10,000 Matching Annotations
  1. Jan 2025
    1. Reviewer #1 (Public review):

      The authors present their new bioinformatic tool called TEKRABber, and use it to correlate expression between KRAB ZNFs and TEs across different brain tissues, and across species. While the aims of the authors are clear and there would be significant interest from other researchers in the field for a program that can do such correlative gene expression analysis across individual genomes and species, the presented approach and work display significant shortcomings. In the current state of the analysis pipeline, the biases and shortcomings mentioned below, for which I have seen no proof that they are accounted for by the authors, are severely impacting the presented results and conclusions. It is therefore essential that the points below are addressed, involving significant changes in the TEKRABber program as well as the analysis pipeline, to prevent the identification of false positive and negative signals, that would severely affect the conclusions one can raise about the analysis.

      My main concerns are provided below:

      One important shortcoming of the biocomputational approach is that most TEs are not actually expressed, and others (Alus) are not a proxy of the activity of the TE class at all. I will explain: While specific TE classes can act as (species-specific) promoters for genes (such as LTRs) or are expressed as TE derived transcripts (LINEs, SVAs), the majority of other older TE classes do not have such behavior and are either neutral to the genome or may have some enhancer activity (as mapped in the program they refer to 'TEffectR'. A big focus is on Alus, but Alus contribute to a transcriptome in a different way too: They often become part of transcripts due to alternative splicing. As such, the presence of Alu derived transcripts is not a proxy for the expression/activity of the Alu class, but rather a result of some Alus being part of gene transcripts (see also next point). The bottom line is that the TEKRABber software/approach is heavily prone to picking up both false positives (TEs being part of transcribed loci) and false negatives (TEs not producing any transcripts at all), which has a big implication for how reads from TEs as done in this study should be interpreted: The TE expression used to correlate the KRAB ZNF expression is simply not representing the species-specific influences of TEs where the authors are after.

      With the strategy as described, a lot of TE expression is misinterpreted: TEs can be part of gene-derived transcripts due to alternative splicing (often happens for Alus) or as a result of the TE being present in an inefficiently spliced out intron (happens a lot) which leads to TE-derived reads as a result of that TE being part of that intron, rather than that TE being actively expressed. As a result, the data as analysed is not reliably indicating the expression of TEs (as the authors intend to) and should be filtered for any reads that are coming from the above scenarios: These reads have nothing to do with KRAB ZNF control, and are not representing actively expressed TEs and therefore should be removed. Given that from my lab's experience in the brain (and other) tissues, the proportion of RNA sequencing reads that are actually derived from active TEs is a stark minority compared to reads derived from TEs that happen to be in any of the many transcribed loci, applying this filtering is expected to have a huge impact on the results and conclusions of this study.

      Another potential problem that I don't see addressed is that due to the high level of similarity of the many hundreds of KRAB ZNF genes in primates and the reads derived from them, and the inaccurate annotations of many KZNFs in non-human genomes, the expression data derived from RNA-seq datasets cannot be simply used to plot KZNF expression values, without significant work and manual curation to safeguard proper cross species ortholog-annotation: The work of Thomas and Schneider (2011) has studied this in great detail but genome-assemblies of non-human primates tend to be highly inaccurate in appointing the right ortholog of human ZNF genes. The problem becomes even bigger when RNA-sequencing reads are analyzed: RNA-sequencing reads from a human ZNF that emerged in great apes by duplication from an older parental gene (we have a decent number of those in the human genome) may be mapped to that older parental gene in Macaque genome: So, the expression of human-specific ZNF-B, that derived from the parental ZNF-A, is likely to be compared in their DESeq to the expression of ZNF-A in Macaque RNA-seq data. In other words, without a significant amount of manual curation, the DE-seq analysis is prone to lead to false comparisons which make the strategy and KRABber software approach described highly biased and unreliable.

      There is no doubt that there are differences in expression and activity of KRAB-ZNFs and TEs respectively that may have had important evolutionary consequences. However, because all of the network analyses in this paper rely on the analyses of RNA-seq data and the processing through the TE-KRABber software with the shortcomings and potential biases that I mentioned above, I need to emphasize that the results and conclusions are likely to be significantly different if the appropriate measures are taken to get more accurate and curated TE and KRAB ZNF expression data.

      Finally, there are some minor but important notes I want to share:

      The association with certain variations in ZNF genes with neurological disorders such as AD, as reported in the introduction is not entirely convincing without further functional support. Such associations could merely happen by chance, given the high number of ZNF genes in the human genome and the high chance that variations in these loci happen to associate with certain disease-associated traits. So using these associations as an argument that changes in TEs and KRAB ZNF networks are important for diseases like AD should be used with much more caution.

      There are a number of papers where KRAB ZNF and TE expression are analysed in parallel in human brain tissues. So the novelty of that aspect of the presented study may be limited.

    2. Reviewer #2 (Public review):

      Summary:

      The aim was to decipher the regulatory networks of KRAB-ZNFs and TEs that have changed during human brain evolution and in Alzheimer's disease.

      Strengths:

      This solid study presents a valuable analysis and successfully confirms previous assumptions, but also goes beyond the current state of the art.

      Weaknesses:

      The design of the analysis needs to be slightly modified and a more in-depth analysis of the positive correlation cases would be beneficial. Some of the conclusions need to be reinterpreted.

    1. Reviewer #1 (Public review):

      In this manuscript, Hoon Cho et al. presents a novel investigation into the role of PexRAP, an intermediary in ether lipid biosynthesis, in B cell function, particularly during the Germinal Center (GC) reaction. The authors profile lipid composition in activated B cells both in vitro and in vivo, revealing the significance of PexRAP. Using a combination of animal models and imaging mass spectrometry, they demonstrate that PexRAP is specifically required in B cells. They further establish that its activity is critical upon antigen encounter, shaping B cell survival during the GC reaction.

      Mechanistically, they show that ether lipid synthesis is necessary to modulate reactive oxygen species (ROS) levels and prevent membrane peroxidation.

      Highlights of the Manuscript:

      The authors perform exhaustive imaging mass spectrometry (IMS) analyses of B cells, including GC B cells, to explore ether lipid metabolism during the humoral response. This approach is particularly noteworthy given the challenge of limited cell availability in GC reactions, which often hampers metabolomic studies. IMS proves to be a valuable tool in overcoming this limitation, allowing detailed exploration of GC metabolism.

      The data presented is highly relevant, especially in light of recent studies suggesting a pivotal role for lipid metabolism in GC B cells. While these studies primarily focus on mitochondrial function, this manuscript uniquely investigates peroxisomes, which are linked to mitochondria and contribute to fatty acid oxidation (FAO). By extending the study of lipid metabolism beyond mitochondria to include peroxisomes, the authors add a critical dimension to our understanding of B cell biology.

      Additionally, the metabolic plasticity of B cells poses challenges for studying metabolism, as genetic deletions from the beginning of B cell development often result in compensatory adaptations. To address this, the authors employ an acute loss-of-function approach using two conditional, cell-type-specific gene inactivation mouse models: one targeting B cells after the establishment of a pre-immune B cell population (Dhrs7b^f/f, huCD20-CreERT2) and the other during the GC reaction (Dhrs7b^f/f; S1pr2-CreERT2). This strategy is elegant and well-suited to studying the role of metabolism in B cell activation.

      Overall, this manuscript is a significant contribution to the field, providing robust evidence for the fundamental role of lipid metabolism during the GC reaction and unveiling a novel function for peroxisomes in B cells. However, several major points need to be addressed:

      Major Comments:

      Figures 1 and 2

      The authors conclude, based on the results from these two figures, that PexRAP promotes the homeostatic maintenance and proliferation of B cells. In this section, the authors first use a tamoxifen-inducible full Dhrs7b knockout (KO) and afterwards Dhrs7bΔ/Δ-B model to specifically characterize the role of this molecule in B cells. They characterize the B and T cell compartments using flow cytometry (FACS) and examine the establishment of the GC reaction using FACS and immunofluorescence. They conclude that B cell numbers are reduced, and the GC reaction is defective upon stimulation, showing a reduction in the total percentage of GC cells, particularly in the light zone (LZ).

      The analysis of the steady-state B cell compartment should also be improved. This includes a more detailed characterization of MZ and B1 populations, given the role of lipid metabolism and lipid peroxidation in these subtypes.

      Suggestions for Improvement:

      - B Cell compartment characterization: A deeper characterization of the B cell compartment in non-immunized mice is needed, including analysis of Marginal Zone (MZ) maturation and a more detailed examination of the B1 compartment. This is especially important given the role of specific lipid metabolism in these cell types. The phenotyping of the B cell compartment should also include an analysis of immunoglobulin levels on the membrane, considering the impact of lipids on membrane composition.

      - GC Response Analysis Upon Immunization: The GC response characterization should include additional data on the T cell compartment, specifically the presence and function of Tfh cells. In Fig. 1H, the distribution of the LZ appears strikingly different. However, the authors have not addressed this in the text. A more thorough characterization of centroblasts and centrocytes using CXCR4 and CD86 markers is needed.<br /> The gating strategy used to characterize GC cells (GL7+CD95+ in IgD− cells) is suboptimal. A more robust analysis of GC cells should be performed in total B220+CD138− cells.

      - The authors claim that Dhrs7b supports the homeostatic maintenance of quiescent B cells in vivo and promotes effective proliferation. This conclusion is primarily based on experiments where CTV-labeled PexRAP-deficient B cells were adoptively transferred into μMT mice (Fig. 2D-F). However, we recommend reviewing the flow plots of CTV in Fig. 2E, as they appear out of scale. More importantly, the low recovery of PexRAP-deficient B cells post-adoptive transfer weakens the robustness of the results and is insufficient to conclusively support the role of PexRAP in B cell proliferation in vivo.

      - In vitro stimulation experiments: These experiments need improvement. The authors have used anti-CD40 and BAFF for B cell stimulation; however, it would be beneficial to also include anti-IgM in the stimulation cocktail. In Fig. 2G, CTV plots do not show clear defects in proliferation, yet the authors quantify the percentage of cells with more than three divisions. These plots should clearly display the gating strategy. Additionally, details about histogram normalization and potential defects in cell numbers are missing. A more in-depth analysis of apoptosis is also required to determine whether the observed defects are due to impaired proliferation or reduced survival.

    2. Reviewer #2 (Public review):

      Summary:

      In this study, Cho et al. investigate the role of ether lipid biosynthesis in B cell biology, particularly focusing on GC B cell, by inducible deletion of PexRAP, an enzyme responsible for the synthesis of ether lipids.

      Strengths:

      Overall, the data are well-presented, the paper is well-written and provides valuable mechanistic insights into the importance of PexRAP enzyme in GC B cell proliferation.

      Weaknesses:

      More detailed mechanisms of the impaired GC B cell proliferation by PexRAP deficiency remain to be further investigated. In the minor part, there are issues with the interpretation of the data which might cause confusion for the readers.

    1. Reviewer #1 (Public review):

      Summary:

      The authors present an interesting study using RL and Bayesian modelling to examine differences in learning rate adaptation in conditions of high and low volatility and noise respectively. Through "lesioning" an optimal Bayesian model, they reveal that apparently a suboptimal adaptation of learning rates results from incorrectly detecting volatility in the environment when it is not in fact present.

      Strengths:

      The experimental task used is cleverly designed and does a good job of manipulating both volatility and noise. The modelling approach takes an interesting and creative approach to understanding the source of apparently suboptimal adaptation of learning rates to noise, through carefully "lesioning" and optimal Bayesian model to determine which components are responsible for this behaviour.

      Weaknesses:

      The study has a few substantial weaknesses; the data and modelling both appear robust and informative, and it tackles an interesting question. The model space could potentially have been expanded, particularly with regard to the inclusion of alternative strategies such as those that estimate latent states and adapt learning accordingly.

    2. Reviewer #2 (Public review):

      Summary:

      In this study, the authors aimed to investigate how humans learn and adapt their behavior in dynamic environments characterized by two distinct types of uncertainty: volatility (systematic changes in outcomes) and noise (random variability in outcomes). Specifically, they sought to understand how participants adjust their learning rates in response to changes in these forms of uncertainty.

      To achieve this, the authors employed a two-step approach:

      (1) Reinforcement Learning (RL) Model: They first used an RL model to fit participants' behavior, revealing that the learning rate was context-dependent. In other words, it varied based on the levels of volatility and noise. However, the RL model showed that participants misattributed noise as volatility, leading to higher learning rates in noisy conditions, where the optimal strategy would be to be less sensitive to random fluctuations.

      (2) Bayesian Observer Model (BOM): To better account for this context dependency, they introduced a Bayesian Observer Model (BOM), which models how an ideal Bayesian learner would update their beliefs about environmental uncertainty. They found that a degraded version of the BOM, where the agent had a coarser representation of noise compared to volatility, best fit the participants' behavior. This suggested that participants were not fully distinguishing between noise and volatility, instead treating noise as volatility and adjusting their learning rates accordingly.

      The authors also aimed to use pupillometry data (measuring pupil dilation) as a physiological marker to arbitrate between models and understand how participants' internal representations of uncertainty influenced both their behavior and physiological responses. Their objective was to explore whether the BOM could explain not just behavioral choices but also these physiological responses, thereby providing stronger evidence for the model's validity.

      Overall, the study sought to reconcile approximate rationality in human learning by showing that participants still follow a Bayesian-like learning process, but with simplified internal models that lead to suboptimal decisions in noisy environments.

      Strengths:

      The generative model presented in the study is both innovative and insightful. The authors first employ a Reinforcement Learning (RL) model to fit participants' behavior, revealing that the learning rate is context-dependent-specifically, it varies based on the levels of volatility and noise in the task. They then introduce a Bayesian Observer Model (BOM) to account for this context dependency, ultimately finding that a degraded BOM - in which the agent has a coarser representation of noise compared to volatility - provides the best fit for the participants' behavior. This suggests that participants do not fully distinguish between noise and volatility, leading to the misattribution of noise as volatility. Consequently, participants adopt higher learning rates even in noisy contexts, where an optimal strategy would involve being less sensitive to new information (i.e., using lower learning rates). This finding highlights a rational but approximate learning process, as described in the paper.

      Weaknesses:

      While the RL and Bayesian models both successfully predict behavior, it remains unclear how to fully reconcile the two approaches. The RL model captures behavior in terms of a fixed or context-dependent learning rate, while the BOM provides a more nuanced account with dynamic updates based on volatility and noise. Both models can predict actions when fit appropriately, but the pupillometry data offers a promising avenue to arbitrate between the models. However, the current study does not provide a direct comparison between the RL framework and the Bayesian model in terms of how well they explain the pupillometry data. It would be valuable to see whether the RL model can also account for physiological markers of learning, such as pupil responses, or if the BOM offers a unique advantage in this regard. A comparison of the two models using pupillometry data could strengthen the argument for the BOM's superiority, as currently, the possibility that RL models could explain the physiological data remains unexplored.

      The model comparison between the Bayesian Observer Model and the self-defined degraded internal model could be further enhanced. Since different assumptions about the internal model's structure lead to varying levels of model complexity, using a formal criterion such as Bayesian Information Criterion (BIC) or Akaike Information Criterion (AIC) would allow for a more rigorous comparison of model fit. Including such comparisons would ensure that the degraded BOM is not simply favored due to its flexibility or higher complexity, but rather because it genuinely captures the participants' behavioral and physiological data better than alternative models. This would also help address concerns about overfitting and provide a clearer justification for using the degraded BOM over other potential models.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors advance our understanding of neurodevelopmental changes in the brain's structural and functional connectivity, as well as their coupling. The paper presents evidence of alterations in and stability of the principal organizational gradients of structure and function across development (age) and contrasts them between neurotypical and neurodivergent individuals. The authors further extend their findings by exploring links with graph theory measures of brain connectivity and indices of nodal structure-function coupling. Finally, the developmental shifts in structural and functional brain organization are examined for potential associations with cognitive and psychopathological markers. The results suggest that structure-function coupling, both brain-wide and within specific functional networks, is associated with certain cognitive dimensions but not with measures of psychopathology.

      Strengths:

      This manuscript makes a significant contribution to the field by synthesizing previous research while offering novel insights into the developmental trajectories of brain organization. A key strength of this study lies in its integration of both structural and functional connectivity data, providing a comprehensive view of brain changes throughout development. The authors present findings that challenge earlier reports of shifts in principal gradients during late childhood and early adolescence (e.g., Dong et al., 2021; Xia et al., 2022), underscoring an important inconsistency that could have broader implications for our understanding of developmental brain reorganization. The introduction and discussion sections are well-crafted, offering a thorough review of relevant prior studies and effectively situating the current findings within the broader context of the literature. Additionally, the study design and methodology are detailed and adhere to recommended best practices, demonstrating a commendable level of rigor in the formulation of the study and its various assessments.

      Weaknesses:

      Despite these strengths, I think there are aspects of the manuscript that would benefit from further refinement. Below is detailed feedback and suggestions provided point-by-point.

      Lack of Sensitivity Analyses for some Key Methodological Decisions:<br /> Certain methodological choices in this manuscript diverge from approaches used in previous works. In these cases, I recommend the following: (i) The authors could provide a clear and detailed justification for these deviations from established methods, and (ii) supplementary sensitivity analyses could be included to ensure the robustness of the findings, demonstrating that the results are not driven primarily by these methodological changes. Below, I outline the main areas where such evaluations are needed:<br /> - Use of Communicability Matrices for Structural Connectivity Gradients: The authors chose to construct structural connectivity gradients using communicability matrices, arguing that diffusion map embedding "requires a smooth, fully connected matrix." However, by definition, the creation of the affinity matrix already involves smoothing and ensures full connectedness. I recommend that the authors include an analysis of what happens when the communicability matrix step is omitted. This sensitivity test is crucial, as it would help determine whether the main findings hold under a simpler construction of the affinity matrix. If the results significantly change, it could indicate that the observations are sensitive to this design choice, thereby raising concerns about the robustness of the conclusions. Additionally, if the concern is related to the large range of weights in the raw structural connectivity (SC) matrix, a more conventional approach is to apply a log-transformation to the SC weights (e.g., log(1+𝑆𝐶𝑖𝑗)), which may yield a more reliable affinity matrix without the need for communicability measures.<br /> - Individual-Level Gradients vs. Group-Level Gradients: Unlike previous studies that examined alterations in principal gradients (e.g., Xia et al., 2022; Dong et al., 2021), this manuscript focuses on gradients derived directly from individual-level data. In contrast, earlier works have typically computed gradients based on grouped data, such as using a moving window of individuals based on age (Xia et al.) or evaluating two distinct age groups (Dong et al.). I believe it is essential to assess the sensitivity of the findings to this methodological choice. Such an evaluation could clarify whether the observed discrepancies with previous reports are due to true biological differences or simply a result of different analytical strategies.<br /> - Procrustes Transformation: It is unclear why the authors opted to include a Procrustes transformation in this analysis, especially given that previous related studies (e.g., Dong et al.) did not apply this step. I believe it is crucial to evaluate whether this methodological choice influences the results, particularly in the context of developmental changes in organizational gradients. Specifically, the Procrustes transformation may maximize alignment to the group-level gradients, potentially masking individual-level differences. This could result in a reordering of the gradients (e.g., swapping the first and second gradients), which might obscure true developmental alterations. It would be informative to include an analysis showing the impact of performing vs. omitting the Procrustes transformation, as this could help clarify whether the observed effects are robust or an artifact of the alignment procedure. (Please also refer to my comment on adding a subplot to Figure 1)<br /> - SC-FC Coupling Metric: The approach used to quantify nodal SC-FC coupling in this study appears to deviate from previously established methods in the field. The manuscript describes coupling as the "Spearman-rank correlation between Euclidean distances between each node and all others within structural and functional manifolds," but this description is unclear and lacks sufficient detail. Furthermore, this differs from what is typically referred to as SC-FC coupling in the literature. For instance, the cited study by Park et al. (2022) utilizes a multiple linear regression framework, where communicability, Euclidean distance, and shortest path length are independent variables predicting functional connectivity (FC), with the adjusted R-squared score serving as the coupling index for each node. On the other hand, the Baum et al. (2020) study, also cited, uses Spearman correlation, but between raw structural connectivity (SC) and FC values. If the authors opt to introduce a novel coupling metric, it is essential to demonstrate its similarity to these previous indices. I recommend providing an analysis (supplementary) showing the correlation between their chosen metric and those used in previous studies (e.g., the adjusted R-squared scores from Park et al. or the SC-FC correlation from Baum et al.). Furthermore, if the metrics are not similar and results are sensitive to this alternative metric, it raises concerns about the robustness of the findings. A sensitivity analysis would therefore be helpful (in case the novel coupling metric is not similar to previous ones) to determine whether the reported effects hold true across different coupling indices.

      Methodological ambiguity/lack of clarity in the description of certain evaluation steps:<br /> Some aspects of the manuscript's methodological descriptions are ambiguous, making it challenging for future readers to fully reproduce the analyses based on the information provided. I believe the following sections would benefit from additional detail and clarification:<br /> - Computation of Manifold Eccentricity: The description of how eccentricity was computed (both in the results and methods sections) is unclear and may be problematic. The main ambiguity lies in how the group manifold origin was defined or computed. Specifically:<br /> (1) In the results section, it appears that separate manifold origins were calculated for the NKI and CALM groups, suggesting a dataset-specific approach.<br /> (2) Conversely, the methods section implies that a single manifold origin was obtained by somehow combining the group origins across the three datasets, which seems contradictory.<br /> Moreover, including neurodivergent individuals in defining the central group manifold origin is conceptually problematic. Given that neurodivergent participants might exhibit atypical brain organization (as suggested by Fig. 1), this inclusion could skew the definition of what should represent a typical or normative brain manifold. A more appropriate approach might involve constructing the group manifold origin using only the neurotypical participants from both the NKI and CALM datasets. Given the reported similarity between group-level manifolds of neurotypical individuals in CALM and NKI, it would be reasonable to expect that this combined origin should be close to the origin computed within neurotypical samples of either NKI or CALM. As a sanity check, I recommend reporting the distance of the combined neurotypical manifold origin to the centers of the neurotypical manifolds in each dataset. Moreover, if the manifold origin was constructed while utilizing all samples (including neurodivergent samples) I think this needs to be reconsidered.<br /> - Computation of SC-FC coupling: As noted in a previous comment, the explanation of this procedure is vague. The description lacks detail on the specific steps taken and differs from previous standard approaches in the field. I suggest clarifying the methodology and comparing with previous SC-FC coupling metrics.<br /> - Performing Procrustes transformation: The brief explanation in the first paragraph of page 30 does not provide enough information about the procedure or its justification. Since the Procrustes transformation alters the shape of individual gradients, it could artificially inflate consistency across development. I recommend including a rationale for using the Procrustes transformation and conducting a sensitivity analysis to assess its impact on the findings. Additionally, clarifying how exactly the transformation was applied to align gradients across hemispheres, individuals, and or datasets would help resolve ambiguity.

      Insufficient Supporting Evaluations for Certain Claims:<br /> There are instances where additional analyses are necessary to substantiate the claims made in the manuscript. Without these evaluations, some conclusions may be premature or potentially misleading. I believe the following points need further analysis or, alternatively, adjustments to the claims:<br /> - Evaluating the Consistency of Gradients Across Development: The results shown in Fig. 1.e are used as evidence suggesting that gradients are consistent across ages. However, I believe additional analyses are required to identify potential sources of the observed inconsistency compared to previous works. The claim that the principal gradient explains a similar degree of variance across ages does not necessarily imply that the spatial structure of the gradient remains stable. The observed variance explanation is hence not enough to ascertain inconsistency with findings from Dong et al., as the spatial configuration of gradients may still change over time. Moreover, the introduction of the Procrustes transformation (not used by Dong et al.) further ambiguates the cause of this inconsistency. I suggest the following additional analyses to strengthen this claim: (1) Alignment to Group-Level Gradients: Assess how much of the variance in individual FC matrices is explained by each of the group-level gradients (G1, G2, and G3, for both FC and SC). This analysis could be visualized similarly to Fig. 1.e, with age on the x-axis and variance explained on the y-axis. If the explained variance varies as a function of age, it may indicate that the gradients are not as consistent as currently suggested. (2) For each individual's gradients (G1, G2, and G3, separately for FC and SC, without Procrustes transformation), evaluate their spatial similarity to the corresponding group-level gradients using a similarity metric (e.g., correlation coefficient). High spatial similarity, without a Procrustes transformation, would support the claim of stable gradient structures across development. On the other hand, if the similarities alter during development (e.g. such that at a certain age, individual G1 is less similar to group G1) this would contradict the stability of gradients during development. These additional analyses could potentially be included as additional panels in Fig. 1. In case significant deviations are observed, it might help refine the interpretation of the results and provide a more nuanced understanding of developmental changes in gradient organization.<br /> - Prediction vs. Association Analysis: The term "prediction" is used throughout the manuscript to describe what appear to be in-sample association tests. This terminology may be misleading, as prediction generally implies an out-of-sample evaluation where models trained on a subset of data are tested on a separate, unseen dataset. If the goal of the analyses is to assess associations rather than make true predictions, I recommend refraining from using the term "prediction" and instead clarifying the nature of the analysis. Alternatively, if prediction is indeed the intended aim (which would be more compelling), I suggest conducting the evaluations using a k-fold cross-validation framework. This would involve training the Generalized Additive Mixed Models (GAMMs) on a portion of the data and testing their predictive accuracy on a held-out sample (i.e., different individuals). Additionally, the current design appears to focus on predicting SC-FC coupling using cognitive or pathological dimensions. This is contrary to the more conventional approach of predicting behavioral or pathological outcomes from brain markers like coupling. Could the authors clarify why this reverse direction of analysis was chosen? Understanding this choice is crucial, as it impacts the interpretation and potential implications of the findings.

      Methodological considerations<br /> - In typical applications of diffusion map embedding, sparsification (e.g., retaining only the top 10% of the strongest connections) is often employed at the vertex-level resolution to ensure computational feasibility. However, since the present study performs the embedding at the level of 200 brain regions (a considerably coarser resolution), this step may not be necessary or justifiable. Specifically, for FC, it might be more appropriate to retain all positive connections rather than applying sparsification, which could inadvertently eliminate valuable information about lower-strength connections. Whereas for SC, as the values are strictly non-negative, retaining all connections should be feasible and would provide a more complete representation of the structural connectivity patterns. Given this, it would be helpful if the authors could clarify why they chose to include sparsification despite the coarser regional resolution, and whether they considered this alternative approach (using all available positive connections for FC and all non-zero values for SC). It would be interesting if the authors could provide their thoughts on whether the decision to run evaluations at the resolution of brain regions could itself impact the functional and structural manifolds, their alteration with age, and or their stability (in contrast to Dong et al. which tested alterations in high-resolution gradients).

      The Issue of Abstraction and Benefits of the Gradient-Based View:<br /> - The manuscript interprets the eccentricity findings as reflecting changes along the segregation-integration spectrum. Given this, it is unclear why a more straightforward analysis using established graph-theory measures of segregation-integration was not pursued instead. Mapping gradients and computing eccentricity adds layers of abstraction and complexity. If similar interpretations can be derived directly from simpler graph metrics, what additional insights does the gradient-based framework offer? While the manuscript argues that this approach provides "a more unifying account of cortical reorganization," it is not evident why this abstraction is necessary or advantageous over traditional graph metrics. Clarifying these benefits would strengthen the rationale for using this method.

    2. Reviewer #2 (Public review):

      Summary:

      This study aims to show how structural and functional brain organization develops during childhood and adolescence using two large neuroimaging datasets. It addresses whether core principles of brain organization are stable across development, how they change over time, and how these changes relate to cognition and psychopathology. The study finds that brain organization is established early and remains stable but undergoes gradual refinement, particularly in higher-order networks. Structural-functional coupling is linked to better working memory but shows no clear relationship with psychopathology.

      Strengths:

      This study effectively integrates two different modalities (structural and functional) to identify shared patterns. It is supported by a relatively large dataset, which enhances its value and robustness.

      Weaknesses:

      General Comments:<br /> - The introduction is overly long and includes numerous examples that can distract readers unfamiliar with the topic from the main research questions.

      - While the methods are thorough, it is not always clear whether the optimal approaches were chosen for each step, considering the available data.<br /> Detailed Comments:<br /> - The use of COMBAT may have excluded extreme participants from both datasets, which could explain the lack of correlations found with psychopathology.<br /> - Some differences in developmental trajectories between CALM and NKI (e.g., Figure 4d) are not explained. Are these differences expected, or do they suggest underlying factors that require further investigation?<br /> - There is no discussion of whether the stable patterns of brain organization could result from preprocessing choices or summarizing data to the mean. This should be addressed to rule out methodological artifacts.

    1. Reviewer #1 (Public review):

      Summary:

      The study dissects distinct pools of diacylglycerol (DAG), continuing a line of research on the central concept that there is a major lipid metabolism DAG pool in cells, but also a smaller signaling DAG pool. It tests the hypothesis that the second pool is regulated by Dip2, which influences Pkc1 signaling. The group shows that stressed yeast increase specific DAG species C36:0 and 36:1, and propose this promotes Pkc1 activation via Pck1 binding 36:0. The study also examines how perturbing the lipid metabolism DAG pool via various deletions such as lro1, dga1, and pah1 deletion impacts DAG and stress signaling. Overall this is an interesting study that adds new data to how different DAG pools influence cellular signaling.

      Strengths:

      The study nicely combined lipidomic profiling with stress signaling biochemistry and yeast growth assays.

      Weaknesses:

      One suggestion to improve the study is to examine the spatial organization of Dip2 within cells, and how this impacts its ability to modulate DAG pools. Dip2 has previously been proposed to function at mitochondria-vacuole contacts (Mondal 2022). Examining how Dip2 localization is impacted when different DAG pools are manipulated such as by deletion Pah1 (also suggested to work at yeast contact sites such as the nucleus-vacuole junction), or with Lro1 or Dga1 deletion would broaden the scope of the study.

    2. Reviewer #2 (Public review):

      Summary:

      The authors use yeast genetics, lipidomic and biochemical approaches to demonstrate the DAG isoforms (36:0 and 36:1) can specifically activate PKC. Further, these DAG isoforms originate from PI and PI(4,5)P2. The authors propose that the Psi1-Plc1-Dip2 functions to maintain a normal level of specific DAG species to modulate PKC signalling.

      Strengths:

      Data from yeast genetics are clear and strong. The concept is potentially interesting and novel.

      Weaknesses:

      More evidence is needed to support the central hypothesis. The authors may consider the following:

      (1) Figure 2: the authors should show/examine C36:1 DAG. Also, some structural evidence would be highly useful here. What is the structural basis for the assertion that the PKC C1 domain can only be activated by C36:0/1 DAG but not other DAGs? This is a critical conclusion of this work and clear evidence is needed.

      (2) Does Dip2 colocalize with Plc1 or Pkc1? Does Dip2 reach the plasma membrane upon Plc activation?

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript by Alonso-Caraballo et al, is a novel piece of work that examines the impact of oxycodone self-administration on neural plasticity within the paraventricular thalamic (PVT) to nucleus accumbens shell (Shell) pathway - two regions shown to play a key role in cue-induced drug seeking on their own, and whether this plasticity varies based on abstinence period and biological sex.

      Strengths:

      The authors show using a clinically relevant long-access model of opioid self-administration promotes dependence and acute withdrawal in both male and female rats. During subsequent cue-induced relapse tests at 1 or 14 days following the conclusion of self-administration, data show that while both males and females demonstrate drug-seeking behavior at both time points, females show a further elevation in responding on day 14 versus day 1 which is not observed in the males. When accounting for past work showing elevations in drug-seeking in males after 30 days, these data indicate that craving-induced relapse for opioids may develop faster and may be more pronounced in females compared to males.

      These behavioral findings were paralleled by the use of ex vivo acute slice electrophysiology and circuit-specific ex vivo optogenetics to examine the impact of oxycodone self-administration on synaptic strength within the paraventricular thalamus (PVT) to nucleus accumbens shell (NAcSh) pathway(s). Data support a time-dependent but sex-independent strengthening of glutamatergic signaling at PVT-to-NAcSh medium spiny neurons (MSNs) that is only present following a relapse test at 14 days post abstinence in males versus females, providing the first evidence that opioid self-administration and/or cue-induced drug-seeking augments this pathway. Using an extensive set of physiological measures, the authors show that this increased synaptic strength reflects an upregulation of presynaptic release probability. Further, this upregulation of excitatory signaling aligned temporally with an increase in MSN excitability, as assessed by increases in action potential firing frequency. Finally, the authors provide the first evidence that similar to other inputs to the NAcSh, PVT projections innervate both MSN as well as local interneurons, promoting a GABA-A-specific feedforward inhibitory circuit. Interestingly, unlike direct excitatory inputs to MSNs, no changes were observed ostensibly within this feedforward circuit, highlighting a selective enhancement of excitatory drive and output of MSNs with protracted abstinence.

      Overall, these data highlight a potential role for heightened synaptic strength within the PVT-NAcSh pathway in cue-induced relapse behavior during protracted abstinence and identify a potential therapeutic target during abstinence to reduce relapse risk in abstaining individuals.

      Weaknesses:

      Overall, the experimental approach and data provided appear rigorous and support their overall conclusions and achieve their goal of understanding how opioid self-administration impacts synaptic strength within the PVT-NAcSh pathway. Although not undermining these data, there are a few potential weaknesses that reduce the impact of the work. For example, the inability to directly assess whether cue-induced drug-seeking is in fact augmented compared to daily intake during self-administration in the maintenance face only permits the authors to denote that reexposure to cues and the context is sufficient to promote active lever pressing without demonstrating whether seeking behavior is in fact elevated further during a cue test. This is notably understandable as drug available sessions were 6-hours versus a 1-hour relapse test. Importantly, it is clearly demonstrated that drug seeking is higher on average in female mice after 14 days versus 1 day.

      With regard to the interpretation of electrophysiology findings, the lack of inclusion of an abstinence-only group does not permit interpretations to parse out whether observed increases in synaptic strength (or the lack of) reflect abstinence or an interaction between abstinence period and re-exposure to the operant chamber, as slices were taken 30-45 min post relapse test. While much literature has shown that drug-induced adaptations in the NAc require a post-drug period for plasticity to measurably emerge, studies have also shown that re-exposure to heroin-associated cues following abstinence seemingly "reverses" increases in cell excitability in prelimbic-NAc pyramidal neurons (Kokane et al., 2023) and that depotentiation of morphine-induced increases in synaptic strength in the NAc shell can be depotentiated by drug re-exposure - an effect also observed with cocaine re-exposure (Madayag et al., 2019). Notably, the lack of effect at 14 but not 1 day supports the likelihood that the relapse test does not in fact influence the plasticity within the PVT-NAcSh circuit.

      While the lack of effect on AMPAR:NMDAR ratio and rectification indices do support the notion that enhanced EPSC amplitudes in input-output curves do not reflect a change in AMPAR subunit expression (i.e., increased GluA2-lacking receptors that exhibit inward rectification at depolarized potential) nor a change in postsynaptic sensitivity to glutamate, without direct assessment of AMPAR-specific and NMDAR-specific input-output curves, it doesn't definitively exclude the possibility that both AMPA and NMDA receptor currents are being upregulated, thus negating an observable change in postsynaptic strength.

      Overall, these findings provide novel insight into how the PVT-NAcSh pathway is altered by opioid self-administration and whether this is unique based on abstinence period and sex. Importantly, these were the primary objectives stated by the author. Data highlight a potential role for the observed adaptations in relapse behavior and identify a potential therapeutic target during abstinence to reduce relapse risk in abstaining individuals. However, it should be noted that no causal link is demonstrated without experiments to reduce/prevent relapse.

    2. Reviewer #2 (Public review):

      This is an interesting paper from Alonso-Caraballo and colleagues that examines the influence of opioid use, abstinence, and sex on paraventricular thalamus (PVT) to nucleus accumbens shell (NAcSh) medium spiny neurons circuit physiology. The authors first find that prolonged abstinence from extended access to oxycodone self-administration leads to profoundly increased cue-induced reinstatement in females. Next, they found that prolonged abstinence increased PVT-NAcSh MSN synaptic strength, an effect that was likely due to presynaptic adaptation (paired-pulse ratio was decreased in both sexes).

      While this paper is certainly interesting, and well-written, and the experiments seem to be well performed, the behavioral and physiological effects observed are somewhat divorced. Specifically, what accounts for the heightened relapse in females? Since no opioid-related sex differences were observed in PVT-NAcSh neurophysiology, it is unclear how the behavioral and neurophysiological data fit together. Furthermore, the lack of functional manipulation of PVT-NAcSh circuitry leaves one to wonder if this circuit is even important for the behavior that the authors are measuring. I would be more positive about this study if the authors were able to resolve either of the two issues noted above.

      I also noted more moderate weaknesses that the authors should consider:

      (1) There are insufficient animals in some cases. For example, in Figure 4, the Male Saline 14-day abstinence group (n = 3 rats) has less than half of the excitability as compared to the Male Saline 1-day abstinence group (n = 7 rats). This is likely due to variance between animals and, possibly, oversampling. Thus, more rats need to be added to the 14-day abstinence group. Additionally, the range of n neurons/rat should be reported for each experiment to ensure readers that oversampling from single animals is not occurring.

      (2) The IPSC data, for example in Figure 4, is one of the more novel experiments in the manuscript. However, it is quite challenging to see the difference between males and females, saline and oxycodone, at low stimulation intensities within the graph. Authors should expand this so that reviewers/readers can see those data, especially considering other work suggesting that PVT synaptic input onto select NAc interneurons is disrupted following opioid self-administration. Additional comment: It's also interesting that the IPSC amplitude seems to be maximal at ~2mW of light, whereas ~11 mW is required to evoke maximal EPSC amplitude. It would be interesting to know the authors' thoughts on why this may be.

      (3) There is an inadequate description of what has been done to date on the PVT-NAc projection regarding opioid withdrawal, seeking, disinhibition, and the effects on synaptic physiology therein. For example, a critical paper, Keyes et al., 2020 Neuron, is not cited. Additionally, Paniccia et al., 2024 Neuron is inaccurately cited and insufficiently described. Both manuscripts should be described in some detail within the introduction, and the findings should be accurately contextualized within the broader circuit within the discussion.

      (4) Related to the above, the authors should provide a more comprehensive description of how PVT synapses onto cell-type specific neurons in the NAc which expands beyond MSNs, especially considering that PVT has been shown to influence drug/opioid seeking through the innervation of NAc neurons that are not MSNs. For example, see PMIDs 33947849, 36369508, 28973852, 38141605.

    3. Reviewer #3 (Public review):

      Summary:

      In this paper, Alonso-Caraballo et al. investigate sex-specific differences in oxycodone self-administration, withdrawal, and relapse behaviors in rats, as well as associated synaptic plasticity in the paraventricular thalamus to nucleus accumbens shell (PVT-NAcSh) circuit. The authors employ a combination of behavioral paradigms and ex vivo electrophysiology to examine how acute (1-day) and prolonged (14-day) abstinence from oxycodone self-administration affect cue-induced drug-seeking and synaptic transmission in male and female rats. Their findings reveal that while both sexes show similar oxycodone self-administration and acute withdrawal symptoms, females exhibit enhanced cue-induced relapse after prolonged abstinence. Furthermore, they show that prolonged abstinence is associated with increased synaptic strength in the PVT-NAcSh circuit (reduced paired-pulse ratio) and enhanced intrinsic excitability of NAcSh medium spiny neurons in both sexes. This study provides important insights into the sex-specific neural adaptations that may underlie vulnerability to opioid relapse and highlights the PVT-NAcSh circuit as a potential target for therapeutic interventions. However, although this study is well designed, no sex differences were observed in the synaptic activity within this pathway that could explain increased oxycodone seeking in females versus male rats. Additional experiments could strengthen the results and help clarify synaptic mechanisms underpinning behavioral sex differences.

      Strengths:

      The study exhibits several strengths. It provides a comprehensive behavioral analysis of oxycodone self-administration, withdrawal, and cue-induced relapse in both male and female rats at different time points (acute vs. protracted withdrawal) offering valuable insights into sex-specific differences (i.e., increased oxycodone seeking in females over time but not males). The authors examine synaptic plasticity in the PVT-NAcSh circuit at different abstinence time points, integrating behavioral and electrophysiological data to link circuit adaptations with relapse behaviors, although no sex differences in the electrophysiological parameters examined were evident. The investigation of intrinsic excitability changes in NAcSh medium spiny neurons further enhances the study's depth. Overall, the well-designed experiments provide important insights into the neural adaptations that may underlie vulnerability to opioid relapse, highlighting the PVT-NAcSh circuit as a potential target for therapeutic interventions in opioid use disorder.

      Weaknesses:

      Despite its strengths, the study has several notable limitations. A key weakness is the lack of observed sex differences in synaptic activity within the PVT-NAcSh pathway that could explain the behavioral results. The authors' failure to differentiate between D1 and D2 medium spiny neurons (MSNs) in the nucleus accumbens represents a missed opportunity to identify potential sex-specific differences at the cellular level, although they do discuss reasons for this omission. The only significant synaptic change observed - reduced paired-pulse ratio indicating increased synaptic strength - occurs in both males and females, failing to explain the sex-specific behavioral differences. Furthermore, the investigation of intrinsic excitability in NAc MSNs adds complexity to data interpretation, as the authors neither differentiate between D1 and D2 MSNs nor confirm that recorded neurons receive direct inputs from the PVT. This assumption potentially confounds the results. Overall, while the study provides valuable insights, additional experiments targeting specific cell populations and more detailed synaptic analyses are needed to elucidate the mechanisms underlying the observed behavioral sex differences in opioid relapse vulnerability.

    1. Reviewer #1 (Public review):

      In this manuscript, the role of orexin receptors in dopamine transmission is studied. It extends previous findings suggesting an interplay between these two systems in regulating behaviour by first characterizing the expression of orexin receptors in the midbrain and then disrupting orexin transmission in dopaminergic neurons by deleting its predominant receptor, OX1R (Ox1R fl/fl, Dat-Cre tg/wt mice). Electrophysiological and calcium imaging data suggest that orexin A acutely and directly stimulates SN and VTA dopaminergic neurons but does not seem to induce c-Fos expression. Behavioral effects of depleting OX1R from dopaminergic neurons include enhanced novelty-induced locomotion and exploration, relative to littermate controls (Ox1R fl/fl, Dat-Cre wt/wt). However, no difference between groups is observed in tests that measure reward processing, anxiety, and energy homeostasis. To test whether the depletion of OX1R alters overall orexin-triggered activation across the brain, PET imaging is used in OX1R∆DAT knockout and control mice. This analysis reveals that several regions show higher neuronal activation after orexin injection in OX1R∆DAT mice, but the authors focus their follow-up study on the dorsal bed nucleus of the stria terminalis (BNST) and lateral paragigantocellular nucleus (LPGi). Dopaminergic inputs and expression of dopamine receptors type-1 and -2 (DRD1 & DRD2) are assessed and compared to control demonstrating a moderate decrease in DRD1 and DRD2 expression in the BNST of OX1R∆DAT mice and unaltered expression of DRD2, with absence of DRD1 expression in LPGi of both groups. Overall, this study is valuable for the information it provides on orexin receptor expression and function in behaviour, as well as for the new tools it generated for the specific study of this receptor in dopaminergic circuits.

      Strengths:

      The use of a transgenic line that lacks OX1R in dopamine-transporter expressing neurons is a strong approach to dissect the direct role of orexin in modulating dopamine signaling in the brain. The battery of behavioral assays used to study this line provides valuable information for researchers interested in the interplay between dopamine and orexin systems and their role in animal physiology.

      Weaknesses:

      This study falls short in providing evidence for an anatomical substrate and mechanism underlying the altered behavior observed in mice lacking orexin receptor subtype 1 in dopaminergic neurons. How orexin transmission in dopaminergic neurons regulates the expression of postsynaptic dopamine receptors (as observed in the BNST of OX1R∆DAT mice) is an intriguing question not addressed in this study. An important aspect not investigated in this study is whether the disruption of orexin activity affects dopamine release in target areas.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript examines expression of orexin receptors in midbrain - with a focus on dopamine neurons - and uses several fairly sophisticated manipulation techniques to explore the role of this peptide neurotransmitter in reward-related behaviors. Specifically, in situ hybridization is used to show that substantia nigra dopamine neurons predominantly express orexin receptor 1 subtype and then go on to delete this receptor in dopamine transporter-expressing neurons using a transgenic strategy. Ex vivo calcium imaging of midbrain neurons is used to show that, in the absence of this receptor, orexin is no longer able to excite dopamine neurons of the substantia nigra.

      The authors proceed to use this same model to study the effect of orexin receptor 1 deletion on a series of behavioral tests, namely, novelty-induced locomotion and exploration, anxiety-related behavior, preference for sweet solutions, cocaine-induced conditioned place preference, and energy metabolism. Of these, the most consistent effects are seen in the tests of novelty-induced locomotion and exploration in which the mice with orexin 1 receptor deletion are observed to show greater levels of exploration, relative to wild-type, when placed in a novel environment, an effect that is augmented after icv administration of orexin.

      In the final part of the paper, the authors use PET imaging to compare brain-wide activity patterns in the mutant mice compared to wildtype. They find differences in several areas both under control conditions (i.e., after injection of saline) as well as after injection of orexin. They focus in on changes in dorsal bed nucleus of stria terminalis (dBNST) and the lateral paragigantocellular nucleus (LPGi) and perform analysis of the dopaminergic projections to these areas. They provide anatomical evidence that these regions are innervated by dopamine fibers from midbrain, are activated by orexin in control, but not mutant mice, and that dopamine receptors are present. They also show changes in receptor expression in the transgenic mice. Thus, they argue these anatomical data support the hypothesis that behavioral effects of orexin receptor 1 deletion in dopamine neurons are due to changes in dopamine signaling in these areas.

      Strengths:

      Understanding how orexin interacts with the dopamine system is an important question and this paper contains several novel findings along these lines. Specifically:<br /> (1) Distribution of orexin receptor subtypes in VTA and SN is explored thoroughly.<br /> (2) Use of the genetic model that knocks out a specific orexin receptor subtype from dopamine-transporter-expressing neurons is a useful model and helps to narrow down the behavioral significance of this interaction.<br /> (3) PET studies showing how central administration of orexin evokes dopamine release across the brain is intriguing, especially since two key areas are pursued - BNST and LPGi - where the dopamine projection is not as well described/understood.

      Weaknesses:

      The role of the orexin-dopamine interaction is not explored in enough detail. The manuscript presents several related findings, but the combination of anatomy and manipulation studies do not quite tell a cogent story. Ideally, one would like to see the authors focus on a specific behavioral parameter and show that one of their final target areas (dBNST or LPGi) was responsible or at least correlated with this behavioral readout. In addition, the authors' working model for how they think orexin-dopamine interactions contribute to behavior under normal physiological conditions is not well-described.

    1. Reviewer #1 (Public review):

      Summary:

      This study sought to reveal the potential roles of m6A RNA methylation in gene dosage regulatory mechanisms, particularly in the context of aneuploid genomes in Drosophila. Specifically, this work looked at the relationships between expression of m6A regulatory factors, RNA methylation status, classical and inverse dosage effects, and dosage compensation. Using RNA sequencing and m6A mapping experiments, an in depth analysis was performed to reveal changes in m6A status and expression changes across multiple aneuploid Drosophila models. The authors propose that m6A methylation regulates MOF and, in turn, deposition of H4K16Ac, critical regulators of gene dosage in the context of genomic imbalance.

      Strengths:

      This study seeks to address an interesting question with respect to gene dosage regulation and the possible roles of m6A in that process. Previous work has linked m6A to X-inactivation in humans through the Xist lncRNA, and to the regulation of the Sxl in flies. This study seeks to broaden that understanding beyond these specific contexts to more broadly understand how m6A impacts imbalanced genomes in other contexts.

      Weaknesses:

      The methods being used particularly for analysis of m6A at both the bulk and transcript-specific level are not sufficiently specific or quantitative to be able to confidently draw the conclusions the authors seek to make. MeRIP m6A mapping experiments can be very valuable, but differential methylation is difficult to assess when changes are small (as they often are, in this study but also m6A studies more broadly). For instance based on the data presented and the methods described, it is not clear that the statement that "expression levels at m6A sites in aneuploidies are significantly higher than that in wildtype" is supported. In my initial review I pointed out that MeRIP experiments are not quantitative and can be difficult to interpret when small changes are present. The data as presented still show only RPKM in IP samples, and the text alludes to changes in IP enrichment that are significant but the data do not appear to have been included in the figure. Concerns about the bulk-level m6A measurements also remain, as the new data showing m6A levels in mRNA show changes that are even smaller than those initially demonstrated in total RNA. Yet the data are still presented as significant, biologically relevant changes. The conclusions about mRNA m6A levels are not strengthened by measurements.

    2. Reviewer #2 (Public review):

      Summary:

      The authors have tested effects of partial- or whole-chromosome aneuploidy on the m6A RNA modification in Drosophila. The data reveal that overall m6A levels trend up but that the number of sites found by meRIP-seq trend down, which seems to suggest that aneuploidy causes a subset of sites become hyper-methylated. Subsequent bioinformatic analysis of other published datasets establish correlations between activity of the H4K16 acetyltransferase dosage compensation complex (DCC) and expression of m6A components and m6A abundance, suggesting that DCC and m6A can act in a feedback loop. Western blots confirm that Msl2 and MOF alleles alter levels of Mettl3 complex components, but the underlying mechanism remains undefined.

      Strengths:

      • Thorough bioinformatic analysis of their data<br /> • Incorporation of other published datasets that enhances scope and rigor<br /> • Finds trends that suggest that a chromosome counting mechanism can control m6A, as fits with pub data that the Sxl mRNA is m6A modified in XX females and not XY males<br /> • Provides preliminary evidence that this counting mechanism may be due to DCC effects on expression of m6A components.

      Weaknesses:

      • The linkage between H4K16 machinery and m6A levels on specific sites remains unclear in this revision.<br /> • The paper relies on m6A comparisons across tissues and developmental stages, which introduces some uncertainty about where and when the DCC-m6A loop acts.

    1. Reviewer #1 (Public review):

      Summary:

      How reconsolidation works - particularly in humans - remains largely unknown. With an elegant, 3-day design, combining fMRI and psychopharmacology, the authors provide evidence for a certain role for noradrenaline in the reconsolidation of memory for neutral stimuli. All memory tasks were performed in the context of fMRI scanning, with additional resting state acquisitions performed before and after recall testing on Day 2. On Day 1, 3 groups of healthy participants encoded word-picture associates (with pictures being either scenes or objects) and then performed an immediate cued recall task to presentation of the word (answering is the word old or new, and was it paired with a scene or an object). On Day 2, the cued recall task was repeated using half of the stimulus set words encoded on Day 1 (only old words were presented, with subjects required to indicate prior scene vs object pairing). This test was immediately preceded by the oral administration of placebo, cortisol, or yohimibine (to raise noradrenaline levels) depending on group assignment. On Day 3, all words presented on Day 1 were presented. As expected, on Day 3, memory was significantly enhanced for associations that were cued and successfully retrieved on Day 2 compared to uncued associations. However, for associative d', there was no Cued × Group interaction nor a main effect of Group, i.e., on the standard measure of memory performance, post-retrieval drug presence on Day 2 did not affect memory reconsolidation. As further evidence for a null result, fMRI univariate analyses showed no Cued × Group interactions in whole-brain or ROI activity.

      Strengths:

      There are some aspects of this study that I find impressive. The study is well-designed and the fMRI analysis methodology innovative and sound. The authors have made meticulous and thorough physiological measurements, and assays of mood, throughout the experiment. By doing so, they have overcome, to a considerable extent, the difficulties inherent in timing of human oral drug delivery in reconsolidation tasks, where it is difficult to have drug present in the immediate recall period without affecting recall itself. This is beautifully shown in Fig. 3. I also think that having some neurobiological assay of memory reactivation when studying reconsolidation in humans is critical, and the authors provide this. While multi-voxel patterns of hemodynamic responses are, in my view, very difficult to equate with an "engram", these patterns do have something to do with memory.

      Weaknesses:

      I have major issues regarding the behavioral results and the framing of the manuscript:

      (1) To arrive at group differences in memory performance, the authors performed median splitting of Day 3 trials by short and long reaction times during memory cueing on Day 2, as they took this as a putative measure of high/low levels of memory reactivation. Associative category hits on Day 3 showed a Group by Day 2 Reaction time (short, long) interaction, with post-hocs showing (according to the text) worse memory for short Day 2 RTs in the yohimbine group. These post-hocs should be corrected for multiple comparisons, as the result is not what would be predicted (see point 2). My primary issue here is that we are not given RT data for each group, nor is the median splitting procedure described in the methods. Was this across all groups, or within groups? Are short RTs in the yohimbine group any different from short RTs in the other two groups? Unfortunately, we are not given Day 2 picture category memory levels or reaction times for each group. This is relevant because (as given in Supplemental Table S1) memory performance (d´) for the Yohimbine group on Day 1 immediate testing is (roughly speaking) 20% lower than the other 2 groups (independently of whether the pairs will be presented again the following day). I appreciate that this is not significant in a group x performance ANOVA but how does this relate to later memory performance? What were the group-specific RTs on Day 1? So, before the reader goes into the fMRI results, there are questions regarding the supposed drug-induced changes in behavior. Indeed, in the discussion, there is repeated mention of subsequent memory impairment produced by yohimbine but the nature of the impairment is not clear.

      This weakness was satisfactorily addressed in one revision round. As RT data are often not normally distributed, were they transformed prior to entry into linear models?

      (2) The authors should be clearer as to what their original hypotheses were, and why they did the experiment. Despite being a complex literature, I would have thought the hypotheses would be reconsolidation impairment by cortisol and enhancement by yohimbine. Here it is relevant to point out that - only when the reader gets to the Methods section - there is mention of a paper published by this group in 2024. In this publication, the authors used the same study design but administered a stress manipulation after Day 2 cued recall, instead of a pharmacological one. They did not find a difference in associative hit rate between stress and control groups, but - similar to the current manuscript - reported that post-retrieval stress disrupts subsequent remembering (Day 3 performance) depending on neural memory reinstatement during reactivation (specifically driven by the hippocampus and its correlation with neocortical areas).

      Instead of using these results, and other human studies, to motivate the current work, reference is made to a recent animal study: Line 169 "Building on recent findings in rodents (Khalaf et al. 2018), we hypothesized that the effects of post-retrieval noradrenergic and glucocorticoid activation would critically depend on the reinstatement of the neural event representation during retrieval". It is difficult to follow that a rodent study using contextual fear conditioning and examining single neuron activity to remote fear recall and extinction would be relevant enough to motivate a hypothesis for a human psychopharmacological study on emotionally neutral paired associates.

      Minor comments<br /> - Related to Major issue 2. In the introduction, it would be helpful to be specific about the type of memory being probed in the different studies referenced (episodic vs conditioning). For the former, please make it clear whether stimuli to be remembered were emotional or neutral, and for which stimulus class drug effects were observed. This is particularly important given that in the first paragraph you describe memory reactivation in the context of traumatic memories via mention of PTSD. It would also be helpful to know to which species you refer. For example, in line 115, "timing of drug administration..." a rodent and a human study are cited.

      This weakness was addressed in one revision round, resulting in an excellent introduction, highlighting the importance of studying post-retrieval effects for memory researchers and healthcare workers.

    2. Reviewer #2 (Public review):

      Summary:

      The authors aimed to investigate how noradrenergic and glucocorticoid activity after retrieval influence subsequent memory recall with a 24-hour interval, by using a controlled three-day fMRI study involving pharmacological manipulation. They found that noradrenergic activity after retrieval selectively impairs subsequent memory recall, depending on hippocampal and cortical reactivation during retrieval.

      Overall, there are several significant strengths for this well-written manuscript.

    1. Reviewer #1 (Public review):

      Summary:

      Jin, Briggs and colleagues use light sheet imaging to reconstruct the islet three-dimensional Ca2+ network. The authors find that early/late responding (leader) cells are dynamic over time, and located at the islet periphery. By contrast, highly connected or hub cells are stable, and located toward the islet center. Suggesting that the two subpopulations are differentially regulated by fuel input, glucokinase activation only influences leader cell phenotype, whereas hubs remain stable.

      Strengths:

      The studies are novel in providing the first three-dimensional snapshot of the beta cell functional network, as well as determining the localization of some of the different subpopulations identified to date. The studies also provide some consensus as to the origin, stability and role of such subpopulations in islet function.

      Weaknesses:

      Experiments with metabolic enzyme activators do not take into account the influence of cell viability on the observed Ca2+ network data. Limitations of the imaging approach used need to be recognised and evaluated/discussed.

      Comments on revisions:

      The authors have addressed the majority of the points raised.

    2. Reviewer #2 (Public review):

      The manuscript by Erli Jin and Jennifer Briggs et al. utilizes light sheet microscopy to image islet beta cell calcium oscillations in 3D and determine where beta cell populations are located that begin and coordinate glucose-stimulated calcium oscillations. The light sheet technique allowed clear 3D mapping of beta cell calcium responses to glucose, glucokinase activation, and pyruvate kinase activation. The manuscript finds that synchronized beta-cells are found at the islet center, that leader beta cells showing the first calcium responses are located on the islet periphery, that glucokinase activation helped maintain beta cells that lead calcium responses, and that pyruvate kinase activation primarily increases islet calcium oscillation frequency. The study is well-designed, contains a significant amount of high quality data, and the conclusions are largely supported by the results.

      Comments on revisions:

      The manuscript by Erli Jin et al. has been improved with the revisions, which have addressed my previous concerns. The manuscript significantly improves the mechanistic underpinnings of islet calcium oscillations and resulting pulsatile insulin secretion.

    3. Reviewer #3 (Public review):

      Summary:

      Jin, Briggs et al. made use of light-sheet 3D imaging and data analysis to assess the collective network activity in isolated mouse islets. The major advantage of using whole islet imaging, despite compromising on a speed of acquisition, is that it provides a complete description of the network, while 2D networks are only an approximation of the islet network. In static-incubation conditions, excluding the effects of perfusion, they assessed two subpopulations of beta cells and their spatial consistency and metabolic dependence.

      Strengths:

      The authors confirmed that coordinated Ca2+ oscillations are important for glycemic control. In addition, they definitively disproved the role of individual privileged cells, which were suggested to lead or coordinate Ca²⁺ oscillations. They provided evidence for differential regional stability, confirming the previously described stochastic nature of the beta cells that act as strongly connected hubs as well as beta cells in initiating regions (doi.org/10.1103/PhysRevLett.127.168101). This has not been a surprise to the reviewer.

      The fact that islet cores contain beta cells that are more active and more coordinated has also been readily observed in high-frequency 2D recordings (e.g. DOI: 10.2337/db22-0952), suggesting that the high-speed capture of fast activity can partially compensate for incomplete topological information.

      They also found an increased metabolic sensitivity of mantle regions of an islet with subpopulation of beta cells with a high probability of leading the islet activity and which can be entrained by fuel input. They discuss a potential role of alpha/delta cell interaction, however relative lack of beta cells in the islet border region could also be a factor contributing to less connectivity and higher excitability.

      The Methods section contains a useful series of direct instructions on how to approach fast 3D imaging with currently available hardware and software.

      The Discussion is clear and includes most of the issues regarding the interpretation of the presented results.

      Taken together it is a strong technical paper to demonstrate the stochasticity regarding the functions subpopulations of beta cells in the islets may have and how less well-resolved approaches (both missing spatial resolution as well as missing temporal resolution) led us to jump to unjustified conclusions regarding the fixed roles of individual beta cells within an islet.

      Weaknesses:

      There are a few relevant issues that need to be addressed.

      (1) The study is not internally consistent regarding the Results section. In the text the authors discuss changes in membrane potential (not been measured in this study), while in the figures they exclusively describe Ca2+ oscillations (which were measured). Examples are on lines 149, 150, 153, 154, 263... It is recommended that the silent and active phase in the Results section describe processes actually measured in this study as shown 6A.

      (2) There are in fact no radially oriented networks in the core of an islet (l. 130, Fig. 4) apart from the fact that every hub has somewhat radially oriented edges. For radiality to have some general meaning, the normalized distance from the geometric center would need to be lower than 0.4. The networks are centrally located, which does not change the major conclusions of the study.

      (3) The study would profit from acknowledging that Ca2+ influx is not a sole mechanism to drive insulin secretion and that KATP channels are not the sole target sensitive to changes in the cytosolic (global or local) ADP and ATP concentration or that there is an absolute concentration-dependence of these ligands on KATP channels. The relatively small conductance changes that have been found associated to active and silent phases (closing and opening of the KATP channels as interpreted by the authors, respectively, doi: 10.1152/ajpendo.00046.2013) and should be due to metabolic factors, could be also associated to desensitization of KATP channels to ATP due to the increase in cytosolic Ca2+ changes after intracellular Ca2+ flux (DOI: 10.1210/endo.143.2.8625) as they have been found to operate also at time scales, significantly faster (DOI: 10.2337/db22-0952) than reported before (refs. 21,22). Metabolic changes influence intracellular Ca2+ flux as well.

      (4) There is no explanation for why KL divergence is so different between the pre-test regional consistency of the islets used to test the vehicle compared to those where GKa and PKa have been tested.

    1. Reviewer #1 (Public review):

      SARS-CoV-2 encodes a macrodomain (Mac1) within the nsp3 protein that removes ADP-ribose groups from proteins. However, its role during infection is not well understood. Evidence suggests that Mac1 antagonizes the host interferon response by counteracting the wave of ADP ribosylation that occurs during infection. Indeed, several PARPs are interferon-stimulated genes. While multiple targets have been proposed, the mechanistic links between ADP ribosylation and a robust antiviral response remain unclear.

      Genetic inactivation of Mac1 abrogates viral replication in vivo, suggesting that small-molecule inhibitors of Mac1 could be developed into antivirals to treat COVID-19 and other emerging coronaviruses. The authors report a potent and selective small molecule inhibitor targeting Mac1 (AVI-4206) that demonstrates efficacy in human airway organoids and animal models of SARS-CoV-2 infection. While these results are compelling and provide proof of concept for the therapeutic targeting of Mac1, I am particularly intrigued by the potential of this compound as a probe to elucidate the mechanistic connections between infection-induced ADP ribosylation and the host antiviral response.

      The precise function of Mac1 remains unclear. Given its presence in multiple viruses, it likely acts on a fundamental host immune pathway(s). AVI-4206, while promising as a lead compound for the development of antivirals targeting coronaviruses, could also be a valuable tool for uncovering the function of the Mac1 domain. This may lead to fundamental insights into the host immune response to viral infection.

    2. Reviewer #2 (Public review):

      Summary:

      The authors describe the development of a novel inhibitor (AVI-4206) for the first macrodomains of the nsp3 protein of SARS-CoV-2 (Mac1). This involves both medical chemical synthesis, structural work as well as biochemical characterisation. Subsequently, the authors present their findings of the efficacy of the inhibitor both on cell culture, as well as animal models of SARS-CoV-2 infection. They find that despite high affinity for Mac1 and the known replicatory defects of catalytically inactive Mac1 only moderate beneficial effects can be observed in their chosen models.

      Strengths:

      The authors employ a variety of different assay to study the affinity, selectivity and potency of the novel inhibitor and thus the in vitro data are very compelling.<br /> Similarly, the authors use several cell culture and in vivo models to strengthen their findings.

      Weaknesses:

      (a) The selection of Targ1 and MacroD2 as off-target human macrodomains is poor as several studies have shown that the first macrodomains of PARP9 and PARP14 are much closer related to coronaviral macrodomains and both macrodomains are implicated in antiviral defence and immunity.

      (b) The authors utilize only replication efficiency and general infection markers as read out for their Mac1 inhibitor. It would be good if they could show impact on the ADP-ribosylation of a known Mac1 target such as PARP14.

    3. Reviewer #3 (Public review):

      Summary:

      The authors were trying to validate SARS-CoV-2 Mac1 as a drug discovery target and by extension other viral macrodomains.

      Strengths:

      The medicinal chemistry and structure based optimization is exemplary. Macrodomains and ADPribosyl hydrolases have a reputation for being undruggable, yet the authors managed to optimize hits from a fragment screen using structure based approaches and fragment linking to make a 20nM inhibitor as a tool compound to validate the target.<br /> In addition, the in vivo work is also a strength. The ability to reduce the viral count at a rate comparable to nirmatrelvir is impressive. Tracking the cytokine expression levels also supports much of the genetic data and mechanism of action for macrodomains.

      Weaknesses:

      The main compound AVI-4206, while being very potent and selective is not appreciably orally bioavailable. The fact that they have to use high doses of the compound IP to see in vivo effects may lead to questions regarding off target effects.

      The cellular models are not as predictive of antiviral activity as one would expect. However, the authors had enough chutzpah to test the compound in vivo knowing that cellular models might not be an accurate representation of a living system with a fully functional immune system all of which is most likely needed in an antiviral response to test the importance of Mac1 as a target.

    1. Reviewer #1 (Public review):

      Summary:

      In this paper, the authors develop a biologically plausible recurrent neural network model to explain how the hippocampus generates and uses barcode-like activity to support episodic memory. They address key questions raised by recent experimental findings: how barcodes are generated, how they interact with memory content (such as place and seed-related activity), and how the hippocampus balances memory specificity with flexible recall. The authors demonstrate that chaotic dynamics in a recurrent neural network can produce barcodes that reduce memory interference, complement place tuning, and enable context-dependent memory retrieval, while aligning their model with observed hippocampal activity during caching and retrieval in chickadees.

      Strengths:

      (1) The manuscript is well-written and structured.<br /> (2) The paper provides a detailed and biologically plausible mechanism for generating and utilizing barcode activity through chaotic dynamics in a recurrent neural network. This mechanism effectively explains how barcodes reduce memory interference, complement place tuning, and enable flexible, context-dependent recall.<br /> (3) The authors successfully reproduce key experimental findings on hippocampal barcode activity from chickadee studies, including the distinct correlations observed during caching, retrieval, and visits.<br /> (4) Overall, the study addresses a somewhat puzzling question about how memory indices and content signals coexist and interact in the same hippocampal population. By proposing a unified model, it provides significant conceptual clarity.

      Weaknesses:

      The recurrent neural network model incorporates assumptions and mechanisms, such as the modulation of recurrent input strength, whose biological underpinnings remain unclear. The authors acknowledge some of these limitations thoughtfully, offering plausible mechanisms and discussing their implications in depth.

      One thread of questions that authors may want to further explore is related to the chaotic nature of activity that generates barcodes when recurrence is strong. Chaos inherently implies sensitivity to initial conditions and noise, which raises questions about its reliability as a mechanism for producing robust and repeatable barcode signals. How sensitive are the results to noise in both the dynamics and the input signals? Does this sensitivity affect the stability of the generated barcodes and place fields, potentially disrupting their functional roles? Moreover, does the implemented plasticity mitigate some of this chaos, or might it amplify it under certain conditions? Clarifying these aspects could strengthen the argument for the robustness of the proposed mechanism.

      It may also be worth exploring the robustness of the results to certain modeling assumptions. For instance, the choice to run the network for a fixed amount of time and then use the activity at the end for plasticity could be relaxed.

    2. Reviewer #2 (Public review):

      Summary:

      Striking experimental results by Chettih et al 2024 have identified high-dimensional, sparse patterns of activity in the chickadee hippocampus when birds store or retrieve food at a given site. These barcode-like patterns were interpreted as "indexes" allowing the birds to retrieve from memory the locations of stored food.<br /> The present manuscript proposes a recurrent network model that generates such barcode activity and uses it to form attractor-like memories that bind information about location and food. The manuscript then examines the computational role of barcode activity in the model by simulating two behavioral tasks, and by comparing the model with an alternate model in which barcode activity is ablated.

      Strengths of the study:

      - Proposes a potential neural implementation for the indexing theory of episodic memory<br /> - Provides a mechanistic model of striking experimental findings: barcode-like, sparse patterns of activity when birds store a grain at a specific location<br /> - A particularly interesting aspect of the model is that it proposes a mechanism for binding discrete events to a continuous spatial map, and demonstrates the computational advantages of this mechanism

      Weaknesses:

      - The relation between the model and experimentally recorded activity needs some clarification<br /> - The relation with indexing theory could be made more clear<br /> - The importance of different modeling ingredients and dynamical mechanisms could be made more clear<br /> - The paper would be strengthened by focusing on the most essential aspects

    1. Reviewer #1 (Public review):

      (1a) Summary:

      The author studied metabolic networks for central metabolism, focusing on how system trajectories returned to their steady state. To quantify the response, systematic perturbation was performed in simulation and the maximal destabilization away from steady state (compared with initial perturbation distance) was characterized. The author analyzed the perturbation response and found that sparse network and networks with more cofactors are more "stable", in the sense that the perturbed trajectories have smaller deviation along the path back to the steady state.

      (1b) Strengths and major contributions:

      The author compared three metabolic models and performed systematic perturbation analysis in simulation. This is the first work characterized how perturbed trajectories deviate from equilibrium in large biochemical systems and illustrated interesting findings about the difference between sparse biological systems and randomly simulated reaction networks.

      (1c) Discussion and impact for the field:

      Metabolic perturbation is an important topic in cell biology and has important clinical implication in pharmacodynamics. The computational analysis in this study provides an initiative for future quantitative analysis on metabolism and homeostasis.

      Comments on revised version:

      The revised version of this manuscript made some clarifications, while I think the analysis of response coefficients is still numerical and model-specific, being unclear under dynamical systems of views.

    2. Reviewer #2 (Public review):

      The authors have conducted a valuable comparative analysis of perturbation responses in three nonlinear kinetic models of E. coli central carbon metabolism found in the literature. They aimed to uncover commonalities and emergent properties in the perturbation responses of bacterial metabolism. They discovered that perturbations in the initial concentrations of specific metabolites, such as adenylate cofactors and pyruvate, significantly affect the maximal deviation of the responses from steady-state values. Furthermore, they explored whether the network connectivity (sparse versus dense connections) influences these perturbation responses. The manuscript is reasonably well written.

      Comments on revised version:

      The authors have addressed my concerns to a large extent. However, a few minor issues remain, as listed below:

      (1) The authors identified key metabolites affecting responses to perturbations in two ways: (i) by fixing a metabolite's value and (ii) by performing a sensitivity analysis. It would be helpful for the modeling community to understand better the differences and similarities in the obtained results. Do both methods identify substrate-level regulators? Is freezing a metabolite's dynamics dramatically changing the metabolic response (and if yes, which ones are so different in the two cases)? Does the scope of the network affect these differences and similarities?

      (2) Regarding the issues the authors encountered when performing the sensitivity analysis, they can be approached in two ways. First, the authors can check the methods for computing conserved moieties nicely explained by Sauro's group (doi:10.1093/bioinformatics/bti800) and compute them for large-scale networks (but beware of metabolites that belong to several conserved pools). Otherwise, the conserved pools of metabolites can be considered as variables in the sensitivity analysis-grouping multiple parameters is a common approach in sensitivity analysis.

    1. Joint Public Review:

      Automatically identifying single cell types in heterogeneous mixed cell populations hold great promise to characterize mixed cell populations and to discover new rules of spatial organization and cell-cell communication. Although the current manuscript focuses on the application of quality control of iPSC cultures, the same approach can be extended to a wealth of other applications including in depth study of the spatial context. The simple and high-content assay democratizes use and enables adoption by other labs.

      The authors also propose a new nucleocentric phenotyping pipeline, where a convolutional neural network is trained on the nucleus and some margins around it. This nucleocentric approach improves classification performance at high densities because nuclear segmentation is less prone to errors in dense cultures.

      The manuscript is supported by comprehensive experimental and computational validations that raises the bar beyond the current state of the art in the field of high-content phenotyping and makes this manuscript especially compelling. These include (i) Explicitly assessing replication biases (batch effects); (ii) Direct comparison of feature-based (a la cell profiling) versus deep-learning-based classification (which is not trivial/obvious for the application of cell profiling); (iii) Systematic assessment of the contribution of each fluorescent channel; (iv) Evaluation of cell-density dependency; (v) explicit examination of mistakes in classification; (vi) Evaluating the performance of different spatial contexts around the cell / nucleus; (vii) generalization of models trained on cultures containing a single cell type (mono-cultures) to mixed co-cultures; (viii) application to multiple classification tasks.

    1. Reviewer #1 (Public review):

      Summary:

      The authors of this study set out to find RNA binding proteins in the CNS in cell-type specific sequencing data and discover that the cardiomyopathy-associated protein RBM20 is selectively expressed in olfactory bulb glutamatergic neurons and PV+ GABAergic neurons. They make an HA-tagged RBM20 allele to perform CLIP-seq to identify RBM20 binding sites and find direct targets of RBM20 in olfactory bulb glutmatergic neurons. In these neurons, RBM20 binds intronic regions. RBM20 has previously been implicated in splicing, but when they selectively knockout RBM20 in glutamatergic neurons they do not see changes in splicing, but they do see changes in RNA abundance, especially of long genes with many introns, which are enriched for synapse-associated functions. These data show that RBM20 has important functions in gene regulation in neurons, which was previously unknown, and they suggest it acts through a mechanism distinct from what has been studied before in cardiomyocytes.

      Strengths:

      The study finds expression of the cardiomyopathy-associated RNA binding protein RBM20 in specific neurons in the brain, opening new windows into its potential functions there.

      The study uses CLIP-seq to identify RBM20 binding RNAs in olfactory bulb neurons.

      Conditional knockout of RBM20 in glutamatergic or PV neurons allows the authors to detect mRNA expression that is regulated by RBM20.

      The data include substantial controls and quality control information to support the rigor of the findings.

      Weaknesses:

      The authors do not fully identify the mechanism by which RBM20 acts to regulate RNA expression in neurons, though they do provide data suggesting that neuronal RBM20 does not regulate alternate splicing in neurons, which is an interesting contrast to its proposed mechanism of function in cardiomyocytes. Discovery of the RNA regulatory functions of RBM20 in neurons is left as a question for future studies.

      The study does not identify functional consequences of the RNA changes in the conditional knockout cells, so this is also a question for the future.

    2. Reviewer #2 (Public review):

      Summary:

      The group around Prof. Scheiffele has made seminal discoveries reg. alternative splicing that is reflected by a current ERC advanced grant and landmark papers in eLife (2015), Science (2016), and Nature Neuroscience (2019). Recently, the group investigated proteins that contain an RRM motif in the mouse cortex. One of them, termed RBM20, was originally thought to be muscle-specific and involved in alternative splicing in cardiomyocytes. However, upon close inspection, RBP20 is expressed in a particular set of interneurons (PV positive cells of the somatosensory cortex) in the cortex as well as in mitral cells of the olfactory bulb (OB). Importantly, they used CLIP to identify targets in the OB and heart. Next and quite importantly, they generated a knock-in mouse line with a His-biotin acceptor peptide and a HA epitope to perform specific biochemistry. Not surprisingly, this allowed them to specifically identify transcripts with long introns, however, most of the intronic binding sites were very distant to the splice sites. Closer GO term inspection revealed that RBM20 specifically regulates synapse-related transcripts. In order to get in vivo insight into its function in the brain, the authors generated both global as well as conditional KO mice. Surprisingly, there were no significant differences in in RBM20 ΔPV interneurons, however, 409 transcripts were deregulated in in OB glutamatergic neurons. Here, CLIP sites were mostly found to be very distant from differentially expressed exons. Furthermore, loss-of-function RBM20 primarily yields loss of transcripts, whereas upregulation appears to be indirect. Together, these results strongly suggest a role of RBM20 in the inclusion of cryptic exons thereby promoting target degradation.

      Strengths:

      The quality of the data and the figures is high, impressive and convincing. The reported results strongly suggest a role of RBM20 in the inclusion of cryptic exons thereby promoting target degradation.

      Weaknesses:

      I would not use the term weakness here.<br /> The description of the results is sometimes too dense and technical. As eLife does not have a size limit, there is no reason for the results section to be less than three pages. Especially the last paragraph of the results part (p4) does not do justice to the high importance of Fig. 5, which I consider of high importance and originality. Here are a few suggestions from a person that is not working on splicing, to improve the text part of this important manuscript.

      (1) Introduction: too short, include a paragraph on splicing and cryptic exons<br /> (2) Results:<br /> - shortly describe the phenotypes of the mice mentioned<br /> - expand the section on Fig. 5 and cryptic exons especially<br /> (3) Discussion: too short, expand on the possible new role of RBM20 and target degradation, possibly by adding a scheme?

    3. Reviewer #3 (Public review):

      Summary:

      The authors identified RBM20 expression in neural tissues using cell type-specific transcriptomic analysis. This discovery was further validated through in vitro and in vivo approaches, including RNA fluorescent in situ hybridization (FISH), open-source datasets, immunostaining, western blotting, and gene-edited RBM20 knockout (KO) mice. CLIP-seq and RiboTRAP data demonstrated that RBM20 regulates common targets in both neural and cardiac tissues, while also modulating tissue-specific targets. Furthermore, the study revealed that neuronal RBM20 governs long pre-mRNAs encoding synaptic proteins.

      Strengths:

      • Utilization of a large dataset combined with experimental evidence to identify and validate RBM20 expression in neural tissues.<br /> • Global and tissue-specific RBM20 KO mouse models provide robust support for RBM20 localization and expression.<br /> • Employing heart tissue as a control highlights the unique findings in neural tissues.

      Weaknesses:

      • Lack of physiological functional studies to explore RBM20's role in neural tissues.<br /> • Data quality requires improvement for stronger conclusions.<br /> • Western blot sample size should be increased for enhanced reliability.

    1. Joint Public Reviews:

      Summary:

      The authors examine the eigenvalue spectrum of the covariance matrix of neural recordings in the whole-brain larval zebrafish during hunting and spontaneous behavior. They find that the spectrum is approximately power law, and, more importantly, exhibits scale-invariance under random subsampling of neurons. This property is not exhibited by conventional models of covariance spectra, motivating the introduction of the Euclidean random matrix model. The authors show that this tractable model captures the scale invariance they observe. They also examine the effects of subsampling based on anatomical location or functional relationships. Finally, they briefly discuss the benefit of neural codes which can be subsampled without significant loss of information.

      Strengths:

      With large-scale neural recordings becoming increasingly common, neuroscientists are faced with the question: how should we analyze them? To address that question, this paper proposes the Euclidean random matrix model, which embeds neurons randomly in an abstract feature space. This model is analytically tractable and matches two nontrivial features of the covariance matrix: approximate power law scaling, and invariance under subsampling. It thus introduces an important conceptual and technical advance for understanding large-scale simultaneously recorded neural activity.

      Weaknesses:

      The downside of using summary statistics is that they can be hard to interpret. Often the finding of scale invariance, and approximate power law behavior, points to something interesting. But here caution is in order: for instance, most critical phenomena in neural activity have been explained by relatively simple models that have very little to do with computation (Aitchison et al., PLoS CB 12:e1005110, 2016; Morrell et al., eLife 12, RP89337, 2014). Whether the same holds for the properties found here remains an open question.

    1. Reviewer #1 (Public review):

      This work regards the role of Aurora Kinase A (AurA) in trained immunity. The authors claim that AurA is essential to the induction of trained immunity. The paper starts with a series of experiments showing the effects of suppressing AurA on beta-glucan-trained immunity. This is followed by an account of how AurA inhibition changes the epigenetic and metabolic reprogramming that are characteristic of trained immunity. The authors then zoom in on specific metabolic and epigenetic processes (regulation of S-adenocylmethionine metabolism & histone methylation). Finally, an inhibitor of AurA is used to reduce beta-glucan's anti-tumour effects in a subcutaneous MC-38 model.

      Strengths:

      With the exception of my confusion around the methods used for relative gene expression measurements, the experimental methods are generally well-described. I appreciate the authors' broad approach to studying different key aspects of trained immunity (from comprehensive transcriptome/chromatin accessibility measurements to detailed mechanistic experiments). Approaching the hypothesis from many different angles inspires confidence in the results (although not completely - see weaknesses section). Furthermore, the large drug-screening panel is a valuable tool as these drugs are readily available for translational drug-repurposing research.

      Weaknesses

      (1) The manuscript contains factual inaccuracies such as:<br /> (a) Intro: the claim that trained cells display a shift from OXPHOS to glycolysis based on the paper by Cheng et al. in 2014; this was later shown to be dependent on the dose of stimulation and actually both glycolysis and OXPHOS are generally upregulated in trained cells (pmid 32320649)<br /> (b) Discussion: Trained immunity was first described as such in 2011, not decades ago.

      (2) The authors approach their hypothesis from different angles, which inspires a degree of confidence in the results. However, the statistical methods and reporting are underwhelming.<br /> (a) Graphs depict mean +/- SEM, whereas mean +/- SD is almost always more informative.<br /> (b) The use of 1-tailed tests is dubious in this scenario. Furthermore, in many experiments/figures the case could be made that the comparisons should be considered paired (the responses of cells from the same animal are inherently not independent due to their shared genetic background and, up until cell isolation, the same host factors like serum composition/microbiome/systemic inflammation etc).<br /> (c) It could be explained a little more clearly how multiple testing correction was done and why specific tests were chosen in each instance.<br /> (d) Most experiments are done with n = 3, some experiments are done with n = 5. This is not a lot. While I don't think power analyses should be required for simple in vitro experiments, I would be wary of drawing conclusions based on n = 3. It is also not indicated if the data points were acquired in independent experiments. ATAC-seq/RNA-seq was, judging by the figures, done on only 2 mice per group. No power calculations were done for the in vivo tumor model.<br /> (e) Furthermore, the data spread in many experiments (particularly BMDM experiments) is extremely small. I wonder if these are true biological replicates, meaning each point represents BMDMs from a different animal? (disclaimer: I work with human materials where the spread is of course always much larger than in animal experiments, so I might be misjudging this.).

      (3) Maybe the authors are reserving this for a separate paper, but it would be fantastic if the authors would report the outcomes of the entire drug screening instead of only a selected few. The field would benefit from this as it would save needless repeat experiments. The list of drugs contains several known inhibitors of training (e.g. mTOR inhibitors) so there must have been more 'hits' than the reported 8 Aurora inhibitors.

      (4) Relating to the drug screen and subsequent experiments: it is unclear to me in supplementary figure 1B which concentrations belong to secondary screens #1/#2 - the methods mention 5 µM for the primary screen and "0.2 and 1 µM" for secondary screens, is it in this order or in order of descending concentration?<br /> (a) It is unclear if the drug screen was performed with technical replicates or not - the supplementary figure 1B suggests no replicates and quite a large spread (in some cases lower concentration works better?)

      (5) The methods for (presumably) qPCR for measuring gene expression in Figure 1C are missing. Which reference gene was used and is this a suitably stable gene?

      (6) From the complete unedited blot image of Figure 1D it appears that the p-Aurora and total Aurora are not from the same gel (discordant number of lanes and positioning). This could be alright if there are no/only slight technical errors, but I find it misleading as it is presented as if the actin (loading control to account for aforementioned technical errors!) counts for the entire figure.

      (7) Figure 2: This figure highlights results that are by far not the strongest ones - I think the 'top hits' deserve some more glory. A small explanation on why the highlighted results were selected would have been fitting.

      (8) Figure 3 incl supplement: the carbon tracing experiments show more glucose-carbon going into TCA cycle (suggesting upregulated oxidative metabolism), but no mito stress test was performed on the seahorse.

      (9) Inconsistent use of an 'alisertib-alone' control in addition to 'medium', 'b-glucan', 'b-glucan + alisertib'. This control would be of great added value in many cases, in my opinion.

      (10) Figure 4A: looking at the unedited blot images, the blot for H3K36me3 appears in its original orientation, whereas other images appear horizontally mirrored. Please note, I don't think there is any malicious intent but this is quite sloppy and the authors should explain why/how this happened (are they different gels and the loading sequence was reversed?)

      (11) For many figures, for example prominently figure 5, the text describes 'beta-glucan training' whereas the figures actually depict acute stimulation with beta-glucan. While this is partially a semantic issue (technically, the stimulation is 'the training-phase' of the experiment), this could confuse the reader.

      (12) Figure 6: Cytokines, especially IL-6 and IL-1β, can be excreted by tumour cells and have pro-tumoral functions. This is not likely in the context of the other results in this case, but since there is flow cytometry data from the tumour material it would have been nice to see also intracellular cytokine staining to pinpoint the source of these cytokines.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript investigates the inhibition of Aurora A and its impact on β-glucan-induced trained immunity via the FOXO3/GNMT pathway. The study demonstrates that inhibition of Aurora A leads to overconsumption of SAM, which subsequently impairs the epigenetic reprogramming of H3K4me3 and H3K36me3, effectively abolishing the training effect.

      Strengths:

      The authors identify the role of Aurora A through small molecule screening and validation using a variety of molecular and biochemical approaches. Overall, the findings are interesting and shed light on the previously underexplored role of Aurora A in the induction of β-glucan-driven epigenetic change.

      Weaknesses:

      Given the established role of histone methylations, such as H3K4me3, in trained immunity, it is not surprising that depletion of the methyl donor SAM impairs the training response. Nonetheless, this study provides solid evidence supporting the role of Aurora A in β-glucan-induced trained immunity in murine macrophages. The part of in vivo trained immunity antitumor effect is insufficient to support the final claim as using Alisertib could inhibits Aurora A other cell types other than myeloid cells.

    1. Reviewer #1 (Public Review):

      HLA genes have long been known to harbor trans-species polymorphism (TSP). This manuscript aimed to use state-of-the-art analyses and updated genotyping data to rigorously test for the presence of TSP in HLA genes, quantify the timescales associated with HLA TSP, and relate HLA disease associations to evolutionary rates. To do this, the authors chose HLA alleles across great apes, old world monkeys, and new world monkeys on which to perform phylogenetic analyses, alongside non-parametric tests that compare patterns of synonymous diversity. Finally, HLA genetic associations with the disease were correlated with evolutionary rate.

      Strengths:

      The manuscript is well written and neatly organized, the figures are clear, and there are many supplementary analyses that will make this paper a great resource for MHC phylogenetics at allelic resolution.

      Deployment of modern methodology such as BEAST2 can also test if the hypothesis of TSP is supported while accounting for uncertainties in tree topology and evolutionary rates, necessary additions to analyses of the MHC.

      Weaknesses:

      Because TSP has already been convincingly demonstrated to occur in the MHC, the primary benefit of the current study is to ensure these previous observations are still supported by the wealth of genetic data that is now available and modern phylogenetic approaches. However, the benefit of using the robust BEAST2 method comes with the weakness of not using all available data. Focusing on single gene trees with only a small subset of alleles may bias results, and inclusion/exclusion criteria should be better defined.

      One major point that is somewhat overlooked is the presence of multiple copy numbers for the MHC genes through classic birth and death evolution. For example, MHC-B in new world monkeys is duplicated many times (up to 10; PMID: 23715823). This duplication is naturally accompanied by gene loss and pseudogene formation. All of these things muddy the waters considerably yet are not addressed here. A good example is MHC-A, where it has been very difficult to apportion orthologs, even amongst closely related species, due to alternative or incomplete duplication/loss across the species, or region configuration polymorphism (e.g. PMID: 26371256). An example is chimpanzee Patr-AL which shares similarities with human HLA-A*02 lineage, but is a separate locus, could this show up as TSP under the current analysis?

      Similarly, an alternative hypothesis for TSP is convergent gene conversion mutations: intergenic gene conversion has been repeatedly observed in HLA genes and the possibility of it occurring with the same two genes becomes more realistic over 45 million years. If the same two MHC genes recombined in humans and in an NWM, each on their own lineages, this would appear as TSP and would cause an overlap of pairwise synonymous divergence between human-human and human-NWM allele comparisons. This might be especially possible in MHC-DR and MHC-DQ genes presented in Figure 2 since both humans and NWM have multiple MHC-DRB and DQB genes (unless e.g. were genes besides HLA/MHC-DRB1 such as DRB3,4,5 included in the DRB phylogenies?). While BEAST2 may be a good way of robustly modeling and identifying TSP, and I understand these analyses cannot support many more sequences, the authors should consider adding an analysis that rules out gene conversion as an explanation for their results (especially the often repeated claim of 45 million year TSP). For example, can the authors use BLAST to ensure that the alleles that underlie 45 million years of TSP do not share close similarities to other HLA genes present in their respective human and NWM genomes? This seems like it could be fairly quickly performed for all genes, and even if it argued against TSP, it would be an interesting finding.

      Finally, the authors have limited themselves to a small subset of HLA/MHC alleles and do not provide sufficient information in the methods to understand how these were chosen nor sufficient discussion surrounding how inclusion/exclusion criteria could bias results. For example, the authors say the alleles were chosen at 2-digit (i.e. 1 field) resolution, but in the phylogenies of Fig. 2, I see variable numbers of alleles chosen for each 2-digit allele family - what metric was used to decide on these alleles?

      "We also collected associations between amino acids and TCR phenotypes". It is not clear either what was analyzed, or the results for this part of the analysis. This is a topic of much debate and none of the previous work has been discussed (PMID: 18304006, PMID: 29636542 as primers for this contentious subject)

      MHC class I also interact with NK cell receptors, including polymorphic KIR. Through their interactions during infection control and reproduction, the two complexes co-evolve across primates, contributing to the maintenance of MHC diversity. Interaction with KIR likely has a greater impact on HLA polymorphism than interactions with TCR, yet this is not factored into any of the models, or indeed mentioned in the text.

      One additional reason inclusion of the KIR binding is important relates to the point above about gene conversion, where it is established that gene conversion reproducibly swaps KIR-binding motifs among MHC class I alleles and genes. HLA-A*23, *24, and *25, *32, for example, are characterized by the acquisition of the 'Bw4' motif from HLA-B (PMID: 26284483), likely followed by positive natural selection. For exon 2 (which encodes the motif), these alleles turn up in a clade distinct from other human HLA-A (Fig 2-S1). What is the impact of the Bw4 motif on this phylogeny? Could this shuffling of motifs be interpreted as indirect TSP?

      The analysis that shows the most rapidly evolving sites occur in the peptide binding domain brings little new to the field. This has been established by the Hughes and Nei (cited) and Parham, Lawlor, etc of 1988 (e.g. PMID: 3375250), and replicated multiple times across human populations and many other species.<br /> Likewise, the disease association part. It is nice to have a summary of the known associations, but there are others out there and this one is far from thorough. Here, 50% of the information about infectious diseases appears to be taken from one reference, leaving out some major bodies of work; for example identifying specific peptide binding residues or peptides that associate with HIV (PMID: 22896606) or malaria control (PMID: 1280333). It is also missing some major concepts -such as the DRB1 'shared epitope' of peptide binding residues that predispose to Rheumatoid Arthritis and protects from Parkinson's disease (35 years of work from PMID: 2446635 through PMID: 30910980). The nasopharyngeal carcinoma and EBV story (e.g. PMID: 23209447). Another huge gap here is the pregnancy syndromes -associations of specific HLA C and NK cell receptor allotypes with preeclampsia for example. There are thousands of HLA associations not considered in this section, and to do them justice would likely require an enormous amount of work.<br /> Thus - neither the idea that HLA/MHC polymorphism is focused on peptide binding nor that this binding drives resistance to infection and associations with the disease are new concepts. The previous work in these areas is inadequately acknowledged.

      The paper is written in a very approachable language, which is nice to read and friendly to non-experts, but perhaps a little too much so in places. I find that the paper follows a very non-traditional format with respect to for example the results section, which seems a mixture of Introduction/methods/figure legends/discussion with no real solid result description.

    2. Reviewer #2 (Public Review):

      Fortier and Pritchard investigated the breadth and depth of trans-species polymorphism (TSP) within six primate classical (antigen-presenting) major histocompatibility complex (MHC) genes (three MHC class I and three MHC class II). The MHC is of wide interest because of its unique evolutionary patterns within the genomes of jawed vertebrates and for its extensive and consistent associations with disease phenotypes. The findings of the paper are:<br /> 1) Trans-species polymorphism (TSP) within major histocompatibility complex (MHC) genes, whereby some alleles are more similar between rather than within species, occurs between humans and non-human primates despite rapid allelic turnover.<br /> 2) Highly polymorphic/rapidly evolving sites are mostly involved in peptide binding.<br /> 3) The identified, rapidly-evolving sites are associated with disease.

      However, because these general findings have been previously demonstrated to varying extents by numerous other studies, these are not the strength of this paper. The strength and importance of this paper are in its utilization of a large evolutionary range of species and genes and its methodological approach and the extent of analyses undertaken to characterize the depth and extent of the TSP among primates. The major contribution of this paper is showing that TSP in the MHC is widespread among diverse primate taxa, and, depending on the particular MHC gene, TSP can be detected between humans and non-human primates as distantly diverged from the human lineage as new world monkeys of the Americas, ~45 million years ago. The paper, overall, made good methodological choices to account for the fascinating but challenging nature of the MHC, which includes its extensive allelic polymorphism (much of which is only characterized for the peptide-binding domain, encoded by exons 2 and 3), the difficulty in assessing phylogenetic relationships (particularly due to recombination and/or interallelic gene conversion), and differentiating convergence from conservation. There is no single analysis that can perfectly account for all these factors. This paper used two methods to test for TSP, Bayesian evolutionary analysis and synonymous nucleotide distances (dS), each with their respective strengths and limitations articulated. TSP, to varying degrees, is supported by both analyses. The paper further identifies rapidly evolving positions within the MHC molecules (predominantly located in the MHC peptide-binding domain), quantitatively shows that they are more likely to be in proximity to the bound peptide within the peptide binding domain, and shows, via a literature review of HLA fine-mapping studies, that those positions are associated with both infectious and autoimmune disease.

      The conclusions of the paper, therefore, are supported and appropriate with the most important caveats noted, but the paper would benefit from:<br /> 1) Addressing how copy number variation of MHC class I genes among primate species might have affected their analyses and results (only single representative genes of the class II MHC, which also exhibit copy number variation, were used for this study).<br /> 2) Considering the differences between class I and class II MHC roles in immune function and how those might relate to the observed patterns.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript discusses the role of phosphorylated ubiquitin (pUb) by PINK1 kinase in neurodegenerative diseases. It reveals that elevated levels of pUb are observed in aged human brains and those affected by Parkinson's disease (PD), as well as in Alzheimer's disease (AD), aging, and ischemic injury. The study shows that increased pUb impairs proteasomal degradation, leading to protein aggregation and neurodegeneration. The authors also demonstrate that PINK1 knockout can mitigate protein aggregation in aging and ischemic mouse brains, as well as in cells treated with a proteasome inhibitor. While this study provided some interesting data, several important points should be addressed before being further considered.

      Strengths:

      (1) Reveals a novel pathological mechanism of neurodegeneration mediated by pUb, providing a new perspective on understanding neurodegenerative diseases.<br /> (2) The study covers not only a single disease model but also various neurodegenerative diseases such as Alzheimer's disease, aging, and ischemic injury, enhancing the breadth and applicability of the research findings.

      Weaknesses:

      (1) PINK1 has been reported as a kinase capable of phosphorylating Ubiquitin, hence the expected outcome of increased p-Ub levels upon PINK1 overexpression. Figures 5E-F do not demonstrate a significant increase in Ub levels upon overexpression of PINK1 alone, whereas the evident increase in Ub expression upon overexpression of S65A is apparent. Therefore, the notion that increased Ub phosphorylation leads to protein aggregation in mouse hippocampal neurons is not yet convincingly supported.<br /> (2) The specificity of PINK1 and p-Ub antibodies requires further validation, as a series of literature indicate that the expression of the PINK1 protein is relatively low and difficult to detect under physiological conditions.<br /> (3) In Figure 6, relying solely on Western blot staining and golgi staining under high magnification is insufficient to prove the impact of PINK1 overexpression on neuronal integrity and cognitive function. The authors should supplement their findings with immunostaining results for MAP2 or NeuN to demonstrate whether neuronal cells are affected.<br /> (4) The authors should provide more detailed figure captions to facilitate the understanding of the results depicted in the figures.<br /> (5) While the study proposes that pUb promotes neurodegeneration by affecting proteasomal function, the specific molecular mechanisms and signaling pathways remain to be elucidated.

    2. Reviewer #2 (Public review):

      Summary:

      The manuscript makes the claim that pUb is elevated in a number of degenerative conditions including Alzheimer's Disease and cerebral ischaemia. Some of this is based on antibody staining which is poorly controlled and difficult to accept at this point. They confirm previous results that a cytosolic form of PINK1 accumulates following proteasome inhibition and that this can be active. Accumulation of pUb is proposed to interfere with proteostasis through inhibition of the proteasome. Much of the data relies on over-expression and there is little support for this reflecting physiological mechanisms.

      Weaknesses:

      The manuscript is poorly written. I appreciate this may be difficult in a non-native tongue, but felt that many of the problems are organisational. Less data of higher quality, better controls and incision would be preferable. Overall the referencing of past work is lamentable.<br /> Methods are also very poor and difficult to follow.

      Until technical issues are addressed I think this would represent an unreliable contribution to the field.

    3. Reviewer #3 (Public review):

      Summary:

      This study aims to explore the role of phosphorylated ubiquitin (pUb) in proteostasis and its impact on neurodegeneration. By employing a combination of molecular, cellular, and in vivo approaches, the authors demonstrate that elevated pUb levels contribute to both protective and neurotoxic effects, depending on the context. The research integrates proteasomal inhibition, mitochondrial dysfunction, and protein aggregation, providing new insights into the pathology of neurodegenerative diseases.

      Strengths:

      - The integration of proteomics, molecular biology, and animal models provides comprehensive insights.<br /> - The use of phospho-null and phospho-mimetic ubiquitin mutants elegantly demonstrates the dual effects of pUb.<br /> - Data on behavioral changes and cognitive impairments establish a clear link between cellular mechanisms and functional outcomes.

      Weaknesses:

      - While the study discusses the reciprocal relationship between proteasomal inhibition and pUb elevation, causality remains partially inferred.<br /> - The role of alternative pathways, such as autophagy, in compensating for proteasomal dysfunction is underexplored.<br /> - The immunofluorescence images in Figure 1A-D lack clarity and transparency. It is not clear whether the images represent human brain tissue, mouse brain tissue, or cultured cells. Additionally, the DAPI staining is not well-defined, making it difficult to discern cell nuclei or staging. To address these issues, lower-magnification images that clearly show the brain region should be provided, along with improved DAPI staining for better visualization. Furthermore, the Results section and Figure legends should explicitly indicate which brain region is being presented. These concerns raise questions about the reliability of the reported pUb levels in AD, which is a critical aspect of the study's findings.<br /> - Figure 4B should also indicate which brain region is being presented.

    1. Reviewer #1 (Public review):

      Previous experimental studies demonstrated that membrane association drives avidity for several potent broadly HIV-neutralizing antibodies and its loss dramatically reduces neutralization. In this study, the authors present a tour de force analysis of molecular dynamics (MD) simulations that demonstrate how several HIV-neutralizing membrane-proximal external region (MPER)-targeting antibodies associate with a model lipid bilayer.

      First, the authors compared how three MPER antibodies, 4E10, PGZL1, and 10E8, associated with model membranes, constructed with two lipid compositions similar to native viral membranes. They found that the related antibodies 4E10 and PGZL1 strongly associate with a phospholipid near heavy chain loop 1, consistent with prior crystallographic studies. They also discovered that a previously unappreciated framework region between loops 2-3 in the 4E10/PGZL1 heavy chain contributes to membrane association. Simulations of 10E8, an antibody from a different lineage, revealed several differences from published X-ray structures. Namely, a phosphatidylcholine binding site was offset and includes significant interaction with a nearby framework region. The revised manuscript demonstrates that these lipid interactions are robust to alterations in membrane composition and rigidity. However, it does not address the reverse-that phospholipids known experimentally not to associate with these antibodies (if any such lipids exist) also fail to interact in MD simulations.

      Next, the authors simulate another MPER-targeting antibody, LN01, with a model HIV membrane either containing or missing an MPER antigen fragment within. Of note, LN01 inserts more deeply into the membrane when the MPER antigen is present, supporting an energy balance between the lowest energy conformations of LN01, MPER, and the complex. These simulations recapitulate lipid binding interactions solved in published crystallographic studies but also lead to the discovery of a novel lipid binding site the authors term the "Loading Site", which could guide future experiments with this antibody.

      The authors next established course-grained (CG) MD simulations of the various antibodies with model membranes to study membrane embedding. These simulations facilitated greater sampling of different initial antibody geometries relative to membrane. These CG simulations , which cannot resolve atomistic interactions, are nonetheless compelling because negative controls (ab 13h11, BSA) that should not associate with membrane indeed sample significantly less membrane.

      Distinct geometries derived from CG simulations were then used to initialize all-atom MD simulations to study insertion in finer detail (e.g., phospholipid association), which largely recapitulate their earlier results, albeit with more unbiased sampling. The multiscale model of an initial CG study with broad geometric sampling, followed by all-atom MD, provides a generalized framework for such simulations.

      Finally, the authors construct velocity pulling simulations to estimate the energetics of antibody membrane embedding. Using the multiscale modelling workflow to achieve greater geometric sampling, they demonstrate that their model reliably predicts lower association energetics for known mutations in 4E10 that disrupt lipid binding. However, the model does have limitations: namely, its ability to predict more subtle changes along a lineage-intermediate mutations that reduce lipid binding are indistinguishable from mutations that completely ablate lipid association. Thus, while large/binary differences in lipid affinity might be predictable, the use of this method as a generative model are likely more limited.

      The MD simulations conducted throughout are rigorous and the analysis are extensive, creative, and biologically inspired. Overall, these analyses provide an important mechanistic characterization of how broadly neutralizing antibodies associate with lipids proximal to membrane-associated epitopes to drive neutralization.

    2. Reviewer #2 (Public review):

      In this study, Maillie et al. have carried out a set of multiscale molecular dynamics simulations to investigate the interactions between the viral membrane and four broadly neutralizing antibodies that target the membrane proximal exposed region (MPER) of the HIV-1 envelope trimer. The simulation recapitulated in several cases the binding sites of lipid head groups that were observed experimentally by X-ray crystallography, as well as some new binding sites. These binding sites were further validated using a structural bioinformatics approach. Finally, steered molecular dynamics was used to measure the binding strength between the membrane and variants of the 4E10 and PGZL1 antibodies.

      The use of multiscale MD simulations allows for a detailed exploration of the system at different time and length scales. The combination of MD simulations and structural bioinformatics provides a comprehensive approach to validate the identified binding sites. Finally, the steered MD simulations offer quantitative insights into the binding strength between the membrane and bnAbs.

      While the simulations and analyses provide qualitative insights into the binding interactions, they do not offer a quantitative assessment of energetics. The coarse-grained simulations exhibit artifacts and thus require careful analysis.

      This study contributes to a deeper understanding of the molecular mechanisms underlying bnAb recognition of the HIV-1 envelope. The insights gained from this work could inform the design of more potent and broadly neutralizing antibodies.

    1. Reviewer #1 (Public review):

      In this work, the authors examine the mechanism of action of MOTS-c and its impact on monocyte-derived macrophages. In the first part of the study, they show that MOTS-c acts as a host defense peptide with direct antibacterial activity. In the second part of the study, the authors aim to demonstrate that MOTS-c influences monocyte differentiation into macrophages via transcriptional regulation.

      Major strengths. Methods used to study the bactericidal activity of MOTS-c are appropriate and the results convincing.

      Major weaknesses. Methods used to study the impact on monocyte differentiation are inappropriate and the conclusions not fully supported by the data shown. A major issue is the use of the THP-1 cell line, a transformed monocytic line which does not mimic physiological monocyte biology. In particular, THP-1 differentiation is induced by PMA, which is a completely artificial system and conclusions from this approach cannot be generalized to monocyte differentiation. The authors would need to perform this series of experiments using freshly isolated monocytes, either from mouse or human. The read-out used for macrophage differentiation (adherence to plastic) is also not very robust, and the authors would need to analyze other parameters such as cell surface markers. It is also not clear whether MOTS-c could act in a cell-intrinsic fashion, as the authors have exposed cells to exogenous MOTS-c in all their experiments. The authors have also analyzed the transcriptomic changes induced by MOTS-c exposure in macrophages derived from young or old mice. While the results are potentially interesting, the differences observed seem independent from MOTS-c and mainly related to age, therefore the conclusions from this figure are not clear. The physiological relevance of this study is also unclear.

    1. Reviewer #1 (Public review):

      Summary:

      This paper examines patterns of diversity and divergence in two closely related sub-species of Zea mays. While the data are interesting and the authors have tried to exclude multiple confounding factors, many patterns cannot clearly be ascribed to one cause or another.

      Strengths:

      The paper presents interesting data from sets of sympatric populations of the two sub-species, maize and teosinte. This sampling offers unique insights into the diversity and divergence between the two, as well as the geographic structure of each. Many analyses and simulations to check analyses have been carried out.

      Weaknesses:

      The strength of conclusions that can be drawn from the analyses was low, partly because there are many strange patterns. The authors have done a good job of adding caveats, but clearly, these species do not meet many assumptions of our methods

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Shao et al. investigate the contribution of different cortical areas to working memory maintenance and control processes, an important topic involving different ideas about how the human brain represents and uses information when no longer available to sensory systems. In two fMRI experiments, they demonstrate that human frontal cortex (area sPCS) represents stimulus (orientation) information both during typical maintenance, but even more so when a categorical response demand is present. That is, when participants have to apply an added level of decision control to the WM stimulus, sPCS areas encode stimulus information more than conditions without this added demand. These effects are then expanded upon using multi-area neural network models, recapitulating the empirical gradient of memory vs control effects from visual to parietal and frontal cortices. Multiple experiments and analysis frameworks provide support for the authors' conclusions, and control experiments and analysis are provided to help interpret and isolate the frontal cortex effect of interest. While some alternative explanations/theories may explain the roles of frontal cortex in this study and experiments, important additional analyses have been added that help ensure a strong level of support for these results and interpretations.

      Strengths:

      - The authors use an interesting and clever task design across two fMRI experiments that is able to parse out contributions of WM maintenance alone along with categorical, rule-based decisions. Importantly, the second experiment only uses one fixed rule, providing both an internal replication of Experiment 1's effects and extending them to a different situation when rule switching effects are not involved across mini-blocks.

      - The reported analyses using both inverted encoding models (IEM) and decoders (SVM) demonstrate the stimulus reconstruction effects across different methods, which may be sensitive to different aspects of the relationship between patterns of brain activity and the experimental stimuli.

      - Linking the multivariate activity patterns to memory behavior is critical in thinking about the potential differential roles of cortical areas in sub-serving successful working memory. Figure 3's nicely shows a similar interaction to that of Figure 2 in the role of sPCS in the categorization vs. maintenance tasks. This is an important contribution to the field when we consider how a distributed set of interacting cortical areas supports successful working memory behavior.

      - The cross-decoding analysis in Figure 4 is a clever and interesting way to parse out how stimulus and rule/category information may be intertwined, which would have been one of the foremost potential questions or analyses requested by careful readers.

      - Additional ROI analyses in more anterior regions of the PFC help to contextualize the main effects of interest in the sPCS (and no effect in the inferior frontal areas, which are also retinotopic, adds specificity). And, more explanation for how motor areas or preparation are likely not involved strengthens the takeaways of the study (M1 control analysis).

      Weaknesses:

      - An explicit, quantitative link between the RNN and fMRI data is perhaps a last point that would integrate the RNN conclusion and analyses in line with the human imaging data.

      - As Rev 2 mentions, multiple types of information codes may be present, and the response letter Figure 5 using representational similarity (RSA) gets at this question. It would strengthen the work to, at minimum, include this analysis as an extended or supplemental figure.

      To sum up the results, a possible, brief schematic of each cortical area analyzed and its contribution to information coding in WM and successful subsequent behavior may help readers take away important conclusions of the cortical circuitry involved.

    2. Reviewer #2 (Public review):

      Summary:

      The author provide evidence that helps resolve long-standing questions about the differential involvement of frontal and posterior cortex in working memory. They show that whereas early visual cortex shows stronger decoding of memory content in a memorization task vs a more complex categorization task, frontal cortex shows stronger decoding during categorization tasks than memorization tasks. They find that task-optimized RNNs trained to reproduce the memorized orientations show some similarities in neural decoding to people. Together, this paper presents interesting evidence for differential responsibilities of brain areas in working memory.

      Strengths:

      This paper was overall strong. It had a well-designed task, best-practice decoding methods, and careful control analyses. The neural network modeling adds additional insight into the potential computational roles of different regions.

      Weaknesses:

      Few. While more could be perhaps done to understand the RNN-fMRI correspondence, the paper contributes a compelling set of empirical findings and interpretations that can inform future research.

    1. Reviewer #1 (Public review):

      Summary:

      This paper proposes a new model of perceptual habituation and tests it over two experiments with both infants and adults. The model combines a neural network for visual processing with a Bayesian rational model for attention (i.e., looking time) allocation. This Bayesian framework allows the authors to measure elegantly diverse factors that might drive attention, such as expected information gain, current information gain, and surprise. The model is then fitted to infant and adult participants' data over two experiments, which systematically vary the amount of habituation trials (Experiment 1) and the type of dishabituation stimulus (familiarity, pose, number, identity, and animacy). Results show that a model based on (expected) information gain performs better than a model based on surprise. Additionally, while novelty preference is observed when exposure to familiar stimuli is elevated, no familiarity preference is observed when exposure to familiar stimuli is low or intermediate, which is in contrast with past work.

      Strengths:

      There are three key strengths of this work:

      (1) It integrates a neural network model with a Bayesian rational learner, thus bridging the gap between two fields that have often been disconnected. This is rarely seen in the cognitive science field, but the advantages are very clear from this paper: It is possible to have computational models that not only process visual information, but also actively explore the environment based on overarching attentional processes.

      (2) By varying parametrically the amount of stimulus exposure and by testing the effects of multiple novel stimulus types, this work allowed the authors to put classical theories of habituation to the test on much finer scales than previous research has done.

      (3) The Bayesian model allows the authors to test what specific aspects are different in infants and adults, showing that infants display greater values for the noise parameter.

      Weaknesses:

      Although a familiarity preference is not found, it is possible that this is related to the nature of the stimuli and the amount of learning that they offer. While infants here are exposed to the same perceptual stimulus repeatedly, infants can also be familiarised to more complex stimuli or scenarios. Classical statistical learning studies for example expose infants to specific pseudo-words during habituation/familiarisation, and then test their preference for familiar vs novel streams of pseudo-words. The amount of learning progress in these probabilistic learning studies is greater than in perceptual studies, and familiarity preferences may thus be more likely to emerge there. For these reasons, I think it is important to frame this as a model of perceptual habituation. This would also fit well with the neural net that was used, which is processing visual stimuli rather than probabilistic structures. If statements in the discussion are limited to perceptual paradigms, they would make the arguments more compelling.

    2. Reviewer #2 (Public review):

      Summary:

      This paper extends a Bayesian perception/action model of habituation behavior (RANCH) to infant-looking behavior. The authors test the model predictions against data from several groups of infants and adults tested in habituation paradigms that vary the number of familiarisation stimuli and the nature of the test stimuli. Model sampling was taken as a proxy for looking times. The predictions of the model generally resemble the empirical data collected, though there are some potentially important differences.

      Strengths:

      This study addresses an important question, given the fundamental nature of habituation to learning and memory. Previous explanations of infant habituation have typically not been in the form of formal models, making falsification difficult. This Bayesian model is relatively simple but also incorporates a CNN to which the actual stimulus image can be presented, which enables principled predictions about image similarity to be derived.

      The paper contains data from a relatively large number of adults and infants, allowing parameter differences across age to be probed.

      The data suggests that the noise prior parameter is higher in infants, suggesting one mechanism through which infant and adult habituation is different, though of course, this depends on whether there is sufficient empirical evidence that other explanations can be ruled out, which isn't clear in the manuscript currently.

      Weaknesses:

      There are no formal tests of the predictions of RANCH against other leading hypotheses or models of habituation. This makes it difficult to evaluate the degree to which RANCH provides an alternative account that makes distinct predictions from other accounts. I appreciate that because other theoretical descriptions haven't been instantiated in formal models this might be difficult, but some way of formalising them to enable comparison would be useful.

      The justification for using the RMSEA fitting approach could also be stronger - why is this the best way to compare the predictions of the formal model to the empirical data? Are there others? As always, the main issue with formal models is determining the degree to which they just match surface features of empirical data versus providing mechanistic insights, so some discussion of the level of fit necessary for strong inference would be useful.

      The difference in model predictions for identity vs number relative to the empirical data seems important but isn't given sufficient weight in terms of evaluating whether the model is or is not providing a good explanation of infant behavior. What would falsification look like in this context?

      For the novel image similarity analysis, it is difficult to determine whether any differences are due to differences in the way the CNN encodes images vs in the habituation model itself - there are perhaps too many free parameters to pinpoint the nature of any disparities. Would there be another way to test the model without the CNN introducing additional unknowns?

      Related to that, the model contains lots of parts - the CNN, the EIG approach, and the parameters, all of which may or may not match how the infant's brain operates. EIG is systematically compared to two other algorithms, with KL working similarly - does this then imply we can't tell the difference between an explanation based on those two mechanisms? Are there situations in which they would make distinct predictions where they could be pulled apart? Also in this section, there doesn't appear to be any formal testing of the fits, so it is hard to determine whether this is a meaningful difference. However, other parts of the model don't seem to be systematically varied, so it isn't always clear what the precise question addressed in the manuscript is (e.g. is it about the algorithm controlling learning? or just that this model in general when fitted in a certain way resembles the empirical data?)

    1. Reviewer #1 (Public review):

      In the manuscript "Identification of neurodevelopmental organization of the cell populations of Juvenile Huntington's disease using dorso-ventral HD organoids and HD mouse embryos," the authors establish a fused dorso-ventral system that mimics cortex-striatum interactions within a single organoid and use this system to investigate neurodevelopmental impairments caused by HD. Specifically, they describe certain phenotypes in 60-day HD organoids and the brains of humanized mouse embryos, utilizing both wet-lab and single-cell sequencing techniques. The authors also develop dorsal/ventral and ventral/dorsal mosaic control/HD organoids, showing a capacity to rescue some HD phenotypes.

      The manuscript could be a valuable contribution to the field, however it has relevant drawbacks, the most significant being a lack of clarity regarding the replicates used for each genotype in the sequencing analyses. The lack of information on replicates raises the possibility that only a single replicate was analyzed for each organoid and brain sample. This approach may lead to concerns regarding the reproducibility of the findings, and it may be necessary for the authors to generate additional data to strengthen their conclusions. In addition, the analysis of the HD samples was conducted by pooling distinct cell populations from different brain regions (CTX, HIP, ChP for the dorsal brain, and STR, HYP, TH for the ventral brain). It is unclear why scRNA seq was used on pooled brain regions, which could obscure region-specific insights.

      Another issue pertains to their proposed outcome: "Finally, we found that TTR protein, a choroid plexus marker, is elevated in the adult HD mouse serum, indicating that TTR may be a promising marker for detecting HD". This statement appears to lack statistical support, which makes this set of data potentially misleading and inconclusive.

      The authors are encouraged to provide evidence of biological replicates, remove outcomes that lack statistical support, and address a series of points as detailed elsewhere.

    2. Reviewer #2 (Public review):

      The article titled "Identification of neurodevelopmental organization of the cell populations of juvenile Huntington's disease using dorso-ventral HD organoids and HD mouse embryos" analyses an in vitro human brain organoid model containig dorsal and ventral telencephalum structures derived from human iPSC from Huntington's disease patients or control subjects.

      The authors describe differences in the pattern of expression of genes related to proliferation and neuronal maturation, with a slower pattern of differentiation present in HD cells. Moreover, the authors described a higher differentiation capacity of HD cells to generate choroid plexus identity following dorsal telencephalon prime protocol differentiation when compared to control cells. Whereas the claims related to Choroid plexus identity are intriguing, most of the claims made through the manuscript are not sustained by quantitative data or consistent results in the different conditions analysed, or many experiments seem to be missing to reach final conclusions.

      In addition, the quality of the organoids used for experiments does not seem to have been assessed or satisfactorily presented in the figures of this paper. Many important details related to the experimental execution are missing in the current version of this manuscript.

    1. Reviewer #1 (Public review):

      Shin et al. conduct extensive electrophysiological and behavioral experiments to study the mechanisms of short-term synaptic plasticity at excitatory synapses in layer 2/3 of the rat medial prefrontal cortex. The authors interestingly find that short-term facilitation is driven by progressive overfilling of the readily releasable pool, and that this process is mediated by phospholipase C/diacylglycerol signaling and synaptotagmin-7 (Syt7). Specifically, knockdown of Syt7 not only abolishes the refilling rate of vesicles with high fusion probability, but it also impairs the acquisition of trace fear memory.

      Overall, the authors offer novel insight to the field of synaptic plasticity through well-designed experiments that incorporate a range of techniques.

    2. Reviewer #2 (Public review):

      Summary:

      Shin et al aim to identify in a very extensive piece of work a mechanism that contributes to dynamic regulation of synaptic output in the rat cortex at the second time scale. This mechanism is related to a new powerful model is well versed to test if the pool of SV ready for fusion is dynamically scaled to adjust supply demand aspects. The methods applied are state-of-the-art and both address quantitative aspects with high signal to noise. In addition, the authors examine both excitatory output onto glutamatergic and GABAergic neurons, which provides important information on how general the observed signals are in neural networks, The results are compellingly clear and show that pool regulation may be predominantly responsible. Their results suggests that a regulation of release probability, the alternative contender for regulation, is unlikely to be involved in the observed short term plasticity behavior (but see below). Besides providing a clear analysis pof the underlying physiology, they test two molecular contenders for the observed mechanism by showing that loss of Synaptotagmin7 function and the role of the Ca dependent phospholipase activity seems critical for the short term plasticity behavior. The authors go on to test the in vivo role of the mechanism by modulating Syt7 function and examining working memory tasks as well as overall changes in network activity using immediate early gene activity. Finally, they model their data, providing strong support for their interpretation of TS pool occupancy regulation.

      Strengths:

      This is a very thorough study, addressing the research question from many different angles and the experimental execution is superb. The impact of the work is high, as it applies recent models of short term plasticity behavior to in vivo circuits further providing insights how synapses provide dynamic control to enable working memory related behavior through nonpermanent changes in synaptic output.

      Weaknesses:

      While this work is carefully examined and the results are presented and discussed in a detailed manner, the reviewer is still not fully convinced that regulation of release provability is not a putative contributor to the observed behavior. No additional work is needed but in the moment I am not convinced that changes in release probability are not in play. One solution may be to extend the discussion of changes in rules probability as an alternative.

      Fig 3 I am confused about the interpretation of the Mean Variance analysis outcome. Since the data points follow the curve during induction of short term plasticity, aren't these suggesting that release probability and not the pool size increases? Related, to measure the absolute release probability and failure rate using the optogenetic stimulation technique is not trivial as the experimental paradigm bias the experiment to a given output strength, and therefore a change in release probability cannot be excluded.

      Fig4B interprets the phorbol ester stimulation to be the result of pool overfilling, however, phorbol ester stimulation has also been shown to increase release probability without changing the size of the readily releasable pool. The high frequency of stimulation may occlude an increased paired pulse depression in presence of OAG, which others have interpreted in mammalian synapses as an increase in release probability.

      The literature on Syt7 function is still quite controversial. An observation in the literature that loss of Syt7 function in the fly synapse leads to an increase of release probability. Thus the observed changes in short term plasticity characteristics in the Syt7 KD experiments may contain a release probability component. Can the authors really exclude this possibility? Figure 5 shows for the Syt7 KD group a very prominent depression of the EPSC/IPSC with the second stimulus, particularly for the short interpulse intervals, usually a strong sign of increased release probability, as lack of pool refilling can unlikely explain the strong drop in synaptic output.

    3. Reviewer #3 (Public review):

      Summary:

      The report by Shin, Lee, Kim, and Lee entitled "Progressive overfilling of readily releasable pool underlies short-term facilitation at recurrent excitatory synapses in layer 2/3 of the rat prefrontal cortex" describes electrophysiological experiments of short-term synaptic plasticity during repetitive presynaptic stimulation at synapses between layer 2/3 pyramidal neurons and nearby target neurons. Manipulations include pharmacological inhibition of PLC and actin polymerization, activation of DAG receptors, and shRNA knockdown of Syt7. The results are interpreted as support for the hypothesis that synaptic vesicle release sites are vacant most of the time at resting synapses (i.e., p_occ is low) and that facilitation (and augmentation) components of short-term enhancement are caused by an increase in occupancy, presumably because of acceleration of the transition from not-occupied to occupied. The report additionally describes behavioural experiments where trace fear conditioning is degraded by knocking down syt7 in the same synapses.

      Strengths:

      The strength of the study is in the new information about short-term plasticity at local synapses in layer 2/3, and the major disruption of a memory task after eliminating short-term enhancement at only 15% of excitatory synapses in a single layer of a small brain region. The local synapses in layer 2/3 were previously difficult to study, but the authors have overcome a number of challenges by combining channel rhodopsins with in vitro electroporation, which is an impressive technical advance.

      Weaknesses:

      The question of whether or not short-term enhancement causes an increase in p_occ (i.e., "readily releasable pool overfilling") is important because it cuts to the heart of the ongoing debate about how to model short term synaptic plasticity in general. However, my opinion is that, in their current form, the results do not constitute strong support for an increase in p_occ, even though this is presented as the main conclusion. Instead, there are at least two alternative explanations for the results that both seem more likely. Neither alternative is acknowledged in the present version of the report.

      The evidence presented to support overfilling is essentially two-fold. The first is strong paired pulse depression of synaptic strength when the interval between action potentials is 20 or 25 ms, but not when the interval is 50 ms. Subsequent stimuli at frequencies between 5 and 40 Hz then drive enhancement. The second is the observation that a slow component of recovery from depression after trains of action potentials is unveiled after eliminating enhancement by knocking down syt7. Of the two, the second is predicted by essentially all models where enhancement mechanisms operate independently of release site depletion - i.e., transient increases in p_occ, p_v, or even N - so isn't the sort of support that would distinguish the hypothesis from alternatives (Garcia-Perez and Wesseling, 2008, https://doi.org/10.1152/jn.01348.2007).

      Regarding the paired pulse depression: The authors ascribe this to depletion of a homogeneous population of release sites, all with similar p_v. However, the details fit better with the alternative hypothesis that the depression is instead caused by quickly reversing inactivation of Ca2+ channels near release sites, as proposed by Dobrunz and Stevens to explain a similar phenomenon at a different type of synapse (1997, PNAS,<br /> https://doi.org/10.1073/pnas.94.26.14843). The details that fit better with Ca2+ channel inactivation include the combination of the sigmoid time course of the recovery from depression (plotted backwards in Fig1G,I) and observations that EGTA (Fig2B) increases the paired-pulse depression seen after 25 ms intervals. That is, the authors ascribe the sigmoid recovery to a delay in the activation of the facilitation mechanism, but the increased paired pulse depression after loading EGTA indicates, instead, that the facilitation mechanism has already caused p_r to double within the first 25 ms (relative to the value if the facilitation mechanism was not active). Meanwhile, Ca2+ channel inactivation would be expected to cause a sigmoidal recovery of synaptic strength because of the sigmoidal relationship between Ca2+-influx and exocytosis (Dodge and Rahamimoff, 1967, https://doi.org/10.1113/jphysiol.1967.sp008367).

      The Ca2+-channel inactivation hypothesis could probably be ruled in or out with experiments analogous to the 1997 Dobrunz study, except after lowering extracellular Ca2+ to the point where synaptic transmission failures are frequent. However, a possible complication might be a large increase in facilitation in low Ca2+ (Fig2B of Stevens and Wesseling, 1999, https://doi.org/10.1016/s0896-6273(00)80685-6).

      On the other hand, even if the paired pulse depression is caused by depletion of release sites rather than Ca2+-channel inactivation, there does not seem to be any support for the critical assumption that all of the release sites have similar p_v. And indeed, there seems to be substantial emerging evidence from other studies for multiple types of release sites with 5 to 20-fold differences in p_v at a wide variety of synapse types (Maschi and Klyachko, eLife, 2020, https://doi.org/10.7554/elife.55210; Rodriguez Gotor et al, eLife, 2024, https://doi.org/10.7554/elife.88212 and refs. therein). If so, the paired pulse depression could be caused by depletion of release sites with high p_v, whereas the facilitation could occur at sites with much lower p_v that are still occupied. It might be possible to address this by eliminating assumptions about the distribution of p_v across release sites from the variance-mean analysis, but this seems difficult; simply showing how a few selected distributions wouldn't work - such as in standard multiple probability fluctuation analyses - wouldn't add much.

      In any case, the large increase - often 10-fold or more - in enhancement seen after lowering Ca2+ below 0.25 mM at a broad range of synapses and neuro-muscular junctions noted above is a potent reason to be cautious about the LS/TS model. There is morphological evidence that the transitions from a loose to tight docking state (LS to TS) occur, and even that the timing is accelerated by activity. However, 10-fold enhancement would imply that at least 90 % of vesicles start off in the LS state, and this has not been reported. In addition, my understanding is that the reverse transition (TS to LS) is thought to occur within 10s of ms of the action potential, which is 10-fold too fast to account for the reversal of facilitation seen at the same synapses (Kusick et al, 2020, https://doi.org/10.1038/s41593-020-00716-1).

      Individual points:

      (1) An additional problem with the overfilling hypothesis is that syt7 knockdown increases the estimate of p_occ extracted from the variance-mean analysis, which would imply a faster transition from unoccupied to occupied, and would consequently predict faster recovery from depression. However, recovery from depression seen in experiments was slower, not faster. Meanwhile, the apparent decrease in the estimate of N extracted from the mean-variance analysis is not anticipated by the authors' model, but fits well with alternatives where p_v varies extensively among release sites because release sites with low p_v would essentially be silent in the absence of facilitation.

      (2) Figure S4A: I like the TTX part of this control, but the 4-AP part needs a positive control to be meaningful (e.g., absence of TTX).

      (3) Line 251: At least some of the previous studies that concluded these drugs affect vesicle dynamics used logic that was based on some of the same assumptions that are problematic for the present study, so the reasoning is a bit circular.

      (4) Line 329 and Line 461: A similar problem with circularity for interpreting earlier syt7 studies.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors explore a novel mechanism linking aging to chromosome mis-segregation and aneuploidy in yeast cells. They reveal that, in old yeast mother cells, chromosome loss occurs through asymmetric partitioning of chromosomes to daughter cells, a process coupled with the inheritance of an old Spindle Pole Body. Remarkably, the authors identify that remodeling of the nuclear pore complex (NPC), specifically the displacement of its nuclear basket, triggers these asymmetric segregation events. This disruption also leads to the leakage of unspliced pre-mRNAs into the cytoplasm, highlighting a breakdown in RNA quality control. Through genetic manipulation, the study demonstrates that removing introns from key chromosome segregation genes is sufficient to prevent chromosome loss in aged cells. Moreover, promoting pre-mRNA leakage in young cells mimics the chromosome mis-segregation observed in old cells, providing further evidence for the critical role of nuclear envelope integrity and RNA processing in aging-related genome instability.

      Strengths:

      The findings presented are not only intriguing but also well-supported by robust experimental data, highlighting a previously unrecognized connection between nuclear envelope integrity, RNA processing, and genome stability in aging cells, deepening our understanding of the molecular basis of chromosome loss in aging.

      Weaknesses:

      Further analysis of yeast aging data from microfluidic experiments will provide important information about the dynamic features and prevalence of the key aging phenotypes, e.g. pre-mRNA leakage and chromosome loss, reported in this work. In addition, a discussion would be needed to clarify the relationship between "chromosome loss" in this study and "genomic missegregation" reported previously in yeast aging.

    2. Reviewer #2 (Public review):

      Summary:

      The authors make the interesting discovery of increased chromosome non-dysjunction in aging yeast mother cells. The phenotype is quite striking and well supported with solid experimental evidence. This is quite significant to a haploid cell (as used here) - loss of an essential chromosome leads to death soon thereafter. The authors then work to tie this phenotype to other age-associated phenotypes that have been previously characterized: accumulation of extrachromosomal rDNA circles that then correlate with compromised nuclear pore export functions, which correlates with "leaky" pores that permit unspliced mRNA messages to be inappropriately exported to the cytoplasm. They then infer that three intron containing mRNAs that encode portions in resolving sister chromatid separation during mitosis, are unspliced in this age-associated defect and thus lead to the non-dysjunction problem.

      Strengths: The discovery of age-associated chromosome non-dysjunction is an interesting discovery, and it is demonstrated in a convincing fashion with "classic" microscopy-based single cell fluorescent chromosome assays that are appropriate and seem robust. The correlation of this phenotype with other age-associated phenotypes - specifically extrachromosomal rDNA circles and nuclear pore dysfunction - is supported by in vivo genetic manipulations that have been well-characterized in the past.

      In addition, the application of the single cell mRNA splicing defect reporter showed very convincingly that general mRNA splicing is compromised in aged cells. Such a pleiotropic event certainly has big implications.

      Weaknesses:

      The biggest weakness is "connecting all the dots" of causality and linking the splicing defect to chromosome disjunction. I commend the authors for making a valiant effort in this regard, but there are many caveats to this interpretation. While the "triple intron" removal suppressed the non-dysjunction defect in aged cells, this could simply be a kinetic fix, where a slowdown in the relevant aspects of mitosis, could give the cell time to resolve the syntelic attachment of the chromatids. To this point, I note that the intronless version of GLC7, which affects the most dramatic suppression of the three genes, is reported by one of the authors to have a slow growth rate (Parenteau et al, 2008 - https://doi.org/10.1091/mbc.e07-12-1254).

      Lastly, the Herculean effort to perform FISH of the introns in the cytoplasm is quite literally at the statistical limit of this assay. The data were not as robust as the other assays employed through this study. The data show either "no" signal for the young cells or a signal of 0, 1,or 2 FISH foci in the aged cells. In a Poisson distribution, which this follows, it is improbable to distinguish between these differences.

    3. Reviewer #3 (Public review):

      Summary:

      Mirkovic et al explore the cause underlying development of aneuploidy during aging. This paper provides a compelling insight into the basis of chromosome missegregation in aged cells, tying this phenomenon to the established Nuclear Pore Complex architecture remodeling that occurs with aging across a large span of diverse organisms. The authors first establish that aged mother cells exhibit aberrant error correction during mitosis. As extrachromosomal rDNA circles (ERCs) are known to increase with age and lead to NPC dysfunction that can result in leakage of unspliced pre-mRNAs, Mirkovic et al search for intron-containing genes in yeast that may be underlying chromosome missegregation, identifying three genes in the aurora B-dependent error correction pathway: MCM21, NBL1, and GLC7. Interestingly, intron-less mutants in these genes suppress chromosome loss in aged cells, with a significant impact observed when all three introns were deleted (3x∆i). The 3x∆i mutant also suppresses the increased chromosome loss resulting from nuclear basket destabilization in a mlp1∆ mutant. The authors then directly test if aged cells do exhibit aberrant mRNA export, using RNA FISH to identify that old cells indeed leak intron-containing pre-mRNA into the cytoplasm, as well as a reporter assay to demonstrate translation of leaked pre-mRNA, and that this is suppressed in cells producing less ERCs. Mutants causing increased pre-mRNA leakage are sufficient to induce chromosome missegregation, which is suppressed by the 3x∆i.

      Strengths:

      The finding that deleting the introns of 3 genes in the Aurora B pathway can suppress age-related chromosome missegregation is highly compelling. Additionally, the rationale behind the various experiments in this paper is well-reasoned and clearly explained.

      Weaknesses:

      In some cases, controls for experiments were not presented or were depicted in other figures. High variability was seen in chromosome loss data, leading to large error bars. The text could have been more polished.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript uses state-of-the-art analysis technology to document the spatio-temporal dynamics of brain activity during the processing of threats. The authors offer convincing evidence that complex spatio-temporal aspects of brain dynamics are essential to describe brain operations during threat processing.

      Strengths:

      Rigorous complex analyses well suited to the data.

      Weaknesses:

      Lack of a simple take-home message about discovery of a new brain operation.

    2. Reviewer #2 (Public review):

      Summary:

      This paper by Misra and Pessoa uses switching linear dynamical systems (SLDS) to investigate the neural network dynamics underlying threat processing at varying levels of proximity. Using an existing dataset from a threat-of-shock paradigm in which threat proximity is manipulated in a continuous fashion, the authors first show that they can identify states that each has their own linear dynamical system and are consistently associated with distinct phases of the threat-of-shock task (e.g., "peri-shock", "not near", etc). They then show how activity maps associated with these states are in agreement with existing literature on neural mechanisms of threat processing, and how activity in underlying brain regions alters around state transitions. The central novelty of the paper lies in its analyses of how intrinsic and extrinsic factors contribute to within-state trajectories and between-state transitions. A final set of analyses shows how the findings generalize to another (related) threat paradigm.

      Strengths:

      The analyses for this study are conducted at a very high level of mathematical and theoretical sophistication. The paper is very well written and effectively communicates complex concepts from dynamical systems. I am enthusiastic about this paper, but I think the authors have not yet exploited the full potential of their analyses in making this work meaningful toward increasing our neuroscientific understanding of threat processing, as explained below.

      Weaknesses:

      (1) I appreciate the sophistication of the analyses applied and/or developed by the authors. These methods have many potential use cases for investigating the network dynamics underlying various cognitive and affective processes. However, I am somewhat disappointed by the level of inferences made by the authors based on these analyses at the level of systems neuroscience. As an illustration consider the following citations from the abstract: "The results revealed that threat processing benefits from being viewed in terms of dynamic multivariate patterns whose trajectories are a combination of intrinsic and extrinsic factors that jointly determine how the brain temporally evolves during dynamic threat" and "We propose that viewing threat processing through the lens of dynamical systems offers important avenues to uncover properties of the dynamics of threat that are not unveiled with standard experimental designs and analyses". I can agree to the claim that we may be able to better describe the intrinsic and extrinsic dynamics of threat processing using this method, but what is now the contribution that this makes toward understanding these processes?

      (2) How sure can we be that it is possible to separate extrinsically and intrinsically driven dynamics?

    1. Reviewer #1 (Public review):

      Summary:

      The topic of nanobody-based PET imaging is important and holds great potential for real-world applications since nanobodies have many advantages over full sized immunoglobulins and small molecules.

      Strengths:

      The submitted manuscript contains quite a bit of interesting data from a collaborative team of well-respected researchers. The authors are to be congratulated for presenting results that may not have turned out the way they had hoped, and doing so in a transparent fashion.

      Weaknesses:

      However, the manuscript could be considered to be a collection of exploratory findings rather than a complete and mature scientific exposition. Most of the sample sizes were 3 per group, which is fine for exploratory work, but insufficient to draw strong statistically robust conclusions for definitive results.

    2. Reviewer #2 (Public review):

      Summary:

      This is a strong and well-described study showing for the first time the use and publicly available resources to use a specific PET tracer to track proliferating transplanted cells in vivo, in a full murine immunecompetent environment.

      In this study the authors described a previously developed set of VHH-based PET tracers to track transplants (cancer cells, embryo's) in a murine immune-competent environment.

      Strengths:

      Unique set of PET tracer and mouse strain to track transplanted cells in vivo without genetic modification of the transplanted cells. This is a unique asset, and a first-in-kind.

      Weaknesses:

      -some methodological aspects and controls are missing

      -no clinical relevance?

    1. Reviewer #1 (Public review):

      Summary:

      The paper is well-organized, with clearly defined sections. The systematic review methodology is thorough, with clear eligibility criteria, search strategy, and data collection methods. The risk of bias assessment is also detailed and useful for evaluating the strength of evidence. The involvement of a patient panel is noticeable and positive, ensuring the research addresses real-world concerns and aligning scientific inquiry with patient perspectives. The statistical approach used for analyzing seems appropriate.

      The authors are encouraged to take into account the following points:

      As the authors have acknowledged, there is a high risk of bias across all included studies, particularly in randomization, selective outcome reporting, and incomplete data, which could be highlighted more explicitly in the paper's discussion section, particularly the potential implications for the generalizability of the results. The authors can also suggest mitigation strategies for future studies (e.g., better randomization, blinding, reporting standards, etc.). None of the studies include female animals, and the use of young adult animals (instead of aged models) limits the applicability of the findings to the human stroke population, where stroke incidence is higher in older adults and perhaps the gender issue must be included to reflect the translational aspects. The authors can add to the paper's discussion section that perhaps future preclinical studies should include both sexes and aged animals to align better with the clinical population and improve the translation of findings. Another point is the comorbidity. Comorbidities such as diabetes and hypertension are prevalent in stroke patients. How can these be considered in preclinical designs? The authors should emphasize the importance of future research incorporating such comorbid models to enhance clinical relevance.

      None of the studies had independent replication of their findings, which is a key limitation, especially for a field with high translational expectations. This should be highlighted as a critical next step for validating the efficacy of CCR5 antagonists.

      The studies accessed limited cognitive outcomes (only one reported a cognitive outcome). Given the importance of cognitive recovery post-stroke, this is a gap to highlight in the discussion. Future studies should include more diverse and comprehensive behavioral assessments, including cognitive and emotional domains, to fully evaluate the therapeutic potential.

      The timing of CCR5 administration across studies varies widely (from pre-stroke to several days post-stroke) complicating the interpretation and comparison of results. The authors are encouraged to add that future preclinical studies could focus on narrowing the therapeutic window to more clinically relevant time points.<br /> The paper identifies some alignment with clinical trials, but there are several gaps, too, particularly in the types of behavioral tests used in preclinical studies versus those in clinical trials. If this systematic review and meta-analysis aim to formulate a set of recommendations for future studies, it is important that the authors also propose specific preclinical behavioral tasks that could better align with clinical measures used in trials, like functional assessments related to human stroke outcomes.

      The discussion needs some revisions. It could benefit from an expanded explanation of CCR5's mechanistic role in neuroplasticity and stroke recovery. For instance, linking CCR5 antagonism more closely with molecular pathways related to synaptic repair and remyelination would enhance the quality of the discussion and understanding of the drugs' potential.

      While the tool is used to assess the risk of bias, it might be helpful to integrate a broader framework for evaluating the quality of included studies. This could include sample size justifications, statistical power analysis, or the use of pre-registration in animal studies. These elements can also introduce bias or minimize those if in place.

      Please also highlight confounding factors that might have influenced the results in the included studies, such as variation in stroke models, dosing regimens, or behavioral assessment methods.

      There is some discussion of the meta-analysis' limitations due to the few studies, but this point could be more thoroughly addressed. Please consider including a more critical discussion of the limitations of pooling data from heterogeneous study designs, stroke models, and outcome measures. What can this lead to? Is it reliable to do so, or does it lack scientific rigor? The authors are encouraged to formulate a balanced discussion adding, positive and negative aspects.<br /> The conclusion should more explicitly acknowledge that while CCR5 antagonists show potential, the findings are still preliminary due to the limitations in the preclinical studies (high bias risk, lack of diverse animal models). Overall, the conclusion can end with a call for rigorous, well-controlled, and replicated studies with improved alignment to clinical populations and trials to show that the conclusion remains inconclusive, considering what has been analyzed here.

    2. Reviewer #2 (Public review):

      Summary:

      This is an interesting, timely, and high-quality study on the potential neuroprotective capabilities of C-C chemokine receptor type 5 (CCR5) antagonists in ischemic stroke. The focus is on preclinical investigations.

      Strengths:

      The results are timely and interesting. An outstanding feature is that stroke patient representatives have directly participated in the work. Although this is often called for, it is hardly realized in research practice, so the work goes beyond established standards.

      The included studies were assessed regarding the therapeutic impact and their adherence to current quality assurance guidelines such as STAIR and SRRR, another important feature of this work. While overall results were promising, there were some shortcomings regarding guideline adherence.

      The paper is very well written and concise yet provides much highly useful information. It also has very good illustrations and extremely detailed and transparent supplements.

      Weaknesses:

      Although the paper is of very high quality, a couple of items that may require the authors' attention to increase the impact of this exciting work further. Specifically:

      Major aspects:

      (1) I hope I did not miss that (apologies if I did), but when exactly was the search conducted? Is it possible to screen the recent literature (maybe up to 12/2024) to see whether any additional studies were published?

      (2) Please clearly define the difference between "study" and "experiment," as this is not entirely clear. Is an "experiment" a distinct investigation within a particular publication (=study) that can describe more than one such "experiment"? Thanks for clarifying.

      (3) Is there an opportunity to conduct a correlation analysis between the quality of a study (for instance, after transforming the ROB assessment into a kind of score) and reported effect sizes for particular experiments or studies? This might be highly interesting.

    1. Reviewer #1 (Public review):

      Summary:

      This work made a lot of efforts to explore the multifaceted roles of the inferior colliculus (IC) in auditory processing, extending beyond traditional sensory encoding. The authors recorded neuronal activity from the IC at single unit level when monkeys were passively exposed or actively engaged in behavioral task. They concluded that 1)IC neurons showed sustained firing patterns related to sound duration, indicating their roles in temporal perception, 2) IC neuronal firing rates increased as sound sequences progress, reflecting modulation by behavioral context rather than reward anticipation, 3) IC neurons encode reward prediction error and their capability of adjusting responses based on reward predictability, 4) IC neural activity correlates with decision-making. In summary, this study tried to provide a new perspective on IC functions by exploring its roles in sensory prediction and reward processing, what are not traditionally associated with this structure.

      Strengths:

      The major strength of this work is that the authors performed electrophysiological recordings from the IC of behaving monkeys. Compared with the auditory cortex and thalamus, the IC in monkeys has not been adequately explored.

      Comments on revised version:

      The authors have adequately addressed all my concerns.

    2. Reviewer #2 (Public review):

      Summary:

      The inferior colliculus (IC) has been explored for its possible functions in behavioral tasks and has been suggested to play more important roles rather than simple sensory transmission. The authors show us two major findings based on their experiments. The first one is climbing effect, which means that neurons' activities continue to increase along time course. The second one is reward effect, which refers to sudden increase of IC neurons' activities when the rewarding is given. Climbing effect is a surprising finding, but reward effect has not been explored clearly here.

      Strengths:

      Complex cognitive behaviors can be regarded as simple ideals of generating output based on information input, which depends on all kinds of input from sensory systems. The auditory system has hierarchic structures no less complex than those areas in charge of complex functions. Meanwhile, IC receives projections from higher areas, such as the auditory cortex, which implies IC is involved in complex behaviors. Experiments in behavioral monkeys are always time-consuming work with hardship, and this will offer more approximate knowledge of how the human brain works.

      Weaknesses:

      These findings are more about correlation but not causality of IC function in behaviors.

      About 'reward effect', it is still unknown if the true nature of reward effect is the simple response to the sound elicited by the electromagnetic valve of rewarding system. The authors claimed the testing space is sound-proofed and believed this is enough to support their opinion. Since the electromagnetic valve was connected to the water tube, and the water tube was attached to a monkey-chair or even in monkey's mouth, the click sound may transmit to the monkey independently on air. There are simple ways to test what happens. One is to add a few trials without reward and see what happens, or to vary the latency between sound sequence and reward.

      Only one of the major findings is convincing, this definitely reduces the credibility of the authors' statements.

    1. Reviewer #1 (Public review):

      In this manuscript, the authors recorded cerebellar unipolar brush cells (UBCs) in acute brain slices. They confirmed that mossy fiber (MF) inputs generate a continuum of UBC responses. Using systematic and physiological trains of MF electrical stimulation, they demonstrated that MF inputs either increased or decreased UBC firing rates (UBC ON vs. OFF) or induced complex, long-lasting modulation of their discharges. The MF influence on UBC firing was directly associated with a specific combination of metabotropic glutamate receptors, mGluR2/3 (inhibitory) and mGluR1 (excitatory). Ultimately, the amount and ratio of these two receptors controlled the time course of the effect, yielding specific temporal transformations such as phase shifts. The experiments are well-executed and properly analyzed.

      Strengths:

      (1) A wide range of MF stimulation based on activity patterns observed in vivo was explored, including burst duration and frequency dependency, which could serve as a valuable foundation for explicit modeling of temporal transformations in the granule cell layer.<br /> (2) The pharmacological blockade of mGluR2/3, mGluR1, AMPA, and NMDA receptors helped identify the specific roles of these glutamate receptors.<br /> (3) The experiments convincingly demonstrate the key role of mGluR1 receptors in temporal information processing by UBCs.

      Weaknesses:

      (1) This study is a follow up of previous work (Guo et al., Nat. Commun., 2021).<br /> (2) The MF activity used to mimic natural stimulation was previously collected from primates, whereas the recordings were conducted in mice.

      Comments on revisions:

      The authors included a discussion about inhibition, but I still disagree with their claim that it was not possible to study the MF-UBC connection with inhibition unblocked. This group has already conducted experiments on Golgi cell inhibition in slices.

    2. Reviewer #2 (Public review):

      This study addresses the question of how UBCs transform synaptic input patterns into spiking output patterns and how different glutamate receptors contribute to their transformations. The first figure utilizes recorded patterns of mossy fiber firing during eye movements in the flocculus of rhesus monkeys obtained from another laboratory. In the first figure, these patterns are used to stimulate mossy fibers in the mouse cerebellum during extracellular recordings of UBCs in acute mouse brain slices. The remaining experiments stimulate mossy fiber inputs at different rates or burst durations, which is described as 'mossy-fiber like', although they are quite simpler than those recorded in vivo. As expected from previous work, AMPA mediates the fast responses, and mGluR1 and mGluR2/3 mediate the majority of longer-duration and delayed responses. The manuscript is well organized and the discussion contextualizes the results effectively.

      Comments on revisions:

      The authors have adequately addressed my concerns.

    1. Reviewer #1 (Public review):

      Summary:

      In the submitted manuscript, Solomon et al carefully detail shifts in tissue-specific myeloid populations associated with trained immunity using intraperitoneal BCG injection as a model for induction. They define the kinetics of shifts in myeloid populations within the spleen and the transcriptional response associated with IP BCG exposure. In lineage tracing experiments, they demonstrate that tissue-resident macrophages, red-pulp macrophages (RPM) that are rapidly depleted after BCG exposure, are replenished from recruited monocytes and expansion of tissue-resident cells; they use transcriptional profiling to characterize those cells. In contrast to previous descriptions of BCG-driven immune training, they do not find BCG in the bone marrow in their model, suggesting that there is not direct training of myeloid precursor populations in the bone marrow. They then link the observed trained immunity phenotype (restriction of heterologous infection with ST) with early activation of STAT1 through IFN-γ.

      Strengths:

      The work includes careful detaining of shifts and origins of myeloid populations within tissue associated with trained immunity and is a meaningful advance for the field.

      Caveats:<br /> Given that the authors demonstrate that BCG persists in the spleen, it is possible that some level of BCG persistence in the spleen is a necessary contributor (together with signaling through STAT1) to the observed tissue-specific T1 phenotype.

      Whether ongoing signaling through the axes are required for ongoing protection is not specifically addressed in this work. There is recent work by other groups that partially addresses these caveats, and it would be helpful context to reference those papers.

    2. Reviewer #2 (Public review):

      Summary:

      In this study, Solomon and colleagues demonstrate that trained immunity induced by BCG can reprogram myeloid cells within localised tissue, which can sustain prolonged protective effects. The authors further demonstrate an activation of STAT1-dependent pathways.

      Strengths:

      The main strength of this paper is the in-depth investigation of cell populations affected by BCG training, and how their transcriptome changes at different time points post-training. Through use of flow cytometry and sequencing methods, the authors identify a new cell population derived from classical monocytes. They also show that long-term trained immunity protection in the spleen is dependent on resident cells. Through sequencing, drug and recombinant inhibition of IFNg pathways, the authors reveal STAT1-dependent responses are required for changes in the myeloid population upon training, and recruitment of trained monocytes.

      Weaknesses:

      A significant amount of work has already been performed for this study. No significant weaknesses were found.

      Comments on revisions:

      I thank the authors for carefully considering all reviewer comments. I have no further recommendations for the authors.

    1. Reviewer #1 (Public review):

      This manuscript by Kleinman & Foster investigates the dependence of hippocampal replay on VTA activity. They recorded neural activity from the dorsal CA1 region of the hippocampus while chemogenetically silencing VTA dopamine neurons as rats completed laps on a linear track with reward delivery at each end. Reward amount changed across task epochs within a session on one end of the track. The authors report that VTA activity is necessary for an increase in sharp-wave rate to remain localized to the feeder that undergoes a change in reward magnitude, an effect that was especially pronounced in a novel environment. They follow up on this result with a second experiment in which reward magnitude varies unpredictably at one end of the linear track and report that changes in sharp-wave rate at the variable location reflect both the amount of reward rats just received there, in addition to a smaller modulation that is reminiscent of reward prediction error coding, in which the previous reward rats received at the variable location affects the magnitude of the subsequent change in sharp-wave rate that occurs on the present visit.

      This work is technically innovative, combining neural recordings with chemogenetic inactivation. The question of how VTA activity affects replay in the hippocampus is interesting and important given that much of the work implicating hippocampal replay in memory consolidation and planning comes from reward-motivated behavioral tasks.

      Comments on revisions:

      Overall, I think the authors have done everything they could to address reviewer concerns, short of collecting more data. The more consistent statistical approach makes the paper easier to read and follow. It's helpful to have more details/rationale for the variability in CNO dose and timing. I think some of the results are still not fully convincing, especially the reward volatility experiment (which the authors also note requires additional validation). Given the small number of rats, the small effect sizes, and the complexity of the experimental manipulations, I still have concerns about whether these effects would hold with larger groups sizes.

    2. Reviewer #2 (Public review):

      (1) Summary<br /> Kleinman and Foster's study investigates the role of dopamine signaling in the ventral tegmental area (VTA) on hippocampal replay and sharp-wave ripples (SWR) in rats exposed to changes in reward magnitude and environmental novelty. The authors utilize chemogenetic silencing techniques to modulate dopamine neuron activity in the VTA while conducting simultaneous electrophysiological recordings from the hippocampal CA1 region. Their findings suggest that VTA dopamine signaling is critical for modulating hippocampal replay in response to changes in reward context and novelty, with specific disruptions observed in replay dynamics when VTA is inhibited, particularly in novel environments.

      (2) Strengths<br /> The research addresses a significant gap in our understanding of the neurobiological underpinnings of memory and spatial learning, highlighting the importance of dopamine-mediated processes. The methodological approach is robust, combining chemogenetic silencing with precise electrophysiological measurements, which allows for a detailed examination of the neural circuits involved. The study provides important insights into how hippocampal replay and SWR are influenced by reward prediction errors, as well as the role of dopamine in these processes. Specifically, the authors note that VTA silencing unexpectedly did not prevent increases in ripple activities where reward was increased, but induced significant aberrant increases in environments where reward levels were unchanged, highlighting a novel dependency of hippocampal replay on dopamine and a VTA-independent reward prediction error signal in familiar environments. These findings are critical for understanding the consolidation of episodic memory and the neural basis of learning.

      (3) Weaknesses<br /> Despite the strengths in methodology and conceptual framework, the study has several weaknesses that could affect the interpretation of the results. There is a need for more rigorous histological validation to confirm the extent and specificity of viral expression (from all animals ideally), which is crucial for ensuring the accuracy of the findings. Variability in the dosing and timing of chemogenetic interventions could also lead to inconsistencies in the data, suggesting a need for more standardized experimental protocols.

      Comments on revisions:

      I commend the authors for their work in addressing my and the other reviewers' comments. I think these changes have improved the paper, and no further changes are absolutely necessary.

    3. Reviewer #3 (Public review):

      Summary:

      The authors of this work are trying to understand the role dopaminergic terminals coming from VTA have on hippocampal mechanisms of memory consolidation, with emphasis on the replay of hippocampal patterns of activity during periods of consummatory behavior in reward locations. Previous work suggested that replay of relevant spatial trajectories supports reward localization and influences behavior.

      The authors then tried to separate two conditions that were known to cause an increase in replay activity - spatial novelty encoding and variation of reward magnitude - and evaluate how these changed when VTA dopamine neurons were inactivated by a chemogenetic tool. They found that the rate of reverse replay (trajectory going away from the goal location) is increased with reward only in novel, but not in familiar environments. Overall this suggests that the VTA dopamine signal is critical during learning of novel locations, but not during explorations of already familiar environments.

      Strengths:

      The inactivation of VTA projections during goal-oriented behavior and in-vivo analysis of patterns of hippocampal activity during both novelty and reward variability. This work adds to the body of evidence that reverse replay constitutes an important mechanism in learning spatial goal locations. Furthermore, this work also points to the role of VTA in reward prediction error with consequences for spatial navigation and consolidation of spatial memories.

      The authors addressed very carefully all the points raised during the revision and I am very pleased with the revised manuscript.

    1. Reviewer #1 (Public review):

      The paper proposes an interesting perspective on the spatio-temporal relationship between FC in fMRI and electrophysiology. The study found that while similar networks configurations are found in both modalities, there is a tendency for the networks to spatially converge more commonly at synchronous than asynchronous timepoints. However, my confidence in the findings and their interpretation is undermined by an incomplete justification for the expected outcomes for each of the proposed scenarios.

      Main Concern

      Fig 1 makes sense to me conceptually, including the schematics of the trajectories, i.e.:

      - Scenario1. Temporally convergent, same trajectories through connectome state space<br /> - Scenario2. Temporally divergent, different trajectories through connectome state space

      However, based on my understanding (and apologies if I am mistaken), I am concerned that these scenarios do not necessarily translate into the schematic CRP plots shown in fig 2C, or the statements in the main text, i.e.:

      - For scenario1, "epochs of cross-modal spatial similarity should occur more frequently at on-diagonal (synchronous) than off-diagonal (asynchronous) entries, resulting in an on-/off-diagonal ratio larger than unity"<br /> - For scenario2, "epochs of spatial similarity could occur equally likely at on-diagonal and off-diagonal entries (ratio≈1)"

      Where do the authors get these statements and the schematics in fig2C from? They do not seem to be fully justified via previous literature, theory, or simulations?

      In particular, I am not convinced based on the evidence currently in the paper, that the ratio of off- to on-diagonal entries (and under what assumptions) is a definitive way to discriminate between scenarios 1 and 2.

      For example, what about the case where the same network configuration reoccurs in both modalities at multiple time points. It seems to me that you would get a CRP with entries occurring equally on the on-diagonal as on the off-diagonal, regardless of whether the dynamics are matched between the two modalities or not (i.e. regardless of scenario 1 or 2 being true).

      This thought experiment example might have a flaw in it, and the authors might ultimately be correct, but nonetheless a systematic justification needs to be provided for using the ratio of off- to on-diagonal entries to discriminate between scenario 1 and 2 (and under what assumptions it is valid).

      In the absence of theory, the authors could use surrogate data for scenario 1 and 2. For example:

      a. For scenario 1, run the CRP using a single modality. E.g. feed in the EEG into the analysis as both modality 1 AND modality 2. This should provide at least one example of CRP under scenario 1 (although it does not ensure that all CRPs under this scenario will look like this, it is at least a useful sanity check).<br /> b. For scenario 2, run the CRP using a single modality plus a shuffled version. E.g. feed in the EEG into the analysis as both modality 1 AND a temporally shuffled version of the EEG as modality 2. The temporal shuffling of the EEG could be done by simple splitting the data into blocks of say ~10s and then shuffling them into a new order. This should provide a version of the CRP under scenario 2 (although it does not ensure that all CRPs under this scenario will look like this, it is at least a useful sanity check)

      The authors have provided CRP plots for option a. It shows a CRP, as expected, consistent with scenario 1. This is a useful sanity check. However, as mentioned above, it does not ensure that all CRPs under this scenario will look like this.

      However, the authors have not shown a CRP as per option b. As such, there is an incomplete justification for the expected outcomes of the scenarios.

      Note that another option, which has not been carried out, is to use full simulations, with clearly specified assumptions, for scenario1 and 2. One way of doing this is to use a simplified (state-space) setup where you randomly simulate N spatially fixed networks that are independently switching on and off over time (i.e. "activation" is 0 or 1). Note that this would result in a N-dimensional connectome state space.

      Using this, you can simulate and compute the CRPs for the two scenarios:

      a. Scenario 1: where the simulated activation timecourses are set to be the same between both modalities<br /> b. Scenario 2: where the simulated activation timecourses are simulated separately for each of the modalities

      Minor Concern

      Leakage correction. The paper states: "To mitigate this issue, we provide results from source-localized data both with and without leakage correction (supplementary and main text, respectively)." It is great that the authors provide both. However, given that FC in EEG is almost totally dominated by spatial leakage (see Hipp paper), the main results/figures for the scalp EEG should be done using spatial leakage corrected EEG data.

    2. Reviewer #2 (Public review):

      Summary:

      The study investigates the brain's functional connectivity (FC) dynamics across different timescales using simultaneous recordings of intracranial EEG/source-localized EEG and fMRI. The primary research goal was to determine which of three convergence/divergence scenarios is the most likely to occur.

      The results indicate that despite similar FC patterns found in different data modalities, the timepoints were not aligned, indicating spatial convergence but temporal divergence.

      The researchers also found that FC patterns in different frequencies do not overlap significantly, emphasizing the multi-frequency nature of brain connectivity. Such asynchronous activity across frequency bands supports the idea of multiple connectivity states that operate independently and are organized into a multiplex system.

      Strengths:

      The data supporting the authors' claims are convincing and come from simultaneous recordings of fMRI and iEEG/EEG, which has been recently developed and adapted.

      The analysis methods are solid and involved a novel approach to analyzing the co-occurrence of FC patterns across modalities (cross-modal recurrence plot, CRP) and robust statistics, including replication of the main results using multiple operationalizations of the functional connectome (e.g., amplitude, orthogonalized, and phase-based coupling).

      In addition, the authors provided a detailed interpretation of the results, placing them in the context of recent advances and understanding of the relationships between functional connectivity and cognitive states.

      The authors also did a control analysis and verified the effect of temporal window size or different functional connecvitity operationalizations. I also applaud their effort to make the analysis code open-sourced.

    1. Reviewer #1 (Public review):

      Summary:

      The anatomical connectivity of the claustrum and the role of its output projections has, thus far, not been studied in detail. The aim of this study was to map the outputs of the endopiriform (EN) region of the claustrum complex, and understand their functional role. Here the authors have combined sophisticated intersectional viral tracing techniques, and ex vivo electrophysiology to map the neural circuitry of EN outputs to vCA1, and shown that optogenetic inhibition of the EN→vCA1 projection impairs both social and object recognition memory. Interestingly the authors find that the EN neurons target inhibitory interneurons providing a mechanism for feedforward inhibition of vCA1.

      Strengths:

      The strength of this study was the application of a multilevel analysis approach combining a number of state-of-the-art techniques to dissect the contribution of the EN→vCA1 to memory function.

      In addition the authors conducted behavioural analysis of locomotor activity, anxiety and fear memory, and complemented the analysis of discrimination with more detailed description of the patterns of exploratory behaviour.

    2. Reviewer #2 (Public review):

      Summary:

      Yamawaki et al., conducted a series of neuroanatomical tracing and whole cell recording experiments to elucidate and characterise a relatively unknown pathway between the endopiriform (EN) and CA1 of the ventral hippocampus (vCA1) and to assess its functional role in social and object recognition using fibre photometry and dual vector chemogenetics. The main findings were that the EN sends robust projections to the vCA1 that collateralise to the prefrontal cortex, lateral entorhinal cortex and piriform cortex, and these EN projection neurons terminate in the stratum lacunosum-moleculare (SLM) layer of distal vCA1, synapsing onto GABAergic neurons that span across the Pyramidal-Stratum Radiatum (SR) and SR-SML borders. It was also demonstrated that EN input disynaptically inhibits vCA1 pyramidal neurons. vCA1 projecting EN neurons receive afferent input from piriform cortex, and from within EN. Finally, fibre photometry experiments revealed that vCA1 projecting EN neurons are most active when mice explore novel objects or conspecifics, and pathway-specific chemogenetic inhibition led to an impairment in the ability to discriminate between novel vs. familiar objects and conspecifics.

      This is an interesting mechanistic study that provides valuable insights into the function and connectivity patterns of afferent input from the endopiriform to the CA1 subfield of the ventral hippocampus. The authors propose that the EN input to the vCA1 interneurons provides a feedforward inhibition mechanism by which memory-based novelty detection could be promoted. The experiments are carefully conducted, and the methodological approaches used are sound. The conclusions of the paper are supported by the data presented.

    1. Reviewer #1 (Public review):

      Summary:

      Liu and colleagues applied the hidden Markov model on fMRI to show three brain states underlying speech comprehension. Many interesting findings were presented: brain state dynamics were related to various speech and semantic properties, timely expression of brain states (rather than their occurrence probabilities) was correlated with better comprehension, and the estimated brain states were specific to speech comprehension but not at rest or when listening to non-comprehensible speech.

      Strengths:

      Recently, the HMM has been applied to many fMRI studies, including movie watching and rest. The authors cleverly used the HMM to test the external/linguistic/internal processing theory that was suggested in comprehension literature. I appreciated the way the authors theoretically grounded their hypotheses and reviewed relevant papers that used the HMM on other naturalistic datasets. The manuscript was well written, the analyses were sound, and the results had clear implications.

    2. Reviewer #2 (Public review):

      Liu et al. applied hidden Markov models (HMM) to fMRI data from 64 participants listening to audio stories. The authors identified three brain states, characterized by specific patterns of activity and connectivity, that the brain transitions between during story listening. Drawing on a theoretical framework proposed by Berwick et al. (TICS 2023), the authors interpret these states as corresponding to external sensory-motor processing (State 1), lexical processing (State 2), and internal mental representations (State 3). States 1 and 3 were more likely to transition to State 2 than between one another, suggesting that State 2 acts as a transition hub between states. Participants whose brain state trajectories closely matched those of an individual with high comprehension scores tended to have higher comprehension scores themselves, suggesting that optimal transitions between brain states facilitated narrative comprehension.

      Overall, the conclusions of the paper are well-supported by the data. Several recent studies (e.g., Song, Shim, and Rosenberg, eLife, 2023) have found that the brain transitions between a small number of states; however, the functional role of these states remains under-explored. An important contribution of this paper is that it relates the expression of brain states to specific features of the stimulus in a manner that is consistent with theoretical predictions.

      The correlation between narrative features and brain state expression was reliable, but relatively low (~0.03). As discussed in the manuscript, this could be due to measurement noise, as well as narrative features accounting for a small proportion of cognitive processes underlying the brain states.

      A strength of the paper is that the authors repeated the HMM analyses across different tasks (Figure 5) and an independent dataset (Figure S3) and found that the data was consistently best fit by 3 brain states. Across tasks, however, the spatial regions associated with each state varied. For example, state 2 during narrative comprehension was similar to both states 2 and 3 during rest (Fig. 5A), suggesting that the organization of the three states was task dependent.

      The three states identified in the manuscript correspond rather well to areas with short, medium, and long temporal timescales (see Hasson, Chen & Honey, TiCs, 2015). Given the relationship with behavior, where State 1 responds to acoustic properties, State 2 responds to word-level properties, and State 3 responds to clause-level properties, a "single-process" account where the states differ in terms of the temporal window for which one needs to integrate information over may offer a more parsimonious account than a multi-process account where the states correspond to distinct processes. This possibility is mentioned briefly in the introduction, but not developed further.

    1. Reviewer #1 (Public review):

      The authors in this paper investigate the nature of the activity in the rodent EPN during a simple freely moving cue-reward association task. Given that primate literature suggest movement coding whereas other primate and rodent studies suggest mainly reward outcome coding in the EPNs, it is important try to tease apart the two views. Through careful analysis of behavior kinematics, position, and the neural activity in the EPNs, the authors reveal an interesting and complex relationship between the EPN and mouse behavior.

      Strengths:

      (1) The authors use a novel freely moving task to study EPN activity, which displays rich movement trajectories and kinematics. Given that previous studies have mostly looked at reward coding during head fixed behavior, this study adds a valuable dataset to the literature.

      (2) The neural analysis is rich and thorough. Both single neuron level and population level (i.e. PCA) analysis are employed to reveal what EPN encodes.

      Discussion:<br /> EPN is one of the major output nuclei of the basal ganglia. What information is present within EPN is still unclear, and under investigation. The authors have used electrophysiology to determine the nature of information present within EPN that is likely to be valuable to the field. Future studies should try to address whether this information is specific to certain cell types within EPN or whether there is topography within EPN that reflects the kinematic information present within EPN. This will require more careful dissection of EPN activity based on anatomy. Future experiments should also consider tasks that isolate a single limb (i.e. joystick tasks) in order to better understand the kinematic encoding of forelimb movement. This, combined with recording in forelimb encoding region of EPN, should give us insights into the nature of kinematic control of EPN. Overall, this study will be useful to inspire future investigations in the function of EPN.

    2. Reviewer #2 (Public review):

      This paper examined how the activity of neurons in the entopeduncular nucleus (EPN) of mice relates to kinematics, value, and reward. The authors recorded neural activity during an auditory cued two-alternative choice task, allowing them to examine how neuronal firing relates to specific movements like licking or paw movements, as well as how contextual factors like task stage or proximity to a goal influence the coding of kinematic and spatiotemporal features. The data shows that the firing of individual neurons is linked to kinematic features such as lick or step cycles. However, the majority of neurons exhibited activity related to both movement types, suggesting that EPN neuronal activity does not merely reflect muscle-level representations. This contradicts what would be expected from traditional action selection or action specification models of the basal ganglia.

      The authors also show that spatiotemporal variables account for more variability compared to kinematic features alone. Using demixed Principal Component Analysis, they reveal that at the population level, the three principal components explaining the most variance were related to specific temporal or spatial features of the task, such as ramping activity as mice approached reward ports, rather than trial outcome or specific actions. Notably, this activity was present in neurons whose firing was also modulated by kinematic features, demonstrating that individual EPN neurons integrate multiple features. A weakness is that what the spatiotemporal activity reflects is not well specified. The authors suggest some may relate to action value due to greater modulation when approaching a reward port, but acknowledge action value is not well parametrized or separated from variables like reward expectation.

      A key goal was to determine whether activity related to expected value and reward delivery arose from a distinct population of EPN neurons or was also present in neurons modulated by kinematic and spatiotemporal features. In contrast to previous studies (Hong & Hikosaka 2008 and Stephenson-Jones et al., 2016), the current data reveals that individual neurons can exhibit modulation by both reward and kinematic parameters. Two potential differences may explain this discrepancy: First, the previous studies used head-fixed recordings, where it may have been easier to isolate movement versus reward-related responses. Second, those studies observed prominent phasic responses to the delivery or omission of expected rewards - responses that are present but not common in the current paper. This suggests a possibility that the VGlut2+ EPN neurons that project to the LHb were under/not sampled, antidromic or optogenetic tagging would have been needed to confirm the identity of the populations that were recorded. Alternatively, in the head-fixed recordings, kinematic/spatial coding may have gone undetected due to the forced immobility.

      Overall, this paper offers needed insight into how the basal ganglia output encodes behavior. The EPN recordings from freely moving mice clearly demonstrate that individual neurons integrate reward, kinematic, and spatiotemporal features, challenging traditional models. However, the specific relationship between the spatiotemporal activity and factors like action value remains unclear.

    1. Reviewer #1 (Public review):

      Kreeger and colleagues have explored the balance of excitation and inhibition in the cochlear nucleus octopus cells of mice using morphological, electrophysiological and computational methods. On the surface, the conclusion, that synaptic inhibition is present, does not seem like a leap. However, the octopus cells have been in the past portrayed as lacking synaptic inhibition. This view was supported by the paucity of glycinergic fibers in the octopus cell area and the lack of apparent IPSPs. Here, Kreeger et al., used beautiful immunohistochemical and mouse genetic methods to quantify the inhibitory and excitatory boutons over the complete surface of individual octopus cells and further analyzed the proportions of the different subtypes of spiral ganglion cell inputs. I think the analysis of synaptic distribution and the origin of the excitatory inputs stands as one of the most complete descriptions of any neuron, leaving little doubt about the presence of glycinergic boutons.

      Kreeger et al then examined inhibition physiologically. Recordings from these neurons are notoriously difficult to make because of the enormous leak currents that shunt membrane stimuli and currents, and complicate voltage clamp. The authors have tried to overcome these limitations using drugs to block leak conductances, and computational approaches based on realistic parameters. They conclude that dendritic inhibition can modify the size and kinetics of excitatory signals, and may play out in computations made on temporally dispersed stimuli as might be experienced during a ramp in sound frequency or complex natural sounds like vocalizations.

    2. Reviewer #2 (Public review):

      Kreeger et.al provided mechanistic evidence for flexible coincidence detection of auditory nerve synaptic inputs by octopus cells in the mouse cochlear nucleus. The octopus cells are highly specialized neurons that, with appropriate stimuli, can fire repetitively at very high rates (> 800 Hz in vivo), yield responses dominated by the onset of sound for simple stimuli, and integrate auditory nerve inputs over a wide frequency span. Previously, it was thought that octopus cells received little inhibitory input, and their integration of auditory input depended principally on temporally precise coincidence detection of excitatory auditory nerve inputs, coupled with a low input resistance established by high levels of expression of certain potassium channels and hyperpolarization-activated channels.

      This study provides convincing evidence that octopus cells do in fact receive glycinergic synaptic input that can influence the efficacy of excitatory dendritic synaptic activity. By coupling selected genetic mouse models to characterize synaptic inputs and enable optogenetic stimulation of subsets of afferents, fluorescent microscopy, detailed reconstructions of the location of inhibitory synapses on the soma and dendrites of octopus cells, slice physiology, and computational modeling, they have been able to clarify the presence of functional inhibition and elucidate some of the features of the inhibitory inputs to octopus cells at a biophysical level. They also show through modeling that inhibition is predicted to both provide shunting of synaptic currents and to change the peak timing of dendritic EPSPs as they travel to the soma. Both of these effects are potentially critically important in integration in these fast, coincidence-detecting neurons, and the magnitudes of the effects could have physiological significance. Overall, this work extends thinking about the functional sensory processing roles of octopus cells beyond the pre-existing hypotheses that are focussed primarily on the coincidence detection of excitatory inputs.

      The authors have addressed all of my prior concerns, including improving several aspects of the presentation. The modeling is better described, which is critical because it provides a foundation to help interpret some of the physiology and to propose specific functions.

    1. Reviewer #1 (Public review):

      Summary:

      The authors use an innovative behavior assay (chamber preference test) and standard calcium imaging experiments on cultured dorsal root ganglion (DRG) neurons to evaluate the consequences of global knockout of TRPV1 and TRPM2, and overexpression of TRPV1, on warmth detection. They find a profound effect of TRPM2 elimination in the behavioral assay, whereas the elimination of TRPV1 has the largest effect on the neuronal responses. These findings are very important, as there is substantial ongoing discussion in the field regarding the contribution of TRP channels to different aspects of thermosensation.

      Strengths:

      The chamber preference test is an important innovation compared to the standard two-plate test, as it depends on thermal information sampled from the entire skin, as opposed to only the plantar side of the paws. With this assay, and the detailed analysis, the authors provide strong supporting evidence for a role of TRPM2 in warmth avoidance. The conceptual framework using the Drift Diffusion Model provides a first glimpse of how this decision of a mouse to change between temperatures can be interpreted and may form the basis for further analysis of thermosensory behavior.

      Weaknesses:

      The authors juxtapose these behavioral data with calcium imaging data using isolated DRG neurons. As the authors acknowledge, it remains unclear whether the clear behavioral effect seen in the TRPM2 knockout animals is directly related to TRPM2 functioning as a warmth sensor in sensory neurons. The effects of the TRPM2 KO on the proportion of warmth sensing neurons are very subtle, and TRPM2 may also play a role in the behavioral assay through its expression in thermoregulatory processes in the brain. Future behavioral experiments on sensory-neuron specific TRPM2 knockout animals will be required to clarify this important point.

    2. Reviewer #3 (Public review):

      Summary and strengths:

      In the manuscript, Abd El Hay et al investigate the role of thermally sensitive ion channels TRPM2 and TRPV1 in warm preference and their dynamic response features to thermal stimulation. They develop a novel thermal preference task, where both the floor and air temperature are controlled, and conclude that mice likely integrate floor with air temperature to form a thermal preference. They go on to use knockout mice and show that TRPM2-/- mice play a role in the avoidance of warmer temperatures. Using a new approach for culturing DRG neurons they show the involvement of both channels in warm responsiveness and dynamics. This is an interesting study with novel methods that generate important new information on the different roles of TRPV1 and TRPM2 on thermal behavior.

      Comments on revisions:

      Thanks to the authors for addressing all the points raised. They now include more details about the classifier, better place their work in context of the literature, corrected the FOVs, and explained the model a bit further. The new analysis in Figure 2 has thrown up some surprising results about cellular responses that seem to reduce the connection between the cellular and behavioral data and there are a few things to address because of this:

      TRPM2 deficient responses: The differences in the proportion of TRPM2 deficient responders compared to WT are only observed at one amplitude (39C), and even at this amplitude the effect is subtle. Most surprisingly, TRPM2 deficient cells have an enhanced response to warm compared to WT mice to 33C, but the same response amplitude as WT at 36C and 39C. The authors discuss why this disconnect might be the case, but together with the lack of differences between WT and TRPM2 deficient mice in Fig 3, the data seem in good agreement with ref 7 that there is little effect of TRPM2 on DRG responses to warm in contrast to a larger effect of TRPV1. This doesn't take away from the fact there is a behavioral phenotype in the TRPM2 deficient mice, but the impact of TRPM2 on DRG cellular warm responses is weak and the authors should tone down or remove statements about the strength of TRPM2's impact throughout the manuscript, for example:<br /> "Trpv1 and Trpm2 knockouts have decreased proportions of WSNs."<br /> "this is the first cellular evidence for the involvement of TRPM2 on the response of DRG sensory neurons to warm-temperature stimuli"<br /> "we demonstrate that TRPV1 and TRPM2 channels contribute differently to temperature detection, supported by behavioural and cellular data"<br /> "TRPV1 and TRPM2 affect the abundance of WSNs, with TRPV1 mediating the rapid, dynamic response to warmth and TRPM2 affecting the population response of WSNs."<br /> "Lack of TRPV1 or TRPM2 led to a significant reduction in the proportion of WSNs, compared to wildtype cultures".

      The new analysis also shows that the removal of TRPV1 leads to cellular responses with smaller responses at low stimulus levels but larger responses with longer latencies at higher stimulus levels. Authors should discuss this further and how it fits with the behavioral data.

      Analysis clarification: authors state that TRPM2 deficient WSNs show "Their response to the second and third stimulus, however, are similar to wildtype WSNs, suggesting that tuning of the response magnitude to different warmth stimuli is degraded in Trpm2-/- animals." but is there a graded response in WT mice? It looks like there is in terms of the %responders but not in terms of response amplitude or AUC. Authors could show stats on the figure showing differences in response amplitude/AUC/responders% to different stimulus amplitudes within the WT group.

      New discussion point: sex differences are "similar to what has been shown for an operant-based thermal choice assay (11,56)", but in their rebuttal, they mention that ref 11 did not report sex differences. 56 does. Check this.

      The authors added in new text about the drift diffusion model in the results, however it's still not completely clear whether the "noise" is due to a perceptual deficit or some other underlying cause. Perhaps authors could discuss this further in the discussion.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript reports analyses of fMRI data from infants and toddlers watching naturalistic movies. Visual areas in the infant brain show distinct functions, consistent with previous studies using resting state and awake task-based infant fMRI. The pattern of activity in visual regions contains some features predicted by the regions' retinotopic responses. The revised version of the manuscript provides additional validation of the methodology, and clarifies the claims. As a result, the data provide clear support for the claims.

      Strengths:

      The authors have collected a unique dataset: the same individual infants both watched naturalistic animations and a specific retinotopy task. Using these data position the authors show that activity evoked by movies, in infants' visual areas, is correlated with the regions' retinopic response. The revised manuscript validates this methodology, using adult data. The revised manuscript also shows that an infant's movie watching data is not sufficient or optimal to predict their visual areas' retinotopic responses; anatomical alignment with a group of previous participants provides more accurate prediction of a new participant's retinotopic response.

      Weaknesses:

      A key step in the analysis of the movie-watching data is the selection of independent components of the movie evoked response that resemble retinotopic spatial patterns. While the trained researcher was unlikely to be biased by this infant's own retinotopy, he/she was actively looking for ICs that resemble average patterns of retinotopic response. To show that these ICs didn't arise by chance (i.e. in noise), the authors proposed an additional analysis in the revised manuscript, by misaligning the functional and anatomical data for a subset of participants. This only partially confirms the reliability of the original components, since when the (new) coder tried to be conservative to avoid false components, he/she identified just over half of the 'true' components (13 vs 22 estimated over the group of 6 infants).

    1. Reviewer #2 (Public review):

      Summary:

      In this paper, the authors investigated the admixture history of domestic cattle since they were introduced into Iberia, by studying genomic data from 24 ancient samples dated to ~2000-8000 years ago and comparing them to modern breeds. They aimed to (1) characterize genomic variation of skeletal remains and concordance (or discordance) with morphological features; (2) test for hybridization between wild aurochs and domestic cattle; (3) test for correlation between genetic ancestry and stable isotope levels (which are indicative of ecological niche); and (4) test for previously hypothesized higher aurochs ancestry in a modern breed of fighting bulls.

      Strengths:

      Overall, this study collects valuable new data and tests several important hypotheses regarding the evolutionary history and genomic variation of domestic cattle in Iberia, such as admixture between domestic and wild populations, and correlation between genome-wide aurochs ancestry and aggressiveness.

      Weaknesses:

      Most conclusions are well supported by the data presented, with the strengths and caveats of each analysis clearly explained. The presence of admixed individuals in prehistorical periods strongly support hybridization between wild and domestic populations, although the evidence for sex-biased introgression and ecological niche sharing is relatively weak. Lastly, the authors presented convincing evidence for relatively constant aurochs ancestry across all modern breeds, including the Lidia breed that has been bred for aggressiveness for centuries.

      Major comments:

      As the authors pointed out, a major limitation of this study is uncertainty in the "population identity" for most sampled individuals (i.e., whether an individual belonged to the domesticated or wild herd when they were alive). Based on chronology, morphology and genetic data, it is clear the Mesolithic samples from the Artusia and Mendandia sites are bona fide aurochs, but the "population identities" of individuals from the other two sites are much less certain. Indeed, archeological and morphological evidence from El Portalon supports the presence of both domestic animals and wild aurochs, which is echoed by the inter-individual heterogeneity in genetic ancestry. Despite the strong evidence of hybridization, it is unclear whether these admixed individuals were raised in the domestic population or lived in the wild population and hunted, limiting the authors' ability to draw conclusions regarding the direction of gene flow.

      In general, detecting sex-bias admixture is an inherently challenging problem, especially given limited data. The differential ancestry proportions (estimated by f4 ratios) on autosomes and X chromosome are indicative of sex-biased hybridization and consistent with previous mtDNA results and other non-genetic data. However, as shown in Fig 3, the confidence intervals of X and autosomal estimates overlap for all but a couple of individuals, despite the overall trend of the point estimates. Moreover, even if there is significant difference, it only suggests existence of sex-bias but does not speak to the extent (unless further quantitative argument is made). Statements such as "it was mostly aurochs males who contributed wild ancestry to domestic herds" is too strong and may be interpreted as extreme bias. The authors did a good job noting the caveats of this analysis and down-toned the statement in the main text, but claims regarding sex-bias hybridization that use the phrase "mostly" in the abstract and discussion need to be further weakened.

      The stable isotope analysis is very under-powered, due to issues of categorization of wild vs domestic Bos, as discussed by the authors. Although the considerable overlap in stable isotope values between domestic and wild groups is consistent with shared ecological niche, but the absence of evidence (ie significant difference between groups) is not evidence of absence. Two alternative, non-mutually exclusive scenarios are (1) prevalent errors in classification of wild vs domestic individuals; (2) different ecological niches share similar isotope profiles. Thus, the claim "suggesting that wild and domesticated groups often did not occupy different niches in Iberia" is still too strong.

    2. Reviewer #3 (Public review):

      Summary:

      Günther and colleagues leverage ancient DNA data to track the genomic history of one of the most important farm animals (cattle) in Iberia, a region showing peculiarities both in terms of cultural practices as well as a climatic refugium during the LGM, the latter of which could have allowed the survival of endemic lineages. They document interesting trends of hybridisation with wild aurochs over the last 8-9 millennia, including a stabilisation of auroch ancestry ~4000 years ago, at ~20%, a time coincidental with the arrival of domestic horses from the Pontic steppe. Modern breeds such as the iconic Lidia used in bullfighting or bull running retain a comparable level of auroch ancestry.

      Strengths:

      The generation of ancient DNA data has been proven crucial to unravel the domestication history of traditional livestock, and this is challenging due to the environmental conditions of the Iberian peninsula, less favourable to DNA preservation. The authors leverage samples unearthed from key archaeological sites in Spain, including the karstic system of Atapuerca. Their results provide fresher insights into past management practices and permit characterisation of significant shifts in hybridization with wild aurochs.

      Comments on revisions:

      The authors have satisfactorily addressed my previous concerns. Last questions:

      - How many MCMC iterations were run for Structf4? Can they show the likelihood of the last 10% of MCMC iterations? The results seem way too different for K = 4 vs. K = 5, but only for moo014 and moo019.

      - I guess the authors also lack an "a" superindex in Table 1 for moo019.

      - That Gyu2-related ancestry appears systematically for K=5 suggests that the Caucasus-related ancestry was already present in the pool that led to domesticates. Is it not important to discuss the implications of this possibility, for future analyses?

      - If monophyletic, why choose between Bed3 and CPC98 if both could be combined as a single population to further reduce qpAdm and f4 confidence intervals?

      - Why not combine all auroch Iberian samples as a single population for testing gene flow from this whole group of samples to ancient Iberian cattle? Would be the resulting coverage still too low?

      - What is subindex 1 in the denominator of the f4 ratio (main methods)?

      Thanks for your efforts

    1. Reviewer #1 (Public review):

      Summary:<br /> The authors set out to explore the role of upstream open reading frames (uORFs) in stabilizing protein levels during Drosophila development and evolution. By utilizing a modified ICIER model for ribosome translation simulations and conducting experimental validations in Drosophila species, the study investigates how uORFs buffer translational variability of downstream coding sequences. The findings reveal that uORFs significantly reduce translational variability, which contributes to gene expression stability across different biological contexts and evolutionary timeframes.

      Strengths:<br /> (1) The study introduces a sophisticated adaptation of the ICIER model, enabling detailed simulation of ribosomal traffic and its implications for translation efficiency.<br /> (2) The integration of computational predictions with empirical data through knockout experiments and translatome analysis in Drosophila provides a compelling validation of the model's predictions.<br /> (3) By demonstrating the evolutionary conservation of uORFs' buffering effects, the study provides insights that are likely applicable to a wide range of eukaryotes.

      Weaknesses:<br /> (1) Although the study is technically sound, it does not clearly articulate the mechanisms through which uORFs buffer translational variability. A clearer hypothesis detailing the potential molecular interactions or regulatory pathways by which uORFs influence translational stability would enhance the comprehension and impact of the findings.<br /> (2) The study could be further improved by a discussion regarding the evolutionary selection of uORFs. Specifically, it would be beneficial to explore whether uORFs are favored evolutionarily primarily for their role in reducing translation efficiency or for their capability to stabilize translation variability. Such a discussion would provide deeper insights into the evolutionary dynamics and functional significance of uORFs in genetic regulation.

    2. Reviewer #2 (Public review):

      uORFs, short open reading frames located in the 5' UTR, are pervasive in genomes. However, their roles in maintaining protein abundance are not clear. In this study, the authors propose that uORFs act as "molecular dam", limiting the fluctuation of the translation of downstream coding sequences. First, they performed in silico simulations using an improved ICIER model, and demonstrated that uORF translation reduces CDS translational variability, with buffering capacity increasing in proportion to uORF efficiency, length, and number. Next, they analzed the translatome between two related Drosophila species, revealing that genes with uORFs exhibit smaller fluctuations in translation between the two species and across different developmental stages within the same specify. Moreover, they identified that bicoid, a critical gene for Drosophila development, contains a uORF with substantial changes in translation efficiency. Deleting this uORF in Drosophila melanogaster significantly affected its gene expression, hatching rates, and survival under stress condition. Lastly, by leveraging public Ribo-seq data, the authors showed that the buffering effect of uORFs is also evident between primates and within human populations. Collectively, the study advances our understanding of how uORFs regulate the translation of downstream coding sequences at the genome-wide scale, as well as during development and evolution.

      The conclusions of this paper are mostly well supported by data, but some definitions and data analysis need to be clarified and extended.

      (1) There are two definitions of translation efficiency (TE) in the manuscript: one refers to the number of 80S ribosomes that complete translation at the stop codon of a CDS within a given time interval, while the other is calculated based on Ribo-seq and mRNA-seq data (as described on Page 7, line 209). To avoid potential misunderstandings, please use distinct terms to differentiate these two definitions.

      (2) Page 7, line 209: "The translational efficiencies (TEs) of the conserved uORFs were highly correlated between the two species across all developmental stages and tissues examined, with Spearman correlation coefficients ranging from 0.478 to 0.573 (Fig. 2A)." However, the authors did not analyze the correlation of translation efficiency of conserved CDSs between the two species, and compare this correlation to the correlation between the TEs of CDSs. These analyzes will further support the authors conclusion regarding the role of conserved uORFs in translation regulation.

      (3) Page 8, line 217: "Among genes with multiple uORFs, one uORF generally emerged as dominant, displaying a higher TE than the others within the same gene (Fig. 2C)." The basis for determining dominance among uORFs is not explained and this lack of clarification undermines the interpretation of these findings.

      (4) According to the simulation, the translation of uORFs should exhibit greater variability than that of CDSs. However, the authors observed significantly fewer uORFs with significant TE changes compared to CDSs. This discrepancy may be due to lower sequencing depth resulting in fewer reads mapped to uORFs. Therefore, the authors may compare this variability specifically among highly expressed genes.

      (5) If possible, the author may need to use antibodies against bicoid to test the effect of ATG deletion on bicoid expression, particularly under different developmental stages or growth conditions. According to the authors' conclusions, the deletion mutant should exhibit greater variability in bicoid protein abundance. This experiment could provide strong support for the proposed mechanisms.

    1. Reviewer #1 (Public review):

      Summary:

      Cook et al. have presented an important study on the transcriptomic and epigenomic signature underlying craniofacial development in marsupials. Given the lack of a dunnart genome, the authors also prepared long and short-read sequence datasets to assemble and annotate a novel genome to allow for the mapping of RNAseq and ChIPseq data against H3K4me3 and H3K27ac, which allowed for the identification of putative promoter and enhancer sites in dunnart. They found that genes proximal to these regulatory loci were enriched for functions related to bone, skin, muscle and embryonic development, highlighting the precocious state of newborn dunnart facial tissue. When compared with mouse, the authors found a much higher proportion of promoter regions aligned between species than for enhancer regions, and subsequent profiling identified regulatory elements conserved across species and are important for mammalian craniofacial development. In contrast, the identification of dunnart-specific enhancers and patterns of RNA expression further confirm the precocious state of muscle development, as well as for sensory system development, in dunnart suggesting that early formation of these features are critical for neonate marsupials likely to assist with detecting and responding to cues that direct the joeys to the mother's teat after birth. This is one of the few epigenomic studies performed in marsupials (of any organ) and the first performed in fat-tailed dunnart (also of any organ). Marsupials are emerging as an important model for studying mammalian development and evolution and the authors have performed a novel and thorough analysis, impressively including the assembly of a new marsupial reference genome that will benefit many future studies.

      Strengths:

      The study provides multiple pieces of evidence supporting the important role enhancer elements play in mammalian phenotypic evolution, namely the finding of a lower proportion of peaks present in both dunnart and mouse for enhancers than for promoters, and dunnart showing more genes uniquely associated with it's active enhancers than any other combination of mouse and dunnart samples, whereas this pattern was less pronounced than for promoter-associated genes. In addition, rigorous parameters were used for the cross-species analyses to identify the conserved regulatory elements and the dunnart-specific enhancers. For example, for the results presented in Figure 1, I agree that it is a little surprising that the average promoter-TSS distance is greater than that for enhancers, but that this could be related to the possible presence of unannotated transcripts between genes. The authors addressed this well by examining the distribution of promoter-TSS distances and using proximal promoters (cluster #1) as high confidence promoters for downstream analyses.

      The genome assembly method was thorough, using two different long read methods (Pacbio and ONT) to generate the long reads for contig and scaffold construction, increasing the quality of the final assembled genome.

      Weaknesses:

      Biological replicates of facial tissue were collected at a single developmental time point of the fat-tailed dunnart within the first postnatal day (P0), and analysed this in the context of similar mouse facial samples from the ENCODE consortium at six developmental time points, where previous work from the authors have shown that the younger mouse samples (E11.5-12.5) approximately corresponds to the dunnart developmental stage (Cook et al. 2021). However, it would be useful to have samples from at least one older dunnart time point, for example, at a developmental stage equivalent to mouse E15.5. This would provide additional insight into the extent of accelerated face development in dunnart relative to mouse, i.e. how long do the regulatory elements that activated early in dunnart remain active for and does their function later influence other aspects of craniofacial development?

      The authors refer to the development of the CNS being delayed in marsupials relative to placental mammals, however, evidence shows how development of the dunnart brain (whole brain or cortex) is protracted compared to mouse, by a factor of at least 2 times, rather than delayed per se (Workman et al. 2013; Paolino et al. 2023). In addition, there is evidence that cortical formation and cell birth may begin at approximately the same stage across species equivalent to the neonate period in dunnart (E10.5 in mouse), and that shortly after this at the stage equivalent to mouse E12.5, the dunnart cortex shows signs of advanced neurogenesis followed by a protracted phase of neuronal maturation (Paolino et al. 2023). Therefore, it is possible that marsupial CNS development appears delayed relative to mouse but instead begins at the same stage and then proceeds to develop on a different timing scale.

    2. Reviewer #2 (Public review):

      This study by Cook and colleagues utilizes genomic techniques to examine gene regulation in the craniofacial region of the fat-tailed dunnart at perinatal stages. Their goal is to understand how accelerated craniofacial development is achieved in marsupials compared to placental mammals.

      The authors employ state-of-the-art genomic techniques, including ChIP-seq, transcriptomics, and high-quality genome assembly, to explore how accelerated craniofacial development is achieved in marsupials compared to placental mammals. This work addresses an important biological question and contributes a valuable dataset to the field of comparative developmental biology. The study represents a commendable effort to expand our understanding of marsupial development, a group often underrepresented in genomic studies.

      The dunnart's unique biology, characterized by a short gestation and rapid craniofacial development, provides a powerful model for examining developmental timing and gene regulation. The authors successfully identified putative regulatory elements in dunnart facial tissue and linked them to genes involved in key developmental processes such as muscle, skin, bone, and blood formation. Comparative analyses between dunnart and mouse chromatin landscapes suggest intriguing differences in deployment of regulatory elements and gene expression patterns.

      Strengths

      (1) The authors employ a broad range of cutting-edge genomic tools to tackle a challenging model organism. The data generated - particularly ChIP-seq and RNA-seq from craniofacial tissue - are a valuable resource for the community, which can be employed for comparative studies. The use of multiple histone marks in the ChIP-seq experiments also adds to the utility of the datasets.

      (2) Marsupial occupy an important phylogenetic position, but they remain an understudied group. By focusing on the dunnart, this study addresses a significant gap in our understanding of mammalian development and evolution. Obtaining enough biological specimens for these experiments studies was likely a big challenge that the authors were able to overcome.

      (3) The comparison of enhancer landscapes and transcriptomes between dunnarts and can serve as the basis of subsequent studies that will examine the mechanisms of developmental timing shifts. The authors also carried out liftover analyses to identify orthologous enhancers and promoters in mice and dunnart.

      Weaknesses and Recommendations

      (1) The absence of genome browser tracks for ChIP-seq data makes it difficult to assess the quality of the datasets, including peak resolution and signal-to-noise ratios. Including browser tracks would significantly strengthen the paper by provide further support for adequate data quality.

      (2) The first two figures of the paper heavily rely in gene orthology analysis, motif enrichment, etc, to describe the genomic data generated from the dunnart. The main point of these figures is to demonstrate that the authors are capturing the epigenetic signature of the craniofacial region, but this is not clearly supported in the results. The manuscript should directly state what these analyses aim to accomplish - and provide statistical tests that strengthen confidence on the quality of the datasets.

      (3) The observation that "promoters are located on average 106 kb from the nearest TSS" raises significant concerns about the quality of the ChIP-seq data and/or genome annotation. The results and supplemental information suggest a combination of factors, including unannotated transcripts and enhancer-associated H3K4me3 peaks - but this issue is not fully resolved in the manuscript. The authors should confirm that this is not caused by spurious peaks in the CHIP-seq analysis - and possibly improve genome annotation with the transcriptomic datasets presented on the study.

      (4) The comparison of gene regulation between a single dunnart stage (P1) and multiple mouse stages lacks proper benchmarking. Morphological and gene expression comparisons should be integrated to identify equivalent developmental stages. This "alignment" is essential for interpreting observed differences as true heterochrony rather than intrinsic regulatory differences.

      (5) The low conservation of putative enhancers between mouse and dunnart (0.74-6.77%) is surprising given previous reports of higher tissue-specific enhancer conservation across mammals. The authors should address whether this low conservation reflects genuine biological divergence or methodological artifacts (e.g., peak-calling parameters or genome quality). Comparisons with published studies could contextualize these findings.

      (6) Focusing only on genes associated with shared enhancers excludes potentially relevant genes without clear regulatory conservation. A broader analysis incorporating all orthologous genes may reveal additional insights into craniofacial heterochrony.

      In conclusion, this study provides an important dataset for understanding marsupial craniofacial development and highlights the potential of genomic approaches in non-traditional model organisms. However, methodological limitations, including incomplete genome annotation and lack of developmental benchmarking weaken the robustness and of the findings. Addressing these issues would significantly enhance the study's utility to the field and its ability to support the study's central conclusion that dunnart-specific enhancers drive accelerated craniofacial development.

    1. Reviewer #1 (Public review):

      Summary:

      This study by Howe and colleagues investigates the role of the posterolateral cortical amygdala (plCoA) in mediating innate responses to odors, specifically attraction and aversion. By combining optogenetic stimulation, single-cell RNA sequencing, and spatial analysis, the authors identify a topographically organized circuit within plCoA that governs these behaviors. They show that specific glutamatergic neurons in the anterior and posterior regions of plCoA are responsible for driving attraction and avoidance, respectively, and that these neurons project to distinct downstream regions, including the medial amygdala and nucleus accumbens, to control these responses.

      Strengths:

      The major strength of the study is the thoroughness of the experimental approach, which combines advanced techniques in neural manipulation and mapping with high-resolution molecular profiling. The identification of a topographically organized circuit in plCoA and the connection between molecularly defined populations and distinct behaviors is a notable contribution to understanding the neural basis of innate motivational responses. Additionally, the use of functional manipulations adds depth to the findings, offering valuable insights into the functionality of specific neuronal populations.

      Weaknesses:

      There are some weaknesses in the study's methods and interpretation. The lack of clarity regarding the behavior of the mice during head-fixed imaging experiments raises the possibility that restricted behavior could explain the absence of valence encoding at the population level. Furthermore, while the authors employ chemogenetic inhibition of specific pathways, the rationale for this choice over optogenetic inhibition is not fully addressed, and this could potentially affect the interpretation of the results. Additionally, the choice of the mplCoA for manipulation, rather than the more directly implicated anterior and posterior subregions, is not well-explained, which could undermine the conclusions drawn about the topographic organization of plCoA.

      Despite these concerns, the work provides significant insights into the neural circuits underlying innate behaviors and opens new avenues for further research. The findings are particularly relevant for understanding the neural basis of motivational behaviors in response to sensory stimuli, and the methods used could be valuable for researchers studying similar circuits in other brain regions. If the authors address the methodological issues raised, this work could have a substantial impact on the field, contributing to both basic neuroscience and translational research on the neural control of behavior.

    2. Reviewer #2 (Public review):

      Summary:

      The manuscript by the Root laboratory and colleagues describes how the posterolateral cortical amygdala (plCoA) generates valenced behaviors. Using a suite of methods, the authors demonstrate that valence encoding is mediated by several factors, including spatial localization of neurons within the plCoA, glutamatergic markers, and projection. The manuscript shows convincingly that multiple features (spatial, genetic, and projection) contribute to overall population encoding of valence. Overall, the authors conduct many challenging experiments, each of which contains the relevant controls, and the results are interpreted within the framework of their experiments.

      Strengths:

      -For a first submission the manuscript is well constructed, containing lots of data sets and clearly presented, in spite of the abundance of experimental results.<br /> -The authors should be commended for their rigorous anatomical characterizations and post-hoc analysis. In the field of circuit neuroscience, this is rarely done so carefully, and when it is, often new insights are gleaned as is the case in the current manuscript.<br /> -The combination of molecular markers, behavioral readouts and projection mapping together substantially strengthen the results.<br /> -The focus on this relatively understudied brain region in the context is valence is well appreciated, exciting and novel.

      Weaknesses:

      -Interpretation of calcium imaging data is very limited and requires additional analysis and behavioral responses specific to odors should be considered. If there are neural responses behavioral epochs and responses to those neuronal responses should be displayed and analyzed.<br /> -The effect of odor habituation is not considered.<br /> -Optogenetic data in the two subregions relies on very careful viral spread and fiber placement. The current anatomy results provided should be clear about the spread of virus in A-P, and D-V axis, providing coordinates for this, to ensure readers the specificity of each sub-zone is real.<br /> -The choice of behavioral assays across the two regions doesn't seem balanced and would benefit from more congruency,<br /> -Rationale for some of the choices of photo-stimulation experiment parameters isn't well defined.

    3. Reviewer #3 (Public review):

      Summary:

      Combining electrophysiological recording, circuit tracing, single cell RNAseq, and optogenetic and chemogenetic manipulation, Howe and colleagues have identified a graded division between anterior and posterior plCoA and determined the molecular characteristics that distinguish the neurons in this part of the amygdala. They demonstrate that the expression of slc17a6 is mostly restricted to the anterior plCoA whereas slc17a7 is more broadly expressed. Through both anterograde and retrograde tracing experiments, they demonstrate that the anterior plCoA neurons preferentially projected to the MEA whereas those in the posterior plCoA preferentially innervated the nucleus accumbens. Interestingly, optogenetic activation of the aplCoA drives avoidance in a spatial preference assay whereas activating the pplCoA leads to preference. The data support a model that spatially segregated and molecularly defined populations of neurons and their projection targets carry valence specific information for the odors. The discoveries represent a conceptual advance in understanding plCoA function and innate valence coding in the olfactory system.

      Strengths:

      The strongest evidence supporting the model comes from single cell RNASeq, genetically facilitated anterograde and retrograde circuit tracing, and optogenetic stimulation. The evidence clear demonstrates two molecularly defined cell populations with differential projection targets. Stimulating the two populations produced opposite behavioral responses.

      Weaknesses:

      There are a couple of inconsistencies that may be addressed by additional experiments and careful interpretation of the data.

      Stimulating aplCoA or slc17a6 neurons results in spatial avoidance, and stimulating pplCoA or slc17a7 neurons drives approach behaviors. On the other hand, the authors and others in the field also show that there is no apparent spatial bias in odor-driven responses associated with odor valence. This discrepancy may be addressed better. A possibility is that odor-evoked responses are recorded from populations outside of those defined by slc17a6/a7. This may be addressed by marking activated cells and identifying their molecular markers. A second possibility is that optogenetic stimulation activates a broad set of neurons that and does not recapitulate the sparseness of odor responses. It is not known whether sparsely activation by optogenetic stimulation can still drive approach of avoidance behaviors.

      The authors show that inhibiting slc17a7 neurons blocks approaching behaviors toward 2-PE. Consistent with this result, inhibiting NAc projection neurons also inhibits approach responses. However, inhibiting aplCOA or slc17a6 neurons does not reduce aversive response to TMT, but blocking MEA projection neurons does. The latter two pieces of evidence are not consistent with each other. One possibility is that the MEA projecting neurons may not be expressing slc17a6. It is not clear that the retrogradely labeling experiments what percentage of MEA- and NAC-projecting neurons express slc17a6 and slc17a7. It is possible that neurons expressing neither VGluT1 nor VGluT2 could drive aversive or appetitive responses. This possibility may also explain that silencing slc17a6 neurons does not block avoidance.

    1. Reviewer #1 (Public review):

      Summary:

      MHC (Major Histocompatibility Complex) genes have long been mentioned as cases of trans-species polymorphism (TSP), where alleles might have their most recent common ancestor with alleles in a different species, rather than other alleles in the same species (e.g., a human MHC allele might coalesce with a chimp MHC allele, more recently than the two coalesce with other alleles in either species). This paper provides a more complete estimate of the extent and ages of TSP in primate MHC loci. The data clearly support deep TSP linking alleles in humans to (in some cases) old world monkeys, but the amount of TSP varies between loci.

      Strengths:

      The authors use publicly available datasets to build phylogenetic trees of MHC alleles and loci. From these trees they are able to estimate whether there is compelling support for Trans-species polymorphisms (TSPs) using Bayes Factor tests comparing different alternative hypotheses for tree shape. The phylogenetic methods are state-of-the-art and appropriate to the task.

      The authors supplement their analyses of TSP with estimates of selection (e.g., dN/dS ratios) on motifs within the MHC protein. They confirm what one would suspect: classical MHC genes exhibit stronger selection at amino acid residues that are part of the peptide binding region, and non-classical MHC exhibit less evidence of selection. The selected sites are associated with various diseases in GWAS studies.

      Weaknesses:

      An implication drawn from this paper (and previous literature) is that MHC has atypically high rates of TSP. However, rates of TSP are not estimated for other genes or gene families, so readers have no basis of comparison. No framework to know whether the depth and frequency of TSP is unusual for MHC family genes, relative to other random genes in the genome, or immune genes in particular. I expect (from previous work on the topic), that MHC is indeed exceptional in this regard, but some direct comparison would provide greater confidence in this conclusion.

      Given the companion paper's evidence of genic gain/loss, it seems like there is a real risk that the present study under-estimates TSP, if cases of TSP have been obscured by the loss of the TSP-carrying gene paralog from some lineages needed to detect the TSP. Are the present analyses simply calculating rates of TSP of observed alleles, or are you able to infer TSP rates conditional on rates of gene gain/loss?

      Figure 5 (and 6) provide regression model fits (red lines in panel C) relating evolutionary rates (y axis not labeled) to site distance from the peptide binding groove, on the protein product. This is a nice result. I wonder, however, whether a linear model (as opposed to non-linear) is the most biologically reasonable choice, and whether non-linear functions have been evaluated. The authors might consider generalized additive models (GAMs) as an alternative that relaxes linearity assumptions.

      The connection between rapidly evolving sites, and disease associations (lines 382-3) is very interesting. However, this is not being presented as a statistical test of association. The authors note that fast-evolving amino acids all have at least one association: but is this really more disease-association than a random amino acid in the MHC? Or, a randomly chosen polymorphic amino acid in MHC? A statistical test confirming an excess of disease associations would strengthen this claim.

    2. Reviewer #2 (Public review):

      Summary

      In this study, the authors characterized population genetic variation in the MHC locus across primates and looked for signals of long-term balancing selection (specifically trans-species polymorphism, TSP) in this highly polymorphic region. To carry out these tasks, they used Bayesian methods for phylogenetic inference (i.e. BEAST2) and applied a new Bayesian test to quantify evidence supporting monophyly vs. transspecies polymorphism for each exon across different species pairs. Their results, although mostly confirmatory, represent the most comprehensive analyses of primate MHC evolution to date and novel findings or possible discrepancies are clearly pointed out. However, as the authors discuss, the available data are insufficient to fully capture primates' MHC evolution.

      Strengths of the paper include: using appropriate methods and statistically rigorous analyses; very clear figures and detailed description of the results methods that make it easy to follow despite the complexity of the region and approach; a clever test for TSP that is then complemented by positive selection tests and the protein structures for a quite comprehensive study.

      That said, weaknesses include: lack of information about how many sequences are included and whether uneven sampling across taxa might results in some comparisons without evidence for TSP; frequent reference to the companion paper instead of summarizing (at least some of) the critical relevant information (e.g., how was orthology inferred?); no mention of the quality of sequences in the database and whether there is still potential effects of mismapping or copy number variation affecting the sequence comparison.

    3. Reviewer #3 (Public review):

      Summary

      The study uses publicly available sequences of classical and non-classical genes from a number of primate species to assess the extent and depth of TSP across the primate phylogeny. The analyses were carried out in a coherent and, in my opinion, robust inferential framework and provided evidence for ancient (even > 30 million years) TSP at several classical class I and class II genes. The authors also characterise evolutionary rates at individual codons, map these rates onto MHC protein structures, and find that the fastest evolving codons are extremely enriched for autoimmune and infectious disease associations.

      Strengths

      The study is comprehensive, relying on a large data set, state-of-the-art phylogenetic analyses and elegant tests of TSP. The results are not entirely novel, but a synthesis and re-analysis of previous findings is extremely valuable and timely.

      Weaknesses

      I've identified weaknesses in several areas (details follow in the next section):<br /> - Inadequate description and presentation of the data used<br /> - Large parts of the results read like extended figure captions, which breaks the flow.<br /> - Older literature on the subject is duly cited, but the authors don't really discuss their findings in the context of this literature.<br /> - The potential impact of mechanisms other than long-term maintenance of allelic lineages by balancing selection, such as interspecific introgression and incorrect orthology assessment, needs to be discussed.

    1. Nascimento wrote the music for a stage play by José Vicente de Paula entitled Os convalescentes (“The Convalescent Ones”) in which ‘”San Vicente’ was originally conceived for that play’s portrayal of an unidentified Latin American country under dictatorship, as a stand-in for Brazil during years of heavy censorship.”

      for - music - song - San Vicente - Milton Nascimento - inspiration for the song - stage play about Latin American country under a dictatorship - review Milton Nascimento. Lo Borges - Clube Da Esquina - Classic Music Review - San Vicente - altrochchick - 2021, April 11

    2. “Coração americano” (“American heart”). Those two little words—repeated at various points in the song—reflect not only Brant’s desire to link the darkness that fell over Brazil with the darkness that eventually smothered life in other Latin American countries but also expresses confidence that the Pan-American spirit is real and will survive the cataclysm.

      for - music - song - San Vicente - chorus - Corazon Americano - Milton Nascimento - inspiration for the song - stage play about Latin American country under a dictatorship - review Milton Nascimento. Lo Borges - Clube Da Esquina - Classic Music Review - San Vicente - altrochchick - 2021, April 11

    3. for - music - review Milton Nascimento. Lo Borges - Clube Da Esquina - Classic Music Review - San Vicente - altrochchick - 2021, April 11 - to article - Medium - The truth of San Vicente in the voice of Milton Nascimento Mosaic Institute - Eduardo Campos - 2017, Oct 27 - https://hyp.is/V6DIJMuaEe-hQ1OPLsWsTw/medium.com/instituto-mosaico/a-verdade-de-san-vicente-na-voz-de-milton-nascimento-3ca69d241c53 - from - youtube - music - San Vicente - Milton Nascimento - Live at Montreal Jazz Festival - moving performance - https://hyp.is/oElbPsucEe-nqit3PkZ2Bg/www.youtube.com/watch?v=H0BLHm7uyO0

    1. for - article - Medium - The truth of San Vicente in the voice of Milton Nascimento Mosaic Institute - Eduardo Campos - 2017, Oct 27 - from - music - review Milton Nascimento. Lo Borges - Clube Da Esquina - Classic Music Review - San Vicente - altrochchick - 2021, April 11 - https://hyp.is/krcU1suaEe-s5zcLEaXR3Q/altrockchick.com/2021/04/11/milton-nascimiento-lo-borges-clube-da-esquina-classic-music-review/ - from - youtube - music - San Vicente - Milton Nascimento - Live at Montreal Jazz Festival - moving performance - https://hyp.is/oElbPsucEe-nqit3PkZ2Bg/www.youtube.com/watch?v=H0BLHm7uyO0 - Investigate possibility - Deep Humanity BEing journey - San Vicente - Milton Nascimento

    1. Reviewer #1 (Public review):

      Summary:

      Meissner et al describe an update on the collection of split-GAL4 lines generated by a consortium led by Janelia Research Campus. This follows the same experimental pipeline described before and presents as a significant increment to the present collection. This will strengthen the usefulness and relevance of "splits" as a standard tool for labs that already use this tool and attract more labs and researchers to use it.

      Strengths:

      This manuscript presents a solid step to establish Split-GAL4 lines as a relevant tool in the powerful Drosophila toolkit. Not only the raw number of available lines contribute to the relevance of this tool in the "technical landscape" of genetic tools, but additional features of this effort contribute to the successful adoption. These include:

      (1) A description of expression patterns in the adult and larvae, expanding the "audience" for these tools<br /> (2) A classification of line combination according to quality levels, which provides a relevant criterion while deciding to use a particular set of "splits".<br /> (3) Discrimination between male and female expression patterns, providing hints regarding the potential role of these gender-specific circuits.<br /> (4) The search engine seems to be user-friendly, facilitating the retrieval of useful information.<br /> (5) An acknowledgement of the caveats and challenges that splits (like any other genetic tool) can carry.<br /> Overall, the authors employed a pipeline that maximizes the potential of the Split-GAL4 collection to the scientific community.

      Weaknesses:

      My concerns were resolved regarding the existence of caveats while using these tools that researchers should be aware of, particularly those using them for the first time.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript describes the creation and curation of a collection of genetic driver lines that specifically label small numbers of neurons, often just a single to handful of cell types, in the central nervous system of the fruit fly, Drosophila melanogaster. The authors screened over 77,000 split hemidriver combinations to yield a collection of 3060 lines targeting a range of cell types in the adult Drosophila central nervous system and 1373 lines characterized in third-instar larvae. These genetic driver lines have already contributed to several important publications and will no doubt continue to do so. It is a truly valuable resource that represents the cooperation of several labs throughout the Drosophila community.

      Strengths:

      The authors have thoughtfully curated and documented the lines that they have created, so that they may be maximally useful to the greater community. This documentation includes confocal images of neurons labeled by each driver line and when possible, a list of cell types labeled by the genetic driver line and their identity in an EM connectome dataset. The authors have also made available some information from the other lines they created and tested but deemed not specific or strong enough to be included as part of the collection. This additional resource will be a valuable aid for those seeking to label cell types that may not be included in the main collection.

      The added revisions help to clarify important points relating to the creation of the lines, which lines were included as part of this specific collection, and caveats to be mindful of when using any of the described lines. These revisions will increase the manuscript's utility to users who may be less familiar with this resource.

      Weaknesses:

      The major weakness, which is also in some ways a strength, is the stringent requirement that lines that be included be highly specific across the CNS. As a result, the lines that are part of this specific collection are sparse and specific but also limited in which cell types they cover. Doubtless there are many missing cell types.

    1. Reviewer #1 (Public review):

      Summary:

      This study provides convincing data showing that expression of the PIK3R1(deltaExon11) dominant negative mutation in Activated PI3K Delta Syndrome 1/2 (APDS1/2) patient-derived cells reduces AKT activation and p110δ protein levels. Using a 3T3-L1 model cell system, the authors show that overexpressed p85α(deltaExon 11) displays reduced association with the p110α catalytic subunit but strongly interacts with Irs1/2. Overexpression of PIK3R1 dominant negative mutants inhibit AKT phosphorylation and reduce cellular differentiation of preadipocytes. The experimental design, interpretation, and quantification broadly support the authors' conclusions, which establishes a new paradigm that warrants future studies.

      Strengths:

      The strength of this study is the clear results derived from Western blots analysis of cell signaling markers (e.g. pAKT1), and co-immunoprecipitation of PI3K holoenzyme complexes and associated regulatory factors (e.g. Irs1/2). The authors analyze a variety of PIK3R1 mutants (i.e. deltaExon11, E489K, R649W, and Y657X), which reveals a range of phenotypes that support the proposed model for dominant negative activity. The use of clonal cell lines with doxycycline induced expression of the PIK3R1 mutants (deltaExon 11, R649W, and Y657X) provides convincing experimental data concerning the relationship between p85α mutant expression and AKT phosphorylation in vivo. This approach for overexpression is excellent and should be utilized more broadly by cell biologists. The authors convincingly show that p85α(deltaExon11, R649W, or Y657X) is unable to associate with p110α but instead more strongly associates with Irs1/2 compared to wild type p85α. Overall, this article does a great job of motivating future studies of SHORT and APDS2 PIK3R1 mutants expressed from their endogenous loci (e.g. knock-in mice).

      Weaknesses:

      The limitations for this study lie in the complexity of the cell signaling pathway under investigation, rather than a lack of rigor by the authors. Future experimentation will help reconcile the cell type specific differences (e.g. APDS2 patient derived cells vs. the 3T3-L1 cell model system) in PIK3R1 mutant behavior reported by the authors. This is also intimately linked to variable expression of PIK3R1 mutants and cell-type specific regulatory factors. Although beyond the scope of this work, an unbiased proteomic study that broadly evaluates the cell signaling landscape could provide a more holistic understanding of the APDS2 and SHORT mutants compared to a candidate-based approach. Additional structural biochemistry of the p110α/p85α(deltaExon 11) complex is needed to explain why PIK3R1 mutant regulatory subunits do not strongly associate with the p110 catalytic subunit. A more comprehensive biochemical analysis of p110α/p85α, p110β/p85α, and p110δ/p85α mutant protein complexes will also be necessary to explain various cell signaling phenotypes. A minor limitation of this study is the use of single end point assays to measure PI3K lipid kinase activity in the presence of one regulatory input (i.e. RTK-derived pY peptide). An expanded biochemical analysis of purified mutant PI3K complexes across the canonical membrane signaling landscape will be important for deciphering how competition between wild-type and mutant regulatory subunits are regulated in different cell signaling contexts.

    2. Reviewer #2 (Public review):

      Patsy R. Tomlinson et al; investigated the impact of different p85 alpha variants associated with SHORT syndrome or APDS2 on insulin mediated signaling in dermal fibroblasts and preadipocytes. They perform this study as APDS2 patients oftern present with features of SHORT syndrome. They found no evidence of hyperactive PI3K signalling monitored by pAKT in a APDS2 patient-derived dermal fibroblast cells. In these cells p110 alpha protein levels were comparable to levels in control cells, however, p110 delta protein levels were strongly reduced. Remarkably, the truncated APDS2-causal p85 alpha variant was less abundant in these cells than p85 alpha wildtype. Afterwards they studied the impact of ectopically expressed p85 alpha variants on insulin mediated PI3K signaling in 3T3-L1 preadipocytes. Interestingly they found that the truncated APDS2-causal p85 alpha variant impaired insulin induced signaling. Using immunoprecipitation of p110 alpha they did not find truncated APDS2-causal p85 alpha variant in p110 alpha precipitates. Furthermore, by immunoprecipitating IRS1 and IRS2 they observed that the truncated APDS2-causal p85 alpha variant was very abundant in IRS1 and IRS2 precipitates, even in the absence of insulin stimulation. These important findings add in an interesting way possible mechanistic explanation for the growing number of APDS2 patients described with features of SHORT syndrome.

      Strengths:

      Based on state-of-the-art functional studies, the authors show that the p85 alpha variant responsible for APDS2, known to be associated with increased PI3K-delta signaling, can attenuate PI3K-alpha signalling in preadipocytes, providing a possible mechanistic explanation for the growing number of APDS2 patients with features of SHORT syndrome.

      Weaknesses:

      The proposed paradigm is based on one cell line derived from an APDS2 patient and an overexpressing system. The investigation of a larger number of cell lines derived from APDS2 patients would further substantiate the conclusion.

    1. Reviewer #1 (Public review):

      This study presents an investigation into the physiological functions of RIPK1 within the context of liver physiology, particularly during short-term fasting. Through the use of hepatocyte-specific Ripk1-deficient mice (Ripk1Δhep), the authors embarked on an examination of the consequences of Ripk1 deficiency in hepatocytes under fasting conditions. They discovered that the absence of RIPK1 sensitized the liver to acute injury and hepatocyte apoptosis during fasting, a finding of significant interest given the crucial role of the liver in metabolic adaptation. Employing a combination of transcriptomic profiling and single-cell RNA sequencing techniques, the authors uncovered intricate molecular mechanisms underlying the exacerbated proinflammatory response observed in Ripk1Δhep mice during fasting. While the investigation offers valuable insights into the consequences of Ripk1 deficiency in hepatocytes during fasting conditions, there appears to be a primarily descriptive nature to the study with a lack of clear connection between the experiments. Thus, a stronger focus is warranted, particularly on understanding the dialogue between hepatocytes and macrophages. Moreover, the data would benefit from reinforcement through additional experiments such as Western blotting, flow cytometry, and rescue experiments, which would offer a more quantitative aspect to the findings. By incorporating these enhancements, the study could achieve a more comprehensive understanding of the underlying mechanisms and ultimately strengthen the overall impact of the research.

      Comments on revision:

      The authors have addressed my comments accordingly.

    2. Reviewer #2 (Public review):

      Summary:

      Zhang et al. analyzed the functional role of hepatocyte RIPK1 during metabolic stress, particularly its scaffold function rather than kinase function. They show that Ripk1 knockout sensitizes the liver to cell death and inflammation in response to short-term fasting, a condition that would not induce obvious abnormality in wild-type mice.

      Strengths:

      The findings are based on a knockout mouse model and supported by bulk RNA-seq and scRNA-seq. The work consolidates the complex role of RIPK1 in metabolic stress.

      Comments on revision:

      The authors have addressed my concerns. The added experiments consolidated the findings. I do not have further comments.

    1. Reviewer #1 (Public Review):

      Summary:

      The emergence of Drosophila EM connectomes has revealed numerous neurons within the associative learning circuit. However, these neurons are inaccessible for functional assessment or genetic manipulation in the absence of cell-type-specific drivers. Addressing this knowledge gap, Shuai et al. have screened over 4000 split-GAL4 drivers and correlated them with identified neuron types from the "Hemibrain" EM connectome by matching light microscopy images to neuronal shapes defined by EM. They successfully generated over 800 split-GAL4 drivers and 22 split-LexA drivers covering a substantial number of neuron types across layers of the mushroom body associative learning circuit. They provide new labeling tools for olfactory and non-olfactory sensory inputs to the mushroom body; interneurons connected with dopaminergic neurons and/or mushroom body output neurons; potential reinforcement sensory neurons; and expanded coverage of intrinsic mushroom body neurons. Furthermore, the authors have optimized the GR64f-GAL4 driver into a sugar sensory neuron-specific split-GAL4 driver and functionally validated it as providing a robust optogenetic substitute for sugar reward. Additionally, a driver for putative nociceptive ascending neurons, potentially serving as optogenetic negative reinforcement, is characterized by optogenetic avoidance behavior. The authors also use their very large dataset of neuronal anatomies, covering many example neurons from many brains, to identify neuron instances with atypical morphology. They find many examples of mushroom body neurons with altered neuronal numbers or mistargeting of dendrites or axons and estimate that 1-3% of neurons in each brain may have anatomic peculiarities or malformations. Significantly, the study systematically assesses the individualized existence of MBON08 for the first time. This neuron is a variant shape that sometimes occurs instead of one of two copies of MBON09, and this variation is more common than that in other neuronal classes: 75% of hemispheres have two MBON09's, and 25% have one MBON09 and one MBON08. These newly developed drivers not only expand the repertoire for genetic manipulation of mushroom body-related neurons but also empower researchers to investigate the functions of circuit motifs identified from the connectomes. The authors generously make these flies available to the public. In the foreseeable future, the tools generated in this study will allow important advances in the understanding of learning and memory in Drosophila.

      Strengths:

      (1) After decades of dedicated research on the mushroom body, a consensus has been established that the release of dopamine from DANs modulates the weights of connections between KCs and MBONs. This process updates the association between sensory information and behavioral responses. However, understanding how the unconditioned stimulus is conveyed from sensory neurons to DANs, and the interactions of MBON outputs with innate responses to sensory context remains less clear due to the developmental and anatomic diversity of MBONs and DANs. Additionally, the recurrent connections between MBONs and DANs are reported to be critical for learning. The characterization of split-GAL4 drivers for 30 major interneurons connected with DANs and/or MBONs in this study will significantly contribute to our understanding of recurrent connections in mushroom body function.

      (2) Optogenetic substitutes for real unconditioned stimuli (such as sugar taste or electric shock) are sometimes easier to implement in behavioral assays due to the spatial and temporal specificity with which optogenetic activation can be induced. GR64f-GAL4 has been widely used in the field to activate sugar sensory neurons and mimic sugar reward. However, the authors demonstrate that GR64f-GAL4 drives expression in other neurons not necessary for sugar reward, and the potential activation of these neurons could introduce confounds into training, impairing training efficiency. To address this issue, the authors have elaborated on a series of intersectional drivers with GR64f-GAL4 to dissect subsets of labeled neurons. This approach successfully identified a more specific sugar sensory neuron driver, SS87269, which consistently exhibited optimal training performance and triggered ethologically relevant local searching behaviors. This newly characterized line could serve as an optimized optogenetic tool for sugar reward in future studies.

      (3) MBON08 was first reported by Aso et al. 2014, exhibiting dendritic arborization into both ipsilateral and contralateral γ3 compartments. However, this neuron could not be identified in the previously published Drosophila brain connectomes. In the present study, the existence of MBON08 is confirmed, occurring in one hemisphere of 35% of imaged flies. In brains where MBON08 is present, its dendrite arborization disjointly shares contralateral γ3 compartments with MBON09. This remarkable phenotype potentially serves as a valuable resource for understanding the stochasticity of neurodevelopment and the molecular mechanisms underlying mushroom body lobe compartment formation.

    2. Reviewer #2 (Public Review):

      Summary:

      The article by Shuai et al. describes a comprehensive collection of over 800 split-GAL4 and split-LexA drivers, covering approximately 300 cell types in Drosophila, aimed at advancing the understanding of associative learning. The mushroom body (MB) in the insect brain is central to associative learning, with Kenyon cells (KCs) as primary intrinsic neurons and dopaminergic neurons (DANs) and MB output neurons (MBONs) forming compartmental zones for memory storage and behavior modulation. This study focuses on characterizing sensory input as well as direct upstream connections to the MB both anatomically and, to some extent, behaviorally. Genetic access to specific, sparsely expressed cell types is crucial for investigating the impact of single cells on computational and functional aspects within the circuitry. As such, this new and extensive collection significantly extends the range of targeted cell types related to the MB and will be an outstanding resource to elucidate MB-related processes in the future.

      Strengths:

      The work by Shuai et al. provides novel and essential resources to study MB-related processes and beyond. The resulting tools are publicly available and, together with the linked information, will be foundational for many future studies. The importance and impact of this tool development approach, along with previous ones, for the field cannot be overstated. One of many interesting aspects arises from the anatomical analysis of cell types that are less stereotypical across flies. These discoveries might open new avenues for future investigations into how such asymmetry and individuality arise from development and other factors, and how it impacts the computations performed by the circuitry that contains these elements.

    3. Reviewer #3 (Public Review):

      Summary:

      Previous research on the Drosophila mushroom body (MB) has made this structure the best-understood example of an associative memory center in the animal kingdom. This is in no small part due to the generation of cell-type specific driver lines that have allowed consistent and reproducible genetic access to many of the MB's component neurons. The manuscript by Shuai et al. now vastly extends the number of driver lines available to researchers interested in studying learning and memory circuits in the fly. It is an 800-plus collection of new cell-type specific drivers target neurons that either provide input (direct or indirect) to MB neurons or that receive output from them. Many of the new drivers target neurons in sensory pathways that convey conditioned and unconditioned stimuli to the MB. Most drivers are exquisitely selective, and researchers will benefit from the fact that whenever possible, the authors have identified the targeted cell types within the Drosophila connectome. Driver expression patterns are beautifully documented and are publicly available through the Janelia Research Campus's Flylight database where full imaging results can be accessed. Overall, the manuscript significantly augments the number of cell type-specific driver lines available to the Drosophila research community for investigating the cellular mechanisms underlying learning and memory in the fly. Many of the lines will also be useful in dissecting the function of the neural circuits that mediate sensorimotor circuits.

      Strengths:

      The manuscript represents a huge amount of careful work and leverages numerous important developments from the last several years. These include the thousands of recently generated split-Gal4 lines at Janelia and the computational tools for pairing them to make exquisitely specific targeting reagents. In addition, the manuscript takes full advantage of the recently released Drosophila connectomes. Driver expression patterns are beautifully illustrated side-by-side with corresponding skeletonized neurons reconstructed by EM. A comprehensive table of the new lines, their split-Gal4 components, their neuronal targets, and other valuable information will make this collection eminently useful to end-users. In addition to the anatomical characterization, the manuscript also illustrates the functional utility of the new lines in optogenetic experiments. In one example, the authors identify a specific subset of sugar reward neurons that robustly promotes associative learning.

    1. Reviewer #1 (Public review):

      Summary:

      Knudstrup et al. use two-photon calcium imaging to measure neural responses in the mouse primary visual cortex (V1) in response to image sequences. The authors presented mice with many repetitions of the same four-image sequence (ABCD) for four days. Then on the fifth day, they presented unexpected stimulus orderings where one stimulus was either omitted (ABBD) or substituted (ACBD). After analyzing trial-averaged responses of neurons pooled across multiple mice, they observed that stimulus omission (ABBD) caused a small, but significant, strengthening of neural responses but observed no significant change in the response to stimulus substitution (ACBD). Next, they performed population analyses of this dataset. They showed that there were changes in the correlation structure of activity and that many features about sequence ordering could be reliably decoded. This second set of analyses is interesting and exhibited larger effect sizes than the first results about predictive coding. However, concerns about the design of the experiment temper my enthusiasm.

      The most recent version of this manuscript makes a few helpful changes (entirely in supplemental figures--the main text figures are unchanged). It does not resolve any of the larger weaknesses of the experimental design, or even perform single-neuron tracking in the one case where it was possible (between similar FOVs shown in Supplemental Figure 1).

      Strengths:

      (1) The topic of predictive coding in the visual cortex is exciting, and this task builds on previous important work by the senior author (Gavornik and Bear 2014) where unexpectedly shuffling sequence order caused changes in LFPs recorded from visual cortex.

      (2) Deconvolved calcium responses were used appropriately here to look at the timing of the neural responses.

      (3) Neural decoding results showing that the context of the stimuli could be reliably decoded from trial-averaged responses were interesting. But I have concerns about how the data was formatted for performing these analyses.

      Weaknesses:

      (1) All analyses were performed on trial-averaged neural responses that were pooled across mice (except for Supplementary Figure 6, see below). Owing to differences between subjects in behavior, experimental preparation quality, and biological variability, it seems important to perform most analyses on individual datasets to assess how behavioral training might differently affect each animal.

      In the most recent draft, a single-mouse analysis was added for Figure 4C (Supplementary Figure 6). This effect of "representational drift" was not statistically quantified in either the single-mouse results or in the main text figure panel. Moreover, the apparent correlational drift could be accounted for by a reduction in SNR as a consequence of photobleaching.

      (2) The correlation analyses presented in Figure 3 (labeled the second Figure 2 in the text) should be conducted on a single-animal basis. Studying population codes constructed by pooling across mice, particularly when there is no behavioral readout to assess whether learning has had similar effects on all animals, appears inappropriate to me. If the results in Figure 3 hold up on single animals, I think that is definitely an interesting result.

      In the most recent draft, this analysis was still not performed on single mice. I was referring to the "decorrelation of responses" analysis in Figure 3, not the "representational drift" analysis in Figure 4. See my comments on Supplementary Figure 6 above.

      (3) On Day 0 and Day 5, the reordered stimuli are presented in trial blocks where each image sequence is shown 100 times. Why wasn't the trial ordering randomized as was done in previous studies (e.g. Gavornik and Bear 2014)? Given this lack of reordering, did neurons show reduced predictive responses because the unexpected sequence was shown so many times in quick succession? This might change the results seen in Figure 2, as well as the decoder results where there is a neural encoding of sequence order (Figure 4). It would be interesting if the Figure 4 decoder stopped working when the higher order block structure of the task were disrupted.

      In the rebuttal letter for the most recent draft, the authors refer to recent work in press (Hosmane et al. 2024) suggesting that because sleep may be important for plastic changes between sessions, they do not expect much change to be apparent within a session. However, they admit that this current study is too underpowered to know for sure--and do not cite or mention this yet unpublished work in the manuscript itself.

      As a control, I would be interested to at least know how much variance in neural responses is observed between intermediate "training" sessions with identical stimuli, e.g. between Day 1 and Day 4, but this is not possible as imaging was not performed on these days.

      Despite being referred to as "similar" I do not think early and late responses are clearly shown--aside from the histograms comparing "early traces" to "all traces" which include early traces in Figure 5B and Figure 6A. Showing variance in single-cell responses would be helpful to add in Supplementary Figure 3 and Supplementary Figure 4.

      (4) A primary advantage of using two-photon calcium imaging over other techniques like extracellular electrophysiology is that the same neurons can be tracked over many days. This is a standard approach that can be accomplished by using many software packages-including Suite2P (Pachitariu et al. 2017), which is what the authors already used for the rest of their data preprocessing. The authors of this paper did not appear to do this. Instead, it appears that different neurons were imaged on Day 0 (baseline) and Day 5 (test). This is a significant weakness of the current dataset.

      In the most recent draft, this concern has not been mitigated. Despite Supplementary Figure 1 showing similar FOVs, mostly different neurons were still extracted. In all other sessions, it is not reported how far apart the other recorded FOVs were from each other.

      The rebuttal comment that the PE statistic is computed on an individual cell within-session basis is reasonable. Moreover, the bootstrapped version of the PE analysis in Supplementary Figure 8 is an improvement of the main analysis in the paper. As a control, it would have been helpful to compute the stability of the PE ratio statistics between training days (e.g. between day 1 and day 4). How much change would have been observed when none is expected? Unfortunately, imaging was not performed on these training days so this analysis will not be readily possible to perform. Moreover, the PE statistic requires averaging across cells and trials and is therefore very likely to wash out many interesting effects. Even if it is the population response that is changing, why would it be the arithmetic mean that changes in particular vs. some other projection of the population activity? The experimental and analysis design of the paper here remains weak in my mind.

    2. Reviewer #2 (Public review):

      Knudstrup and colleagues investigate response to short and rapid sequences of stimuli in layer 2/3 of mouse visual cortex. To quote the authors themselves: "the work continues the recent tradition of providing ambiguous support for the idea that cortical dynamics are best described by predictive coding models". Unfortunately, the ambiguity here is largely a result of the choice of experimental design and analysis, and the data provide only incomplete support for the authors' conclusions.

      The authors have addressed some of the concerns of the first revision. However, many still remain.

      (1) From the first review: "There appears to be some confusion regarding the conceptual framing of predictive coding. Assuming the mouse learns to expect the sequence ABCD, then ABBD does not probe just for negative prediction errors, and ACBD not just positive prediction errors. With ABBD, there is a combination of a negative prediction error for the missing C in the 3rd position, and a positive prediction error for B in 3rd. Likewise, with ACBD, there is negative prediction error for the missing B at 2nd and missing C at 3rd, and a positive prediction error for the C in 2nd and B in 3rd. Thus, the authors' experimental design does not have the power to isolate either negative or positive prediction errors. Moreover, looking at the raw data in Figure 2C, this does not look like an "omission" response to C, more like a stronger response to a longer B. The pitch of the paper as investigating prediction error responses is probably not warranted - we see no way to align the authors' results with this interpretation."

      The authors acknowledge in their response that this is a problem, but do not appear to discuss this in the manuscript. This should be fixed.

      (2) From the first review: "Recording from the same neurons over the course of this paradigm is well within the technical standards of the field, and there is no reason not to do this. Given that the authors chose to record from different neurons, it is difficult to distinguish representational drift from drift in the population of neurons recorded. "

      The authors respond by pointing out that what they mean by "drift" is within day changes. This has been clarified. However, the analyses in Figures 3 and 5 still are done across days. Figure 3: "Experience modifies activity in PCA space ..." and figure 5: "Stimulus responses shift with training". Both rely on comparisons of population activity across days. This concern remains unchanged here. It would probably be best to remove any analysis done across days - or use data where the same neurons were tracked. Performing chronic two-photon imaging experiments without tracking the same neurons is simply bad practice (assuming one intends to do any analysis across recording sessions).

      (3) From the first revision: "The block paradigm to test for prediction errors appears ill chosen. Why not interleave oddball stimuli randomly in a sequence of normal stimuli? The concern is related to the question of how many repetitions it takes to learn a sequence. Can the mice not learn ACBD over 100x repetitions? The authors should definitely look at early vs. late responses in the oddball block. Also the first few presentations after block transition might be potentially interesting. The authors' analysis in the paper already strongly suggests that the mice learn rather rapidly. The authors conclude: "we expected ABCD would be more-or-less indistinguishable from ABBD and ACBD since A occurs first in each sequence and always preceded by a long (800 ms) gray period. This was not the case. Most often, the decoder correctly identified which sequence stimulus A came from." This would suggest that whatever learning/drift could happen within one block did indeed happen and responses to different sequences are harder to interpret."

      Again, the authors acknowledge the problem and state that "there is no indication that this is a learned effect". However, they provide no evidence for this and perform no analysis to mitigate the concern.

      (4) Some of the minor comments also appear unaddressed and uncommented. E.g. the response amplitudes are still shown in "a.u." instead of dF/F or z-score or spikes.

    3. Reviewer #3 (Public review):

      Summary:

      This work provides insights into predictive coding models of visual cortex processing. These models predict that visual cortex neurons will show elevated responses when there are unexpected changes to learned sequential stimulus patterns. This model is currently controversial, with recent publications providing conflicting evidence. In this work, the authors test two types of unexpected pattern variations in layer 2/3 of the mouse visual cortex. They show that pattern omission evokes elevated responses, in favor of a predictive coding model, but find no evidence for prediction errors with substituted patterns, which conflicts with both prior results in L4, and with the expectations of a predictive coding model. They also report that with sequence training, responses sparsify and decorrelate, but surprisingly find no changes in the ability of an ideal observer to decode stimulus identity or timing.

      These results are an important contribution to the understanding of how temporal sequences and expectations are encoded in the primary visual cortex

      Comments on revisions:

      In this revision, the authors address several of the concerns in the original manuscript. However, the primary issue, raised by all three reviewers, was the block design of the experiments. This design makes disentangling the effects of any rapid (within block) plasticity from any longer term (across days) plasticity-which nominally is the subject of the paper-extremely difficult.

      Although it may be the case that re-running the experiments with an interleaved design is beyond the scope of this paper, unfortunately, the revised manuscript still does not adequately discuss this potential confound. The authors note that stimulus A in ABCD, ABBD, and ACBD could be distinguished on day 0, indicating that within block changes do occur. In both the original and revised manuscript this finding is discussed in terms of representational drift, but the authors fail to discuss how such within block plasticity may impact their primary findings of prediction error effects.

      This remains a significant concern with the revised manuscript.

      Many of the other issues in the original manuscript have been addressed, and in these areas the revised manuscript is both clearer and more accurately reflects the presented data. The additional analyses and controls shown in the supplemental figures aid in the interpretation of the findings.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors provide a method aiming to accurately reflect the individual deviation of longitudinal/temporal change compared to the normal temporal change characterized based on pre-trained population normative model (i.e., a Bayesian linear regression normative model), which was built based on cross-sectional data. This manuscript aims at solving a recently identified problem of using normative models based on cross-sectional data to make inferences about longitudinal change.

      Strengths:

      The efforts of this work make a good contribution to addressing an important question of normative modeling. With the greater availability of cross-sectional studies for normative modeling than longitudinal studies, and the inappropriateness of making inferences about longitudinal subject-specific changes using these cross-sectional data-based normative models, it's meaningful to try to address this gap from the aspect of methodological development.

    1. Reviewer #1 (Public review):

      Summary:

      This work aims at understanding the role of thalamus POm in dorsal lateral striatum (DLS) projection in learning a sensorimotor associative task. The authors first confirm that POm forms "en passant" synapses with some of the DLS neuronal subtypes. They then perform a go/no-go associative task that consists of the mouse learning to discriminate between two different textures and to associate one of them with an action. During this task they either record the activity of the POm to DLS axons using endoscopy or silence their activity. They report that POm axons in the DLS are activated around the sensory stimulus but that the activity is not modulated by the reward. Last, they showed that silencing the POm axons at the level of DLS slows down learning the task.

      The authors show convincing evidence of projections from POm to DLS and that POm inputs to DLS code for whisking whatever the outcome of the task is. However, their results do not allow to conclude if more neurones are recruited during the learning process or if the already activated fibres get activated more strongly. Last, because POm fibres in the DLS are also projecting to S1, silencing the POm fibres in the DLS could have affected inputs in S1 as well and therefore, the slowdown in acquiring the task is not necessarily specific to the POm to DLS pathway.

      Strengths:

      One of the main strengths of the paper is to go from slice electrophysiology to behaviour to get an in-depth characterization of one pathway. The authors did a comprehensive description of the POm projections to the DLS using transgenic mice to unambiguously identify the DLS neuronal population. They also used a carefully designed sensorimotor association task, and they exploited the results in depth.

      It is a very nice effort to have measured the activity of the axons in the DLS not only after the mice have learned the task but throughout the learning process. It shows the progressive increase of activity of POm axons in the DLS, which could imply that there is a progressive strengthening of the pathway. The results show convincingly that POm axons in the DLS are not activated by the outcome of the task but by the whisker activity, and that this activity in average increases with learning.

      Weaknesses:

      One of the main targets of the striatum from thalamic input are the cholinergic neurons that weren't investigated here, is there information that could be provided?

      It is interesting to know that the POm projects to all neuronal types in the DLS, but this information is not used further down the manuscript so the only take-home message of Figure 1 is that the axons that they image or silence in the DLS are indeed connected to DLS neurons and not just passing fibres. In this line, are these axons the same as the ones projecting to S1? If this is the case, why would we expect a different behaviour of the axon activity at the DLS level compared to S1?

      The authors used endoscopy to measure the POm axons in the DLS activity, which makes it impossible to know if the progressive increase of POm response is due to an increase of activity from each individual neurons or if new neurons are progressively recruited in the process.

      The picture presented in Figure 4 of the stimulation site is slightly concerning as there are hardly any fibres in neocortical layer 1 while there seems to be quite a lot of them in layer 4, suggesting that the animal here was injected in the VB. This is especially striking as the implantation and projection sites presented in Figure 1 and 2 are very clean and consistent with POm injection.

      Comment after review: The weaknesses remain as concerns have not been addressed. The dataset is interesting but the interpretation, due partly to the lack of control (especially relative to VPM contamination), is difficult.

    2. Reviewer #2 (Public review):

      Summary:

      Yonk and colleagues show that the posterior medial thalamus (POm), which is interconnected with sensory and motor systems, projects directly to major categories of neurons in the striatum, including direct and indirect pathway MSNs, and PV interneurons. Activity in POm-striatal neurons during a sensory-based learning task indicates a relationship between reward expectation and arousal. Inhibition of these neurons slows reaction to stimuli and overall learning. This circuit is positioned to feed salient event activation to the striatum to set the stage for effective learning and action selection.

      Strengths:

      The results are well presented and offer interesting insight into an understudied thalamostriatal circuit. In general, this work is important as part of a general need for an increased understanding of thalamostriatal circuits in complex learning and action selection processes, which have generally received less attention than corticostriatal systems.

      Weaknesses:

      There could be a stronger connection between the connectivity part of the data - showing that POm neurons context D1, D2, and PV neurons in striatum but with some different properties - and the functional side of the project. One wonders whether the POm neurons projecting to these subtypes or striatal neurons have unique signaling properties related to learning, or if there is a uniform, bulk signal sent to striatum. This is not a weakness per se, as it's reasonable for these questions to be answered in future papers.

      All the in vivo activity-related conclusions stem from data from just 5 mice, which is a relatively small sample set. Optogenetic groups are also on the small side.

      Comments on revisions:

      The revision has a lot of thoughtful discussion added. I think overall the paper is more thorough and will also be a nice set up for a number of future research questions.

    3. Reviewer #3 (Public review):

      Yonk and colleagues investigate the role of the thalamostriatal pathway. Specifically, they studied the interaction of the posterior thalamic nucleus (PO) and the dorsolateral striatum in the mouse. First, they characterize connectivity by recording DLS neurons in in vitro slices and optogenetically activating PO terminals. PO is observed to establish depressing synapses onto D1 and D2 spiny neurons as well as PV neurons. Second, the image PO axons are imaged by fiber photometry in mice trained to discriminate textures. Initially, no trial-locked activity is observed, but as the mice learn PO develops responses timed to the audio cue that marks the start of the trial and precedes touch. PO does appear to encode the tactile stimulus type or outcome. Optogenetic suppression of PO terminals in striatum slow task acquisition. The authors conclude that PO provides a "behaviorally relevant arousal-related signal" and that this signal "primes" striatal circuitry for sensory processing.

      A great strength of this paper is its timeliness. Thalamostriatal processing has received almost no attention in the past, and the field has become very interested in the possible functions of PO. Additionally, the experiments exploit multiple cutting-edge techniques.

      There seem to be some technical/analytical weaknesses. The in vitro experiments appear to have some contamination of nearby thalamic nuclei by the virus delivering the opsin, which could change the interpretation. Some of the statistical analysis of these data also appear inappropriate. The correlative analysis of Pom activity in vivo, licking, and pupil could be more convincingly done.

      The bigger weakness is conceptual - why should striatal circuitry need "priming" by thalamus in order to process sensory stimuli? Why would such circuitry even be necessary? Why is a sensory signal from cortex insufficient? Why should the animal more slowly learn the task? How does this fit with existing ideas of striatal plasticity? It is unclear from the experiments that the thalamostriatal pathway exists for priming sensory processing. In fact the optogenetic suppression of the thalamostriatal pathway seems to speak against that idea.

      Comments on revisions:

      The authors have only tweaked the Discussion and not necessarily in ways that addressed our previous comments. They could have fairly easily analyzed the effect of distance of recording from injection site and compared subsets of data depending on contamination beyond PO (my comments 1 and 2) or effects of movements (3 and 4). Minimally, they could have given caveats in the Results and Discussion about these, and I would strongly encourage them to be explicit about the caveats. The analyses would probably be better.

      The suggestion that the effects have something to do with priming (5), seems a grasp for function of the circuit.

    1. Reviewer #1 (Public review):

      Summary:

      In this series of studies, Locantore et al. investigated the role of SST-expressing neurons in the entopeduncular nucleus (EPNSst+) in probabilistic switching tasks, a paradigm that requires continued learning to guide future actions. In prior work, this group had demonstrated EPNSst+ neurons co-release both glutamate and GABA and project to the lateral habenula (LHb), and LHb activity is also necessary for outcome evaluation necessary for performance in probabilistic decision-making tasks. Previous slice physiology works have shown that the balance of glutamate/GABA co-release is plastic, altering the net effect of EPN on downstream brain areas and neural circuit function. The authors used a combination of in vivo calcium monitoring with fiber photometry and computational modelling to demonstrate that EPNSst+ neural activity represents movement, choice direction and reward outcomes in their behavioral task. However, viral-genetic manipulations to synaptically silence these neurons or selectively eliminate glutamate release had no effect on behavioral performance in well-trained animals. The authors conclude that despite their representation of task variables, EPN Sst+ neuron synaptic output is dispensable for task performance.

      Strengths and Weaknesses:

      Overall, the manuscript is exceptionally scholarly, with a clear articulation of the scientific question and a discussion of the findings and their limitations. The analyses and interpretations are careful and rigorous. This review appreciates the thorough explanation of the behavioral modelling and GLM for deconvolving the photometry signal around behavioral events, and the transparency and thoroughness of the analyses in the supplemental figures. This extra care has the result of increasing the accessibility for non-experts, and bolsters confidence in the results. To bolster a reader's understanding of results, we suggest it would be interesting to see the same mouse represented across panels (i.e. Fig 1 F-J, Supp 1 F,K etc i.e via inclusion of faint hash lines connecting individual data points across variables. Additionally, Fig 3E demonstrates that eliminating the 'reward' and 'choice and reward' terms from the GLM significantly worsens model performance; to demonstrate the magnitude of this effect, it would be interesting to include a reconstruction of the photometry signal after holding out of both or one of these terms, alongside the 'original' and 'reconstructed' photometry traces in panel D. This would help give context for how the model performance degrades by exclusion of those key terms. Finally, the authors claimed calcium activity increased following ipsilateral movements. However, figure 3C clearly shows that both SXcontra and SXisi increase beta coefficients. Instead, the choice direction may be represented in these neurons, given that beta coefficients increase following CXipsi and before SEipsi, presumably when animals make executive decisions. Could the authors clarify their interpretation on this point? Also, it is not clear if there is a photometry response related to motor parameters (i.e. head direction or locomotion, licking), which could change the interpretation of the reward outcome if it is related to a motor response; could the authors show photometry signal from representative 'high licking' or 'low licking' reward trials, or from spontaneous periods of high. Vs low locomotor speeds (if the sessions are recorded) to otherwise clarify this point?

      There are a few limitations with the design and timing of the synaptic manipulations that would improve the manuscript if discussed or clarified. The authors take care to validate the intersectional genetic strategies: Tetanus Toxin virus (which eliminates synaptic vesicle fusion) or CRISPR editing of Slc17a6, which prevents glutamate loading into synaptic vesicles. The magnitude of effect in the slice physiology results are striking. However, this relies on co-infection of a second AAV to express channelrhodopsin for the purposes of validation, and it is surely the case that there will not be 100% overlap between the proportion of cells infected. Alternative means of glutamate packaging (other VGluT isoforms, other transporters etc) could also compensate for the partial absence of VGluT2, which should be discussed. The authors do not perform a complimentary experiment to delete GABA release (i.e. via VGAT editing), which is understandable, given the absence of an effect with the pan-synaptic manipulation. A more significant concern is the timing of these manipulations as the authors acknowledge. The manipulations are all done in well-trained animals, who continue to perform during the length of viral expression. Moreover, after carefully showing that mice use different strategies on the 70/30 version vs the 90/10 version of the task, only performance on the 90/10 version is assessed after the manipulation. Together, the observation that EPNsst activity does not alter performance on a well learned, 90/10 switching task decreases the impact of the findings, as this population may play a larger role during task acquisition or under more dynamic task conditions. Additional experiments could be done to strengthen the current evidence, although the limitations is transparently discussed by the authors.

      Finally, intersectional strategies target LHb-projecting neurons, although in the original characterization it is not entirely clear that the LHb is the only projection target of EPNsst neurons. A projection map would help clarify this point.

      Overall, the authors used a pertinent experimental paradigm and common cell-specific approaches to address a major gap in the field, which is the functional role of glutamate/GABA co-release from the major basal ganglia output nucleus in action selection and evaluation. The study is carefully conducted, their analyses are thorough, and the data are often convincing and thought-provoking. However, the limitations of their synaptic manipulations with respect to the behavioral assays reduces generalizability and to some extent the impact of their findings.

      Comments on the latest version:

      Specifically, they have included more thorough analyses to address several concerns related to interpreting activity patterns of EPSst+ neurons. The authors clearly point out that calcium activity increased during ipsilateral movements, and the increase was statistically larger during the choice phase (Figure 2 supplement 1F-G), indicating that these neurons may represent movement and additional factors (e.g. executive decision-making). Correspondingly, we appreciate the thorough explanation of using a GLM model to determine which behavioural variables contribute to observed physiological signals and adding the example reconstructed signal with direction and reward variables omitted in Figure 3 supplements 1 and 2.

      Although no new manipulation experiment is added to the manuscript, the authors respond to common critiques related to testing the behavioural effect after the manipulations in well-trained mice. The discussion related to technical limitations, possible compensatory mechanisms and alternative interpretations is thorough and overall satisfying. Based on the behaviour modeling results, the authors speculate that animals need to integrate more evidence from the past to guide choice in a more uncertain environment (70/30 version), instead of adopting a 'win-stay, lose-shift' strategy in the more deterministic 90/10 version. The authors expand the discussion, but the possibility that EPNSst+ neurons contribute to task performance in well-trained animals under uncertainty is not directly tested. Along with other alternative explanations discussed in the manuscript, we think the paper is valuable literature for future studies to understand the basal ganglia circuits in learning and decision-making.

    2. Reviewer #2 (Public review):

      Summary:

      This paper aimed to determine the role EP sst+ neurons play in a probabilistic switching task.

      Strengths:

      - The in vivo recording of the EP sst+ neurons activity in the task is one of the strongest parts of this paper. Previous work had recorded from the EP-LHb population in rodents and primates in head fixed configurations, the recordings of this population in a freely moving context is a valuable addition to these studies and has highlighted more clearly that these neurons respond both at the time of choice and outcome.

      - The use of a refined intersectional technique to record specifically the EP sst+ neurons is also an important strength of the paper. This is because previous work has shown that there are two genetically different types of glutamatergic EP neurons that project to the LHb. Previous work had not distinguished between these types in their recordings so the current results showing that the bidirectional value signaling is present in the EP sst+ population is valuable.

      Weaknesses:

      - One of the main weaknesses of the paper is to do with how the effect of the EP sst+ neurons on the behavior was assessed.

      o All the manipulations (blocking synaptic release and blocking glutamatergic transmission) are chronic and more importantly the mice are given weeks of training after the manipulation before the behavioral effect is assessed. This means that as the authors point out in their discussion the mice will have time to adjust to the behavioral manipulation and compensate for the manipulations. The results do show that mice can adapt to these chronic manipulations and that the EP sst+ are not required to perform the task. What is unclear is whether the mice have compensated for the loss of EP sst+ neurons and whether they play a role in the task under normal conditions. Acute manipulations or chronic manipulations without additional training would be needed to assess this.

      o Another weakness is that the effect of the manipulations was assessed in the 90/10 contingency version of the task. Under these contingencies, mice integrate past outcomes over fewer trials to determine their choice and animals act closer to a simple win-stay-lose switch strategy. Due to this it is unclear if the EP sst+ neurons would play a role in the task when they must integrate over a larger number of conditions in the less deterministic 70/30 version of the task. Indeed it is not clear that lesioning any other regions involved in evaluation of action outcomes such as VTA dopamine neurons, that encode reward prediction errors, would have any deficit when assessed in this way. Due to this, it's not clear if the mice have adapted to solve the task without evaluating action outcomes at all and are just acting in a more deterministic lose switch manner that would not presumably involve any of the circuitry in evaluating action outcomes.

      - The authors conclude that they do not see any evidence for bidirectional prediction errors. It is not possible to conclude this. First, they see a large response in the EP sst+ neurons to the omission of an expected reward. This is what would be expected of a negative reward prediction error. There are much more specific well controlled tests for this that are commonplace in head-fixed and freely moving paradigms that could be tested to probe this. The authors do look at the effect of previous trials on the response and do not see strong consistent results, but this is not a strong formal test of what would be expected of a prediction error, either a positive or negative. The other way they assess this is by looking at the size of the responses in different recording sessions with different reward contingencies. They claim that the size of the reward expectation and prediction error should scale with the different reward probabilities. If all the reward probabilities were present in the same session this should be true as lots of others have shown for RPE. Because however this data was taken from different sessions it is not expected that the responses should scale, this is because reward prediction errors have been shown to adaptively scale to cover the range of values on offer (Tobler et al., Science 2005). A better test of positive prediction error would be to give a larger than expected reward on a subset of trials. Either way there is already evidence that responses reflect a negative prediction error in their data and more specific tests would be needed to formally rule in or out prediction error coding especially as previous recordings have shown it is present in previous primate and rodent recordings.

      - There are a lot of variables in the GLM that occur extremely close in time such as the entry and exit of a port. If two variables occur closely in time and are always correlated it will be difficult if not impossible for a regression model to assign weights accurately to each event. This is not a large issue, but it is misleading to have regression kernels for port entry and exits unless the authors can show these are separable due to behavioral jitter or a lack of correlation under specific conditions, which does not seem to be the case.

    3. Reviewer #3 (Public review):

      Summary:

      The authors find that Sst-EPN neurons, which project to the lateral habenula, encode information about response directionality (left vs right) and outcome (rewarded vs unrewarded). Surprisingly, chronic impairment of vesicular signaling in these neurons onto their LHb targets did not impair probabilistic choice behavior.

      Strengths:

      Strengths of the current work include extremely detailed and thorough analysis of data at all levels, not only of the physiological data, but also an uncommonly thorough analysis of behavioral response patterns.

      Weaknesses:

      In this revised manuscript, the authors have addressed my earlier critiques.

    1. Reviewer #2 (Public review):

      This study by Bell et al. focuses on understanding the roles of two alternatively spliced exons in the single Drosophila Cav2 gene cac. The authors generate a series of cac alleles in which one or the other mutually exclusive exons are deleted to determine the functional consequences at the neuromuscular junction. They find alternative splicing at one exon encoding part of the voltage sensor impacts the activation voltage as well as localization to the active zone. In contrast, splicing at the second exon pair does not impact Cav2 channel localization, but it appears to determine the abundance of the channel at active zones. Together, the authors propose that alternative splicing at the Cac locus enables diversity in Cav2 function generated through isoform diversity generated at the single Cav2 alpha subunit gene encoded in Drosophila.

      Overall this is an excellent, rigorously validated study that defines unanticipated functions for alternative splicing in Cav2 channels. The authors have generated an important toolkit of mutually exclusive Cac splice isoforms that will be of broad utility for the field, and show convincing evidence for distinct consequences of alternative splicing of this single Cav2 channel at synapses. Importantly, the authors use electrophysiology and quantitative live sptPALM imaging to determine the impacts of Cac alternative splicing on synaptic function. There remain some questions regarding the mechanisms underlying the changes in Cac localization to somatodendritic compartments. Nonetheless, this is a compelling investigation of alternative splicing in Cav2 channels that should be of interest to many researchers.

    2. Reviewer #3 (Public review):

      Summary:

      Bell and colleagues studied how different splice isoforms of voltage-gated CaV2 calcium channels affect channel expression, localization, function, synaptic transmission, and locomotor behavior at the larval Drosophila neuromuscular junction. They reveal that one mutually exclusive exon located in the fourth transmembrane domain encoding the voltage sensor is essential for calcium channel expression, function, active zone localization, and synaptic transmission. Furthermore, a second mutually exclusive exon residing in an intracellular loop containing the binding sites for Caβ and G-protein βγ subunits promotes the expression and synaptic localization of around ~50% of CaV2 channels, thereby contributing to ~50% of synaptic transmission. This isoform enhances release probability, as evident from increased short-term depression, is vital for homeostatic potentiation of neurotransmitter release induced by glutamate receptor impairment, and promotes locomotion. The roles of the two other tested isoforms remain less clear.

      Strengths:

      The study is based on solid data that was obtained with a diverse set of approaches. Moreover, it generated valuable transgenic flies that will facilitate future research on the role of calcium channel splice isoforms in neural function.

      Weaknesses:

      Comments on revisions:

      The authors addressed most points. However, from my point of view, the new data (somatodendritic cac currents in adult motoneurons of IS4B mutants without the pre-pulse, and localization of IS4A channels in the larval brain) do not strongly support that the IS4B exon is required for cacophony localization. According to their definition of localization, IS4B is required for cacophony channels to enter motoneuron boutons and to localize to active zones. In case of a true localization defect (without degradation, as they claim), IS4A channels should mislocalize to the soma, axon, or dendrite. However, they do not find them in motoneurons of IS4B mutants. Furthermore, I find the interpretation of the voltage clamp data in flight motoneurons rather difficult. On the one hand, sustained HVA cac currents are strongly attenuated/absent in IS4B mutants. On the other hand, total cac currents (without the -50 mV pre-pulse, not shown in the original submission) are less affected in IS4B mutants. Based on these data, they conclude that IS4B is required for sustained HVA cac currents and that IS4A channel isoforms are expressed and functional. How does this relate to a localization defect at the NMJ? Finally, detecting IS4A channels in other cell types and regions is not a strong argument for a localization defect at the NMJ. I, therefore, suggest toning down the conclusions regarding a localization defect in IS4B mutants/a role for the IS4B exon in cac localization. It should be also discussed how a splice isoform in S4 may result in no detectable cac channels at the NMJ or regulate subcellular channel localization.

      I have a few additional points, mainly related to the responses to my previous points:

      (1) The authors state "active zones at the NMJ contain only cac isoforms with the IS4B exon. Nevertheless, the small representative EPSC remaining in IS4B mutants suggests that there is synchronous release in the absence of IS4B (Fig. 3B). Are the small EPSCs in dIS4B (Fig. 3B) indeed different from noise/indicative of evoked release? If yes, which cac channels may drive these EPSCs? IS4A channels?<br /> (2) (Related to previous point 4) The authors argue that EPSC amplitudes are not statistically different between Canton S and IS4A mutants (Fig. 2F). However, the Canton S group appears undersampled, thus precluding conclusions based on statistics. Moreover, the effect size Canton S vs. dIS4A looks similar to the one of Canton S vs. dIS4A/dIS4B.<br /> (3) (Related to previous point 11): Can they cite a paper relating calcium channel inactivation to EPSC half width/decay kinetics to support their speculation that "decreased EPSC half width could be caused by significantly faster channel inactivation kinetics" (p. 42, l.42). In addition, many papers have demonstrated that mini decay kinetics provide valuable insights into GluR subunit composition at the Drosophila NMJ (e.g., Schmid et al., 2008 https://doi.org/10.1038/nn.2122). Thus, the statement "Mini decay kinetic analysis because this depends strongly on the distance of the recording electrode to the actual site of transmission in these large muscle cells" is not valid and should be revised.

    1. Reviewer #1 (Public review):

      Summary:

      Authors benchmarked 5 IBD detection methods (hmmIBD, isoRelate, hap-IBD, phasedIBD, and Refined IBD) in Plasmodium falciparum using simulated and empirical data. Plasmodium falciparum has a mutation rate similar to humans but a much higher recombination rate and lower SNP density. Thus, the authors evaluated how recombination rate and marker density affect IBD segment detection. Next, they performed parameter optimization for Plasmodium falciparum and benchmarked the robustness of downstream analyses (selection detection and NE inference) using IBD detected by each of the methods. They also tracked the computational efficiency of these methods. The authors work is valuable for the tested species and the analyses presented appear to support their claim that users should be cautious calling IBD when SNP density is low and recombination rate is high.

      Strengths:

      The study design was solid. The authors set up their reasoning for using P. falciparum very well. The high recombination rate and similar mutation rate to human is indeed an interesting case. Further, they chose methods that were developed explicitly for each species. This was a strength of the work, as well as incorporating both simulated and empirical data to support their goal that IBD detection should be benchmarked in P. falciparum.

      Weaknesses:

      The scope of the optimization and application of results from the work are narrow, in that everything is fine-tuned for Plasmodium. Some of the results were not entirely unexpected for users of any of the tested software that was developed for humans. For example, it is known that Refined IBD is not going to do well with the combination of short IBD segments and low SNP density. Lastly, it appears the authors only did one large-scale simulation (there are no reported SDs).

    2. Reviewer #2 (Public review):

      Summary:

      Guo et al. benchmarked and optimized methods for detecting Identity-By-Descent (IBD) segments in Plasmodium falciparum (Pf) genomes, which are characterized by high recombination rates and low marker density. Their goal was to address the limitations of existing IBD detection tools, which were primarily developed for human genomes and do not perform well in the genomic context of highly recombinant genomes. They first analysed various existing IBD callers, such as hmmIBD, isoRelate, hap-IBD, phased-IBD, refinedIBD. They focused on the impact of recombination on the accuracy, which was calculated based on two metrics, the false negative rate and the false positive rate. The results suggest that high recombination rates significantly reduce marker density, leading to higher false negative rates for short IBD segments. This effect compromises the reliability of IBD-based downstream analyses, such as effective population size (Ne) estimation.<br /> They showed that the best tool for IBD detection in Pf is hmmIBD, because it has relatively low FN/FP error rates and is less biased for relatedness estimates. However, this method is the less computationally efficient.<br /> Their suggestion is to optimize human-oriented IBD methods and use hmmIBD only for the estimation of Ne.

      Strengths:

      Although I am not an expert on Plasmodium falciparum genetics, I believe the authors have developed a valuable benchmarking framework tailored to the unique genomic characteristics of this species. Their framework enables a thorough evaluation of various IBD detection tools for non-human data, such as high recombination rates and low marker density, addressing a key gap in the field.<br /> This study provides a comparison of multiple IBD detection methods, including probabilistic approaches (hmmIBD, isoRelate) and IBS-based methods (hap-IBD, Refined IBD, phased IBD). This comprehensive analysis offers researchers valuable guidance on the strengths and limitations of each tool, allowing them to make informed choices based on specific use cases. I think this is important beyond the study of Pf.<br /> The authors highlight how optimized IBD detection can help identify signals of positive selection, infer effective population size (Ne), and uncover population structure.<br /> They demonstrate the critical importance of tailoring analytical tools to suit the unique characteristics of a species. Moreover, the authors provide practical recommendations, such as employing hmmIBD for quality-sensitive analyses and fine-tuning parameters for tools originally designed for non-P. falciparum datasets before applying them to malaria research.

      Overall, this study represents a meaningful contribution to both computational biology and malaria genomics, with its findings and recommendations likely to have an impact on the field.

      Weaknesses:

      One weakness of the study is the lack of emphasis on the broader importance of studying Plasmodium falciparum as a critical malaria-causing organism. Malaria remains a significant global health challenge, causing hundreds of thousands of deaths annually. The authors could have introduced better the topic, even though I understand this is a methodological paper. While the study provides a thorough technical evaluation of IBD detection methods and their application to Pf, it does not adequately connect these findings to the broader implications for malaria research and control efforts. Additionally, the discussion on malaria and its global impact could have framed the study in a more accessible and compelling way, making the importance of these technical advances clearer to a broader audience, including researchers and policymakers in the fight against malaria.

    1. Reviewer #1 (Public review):

      Summary:

      This Tanzanian study focused on the relationship between human genetic ancestry, Mycobacterium tuberculosis complex (MTBC) diversity, and tuberculosis (TB) disease severity. The authors analyzed the genetic ancestry of 1,444 TB patients and genotyped the corresponding MTBC strains isolated from the same individuals. They found that the study participants predominantly possess Bantu-speaking genetic ancestry, with minimal European and Asian ancestry. The MTBC strains identified were diverse and largely resulted from introductions from South or Central Asia. Unfortunately, no associations were identified between human genetic ancestry, the MTBC strains, or TB severity. The authors suggest that social and environmental factors are more likely to contribute to TB severity in this setting.

      Strengths:

      In comparison to other studies investigating the role of human genetics in TB phenotypes, this study is relatively large, with more than 1,400 participants.

      The matched human-MTBC strain collection is valuable and offers the opportunity to address questions about human-bacterium co-evolution.

      Weaknesses:

      Although the authors had genome-wide genotyping and whole genome sequencing data, they only compared the associations between human ancestry and MTBC strains. Given the large sample size, they had the opportunity to conduct a genome-wide association study similar to that of Muller et al. (https://doi.org/10.1016/j.ygeno.2021.04.024).

      The authors tested whether human genetic ancestry is associated with TB severity. However, the basis for this hypothesis is unclear. The studies cited as examples all focused on progression to active TB (from a latent infection state), which should not be conflated with disease severity. It is difficult to ascertain whether the role of genetic ancestry in disease severity would be detectable through this study design, as some participants might simply have been sicker for longer before being diagnosed (despite the inquiry about cough duration). This delay in diagnosis would not be influenced solely by human genetics, which is the conclusion of the study.

      Additionally, the study only included participants who attended the TB clinic.

      Including healthy controls from the general population would have provided an interesting comparison to see if ancestry proportions differ.

      Although the authors suggest that social and environmental factors contribute to TB severity, only age, smoking, and HIV status were characterised in the study.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript reports the results of an observational study conducted in Dar es Salaam, Tanzania, investigating potential associations between genetic variation in M. tuberculosis and human host vs. disease severity. The headline finding is that no such associations were found, either for host / bacillary genetics as main effects or for interactions between them.

      Strengths:

      Strengths of the study include its large size and rigorous approaches to classification of genetic diversity for host and bacillus.

      Weaknesses:

      (1) There are some limitations of the disease severity read-outs employed: X-ray scores and Xpert cycle thresholds from sputum analysis can only take account of pulmonary disease. CXR is an insensitive approach to assessing 'lung damage', especially when converted to a binary measure. What was the basis for selection of Ralph score of 71 to dichotomise patients? If outcome measures were analysed as continuous variables, would this have been more sensitive in capturing associations of interest?

      (2) There is quite a lot of missing data, especially for TB scores - could this have introduced bias? This issue should be mentioned in the discussion.

      (3) The analysis adjusted for age, sex, HIV status, age, smoking and cough duration - but not for socio-economic status. This will likely be a major determinant of disease severity. Was adjustment made for previous TB (i.e. new vs repeat episode) and drug-sensitivity of the isolate? Cough duration will effectively be a correlate/consequence of more severe disease - thus likely highly collinear with disease severity read-outs - not a true confounder. How does removal of this variable from the model affect results? Data on socioeconomic status should be added to models, or if not possible then lack of such data should be noted as a limitation.

      (4) Recruitment at hospitals may have led to selection bias due to exclusion of less severe, community cases. The authors already acknowledge this limitation in the Discussion however.

      (5) Introduction: References refer to disease susceptibility, but the authors should also consider the influences of host/pathogen genetics on host response - both in vitro (PMIDs 11237411, 15322056) and in vivo (PMID 23853590). The last of these studies encompassed a broader range of ethnic variation than the current study, and showed associations between host ancestry and immune response - null results from the current study may reflect the relative genetic homogeneity of the population studied.

    1. Reviewer #1 (Public review):

      Summary:

      This work introduces the differentiable Gillespie algorithm, DGA, which is a differentiable variant of the celebrated (and exact) Gillespie algorithm commonly used to perform stochastic simulations across numerous fields, notably in the life sciences. The proposed DGA approximates the exact Gillespie algorithm using smooth functions yielding a suitable approximate differentiable stochastic system as a proxy for the underlying discrete stochastic system, where DGA stochastic reactions have continuous reaction index and the species abundances. To illustrate their methodology, the authors specifically consider in detail the case of a well-studied two-state promoter gene regulation system that they analyze using a machine learning approach, and by combining simulation data with analytical results. For the two-state promoter gene system, the DGA is benchmarked by accurately reproducing the results of the exact Gillespie algorithm. For this same simple system, the authors also show that how the DGA can be used for estimating kinetic parameters of both simulated and real noisy experimental data. This let them argue convincingly that the DGA can become a powerful computation tool for applications in quantitative and synthetic biology. In order to argue that the DGA can be employed to design circuits with ad-hoc input-output relations, these considerations are then extended to a more complex four-state promoter model of gene regulation.

      Strengths:

      The main strength of the paper is its clarity and its pedagogical presentation of the simulation methods.

      Weaknesses:

      It would have been useful to have a brief discussion, based on a concrete example, of what can be achieved with the DGA and is totally beyond the reach of the Gillespie algorithm and the numerous existing stochastic simulation methods. A more comprehensive and quantitative analysis of the limitations of the DGA, e.g. for rare events, would have also been helpful.

    2. Reviewer #2 (Public review):

      Summary:

      In this work, the authors present a differentiable version of the widely-used Gillespie Algorithm. The Gillespie Algorithm has been used for decades to simulate the behavior of stochastic biochemical reaction networks. But while the Gillespie Algorithm is a powerful tool for the forward simulation of biochemical systems given some set of known reaction parameters, it cannot be used for reverse process, i.e. inferring reaction parameters given a set of measured system characteristics. The Differentiable Gillespie Algorithm ("DGA") overcomes this limitation by approximating two discontinuous steps in the Gillespie Algorithm with continuous functions. This makes it possible to calculate of gradients for each step in the simulation process which, in turn, allows the reaction parameters to be optimized via powerful backpropagation techniques. In addition to describing the theoretical underpinnings of DGA, the authors demonstrate different potential use-cases for the algorithm in the context of simple models of stochastic gene expression.

      Overall, the DGA represents an important conceptual step forward for the field, and should lay the groundwork for exciting innovations in the analysis and design of stochastic reaction networks. At the same time, significantly more work is needed to establish when the approximations made by DGA are valid, and to demonstrate the viability of the algorithm in the context of complicated reaction networks.

      Strengths:

      This work makes an important conceptual leap by introducing a version of the Gillespie Algorithm that is end-to-end differentiable. This idea alone has the potential to drive a number of exciting innovations in the analysis, inference, and design of biochemical reaction networks. Beyond the theoretical adjustments, the authors also implement their algorithm in a Python-based codebase that combines DGA powerful optimization libraries like PyTorch. This codebase has the potential to be of interest to a wide range of researchers, even if the true scope of the method's applicability remains to be fully determined.

      The authors also demonstrate how DGA can be used in practice both to infer reaction parameters from real experimental data (Figure 7) and to design networks with user-specified input-output characteristics (Figure 8). These illustrations should provide a nice roadmap for researchers interested in applying DGA to their own projects/systems.

      Finally, although it does not stem directly from DGA, the exploration of pairwise parameter dependencies in different network architectures provides an interesting window into the design constraints (or lack thereof) that shape the architecture of biochemical reaction networks.

      Weaknesses:

      While it is clear that the DGA represents an important conceptual advancement, the authors do not do enough in the present manuscript to (i) validate the robustness of DGA inference and (ii) demonstrate that DGA inference works in the kinds of complex biochemical networks where it would actually be of legitimate use.

      It is to the authors' credit that they are open and explicit about the potential limitations of DGA due to breakdowns in its continuous approximations. However they do not provide the reader with nearly enough empirical (i.e. simulation-based) or theoretical context to assess when, why, and to what extent DGA will fail in different situations. In Figure 2, they compare DGA to GA (i.e. ground-truth) in the context of a simple two state model of a stochastic transcription. Even in this minimal system, we see that DGA deviates notably from ground-truth both in the simulated mRNA distributions (Figure 2A) and in the ON/OFF state occupancy (Figure 2C). This begs the question of how DGA will scale to more complicated systems, or systems with non-steady state dynamics. Will the deviations become more severe? This is important because, in practice, there is really not much need for using DGA with a simple 2 state system-we have analytic solutions for this case. It is the more complex systems where DGA has the potential to move the needle.

      A second concern is that the authors' present approach for parameter inference and error calculation does not seem to be reliable. For example, in Figure 5A, they show DGA inference results for the ON rate of a two-state system. We see substantial inference errors in this case, even though the inference problem should be non-degenerate in this case. One reason for this seems to be that the inference algorithm does not reliably find the global minimum of the loss function (Figure 2B). To turn DGA into a viable approach, it is paramount that the authors find some way to improve this behavior, perhaps by using multiple random initializations to better search the loss space.

      Finally, the authors do a good job of illustrating how DGA might be used to infer biological parameters (Figure 7) and design reaction networks with desired input-output characteristics (Figure 8). However, analytic solutions exist for both of the systems they select for examples. This means that, in practice, there would be no need for DGA in these contexts, since one could directly optimize, e.g., the expressions for the mean and Fano Factor of the system in Figure 7A. I still believe that it is useful to have these examples, but it seems critical to add a use-case where DGA is the only option.

    3. Reviewer #3 (Public review):

      Summary:

      This manuscript introduces a differentiable variant of the Gillespie algorithm (DGA) that allows gradient calculation using backpropagation. The most significant contribution of this work is the development of the DGA itself, a novel approach to making stochastic simulations differentiable. This is achieved by replacing discontinuous operations in the traditional Gillespie algorithm with smooth, differentiable approximations using sigmoid and Gaussian functions. This conceptual advance opens up new avenues for applying powerful gradient-based optimization techniques, prevalent in machine learning, to studying stochastic biological systems.

      The method was tested on a simple two-state promoter model of gene expression. The authors found that the DGA accurately captured the moments of the steady-state distribution and other major qualitative features. However, it was less accurate at capturing information about the distribution's tails, potentially because rare events result from frequent low-probability reaction events where the approximations made by the DGA have a greater impact. The authors could further use the DGA to design a four-state promoter model of gene regulation that exhibited a desired input-output relationship. The DGA could learn parameters that produced a sharper response curve, which was achieved by consuming more energy.

      The authors conclude that the DGA is a powerful tool for analyzing and designing stochastic systems.

      Strengths:

      The DGA allows gradient-based optimization techniques to estimate parameters and design networks with desired properties.

      The DGA efficacy in estimating kinetic parameters from both synthetic and experimental data. This capability highlights the DGA's potential to extract meaningful biophysical parameters from noisy biological data.

      The DGA's ability to design a four-state promoter architecture exhibiting a desired input-output relationship. This success indicates the potential of the DGA as a valuable tool for synthetic biology, enabling researchers to engineer biological circuits with predefined behaviours.

      Weaknesses:

      The study primarily focuses on analysing the steady-state properties of stochastic systems. It is unclear how and if this framework can be used beyond the steady-state data presented in the case studies, where it is already quite computationally heavy.<br /> A more in-depth exploration of the DGA's performance in analysing dynamic trajectories, which capture the system's evolution over time, would provide a more comprehensive view of the algorithm's capabilities.<br /> Gradient computations in the DGA can be susceptible to numerical instability, particularly when the sharpness parameters of the sigmoid and Gaussian approximations are set to high values. This issue could lead to challenges in convergence during the optimization process.

    1. Reviewer #1 (Public review):

      Summary:

      The authors provide a resource to the systems neuroscience community, by offering their Python-based CLoPy platform for closed-loop feedback training. In addition to using neural feedback, as is common in these experiments, they include a capability to use real-time movement extracted from DeepLabCut as the control signal. The methods and repository are detailed for those who wish to use this resource. Furthermore, they demonstrate the efficacy of their system through a series of mesoscale calcium imaging experiments. These experiments use a large number of cortical regions for the control signal in the neural feedback setup, while the movement feedback experiments are analyzed more extensively.

      Strengths:

      The primary strength of the paper is the availability of their CLoPy platform. Currently, most closed-loop operant conditioning experiments are custom built by each lab and carry a relatively large startup cost to get running. This platform lowers the barrier to entry for closed-loop operant conditioning experiments, in addition to making the experiments more accessible to those with less technical expertise.

      Another strength of the paper is the use of many different cortical regions as control signals for the neurofeedback experiments. Rodent operant conditioning experiments typically record from the motor cortex and maybe one other region. Here, the authors demonstrate that mice can volitionally control many different cortical regions not limited to those previously studied, recording across many regions in the same experiment. This demonstrates the relative flexibility of modulating neural dynamics, including in non-motor regions.

      Finally, adapting the closed-loop platform to use real-time movement as a control signal is a nice addition. Incorporating movement kinematics into operant conditioning experiments has been a challenge due to the increased technical difficulties of extracting real-time kinematic data from video data at a latency where it can be used as a control signal for operant conditioning. In this paper they demonstrate that the mice can learn the task using their forelimb position, at a rate that is quicker than the neurofeedback experiments.

      Weaknesses:

      There are several weaknesses in the paper that diminish the impact of its strengths. First, the value of the CLoPy platform is not clearly articulated to the systems neuroscience community. Similarly, the resource could be better positioned within the context of the broader open-source neuroscience community. For an example of how to better frame this resource in these contexts, I recommend consulting the pyControl paper. Improving this framing will likely increase the accessibility and interest of this paper to a less technical neuroscience audience, for instance by highlighting the types of experimental questions CLoPy can enable.

      While the dataset contains an impressive amount of animals and cortical regions for the neurofeedback experiment, and an analysis of the movement-feedback experiments, my excitement for these experiments is tempered by the relative incompleteness of the dataset, as well as its description and analysis in the text. For instance, in the neurofeedback experiment, many of these regions only have data from a single mouse, limiting the conclusions that can be drawn. Additionally, there is a lack of reporting of the quantitative results in the text of the document, which is needed to better understand the degree of the results. Finally, the writing of the results section could use some work, as it currently reads more like a methods section.

      Suggestions for improved or additional experiments, data or analyses:

      Not necessary for this paper, but it would be interesting to see if the CLNF group could learn without auditory feedback.

      There are no quantitative results in the results section. I would add important results to help the reader better interpret the data. For example, in: "Our results indicated that both training paradigms were able to lead mice to obtain a significantly larger number of rewards over time," You could show a number, with an appropriate comparison or statistical test, to demonstrate that learning was observed.

      For: "Performing this analysis indicated that the Raspberry Pi system could provide reliable graded feedback within ~63 {plus minus} 15 ms for CLNF experiments." The LED test shows the sending of the signal, but the actual delay for the audio generation might be longer. This is also longer than the 50 ms mentioned in the abstract.

      It could be helpful to visualize an individual trial for each experiment type, for instance how the audio frequency changes as movement speed / calcium activity changes.

      The sample sizes are small (n=1) for a few groups. I am excited by the variety of regions recorded, so it could be beneficial for the authors to collect a few more animals to beef up the sample sizes.

      I am curious as to why 60 trials sessions were used. Was it mostly for the convenience of a 30 min session, or were the animals getting satiated? If the former, would learning have occurred more rapidly with longer sessions?

      Figure 4 E is interesting, it seems like the changes in the distribution of deltaF was in both positive and negative directions, instead of just positive. I'd be curious as to the author's thoughts as to why this is the case. Relatedly, I don't see Figure 4E, and a few other subplots, mentioned in the text. As a general comment, I would address each subplot in the text.

      For: "In general, all ROIs assessed that encompassed sensory, pre-motor, and motor areas were capable of supporting increased reward rates over time," I would provide a visual summary showing the learning curves for the different types of regions.

      Relatedly, I would further explain the fast vs slow learners, and if they mapped onto certain regions.

      Also I would make the labels for these plots (e.g. Supp Fig3) more intuitive, versus the acronyms currently used.

      The CLMF animals showed a decrease in latency across learning, what about the CLNF animals? There is currently no mention in the text or figures.

    2. Reviewer #2 (Public review):

      Summary:

      In this work, Gupta & Murphy present several parallel efforts. On one side, they present the hardware and software they use to build a head-fixed mouse experimental setup that they use to track in "real-time" the calcium activity in one or two spots at the surface of the cortex. On the other side, the present another setup that they use to take advantage of the "real-time" version of DeepLabCut with their mice. The hardware and software that they used/develop is described at length, both in the article and in a companion GitHub repository. Next, they present experimental work that they have done with these two setups, training mice to max out a virtual cursor to obtain a reward, by taking advantage of auditory tone feedback that is provided to the mice as they modulate either (1) their local cortical calcium activity, or (2) their limb position.

      Strengths:

      This work illustrates the fact that thanks to readily available experimental building blocks, body movement and calcium imaging can be carried using readily available components, including imaging the brain using an incredibly cheap consumer electronics RGB camera (RGB Raspberry Pi Camera). It is a useful source of information for researchers that may be interested in building a similar setup, given the highly detailed overview of the system. Finally, it further confirms previous findings regarding the operant conditioning of the calcium dynamics at the surface of the cortex (Clancy et al. 2020) and suggests an alternative based on deeplabcut to the motor tasks that aim to image the brain at the mesoscale during forelimb movements (Quarta et al. 2022).

      Weaknesses:

      This work covers 3 separate research endeavors: (1) The development of two separate setups, their corresponding software. (2) A study that is highly inspired from the Clancy et al. 2020 paper on the modulation of the local cortical activity measured through a mesoscale calcium imaging setup. (3) A study of the mesoscale dynamics of the cortex during forelimb movements learning. Sadly, the analyses of the physiological data appears uncomplete, and more generally the paper tends to offer overstatements regarding several points:<br /> - In contrast to the introductory statements of the article, closed-loop physiology in rodents is a well-established research topic. Beyond auditory feedback, this includes optogenetic feedback (O'Connor et al. 2013, Abbasi et al. 2018, 2023), electrical feedback in hippocampus (Girardeau et al. 2009), and much more.<br /> - The behavioral setups that are presented are representative of the state of the art in the field of mesoscale imaging/head fixed behavior community, rather than a highly innovative design. In particular, the closed-loop latency that they achieve (>60 ms) may be perceived by the mice. This is in contrast with other available closed-loop setups.<br /> - Through the paper, there are several statements that point out how important it is to carry out this work in a closed-loop setting with an auditory feedback, but sadly there is no "no feedback" control in cortical conditioning experiments, while there is a no-feedback condition in the forelimb movement study, which shows that learning of the task can be achieved in the absence of feedback.<br /> - The analysis of the closed-loop neuronal data behavior lacks controls. Increased performance can be achieved by modulating actively only one of the two ROIs, this is not clearly analyzed (for instance looking at the timing of the calcium signal modulation across the two ROIs. It seems that overall ROIs1 and 2 covariate, in contrast to Clancy et al. 2020. How can this be explained?

    3. Reviewer #3 (Public review):

      Summary:

      The study demonstrates the effectiveness of a cost-effective closed-loop feedback system for modulating brain activity and behavior in head-fixed mice. Authors have tested real-time closed-loop feedback system in head-fixed mice two types of graded feedback: 1) Closed-loop neurofeedback (CLNF), where feedback is derived from neuronal activity (calcium imaging), and 2) Closed-loop movement feedback (CLMF), where feedback is based on observed body movement. It is a python based opensource system, and authors call it CLoPy. The authors also claim to provide all software, hardware schematics, and protocols to adapt it to various experimental scenarios. This system is capable and can be adapted for a wide use case scenario.

      Authors have shown that their system can control both positive (water drop) and negative reinforcement (buzzer-vibrator). This study also shows that using the close loop system mice have shown better performance, learnt arbitrary task and can adapt to change in the rule as well. By integrating real-time feedback based on cortical GCaMP imaging and behavior tracking authors have provided strong evidence that such closed-loop systems can be instrumental in exploring the dynamic interplay between brain activity and behavior.

      Strengths:

      Simplicity of feedback systems designed. Simplicity of implementation and potential adoption.

      Weaknesses:

      Long latencies, due to slow Ca2+ dynamics and slow imaging (15 FPS), may limit the application of the system.

      Major comments:

      (1) Page 5 paragraph 1: "We tested our CLNF system on Raspberry Pi for its compactness, general-purpose input/output (GPIO) programmability, and wide community support, while the CLMF system was tested on an Nvidia Jetson GPU device." Can these programs and hardware be integrated with windows-based system and a microcontroller (Arduino/ Tency). As for the broad adaptability that's what a lot of labs would already have (please comment/discuss)?

      (2) Hardware Constraints: The reliance on Raspberry Pi and Nvidia Jetson (is expensive) for real-time processing could introduce latency issues (~63 ms for CLNF and ~67 ms for CLMF). This latency might limit precision for faster or more complex behaviors, which authors should discuss in the discussion section.

      (3) Neurofeedback Specificity: The task focuses on mesoscale imaging and ignores finer spatiotemporal details. Sub-second events might be significant in more nuanced behaviors. Can this be discussed in the discussion section?

      (4) The activity over 6s is being averaged to determine if the threshold is being crossed before the reward is delivered. This is a rather long duration of time during which the mice may be exhibiting stereotyped behaviors that may result in the changes in DFF that are being observed. It would be interesting for the authors to compare (if data is available) the behavior of the mice in trials where they successfully crossed the threshold for reward delivery and in those trials where the threshold was not breached. How is this different from spontaneous behavior and behaviors exhibited when they are performing the test with CLNF?

    1. Reviewer #1 (Public review):

      Summary:

      Fluorescence imaging has become an increasingly popular technique for monitoring neuronal activity and neurotransmitter concentrations in the living brain. However, factors such as brain motion and changes in blood flow and oxygenation can introduce significant artifacts, particularly when activity-dependent signals are small. Yogesh et al. quantified these effects using GFP, an activity-independent marker, under two-photon and wide-field imaging conditions in awake behaving mice. They report significant GFP responses across various brain regions, layers, and behavioral contexts, with magnitudes comparable to those of commonly used activity sensors. These data highlight the need for robust control strategies and careful interpretation of fluorescence functional imaging data.

      Strengths:

      The effect of hemodynamic occlusion in two-photon imaging has been previously demonstrated in sparsely labeled neurons in V1 of anesthetized animals (see Shen and Kara et al., Nature Methods, 2012). The present study builds on these findings by imaging a substantially larger population of neurons in awake, behaving mice across multiple cortical regions, layers, and stimulus conditions. The experiments are extensive, the statistical analyses are rigorous, and the results convincingly demonstrate significant GFP responses that must be accounted for in functional imaging experiments. However, whether these GFP responses are driven by hemodynamic occlusion remains less clear, given the complexities associated with awake imaging and GFP's properties (see below).

      Weaknesses:

      (1) The authors primarily attribute the observed GFP responses to hemodynamic occlusion. While this explanation is plausible, other factors may also contribute to the observed signals. These include uncompensated brain movement (e.g., axial-direction movements), leakage of visual stimulation light into the microscope, and GFP's sensitivity to changes in intracellular pH (see e.g., Kneen and Verkman, 1998, Biophysical Journal). Although the correlation between GFP signals and blood vessel diameters supports a hemodynamic contribution, it does not rule out significant contributions from these (or other) factors. Consequently, whether GFP fluorescence can reliably quantify hemodynamic occlusion in two-photon microscopy remains uncertain.

      (2) Regardless of the underlying mechanisms driving the GFP responses, these activity-independent signals must be accounted for in functional imaging experiments. However, the present manuscript does not explore potential strategies to mitigate these effects. Exploring and demonstrating even partial mitigation strategies could have significant implications for the field.

      (3) Several methodology details are missing from the Methods section. These include: (a) signal extraction methods for two-photon imaging data (b) neuropil subtraction methods (whether they are performed and, if so, how) (c) methods used to prevent visual stimulation light from being detected by the two-photon imaging system (d) methods to measure blood vessel diameter/area in each frame. The authors should provide more details in their revision.

    2. Reviewer #2 (Public review):

      Approach

      In this study, Yogesh et al. aimed at characterizing hemodynamic occlusion in two photon imaging, where its effects on signal fluctuations are underappreciated compared to that in wide field imaging and fiber photometry. The authors used activity-independent GFP fluorescence, GCaMP and GRAB sensors for various neuromodulators in two-photon and widefield imaging during a visuomotor context to evaluate the extent of hemodynamic occlusion in V1 and ACC. They found that the GFP responses were comparable in amplitude to smaller GCaMP responses, though exhibiting context-, cortical region-, and depth-specific effects. After quantifying blood vessel diameter change and surrounding GFP responses, they argued that GFP responses were highly correlated with changes in local blood vessel size. Furthermore, when imaging with GRAB sensors for different neuromodulators, they found that sensors with lower dynamic ranges such as GRAB-DA1m, GRAB-5HT1.0, and GRAB-NE1m exhibited responses most likely masked by the hemodynamic occlusion, while a sensor with larger SNR, GRAB-ACh3.0, showed much more distinguishable responses from blood vessel change.

      Strengths

      This work is of broad interest to two photon imaging users and GRAB developers and users. It thoroughly quantifies the hemodynamic driven GFP response and compares it to previously published GCaMP data in a similar context, and illustrates the contribution of hemodynamic occlusion to GFP and GRAB responses by characterizing the local blood vessel diameter and fluorescence change. These findings provide important considerations for the imaging community and a sobering look at the utility of these sensors for cortical imaging.

      Importantly, they draw clear distinctions between the temporal dynamics and amplitude of hemodynamic artifacts across cortical regions and layers. Moreover, they show context dependent (Dark versus during visual stimuli) effects on locomotion and optogenetic light-triggered hemodynamic signals.

      Most of the first generation neuromodulator GRAB sensors showed relatively small responses, comparable to blood vessel changes in two photon imaging, which emphasizes a need for improved the dynamic range and response magnitude for future sensors and encourages the sensor users to consider removing hemodynamic artifacts when analyzing GRAB imaging data.

      Weaknesses

      The largest weakness of the paper is that, while they convincingly quantify hemodynamic artifacts across a range of conditions, they do not quantify any methods of correcting for them. The utility of the paper could have been greatly enhanced had they tested hemodynamic correction methods (e.g. from Ocana-Santero et al., 2024) and applied them to their datasets. This would serve both to verify their findings-proving that hemodynamic correction removes the hemodynamic signal-and to act as a guide to the field for how to address the problem they highlight.

      The paper attributes the source of 'hemodynamic occlusion' primarily to blood vessel dilation, but leaves unanswered how much may be due to shifts in blood oxygenation. Figure 4 directly addresses the question of how much of the signal can be attributed to occlusion by measuring the blood vessel dilation, but notably fails to reproduce any of the positive transients associated with locomotion in Figure 2. Thus, an investigation into or at least a discussion of what other factors (movement? Hb oxygenation?) may drive these distinct signals would be helpful.

      Along these lines, the authors carefully quantified the correlation between local blood vessel diameter and GFP response (or neuropil fluorescence vs blood vessel fluorescence with GRAB sensors). To what extent does this effect depend on proximity to the vessels? Do GFP/ GRAB responses decorrelate from blood vessel activity in neurons further from vessels (refer to Figure 5A and B in Neyhart et al., Cell Reports 2024)?

      Raw traces are shown in Figure 2 but we are never presented with the unaveraged data for locomotion of stimulus presentation times, which limits the reader's ability to independently assess variability in the data. Inclusion of heatmaps comparing event aligned GFP to GCaMP6f may be of value to the reader.

      More detailed analysis of differences between the kinds of dynamics observed in GFP vs GCaMP6f expressing neurons could aid in identifying artifacts in otherwise clean data. The example neurons in Figure 2A hint at this as each display unique waveforms and the question of whether certain properties of their dynamics can reveal the hemodynamic rather than indicator driven nature of the signal is left open. Eg. do the decay rate and rise times differ significantly from GCaMP6f signals?

      The authors suggest that signal to noise ratio of an indicator likely affects the ability to separate hemodynamic response from the underlying fluorescence signal. Does the degree of background fluorescence affect the size of the artifact? If there was variation in background and overall expression level in the data this could potentially be used to answer this question. Could lower (or higher!) expression levels increase the effects of hemodynamic occlusion?<br /> The choice of the phrase 'hemodynamic occlusion' may cause some confusion as the authors address both positive and negative responses in the GFP expressing neurons, and there may be additional contributions from changes in blood oxygenation state.

      The choice of ACC as the frontal region provides a substantial contrast in location, brain movement, and vascular architecture as compared to V1. As the authors note, ACC is close to the superior sagittal sinus and thus is the region where the largest vascular effects are likely to occur. The reader is left to wonder how much of the ROI may or may not have included vasculature in the ACC vs V1 recordings as the only images of the recording sites provided are for V1. We are left unable to conclude whether the differences observed between these regions are due to the presence of visible vasculature, capillary blood flow or differences in neurovasculature coupling between regions. A less medial portion of M2 may have been a more appropriate comparison. At least, inclusion of more example imaging fields for ACC in the supplementary figures would be of value.

      In Figure 3, How do the proportions of responsive GFP neurons compare to GCaMP6f neurons?

      How is variance explained calculated in Figure 4? Is this from a linear model and R^2 value? Is this variance estimate for separate predictors by using single variable models? The methods should describe the construction of the model including the design matrix and how the model was fit and if and how cross validation was run.

      Cortical depth is coarsely defined as L2/3 or L5, without numerical ranges in depth from pia.

      Overall Assessment:

      This paper is an important contribution to our understanding of how hemodynamic artifacts may corrupt GRAB and calcium imaging, even in two-photon imaging modes. Certain useful control experiments, such as intrinsic optical imaging in the same paradigms, were not reported, nor were any hemodynamic correction methods investigated. Thus, this limits both mechanistic conclusions and the overall utility with respect to immediate applications by end users. Nevertheless, the paper is of significant importance to anyone conducting two-photon or widefield imaging with calcium and GRAB sensors and deserves the attention of the broader neuroscience and in-vivo imaging community.

    3. Reviewer #3 (Public review):

      Summary:

      In this study, the authors aimed to investigate if hemodynamic occlusion contributes to fluorescent signals measured with two-photon microscopy. For this, they image the activity-independent fluorophore GFP in 2 different cortical areas, at different cortical depths and in different behavioral conditions. They compare the evoked fluorescent signals with those obtained with calcium sensors and neuromodulator sensors and evaluate their relationship to vessel diameter as a readout of blood flow.<br /> They find that GFP fluorescence transients are comparable to GCaMP6f stimuli-evoked signals in amplitude, although they are generally smaller. Yet, they are significant even at the single neuronal level. They show that GFP fluorescence transients resemble those measured with the dopamine sensor GRAB-DA1m and the serotonin sensor GRAB-5HT1.0 in amplitude an nature, suggesting that signals with these sensors are dominated by hemodynamic occlusion. 
Moreover, the authors perform similar experiments with wide-field microscopy which reveals the similarity between the two methods in generating the hemodynamic signals. Together the evidence presented calls for the development and use of high dynamic range sensors to avoid measuring signals that have another origin from the one intended to measure. In the meantime, the evidence highlights the need to control for those artifacts such as with the parallel use of activity independent fluorophores.

      Strengths:

      - Comprehensive study comparing different cortical regions in diverse behavioral settings in controlled conditions.<br /> - Comparison to the state-of-the-art, i.e. what has been demonstrated with wide-field microscopy.<br /> - Comparison to diverse activity-dependent sensors, including the widely used GCaMP.

      Weaknesses:

      - The kinetics of GCaMP is stereotypic. An analysis/comment on if and how the kinetics of the signals could be used to distinguish the hemodynamic occlusion artefacts from calcium signals would be useful.<br /> - Is it possible that motion is affecting the signals in a certain degree? This issue is not made clear.<br /> - The causal relationship with blood flow remains open. Hemodynamic occlusion seems a good candidate causing changes in GFP fluorescence, but this remains to be well addressed in further research.

    1. Reviewer #1 (Public review):

      Summary:

      This study aims to investigate the links between social behaviors observed in free-moving situations and behavioral performances measured in well-controlled, laboratory settings. The authors assessed general social tendencies and dyadic relationships among four monkeys in a group by scoring agonistic (aggression) and affiliative (grooming and proximity) behaviors in each pair. By measuring the saccadic reaction time in a classic social interference task, the authors reported that the monkeys with higher SEIs (i.e., more social individuals) were less distracted by the faces of other monkeys. These effects were enhanced when the distractors were out-group monkey faces rather than in-group ones. Lastly, oxytocin administration increased the impact of the out-group monkey faces in the social interference task, while reducing the magnitude of general social tendencies measured with SEI.

      Strengths:

      (1) The combination of behavioral data obtained in a colony room and in a laboratory environment is rare and important.<br /> (2) The evaluation of social interactions were successfully performed based on an automated target detection algorithm. The resulting multi-dimensional, complicated social interactions were summarized into simple indices (SEI and IEI). These indices provide a good measure for the social tendencies of each monkey.<br /> (3) Well-designed and robust experiments in the laboratory environment that are linked nicely with the general social tendencies observed in spontaneous behaviors.

      Weaknesses:

      (1) While the overall results are interesting, I am somewhat left confused about how to interpret the difference in the scores derived from different conditions. For example, the authors stated "Comparing the weights for in-group and out-group distractors, the effect of proximity was larger than that of aggression and grooming" in p.8. Does this mean that the proximity is indeed the type of behavior most affected in the out-group condition compared to the in-group condition? The out-group effects are difficult to examine with actual behavioral data, but some in-group effects such as those involving OT can be tested, which possibly provides good insights into interpreting the differences of the weights observed across the experimental conditions.

      (2) I think it is important to provide how variable spontaneous social interactions were across sessions and how impactful the variability of the interactions is on the SEI and IEI, as it helps to understand how meaningful the differences of weights are across the conditions, but such data are missing. In line with this point, although the conclusions still hold as those data were obtained during the same experimental periods, shouldn't the weights in Fig. 3f and Figs. 4g and 4h (saline) be expected to be similar, if not the same?

    2. Reviewer #2 (Public review):

      Summary:

      The study presents significant findings that elucidate the relationship between multi-dimensional social relationships and social attention in rhesus macaques. By integrating advanced computational methods, behavioral analyses, and neuroendocrine manipulation, the authors provide strong evidence for how oxytocin modulates attention within social networks. The results are robust and address critical gaps in understanding the dynamics of social attention in primates.

      Strengths:

      (1) The use of YOLOv5 for automatic behavioral detection is an exceptional methodological advance. The combination of automated analyses with manual validation enhances confidence in the data.<br /> (2) The study's focus on three distinct dimensions of social interaction (aggression, grooming, and proximity) is comprehensive and provides nuanced insights into the complexity of primate social networks.<br /> (3) The investigation of oxytocin's role adds a compelling neuroendocrine dimension to the findings, providing a bridge between behavioral and neural mechanisms.

      Weaknesses:

      (1) The study's conclusions are based on observations of only four monkeys, which limits the generalizability of the findings. Larger sample sizes could strengthen the validity of the results.<br /> (2) The limited set of stimulus images (in-group and out-group faces) may introduce unintended biases. This could be addressed by increasing the diversity of stimuli or incorporating a broader range of out-group members.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Kondo et al. developed a method to suppress somatic action potentials while recording spine calcium signals using two-photon imaging in the L2/3 visual cortex in response to visual stimuli. The authors identified different patterns of dendritic spine activation by visual stimuli and analyzed how the different patterns of spine responses may contribute to somatic visual responses. Their analysis results suggest that spines on dendrites with a clustered arrangement can potentially generate sharply tuned output.

      Strengths:

      This is an interesting study addressing a standing question of how previously reported pepper-and-salt-like distributed sensory inputs on individual spines may give rise to somatic sensory selectivity. The method of somatic inhibition to prevent bAPs appears new and effective. The measurements of spine activity are carefully done. The finding that a small number of spines located in the same branch with similar tuning properties would predict the somatic tuning is consistent with local dendritic nonlinear integration mechanisms.

      Weaknesses:

      (1) The demonstration of the effectiveness of soma-specific inhibition is inadequate. Figure 1 only provides a single example trace showing the inhibition of somatic visual responses. The authors should provide statistical analysis over grouped data. For the effect of soma-specific inhibition on spine activity, the authors provided mostly negative results, lacking effects on spine responses for both soma inhibition and bAP subtraction. This is confusing. One possible explanation is that bAPs normally have little influence on spine activity. However, this would conflict with the known fact that somatic APs can easily invade spines in L2/3 neurons (e.g., Chen et al., Nature 2011). Another possibility is that under the current experimental conditions, somatic APs were rarely evoked by the visual stimulus. The authors should also rule out the possibility that the spines they imaged are from different neurons than the ones with somatic inhibition. The authors may consider identifying those cases where somatic APs have a significant impact on spine activity or spine tuning and show how bAP inhibition influences the dendritic and spine responses.

      (2) Figure 4 shows that the proportion of spines with a preferred orientation similar to the soma (ΔOri {less than or equal to} 30{degree sign}) was 60%, which is surprisingly high. It is intriguing that without somatic AP invasion, there could be such a high degree of similarity between spine activity and somatic tuning. What is the ratio without soma inhibition? One could reason that with bAP invasion, there should be even more spines showing visual responses similar to those of the soma. Moreover, with such a high proportion of spines showing similar sensory tuning to the soma, it is inevitable that many branches contain more spines with similar tuning as the soma, exhibiting an apparent branch-specific clustering. While such apparent clustering may well predict somatic tuning, it primarily reflects a correlational relationship rather than a causal synaptic integration mechanism.

      (3) There has been extensive work studying how the integration of spine activity or sub-branch activity gives rise to somatic output. The proposed main contribution of this study is to use an improved method to inhibit somatic activity in order to more confidently measure spine-specific activity and examine the integration mechanisms. However, the results showed that the measured spine-specific activity under soma inhibition was not significantly different from that measured under normal conditions (see point 1). It becomes unclear how this new method contributes to obtaining new insights into the synaptic integration mechanism.

      (4) Figure 6 shows how the tuning similarity between spines depends on the distance between them. It is unclear what new information was acquired regarding the functional clustering of spines. This result can be largely explained by the overall higher proportion of similarly tuned spines (60%) compared to the soma's preferred orientations. Moreover, the authors did not demonstrate how such clustering may contribute to nonlinear synaptic integration.

      (5) The results shown in Figure 7 can again be largely explained by the static property of a higher proportion of spines tuned similarly to the soma. These results do not reveal any active dendritic integration mechanisms.

    2. Reviewer #2 (Public review):

      Summary:

      The paper from Kondo et al., addresses how the functional organization of synaptic inputs in 2/3 pyramidal neurons contributes to their output firing. Expressing GCamp6s to monitor calcium activity and the bi-stable inhibitory opsin SwiChR++ to inhibit the somatic activity of the imaged neurons, the authors were able to image up to ~5700 spines in basal dendrites from 6 neurons. Mapping the functional responses of such a large number of dendritic spines and relating it to the output firing of the parent neuron is a remarkable feat. The authors studied the clustering of similarly tuned spines within individual dendrites and found that while some dendrites are similarly tuned to the same orientation of the parent neuron, other dendrites exhibit tuning to other orientations and moreover a significant proportion of dendrites exhibit no tuning. Modelling work suggests that the clustering of spines in a small proportion of dendrites should suffice to give rise to the tuning of the parent cell.

      Strengths:

      (1) Removal of the potential confound of somatic firing via optogenetic inhibition is convincing and validates a useful tool for the neuroscientific community. As discussed by the authors the tool would be most valuable for the study of excitatory inputs in inhibitory neurons.

      (2) The comparison of optogenetic inhibition of somatic responses and isolation of spine-specific signals using the removal of backpropagating action potential by robust regression is an important control and constitutes an important affirmation of previously published work.

      (3) The large dataset size provides enough statistical power to test for clustering of similarly tuned spines in basal dendrites.

      (4) The study provides a useful replication of previously published results.

      (5) Modelling work in the study shows that as in the ferret visual cortex (Wilson et al., 2016), a combination of dendritic nonlinearity and spike thresholding contribute to the sharpness of orientation tuning in the mouse visual cortex.

      Weaknesses:

      (1) One of the main conclusions of the study, the classification of dendrites according to the presence or absence of visual responses, lacks quantification.

      (2) Some of the statistics employed in combination with shuffling controls are not adequate.

      (3) All the neurons imaged are very highly tuned (with a very high orientation selectivity index (OSI)). The performance of the models is evaluated by the correlation coefficient between the predicted and the measured somatic tuning curve. The high OSI of the neurons reduces the sensitivity of the evaluation of the models, as it results in extremely high or low correlation coefficients (Figure 8a). It would be important to recapitulate the results from the model for neurons with lower OSI, given that not all L2/3 neurons are so highly tuned.

      (4) It is very hard to understand how the modelling results relate to the experimental data, as the definitions of what constitutes a clustered dendrite in the model or in the experimental data are unclear.

    1. Reviewer #1 (Public review):

      In this manuscript, Chang et al. investigated the cell type-specific role of the integrin activator Shv in activity-dependent synaptic remodeling. Using the Drosophila larval neuromuscular junction as a model, they show that glial-secreted Shv modulates synaptic plasticity by maintaining the extracellular balance of neuronal Shv proteins and regulating ambient extracellular glutamate concentrations, which in turn affects postsynaptic glutamate receptor abundance. Furthermore, they report that genetic perturbation of glial morphogenesis phenocopies the defects observed with the loss of glial Shv. Altogether, their findings propose a role for glia in activity-induced synaptic remodeling through Shv secretion. While the conclusions are intriguing, several issues related to experimental design and data interpretation merit further discussion.

    2. Reviewer #2 (Public review):

      In this paper Chang et al follow up on their lab's previous findings about the secreted protein Shv and its role in activity-induced synaptic remodeling at the fly NMJ. Previously they reported that shv mutants have impaired synaptic plasticity. Normally a high stimulation paradigm should increase bouton size and GluR expression at synapses but this does not happen in shv mutants. The phenotypes relating to activity dependent plasticity were completely recapitulated when Shv was knocked down only in neurons and could be completely rescued by incubation in exogenously applied Shv protein. The authors also showed that Shv activation of integrin signaling on both the pre- and post- synapse was the molecular mechanism underlying its function. Here they extend their study to consider the role of Shv derived from glia in modulating synaptic features at baseline and remodeling conditions. This study is important to understand if and how glia contribute to these processes. Using cell-type specific knockdown of Shv only in glia causes abnormally high baseline GluR expression and prevents activity-dependent increases in bouton size or GluR expression post-stimulation. This does not appear to be a developmental defect as the authors show that knocking down Shv in glia after basic development has the same effects as life long knockdown, so Shv is acting in real time. Restoring Shv in ONLY glia in mutant animals is sufficient to completely rescue the plasticity phenotypes and baseline GluR expression, but glial-Shv does not appear to activate integrin signaling which was shown to be the mechanism for neuronally derived Shv to control plasticity. This led the authors to hypothesize that glial Shv works by controlling the levels of neuronal Shv and extracellular glutamate. They provide evidence that in the absence of glial Shv, synaptic levels of Shv go up overall, presumably indicating that neurons secrete more Shv. In this context which could then work via integrin signaling as described to control plasticity. They use a glutamate sensor and observe decreased signal (extracellular glutamate) from the sensor in glial Shv KD animals, however, this background has extremely high GluR levels at the synapse which may account for some or all of the decreases in sensor signal in this background. Additional controls to test if increased GluR density alone affects sensor readouts and/or independently modulating GluR levels in the glial KD background would help strengthen this data. In fact, glial-specific shv KD animals have baseline levels of GluR that are potentially high enough to have hit a ceiling of expression or detection that accounts for the inability for these levels to modulate any higher after strong stimulation and such a ceiling effect should be considered when interpreting the data and conclusions of this paper. Several outstanding questions remain-why can't glial derived Shv activate integrin pathways but exogenously applied recombinant Shv protein can? The effects of neuronal specific rescue of shv in a shv mutant are not provided vis-à-vis GluR levels and bouton size to compare to the glial only rescue. Inclusion of this data might provide more insight to outstanding questions of how and why the source of Shv seems to matter for some aspects of the phenotypes but not others despite the fact that exogenous Shv can rescue and in some experimental paradigms but not others.

    3. Reviewer #3 (Public review):

      Summary:

      The manuscript by Chang and colleagues provides compelling evidence that glia-derived Shriveled (Shv) modulates activity-dependent synaptic plasticity at the Drosophila neuromuscular junction (NMJ). This mechanism differs from the previously reported function of neuronally released Shv, which activates integrin signaling. They further show that this requirement of Shv is acute and that glial Shv supports synaptic plasticity by modulating neuronal Shv release and the ambient glutamate levels. However, there are a number of conceptual and technical issues that need to be addressed.

      Major comments

      (1) From the images provided for Fig 2B +RU486, the bouton size appears to be bigger in shv RNAi + stimulation, especially judging from the outline of GluR clusters.<br /> (2) The shv result needs to be replicated with a separate RNAi.<br /> (3) The phenotype of shv mutant resembles that of neuronal shv RNAi - no increased GluR baseline. Any insights why that is the case?<br /> (4) In Fig 3B, SPG shv RNAi has elevated GluR baseline, while PG shv RNAi has a lower baseline. In both cases, there is no activity induced GluR increase. What could explain the different phenotypes?<br /> (5) In Fig 4C, the rescue of PTP is only partial. Does that suggest neuronal shv is also needed to fully rescue the deficit of PTP in shv mutants?<br /> (6) The observation in Fig 5D is interesting. While there is a reduction in Shv release from glia after stimulation, it is unclear what the mechanism could be. Is there a change in glial shv transcription, translation or the releasing machinery? It will be helpful to look at the full shv pool vs the released ones.<br /> (7) In Fig 5E, what will happen after stimulation? Will the elevated glial Shv after neuronal shv RNAi be retained in the glia?<br /> (8) It would be interesting to see if the localization of shv differs based on if it is released by neuron or glia, which might be able to explain the difference in GluR baseline. For example, by using glia-Gal4>UAS-shv-HA and neuronal-QF>QUAS-shv-FLAG. It seems important to determine if they mix together after release? It is unclear if the two shv pools are processed differently.<br /> (9) Alternatively, do neurons and glia express and release different Shv isoforms, which would bind different receptors?<br /> (10) It is claimed that Sup Fig 2 shows no observable change in gross glial morphology, further bolstering support that glial Shv does not activate integrin. This seems quite an overinterpretation. There is only one image for each condition without quantification. It is hard to judge if glia, which is labeled by GFP (presumably by UAS-eGFP?), is altered or not.<br /> (11) The hypothesis that glutamate regulates GluR level as a homeostatic mechanism makes sense. What is the explanation of the increased bouton size in the control after glutamate application in Fig 6?<br /> (12) What could be a mechanism that prevents elevated glial released Shv to activate integrin signaling after neuronal shv RNAi, as seen in Fig 5E?<br /> (13) Any speculation on how the released Shv pool is sensed?

    1. Reviewer #1 (Public review):

      Summary:

      As TDP-43 mislocalization is a hallmark of multiple neurodegenerative diseases, the authors seek to identify pathways that modulate TDP-43 levels. To do this, they use a FACS based genome wide CRISPR KD screen in a Halo tagged TDP-43 KI iPSC line. Their screen identifies a number of genetic modulators of TDP-43 expression including BORC which plays a role in lysosome transport.

      Strengths:

      Genome wide CRISPR based screen identifies a number of modulators of TDP-43 expression to generate hypotheses regarding RNA BP regulation and perhaps insights into disease.

      Weaknesses:

      It is unclear how altering TDP-43 levels may relate to disease where TDP-43 is not altered in expression but mislocalized. This is a solid cell biology study, but the relation to disease is not clear without providing evidence of BORC alterations in disease or manipulation of BORC reversing TDP-43 pathology in disease.

      The mechanisms by which BORC and lysosome transport modulate TDP-43 expression are unclear. Presumably, this may be through altered degradation of TDP protein but this is not addressed.

      Previous studies have demonstrated that TDP-43 levels can be modulated by altering lysosomal degradation so the identification of lysosomal pathways is not particularly novel.

      It is unclear whether this finding is specific to TDP-43 levels or whether lysosome localization may more broadly impact proteostasis in particular of other RNA BPs linked to disease.

      Unclear whether BORC depletion alters lysosome function or simply localization.

    2. Reviewer #2 (Public review):

      Summary:

      The authors employ a novel CRISPRi FACS screen and uncover the lysosomal transport complex BORC as a regulator of TDP-43 protein levels in iNeurons. They also find that BORC subunit knockouts impair lysosomal function, leading to slower protein turnover and implicating lysosomal activity in the regulation of TDP-43 levels. This is highly significant for the field given that a) other proteins could also be regulated in this way, b) understanding mechanisms that influence TDP-43 levels are significant given that its dysregulation is considered a major driver of several neurodegenerative diseases and c) the novelty of the proposed mechanism.

      Strengths:

      The novelty and information provided by the CRISPRi screen. The authors provide evidence indicating that BORC subunit knockouts impair lysosomal function, leading to slower protein turnover and implicating lysosomal activity in the regulation of TDP-43 levels and show a mechanistic link between lysosome mislocalization and TDP-43 dysregulation. The study highlights the importance of localized lysosome activity in axons and suggests that lysosomal dysfunction could drive TDP-43 pathologies associated with neurodegenerative diseases like FTD/ALS. Further, the methods and concepts will have an impact to the larger community as well. The work also sets up for further work to understand the somewhat paradoxical findings that even though the tagged TDP-43 protein is reduced in the screen, it does not alter cryptic exon splicing and there is a longer TDP-43 half-life with BORC KD.

      Weaknesses:

      While the data is very strong, the work requires some additional clarification.

    3. Reviewer #3 (Public review):

      Summary:

      In this work, Ryan et al. have performed a state-of-the-art full genome CRISP-based screen of iNEurons expressing a teggd version of TDP-43 in order to determine expression modifiers of this protein. Unexpectedly, using this approach the authors have uncovered a previously undescribed role of the BORC complex in affecting the levels of TDP-43 protein, but not mRNA expression. Taken together, these findings represent a very solid piece of work that will certainly be important for the field.

      Strengths:

      - BORC is a novel TDP-43 expression modifier that has never been described before and it seemingly acts on regulating protein half life rather than transcriptome level. It has been long known that different labs have reported different half-lives for TDP-43 depending on the experimental system but no work has ever explained these discrepancies. Now, the work of Ryan et al. has for the time identified one of these factors which could account for these differences and play an important role in disease (although this is left to be determined in future studies).<br /> - The genome wide CRISPR screening has demonstrated to yield novel results with high reproducibility and could eventually be used to search for expression modifiers of many other proteins involved in neurodegeneration or other diseases

      Weaknesses:

      - The fact that TDP-43 mRNA does not change following BORCS6 KD is based on a single qRT-PCR that does not really cover all possibilities. For example, the mRNA total levels may not change but the polyA sites may have switched from the highly efficient pA1 to the less efficient and nuclear retained pA4. There are therefore a few other experiments that could have been performed to make this conclusion more compelling, maybe also performing RNAscope experiments to make sure that no change occurred in TDP-43 mRNA localisation in cells.<br /> - Even assuming that the mRNA does not change, no explanation for the change in TDP-43 protein half life has been proposed by the authors. This will presumably be addressed in future studies: for example, are mutants that lack different domains of TDP-43 equally affected in their half-lives by BORC KD?. Alternatively, can a mass-spec be attempted to see whether TDP-43 PTMs change following BORCS6 KD?

    1. Reviewer #1 (Public review):

      Summary of what is achieved: This manuscript validates and extends upon the sigh generating circuit between the NMB/GRP+ RTN/parafacial neurons and the NMBR/GRPR+ preBötC neurons established in Li et al., 2016. The authors generate multiple transgenic lines that enable selective targeting of these various sub-populations of cells and demonstrate the sufficiency of each type in generating a sigh breath. Additionally, they show that NMBR and GPRP preBötC neurons are glutamatergic, have overlapping and distinct expression, and do not express SST. Beyond this validation, the authors show that ectopic stimulation of SST neurons is sufficient to evoke sighs and that they are necessary for NMB/GRP induced sighing. This data is the first time that preBötC neurons downstream of NMBR/GRPR neurons have been identified that transform a eupneic breath into a sign breath. The five conclusions stated at the end of the introduction are supported by the data.

      Summary of a primary weakness: A strong emphasis throughout the manuscript is the identification of an unsubstantiated slow sigh rhythm that is produced by NMBR/GRPR neurons. It is even suggested that this is an intrinsic property of these neurons. However, to make such a novel (and quite surprising) claim requires many more studies and the conclusion is dependent on how the authors have defined a sigh. Moreover, some data within the paper conflicts with this idea. The resubmitted manuscript does not contain any revisions and the rebuttal does not sufficiently address the critiques.

      In summary, the optogenetic and chemogenetic characterization of the neuropeptide pathway transgenic lines nicely aligns with and provides important validation of the previous study by Li et. al., 2016 and the SST neuron studies provide a new mechanism for the transformation of NMBR/GRPR neuropeptide activation into a sigh. These are important findings, and they should be the points emphasized. The proposal of a slow sigh rhythm should be more rigorously established with new experiments and analysis or should be more carefully described and discussed.

    2. Reviewer #2 (Public review):

      Summary:

      This study investigates in mice neural mechanisms generating sighs, which are periodic large-amplitude breaths occurring during normal breathing that subserve physiological pulmonary functions and are associated with emotional states such as relief, stress, and anxiety. Sighs are generated by a structure called the preBötzinger complex (preBötC) in the medulla oblongata that generates various forms of inspiratory activity including sighs. The authors have previously described a circuit involving neurons producing bombesin-related peptides Neuromedin B (NMB) and gastrin releasing peptide (GRP) that project to preBötC neurons expressing receptors for NMB (NMBRs) and GRP (GRPRs) and that activation of these preBötC neurons via these peptide receptors generates sighs. In this study the authors further investigated mechanisms of sigh generation by applying optogenetic and chemogenetic strategies to selectively activate the subpopulations of preBötC neurons expressing NMBRs and/or GRPRs, and a separate subpopulation of neurons expressing somatostatin (SST) but not NMBRs and GRPRs. The authors present convincing evidence that sigh-like inspirations can be evoked by photostimulation of the preBötC neurons expressing NMBRs or GRPRs. Photostimulation of SST neurons can independently evoke sighs, and chemogenetic inhibition of these neurons can abolish sighs. The results presented support the authors' conclusion that the preBötC neurons expressing NMBRs or GRPRs produce sighs via pathways to downstream SST neurons. Thus, these studies have identified some of the preBötC cellular elements likely involved in generating sighs.

      Strengths:

      (1) This study employs an effective combination of electrophysiological, transgenic, optogenetic, chemogenetic, pharmacological, and neuron activity imaging techniques to investigate sigh generation by distinct subpopulations of preBötC neurons in mice.

      (2) The authors extend previous studies indicating that there is a peptidergic circuit consisting of NMB and GRP expressing neurons that project from the parafacial (pF) nucleus region to the preBötC and provides sufficient input to generate sighs, since photoactivation of either pF NMB or GRP neurons evoke ectopic sighs in this study.

      (3) Solid evidence is presented that sighs can be evoked by direct photostimulation of preBötC neurons expressing NMBRs and/or GRPRs, and also a separate subpopulation of neurons expressing somatostatin (SST) but not NMBRs and GRPRs.

      (4) The mRNA-expression data presented from in situ hybridization indicates that most preBötC neurons expressing NMBR, GRPR (or both) are glutamatergic and excitatory.

      (5) Measurements in slices in vitro indicate that only the NMBR expressing neurons are normally rhythmically active during normal inspiratory activity and endogenous sigh activity.

      (6) Evidence is presented that activation of preBötC NMBRs and/or GRPRs is not necessary for sigh production, suggesting that sighs are not the unique product of the preBötC bombesin-peptide signaling pathway.

      (7) The novel conclusion is presented that the preBötC neurons expressing NMBRs and/or GRPRs produce sighs via the separate downstream population of preBötC SST neurons, which the authors demonstrate can independently generate sighs, whereas chemogenetic inhibition of preBötC SST neurons selectively abolishes sighs generated by activating NMBRs and GRPRs.

      Weaknesses:

      (1) While these studies have identified subpopulations of preBötC neurons capable of episodically evoking sigh-like inspiratory activity, mechanisms producing the normal slow sigh rhythm were not investigated and remain unknown.

      (2) The authors have addressed some of the reviewers' main technical concerns and issues relating to interpretation of the results in their rebuttal letter, but have minimally revised the manuscript. Accordingly, there remain important technical and interpretation issues requiring resolution in the revised manuscript.

      Comments on revisions:

      The authors have clarified in their rebuttal letter the rationale for utilizing two different photostimulation paradigms but have not incorporated any of this explanation in Methods, which would be helpful for readers.

    3. Reviewer #3 (Public review):

      Summary:

      This manuscript by Cui et al., studies the mechanisms for the generation of sighing, an essential breathing pattern. This is an important and interesting topic, as sighing maintains normal pulmonary function and is associated with various emotional conditions. However, the mechanisms of its generation remain not fully understood. The authors employed different approaches, including optogenetics, chemogenetics, intersectional genetic approach, and slice electrophysiology and calcium imaging, to address the question, and found several neuronal populations are sufficient to induce sighing when activated. Furthermore, ectopic sighs can be triggered without the involvement of neuromedin B (NMB) or gastrin releasing peptide (GRP) or their receptors in the preBötzinger Complex (preBötC) region of the brainstem. Additionally, activating SST neurons in the preBötC region induces sighing, even when other receptors are blocked. Based on these results, the authors concluded that increased excitability in certain neurons (NMBR or GRPR neurons) activates pathways leading to sigh generation, with SST neurons serving as a downstream component in converting regular breaths into sighs.

      Strengths:

      The authors employed a combination of various sophisticated approaches, including optogenetics, chemogenetics, intersectional genetic approach, and slice electrophysiology and calcium imaging, to precisely pinpoint the mechanism responsible for sigh generation. They utilized multiple genetically modified mouse lines, enabling them to selectively manipulate and observe specific neuronal populations involved in sighing.<br /> Using genetics and calcium imaging, the authors record the neuronal activity of NMBR and GRPR neurons, respectively, and identified their difference in activity pattern. Furthermore, by applying the intersectional approach, the authors were able to genetically target and manipulate several distinct neuronal populations, such as NMBR+, GRPR- neurons and GRPR+, NMBR- neurons, and conducted a detailed characterization of their functions in influencing sighing.

      Weaknesses:

      (1) The authors employed two conditions for optogenetic activation: long pulse photostimulation (LPP) and short pulse photostimulation (SPP), with durations ranging from 4-10s for LPP and 100-500 ms for SPP. These could generate huge variability in the experiments. The rationale behind the selection of these conditions in each experiment remains unclear in the manuscript. Additionally, it is not explained why these specific durations were chosen. Furthermore, the interpretation for the varied responses observed under these conditions is not provided. Clarification on the rationale and interpretation of these experimental parameters would enhance the understanding of the results. The description of the experiment conditions should be consistent throughout the manuscript.

      (2) Regarding the fiber optics, my understanding is that they are placed outside of the brainstem from the ventral side. Given the locations of the pF and preBötC neurons, could the differences in responses be attributed to the varying distances of each population from the ventral surface? In fact, in Figure 8, NMBR is illustrated as being closer to the ventral surface. Does it represent the actual location of these neurons?

      (3) The results of recording on NMBR neurons in Figure 4 were compelling. However, I'm curious why the recording of GRPR neurons and their response to the neuropeptide were not presented or examined. Additionally, considering the known cross-reaction between peptides and their receptors, it might be worthwhile to investigate how GRP modulates NMBR neurons and how NMB modulates GRPR neurons.

      (4) The authors found that activation of several preBötC populations, including NMBR, GRPR, and SST neurons, despite pharmacological inhibition of NMBR and GRPR, can still induce sighing, and concluded that "activation of preBötC NMBRs and/or GRPRs is not necessary for sigh production". I disagree with this conclusion. Even when the receptors are silenced, artificial (optogenetic or chemogenetic) activation could still activate the same downstream pathways. This cannot be used as evidence to claim that the receptors are not required for sighing in vivo, because it is possible that the receptors are still necessary for the activation of these neurons under natural conditions. For instance, while diaphragm activation induces breathing, it does not negate the crucial role of the nervous system in regulating this process in physiological conditions.

      (5) The authors noted varied responses upon activating specific subpopulations of the preBötC neurons, namely NMBR, GRPR, and SST neurons. Could these differences be attributed to variations in viral labeling efficiency among different mouse genetic lines? Are there discrepancies in the number of labeled neurons across the lines? Additionally, the authors did not thoroughly characterize the specificities of AAV targeting in their Cre and Flp lines. It's uncertain whether the AAV-labeled neurons are strictly restricted to the designated population without notable leakage into other populations. This is particularly crucial for the experiments manipulating SST neurons. If there's substantial labeling of NMBR or GRPR neurons, it could undermine the conclusions drawn. Further examination of the precision and selectivity of the labeling techniques is necessary to ensure the accurate interpretation of the experimental findings.

      (6) The authors have addressed some of the reviewers' concerns in the revision; however, many important issues remain unaddressed.

    1. Reviewer #1 (Public review):

      Summary:

      Dong et al here have studied the impact of the small Ras-like GTPase Rab10 on the exocytosis of dense core vesicles (DVC), which are important mediators of neuropeptide signaling in brain. They use optical imaging to show that lentiviral depletion of Rab10 in mouse hippocampal neurons in culture independent of the established defects in neurite outgrowth hamper DCV exocytosis. They further demonstrate that such defects are paralleled by changes in ER morphology and defective ER-based calcium buffering as well as reduced ribosomal protein expression in Rab10-depleted neurons. Re-expression of Rab10 or supplementation of exogenous L-leucine to restore defective neuronal protein synthesis rescues impaired DCV secretion. Based on these results they propose that Rab10 regulates DCV release by maintaining ER calcium homeostasis and neuronal protein synthesis.

      Strengths:

      This work provides interesting and potentially important new insights into the connection between ER function and the regulated secretion of neuropeptides via DCVs. The authors combine advanced optical imaging with light and electron microscopy, biochemistry and proteomics approaches to thoroughly assess the effects of Rab10 knockdown at the cellular level in primary neurons. The proteomic dataset provided may be valuable in facilitating future studies regarding Rab10 function. This work will thus be of interest to neuroscientists and cell biologists.

      Weaknesses:

      Whether and how the phenotypes of Rab10 reported in this study are linked remains an open question. Likewise, a possible role of Rab10 in exocytosis cannot be excluded at this stage.

      Comments on revisions:

      My previous questions and concerns have been satisfactorily addressed by the authors.

    2. Reviewer #2 (Public review):

      Summary:

      In this paper, the authors assess the function of Rab10 in dense core vesicle (DCV) exocytosis using RNAi and cultured neurons. The author provides evidence that their knockdown (KD) is effective and provides evidence that DCV is compromised. They also perform proteomic analysis to identify potential pathway that are affected upon KD of Rab10 that may be involved in DCV release. Upon focusing on ER morphology and protein synthesis, the authors conclude that defects in protein synthesis and ER Ca2+ homeostasis contributes to the DVC release defect upon Rab10 KD.

      Strengths:

      The data related to Rab10's role in DCV release seems to be strong and carried out with rigor. While the paper lacks in vivo evidence that this gene is indeed involved in DCV in a living mammalian organism, I feel the cellular studies have value. The identification of ER defect in Rab10 manipulation is not truly novel but it is a good conformation of studies performed in other systems. The finding that DCV release defect and protein synthesis defect seen upon Rab10 KD can be significantly suppressed by Leucine supplementation is also a strength of this work.

      Weaknesses:

      The weaknesses mentioned in my previous comments have been addressed through the revision process.

    3. Reviewer #3 (Public review):

      In this study, Dong and colleagues set to dissect the role of Rab10 small GTPase on the intracellular trafficking and exocytosis of dense core vesicles (DCVs). While the authors have already shown that Rab3 plays a central role in the exocytosis of DVC in mammalian neurons, the roles of several other Rab-members have been identified genetically, but their precise mechanism of action in mammalian neurons remains unclear. In this study, the authors use a carefully designed and thoroughly executed series of experiments, including live-cell imaging, functional calcium-imaging, proteomics, and electron microscopy, to identify that DCV secretion upon Rab10 depletion in adult neurons is primarily a result of dysregulated protein synthesis and, to a lesser extent, disrupted intracellular calcium buffering. Given that the full deletion of Rab10 has deleterious effect on neurons and that Rab10 has a major role in axonal development, the authors cautiously employed the knock-down strategy from 7 DIV, to focus on the functional impact of Rab10 in mature neurons. The experiments in this study were meticulously conducted, incorporating essential controls and thoughtful considerations, ensuring rigorous and comprehensive results that fully support the conclusions.

      Comments on revisions:

      The authors have addressed all the comments and suggestions raised by reviewers, making this an excellent and timely study.

    1. Reviewer #2 (Public review):

      Summary.

      Some forms of Artificial Intelligence (AI), particularly those based on artificial neural networks (ANNs), draw inspiration from biological brains and neurons. Understanding the functional repertoire and underlying logic of real neurons could, therefore, help improve ANNs. While the cell bodies and axons of neurons produce rapid, high-amplitude action potentials (~100 mV over ~2 ms), dendrites-constituting about 80% of neuronal membrane area-generate smaller but longer-lasting electrical signals, known as glutamate-mediated dendritic plateau potentials (~50 mV over >100 ms). The authors have designed artificial neurons capable of producing these dendritic plateau potentials and, through simulations, demonstrate that such prolonged dendritic signals reduce the negative effects of temporal jitter in real or artificial neural networks. Specifically, they show that in ANNs with neurons capable of dendritic plateau potentials, reliable sparse spiking computation can occur without the need for precise input synchronization. This means that despite fluctuations in network activity (such as delays in the brain circuit responses, for example), neurons can still link related network events. Thus, dendritic plateau potentials enable neurons to retain information longer, connecting events that are not exactly simultaneous. Interestingly, one of the indirect conclusions of the current study is that neurons equipped with dendritic plateau potentials may reduce the total number of cells (nodes, units) required to perform robust computations.

      Strengths.

      Most studies in neuroscience are descriptive, focusing on observations and measurements. Fewer tackle the more challenging task of explaining the rationale behind specific natural designs. This study does just that, addressing the fundamental problem of asynchrony in neural communication caused by conduction delays and noise. Given that neurons with short membrane time constants can integrate only nearly simultaneous inputs, the authors propose a solution: dendritic plateau potentials. These potentials, generated through glutamate-mediated depolarization within dendritic branches, effectively broaden the temporal integration window, allowing neurons to handle temporal jitter, variability, stochasticity, and maintain reliable computation. Thus, dendritic plateau potentials appear to be an adaptive feature evolved to support rapid, reliable CNS computations.

      Weaknesses.

      The authors have appropriately revised unsupported statements from previous versions, but the manuscript could benefit from examples of testable hypotheses derived from their findings. For example, what specific experimental questions could be investigated to validate these computational predictions? Providing concrete examples of potential experimental tests would make the work more accessible and actionable for experimentalists, assuming such experiments are feasible.

      Additionally, many readers may lack a background in computational modeling or Artificial Neural Networks. To enhance accessibility, key terms and concepts should be explained at a level suitable for first-year graduate students, ensuring clarity for a broader audience.

    1. Reviewer #2 (Public review):

      This work aggregates data across 5 openly available stopping studies (3 at 7 tesla and 2 at 3 tesla) to evaluate activity patterns across the common contrasts of Failed Stop (FS) > Go, FS > stop success (SS), and SS > Go. Previous work has implicated a set of regions that tend to be positively active in one or more of these contrasts, including the bilateral inferior frontal gyrus, preSMA, and multiple basal ganglia structures. However, the authors argue that upon closer examination, many previous papers have not found subcortical structures to be more active on SS than FS trials, bringing into question whether they play an essential role in (successful) inhibition. In order to evaluate this with more data and power, the authors aggregate across five datasets and find many areas that are *more* active for FS than SS, including bilateral preSMA, GPE, thalamus, and VTA. They argue that this brings into question the role of these areas in inhibition, based upon the assumption that areas involved in inhibition should be more active on successful stop than failed stop trials, not the opposite as they observed.

      Comments on revisions:

      The authors have been responsive to the feedback of both reviewers and they have significantly improved the manuscript. I now judge the work as valuable and solid. The authors have achieved their aims to characterize subcortical BOLD activation in the stop-signal paradigm.

    1. Reviewer #1 (Public review):

      The authors set out to define the molecular basis for LP as the origin of BRCA1-deficient breast cancers. They showed that LPs have the highest level of replicative stress, and hypothesise that this may account for their tendency to transform. They went on to identify ELF3 as a candidate driver of LP transformation and showed that ELF3 expression is up-regulated in response to replicative stress as well as BRCA1 deficiency. They went on to show that ELF3 inactivation led to a higher level of DNA damage, which may result from compromised replicative stress responses.

      While the manuscript supports the interesting idea wherein ELF3 may fuel LP cell transformation, it remains obscure how ELF3 promotes cell tolerance to DNA damage. Interestingly the authors proposed that ELF3 suppresses excessive genomic instability, but in my opinion, I do not see any evidence that supports this claim. In fact, one might think that genomic instability is key to cell transformation.

      Comments on revisions:

      The authors have addressed most of my concerns.

      This being said, the one major criticism raised by both Reviewers is the lack of evidence to support ELF3 as a driver of transformation of and in LP cells. The authors appear to have invested much resource and time but were not successful in isolating LP cells for experimentations. I would therefore suggest that the authors tone down their claims throughout the manuscript.

    1. Reviewer #1 (Public review):

      Summary:

      This study analyzed biomarker data from 28 subjects with geographic atrophy (GA) in a Phase I/II clinical trial of PPY988, a subretinal AAV2 complement factor I (CFI) gene therapy, to evaluate pharmacokinetics and pharmacodynamics. Post-treatment, a 2-fold increase in vitreous humor (VH) FI was observed, correlating with a reduction in FB breakdown product Ba but minimal changes in other complement factors. The aqueous humor (AH) was found to be an unreliable proxy for VH in assessing complement activation. In vitro assays showed that the increase in FI had a minor effect on the complement amplification loop compared to the more potent C3 inhibitor pegcetacoplan. These findings suggest that PPY988 may not provide enough FI protein to effectively modulate complement activation and slow GA progression, highlighting the need for thorough biomarker review to determine optimal dosing in future studies.

      Strengths:

      This manuscript provides critical data on the efficacy of gene therapy for the eye, specifically introducing complement FI expression. It presents the results from a halted clinical trial, making the publication of this data essential for understanding the outcomes of this gene therapy approach. The findings offer valuable insights and lessons for future gene therapy attempts in similar contexts.

      Weaknesses:

      No particular weaknesses. The study was carefully performed and limitations are discussed.

      I have just some concerns about the methodology used. The authors use the MILLIPLEX assays, which allow for multiplexed detection of complement proteins and they mention extensive validation. How are the measurements with this assay correlating with gold standard methods? Is the specificity and the expected normal ranges preserved with this assay? This also stands for the Olink assay. Some of the proteins are measured by both assay and/or by standard ELISA. How do these measurements correlate?

      Comments on revisions:

      The authors answered part of my comments. Only one remained - please provide a comparison between ELISA/Multiplex and Olink data to judge the robustness of the Olinkl assay for complement.

    2. Reviewer #2 (Public review):

      Summary:

      The results presented demonstrate AAV2-CFI gene therapy delivers long-term and marginally higher FI protein in vitreous humor that results in a concomitant reduction in the FB activation product Ba. However, the lack of clinical efficacy in the phase I/II study, possibly due to lower in vitro potency when compared to currently approved pegcetacoplan, raise important considerations for the utility of this therapeutic approach. Despite the early termination of the PPY988 clinical development program, the study achieved significant milestones, including the implementation of subretinal gene therapy delivery in older adults, complement biomarker comparison between serial vitreous humor and aqueous humor samples and vitreous humor proteomic assessment via Olink.

      Strengths:

      Long-term augmentation of FI protein in vitreous humor over 96-weeks and reduction of FB breakdown product Ba in vitreous humor suggests modulation of the complement system. Developed a novel in vitro assay suggesting FI's ability to reduce C3 convertase activity is weaker than pegcetacoplan and FH and may suggest a higher dose of FI will be required for clinical efficacy. Warn of the poor correlation between vitreous humor and aqueous humor biomarkers and suggest aqueous humor may not be a reliable proxy for vitreous humor with regard to complement activation/inhibition studies.

      Weaknesses:

      The vitrectomy required for subretinal route of administration causes long-term loss of total protein and may influence interpretation of complement biomarker results even with normalization. The modified in vitro assay of complement activation suggests a several hundred-fold increase in FI protein is required to significantly affect C3a levels. Interestingly, the in vitro assay demonstrates 100% inhibition of C3a with pegcetacoplan and FH therapeutics, but only a 50% reduction with FI even at the highest concentrations tested. This observation suggests FI may not be rate-limiting for negative complement regulation under the in vitro conditions tested and potentially in the eye. It is unclear if pharmacokinetic and pharmacodynamic properties in aqueous humor and vitreous humor compartments are a reliable predictor of FI level/activity after subretinal delivery AAV2-CFI gene therapy.

    3. Reviewer #3 (Public review):

      Summary:

      The manuscript by Hallam et al describes the analysis of various biomarkers in patients undergoing complement factor I supplementation treatment (PPY988 gene therapy) as part of the FOCUS Phase I/II clinical trial. The authors used validated methods (multiplexed assays and OLINK proteomics) for measuring multiple soluble complement proteins in the aqueous humour (AH) and vitreous humour (VH) of 28 patients over a series of timepoints, up to and including 96 weeks. Based on biomarker comparisons, the levels of FI synthesised by PPY988 were believed to be insufficient to achieve the desired level of complement inhibition. Subsequent comparative experiments showed that PPY988-delievred FI was much less efficacious than Pegceptacoplan (FDA approved complement inhibitor under the name SYFORVE) when tested in an artificial VH matrix.

      Strengths:

      The manuscript is well written with data clearly presented and appropriate statistics used for the analysis itself. It's great to see data from real clinical samples that can help support future studies and therapeutic design. The identification that complement biomarker levels present in the AH do not represent the levels found in the VH is an important finding for the field, given the number of complement-targeting therapies in development and the desperate need for good biomarkers for target engagement. This study also provides a wealth of baseline complement protein measurements in both human AH and VH (and companion measurements in plasma) that will prove useful for future studies.

      Weaknesses:

      No real weaknesses in the manuscript itself. It is only a shame that it would appear that FI supplementation is not a viable way forward for treating GA secondary to AMD.

      Comments on revisions:

      I think the authors have done all that they can to present this study in the most robust manner possible.

    1. Reviewer #1 (Public review):

      Summary:

      Chlamydia spp. has a biphasic developmental cycle consisting of an extracellular, infectious form called an elementary body (EB) and an intracellular, replicative form known as a reticular body (RB). The structural stability of EBs is maintained by extensive cross linking of outer membrane proteins while the outer membrane proteins of RBs are in a reduced state. The overall redox state of EBs is more oxidized than RBs. The authors propose that redox state may be a controlling factor in the developmental cycle. To test this, alkyl hydroperoxide reductase subunit C (ahpC) was overexpressed or knocked down to examine effects on developmental gene expression. KD of ahpC induced increased expression of EB-specific genes and accelerated EB production. Conversely, overexpression of phpC delayed differentiation to EBs. The results suggest that chlamydial redox state may play a role in differentiation.

      Strengths:

      Uses modern genetic tools to explore the difficult area of temporal gene expression throughout the chlamydial developmental cycle.

      Weaknesses:

      The environmental signals triggering ahpC expression/activity are not determined.

      Comments on revisions:

      I am satisfied with the modifications made to the manuscript.

    2. Reviewer #2 (Public review):

      The factors that influence the differentiation of EBs and RBs during Chlamydial development are not clearly understood. A previous study had shown a redox oscillation during the Chlamydial developmental cycle. Based on this observation, the authors hypothesize that the bacterial redox state may play a role in regulating the differentiation in Chlamydia. To test their hypothesis, they make knock-down and overexpression strains of the major ROS regulator, ahpC. They show that the knock-down of ahpC leads to a significant increase in ROS levels leading to an increase in the production of elementary bodies and overexpression leads to a decrease in EB production likely caused by a decrease in oxidation. From their observations, they present an interesting model wherein an increase in oxidation favors the production of EBs.

      Comments on revisions:

      Major concerns have been satisfactorily addressed.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript the authors evaluate the attenuation, immunogenicity, and protection efficacy of a live-attenuated SARS-CoV-2 vaccine candidate (BK2102) against SARS-CoV-2.

      Strengths:

      The authors demonstrate that intranasal inoculation of BK2102 is safe and able to induce humoral and cellular immune responses in hamsters, without apparent signs of damage in the lungs, that protects against homologous SARS-CoV-2 and Omicron BA.5 challenge. Safety of BK2102 was further confirmed in a new hACE2 transgenic mouse model generated by the authors.

      Weaknesses:

      The authors have addressed my previous comments on the first submission of the document.

    2. Reviewer #3 (Public review):

      Summary:

      Suzuki-Okutani and collogues reported a new live-attenuated SARS-CoV-2 vaccine (BK2102) containing multiple deletion/substitution mutations. They show that the vaccine candidate is highly attenuated and demonstrates great safety profile in multiple animal models (hamsters and Tg-Mice). Of importance, their data show that singe intranasal immunization with BK2102 leads to strong protection of hamsters against D614G and BA.5 challenge in both lungs and URT (nasal wash). Both humoral and cellular responses were induced, and neutralization activity remained for >360 after single inoculation.

      Strengths:

      The manuscript describes a comprehensive study that evaluates safety, immunogenicity, and efficacy of a new live-attenuated vaccine. Strengths of the study include: 1) strong protection against immune evasive variant BA.5 in both lungs and NW; 2) durability of immunity for >360 days; 3) confirmation of URT protection through a transmission experiment.<br /> While first-generation COVID-19 vaccines have achieved much success, new vaccines that provide mucosal and durable protection remain needed. Thus, the study is significant.

      Weaknesses:

      Lack of a more detailed discussion of this new vaccine approach in the context of reported live-attenuated SARS-CoV-2 vaccines in terms of its advantages and/or weakness<br /> Antibody endpoint titers could be presented.<br /> Lack of elaboration on immune mechanisms of protection at the upper respiratory tract (URT) against an immune evasive variant in the absence of detectable neutralizing antibodies

      Comments on revisions:

      In the revised submission, the authors have added new data and have modified the manuscript accordingly. They have reasonably addressed my comments raised in the previous round of review. The quality and clarity of the manuscript are improved.

    1. Reviewer #1 (Public Review):

      Summary:

      The present study's main aim is to investigate the mechanism of how VirR controls the magnitude of MEV release in Mtb. The authors used various techniques, including genetics, transcriptomics, proteomics, and ultrastructural and biochemical methods. Several observations were made to link VirR-mediated vesiculogenesis with PG metabolism, lipid metabolism, and cell wall permeability. Finally, the authors presented evidence of a direct physical interaction of VirR with the LCP proteins involved in linking PG with AG, providing clues that VirR might act as a scaffold for LCP proteins and remodel the cell wall of Mtb. Since the Mtb cell wall provides a formidable anatomical barrier for the entry of antibiotics, targeting VirR might weaken the permeability of the pathogen along with the stimulation of the immune system due to enhanced vesiculogenesis. Therefore, VirR could be an excellent drug target. Overall, the study is an essential area of TB biology.

      Strengths:

      The authors have done a commendable job of comprehensively examining the phenotypes associated with the VirR mutant using various techniques. Application of Cryo-EM technology confirmed increased thickness and altered arrangement of CM-L1 layer. The authors also confirmed that increased vesicle release in the mutant was not due to cell lysis, which contrasts with studies in other bacterial species.

      Another strength of the manuscript is that biochemical experiments show altered permeability and PG turnover in the mutant, which fits with later experiments where authors provide evidence of a direct physical interaction of VirR with LCP proteins.

      Transcriptomics and proteomics data were helpful in making connections with lipid metabolism, which the authors confirmed by analyzing the lipids and metabolites of the mutant.

      Lastly, using three approaches, the authors confirm that VirR interacts with LCP proteins in Mtb via the LytR_C terminal domain.

      Altogether, the work is comprehensive, experiments are designed well, and conclusions were made based on the data generated after verification using multiple complementary approaches.

      Weaknesses:

      The major weakness is that the mechanism of VirR-mediated EV release remains enigmatic. Most of the findings are observational and only associate enhanced vesiculogenesis observed in the VirR mutant with cell wall permeability and PG metabolism. Authors suggest that EV release occurs during cell division when PG is most fragile. However, this has yet to be tested in the manuscript-the AFM of the VirR mutant, which produces thicker PG with more pore density, displays enhanced vesiculogenesis. No evidence was presented to show that the PG of the mutant is fragile, and there are differences in cell division to explain increased vesiculogenesis. These observations, counterintuitive to the authors' hypothesis, need detailed experimental verification.

      Transcriptomic data only adds a little substantial. Transcriptomic data do not correlate with the proteomics data. It remains unclear how VirR deregulates transcription. TLCs of lipids are not quantitative. For example, the TLC image of PDIM is poor; quantitative estimation needs metabolic labeling of lipids with radioactive precursors. Further, change in PDIMs is likely to affect other lipids (SL-1, PAT/DAT) that share a common precursor (propionyl- CoA).

      The connection of cholesterol with cell wall permeability is tenuous. Cholesterol will serve as a carbon source and contribute to the biosynthesis of methyl-branched lipids such as PDIM, SL-1, and PAD/DAT. Carbon sources also affect other aspects of physiology (redox, respiration, ATP), which can directly affect permeability and import/export of drugs. Authors should investigate whether restoration of the normal level of permeability and EV release is not due to the maintenance of cell wall lipid balance upon cholesterol exposure of the VirR mutant.

      Finally, protein interaction data is based on experiments done once without statistical analysis. If the interaction between VirR and LCP protein is expected on the mycobacterial membrane, how SPLIT_GFP system expressed in the cytoplasm is physiologically relevant. No explanation was provided as to why VirR interacts with the truncated version of LCP proteins and not with the full-length proteins.

      Comments on revisions:

      The authors have addressed my comments. I have no further issues.

    2. Reviewer #2 (Public Review):

      Summary:

      In this work, Vivian Salgueiro et al. have comprehensively investigated the role of VirR in the vesicle production process in Mtb using state-of-the-art omics, imaging, and several biochemical assays. From the present study, authors have drawn a positive correlation between cell membrane permeability and vasculogenesis and implicated VirR in affecting membrane permeability, thereby impacting vasculogenesis.

      Strengths:

      The authors have discovered a critical factor (i.e. membrane permeability) that affects vesicle production and release in Mycobacteria, which can broadly be applied to other bacteria and may be of significant interest to other scientists in the field. Through omics and multiple targeted assays such as targeted metabolomics, PG isolation, analysis of Diaminopimelic acid and glycosyl composition of the cell wall, and, importantly, molecular interactions with PG-AG ligating canonical LCP proteins, the authors have established that VirR is a central scaffold at the cell envelope remodelling process which is critical for MEV production.

      Comments on the revision.

      Authors have addressed the concerns, specifically regarding the expression of downstream genes. It appears that they are not altered significantly.

      Data in Fig 6C shows significantly higher expresssion of VirR compared to control or knock down. In the absence of using a regulatable expression such as nitrile, this is expected from a constitutive promoter.

      I have no further questions for the author.

    1. Reviewer #1 (Public review):

      Summary:

      In this preprint, the authors systematically and rigorously investigate how specific classes of residue mutations alter the critical temperature as a proxy for the driving forces for phase separation. The work is well executed, the manuscript well-written, and the results reasonable and insightful.

      Strengths:

      The introductory material does an excellent job of being precise in language and ideas while summarizing the state of the art. The simulation design, execution, and analysis are exceptional and set the standard for large-scale simulation studies. The results, interpretations, and Discussion are largely nuanced, clear, and well-motivated, and the pedagogical nature with which sampling convergence is discussed is greatly appreciated. Finally, the underlying data are shared in a clear and accessible manner. Overall, the manuscript is a model

      Weaknesses:

      The simplicity of a one-bead-per-residue model parameterized to capture UCST-type phase behavior does perhaps impact some aspects of the generality of this work. That said, the authors carefully acknowledge these limitations, and overall, this is not seen as a major weakness of the conclusions drawn or the manuscript, given those conclusions are appropriately couched.

    2. Reviewer #2 (Public review):

      This is an interesting manuscript where a CA-only CG model (Mpipi) was used to examine the critical temperature (Tc) of phase separation of a set of 140 variants of prion-like low complexity domains (PLDs). The key result is that Tc of these PLDs seems to have a linear dependence on substitutions of various sticker and space residues. This is potentially useful for estimating the Tc shift when making novel mutations of a PLD.

      Comments on revisions: The authors have addressed concerns raised previously.

    3. Reviewer #3 (Public review):

      Summary:

      "Decoding Phase Separation of Prion-Like Domains through Data-Driven Scaling Laws" by Maristany et al. offers a significant contribution to the understanding of phase separation in prion-like domains (PLDs). The study investigates the phase separation behavior of PLDs, which are intrinsically disordered regions within proteins that have the propensity to undergo liquid-liquid phase separation (LLPS). This phenomenon is crucial in forming biomolecular condensates, which play essential roles in cellular organization and function. The authors employ a data-driven approach to establish predictive scaling laws that describe the phase behavior of these domains.

      Strengths:

      The study benefits from a robust dataset encompassing a wide range of PLDs, which enhances the generalizability of the findings. The authors' meticulous curation and analysis of this data add to the study's robustness. The scaling laws derived from the data provide predictive insights into the phase behavior of PLDs, which can be useful in the future for the design of synthetic biomolecular condensates.

    1. Joint Public Review:

      This manuscript by Tao et al. reports on an effort to better specify the underlying interactions driving the effects of biodiversity on productivity in biodiversity experiments. The authors are especially concerned with the potential for competitive interactions to drive positive biodiversity-ecosystem functioning relationships by driving down the biomass of subdominant species. The authors suggest a new partitioning schema that utilizes a suite of partial density treatments to capture so-called competitive ability.

      Readers are encouraged to consider the original reviews in full, which outline the strengths and weaknesses of the work:

      First version: https://elifesciences.org/reviewed-preprints/98073v1/reviews

      Second version: https://elifesciences.org/reviewed-preprints/98073v2/reviews

      There are no further reviews for this version because the authors declined to make further improvements to their manuscript.

    1. Reviewer #1 (Public review):

      Summary

      In this human neuroimaging and electrophysiology study, the authors aimed to characterise effects of a period of visual deprivation in the sensitive period on excitatory and inhibitory balance in the visual cortex. They attempted to do so by comparing neurochemistry conditions ('eyes open', 'eyes closed') and resting state, and visually evoked EEG activity between ten congenital cataract patients with recovered sight (CC), and ten age-matched control participants (SC) with normal sight.

      First, they used magnetic resonance spectroscopy to measure in vivo neurochemistry from two locations, the primary location of interest in the visual cortex, and a control location in the frontal cortex. Such voxels are used to provide a control for the spatial specificity of any effects, because the single-voxel MRS method provides a single sampling location. Using MR-visible proxies of excitatory and inhibitory neurotransmission, Glx and GABA+ respectively, the authors report no group effects in GABA+ or Glx, no difference in the functional conditions 'eyes closed' and 'eyes open'. They found an effect of group in the ratio of Glx/GABA+ and no similar effect in the control voxel location. They then perform multiple exploratory correlations between MRS measures and visual acuity, and report a weak positive correlation between the 'eyes open' condition and visual acuity in CC participants.

      The same participants then took part in an EEG experiment. The authors selected two electrodes placed in the visual cortex for analysis and report a group difference in an EEG index of neural activity, the aperiodic intercept, as well as the aperiodic slope, considered a proxy for cortical inhibition. Control electrodes in the frontal region did not present with the same pattern. They report an exploratory correlation between the aperiodic intercept and Glx in one out of three EEG conditions.

      The authors report the difference in E/I ratio, and interpret the lower E/I ratio as representing an adaptation to visual deprivation, which would have initially caused a higher E/I ratio. Although intriguing, the strength of evidence in support of this view is not strong. Amongst the limitations are the low sample size, a critical control cohort that could provide evidence for higher E/I ratio in CC patients without recovered sight for example, and lower data quality in the control voxel. Nevertheless, the study provides a rare and valuable insight into experience-dependent plasticity in the human brain.

      Strengths of study

      How sensitive period experience shapes the developing brain is an enduring and important question in neuroscience. This question has been particularly difficult to investigate in humans. The authors recruited a small number of sight-recovered participants with bilateral congenital cataracts to investigate the effect of sensitive period deprivation on the balance of excitation and inhibition in the visual brain using measures of brain chemistry and brain electrophysiology. The research is novel, and the paper was interesting and well written.

      Limitations

      Low sample size. Ten for CC and ten for SC, and further two SC participants were rejected due to lack of frontal control voxel data. The sample size limits the statistical power of the dataset and increases the likelihood of effect inflation.

      In the updated manuscript, the authors have provided justification for their sample size by pointing to prior studies and the inherent difficulties in recruiting individuals with bilateral congenital cataracts. Importantly, this highlights the value the study brings to the field while also acknowledging the need to replicate the effects in a larger cohort.

      Lack of specific control cohort. The control cohort has normal vision. The control cohort is not specific enough to distinguish between people with sight loss due to different causes and patients with congenital cataracts with co-morbidities. Further data from a more specific populations, such as patients whose cataracts have not been removed, with developmental cataracts, or congenitally blind participants, would greatly improve the interpretability of the main finding. The lack of a more specific control cohort is a major caveat that limits a conclusive interpretation of the results.

      In the updated version, the authors have indicated that future studies can pursue comparisons between congenital cataract participants and cohorts with later sight loss.

      MRS data quality differences. Data quality in the control voxel appears worse than in the visual cortex voxel. The frontal cortex MRS spectrum shows far broader linewidth than the visual cortex (Supplementary Figures). Compared to the visual voxel, the frontal cortex voxel has less defined Glx and GABA+ peaks; lower GABA+ and Glx concentrations, lower NAA SNR values; lower NAA concentrations. If the data quality is a lot worse in the FC, then small effects may not be detectable.

      In the updated version, the authors have added more information that informs the reader of the MRS quality differences between voxel locations. This increases the transparency of their reporting and enhances the assessment of the results.

      Because of the direction of the difference in E/I, the authors interpret their findings as representing signatures of sight improvement after surgery without further evidence, either within the study or from the literature. However, the literature suggests that plasticity and visual deprivation drives the E/I index up rather than down. Decreasing GABA+ is thought to facilitate experience dependent remodelling. What evidence is there that cortical inhibition increases in response to a visual cortex that is over-sensitised to due congenital cataracts? Without further experimental or literature support this interpretation remains very speculative.

      The updated manuscript contains key reference from non-human work to justify their interpretation.

      Heterogeneity in patient group. Congenital cataract (CC) patients experienced a variety of duration of visual impairment and were of different ages. They presented with co-morbidities (absorbed lens, strabismus, nystagmus). Strabismus has been associated with abnormalities in GABAergic inhibition in the visual cortex. The possible interactions with residual vision and confounds of co-morbidities are not experimentally controlled for in the correlations, and not discussed.

      The updated document has addressed this caveat.

      Multiple exploratory correlations were performed to relate MRS measures to visual acuity (shown in Supplementary Materials), and only specific ones shown in the main document. The authors describe the analysis as exploratory in the 'Methods' section. Furthermore, the correlation between visual acuity and E/I metric is weak, not corrected for multiple comparisons. The results should be presented as preliminary, as no strong conclusions can be made from them. They can provide a hypothesis to test in a future study.

      This has now been done throughout the document and increases the transparency of the reporting.

      P.16 Given the correlation of the aperiodic intercept with age ("Age negatively correlated with the aperiodic intercept across CC and SC individuals, that is, a flattening of the intercept was observed with age"), age needs to be controlled for in the correlation between neurochemistry and the aperiodic intercept. Glx has also been shown to negatively correlates with age.

      This caveat has been addressed in the revised manuscript.

      Multiple exploratory correlations were performed to relate MRS to EEG measures (shown in Supplementary Materials), and only specific ones shown in the main document. Given the multiple measures from the MRS, the correlations with the EEG measures were exploratory, as stated in the text, p.16, and in Fig.4. yet the introduction said that there was a prior hypothesis "We further hypothesized that neurotransmitter changes would relate to changes in the slope and intercept of the EEG aperiodic activity in the same subjects." It would be great if the text could be revised for consistency and the analysis described as exploratory.

      This has been done throughout the document and increases the transparency of the reporting.

      The analysis for the EEG needs to take more advantage of the available data. As far as I understand, only two electrodes were used, yet far more were available as seen in their previous study (Ossandon et al., 2023). The spatial specificity is not established. The authors could use the frontal cortex electrode (FP1, FP2) signals as a control for spatial specificity in the group effects, or even better, all available electrodes and correct for multiple comparisons. Furthermore, they could use the aperiodic intercept vs Glx in SC to evaluate the specificity of the correlation to CC.

      This caveat has been addressed. The authors have added frontal electrodes to their analysis, providing an essential regional control for the visual cortex location.

      Comments on the latest version:

      The authors have made reasonable adjustments to their manuscript that addressed most of my comments by adding further justification for their methodology, essential literature support, pointing out exploratory analyses, limitations and adding key control analyses. Their revised manuscript has overall improved, providing valuable information, though the evidence that supports their claims is still incomplete.

    2. Reviewer #2 (Public review):

      Summary:

      The study examined 10 congenitally blind patients who recovered vision through the surgical removal of bilateral dense cataracts, measuring neural activity and neuro chemical profiles from the visual cortex. The declared aim is to test whether restoring visual function after years of complete blindness impacts excitation/inhibition balance in the visual cortex.

      Strengths:

      The findings are undoubtedly useful for the community, as they contribute towards characterising the many ways in which this special population differs from normally sighted individuals. The combination of MRS and EEG measures is a promising strategy to estimate a fundamental physiological parameter - the balance between excitation and inhibition in the visual cortex, which animal studies show to be heavily dependent upon early visual experience. Thus, the reported results pave the way for further studies, which may use a similar approach to evaluate more patients and control groups.

      Weaknesses:

      The main methodological limitation is the lack of an appropriate comparison group or condition to delineate the effect of sight recovery (as opposed to the effect of congenital blindness). Few previous studies suggested that Excitation/Inhibition ratio in the visual cortex is increased in congenitally blind patients; the present study reports that E/I ratio decreases instead. The authors claim that this implies a change of E/I ratio following sight recovery. However, supporting this claim would require showing a shift of E/I after vs. before the sight-recovery surgery, or at least it would require comparing patients who did and did not undergo the sight-recovery surgery (as common in the field).

      There are also more technical limitations related to the correlation analyses, which are partly acknowledged in the manuscript. A bland correlation between GLX/GABA and the visual impairment is reported, but this is specific to the patients group (N=10) and would not hold across groups (the correlation is positive, predicting the lowest GLX/GABA ratio values for the sighted controls - opposite of what is found). There is also a strong correlation between GLX concentrations and the EEG power at the lowest temporal frequencies. Although this relation is intriguing, it only holds for a very specific combination of parameters (of the many tested): only with eyes open, only in the patients group.

      Conclusions:

      The main claim of the study is that sight recovery impacts the excitation/inhibition balance in the visual cortex, estimated with MRS or through indirect EEG indices. However, due to the weaknesses outlined above, the study cannot distinguish the effects of sight recovery from those of visual deprivation. Moreover, many aspects of the results are interesting but their validation and interpretation require additional experimental work.

    3. Reviewer #3 (Public review):

      This manuscript examines the impact of congenital visual deprivation on the excitatory/inhibitory (E/I) ratio in the visual cortex using Magnetic Resonance Spectroscopy (MRS) and electroencephalography (EEG) in individuals whose sight was restored. Ten individuals with reversed congenital cataracts were compared to age-matched, normally sighted controls, assessing the cortical E/I balance and its interrelationship and to visual acuity. The study reveals that the Glx/GABA ratio in the visual cortex and the intercept and aperiodic signal are significantly altered in those with a history of early visual deprivation, suggesting persistent neurophysiological changes despite visual restoration.

      First of all, I would like to disclose that I am not an expert in congenital visual deprivation, nor in MRS. My expertise is in EEG (particularly in the decomposition of periodic and aperiodic activity) and statistical methods. Although the authors addressed some of the concerns of the previous version, major concerns and flaws remain in terms of methodological and statistical approaches along with the (over)interpretation of the results. Specific concerns include:

      (1 3.1) Response to Variability in Visual Deprivation<br /> Rather than listing the advantages and disadvantages of visual deprivation, I recommend providing at least a descriptive analysis of how the duration of visual deprivation influenced the measures of interest. This would enhance the depth and relevance of the discussion.

      (2 3.2) Small Sample Size<br /> The issue of small sample size remains problematic. The justification that previous studies employed similar sample sizes does not adequately address the limitation in the current study. I strongly suggest that the correlation analyses should not feature prominently in the main manuscript or the abstract, especially if the discussion does not substantially rely on these correlations. Please also revisit the recommendations made in the section on statistical concerns.

      (3 3.3) Statistical Concerns<br /> While I appreciate the effort of conducting an independent statistical check, it merely validates whether the reported statistical parameters, degrees of freedom (df), and p-values are consistent. However, this does not address the appropriateness of the chosen statistical methods.

      Several points require clarification or improvement:<br /> (4) Correlation Methods: The manuscript does not specify whether the reported correlation analyses are based on Pearson or Spearman correlation.<br /> (5) Confidence Intervals: Include confidence intervals for correlations to represent the uncertainty associated with these estimates.<br /> (6) Permutation Statistics: Given the small sample size, I recommend using permutation statistics, as these are exact tests and more appropriate for small datasets.<br /> (7) Adjusted P-Values: Ensure that reported Bonferroni corrected p-values (e.g., p > 0.999) are clearly labeled as adjusted p-values where applicable.<br /> (8) Figure 2C<br /> Figure 2C still lacks crucial information that the correlation between Glx/GABA ratio and visual acuity was computed solely in the control group (as described in the rebuttal letter). Why was this analysis restricted to the control group? Please provide a rationale.<br /> (9 3.4) Interpretation of Aperiodic Signal<br /> Relying on previous studies to interpret the aperiodic slope as a proxy for excitation/inhibition (E/I) does not make the interpretation more robust.<br /> (10) Additionally, the authors state:<br /> "We cannot think of how any of the exploratory correlations between neurophysiological measures and MRS measures could be accounted for by a difference e.g. in skull thickness."<br /> (11) This could be addressed directly by including skull thickness as a covariate or visualizing it in scatterplots, for instance, by representing skull thickness as the size of the dots.<br /> (12 3.5) Problems with EEG Preprocessing and Analysis<br /> Downsampling: The decision to downsample the data to 60 Hz "to match the stimulation rate" is problematic. This choice conflates subsequent spectral analyses due to aliasing issues, as explained by the Nyquist theorem. While the authors cite prior studies (Schwenk et al., 2020; VanRullen & MacDonald, 2012) to justify this decision, these studies focused on alpha (8-12 Hz), where aliasing is less of a concern compared of analyzing aperiodic signal. Furthermore, in contrast, the current study analyzes the frequency range from 1-20 Hz, which is too narrow for interpreting the aperiodic signal as E/I. Typically, this analysis should include higher frequencies, spanning at least 1-30 Hz or even 1-45 Hz (not 20-40 Hz).<br /> (13) Baseline Removal: Subtracting the mean activity across an epoch as a baseline removal step is inappropriate for resting-state EEG data. This preprocessing step undermines the validity of the analysis. The EEG dataset has fundamental flaws, many of which were pointed out in the previous review round but remain unaddressed. In its current form, the manuscript falls short of standards for robust EEG analysis. If I were reviewing for another journal, I would recommend rejection based on these flaws.<br /> (14) The authors mention:<br /> "The EEG data sets reported here were part of data published earlier (Ossandón et al., 2023; Pant et al., 2023)." Thus, the statement "The group differences for the EEG assessments corresponded to those of a larger sample of CC individuals (n=38) " is a circular argument and should be avoided."<br /> The authors addressed this comment and adjusted the statement. However, I do not understand, why not the full sample published earlier (Ossandón et al., 2023) was used in the current study?

    1. Reviewer #1 (Public review):

      Contractile Injection Systems (CIS) are versatile machines that can form pores in membranes or deliver effectors. They can act extra or intracellularly. When intracellular they are positioned to face the exterior of the cell and hence should be anchored to the cell envelope. The authors previously reported the characterization of a CIS in Streptomyces coelicolor, including significant information on the architecture of the apparatus. However, how the tubular structure is attached to the envelope was not investigated. Here they provide a wealth of evidence to demonstrate that a specific gene within the CIS gene cluster, cisA, encodes a membrane protein that anchors the CIS to the envelope. More specifically, they show that:

      - CisA is not required for assembly of the structure but is important for proper contraction and CIS-mediated cell death<br /> - CisA is associated to the membrane (fluorescence microscopy, cell fractionation) through a transmembrane segment (lacZ-phoA topology fusions in E. coli)<br /> - Structural prediction of interaction between CisA and a CIS baseplate component<br /> - In addition they provide a high-resolution model structure of the >750-polypeptide Streptomyces CIS in its extended conformation, revealing new details of this fascinating machine, notably in the baseplate and cap complexes.

      All the experiments are well controlled including trans-complemented of all tested phenotypes.

      One important information we miss is the oligomeric state of CisA.

      While it would have been great to test the interaction between CisA and Cis11, to perform cryo-electron microscopy assays of detergent-extracted CIS structures to maintain the interaction with CisA, I believe that the toxicity of CisA upon overexpression or upon expression in E. coli render these studies difficult and will require a significant amount of time and optimization to be performed. It is worth mentioning that this study is of significant novelty in the CIS field because, except for Type VI secretion systems, very few membrane proteins or complexes responsible for CIS attachment have been identified and studied.

    2. Reviewer #2 (Public review):

      Summary:

      The overall question that is addressed in this study is how the S. coelicolor contractile injection system (CISSc) works and affects both cell viability and differentiation, which it has been implicated to do in previous work from this group and others. The CISSc system has been enigmatic in the sense that it is free-floating in the cytoplasm in an extended form and is seen in contracted conformation (i.e. after having been triggered) mainly in dead and partially lysed cells, suggesting involvement in some kind of regulated cell death. So, how do the structure and function of the CISSc system compare to those of related CIS from other bacteria, does it interact with the cytoplasmic membrane, how does it do that, and is the membrane interaction involved in the suggested role in stress-induced, regulated cell death? The authors address these questions by investigating the role of a membrane protein, CisA, that is encoded by a gene in the CIS gene cluster in S. coelicolor. Further, they analyse the structure of the assembled CISSc, purified from the cytoplasm of S. coelicolor, using single-particle cryo-electron microscopy.

      Strengths:

      The beautiful visualisation of the CIS system both by cryo-electron tomography of intact bacterial cells and by single-particle electron microscopy of purified CIS assemblies are clearly the strengths of the paper, both in terms of methods and results. Further, the paper provides genetic evidence that the membrane protein CisA is required for the contraction of the CISSc assemblies that are seen in partially lysed or ghost cells of the wild type. The conclusion that CisA is a transmembrane protein and the inferred membrane topology are well supported by experimental data. The cryo-EM data suggest that CisA is not a stable part of the extended form of the CISSc assemblies. These findings raise the question of what CisA does.

      Weaknesses:

      The investigations of the role of CisA in function, membrane interaction, and triggering of contraction of CIS assemblies, are important parts of the paper and are highlighted in the title. However, the experimental data provided to answer these questions appear partially incomplete and not as conclusive as one would expect.

      The stress-induced loss of viability is only monitored with one method: an in vivo assay where cytoplasmic sfGFP signal is compared to FM5-95 membrane stain. Addition of a sublethal level of nisin lead to loss of sfGFP signal in individual hyphae in the WT, but not in the cisA mutant (similarly to what was previously reported for a CIS-negative mutant). Technically, this experiment and the example images that are shown give rise to some concern. Only individual hyphal fragments are shown that do not look like healthy and growing S. coelicolor hyphae. Under the stated growth conditions, S. coelicolor strains would normally have grown as dense hyphal pellets. It is therefore surprising that only these unbranched hyphal fragments are shown in Fig. 4ab. Further, S. coelicolor would likely be in a stationary phase when grown 48 h in the rich medium that is stated, giving rise to concern about the physiological state of the hyphae that were used for the viability assay. It would be valuable to know whether actively growing mycelium is affected in the same way by the nisin treatment, and also whether the cell death effect could be detected by other methods.

      The model presented in Fig. 5 suggests that stress leads to a CisA-dependent attachment of CIS assemblies to the cytoplasmic membrane, and then triggering of contraction, leading to cell death. This model makes testable predictions that have not been challenged experimentally. Given that sublethal doses of nisin seem to trigger cell death, there appear to be possibilities to monitor whether activation of the system (via CisA?) indeed leads to at least temporally increased interaction of CIS with the membrane. Further, would not the model predict that stress leads to an increased number of contracted CIS assemblies in the cytoplasm? No clear difference in length of the isolated assemblies if Fig. S7 is seen between untreated and nisin-exposed cells, and also no difference between assemblies from WT and cisA mutant hyphae.

      The interaction of CisA with the CIS assembly is critical for the model but is only supported by Alphafold modelling, predicting interaction between cytoplasmic parts of CisA and Cis11 protein in the baseplate wedge. An experimental demonstration of this interaction would have strengthened the conclusions.

      The cisA mutant showed a similarly accelerated sporulation as was previously reported for CIS-negative strains, which supports the conclusion that CisA is required for function of CISSc. But the results do not add any new insights into how CIS/CisA affects the progression of the developmental life cycle and whether this effect has anything to do with the regulated cell death that is caused by CIS. The same applies to the effect on secondary metabolite production, with no further mechanistic insights added, except reporting similar effects of CIS and CisA inactivations.

      Concluding remarks:<br /> The work will be of interest to anyone interested in contractile injection systems, T6SS, or similar machineries, as well for people working on the biology of streptomycetes. There is also a potential impact of the work in the understanding of how such molecular machineries could have been co-opted during evolution to become a mechanism for regulated cell death. However, this latter aspect remains still poorly understood. Even though this paper adds excellent new structural insights and identifies a putative membrane anchor, it remains elusive how the Streptomyces CIS may lead to cell death. It is also unclear what the advantage would be to trigger death of hyphal compartments in response to stress, as well as how such cell death may impact (or accelerate) the developmental progression. Finally, it is inescapable to wonder whether the Streptomyces CIS could have any role in protection against phage infection.

    3. Reviewer #3 (Public review):

      Summary:

      In this work, Casu et al. have reported the characterization of a previously uncharacterized membrane protein CisA encoded in a non-canonical contractile injection system of Streptomyces coelicolor, CISSc, which is a cytosolic CISs significantly distinct from both intracellular membrane-anchored T6SSs and extracellular CISs. The authors have presented the first high-resolution structure of extended CISSc structure. It revealed important structural insights in this conformational state. To further explore how CISSc interacted with cytoplasmic membrane, they further set out to investigate CisA that was previously hypothesized to be the membrane adaptor. However, the structure revealed that it was not associated with CISSc. Using fluorescence microscope and cell fractionation assay, the authors verified that CisA is indeed a membrane-associated protein. They further determined experimentally that CisA had a cytosolic N-terminal domain and a periplasmic C-terminus. The functional analysis of cisA mutant revealed that it is not required for CISSc assembly but is essential for the contraction, as a result, the deletion significantly affects CISSc-mediated cell death upon stress, timely differentiation, as well as secondary metabolite production. Although the work did not resolve the mechanistic detail how CisA interacts with CISSc structure, it provides solid data and a strong foundation for future investigation toward understanding the mechanism of CISSc contraction, and potentially, the relation between the membrane association of CISSc, the sheath contraction and the cell death.

      Strengths:

      The paper is well-structured, and the conclusion of the study is supported by solid data and careful data interpretation was presented. The authors provided strong evidence on (1) the high-resolution structure of extended CISSc determined by cryo-EM, and the subsequent comparison with known eCIS structures, which sheds light on both its similarity and different features from other subtypes of eCISs in detail; (2) the topological features of CisA using fluorescence microscopic analysis, cell fractionation and PhoA-LacZα reporter assays, (3) functions of CisA in CISSc-mediated cell death and secondary metabolite production, likely via the regulation of sheath contraction.

      Weaknesses:

      The data presented are not sufficient to provide mechanistic details of CisA-mediated CISSc contraction, as authors are not able to experimentally demonstrate the direct interaction between CisA with baseplate complex of CISSc (hypothesized to be via Cis11 by structural modeling), since they could not express cisA in E. coli due to its potential toxicity. Therefore, there is a lack of biochemical analysis of direct interaction between CisA and baseplate wedge. In addition, there is no direct evidence showing that CisA is responsible for tethering CISSc to the membrane upon stress, and the spatial and temporal relation between membrane association and contraction remains unclear. Further investigation will be needed to address these questions in future.

      Discussion:

      Overall, the work provides a valuable contribution to our understanding on the structure of a much less understood subtype of CISs, which is unique compared to both membrane-anchored T6SSs and host-membrane targeting eCISs. Importantly, the work serves as a good foundation to further investigate how the sheath contraction works here. The work contributes to expanding our understanding of the diverse CIS superfamilies.

    1. Reviewer #1 (Public review):

      Summary:

      Carter et al. present the eduWOSM imaging platform, a promising development in open-source microscopy for educational purposes. The paper outlines the construction and setup of this versatile microscope, demonstrating its capabilities through three key examples: single fluorophore tracking of tubulin heterodimers in gliding microtubules, 4D deconvolution imaging and tracking of chromosome movements in dividing human cells, and automated single-particle tracking in vitro and in live cells, with motion classified into sub-diffusive, diffusive, and super-diffusive behaviors.

      The paper is well-written and could be strengthened by providing more empirical data on its performance, addressing potential limitations, and offering detailed insights into its educational impact. The project holds great potential and more discussion on long-term support and broader applications would provide a more comprehensive view of its relevance in different contexts.

      Strengths:

      (1) The eduWOSM addresses a crucial need in education, providing research-quality imaging at a lower cost (<$10k). The fact that it is open-source adds significant value, enabling broad accessibility even in under resourced areas.<br /> (2) There is availability of extensive resources, including a dedicated website, YouTube channel, and comprehensive tutorial guides to help users replicate the microscope.<br /> (3) The compact, portable, and stable design makes it easy to build multiple systems for use in diverse environments, including crowded labs and classrooms. This is further enhanced by the fact multiple kind of imaging experiments can be run on the system, from live imaging to super-resolution imaging.<br /> (4) The paper highlights the user-friendly nature of the platform, with the imaging examples in the paper being acquired by undergrad students.

      Weaknesses:

      (1) The paper mentions the microscope is suitable not just for education but even for research purposes. This claim needs validation through quantitative comparison to existing research-grade microscopes in terms of resolution, signal-to-noise ratio, and other key metrics. Adding more rigorous comparisons would solidify its credibility for research use, which would immensely increase the potential of the microscope.<br /> (2) The open-source microscope field is crowded with various options catering to hobby, educational, and research purposes (e.g., openFLexure, Flamingo, Octopi, etc.). The paper would benefit from discussing whether any aspects set the eduWOSM platform apart or fulfill specific roles that other microscopes do not.<br /> (3) While the eduWOSM platform is designed to be user-friendly, the paper would benefit from discussing whether the microscope can be successfully built and operated by users without direct help from the authors. It's important to know if someone with basic technical knowledge, relying solely on the provided resources (website, YouTube tutorials, and documentation), can independently assemble, calibrate, and operate the eduWOSM.<br /> (4) Ensuring long-term support and maintenance of the platform is crucial. The paper would benefit from addressing how the eduWOSM developers plan to support updates, improvements, or troubleshooting.

    2. Reviewer #2 (Public review):

      The main strength of this work is the impressive performance of a microscope assembled for a fraction of the cost of a commercial, turnkey system. The authors have created a very clever design that removes everything that is not essential. They show compelling time-lapse data looking at single molecules, tracking particles visible in brightfield mode, and looking at cell division with multiple labels in a live cell preparation.

      The weaknesses of the paper include:<br /> (1) the lack of more comprehensive explanations of the microscope and what it takes to build and operate it.<br /> For example, the dimensions of the microscope, how samples are mounted, which lenses are compatible, and whether eduWOSMs have been built by groups other than the authors would be useful information.<br /> (2) the absence of more detailed descriptions of some of the experiments, such as frame rates and Z-stack information.<br /> (3) the lack of standardized measures of performance.<br /> For example, images of subresolution tetraspeck beads and measurements of PSF would provide estimates on resolution in XY, resolution in Z, axial chromatic aberrations and lateral chromatic aberrations. Repeating these measurements on different eduWOSMs will provide an idea of how reliably the performance can be achieved.<br /> If these issues were addressed, it would make it more likely that other groups could build and operate this system successfully.

      Overall, the authors have designed and built an impressive system at low cost. Providing a bit more information in the manuscript would make it much more likely that other laboratories could replicate this design in their own environments.

    1. Reviewer #1 (Public review):

      Summary:

      The authors show that early life experience of juvenile bats shape their outdoor foraging behaviors. They achieve this by raising juvenile bats either in an impoverished or enriched environment. They subsequently test the behavior of bats indoors and outdoors. The authors show that behavioral measures outdoors were more reliable in delineating the effect of early life experiences as the bats raised in enriched environments were more bold, active and exhibit higher exploratory tendencies.

      Strengths:

      The major strength of the study is providing a quantitative study of animal "personality" and how it is likely shaped by innate and environmental conditions. The other major strength is the ability to do reliable long term recording of bats in the outdoors giving researchers the opportunity to study bats in their natural habitat. To this point, the study also shows that the behavioral variables measured indoors do not correlate to that measured outdoors, thus providing a key insight into the importance of testing animal behaviors in their natural habitat.

      Weaknesses:

      It is not clear from the analysis presented in the paper how persistent those environmentally induced changes, do they remain with the bats till the end of their lives.

    2. Reviewer #2 (Public review):

      Summary:

      The authors present a paper that attempts to tackle an important question, with potential impact far beyond the field of animal behavior research: what are the relative contributions of innate personality traits versus early life experience on individual behavior in the wild? The study, performed on Egyptian fruit bats that are caught in the wild and later housed in an outdoor colony, is solidly executed, and benefits greatly from a unique setup in which controlled laboratory experiments are combined with monitoring of individuals as they undertake undirected, free exploration of their natural environment.

      The primary finding of the paper is that there is a strong effect of early life experience on behavior in the wild, where individual bats that were exposed to an enriched environment as juveniles later travelled farther and over greater distances when permitted to explore and forage ad libitum, as compared with individual bats who were subjected to a more impoverished environment. Meanwhile, no prominent effect of innate "personality", as assessed by indices of indoor foraging behavior early on, before the bats were exposed to the controlled environmental treatment, was observed on three metrics of outdoor foraging behavior. The authors conclude that the early environment plays a larger role than innate personality on the behavior of adult bats.

      Strengths:

      (1) Elegant design of experiments and impressive combination of methods<br /> Bats used in the experiment were taken from wild colonies in different geographical areas, but housed during the juvenile stage in a controlled indoor environment. Bats are tested on the same behavioral paradigm at multiple points in their development. Finally, the bats are monitored with GPS as they freely explore the area beyond the outdoor colony.

      (2) Development of a behavioral test that yields consistent results across time<br /> The multiple-foraging box paradigm, in which behavioral traits such as overall activity, levels of risk-taking, and exploratoriness can be evaluated as creative, and suggestive of behavioral paradigms other animal behavior researchers might be able to use. It is especially useful, given that it can be used to evaluate the activity of animals seemingly at most stages of life, and not just in adulthood.

      Weaknesses:

      (1) Robustness and validity of personality measures<br /> Coming up with robust measures of "personality" in non-human animals is tricky. While this paper represents an important attempt at a solution, some of the results obtained from the indoor foraging paradigm raise questions as to the reliability of this task for assessing "personality".

      (2) Insufficient exploitation of data<br /> Between the behavioral measures and the very multidimensional GPS data, the authors are in possession of a rich data set. However, I don't feel that this data has been adequately exploited for underlying patterns and relationships. For example, many more metrics could be extracted from the GPS data, which may then reveal correlations with early measures of personality or further underscore the role of the early environment. In addition, the possibility that these personality measures might in combination affect outdoor foraging is not explored.

      (3) Interpretation of statistical results and definition of statistical models<br /> Some statistical interpretations may not be entirely accurate, particularly in the case of multiple regression with generalized linear models. In addition, some effects which may be present in the data are dismissed as not significant on the basis of null hypothesis testing.

      Below I have organized the main points of critique by theme, and ordered subordinate points by order of importance:

      (1) Assessing personality metrics and the indoor paradigm: While I applaud this effort and think the metrics used are justified, I see a few issues in the results as they are currently presented:<br /> (a) [Major] I am somewhat concerned that here, the foraging box paradigm is being used for two somewhat conflicting purposes: (1) assessing innate personality and (2) measuring changes in personality as a result of experience. If the indoor foraging task is indeed meant to measure and reflect both at the same time, then perhaps this can be made more explicit throughout the manuscript. In this circumstance, I think the authors could place more emphasis on the fact that the task, at later trials/measurements, begins to take on the character of a "composite" measure of personality and experience.

      (b) [Major] Although you only refer to results obtained in trials 1 and 2 when trying to estimate "innate personality" effects, I am a little worried that the paradigm used to measure personality, i.e. the stable components of behavior, is itself affected by other factors such as age (in the case of activity, Fig. 1C3, S1C1-2), the environment (see data re trial 3), and experience outdoors (see data re trials 4/5).

      Ideally, a study that aims to disentangle the role of predisposition from early-life experience would have a metric for predisposition that is relatively unchanging for individuals, which can stand as a baseline against a separate metric that reflects behavioral differences accumulated as a result of experience.

      I would find it more convincing that the foraging box paradigm can be used to measure personality if it could be shown that young bats' behavior was consistent across retests in the box paradigm prior to any environmental exposure across many baseline trials (i.e. more than 2), and that these "initial settings" were constant for individuals. I think it would be important to show that personality is consistent across baseline trials 1 and 2. This could be done, for example, by reproducing the plots in Fig. 1C1-3 while plotting trial 1 against trial 2. (I would note here that if a significant, positive correlation were to be found (as I would expect) between the measures across trial 1 and 2, it is likely that we would see the "habituation effect" the authors refer to expressed as a steep positive slope on the correlation line (indicating that bold individuals on trial 1 are much bolder on trial 2).)

      (c) Related to the previous point, it was not clear to me why the data from trial 2 (the second baseline trial) was not presented in the main body of the paper, and only data from trial 1 was used as a baseline.

      In the supplementary figure and table, you show that the bats tended to exhibit more boldness and exploratory behavior, but fewer actions, in trial 2 as compared with trial 1. You explain that this may be due to habituation to the experimental setup, however, the precise motivation for excluding data from trial 2 from the primary analyses is not stated. I would strongly encourage the authors to include a comparison of the data between the baseline trials in their primary analysis (see above), combine the information from these trials to form a composite baseline against which further analyses are performed, or further justify the exclusion of data as a baseline.

      (2) Comparison of indoor behavioral measures and outdoor behavioral measures<br /> Regarding the final point in the results, correlation between indoor personality on Trial 4 and outdoor foraging behavior: It is not entirely clear to me what is being tested (neither the details of the tests nor the data or a figure are plotted). Given some of the strong trends in the data - namely, (1) how strongly early environment seems to affect outdoor behavior, (2) how strongly outdoor experience affects boldness, measured on indoor behavior (Fig. 1D) - I am not convinced that there is no relationship, as is stated here, between indoor and outdoor behavior. If this conclusion is made purely on the basis of a p-value, I would suggest revisiting this analysis.

      (3) Use of statistics/points regarding the generalized linear models<br /> While I think the implementation of the GLMM models is correct, I am not certain that the interpretation of the GLMM results is entirely correct for cases where multivariate regression has been performed (Tables 4s and S1, and possibly Table 3). (You do not present the exact equation they used for each model (this would be a helpful addition to the methods), therefore it is somewhat difficult to evaluate if the following critique properly applies, however...)

      The "estimate" for a fixed effect in a regression table gives the difference in the outcome variable for a 1 unit increase in the predictor variable (in the case of numeric predictors) or for each successive "level" or treatment (in the case of categorical variables), compared to the baseline, the intercept, which reflects the value of the outcome variable given by the combination of the first value/level of all predictors. Therefore, for example, in Table 4a - Time spend outside: the estimate for Bat sex: male indicates (I believe) the difference in time spent outside for an enriched male vs. an enriched female, not, as the authors seem to aim to explain, the effect of sex overall. Note that the interpretation of the first entry, Environmental condition: impoverished, is correct. I refer the authors to the section "Multiple treatments and interactions" on p. 11 of this guide to evaluating contrasts in G/LMMS: https://bbolker.github.io/mixedmodels-misc/notes/contrasts.pdf

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript aims to elucidate the impact of a prophage within the genome of Shewanella fidelis on its interaction with the marine tunicate Ciona robusta. The authors made a deletion mutant of S. fidelis that lacks one of its two prophages. This mutant exhibited an enhanced biofilm phenotype, as assessed through crystal violet staining, and showed reduced motility. The authors examined the effect of prophage deletion on several genes that could modulate cyclic-diGMP levels. While no significant changes were observed under in vitro conditions, the gene for one protein potentially involved in cyclic-diGMP hydrolysis was overexpressed during microbe-host interactions. The mutant was retained more effectively within a one-hour timeframe, whereas the wild-type (WT) strain became more abundant after 24 hours. Fluorescence microscopy was used to visualize the localization patterns of the two strains, which appeared to differ. Additionally, a significant difference in the expression of one immune protein was noted after one hour, but this difference was not evident after 23 hours. An effect of VCBC-C addition on the expression of one prophage gene was also observed.

      Strengths:

      I appreciate how the authors integrate diverse expertise and methods to address questions regarding the impact of prophages on gut microbiome-host interactions. The chosen model system is appropriate, as it allows for high-throughput experimentation and the application of simple imaging techniques.

      Weaknesses:

      My primary concern is that the manuscript primarily describes observations without providing insight into the molecular mechanisms underlying the observed differences. It is particularly unclear how the presence of the prophage leads to the phenotypic changes related to bacterial physiology and host-microbe interactions. Which specific prophage genes are critical, or is the insertion at a specific site in the bacterial genome the key factor? While significant effects on bacterial physiology are reported under in vitro conditions, there is no clear attribution to particular enzymes or proteins. In contrast, when the system is expanded to include the tunicate, differences in the expression of a cyclic-diGMP hydrolase become apparent. Why do we not observe such differences under in vitro conditions, despite noting variations in biofilm formation and motility? Furthermore, given that the bacterial strain possesses two prophages, I am curious as to why the authors chose to target only one and not both.

      Regarding the microbe-host interaction, it is not clear why the increased retention ability of the prophage deletion strain did not lead to greater cell retention after 24 hours, especially since no differences in the immune response were observed at that time point.

      Concerning the methodological approach, I am puzzled as to why the authors opted for qPCR instead of transcriptomics or proteomics. The latter approaches could have provided a broader understanding of the prophage's impact on both the microbe and the host.

    2. Reviewer #2 (Public review):

      Summary:

      In the manuscript, "Prophage regulation of Shewanella fidelis 3313 motility and biofilm formation: implications for gut colonization dynamics in Ciona robusta", the authors are experimentally investigating the idea that integrated viruses (prophages) within a bacterial colonizer of the host Ciona robusta affect both the colonizer and the host. They found a prophage within the Ciona robusta colonizing bacterium Shewanella fidelis 3313, which affected both the bacteria and host. This prophage does so by regulating the phosphodiesterase gene pdeB in the bacterium when the bacterium has colonized the host. The prophage also regulates the activity of the host immune gene VCBP-C during early bacterial colonization. Prophage effects on both these genes affect the precise localization of the colonizing bacterium, motility of the bacterium, and bacterial biofilm formation on the host. Interestingly, VCBP-C expression also suppressed a prophage structural protein, creating a tripartite feedback loop in this symbiosis. This is exciting research that adds to the emerging body of evidence that prophages can have beneficial effects not only on their host bacteria but also on how that bacteria interacts in its environment. This study establishes the evolutionary conservation of this concept with intriguing implications of prophage effects on tripartite interactions.

      Strengths:

      This research effectively shows that a prophage within a bacterium colonizing a model ascidian affects both the bacterium and the host in vivo. These data establish the prophage effects on bacterial activity and expand these effects to the natural interactions within the host animal. The effects of the prophage through deletion on a suite of host genes are a strength, as shown by striking microscopy.

      Weaknesses:

      Unfortunately, there are abundant negative data that cast some limitations on the interpretation of the data. That is, examining specific gene expression has its limitations, which could be avoided by global transcriptomics of the bacteria and the host during colonization by the prophage-containing and prophage-deleted bacteria (1 hour and 24 hours). In this way, the tripartite interactions leading to mechanism could be better established.

      Impact:

      The authors are correct to speculate that this research can have a significant impact on many animal microbiome studies, since bacterial lysogens are prevalent in most microbiomes. Screening for prophages, determining whether they are active, and "curing" the host bacteria of active prophages are effective tools for understanding the effects these mobile elements have on microbiomes. There are many potential effects of these elements in vivo, both positive and negative, this research is a good example of why this research should be explored.

      Context:

      The research area of prophage effects on host bacteria in vitro has been studied for decades, while these interactions in combination with animal hosts in vivo have been recent. The significance of this research shows that there could be divergent effects based on whether the study is conducted in vitro or in vivo. The in vivo results were striking. This is particularly so with the microscopy images. The benefit of using Ciona is that it has a translucent body which allows for following microbial localization. This is in contrast to mammalian studies where following microbial localization would either be difficult or near impossible.

    3. Reviewer #3 (Public review):

      In this manuscript, Natarajan and colleagues report on the role of a prophage, termed SfPat, in the regulation of motility and biofilm formation by the marine bacterium Shewanella fidelis. The authors investigate the in vivo relevance of prophage carriage by studying the gut occupation patterns of Shewanella fidelis wild-type and an isogenic SfPat- mutant derivative in a model organism, juveniles of the marine tunicate Ciona robusta. The role of bacterial prophages in regulating bacterial lifestyle adaptation and niche occupation is a relatively underexplored field, and efforts in this direction are appreciated.

      While the research question is interesting, the work presented lacks clarity in its support for several major claims, and, at times, the authors do not adequately explain their data.

      Major concerns:

      (1) Prophage deletion renders the SfPat- mutant derivative substantially less motile and with a higher biofilm formation capacity than the WT (Fig. 2a-b). The authors claim the mutant is otherwise isogenic to the WT strain upon sequence comparison of draft genome sequences (I'll take the opportunity to comment here that GenBank accessions are preferable to BioSample accessions in Table 1). Even in the absence of secondary mutations, complementation is needed to validate functional associations (i.e., phenotype restoration). A strategy for this could be phage reintegration into the mutant strain (PMID: 19005496).

      (2) The authors claim that the downshift in motility (concomitant with an upshift in biofilm formation) is likely mediated by the activity of c-di-GMP turnover proteins. Specifically, the authors point to the c-di-GMP-specific phosphodiesterase PdeB as a key mediator, after finding lower transcript levels for its coding gene in vivo (lines 148-151, Fig. 2c), and suggesting higher activity of this protein in live animals (!)(line 229). I have several concerns here:<br /> (2.1) Findings shown in Fig. 2a-b are in vitro, yet no altered transcript levels for pdeB were recorded (Fig. 2c). Why do the authors base their inferences only on in vivo data?<br /> (2.2) Somewhat altered transcript levels alone are insufficient for making associations, let alone solid statements. Often, the activity of c-di-GMP turnover proteins is local and/or depends on the activation of specific sensory modules - in the case of PdeB, a PAS domain and a periplasmic sensor domain (PMID: 35501424). This has not been explored in the manuscript, i.e., specific activation vs. global alterations of cellular c-di-GMP pools (or involvement of other proteins, please see below). Additional experiments are needed to confirm the involvement of PdeB. Gaining such mechanistic insights would greatly enhance the impact of this study.<br /> (2.3) What is the rationale behind selecting only four genes to probe the influence of the prophage on Ciona gut colonization by determining their transcript levels in vitro and in vivo? If the authors attribute the distinct behavior of the mutant to altered c-di-GMP homeostasis, as may be plausible, why did the authors choose those four genes specifically and not, for example, the many other c-di-GMP turnover protein-coding genes or c-di-GMP effectors present in the S. fidelis genome? This methodological approach seems inadequate to me, and the conclusions on the potential implication of PdeB are premature.

      (3) The behavior of the WT strain and the prophage deletion mutant is insufficiently characterized. For instance, how do the authors know that the higher retention capacity reported for the WT strain with respect to the mutant (Fig. 3b) is not merely a consequence of, e.g., a higher growth rate? It would be worth investigating this further, ideally under conditions reflecting the host environment.

      (4) Related to the above, sometimes the authors refer to "retention" (e.g., line 162) and at other instances to "colonization" (e.g., line 161), or even adhesion (line 225). These are distinct processes. The authors have only tracked the presence of bacteria by fluorescence labeling; adhesion or colonization has not been assessed or demonstrated in vivo. Please revise.

      (5) The higher CFU numbers for the WT after 24 h (line 161) might also indicate a role of motility for successful niche occupation or dissemination in vivo. The authors could test this hypothesis by examining the behavior of, e.g., flagellar mutants in their in vivo model.

      (6) The endpoint of experiments with a mixed WT-mutant inoculum (assumedly 1:1? Please specify) was set to 1 h, I assume because of the differences observed in CFU counts after 24 h. In vivo findings shown in Fig. 3c-e are, prima facie, somewhat contradictory. The authors report preferential occupation of the esophagus by the WT (line 223), which seems proficient from evidence shown in Fig. S3. Yet, there is marginal presence of the WT in the esophagus in experiments with a mixed inoculum (Fig. 3d) or none at all (Fig. 3e). Likewise, the authors claim preferential "adhesion to stomach folds" by the mutant strain (line 225), but this is not evident from Fig. 3e. In fact, the occupation patterns by the WT and mutant strain in the stomach in panel 3e appear to differ from what is shown in panel 3d. The same holds true for the claimed "preferential localization of the WT in the pyloric cecum," with Fig. 3d showing a yellow signal that indicates the coexistence of WT and mutant.

      (7) In general, and especially for in vivo data, there is considerable variability that precludes drawing conclusions beyond mere trends. One could attribute such variability in vivo to the employed model organism (which is not germ-free), differences between individuals, and other factors. This should be discussed more openly in the main text and presented as a limitation of the study. Even with such intrinsic factors affecting in vivo measurements, certain in vitro experiments, which are expected, in principle, to yield more reproducible results, also show high variability (e.g., Fig. 5). What do the authors attribute this variability to?

      (8) Line 198-199: Why not look for potential prophage excision directly rather than relying on indirect, presumptive evidence based on qPCR?

    1. Reviewer #1 (Public review):

      Summary:

      The authors showed the presence of Mtb in human liver biopsy samples of TB patients and reported that chronic infection of Mtb causes immune-metabolic dysregulation. Authors showed that Mtb replicates in hepatocytes in a lipid rich environment created by up regulating transcription factor PPARγ. Authors also reported that Mtb protects itself from anti-TB drugs by inducing drug metabolising enzymes.

      Strengths:

      It has been shown that Mtb induces storage of triacylglycerol in macrophages by induction of WNT6/ACC2 which helps in its replication and intracellular survival, however, creation of favorable replicative niche in hepatocytes by Mtb is not reported. It is known that Mtb infects macrophages and induces formation of lipid-laden foamy macrophages which eventually causes tissue destruction in TB patients. In a recent article it has been reported that "A terpene nucleoside from M. tuberculosis induces lysosomal lipid storage in foamy macrophages" that shows how Mtb manipulates host defense mechanisms for its survival. In this manuscript, authors reported the enhancement of lipid droplets in Mtb infected hepatocytes and convincingly showed that fatty acid synthesis and triacylglycerol formation is important for growth of Mtb in hepatocytes. The authors also showed the molecular mechanism for accumulation of lipid and showed that the transcription factor associated with lipid biogenesis, PPARγ and adipogenic genes were upregulated in Mtb infected cells.

      The comparison of gene expression data between macrophages and hepatocytes by authors is important which indicates that Mtb modulates different pathways in different cell type as in macrophages it is related to immune response whereas, in hepatocytes it is related to metabolic pathways.

      Authors also reported that Mtb residing in hepatocytes showed drug tolerance phenotype due to up regulation of enzymes involved in drug metabolism and showed that cytochrome P450 monooxygenase that metabolize rifampicin and NAT2 gene responsible for N-acetylation of isoniazid were up regulated in Mtb infected cells.

      Weaknesses:

      There are reports of hepatic tuberculosis in pulmonary TB patients especially in immune-compromised patients, therefore finding granuloma in human liver biopsy samples is not surprising.<br /> Mtb infected hepatic cells showed induced DME and NAT and this could lead to enhanced metabolism of drug by hepatic cells as a result Mtb in side HepG2 cells get exposed to reduced drug concentration and show higher tolerance to drug. The authors mentioned that " hepatocyte resident Mtb may display higher tolerance to rifampicin". In my opinion higher tolerance to drugs is possible only when DME of Mtb inside is up regulated or the target is modified. Although, in the end authors mentioned that drug tolerance phenotype can be better attributed to host intrinsic factors rather than Mtb efflux pumps. It may be better if the Drug tolerant phenotype section can be rewritten to clarify the facts.

    2. Reviewer #2 (Public review):

      The manuscript by Sarkar et al has demonstrated the infection of liver cells/hepatocytes with Mtb and the significance of liver cells in the replication of Mtb by reprogramming lipid metabolism during tuberculosis. Besides, the present study shows that similar to Mtb infection of macrophages (reviewed in Chen et al., 2024; Toobian et al., 2021), Mtb infects liver cells but with a greater multiplication owing to consumption of enhanced lipid resources mediated by PPARg that could be cleared by its inhibitors. The strength of the study lies in the clinical evaluation of the presence of Mtb in human autopsied liver samples from individuals with miliary tuberculosis and the presence of a clear granuloma-like structure. The interesting observation is of granuloma-like structure in liver which prompts further investigations in the field.

      The modulation of lipid synthesis during Mtb infection, such as PPARg upregulation, appears generic to different cell types including both liver cells and macrophage cells. It is also known that infection affect PPARγ expression and activity in hepatocytes. It is also known that this can lead to lipid droplet accumulation in the liver and the development of fatty liver disease (as shown for HCV). This study is in a similar line for M.tb infection. As the liver is the main site for lipid regulation, the availability of lipid resources is greater and higher is the replication rate. In short, the observations from the study confirm the earlier studies with these additional cell types. It is known that higher the lipid content, the greater are Lipid Droplet-positive Mtb and higher is the drug resistance (Mekonnen et al., 2021). The DMEs of liver cells add further to the phenotype.

    3. Reviewer #3 (Public review):

      This manuscript by Sarkar et al. examines the infection of the liver and hepatocytes during M. tuberculosis infection. They demonstrate that aerosol infection of mice and guinea pigs leads to appreciable infection of the liver as well as the lung. Transcriptomic analysis of HepG2 cells showed differential regulation of metabolic pathways including fatty acid metabolic processing. Hepatocyte infection is assisted by fatty acid synthesis in the liver and inhibiting this caused reduced Mtb growth. The nuclear receptor PPARg was upregulated by Mtb infection and inhibition or agonism of its activity caused a reduction or increase in Mtb growth, respectively, supporting data published elsewhere about the role of PPARg in lung macrophage Mtb infection. Finally, the authors show that Mtb infection of hepatocytes can cause upregulation of enzymes that metabolize antibiotics, resulting in increased tolerance of these drugs by Mtb in the liver.

      Overall, this is an interesting paper on an area of TB research where we lack understanding. However, some additions to the experiments and figures are needed to improve the rigor of the paper and further support the findings. Most importantly, although the authors show that Mtb can infect hepatocytes in vitro, they fail to describe how bacteria get from the lungs to the liver in an aerosolized infection. They also claim that "PPARg activation resulting in lipid droplets formation by Mtb might be a mechanism of prolonging survival within hepatocytes" but do not show a direct interaction between PPARg activation and lipid droplet formation and lipid metabolism, only that PPARg promotes Mtb growth. Thus, the correlations with PPARg appear to be there but causation, implied in the abstract and discussion, is not proven.

      The human photomicrographs are important and overall well done (lung and liver from the same individuals is excellent). However, in lines 120-121, the authors comment on the absence of studies on the precise involvement of different cells in the liver. In this study there is no attempt to immunophenotype the nature of the cells harboring Mtb in these samples (esp. hepatocytes). Proving that hepatocytes specifically harbor the bacteria in these human samples would add significant rigor to the conclusions made.

    1. Reviewer #1 (Public review):

      Summary:

      This is an interesting theoretical study examining the viability of Virtual Circular Genome (VCG) model, a recently proposed scenario of prebiotic replication in which a relatively long sequence is stored as a collection of its shorter subsequences (and their compliments). It was previously pointed out that VCG model is prone to so-called sequence scrambling which limits the overall length of such a genome. In the present paper, additional limitations are identified. Specifically, it is shown that VCG is well replicated when the oligomers are elongated by sufficiently short chains from "feedstock" pool. However, ligation of oligomers from VCG itself results in a high error rate. I believe the research is of high quality and well written. However, the presentation could be improved and the key messages could be clarified.

      (1) It is not clear from the paper whether the observed error has the same nature as sequence scrambling<br /> (2) The authors introduce two important lengths LS1 and LS2 only in the conclusions and do not explain enough which each of them is important. It would make sense to discuss this early in the manuscript.<br /> (3) It is not entirely clear why specific length distribution for VCG oligomers has to be assumed rather than emerged from simulations.<br /> (4) Furthermore, the problem has another important length, L0 that is never introduced or discussed: a minimal hybridization length with a lifetime longer than the ligation time. From the parameters given, it appears that L0 is sufficiently long (~10 bases). In other words, it appears that the study is done is a somewhat suboptimal regime: most hybridization events do not lead to a ligation. Am I right in this assessment? If that is the case, the authors might want to explore another regime, L0<br /> Strengths:

      High-quality theoretical modeling of an important problem is implemented.

      Weaknesses:

      The conclusions are somewhat convoluted and could be presented better.

    2. Reviewer #2 (Public review):

      Summary:

      This important theoretical and computational study by Burger and Gerland attempts to set environmental, compositional, kinetic, and thermodynamic constraints on the proposed virtual circular genome (VCG) model for the early non-enzymatic replication of RNA. The authors create a solid kinetic model using published kinetic and thermodynamic parameters for non-enzymatic RNA ligation and (de)hybridization, which allows them to test a variety of hypotheses about the VCG. Prominently, the authors find that the length (longer is better) and concentration (intermediate is better) of the VCG oligos have an outsized impact on the fidelity and yield of VCG production with important implications for future VCG design. They also identify that activation of only RNA monomers, which can be achieved using environmental separation of the activation and replication, can relax the constraints on the concentration of long VCG component oligos by avoiding the error-prone oligo-oligo ligation. Finally, in a complex scenario with multiple VCG oligo lengths, the authors demonstrate a clear bias for the extension of shorter oligos compared to the longer ones. This effect has been observed experimentally (Ding et al., JACS 2023) but was unexplained rigorously until now. Overall, this manuscript will be of interest to scientists studying the origin of life and the behavior of complex nucleic acid systems.

      Strengths:

      - The kinetic model is carefully and realistically created, enabling the authors to probe the VCG thoroughly.<br /> - Fig. 6 outlines important constraints for scientists studying the origin of life. It supports the claim that the separation of activation and replication chemistry is required for efficient non-enzymatic replication. One could easily imagine a scenario where activation of molecules occurs, followed by their diffusion into another environment containing protocells that encapsulate a VCG. The selective diffusion of activated monomers across protocell membranes would then result in only activated monomers being available to the VCG, which is the constraint outlined in this work. The proposed exclusive replication by monomers also mirrors the modern biological systems, which nearly exclusively replicate by monomer extension.<br /> - Another strength of the work is that it explains why shorter oligos extend better compared to the long ones in complex VCG mixtures. This point is independent of the activation chemistry used (it simply depends on the kinetics and thermodynamics of RNA base-pairing) so it should be very generalizable.

      Weaknesses:

      - Most of the experimental work on the VCG has been performed with the bridged 2-aminoimidazolium dinucleotides, which are not featured in the kinetic model of this work. Oher studies by Szostak and colleagues have demonstrated that non-enzymatic RNA extension with bridged dinucleotides have superior kinetics (Walton et al. JACS 2016, Li et al. JACS 2017), fidelity (Duzdevich et al. NAR 2021), and regioselectivity (Giurgiu et al. JACS 2017) compared to activated monomers, establishing the bridged dinucleotides as important for non-enzymatic RNA replication. Therefore, the omission of these species in the kinetic model presented here can be perceived as problematic. The major claim that avoidance of oligo ligations is beneficial for VCGs may be irrelevant if bridged dinucleotides are used as the extending species, because oligo ligations (V + V in this work) are kinetically orders of magnitude slower than monomer extensions (F + V in this work) (Ding et al. NAR 2022). Formally adding the bridged dinucleotides to the kinetic model is likely outside of the scope of this work, but perhaps the authors could test if this should be done in the future by simply increasing the rate of monomer extension (F + V) to match the bridged dinucleotide rate without changing rate of V + V ligation?<br /> - The kinetic and thermodynamic parameters for oligo binding appear to be missing two potentially important components. First, base-paired RNA strands that contain gaps where an activated monomer or oligo can bind have been shown to display significantly different kinetics of ligation and binding/unbinding than complexes that do not contain such gaps (see Prywes et al. eLife 2016, Banerjee et al. Nature Nanotechnology 2023, and Todisco et al. JACS 2024). Would inclusion of such parameters alter the overall kinetic model? Second, it has been shown that long base-paired RNA can tolerate mismatches to an extent that can result in monomer ligation to such mismatched duplexes (see Todisco et al. NAR 2024). Would inclusion of the parameters published in Todisco et al. NAR 2024 alter the kinetic model significantly?

    1. Reviewer #1 (Public review):

      Summary:

      Persistence is a phenomenon by which genetically susceptible cells are able to survive exposure to high concentrations of antibiotics. This is especially a major problem when treating infections caused by slow growing mycobacteria such as M. tuberculosis and M. abscessus. Studies on the mechanisms adopted by the persisting bacteria to survive and evade antibiotic killing can potentially lead to faster and more effective treatment strategies.

      To address this, in this study, the authors have used a transposon mutagenesis based sequencing approach to identify the genetic determinants of antibiotic persistence in M. abscessus. To enrich for persisters they employed conditions, that have been reported previously to increase persister frequency - nutrient starvation, to facilitate genetic screening for this phenotype. M.abs transposon library was grown in nutrient rich or nutrient depleted conditions and exposed to TIG/LZD for 6 days, following which Tn-seq was carried out to identify genes involved in spontaneous (nutrient rich) or starvation-induced conditions. About 60% of the persistence hits were required in both the conditions. Pathway analysis revealed enrichment for genes involved in detoxification of nitrosative, oxidative, DNA damage and proteostasis stress. The authors then decided to validate the findings by constructing deletions of 5 different targets (pafA, katG, recR, blaR, Mab_1456c) and tested the persistence phenotype of these strains. Rather surprisingly only 2 of the 5 hits (katG and pafA) exhibited a persistence defect when compared to wild type upon exposure to TIG/LZD and this was complemented using an integrative construct. The authors then investigated the specificity of delta-katG susceptibility against different antibiotic classes and demonstrated increased killing by rifabutin. The katG phenotype was shown to be mediated through the production of oxidative stress which was reverted when the bacterial cells were cultured under hypoxic conditions. Interestingly, when testing the role of katG in other clinical strains of Mab, the phenotype was observed only in one of the clinical strains demonstrating that there might be alternative anti-oxidative stress defense mechanisms operating in some clinical strains.

      Strengths:

      While the role of ROS in antibiotic mediated killing of mycobacterial cells have been studied to some extent, this paper presents some new findings with regards to genetic analysis of M. abscessus susceptibility, especially against clinically used antibiotics, which makes it useful. Also, the attempts to validate their observations in clinical isolates is appreciated.

      Weaknesses:

      - Fig. 3 - 5 of the hits from the transposon screen were reconstructed as clean deletion strains and tested for persistence. However, only 1 (katG) gave a strong and 1 (Mab_1456c) exhibited a minor defect. Two of the clones did not show any persistence phenotype (blaR and recR) and one (pafA) showed a minor phenotype, however it was not clear if this difference was really relevant as the mutant exhibited differences at Day 0, prior to the addition of antibiotics. Considering these results from the validation, the conclusion would be that the Tn-seq approach to screen persistence defects is not reliable and is more likely to result in misses than hits.

      - Fig 3 - Why is there such a huge difference in the extent of killing of the control strain in media, when exposed to TIG/LZD, when compared to Fig. 1C and Fig. 4. In Fig. 1C, M. abs grown in media decreases by >1 log by Day 3 and >4 log by Day 6, whereas in Fig. 3, the bacterial load decreases by <1 log by Day 3 and <2 log by Day 6. This needs to be clarified, if the experimental conditions were different, because if comparing to Fig. 1C data then the katG mutant strain phenotype is not very different.

    2. Reviewer #2 (Public review):

      Summary:

      The work set out to better understand the phenomenon of antibiotic persistence in mycobacteria. Three new observations are made using the pathogenic Mycobacterium abscessus as an experimental system: phenotypic tolerance involves suppression of ROS, protein synthesis inhibitors can be lethal for this bacterium, and levofloxacin lethality is unaffected by deletion of catalase, suggesting that this quinolone does not kill via ROS.

      Strengths:

      The ROS experiments are supported in three ways: measurement of ROS by a fluorescent probe, deletion of catalase increases lethality of selected antibiotics, and a hypoxia model suppresses antibiotic lethality. A variety of antibiotics are examined, and transposon mutagenesis identifies several genes involved in phenotypic tolerance, including one that encodes catalase. The methods are adequate for making these statements.

      Weaknesses:

      The work can be improved in two major ways. First, word-choice decisions could better conform to the published literature. Alternatively, novel definitions could be included. In particular, the data support the concept of phenotypic tolerance, not persistence. Second, two of the novel observations could be explored more extensively to provide mechanistic explanations for the phenomena.

      Overall impact: Showing that ROS accumulation is suppressed during phenotypic tolerance, while expected, adds to the examples of the protective effects of low ROS levels. Moreover, the work, along with a few others, extends the idea of antibiotic involvement with ROS to mycobacteria. These are field-solidifying observations.

    3. Reviewer #3 (Public review):

      Summary:

      The manuscript demonstrates that starvation induces persister formation in M. abscesses. They also utilized Tn-Seq for the identification of genes involved in persistence. They identified the role of catalase-peroxidase KatG in preventing death from translation inhibitors Tigecycline and Linezolid. They further demonstrated that a combination of these translation inhibitors leads to the generation of ROS in PBS-starved cells.

      Strengths:

      The authors used high-throughput genomics-based methods for identification of genes playing a role in persistence.

      Weaknesses:

      The findings could not be validated in clinical strains.

    1. Reviewer #1 (Public review):

      Summary:

      The imaging pipeline presented in this paper is a useful tool for visualizing and dynamically tracking bacterial colony formation at the individual worm level, enabling the study of microbiome colonization's association with host physiology, including lifespan, infection severity, and genetic mutations in real-time. This technique allows for certain biological information to be obtained that was previously missed such as pmk-1 mutants exhibiting a higher rate of colonization by E. coli OP50 than wild-type animals. Overall, this platform could be of interest to many labs studying C. elegans interactions with their microbiome and with bacterial pathogens.

      Strengths:

      This platform allows for unbiased quantifications of microbe colonization of bacteria at scale. This is particularly important in a field studying dynamic responses or potentially more subtle or variable phenotypes.

      Platform could be adapted for multiple uses or potentially other species of nematodes for evolutionary comparisons.

      The platform allows researchers to correlate bacterial colonization with predicted lifespan.

      Weaknesses:

      Platform will require optimization for any given bacteria species which restricts its ease of use for researchers that won't regularly be studying the same bacteria.

      Requires the bacteria to be genetically tractable so cannot be easily adapted to microbes that do not have established ways of expressing GFP or other reporters.

      This platform requires the use of relatively older adult animals that are more prone to larger gut colonies of bacteria. Thus, studies using this platform are restricted to studying older populations.

      The relationship between bacterial colonization and host lifespan requires further investigation. The current SICKO platform and experimentation cannot fully address whether animals in poorer health are more susceptible to colonization, or whether colonization casually contributes to a decline in health. Furthermore, while such effects are statistically significant their effect size in some cases is modest.

    2. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Espejo et al describe a method, SICKO, that allows for long-term longitudinal examination of bacterial colonization in the gut of C. elegans. SICKO utilizes a well-plate format where single worms are housed in each well with a small NGM pad surrounded by an aversive palmitic acid barrier to prevent worms from fleeing the well. The main benefit of this method is that it captures longitudinal data across individual worms with the ability to capture tens to hundreds of worms at once. The output data of SICKO in the heatmap is also very clear and robustly shows bacterial colonization in the gut across a large sample size, which is far superior to the current gold standard of imaging 10-20 worms in a cross-sectional matter at various timepoints of aging. They then provide a few examples of how this method can be applied to understand how colonization correlates with animal health.

      Strengths:

      -The method presented in this manuscript is sure to be of great utility to the host-pathogen field of C. elegans. The method also allows for utilization of large sample sizes and a way to present highly transparent data, both of which are excellent for promoting rigor and reproducibility of science.<br /> -The manuscript also does a great job in describing the limitations of the system, which is always appreciated.<br /> -The methods section for the SICKO data analysis pipeline and the availability of the code on Github are strong pluses.

      Weaknesses:

      -There are minor weaknesses in the methods that could be addressed relatively easily by expanding the explanation of how to set up the individual worm chambers (see comment 1 below).

      I am making all my comments and suggestions to the reviewers public, as I believe these comments can be useful to the general readership as well. Comment 1 is important to make the methods more accessible and comment 2 is important to make the data presentation more accessible to a broader audience. However, comments 3-4 are things/suggestions that should be considered by the authors and future users of SICKO for interpretation of all the data presented in the manuscript.

      (1) The methods section needs to be described in more detail. Considering that this is a methods development paper, more detailed explanation is required to ensure that readers can actually adapt these experiments into their labs.<br /> (a) What is the volume of lmNGM in each well?<br /> (b) Recommended volume of bacteria to seed in each well?<br /> (c) A file for the model for the custom printed 3D adaptor should be provided.<br /> (d) There should be a bit more detail on how the chambers should be assembled with all the components. After reading this, I am not sure I would be able to put the chamber together myself.<br /> (e) What is the recommended method to move worms into individual wells? Manual picking? Pipetting in a liquid?<br /> (f) Considering that a user-defined threshold is required (challenging for non-experienced users), example images should be provided on what an acceptable vs. nonacceptable threshold would look like.

      (2) The output data in 1e is very nice - it is a very nice and transparent plot, which I like a lot. However, since the data is complex, a supplemental figure to explain the data better would be useful to make it accessible for a broader audience. For example, highlighting a few rows (i.e., individual worms) and showing the raw image data for each row would be useful. What I mean is that it would be useful to show what does the worm actually look like for a "large colony size" or "small colony size"? What is the actual image of the worm that represents the yellow (large), versus dark blue (small), versus teal (in the middle)? And also the transition from dark blue to yellow would also be nice to be shown. This can probably also just be incorporated into Fig. 1d by just showing what color each of those worm images from day 1 to day 8 would represent in the heat map (although I still think a dedicated supplemental figure where you highlight a few rows and show matching pictures for each row in image files would be better).

      (3) I am not sure that doing a single-time point cross-sectional data is a fair comparison since several studies do multi-timepoint cross-sectional studies (e.g., day 1, day 5, day 9). This is especially true for using only day 1 data - most people do gut colonization assays at later timepoints since the gut barrier has been shown to break down at older ages, not day 1. The data collected by SICKO is done every day across many individuals worms and is clearly superior to this type of cross-sectional data (even with multiple timepoints), and I think this message would be further strengthened by comparing it directly to cross-sectional data collected across more than 1 timepoint of aging.

      (4) The authors show that SICKO can detect differences in wild-type vs. pmk-1 loss of function and between OP50 and PA14. However, these are very dramatic conditions that conventional methods can easily detect. I would think that the major benefit of SICKO over conventional methods is that it can detect subtle differences that cross-sectional methods would fail to visualize. It might be useful to see how well SICKO performs for these more subtle effects (e.g., OP50 on NGM vs. bacteria-promoting media; OP50 vs. HT115; etc.).<br /> (a) Similar to the above comment, the authors discuss how pmk-1 has colonization-independent effects on host-pathogen interactions. Maybe using a more direct approach to affect colonization (e.g., perturbing gut actin function like act-5) would be better.

  2. Dec 2024
    1. Reviewer #3 (Public Review):

      In multiple cancers, the key roles of B cells are emerging in the tumor microenvironment (TME). The authors of this study appropriately introduce that B cells are relatively under-characterised in the TME and argue correctly that it is not known how the B cell receptor (BCR) repertoires across tumor, lymph node and peripheral blood relate. The authors therefore supply a potentially useful study evaluating the tumor, lymph node and peripheral blood BCR repertoires and site-to-site as well as intra-site relationships. The authors employ sophisticated analysis techniques, although the description of the methods is incomplete.

      Major strengths:

      (1) The authors provide a unique analysis of BCR repertoires across tumor, dLN, and peripheral blood. The work provides useful insights into inter- and intra-site BCR repertoire heterogeneity. While patient-to-patient variation is expected, the findings with regard to intra-tumor and intra-dLN heterogeneity with the use of fragments from the same tissue are of importance, contribute to the understanding of the TME, and will inform future study design.

      (2) A particular strength of the study is the detailed CDR3 physicochemical properties analysis which leads the authors to observations that suggest a less-specific BCR repertoire of TIL-B compared to circulating B cells.

      Comments on revisions:

      Your efforts in addressing concerns related to methodological details, narrative clarity, and data representation are commendable. The expanded descriptions of Fig. 1A and the experimental design, as well as the restructuring of the discussion, have greatly enhanced the manuscript's clarity and coherence.

    1. Reviewer #1 (Public review):

      Summary:

      In this work, a screening platform is presented for rapid and cost-effective screening of candidate genes involved in Fragile Bone Disorders. The authors validate the approach of using crispants, generating FO mosaic mutants, to evaluate the function of specific target genes in this particular condition. The design of the guide RNAs is convincingly described, while the effectiveness of the method is evaluated to 60% to 92% of the respective target genes being presumably inactivated. Thus, injected F0 larvae can be directly used to investigate the consequences of this inactivation.

      Skeletal formation is then evaluated at 7dpf and 14dpf, first using a transgenic reporter line revealing fluorescent osteoblasts, second using alizarin-red staining of mineralized structures. In general, it appears that the osteoblast-positive areas are more often affected in the crispants compared to the mineralized areas, an observation that appears to correlate with the observed reduced expression of bglap, a marker for mature osteoblasts, and the increased expression of col1a1a in more immature osteoblasts.

      Finally, the injected fish (except two lines that revealed a high mortality) are also analyzed at 90dpf, using alizarin red staining and micro-CT analysis, revealing an increased incidence of skeletal deformities in the vertebral arches, fractures, as well as vertebral fusions and compressions for all crispants except those for daam2. Finally, the Tissue Mineral Density (TMD) as determined by micro-CT is proposed as an important marker for investigating genes involved in osteoporosis.<br /> Taken together, this manuscript is well presented, the data are clear and well analyzed, and the methods well described. It makes a compelling case for using the crispant technology to screen the function of candidate genes in a specific condition, as shown here for bone disorders.

      Strengths:

      Strengths are the clever combination of existing technologies from different fields to build a screening platform. All the required methods are comprehensively described.

      Weaknesses:

      One may have wished to bring one or two of the crispants to the stage of bona fide mutants, to confirm the results of the screening, however, this is done for some of the tested genes as laid out in the discussion.

      Comments on latest version:

      All my issues were resolved.

    2. Reviewer #2 (Public review):

      Summary:

      More and more genes and genetic loci are being linked to bone fragility disorders like osteoporosis and osteogenesis imperfecta through GWAS and clinical sequencing. In this study, the authors seek to develop a pipeline for validating these new candidate genes using crispant screening in zebrafish. Candidates were selected based on GWAS bone density evidence (4 genes) or linkage to OI cases plus some aspect of bone biology (6 genes). NGS was performed on embryos injected with different gRNAs/Cas9 to confirm high mutagenic efficacy, and off-target cutting was verified to be low. Bone growth, mineralization, density, and gene expression levels were carefully measured and compared across crispants using a battery of assays at three different stages.

      Strengths:

      (1) The pipeline would be straightforward to replicate in other labs, and the study could thus make a real contribution towards resolving the major bottleneck of candidate gene validation.

      (2) The study is clearly written and extensively quantified.

      (3) The discussion attempts to place the phenotypes of different crispant lines into the context of what is already known about each gene's function.

      (4) There is added value in seeing the results for the different crispant lines side by side for each assay.

      (5) Caveats to the interpretability of crispant data and limitations of their gene-focused analyses and RT-PCR assays are discussed.

      Weaknesses:

      (1) The study uses only well-established methods and is strategy-driven rather question/hypothesis-driven. This is in line with the researchers' primary goal of developing a workflow for rapid in vivo functional screening of candidate genes. However, this means that less attention is paid to what the results obtained for a given gene may mean regarding potential disease mechanisms, and how contradictions with prior reports of mouse or fish null mutant phenotypes might be explained.

      (2) Normalization to body size was not performed. Measurements of surface area covered by osteoblasts or mineralized bone (Fig. 1) are typically normalized to body size - especially in larvae and juvenile fish - to rule out secondary changes due to delayed or accelerated overall growth. This was not done here; the authors argue that "variations in growth were considered as part of the phenotypic outcome." This is reasonable, but because standard length was reported only for fish at 90 dpf (not significantly different in any line), the reader is not given the opportunity to consider whether earlier differences in, e.g. surface area covered by osteoblasts at 14 dpf, could be accounted for by delayed or accelerated overall growth. Images in Figure S5 were not taken at the same magnification, further confounding this effort.

      Comments on latest version:

      The authors have largely addressed my comments by making changes to the text.

      However, in response to one of my original comments ("It would be helpful to note the grouping of candidates into OI vs. BMD GWAS throughout the figures"), they added a sentence to this effect to the legends. However, because two of the lines were larval-lethal, the legends to Figs. S6-8 are now incorrect in referring to ten genes when only eight mutants are shown.

    3. Reviewer #3 (Public review):

      The manuscript describes the use of CRISPR gene editing coupled with phenotyping mosaic zebrafish larvae to characterize functions of genes implicated in heritable fragile bone disorders (FBDs). Authors targeted six high-confident candidate genes implicated in severe recessive forms of FBDs and four Osteoporosis GWAS-implicated genes and observe varied developmental phenotypes across all crispants, in addition to adult skeletal phenotypes. While the study lacks insight on underlying mechanisms that contribute to disease phenotypes, a major strength of the paper is the streamlined method that produced significant phenotypes for all candidate genes tested. It also represents a significant increase in number of candidate genes tested using their crispant approach beyond the single mutant that was previously published.

      One weakness was the variability of developmental phenotypes, addressed by authors in the Discussion. This might be a product of maternal transcripts not targeted by CRISPR or genetic compensation, which authors have not fully explored. Overall, the paper was well-written and easy to read.

      Comments on latest version:

      The authors have addressed many concerns in this revision. Figure 1 and Table 2 are much improved.

      While details of orthologous gene expression profiles of target genes is a welcome addition, other features of target genes remain unaddressed. For example, do genes with maternally deposited transcript exhibit dampened phenotypes? Or does genetic compensation impact certain genes more than others? Since authors state that the study represents a methods paper, it will be important for users to understand the caveats of gene selection to effectively implement and interpret results of the approach.

    1. Reviewer #1 (Public review):

      Bacterial effectors that interfere with the inner molecular workings of eukaryotic host cells are of great biological significance across disciplines. On the one hand they help us to understand the molecular strategies that bacteria use to manipulate host cells. On the other hand they can be used as research tools to reveal molecular details of the intricate workings of the host machinery that is relevant for the interaction/defence/symbiosis with bacteria. The authors investigate the function and biological impact of a rhizobial effector that interacts with and modifies, and curiously is modified by, legume receptors essential for symbiosis. The molecular analysis revealed a bacterial effector that cleaves a plant symbiosis signaling receptor to inhibit signaling and the host counterplay by phosphorylation via a receptor kinase. These findings have potential implications beyond bacterial interactions with plants.

      Bao and colleagues investigated how rhizobial effector proteins can regulate the legume root nodule symbiosis. A rhizobial effector is described to directly modify symbiosis-related signaling proteins, altering the outcome of the symbiosis. Overall, the paper presents findings that will have a wide appeal beyond its primary field.

      Out of 15 identified effectors from Sinorhizobium fredii, they focus on the effector NopT, which exhibits proteolytic activity and may therefore cleave specific target proteins of the host plant. They focus on two Nod factor receptors of the legume Lotus japonicus, NFR1 and NFR5, both of which were previously found to be essential for the perception of rhizobial nod factor, and the induction of symbiotic responses such as bacterial infection thread formation in root hairs and root nodule development (Madsen et al., 2003, Nature; Tirichine et al., 2003; Nature). The authors present evidence for an interaction of NopT with NFR1 and NFR5. The paper aims to characterize the biochemical and functional consequences of these interactions and the phenotype that arises when the effector is mutated.

      Evidence is presented that in vitro NopT can cleave NFR5 at its juxtamembrane region. NFR5 appears also to be cleaved in vivo. and NFR1 appears to inhibit the proteolytic activity of NopT by phosphorylating NopT. When NFR5 and NFR1 are ectopically over-expressed in leaves of the non-legume Nicotiana benthamiana, they induce cell death (Madsen et al., 2011, Plant Journal). Bao et al., found that this cell death response is inhibited by the coexpression of nopT. Mutation of nopT alters the outcome of rhizobial infection in L. japonicus. These conclusions are well supported by the data.

      The authors present evidence supporting the interaction of NopT with NFR1 and NFR5. In particular, there is solid support for cleavage of NFR5 by NopT (Figure 3) and the identification of NopT phosphorylation sites that inhibit its proteolytic activity (Figure 4C). Cleavage of NFR5 upon expression in N. benthamiana (Figure 3A) requires appropriate controls (inactive mutant versions) that have been provided, since Agrobacterium as a closely rhizobia-related bacterium might increase defense related proteolytic activity in the plant host cells.

      Key results from N. benthamiana appear consistent with data from recombinant protein expression in bacteria. For the analysis in the host legume L. japonicus transgenic hairy roots were included. To demonstrate that the cleavage of NFR5 occurs during the interaction in plant cells the authors build largely on western blots. Regardless of whether Nicotiana leaf cells or Lotus root cells are used as the test platform, the Western blots indicate that only a small proportion of NFR5 is cleaved when co-expressed with nopT, and most of the NFR5 persists in its full-length form (Figures 3A-D). It is not quite clear how the authors explain the loss of NFR5 function (loss of cell death, impact on symbiosis), as a vast excess of the tested target remains intact. It is also not clear why a large proportion of NFR5 is unaffected by the proteolytic activity of NopT. This is particularly interesting in Nicotiana in the absence of Nod factor that could trigger NFR1 kinase activity.

      Comments on latest version:

      The presentation of the figures and the language has greatly improved and the specific mistakes pointed out in the last review have been corrected. I especially appreciate the new images used to illustrate the observed mutant phenotypes, which are much clearer and easier to understand. The pictures used to illustrate the mutant phenotypes seem to be of more comparable root regions than before. Overall, the requested changes have been implemented, with some exceptions described below.

      • Figure 1: New representative images are shown for BAX1 and CERK1. These pictures are more consistent with the phenotype seen in other treatments, but since the data has not changed, I presume the data from leaf discs (where the leaf discs for these treatments looked very different) previously shown is still included. The criteria for what was considered cell death is in my opinion still not described in the legend. The cell death/total ratio has been added for all leaf discs, as requested.<br /> • Figure 2: the discussion of the figure now emphasizes direct protein interaction. There is still no size marker in 2D or a description of size in the figure legend, making it difficult to compare the result to Figure 3. If I understand the rebuttal comments correctly, there are other bands on the blot, including non-specific bands. This does not negate the need to include the full blot as a supplemental figure to show cleaved NFR5 as well as other bands. I do not see any other clarifications on this subject in the manuscript.<br /> • Figure 5: From the pictures, it is now easier to understand what is meant by "infection foci". Although there is no description in the methods of how these were distinguished from infection threads, I believe the images are clear enough.<br /> • Figure 6: The changes in the discussion are appreciated, but panel E still misrepresents the evidence in the paper, as from the drawing it still seems that the cleaved NFR5 is somehow directly responsible for suppressing infection when this was not shown

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript presents data demonstrating NopT's interaction with Nod Factor Receptors NFR1 and NFR5 and its impact on cell death inhibition and rhizobial infection. The identification of a truncated NopT variant in certain Sinorhizobium species adds an interesting dimension to the study. These data try to bridge the gaps between classical Nod-factor-dependent nodulation and T3SS NopT effector-dependent nodulation in legume-rhizobium symbiosis. Overall, the research provides interesting insights into the molecular mechanisms underlying symbiotic interactions between rhizobia and legumes.

      Strengths:

      The manuscript nicely demonstrates NopT's proteolytic cleavage of NFR5, regulated by NFR1 phosphorylation, promoting rhizobial infection in L. japonicus. Intriguingly, authors also identify a truncated NopT variant in certain Sinorhizobium species, maintaining NFR5 cleavage but lacking NFR1 interaction. These findings bridge the T3SS effector with the classical Nod-factor-dependent nodulation pathway, offering novel insights into symbiotic interactions.

      Weaknesses:

      (1) In the previous study, when transiently expressed NopT alone in Nicotiana tobacco plants, proteolytically active NopT elicited a rapid hypersensitive reaction. However, this phenotype was not observed when expressing the same NopT in Nicotiana benthamiana (Figure 1A). Conversely, cell death and a hypersensitive reaction were observed in Figure S8. This raises questions about the suitability of the exogenous expression system for studying NopT proteolysis specificity.

      (2) NFR5 Loss-of-function mutants do not produce nodules in the presence of rhizobia in lotus roots, and overexpression of NFR1 and NFR5 produces spontaneous nodules. In this regard, if the direct proteolysis target of NopT is NFR5, one could expect the NGR234's infection will not be very successful because of the Native NopT's specific proteolysis function of NFR5 and NFR1. Conversely, in Figure 5, authors observed the different results.

      (3) In Figure 6E, the model illustrates how NopT digests NFR5 to regulate rhizobia infection. However, it raises the question of whether it is reasonable for NGR234 to produce an effector that restricts its own colonization in host plants.

      (4) The failure to generate stable transgenic plants expressing NopT in Lotus japonicus is surprising, considering the manuscript's claim that NopT specifically proteolyzes NFR5, a major player in the response to nodule symbiosis, without being essential for plant development.

      Comments on revised version:

      This version has effectively addressed most of my concerns. However, one key issue remains unresolved regarding the mechanism of NopT in regulating nodule symbiosis. Specifically, the explanation of how NopT catabolizes NFR5 to regulate symbiosis is still not convincing within the current framework of plant-microbe interaction, where plants are understood to genetically control rhizobial colonization.

      While alternative regulatory mechanisms in plant-microbe interactions are plausible, the notion that the NRG234-secreted effector NopT could reduce its own infection by either suppressing plant immunity or degrading the symbiosis receptor remains unsubstantiated. I believe further revisions are needed in the discussion section to more clearly address and clarify these findings and any lingering uncertainties.

    1. Reviewer #1 (Public review):

      Summary:

      The authors introduced their previous paper with the concise statement that "the relationships between lineage-specific attributes and genotypic differences of tumors are not understood" (Chen et al., JEM 2019, PMID: 30737256). For example, it is not clear why combined loss of RB1 and TP53 is required for tumorigenesis in SCLC or other aggressive neuroendocrine (NE) cancers, or why the oncogenic mutations in KRAS or EGFR that drive NSCLC tumorigenesis are found so infrequently in SCLC. This is the main question addressed by the previous and current papers.

      One approach to this question is to identify a discrete set of genetic/biochemical manipulations that are sufficient to transform non-malignant human cells into SCLC-like tumors. One group reported transformation of primary human bronchial epithelial cells into NE tumors through a complex lentiviral cocktail involving inactivation of pRB and p53 and activation of AKT, cMYC and BCL2 (PARCB) (Park et al., Science 2018, PMID: 30287662). The cocktail previously reported by Chen and colleagues to transform human pluripotent stem-cell (hPSC)-derived lung progenitors (LPs) into NE xenografts was more concise: DAPT to inactivate NOTCH signaling combined with shRNAs against RB1 and TP53. However, the resulting RP xenografts lacked important characteristics of SCLC. Unlike SCLC, these tumors proliferated slowly and did not metastasize, and although small subpopulations expressed MYC or MYCL, none expressed NEUROD1.

      MYC is frequently amplified or expressed at high levels in SCLC, and here, the authors have tested whether inducible expression of MYC could increase the resemblance of their hPSC-derived NE tumors to SCLC. These RPM cells (or RPM T58A with stabilized cMYC) engrafted more consistently and grew more rapidly than RP cells, and unlike RP cells, formed liver metastases when injected into the renal capsule. Gene expression analyses reveled that RPM tumor subpopulations expressed NEUROD1, ASCL1 and/or YAP1.

      The hPSC-derived RPM model is a major advance over the previous RP model. This may become a powerful tool for understanding SCLC tumorigenesis and progression and for discovering gene dependencies and molecular targets for novel therapies. However, the specific role of cMYC in this model needs to be clarified.

      Recommended Revision:

      cMYC can drive proliferation, tumorigenesis or apoptosis in a variety of lineages depending on concurrent mutations. For example, in the Park et al., study, normal human prostate cells could be reprogrammed to form adenocarcinoma-like tumors by activation of cMYC and AKT alone, without manipulation of TP53 or RB1. In their previous manuscript, the authors carefully showed the role of each molecular manipulation in NE tumorigenesis. DAPT was required for NE differentiation of LPs to PNECs, shRB1 was required for expansion of the PNECs, and shTP53 was required for xenograft formation. cMYC expression could influence each of these steps, and importantly, could render some steps dispensable. For example, shRB1 was previously necessary to expand the DAPT-induced PNECs, as neither shTP53 nor activation of KRAS or EGFR had no effect on this population, but perhaps cMYC overexpression could expand PNECs even in the presence of pRB, or even induce LPs to become PNECs without DAPT. Similarly, both shRB1 and shTP53 were necessary for xenograft formation, but maybe not if cMYC is overexpressed. If a molecular hallmark of SCLC, such as loss of RB1 or TP53, has become dispensable with the addition of cMYC, this information is critically important in interpreting this as a model of SCLC tumorigenesis.

      To interpret the role of cMYC expression in hPSC-derived RPM tumors, we need to know what this manipulation does without manipulation of pRB, p53 or NOTCH, alone or in combination. There are 7 relevant combinations that should be presented in this manuscript: (1) cMYC alone in LPs, (2) cMYC + DAPT, (3) cMYC + shRB1, (4) cMYC + DAPT + shRB1, (5) cMYC + shTP53, (6) cMYC + DAPT + shTP53, and (7) cMYC + shRB1 + shTP53. Wild-type cMYC is sufficient; further exploration with the T58A mutant would not be necessary.

      Please present the effects of these combinations on LP differentiation to PNECs, expansion of PNECs as well as other lung cells, xenograft formation and histology, and xenograft growth rate and capacity for metastasis. If this could be clarified experimentally, and the results discussed in the context of other similar approaches such as the Park et al., paper, this study would be a major addition to the field.

    2. Reviewer #3 (Public review):

      This revision and the accompanying rebuttal indicates the authors want to publish their studies without providing several of the reviewer requested additional experiments (such as determining the impact of other Myc family members on metastatic behavior and expression characteristics compared to overexpression of c-Myc), and determining whether the tumors were responsive or not to standard clinically used therapies. Their argument is the author team has moved on to other endeavors, it is important to communicate their findings to the research field, and they have indicated these issues in the Discussion. All of these things are reasonable. However, there two things that would help. The first is to have the authors clearly state in the Discussion section "Limitations of the current study" and then list these out. In the current format the indication that the authors recognize the "limitations" is not clearly stated. An example - of such a limitation is how well their model now provides a human SCLC like tumor that metastasizes. We know that in patients SCLC is widely metastatic, but in SCLC patient derived xenografts with subcutaneous injection that is not seen, so if their model now generated widely metastatic behavior like that seen in patients, this report and the associated resources would be a significant advance to the field. However, their data shows that using their model the subcutaneous tumors don't metastasize, and even with renal capsule models metastases are not common and do not go to important sites (e.g. brain). Second, a major reason for publishing this paper is that their model system would be available as a resource for the field to study. However, I could not find in the paper or the Methods section any statement as to the availability of this presumable important resource. If the resources will not be easily available in a format that others can readily study (e.g. with instructions on how to handle the cells which would seem to be more complicated than other patient derived SCLC models) then of course the value of this paper to the field as a whole is dramatically reduced. I would assume the authors want their model to be used by other investigators and thus a clear statement of model availability and how to routinely handle their model is important to include in their manuscript.