Reviewer #3 (Public review):
Summary:
The manuscript uses live imaging to study the role of microtubules in the movement of ribeye aggregates in neuromast hair cells in zebrafish. The main findings are that
(1) Ribeye aggregates, assumed to be ribbon precursors, move in a directed motion toward the active zone;<br /> (2) Disruption of microtubules and kif1aa increases the number of ribeye aggregates and decreases the number of mature synapses.
The evidence for point 2 is compelling, while the evidence for point 1 is less convincing. In particular, the directed motion conclusion is dependent upon fitting of mean squared displacement that can be prone to error and variance to do stochasticity, which is not accounted for in the analysis. Only a small subset of the aggregates meet this criteria and one wonders whether the focus on this subset misses the bigger picture of what is happening with the majority of spots.
Strengths:
(1) The effects of Kif1aa removal and nocodozole on ribbon precursor number and size is convincing and novel.<br /> (2) The live imaging of Ribeye aggregate dynamics provides interesting insight into ribbon formation. The movies showing fusion of ribeye spots are convincing and the demonstrated effects of nocodozole and kif1aa removal on the frequency of these events is novel.<br /> (3) The effect of nocodozole and kif1aa removal on precursor fusion is novel and interesting.<br /> (4) The quality of the data is extremely high and the results are interesting.
Weaknesses:
(1) To image ribeye aggregates, the investigators overexpressed Ribeye-a TAGRFP under control of a MyoVI promoter. While it is understandable why they chose to do the experiments this way, expression is not under the same transcriptional regulation as the native protein and some caution is warranted in drawing some conclusions. For example, the reduction in the number of puncta with maturity may partially reflect regulation of the MyoVI promoter with hair cell maturity. Similarly, it is unknown whether overexpression has the potential to saturate binding sites (for example to motors), which could influence mobility. In the revised manuscript, the authors provide evidence to suggest that overexpression is not at unreasonably high levels, which is reasonable. However, I think it remains important to think of these caveats while reading the paper--especially keeping in mind that expression timing is undoubtedly influenced by the transcriptional control of the exogenous promoter .<br /> (2) The examples of punctae colocalizing with microtubules look clear (fig 1 F-G), but the presentation is anecdotal. It would be better and more informative, if quantified.<br /> (3) It appears that any directed transport may be rare. Simply having an alpha >1 is not sufficient to declare movement to be directed (motor driven transport typically has an alpha approaching 2). Due to randomness of a random walk and errors in fits in imperfect data will yield some spread in movement driven by Brownian motion. Many of the tracks in figure 3H look as thought they might be reasonably fit by a straight line (i.e. alpha = 1).<br /> (4) The "directed motion" shown here does not really resemble motor driven transport observed in other systems (axonal transport, for example) even in the subset that have been picked out as examples here. While the role for microtubules and kif1aa in synapse maturation is strong, it seems likely that this role may be something non-canonical (which would be interesting). In the revision, the authors do an excellent job of considering the issues brought up in point 3 and 4. While perhaps no longer a weakness, I am leaving the critiques here for context for the readers to consider. The added taxol results may not completely settle the issue, but are interesting and provide important information.