears that the cortical-subcortical tractography protocols developed here can only be used via FSL-XTRACT (yet not with other dMRI software), somewhat limiting the overall accessibility of the method.

      Overall Appraisal:

      This new method will accelerate research on anatomically validated cortical-subcortical white matter pathways. The work has utility for diffusion MRI researchers across fields.

    1. Reviewer #1 (Public review):

      Summary:<br /> This manuscript describes the role of PRDM16 in modulating BMP response during choroid plexus (ChP) development. The authors combine PRDM16 knockout mice and cultured PRDM16 KO primary neural stem cells (NSCs) to determine the interactions between BMP signaling and PRDM16 in ChP differentiation.<br /> They show PRDM16 KO affects ChP development in vivo and BMP4 response in vitro. They determine genes regulated by BMP and PRDM16 by ChIP-seq or CUT&TAG for PRDM16, pSMAD1/5/8, and SMAD4. They then measure gene activity in primary NSCs through H3K4me3 and find more genes are corepressed than coactivated by BMP signaling and PRDM16 and focus on the 31 genes found to be co-repressed by BMP and PRDM16. Wnt7b is in this set and the authors then provide evidence that PRDM16 and BMP signaling together repress Wnt activity in the developing choroid plexus.

      Strengths:<br /> Understanding context-dependent response to cell signals during development is an important problem. The authors use a powerful combination of in vivo and in vitro systems to dissect how PRDM16 may modulate BMP response in early brain development.

      Main weakness of the experimental setup:<br /> (1) Because the authors state that primary NSCs cultured in vitro lose endogenous Prdm16 expression, they drive expression by a constitutive promoter. However, this means the expression levels is very different from endogenous levels (as explicitly shown in Supp. Fig. 2B) and the effect of many transcription factors is strongly dose-dependent, likely creating differences between the PRDM16-dependent transcriptional response in the in vitro system and in vivo. Although the authors combine in vitro and in vivo evidence on the role of PRDM16 as a co-factor for MBP signaling and verified that BMP induces quiescence in their NSC model in a PRDM16-dependent manner, this experimental setup remains a weakness and likely affects the results of the various genomics experiments.

      Other experimental weaknesses that make the evidence less convincing:

      (1) It seems that the authors compare Prdm16_KO cells to Prdm16 WT cells overexpressing flag_Prdm16. Aside from the possible expression of endogenous Prdm16, other cell differences may have arisen between these cell lines. A properly controlled experiment would compare Prdm16_KO ctrl (possibly infected with a control vector without Prdm16) to Prdm16_KO_E (i.e. the Prdm16_KO cells with and without Prdm16 overexpression.) The authors acknowledged this problem in their rebuttal, stating that they were unable to overexpress PRDM16 in KO cells.

      (2) The authors show in Fig.2E that Ttr is not upregulated by BMP4 in PRDM16_KO NSCs. This appears inconsistent with the presence of Ttr expression in the PRDM16_KO brain in Fig.1C. The authors explained in their rebuttal that the Ttr protein levels are not detectable in the NSCs with antibodies but the effect is still visible at the level of mRNA. The dramatic difference in protein expression is curious.

    2. Reviewer #2 (Public review):

      The authors have revised their manuscript in response to reviewer feedback, incorporating several modifications to improve clarity and provide additional supporting information. To address concerns about confusing terminology, they have standardized the reference to PRDM16 overexpressing cells as Prdm16_OE, clarifying its expression from a constitutive promoter. They also revised the text to resolve seemingly contradictory statements about ChP development in the mutant. New bioinformatic analysis comparing PRDM16 binding in E12.5 ChP cells to co-repressed versus BMP-only-repressed genes has been performed and included in Supplementary Figure 5C, providing a statistical assessment of PRDM16's regulatory role on co-repressed genes. Several figures were updated, including adding an illustration of the Prdm16 cGT allele to Figure 1B, providing a zoomed-in inset for Figure 1E, and including individual channels for Wnt2b and marking boundaries in Figure 7A. Full-view images and examples of spot segmentation for SCRINSHOT analysis are now available in a new supplementary figure, and the presentation of RT-qPCR data in Supplementary Figure 2B was improved by using separate graphs for overexpression samples to avoid a broken Y-axis. Furthermore, the authors have added more references to introductory statements, annotated structures like the ChP, CH, and fourth ventricle in figures, and clarified that the beta-Gal signal was used as a marker for mutant ChP cells in Figure 1D. Finally, the manuscript now includes a discussion of the recently published, related study by Hurwitz et al. (2023) in the discussion section, highlighting similarities and differences. Overall, the authors have satisfactorily addressed the reviewers' comments.

    3. Reviewer #3 (Public review):

      Summary:<br /> Bone morphogenetic protein (BMP) signaling instructs multiple processes during development including cell proliferation and differentiation. The authors set out to understand the role of PRDM16 in these various functions of BMP signaling. They find that PRDM16 and BMP co-operate to repress stem cell proliferation by regulating the genomic distribution of BMP pathway transcription factors. They additionally show that PRDM16 impacts choroid plexus epithelial cell specification. The authors provide evidence for a regulatory circuit (constituting of BMP, PRDM16 and Wnt) that influences stem cell proliferation/differentiation.

      Strengths:<br /> I find the topics studied by the authors in this study of general interest to the field, the experiments well-controlled and the analysis in the paper sound. I have no major scientific concerns.

      Weaknesses:<br /> I have some minor recommendations which will help improve the paper (regarding the discussion).

      Comments on revised version:

      The authors have addressed my concerns in the revised version of the manuscript.

    1. Reviewer #1 (Public Review):

      This manuscript describes a series of experiments documenting trophic egg production in a species of harvester ant, Pogonomyrmex rugosus. In brief, queens are the primary trophic egg producers, there is seasonality and periodicity to trophic egg production, trophic eggs differ in many basic dimensions and contents relative to reproductive eggs, and diets supplemented with trophic eggs had an effect on the queen/worker ratio produced (increasing worker production).

      The manuscript is very well prepared and the methods are sufficient. The outcomes are interesting and help fill gaps in knowledge, both on ants as well as insects, more generally.

    2. Reviewer #2 (Public review):

      The revised manuscript by Genzoni et al. reports the striking discovery of a regulatory role for trophic eggs. Prior to this study, trophic eggs were widely assumed to play a nutritional role in the colony, but this study shows that trophic eggs can suppress queen development, and therefore, can play a role in regulating caste determination in specific social contexts. In this revised version of the manuscript, the authors have addressed many of the concerns raised in the first version regarding the lack of sufficient information and context in the Introduction and Discussion.

    1. Reviewer #1 (Public review):

      Summary:

      In the manuscript submission by Zhao et al. entitled, "Cardiac neurons expressing a glucagon-like receptor mediate cardiac arrhythmia induced by high-fat diet in Drosophila" the authors assert that cardiac arrhythmias in Drosophila on a high fat diet is due in part to adipokinetic hormone (Akh) signaling activation. High fat diet induces Akh secretion from activated endocrine neurons, which activate AkhR in posterior cardiac neurons. Silencing or deletion of Akh or AkhR blocks arrhythmia in Drosophila on high fat diet. Elimination of one of two AkhR expressing cardiac neurons results in arrhythmia similar to high fat diet.

      Strengths:

      The authors propose a novel mechanism for high fat diet induced arrhythmia utilizing the Akh signaling pathway that signals to cardiac neurons.

      Comments on revisions:

      The authors have addressed my other concerns. The only outstanding issue is in regard to the following comment:

      The authors state that "HFD led to increased heartbeat and an irregular rhythm." In representative examples shown, HFD resulted in pauses, slower heart rate, and increased irregularity in rhythm but not consistently increased heart rate (Figures 1B, 3A, and 4C). Based on the cited work by Ocorr et al (https://doi.org/10.1073/pnas.0609278104), Drosophila heart rate is highly variable with periods of fast and slow rates, which the authors attributed to neuronal and hormonal inputs. Ocorr et al then describe the use of "semi-intact" flies to remove autonomic input to normalize heart rate. Were semi-intact flies used? If not, how was heart rate variability controlled? And how was heart rate "increase" quantified in high fat diet compared to normal fat diet? Lastly, how does one measure "arrhythmia" when there is so much heart rate variability in normal intact flies?

      - The authors state that 8 sec time windows were selected at the discretion of the imager for analysis. I don't know how to avoid bias unless the person acquiring the imaging is blinded to the condition and the analysis is also done blind. Can you comment whether data acquisition and analysis was done in a blinded fashion? If not, this should be stated as a limitation of the study.

    2. Reviewer #3 (Public review):

      Zhao et al. provide new insights into the mechanism by which a high-fat diet (HFD) induces cardiac arrhythmia employing Drosophila as a model. HFD induces cardiac arrhythmia in both mammals and Drosophila. Both glucagon and its functional equivalent in Drosophila Akh are known to induce arrhythmia. The study demonstrates that Akh mRNA levels are increased by HFD and both Akh and its receptor are necessary for high-fat diet-induced cardiac arrhythmia, elucidating a novel link. Notably, Zhao et al. identify a pair of AKH receptor-expressing neurons located at the posterior of the heart tube. Interestingly, these neurons innervate the heart muscle and form synaptic connections, implying their roles in controlling the heart muscle. The study presented by Zhao et al. is intriguing, and the rigorous characterization of the AKH receptor-expressing neurons would significantly enhance our understanding of the molecular mechanism underlying HFD-induced cardiac arrhythmia.

      Many experiments presented in the manuscript are appropriate for supporting the conclusions while additional controls and precise quantifications should help strengthen the authors' arguments. The key results obtained by loss of Akh (or AkhR) and genetic elimination of the identified AkhR-expressing cardiac neurons do not reconcile, complicating the overall interpretation.

      The most exciting result is the identification of AkhR-expressing neurons located at the posterior part of the heart tube (ACNs). The authors attempted to determine the function of ACNs by expressing rpr with AkhR-GAL4, which would induce cell death in all AkhR-expressing cells, including ACNs. The experiments presented in Figure 6 are not straightforward to interpret. Moreover, the conclusion contradicts the main hypothesis that elevated Akh is the basis of HFD-induced arrhythmia. The results suggest the importance of AkhR-expressing cells for normal heartbeat. However, elimination of Akh or AkhR restores normal rhythm in HFD-fed animals, suggesting that Akh and AkhR are not important for maintaining normal rhythms. If Akh signaling in ACNs is key for HFD-induced arrhythmia, genetic elimination of ACNs should unalter rhythm and rescue the HFD-induced arrhythmia. An important caveat is that the experiments do not test the specific role of ACNs. ACNs should be just a small part of the cells expressing AkhR. Specific manipulation of ACNs will significantly improve the study. Moreover, the main hypothesis suggests that HFD may alter the activity of ACNs in a manner dependent on Akh and AkhR. Testing how HFD changes calcium, possibly by CaLexA (Figure 2) and/or GCaMP, in wild-type and AkhR mutant could be a way to connect ACNs to HFD-induced arrhythmia. Moreover, optogenetic manipulation of ACNs may allow for specific manipulation of ACNs.

      Interestingly, expressing rpr with AkhR-GAL4 was insufficient to eliminate both ACNs. It is not clear why it didn't eliminate both ACNs. Given the incomplete penetrance, appropriate quantifications should be helpful. Additionally, the impact on other AhkR-expressing cells should be assessed. Adding more copies of UAS-rpr, AkhR-GAL4, or both may eliminate all ACNs and other AkhR-expressing cells. The authors could also try UAS-hid instead of UAS-rpr.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Duilio M. Potenza et al. explores the role of Arginase II in cardiac aging, majorly using whole-body arg-ii knock-out mice. In this work, the authors have found that Arg-II exerts non-cell-autonomous effects on aging cardiomyocytes, fibroblasts, and endothelial cells mediated by IL-1b from aging macrophages. The authors have used arg II KO mice and an in vitro culture system to study the role of Arg II. Authors have also reported the cell-autonomous effect of Arg-II through mitochondrial ROS in fibroblasts that contribute to cardiac aging. These findings are sufficiently novel in cardiac aging and provide interesting insights. While the phenotypic data seem strong, the mechanistic details are unclear. How Arg II regulates the IL-1b and modulates cardiac aging is still being determined.

      Strengths:

      This study provides interesting information on the role of Arg II in cardiac aging.

      The phenotypic data in the Arg II KO mice is convincing, and the authors have assessed most of the aging-related changes.

      The data is supported by an in vitro cell culture system.

      Weaknesses:

      The manuscript needs more mechanistic details on how Arg II regulates IL-1b and modulates cardiac aging.

    2. Reviewer #2 (Public review):

      This study investigates the role of arginase-II (Arg-II) in cardiac aging. The authors challenge previous assumptions by demonstrating that Arg-II is not expressed in aged cardiomyocytes, but is upregulated in non-myocyte cells, specifically macrophages, fibroblasts, and endothelial cells. Using Arg-II knockout mice, they show protection against age-associated cardiac inflammation, fibrosis, apoptosis, endothelial-to-mesenchymal transition (EndMT), and ischemic injury. Mechanistically, Arg-II promotes IL-1β release from macrophages and increases mitochondrial ROS in fibroblasts, contributing to cardiac aging through both cell-autonomous and non-cell-autonomous mechanisms.

      The study is well-structured and combines genetic models, molecular assays, and histological analyses to support its conclusions. Including both human and mouse samples strengthens the translational relevance of the findings. The authors have addressed most of the reviewers' comments and have made efforts to improve the manuscript by adding experimental data, explanations, and further discussion.

      The data convincingly support their conclusions. This work provides valuable insights into the mechanisms of cardiac aging, aligns with growing evidence of non-cell-autonomous contributions to aging-related pathologies, and highlights the importance of intercellular signaling in maintaining cardiac health during aging.

      Although the use of cell-specific knockout mouse models would enhance the depth and translational potential of the findings, it is understandable that such an approach would be beyond the scope of a single study. This work lays the groundwork for future investigations into conditional Arg-II knockouts in specific cell types to elucidate the cell-specific roles of Arg-II in cardiac aging.

      Overall, this is a solid and impactful study with strong experimental support

    1. Joint Public Review:

      Summary:

      The authors have conducted the largest to date Mendelian Randomization (MR) analysis of the association between genetically predicted measures of adiposity and risk of head and neck cancer (HNC) overall and by subsites within HNC. MR uses genetic predictors of an exposure, such as gene variants associated with high BMI or tobacco use, rather than data from individual physical exams or questionnaires, and if it can be done in its idealized state, there should be no problems with confounding. Traditional epidemiologic studies have reported a variety of associations between BMI (and a few other measures of adiposity) and risk of HNC that typically differ by the smoking status of the subjects. Those findings are controversial given the complex relationship between tobacco and both BMI and HNC risk. Tobacco smokers are often thinner than non-smokers, so this could create an artificial ('confounded') association that may not be fully adjusted away in risk models. The findings of a BMI-HNC association are often attributed to residual confounding, and this seems ripe for an MR approach if suitable genetic instrumental variables can be created. Here, the authors built a variety of genetic instrumental variables for BMI and other measures of adiposity, as well as two instrumental variables for smoking habits, and then tested their hypotheses in a large case-control set of HNC and controls with genetic data.

      The authors found that the genetic model for BMI was associated with HNC risk in simple models, but this association disappeared when using models that better accounted for pleiotropy, the condition when genetic variants are associated with more than one trait, such as both BMI and tobacco use. When they used both adiposity and tobacco use genetic instruments in a single model, there was a strong association with genetically predicted tobacco use (as is expected), but there was no remaining association with genetic predictors of adiposity. They conclude that high BMI/adiposity is not a risk factor for HNC.

      Strengths:

      The primary strength was the expansive use of a variety of different genetic instruments for BMI/adiposity/body size, along with employing a variety of MR model types, several of which are known to be less sensitive to pleiotropy. They also used the largest case-control sample size to date.

      Weaknesses:

      The lack of pleiotropy is an unconfirmable assumption of MR, and the addition of those models is therefore quite important, as this is a primary weakness of the MR approach. Given that concern, I read the sensitivity analyses using pleiotropy-robust models as the main result, and in that case, they can't test their hypotheses as these models do not show a BMI instrumental variable association. The other weakness, which might be remedied, is that the power of the tests here is not described. When a hypothesis is tested with an under-powered model, the apparent lack of association could be due to inadequate sample size rather than a true null. Typically, when a statistically significant association is reported, power concerns are discounted as long as the study is not so small as to create spurious findings. That is the case with their primary BMI instrumental variable model - they find an association so we can presume it was adequately powered. But the primary models they share are not the pleiotropy-robust methods MR-Egger, weighted median, and weighted mode. The tests for these models are null, and that could mean a couple of things: (1) the original primary significant association between the BMI genetic instrument was due to pleiotropy, and they therefore don't have a robust model to explore the effects of the tobacco genetic instrument. (2) The power for the sensitivity analysis models (the pleiotropy-robust methods) is inadequate, and the authors share no discussion about the relative power of the different MR approaches. If they do have adequate power, then again, there is no need to explore the tobacco instrument.

      Reviewing Editor Comments:

      We suggest that the authors add power estimates to assess whether the sample size is sufficient, given the strength and variability of the genetic instruments. It would also be helpful to present effect estimates for the tobacco instruments alone, to clarify their independent contribution and improve the interpretation of the joint models. In addition, the role of pleiotropy should be addressed more clearly, including which model is considered primary. Stratified analyses by smoking status are encouraged, as prior studies indicate that BMI-HNC associations may differ between smokers and non-smokers. Finally, the comparison with previous studies should be revised, as most reported null findings without accounting for tobacco instruments. If this study finds an association, it should not be framed as a replication.

    1. Reviewer #1 (Public review):

      In this manuscript, Wolfson and co-authors demonstrate a combination of an injury-specific enhancer and engineered AAV that enhances transgene expression in injured myocardium. The authors characterize spatiotemporal dynamics of TREE-directed AAV expression in the injured heart using a non-invasive longitudinal monitoring system. They show that transgene expression is drastically increased 3 days post-injury, driven by 2ankrd1a. They reported a liver-detargeted capsid, AAV cc.84, with decreased viral entry into the liver while maintaining TREE transgene specificity. They further identified the IR41 serotype with enhanced transgene expression in injured myocardium from AAV library screening. This is an interesting study that optimizes the potential application of TREE delivery for cardiac repair. However, several concerns were raised prior to publication:

      Major Concerns:

      (1) In Figure 1, the authors demonstrated that 2andkrd1aEN is not responsive to sham injury after AAV delivery, but Figure 3 shows a strong response to sham when AAV is delivered after injury. The authors do not provide an explanation for this observation.

      (2) In Figure 4, a higher GFP signal is observed in all areas of the heart of the IR41-treated mouse compared to AAV9. The authors should compare GFP expression between AAV9 and IR41 in uninjured hearts and provide insights into enhanced cardiac tropism to confirm that IR41 is MI injury enriched, not Sham as well.

      (3) The authors should clarify which model is being used between myocardial infarction (MI) and Ischemia-reperfusion (IR) throughout the figures, as the experimental schemes and figure legends did not match with each other (MI or IR in Figure 1A, 1D, 3A, and 3E). Both models cause different types of injuries. The authors should explain the difference in TREE expression in both models.

      (4) In Figure 2, the authors use REN instead of 2ankrd1aEN to demonstrate liver-detargeting using AAV cc.84. Is there a specific reason?

    2. Reviewer #2 (Public review):

      In this manuscript by Wolfson et al., various adeno-associated viruses (AAVs) were delivered to mice to assess the cardiac-specificity, injury border-zone cardiomyocyte transduction rate, and temporal dynamics, with the goal of finding better AAVs for gene therapies targeting the heart. The authors delivered tissue regeneration enhancer elements (TREEs) controlling luciferase expression and used IVIS imaging to examine transduction in the heart and other organs. They found that luciferase expression increased in the first week after injury when using AAV9-TREE-Hsp68 promoter, waning to baseline levels by 7 weeks. However, AAV9 vectors transduced the liver, which was significantly reduced by using an AAV.cc84 liver de-targeting capsid. The authors then performed in vivo screening of AAV9 capsids and found AAV-IR41 to preferentially transduce injured myocardium when compared to AAV9. Finally, the authors combined TREEs with AAV-IR41 to show improved luciferase expression compared to AAV9-TREE at 7, 14, and 21 days after injury.

      Overall, this manuscript provides insights into TREE expression dynamics when paired with various heart-targeting capsids, which can be useful for researchers studying ischemic injury of murine hearts. While the authors have shown the success of using AAV9-TREEs in porcine hearts, it is unknown whether the expression dynamics would be similar in pigs or humans, as mentioned in the limitations.

      The following questions and concerns can be addressed to improve the manuscript:

      (1) From the IVIS data, it seems that the Hsp68 promoter might not be "normally silent in mouse tissues," specifically in the liver (Figure S1B). Are there any other promoters that can be combined with TREEs to induce cardiac-injury specific expression while minimizing liver expression? This could simplify capsid design to focus on delivery to injured areas.

      (2) Why is it that AAV9-TREE-Hsp68-Luc wane in expression (Figure 1C and 1D), whereas AAV.cc84-TREE-Hsp68-Luc expresses stably for over 2 months (3E)? This has important implications for the goal of transience in gene delivery.

      (3) AAV-IR41 was found to transduce cardiomyocytes in the injured zone. However, this capsid also shows a very strong off-target liver expression. From a capsid design perspective, is it possible to combine AAV-cc84 and AAV-IR41?

      (4) It would be helpful to see immunostaining for the various time points in Figure 5. Is it possible to use an anti-luciferase antibody (or AAV-TREE-Hsp68-eGFP) to compare the two TREE capsids?

    3. Reviewer #3 (Public review):

      Summary:

      The tissue regeneration enhancer elements (TREEs) identified in zebrafish have been shown to drive injury-activated temporal-spatial gene expression in mice and large animals. These findings increase the translational potential of findings in zebrafish to mammals. In this manuscript, the authors tested TREEs in combination with different adeno-associated viral (AAV) vectors using in vivo luciferase bioluminescent imaging that allows for longitudinal tracking. The TREE-driven luciferase delivered by a liver de-targeted AAV.cc84 decreased off-target transduction in the liver. They further screened an AAV library to identify capsid variants that display enhanced transduction for myocardium post-myocardial infarction. A new capsid variant, AAV.IR41, was found to show increased transduction at the infarct border zones.

      Strengths:

      The authors injected AAV-cargo several days after ischemia/reperfusion (I/R) injury as a clinically relevant approach. Overall, this study is significant in that it identifies new AAV vectors for potential new gene therapies in the future. The manuscript is well-written, and their data are also of high quality.

      Weaknesses:

      The authors might be using MI (myocardial infarction) and I/R injury interchangeably in their text and labels. For instance, "We systemically transduced mice at 4 days after permanent left coronary artery ligation with either AAV9 or IR41 harboring a 2ankrd1aEN-Hsp68::fLuc transgene. IVIS imaging revealed higher expression levels in animals transduced with IR41 compared to AAV9, in both sham and I/R groups (Fig. 5A)". They should keep it consistent. There is also no description for the MI model.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript addresses the discordant reports of the Murphy (Moore et al., 2019; Kaletsky et al., 2020; Sengupta et al., 2024) and Hunter (Gainey et al., 2025) groups on the existence (or robustness) of transgenerational epigenetic inheritance (TEI) controlling learned avoidance of C. elegans to Pseudomonas aeruginosa. Several papers from Colleen Murphy's group describe and characterize C. elegans transgenerational inheritance of avoidance behaviour. In the hands of the Murphy group, the learned avoidance is maintained for up to four generations, however, Gainey et al. (2025) reported an inability to observe inheritance of learned avoidance beyond the F1 generation. Of note, Gainey et al used a modified assay to measure avoidance, rather than the standard assay used by the Murphy lab. A response from the Murphy group suggested that procedural differences explained the inability of Gainey et al.(2025) to observe TEI. They found two sources of variability that could explain the discrepancy between studies: the modified avoidance assay and bacterial growth conditions (Kaletsky et al., 2025). The standard avoidance assay uses azide as a paralytic to capture worms in their initial decision, while the assay used by the Hunter group does not capture the worm's initial decision but rather uses cold to capture the location of the population at one point in time.

      In this short report, Akinosho, Alexander, and colleagues provide independent validation of transgenerational epigenetic inheritance (TEI) of learned avoidance to P. aeruginosa as described by the Murphy group by demonstrating learned avoidance in the F2 generation. These experiments used the protocol described by the Murphy group, demonstrating reproducibility and robustness.

      Strengths:

      Despite the extensive analyses carried out by the Murphy lab, doubt may remain for those who have not read the publications or for those who are unfamiliar with the data, which is why this report from the Vidal-Gadea group is so important. The observation that learned avoidance was maintained in the F2 generation provides independent confirmation of transgenerational inheritance that is consistent with reports from the Murphy group. It is of note that Akinosho, Alexander et al. used the standard avoidance assay that incorporates azide, and followed the protocol described by the Murphy lab, demonstrating that the data from the Moore and Kaletsky publications are reproducible, in contrast to what has been asserted by the Hunter group.

      Weaknesses:

      While I would have liked to see a confirmation of the daf-7::GFP data in F2, and perhaps inheritance of avoidance beyond F2, the premise of the manuscript is that they have independently verified the transgenerational inheritance of learned avoidance as described by the Murphy lab, and this bar has been met.

    2. Reviewer #2 (Public review):

      Summary:

      The manuscript "Independent validation of transgenerational inheritance of learned pathogen avoidance in C. elegans" by Akinosho and Vidal-Gadea offers evidence that learned avoidance of the pathogen PA14 can be inherited for at least two generations. In spite of initial preference for the pathogen when exposed in a 'training session', 24 hours of feeding on this pathogen evoked avoidance. The data are robust, replicated in 4 trials, and the authors note that diminished avoidance is inherited in generations F1 and F2.

      Strengths:

      These results contrast with those reported by Gainey et al, who only observed intergenerational inheritance for a single generation. Although the authors' study does not explain why Gainey et el fail to reproduce the Murphy lab results, one possibility is that a difference in a media ingredient could be responsible.

      Weaknesses:

      The authors do not list the sources of their media ingredients, which might be important with regard to reproducibility.

    3. Reviewer #3 (Public review):

      Summary

      This short paper aims to provide an independent validation of the transgenerational inheritance of learned behaviour (avoidance) that has been published by the Murphy lab. The robustness of the phenotype has been questioned by the Hunter lab. In this paper, the authors present one figure showing that transgenerational inheritance can be replicated in their hands. Overall, it helps to shed some light on a controversial topic.

      Strengths

      The authors clearly outline their methods, particularly regarding the choice of assay, so that attempting to reproduce the results should be straightforward. It is nice to see these results repeated in an independent laboratory.

      Weaknesses

      Previous reports on this topic have provided raw data, which is helpful when assessing sample sizes. The authors provided a spreadsheet containing the choice assay results for individual assays, but not the raw data. In the methods, it is stated that F2 animals were produced from F1 animals by bleaching, but there are many more F2 assays than F1. Were multiple F2 assays performed on the offspring from one F1 plate? If so, they do not represent independent assays.

      I think that the introduction somewhat overstates their findings - do they really "address potential methodological variations that might influence results"? This makes it sound as though they test different conditions, whereas they only use one assay setup throughout.

    1. Reviewer #1 (Public review):

      Summary:

      Mast cells have previously been reported to play an important role in bacterial immune defense and act protectively in sepsis. However, many of these findings were based on studies using Kit mutant mice. In this study, the authors conducted a detailed investigation using mast cell-deficient Cpa3 Cre-Master mice. As a result, the authors found that the Cpa3 Cre-Master mice exhibited responses similar to wild-type mice in terms of bacterial immune defense. This suggests that the observed phenotype is not due to mast cell-dependent bacterial immune defense, but rather is associated with dysbiosis of the gut microbiota.

      Strengths:

      Mast cells have long been reported to play an important role in the protective response against sepsis, and their function in infection defense has been demonstrated. However, Kit mutant mice have been reported to exhibit impaired peristalsis, and several mast cell-specific genetically modified mouse lines have since been developed and examined in detail. This study presents an important finding by logically demonstrating that the exacerbation of sepsis in Kit mice is due to alterations in the gut microbiota, and that the phenotype previously thought to be mast cell-dependent was, in fact, not.

      In addition, the experiments were carefully designed using mice with matched genetic backgrounds. These findings underscore the importance of microbiota composition in interpreting immune phenotypes and highlight the need for co-housing controls in mutant mouse studies.

      A major strength of this work is the robustness of the CLP data, generated over eight years by three independent researchers across two institutions with large sample sizes, lending strong support to the conclusions.

      Weaknesses:

      The study assesses only a limited subset of gut bacterial species, leaving the extent to which E. coli expansion contributes to the observed phenotype unclear. Moreover, in the cohousing experiments, there is no evidence provided to confirm successful microbiota normalization between groups. A more detailed analysis of the microbial composition would be necessary to strengthen the reliability of the findings.

      It is also important to note that Cpa3-deficient mice exhibit not only mast cell depletion but also defects in basophils and T cells. These additional immunological alterations may counterbalance one another, potentially masking phenotypic changes and complicating interpretation.

      Furthermore, it remains to be determined whether the altered gut microbiota observed in KitW/Wv mice is a consequence of impaired intestinal motility, whether a similar phenotype is observed in KitW-sh/W-sh mice, and whether comparable results occur in SCF-deficient models. Addressing these questions would provide greater clarity on the contribution of mast cells versus secondary factors in the observed phenotypes.

      Given that KitW/Wv mice exhibit impaired peristalsis, is the observed increase in E. coli a consequence of this dysfunction?

      Previous studies with BMMC reconstitution experiments have indicated that mast cells are a source of TNF - how does this align with the current findings?

    2. Reviewer #2 (Public review):

      Summary:

      This study presents a useful finding that the high susceptibility to CLP sepsis of Kit-mutant mice is not due to mast cell deficiency, but to dysbiosis.

      However, the present data are insufficient and incomplete to support the conclusion, and would benefit from more rigorous approaches. With the mechanism part strengthened, this paper would be of interest to researchers on mast cell biology and mucosal immunology.

      Recommendations:

      (1) The authors showed that E. coli increases in the cecum of Kit-mutant mice, which causes high CLP susceptibility. However, they did not provide any evidence E. coli is responsible for the high susceptibility. In the Figure 3 experiments, the authors administered the same number of cecal bacteria and did not show the number of E. coli after the administration. The authors should provide evidence showing that depletion of E. coli decreases susceptibility.

      (2) The author should provide direct evidence of dysbiosis by, for example, shotgun sequencing of cecal and fecal contents.

      (3) In case the authors find dysbiosis, they should analyze the mechanisms by which Kit mutation causes dysbiosis.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript discusses the role of phosphorylated ubiquitin (pUb) by PINK1 kinase in neurodegenerative diseases. It reveals that elevated levels of pUb are observed in aged human brains and those affected by Parkinson's disease (PD), as well as in Alzheimer's disease (AD), aging, and ischemic injury. The study shows that increased pUb impairs proteasomal degradation, leading to protein aggregation and neurodegeneration. The authors also demonstrate that PINK1 knockout can mitigate protein aggregation in aging and ischemic mouse brains, as well as in cells treated with a proteasome inhibitor. While this study provided some interesting data, several important points should be addressed before being further consideration.

      Strengths:

      (1) Reveals a novel pathological mechanism of neurodegeneration mediated by pUb, providing a new perspective on understanding neurodegenerative diseases.

      (2) The study covers not only a single disease model but also various neurodegenerative diseases such as Alzheimer's disease, aging, and ischemic injury, enhancing the breadth and applicability of the research findings.

      Comments on revisions:

      This study, through a systematic experimental design, reveals the crucial role of pUb in forming a positive feedback loop by inhibiting proteasome activity in neurodegenerative diseases. The data are comprehensive and highly innovative. However, some of the results are not entirely convincing, particularly the staining results in Figure 1.

      In Figure 1A, the density of DAPI staining differs significantly between the control patient and the AD patient, making it difficult to conclusively demonstrate a clear increase in PINK1 in AD patients. Quantitative analysis is needed. In Fig 1C, the PINK1 staining in the mouse brain appears to resemble non-specific staining.

    1. Reviewer #1 (Public review):

      Summary:

      In this beautiful paper the authors examined the role and function of NR2F2 in testis development and more specifically on fetal Leydig cells development. It is well known by now that FLC are developed from an interstitial steroidogenic progenitor at around E12.5 and are crucial for testosterone and INSL3 production during embryonic development, which in turn shapes the internal and external genitalia of the male. Indeed, lack of testosterone or INSL3 are known to cause DSD as well as undescended testis, also termed as cryptorchidism.

      The authors first characterized the expression pattern of the NR2R2 protein during testis development and then used two cKO systems of NR2F2, namely the Wt1-creERT2 and the Nr5a1-cre to explore the phenotype of loss of NR2F2. They found in both cases that mice are presenting with undescended testis and major reduction in FLC numbers. They show that NR2F2 has no effect on the amount and expression of the progenitor cells but in its absence, there are less FLC and they are immature.

      The effect of NR2F2 is cell autonomous and does not seem to affect other signalling pathways implemented in Leydig cell development as the DHH, PDGFRA and the NOTCH pathway.

      Overall, this paper is excellent, very well written, fluent and clear. The data is well presented, and all the controls and statistics are in place. I think this paper will be of great interest to the field and paves the way for several interesting follow up studies as stated in the discussion

      Comments on revised version:

      The authors have fully addressed my concerns and the manuscript is looking excellent.

    2. Reviewer #2 (Public review):

      The major conclusion of the manuscript is expressed in the title: "NR2F2 is required in the embryonic testis for Fetal Leydig Cell development" and also at the end of the introduction and all along the result part. All the authors' assertions are supported by very clear and statistically validated results from ISH, IHC, precise cell counting and gene expression levels by qPCR. The authors used two different conditional Nr2f2 gene ablation systems that demonstrate the same effects at the FLC level. They also showed that the haplo-insufficiency of Wt1 in the first system (knock-in Wt1-cre-ERT2) aggravated the situation in FLC differentiation by disturbing the differentiation of Sertoli cells and their secretion of pro-FLC factors, which had a confounding effect and encouraged them to use the second system. This demonstrates the great rigor with which the authors interpreted the results. In conclusion, all authors' claims and conclusions are justified by their high-quality results.

      Comments on revised version:

      In their revised version, the authors have taken full account of all my suggestions, and I congratulate them on this. I have no further comments to make on this new version.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Azlan et al. identified a novel maternal factor called Sakura that is required for proper oogenesis in Drosophila. They showed that Sakura is specifically expressed in the female germline cells. Consistent with its expression pattern, Sakura functioned autonomously in germline cells to ensure proper oogenesis. In sakura KO flies, germline cells were lost during early oogenesis and often became tumorous before degenerating by apoptosis. In these tumorous germ cells, piRNA production was defective and many transposons were derepressed. Interestingly, Smad signaling, a critical signaling pathway for the GSC maintenance, was abolished in sakura KO germline stem cells, resulting in ectopic expression of Bam in whole germline cells in the tumorous germline. A recent study reported that Bam acts together with the deubiquitinase Otu to stabilize Cyc A. In the absence of sakura, Cyc A was upregulated in tumorous germline cells in the germarium. Furthermore, the authors showed that Sakura co-immunoprecipitated Otu in ovarian extracts. A series of in vitro assays suggested that the Otu (1-339 aa) and Sakura (1-49 aa) are sufficient for their direct interaction. Finally, the authors demonstrated that the loss of otu phenocopies the loss of sakura, supporting their idea that Sakura plays a role in germ cell maintenance and differentiation through interaction with Otu during oogenesis.

      Strengths:

      To my knowledge, this is the first characterization of the role of CG14545 genes. Each experiment seems to be well-designed and adequately controlled

      Weaknesses:

      However, the conclusions from each experiment are somewhat separate, and the functional relationships between Sakura's functions are not well established. In other words, although the loss of Sakura in the germline causes pleiotropic effects, the cause-and-effect relationships between the individual defects remain unclear.

      Comments on latest version:

      The authors have attempted to address my initial concerns with additional experiments and refutations. Unfortunately, my concerns, especially my specific comments 1-3, remain unaddressed. The present manuscript is descriptive and fails to describe the molecular mechanism by which Sakura exerts its function in the germline. Nevertheless, this reviewer acknowledges that the observed defects in sakura mutant ovaries and the possible physiological significance of the Sakura-Out interaction are worth sharing with the research community, as they may lay the groundwork for future research in functional analysis.

    2. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Azlan et al. identified a novel maternal factor called Sakura that is required for proper oogenesis in Drosophila. They showed that Sakura is specifically expressed in the female germline cells. Consistent with its expression pattern, Sakura functioned autonomously in germline cells to ensure proper oogenesis. In sakura KO flies, germline cells were lost during early oogenesis and often became tumorous before degenerating by apoptosis. In these tumorous germ cells, piRNA production was defective and many transposons were derepressed. Interestingly, Smad signaling, a critical signaling pathway for the GSC maintenance, was abolished in sakura KO germline stem cells, resulting in ectopic expression of Bam in whole germline cells in the tumorous germline. A recent study reported that Bam acts together with the deubiquitinase Otu to stabilize Cyc A. In the absence of sakura, Cyc A was upregulated in tumorous germline cells in the germarium. Furthermore, the authors showed that Sakura co-immunoprecipitated Otu in ovarian extracts. A series of in vitro assays suggested that the Otu (1-339 aa) and Sakura (1-49 aa) are sufficient for their direct interaction. Finally, the authors demonstrated that the loss of otu phenocopies the loss of sakura, supporting their idea that Sakura plays a role in germ cell maintenance and differentiation through interaction with Otu during oogenesis.

      Strengths:

      To my knowledge, this is the first characterization of the role of CG14545 genes. Each experiment seems to be well-designed and adequately controlled

      Weaknesses:

      However, the conclusions from each experiment are somewhat separate, and the functional relationships between Sakura's functions are not well established. In other words, although the loss of Sakura in the germline causes pleiotropic effects, the cause-and-effect relationships between the individual defects remain unclear.

      Comments on latest version:

      The authors have attempted to address my initial concerns with additional experiments and refutations. Unfortunately, my concerns, especially my specific comments 1-3, remain unaddressed. The present manuscript is descriptive and fails to describe the molecular mechanism by which Sakura exerts its function in the germline. Nevertheless, this reviewer acknowledges that the observed defects in sakura mutant ovaries and the possible physiological significance of the Sakura-Out interaction are worth sharing with the research community, as they may lay the groundwork for future research in functional analysis.

    3. Reviewer #3 (Public review):

      In this very thorough study, the authors characterize the function of a novel Drosophila gene, which they name Sakura. They start with the observation that sakura expression is predicted to be highly enriched in the ovary and they generate an anti-sakura antibody, a line with a GFP-tagged sakura transgene, and a sakura null allele to investigate sakura localization and function directly. They confirm the prediction that it is primarily expressed in the ovary and, specifically, that it is expressed in germ cells, and find that about 2/3 of the mutants lack germ cells completely and the remaining have tumorous ovaries. Further investigation reveals that Sakura is required for piRNA-mediated repression of transposons in germ cells. They also find evidence that sakura is important for germ cell specification during development and germline stem cell maintenance during adulthood. However, despite the role of sakura in maintaining germline stem cells, they find that sakura mutant germ cells also fail to differentiate properly such that mutant germline stem cell clones have an increased number of "GSC-like" cells. They attribute this phenotype to a failure in the repression of Bam by dpp signaling. Lastly, they demonstrate that sakura physically interacts with otu and that sakura and otu mutants have similar germ cell phenotypes. Overall, this study helps to advance the field by providing a characterization of a novel gene that is required for oogenesis. The data are generally high-quality and the new lines and reagents they generated will be useful for the field.

      Comments on latest version:

      With these revisions, the authors have addressed my main concerns.

    1. Reviewer #1 (Public review):

      Summary:

      This paper provides a computational model of a synthetic task in which an agent needs to find a trajectory to a rewarding goal in a 2D-grid world, in which certain grid blocks incur a punishment. In a completely unrelated setup without explicit rewards, they then provide a model that explains data from an approach-avoidance experiment in which an agent needs to decide whether to approach, or withdraw from, a jellyfish, in order to avoid a pain stimulus, with no explicit rewards. Both models include components that are labelled as "Pavlovian"; hence the authors argue that their data show that the brain uses a "Pavlovian" fear system in complex navigational and approach-avoid decisions.

      In the first setup, they simulate a model in which a "Pavlovian" component learns about punishment in each grid block, where as a Q-learner learns about the optimal path to the goal, using a scalar loss function for rewards and punishments. "Pavlovian" and Q-learning components are then weighed at each step to produce an action. Unsurprisingly, the authors find that including the "Pavlovian" component into the model reduces the cumulative punishment incurred, and this increases as the weight of the "Pavlovian" system increases. The paper does not explore to what extent increasing the punishment loss (while keeping reward loss constant) would lead to the same outcomes with a simpler model architecture.

      In the second setup, an agent learns about punishments alone. So-called "Pavlovian biases" have previously been demonstrated in this task (i.e. an over avoidance when the correct decision is to approach). The authors explore several models to account for the Pavlovian biases.

      Strengths:

      Overall, the modelling exercises are interesting and relevant and incrementally expand the space of existing models.

      Weaknesses:

      For the first task, the simulation results are not compared to a simple Q-learning model. The second task is somewhat artificial, a problem compounded by the virtual reality setup. According to the cover story, participants get "stung by a jellyfish" on average 88 times during the experiment. In one condition, withdrawal from a jelly fish lead to a sting.

    2. Reviewer #2 (Public review):

      Summary:

      The authors tested the efficiency of a model combining Pavlovian fear valuation and instrumental valuation. This model is amenable to many behavioral decision and learning setups - some of which have been or will be designed to test differences in patients with mental disorders (e.g., anxiety disorder, OCD, etc.).

      Strengths:

      (1) Simplicity of the model which can at the same time model rather complex environments.

      (2) Introduction of a flexible omega parameter.

      (3) Direct application to a rather advanced VR task.

      (4) The paper is extremely well written. It was a joy to read.

      Weaknesses:

      Almost none! In very few cases, the explanations could be a bit better.

      Comments on revised version:

      No further comments.

    3. Reviewer #3 (Public review):

      Summary:

      This paper aims to address the problem of exploring potentially rewarding environments that contain danger, based on the assumption that an independent Pavlovian fear learning system can help guide an agent during exploratory behaviour such that it avoids severe danger. This is important given that otherwise later gains seem to outweigh early threats, and agents may end up putting themselves in danger when it is advisable not to do so.

      The authors develop a computational model of exploratory behaviour that accounts for both instrumental and Pavlovian influences, combining the two according to uncertainty in the rewards. The result is that Pavlovian avoidance has a greater influence when the agent is uncertain about rewards.

      Strengths:

      The study does a thorough job of testing this model using both simulations and data from human participants performing an avoidance task. Simulations demonstrate that the model can produce "safe" behaviour, where the agent may not necessarily achieve the highest possible reward but ensures that losses are limited. Interestingly, the model appears to describe human avoidance behaviour in a task that tests for Pavlovian avoidance influences better than a model that doesn't adapt the balance between Pavlovian and instrumental based on uncertainty. The methods are robust, and generally there is little to criticise about the study.

      Weaknesses:

      The methods are robust, and generally there is little to criticise about the study. The extent of the testing in human participants is fairly limited, but goes far enough to demonstrate that the model can account for human behaviour in an exemplar task. There are, however, some elements of the model that are unrealistic (for example, the fact that pre-training is required to select actions with a Pavlovian bias would require the agent to explore the environment initially and encounter a vast amount of danger in order to learn how to avoid the danger later), although this could simply reflect a lengthy evolutionary process.

    1. Reviewer #1 (Public review):

      Summary:

      Mallimadugula et al. combined Molecular Dynamics (MD) simulations, thiol-labeling experiments, and RNA-binding assays to study and compare the RNA-binding behavior of the Interferon Inhibitory Domain (IID) from Viral Protein 35 (VP35) of Zaire ebolavirus, Reston ebolavirus, and Marburg marburgvirus. Although the structures and sequences of these viruses are similar, the authors suggest that differences in RNA binding stem from variations in their intrinsic dynamics, particularly the opening of a cryptic pocket. More precisely, the dynamics of this pocket may influence whether the IID binds to RNA blunt ends or the RNA backbone.

      Overall, the authors present important findings to reveal how the intrinsic dynamics of proteins can influence their binding to molecules and, hence, their functions. They have used extensive biased simulations to characterize the opening of a pocket which was not clearly seen in experimental results - at least when the proteins were in their unbound forms. Biochemical assays further validated theoretical results and linked them to RNA binding modes. Thus, with the combination of biochemical assays and state-of-the-art Molecular Dynamics simulations, these results are clearly compelling.

      Strengths:

      The use of extensive Adaptive Sampling combined with biochemical assays clearly point to the opening of the Interferon Inhibitory Domain (IID) as a factor for RNA binding. This type of approach is especially useful to assess how protein dynamics can affect its function.

      Weaknesses:

      Although a connection between the cryptic pocket dynamics and RNA binding mode is proposed, the precise molecular mechanism linking pocket opening to RNA binding still remains unclear.

    2. Reviewer #2 (Public review):

      Summary:

      The authors aimed to determine whether a cryptic pocket in the VP35 protein of Zaire ebolavirus has a functional role in RNA binding and, by extension, in immune evasion. They sought to address whether this pocket could be an effective therapeutic target resistant to evolutionary evasion by studying its role in dsRNA binding among different filovirus VP35 homologs. Through simulations and experiments, they demonstrated that cryptic pocket dynamics modulate the RNA binding modes, directly influencing how VP35 variants block RIG-I and MDA5-mediated immune responses.<br /> The authors successfully achieved their aim, showing that the cryptic pocket is not a random structural feature but rather an allosteric regulator of dsRNA binding. Their results not only explain functional differences in VP35 homologs despite their structural similarity but also suggest that targeting this cryptic pocket may offer a viable strategy for drug development with reduced risk of resistance.

      This work represents a significant advance in the field of viral immunoevasion and therapeutic targeting of traditionally "undruggable" protein features. By demonstrating the functional relevance of cryptic pockets, the study challenges long-standing assumptions and provides a compelling basis for exploring new drug discovery strategies targeting these previously overlooked regions.

      Strengths:

      The combination of molecular simulations and experimental approaches is a major strength, enabling the authors to connect structural dynamics with functional outcomes. The use of homologous VP35 proteins from different filoviruses strengthens the study's generality, and the incorporation of point mutations adds mechanistic depth. Furthermore, the ability to reconcile functional differences that could not be explained by crystal structures alone highlights the utility of dynamic studies in uncovering hidden allosteric features.

      Weaknesses:

      While the methodology is robust, certain limitations should be acknowledged. For example, the study would benefit from a more detailed quantitative analysis of how specific mutations impact RNA binding and cryptic pocket dynamics, as this could provide greater mechanistic insight. This study would also benefit from providing a clear rationale for the selection of the amber03 force field and considering the inclusion of volume-based approaches for pocket analysis. Such revisions will strengthen the robustness and impact of the study.

      Comments on revisions:

      The authors addressed the concerns raised.

    3. Reviewer #3 (Public review):

      Summary:

      The authors suggest a mechanism that explains the preference of<br /> viral protein 35 (VP35) homologs to bind the backbone of double stranded RNA versus blunt ends. These preferences have a biological impact in terms of the ability of different viruses to escape the immune response of the host.<br /> The proposed mechanism involves the existence of a cryptic pocket, where VP35 binds the blunt ends of dsRNA when the cryptic pocket is closed and preferentially binds the RNA double stranded backbone when the pocket is open.<br /> The authors performed MD simulation results, thiol labelling experiments, fluorescence polarization assays, as well as point mutations to support their hypothesis.

      Strengths:

      This is a genuinely interesting scientific questions, which is approached through multiple complementary experiments as well as extensive MD simulations. Moreover, structural biology studies focused on RNA-protein interactions are particularly rare, highlighting the importance of further research in this area.

      Weaknesses:

      - Sequence similarity between Ebola-Zaire (94% similarity) explains their similar behaviour in simulations and experimental assays. Marburg instead is a more distant homolog (~80% similarity relative to Ebola/Zaire). This difference is sequence and structure can explain the propensities, without the need to involve the existence of a cryptic pocket.<br /> - No real evidence for the presence of a cryptic pocket is presented, but rather a distance probability distribution between two residues obtained from extensive MD simulations. It would be interesting to characterise the modelled RNA-protein interface in more detail

      Comments on revisions:

      -I still think that the term cryptic pocket is misleading here, unless the cryptic pocket is more thoroughly characterised. I would find it more appropriate to use the term open/closed state.

      - Mg ions are known to be crucial in stabilising RNA structure both in vitro and in MD simulations (see e.g. Draper BJ 2008 and many others). While I understand that the authors cannot repeat simulations in presence of ions, I believe that this detail should be more clearly detailed in the manuscript.

    1. Reviewer #1 (Public review):

      Summary:<br /> In the manuscript by Tie et.al., the authors couple the methodology which they have developed to measure LQ (localization quotient) of proteins within the Golgi apparatus along with RUSH based cargo release to quantify the speed of different cargos traveling through Golgi stacks in nocodazole induced Golgi ministacks to differentiate between cisternal progression vs stable compartment model of the Golgi apparatus. The debate between cisternal progression model and stable compartment model has been intense and going on for decades and important to understand the basic way of function/organization of the Golgi apparatus. As per the stable compartment model, cisterna are stable structures, and cargo moves along the Golgi apparatus in vesicular carriers. While as per cisternal progression model, Golgi cisterna themselves mature acquiring new identity from the cis face to the trans face and act as transport carriers themselves. In this work, authors provide a missing part regarding intra-Golgi speed for transport of different cargoes as well as the speed of TGN exit and based on the differences in the transport velocities for different cargoes tested favor a stable compartment model. The argument which authors make is that if there is cisternal progression, all the cargoes should have a similar intra-Golgi transport speed which is essentially the rate at which the Golgi cisterna mature. Furthermore, using a combination of BFA and Nocodazole treatments authors show that the compartments remain stable in cells for at least 30-60 minutes after BFA treatment.

      Strengths:<br /> The method to accurately measure localization of a protein within the Golgi stack is rigorously tested in the previous publications from the same authors and in combination with pulse chase approaches has been used to quantify transport velocities of cargoes through the Golgi. This is a novel aspect in this paper and differences in intra-Golgi velocities for different cargoes tested makes a case for a stable compartment model.

      Weaknesses:<br /> None noted in the revised version of the manuscript.

    2. Reviewer #2 (Public review):

      Summary:<br /> This manuscript describes the use of quantitative imaging approaches, that have been a key element of the labs work over the past years, to address one of the major unresolved discussions in trafficking: intra-Golgi transport. The approach used has been clearly described in the labs previous papers, and is thus clearly described. The authors clearly address the weaknesses in this manuscript, and do not overstate the conclusions drawn from the data. The only weakness not addressed is the concept of blocking COPI transport with BFA, which is a strong inhibitor and causes general disruption of the system. This is an interesting element of the paper, which I think could be improved upon by using more specific COPI inhibitors instead, although I understand that this is not necessarily straightforward.

      I commend the authors on their clear and precise presentation of this body of work, incorporating mathematical modelling with a fundamental question in cell biology. In all, I think that this is a very robust body of work, that provides a sound conclusion in support of the stable compartment model for the Golgi.

      General points:<br /> The manuscript contains a lot of background in its results sections, and the authors may wish to consider rebalancing the text: The section beginning at Line 175 is about 90% background and 10% data. Could some data currently in supplementary be included here to redress this balance, or this part combined with another?

      Minor points:<br /> Equation 2: A should be in front of the ln2. It's already resolved in equation 3, so likely only needs changing in the text

      Line 152: Why is there a lack of experimental data? High ER background and low golgi signal make it difficult to select ministacks: would be good to see examples of these images. Is 0 a relevant timepoint as cargo is still at the ER? Instead would a timepoint <5' be better demonstrate initial arrival in fast cargo, and 0' discarded?

      Table 1 Line 474: 1-3 independent replicates: is there a better way of incorporating this into the table to make it more streamlined? It would be useful to see each cargo as a mean with error. Is there a more demonstrative way to present the table, for example (but does not have to be) fastest cargo first (Tintra) as in Table 2?

      Line 264 / Fig 3B: It's unclear to me why the VHH-anti-GFP-mCherry internalisation approach was used, when the cells were expressing GFP, that could be used for imaging. Also, this introduces a question over trafficking of the VHH itself, to access the same compartments as the GFP-proteins are localised. It would be useful to describe the choice of this approach briefly in the text.

      446 Typo "internalization"

      Post-Revision

      I thank the authors for their work revising the paper in light of our comments. I am satisfied with their response, and I have no other comments.

    3. Reviewer #3 (Public review):

      The manuscript by Tie et al. provides a quantitative assessment of intra-Golgi transport of diverse cargos. Quantitative approaches using fluorescence microscopy of RUSH synchronized cargos, namely GLIM and measurement of Golgi residence time, previously developed by the author's team (publications from 20216 to 2022), are being used here.

      Most of the results have been already published by the same team in 2016, 2017, 2020 and 2021. In this manuscript, the authors have put together measurement of intra-Golgi transport kinetics and Golgi residence time of many cargos. The quantitative results are supported by a large number of Golgi mini-stacks/cells analyzed. They are discussed with regard to the intra-Golgi transport models being debated in the field, namely the cisternal maturation/progression model and the stable compartments model.

      The authors show that different cargos have distinct intra-Golgi transport kinetics and that the Golgi residence time of glycosyltransferases is high. From this and experiment using brefeldinA, the authors suggest that the rim progression model, adapted from the stable compartments model, fits with their experimental data.

      Strengths:<br /> The major strength of this manuscript is to put together many quantitative results that the authors previously obtained and to discuss them to advance our understanding of the intra-Golgi transport mechanisms.<br /> The analysis by fluorescence microscopy of intra-Golgi transport is tough and this is a tour de force of the authors even though their approach shows limitations, which are clearly stated. Their work is remarkable in regards of the numbers of Golgi markers and secretory cargos which have been analyzed.

      Weaknesses:<br /> Most of the data provided here were already published and thus accessible for the community. The tubular connections between cisternae and the diffusion/biochemical properties of cargos are not taken into account to interpret the results. Indeed, tubular connections and biochemical properties of the cargos may affect their transit through the Golgi and the kinetics with which they reach the TGN for Golgi exit.

      The use of nocodazole might affect cellular homeostasis but this is clearly stated by the authors and is acceptable as we need to perturb the system to conduct this analysis.

      The manual selection of the Golgi mini-stack being analyzed (where the cargo and the Golgi reference markers are clearly detectable ) might introduce a bias in the analysis.

    1. Reviewer #1 (Public review):

      Summary:

      This work provides structural and mechanistic insights into the disordered protein recognition process inside the endoplasmic reticulum by the inositol-requiring enzyme 1. Using state-of-the-art molecular dynamics simulation tools, the authors propose a mechanism of disordered protein recognition that reconciles contradictory findings of biochemical and structural biology experiments.

      Strengths:

      (1) All MD simulations have been carried out in triplicate, and several different folded conformations were generated using alphafold2. This provides adequate statistics to draw meaningful conclusions from the simulations.

      (2) Potential limitations of the disordered protein force fields and water models have been taken into consideration. Particularly, performing the simulation in both TIP3P and TIP4PD water models ensures that the conclusions drawn are not influenced by the force field choice.

      (3) The binding of a large number of disordered peptides was investigated, ensuring that the conclusions drawn about disordered peptide recognition are sufficiently general.

      Weaknesses:

      (1) The timescales of the peptide recognition and unbinding process are much longer than what can be sampled from unbiased simulations. Therefore, the proposed mechanism of recognition should only be considered a hypothesis based on the results presented here. For example, peptides that do not dissociate within one one-microsecond MD simulation are considered to be stable binders. However, they may not have a viable way to bind to the narrow protein cleft in the first place.

      (2) Oftentimes, representative structures sampled from MD simulation are used to draw conclusions (e.g., Figure 4 about the role of R161 mutation in binding affinity). This is not appropriate as one unbinding event being observed or not observed in a microsecond-long trajectory does not provide sufficient information about the binding strength of the free energy difference.

    2. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors investigated the interactions between IRE and unfolded peptides using all-atom molecular dynamics simulations. The interactions between a couple of unfolded peptides and IRE might shed light on the activation of the UPR.

      Strengths:

      (1) Well-written manuscript tailored for a biology audience.

      (2) State-of-the-art structural predictions and all-atom simulations.

      (3) Validation with existing experimental data

      (4) Clear schematic diagram summarizing the mechanisms learned from simulations.

      (5) Shared simulation data and code in a public repository.

      Weaknesses:

      (1) Improving presentation to include more computational details.

      (2) More quantitative analysis in addition to visual structures.

    3. Reviewer #3 (Public review):

      Summary:

      In this important work, the authors use extensive MD simulations to study how the IRE1 protein can detect unfolded peptides. Their study consolidates contradicting experimental results and offers a unique view of the different sensing models that have been proposed in the literature. Overall, it is an excellent study that is quite extensive. The research is solid, meticulous, and carefully performed, leading to convincing conclusions.

      Strengths:

      The strength of this work is the extensive and meticulous molecular dynamics simulations. The authors use and investigate different structural models, for example, carefully comparing a model based on a PDB structure with reconstructed loops with an AlphaFold 2 Multimer model. The author also investigates a wide range of different protein structural models that probe different aspects of the peptide sensing process. These solid and meticulous MD simulations allow the authors to obtain convincing conclusions concerning the peptide sensing process of the IRE1 protein.

      Weaknesses:

      A potential weakness of the study is the usage of equilibrium (unbiased) molecular dynamics simulations, so that processes and conformational changes on the microsecond time scale can be probed. Furthermore, there can be inaccuracies and biases in the description of unfolded peptides and protein segments due to the protein force fields. Here, it should be noted that the authors do acknowledge these possible limitations of their study in the conclusions.

    1. Reviewer #1 (Public review):

      Summary:

      The innate immune system serves as the first line of defense against invading pathogens. Four major immune-specific modules - the Toll pathway, the Imd pathway, melanization, and phagocytosis- play critical roles in orchestrating the immune response. Traditionally, most studies have focused on the function of individual modules in isolation. However, in recent years, it has become increasingly evident that effective immune defense requires intricate interactions among these pathways.

      Despite this growing recognition, the precise roles, timing, and interconnections of these immune modules remain poorly understood. Moreover, addressing these questions represents a major scientific undertaking.

      Strengths:

      In this manuscript, Ryckebusch et al. systematically evaluate both the individual and combined contributions of these four immune modules to host defense against a range of pathogens. Their findings significantly enhance our understanding of the layered architecture of innate immunity.

      Weaknesses:

      While I have no critical concerns regarding the study, I do have several suggestions to offer that may help further strengthen the manuscript. These include:

      (1) Have the authors validated the efficiency of the mutants used in this study? It would be helpful to include supporting data or references confirming that the mutations effectively disrupted the intended immune pathways.

      (2) Given the extensive use of double, triple, and quadruple mutants, a more detailed description of the mutant construction process is warranted.

    2. Reviewer #2 (Public review):

      Summary:

      In this work, the authors take a holistic view of Drosophila immunity by selecting four major components of fly immunity often studied separately (Toll signaling, Imd signaling, phagocytosis, and melanization), and studying their combinatory effects on the efficiency of the immune response. They achieve this by using fly lines mutant for one of these components, or modules, as well as for a combination of them, and testing the survival of these flies upon infection with a plethora of pathogens (bacterial, viral, and fungal).

      Strengths:

      It is clear that this manuscript has required a large amount of hands-on work, considering the number of pathogens, mutations, and timepoints tested. In my opinion, this work is a very welcome addition to the literature on fly immune responses, which obviously do not occur in one type of response at a time, but in parallel, subsequently, and/or are interconnected. I find that the major strength of this work is the overall concept, which is made possible by the mutations designed to target the specific immune function of each module (at least seemingly) without major effects on other functions. I believe that the combinatory mutants will be of use for the fly community and enable further studies of the interplay of these components of immune response in various settings.

      To control for the effects arising from the genetic variation other than the intended mutations, the mutants have been backcrossed into a widely used, isogenized Drosophila strain called w1118. Therefore, the differences accounted for by the genotype are controlled.

      I also appreciate that the authors have investigated the two possible ways of dealing with an infection: tolerance and resistance, and how the modules play into those.

      Weaknesses:

      While controlling for the background effects is vital, the w1118 background is problematic (an issue not limited to this manuscript) because of the wide effects of the white mutation on several phenotypes (also other than eye color/eyesight). It is a possibility that the mutation influences the functionality of the immune response components, for example, via effects of the faulty tryptophan handling on the metabolism of the animal.

      I acknowledge that it is not reasonable to ask for data in different backgrounds better representing a "wild type" fly (however, that is defined is another question), but I think this matter should be brought up and discussed.

      The whole study has been conducted on male flies. Immune responses show quite extensive sex-specific variation across a variety of species studied, also in the fly. But the reasons for this variation are not fully understood. Therefore, I suggest that the authors conduct a subset of experiments on female flies to see if the findings apply to both sexes, especially the infection-specificity of the module combinations.

    1. Reviewer #1 (Public review):

      Summary:

      This study addresses a critical gap in veterinary diagnostics by developing a CRISPR-based diagnostic toolbox (SHERLOCK4AAT) for detecting animal African trypanosomosis. It describes the development and field deployment of SHERLOCK4AAT, a CRISPR-Cas13-based diagnostic toolbox for the eco-epidemiological surveillance of animal African trypanosomosis (AAT) in West Africa.

      The authors successfully created and validated species-specific assays for multiple trypanosomes, including T. congolense, T. vivax, T. theileri, T. simiae, and T. suis, alongside pan-trypanosomatid and pan-Trypanozoon assays. The field validation in pigs from Guinea and Côte d'Ivoire revealed high trypanosome prevalence (62.7%), frequent co-infections, and importantly identified T. b. gambiense in one animal at each site, suggesting pigs may serve as potential reservoirs for this human-infective parasite.

      A major strength of the study lies in its methodological innovation. By adapting SHERLOCK to target both conserved and species-discriminating sequences, the authors achieved high sensitivity and specificity in detecting Trypanosoma species. Their use of dried blood spots, validated thresholds through ROC analyses, and statistical robustness (e.g., Bayesian latent class modeling) provides a strong foundation for their conclusions.

      The results are significant: over 60% of pigs tested positive for at least one trypanosome species, with co-infections observed frequently and T. b. gambiense detected in pigs at both sites. These findings have direct implications for the role of animal reservoirs in human disease transmission and underscore the value of pigs as sentinel hosts in gHAT elimination efforts.

      The limitations are well acknowledged, particularly the suboptimal sensitivity of the T. vivax assay and the reliance on synthetic controls for T. suis and T. simiae. However, these limitations do not undermine the overall conclusions, and the paper provides a clear roadmap for further assay refinement and implementation.

      This study offers a timely, impactful, and well-substantiated contribution to the field. The SHERLOCK4AAT toolbox holds promise for improving AAT diagnostics in resource-limited settings and advancing One Health surveillance frameworks.

      Strengths:

      (1) The adaptation of SHERLOCK technology for AAT represents a significant technical advancement, offering higher sensitivity than traditional parasitological methods and the ability to detect multiple species simultaneously.

      (2) Rigorously performed with validation using appropriate controls, ROC curve analyses, and Bayesian latent class modelling, establishing clear analytical sensitivity and specificity for most assays.

      (3) Testing 424 pig samples across two countries provides robust evidence of the tool's utility and reveals important epidemiological insights about trypanosome diversity and prevalence.

      (4) The identification of T. b. gambiense in pigs at both sites has significant implications for HAT elimination strategies and highlights the need for integrated One Health approaches.

      (5) The use of dried blood spots and RNA detection for active infections makes the approach practical for field surveillance in resource-limited settings.

      Weaknesses:

      (1) The manuscript would benefit from more detailed discussion of practical considerations such as cost, equipment requirements, and training needs for implementing SHERLOCK in endemic areas and rural settings which would improve applicability.

      (2) Limited discussion of pig selection criteria: More justification for choosing pigs as sentinel animals and discussion of potential limitations of this approach would strengthen the manuscript.

      (3) More details on why certain genes were targeted would strengthen the methods.

      (4) Table formatting could be improved for readability.

      (5) Some figures are complex and would benefit from additional explanations in the legends.

    2. Reviewer #2 (Public review):

      Summary:

      The manuscript is important due to the significance of the findings. The strength of evidence is convincing.

      Strengths:

      (1) Using a Novel SHERLOCK4AAT toolkit for diagnosis.

      (2) Identification of various sub-species of Trypanosomes.

      (3) Differentiating the animal subspecies from the human one.

      Weaknesses:

      (1) The title is too long, and the use of definite articles should be reduced in the title.

      (2) The route of blood sample collection in the animals should be well defined and explained.

    3. Reviewer #3 (Public review):

      Summary:

      The study adapts CRISPR-based detection toolkit (SHERLOCK assay) using conserved and species-specific targets for the detection of some members of the Trypanosomatidae family of veterinary importance and species-specific assays to differentiate between the six most common animal trypanosome species responsible for AAT (SHERLOCK4AAT). The assays were able to discriminate between Trypanozoon (T. b. brucei, T. evansi, and T. equiperdum), T. congolense (Savanah, Forest Kilifi, and Dzanga sangha), T. vivax, T. theileri, T. simiae, and T. suis. The design of both broad and species-specific assays was based primarily on sequences of the 18S rRNA, GAPDH (Glyceraldehyde-3-phosphate dehydrogenase), and invariant flagellum antigen (IFX) genes for species identification. Most importantly, the authors showed varying limits of detection for the different SHERLOCK assays, which is somewhat comparable to PCR-derived molecular techniques currently used for detecting animal trypanosomes, even though some of these methodologies have used other primers that target genes such as ITS1 and 7SL sRNA.

      The data presented in the study are particularly useful and of significant interest for the diagnosis of AAT in affected areas.

      Strengths:

      The assays convincingly allow for the analysis and detection of most trypanosomes in AAT.

      Weaknesses:

      Inability for the assay to distinguish T. b. brucei, T. evansi, and T. equiperdum using the 18S rRNA gene, as well as the IFX gene, not achieving the sensitivity requirements for detection of T. vivax. Both T. brucei brucei and T. vivax are the most predominant infective species in animals (in addition to T. congolense), therefore, a reliable assay should be able to convincingly detect these to allow for proper use of the diagnostic assay.

    1. Reviewer #1 (Public review):

      Summary:

      The research investigates the frequency-dependent effects of transcutaneous tibial nerve stimulation (TTNS) on bladder function in healthy humans and via a computational model. The authors report that low-frequency (1 Hz) TTNS accelerates the urge to void, while high-frequency (20 Hz) TTNS delays it, corroborated by a computational model suggesting brainstem-mediated mechanisms. The work bridges experimental and theoretical approaches to propose a novel framework for TTNS applications in urinary retention.

      Strengths:

      (1) The integration of human experiments and computational modeling is a major strength. The model successfully replicates bladder dynamics and provides mechanistic insights into frequency-dependent effects.

      (2) Identifies potential therapeutic applications for urinary retention, a condition with limited non-invasive treatments.

      (3) Figures are clear and illustrative, and supplementary materials provide essential methodological depth.

      (4) Controlled experimental design (eg., single-blinded, fluid/caffeine restrictions, etc), detailed computational model parameters and validation against animal data, transparency in data exclusion criteria and statistical adjustments.

      Weaknesses:

      (1) The study uses healthy participants; extrapolation to clinical populations (e.g., urinary retention patients) requires validation.

      (2) The simulated bladder capacity (100-150 mL) is lower than physiological ranges (300-400 mL). While the authors note this, the impact on model validity should be further addressed.

      (3) The model omits nociceptive afferents, limiting its applicability to pathological conditions like overactive bladder.

      (4) The lack of significant differences in urge intensity between groups (despite timing differences) warrants deeper discussion. Is the primary effect on efferent activity (as suggested) rather than sensory perception?

      (5) One of the highlights of this study is the identification of the effect of low-frequency (1 Hz) tibial nerve stimulation (TNS) on facilitating bladder contraction. Although the authors have clarified this effect in healthy participants, it would strengthen the conclusion if a UAB animal model (e.g., PMCID: PMC7927909, PMC8163611, PMC7847056, PMC8799394) were used to evaluate the same effect.

    2. Reviewer #2 (Public review):

      Summary:

      Tibial nerve (electrical) stimulation (TNS) has emerged over the past 15 years as a non-invasive method to treat bladder overactivity, but interestingly, new animal work has suggested that TNS could actually be used to excite the bladder when appropriately tuning the stimulation frequency, effectively inverting its effect, perhaps opening the door to treat different conditions (e.g., UAB). The present study tests how healthy people respond to low and high frequency TNS, with the authors showing that they can substantially delay people's first sensation of bladder fullness with high frequencies (20Hz, shown many times before) but also that they can slightly hasten people's first sensation with low frequencies (1Hz, new result in humans). Moreover, the authors develop a computational model of interconnected conductance-based simulated neurons arranged in a physiologically plausible circuit that reproduces some aspects of the frequency-dependent effects of TNS. Their simulations suggest that we might expect low-frequency TNS to also increase the duration of bladder contractions in humans. The study highlights a potential new research direction, optimizing TNS stimulation parameters to increase basal bladder excitability.

      Strengths:

      The main strength of the work is to call attention to a new possibility of inverting the effect of TNS in humans by manipulating stimulation frequency, opening new indications for the therapy. This is highly relevant because of the recent popularity of TNS and its non-invasiveness, which lends itself to rapid testing and evaluation for new conditions and a high willingness to adopt. The authors convincingly demonstrate a modest excitatory effect on bladder sensation with low-frequency TNS, which clearly warrants further investigation.

      The high-level design of the hypotheses, concepts, and experiments is clearly articulated in both the methods and in particularly clear diagrams, letting the reader focus their attention on the most important findings.

      It is rare to develop a new computational model of the lower urinary tract at a systems level, and even more so for it to incorporate circuits in the spinal cord and brainstem centers, and this work undoubtedly advances the field's ability to engineer such systems. Further, because the model is comprised of linked conductance-based point-neurons, it is an excellent tool to investigate how an arguably plausible wiring diagram for neural control of the LUT could result in stimulation frequency-dependent effects on pelvic efferents. It is a proof of concept demonstrating how their mechanistic hypothesis of TNS could be implemented neurophysiologically by the nervous system.

      Weaknesses:

      The main drawback of the work is the frequent overinterpretation of the results. The human study and computational model are both proof-of-principle studies because the experimental effect size and sample size are modest, and the computational model is poorly validated and does not generate physiologically typical cystometric responses in simulations that are designed to recapitulate nominal LUT behavior.

      Despite the stated caveats about the small effect in the human study, it should be emphasized throughout that this result is most reasonably interpreted as showing the possibility that TNS can have a low-frequency excitatory effect that merits follow-up, rather than a conclusive demonstration. The effect size is small (as the authors note) and should be placed in context with some minimally clinically important difference, if possible. The result is statistically significant, but even this may be subject to revision due to the small sample and the effect of post-hoc outlier removal and data analysis choices.

      Given the apparent mismatch between the model and the cystometric behavior at the systems level in the "normal" case (e.g., low capacity, low voiding efficiency, omitted pressure profiles, frequency, etc.) and the absence of quantitative model validation (e.g., it was not compared directly with any experimental data from human urodynamics or rodent cystometry, beyond the initial fit to the neural data, no sensitivity analyses were performed, no goodness of fit computed, etc.) the discussion should be much more circumspect about interpreting the results at a systems level and should probably contain a paragraph explicitly detailing the limitations of the model. The subsequent interpretation should focus narrowly on the neural circuitry, rather than things like contraction duration, where the model is at its strongest. As written, the authors over-interpret what the in silico study can reasonably be used to infer about LUT function.

      More justification is needed for why the contraction duration of the model is the central focus of analysis, when it connects only tentatively to the human study results, which focus on urgency. While not necessarily incorrect, a clearer link or motivation should be offered for how this informs our understanding of frequency-dependent TNS afferent or efferent inhibition during filling (which was the focus of the human studies and the abstract). In other words, why doesn't the model reproduce the 1Hz excitation effect of expediting void onset (or urgency in the human study), and why is it justified to look at contraction duration as a surrogate measure?

      The authors claim that "voiding behavior occurred earlier [at 1Hz stim in the model]", pointing to Figure 6A as evidence, but this panel appears to show a single example model run where 1Hz voiding occurs only ~1s earlier (display makes this very hard to estimate). This is insufficient evidence to support the claim. Later, it is stated that "TNS did not ... void much earlier". The claims should be made compatible, and all such claims should have reasonable supporting evidence.

      There are a number of reporting concerns that can be easily addressed:

      (1) Human Study:

      (a) To interpret the human study analysis, a fuller description of the "optional 10m inute extension" is necessary. How were participants presented with this option, how was blinding preserved, what fraction of participants accepted, and did phase 1 results influence their decisions to continue?

      (b) For reproducibility, details about the TNS parameters should be articulated, such as the method of determining "motor thresholds" (unless this is synonymous with "urge to urinate"), the shape of the stimulation pulses (e.g., biphasic, charge balanced), typical applied current, etc.

      (2) The Computational Model

      (a) The code availability statement for this type of work is inadequate. The model used for simulations in this work, as well as the code used to initialize (and randomize synaptic connections), needs to be hosted publicly because i) a model this intricate is extremely hard to reproduce/verify without code, ii) simulations are an essential piece of the argument, iii) hosting code requires very little overhead. Although there is an appropriate level of detail in the model description, it would not be possible to reproduce the model in any reasonable amount of time (or at all) because of the implementation-level details that are, understandably, omitted from the methods (e.g., what is a "unit", what 'exactly' do the connections in the PMC and PAG diagrams relate to, what were the final parameters used for all conductances, which parameters were "matched" to the original papers and which were not, etc.).

      b) Critical cystometric/urodynamic values that are typically analyzed to assess healthy LUT function are detrusor pressure (timeseries) and/or post-void residual or voiding efficiency (scalars). These should be included to verify that the model is representative of the "normal" case. This is especially important because the model's "normal" behavior appears to have extremely low voiding efficiency (Figure 6A).

    1. Reviewer #2 (Public review):

      Summary:

      The paper addresses how the S. coelicolor contractile injection system (CISSc) interacts with the membrane, how it contracts and fires, and how it affects both cell viability and differentiation, which it has been implicated to do in previous work from this group and others. The Streptomyces CIS systems have been enigmatic in the sense that they are free-floating in the cytoplasm in an extended form and are seen in contracted conformation (i.e. after having been triggered) mainly in dead and partially lysed cells, suggesting involvement in some kind of regulated cell death. So, how do the structure and function of the CISSc system compare to other types of CIS from other bacteria and phages, does it interact with the cytoplasmic membrane, how does it do that, and is the membrane interaction involved in the suggested role in stress-induced, regulated cell death? The authors address these questions by investigating the role of a membrane protein, CisA, that is encoded by a gene in the CIS gene cluster in S. coelicolor. Further, they show for the first time the structure of the assembled CISSc, purified from the cytoplasm of S. coelicolor, analysed using single-particle cryo-electron microscopy.

      Strengths:

      The beautiful visualisation of the CIS system both by cryo-electron tomography of intact bacterial cells and by single-particle electron microscopy of purified CIS assemblies are clearly the strengths of the paper, both in terms of methods and results. Further, the paper provides genetic evidence that the membrane protein CisA is required for the contraction of the CISSc assemblies that are seen in partially lysed or ghost cells of the wild type. The conclusion that CisA is a transmembrane protein and the inferred membrane topology are well supported by experimental data. The cryo-EM data suggest that CisA is not a stable part of the extended form of the CISSc assemblies. These findings raise the question of what CisA does. Interestingly, Alphafold modelling suggests that the cytoplasmic part of CisA interacts directly with the base plate protein Cis11.

      Weaknesses:

      The investigations of the role of CisA in function, membrane interaction, and triggering of contraction of CIS assemblies are key parts of the paper and are highlighted in the title. However, the data presented to answer these questions are partially incomplete and have some limitations.

      As an example, although the modelling that suggests interaction between CisA and the base plate protein Cis11 appears compelling, the interaction has not yet been possible to test and verify experimentally. Further, it remains unclear whether or how CisA recruits the CISSc system to the membrane. Overall, the mechanism by which CisA may act on CISSc and cause firing remains largely unclear.

      Further, the paper does not provide new insights into the role of the CISSc system in growth or developmental biology of streptomycetes. The assay of how CisA affects the function of the system involves monitoring stress-induced loss of viability based on loss of cytoplasmic GFP signal, as described in a previous paper. The assay looks only at single hyphal fragments released from mycelial networks or mycelial pellets, and it could have been interesting to observe effects also under other growth conditions. Similarly, the effect on the developmental life cycle is limited to showing accelerated sporulation in the CisA mutant, similar to what was previously shown for mutants lacking other parts of the system. The paper shows that CisA is needed for the observed phenotypic effects of the CISSc system, but the overall biological roles of the CISSc and CisA remain elusive.

      Concluding remarks:

      This paper provides new insights into the structure of the unusual subclass of bacterial contractile injection systems (CIS) that is constituted by the cytoplasmically located systems found in streptomycetes. Importantly, the work also describes a membrane protein, CisA, that likely links the CISSc to the cytoplasmic membrane and is required for its function and likely its triggering. The paper will be of large interest in the field, and it will likely be the basis for further and more mechanistic and functional investigations of the Streptomyces CIS systems.

    2. Reviewer #3 (Public review):

      Summary

      In this work, Casu et al. have reported the characterization of a previously uncharacterized membrane protein CisA encoded in a non-canonical contractile injection system of Streptomyces coelicolor, CISSc, which is a cytosolic CISs significantly distinct from both intracellular membrane-anchored T6SSs and extracellular CISs. The authors have presented the first high-resolution structure of the extended CISSc structure. It revealed important structural insights of the extended state of this non-canonical CIS.

      To further explore how CISSc interacted with cytoplasmic membrane, they further set out to investigate a membrane protein CisA encoded in the CISSc cluster and previously hypothesized to be the membrane adaptor for CISSc; however, the structure revealed that it was not associated with CISSc. Using a fluorescence microscope and cell fractionation assay, the authors verified that CisA is indeed a membrane-associated protein. They further determined experimentally that CisA had a cytosolic N-terminal domain and a periplasmic C-terminus. The functional analysis of cisA mutant revealed that it is not required for CISSc assembly but is essential for the contraction, as a result, the deletion significantly affects CISSc-mediated cell death upon stress, timely differentiation, as well as secondary metabolite production. Although the work did not resolve the mechanistic detail how CisA interacts with CISSc structure, they used in-silico prediction of protein-protein interactions between monomeric CisA and CISSc components using Alphafold2-Multimer, which identified baseplate protein Cis11 as a potential interaction partner. Such prediction sets out a strong basis for future investigations to explore the molecular mechanistic details how CisA mediates the contraction via interactions with the CIS structural components such as Cis11. Using AlphaFold3, the authors also estimated the oligomerization state of CisA, which can be present as a pentamer. Authors further suggested that such oligomerization is mediated by the interaction of C-terminal solute-binding like domain.

      In general, the work provides solid data and a strong foundation for future investigation toward understanding the mechanism of CISSc contraction, and potentially, the relation between the membrane association of CISSc, the sheath contraction and the cell death.

      Major Strength:

      The paper is well-structured, and the conclusion of the study is supported by solid data and careful data interpretation were presented. The authors provided strong evidence on (1) the high-resolution structure of extended CISSc determined by cryo-EM, and the subsequent comparison with known eCIS structures, which sheds light on both its similarity and different features from other subtypes of eCISs in detail; (2) the topological features of CisA using fluorescence microscopic analysis, cell fractionation and PhoA-LacZα reporter assays, (3) functions of CisA in CISSc-mediated cell death and secondary metabolite production, likely via the regulation of sheath contraction, (4) structural prediction of the oligomerization state of CisA and potential interaction partners of CIS structure.

      Weakness:

      Due to technical limitations, authors are not able to experimentally demonstrate the direct interaction between CisA with baseplate complex of CISSc, since they could not express cisA in E. coli due to its potential toxicity. Therefore, there is a lack of biochemical analysis of direct interaction between CisA and baseplate wedge. However, they have provided solid AlphaFold2-multimer prediction data and identified baseplate protein Cis11 as a potential interaction partner. Such predictions will guide future work towards biochemical analysis to verify such interaction.

      While there is no direct evidence showing that CisA is responsible for tethering CISSc to the membrane upon stress, and the spatial and temporal relation between membrane association and contraction remains unclear, I recognize that this is above the scope of the current work, so I would expect further investigation to address these questions in future.

      Conclusion

      Overall, the work provides a valuable contribution to our understanding on the structure of a much less understood subtype of CISs, which is unique compared to both membrane-anchored T6SSs and host-membrane targeting eCISs. Authors have successfully demonstrated the role of CisA in the contraction of CISSc, along with solid and detailed analysis of the contraction state of the particles with or without CisA using cryo-ET. Using structural modeling, authors also identified the potential oligomerization state and possible interaction partner within the CIS particle.

      Importantly, the work serves as a strong foundation to further investigate how the sheath contraction works here. The work contributes to expanding our understanding of the diverse CIS superfamilies, with significant novelty.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript investigates lipid scrambling mechanisms across TMEM16 family members using coarse-grained molecular dynamics (MD) simulations. While the study presents a statistically rigorous analysis of lipid scrambling events across multiple structures and conformations, several critical issues undermine its novelty, impact, and alignment with experimental observations.

      Review on revised version:

      The referee notes that the authors, in their response letter, have concurred with most of the concerns originally raised. Specifically, the authors acknowledge the referee's view that the manuscript primarily confirms previously reported findings and does not present a significantly novel advance, particularly regarding the central observation of groove-mediated lipid scrambling in the open Ca²⁺-bound TMEM16 structures. The authors have also acknowledged the potential discrepancies with existing experimental studies and have addressed this point candidly through additional discussion. Furthermore, the referee appreciates that the authors have echoed the concern regarding the limited statistical robustness of the observed scrambling events.<br /> Given that the authors have essentially affirmed the key points raised in the initial review, the referee believes that these acknowledgements reinforce the basis of the original assessment. Therefore, the referee maintains the original opinion that, despite its technical merits and useful discussion made in the revised version, the manuscript does not offer sufficient novelty or mechanistic depth.

    2. Reviewer #2 (Public review):

      Summary:

      Stephens et al. present a comprehensive study of TMEM16-members via coarse-grained MD simulations (CGMD). They particularly focus on the scramblase ability of these proteins and aim to characterize the "energetics of scrambling". Through their simulations, the authors interestingly relate protein conformational states to membrane's thickness and link those to the scrambling ability of TMEM members, measured as the trespassing tendency of lipids across leaflets. They validate their simulation with a direct qualitative comparison with Cryo-EM maps.

      Strengths:

      The study demonstrates an efficient use of CGMD simulations to explore lipid scrambling across various TMEM16 family members. By leveraging this approach, the authors are able to bypass some of the sampling limitations inherent in all-atom simulations, providing a more comprehensive and high-throughput analysis of lipid scrambling. Their comparison of different protein conformations, including open and closed groove states, presents a detailed exploration of how structural features influence scrambling activity, adding significant value to the field. A key contribution of this study is the finding that groove dilation plays a central role in lipid scrambling. The authors observe that for scrambling-competent TMEM16 structures, there is substantial membrane thinning and groove widening. The open Ca2+-bound nhTMEM16 structure (PDB ID 4WIS) was identified as the fastest scrambler in their simulations, with scrambling rates as high as 24.4 {plus minus} 5.2 events per μs. This structure also shows significant membrane thinning (up to 18 Å), which supports the hypothesis that groove dilation lowers the energetic barrier for lipid translocation, facilitating scrambling.

      The study also establishes a correlation between structural features and scrambling competence, though analyses often lack statistical robustness and quantitative comparisons. The simulations differentiate between open and closed conformations of TMEM16 structures, with open-groove structures exhibiting increased scrambling activity, while closed-groove structures do not. This finding aligns with previous research suggesting that the structural dynamics of the groove are critical for scrambling. Furthermore, the authors explore how the physical dimensions of the groove qualitatively correlate with observed scrambling rates. For example, TMEM16K induces increased membrane thinning in its open form, suggesting that membrane properties, along with structural features, play a role in modulating scrambling activity.

      Another significant finding is the concept of "out-of-the-groove" scrambling, where lipid translocation occurs outside the protein's groove. This observation introduces the possibility of alternate scrambling mechanisms that do not follow the traditional "credit-card model" of groove-mediated lipid scrambling. In their simulations, the authors note that these out-of-the-groove events predominantly occur at the dimer interface between TM3 and TM10, especially in mammalian TMEM16 structures. While these events were not observed in fungal TMEM16s, they may provide insight into Ca2+-independent scrambling mechanisms, as they do not require groove opening.

      Weaknesses:

      A significant challenge of the study is the discrepancy between the scrambling rates observed in CGMD simulations and those reported experimentally. Despite the authors' claim that the rates are in line experimentally, the observed differences can mean large energetic discrepancies in describing scrambling (larger than 1kT barrier in reality). For instance, the authors report scrambling rates of 10.7 events per μs for TMEM16F and 24.4 events per μs for nhTMEM16, which are several orders of magnitude faster than experimental rates. While the authors suggest that this discrepancy could be due to the Martini 3 force field's faster diffusion dynamics, this explanation does not fully account for the large difference in rates. A more thorough discussion on how the choice of force field and simulation parameters influence the results, and how these discrepancies can be reconciled with experimental data, would strengthen the conclusions. Likewise, rate calculations in the study are based on 10 μs simulations, while experimental scrambling rates occur over seconds. This timescale discrepancy limits the study's accuracy, as the simulations may not capture rare or slow scrambling events that are observed experimentally and therefore might underestimate the kinetics of scrambling. It's however, important to recognize that it's hard (borderline unachievable) to pinpoint reasonable kinetics for systems like this using the currently available computational power and force field accuracy. The faster diffusion in simulations may lead to overestimated scrambling rates, making the simulation results less comparable to real-world observations. Thus, I would therefore read the findings qualitatively rather than quantitatively. An interesting observation is the asymmetry observed in the scrambling rates of the two monomers. Since MARTINI is known to be limited in correctly sampling protein dynamics, the authors, in order to preserve the fold, have applied a strong (500 kJ mol-1 nm-2) elastic network. However, I am wondering how the ENM applies across the dimer and if any asymmetry can be noticed in the application of restraints for each monomer and at the dimer interface. How can this have potentially biased the asymmetry in the scrambling rates observed between the monomers? Is this artificially obtained from restraining the initial structure, or is the asymmetry somehow gatekeeping the scrambling mechanism to occur majorly across a single monomer? Answering this question would have far-reaching implications to better describe the mechanism of scrambling.

      Notably, the manuscript does not explore the impact of membrane composition on scrambling rates. While the authors use a specific lipid composition (DOPC) in their simulations, they acknowledge that membrane composition can influence scrambling activity. However, the study does not explore how different lipids or membrane environments or varying membrane curvature and tension, could alter scrambling behaviour. I appreciate that this might have been beyond the scope of this particular paper and the authors plan to further chase these questions, as this work sets a strong protocol for this study. Contextualizing scrambling in the context of membrane composition is particularly relevant since the authors note that TMEM16K's scrambling rate increases tenfold in thinner membranes, suggesting that lipid-specific or membrane-thickness-dependent effects could play a role.

      Comments on revisions:

      I have carefully reviewed the replies of the author, which address the points I raised and improved the manuscript by making the changes outlined in their response. Particularly, I am pleased to see that the authors report ensemble averages in Figure 1-supplement 1 and add relevant information in a newly created table. I welcome the refinement of the discussion towards a cautionary approach in describing quantitatively the findings of experiments and computations for what concerns scrambling rates. I still feel that proper statistical analysis to compare the distributions in Figure 3-figure supplement 6 would have made the points claimed even stronger, but - at the same time - I do see the points of the authors in commenting the differences between these distributions more qualitatively. Overall, I support the publication of this manuscript, it has been a pleasure to read it.

    3. Reviewer #3 (Public review):

      Summary:

      The paper investigates the TMEM16 family of membrane proteins, which play roles in lipid scrambling and ion transport. A total of 27 experimental structures from five TMEM16 family members were analyzed, including mammalian and fungal homologs (e.g., TMEM16A, TMEM16F, TMEM16K, nhTMEM16, afTMEM16). The identified structures were in both Ca²⁺-bound (open) and Ca²⁺-free (closed) states to compare conformations and were preprocessed (e.g., modeling missing loops) and equilibrated. Coarse-grain simulations were performed in DOPC membranes for 10 microseconds to capture the scrambling events. These events were identified by tracking lipids transitioning between the two membrane leaflets and they analysed correlation between scrambling rates, in addition, structural properties such as groove dilation and membrane thinning were calculated. They report 700 scrambling events across structures and the figure 2 elaborates on how open structures show higher activity, also as expected. The authors also address how structures may require open groove, this and other mechanisms around scrambling is a bit controversial in the field.

      Strengths:

      The strength of this study emerges from comparative analysis of multiple structural starting points and understand global/local motions of the protein with respect to lipid movement. Although the protein is well-studied, both experimentally and computationally, the understanding of conformational events in different family members, especially membrane thickness less compared to fungal scramblases offers good insights.

      Weaknesses:

      The weakness of the work is to fully reconcile with experimental evidence of Ca²⁺-independent scrambling rates observed in prior studies, but this part is also challenging using coarse-grain molecular simulations. Previous reports have identified lipid crossing, packing defects and other associated events, so it is difficult to place this paper in that context. However, the absence of validation leaves certain claims, like alternative scrambling pathways, speculative.

    1. Reviewer #1 (Public review):

      Summary:

      Meteorin proteins were initially described as secreted neurotrophic factors. In this manuscript, Eggeler et al. demonstrate a novel role for Meteorins in establish left-right axis formation in the zebrafish embryo. The authors generated null mutations in each of the three zebrafish meteorin genes - metrn, metrnla, and metrnlab. Triple mutant embryos displayed phenotypes strongly associated with left-right defects such as heart looping and visceral organ placement, and disrupted expression of Nodal-responsive genes, as did single mutants for metrn and metrnla. The authors then go on to demonstrate that these defects in left-right asymmetry are likely to due to defects in Kupffer's Vesicle and the progenitor dorseal forerunner cells including impaired lumen formation and reduced fluid flow, reduced clustering among DFCs, impaired DFC migration, mislocalization of apical proteins ZO-1 and aPKC, and detachment of DFCs from the EVL. Notably, the authors found that expression of marker genes sox32 and sox17 were not affected, suggesting Meteorins are required for DFC/KV morphogenesis but not necessarily fate specification. Finally, the authors show genetic interaction between Meteorins and integrin receptors, which were previously implicated in left-right patterning. In a supplemental figure, the manuscript also presents data showing expression of meteorin genes around the chick Hensen's node, suggesting that the left-right patterning functions may be conserved among vertebrates.

      Strengths:

      Strengths of this study include the generation of a triple mutant line that targets all known zebrafish meteorin family members. The experiments presented in this study were rigorous especially with respect to quantification and statistical analysis.

      Weaknesses:

      Although the authors convincingly demonstrate a role for Meteorins in zebrafish left-right patterning, data supporting a conserved role in other vertebrates is compelling but limited to one supplemental figure. This aspect would be interesting to follow up in future studies.

      Comments on revisions:

      I thank the authors for their thoughtful responses to the reviewers. They have adequately addressed all of my concerns.

    2. Reviewer #1 (Public review):

      Summary:

      Meteorin proteins were initially described as secreted neurotrophic factors. In this manuscript, Eggeler et al. demonstrate a novel role for Meteorins in establish left-right axis formation in the zebrafish embryo. The authors generated null mutations in each of the three zebrafish meteorin genes - metrn, metrnla, and metrnlab. Triple mutant embryos displayed phenotypes strongly associated with left-right defects such as heart looping and visceral organ placement, and disrupted expression of Nodal-responsive genes, as did single mutants for metrn and metrnla. The authors then go on to demonstrate that these defects in left-right asymmetry are likely to due to defects in Kupffer's Vesicle and the progenitor dorseal forerunner cells including impaired lumen formation and reduced fluid flow, reduced clustering among DFCs, impaired DFC migration, mislocalization of apical proteins ZO-1 and aPKC, and detachment of DFCs from the EVL. Notably, the authors found that expression of marker genes sox32 and sox17 were not affected, suggesting Meteorins are required for DFC/KV morphogenesis but not necessarily fate specification. Finally, the authors show genetic interaction between Meteorins and integrin receptors, which were previously implicated in left-right patterning. In a supplemental figure, the manuscript also presents data showing expression of meteorin genes around the chick Hensen's node, suggesting that the left-right patterning functions may be conserved among vertebrates.

      Strengths:

      Strengths of this study include the generation of a triple mutant line that targets all known zebrafish meteorin family members. The experiments presented in this study were rigorous especially with respect to quantification and statistical analysis.

      Weaknesses:

      Although the authors convincingly demonstrate a role for Meteorins in zebrafish left-right patterning, data supporting a conserved role in other vertebrates is compelling but limited to one supplemental figure. This aspect would be interesting to follow up in future studies.

      Comments on revisions:

      I thank the authors for their thoughtful responses to the reviewers. They have adequately addressed all of my concerns.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript investigates genes that escape X-Chromosome Inactivation (XCI) across human tissues, using females that exhibit skewed or non-random XCI. The authors identified 2 female individuals with skewed XCI in the GTex database, in addition to the 1 female skewed sample in this database that has been described in a previous publication (Ref.16). The authors also determined the genes which escape XCI for 380 X-linked genes across 30 different tissues.

      Strengths:

      The novelty of this manuscript is that the authors have identified the XCI expression status for a total of 380 genes across 30 different human tissues, and also discovered the XCI status (escape, variable escape, or silenced) for 198 X-linked genes, whose status was previously not determined. This report is a good resource for the field of XCI, and would benefit from additional analyses and clarification of their comparisons of XCI status.

    2. Reviewer #2 (Public review):

      Summary:

      Gylemo et al. present a manuscript focused on identifying the X-inactivation or X-inactivation escape status for 380 genes across 30 normal human tissues. X-inactivation status of X-linked genes across tissues is important for understanding sex-specific differences in X-linked gene expression and therefore traits, and the likely effect of X-linked pathogenic variants in females. These new data are significant as they double the number of genes that have been classified in the human, and double the number of tissues studied previously.

      Strengths:

      The strengths of this work are that they analyse 3 individuals from the GTex dataset (2 newly identified, 1 previously identified and published) that have highly/ completely skewed X inactivation, which allows the study of escape from X inactivation in bulk RNA-sequencing. The number of individuals and breadth of tissues analysed adds significantly to both the number of genes that have been classified and the weight of evidence for their claims. The additional 198 genes that have been classified and the reclassification of genes that previously had only limited support for their status is useful for the field.

      In analysing the data they find that tissue-specific escape from X inactivation appears relatively rare. Rather, if genes escape, even variably, it tends to occur across tissues. Similarly if a gene is inactivated, it is stable across tissues.

      Comments on revised version:

      The authors have answered all of my queries. While they have not been able to pinpoint the genetic cause of the highly skewed XCI cases in their cohort, I agree this is beyond the scope of this study. I have no further requests.

    3. Reviewer #3 (Public review):

      Summary:

      Nestor and colleagues identify genes escaping X chromosome inactivation (XCI) in rare individuals with non-mosaic XCI (nmXCI) whose tissue-specific RNA-seq datasets were obtained from the GTEX database. Because XCI is non-mosaic, read counts representing a second allele are tested for statistical significant escape, in this case > 2.5% of active X expression. Whereas a prior GTEX analysis found only one nmXCI female, this study finds two additional donors in GTEX, therefore expanding the number of assessed X-linked genes to 380. Although this is fewer than half of X-linked genes, the study demonstrates that although rare, nmXCI females are represented in RNA-seq databases such as GTEX. Therefore this analytical approach is worthwhile pursuing in other (larger) databases as well, to provide deeper insight into escape from XCI which is relevant to X-linked diseases and sex differences.

      Strengths:

      The analysis is well-documented, straight-forward and valuable. The supplementary tables are useful, and the claims in the main text well-supported.

      Weaknesses:

      There are very few, except that this escape catalogue is limited to 3 donors, based on a single (representative) tissue screen in 285 female donors, mostly using muscle samples. However, if only pituitary samples had been screened, nmXCI-1 would have been missed. Additional donors in the 285 representative samples cross a lower threshold of AE = 0.4. It would be worthwhile to query all tissues of the 285 donors to discover more nmXCI cases, as currently fewer than half of X-linked genes received a call using this very worthwhile approach.

      Comments on revised version:

      The authors incorporated some textual changes, but deferred any new analysis, or expansion from these two new skewed donors to include more individuals/tissues, or going more in depth for individual genes to future manuscripts. They appear to have that option at eLife.

    4. Reviewer #4 (Public review):

      Summary:

      This study by Gylemo et al. investigates genes that escape X-Chromosome Inactivation (XCI) by analyzing RNA-sequencing data from three female individuals with highly skewed XCI identified in the GTEx database-two newly reported and one previously described. Utilizing these rare non-mosaic XCI cases, the authors assess allelic expression patterns across 30 normal human tissues to classify the XCI status of 380 X-linked genes, including 198 not previously annotated. The study provides a broader and more comprehensive catalog of XCI escape, contributing valuable insights into sex-specific gene expression and the potential implications of X-linked variants in disease.

      Strengths:

      The primary strength of this work lies in its expanded scope: it doubles the number of tissues and significantly increases the number of X-linked genes with known XCI status compared to previous studies. By focusing on rare individuals with non-random XCI, the authors provide a unique opportunity to observe allelic expression and classify escape status with more confidence. Their findings that escape from XCI is relatively consistent across tissues (rather than tissue-specific) enhance the understanding of XCI mechanisms. The methodology is robust, the data are well-documented, and the supplementary resources are comprehensive. This study thus represents a valuable resource for the XCI field and a promising basis for future investigations.

      Weaknesses:

      Despite its strengths, the study is limited by its reliance on only three individuals, which restricts statistical power and generalizability. Concerns were raised regarding the comparability of XCI status across tissue types and cell lines, particularly given that previous classifications may have used cancer or immortalized cells. Additionally, more could be done to explore the genetic basis behind the observed skewed XCI, which might affect the conclusions about escape patterns. Finally, the authors are encouraged to expand their approach to additional RNA-seq datasets or single-cell analyses to validate their findings and potentially discover more individuals with skewed XCI, which would deepen understanding of this important biological phenomenon.

    1. Reviewer #1 (Public review):

      Summary:<br /> This work examines the binding of several phosphonate compounds to a membrane-bound pyrophosphatase using several different approaches, including crystallography, electron paramagnetic resonance spectroscopy, and functional measurements of ion pumping and pyrophosphatase activity. The work synthesizes these different approaches into a model of inhibition by phosphonates in which the two subunits of the functional dimer interact differently with the phosphonate. This asymmetry in the two subunits of the dimer is consistent with past studies of this system.

      Strengths:<br /> This study integrates a variety of approaches, including structural biology, spectroscopic measurements of protein dynamics, and functional measurements. Overall, data analysis was thoughtful, with careful analysis of the substrate binding sites (for example calculation of POLDOR omit maps). This study agrees with previous studies that have detected functional asymmetry in the membrane PPase dimer.

    2. Reviewer #3 (Public review):

      Summary:<br /> Membrane-bound pyrophosphatases (mPPases) are homodimeric proteins that hydrolyze pyrophosphate and pump H+/Na+ across membranes. They are an attractive drug target against protist pathogens. Non-hydrolysable PPi analogue bisphosphonates such as risedronate (RSD) and pamidronate (PMD) serve as primary drugs currently used. Bisphosphonates have a P-C-P bond, with their central carbon can accommodate up to two substituents, allowing a large compound variability. Here authors solved two TmPPase structures in complex with the bisphosphonates etidronate (ETD) and zoledronate (ZLD) and monitored their conformational ensemble using DEER spectroscopy in solution. These results reveal the inhibition mechanism by these compounds, which is crucial for developing future small-molecule inhibitors.

      Strengths:<br /> Authors show that seven different bisphosphonates can inhibit TmPPase with IC50 values in the micromolar range. Branched aliphatic and aromatic modifications showed weaker inhibition. High-resolution structures for TmPPase with ETD (3.2 Å) and ZLD (3.3 Å) are determined. These structures reveal the binding mode and shed light on the inhibition mechanism. The nature of modification on the bisphosphonate alters the conformation of the binding pocket. The conformational heterogeneity is further investigated using EPR/DEER spectroscopy under several conditions. Altogether, this provides convincing evidence for a distinct conformational equilibrium of TmPPase in solution and further supports the notion of asymmetric inhibitor binding at the active site, while maintaining a symmetric conformation at the periplasmic interface.

    1. Reviewer #1 (Public review):

      In this manuscript, Tran et al. investigate the interaction between BICC1 and ADPKD genes in renal cystogenesis. Using biochemical approaches, they reveal a physical association between Bicc1 and PC1 or PC2 and identify the motifs in each protein required for binding. Through genetic analyses, they demonstrate that Bicc1 inactivation synergizes with Pkd1 or Pkd2 inactivation to exacerbate PKD-associated phenotypes in Xenopus embryos and potentially in mouse models. Furthermore, by analyzing a large cohort of PKD patients, the authors identify compound BICC1 variants alongside PKD1 or PKD2 variants in trans, as well as homozygous BICC1 variants in patients with early-onset and severe disease presentation. They also show that these BICC1 variants repress PC2 expression in cultured cells.

      Overall, the concept that BICC1 variants modify PKD severity is plausible, the data are robust, and the conclusions are largely supported. However, several aspects of the study require clarification and discussion:

      (1) The authors devote significant effort to characterizing the physical interaction between Bicc1 and Pkd2. However, the study does not examine or discuss how this interaction relates to Bicc1's well-established role in posttranscriptional regulation of Pkd2 mRNA stability and translation efficiency.

      (2) Bicc1 inactivation appears to downregulate Pkd1 expression, yet it remains unclear whether Bicc1 regulates Pkd1 through direct interaction or by antagonizing miR-17, as observed in Pkd2 regulation. This should be further examined or discussed.

      (3) The evidence supporting Bicc1 and ADPKD gene cooperativity, particularly with Pkd1, in mouse models is not entirely convincing, likely due to substantial variability and the aggressive nature of Bpk/Bpk mice. Increasing the number of animals or using a milder Bicc1 strain, such as jcpk heterozygotes, could help substantiate the genetic interaction.

    2. Reviewer #2 (Public review):

      Tran and colleagues report evidence supporting the expected yet undemonstrated interaction between the Pkd1 and Pkd2 gene products Pc1 and Pc2 and the Bicc1 protein in vitro, in mice, and collaterally, in Xenopus and HEK293T cells. The authors go on to convincingly identify two large and non-overlapping regions of the Bicc1 protein important for each interaction and to perform gene dosage experiments in mice that suggest that Bicc1 loss of function may compound with Pkd1 and Pkd2 decreased function, resulting in PKD-like renal phenotypes of different severity. These results led to examining a cohort of very early onset PKD patients to find three instances of co-existing mutations in PKD1 (or PKD2) and BICC1. Finally, preliminary transcriptomics of edited lines gave variable and subtle differences that align with the theme that Bicc1 may contribute to the PKD defects, yet are mechanistically inconclusive.

      These results are potentially interesting, despite the limitation, also recognized by the authors, that BICC1 mutations seem exceedingly rare in PKD patients and may not "significantly contribute to the mutational load in ADPKD or ARPKD". The manuscript has several intrinsic limitations that must be addressed.

      The manuscript contains factual errors, imprecisions, and language ambiguities. This has the effect of making this reviewer wonder how thorough the research reported and analyses have been.

    3. Reviewer #3 (Public review):

      Summary:

      This study investigates the role of BICC1 in the regulation of PKD1 and PKD2 and its impact on cytogenesis in ADPKD. By utilizing co-IP and functional assays, the authors demonstrate physical, functional, and regulatory interactions between these three proteins.

      Strengths:

      (1) The scientific principles and methodology adopted in this study are excellent, logical, and reveal important insights into the molecular basis of cystogenesis.

      (2) The functional studies in animal models provide tantalizing data that may lead to a further understanding and may consequently lead to the ultimate goal of finding a molecular therapy for this incurable condition.

      (3) In describing the patients from the Arab cohort, the authors have provided excellent human data for further investigation in large ADPKD cohorts. Even though there was no patient material available, such as HUREC, the authors have studied the effects of BICC1 mutations and demonstrated its functional importance in a Xenopus model.

      Weaknesses:

      This is a well-conducted study and could have been even more impactful if primary patient material was available to the authors. A further study in HUREC cells investigating the critical regulatory role of BICC1 and potential interaction with mir-17 may yet lead to a modifiable therapeutic target.

      Conclusion:<br /> The authors achieve their aims. The results reliably demonstrate the physical and functional interaction between BICC1 and PKD1/PKD2 genes and their products.

      The impact is hopefully going to be manifold:

      (1) Progressing the understanding of the regulation of the expression of PKD1/PKD2 genes.

      (2) Role of BiCC1 in mir/PKD1/2 complex should be the next step in the quest for a modifiable therapeutic target.

    1. Reviewer #1 (Public review):

      Filamentous fungi are established workhorses in biotechnology, with Aspergillus oryzae as a prominent example with a thousand-year history. Still, the cell biology and biochemical properties of the production strains is not well understood. The paper of the Takeshita group describes the change in nuclear numbers and correlates it to different production capacities. They used microfluidic devices to really correlate the production with nuclear numbers. In addition, they used microdissection to understand expression profile changes and found an increase in ribosomes. The analysis of two genes involved in cell volume control in S. pombe did not reveal conclusive answers to explain the phenomenon. It appears that it is a multi-trait phenotype. Finally, they identified SNPs in many industrial strains and tried to correlate them to the capability of increasing their nuclear numbers.

      The methods used in the paper range from high-quality cell biology, Raman spectroscopy, to atomic force and electron microscopy, and from laser microdissection to the use of microfluidic devices to study individual hyphae.

      This is a very interesting, biotechnologically relevant paper with the application of excellent cell biology. I have only minor suggestions for improvement.

    2. Reviewer #2 (Public review):

      Summary:

      In the study presented by Itani and colleagues, it is shown that some strains of Aspergillus oryzae - especially those used industrially for the production of sake and soy sauce - develop hyphae with a significantly increased number of nuclei and cell volume over time. These thick hyphae are formed by branching from normal hyphae and grow faster and therefore dominate the colonies. The number of nuclei positively correlates with the thicker hyphae and also the amount of secreted enzymes. The addition of nutrients such as yeast extract or certain amino acids enhanced this effect. Genome and transcriptome analyses identified genes, including rseA, that are associated with the increased number of nuclei and enzyme production. The authors conclude from their data involvement of glycosyltransferases, calcium channels, and the tor regulatory cascade in the regulation of cell volume and number of nuclei. Thicker hyphae and an increased number of nuclei were also observed in high-production strains of other industrially used fungi such as Trichoderma reesei and Penicillium chrysogenum, leading to the hypothesis that the mentioned phenotypes are characteristic of production strains, which is of significant interest for fungal biotechnology.

      Strengths:

      The study is very comprehensive and involves the application of diverse state-of-the-art cell biological, biochemical, and genetic methods. Overall, the data are properly controlled and analyzed, figures and movies are of excellent quality.<br /> The results are particularly interesting with regard to the elucidation of molecular mechanisms that regulate the size of fungal hyphae and their number of nuclei. For this, the authors have discovered a very good model: (regular) strains with a low number of nuclei and strains with a high number of nuclei. Also, the results can be expected to be of interest for the further optimization of industrially relevant filamentous fungi.

      Weaknesses:

      There are only a few open questions concerning the activity of the many nuclei in production strains (active versus inactive), their number of chromosomes (haploid/diploid), and whether hyper-branching always leads to propagation of nuclei.

    3. Reviewer #3 (Public review):

      Summary:

      The authors seek to determine the underlying traits that support the exceptional capacity of Aspergillus oryzae to secrete enzymes and heterologous proteins. To do so, they leverage the availability of multiple domesticated isolates of A. oryzae along with other Aspergillus species to perform comparative imaging and genomic analysis.

      Strengths:

      The strength of this study lies in the use of multifaceted approaches to identify significant differences in hyphal morphology that correlate with enzyme secretion, which is then followed by the use of genomics to identify candidate functions that underlie these differences.

      Weaknesses:

      There are aspects of the methods that would benefit from the inclusion of more detail on how experiments were performed and data interpreted.

      Overall, the authors have achieved their aims in that they are able to clearly document the presence of two distinct hyphal forms in A. oryzae and other Aspergillus species, and to correlate the presence of the thicker, rapidly growing form with enhanced enzyme secretion. The image analysis is convincing. The discovery that the addition of yeast extract and specific amino acids can stimulate the formation of the novel hyphal form is also notable. Although the conclusions are generally supported by the results, this is perhaps less so for the genetic analysis as it remains unclear how direct the role of RseA and the calcium transporters might be in supporting the formation of the thicker hyphae.

      The results presented here will impact the field. The complexity of hyphal morphology and how it affects secretion is not well understood despite the importance of these processes for the fungal lifestyle. In addition, the description of approaches that can be used to facilitate the study of these different hyphal forms (i.e., stimulation using yeast extract or specific amino acids) will benefit future efforts to understand the molecular basis of their formation.

    1. Reviewer #1 (Public review):

      This is a revision of a manuscript previously submitted to Review Commons. The authors have partially addressed my comments, mainly by expanding the introduction and discussion sections. Sandy Schmid, a leading expert on the AP2 adaptor and CME, has been added as a co-corresponding author. The main message of the manuscript remains unchanged. Through overexpression of fluorescently tagged CCDC32, the authors propose that, in addition to its established role in AP2 assembly, CCDC32 also follows AP2 to the plasma membrane and regulates CCP maturation. The manuscript presents some interesting ideas, but there are still concerns regarding data inconsistencies and gaps in the evidence.

      (1) eGFP-CCDC32 was expressed at 5-10 times higher levels than endogenous CCDC32. This high expression can artificially drive CCDC32 to the cell surface via binding to the alpha appendage domain (AD)-an interaction that may not occur under physiological conditions.

      (2) Which region of CCDC32 mediates alpha AD binding? Strangely, the only mutant tested in this work, Δ78-98, still binds AP2, but shifts to binding only mu and beta. If the authors claim that CCDC32 is recruited to mature AP2 via the alpha AD, then a mutant deficient in alpha AD binding should not bind AP2 at all. Such a mutant is critical for establish the model proposed in this work.

      (3) The concept of hemicomplexes is introduced abruptly. What is the evidence that such hemicomplexes exist? If CCDC32 binds to hemicomplexes, this must occur in the cytosol, as only mature AP2 tetramers are recruited to the plasma membrane. The authors state that CCDC32 binds the AD of alpha but not beta, so how can the Δ78-98 mutant bind mu and beta?

      (4) The reported ability of CCDC32 to pull down AP2 beta is puzzling. Beta is not found in the CCDC32 interactome in two independent studies using 293 and HCT116 cells (BioPlex). In addition, clathrin is also absent in the interactome of CCDC32, which is difficult to reconcile with a proposed role in CCPs. Can the authors detect CCDC32 binding to clathrin?

      (5) Figure 5B appears unusual-is this a chimera? Figure 5C likely reflects a mixture of immature and mature AP2 adaptor complexes.

      (6) CCDC32 is reduced by about half in siRNA knockdown. Why not use CRISPR to completely eliminate CCDC32 expression?

    2. Reviewer #2 (Public review):

      Yang et al. describes CCDC32 as a new clathrin mediated endocytosis (CME) accessory protein. The authors show that CCDC32 binds directly to AP2 via a small alpha helical region and cells depleted for this protein show defective CME. Finally, the authors show that the CCDC32 nonsense mutations found in patients with cardio-facial-neuro-developmental syndrome (CFNDS) disrupt the interaction of this protein to the AP2 complex. The results presented suggest that CCDC32 may act as both a chaperone (as recently published) and a structural component of the AP2 complex.

      Strengths:<br /> The conclusions presented are generally well supported by experimental data and the authors carefully point out the differences between their results and the results by Wan et al. (PNAS 2024).

      Weaknesses:<br /> The experiments regarding the role of CCDC32 in CFNDS still require some clarifications to make them clearer to scientists working on this disease. The authors fail to describe that the CCDC32 isoform they use in their studies is different from the one used when CFNDS patient mutations were described. This may create some confusion. Also, the authors did not discuss that the frame-shift mutations in patients may be leading to nonsense mediated decay.

    3. Reviewer #3 (Public review):

      In this manuscript, Yang et al. characterize the endocytic accessory protein CCDC32, which has implications in cardio-facio-neuro-developmental syndrome (CFNDS). The authors clearly demonstrate that the protein CCDC32 has a role in the early stages of endocytosis, mainly through the interaction with the major endocytic adaptor protein AP2, and they identify regions taking part in this recognition. Through live cell fluorescence imaging and electron microscopy of endocytic pits, the authors characterize the lifetimes of endocytic sites, the formation rate of endocytic sites and pits and the invagination depth, in addition to transferrin receptor (TfnR) uptake experiments. Binding between CCDC32 and CCDC32 mutants to the AP2 alpha appendage domain is assessed by pull down experiments. While interaction between CCDC32 and the alpha appendage domain of AP2 is clearly described, a discussion of potential association with other AP2 domains would be beneficial to understand the impact of CCDC32 in endocytosis.

      Together, these experiments allow deriving a phenotype of CCDC32 knock-down and CCDC32 mutants within endocytosis, which is a very robust system, in which defects are not so easily detected. A mutation of CCDC32, mimicking CFNDS mutations, is also addressed in this study and shown to have endocytic defects.

      In summary, the authors present a strong combination of techniques, assessing the impact of CCDC32 in clathrin mediated endocytosis and its binding to AP2.

    1. Reviewer #1 (Public review):

      Summary:<br /> Having shown that acyltransferase ZDHHC9 expression is far higher in myelinating oligodendrocytes (OLs) than in other CNS cell types, Jeong and colleagues focus on exploring the role of ZDHHC9 in myelinating OLs in particular in the palmitoylation of several myelin proteins. This study is relevant in the context of X-linked intellectual disability as it suggests a more relevant role for myelinating glia than previously thought. It also provides useful insights the mechanisms of ZDHHC9-associated XLID and on the palmitoylation-dependent control of myelination.

      Strengths:<br /> Well written paper<br /> In general good data quality<br /> Use of transgenics strategies (in addition to the ZDHHC9 KO) strengthen the data and claims

      Weaknesses:<br /> A few claims might have needed better experimental support but new data and revised discussion sections addressed some of these weaknesses

    1. Reviewer #2 (Public review):

      Summary:

      The authors tried to determine how PA28g functions in oral squamous cell carcinoma (OSCC) cells. They hypothesized it may act through metabolic reprogramming in the mitochondria.

      Strengths:

      They found that the genes of PA28g and C1QBP are in an overlapping interaction network after an analysis of a genome database. They also found that the two proteins interact in coimmunoprecipitation and pull-down assays using the lysate from OSCC cells with or without expression of the exogenous genes. They used truncated C1QBP proteins to map the interaction site to the N-terminal 167 residues of C1QBP protein. They observed the levels of the two proteins are positively correlated in the cells. They provided evidence for the colocalization of the two proteins in the mitochondria and the effect on mitochondrial form and function in vitro and in vivo OSCC models, and the correlation of the protein expression with the prognosis of cancer patients.

      Comments on revision:

      The third revision added data from two point mutations of C1QBP that would disrupt a hydrogen bond network with PA28g protein. As one would expect from the structural models obtained with AlphaFold, the interaction between the two proteins as detected by co-immunoprecipitation of cell lysate was reduced by both mutations. Therefore, the theoretical models for the interaction were supported by the experimental data. Moving forward, the home run experiments would be to test the C1QBP mutants in functional assays to determine whether the mutations can decrease the protein stability afforded by the interaction with PA28g, which in turn decrease the effect of PA28g on mitochondria and tumor cells via C1QBP. Success of these experiments will conclude this manuscript that presents a novel finding for tumor cell biology which could be a launch pad for therapeutic intervention of tumor development.

    1. Reviewer #1 (Public review):

      The authors have undertaken a significant revision of the manuscript and addressed the vast majority of our original comments. The manuscript is significantly improved as a result and will make a nice contribution to the literature. The new framing is especially impactful.

      We have a few remaining comments to improving the manuscript:

      Q1: The authors clarified the multiple comparison correction appropriately, and included a comprehensive of the study limitations related to causality and SEM. We think there could be a few further improvements to the manuscript to fully address our initial comment.

      Under the results section where the authors describe the use of structural equation modeling, we think that it would be helpful to readers to further emphasize that the current design doesn't allow for delineation of temporal sequences in development and do cannot reflect true mediation. These are important caveats that the readers describe beautifully in their response.

      In addition to think about the mediating variables, can the authors conduct a sensitivity analysis that re-orders the IV, mediator, and DV? That way, a formal comparison can be made between model fits. It would provide an empirical basis for how to temper the discussion of these findings.

      Q7: We think that this analysis (lack of significant correlations between ISS, child age, and neural maturity) and corresponding discussion by the authors would be very interesting for readers. It does not appear as though they've added this information to the text (even in a supplementary file would suffice), but I think their conclusions about the data are strengthened related to context specific neural dynamics.

    2. Reviewer #2 (Public review):

      Summary:<br /> This study investigates the impact of mother-child neural synchronization and the quality of parent-child relationships on the development of Theory of Mind (ToM) and social cognition. Utilizing a naturalistic fMRI movie-viewing paradigm, the authors analyzed inter-subject neural synchronization in mother-child dyads and explored the connections between neural maturity, parental caregiving, and social cognitive outcomes. The findings indicate age-related maturation in ToM and social pain networks, emphasizing the importance of dyadic interactions in shaping ToM performance and social skills, thereby enhancing our understanding of the environmental and intrinsic influences on social cognition.

      Strengths:<br /> This research addresses a significant question in developmental neuroscience, by linking social brain development with children's behaviors and parenting. It also uses a robust methodology by incorporating neural synchrony measures, naturalistic stimuli, and a substantial sample of mother-child dyads to enhance its ecological validity. Furthermore, the SEM approach provides a nuanced understanding of the developmental pathways associated with Theory of Mind (ToM). The manuscript also addressed many concerns raised in the initial review. The adoption of the neuroconstructivist framework effectively frames neural and cognitive development as reciprocal, addressing prior concerns about causality. The justification for methodological choices, such as omitting resting-state baselines due to scanning challenges in children and using unit-weighted scoring for ToM tasks, further strengthens the study's credibility.

      Weaknesses:<br /> (1) The revised introduction has improved, particularly in framing the first goal-developmental changes in ToM and SPM networks-as a "developmental anchor" for goals 2 and 3. However, given prior research on age-related changes in these networks (e.g., Richardson et al., 2018), the authors should clarify whether this goal seeks to replicate prior findings or to extend them under new contexts. Specifying how this part differs from existing work and articulating specific hypotheses would enhance the focus.<br /> (2) I still have some reservations about retaining the slightly causal term "shape" in the title. While the manuscript now carefully avoids causal claims, the title may still be interpreted as implying directionality, especially by non-specialist audiences.<br /> (3) One more question about Figure 2A and 2B: adults and children showed highly similar response curves for video frames, yet some peaks (e.g., T02, T05, T06) are identified as ToM or SPM events only in adults. Whether statistical methods account for the differences? Or whether the corresponding video frames contain subtle social cues that only adults can process?

    3. Reviewer #3 (Public review):

      Summary:<br /> The article explores the role of mother-child interactions in the development of children's social cognition, focusing on Theory of Mind (ToM) and Social Pain Matrix (SPM) networks. Using a naturalistic fMRI paradigm involving movie viewing, the study examines relationships among children's neural development, mother-child neural synchronization, and interaction quality. The authors identified a developmental pattern in these networks, showing that they become more functionally distinct with age. Additionally, they found stronger neural synchronization between child-mother pairs compared to child-stranger pairs, with this synchronization and neural maturation of the networks associated with the mother-child relationship and parenting quality.

      Strengths:<br /> This is a well-written paper, and using dyadic fMRI and naturalistic stimuli enhances its ecological validity, providing valuable insights into the dynamic interplay between brain development and social interactions.

      Weaknesses:<br /> The current sample size (N = 34 dyads) is a limitation, particularly given the use of SEM, which generally requires larger samples for stable results. Although the model fit appears adequate, this does not guarantee reliability with the current sample size.

    1. Reviewer #1 (Public review):

      Summary:

      Biomolecular condensates are an essential part of cellular homeostatic regulation. In this manuscript, the authors develop a theoretical framework for the phase separation of membrane-bound proteins. They show the effect of non-dilute surface binding and phase separation on tight junction protein organization.

      Strengths:

      It is an important study, considering that the phase separation of membrane-bound molecules is taking the center stage of signaling, spanning from immune signaling to cell-cell adhesion. A theoretical framework will help biologists to quantitatively interpret their findings.

      Weaknesses:

      Understandably, the authors used one system to test their theory (ZO-1). However, to establish a theoretical framework, this is sufficient.

    2. Reviewer #2 (Public review):

      Summary:

      The authors present a clear expansion of biophysical (thermodynamic) theory regarding the binding of proteins to membrane-bound receptors, accounting for higher local concentration effects of the protein. To partially test the expanded theory, the authors perform in vitro experiments on the binding of ZO1 proteins to Claudin2 C-terminal receptors anchored to a supported lipid bilayer, and capture the effects that surface phase separation of ZO1 has on its adsorption to the membrane.

      Strengths:

      (1) The derived theoretical framework is consistent and largely well-explained.

      (2) The experimental and numerical methodologies are transparent.

      (3) The comparison between the best parameterized non-dilute theory is in reasonable agreement with experiments.

      Weaknesses:

      (1) In the theoretical section, what has previously been known, compared to which equations are new, should be made more clear.

      (2) Some assumptions in the model are made purely for convenience and without sufficient accompanying physical justification. E.g., the authors should justify, on physical grounds, why binding rate effects are/could be larger than the other fluxes.

      (3) I feel that further mechanistic explanation as to why bulk phase separation widens the regime of surface phase separation is warranted.

      (4) The major advantage of the non-dilute theory as compared with a best parameterized dilute (or homogenous) theory requires further clarification/evidence with respect to capturing the experimental data.

      (5) Discrete (particle-based) molecular modelling could help to delineate the quantitative improvements that the non-dilute theory has over the previous state-of-the-art. Also, this could help test theoretical statements regarding the roles of bulk-phase separation, which were not explored experimentally.

      (6) Discussion of the caveats and limitations of the theory and modelling is missing from the text.

    1. Reviewer #1 (Public review):

      Astrocytes are known to express neuroligins 1-3. Within neurons, these cell adhesion molecules perform important roles in synapse formation and function. Within astrocytes, a significant role for neuroligin 2 in determining excitatory synapse formation and astrocyte morphology was shown in 2017. However, there has been no assessment of what happens to synapses or astrocyte morphology when all three major forms of neuroligins within astrocytes (isoforms 1-3) are deleted using a well characterized, astrocyte specific, and inducible cre line. By using such selective mouse genetic methods, the authors here show that astrocytic neuroligin 1-3 expression in astrocytes is not consequential for synapse function or for astrocyte morphology. They reach these conclusions with careful experiments employing quantitative western blot analyses, imaging and electrophysiology. They also characterize the specificity of the cre line they used. Overall, this is a very clear and strong paper that is supported by rigorous experiments. The discussion considers the findings carefully in relation to past work. This paper is of high importance, because it now raises the fundamental question of exactly what neuroligins 1-3 are actually doing in astrocytes. In addition, it enriches our understanding of the mechanisms by which astrocytes participate in synapse formation and function. The paper is very clear, well written and well illustrated with raw and average data.

      Comments on revisions:

      My previous comments have been addressed. I have no additional points to make and congratulate the authors.

    2. Reviewer #2 (Public review):

      In the present manuscript, Golf et al. investigate the consequences of astrocyte-specific deletion of Neuroligin (Nlgn) family cell adhesion proteins on synapse structure and function in the brain. Decades of prior research had shown that Neuroligins mediate their effects at synapses through their role in the postsynaptic compartment of neurons and their transsynaptic interaction with presynaptic Neurexins. More recently, it was proposed for the first time that Neuroligins expressed by astrocytes can also bind to presynaptic Neurexins to regulate synaptogenesis (Stogsdill et al. 2017, Nature). However, several aspects of the model proposed by Stogsdill et al. on astrocytic Neuroligin function conflict with prior evidence on the role of Neuroligins at synapse, prompting Golf et al. to further investigate astrocytic Neuroligin function in the current study. Using postnatal conditional deletion of Nlgn1-3 specifically from astrocytes in mice, Golf et al. show that virtually no changes in the expression of synaptic proteins or in the properties of synaptic transmission at either excitatory or inhibitory synapses are observed. Moreover, no alterations in the morphology of astrocytes themselves were found. To further extend this finding, the authors additionally analyzed human neurons co-cultured with mouse glia lacking expression of Nlgn1-4. No difference in excitatory synaptic transmission was observed between neurons cultured in the presence of wildtype vs. Nlgn1-4 conditional knockout glia. The authors conclude that while Neuroligins are indeed expressed in astrocytes and are hence likely to play some role there, this role does not include any direct consequences on synaptic structure and function, in direct contrast to the model proposed by Stogsdill et al.

      Overall, this is a strong study that addresses a fundamental and highly relevant question in the field of synaptic neuroscience. Neuroligins are not only key regulators of synaptic function, they have also been linked to numerous psychiatric and neurodevelopmental disorders, highlighting the need to precisely define their mechanisms of action. The authors take a wide range of approaches to convincingly demonstrate that under their experimental conditions, Nlgn1-3 are efficiently deleted from astrocytes in vivo, and that this deletion does not lead to major alterations in the levels of synaptic proteins or in synaptic transmission at excitatory or inhibitory synapses, or in the morphology of astrocytes. The authors have conducted an elegant and compelling analysis demonstrating efficient deletion of astrocytic Nlgn1-3, with deletion rates of 83-96% for Nlgn2 and Nlgn3, and 65-72% for Nlgn1. While the co-culture experiments provide additional support, they are not essential as the in vivo data on astrocytic Nlgn1-3 deletion are compelling on their own. Together, the data from this study provide compelling and important evidence that, whatever the role of astrocytic Neuroligins may be, they do not contribute substantially to synapse formation or function under the conditions investigated.

      Comments on revisions:

      All of my concerns have been satisfactorily addressed.<br /> The authors have fully addressed my concerns, and have in particular conducted a very elegant and compelling analysis of the degree of deletion of astrocytic Nlgn1-3/4 in their models. This greatly strengthens the main claims of their study and the fundamental nature of their conclusions for the field of synapse biology.<br /> Regarding the co-culture experiments, while I was initially concerned about the lack of controls demonstrating that glia affect synapse formation in human neurons, the authors have appropriately addressed this by clarifying the missing references and explaining that their culture system has been extensively validated in previous studies. Since the data on astrocytic Nlgn1-3 deletion in vivo are compelling on their own, the co-culture experiment provides useful additional support for the main conclusions.<br /> The authors have also added the mouse strain background information to the methods section as requested, which is important for interpreting potential differences with other studies.

    1. Reviewer #1 (public review):

      Summary:

      This comprehensive study employed molecular, optical, electrophysiological and tonometric strategies to establish the role of TGFβ2 in transcription and functional expression of mechanosensitive channel isoforms alongside studies of TM contractility in biomimetic hydrogels, and intraocular pressure regulation in a mouse model of TGFβ2 -induced ocular hypertension. TGFβ2 upregulated expression of TRPV4 and PIEZO1 transcripts and time-dependently augmented functional TRPV4 activation. TRPV4 activation induced TM contractility whereas pharmacological inhibition suppressed TGFβ2-induced hypercontractility and abrogated ocular hypertension in eyes overexpressing TGFβ2. Trpv4-/- mice resisted TGFβ2-driven increases in IOP. These data establish a fundamental role of TGFβ as a modulator of mechanosensing and identifies TRPV4 channel as a common mechanism for TM contractility and pathological ocular hypertension.

      The manuscript is very well written and details the important function of TRPV4 in TM cell function. These data provide novel therapeutic targets and potential for disease-altering therapeutics.

    2. Reviewer #2 (public review):

      The manuscript by Christopher N. Rudzitis et al. describes the role of TGFβ2 in the transcription and functional expression of mechanosensitive channel isoforms, alongside studies on TM contractility in biomimetic hydrogels and intraocular pressure. Overall, it is a very interesting study, nicely designed, and will contribute to the available literature on TRPV4 sensitivity to mechanical forces.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors present a pipeline for the identification of transcription factor (TF) co-occurrence in regulatory regions. This pipeline aims to generate a catalogue of combinations of TFs working together, and the authors apply this during human embryonic development. In particular, they identified co-occurrences of TFs starting from H3K27ac ChIP-seq and RNA-seq input data to select active enhancers and transcribed TFs. The pipeline is applied to explore TF motifs co-occurrence at tissue-specific developmental enhancers across 11 human embryonic tissues. The application of the pipeline suggests the presence of regulatory patterns in different human developmental tissue-specific enhancers in association with ubiquitous TFs. The authors further explore the role of TEAD1 (an ubiquitously expressed TF) as a repressor. They test the role of TEAD1 as a co-repressor using a luciferase assay and tissue-specific enhancers, either alone or combined with a YAP coactivator. Overall, this paper presents an important aspect in mammalian gene regulation, the cooperative binding of TFs, and provides an important resource for TF pairs.

      Strengths:

      I appreciated the number of datasets analysed and the validation of a subset of enhancers.

      Weaknesses:

      Not many, but probably validation at more enhancers could have made the paper stronger.

    2. Reviewer #2 (Public review):

      Summary:

      Garcia-Mora et al. presented a two-step bioinformatics pipeline using H3K27ac ChIP-seq and RNA-seq data from 11 human embryonic tissues published by the same groups of senior authors. "First Search" identifies motifs for TFs that are both tissue-restricted in expression and enriched in tissue-specific enhancers. "Second Search" then looks for additional motifs that co-occur near each "First Search" motif. The authors here went further than previous motif co-occurrence/co-enrichment analyses by identifying TEAD motifs as (1) representing a ubiquitously expressed family and (2) showing high co-occurrence with tissue-specific motifs at tissue-specific enhancers. They then elaborate on this finding and speculate that "TEAD, in concert with cardiac-restricted transcriptional regulators, may contribute to the recruitment of CHD4 and may play a role in attenuating the activity of enhancers involved in cardiomyocyte differentiation." They also discussed validation experiments using the luciferase assay.

      Strengths:

      The manuscript is well-written and easy to follow for the most part.

      Weaknesses:

      My main concerns and criticisms are about the sensitivity of the method and the validation of experiment designs and conclusions. Some examples where validation could be improved are as follows:

      (1) The authors propose a mechanism of a TF trio (TEAD - CHD4 - tissue-specific TFs). However, only one validation experiment checked CHD4. CHD4 binding was not mentioned at all in the other cases.

      (2) The authors integrated E12.5 TEAD binding with E11.5 acetylation data, and it would be important to show that this experimental approach is valid or otherwise qualify its limitations.

      (3) Motif co-occurrence analysis was extended to claiming TF interactions without further validation.

    3. Reviewer #3 (Public review):

      Summary:

      Mora et al employ published ChIP-seq and RNA-seq from embryonic tissues to nominate transcription factors that work combinatorially during development. This manuscript addresses an important gap in knowledge regarding the complexities of gene regulation. However, as written, the manuscript is focused on confirming mostly known associations and does not unveil principles that can be broadly applied, given multiple technical caveats that are outlined below.

      Strengths:

      (1) Instead of focusing on a single transcription factor motif enriched within peaks, the authors search the flanking regions of enriched motifs to nominate additional transcription factors that may work cooperatively to provide organ specificity. This type of analysis is a crucial next step in the gene regulation field, as transcription factors rarely work independently.

      (2) Figure 6 is a good demonstration of the preliminary experiments that can be done to test the activity of co-occurring motifs.

      (3) This is a really nice resource of organ-specific motif associations that can be used to generate many testable hypotheses.

      (4) The rationale and writing are very clear and easy to read.

      Weaknesses:

      (1) Much of this manuscript focuses on confirming transcription factor relationships that have been reported previously. For example, it is well known that GATA4 interacts with MEF2 in the ventricle. There are limited new or unexpected associations discussed and tested.

      (2) Embryonic tissues are highly heterogeneous, limiting the utility of the bulk ChIP-seq employed in these analyses. Does the cellular heterogeneity explain the discrepancy between TEAD binding and histone acetylation? Similarly, how does conservation between species affect the TF predictions?

      (3) Some of the interpretations should also be fleshed out a bit more to clarify the advantage of the analyses presented here. For example, if Gata4 and Foxa2 transcripts are expressed during different stages of development, then it's likely that (as stated by the authors) these motifs are not used during the same stage of development. But examining the flanking regions wasn't necessary to make that statement. This type of conclusion seems tangential to the benefit of this analysis, which is to understand which TFs work together in a single organ at a single time point.

      (4) This manuscript hinges on luciferase assays whose results can be difficult to translate to complex gene regulation networks. Many motifs are often clustered together, which makes designing experiments at endogenous loci important in studies such as this one.

    1. Reviewer #1 (Public review):

      Summary:

      The authors state the study's goal clearly: "The goal of our study was to understand to what extent animal individuality is influenced by situational changes in the environment, i.e., how much of an animal's individuality remains after one or more environmental features change." They use visually guided behavioral features to examine the extent of correlation over time and in a variety of contexts. They develop new behavioral instrumentation and software to measure behavior in Buridan's paradigm (and variations thereof), the Y-maze, and a flight simulator. Using these assays, they examine the correlations between conditions for a panel of locomotion parameters. They propose that inter-assay correlations will determine the persistence of locomotion individuality.

      Strengths:

      The OED defines individuality as "the sum of the attributes which distinguish a person or thing from others of the same kind," a definition mirrored by other dictionaries and the scientific literature on the topic. The concept of behavioral individuality can be characterized as: (1) a large set of behavioral attributes, (2) with inter-individual variability, that are (3) stable over time. A previous study examined walking parameters in Buridan's paradigm, finding that several parameters were variable between individuals, and that these showed stability over separate days and up to 4 weeks (DOI: 10.1126/science.aaw718). The present study replicates some of those findings and extends the experiments from temporal stability to examining correlation of locomotion features between different contexts.

      The major strength of the study is using a range of different behavioral assays to examine the correlations of several different behavior parameters. It shows clearly that the inter-individual variability of some parameters is at least partially preserved between some contexts, and not preserved between others. The development of high-throughput behavior assays and sharing the information on how to make the assays is a commendable contribution.

      Weaknesses:

      The definition of individuality considers a comprehensive or large set of attributes, but the authors consider only a handful. In Supplemental Fig. S8, the authors show a large correlation matrix of many behavioral parameters, but these are illegible and are only mentioned briefly in Results. Why were five or so parameters selected from the full set? How were these selected? Do the correlation trends hold true across all parameters? For assays in which only a subset of parameters can be directly compared, were all of these included in the analysis, or only a subset?

      The correlation analysis is used to establish stability between assays. For temporal re-testing, "stability" is certainly the appropriate word, but between contexts it implies that there could be 'instability'. Rather, instead of the 'instability' of a single brain process, a different behavior in a different context could arise from engaging largely (or entirely?) distinct context-dependent internal processes, and have nothing to do with process stability per se. For inter-context similarities, perhaps a better word would be "consistency".

      The parameters are considered one-by-one, not in aggregate. This focuses on the stability/consistency of the variability of a single parameter at a time, rather than holistic individuality. It would appear that an appropriate measure of individuality stability (or individuality consistency) that accounts for the high-dimensional nature of individuality would somehow summarize correlations across all parameters. Why was a multivariate approach (e.g. multiple regression/correlation) not used? Treating the data with a multivariate or averaged approach would allow the authors to directly address 'individuality stability', along with the analyses of single-parameter variability stability.

      The correlation coefficients are sometimes quite low, though highly significant, and are deemed to indicate stability. For example, in Figure 4C top left, the % of time walked at 23{degree sign}C and 32{degree sign}C are correlated by 0.263, which corresponds to an R2 of 0.069 i.e. just 7% of the 32{degree sign}C variance is predictable by the 23{degree sign}C variance. Is it fair to say that 7% determination indicates parameter stability? Another example: "Vector strength was the most correlated attention parameter... correlations ranged... to -0.197," which implies that 96% (1 - R2) of Y-maze variance is not predicted by Buridan variance. At what level does an r value not represent stability?

      The authors describe a dissociation between inter-group differences and inter-individual variation stability, i.e. sometimes large mean differences between contexts, but significant correlation between individual test and retest data. Given that correlation is sensitive to slope, this might be expected to underestimate the variability stability (or consistency). Is there a way to adjust for the group differences before examining correlation? For example, would it be possible to transform the values to in-group ranks prior to correlation analysis?

      What is gained by classifying the five parameters into exploration, attention, and anxiety? To what extent have these classifications been validated, both in general, and with regard to these specific parameters? Is increased walking speed at higher temperature necessarily due to increased 'explorative' nature, or could it be attributed to increased metabolism, dehydration stress, or a heat-pain response? To what extent are these categories subjective?

      The legends are quite brief and do not link to descriptions of specific experiments. For example, Figure 4a depicts a graphical overview of the procedure, but I could not find a detailed description of this experiment's protocol.

      Using the current single-correlation analysis approach, the aims would benefit from re-wording to appropriately address single-parameter variability stability/consistency (as distinct from holistic individuality). Alternatively, the analysis could be adjusted to address the multivariate nature of individuality, so that the claims and the analysis are in concordance with each other.

      The study presents a bounty of new technology to study visually guided behaviors. The Github link to the software was not available. To verify successful transfer or open-hardware and open-software, a report would demonstrate transfer by collaboration with one or more other laboratories, which the present manuscript does not appear to do. Nevertheless, making the technology available to readers is commendable.<br /> The study discusses a number of interesting, stimulating ideas about inter-individual variability and presents intriguing data that speaks to those ideas, albeit with the issues outlined above.

      While the current work does not present any mechanistic analysis of inter-individual variability, the implementation of high-throughput assays sets up the field to more systematically investigate fly visual behaviors, their variability, and their underlying mechanisms.

      Comments on revisions:

      I want to express my appreciation for the authors' responsiveness to the reviewer feedback. They appear to have addressed my previous concerns through various modifications including GLM analysis, however, some areas still require clarification for the benefit of an audience that includes geneticists.

      (1) GLM Analysis Explanation (Figure 9)<br /> While the authors state that their new GLM results support their original conclusions, the explanation of these results in the text is insufficient. Specifically:

      - The interpretation of coefficients and their statistical significance needs more detailed explanation. The audience includes geneticists and other non-statistical people, so the GLM should be explained in terms of the criteria or quantities used to assess how well the results conform with the hypothesis, and to what extent they diverge.<br /> - The criteria used to judge how well the GLM results support their hypothesis are not clearly stated.<br /> - The relationship between the GLM findings and their original correlation-based conclusions needs better integration and connection, leading the reader through your reasoning.

      (2) Documentation of Changes<br /> One struggle with the revised manuscript is that no "tracked changes" version was included, so it is hard to know exactly what was done. Without access to the previous version of the manuscript, it is difficult to fully assess the extent of revisions made. The authors should provide a more comprehensive summary of the specific changes implemented, particularly regarding:

      (3) Statistical Method Selection<br /> The authors mention using "ridge regression to mitigate collinearity among predictors" but do not adequately justify this choice over other approaches. They should explain:

      - Why ridge regression was selected as the optimal method<br /> - How the regularization parameter (λ) was determined<br /> - How this choice affects the interpretation of environmental parameters' influence on individuality

    2. Reviewer #2 (Public review):

      Summary:

      The authors repeatedly measured the behavior of individual flies across several environmental situations in custom-made behavioral phenotyping rigs.

      Strengths:

      The study uses several different behavioral phenotyping devices to quantify individual behavior in a number of different situations and over time. It seems to be a very impressive amount of data. The authors also make all their behavioral phenotyping rig design and tracking software available, which I think is great, and I'm sure other folks will be interested in using and adapting to their own needs.

      Weaknesses/Limitations:

      I think an important limitation is that while the authors measured the flies under different environmental scenarios (i.e. with different lighting, temperature) they didn't really alter the "context" of the environment. At least within behavioral ecology, context would refer to the potential functionality of the expressed behaviors so for example, an anti-predator context, or a mating context, or foraging. Here, the authors seem to really just be measuring aspects of locomotion under benign (relatively low risk perception) contexts. This is not a flaw of the study, but rather a limitation to how strongly the authors can really say that this demonstrates that individuality is generalized across many different contexts. It's quite possible that rank-order of locomotor (or other) behaviors may shift when the flies are in a mating or risky context.

      I think the authors are missing an opportunity to use much more robust statistical methods It appears as though the authors used pearson correlations across time/situations to estimate individual variation; however far more sophisticated and elegant methods exist. The problem is that pearson correlation coefficients can be anti-conservative and additionally, the authors have thus had to perform many many tests to correlate behaviors across the different trials/scenarios. I don't see any evidence that the authors are controlling for multiple testing which I think would also help. Alternatively, though, the paper would be a lot stronger, and my guess is, much more streamlined if the authors employ hierarchical mixed models to analyse these data, which are the standard analytical tools in the study of individual behavioral variation. In this way, the authors could partition the behavioral variance into its among- and within-individual components and quantify repeatability of different behaviors across trials/scenarios simultaneously. This would remove the need to estimate 3 different correlations for day 1 & day 2, day 1 & 3, day 2 & 3 (or stripe 0 & stripe 1, etc) and instead just report a single repeatability for e.g. the time spent walking among the different strip patterns (eg. figure 3). Additionally, the authors could then use multivariate models where the response variables are all the behaviors combined and the authors could estimate the among-individual covariance in these behaviors. I see that the authors state they include generalized linear mixed models in their updated MS, but I struggled a bit to understand exactly how these models were fit? What exactly was the response? what exactly were the predictors (I just don't understand what Line404 means "a GLM was trained using the environmental parameters as predictors (0 when the parameter was not changed, 1 if it was) and the resulting individual rank differences as the response"). So were different models run for each scenario? for different behaviors? Across scenarios? What exactly? I just harp on this because I'm actually really interested in these data and think that updating these methods can really help clarify the results and make the main messages much clearer!

      I appreciate that the authors now included their sample sizes in the main body of text (as opposed to the supplement) but I think that it would still help if the authors included a brief overview of their design at the start of the methods. It is still unclear to me how many rigs each individual fly was run through? Were the same individuals measured in multiple different rigs/scenarios? Or just one?

      I really think a variance partitioning modeling framework could certainly improve their statistical inference and likely highlight some other cool patterns as these methods could better estimate stability and covariance in individual intercepts (and potentially slopes) across time and situation. I also genuinely think that this will improve the impact and reach of this paper as they'll be using methods that are standard in the study of individual behavioral variation

    3. Reviewer #3 (Public review):

      This manuscript is a continuation of past work by the last author where they looked at stochasticity in developmental processes leading to inter-individual behavioural differences. In that work, the focus was on a specific behaviour under specific conditions while probing the neural basis of the variability. In this work, the authors set out to describe in detail how stable individuality of animal behaviours is in the context of various external and internal influences. They identify a few behaviours to monitor (read outs of attention, exploration, and 'anxiety'); some external stimuli (temperature, contrast, nature of visual cues, and spatial environment); and two internal states (walking and flying).

      They then use high-throughput behavioural arenas - most of which they have built and made plans available for others to replicate - to quantify and compare combinations of these behaviours, stimuli, and internal states. This detailed analysis reveals that:

      (1) Many individualistic behaviours remain stable over the course of many days.<br /> (2) That some of these (walking speed) remain stable over changing visual cues. Others (walking speed and centrophobicity) remain stable at different temperatures.<br /> (3) All the behaviours they tested fail to remain stable over spatially varying environment (arena shape).<br /> (4) and only angular velocity (a read out of attention) remains stable across varying internal states (walking and flying)

      Thus, the authors conclude that there is a hierarchy in the influence of external stimuli and internal states on the stability of individual behaviours.

      The manuscript is a technical feat with the authors having built many new high-throughput assays. The number of animals are large and many variables have been tested - different types of behavioural paradigms, flying vs walking, varying visual stimuli, different temperature among others.

      Comments on revisions:'

      The authors have addressed my previous concerns.

    1. Reviewer #1 (Public review):

      Summary:

      Here the authors address how reinforcement-based sensorimotor adaptation changes throughout development. To address this question, they collected many participants in ages that ranged from small children (3 years old) to adulthood (18+ years old). The authors used four experiments to manipulate whether binary and positive reinforcement was provided probabilistically (e.g., 30 or 50%) versus deterministically (e.g.,100%), and continuous (infinite possible locations) versus discrete (binned possible locations) when the probability of reinforcement varied along the span of a large redundant target. The authors found that both movement variability and the extent of adaptation changed with age.

      Strengths:

      The major strength of the paper is the number of participants collected (n = 385). The authors also answer their primary question, that reinforcement-based sensorimotor adaptation changes throughout development, which was shown by utilizing established experimental designs and computational modelling. They have compared an extensive number of potential models, finding the one that best fits the data while penalizing the number of free parameters.

    2. Reviewer #2 (Public review):

      Summary:

      In this study, Hill and colleagues use a novel reinforcement-based motor learning task ("RML"), asking how aspects of RML change over the course of development from toddler years through adolescence. Multiple versions of the RML task were used in different samples, which varied on two dimensions: whether the reward probability of a given hand movement direction was deterministic or probabilistic, and whether the solution space had continuous reach targets or discrete reach targets. Using analyses of both raw behavioral data and model fits, the authors report four main results: First, developmental improvements reflected 3 clear changes, including increases in exploration, an increase in the RL learning rate, and a reduction of intrinsic motor noise. Second, changes to the task that made it discrete and/or deterministic both rescued performance in the youngest age groups, suggesting that observed deficits could be linked to continuous/probabilistic learning settings. Overall, the results shed light on how RML changes throughout human development, and the modeling characterizes the specific learning deficits seen in the youngest ages.

      Strengths:

      (1) This impressive work addresses an understudied subfield of motor control/psychology - the developmental trajectory of motor learning. It is thus timely and will interest many researchers.

      (2) The task, analysis, and modeling methods are very strong. The empirical findings are rather clear and compelling, and the analysis approaches are convincing. Thus, at the empirical level, this study has very few weaknesses.

      (3) The large sample sizes and in-lab replications further reflect the laudable rigor of the study.

      (4) The main and supplemental figures are clear and concise.

    3. Reviewer #3 (Public review):

      Summary:

      The study investigates the development of reinforcement learning across the lifespan with a large sample of participants recruited for an online game. It finds that children gradually develop their abilities to learn reward probability, possibly hindered by their immature spatial processing and probabilistic reasoning abilities. Motor noise and exploration after a failure all contribute to children's subpar performance.  

      Strengths:

      Experimental manipulations of both the continuity of movement options and the probabilistic nature of the reward function enable the inference of what cognitive factors differ between age groups. <br /> A large sample of participants is studied.<br /> The model-based analysis provides further insights into the development of reinforcement learning ability. 

      Weaknesses:

      The conclusion that immature spatial processing and probabilistic reasoning abilities limit reinforcement learning here still needs more direct evidence.

    1. Reviewer #1 (Public review):

      Summary:

      This paper investigates how recurrent neural networks (RNNs) can perform context-dependent decision-making (CDM). The authors use low-rank RNN modeling and focus on a CDM task where subjects are presented with sequences of auditory pulses that vary in location and frequency, and they must determine either the prevalent location or frequency based on an external context signal. In particular, the authors focus on the problem of differentiating between two distinct selection mechanisms: input modulation, which involves altering the stimulus input representation, and selection vector modulation, which involves altering the "selection vector" of the dynamical system.

      First, the authors show that rank-one networks can only implement input modulation, and that higher-rank networks are required for selection vector modulation. Then, the authors use pathway-based information flow analysis to understand how information is routed to the accumulator based on context. This analysis allows the authors to introduce a novel definition of selection vector modulation that explicitly links it to changes in the effective coupling along specific pathways within the network.

      The study further generates testable predictions for differentiating selection vector modulation from input modulation based on neural dynamics. In particular, the authors find that: 1) A larger proportion of selection vector modulation is expected in networks with high-dimensional connectivity. 2) Single-neuron response kernels exhibiting specific profiles (peaking between stimulus onset and choice onset) are indicative of neural dynamics in extra dimensions, supporting the presence of selection vector modulation. 3) The percentage of explained variance (PEV) of extra dynamical modes extracted from response kernels at the population level can serve as an index to quantify the amount of selection vector modulation.

      Strengths:

      The paper is clear and well written, and it draws bridges between two recent important approaches in the study of CDM: circuit-level descriptions of low-rank RNNs, and differentiation across alternative mechanisms in terms of neural dynamics. The most interesting aspect of the study involves establishing a link between selection vector modulation, network dimensionality and dimensionality of neural dynamics. The high correlation between the networks' mechanisms and their dimensionality (Fig. 7d) is surprising since differentiating between selection mechanisms is generally a difficult task, and the strength of this result is further corroborated by its consistency across multiple RNN hyperparameters (Figure 7-figure supplement 1 and Figure 7-figure supplement 2). Interestingly, the correlation between the selection mechanism and the dimensionality of neural dynamics is also high (Fig. 7g), potentially providing a promising future avenue for the study of neural recordings in this task.

      Weaknesses:

      As acknowledged by the authors, the results linking selection vector modulation and dimensionality might not generalize to neural representations where a significant fraction of the variance encodes information unrelated to the task. Therefore, these tools might not be applicable to neural recordings or to artificial neural networks with additional high-dimensional activity unrelated to the task (e.g. RNNs trained to perform many other tasks).

    2. Reviewer #2 (Public review):

      This manuscript examines network mechanisms that allow networks of neurons to perform context-dependent decision-making.<br /> In a recent study, Pagan and colleagues identified two distinct mechanisms by which recurrent neural networks can perform such computations. They termed these two mechanisms input-modulation and selection-vector modulation. Pagan and colleagues demonstrated that recurrent neural networks can be trained to implement combinations of these two mechanisms, and related this range of computational strategies with inter-individual variability in rats performing the same task. What type of structure in the recurrent connectivity favors one or the other mechanism however remained an open question.

      The present manuscript addresses this specific question by using a class of mechanistically interpretable recurrent neural networks, low-rank RNNs.<br /> The manuscript starts by demonstrating that unit-rank RNNs can only implement the input-modulation mechanism, but not the selection-vector modulation. The authors then build rank three networks which implement selection-vector modulation, and show how the two mechanisms can be combined. Finally, they relate the amount of selection-vector modulation with the effective rank, ie the dimensionality of activity, of a trained full-rank RNN.

      Strength:

      - The manuscript is written in an obvious manner<br /> - The analytic approach adopted in the manuscript is impressive<br /> - Very clear identification of the mechanisms leading to the two types of context-dependent modulation<br /> - Altogether, this manuscript reports remarkable insights on a very timely question

    1. Reviewer #1 (Public review):

      Summary:

      This article investigates the phenotype of macrophages with a pathogenic role in arthritis, particularly focusing on arthritis induced by immune checkpoint inhibitor (ICI) therapy.

      Building on prior data from monocyte-macrophage coculture with fibroblasts, the authors hypothesized a unique role for the combined actions of prostaglandin PGE2 and TNF. The authors studied this combined state using an in vitro model with macrophages derived from monocytes of healthy donors. They complemented this with single-cell transcriptomic and epigenetic data from patients with ICI-RA, specifically, macrophages sorted out of synovial fluid and tissue samples. The study addressed critical questions regarding the regulation of PGE2 and TNF: Are their actions co-regulated or antagonistic? How do they interact with IFN-γ in shaping macrophage responses?

      This study is the first to specifically investigate a macrophage subset responsive to the PGE2 and TNF combination in the context of ICI-RA, describes a new and easily reproducible in vitro model, and studies the role of IFNgamma regulation of this particular Mф subset.

      Strengths:

      Methodological quality: The authors employed a robust combination of approaches, including validation of bulk RNA-seq findings through complementary methods. The methods description is excellent and allows for reproducible research. Importantly, the authors compared their in vitro model with ex vivo single-cell data, demonstrating that their model accurately reflects the molecular mechanisms driving the pathogenicity of this macrophage subset.

      Comments on latest version:

      The revisions made to this manuscript followed the suggestions and improved the manuscript. The authors have thoroughly addressed my previous concerns, making several key improvements:

      The expanded comparison between rheumatoid arthritis (RA) and immune checkpoint inhibitor-induced RA (ICI-RA) in both cellular and molecular pathology is excellent. These additions to the literature review and discussion sections significantly strengthen the manuscript and provide valuable context.

      I particularly appreciate the added effort in mapping a particular cell subset onto previously published single-cell RNA-Seq embeddings. The enhanced UMAPs with cell subset projection analyses are methodologically compelling, informative and visually are easy to understand for any reader. The new Figure 3 represents a substantial improvement.

      More detailed comparisons with previously published single-cell datasets from 2019, 2020, and 2023 effectively contextualize this research within the broader field of rheumatoid arthritis pathogenesis. This enhances the manuscript's value for specialists in autoimmunity and myeloid immunology.

      I find the authors' suggestion to use the defined myeloid pathogenic phenotypes as biomarkers for therapy response prediction or dose optimization particularly insightful and clinically relevant.

      Overall, the authors have significantly improved both the analysis and presentation of results. The manuscript has been substantially enhanced.

    2. Reviewer #2 (Public review):

      Summary/Significance of the findings:

      The authors have done a great job by extensively carrying out transcriptomic and epigenomic analyses in the primary human/mouse monocytes/macrophages to investigate TNF-PGE2 (TP) crosstalk and their regulation by IFN-γ in the Rheumatoid arthritis (RA) synovial macrophages. They proposed that TP induces inflammatory genes via a novel regulatory axis whereby IFN-γ and PGE2 oppose each other to determine the balance between two distinct TNF-induced inflammatory gene expression programs relevant to RA and ICI-arthritis.

      Strengths:

      The authors have done a great job on RT-qPCR analysis of gene expression in primary human monocytes stimulated with TNF and showing the selective agonists of PGE2 receptors EP2 and EP4 22 that signal predominantly via cAMP. They have beautifully shown IFN-γ opposes the effects of PGE2 on TNF-induced gene expression. They found that TP signature genes are activated by cooperation of PGE2-induced AP-1, CEBP, and NR4A with TNF-induced NF-κB activity. On the other hand, they found that IFN-γ suppressed induction of AP-1, CEBP, and NR4A activity to ablate induction of IL-1, Notch, and neutrophil chemokine genes but promoted expression of distinct inflammatory genes such as TNF and T cell chemokines like CXCL10 indicating that TP induces inflammatory genes via IFN-γ in the RA and ICI-arthritis.

      Comments on latest version:

      The authors have answered my questions and i recommend this manuscript for publication.

    1. Reviewer #1 (Public review):

      Thank you for allowing me to review the paper "Evidence for deliberate burial of the dead by Homo naledi". This remains a very important site for paleoanthropology. I appreciate the work that the crew, especially the junior members of the team, put into this massive project. I appreciate that the authors did revise the paper since that is not a requirement of eLife. Extensive reviews by peer-reviewers have been provided for this paper, as well as professionally published replies (Martinón-Torres et al., 2023; Foecke et al., 2023). The composition, and citations of this version are much improved, though important information, some requested by reviewers, are buried in the supplementary section. It seems important that the authors make these sections more easily accessible to the general reader. The length of the paper is also unnecessary and impedes the readability of the work. Concise clarity is an expectation of most journals. The Netflix documentary was made to appeal to a mass audience, I would hope that the goal of the accompanying publication would be to enable readers to fully comprehend the work behind the claims.

      This version of the paper considers at great length many possibilities for how the H. naledi skeletal material came to rest in the cave system with some additional figures and data provided. However, quite a lot is still unclear. In my original review I stated, "The authors have repeatedly described how incredibly challenging it is to get into and out of this cave system and all of its chambers." This was a point emphasized in the Netflix documentary. In this version of the paper the authors have included within the supplementary section a brief discussion of other entrances. The work by Robbins et al. 2021 (a peer-reviewed paper in the impact factor rated journal Chemical Geology) is extremely relevant here. In this revision it is noted in the supplementary section that if the Postbox chamber was used as an opening, it would have reduced the length of the access to the system by 80 m. This fact seems important. This section should be moved out of the supplementary material and expanded because the conclusions published by Robbins et al. (2021) indicate a completely different route by which H. naledi accessed the cave, but this is hardly mentioned in the revision and deserves attention. To quote the Robbins et al.'s (2021) discussion section 6.3:

      "We acknowledge that additional data is required in order to confidently assess the relative timing of the Dragon's Back collapse and entry of H. naledi. Nonetheless, the stratigraphic and geochronologic observations presented here, together with those previously published (Dirks et al., 2017) are consistent with the following scenario. Prior to the collapse of the Dragon's Back, sometime before 241 ka (new minimum age for H. naledi from RS68), the cave could be entered by H. naledi via a shaft in the roof of the Postbox Chamber. From there H. naledi could walk along a straight passage that follows a gently descending, SW trending fracture into the Dragon's Back Chamber and, with the Dragon's Back block still attached to the roof, would have only needed to climb over a ~5 m high sill to access the Dinaledi Subsystem behind it. This sill and narrow fracture system behind the Dragon's Back block would have been a major impediment to any flood waters and most other fauna into the Dinaledi Subsystem, but it would have been a more accessible route than that today."

      The paper's conclusion continues, "The new dates further constrain the minimum age of H. naledi to 241 ka. Thus, H. naledi entered the subsystem between 241 ka and 335 ka, during a glacial period, when clastic sediment along the access route into the Dinaledi Subsystem experienced erosion. H. naledi would have probably entered the cave in the same way as the clastic sediments did, through an opening in the roof of the Postbox Chamber and may have entered via the Dragon's Back Chamber by climbing a 5 m high sill and passing below the Dragon's Back Block that was then still attached to the roof, to enter the Dinaledi Subsystem. In this context it is important to emphasize that it was not the Dragon's Back Block that prevented high-energy transport of coarse siliciclastic sediment from the Dragon's Back Chamber into the Dinaledi Subsystem, but rather the in situ floor block in the back wall of the Dragon's Back Chamber, against which the Dragon's Back Block slumped after it fell." This conclusion is very different from the complex pathway suggested by Berger et al. Martinón-Torres et al., 2023 also requested elaboration on this point in their reply by stating, "Moreover, recent studies by the Rising Star Cave team also point to a possible different and easier accesses for H. naledi into the fossil-bearing cave chambers than the current restricted access chute used by the research team, making clear that the degree of accessibility remains an open question (Robbins et al., 2021). Based on extensive dating studies of speleothem, this research (Robbins et al., 2021) implies that prior to 241 ka and the collapse of the Dragon's Back block hominins and other species could have more easily entered the cave via the Post Box Chamber and beneath the Dragon's Back Block before it fell. This gives access to a series of rifts that allow easier entry to the Dinaledi and other chambers beyond the present-day chute."

      Because this paper introduces very different sets of possibilities, it seems impossible to derive an understanding of the processes that occurred 335-241 ka throughout the cave system without going into detail on these other openings, especially openings that are hypothesized to have been used by the hominins in question.

      The world cares deeply about the H. naledi hominins and their story. I hope that in the coming years these issues are addressed, and perhaps other independent teams are allowed to do a full analysis since science is about replication. In any case, the excavation team has contributed important fossils to paleoanthropology.

      Literature cited:

      • Foecke, Kimberly K., Queffelec, Alain, & Pickering, Robyn. (2023). No Sedimentological Evidence for Deliberate Burial by Homo naledi - A Case Study Highlighting the Need for Best Practices in Geochemical Studies Within Archaeology and Paleoanthropology. PaleoAnthropology, 2024.

      • Martinón-Torres, M., Garate, D., Herries, A. I. R., & Petraglia, M. D. (2023). No scientific evidence that Homo naledi buried their dead and produced rock art. Journal of Human Evolution, 103464. https://doi.org/10.1016/j.jhevol.2023.103464

      • Robbins, J. L., Dirks, P. H. G. M., Roberts, E. M., Kramers, J. D., Makhubela, T. V., HilbertWolf, H. L., Elliott, M., Wiersma, J. P., Placzek, C. J., Evans, M., & Berger, L. R. (2021). Providing context to the Homo naledi fossils: Constraints from flowstones on the age of sediment deposits in Rising Star Cave, South Africa. Chemical Geology, 567, 120108. https://doi.org/10.1016/j.chemgeo.2021.120108

    2. Reviewer #2 (Public review):

      Before providing my review of the revised version of this study by Berger et al., which explores potential deliberate burials of Homo naledi within the Rising Star Cave System, I would like to briefly summarize the key points from my previous review of the earlier version (in 2023). Summarizing my previous review will provide context for assessing how effectively the revised study addresses the concerns I raised previously (in 2023).

      In my earlier comments, I highlighted significant methodological and analytical shortcomings that, in my view, undermined the authors' claim of intentional burials by Homo naledi. While the study presented detailed geological and fossil data, I found the evidence for intentional burials unconvincing due to insufficient application of archaeothanatological principles and other methodological gaps.

      My key concerns included:

      (1) The absence of a comprehensive archaeothanatological analysis, particularly with respect to taphonomic changes, bone articulations, and displacement patterns such as the collapse of sediments and bone remains into voids created by decomposition.

      (2) Missing or unclear illustrations of bone arrangements, which are critical for interpreting burial positions and processes.

      (3) A lack of detailed discussion on the sequence of decomposition, joint disarticulation, sediment infill, and secondary bone displacement.

      To convincingly support claims of deliberate burial, I argued that the study must reconstruct the timeline and processes surrounding death and deposition while clearly distinguishing natural taphonomic changes from intentional human actions. I emphasized the importance of integrating established archaeothanatological frameworks, such as those outlined by Duday et al. or Boulestin et al., to provide the necessary analytical rigor.

      I will now explain how the revised version of this study has successfully addressed all the concerns raised in my previous review and why I now think that the authors provide sufficient evidence for the presence of "repeated and patterned" deliberate burials (referred to as "cultural burials" by the authors) by Homo naledi within the Rising Star Cave System.

      In their revised manuscript, the authors have implemented substantial improvements in methodology, analytical depth, and overall presentation, which have effectively resolved the critical issues I previously highlighted. These revisions greatly strengthen their argument for intentional funerary practices. Importantly, the authors remain cautious in their interpretation of the evidence, explicitly refraining from inferring "symbolic" behavior or complex cognitive motivations behind these burials. Instead, they focus on presenting clear evidence for deliberate, patterned practices while leaving the broader implications for Homo naledi's cultural and cognitive capacities open for further investigation. This cautious approach adds to the credibility of their conclusions and avoids overextending the interpretation of the data.

      The authors' enhanced application of archaeothanatological principles now offers a more comprehensive and convincing interpretation of the burial features. Key gaps in the earlier version, such as the absence of detailed reconstructions of taphonomic processes, bone articulations, and displacement patterns, have been addressed with thorough analyses and clearer illustrations. The study also now includes a well-structured timeline of events surrounding death and deposition, demonstrating an improved ability to differentiate between natural processes and deliberate human actions. These additions lend greater clarity and rigor to the evidence, making the argument for intentional burials both robust and persuasive.

      Furthermore, the revised study presents detailed data on skeletal arrangements, decomposition sequences, and spatial patterns. This information is now relatively well illustrated and contextualized, enabling readers to better understand the complex processes involved in these burial practices. Importantly, the authors provide a stronger theoretical framework, integrating established archaeothanatological methodologies and taphonomic studies that situate their findings within broader archaeological and anthropological discussions of funerary behavior.

      That being said, there remain relatively minor issues that could be refined further. Addressing these would help ensure the study is as clear and accessible as possible to the reader. Such adjustments would enhance the overall readability and reinforce the study's impact within the scientific community.

      A - Suggested changes:

      While the revised version of this study marks a significant improvement, successfully addresses my previous major concerns and provides a convincing argument for deliberate burials by Homo naledi, I believe that including both one summary table + one summary figure for each of the three main locations and the-Hill Antechamber, and Dinaledi Chamber (Feature 1 and Puzzle Box)-would further enhance the clarity and accessibility of the findings. Such tables and figures would serve as a valuable reference, allowing readers to more easily follow how the detailed patterns observed at each site fit the criteria for distinguishing intentional from natural processes.

      The summary tables should consolidate key information for each location, such as:

      (1) Bone articulations: A comprehensive list of articulated skeletal elements, categorized by their anatomical relationships (e.g., labile vs. stable articulations).

      (2) Displacement patterns: Documentation of any spatial shifts in bone positions, noting directions and extents of disarticulation.

      (3) Sequence of decomposition: Observations regarding the sequence of decomposition, joint disarticulation and associated changes in bone arrangements.

      (4) Sediment interaction: Notes on sediment infill and its timing relative to decomposition, including evidence of secondary voids or delayed sediment deposition.

      (5) Distinguishing criteria: Clear indications of how each observed pattern supports intentional burial (e.g., structured placement, lack of natural transport mechanisms) versus natural processes (e.g., random dispersal, sediment-driven bone displacement).<br /> Including such tables would not only summarize the complex taphonomic and archaeothanatological data but also allow readers to quickly assess how the evidence supports the authors' conclusions. This approach would bridge the gap between the detailed narrative descriptions and the criteria necessary to differentiate deliberate funerary practices from natural occurrences.

      To streamline the main text further, many of the detailed descriptions of individual bones, specific displacement measurements, and other intricate observations could be moved to the supplementary data. This reorganization would maintain the richness of the data for those who wish to explore it in depth, while the summary tables would present the key findings concisely in the main text. This balance between accessibility and detail would ensure that the study appeals to both specialists requiring comprehensive data and readers looking for an overarching understanding of the findings.

      In addition to these structural changes, it is crucial to ensure that evidence is consistently illustrated throughout the text.

      Importantly the skeletal part representation is provided for Dinaledi Feature 1 in Figure 14, but similar data is not presented for the other burial features, such as those in the Hill Antechamber or Puzzle Box. This inconsistency could make it more challenging for readers to compare the features and fully appreciate the patterns of burial behavior across the different locations. Ensuring that similar types of evidence and analyses are presented uniformly for all features would strengthen the study and make its conclusions more cohesive and compelling.

      Adding supplementary figures to represent the skeletal part distribution (as in Figure 14) within each excavated area (i.e., not only for Dinaledi Feature 1 but also for Hill Antechamber and Puzzle Box) would significantly enhance the study's clarity and accessibility. These figures could provide a visual summary of skeletal part representation, allowing readers to easily understand the nature of human remains within each burial context.

      Specifically, such figures could:

      (1) Illustrate Skeletal Part Representation: By visually mapping the presence and location of various skeletal elements, the figures would make it easier for readers to assess the completeness and arrangement of remains in each feature. This is particularly important for interpreting patterns of bone articulation and disarticulation.<br /> For example, it is quite challenging to determine the exact number and characteristics of the human skeletal remains identified within the Puzzle Box and those recovered through the "subsurface collection" in its surrounding area. The authors state that "at least six individuals" were identified in this area (during "subsurface collection") but provide no further clarification. They simply mention that "most elements" were described previously, without specifying which elements or where this prior description can be found.

      (2) Highlight Articulations and Displacements: Figures could indicate which bones are articulated and their relative positions, as well as the spatial distribution of disarticulated elements. This would provide a clear visual context to support interpretations of taphonomic processes.

      (3) Facilitate Comparisons Across Locations: By presenting skeletal part representation consistently for each location, the figures would enable readers to directly compare features, reinforcing the argument for "repeated and patterned" behavior.

      (4) Simplify Complex Data: Instead of relying solely on textual descriptions, the visual format would allow readers to quickly grasp the key findings, making the study more accessible to a broader audience

      By including such figures alongside the proposed summary tables in the main text, the study would achieve a balance between detailed narrative descriptions and concise, visual representation of the data. This approach would strengthen the overall presentation and support the authors' conclusions effectively.

      Again, by presenting the data in a structured and comparative format, the new tables + figures could also highlight the differences and similarities between the three locations. This would reinforce the argument for "repeated and patterned" behavior, as the tables would make it easier to observe consistent burial practices across different contexts within the Rising Star Cave System.

      Adding these summary tables + figures, ensuring consistent presentation of evidence, and reallocating detailed descriptions to supplementary materials would not require significant new analysis. However, these organizational adjustments would greatly enhance the study's clarity, readability, and overall impact.

      B - A few additional changes are needed:

      Figure 8: This figure is critical but lacks clarity. Specifically:

      Panels 8a-c suffer from low contrast, making details difficult to discern.<br /> Panel 8d (sediment profile) is too small and lacks annotations that would aid interpretation.<br /> Figure S7: While this figure has significantly better contrast than Figures 8a-c, I am unable to identify the "articulated foot ... at right of frame," as mentioned in the caption. Please clarify this by adding annotations directly to the figure.

      Page 4, 2nd paragraph: In the sentence "Researchers thus have diverse opinions about how to test whether ...," the word "opinions" should be replaced with a more precise term, such as "approaches."

      C - In conclusion, I am impressed by the significant effort and meticulous work that has gone into this revised version of the study. The quality of the new evidence presented is commendable, and the findings now convincingly demonstrate not only clear evidence of intentional burial practices by Homo naledi but also compelling indications of post-depositional reworking. These advancements reflect a major improvement in the study's analytical rigor and the robustness of its conclusions, making it a valuable contribution to the understanding of early hominin funerary behavior.

    1. Reviewer #1 (Public review):

      Summary:

      This work has crated the map of synaptic connectivity between the inputs and outputs of song premotor nucleus, HVC in zebra finches to understand how sensory (auditory) to motor circuit interact to coordinate song production and learning. The authors optimized the optogenetic technique via AAV to manipulate auditory inputs from a specific auditory area one-by-one and recorded synaptic activity from a neuron in HVC with whole-cell recording from slice preparation with identification of projection area by retrograde neuronal tracing. These thorough and detailed analysis provide compelling evidence of synaptic connections between 4 major auditory inputs (3 forebrain and 1 thalamic regions) within three projection neurons in the HVC; all areas give monosynaptic excitatory inputs and polysynaptic inhibitory inputs, but proportions of projection to each projection neuron varied. They also find specific reciprocal connections between mMAN and Av. Taken together the authors provide the map of synaptic connection between intercortical sensory to motor areas which is suggested to be involved in zebra finch song production and learning.

      Strengths:

      The authors optimized optogenetical tools with eGtACR1 by using AAV which allow them to manipulate synaptic inputs in a projection-specific manner in zebra finches. They also identify HVC cell type based on projection area. With their technical advance and thorough experiments, they provided detailed map synaptic connection and gave insights into the neuronal circuit for auditory guided vocal (motor) learning.

      Weaknesses:

      As this study is in adult brain slices, there might be a gap to the functions in developmental song learning.

    2. Reviewer #2 (Public review):

      Summary:

      The manuscript describes synaptic connectivity in Songbird cortex four main classes of sensory neurons afferents onto three known classes of projection neurons of the pre-motor cortical region HVC. HVC is a region associated with the generation of learned bird song. Investigators here use all male zebra finches to examine the functional anatomy of this region using patch clamp methods combined with optogenetic activation of select neuronal groups.

      Strengths:

      The quality of the recordings is extremely high and the quantity of data is on a very significant scale, this will certainly aid the field.

      Weaknesses:

      Could make the figures a little easier to navigate by having some atlas drawings.

      Comments on revisions:

      The authors have addressed the minor concerns and suggestions

    3. Reviewer #3 (Public review):

      Nucleus HVC is critical both for song production as well as learning and arguably, sitting at the top of the song control system, is the most critical node in this circuit receiving a multitude of inputs and sending precisely timed commands that determine the temporal structure of song. The complexity of this structure and its underlying organization seem to become more apparent with each experimental manipulation, and yet our understanding of the underlying circuit organization remains relatively poorly understood. In this study, Trusel and Roberts use classic whole-cell patch clamp techniques in brain slices coupled with optogenetic stimulation of select inputs to provide a careful characterization and quantification of synaptic inputs into HVC. By identifying individual projections neurons using retrograde tracer injections combined with pharmacological manipulations, they classify monosynaptic inputs onto each of the three main classes of glutamatergic projection neurons in HVC (RA-, Area X- and Av-projecting neurons). This study is remarkable in the amount of information that it generates, and the tremendous labor involved for each experiment, from the expression of opsins in each of the target inputs (Uva, NIf, mMAN and Av), the retrograde labelling of each type of projection neuron, and ultimately the optical stimulation of infected axons while recording from identified projection neurons. Taken together, this study makes an important contribution to increasing our identification, and ultimately understanding, of the basic synaptic elements that make up the circuit organization of HVC, and how external inputs, which we know to be critical for song production and learning, contribute to the intrinsic computations within this critic circuit.

      This study is impressive in its scope, rigorous in its implementation and thoughtful regarding its limitations. The manuscript is well written, and I appreciate the clarity with which the authors use our latest understanding of the evolutionary origins of this circuit to place these studies within a larger context and their relevance to the study of vocal control, including human speech. My comments are minor and primarily about legibility, clarification of certain manipulations and organization of some of the summary figures.

      Comments on revisions:

      The authors have done a very nice job addressing the reviewers' comments.

    1. Reviewer #1 (Public review):

      Wang et al., recorded concurrent EEG-fMRI in 107 participants during nocturnal NREM sleep to investigate brain activity and connectivity related to slow oscillations (SO), sleep spindles, and in particular their co-occurrence. The authors found SO-spindle coupling to be correlated with increased thalamic and hippocampal activity, and with increased functional connectivity from the hippocampus to the thalamus and from the thalamus to the neocortex, especially the medial prefrontal cortex (mPFC). They concluded the brain-wide activation pattern to resemble episodic memory processing, but to be dissociated from task-related processing and suggest that the thalamus plays a crucial role in coordinating the hippocampal-cortical dialogue during sleep.

      The paper offers an impressively large and highly valuable dataset that provides the opportunity for gaining important new insights into the network substrate involved in SOs, spindles, and their coupling.

      Comments on revisions:

      While the authors have sufficiently addressed some of my previous comments, I still have severe concerns regarding several key aspects of the methodology, which were even corroborated by the supplementary results presented in response to the last round of reviews. I have the following specific comments (numbers refer to comments raised in the previous review):

      Re 1: The revised introduction now cites a couple of papers but discusses them only very superficially, lumping together several studies with very different key results. This is stil not very informative for the reader and does not sufficiently acknowledge previously published work. Here are two examples to illustrate this:<br /> a. "These studies have generally reported that slow oscillations are associated with widespread cortical and subcortical BOLD changes, whereas spindles elicit activation in the thalamus, as well as in several cortical and paralimbic regions."  Several studies even showed e.g., a clear activation of the hippocampus and parahippocampal gyrus associated with spindles, not just the thalamus<br /> b. "Although these findings provide valuable insights into the BOLD correlates of sleep rhythms, they often do not employ sophisticated temporal modeling (Huang et al., 2024) [, ...]." - previous studies have used e.g., spindle event-related regressors with individual spindle amplitudes as parametric modulators, first and second order derivatives of the HRF function, as well as PPI connectivity analyses, which I would consider rather sophisticated temporal modelling.

      Re 4+9: The short overall recordings in some subjects on the one hand and the large number of spindles and SOs detected in N1 sleep stages are still highly concerning, in fact even more so, now that the actual numbers have been provided in the Supplementary Tables. Either the sleep staging or the detection of SO and spindle events must be incorrect. I understand that for specific EEG analysis and fMRI modelling purposes sometimes slightly different thresholds are used as compared to clinical sleep staging, but several parameters here are alarmingly off.<br /> a. Given that proper NREM sleep (N2+N3) is the relevant stage for the analyses conducted in this paper, some of the N2+N3 durations are very short (eg 7-8 min) while those subjects' results have the same impact on the group level analyses as those with >100 min of N2+N3. Either subjects with very little relevant data (not overall recording time but N2+N3 time) should be excluded or weighting subject data for the group analyses according to the amount od contributed data should be done.<br /> b. The authors argue that the SO and spindle detection algorithms are valid since widely used and that they were developed for N2+N3 stages, which is why they will also detect events in other stages: "While, because the detection methods for SO and spindle are based on percentiles, this method will always detect a certain number of events when used for other stages (N1 and REM) sleep data, but the differences between these events and those detected in stage N23 remain unclear." I do agree that with very liberal thresholds, also SO and spindle vents may be detected in other stages, but it shouldn't be that many. If the percentiles of amplitude thresholds were defined based on properly scored N2+N3 stages only, very few events should be detected (erroneously!) in N1, as the occurrence of K-complexes (isolated SOs) and spindles per definition makes it N2, and during REM sleep only very few spindles and SOS are allowed to occur, without scoring it NREM instead. For the first subject (just as example, but with similar numbers for the rest of the sample), reveals as many as 60 SOs and 31 spindles within 8 min of N1 sleep (Table S2) as well as 13 SOs and 7 spindles within 2 min of REM sleep (Table S4). These numbers are completely unrealistic and question the correctness of the sleep staging as well as the physiological relevance of the EEG graphoelements identified as SO and spindles. It also completely undermines the interpretability of the respective event regressors for the fMRI analyses.<br /> c. Likely, given the large numbers of coupled SO-spindle events and the apparently very low amplitude criteria for event identification, also the number of SO-spindle couplings is likely severely overestimated.

      Re 10: The rationale for using a lateralized frontal electrode (F3) for both SO (should have been at least bilateral or central) and spindle detection (should have been a centro-parietal electrode) is not convincing. Other EEG-fMRI spindle or SO papers have used a number of frontal (SO) or centro-parietal (spindles) electrodes averaged or even approaches including all EEG electrodes. Searching events with low thresholds at suboptimal recording sites does not dot this highly valuable dataset justice.

      Re 7: It is not clear to me why/how larger voxels would reduce susceptibility-related distortions and partial volume effects. Usually, the opposite is true. This should be elaborated.

    2. Reviewer #2 (Public review):

      In this study, Wang and colleagues aimed to explore brain-wide activation patterns associated with NREM sleep oscillations, including slow oscillations (SOs), spindles, and SO-spindle coupling events. Their findings reveal that SO-spindle events corresponded with increased activation in both the thalamus and hippocampus. Additionally, they observed that SO-spindle coupling was linked to heightened functional connectivity from the hippocampus to the thalamus, and from the thalamus to the medial prefrontal cortex-three key regions involved in memory consolidation and episodic memory processes.

      This study's findings are timely and highly relevant to the field. The authors' extensive data collection, involving 107 participants sleeping in an fMRI while undergoing simultaneous EEG recording, deserves special recognition. If shared, this unique dataset could lead to further valuable insights.

      Comments on revisions:

      The authors' efforts in revising the manuscript and addressing the reviewers' comments are certainly commendable. However, I remain concerned about potential issues in detecting sleep-related oscillations (SOs, spindles, and consequently coupled SO-spindle events), which may arise due to suboptimal parameter selection or inaccurate sleep staging, potentially impacting all subsequent analyses.

      A review of Supplementary Tables 1-4 reveals an unusually high number of detected SOs and spindles during sleep stage N1 and REM sleep. While the authors correctly note that a percentile-based detection approach will always identify a certain number of events across sleep stages, the particularly high counts in N1 and REM are concerning. To mitigate the limitations of this method, the authors could have performed event detection independently of sleep stages (i.e., across the entire dataset for each participant) and subsequently assigned the detected events to the corresponding sleep stages. If the event counts in N1 and REM remained disproportionately high, this would indicate a fundamental issue with the detection procedure.

    3. Reviewer #3 (Public review):

      Summary:

      Wang et al., examined the brain activity patterns during sleep, especially when locked to those canonical sleep rhythms such as SO, spindle, and their coupling. Analyzing data from a large sample, the authors found significant coupling between spindles and SOs, particularly during the up-state of the SO. Moreover, the authors examined the patterns of whole-brain activity locked to these sleep rhythms. The authors next investigated the functional connectivity analyses, and found enhanced connectivity between the hippocampus and the thalamus and the medial PFC. These results reinforced the theoretical model of sleep-dependent memory consolidation, such that SO-spindle coupling is conducive for systems-level memory reactivation and consolidation.

      Strengths:

      There are obvious strengths in this work, including the large sample size, state-of-the-art neuroimaging and neural oscillation analyses, and the richness of results. The results now inform hemodynamic neural activity that coincided with SO-spindle couplings.

      Weaknesses:

      My earlier comments were about the inability to make inferences on memory given the lack of memory tasks, and the weakness in using the open-ended cognitive state decoding.

      The current revision has addressed these major concerns. The authors expanded discussions regarding the theoretical implications of the work in a more nuanced manner.

    1. Reviewer #1 (Public review):

      The authors aimed to investigate how the probability of a reversal in a decision-making task is computed in cortical neurons. They analyzed neural activity in the prefrontal cortex of monkeys and units in recurrent neural networks (RNNs) trained on a similar task. Their goal was to understand how the dynamical systems that implement computation perform a probabilistic reversal learning task in RNNs and nonhuman primates.

      Major strengths and weaknesses:

      Strengths:

      (1) Integrative Approach: The study exemplifies a modern approach by combining empirical data from monkey experiments with computational modeling using RNNs. This integration allows for a more comprehensive understanding of the dynamical systems that implement computation in both biological and artificial neural networks.<br /> (2) The focus on using perturbations to identify causal relationships in dynamical systems is a good goal. This approach aims to go beyond correlational observations.<br /> (3) The revised manuscript provides a more nuanced interpretation of the dynamics, reconciling the observations with aspects of line attractor models.

      Weaknesses:

      (1) The use of targeted dimensionality reduction (TDR) to identify the axis determining reversal probability may not necessarily isolate the dimension along which the RNN computes reversal probability. This should be computed from the RNN update itself rather than through a readout of network variance. Depending on how this is formulated, it could be something like the Jacobian of the state update with respect to inputs at input onset and with respect to the state during relaxation dynamics. This is worth thinking through further. It's important to try to take advantage of access afforded by using RNNs rather than solely relying on analyses available to us in neural data.

      Appraisal of aims and conclusions:

      The authors have substantially revised their interpretation of the results to reconcile their findings with line attractor models. They now acknowledge that their observation of reward integration explaining reversal probability activity (x_rev) is compatible with line attractor models, which addresses one of my main concerns.

      Their expanded analysis now differentiates between two activity modes: (1) substantial non-stationary dynamics during a trial (incompatible with line attractors) and (2) stationary and stable dynamics at trial start (compatible with point attractors and line attractor models). This dual characterization provides a more complete picture of the dynamical system and highlights the composability of dynamical features.

      Likely impact and utility:

      This work makes a stronger contribution to our understanding of how probabilistic information is represented in neural circuits with intervening behaviors. The augmented model that combines elements of attractor dynamics with non-stationary trajectories offers a more comprehensive framework for understanding neural computations in decision-making tasks.

      The data and methods could be useful to the community. While the authors have improved their analysis of network dynamics, additional reverse engineering that takes full advantage of access to the RNN's update equations could further strengthen the work.

    2. Reviewer #2 (Public review):

      Summary:

      In this work the authors trained RNN to perform a reversal task also performed by animals while PFC activity is recorded. The authors devised a new method to train RNN on this type of reversal task, which in principle ensures that the behavior of the RNN matches the behavior of the animal. They then performed some analysis of neural activity, both RNN and PFC recording, focusing on the neural representation of the reversal probability and its evolution across trials. Given the analysis presented, it has been difficult for me to asses at which point RNN can reasonably be compared to PFC recordings.

      Strengths:

      Focusing on a reversal task, the authors address a challenge in RNN training, as they do not use a standard supervised learning procedure where the desired output is available for each trial. They propose a new way of doing that.

      They attempt to confront RNN and neural recordings in behaving animals.

      Weaknesses:

      It would be nice to better articulate the analysis results of the two training set-ups (with and without 0 response during fixation). The dynamical system analysis is confusing, the notions of stationary and non-stationary dynamics and its relationship with attractors are puzzling. Is there a line attractor in one case (with inputs orthogonal to the integration direction being called back to the attractor, and reward input aligned with the stable direction)? In the other case, do we have a cylindrical attracting manifold on which activity circles around and is pushed along the axis of the cylinder by reward inputs? Which case is closest to the PFC recordings?

    3. Reviewer #3 (Public review):

      Summary:

      Kim et al. present a study of the neural dynamics underlying reversal learning in monkey PFC and neural networks. Their main finding is that neural activity during fixation resembles a line attractor storing the current belief of the reversal state of the task. This is followed by richer dynamics unfolding throughout the remainder of the trial, which eventually converge to a new point on the line attractor by the start of the next trial. The idea of studying neural dynamics throughout the task (including intervening behaviour) is interesting, and the data provides some insights into the neural dynamics driving reversal learning. The modelling seems to support the analyses, but both the modelling and analyses also leave several open questions.

      Strengths:

      The paper addresses an interesting topic of the neural dynamics underlying reversal learning in PFC, using a combination of biological and simulated data. Reversal learning has been studied extensively in neuroscience, but this paper takes a step further by analysing neural dynamics throughout the trials instead of focusing on just the evidence integration epoch.

      The authors show some close parallels between the experimental data and RNN simulations, both in terms of behaviour and neural dynamics. The analyses of how rewarded and unrewarded trials differentially affect dynamics throughout the trials in RNNs and PFC were particularly interesting. This work has the potential to provide new insights into the neural underpinnings of reversal learning.

      Weaknesses:

      Data analyses:

      While the analyses seem mostly sound, one shortcoming is that they are all aligned to the inferred reversal trial rather than the true experimental reversal trial. For example, the analyses showing that 'x_rev' decays strongly after the reversal trial, irrespective of the reward outcome, seem like they are true essentially by design. The choice to align to the inferred reversal trial also makes this trial seem 'special' (e.g. in Fig 2 & Fig 6A), but it is unclear whether this is a real feature of the data or an artifact of effectively conditioning on a change in behaviour. It would be useful to investigate whether any of these analyses differ when aligned to the true reversal trial. It is also unsurprising that x_rev increases before the reversal and decreases after the reversal (it is hard to imagine a system where this is not the case), yet all of Fig 6 and several other analyses are devoted to this point.

      Most of the analyses focus on the dynamics specifically in the x_rev subspace, but a major point of the paper is to say that biological (and artificial) networks may also have to do other things at different times in the trial. If that is the case, it would be interesting to also ask what happens in other subspaces of neural activity, which are not specifically related to evidence integration or choice - are there other subspaces that explain substantial variance? Do they relate to any meaningful features of the experiment?

      This is especially important when considering analyses trying to establish the presence (or absence) of attractor dynamics in the circuit. In particular, activity in the x_rev subspace both affects and depends on other subspaces of neural activity, so it is not as meaningful to analyse the dynamics of this subspace in isolation. It would e.g. have been preferable to analyse the early-trial dynamics in the full state space and then possibly projecting onto x_rev, rather than first projecting activity onto x_rev and then fitting a linear autoregressive model.

      Modelling:

      There are a number of surprising and non-standard modelling choices made in this paper. For example, the choice to only use inhibitory neurons is non-conventional and it is not clear whether and how this impacts the results. The inputs are also provided without any learnable input weights, which makes it harder to interpret the input-driven dynamics during the different phases of a trial.

      It is surprising that the RNN is "trained to flip its preferred choice a few trials after the inferred scheduled reversal trial", with the reversal trial inferred by an ideal Bayesian observer. A more natural approach would be to directly train the RNN to solve the task (by predicting the optimal choice) and then investigating the emergent behaviour & dynamics. If the authors prefer their imitation learning approach, it is also surprising that the network is trained to predict the reversal trial inferred using Bayesian smoothing instead of Bayesian filtering.

      Finally, it was surprising that the network is trained and tested with different block lengths (24 & 36 trials, respectively), and it is not mentioned whether or how this affects behaviour.

    1. Reviewer #1 (Public review):

      Summary of what the authors were trying to achieve

      This paper concerns mechanisms of foraging behavior in C. elegans. Upon removal from food, C. elegans first executes a stereotypical local search behavior in which it explores a small area by executing many random, undirected reversals and turns called "reorientations." If the worm fails to find food, it transitions to a global search in which it explores larger areas by suppressing reorientations and executing long forward runs (Hills et al., 2004). At the population level, reorientation rate declines gradually. Nevertheless, about 50% of individual worms appear to exhibit an abrupt transition between local and global search, which is evident as a discrete transition from high to low reorientation rate (Lopez-Cruz et al., 2019). This observation has given rise to the hypothesis that local and global search correspond to separate internal states with the possibility of sudden transitions between them (Calhoun et al., 2014). The objective of the paper is to demonstrate that is not necessary to posit distinct internal states to account for discrete transitions from high to low reorientation rate. On the contrary, discrete transitions can occur simply because of the stochastic nature of the reorientation behavior itself.

      Major strengths and weaknesses of the methods and results

      • The model was not explicitly designed to match the sudden, stable changes in reorientation rates observed in the experimental data from individual worms. Kinetic parameters were simply chosen to match the average population behavior. Nevertheless, many sudden stable changes in reorientation rates occurred. This is a strong argument that apparent state changes can arise as an epiphenomenon of stochastic processes.

      • The new stochastic model is more parsimonious than reorientation-state change model because it posits one state rather than two.

      • A prominent feature of the empirical data is that 50% of the worms exhibit a single (apparent) state change and the rest show either no state changes or multiple state changes. Does the model reproduce these proportions? This obvious question was not addressed.

      • There is no obvious candidate for the neuronal basis of the decaying factor M. The authors speculate that decreasing sensory neuron activity might be the correlate of M but then provide contradictory evidence that seems to undermine that hypothesis. The absence of a plausible neuronal correlate of M weakens the case for the model.

      Appraisal of whether the authors achieved their aims, and whether the results support their conclusions

      The authors have made a solid case that is not necessary to posit distinct internal states to account for discrete transitions from high to low reorientation rate. On the contrary, discrete transitions can occur simply because of the stochastic nature of the reorientation behavior itself.

      Impact of the work on the field, and the utility of the methods and data to the community

      Posting hidden internal states to explain behavioral sequences is gaining acceptance in behavioral neuroscience. The likely impact of the paper is to establish a compelling example of how statistical reasoning can reduce the number of hidden states to achieve more parsimonious models.

    2. Reviewer #2 (Public review):

      Summary:

      In this study, the authors build a statistical model that stochastically samples from a time-interval distribution of reorientation rates. The form of the distribution is extracted from a large array of behavioral data, is then used to describe not only the dynamics of individual worms (including the inter-individual variability in behavior), but also the aggregate population behavior. The authors note that the model does not require an assumption about behavioral state transitions, or evidence accumulation, as has been done previously, but rather that the stochastic nature of behavior is "simply the product of stochastic sampling from an exponential function".

      Strengths:

      This model provides a strong juxtaposition to other foraging models in the worm. Rather than evoking a behavioral transition function (that might arise from a change in internal state or the activity of a cell type in the network), or evidence accumulation (which again maps onto a cell type, or the activity of a network) - this model explains behavior via the stochastic sampling of a function of an exponential decay. The underlying model and the dynamics being simulated, as well as the process of stochastic sampling are well described and the model fits the exponential function (equation 1) to data on a large array of worms exhibiting diverse behaviors (1600+ worms from Lopez-Cruz et al). The work of this study is able to explain or describe the inter-individual diversity of worm behavior across a large population. The model is also able to capture two aspects of the reorientations, including the dynamics (to switch or not to switch) and the kinetics (slow vs fast reorientations). The authors also work to compare their model to a few others including the Levy walk (whose construction arises from a Markov process) to a simple exponential distribution, all of which have been used to study foraging and search behaviors.

      Weaknesses:

      This manuscript has two weaknesses that dampen the enthusiasm for the results. First, in all of the examples the authors cite where a Gillespie algorithm is used to sample from a distribution, be it the kinetics associated with chemical dynamics, or a Lotka-Volterra Competition Model, there are underlying processes that govern the evolution of the dynamics, and thus the sampling from distributions. In one of their references for instance, the stochasticity arises from the birth and death rates, thereby influencing the genetic drift in the model. In these examples, the process governing the dynamics (and thus generating the distributions from which one samples) are distinct from the behavior being studied. In this manuscript, the distribution being sampled from is the exponential decay function of the reorientation rate (lines 100-102). This appears to be tautological - a decay function fitted to the reorientation data is then sampled to generate the distributions of the reorientation data. That the model performs well, and matches the data is commendable, but it is unclear how that could not be the case if the underlying function generating the distribution was fit to the data.

      The second weakness is somewhat related to the first, in that absent an underlying mechanism or framework, one is left wondering what insight the model provides. Stochastic sampling a function generated by fitting the data to produce stochastic behavior is where one ends up in this framework, and the authors indeed point this out: "simple stochastic models should be sufficient to explain observably stochastic behaviors." (Line 233-234). But if that is the case, what do we learn about how the foraging is happening. The authors suggest that the decay parameter M can be considered a memory timescale; which offers some suggestion, but then go on to say that the "physical basis of M can come from multiple sources". Here is where one is left for want: The mechanisms suggested, including loss of sensory stimuli, alternations in motor integration, ionotropic glutamate signaling, dopamine, and neuropeptides are all suggested: this is basically all of the possible biological sources that can govern behavior, and one is left not knowing what insight the model provides. The array of biological processes listed are so variable in dynamics and meaning, that their explanation of what govern M is at best unsatisfying. Molecular dynamics models that generate distributions can point to certain properties of the model, such as the binding kinetics (on and off rates, etc.) as explanations for the mechanisms generating the distributions, and therefore point to how a change in the biology affects the stochasticity of the process. It is unclear how this model provides such a connection, especially taken in aggregate with the previous weakness.

      Providing a roadmap of how to think about the processes generating M, the meaning of those processes in search, and potential frameworks that are more constrained and with more precise biological underpinning (beyond the array of possibilities described) would go a long way to assuaging the weaknesses.

      Comments on revised version:

      The authors have addressed the main concerns of the manuscript.

    1. Reviewer #1 (Public review):

      This study investigates the sex determination mechanism in the clonal ant Ooceraea biroi, focusing on a candidate complementary sex determination (CSD) locus-one of the key mechanisms supporting haplodiploid sex determination in hymenopteran insects. Using whole genome sequencing, the authors analyze diploid females and the rarely occurring diploid males of O. biroi, identifying a 46 kb candidate region that is consistently heterozygous in females and predominantly homozygous in diploid males. This region shows elevated genetic diversity, as expected under balancing selection. The study also reports the presence of an lncRNA near this heterozygous region, which, though only distantly related in sequence, resembles the ANTSR lncRNA involved in female development in the Argentine ant, Linepithema humile (Pan et al. 2024). Together, these findings suggest a potentially conserved sex determination mechanism across ant species. However, while the analyses are well conducted and the paper is clearly written, the insights are largely incremental. The central conclusion - that the sex determination locus is conserved in ants - was already proposed and experimentally supported by Pan et al. (2024), who included O. biroi among the studied species and validated the locus's functional role in the Argentine ant. The present study thus largely reiterates existing findings without providing novel conceptual or experimental advances.

      Other comments:

      The mapping is based on a very small sample size: 19 females and 16 diploid males, and these all derive from a single clonal line. This implies a rather high probability for false-positive inference. In combination with the fact that only 11 out of the 16 genotyped males are actually homozygous at the candidate locus, I think a more careful interpretation regarding the role of the mapped region in sex determination would be appropriate. The main argument supporting the role of the candidate region in sex determination is based on the putative homology with the lncRNA involved in sex determination in the Argentine ant, but this argument was made in a previous study (as mentioned above).<br /> In the abstract, it is stated that CSD loci have been mapped in honeybees and two ant species, but we know little about their evolutionary history. But CSD candidate loci were also mapped in a wasp with multi-locus CSD (study cited in the introduction). This wasp is also parthenogenetic via central fusion automixis and produces diploid males. This is a very similar situation to the present study and should be referenced and discussed accordingly, particularly since the authors make the interesting suggestion that their ant also has multi-locus CSD and neither the wasp nor the ant has tra homologs in the CSD candidate regions. Also, is there any homology to the CSD candidate regions in the wasp species and the studied ant?

      The authors used different clonal lines of O. biroi to investigate whether heterozygosity at the mapped CSD locus is required for female development in all clonal lines of O. biroi (L187-196). However, given the described parthenogenesis mechanism in this species conserves heterozygosity, additional females that are heterozygous are not very informative here. Indeed, one would need diploid males in these other clonal lines as well (but such males have not yet been found) to make any inference regarding this locus in other lines.

    2. Reviewer #2 (Public review):

      The manuscript by Lacy et al. is well written, with a clear and compelling introduction that effectively conveys the significance of the study. The methods are appropriate and well-executed, and the results, both in the main text and supplementary materials, are presented in a clear and detailed manner. The authors interpret their findings with appropriate caution.

      This work makes a valuable contribution to our understanding of the evolution of complementary sex determination (CSD) in ants. In particular, it provides important evidence for the ancient origin of a non-coding locus implicated in sex determination, and shows that, remarkably, this sex locus is conserved even in an ant species with a non-canonical reproductive system that typically does not produce males. I found this to be an excellent and well-rounded study, carefully analyzed and well contextualized.

      That said, I do have a few minor comments, primarily concerning the discussion of the potential 'ghost' CSD locus. While the authors acknowledge (line 367) that they currently have no data to distinguish among the alternative hypotheses, I found the evidence for an additional CSD locus presented in the results (lines 261-302) somewhat limited and at times a bit difficult to follow. I wonder whether further clarification or supporting evidence could already be extracted from the existing data. Specifically:

      (1) Line 268: I doubt the relevance of comparing the proportion of diploid males among all males between lines A and B to infer the presence of additional CSD loci. Since the mechanisms producing these two types of males differ, it might be more appropriate to compare the proportion of diploid males among all diploid offspring. This ratio has been used in previous studies on CSD in Hymenoptera to estimate the number of sex loci (see, for example, Cook 1993, de Boer et al. 2008, 2012, Ma et al. 2013, and Chen et al., 2021). The exact method might not be applicable to clonal raider ants, but I think comparing the percentage of diploid males among the total number of (diploid) offspring produced between the two lineages might be a better argument for a difference in CSD loci number.

      (2) If line B indeed carries an additional CSD locus, one would expect that some females could be homozygous at the ANTSR locus but still viable, being heterozygous only at the other locus. Do the authors detect any females in line B that are homozygous at the ANTSR locus? If so, this would support the existence of an additional, functionally independent CSD locus.

      (3) Line 281: The description of the two tra-containing CSD loci as "conserved" between Vollenhovia and the honey bee may be misleading. It suggests shared ancestry, whereas the honey bee csd gene is known to have arisen via a relatively recent gene duplication from fem/tra (10.1038/nature07052). It would be more accurate to refer to this similarity as a case of convergent evolution rather than conservation.

      (4) Finally, since the authors successfully identified multiple alleles of the first CSD locus using previously sequenced haploid males, I wonder whether they also observed comparable allelic diversity at the candidate second CSD locus. This would provide useful supporting evidence for its functional relevance.

      Overall, these are relatively minor points in the context of a strong manuscript, but I believe addressing them would improve the clarity and robustness of the authors' conclusions.

    3. Reviewer #3 (Public review):

      Summary:

      The sex determination mechanism governed by the complementary sex determination (CSD) locus is one of the mechanisms that support the haplodiploid sex determination system evolved in hymenopteran insects. While many ant species are believed to possess a CSD locus, it has only been specifically identified in two species. The authors analyzed diploid females and the rarely occurring diploid males of the clonal ant Ooceraea biroi and identified a 46 kb CSD candidate region that is consistently heterozygous in females and predominantly homozygous in males. This region was found to be homologous to the CSD locus reported in distantly related ants. In the Argentine ant, Linepithema humile, the CSD locus overlaps with an lncRNA (ANTSR) that is essential for female development and is associated with the heterozygous region (Pan et al. 2024). Similarly, an lncRNA is encoded near the heterozygous region within the CSD candidate region of O. biroi. Although this lncRNA shares low sequence similarity with ANTSR, its potential functional involvement in sex determination is suggested. Based on these findings, the authors propose that the heterozygous region and the adjacent lncRNA in O. biroi may trigger female development via a mechanism similar to that of L. humile. They further suggest that the molecular mechanisms of sex determination involving the CSD locus in ants have been highly conserved for approximately 112 million years. This study is one of the few to identify a CSD candidate region in ants and is particularly noteworthy as the first to do so in a parthenogenetic species.

      Strengths:

      (1) The CSD candidate region was found to be homologous to the CSD locus reported in distantly related ant species, enhancing the significance of the findings.

      (2) Identifying the CSD candidate region in a parthenogenetic species like O. biroi is a notable achievement and adds novelty to the research.

      Weaknesses

      (1) Functional validation of the lncRNA's role is lacking, and further investigation through knockout or knockdown experiments is necessary to confirm its involvement in sex determination.

      (2) The claim that the lncRNA is essential for female development appears to reiterate findings already proposed by Pan et al. (2024), which may reduce the novelty of the study.

    1. Reviewer #1 (Public review):

      This manuscript presents an interesting new framework (VARX) for simultaneously quantifying effective connectivity in brain activity during sensory stimulation and how that brain activity is being driven by that sensory stimulation. The core idea is to combine the Vector Autoregressive model that is often used to infer Granger-causal connectivity in brain data with an encoding model that maps the features of a sensory stimulus to that brain data. The authors do a nice job of explaining the framework. And then they demonstrate its utility through some simulations and some analysis of real intracranial EEG data recorded from subjects as they watched movies. They infer from their analyses that the functional connectivity in these brain recordings is essentially unaltered during movie watching, that accounting for the driving movie stimulus can protect one against misidentifying brain responses to the stimulus as functional connectivity, and that recurrent brain activity enhances and prolongs the putative neural responses to a stimulus.

      This manuscript presents an interesting new framework (VARX) for simultaneously quantifying effective connectivity in brain activity during sensory stimulation and how that brain activity is being driven by that sensory stimulation. Overall, I thought this was an interesting manuscript with some rich and intriguing ideas.

      Comments on revisions:'

      The responses to the previous comments are very helpful. I think the manuscript does a nice job now of presenting its interesting findings in a convincing and measured manner.

      I had only one small remaining suggestion - to maybe link the finding of reduced intrinsic connectivity during stimulation to previous work on that topic. I thought of Nauhaus et al., Nature Neurosci, 2009.

    2. Reviewer #2 (Public review):

      Summary:

      The authors apply the recently developed VARX model, which explicitly models intrinsic dynamics and the effect of extrinsic inputs, to simulated data and intracranial EEG recordings. This method provides a directed method of 'intrinsic connectivity'. They argue this model is better suited to the analysis of task neuroimaging data because it separates the intrinsic and extrinsic activity. They show: that intrinsic connectivity is largely unaltered during a movie-watching task compared to eyes open rest; intrinsic noise is reduced in the task; and there is intrinsic directed connectivity from sensory to higher-order brain areas.

      Strengths:

      (1) The paper tackles an important issue with an appropriate method.

      (2) The authors validated their method on data simulated with a neural mass model.

      (3) They use intracranial EEG, which provides a direct measure of neuronal activity.

      (4) Code is made publicly available and the paper is written well.

      Comments on revisions:'

      The authors have addressed my comments.

    1. Reviewer #2 (Public review):

      Summary:

      Zhang et al. present a methodology to model protein-DNA interactions via learning an optimizable energy model, taking into account a represetative bound structure for the system and binding data. The methodology is sound and interesting. They apply this model for predicting binding affinity data and binding sites in vivo.

      Strengths:

      The manuscript is well organized with good visualizations and is easy to follow. The methodology is discussed in detail. The IDEA energy model seems like an interesting way to study a protein-DNA system in the context of a given structure and binding data. The authors show that an IDEA model trained on one system can be transferred to other structurally similar systems. The authors show good performance in discriminating between binding-vs-decoy sequences for various systems, and binding affinity prediction. The authors also show evidence of the ability to predict genome-wide binding sites.

      Weaknesses:

      An energy-based model which needs to be optimized for specific systems is inherently an uncomfortable idea. Prediction of binding affinity is a well-studied domain and many competitors exist, some of which are well used. The usefulness of this method will be a test of time. The methodology is interpretable in a limited sense. The model is dependent on preserved interface geometry which might lead to suboptimal results for novel folds. The model predicts different output for reverse complement sequence (which in reality are the same as far as double helix is concerned). This is unintuitive.

      Comments on revisions:

      The authors have addressed my points regarding comparisons with existing methods, clarifying discussion terminologies and proper discussion of the existing literature. This resulted in a stronger manuscript with a clearer understanding of applicability.

    2. Reviewer #3 (Public review):

      Summary:

      Protein-DNA interactions and sequence readout represent a challenging and rapidly evolving field of study. Recognizing the complexity of this task, the authors have developed a compact and elegant model. They applied well-established approaches to address a difficult problem, effectively enhancing the information extracted from sparse contact maps by integrating an artificial decoy sequence set and available experimental data. This has resulted in a practical tool that can be adapted for use with other proteins.

      Strengths:

      The authors integrate sparse information with available experimental data to construct a model whose utility extends beyond the limited set of structures used for training.

      A comprehensive methods section is included, ensuring reproducibility.

      The authors provide a well-represented performance comparison between their model and other existing models.

      Additionally, the authors have shared their model as a GitHub project, reflecting their commitment to research transparency.

      Weaknesses:

      The coarse-graining procedure is quite convoluted, but the authors provide reasoning for the proposed scheme. The authors acknowledge discrepancies between data-driven and simulation models.

    1. Reviewer #1 (Public review):

      Summary:

      The authors have used full length single cell sequencing on a sorted population of human fetal retina to delineate expression patterns associated with the progression of progenitors to rod and cone photoreceptors. They find that rod.cone precursors contain a mix of rod/cone determinants, with a bias in both amounts and isoform balance likely deciding the ultimate cell fate. Markers of early rod/cone hybrids are clarified, and a gradient of lncRNAs is uncovered in maturing cones. Comparison of early rods and cones exposes an enriched MYCN regulon, as well as expression of SYK, which may contribute to tumor initiation in RB1 deficient cone precursors.

      Strengths:

      The insight into how cone and rod transcripts are mixed together at first is important and clarifies a long-standing notion in the field.

      The discovery of distinct active vs inactive mRNA isoforms for rod and cone determinants is crucial to understand how cells make the decision to form one or the other cell type. This is only really possible with full length scRNAseq analysis.

      New markers of subpopulations are also uncovered, such as CHRNA1 in rod/cone hybrids that seem to give rise to either rods or cones.

      Regulon analyses provide insight into key transcription factor programs linked to rod or cone fates.

      The gradient of lncRNAs in maturing cones is novel, and while the functional significance is unclear, it opens up a new line of questioning around photoreceptor maturation.

      The finding that SYK mRNA is naturally expressed in cone precursors is novel, as previously it was assumed that SYK expression required epigenetic rewiring in tumors.

      Weaknesses:

      Functional data on many new hypothesis regarding potential players in cone genesis are not performed, but these are beyond the scope of the current work.

      Validation of the SYK inhibitor data e.g. by genetic means, is not included, but the authors acknowledge this caveat throughout.

    2. Reviewer #2 (Public review):

      Summary:

      The authors used deep full-length single-cell sequencing to study the human photoreceptor development, with a particular emphasis on the characteristics of photoreceptors that may contribute to retinoblastoma.

      Strengths:

      This single-cell study captures gene regulation in photoreceptors across different developmental stages, defining post-mitotic cone and rod populations by highlighting their unique gene expression profiles through analyses such as RNA velocity and SCENIC. By leveraging full-length sequencing data, the study identifies differentially expressed isoforms of NRL and THRB in L/M cone and rod precursors, illustrating the dynamic gene regulation involved in photoreceptor fate commitment. Additionally, the authors performed high-resolution clustering to explore markers defining developing photoreceptors across the fovea and peripheral retina, particularly characterizing SYK's role in the proliferative response of cones in the RB loss background. The study provides an in-depth analysis of developing human photoreceptors, with the authors conducting thorough analyses using full-length single-cell RNA sequencing. The strength of the study lies in its design, which integrates single-cell full-length RNA-seq, long-read RNA-seq, and follow-up histological and functional experiments to provide compelling evidence supporting their conclusions. The model of cell type-dependent splicing for NRL and THRB is particularly intriguing. Moreover, the potential involvement of the SYK and MYC pathways with RB in cone progenitor cells aligns with previous literature, offering additional insights into RB development.

      Weaknesses:

      The manuscript feels somewhat unfocused, with a lack of a strong connection between the analysis of developing photoreceptors, which constitutes the bulk of the manuscript, and the discussion on retinoblastoma. Additionally, given the recent publication of several single-cell studies on developing human retina, it is important for the authors to cross-validate their findings and adjust their statements where appropriate.

      Comments on revisions:

      The authors have done quite thorough work addressing concerns raised by myself and other reviewers. The identification of unresolved developing state of rod/cone precursor cell is interesting and intriguing. I do not have much more to add.

    3. Reviewer #3 (Public review):

      Summary:

      The authors use high-depth, full-length scRNA-Seq analysis of fetal human retina to identify novel regulators of photoreceptor specification and retinoblastoma progression.

      Strengths:

      The use of high-depth, full-length scRNA-Seq to identify functionally important alternatively spliced variants of transcription factors controlling photoreceptor subtype specification, and identification of SYK as a potential mediator of RB1-dependent cell cycle reentry in immature cone photoreceptors.

      Weaknesses:

      Relatively minor. This is a technically strong and thorough study that is broadly useful to investigators studying retinal development and retinoblastoma.

      Comments on revisions:

      The authors have addressed all points raised in the review and considerably strengthened the manuscript. No additional changes are required.

    1. Reviewer #1 (Public review):

      Summary:

      This work presents a GUI with SEM images of 8 Utah arrays (8 of which were explanted, and 4 of which were used for creating cortical lesions).

      Strengths:

      Visual comparison of electrode tips with SEM images, showing that electrolytic lesioning did not appear to cause extra damage to electrodes.

      Weaknesses:

      Given that the analysis was conducted on explanted arrays, and no functional or behavioural in vivo data or histological data are provided, any damage to the arrays may have occurred after explantation. This makes the results limited and inconclusive ( firstly, that there was no significant relationship between degree of electrode damage and use of electrolytic lesioning, and secondly, that electrodes closer to the edge of the arrays showed more damage than those in the center).

      Overall, these results do not add new insight to the field, although they do add more data and reference images.

    2. Reviewer #2 (Public review):

      In this study, the authors used scanning electron microscopy (SEM) to image and analyze eleven Utah multielectrode arrays (including eight chronically implanted in four macaques). Four of the eight arrays had previously been used to deliver electrolytic lesions. Each intact electrode was scored in five damage categories. They found that damage disproportionately occurred to the outer edges of arrays. Importantly, the authors conclude that their electrolytic Lesioning protocol does not significantly increase material degradation compared to normal chronic use without lesion. Additionally, the authors have released a substantial public dataset of single-electrode SEM images of explanted Utah arrays.

      The paper is well-written and addresses an important stability issue for long-term chronically implanted array recordings and electrolytic lesioning, which is relevant to both basic science and translational research. By comparing lesioning and non-lesioning electrodes on the same array and within the same animal, the study effectively controls for confounds related to the animal and surgical procedures. The shared dataset, accessible via interactive plots, enhances transparency and serves as a valuable reference for future investigations. Below, we outline some major and minor concerns that could help improve the work.

      Major concerns:

      (1) Electrode impedance is a critical measurement to evaluate the performance of recording electrodes. It would be helpful if the authors could provide pre-explant and post-explant impedance values for each electrode alongside the five SEM damage scores. This would allow the readers to assess how well the morphological scores align with functional degradation.

      (2) The lesion parameters differ across experiments and electrodes. It would be helpful if the authors could evaluate whether damage scores (and/or impedance changes) correlate with total charge, current amplitude, duration, or frequency.

    1. Reviewer #1 (Public review):

      Functional lateralization between the right and left hemispheres is reported widely in animal taxa, including humans. However, it remains largely speculative as to whether the lateralized brains have a cognitive gain or a sort of fitness advantage. In the present study, by making use of the advantages of domestic chicks as a model, the authors are successful in revealing that the lateralized brain is advantageous in the number sense, in which numerosity is associated with spatial arrangements of items. Behavioral evidence is strong enough to support their arguments. Brain lateralization was manipulated by light exposure during the terminal phase of incubation, and the left-to-right numerical representation appeared when the distance between items gave a reliable spatial cue. The light-exposure induced lateralization, though quite unique in avian species, together with the lack of intense inter-hemispheric direct connections (such as the corpus callosum in the mammalian cerebrum), was critical for the successful analysis in this study. Specification of the responsible neural substrates in the presumed right hemisphere is expected in future research. Comparable experimental manipulation in the mammalian brain must be developed to address this general question (functional significance of brain laterality) is also expected.

    2. Reviewer #2 (Public review):

      Summary:

      This is the first study to show how a L-R bias in the relationship between numerical magnitude and space depends on brain lateralisation, and moreover, how is modulated by in ovo conditions.

      Strengths:

      Novel methodology for investigating the innateness and neural basis of an L-R bias in the relationship between number and space.

      Weaknesses:

      I would query the way the experiment was contextualised. They ask whether culture or innate pre-wiring determines the 'left-to-right orientation of the MNL [mental number line]'.

      The term, 'Mental Number Line' is an inference from experimental tasks. One of the first experimental demonstrations of a preference or bias for small numbers in the left of space and larger numbers in the right of space, was more carefully described as the spatial-numerical association of response codes - the SNARC effect (Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and numerical magnitude. Journal of Experimental Psychology: General, 122, 371-396).

      This has meant that the background to the study is confusing. First, the authors note, correctly, that many other creatures, including insects, can show this bias, though in none of these has neural lateralisation been shown to be a cause. Second, their clever experiment shows that an experimental manipulation creates the bias. If it were innate and common to other species, the experimental manipulation shouldn't matter. There would always be an L-R bias. Third, they seem to be asserting that humans have a left-to-right (L-R) MNL. This is highly contentious, and in some studies, reading direction affects it, as the original study by Dehaene et al showed; and in others, task affects direction (e.g. Bachtold, D., Baumüller, M., & Brugger, P. (1998). Stimulus-response compatibility in representational space. Neuropsychologia, 36, 731-735, not cited). Moreover, a very careful study of adult humans, found no L-R bias (Karolis, V., Iuculano, T., & Butterworth, B. (2011), not cited, Mapping numerical magnitudes along the right lines: Differentiating between scale and bias. Journal of Experimental Psychology: General, 140(4), 693-706). Indeed, Rugani et al claim, incorrectly, that the L-R bias was first reported by Galton in 1880. There are two errors here: first, Galton was reporting what he called 'visualised numerals', which are typically referred to now as 'number forms' - spontaneous and habitual conscious visual representations - not an inference from a number line task. Second, Galton reported right-to-left, circular, and vertical visualised numerals, and no simple left-to-right examples (Galton, F. (1880). Visualised numerals. Nature, 21, 252-256.). So in fact did Bertillon, J. (1880). De la vision des nombres. La Nature, 378, 196-198, and more recently Seron, X., Pesenti, M., Noël, M.-P., Deloche, G., & Cornet, J.-A. (1992). Images of numbers, or "When 98 is upper left and 6 sky blue". Cognition, 44, 159-196, and Tang, J., Ward, J., & Butterworth, B. (2008). Number forms in the brain. Journal of Cognitive Neuroscience, 20(9), 1547-1556.

      If the authors are committed to chicks' MN Line they should test a series of numbers showing that the bias to the left is greater for 2 and 3 than for 4, etc.

      What does all this mean? I think that the paper should be shorn of its misleading contextualisation, including the term 'Mental Number Line'. The authors also speculate, usefully, on why chicks and other species might have a L-R bias. I don't think the speculations are convincing, but at least if there is an evolutionary basis for the bias, it should at least be discussed.

      This paper is very interesting with its focus on why the L-R bias exists, and where and why it does not.

    1. Reviewer #1 (Public review):

      Summary:

      A theoretical model for microbial osmoresponse was proposed. The model assumes simple phenomenological rules: (i) the change of free water volume in the cell due to osmotic imbalance based on pressure balance, (ii) Osmoregulation that assumes change of the proteome partitioning depending on the osmotic pressure that affects the osmolyte-producing protein production, (iii) The cell-wall synthesis regulation where the change of the turgor pressure to the cell-wall synthesis efficiency to go back to the target turgor pressure, (iv) Effect of Intracellular crowding assuming that the biochemical reactions slows down for more crowding and stops when the protein density (protein mass divided by free water volume) reaches a critical value. The parameter values were found in the literature or obtained by fitting to the experimental data. The authors compare the model behavior with various microorganismcs (E. coli, B. subtils, S. Cerevisiae, S. pombe), and successfully reproduced the overall trend (steady state behavior for many of them, dynamics for S. pombe). In addition, the model predicts non-trivial behavior such as the fast cell growth just after the hypoosmotic shock, which is consistent with experimental observation. The authors further make experimentally testable predictions regarding mutant behavior and transient dynamics.

      The theory assumes simple mechanistic dependence between core variables without going into specific molecular mechanisms of regulations. The simplicity allows the theory to apply to different organisms by adjusting the time scales with parameters, and the model successfully explains broad classes of observed behaviours. Mathematically, the model provides analytical expressions of the parameter dependencies and an understanding of the dynamics through the phase space without being buried in the detail. This theory can serve as a base to discuss the universality and diversity of microbial osmoresponse.

      The coarse-grained nature of the model is the strength of the model in terms of its generality. However, it does not consider various regulations at the molecular level. Hence, certain adaptation features are not considered in the current version of the model. The updated manuscript discusses the pros and cons of the current approach.

    2. Reviewer #2 (Public review):

      Summary:

      In this study, Ye et al. have developed a theoretical model of osmotic pressure adaptation by osmolyte production and wall synthesis.

      Strengths:

      They validate their model predictions of a rapid increase in growth rate on osmotic shock experimentally using fission yeast. The study has several interesting insights which are of interest to the wider community of cell size and mechanics.

      Comments on revisions:

      The authors have in the revised manuscript addressed the aspects of the writing that were unclear. , that are listed previously as major and minor comments. We believe the issues raised by this reviewer have been adequately addressed in the manuscript.

    1. Reviewer #2 (Public review):

      Summary:

      Tissue-resident macrophages are more and more thought to exert key homeostatic functions and contribute to physiological responses. In the report of O'Brien and Colleagues, the idea that the macrophage-expressed scavenger receptor MARCO could regulate adrenal corticosteroid output at steady-state was explored. The authors found that male MARCO-deficient mice exhibited higher plasma aldosterone levels and higher lung ACE expression as compared to wild-type mice, while the availability of cholesterol and the machinery required to produce aldosterone in the adrenal gland were not affected by MARCO deficiency. The authors take these data to conclude that MARCO in alveolar macrophages can negatively regulate ACE expression and aldosterone production at steady-state and that MARCO-deficient mice suffer from a secondary hyperaldosteronism.

      Strengths:

      If properly demonstrated and validated, the fact that tissue-resident macrophages can exert physiological functions and influence endocrine systems would be highly significant and could be amenable to novel therapies.

      Major weakness:

      The comparison between C57BL/6J wild-type mice and knock-out mice for which a precise information about the genetic background and the history of breedings and crossings is lacking can lead to misinterpretations of the results obtained. Hence, MARCO-deficient mice should be compared with true littermate controls.

    1. Reviewer #3 (Public review):

      In a characteristically bold fashion, Lee Berger and colleagues argue here that markings they have found in a dark isolated space in the Rising Star Cave system are likely over a quarter of a million years old and were made intentionally by Homo naledi, whose remains nearby they have previously reported. As in a European and much later case they reference ('Neanderthal engraved 'art' from the Pyrenees'), the entangled issues of demonstrable intentionality, persuasive age and likely authorship will generate much debate among the academic community of rock art specialists. The title of the paper and the reference to 'intentional designs', however, leave no room for doubt as to where the authors stand, despite an avoidance of the word art, entering a very disputed terrain. Iain Davidson's (2020) 'Marks, pictures and art: their contributions to revolutions in communication', also referenced here, forms a useful and clearly articulated evolutionary framework for this debate. The key questions are: 'are the markings artefactual or natural?', 'how old are they?' and 'who made them?, questions often intertwined and here, as in the Pyrenees, completely inseparable. I do not think that these questions are definitively answered in this paper and I guess from the language used by the authors (may, might, seem etc) that they do not think so either.

      Before considering the specific arguments of the authors to justify the claims of the title, we should recognise the shift in the academic climate of those concerned with 'ancient markings' that has taken place over the past two or three decades. Before those changes, most specialists would probably have expected all early intentional markings to have been made by Homo sapiens after the African diaspora as part of the explosion of innovative behaviours thought to characterise the 'origins of modern humans'. Now, claims for earlier manifestations of such innovations from a wider geographic range are more favourably received, albeit often fiercely challenged as the case for Pyrenean Neanderthal 'art' shows (White et al. 2020). This change in intellectual thinking does not, however, alter the strict requirements for a successful assertion of earlier intentionality by non-sapiens species. We should also note that stone, despite its ubiquity in early human evolutionary contexts, is a recalcitrant material not easily directly dated whether in the form of walling, artefact manufacture or potentially meaningful markings. The stakes are high but the demands no less so.

      Why are the markings not natural? Berger and co-authors seem to find support for the artefactual nature of the markings in their location along a passage connecting chambers in the underground Rising Star Cave system. The presumption is that the hominins passed by the marked panel frequently. I recognise the thinking but the argument is weak. More confidently they note that "In previous work researchers have noted the limited depth of artificial lines, their manufacture from multiple parallel striations, and their association into clear arrangement or pattern as evidence of hominin manufacture (Fernandez-Jalvo et al. 2014)". The markings in the Rising Star Cave are said to be shallow, made by repeated grooving with a pointed stone tool that has left striations within the grooves, and to form designs that are "geometric expressions" including crosshatching and cruciform shapes. "Composition and ordering" are said to be detectable in the set of grooved markings. Readers of this and their texts will no doubt have various opinions about these matters, mostly related to rather poorly defined or quantified terminology. I reserve judgement, but would draw little comfort from the similarities among equally unconvincing examples of early, especially very early, 'designs'. Two or even three half convincing arguments do not add up to one convincing one.

      The authors draw our attention to one very interesting issue: given the extensive grooving into the dolomite bedrock by sharp stone objects, where are these objects? Only one potential 'lithic artefact' is reported, a "tool-shaped rock [that] does resemble tools from other contexts of more recent age in southern Africa, such as a silcrete tool with abstract ochre designs on it that was recovered from Blombos Cave (Henshilwood et al. 2018)", also figured by Berger and colleagues. A number of problems derive from this comparison. First, 'tool-shaped rock' is surely a meaningless term: in a modern toolshed 'tool-shaped' would surely need to be refined into 'saw-shaped', 'hammer-shaped' or 'chisel-shaped' to convey meaning? The authors here seem to mean that the Rising Star Cave object is shaped like the Blombos painted stone fragment? But the latter is a painted fragment not a tool and so any formal similarity is surely superficial and offers no support to the 'tool-ness' of the Rising Star Cave object. Does this mean that Homo naledi took (several?) pointed stone tools down the dark passsageways, used them extensively and, whether worn out or still usable, took them all out again when they left? Not impossible, of course. And the lighting?

      The authors rightly note that the circumstance of the markings "makes it challenging to assess whether the engravings are contemporary with the Homo naledi burial evidence from only a few metres away" and more pertinently, whether the hominins did the markings. Despite this honest admission, they are prepared to hypothesise that the hominin marked, without, it seems, any convincing evidence. If archaeologists took juxtaposition to demonstrate authorship, there would be any number of unlikely claims for the authorship of rock paintings or even stone tools. The idea that there were no entries into this Cave system between the Homo naledi individuals and the last two decades is an assertion not an observation and the relationship between hominins and designs no less so. In fact the only 'evidence' for the age of the markings is given by the age of the Homo naledi remains, as no attempt at the, admittedly very difficult, perhaps impossible, task of geochronological assessment, has been made.

      The claims relating to artificiality, age and authorship made here seem entangled, premature and speculative. Whilst there is no evidence to refute them, there isn't convincing evidence to confirm them.

      References:

      Davidson, I. 2020. Marks, pictures and art: their contribution to revolutions in communication. Journal of Archaeological Method and Theory 27: 3 745-770.

      Henshilwood, C.S. et al. 2018. An abstract drawing from the 73,000-year-old levels at Blombos Cave, South Africa. Nature 562: 115-118.

      Rodriguez-Vidal, J. et al. 2014. A rock engraving made by Neanderthals in Gibralter. Proceedings of the National Academy of Sciences.

      White, Randall et al. 2020. Still no archaeological evidence that Neanderthals created Iberian cave art.

      Comments on latest version:

      The authors have not modified their stance or the authority of their arguments since the original paper.

    2. Reviewer #4 (Public review):

      Thank you for the opportunity to provide a peer-review of this manuscript, which I first reviewed in 2023 under the title of '241,000 to 335,000 Years Old Rock Engravings Made by Homo naledi in the Rising Star Cave system, South Africa'. My review is brief as the authors state they have made "relatively minimal changes", so most of the comments I made in 2023 still stand. Some of the language is a little more temperate but the main issues of this potentially landmark study remain and undermine scientific acceptance of the findings claim. The fact that this is an initial report does not excuse it from the normal conventions of building arguments supported by empirical data. Again, the absence of a rock art expert on the authorial team causes recurring weaknesses still to be evident (would one ask a rock art expert to analyse a new fossil hominin skull for example?). Specifically, there are two major issues that need to be resolved before there is necessary and sufficient cause to assign the term 'rock engravings' to the marks in the Dinaledi chamber. These are authorship and dating.

       Authorship: The assertion that the 'rock engravings' are anthropogenic remains unsupported by empirical evidence, with a number of possible natural factors that could just as likely have caused the marks. Not to use image enhancements - which is standard in most rock art research and has been for some time - is a critical omission. The concerns stated about AI and data standards are not developed and the authors are directed to the literature in this field, for example this 2025 overview - https://www.sciencedirect.com/science/article/pii/S1296207424002516. Again, having a rock art expert would show the AI concern to be valid but easily addressed using Data Standards. In the almost 2 years since the first pre-print was released, there has been ample time for high resolution photographs and scans of the purported 'rock engravings'; analysis of which by relevant experts could properly physically characterise the marks and thus establish more or less likely agents for their production. European-based researchers in particular has utilised this approach on material such as the Blombos ochre and marked bone from Europe and Africa. None of these methods is invasive or destructive.

      To then go on and link Homo naledi to these markings is premature, especially when this landscape has been home to multiple hominins. Most rock art sites do not contain the physical bodily remains of their makers so we assign authorship based on dating (such as for Neanderthal era art in Europe for example); the second critical issue in this report:

       Dating: There is no direct or closely associated chronometric dating of the 'rock engravings' or their immediate context, so the age range claimed is unsupported. Rock art dating is notoriously difficult - and why researchers closely scrutinise dates produced. In this case, however, the chronological context is physically so far removed from these rock markings, as to be misleading at best and need to be discounted until a proper programme of dating has commenced. The sources cited for rock art dating tend to be out of date and it would be standard practice to have a geochronologist assess the rock-marked areas and then establish dating protocols.

      Authorship and dating are cornerstone of archaeological/paleoanthropological work and need to established in the first instance. Until that has been done commensurate with current standards in global rock art research this potentially landmark finding cannot be taken as probable, only as possible. This is a pity as the last decade or so has revolutionised our understanding of the socially complex world multiple hominin species lived in, and marked in utilitarian and symbolic ways. The conditions for acceptance of ancient rock art has thus never been better, but the Dinaledi example needs to revisit research first principles around authorship and dating to be included as a credible part of this larger context. It would have been good to see a commitment to a coherent research programme to this end for this case study.

      I hope these observations are useful. As above I keep them short as there has been minimal change to the 2023 ms, and my detailed comments on that remain with the first version of the work.

    1. Reviewer #1 (Public review):

      Summary:

      The present study aims to determine possible associations between reproduction with prevalence of age-related diseases based on the antagonistic pleiotropy hypothesis of ageing predominantly using Mendelian Randomization. The authors provide evidence demonstrated that menarche before the age 11 and childbirth before 21 increases the risk of several diseases, and almost doubled the risk for diabetes, heart failure, and quadrupled the risk of obesity,

      Strengths:

      Large sample size. Many analyses

    2. Reviewer #2 (Public review):

      Summary:

      The authors present an interesting paper where they test the antagonistic pleiotropy theory. Based on this theory they hypothesize that genetic variants associated with later onset of age at menarche and age at first birth have a positive causal effect on a multitude of health outcomes later in life, such as epigenetic aging and prevalence of chronic diseases. Using a mendelian randomization and colocalization approach, the authors show that SNPs associated with later age at menarche are associated with delayed aging measurements, such as slower epigenetic aging and reduced facial aging and a lower risk of chronic diseases, such as type 2 diabetes and hypertension. Moreover, they identify 128 fertility-related SNPs that associate with age-related outcomes and they identified BMI as a mediating factor for disease risk, discussing this finding in the context of evolutionary theory.

      Strengths:

      The major strength of this manuscript is that it addresses the antagonistic pleiotropy theory in aging. Aging theories are not frequently empirically tested although this is highly necessary. The work is therefore relevant for the aging field as well as beyond this field, as the antagonistic pleiotropy theory addresses the link between fitness (early life health and reproduction) and aging.

      Weaknesses:

      The authors report evidence in support of the antagonistic pleiotropy theory in aging and discuss the discuss the disposable soma theory. Although both theories describe distinct mechanisms, separating them in empirical research is complicated and needs further studies in future research.

    1. Joint Public Review:

      This work employs both in vitro and in vivo methods to investigate the contribution of BDNF/TrkB signaling to enhancing differentiation and dentin-repair capabilities of dental pulp stem cells in the context of exposure to a variety of inflammatory cytokines. A particular emphasis of the approach is employment of dental pulp stem cells in which BDNF expression has been enhanced using CRISPR technology. Transplantation of such cells are proposed to improve dentin regeneration in a mouse model of tooth decay. The study provides several interesting findings, including demonstrating that exposure to several cytokines/inflammatory agents increases the quantity of activated phospho-Trk B in dental pulp stem. One issue that was not covered is the involvement of the p75 neurotrophin receptor which is also highly sensitive to inflammation and injury. The conclusions could be further augmented by demonstrating the specificity of the antibodies via immunoblot methods, both in the presence and absence of BDNF and other neurotrophins, NT-3 and NT-4, which can also bind to the TrkB receptor.

    1. Reviewer #1 (Public review):

      This manuscript presents insights into biased signaling in GPCRs, namely cannabinoid receptors. Biased signaling is of broad interest in general, and cannabinoid signaling is particular relevant for understanding the impact of new drugs that target this receptor. Mechanistic insight from work like this could enable new approaches to mitigate the public health impact of new psychoactive drugs. Towards that end, this manuscript seeks to understand how new psychoactive substances (NPS, e.g. MDMB-FUBINACA) elicit more signaling through β-arrestin than classical cannabinoids (e.g. HU-210). The authors use an interesting combination of simulations and machine learning.

      The caption for Figure 3 doesn't explain the color scheme, so its not obvious what the start and end states of the ligand are.

      For the metadynamics simulations were multiple Gaussian heights/widths tried to see what, if any, impact that has on the unbinding pathway? That would be useful to help ensure all the relevant pathways were explored.

      It would be nice to acknowledge previous applications of metadynamics+MSMs and (separately) TRAM, such as Simulation of spontaneous G protein activation... (Sun et al. eLife 2018) and Estimation of binding rates and affinities... (Ge and Voelz JCP 2022).

      What is KL divergence analysis between macrostates? I know KL divergence compares probability distributions, but its not clear what distributions are being compared.

      I suggest being more careful with the language of universality. It can be "supported" but "showing" or "proving" its universal would require looking at all possible chemicals in the class.

      Comments on revisions:

      The authors provided appropriate responses to the comments above.

    2. Reviewer #2 (Public review):

      Summary:

      The investigation provides a computational as well as biochemical insights into the (un)binding mechanisms of a pair of psychoactive substances into cannabinoid receptors. A combination of molecular dynamics simulation and a set of state-of-the art statistical post-processing techniques were employed to exploit GPCR-ligand dynamics.

      Strengths:

      The strength of the manuscript lies in usage and comparison of TRAM as well as Markov state modelling (MSM) for investigating ligand binding kinetics and thermodynamics. Usually MSMs have been more commonly used for this purpose. But as the authors have pointed out, implicit in the usage of MSMs lie the assumption of detailed balance, which would not hold true for many cases especially those with skewed binding affinities. In this regard, the author's usage of TRAM which harnesses both biased and unbiased simulations for extracting the same, provides a more appropriate way-out.

      Weaknesses:

      (1) While the authors have used TRAM (by citing MSM to be inadequate in these cases), the thermodynamic comparisons of both techniques provide similar values. In this case, one would wonder what advantage TRAM would hold in this particular case.

      (2) The initiation of unbiased simulations from previously run biased metadynamics simulations would almost surely introduce hysteresis in the analysis. The authors need to address these issues.

      (3) The choice of ligands in the current work seems very forced and none of the results compare directly with any experimental data. An ideal case would have been to use the seminal D.E. Shaw research paper on GPCR/ligand binding as a benchmark and then show how TRAM, using much lesser biased simulation times, would fare against the experimental kinetics or even unbiased simulated kinetics of the previous report

      (4) The method section of the manuscript seems to suggest all the simulations were started from a docked structure. This casts doubt on the reliability of the kinetics derived from these simulations that were spawned from docked structure, instead of any crystallographic pose. Ideally, the authors should have been more careful in choosing the ligands in this work based on the availability of the crystallographic structures.

      (5) The last part of using a machine learning-based approach to analyse allosteric interaction seems to be very much forced, as there are numerous distance-based more traditional precedent analyses that do a fair job of identifying an allosteric job.

      (6) While getting busy with the methodological details of TRAM vs MSM, the manuscript fails to share with sufficient clairty what the distinctive features of two ligand binding mechanisms are.

      Comments on revisions:

      The authors have addressed most of the queries of the reviewer in an adequate manner. However, The current code availability section just provides the link to Python files to generate the plots. It is not very useful in its current form. The code availability section should provide a proper GitHub page that shows the usage of TRAM for the readers to execute. While Pyemma has been cited for TRAM, a python note book to reproduce the TRAM would be very instructive.

    1. Reviewer #1 (Public review):

      Summary:

      This study addresses the roles of polyunsaturated fatty acids (PUFAs) in animal physiology and membrane function. A C. elegans strain carrying the fat-2(wa17) mutation possess a very limited ability to synthesize PUFAs and there is no dietary input because the E. coli diet consumed by lab grown C. elegans does not contain any PUFAs. The fat-2 mutant strain was characterized to confirm that the worms grow slowly, have rigid membranes, and have a constitutive mitochondrial stress response. The authors showed that chemical treatments or mutations known to increase membrane fluidity did not rescue growth defects. A thorough genetic screen was performed to identify genetic changes to compensate for the lack of PUFAs. The newly isolated suppressor mutations that compensated for FAT-2 growth defects included intergenic suppressors in the fat-2 gene, as well as constitutive mutations in the hypoxia sensing pathway components EGL-9 and HIF-1, and loss of function mutations in ftn-2, a gene encoding the iron storage protein ferritin. Taken together, these mutations lead to the model that increased intracellular iron, an essential cofactor for fatty acid desaturases, allows the minimally functional FAT-2(wa17) enzyme to be more active, resulting in increased desaturation and increased PUFA synthesis.

      Strengths:

      (1) This study provides new information further characterizing fat-2 mutants. The authors measured increased rigidity of membranes compared to wild type worms, however this rigidity is not able to be rescued with other fluidity treatments such as detergent or mutants. Rescue was only achieved with polyunsaturated fatty acid supplementation.<br /> (2) A very thorough genetic suppressor screen was performed. In addition to some internal fat-2 compensatory mutations, the only changes in pathways identified that are capable of compensating for deficient PUFA synthesis was the hypoxia pathway and the iron storage protein ferritin. Suppressor mutations included an egl-9 mutation that constitutively activates HIF-1, and Gain of function mutations in hif-1 that are dominant. This increased activity of HIF conferred by specific egl-9 and hif-1 mutations lead to decreased expression of ftn-2. Indeed, loss of ftn-2 leads to higher intracellular iron. The increased iron apparently makes the FAT-2 fatty acid desaturase enzyme more active, allowing for the production of more PUFAs.<br /> (3) The mutations isolated in the suppressor screen show that the only mutations able to compensate for lack of PUFAs were ones that increased PUFA synthesis by the defective FAT-2 desaturase, thus demonstrating the essential need for PUFAs that cannot be overcome by changes in other pathways. This is a very novel study, taking advantage of genetic analysis of C. elegans, and it confirms the observations in humans that certain essential PUFAs are required for growth and development.<br /> (4) Overall, the paper is well written, and the experiments were carried out carefully and thoroughly. The conclusions are well supported by the results.

      Weaknesses:

      Overall, there are not many weaknesses. The main one I noticed is that the lipidomic analysis shown in Figs 3C, 7C, S1 and S3. Whie these data are an essential part of the analysis and provide strong evidence for the conclusions of the study, it is unfortunate that the methods used did not enable the distinction between two 18:1 isomers. These two isomers of 18:1 are important in C. elegans biology, because one is a substrate for FAT-2 (18:1n-9, oleic acid) and the other is not (18:1n-7, cis vaccenic acid). Although rarer in mammals, cis-vaccenic acid is the most abundant fatty acid in C. elegans and is likely the most important structural MUFA. The measurement of these two isomers is not essential for the conclusions of the study, but the manuscript should include a comment about the abundance of oleic vs vaccenic acid in C. elegans (authors can find this information, even in the fat-2 mutant, in other publications of C. elegans fatty acid composition). Otherwise, readers who are not familiar with C. elegans might assume the 18:1 that is reported is likely to be mainly oleic acid, as is common in mammals.

      Other suggestions to authors to improve the paper:<br /> (1) The title could be less specific; it might be confusing to readers to include the allele name in the title.<br /> (2) There are two errors in the pathway depicted in Figure 1A. The16:0-16:1 desaturation can be performed by FAT-5, FAT-6, and FAT-7. The 18:0-18:1 desaturation can only be performed by FAT-6 and FAT-7

    2. Reviewer #2 (Public review):

      Summary:

      The authors use a genetic screen in C. elegans to investigate the physiological roles of polyunsaturated fatty acids (PUFAs). They screen for mutations that rescue fat-2 mutants, which have strong reductions in PUFAs. As a result, either mutations in fat-2 itself, or mutations in genes involved in the HIF-1 pathway, were found to rescue fat-2 mutants. Mutants in the HIF-1 pathway rescue fat-2 mutants by boosting its catalytic activity (via upregulated Fe2+). Thus, the authors show that in the context of fat-2 mutation, the sole genetic means to rescue PUFA insufficiency is to restore PUFA levels.

      Strengths:

      As C. elegans can produce PUFAs de novo as essential lipids, the genetic model is well suited to study the fundamental roles of PUFAs. The genetic screen finds mutations in convergent pathways, suggesting that it has reached near-saturation. The authors extensively validate the results of the screening and provide sufficient mechanistic insights to show how PUFA levels are restored in HIF-1 pathway mutants. As many of the mutations found to rescue fat-2 mutants are of gain-of-function, it is unlikely that similar discoveries could have been made with other approaches like genome-wide CRISPR screenings, making the current study distinctive. Consequently, the study provides important messages. First, it shows that PUFAs are essential for life. The inability to genetically rescue PUFA deficiency, except for mutations that restore PUFA levels, suggests that they have pleiotropic essential functions. In addition, the results suggest that the most essential functions of PUFAs are not in fluidity regulation, which is consistent with recent reviews proposing that the importance of unsaturation goes beyond fluidity (doi: 10.1016/j.tibs.2023.08.004 and doi: 10.1101/cshperspect.a041409). Thus, the study provides fundamental insights about how membrane lipid composition can be linked to biological functions.

      Weaknesses:

      The authors did a lot of efforts to answer the questions that arose through peer review, and now all the claims seem to be supported by experimental data. Thus, I do not see obvious weaknesses. Of course, it remains still unclear what PUFAs do beyond fluidity regulation, but this is something that cannot be answered from a single study. I just have one final proposition to make.

      I still do not agree with the answer to my previous comment 6 regarding Figure S2E. The authors claim that hif-1(et69) suppresses fat-2(wa17) in a ftn-2 null background (in Figure S2 legend for example). To claim so, they would need to compare the triple mutant with fat-2(wa17);ftn-2(ok404) and show some rescue. However, we see in Figure 5H that ftn-2(ok404) alone rescues fat-2(wa17). Thus, by comparing both figures, I see no additional effect of hif-1(et69) in an ftn-2(ok404) background. I actually think that this makes more sense, since the authors claim that hif-1(et69) is a gain-of-function mutation that acts through suppression of ftn-2 expression. Thus, I would expect that without ftn-2 from the beginning, hif-1(et69) does not have an additional effect, and this seems to be what we see from the data. Thus, I would suggest that the authors reformulate their claims regarding the effect of hif-1(et69) in the ftn-2(ok404) background, which seems to be absent (consistently with what one would expect).

    1. Reviewer #1 (Public review):

      Bredenberg et al. aim to model some of the visual and neural effects of psychedelics via the Wake-Sleep algorithm. This is an interesting study with findings that go against certain mainstream ideas in psychedelic neuroscience (that I largely agree with). I cannot speak to the math in this manuscript, but it seems like quite a conceptual leap to set a parameter of the model in between wake and sleep and state that this is a proxy to acute psychedelic effects (point #20). My other concerns below are related to the review of the psychedelic literature:

      (1) Page 1, Introduction, "...they are agonists for the 5-HT2a serotonin receptor commonly expressed on the apical dendrites of cortical pyramidal neurons..." It is a bit redundant to say "5-HT2A serotonin receptor," as serotonin is already captured by its abbreviation (i.e., 5-HT).

      While psychedelic research has focused on 5-HT2A expression on cortical pyramidal cells, note that the 5-HT2A receptor is also expressed on interneurons in the medial temporal lobe (entorhinal cortex, hippocampus, and amygdala) with some estimates being >50% of these neurons (https://doi.org/10.1016/j.brainresbull.2011.11.006, https://doi.org/10.1007/s00221-013-3512-6, https://doi.org/10.7554/eLife.66960, https://doi.org/10.1016/j.mcn.2008.07.005, https://doi.org/10.1038/npp.2008.71, https://doi.org/10.1038/s41386-023-01744-8, https://doi.org/10.1016/j.brainres.2004.03.016, https://doi.org/10.1016/S0022-3565(24)37472-5, https://doi.org/10.1002/hipo.22611, https://doi.org/10.1016/j.neuron.2024.08.016). However, with ~1:4 ratio of inhibitory to excitatory neurons in the brain (https://doi.org/10.1101/2024.09.24.614724), this can make it seem as if 5-HT2A expression is negligible in the MTL. I think it might be important to mention these receptors, as this manuscript discusses replay.

      I see now that Figure 1 mentions that PV cells also express 5-HT2A receptors. This should probably be mentioned earlier.

      (2) Page 1, Introduction, "They have further been used for millennia as medicine and in religious rituals..." This might be a romanticization of psychedelics and indigenous groups, as anthropological evidence suggests that intentional psychedelic use might actually be more recent (see work by Manvir Singh and Andy Letcher).

      (3) When discussing oneirogens, it could be worth differentiating psychedelics from kappa opioid agonists such as ibogaine and salvinorin A, another class of hallucinogens that some refer to as "oneirogens" (similar to how "psychedelic" is the colloquial term for 5-HT2A agonists). Note that studies have found the effects of Salvia divinorum (which contains salvinorin A) to be described more similarly to dreams than psychedelics (https://doi.org/10.1007/s00213-011-2470-6). This makes me wonder why the present study is more applicable to 5-HT2A psychedelics than other kappa opioid agonists or other classes of hallucinogens (e.g., NMDA antagonists, muscarinic antagonists, GABAA agonists).

      (4) Page 2, Introduction, "Replay sequences have been shown to be important for learning during sleep [14, 15, 16, 17, 18]: we propose that mechanisms supporting replay-dependent learning during sleep are key to explaining the increases in plasticity caused by psychedelic drug administration." I'm not sure I follow the logic of this point. Dreams happen during REM sleep, whereas replay is most prominent during non-REM sleep. Moreover, while it's not clear what psychedelics do to hippocampal function, most evidence would suggest they impair it. As mentioned, most 5-HT2A receptors in the hippocampus seem to be on inhibitory neurons, and human and animal work finds that psychedelics impair hippocampal-dependent memory encoding (https://doi.org/10.1037/rev0000455, https://doi.org/10.1037/rev0000455, https://doi.org/10.3389/fnbeh.2014.00180, https://doi.org/10.1002/hipo.22712). One study even found that psilocin impairs hippocampal-dependent memory retrieval (https://doi.org/10.3389/fnbeh.2014.00180). Note that this is all in reference to the acute effects (psychedelics may post-acutely enhance hippocampal-dependent memory, https://doi.org/10.1007/s40265-024-02106-4).

      (5) Page 2, Introduction, "In total, our model of the functional effect of psychedelics on pyramidal neurons could provide a explanation for the perceptual psychedelic experience in terms of learning mechanisms for consolidation during sleep..." In contrast to my previous point, I think this could be possible. Three datasets have found that psychedelics may enhance cortical-dependent memory encoding (i.e., familiarity; https://doi.org/10.1037/rev0000455, https://doi.org/10.1037/rev0000455), and two studies found that post-encoding administration of psychedelics retroactively enhanced memory that may be less hippocampal-dependent/more cortical-dependent (https://doi.org/10.1016/j.neuropharm.2012.06.007, https://doi.org/10.1016/j.euroneuro.2022.01.114). Moreover, and as mentioned below, 5 studies have found decoupling between the hippocampus and the cortex (https://doi.org/10.3389/fnhum.2014.00020, https://doi.org/10.1002/hbm.22833, https://doi.org/10.1016/j.celrep.2021.109714, https://doi.org/10.1162/netn_a_00349, https://doi.org/10.1038/s41586-024-07624-5), something potentially also observed during REM sleep that is thought to support consolidation (https://doi.org/10.1073/pnas.2123432119). These findings should probably be discussed.

      (6) Page 2, Introduction, "In this work, we show that within a neural network trained via Wake-Sleep, it is possible to model the action of classical psychedelics (i.e. 5-HT2a receptor agonism)..." Note that 5-HT2A agonism alone is not sufficient to explain the effects of psychedelics, given that there are 5-HT2A agonists that are non-hallucinogenic (e.g., lisuride).

      (7) Page 2, Introduction, "...by shifting the balance during the wake state from the bottom-up pathways to the top-down pathways, thereby making the 'wake' network states more 'dream-like'." I could have included this in the previous point, but I felt that this idea deserved its own point. There has been a rather dogmatic assertion that psychedelics diminish top-down processing and/or enhance bottom-up processing, and I appreciate that the authors have not accepted this as fact. However, because this is an unfortunately prominent idea, I think it ought to be fleshed out more by first mentioning that it's one of the tenets of REBUS. REBUS has become a popular model of psychedelic drug action, but it's largely unfalsifiable (it's based on two unfalsifiable models, predictive processing and integrated information theory), so the findings from this study could tighten it up a bit. Second, there have now been a handful of studies that have attempted to study directionality in information flow under psychedelics, and the findings are rather mixed including increased bottom-up/decreased top-down effects (https://doi.org/10.7554/eLife.59784, https://doi.org/10.1073/pnas.1815129116; note that the latter "bottom-up" effect involves subcortical-cortical connections in which it's less clear what's actually "higher-/lower-level"), increased top-down/decreased bottom-up effects (https://doi.org/10.1038/s41380-024-02632-3, https://doi.org/10.1016/j.euroneuro.2016.03.018), or both (https://doi.org/10.1016/j.neuroimage.2019.116462, https://doi.org/10.1016/j.neuropharm.2017.10.039), though most of these studies are aggregating across largely inhomogeneous states (i.e., resting-state). Lastly, and somewhat problematically, facilitated top-down processing is also an idea proposed in psychosis that's based partially on findings with acute ketamine administration (note that all hallucinations to some degree might rely on top-down facilitation, as a hallucination involves a high-level concept that impinges on lower-level sensory areas; see work by Phil Corlett). While psychosis and the effects of ketamine have some similarities with psychedelics, there are certainly differences, and I think the goal of this manuscript is to uniquely describe 5-HT2A psychedelics (again, I'm left wondering why tweaking alpha in the Wake-Sleep algorithm is any more applicable to psychedelics than other hallucinogenic conditions).

      (8) Figure 2 equates alpha with a "psychedelic dose," but this is a bit misleading, as neither the algorithm nor an individual was administered a psychedelic. Alpha is instead a hypothetical proxy for a psychedelic dose. Moreover, if the model were recapitulating the effects of psychedelics, shouldn't these images look more psychedelic as alpha increases (e.g., they may look like images put through the DeepDream algorithm).

      (9) Page 11, Methods, "...and the gate α ensures that learning only occurs during sleep mode... The (1 − α) gate in this case ensures that plasticity only occurs during the Wake mode." Much of the math escapes me, so perhaps I'm misunderstanding these statements, but learning and plasticity certainly happen during both wake and sleep, making me wonder what is meant by these statements. Moreover, if plasticity is simply neural changes, couldn't plasticity be synonymous with neural learning? Perhaps plasticity and learning are meant to refer to different types of neural changes. It might be worth clarifying this, as a general problem in psychedelic research is that psychedelics are described as facilitating plasticity when brains are changing at every moment (hence not experiencing every moment as the same), and psychedelics don't impact all forms of plasticity equally. For example, psychedelics may not necessarily enhance neurogenesis or the addition of certain receptor types, and they impair certain forms of learning (i.e., episodic memory encoding). What is typically meant by plasticity enhancements induced by psychedelics (and where there's the most evidence) is dendritic plasticity (i.e., the growth of dendrites and spines). Whatever is meant by "plasticity" should be clarified in its first instance in this manuscript.

      (10) Page 12, Methods, "During training, neural network activity is either dominated entirely by bottom-up inputs (Wake, α = 0) or by top-down inputs (Sleep, α = 1)." Again, I could be misunderstanding the mathematical formulation, but top-down inputs operate during wake, and bottom-up inputs can operate during sleep (people can wake up or even incorporate noise from their environments into sleep.

      (11) Page 4, Results, "Thus, we can capture the core idea behind the oneirogen hypothesis using the Wake-Sleep algorithm, by postulating that the bottom-up basal synapses are predominantly driving neural activity during the Wake phase (when α is low)." However, several pieces of evidence (and the first circuit model of psychedelic drug action) suggest that psychedelics enhance functional connectivity and potentially even effective connectivity from the thalamus to the cortex (https://doi.org/10.1093/brain/awab406). Note that psychedelics may not equally impact all subcortical structures. REBUS proposes the opposite of the current study, that psychedelics facilitate bottom-up information flow, with one of the few explicit predictions being that psychedelics should facilitate information flow from the hippocampus to the default mode network. However, as mentioned earlier, 5 studies have found that psychedelics diminish functional connectivity between the hippocampus and cortex (including the DMN but also V1).

      (12) Page 4, Results, "...and have an excitatory effect that positively modulates glutamatergic transmission..." Note that this may not be brainwide. While psychedelics were found to increase glutamatergic transmission in the cortex, they were also found to decrease hippocampal glutamate (consistent with inhibition of the hippocampus, https://doi.org/10.1038/s41386-020-0718-8).

      (13) Page 5, "...which are similar to the 'breathing' and 'rippling' phenomena reported by psychedelic drug users at low doses..." Although it's sometimes unclear what is meant by "low doses," the breathing/rippling effect of psychedelics occurs at moderate and high doses as well.

      (14) I watched the videos, and it's hard for me to say there was some stark resemblance to psychedelic imagery. In contrast, for example, when the DeepDream algorithm came out, it did seem to capture something quite psychedelic.

      (15) Page 5, "This form of strongly correlated tuning has been observed in both cortex and the hippocampus." If this has been observed under non-psychedelic conditions, what does this tell us about this supposed model of psychedelics?

      (16) Page 6, with regards to neural variability, "...but whether this phenomenon [increased variability] is general across tasks and cortical areas remains to be seen." First, is variability here measured as variance? In fMRI datasets that have been used to support the Entropic Brain Hypothesis, note that variance tends to decrease, though certain measures of entropy increase (e.g., Figure 4A here https://doi.org/10.1073/pnas.1518377113 shows global variance decreases, and this reanalysis of those data https://doi.org/10.1002/hbm.23234 finds some entropy increases). Thus, variance and entropy should not be confused (in theory, one could cycle through several more brain states that are however, similar to each other, which would produce more entropy with decreased variance). Second, and perhaps more problematically for the EBH, is that the entropy effects of psychedelics completely disappear when one does a task, and unfortunately, the authors of these findings have misinterpreted them. What they'll say is that engaging in boring cognitive tasks or watching a video decreases entropy under psychedelics, but what you can see in Figure 1b of https://doi.org/10.1021/acschemneuro.3c00289 and Figure 4b of https://doi.org/10.1038/s41586-024-07624-5 is that entropy actually increases under sober conditions when you do a task. That is, it's a rather boring finding. Essentially, when resting in a scanner while sober, many may actually rest (including falling asleep, especially when subjects are asked to keep their eyes closed), and if you perform a task, brain activity should become more complex relative to doing nothing/falling asleep. When under a psychedelic, one can't fall asleep and thus, there's less change (though note that both of the above studies found numerical increases when performing tasks). Lastly, again I should note that the findings of the present study actually go against EBH/REBUS, given that the findings are increased top-down effects when EBH/REBUS predicts decreased top-down/increased bottom-up effects.

      (17) Page 6, "Because psychedelic drug administration increases influence of apical dendritic inputs on neural activity in our model, we found that silencing apical dendritic activity reduced across stimulus neural variability more as the psychedelic drug dose increases." I again want to point out that alpha is not the equivalent of a psychedelic dose here, but rather a parameter in the model that is being proposed as a proxy.

      (18) Page 8, "Experimentally, plasticity dynamics which could, theoretically, minimize such a prediction error have been observed in cortex [66, 67], and it has also been proposed that behavioral timescale plasticity in the hippocampus could subserve a similar function [68]. We found that plasticity rules of this kind induce strong correlations between inputs to the apical and basal dendritic compartments of pyramidal neurons, which have been observed in the hippocampus and cortex [55, 56]." Note that the plasticity effects of psychedelics are sometimes not observed in the hippocampus or are even observed as decreases (reviewed in https://doi.org/10.1038/s41386-022-01389-z).

      (19) Page 9, as is mentioned, REBUS proposes that there should be a decrease in top-down effects under psychedelics, which goes against what is found here, but as I describe above, the effects of psychedelics on various measures of directionality have been quite mixed.

      (20) Unless I'm misunderstanding something, it seems to be a bit of a jump to infer that simply changing alpha in your model is akin to psychedelic dosing. Perhaps if the model implemented biologically plausible 5-HT2A expression and/or its behavior were constrained by common features of a psychedelic experience (e.g., fractal-like visuals imposed onto perception, inability to fall asleep, etc.), I'd be more inclined to see the parallels between alpha and psychedelics dosing. However, it would still need to recapitulate unique effects of psychedelics (e.g., impairments in hippocampal-dependent memory with sparing/facilitation of cortical memory). At the moment, it seems like whatever the model is doing is applicable to any hallucinogenic drug or even psychosis.

    2. Reviewer #2 (Public review):

      This work is a nice contribution to the literature in articulating a specific, testable theory of how psychedelics act to generate hallucinations and plasticity. The connection to replay, however - including in the title, abstract, and framing throughout the paper - is not well fleshed out.

      In particular, the paper's framing seems to conflate replay, dreams, and top-down processing, but these are not one and the same. Picard-Delano et al. TICS 2023 provides a useful review of the differences between replay and dreams. One key point is that most replay has been observed during NREM sleep, but our canonically bizarre / vivid dreams occur during REM. Top-down connections have also been proposed to be used for many processes aside from replay. The paper would benefit from much more precision and nuance on these points.

      I believe the paper is missing demonstrations or speculation about how plasticity under various doses of psychedelics relates to changes in performance, which would be an important link to the replay-dependent learning literature.

      Are there renderings available for 'ripple' effects of psychedelics that could be included, to allow readers to compare the model's hallucinations to humans'? Short of this, it would be useful to have a more detailed description of what rippling is. (For those readers without firsthand knowledge!) It is currently difficult to assess how close the match is.

    1. Reviewer #1 (Public review):

      Summary:

      The paper presents a novel method for RSA, called trial-level RSA (tRSA). The method first constructs a trial x trial representation dissimilarity matrix using correlation distances, assuming that (as in the empirical example) each trial has a unique stimulus. Whereas "classical RSA" correlates the entire upper triangular matrix of the RDM / RSM to a model RDM / RSM, tRSA first calculates the correlation to the model RDM per row, and then averages these values. The paper claims that tRSA has increased sensitivity and greater flexibility than classical RSA.

      Strengths & Weaknesses:

      I have to admit that it took a few hours of intense work to understand this paper and to even figure out where the authors were coming from. The problem setting, nomenclature, and simulation methods presented in this paper do not conform to the notation common in the field, are often contradictory, and are usually hard to understand. Most importantly, the problem that the paper is trying to solve seems to me to be quite specific to the particular memory study in question, and is very different from the normal setting of model-comparative RSA that I (and I think other readers) may be more familiar with.

      Main issues:

      (1) The definition of "classical RSA" that the authors are using is very narrow. The group around Niko Kriegeskorte has developed RSA over the last 10 years, addressing many of the perceived limitations of the technique. For example, cross-validated distance measures (Walther et al. 2016; Nili et al. 2014; Diedrichsen et al. 2021) effectively deal with an uneven number of trials per condition and unequal amounts of measurement noise across trials. Different RDM comparators (Diedrichsen et al. 2021) and statistical methods for generalization across stimuli (Schütt et al. 2023) have been developed, addressing shortcomings in sensitivity. Finally, both a Bayesian variant of RSA (Pattern component modelling, (Diedrichsen, Yokoi, and Arbuckle 2018) and an encoding model (Naselaris et al. 2011) can effectively deal with continuous variables or features across time points or trials in a framework that is very related to RSA (Diedrichsen and Kriegeskorte 2017). The author may not consider these newer developments to be classical, but they are in common use and certainly provide the solution to the problems raised in this paper in the setting of model-comparative RSA in which there is more than one repetition per stimulus.

      (2) The stated problem of the paper is to estimate "representational strength" in different regions or conditions. With this, the authors define the correlation of the brain RDM with a model RDM. This metric conflates a number of factors, namely the variances of the stimulus-specific patterns, the variance of the noise, the true differences between different dissimilarities, and the match between the assumed model and the data-generating model. It took me a long time to figure out that the authors are trying to solve a quite different problem in a quite different setting from the model-comparative approach to RSA that I would consider "classical" (Diedrichsen et al. 2021; Diedrichsen and Kriegeskorte 2017). In this approach, one is trying to test whether local activity patterns are better explained by representation model A or model B, and to estimate the degree to which the representation can be fully explained. In this framework, it is common practice to measure each stimulus at least 2 times, to be able to estimate the variance of noise patterns and the variance of signal patterns directly. Using this setting, I would define 'representational strength" very differently from the authors. Assume (using LaTeX notation) that the activity patterns $y_j,n$ for stimulus j, measurement n, are composed of a true stimulus-related pattern ($u_j$) and a trial-specific noise pattern ($e_j,n$). As a measure of the strength of representation (or pattern), I would use an unbiased estimate of the variance of the true stimulus-specific patterns across voxels and stimuli ($\sigma^2_{u}$). This estimator can be obtained by correlating patterns of the same stimuli across repeated measures, or equivalently, by averaging the cross-validated Euclidean distances (or with spatial prewhitening, Mahalanobis distances) across all stimulus pairs. In contrast, the current paper addresses a specific problem in a quite specific experimental design in which there is only one repetition per stimulus. This means that the authors have no direct way of distinguishing true stimulus patterns from noise processes. The trick that the authors apply here is to assume that the brain data comes from the assumed model RDM (a somewhat sketchy assumption IMO) and that everything that reduces this correlation must be measurement noise. I can now see why tRSA does make some sense for this particular question in this memory study. However, in the more common model-comparative RSA setting, having only one repetition per stimulus in the experiment would be quite a fatal design flaw. Thus, the paper would do better if the authors could spell the specific problem addressed by their method right in the beginning, rather than trying to set up tRSA as a general alternative to "classical RSA".

      (3) The notation in the paper is often conflicting and should be clarified. The actual true and measured activity patterns should receive a unique notation that is distinct from the variances of these patterns across voxels. I assume that $\sigma_ijk$ is the noise variances (not standard deviation)? Normally, variances are denoted with $\sigma^2$. Also, if these are variances, they cannot come from a normal distribution as indicated on page 10. Finally, multi-level models are usually defined at the level of means (i.e., patterns) rather than at the level of variances (as they seem to be done here).

      (4) In the first set of simulations, the authors sampled both model and brain RSM by drawing each cell (similarity) of the matrix from an independent bivariate normal distribution. As the authors note themselves, this way of producing RSMs violates the constraint that correlation matrices need to be positive semi-definite. Likely more seriously, it also ignores the fact that the different elements of the upper triangular part of a correlation matrix are not independent from each other (Diedrichsen et al. 2021). Therefore, it is not clear that this simulation is close enough to reality to provide any valuable insight and should be removed from the paper, along with the extensive discussion about why this simulation setting is plainly wrong (page 21). This would shorten and clarify the paper.

      (5) If I understand the second simulation setting correctly, the true pattern for each stimulus was generated as an NxP matrix of i.i.d. standard normal variables. Thus, there is no condition-specific pattern at all, only condition-specific noise/signal variances. It is not clear how the tRSA would be biased if there were a condition-specific pattern (which, in reality, there usually is). Because of the i.i.d. assumption of the true signal, the correlations between all stimulus pairs within conditions are close to zero (and only differ from it by the fact that you are using a finite number of voxels). If you added a condition-specific pattern, the across-condition RSA would lead to much higher "representational strength" estimates than a within-condition RSA, with obvious problems and biases.

      (6) The trial-level brain RDM to model Spearman correlations was analyzed using a mixed effects model. However, given the symmetry of the RDM, the correlations coming from different rows of the matrix are not independent, which is an assumption of the mixed effect model. This does not seem to induce an increase in Type I errors in the conditions studied, but there is no clear justification for this procedure, which needs to be justified.

      (7) For the empirical data, it is not clear to me to what degree the "representational strength" of cRSA and tRSA is actually comparable. In cRSA, the Spearman correlation assesses whether the distances in the data RSM are ranked in the same order as in the model. For tRSA, the comparison is made for every row of the RSM, which introduces a larger degree of flexibility (possibly explaining the higher correlations in the first simulation). Thus, could the gains presented in Figure 7D not simply arise from the fact that you are testing different questions? A clearer theoretical analysis of the difference between the average row-wise Spearman correlation and the matrix-wise Spearman correlation is urgently needed. The behavior will likely vary with the structure of the true model RDM/RSM.

      (8) For the real data, there are a number of additional sources of bias that need to be considered for the analysis. What if there are not only condition-specific differences in noise variance, but also a condition-specific pattern? Given that the stimuli were measured in 3 different imaging runs, you cannot assume that all measurement noise is i.i.d. - stimuli from the same run will likely have a higher correlation with each other.

      (9) The discussion should be rewritten in light of the fact that the setting considered here is very different from the model-comparative RSA in which one usually has multiple measurements per stimulus per subject. In this setting, existing approaches such as RSA or PCM do indeed allow for the full modelling of differences in the "representational strength" - i.e., pattern variance across subjects, conditions, and stimuli. Cross-validated distances provide a powerful tool to control for differences in measurement noise variances and possible covariances in measurement noise across trials, which has many distinct advantages and is conceptually very different from the approach taken here. One of the main limitations of tRSA is the assumption that the model RDM is actually the true brain RDM, which may not be the case. Thus, in theory, there could be a different model RDM, in which representational strength measures would be very different. These differences should be explained more fully, hopefully leading to a more accessible paper.

      References:

      Diedrichsen, J., Berlot, E., Mur, M., Schütt, H. H., Shahbazi, M., & Kriegeskorte, N. (2021). Comparing representational geometries using whitened unbiased-distance-matrix similarity. Neurons, Behavior, Data and Theory, 5(3). https://arxiv.org/abs/2007.02789

      Diedrichsen, J., & Kriegeskorte, N. (2017). Representational models: A common framework for understanding encoding, pattern-component, and representational-similarity analysis. PLoS Computational Biology, 13(4), e1005508.

      Diedrichsen, J., Yokoi, A., & Arbuckle, S. A. (2018). Pattern component modeling: A flexible approach for understanding the representational structure of brain activity patterns. NeuroImage, 180, 119-133.

      Naselaris, T., Kay, K. N., Nishimoto, S., & Gallant, J. L. (2011). Encoding and decoding in fMRI. NeuroImage, 56(2), 400-410.

      Nili, H., Wingfield, C., Walther, A., Su, L., Marslen-Wilson, W., & Kriegeskorte, N. (2014). A toolbox for representational similarity analysis. PLoS Computational Biology, 10(4), e1003553.

      Schütt, H. H., Kipnis, A. D., Diedrichsen, J., & Kriegeskorte, N. (2023). Statistical inference on representational geometries. ELife, 12. https://doi.org/10.7554/eLife.82566

      Walther, A., Nili, H., Ejaz, N., Alink, A., Kriegeskorte, N., & Diedrichsen, J. (2016). Reliability of dissimilarity measures for multi-voxel pattern analysis. NeuroImage, 137, 188-200.

    2. Reviewer #2 (Public review):

      Summary:

      This methods paper proposes two changes to classic RSA, a popular method to probe neural representation in neuroimaging experiments: computing RSA at row/column level of RDM, and using mixed linear modeling to compute second-level statistics, using the individual row/columns to estimate a random effect of stimulus. The benefit of the new method is demonstrated using simulations and a re-analysis of a prior fMRI dataset on object perception and memory encoding.

      Strengths:

      (1) The paper is clearly written and features clear illustrations of the proposed method.

      (2) The combination of simulation and real data works well, with the same factors being examined in both simulations and real data, resulting in a convincing demonstration of the benefits of tRSA in realistic experimental scenarios.

      (3) I find the author's claim that tRSA is a promising approach to perform more complete modeling of cogneuro data, but also to conceptualize representation at the single trial/event level (cf Discussion section on P42), quite appealing.

      Weaknesses:

      (1) While I generally welcome the contribution (see above), I take some issue with the accusatory tone of the manuscript in the Introduction. The text there (using words such as 'ignored variances', 'errouneous inferences', 'one must', 'not well-suited', 'misleading') appears aimed at turning cRSA in a 'straw man' with many limitations that other researchers have not recognized but that the new proposed method supposedly resolves. This can be written in a more nuanced, constructive manner without accusing the numerous users of this popular method of ignorance.

      (2) The described limitations are also not entirely correct, in my view: for example, statistical inference in cRSA is not always done using classic parametric statistics such as t-tests (cf Figure 1): the rsatoolbox paper by Nili et al. (2014) outlines non-parametric alternatives based on permutation tests, bootstrapping and sign tests, which are commonly used in the field. Nor has RSA ever been conducted at the row/column level (here referred to by the authors as 'trial level'; cf King et al., 2018).

      (3) One of the advantages of cRSA is its simplicity. Adding linear mixed effects modeling to RSA introduces a host of additional 'analysis parameters' pertaining to the choice of the model setup (random effects, fixed effects, interactions, what error terms to use) - how should future users of tRSA navigate this?

      (4) Here, only a single real fMRI dataset is used with a quite complicated experimental design for the memory part; it's not clear if there is any benefit of using tRSA on a simpler real dataset. What's the benefit of tRSA in classic RSA datasets (e.g., Kriegeskorte et al., 2008), with fixed stimulus conditions and no behavior?

      (5) The cells of an RDM/RSM reflect pairwise comparisons between response patterns (typically a brain but can be any system; cf Sucholutsky et al., 2023). Because the response patterns are repeatedly compared, the cells of this matrix are not independent of one another. Does this raise issues with the validity of the linear mixed effects model? Does it assume the observations are linearly independent?

      (6) The manuscript assumes the reader is familiar with technical statistical terms such as Type I/II error, sensitivity, specificity, homoscedasticity assumptions, as well as linear mixed models (fixed effects, random effects, etc). I am concerned that this jargon makes the paper difficult to understand for a broad readership or even researchers currently using cRSA that might be interested in trying tRSA.

      (7) I could not find any statement on data availability or code availability. Given that the manuscript reuses prior data and proposes a new method, making data and code/tutorials openly available would greatly enhance the potential impact and utility for the community.

      References

      King, M. L., Groen, I. I., Steel, A., Kravitz, D. J., & Baker, C. I. (2019). Similarity judgments and cortical visual responses reflect different properties of object and scene categories in naturalistic images. NeuroImage, 197, 368-382.

      Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., ... & Bandettini, P. A. (2008). Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron, 60(6), 1126-1141.

      Nili, H., Wingfield, C., Walther, A., Su, L., Marslen-Wilson, W., & Kriegeskorte, N. (2014). A toolbox for representational similarity analysis. PLoS computational biology, 10(4), e1003553.

      Sucholutsky, I., Muttenthaler, L., Weller, A., Peng, A., Bobu, A., Kim, B., ... & Griffiths, T. L. (2023). Getting aligned on representational alignment. arXiv preprint arXiv:2310.13018.

    1. Reviewer #1 (Public review):

      This study explores the connectivity patterns that could lead to fast and slow undulating swim patterns in larval zebrafish using a simplified theoretical framework. The authors show that a pattern of connectivity based only on inhibition is sufficient to produce realistic patterns with a single frequency. Two such networks, coupled with inhibition but with distinct time constants, can produce a range of frequencies. Adding excitatory connections further increases the range of obtainable frequencies, albeit at the expense of sudden transitions in the mid-frequency range.

      Strengths:

      (1) This is an eloquent approach to answering the question of how spinal locomotor circuits generate coordinated activity using a theoretical approach based on moving bump models of brain activity.

      (2) The models make specific predictions on patterns of connectivity while discounting the role of connectivity strength or neuronal intrinsic properties in shaping the pattern.

      (3) The models also propose that there is an important association between cell-type-specific intersegmental patterns and the recruitment of speed-selective subpopulations of interneurons.

      (4) Having a hierarchy of models creates a compelling argument for explaining rhythmicity at the network level. Each model builds on the last and reveals a new perspective on how network dynamics can control rhythmicity. I liked that each model can be used to probe questions in the next/previous model.

      Major Issues:

      (1) How is this simplified model representative of what is observed biologically? A bump model does not naturally produce oscillations. How would the dynamics of a rhythm generator interact with this simplistic model?

      (2) Would this theoretical construct survive being expressed in a biophysical model? It seems that it should, but even a simple biological model with the basic patterns of connectivity shown here would greatly increase confidence in the biological plausibility of the theory.

      (3) How stable is this model in its output patterns? Is it robust to noise? Does noise, in fact, smooth out the abrupt transitions in frequency in the middle range?

      (4) All figure captions are inadequate. They should have enough information for the reader to understand the figure and the point that was meant to be conveyed. For example, Figure 1 does not explain what the red dot is, what is black, what is white, or what the gradations of gray are. Or even if this is a representative connectivity of one node, or if this shows all the connections? The authors should not leave the reader guessing.

    2. Reviewer #2 (Public review):

      Summary:

      The authors aimed to show that connectivity patterns within spinal circuits composed of specific excitatory and inhibitory connectivity and with varying degrees of modularity could achieve tail beats at various frequencies as well as proper left-right coordination and rostrocaudal propagation speeds.

      Strengths:

      The model is simple, and the connectivity patterns explored are well supported by the literature.

      The conclusions are intuitive and support many experimental studies on zebrafish spinal circuits for swimming. The simulations provide strong support for the sufficiency of connectivity patterns to produce and control many hallmark features of swimming in zebrafish.

      Weaknesses:

      I only have two minor suggestions:

      (1) Figure 1A, if I interpret Figure 1B correctly, should there not be long descending projections as well that don't seem to be illustrated?

      (2) Page 5, It would be good to define what is meant by slow and fast here, as this definition changes with age in zebrafish (what developmental age)?

    3. Reviewer #3 (Public review):

      Summary:

      Central pattern generator (CPG) circuits underly rhythmic motor behaviors. To date, it is thought that these CPG networks are rather local and multiple CPG circuits are serially connected to allow locomotion across the entire body. Distributed CPG networks that incorporate long-range connections have not been proposed, although such connectivity has been experimentally shown for several different spinal populations. In this manuscript, the authors use this existing literature on long-range spinal interneuron connectivity to build a new computational model that reproduces basic features of locomotion like left-right alternation, rostrocaudal propagation, and independent control of frequency and amplitude. Interestingly, the authors show that a model solely based on inhibitory neurons can recapitulate these basic locomotor features. Excitatory sources were then added that increased the dynamic range of frequencies generated. Finally, the authors were also able to reproduce experimentally observed consequences of cell-type-specific ablations, showing that local and long-range, cell-type-specific connectivity could be sufficient for generating locomotion.

      Strengths:

      This work is novel, providing an interesting alternative to distributed CPGs to the local networks traditionally predicted. It shows cell type cell-type-specific network connectivity is as important, if not more than intrinsic cell properties for rhythmogenesis and that inhibition plays a crucial role in shaping locomotor features. Given the importance of local CPGs in understanding motor control, this alternative concept will be of broad interest to the larger motor control field, including invertebrate and vertebrate species.

      Weaknesses:

      I have the following minor concerns/clarifications:

      (1) The authors describe a single unit as a neuron, be it excitatory or inhibitory, and the output of the simulation is the firing rate of these neurons. Experimentally and in other modeling studies, motor neurons are incorporated in the model, and the output of the network is based on motor neuron firing rate, not the interneurons themselves. Why did the authors choose to build the model this way?

      (2) In the single population model (Figure 1), the authors use ipsilateral inhibitory connections that are long-range in an ascending direction. Experimentally, these connections have been shown to be local, while long-range ipsilateral connections have been shown to be descending. What were the reasons the authors chose this connectivity? Do the authors think local ascending inhibitions contribute to rostrocaudal propagation, and how?

      (3) In the two-population model, the authors show independent control of frequency and rhythm, as has been reported experimentally. However, in these previous experimental studies, frequency and amplitude are regulated by different neurons, suggesting different networks dedicated to frequency and amplitude control. However, in the current model, the same population with the same connections can contribute to frequency or amplitude depending on relative tonic drive. Can the authors please address these differences either by changes in the model or by adding to the Discussion?

      (4) It would be helpful to add a paragraph in the Discussion on how these results could be applicable to other model systems beyond zebrafish. Cell intrinsic rhythmogenesis is a popular concept in the field, and these results show an interesting and novel alternative. It would help to know if there is any experimental evidence suggesting such network-based propagation in other systems, invertebrates, or vertebrates.

    1. Reviewer #1 (Public review):

      Summary:

      This paper investigates the potential link between amygdala volume and social tolerance in multiple macaque species. Through a comparative lens, the authors considered tolerance grade, species, age, sex, and other factors that may contribute to differing brain volumes. They found that amygdala, but not hippocampal, volume differed across tolerance grades, such that high-tolerance species showed larger amygdala than low-tolerance species of macaques. They also found that less tolerant species exhibited increases in amygdala volume with age, while more tolerant species showed the opposite. Given their wide range of species with varied biological and ecological factors, the authors' findings provide new evidence for changes in amygdala volume in relation to social tolerance grades. Contributions from these findings will greatly benefit future efforts in the field to characterize brain regions critical for social and emotional processing across species.

      Strengths:

      (1) This study demonstrates a concerted and impressive effort to comparatively examine neuroanatomical contributions to sociality in monkeys. The authors impressively collected samples from 12 macaque species with multiple datapoints across species age, sex, and ecological factors. Species from all four social tolerance grades were present. Further, the age range of the animals is noteworthy, particularly the inclusion of individuals over 20 years old - an age that is rare in the wild but more common in captive settings.

      (2) This work is the first to report neuroanatomical correlates of social tolerance grade in macaques in one coherent study. Given the prevalence of macaques as a model of social neuroscience, considerations of how socio-cognitive demands are impacted by the amygdala are highly important. The authors' findings will certainly inform future studies on this topic.

      (3) The methodology and supplemental figures for acquiring brain MRI images are well detailed. Clear information on these parameters is crucial for future comparative interpretations of sociality and brain volume, and the authors do an excellent job of describing this process in full.

      Weaknesses:

      (1) The nature vs. nurture distinction is an important one, but it may be difficult to draw conclusions about "nature" in this case, given that only two data points (from grades 3 and 4) come from animals under one year of age (Method Figure 1D). Most brains were collected after substantial social exposure-typically post age 1 or 1.5-so the data may better reflect developmental changes due to early life experience rather than innate wiring. It might be helpful to frame the findings more clearly in terms of how early experiences shape development over time, rather than as a nature vs. nurture dichotomy.

      (2) It would be valuable to clarify how the older individuals, especially those 20+ years old, may have influenced the observed age-related correlations (e.g., positive in grades 1-2, negative in grades 3-4). Since primates show well-documented signs of aging, some discussion of the potential contribution of advanced age to the results could strengthen the interpretation.

      (3) The authors categorize the behavioral traits previously described in Thierry (2021) into 3 self-defined cognitive requirements, however, they do not discuss under what conditions specific traits were assigned to categories or justify why these cognitive requirements were chosen. It is not fully clear from Thierry (2021) alone how each trait would align with the authors' categories. Given that these traits/categories are drawn on for their neuroanatomical hypotheses, it is important that the authors clarify this. It would be helpful to include a table with all behavioral traits with their respective categories, and explain their reasoning for selecting each cognitive requirement category.

      (4) One of the main distinctions the authors make between high social tolerance species and low tolerance species is the level of complex socio-cognitive demands, with more tolerant species experiencing the highest demands. However, socio-cognitive demands can also be very complex for less tolerant species because they need to strategically balance behaviors in the presence of others. The relationships between socio-cognitive demands and social tolerance grades should be viewed in a more nuanced and context-specific manner.

      (5) While the limitations section touches on species-related considerations, the issue of individual variability within species remains important. Given that amygdala volume can be influenced by factors such as social rank and broader life experience, it might be useful to further emphasize that these factors could introduce meaningful variation across individuals. This doesn't detract from the current findings but highlights the importance of considering life history and context when interpreting subcortical volumes-particularly in future studies.

    2. Reviewer #2 (Public review):

      Summary:

      This comparative study of macaque species and the type of social interaction is both ambitious and inevitably comes with a lot of caveats. The overall conclusion is that more intolerant species have a larger amygdala. There are also opposing development profiles regarding amygdala volume depending on whether it is a tolerant or intolerant species.

      To achieve any sort of power, they have combined data from 4 centres, which have all used different scanning methods, and there are some resolution differences. The authors have also had to group species into 4 classifications - again to assist with any generalisations and power. They have focussed on the volumes of two structures, the amygdala and the hippocampus, which seems appropriate. Neither structure is homogeneous and so it may well be that a targeted focus on specific nuclei or subfields would help (the authors may well do this next) - but as the variables would only increase further along with the number of potential comparisons, alongside small group numbers, it seems only prudent to treat these findings are preliminary. That said, it is highly unlikely that large numbers of macaque brains will become available in the near future.

      This introduction is by way of saying that the study achieves what it sets out to do, but there are many reasons to see this study as preliminary. The main message seems to be twofold: (1) that more intolerant species have relatively larger amygdalae, and (2) that with development, there is an opposite pattern of volume change (increasing with age in intolerant species and decreasing with age in tolerant species). Finding 1 is the opposite of that predicted in Table 1 - this is fine, but it should be made clearer in the Discussion that this is the case, otherwise the reader may feel confused. As I read it, the authors have switched their prediction in the Discussion, which feels uncomfortable.

      It is inevitable that the data in a study of this complexity are all too prone to post hoc considerations, to which the authors indulge. In the case of Grade 1 species, the individuals have a lot to learn, especially if they are not top of the hierarchy, but at the same time, there are fewer individuals in the troop, making predictions very tricky. As noted above, I am concerned by the seemingly opposite predictions in Table 1 and those in the Discussion regarding tolerance and amygdala volume. (It may be that the predictions in Table 1 are the opposite of how I read them, in which case the Table and preceding text need to align.)

    3. Reviewer #3 (Public review):

      Summary:

      In this study, the authors were looking at neurocorrelates of behavioural differences within the genus Macaca. To do so, they engaged in real-world dissection of dead animals (unconnected to the present study) coming from a range of different institutions. They subsequently compare different brain areas, here the amygdala and the hippocampus, across species. Crucially, these species have been sorted according to different levels of social tolerance grades (from 1 to 4). 12 species are represented across 42 individuals. The sampling process has weaknesses ("only half" of the species contained by the genus, and Macaca mulatta, the rhesus macaque, representing 13 of the total number of individuals), but also strengths (the species are decently well represented across the 4 grades) for the given purpose and for the amount of work required here. I will not judge the dissection process as I am not a neuroanatomist, and I will assume that the different interventions do not alter volume in any significant ways / or that the different conditions in which the bodies were kept led to the documented differences across species.

      There are two main results of the study. First, in line with their predictions, the authors find that more tolerant macaque species have larger amygdala, compared to the hippocampus, which remains undifferentiated across species. Second, they also identify developmental effects, although with different trends: in tolerant species, the amygdala relative volume decreases across the lifespan, while in intolerant species, the contrary occurs. The results look quite strong, although the authors could bring up some more clarity in their replies regarding the data they are working with. From one figure to the other, we switch from model-calculated ratio to model-predicted volume. Note that if one was to sample a brain at age 20 in all the grades according to the model-predicted volumes, it would not seem that the difference for amygdala would differ much across grades, mostly driven with Grade 1 being smaller (in line with the main result), but then with Grade 2 bigger than Grade 3, and then Grade 4 bigger once again, but not that different from Grade 2.

      Overall, despite this, I think the results are pretty strong, the correlations are not to be contested, but I also wonder about their real meaning and implications. This can be seen under 3 possible aspects:

      (1) Classification of the social grade

      While it may be familiar to readers of Thierry and collaborators, or to researchers of the macaque world, there is no list included of the 18 behavioral traits used to define the three main cognitive requirements (socio-cognitive demands, predictability of the environment, inhibitory control). It would be important to know which of the different traits correspond to what, whether they overlap, and crucially, how they are realized in the 12 study species, as there could be drastic differences from one species to the next. For now, we can only see from Table S1 where the species align to, but it would be a good addition to have them individually matched to, if not the 18 behavioral traits, at least the 3 different broad categories of cognitive requirements.

      (2) Issue of nature vs nurture

      Another way to look at the debate between nature vs nurture is to look at phylogeny. For now, there is no phylogenetic tree that shows where the different grades are realized. For example, it would be illuminating to know whether more related species, independently of grades, have similar amygdala or hippocampus sizes. Then the question will go to the details, and whether the grades are realized in particular phylogenetic subdivisions. This would go in line with the general point of the authors that there could be general species differences.

      With respect to nurture, it is likely more complicated: one needs to take into account the idiosyncrasies of the life of the individual. For example, some of the cited literature in humans or macaques suggests that the bigger the social network, the bigger the brain structure considered. Right, but this finding is at the individual level with a documented life history. Do we have any of this information for any of the individuals considered (this is likely out of the scope of this paper to look at this, especially for individuals that did not originate from CdP)?

      (3) Issue of the discussion of the amygdala's function

      The entire discussion/goal of the paper, states that the amygdala is connected to social life. Yet, before being a "social center", the amygdala has been connected to the emotional life of humans and non-humans alike. The authors state L333/34 that "These findings challenge conventional expectations of the amygdala's primary involvement in emotional processes and highlight the complexity of the amygdala's role in social cognition". First, there is no dichotomy between social cognition and emotion. Emotion is part of social cognition (unless we and macaques are robots). Second, there is nowhere in the paper a demonstration that the differences highlighted here are connected to social cognition differences per se. For example, the authors have not tested, say, if grade 4 species are more afraid of snakes than grade 1 species. If so, one could predict they would also have a bigger amygdala, and they would probably also find it in the model. My point is not that the authors should try to correlate any kind of potential aspect that has been connected to the amygdala in the literature with their data (see for example the nice review by Domínguez-Borràs and Vuilleumier, https://doi.org/10.1016/B978-0-12-823493-8.00015-8), but they should refrain from saying they have challenged a particular aspect if they have not even tested it. I would rather engage the authors to try and discuss the amygdala as a multipurpose center, that includes social cognition and emotion.

      Strengths:

      Methods & breadth of species tested.

      Weaknesses:

      Interpretation, which can be described as 'oriented' and should rather offer additional views.

    1. Reviewer #1 (Public review):

      Summary:

      Intravital microscopy (IVM) is a powerful tool that facilitates live imaging of individual cells over time in vivo in their native 3D tissue environment. Extracting and analysing multi-parametric data from IVM images however is challenging, particularly for researchers with limited programming and image analysis skills. In this work, Rios-Jimenez and Zomer et al have developed a 'zero-code' accessible computational framework (BEHAV3D-Tumour Profiler) designed to facilitate unbiased analysis of IVM data to investigate tumour cell dynamics (via the tool's central 'heterogeneity module' ) and their interactions with the tumour microenvironment (via the 'large-scale phenotyping' and 'small-scale phenotyping' modules). It is designed as an open-source modular Jupyter Notebook with a user-friendly graphical user interface and can be implemented with Google Colab, facilitating efficient, cloud-based computational analysis at no cost. Demo datasets are also available on the authors GitHub repository to aid user training and enhance the usability of the developed pipeline.

      To demonstrate the utility of BEHAV3D-TP, they apply the pipeline to timelapse IVM imaging datasets to investigate the in vivo migratory behaviour of fluorescently labelled DMG cells in tumour bearing mice. Using the tool's 'heterogeneity module' they were able to identify distinct single-cell behavioural patterns (based on multiple parameters such as directionality, speed, displacement, distance from tumour edge) which was used to group cells into distinct categories (e.g. retreating, invasive, static, erratic). They next applied the framework's 'large-scale phenotyping' and 'small-scale phenotyping' modules to investigate whether the tumour microenvironment (TME) may influence the distinct migratory behaviours identified. To achieve this, they combine TME visualisation in vivo during IVM (using fluorescent probes to label distinct TME components) or ex vivo after IVM (by large-scale imaging of harvested, immunostained tumours) to correlate different tumour behavioural patterns with the composition of the TME. They conclude that this tool has helped reveal links between TME composition (e.g. degree of vascularisation, presence of tumour-associated macrophages) and the invasiveness and directionality of tumour cells, which would have been challenging to identify when analysing single kinetic parameters in isolation.

      The authors also evaluated the BEHAV3D TP heterogeneity module using available IVM datasets of distinct breast cancer cell lines transplanted in vivo, as well as healthy mammary epithelial cells to test its usability in non-tumour contexts where the migratory phenotypes of cells may be more subtle. This generated data is consistent with that produced during the original studies, as well as providing some additional (albeit preliminary) insights above that previously reported. Collectively, this provides some confidence in BEHAV3D TP's ability to uncover complex, multi-parametric cellular behaviours that may be missed using traditional approaches.

      Overall, this computational framework appears to represent a useful and comparatively user-friendly tool to analyse dynamic multi-parametric data to help identify patterns in cell migratory behaviours, and to assess whether these behaviours might be influenced by neighbouring cells and structures in their microenvironment. When combined with other methods, it therefore has the potential to be a valuable addition to a researcher's IVM analysis 'tool-box'.

      Strengths:

      - Figures are clearly presented, and the manuscript is easy to follow.<br /> - The pipeline appears to be intuitive and user-friendly for researchers with limited computational expertise. A detailed step-by-step video and demo datasets are also included to support its uptake.<br /> - The different computational modules have been tested using relevant datasets, including imaging data of normal and tumour cells in vivo.<br /> - All code is open source, and the pipeline can be implemented with Google Colab.<br /> - The tool combines multiple dynamic parameters extracted from timelapse IVM images to identify single-cell behavioural patterns and to cluster cells into distinct groups sharing similar behaviours, and provides avenues to map these onto in vivo or ex vivo imaging data of the tumour microenvironment

      Weaknesses:

      - The tool does not facilitate the extraction of quantitative kinetic cellular parameters (e.g. speed, directionality, persistence and displacement) from intravital images. To use the tool researchers must first extract dynamic cellular parameters from their IVM datasets using other software including Imaris, which is expensive and therefore not available to all. Nonetheless, the authors have developed their tool to facilitate the integration of other data formats generated by open-source Fiji plugins (e.g. TrackMate, MTrackJ, ManualTracking) which will help ensure its accessibility to a broader range of researchers.<br /> - The analysis provides only preliminary evidence in support of the authors conclusions on DMG cell migratory behaviours and their relationship with components of the tumour microenvironment. The authors acknowledge this however, and conclusions are appropriately tempered in the absence of additional experiments and controls.

    2. Reviewer #2 (Public review):

      Summary:

      The authors produce a new tool, BEHAV3D to analyse tracking data and to integrate these analyses with large and small scale architectural features of the tissue. This is similar to several other published methods to analyse spatio-temporal data, however, the connection to tissue features is a nice addition, as is the lack of requirement for coding. The tool is then used to analyse tracking data of tumour cells in diffuse midline glioma. They suggest 7 clusters exist within these tracks and that they differ spatially. They ultimately suggest that there these behaviours occur in distinct spatial areas as determined by CytoMAP.

      Strengths:

      - The tool appears relatively user-friendly and is open source. The combination with CytoMAP represents a nice option for researchers.

      - The identification of associations between cell track phenotype and spatial features is exciting and the diffuse midline glioma data nicely demonstrates how this could be used.

      Weaknesses:

      - The revision has dealt with many concerns, however, the statistics generated by the process are still flawed. While the statistics have been clarified within the legends and this is a great improvement in terms of clarity the underlying assumptions of the tests used are violated. The problem is that individual imaging positions or tracks are treated as independent and then analysed by ANOVA. As separate imaging positions within the same mouse are not independent, nor are individual cells within a single mouse, this makes the statistical analyses inappropriate. For a deeper analysis of this that is feasible within a review please see Lord, Samuel J., et al. "SuperPlots: Communicating reproducibility and variability in cell biology." The Journal of cell biology 219.6 (2020): e202001064. Ultimately, while this is a neat piece of software facilitating the analysis of complex data, the fact that it will produce flawed statistical analysis is a major problem. This problem is compounded by the fact that much imaging analysis has been analysed in this inappropriate manner in the past, leading to issues of interpretation and ultimately reproducibility.

    3. Reviewer #3 (Public review):

      The manuscript by Rios-Jimenez developed a software tool, BEHAV3D Tumor Profiler, to analyze 3D intravital imaging data and identify distinctive tumor cell migratory phenotypes based on the quantified 3D image data. Moreover, the heterogeneity module in this software tool can correlate the different cell migration phenotypes with variable features of the tumor microenvironment. Overall, this is a useful tool for intravital imaging data analysis and its open-source nature makes it accessible to all interested users.

      Strengths:

      An open-source software tool that can quantify cell migratory dynamics from intravital imaging data and identify distinctive migratory phenotypes that correlate with variable features of the tumor microenvironment.

      Weaknesses:

      Motility is only one tumor cell feature and is probably not sufficient to characterize and identify the heterogeneity of the tumor cell population that impacts their behaviors in the complex tumor microenvironment (TME). For instance, there are important non-tumor cell types in the TME, and the interaction dynamics of tumor cells with other cell types, e.g., fibroblasts and distinct immune cells, play a crucial role in regulating tumor behaviors. BEHAV3D-TP focuses on only motility feature analysis, and cannot be applied to analyze other tumor cell dynamic features or cell-cell interaction dynamics.

    1. Reviewer #1 (Public review):

      Summary:

      Gekko, Nomura et al., show that Drp1 elimination in zygotes using the Trim-Away ttechnique leads to mitochondrial clustering and uneven mitochondrial partitioning during the first embryonic cleavage, resulting in embryonic arrest. They monitor organellar localization and partitioning using specific targeted fluorophores. They also describe the effects of mitochondrial clustering in spindle formation and the detrimental effect of uneven mitochondrial partitioning to daughter cells.

      Strengths:

      The authors have gathered solid evidence for the uneven segregation of mitochondria upon Drp1 depletion through different means: mitochondrial labelling, ATP labelling and mtDNA copy number assessement in each daughter cell. Authors have also characterised the defects in cleavage mitotic spindles upon Drp1 loss

      Weaknesses:

      This study convincingly describes the phenotype seen upon Drp1 loss. However, it remains descriptive. Further studies should be conducted to elucidate the mechanism by which Drp1 ensures even mitochondrial partitioning during the first embryonic cleavage.

    2. Reviewer #2 (Public review):

      Gekko et al investigate the impact of perturbing mitochondrial during early embryo development, through modulation of the mitochondrial fission protein Drp1 using Trim-Away technology. They aimed to validate a role for mitochondrial dynamics in modulating chromosomal segregation, mitochondrial inheritance and embryo development and achieve this through the examination of mitochondrial and endoplasmic reticulum distribution, as well as actin filament involvement, using targeted plasmids, molecular probes and TEM in pronuclear stage embryos through the first cleavages divisions. Drp1 deletion perturbed mitochondrial distribution, leading to asymmetric partitioning of mitochondria to the 2-cell stage embryo, prevented appropriate chromosomal segregation and culminated in embryo arrest. Resultant 2-cell embryos displayed altered ATP, mtDNA and calcium levels. Microinjection of Drp1 mRNA partially rescued embryo development. A role for actin filaments in mitochondrial inheritance is described, however the actin-based motor Myo19 does not appear to contribute.

      Overall, this study builds upon their previous work and provides further support for a role of mitochondrial dynamics in mediating chromosomal segregation and mitochondrial inheritance. In particular, Drp1 is required for redistribution of mitochondria to support symmetric partitioning and support ongoing development.

      Strengths:<br /> The study is well designed, the methods appropriate and the results clearly presented. The findings are nicely summarised in a schematic.

      The addition of further quantification, including mitochondrial cluster size, elongation/aspect ratio and ROS, as requested by the reviewers, has provided further evidence for the impact of Drp1 depletion on mitochondrial morphology and function.

      Understanding the role of mitochondria in binucleation and mitochondrial inheritance is of clinical relevance for patients undergoing infertility treatment, particularly those undergoing mitochondrial replacement therapy.

      Weaknesses (original manuscript):<br /> The authors first describe the redistribution of mitochondria during normal development, followed by alterations induced by Drp1 depletion. It would be useful to indicate time post-hCG for imaging of fertilised zygotes (first paragraph of the results/Figure 1) to compare with subsequent Drp1 depletion experiments.

      It is noted that Drp1 protein levels were undetectable 5h post-injection, suggesting earlier times were not examined, yet in Figure 3A it would seem that aggregation has occurred within 2 hours (relative to Figure 1).

      Mitochondria appear to be slightly more aggregated in Drp1 fl/fl embryos than in control, though comparison with untreated controls does not appear to have been undertaken. There also appears to be some variability in mitochondrial aggregation patterns following Drp1 depletion (Figure 2-suppl 1 B) which are not discussed.

      The authors use western blotting to validate the depletion of Drp1, however do not quantify band intensity. It is also unclear whether pooled embryo samples were used for western blot analysis.

      Likewise, intracellular ROS levels are examined however quantification is not provided. It is therefore unclear whether 'highly accumulated levels' are of significance or related to Drp1 depletion.

      In previous work, Drp1 was found to have a role as a spindle assembly checkpoint (SAC) protein. It is therefore unclear from the experiments performed whether aggregation of mitochondria separating the pronuclei physically (or other aspects of mitochondrial function) prevents appropriate chromosome segregation or whether Drp1 is acting directly on the SAC.

      Weaknesses (revised manuscript):

      The only remaining weakness is that the authors have not undertaken additional experiments to clarify any role for mitochondrial transport following Drp1 depletion.

    3. Reviewer #3 (Public review):

      Why mitochondria are finely maintained in the female germ cell (oocyte), zygotes, and preimplantation embryos? Mitochondrial fusion seems beneficial in somatic cells to compensate for unhealthy mitochondria, for example, mitochondria with mutated mtDNA that potentially defuel the respiratory activity if accumulated above a certain threshold. However, in the germ cells, it may rather increase the risk of transmitting mutated mtDNA to the next generation. Also, finely maintained mitochondria would also be beneficial for efficient removal when damaged, as authors briefly discussed. Due in part to the limited suitable model, physiological role of mitochondrial fission in embryos were obscure. In this study, authors demonstrated that mitochondrial fission prevents multiple adverse outcomes, especially including the aberrant demixing of parental genome (a clinical phenotype of human embryos) in zygotic stage. Thus, this study would be also of clinical importance that could contribute by proposing a novel mechanism.

      After reading through the comments of other reviewers, what authors could potentially improve their manuscript had been largely summarized in three following points.

      (1) Authors would better clarify whether a loss of Drp1 contributes to the chromosome segregation defects directly (e.g. checking SAC-like activity) or indirectly (aggregated mitochondria became physically obstacle; maybe in part getting the cytoskeleton involved).

      (2) Although the level of Myo19 may not be so high (given the low level of TRAK2 in oocytes: Lee et al. PNAS 2024, PMID 38917013), authors would better further clarify the effect of Myo19-Trim with timelapse (e.g. EB3-GFP/Mt-DsRed) and EM analysis (detailed mitochondrial architecture).

      (3) Authors would better clarify phenotypic heterogeneity/variety regarding the degree of alteration in mitochondrial morphology/ architecture dependent on the levels of Drp1 loss with detailed quantification of EM images to address why aggregation of mitochondria in Drp1-/- parthenote (possibly, more likely Drp1 protein-free) looks different/weaker than Trim-awayed one. Employment of the parthenotes of Trim-awayed MII oocytes might also complement the further discussion.

      The revised preprinted have addressed all the points described above. Authors have also adequately indicated the limitations at each of the specific points. Revisions authors made have consolidated their conclusion, thus still, making this study an excellent one.

    1. Reviewer #1 (Public review):

      Summary:

      Howard-Spink et al. investigated how older chimpanzees changed their behavior regarding stone tool use for nutcracking over a period of 17 years, from late adulthood to old age. This behavior is cognitively demanding, and it is a good target for understanding aging in wild primates. They used several factors to follow the aging process of five individuals, from attendance at the nut-cracking outdoor laboratory site to time to select tools and efficiency in nut-cracking to check if older chimpanzee changed their behavior.

      Indeed, older chimpanzees reduced their visits to the outdoor lab, which was not observed in the younger adults. The authors discuss several reasons for that; the main ones being physiological changes, cognitive and physical constraints, and changes in social associations. Much of the discussion is hypothetical, but a good starting point, as there is not much information about senescence in wild chimpanzees.

      The efficiency for nut-cracking was variable, with some individuals taking a long time to crack nuts while others showed little variance. As this is not compared with the younger individuals and the sample is small (only five individuals), it is difficult to be sure if this is also partly a normal variance caused by other factors (ecology) or is only related to senescence.

      Strengths:

      (1) 17 years of longitudinal data in the same setting, following the same individuals.

      (2) Using stone tool use, a cognitively demanding behavior, to understand the aging process.

      Weaknesses:

      A lack of comparison of the stone tool use behavior with younger individuals in the same period, to check if the changes observed are only related to age or if it is an overall variance. The comparison with younger chimpanzees was only done for one of the variables (attendance).

      Comments on Revised Version (from BRE):

      The authors have now added to the manuscript that they did not have sufficient data to compare additional variables to younger chimpanzees, and therefore compared intra-individual variation across field seasons. They have also explained that nut hardness, although not measured, was largely controlled for due to the experimental nature of the 'outdoor laboratory' whereby only nuts of a suitable maturity (and hardness) are provided to the chimpanzees. The discussion now also includes mention of other ecological variables and their potential influence on the results.

    2. Reviewer #2 (Public review):

      Summary:

      Primates are a particularly important and oft-applied model for understanding the evolution of, e.g., life history and senescence in humans. Although there is a growing body of work on aging in primates, there are three components of primate senescence research that have been underutilized or understudied: (1) longitudinal datasets, (2) wild populations, and (3) (stone) tool-use behaviors. Therefore, the goal of this study was to (1) use a 17-year longitudinal dataset (2) of wild chimpanzees in the Bossou forest, (3) visiting a site for field experiments on nut-cracking. They sampled and analyzed data from five field seasons for five chimpanzees of old age. From this sample, Howard-Spink and colleagues noted a decline in tool-use and tool-use efficiency in some individuals, but not in others. The authors then conclude that there is a measurable effect of senescence on chimpanzee behavior, but that it varies individually. The study has major intellectual value as a building block for future research, but there are several major caveats.

      Strengths:

      With this study, Howard-Spink and colleagues make a foray into a neglected topic of research: the impact of the physiological and cognitive changes due to senescence on stone tool use in chimpanzees. Based on novelty alone, this is a valuable study. The authors cleverly make use of a longitudinal record covering 17 years of field data, which provides a window into long-term changes in the behavior of wild chimpanzees, which I agree cannot be understood through cross-sectional comparisons.

      The metrics of 'efficiency' (see caveats below) are suitable for measuring changes in technological behavior over time, as specifically tailored to the nut-cracking (e.g., time, number of actions, number of strikes, tool changes). The ethogram and the coding protocol are also suitable for studying the target questions and objectives. I would recommend, however, the inclusion of further variables that will assist in improving the amount of valid data that can be extrapolated (see also below).

      With this pilot, Howard-Spink and colleagues have established a foundation upon which future research can be designed, including further investigation with the Bossou dataset and other existing video archives, but especially future targeted data collection, which can be designed to overcome some of the limits and confounds that can be identified in the current study.

      Weaknesses:

      Although I agree with the reasoning behind conducting this research and understand that, as the authors state, there are logistical considerations that have to be made when planning and executing such a study, there are a number of methodological and theoretical shortcomings that either need to be more explicitly stated by the authors or would require additional data collection and analysis.

      One of the main limitations of this study is the small sample size. There are only 5 of the old-aged individuals, which is not enough to draw any inferences about aging for chimpanzees more generally. Howard-Spink and colleagues also study data from only five of the 17 years of recorded data at Bossou. The selection of this subset of data requires clarification: why were these intervals chosen, why this number of data points, and how do we know that it provides a representative picture of the age-related changes of the full 17 years?

      With measuring and interpreting the 'efficiency' of behaviors, there are in-built assumptions about the goals of the agents and how we can define efficiency. First, it may be that efficiency is not an intentional goal for nut-cracking at all, but rather, e.g., productivity as far as the number of uncrushed kernels (cf. Putt 2015). Second, what is 'efficient' for the human observer might not be efficient for the chimpanzee who is performing the behavior. More instances of tool-switching may be considered inefficient, but it might also be a valid strategy for extracting more from the nuts, etc. Understanding the goals of chimpanzees may be a difficult proposition, but these are uncertainties that must be kept in mind when interpreting and discussing 'decline' or any change in technological behaviors over time.

      For the study of the physiological impact of senescence of tool use (i.e., on strength and coordination), the study would benefit from the inclusion of variables like grip type and (approximate) stone size (Neufuss et al., 2016). The size and shape of stones for nut-cracking have been shown to influence the efficacy and 'efficiency' of tool use (i.e., the same metrics of 'efficiency' implemented by Howard-Spink et al. in the current study), meaning raw material properties are a potential confound that the authors have not evaluated.

      Similarly, inter- and intraspecific variation in the properties of nuts being processed is another confound (Falótico et al., 2022; Proffitt et al., 2022). If oil palm nuts were varying year-to-year, for example, this would theoretically have an effect on the behavioral forms and strategies employed by the chimpanzees, and thus, any metric of efficiency being collected and analyzed. Further, it is perplexing that the authors analyze only one year where the coula nuts were provided at the test site, but these were provided during multiple field seasons. It would be more useful to compare data from a similar number of field seasons with both species if we are to study age-related changes in nut processing over time (one season of coula nut-cracking certainly does not achieve this).

      Both individual personality (especially neophilia versus neophobia; e.g., Forss & Willems, 2022) and motivation factors (Tennie & Call, 2023) are further confounds that can contribute to a more valid interpretation of the patterns found. To draw any conclusions about age-related changes in diet and food preferences, we would need to have data on the overall food intake/preferences of the individuals and the food availability in the home range. The authors refer briefly to this limitation, but the implications for the interpretation of the data are not sufficiently underlined (e.g., for the relevance of age-related decline in stone tool-use ability for individual survival).

      Generally speaking, there is a lack of consideration for temporal variation in ecological factors. As a control for these, Howard-Spink and colleagues have examined behavioral data for younger individuals from Bossou in the same years, to ostensibly show that patterns in older adults are different from patterns in younger adults, which is fair given the available data. Nonetheless, they seem to focus mostly on the start and end points and not patterns that occur in between. For example, there is a curious drop in attendance rate for all individuals in the 2008 season, the implications of which are not discussed by the authors.

      As far as attendance, Howard-Spink and colleagues also discuss how this might be explained by changes in social standing in later life (i.e., chimpanzees move to the fringes of the social network and become less likely to visit gathering sites). This is not senescence in the sense of physiological and cognitive decline with older age. Instead, the reduced attendance due to changes in social standing seems rather to exacerbate signs of aging rather than be an indicator of it itself. The authors also mention a flu-like epidemic that caused the death of 5 individuals; the subsequent population decline and related changes in demography also warrant more discussion and characterization in the manuscript.

      Understandably, some of these issues cannot be evaluated or corrected with the presented dataset. Nonetheless, these undermine how certain and/or deterministic their conclusions can really be considered. Howard-Spink et al. have not strongly 'demonstrated' the validity of relationships between the variables of the study. If anything, their cursory observations provide us with methods to apply and hypotheses to test in future studies. It is likely that with higher-resolution datasets, the individual variability in age-related decline in tool-use abilities will be replicated. For now, this can be considered a starting point, which will hopefully inspire future attempts to research these questions.

      Falótico, T., Valença, T., Verderane, M. & Fogaça, M. D. Stone tools differences across three capuchin monkey populations: food's physical properties, ecology, and culture. Sci. Rep. 12, 14365 (2022).<br /> Forss, S. & Willems, E. The curious case of great ape curiosity and how it is shaped by sociality. Ethology 128, 552-563 (2022).<br /> Neufuss, J., Humle, T., Cremaschi, A. & Kivell, T. L. Nut-cracking behaviour in wild-born, rehabilitated bonobos (Pan paniscus): a comprehensive study of hand-preference, hand grips and efficiency. Am. J. Primatol. 79, e22589 (2016).<br /> Proffitt, T., Reeves, J. S., Pacome, S. S. & Luncz, L. V. Identifying functional and regional differences in chimpanzee stone tool technology. R. Soc. Open Sci. 9, 220826 (2022).<br /> Putt, S. S. The origins of stone tool reduction and the transition to knapping: An experimental approach. J. Archaeol. Sci.: Rep. 2, 51-60 (2015).<br /> Tennie, C. & Call, J. Unmotivated subjects cannot provide interpretable data and tasks with sensitive learning periods require appropriately aged subjects: A Commentary on Koops et al. (2022) "Field experiments find no evidence that chimpanzee nut cracking can be independently innovated". ABC 10, 89-94 (2023).

      Comments on Revised Version (from BRE):

      The authors have revised their methods to clarify why certain field seasons were chosen and have clarified aspects of their analysis relevant to this reviewer's concerns. The coula nut cracking data and results which were of a single season have now been restricted to the Supplementary. The revised discussion now includes a much more detailed limitations section including both ecological factors but also the effects of social aging. Stone tool size, grip and other factors are also acknowledged as being potentially important for measuring efficiency but the authors were unable to include in this study due to the nature of the dataset.

    1. Reviewer #1 (Public review):

      G. Squiers et al. analyzed a previously reported CRISPR genetic screening dataset of engineered GLUT4 cell-surface presentation and identified the Commander complex subunit COMMD3 as being required for endosomal recycling of specific cargo protein, transferrin receptor (TfR), to the cell surface. Through comparison of COMMD3-KO and other Commander subunit-KO cells, they demonstrated that the role of COMMD3 in mediating TfR recycling is independent of the Commander complex. Structural analysis and co-immunoprecipitation followed by mass spectrometry revealed that TfR recycling by COMMD3 relies on ARF1. COMMD3 interacts with ARF1 through its N-terminal domain (NTD) to stabilize ARF1. A mutation in the NTD of COMMD3 failed to rescue cell surface TfR in COMMD3-KO cells. In conclusion, the authors assert that COMMD3 stabilizes ARF1 in a Commander complex-independent manner, which is essential for recycling specific cargo proteins from endosomes to the plasma membrane.

      The conclusions of this paper are generally supported by data, but some validation experiments should be included to strengthen the study.

      (1) Specific role of ARF1 to COMMD3:<br /> The authors don't think KO/KD of ARF1 is appropriate to address its specificity to COMMD3 cargo selection, so they focused on the COMMD3 NTD mutant. Though the mutant failed to rescue COMMD3 cargo TfR recycling, they did not examine the Commander cargo ITGA6. In addition, they cannot validate that the mutant interrupts the interaction between NTD and ARF1. These missing results and validation make their claim that ARF1 is specific to the COMMD3's Commander-independent function less convincing.

    2. Reviewer #2 (Public review):

      Summary:

      The Commander complex is a key player in endosomal recycling which recruits cargo proteins and facilitates the formation of tubulo-vesicular carriers. Squiers et al found COMMD3, a subunit of the Commander complex, could interact directly with ARF1 and regulate endosomal recycling.

      Strengths:

      Overall, this is a nice study that provides some interesting knowledge on the function of the Commander complex.

      Comments on revisions:

      The authors have addressed all my previous concerns

    3. Reviewer #3 (Public review):

      Summary:

      The study by Squiers and colleagues reveals a novel, Commander-independent role for COMMD3 in endosomal recycling. Through unbiased genetic screens, the authors identified COMMD3 as a regulator of GLUT4-SPR trafficking and validated its function using knockout experiments, which demonstrated its impact on endosomal morphology and trafficking independent of the Commander complex. Importantly, they mapped the interaction between the N-terminal domain (NTD) of COMMD3 and the GTPase Arf1, and through structure-guided mutagenesis, established that this interaction is essential for COMMD3's Commander-independent activity. The manuscript provides compelling evidence supporting this newly identified function of COMMD3, and I find the authors' interpretations well-justified. This is an excellent and intriguing study.

      Comments on revisions:

      The authors addressed all comments. Congratulations on this exciting work.

    1. Reviewer #1 (Public review):

      Summary:

      Ngo et. al use several computational methods to determine and characterize structures defining the three major states sampled by the human voltage-gated potassium channel hERG: the open, closed and inactivated state. Specifically, they use AlphaFold and Rosetta to generate conformations that likely represent key features of the open, closed and inactivated states of this channel. Molecular dynamics simulations confirm that ion conduction for structure models of the open but not the inactivated state. Moreover, drug docking in silico experiments show differential binding of drugs to the conformation of the three states; the inactivated one being preferentially bound by many of them. Docking results are then combined with a Markov model to get state-weighted binding free energies that are compared with experimentally measured ones.

      Strengths:

      The study uses state-of-the-art modeling methods to provide detailed insights into the structure-function relationship of an important human potassium channel. AlphaFold modeling, MD simulations and Markov modeling are nicely combined to investigate the impact of structural changes in the hERG channel on potassium conduction and drug binding.

      Weaknesses:

      (1) Selection of inactivated conformations based on AlphaFold modeling seems a bit biased.<br /> The authors base their initial selection of the "most likely" inactivated conformation on the expected flipping of V625 and the constriction at G626 carbonyls. This follows a bit the "Streetlight effect". It would be better to have selection criteria that are independent of what they expect to find for the inactivated state conformations. Using cues that favour sampling/modeling of the inactivated conformation, such as the deactivated conformation of the VSD used in the modeling of the closed state, would be more convincing. There may be other conformations that are more accurately representing the inactivated state. In addition, I am not sure whether pLDDT is a good selection criterion. It reports on structural confidence, but that may not relate to functional relevance.

      (2) The comparison of predicted and experimentally measured binding affinities lacks of appropriate controls. Using binding data from open-state conformations only is not the best control. A much better control is the use of alternative structures predicted by AlphaFold for each state (e.g. from the outlier clusters or not considered clusters) in the docking and energy calculations. Importantly, labels for open, closed and inactivated state should be randomized to check robustness of the findings. Such a control would strengthen the overall findings significantly.

      (3) Figures where multiple datapoints are compared across states generally lack assessment of the statistical significance of observed trends (e,g. Figure 3d).

      The authors have successfully achieved their goal of providing new insights into the structural details of the three major conformational states sampled by the human voltage-gated potassium channel hERG, and linking these states to changes in drug-binding affinities. However, the study would benefit from more robust controls and orthogonal validation. Additionally, the generalizability of the approach remains to be demonstrated.

    2. Reviewer #2 (Public review):

      Summary:

      Ngo et al. use AlphaFold2 and Rosetta to model closed, open, and inactive states of the human ion channel hERG. Subsequent MD simulations and comparisons with experiment support the plausibility of their models.

      Strengths:

      Ngo et al. employ various computational methods to enhance AlphaFold2's prediction capabilities for the human voltage-gated potassium channel hERG. They guide AlphaFold2 to explore different protein conformations and states, including its open, closed, and inactivated forms, using targeted templates. Additionally, they applied the Rosetta FastRelax protocol with an implicit membrane to refine the conformation of each residue in the predictions and address steric clashes, along with molecular dynamics (MD) simulations to account for membrane-pore flexibility. The methodology is well-described, and the figures are clear and descriptive.

      The authors have addressed some of the concerns raised during the first round of reviews. For instance, to mitigate potential bias in selecting the inactivated conformation, they evaluated conformational variability via backbone dihedral angles at specific residues in the selectivity filter and the drug binding sites. They also evaluated the top representative model from inactivated-state-sampling Cluster 3 (termed "AF ic3"), which was initially excluded. This model is now included in the revised manuscript as Figure S9a, b. MD simulations confirmed that this state could be a potential alternative open-state conformation. The authors also acknowledged the limitation of their study by not incorporating other enhanced sampling methods and AF3.

      In the revised manuscript, the authors provided more extensive explanations of their methods. For example, they explained that their approach to template selection was guided by their experience-AlphaFold2 with larger templates often overly constraining predictions to the input structure, reducing its flexibility to explore alternative conformations. In contrast, smaller, targeted fragments increase the likelihood that AlphaFold2 will incorporate the desired structural features while predicting the rest of the protein. They also noted that pLDDT scores are not always reliable for selecting new or alternative conformations, citing proper references. They included a model from cluster 3 of the inactivated-state sampling process, which exhibited lower pLDDT scores to illustrate this further.

      Another point raised by the reviewers was the exclusion of the N-terminal PAS domain due to GPU memory limitations and its impact on the study. This omission may overlook the PAS domain's potential roles in gating kinetics and allosteric effects on drug binding. The authors acknowledged these limitations in the main text and highlighted the need for future studies to explore these regions in greater detail. They also alluded to potential future research to address these points. Additionally, they have made some of their analysis scripts and tools available on GitHub as a community resource.

      Weakness:

      The primary issue with the study is the lack of a general pipeline or strategy that can be universally applied to any system, even if limited to ion channels or membrane proteins. A related paper assessed the conformational variability in voltage-sensing domains (VSDs) by applying both the default MSA depth and a range of reduced MSA depths to enhance conformational diversity (please see https://doi.org/10.1101/2025.03.12.642934). They generated 600 models for 32 members of the voltage-gated cation channel superfamily and demonstrated that AlphaFold2 can predict a range of diverse structures of the VSDs, representing activated, deactivated, and intermediate conformations, with more diversity observed for some VSDs compared to others.

      The authors have addressed one of the reviewer's concerns about generalizability by including an example in Figure S14 of the modified text, showing how their approach can be applied to model another ion channel system. However, some outstanding questions remain: Is this method better suited for ion channels or membrane proteins with already solved structures and extensive research available? Can this pipeline be applied to other systems as well? Additionally, how does this method compare to other methods using MSA subsampling and other enhanced AF-based techniques to generate alternative conformations of proteins?

    1. Joint Public Review:

      Summary:

      The authors identify a novel relationship between exosome secretion and filopodia formation in cancer cells and neurons. They observe that multivesicular endosomes (MVE)-plasma membrane (PM) fusion is associated with filopodia formation in HT1080 cells and that MVEs are present on filopodia in primary neurons. Using overexpression and knockdown (KD) of Rab27/HRS in HT1080 cells, melanoma cells and/or primary rat neurons, they find that decreasing exosome secretion reduces filopodia formation, while Rab27 overexpression leads to the opposite result. Furthermore, the decreased filopodia formation is rescued in the Rab27a/HRS KD melanoma cells by the addition of small extracellular vesicles (EVs) but not large EVs purified from control cells. The authors identify endoglin as a protein unique to small EVs secreted by cancer cells when compared to large EVs. KD of endoglin reduces filopodia formation and this is rescued by the addition of small EVs from control cells and not by small EVs from endoglin KD cells. Based on the role of filopodia in cancer metastasis, the authors then investigate the role of endoglin in cancer cell metastasis using a chick embryo model. They find that injection of endoglin KD HT1080 cells into chick embryos gives rise to less metastasis compared to control cells - a phenotype that is rescued by the co-injection of small EVs from control cells. Using quantitative mass spectrometry analysis, they find that thrombospondin type 1 domain containing 7a protein (THSD7A) is down regulated in small EVs from endoglin KD melanoma cells compared to those from control cells. They also report that THSD7A is more abundant in endoglin KD cell lysate compared to control HT1080 cells and less abundant in small EVs from endoglin KD cells compared to control cells, indicating a trafficking defect. Indeed, using immunofluorescence microscopy, the authors observe THSD7A-mScarlet accumulation in CD63-positive structures in endoglin KD HT1080 cells, compared to control cells. Finally, the authors determine that exosome-secreted THSD7A induces filopodia formation in a Cdc42-dependent mechanism.

      Strengths:

      Through proteomic analysis, the authors revealed that endoglin is an important player in the effective trafficking of THSD7A within exosomes. This study offers interesting insights into the dynamic interplay between exosome-mediated protein trafficking and essential cellular processes, emphasizing its significant relevance in both cancer progression and neural function. The authors communicated their findings clearly and effectively.

      (1) While exosomes are known to play a role in cell migration and autocrine signaling, the relationship between exosome secretion and the formation of filopodia is novel.

      (2) The authors identify an exosomal cargo protein, THSD7A, which is essential for regulating this function.

      (3) The data presented provide strong evidence of a role for endoglin in the trafficking of THSD7A in exosomes.

      (4) The authors associate this process with functional significance in cancer cell metastasis and neurological synapse formation, both of which involve the formation of filopodia.

      (5) The data are presented clearly, and their interpretation appropriately explains the context and significance of the findings.

      Weaknesses:

      While the authors showed the important role of exosomal cargo protein THSD7A in neurons, it will be interesting to conduct any in vivo studies to determine whether THSD7A plays a similar role in promoting filopodia and synapse formation in vivo. Some of the comments of the reviewers were not fully addressed, such as rigorous analysis and quantification through Live-cell imaging through TIRF microscopy tracking labeled THSD7A and filopodia formation, which would provide more clarity in timing and strengthen causality of this relationship. The authors need to consider fully characterizing the role of Cdc42. If the authors would like to fully elaborate on the role of Cdc42 in another manuscript, it is better not to mention at all the role of Cdc42 in filopodia formation in this paper.

    1. Reviewer #2 (Public review):

      Summary:

      Ito and Toyoizumi present a computational model of context-dependent action selection. They propose a "hippocampus" network that learns sequences based on which the agent chooses actions. The hippocampus network receives both stimulus and context information from an attractor network that learns new contexts based on experience. The model is consistent with a variety of experiments, both from the rodent and the human literature, such as splitter cells, lap cells, and the dependence of sequence expression on behavioral statistics. Moreover, the authors suggest that psychiatric disorders can be interpreted in terms of over-/under-representation of context information.

      Strengths:

      This ambitious work links diverse physiological and behavioral findings into a self-organizing neural network framework. All functional aspects of the network arise from plastic synaptic connections: Sequences, contexts, and action selection. The model also nicely links ideas from reinforcement learning to neuronally interpretable mechanisms, e.g., learning a value function from hippocampal activity.

      Weaknesses:

      The presentation, particularly of the methodological aspects, needs to be majorly improved. Judgment of generality and plausibility of the results is hampered, but is essential, particularly for the conclusions related to psychiatric disorders. In its present form, it is unclear whether the claims and conclusions made are justified. Also, the lack of clarity strongly reduces the impact of the work in the larger field.

      More specifically:

      (1) The methods section is impenetrable. The specific adaptations of the model to the individual use cases of the model, as well as the posthoc analyses of the simulations, did not become clear. Important concepts are only defined in passing and used before they are introduced. The authors may consider a more rigorous mathematical reporting style. They also may consider making the methods part self-contained and moving it in front of the results part.

      (2) The description of results in the main text remains on a very abstract level. The authors may consider showing more simulated neural activity. It remains vague how the different stimuli and contexts are represented in the network. Particularly, the simulations and related statistical analyses underlying the paradigms in Figure 4 are incompletely described.

      (3) The literature review can be improved (laid out in the specific recommendations).

      (4) Given the large range of experimental phenomenology addressed by the manuscript, it would be helpful to add a Discussion paragraph on how much the results from mice and humans can be integrated, particularly regarding the nature of the context selection network.

      (5) As a minor point, the hippocampus is pretty much treated as a premotor network. Also, a Discussion paragraph would be helpful.

    2. Reviewer #1 (Public review):

      Summary:

      The manuscript by Ito and Toyozumi proposes a new model for biologically plausible learning of context-dependent sequence generation, which aims to overcome the predefined contextual time horizon of previous proposals. The model includes two interacting models: an Amari-Hopfield network that infers context based on sensory cues, with new contexts stored whenever sensory predictions (generated by a second hippocampal module) deviate substantially from actual sensory experience, which then leads to hippocampal remapping. The hippocampal predictions themselves are context-dependent and sequential, relying on two functionally distinct neural subpopulations. On top of this state representation, a simple Rescola-Wagner-type rule is used to generate predictions for expected reward and to guide actions. A collection of different Hebbian learning rules at different synaptic subsets of this circuit (some reward-modulated, some purely associative, with occasional additional homeostatic competitive heterosynaptic plasticity) enables this circuit to learn state representations in a set of simple tasks known to elicit context-dependent effects.

      Strengths:

      The idea of developing a circuit-level model of model-based reinforcement learning, even if only for simple scenarios, is definitely of interest to the community. The model is novel and aims to explain a range of context-dependent effects in the remapping of hippocampal activity.

      Weaknesses:

      The link to model-based RL is formally imprecise, and the circuit-level description of the process is too algorithmic (and sometimes discrepant with known properties of hippocampus responses), so the model ends up falling in between in a way that does not fully satisfy either the computational or the biological promise. Some of the problems stem from the lack of detail and biological justification in the writing, but the loose link to biology is likely not fully addressable within the scope of the current results. The attempt at linking poor functioning of the context circuit to disease is particularly tenuous.

    3. Reviewer #3 (Public review):

      Summary:

      This paper develops a model to account for flexible and context-dependent behaviors, such as where the same input must generate different responses or representations depending on context. The approach is anchored in the hippocampal place cell literature. The model consists of a module X, which represents context, and a module H (hippocampus), which generates "sequences". X is a binary attractor RNN, and H appears to be a discrete binary network, which is called recurrent but seems to operate primarily in a feedforward mode. H has two types of units (those that are directly activated by context, and transition/sequence units). An input from X drives a winner-take-all activation of a single unit H_context unit, which can trigger a sequence in the H_transition units. When a new/unpredicted context arises, a new stable context in X is generated, which in turn can trigger a new sequence in H. The authors use this model to account for some experimental findings, and on a more speculative note, propose to capture key aspects of contextual processing associated with schizophrenia and autism.

      Strengths:

      Context-dependency is an important problem. And for this reason, there are many papers that address context-dependency - some of this work is cited. To the best of my knowledge, the approach of using an attractor network to represent and detect changes in context is novel and potentially valuable.

      Weaknesses:

      The paper would be stronger, however, if it were implemented in a more biologically plausible manner - e.g., in continuous rather than discrete time. Additionally, not enough information is provided to properly evaluate the paper, and most of the time, the network is treated as a black box, and we are not shown how the computations are actually being performed.

    1. Reviewer #1 (Public review):

      In this study, Hama et al. investigated the molecular regulatory mechanisms underlying the formation of the ULK1 complex in mammalian cells. Their results showed that in mammalian cells, ULK1, ATG13, and FIP200 form a complex with a stoichiometry of 1:1:2. These predicted interaction regions were validated through both in vivo and in vitro experiments, providing deeper insight into the molecular basis of ULK1 complex assembly in mammalian cells.

      The revised manuscript has addressed the majority of my concerns, and I have no further questions. Overall, this is a solid and impactful study that significantly advances our understanding of how the ULK1 complex is formed.

    2. Reviewer #2 (Public review):

      Summary:

      This is important work that helps to uncover how the process of autophagy is initiated - via structural analyses of the initiating ULK1 complex. High resolution structural details and a mechanistic insight of this complex have been lacking and understanding how it assembles and functions is a major goal of a field that impacts many aspects of cell and disease biology. While we know components of the ULK1 complex are essential for autophagy, how they physically interact is far from clear. The work presented makes use of AlphaFold2 to structurally predict interaction sites between the different subunits of the ULK1 complex (namely ULK1, ATG13 and FIP200). Importantly, the authors go on to experimentally validate that these predicted sites are critical for complex formation by using site-directed mutagenesis and then go on to show that the three-way interaction between these components is necessary to induce autophagy in cells.

      Strengths:

      The data are very clear. Each binding interface of ATG13 (ATG13 with FIP300/ATG13 with ULK1) is confirmed biochemically with ITC and IP experiments from cells. Likewise, IP experiments with ULK1 and FIP200 also validate interaction domains. A real strength of the work is in the analyses of the consequences of disrupting ATG13's interactions in cells. The authors make CRISPR KI mutations of the binding interface point mutants. This is not a trivial task and is the best approach as everything is monitored under endogenous conditions. Using these cells the authors show that ATG13's ability to interact with both ULK1 and FIP200 is essential for a full autophagy response.

      Weaknesses:

      I think a main weakness here is the failure to acknowledge and compare results with an earlier preprint that shows essentially the same thing (https://doi.org/10.1101/2023.06.01.543278). Arguably, this earlier work is much stronger from a structural point of view as it relies not only on AlphaFold2 but also actual experimental structural determinations (and takes the mechanisms of autophagy activation further by providing evidence for a super complex between the ULK1 and VPS34 complexes). That is not to say that this work is not important, as in the least it independently helps to build a consensus for ULK1 complex structure. Another weakness is that the downstream "functional" consequences of disrupting the ULK1 complex are only minimally addressed. The authors perform a Halotag-LC3 autophagy assay, which essentially monitors the endpoint of the process. There are a lot of steps in between, knowledge of which could help with mechanistic understanding. Not in the least is the kinase activity of ULK1 - how is this altered by disrupting its interactions with ATG13 and/or FIP200?

      Update:

      I feel the authors have addressed my concerns in their revised manuscript

    3. Reviewer #3 (Public review):

      In this study, the authors employed the protein complex structure prediction tool AlphaFold-Multimer to obtain a predicted structure of the protein complex composed of ULK1-ATG13-FIP200 and validated the structure using mutational analysis. This complex plays a central role in the initiation of autophagy in mammals. The results obtained in this study reveal extensive binary interactions between ULK1 and ATG13, between ULK1 and FIP200, and between ATG13 and FIP200, and pinpoint the critical residues at each interaction interface. Mutating these critical residues led to the loss of binary interactions. Interestingly, the authors showed that the ATG13-ULK1 interaction and the ATG13-FIP200 interaction are partially redundant for maintaining the complex. The experimental data presented by the authors are of high quality and convincing. The revised manuscript offers enhanced details about the prediction procedure and results, along with additional experimental findings, significantly increasing the scientific value of this paper.

    1. Reviewer #1 (Public review):

      Summary:

      Recent work has demonstrated that the hummingbird hawkmoth, Macroglossum stellatarum, like many other flying insects, use ventrolateral optic flow cues for flight control. However, unlike other flying insects, the same stimulus presented in the dorsal visual field, elicits a directional response. Bigge et al., use behavioral flight experiments to set these two pathways in conflict in order to understand whether these two pathways (ventrolateral and dorsal) work together to direct flight and if so, how. The authors characterize the visual environment (the amount of contrast and translational optic flow) of the hawkmoth and find that different regions of the visual field are matched to relevant visual cues in their natural environment and that the integration of the two pathways reflects a prioritization for generating behavior that supports hawkmoth safety rather than the prevalence for a particular visual cue that is more prevalent in the environment.

      Strengths:

      This study creatively utilizes previous findings that the hawkmoth partitions their visual field as a way to examine parallel processing. The behavioral assay is well-established and the authors take the extra steps to characterize the visual ecology of the hawkmoth habitat to draw exciting conclusions about the hierarchy of each pathway as it contributes to flight control.

    2. Reviewer #2 (Public review):

      Summary

      Bigge and colleagues use a sophisticated free-flight setup to study visuo-motor responses elicited in different parts of the visual field in the hummingbird hawkmoth. Hawkmoths have been previously shown to rely on translational optic flow information for flight control exclusively in the ventral and lateral parts of their visual field. Dorsally presented patterns, elicit a formerly completely unknown response - instead of using dorsal patterns to maintain straight flight paths, hawkmoths fly, more often, in a direction aligned with the main axis of the pattern presented (Bigge et al, 2021). Here, the authors go further and put ventral/lateral and dorsal visual cues into conflict. They found that the different visuomotor pathways act in parallel, and they identified a 'hierarchy': the avoidance of dorsal patterns had the strongest weight and optic flow-based speed regulation the lowest weight. The authors linked their behavioral results to visual scene statistics in the hawkmoths' natural environment. The partition of ventral and dorsal visuomotor pathways is well in line with differences in visual cue frequencies. The response hierarchy, however, seems to be dominated by dorsal features, that are less frequent, but presumably highly relevant for the animals' flight safety.

      Strengths

      The data are very interesting and unique. The manuscript provides a thorough analysis of free-flight behavior in a non-model organism that is extremely interesting for comparative reasons (and on its own). These data are both difficult to obtain and very valuable to the field.

      Weaknesses

      While the present manuscript clearly goes beyond Bigge et al, 2021, the advance could have perhaps been even stronger with a more fine-grained investigation of the visual responses in the dorsal visual field. Do hawkmoths, for example, show optomotor responses to rotational optic flow in the dorsal visual field?

      I find the majority of the data, which are also the data supporting the main claims of the paper, compelling. However, the measurements of flight height are less solid than the rest and I think these data should be interpreted more carefully.

    3. Reviewer #3 (Public review):

      The authors have significantly improved the paper in revising to make its contributions distinct from their prior paper. They have also responded to my concerns about quantification and parameter dependency of the integration conclusion. While I think there is still more that could be done in this capacity, especially in terms of the temporal statistics and quantification of the conflict responses, they have a made a case for the conclusions as stated. The paper still stands as an important paper with solid evidence a bit limited by these concerns.

    1. Reviewer #1 (Public review):

      Summary:

      In a previous work Prut and colleagues had shown that during reaching, high frequency stimulation of the cerebellar outputs resulted in reduced reach velocity. Moreover, they showed that the stimulation produced reaches that deviated from a straight line, with the shoulder and elbow movements becoming less coordinated. In this report they extend their previous work by addition of modeling results that investigate the relationship between the kinematic changes and torques produced at the joints. The results show that the slowing is not due to reductions in interaction torques alone, as the reductions in velocity occur even for movements that are single joint. More interestingly, the experiment revealed evidence for decomposition of the reaching movement, as well as an increase in the variance of the trajectory.

      Strengths:

      This is a rare experiment in a non-human primate that assessed the importance of cerebellar input to the motor cortex during reaching.

      Weaknesses:

      None

    2. Reviewer #2 (Public review):

      This manuscript asks an interesting and important question: what part of 'cerebellar' motor dysfunction is an acute control problem vs a compensatory strategy to the acute control issue? The authors use a cerebellar 'blockade' protocol, consisting of high frequency stimuli applied to the cerebellar peduncle which is thought to interfere with outflow signals. This protocol was applied in monkeys performing center out reaching movements and has been published from this laboratory in several preceding studies. I found the take-home-message broadly convincing and clarifying - that cerebellar block reduces muscle activation acutely particularly in movements that involve multiple joints and therefore invoke interaction torques, and that movements progressively slow down to in effect 'compensate' for these acute tone deficits. The manuscript was generally well written, data were clear, convincing and novel. The key strengths are differentiating acute from sub-acute (within session but not immediate) kinematic consequences of cerebellar block.

    3. Reviewer #3 (Public review):

      Summary:

      In their revised manuscript, Sinha and colleagues aim to identify distinct causes of motor impairments seen when perturbing cerebellar circuits. This goal is an important one, given the diversity of movement related phenotypes in patients with cerebellar lesion or injury, which are especially difficult to dissect given the chronic nature of the circuit damage. To address this goal, the authors use high-frequency stimulation (HFS) of the superior cerebellar peduncle in monkeys performing reaching movements. HFS provides an attractive approach for transiently disrupting cerebellar function previously published by this group. First, they find a reduction in hand velocities during reaching, which was more pronounced for outward versus inward movements. By modeling inverse dynamics, they find evidence that shoulder muscle torques are especially affected. Next, the authors examine the temporal evolution of movement phenotypes over successive blocks of HFS trials. Using this analysis, they find that in addition to the acute, specific effects on torques in early HFS trials, there was an additional progressive reduction in velocity during later trials, which they interpret as an adaptive response to the inability to effectively compensate for interaction torques during cerebellar block. Finally, the authors examine movement decomposition and trajectory, finding that even when low velocity reaches are matched to controls, HFS produces abnormally decomposed movements and higher than expected variability in trajectory.

      Strengths:

      Overall, this work provides important insight into how perturbation of cerebellar circuits can elicit diverse effects on movement across multiple timescales.

      The HFS approach provides temporal resolution and enables analysis that would be hard to perform in the context of chronic lesions or slow pharmacological interventions. Thus, this study describes an important advance over prior methods of circuit disruption in the monkey, and their approach can be used as a framework for future studies that delve deeper into how additional aspects of sensorimotor control are disrupted (e.g., response to limb perturbations).

      In addition, the authors use well-designed behavioral approaches and analysis methods to distinguish immediate from longer-term adaptive effects of HFS on behavior. Moreover, inverse dynamics modeling provides important insight into how movements with different kinematics and muscle dynamics might be differentially disrupted by cerebellar perturbation.

      Remaining comments:

      The argument that there are acute and adaptive effects to perturbing cerebellar circuits is compelling, but there seems to be a lost opportunity to leverage the fast and reversible nature of the perturbations to further test this idea and strengthen the interpretation. Specifically, the authors could have bolstered this argument by looking at the effects of terminating HFS - one might hypothesize that the acute impacts on joint torques would quickly return to baseline in the absence of HFS, whereas the longer-term adaptive component would persist in the form of aftereffects during the 'washout' period. As is, the reversible nature of the perturbation seems underutilized in testing the authors' ideas. While this experimental design was not implemented here, it seems like a good opportunity for future work using these approaches.

      The analysis showing that there is a gradual reduction in velocity during what the authors call an adaptive phase is convincing. While it is still not entirely clear why disruption of movement during the adaptive phase is not seen for inward targets, despite the fact that many of the inward movements also exhibit large interaction torques, the authors do raise potential explanations in the Discussion.

    1. Reviewer #1 (Public review):

      Summary:

      Flowers et al describe an improved version of qFit-ligand, an extension of qFit. qFit and qFit-ligand seek to model conformational heterogeneity of proteins and ligands, respectively, cryo-EM and X-ray (electron) density maps using multiconformer models-essentially extensions of the traditional alternate conformer approach in which substantial parts of the protein or ligand are kept in place. By contrast, ensemble approaches represent conformational heterogeneity through a superposition of independent molecular conformations.

      The authors provide a clear and systematic description of the improvements made to the code, most notably the implementation of a different conformer generator algorithm centered around RDKit. This approach yields modest improvements in the strain of the proposed conformers (meaning that more physically reasonable conformations are generated than with the "old" qFit-ligand) and real space correlation of the model with the experimental electron density maps, indicating that the generated conformers also better explain the experimental data then before. In addition, the authors expand the scope of ligands that can be treated, most notably allowing for multi conformer modeling of macrocyclic compounds.

      Strengths:

      The manuscript is well written, provides a thorough analysis, and represents a needed improvement of our collective ability to model small-molecule binding to macromolecules based on cryo-EM and X-ray crystallography, and can therefore has a positive impact on both drug discovery and general biological research.

      Weaknesses:

      Weaknesses were addressed during review. Overall, the demonstrated performance gains are modest.

      Specific comments:

      (1) The accuracy of initial placement may be critical. At the same time, in my experience ambiguous cases are quite common, for example with flat ligands with a few substituents sticking out or with ligands with highly mobile tails. There remain some questions regarding sensitivity to initial ligand placement, which individual users should check for.

    2. Reviewer #3 (Public review):

      Summary:

      The manuscript by Flowers et al. aimed to enhance the accuracy of automated ligand model building by refining the qFit-ligand algorithm. Recognizing that ligands can exhibit conformational flexibility even when bound to receptors, the authors developed a bioinformatic pipeline to model alternate ligand conformations while improving fitting and more energetically favorable conformations.

      Strengths:

      The authors present a computational pipeline designed to automatically model and fit ligands into electron density maps, identifying potential alternative conformations within the structures.

      Weaknesses:

      Ligand modeling, particularly in cases of poorly defined electron density, remains a challenging task. The procedure presented in this manuscript exhibits limitations in low-resolution electron density maps (lower than 2.0 Å) and low-occupancy scenarios. Considering that the maps used to establish the operational bounds of qFit-ligand were synthetically generated, it's likely that the resolution cutoff will be even stricter when applied to real-world data.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors re-analyzed a public dataset (Rademaker et al, 2019, Nature Neuroscience) which includes fMRI and behavioral data recorded while participants held an oriented grating in visual working memory (WM) and performed a delayed recall task at the end of an extended delay period. In that experiment, participants were pre-cued on each trial as to whether there would be a distracting visual stimulus presented during the delay period (filtered noise or randomly-oriented grating). In this manuscript, the authors focused on identifying whether the neural code in retinotopic cortex for remembered orientation was 'stable' over the delay period, such that the format of the code remained the same, or whether the code was dynamic, such that information was present, but encoded in an alternative format. They identify some timepoints - especially towards the beginning/end of the delay - where the multivariate activation pattern fails to generalize to other timepoints, and interpret this as evidence for a dynamic code. Additionally, the authors compare the representational format of remembered orientation in the presence vs absence of a distracting stimulus, averaged over the delay period. This analysis suggested a 'rotation' of the representational subspace between distracting orientations and remembered orientations, which may help preserve simultaneous representations of both remembered and viewed stimuli. Intriguingly, this rotation was a bit smaller for Expt 2, in which the orientation distractor had a greater behavioral impact on the participants' behavioral working memory recall performance, suggesting that more separation between subspaces is critical for preserving intact working memory representations.

      Strengths:

      (1) Direct comparisons of coding subspaces/manifolds between timepoints, task conditions, and experiments is an innovative and useful approach for understanding how neural representations are transformed to support cognition

      (2) Re-use of existing dataset substantially goes beyond the authors' previous findings by comparing geometry of representational spaces between conditions and timepoints, and by looking explicitly for dynamic neural representations

      (3) Simulations testing whether dynamic codes can be explained purely by changes in data SNR are an important contribution, as this rules out a category of explanations for the dynamic coding results observed

      Weaknesses:

      (1) Primary evidence for 'dynamic coding', especially in early visual cortex, appears to be related to the transition between encoding/maintenance and maintenance/recall, but the delay period representations seem overall stable, consistent with some previous findings. However, given the simulation results, the general result that representations may change in their format appears solid, though the contribution of different trial phases remains important for considering the overall result.

      (2) Converting a continuous decoding metric (angular error) to "% decoding accuracy" serves to obfuscate the units of the actual results. Decoding precision (e.g., sd of decoding error histogram) would be more interpretable and better related to both the previous study and behavioral measures of WM performance.

      Comments on revised version:

      The authors have addressed all my previous concerns.

    1. Reviewer #1 (Public review):

      Summary:

      A whole-organism drug screen was performed to identify molecules that decrease Apolipoprotein B (ApoB) as a target for agents to reduce atherosclerosis. Kelpsch et al. used a zebrafish reporter line, LipoGlo, which is a fusion of the Nano-luciferase protein to the ApoB protein as a proxy for the presence of ApoB-containing lipoproteins (B-lps) in larval stages. The LipoGlo line was screened against a well-characterized drug library and identified 49 hits from their primary screen. Follow-up studies further refined this list to 19 molecules that reproducibly reduced B-lps significantly. The authors focused their studies on enoxolone, a licorice root extract, and showed that larvae treated with this agent can reduce the production of B-lps. As enoxolone has been reported to suppress Hepatocyte Nuclear factor 4a (HNF4a), the authors investigated whether loss-of-hnf4a or pharmacological inhibition of hnf4a in zebrafish also produced similar phenotypes as enoxolone treatment. Their studies showed that this was the case. Transcriptomic studies after enoxolone treatment resulted in altered expression of genes involved in cholesterol biosynthesis and in glucose/insulin signaling pathways. This study highlights the utility of a zebrafish whole-organism chemical screen for modifiers of B-lps production and/or its clearance. A significant finding is that enoxolone inhibits hnf4a in zebrafish to reduce B-lps production and supports targeting HNF4a as a therapeutic means to reduce the emergence of atherosclerosis.

      Strengths:

      The authors performed a whole-organism chemical screen with over 3000 agents. Such screens are challenging, and the authors used strict criteria for determining hits. The conclusions of this study are well supported by the presented data.

      Weaknesses:

      There are areas within the study and writing that can be improved and extended, specifically within the gene expression studies.

    2. Reviewer #2 (Public review):

      Summary:

      The authors aimed to develop a large-scale drug screen to identify B-lp modulators in a vertebrate whole-animal system. Using the zebrafish LipoGlo system that the authors had previously published and validated, the authors screened 2762 drug candidates to generate 49 hits and ultimately validated 19 drugs as genuine ApoB-lowering drugs. Using LipoGlo-Electrophoresis, the authors are able to obtain insights into the ApoB-lipoprotein size/subclass distribution. The authors further validate and study the mechanism of a strong hit, Enoxolone, known as also known as 18β-Glycyrrhetinic acid, which has previously been reported to modulate lipid metabolism. The authors also show that Enoxolone effects are mediated through HNF4⍺, which has been previously shown in the mouse system, but this is the first time it has been shown in the zebrafish.

      Strengths:

      The study was methodical and robust, using a published and well-validated zebrafish LipoGlo model. The authors validated the hits from the screen independently and considered the possibility that some drugs may have been detected as false positive results due to effects on the enzymatic activity of NanoLuciferase; only one hit, verteporfin, was shown to be a false positive. Using LipoGlo-Electrophoresis, the authors are able to obtain extra insights into the ApoB-lipoprotein size/subclass distribution. They showed that while enoxolone treatment reduces total B-lps, there are no overt changes in B-lp size distribution compared to vehicle-treated animals, other than a slight increase in the zero mobility (ZM) fraction, which contains very large particles and/or tissue aggregates. In contrast, the positive control, lomitapide, does show a change in B-lp size distribution compared to vehicle-treated animals - an increase in frequency of LDLs (low-density lipoprotein), but a decrease in VLDLs (very low-density lipoprotein). This study also assesses the LipoGlo-Electrophoresis profile of HNF4⍺ inhibitors. Work in the zebrafish larvae means that the effect on overall development and an entire vertebrate organism can also be assessed. Finally, the authors applied a thorough statistical measure to define a hit, using the Strictly Standardized Mean Difference (SSMD) method.

      Weaknesses:

      While the screen was thorough and well-validated, the authors missed a chance to provide a lot of extra significance to a wide range of readership. While the hits were thoroughly validated and displayed, the authors could have also presented the LipoGlo-Electrophoresis for all validated hits or at least a number of them. This would hugely increase the insights into these compounds. Also, the authors chose to validate and follow up a mechanism for Enoxolone, yet this hit was already known to modulate lipid metabolism through HNF4⍺, therefore, hugely limiting the impact of the paper. So what the authors have shown that is novel is only subtly added to this - consistent in vertebrate models, RNA sequencing of pathways, further validation of the HNF4⍺ pathway, and a profile of resulting B-lp size distribution. It seemed an easy way out to pick such a candidate, and they could have followed up by validating more thoroughly a completely novel drug. Also, the authors' prior paper showing the methodology also depicted complementary EM and LipoGlo-microscopy approaches. The microscopy especially, would have been an easy complementary add-on to the screen to really give extra insights into B-lp metabolism in a whole organism for all candidates. This felt like a missed opportunity.

    3. Reviewer #3 (Public review):

      Summary:

      In "A‬‭ whole-animal‬‭ phenotypic‬‭ drug‬‭ screen‬‭ identifies‬‭ suppressors‬‭ of‬‭ atherogenic‬ lipoproteins", Kelpsch et al seek to identify new, chemically targetable pathways that regulate ApoB function and could ultimately serve as treatments for elevated lipid disorders and/or cardiovascular disease. Given the interconnected nature of lipid regulation in the whole organism with interdependent organs and secreted components (i.e. lipoproteins), they use the vertebrate model zebrafish to screen a large library of ~3000 compounds for their ability to lower the important ApoB-containing lipoproteins. They find 49 hits with 19 compounds passing a higher level of scrutiny, and focus on the role of enoxolone in modulating B-Ip levels at least partly through the HNF4alpha transcription factor and, putatively, through downstream cholesterol/lipid biosynthetic pathways.

      Strengths:

      The study uses a well-validated in vivo stain (LipoGlo) for measuring lipoproteins in the context of a developing whole organism with a quantitative read-out on a high-throughput platform, allowing for screening of thousands of compounds altering the complex metabolic/physiologic functions necessary for lipoprotein production.

      The use of genetic mutant HNF4alpha to assign the mechanism of action to the prime candidate compound studied (enoxolone) is a powerful approach for this challenging aspect of chemical genetics studies. See caveats in weaknesses.

      Weaknesses:

      As shown in Figure 5A, the HNF4alpha mutant homozygous -/- already lowers lipoproteins. Is it just that the mutant level is already at a minimum in this homozygous mutant (and thus enoxolone can not induce even lower lipoprotein levels), or is it true that the enoxolone molecule is primarily acting through this TF (i.e. HNF4alpha homozygous mutant is truly epistatic to enoxolone function) as favored in the text.

      While it is definitely interesting to study enoxolone effects during whole embryo development, the link to HNF4alpha had previously been described in the literature, as pointed out by the authors. The generalizability of the approach to identify truly novel pathways remains to be fully realized, but sharing this available screen data to date will invite further inquiry and be very valuable to the community.

      Figure 5 - The same allele of HNF4alpha loss of function/hypomorph (rdu14) is used in both 5A and 5B, but labeled differently in each subpanel. This is explained in the figure legend, but could be updated to use the same nomenclature in both panels to clarify the Figure presentation.

    1. Reviewer #1 (Public review):

      This manuscript reports a descriptive study of changes in gene expression after knockdown of the nuclear envelope proteins lamin A/C and Nesprin2/SYNE2 in human U2OS cells. The readout is RNA-seq, which is analyzed at the level of gene ontology and focused investigation of isoform variants and non-coding RNAs. In addition, the mobility of telomeres is studied after these knockdowns, although the rationale in relation to the RNA-seq analyses is rather unclear.

      RNA-seq after knockdown of lamin proteins has been reported many times, and the current study does not provide significant new insights that help us to understand how lamins control gene expression. This is particularly because the vast majority of the observed effects on gene expression appear to occur in regions that are not bound by lamin A. It seems likely that these effects are indirect. There is also virtually no overlap between genes affected by laminA/C and by SYNE2, which remains unexplained; for example, it would be good to know whether laminA/C and SYNE2 bind to different genomic regions. The claim in the Title and Abstract that LMNA governs gene expression / acts through chromatin organization appears to be based only on an enrichment of gene ontology terms "DNA conformation change" and "covalent chromatin conformation" in the RNA-seq data. This is a gross over-interpretation, as no experimental data on chromatin conformation are shown in this study. The analyses of transcript isoform switching and ncRNA expression are potentially interesting but lack a mechanistic rationale: why and how would these nuclear envelope proteins regulate these aspects of RNA expression? The effects of lamin A on telomere movements have been reported before; the effects of SYNE2 on telomere mobility are novel (to my knowledge), but should be discussed in the light of previously documented effects of SUN1/2 on the dynamics of dysfunctional telomeres (Lottersberger et al, Cell 2015).

      As indicated below, I have substantial concerns about the experimental design of the knockdown experiments.

      Altogether, the results presented here are primarily descriptive and do not offer a significant advance in our understanding of the roles of LaminA and SYNE2 in gene regulation or chromatin biology, because the results remain unexplained mechanistically and functionally. Furthermore, the RNAseq datasets should be interpreted with caution until off-target effects of the shRNAs can be ruled out.

      Specific comments:

      (1) Knockdowns were only monitored by qPCR. Efficiency at the protein level (e.g., Western blots) needs to be determined.

      (2) For each knockdown, only a single shRNA was used. shRNAs are infamous for off-target effects; therefore, multiple shRNAs for each protein, or an alternative method such as CRISPR deletion or degron technology, must be tested to rule out such off-target effects.

      (3) It is not clear whether the replicate experiments are true biological replicates (i.e., done on different days) or simply parallel dishes of cells done in a single experiment (= technical replicates). The extremely small standard deviations in the RT-qPCR data suggest the latter, which would not be adequate.

    2. Reviewer #2 (Public review):

      Summary:

      This study focused on the roles of the nuclear envelope proteins lamin A and C, as well as nesprin-2, encoded by the LMNA and SYNE2 genes, respectively, on gene expression and chromatin mobility. It is motivated by the established role of lamins in tethering heterochromatin to the nuclear periphery in lamina-associated domains (LADs) and modulating chromatin organization. The authors show that depletion of lamin A, lamin A and C, or nesprin-2 results in differential effects of mRNA and lncRNA expression, primarily affecting genes outside established LADs. In addition, the authors used fluorescent dCas9 labeling of telomeric genomic regions combined with live-cell imaging to demonstrate that depletion of either lamin A, lamin A/C, or nesprin-2 increased the mobility of chromatin, suggesting an important role of lamins and nesprin-2 in chromatin dynamics.

      Strengths:

      The major strength of this study is the detailed characterization of changes in transcript levels and isoforms resulting from depletion of either lamin A, lamin A/C, or nesprin-2 in human osteosarcoma (U2OS) cells. The authors use a variety of advanced tools to demonstrate the effect of protein depletion on specific gene isoforms and to compare the effects on mRNA and lncRNA levels.

      The TIRF imaging of dCas9-labeled telomeres allows for high-resolution tracking of multiple telomeres per cell, thus enabling the authors to obtain detailed measurements of the mobility of telomeres within living cells and the effect of lamin A/C or nesprin-2 depletion.

      Weaknesses:

      Although the findings presented by the authors overall confirm existing knowledge about the ability of lamins A/C and nesprin to broadly affect gene expression, chromatin organization, and chromatin dynamics, the specific interpretation and the conclusions drawn from the data presented in this manuscript are limited by several technical and conceptual challenges.

      One major limitation is that the authors only assess the knockdown of their target genes on the mRNA level, where they observe reductions of around 70%. Given that lamins A and C have long half-lives, the effect at the protein level might be even lower. This incomplete and poorly characterized depletion on the protein level makes interpretation of the results difficult. The description for the shRNA targeting the LMNA gene encoding lamins A and C given by the authors is at times difficult to follow and might confuse some readers, as the authors do not clearly indicate which regions of the gene are targeted by the shRNA, and they do not make it obvious that lamin A and C result from alternative splicing of the same LMNA gene. Based on the shRNA sequences provided in the manuscript, one can conclude that the shLaminA shRNA targets the 3' UTR region of the LMNA gene specific to prelamin A (which undergoes posttranslational processing in the cell to yield lamin A). In contrast, the shRNA described by the authors as 'shLMNA' targets a region within the coding sequence of the LMNA gene that is common to both lamin A and C, i.e., the region corresponding to amino acids 122-129 (KKEGDLIA) of lamin A and C. The authors confirm the isoform-specific effect of the shLaminA isoform, although they seem somewhat surprised by it, but do not confirm the effect of the shLMNA construct. Assessing the effect of the knockdown on the protein level would provide more detailed information both on the extent of the actual protein depletion and the effect on specific lamin isoforms. Similarly, given that nesprin-2 has numerous isoforms resulting from alternative splicing and transcription initiation. In the current form of the manuscript, it remains unclear which specific nesprin-2 isoforms were depleted, and to what extent (on the protein level).

      Another substantial limitation of the manuscript is that the current analysis, with the exception of the chromatin mobility measurements, is exclusively based on transcriptomic measurements by RNA-seq and qRT-PCR, without any experimental validation of the predicted protein levels or proposed functional consequences. As such, conclusions about the importance of lamin A/C on RNA synthesis and other functions are derived entirely from gene ontology terms and are not sufficiently supported by experimental data. Thus, the true functional consequences of lamin A/C or nesprin depletion remain unclear. Statements included in the manuscript such as "our findings reveal that lamin A is essential for RNA synthesis, ..." (Lines 79-80) are thus either inaccurate or misleading, as the current data do not show that lamin A is ESSENTIAL for RNA synthesis, and lamin A/C and lamin A deficient cells and mice are viable, suggesting that they are capable of RNA synthesis.

      Another substantial weakness is that the data and analysis presented in the manuscript raise some concerns about the robustness of the findings. Given that the 'shLMNA' construct is expected to deplete both lamin A and C, i.e., its effect encompasses the depletion of lamin A, which is achieved by the 'shLaminA' construct, one would expect a substantial overlap between the DEGs in the shLMNA and shLaminA conditions, with the shLMNA depletion producing a broader effect as it targets both lamin A and C. However, the Venn Diagram in Figure 4a, the genomic loci distribution in Figure 4b, and the correlation analysis in Supplementary Figure S2 show little overlap between the shLMNA and shLaminA conditions, which is quite surprising. In the mapping of the DEGs shown in Figure 4b, it is also surprising not to see the gene targeted by the shRNA, LMNA, found on chromosome 1, in the results for the shLMNA and shLamin A depletion.

      The correlation analysis in Supplementary Figure S2 raises further questions. The authors use doc-inducible shRNA constructs to target lamin A (shLaminA), lamin A/C (shLMNA), or nesprin-2 (shSYNE2). Thus, the no-dox control (Ctr) for each of these constructs would be expected to be very similar to the non-target scrambled controls (Ctrl.shScramble and Dox.shScramble). However, in the correlation matrix, each of the no-dox controls clusters more closely with the corresponding dox-induced shRNA condition than with the Ctrl.shScramble or Dox.shScramble conditions, suggesting either a very leaky dox-inducible system, strong effects from clonal selection, or substantial batch effects in the processing. Either of these scenarios could substantially affect the interpretation of the findings. For example, differences between different clonal cell lines used for the studies, independent of the targeted gene, could explain the limited overlap between the different shRNA constructs and result in apparent differences when comparing these clones to the scrambled controls, which were derived from different clones.

      The manuscript also contains several factually inaccurate or incorrect statements or depictions. For example, the depiction of the nuclear envelope in Figure 1 shows a single bilipid layer, instead of the actual double bi-lipid layer of the inner and outer nuclear membranes that span the nuclear lumen. The depiction further lacks SUN domain proteins, which, together with nesprins, form the LINC complex essential to transmit forces across the nuclear envelope. The statement in line 214 that "Linker of nucleoskeleton and cytoskeleton (LINC) complex component nesprin-2 locates in the nuclear envelope to link the actin cytoskeleton and the nuclear lamina" is not quite accurate, as nesprin-2 also links to microtubules via dynein and kinesin.

      The statement that "Our data show that Lamin A knockdown specifically reduced the usage of its primary isoform, suggesting a potential role in chromatin architecture regulation, while other LMNA isoforms remained unaffected, highlighting a selective effect" (lines 407-409) is confusing, as the 'shLaminA' shRNA specifically targets the 3' UTR of lamin A that is not present in the other isoforms. Thus, the observed effect is entirely consistent with the shRNA-mediated depletion, independent of any effects on chromatin architecture.

      The premise of the authors that lamins would only affect peripheral chromatin and genes at LADs neglects the fact that lamins A and C are also found in the nuclear interior, where they form stable structure and influence chromatin organization, and the fact that lamins A and C and nesprins additionally interact with numerous transcriptional regulators such as Rb, c-Fos, and beta-catenins, which could further modulate gene expression when lamins or nesprins are depleted.

      The comparison of the identified DEGs to genes contained in LADs might be confounded by the fact that the authors relied on the identification of LADs from a previous study (ref #28), which used a different human cell type (human skin fibroblasts) instead of the U2OS osteosarcoma cells used in the present study. As LADs are often highly cell-type specific, the use of the fibroblast data set could lead to substantial differences in LADs.

      Another limitation of the current manuscript is that, in the current form, some of the figures and results depicted in the figures are difficult to interpret for a reader not deeply familiar with the techniques, based in part on the insufficient labeling and figure legends. This applies, for example, to the isoform use analysis shown in Figure 3d or the GenometriCorr analysis quantifying spatial distance between LADs and DEGs shown in Figure 4c.

      Overall appraisal and context:

      Despite its limitations, the present study further illustrates the important roles the nuclear envelope proteins lamin A, lamin C, and nesprin-2 have in chromatin organization, dynamics, and gene expression. It thus confirms results from previous studies (not always fully acknowledged in the current manuscript) previously reported for lamin A/C depletion. For example, the effect of lamin A/C depletion on increasing mobility of chromatin had already been demonstrated by several other groups, such as Bronshtein et al. Nature Comm 2015 (PMID: 26299252) and Ranade et al. BMC Mol Cel Biol 2019 (PMID: 31117946). Additionally, the effect of lamin A/C depletion on gene and protein expression has already been extensively studied in a variety of other cell lines and model systems, including detailed proteomic studies (PMIDs 23990565 and 35896617).

      The finding that that lamin A/C or nesprin depletion not only affects genes at the nuclear periphery but also the nuclear interior is not particularly surprising giving the previous studies and the fact that lamins A and C are also founding within the nuclear interior, where they affect chromatin organization and dynamics, and that lamins A/C and nesprins directly interact with numerous transcriptional regulators that could further affect gene expression independent from their role in chromatin organization.

      The authors provide a detailed analysis of isoform switching in response to lamin A/C or nesprin depletion, but the underlying mechanism remains unclear. Similarly, their analysis of the genomic location of the observed DEGs shows the wide-ranging effects of lamin A/C or nesprin depletion, but lets the reader wonder how these effects are mediated. A more in-depth analysis of predicted regulator factors and their potential interaction with lamins A/C or nesprin would be beneficial in gaining more mechanistic insights.

    3. Reviewer #3 (Public review):

      Summary:

      This manuscript describes DOX inducible RNAi KD of Lamin A, LMNA coded isoforms as a group, and the LINC component SYNE2. The authors report on differentially expressed genes, on differentially expressed isoforms, on the large numbers of differentially expressed genes that are in iLADs rather than LADs, and on telomere mobility changes induced by 2 of the 3 knockdowns.

      Strengths:

      Overall, the manuscript might be useful as a description for reference data sets that could be of value to the community.

      Weaknesses:

      The results are presented as a type of data description without formulation of models or explanations of the questions being asked and without follow-up. Thus, conceptually, the manuscript doesn't appear to break new ground.

      Not discussed is the previous extensive work by others on the nucleoplasmic forms of LMNA isoforms. Also not discussed are similar experiments- for instance, gene expression changes others have seen after lamin A knockdowns or knockouts, or the effect of lamina on chromatin mobility, including telomere mobility - see, for example, a review by Roland Foisner (doi.org/10.1242/jcs.203430) on nucleoplasmic lamina. The authors need to do a thorough search of the literature and compare their results as much as possible with previous work.

      The authors don't seem to make any attempt to explore the correlation of their findings with any of the previous data or correlate their observed differential gene expression with other epigenetic and chromatin features. There is no attempt to explore the direction of changes in gene expression with changes in nuclear positioning or to ask whether the genes affected are those that interact with nucleoplasmic pools of LMNA isoforms. The authors speculate that the DEG might be related to changing mechanical properties of the cells, but do not develop that further.

      The technical concerns include: 1) Use of only one shRNA per target. Use of additional shRNAs would have reduced concern about possible off-target knockdown of other genes; 2) Use of only one cell clone per inducible shRNA construct. Here, the concern is that some of the observed changes with shRNA KDs might show clonal effects, particularly given that the cell line used is aneuploid. 3) Use of a single, "scrambled" control shRNA rather than a true scrambled shRNA for each target shRNA.

    1. Reviewer #1 (Public review):

      Summary:

      PRMT1 overexpression is linked to poor survival in cancers, including acute megakaryocytic leukemia (AMKL). This manuscript describes the important role of PRMT1 in the metabolic reprograming in AMKL. In a PRMT1-driven AMKL model, only cells with high PRMT1 expression induced leukemia, which was effectively treated with the PRMT1 inhibitor MS023. PRMT1 increased glycolysis, leading to elevated glucose consumption, lactic acid accumulation, and lipid buildup while downregulating CPT1A, a key regulator of fatty acid oxidation. Treatment with 2-deoxy-glucose (2-DG) delayed leukemia progression and induced cell differentiation, while CPT1A overexpression rescued cell proliferation under glucose deprivation. Thus, PRMT1 enhances AMKL cell proliferation by promoting glycolysis and suppressing fatty acid oxidation.

      Strengths:

      This study highlights the clinical relevance of PRMT1 overexpression with AMKL, identifying it as a promising therapeutic target. A key novel finding is the discovery that only AMKL cells with high PRMT1 expression drive leukemogenesis, and this PRMT1-driven leukemia can be effectively treated with the PRMT1 inhibitor MS023. The work provides significant metabolic insights, showing that PRMT1 enhances glycolysis, suppresses fatty acid oxidation, downregulates CPT1A, and promotes lipid accumulation, which collectively drive leukemia cell proliferation. The successful use of the glucose analogue 2-deoxy-glucose (2-DG) to delay AMKL progression and induce cell differentiation underscores the therapeutic potential of targeting PRMT1-related metabolic pathways. Furthermore, the rescue experiment with ectopic Cpt1a expression strengthens the mechanistic link between PRMT1 and metabolic reprogramming. The study employs robust methodologies, including Seahorse analysis, metabolomics, FACS analysis, and in vivo transplantation models, providing comprehensive and well-supported findings. Overall, this work not only deepens our understanding of PRMT1's role in leukemia progression but also opens new avenues for targeting metabolic pathways in cancer therapy.

      Comments on revisions:

      The reviewer's questions were adequately addressed.

    2. Reviewer #2 (Public review):

      Summary:

      The manuscript explores the role of PRMT1 in AMKL, highlighting its overexpression as a driver of metabolic reprogramming. PRMT1 overexpression enhances the glycolytic phenotype and extracellular acidification by increasing lactate production in AMKL cells. Treatment with the PRMT1 inhibitor MS023 significantly reduces AMKL cell viability and improves survival in tumor-bearing mice. Intriguingly, PRMT1 overexpression also increases mitochondrial number and mtDNA content. High PRMT1-expressing cells demonstrate the ability to utilize alternative energy sources dependent on mitochondrial energetics, in contrast to parental cells with lower PRMT1 levels.

      Strengths:

      This is a conceptually novel and important finding as PRMT1 has never been shown to enhance glycolysis in AMKL, and provides a novel point of therapeutic intervention for AMKL.

      Comments on revisions:

      The author has responded satisfactorily to the review comments and revised the manuscript accordingly.

    1. Reviewer #1 (Public review):

      Summary:<br /> The article entitled "Pu.1/Spi1 dosage controls the turnover and maintenance of microglia in zebrafish and mammals" by Wu et al., identifies a role for the master myeloid developmental regulator Pu.1 in the maintenance of microglial populations in the adult. Using a non-homologous end joining knock-in strategy, the authors generated a pu.1 conditional allele in zebrafish, which reports wildtype expression of pu.1 with EGFP and truncated expression of pu.1 with DsRed after Cre mediated recombination. When crossed to existing pu.1 and spi-b mutants, this approach allowed the authors to target a single allele for recombination and induce homozygous loss-of-function microglia in adults. This identified that although there is no short-term consequence to loss of pu.1, microglia lacking any functional copy of pu.1 are depleted over the course of months, even when spi-b is fully functional. The authors go on to identify reduced proliferation, increased cell death, and higher expression of tp53 in the pu.1 deficient microglia, as compared to the wildtype EGFP+ microglia. To extend these findings to mammals, the authors generated a conditional Pu.1 allele in mice and performed similar analyses, finding that loss of a single copy of Pu.1 resulted in similar long-term loss of Pu.1-deficient microglia. The conclusions of this paper are overall well supported by the data.

      Strengths:<br /> The genetic approaches here for visualizing recombination status of an endogenous allele are very clever, and by comparing the turnover of wildtype and mutant cells in the same animal the authors can make very convincing arguments about the effect of chronic loss of pu.1. Likely this phenotype would be either very subtle or non-existent without the point of comparison and competition with the wildtype cells.

      Using multiple species allows for more generalizable results, and shows conservation of the phenomena at play.

      The demonstration of changes to proliferation and cell death in concert with higher expression of tp53 is compelling evidence for the authors argument.

      Weaknesses:<br /> This paper is very strong. It would benefit from further investigating the specific relationship between pu.1 and tp53 specifically. Does pu.1 interact with the tp53 locus? Specific molecular analysis of this interaction would strengthen the mechanistic findings.<br /> Recommendations for the authors It would be useful to investigate the relationship between pu.1 and tp53. The data presented here show that pu.1 deficient cells have higher expression of tp53, but this could be an indirect effect. However, since pu.1 has known DNA binding motifs, it would be worthwhile to investigate if there are any direct interactions between pu.1 and the tp53 locus -- does pu.1 directly bind and repress tp53 expression? This could be directly investigated with Cut & Run or an EMSA.

      The paper would likely also benefit from more in-depth discussion of the relationship of the zebrafish alleles and their relationship to mammalian Pu.1 -- as presented here, the authors are implicitly arguing that zebrafish pu.1 and spi-b are both more closely related to mammalian Pu.1 than to mammalian Spi-b. Clear argument, perhaps backed up by sequence alignment and homology matching, would help readers, especially those less familiar with zebrafish genome duplications.

      Comments on Revised Version (from BRE):

      The authors performed in silico analyses to support a regulatory relationship between Pu.1 and Tp53. They identified three putative Pu.1 binding sites within the zebrafish tp53 promoter region. Furthermore, they cite prior evidence demonstrating a similar interaction between PU.1 and members of the P53 family through direct DNA binding.

    2. Reviewer #2 (Public review):

      Summary:<br /> In the presented work by Wu et al. the authors investigate the role of the transcription factor Pu.1 in the survival and maintenance of microglia, the tissue resident macrophage population in the brain. To this end they generated a sophisticated new conditional pu.1 allele in zebrafish using CRISPR mediated genome editing which allows visual detection of expression of the mutant allele through a switch from GFP to dsRed after Cre-mediated recombination. Using EdU pulse-chase labelling, they first estimate the daily turnover rate of microglia in the adult zebrafish brain which was found to be higher than rates previously estimated for mice and humans. After conditional deletion of pu.1 in coro1a positive cells, they do not find a difference in microglia number at 2 and 8 days or 1 month post injection of Tamoxifen. However, at 3 month post injection, a strong decrease in mutant microglia could be detected. While no change in microglia number was detected at 1mpi, an increase in apoptotic cells and decreased proliferation as observed. RNA-seq analysis of WT and mutant microglia revealed an upregulation of tp53, which was shown to play a role in the depletion of pu.1 mutant microglia as deletion in tp53-/- mutants did not lead to a decrease in microglia number at 3mpi. Through analysis of microglia number in pU.1 mutants, the authors further show that the depletion of microglia in the conditional mutants is dependent on the presence of WT microglia. To show that the phenomenon is conserved between species, similar experiments were also performed in mice.

      This work expands on previous in vitro studies using primary human microglia. The majority of conclusions are well supported by the data, addition of controls and experimental details would strengthen the conclusions and rigor of the paper.

      Strengths:

      Generation of an elegantly designed conditional pu.1 allele in zebrafish that allows for the visual detection of expression of the knockout allele.<br /> The combination of analysis of pu.1 function in two model systems, zebrafish and mouse, strengthens the conclusions of the paper.<br /> Confirmation of the functional significance of the observed upregulation of tp53 in mutant microglia through double mutant analysis provides some mechanistic insight.

      Weaknesses:

      (1) The presented RNA-Seq analysis of mutant microglia is underpowered and details on how the data was analyzed is missing. Only 9-15 cells were analyzed in total (3 pools of 3-5 cells each). Further the variability in relative gene expression of ccl35b.1, which was used as a quality control and inclusion criterion to define pools consisting of microglia, is extremely high (between ~4 and ~1600, Fig. S7A).

      (2) The authors conclude that the reduction of microglia observed in the adult brain after cKO of pu.1 in the spi-b mutant background is due to apoptosis (Lines 213-215). However, they only provide evidence of apoptosis in 3-5 dpf embryos, a stage at which loss of pu.1 alone does lead to a complete loss of microglia (Fig.2E). A control of pu.1 KI/d839 mutants treated with 4-OHT should be added to show that this effect is indeed dependent on the loss of spi-b. In addition, experiments should be performed to show apoptosis in the adult brain after cKO of pu.1 in spi-b mutants as there seems to be a difference in requirement of pu.1 in embryonic and adult stages.

      Comments on Revised Version (from BRE):

      The authors have elaborated on the details of the RNA-Seq procedure and clarified the distinct phenotypes observed with global versus condition pu.1 knockout. In addition, the authors' proposed collaborative relationship between Pu.1 and Spi-b has been expanded in the revised manuscript. The authors have addressed all the minor concerns raised by the reviewer.

    1. Reviewer #1 (Public review):

      Summary:<br /> Tubert C. et al. investigated the role of dopamine D5 receptors (D5R) and their downstream potassium channel, Kv1, in the striatal cholinergic neuron pause response induced by thalamic excitatory input. Using slice electrophysiological analysis combined with pharmacological approaches, the authors tested which receptors and channels contribute to the cholinergic interneuron pause response in both control and dyskinetic mice (in the L-DOPA off state). They found that activation of Kv1 was necessary for the pause response, while activation of D5R blocked the pause response in control mice. Furthermore, in the L-DOPA off state of dyskinetic mice, the absence of the pause response was restored by the application of clozapine. The authors claimed that 1) the D5R-Kv1 pathway contributes to the cholinergic interneuron pause response in a phasic dopamine concentration-dependent manner, and 2) clozapine inhibits D5R in the L-DOPA off state, which restores the pause response.

      Strengths:<br /> The electrophysiological and pharmacological approaches used in this study are powerful tools for testing channel properties and functions. The authors' group has well-established these methodologies and analysis pipelines. Indeed, the data presented were robust and reliable.

      The authors addressed all concerns I raised. Presented data are convincing and support their claims.

    2. Reviewer #2 (Public review):

      Summary:<br /> This manuscript by Tubert et al. presents the role of D5 receptors (D5R) in regulating the striatal cholinergic interneuron (CIN) pause response through D5R-cAMP-Kv1 inhibitory signaling. Their findings provide a compelling model explaining the "on/off" switch of the CIN pause, driven by the distinct dopamine affinities and the balance of D2R and D5R. Furthermore, the study bridges their previous finding of CIN hyperexcitability (Paz et al., Movement Disorder 2022) with the loss of the pause response in LID mice and demonstrates the restore of the pause through D1/D5 inverse agonist clozapine.

      Strengths:<br /> The study presents solid findings, and the writing is logically structured and easy to follow. The experiments are well-designed, properly combining ex vivo electrophysiology recording, optogenetics, and pharmacological treatment to dissect / rule out most, if not all, alternative mechanisms in their model.

      Weaknesses (fixed in this revision):<br /> In this round of revision, the authors have included additional experiments examining the role of D2R, and the possible clozapine effects on serotonin receptors in the LID off -L-DOPA ex vivo slices. Although, to our surprise, D2R agonism using quinpirole and sumanirole failed to restore the CIN pause, this study still provides new insights into the balance between D2R and D5R in modulating CIN pause.

      Overall, the authors' response adequately addressed concerns raised in the previous revision.

    1. Reviewer #1 (Public review):

      The article provides a timely and well-written examination of how group identification influences collective behaviors and performance using fNIRs and behavioral data.

      Strengths:

      (1) Timeliness and Relevance:<br /> The topic is highly relevant, particularly in today's interconnected and team-oriented work environments. Triadic hyperscanning is important to understand group dynamics, but most previous work has been limited to dyadic work.

      (2) Comprehensive Analysis:<br /> The authors have conducted extensive analyses, offering valuable insights into how group identification affects collective behaviors.

      (3) Clear Writing:<br /> The manuscript is well-written and easy to follow, making complex concepts accessible.

      Comments on previous revisions:

      Most reviewer concerns have been addressed in the revised manuscript, but some limitations persist with respect to core aspects of study design, such as the long block durations and lack of counter-balancing.