Reviewer #1 (Public Review):
Summary:
In this manuscript, the authors set up a pipeline to predict insect repellents that are pleasant and safe for humans. This is done by daisy-chaining a new classification model based on predicting repellents with a published model on predicting human perception. Models use a feature-engineered selection of chemical features to make their predictions. The predicted molecules are then validated against a proxy humanoid (heated brick) and its safety is tested by molecular assays of human cells. The humanistic approach to modeling these authors have taken (which considers cosmetic/aesthetic appeal and safety) is novel and a necessary step for consumer usage. However, the importance of pleasantness over effectiveness is still up for debate (DEET is unpleasant but still used often) and the generalization of safety tests is unknown and assumed. The effectiveness of the prediction models is also still warranted. They pass the authors' own behavioral tests, but their contribution to the field is unknown as both models (new and published) have not been rigorously benchmarked to previous models. Moreover, the author's breadth of literature in this field is sparse, ignoring directly related studies.
Strengths:
Humanistic approach to modeling considers pleasantness and safety. Chaining models can help limit the candidate odorants from the vastness of odor space.
Weaknesses:
The current models need to be bench-marked against leading models predicting similar outcomes. Similarly, many of these papers need to be addressed and discussed in the introduction. The authors might even consider their data sources for model training to increase performance and lexical categorization for interoperability. For instance, the Dravnikes data lexicon, currently used in the human perception lexicon, has been highly criticized for its overlapping and hard-to-interpret descriptive terms ("FRAGRANT", "AROMATIC").
Human Perception
Khan, R. M., Luk, C. H., Flinker, A., Aggarwal, A., Lapid, H., Haddad, R., & Sobel, N. (2007). Predicting odor pleasantness from odorant structure: pleasantness as a reflection of the physical world. Journal of Neuroscience, 27(37), 10015-10023.
Keller, A., Gerkin, R. C., Guan, Y., Dhurandhar, A., Turu, G., Szalai, B., ... & Meyer, P. (2017). Predicting human olfactory perception from chemical features of odor molecules. Science, 355(6327), 820-826.
Gutiérrez, E. D., Dhurandhar, A., Keller, A., Meyer, P., & Cecchi, G. A. (2018). Predicting natural language descriptions of mono-molecular odorants. Nature communications, 9(1), 4979.
Lee, B. K., Mayhew, E. J., Sanchez-Lengeling, B., Wei, J. N., Qian, W. W., Little, K. A., ... & Wiltschko, A. B. (2023). A principal odor map unifies diverse tasks in olfactory perception. Science, 381(6661), 999-1006.<br />
Related cleaned data: https://github.com/BioMachineLearning/openpom
Insect Repellents:
Wright, R. H. (1956). Physical basis of insect repellency. Nature, 178(4534), 638-638.
Katritzky, A. R., Wang, Z., Slavov, S., Tsikolia, M., Dobchev, D., Akhmedov, N. G., ... & Linthicum, K. J. (2008). Synthesis and bioassay of improved mosquito repellents predicted from chemical structure. Proceedings of the National Academy of Sciences, 105(21), 7359-7364.
Bernier, U. R., & Tsikolia, M. (2011). Development of Novel Repellents Using Structure− Activity Modeling of Compounds in the USDA Archival Database. In Recent Developments in Invertebrate Repellents (pp. 21-46). American Chemical Society.
Wei, J. N., Vlot, M., Sanchez-Lengeling, B., Lee, B. K., Berning, L., Vos, M. W., ... & Dechering, K. J. (2022). A deep learning and digital archaeology approach for mosquito repellent discovery. bioRxiv, 2022-09.
The current study assumes that insect repellents repel via their odor valence to the insect, but this is not accurate. Insect repellents also mask the body odor of humans making them hard to locate. The authors need to consult the literature to understand the localization and landing mechanisms of insects to their hosts. Here, they will understand that heat alone is not the attractant as their behavioral assay would have you believe. I suggest the authors test other behaviour assays to show more convincing evidence of effectiveness. See the following studies:
De Obaldia, M. E., Morita, T., Dedmon, L. C., Boehmler, D. J., Jiang, C. S., Zeledon, E. V., ... & Vosshall, L. B. (2022). Differential mosquito attraction to humans is associated with skin-derived carboxylic acid levels. Cell, 185(22), 4099-4116.
McBride, C. S., Baier, F., Omondi, A. B., Spitzer, S. A., Lutomiah, J., Sang, R., ... & Vosshall, L. B. (2014). Evolution of mosquito preference for humans linked to an odorant receptor. Nature, 515(7526), 222-227.
Wei, J. N., Vlot, M., Sanchez-Lengeling, B., Lee, B. K., Berning, L., Vos, M. W., ... & Dechering, K. J. (2022). A deep learning and digital archaeology approach for mosquito repellent discovery. bioRxiv, 2022-09.