- Mar 2024
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
When members of two related but diverged species mate, the resulting hybrids can produce offspring where parts of one species' genome replace those of the other. These "introgressions" often create regions with a much greater density of sequence differences than are normally found between members of the same species. Previous studies have shown that increased sequence differences, when heterozygous, can reduce recombination during meiosis specifically in the region of increased difference. However, most of these studies have focused on crossover recombination, and have not measured noncrossovers. The current study uses a pair of Saccharomyces uvarum crosses: one between two natural isolates that, while exhibiting some divergence, do not contain introgressions; the other is between two fermentation strains that, when combined, are heterozygous for 9 large regions of introgression that have much greater divergence than the rest of the genome. The authors wished to determine if introgressions differently affected crossovers and noncrossovers, and, if so, what impact that would have on the gene shuffling that occurs during meiosis.
While both crossovers and noncrossovers were measured, assessing the true impact of increased heterology (inherent in heterozygous introgressions) is complicated by the fact that the increased marker density in heterozygous introgressions also increases the ability to detect noncrossovers. The authors used a relatively simple correction aimed at compensating for this difference, and based on that correction, conclude that, while as expected crossovers are decreased by increased sequence heterology, counter to expectations noncrossovers are substantially increased. They then show that, despite this, genetic shuffling overall is substantially reduced in regions of heterozygous introgression. However, it is likely that the correction used to compensate for the effect of increased sequence density is defective, and has not fully compensated for the ascertainment bias due to greater marker density. The simplest indication of this potential artifact is that, when crossover frequencies and "corrected" noncrossover frequencies are taken together, regions of introgression often appear to have greater levels of total recombination than flanking regions with much lower levels of heterology. This concern seriously undercuts virtually all of the novel conclusions of the study.
Until this methodological concern is addressed, the work will not be a useful contribution to the field.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
In this manuscript, Liu et al. identified an important pathway regulating the nuclear translocation of the key transcriptional factor FOG1 during human hematopoiesis. The authors show that heat shock cognate B (HSCB) can interact with and promote the proteasomal degradation of TACC3, and this function is independent of its role in iron-sulfur cluster (ISC) biogenesis. TACC3 represses the activity of FOG1 by sequestering it in the cytoplasm. Therefore, HSCB can promote the nuclear translocation of FOG1 through down-regulating TACC3. The authors further show that the phosphorylation of HSCB by PI3K downstream of the EPO signaling pathway is important for its role in regulating the nuclear translocation of FOG1. The data are solid and the manuscript is overall well written. The findings of this manuscript provide new knowledge to the fields of hematopoiesis and cell biology.
Strengths:
This study uses a multi-pronged approach that combines techniques from a number of fields to convincingly demonstrate the pathway regulating the nuclear translocation of FOG1 during hematopoiesis.
Weaknesses:
This study only uses cell models. The significance of this work may be broadened by further studies using animal models.
-
Reviewer #1 (Public Review):
Summary:
In the paper entitled "PI3K/HSCB axis facilitates FOG1 nuclear translocation to promote erythropoiesis and megakaryopoiesis", the authors sought to determine the role of HSCB, a known regulator of iron-sulfur cluster transfer, in the generation of erythrocytes and megakaryocytes. They utilized a human primary cell model of hematopoietic differentiation to identify a novel mechanism whereby HSCB is necessary for the activation of erythroid and megakaryocytic gene expression through regulation of the nuclear localization of FOG-1, an essential transcription co-regulator of the GATA transcription factors. Their work establishes this novel regulatory axis as a mechanism by which cytokine signaling through EPO-R and MPL drives the lineage-specification of hematopoietic progenitors to erythrocytes and megakaryocytes, respectively.
Impact:
The major impact of this work is in a greater understanding of how cytokine signaling through EPO/TPO functions to promote lineage specification of hematopoietic stem/progenitor cells. While the major kinase cascades downstream of the EPO/TPO receptors have been elucidated, how those cascades affect gene expression to promote a specific differentiation program is poorly understood. For this work, we now understand that nuclear localization of FOG is a critical regulatory node by which EPO/TPO signaling is required to launch FOG-dependent gene expression. However, these cytokine receptors have many overlapping and redundant targets, so it still remains to be elucidated how signaling through the different receptors promotes divergent gene expression programs. Perhaps similar regulatory mechanisms exist for other lineage-specifying transcription factors.
Strengths:
The authors use two different cellular models of erythroid differentiation (K562 and human primary CD34+ cells) to elucidate the multi-factorial mechanism controlling FOG-1 nuclear localization. The studies are well-controlled and rigorously establish their mechanism through complementary approaches. The differentiation effects are established through cell surface marker expression, protein expression, and gene expression analyses. Novel protein interactions discovered by proteomics analyses were validated through bi-directional co-IP experiments in multiple experimental systems. Protein cellular localization findings are supported by both immunofluorescence and cell fractionation immunoblot analyses. The robustness of their experimental findings gives great confidence in the likelihood that the methods and findings can be reproduced in future work based on their conclusions.
Weaknesses:
The one unexplained step in this intricately described mechanism is how HSCB functions to promote TACC3 degradation. It appears that the proteasome is involved since MG-132 reverses the effect of HSCB deficiency, but no other details are provided. Does HSCB target TACC3 for ubiquitination somehow? Future studies will be required to understand this portion of the mechanism.
One weakness of the study design is that no in vivo experiments are conducted. The authors comment that the HSCB mouse phenotype is too dramatic to permit studies of erythropoiesis in vivo; however, a conditional approach could have been pursued.
It should also be noted that a previous study had already shown that TACC3 regulates the nuclear localization of FOG-1, so this portion of the mechanism is not entirely novel. However, the role of HSCB and the proteasomal degradation of TACC3 is entirely novel to my knowledge.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
While I am not a specialist in this field, I do have some knowledge of the subject matter and the computational aspects involved.
The authors employ simple machine learning techniques (such as SVM) for the following purposes:
a. Prediction of aversive valence.<br /> b. Predicting anti-repellent chemicals.<br /> c. Predicting calcium mobilization.
The approach is commonplace in chemoinformatics literature.
Weaknesses:
- All the above models are presented discretely, making it difficult to discern experiment design principles and connectedness.<br /> - The ML work is rudimentary, lacking adequate details. Chemoinformatics has reached great heights, and SVM does not seem contemporary.<br /> - There is significant existing research on finding repellents.
Strengths:
- Authors attempt to make a case for calcium mobilization in the context of repellency. This aspect sounds interesting but is not surprising.<br /> - Behavioral profiling of repellents could be useful.
-
Reviewer #1 (Public Review):
Summary:
In this manuscript, the authors set up a pipeline to predict insect repellents that are pleasant and safe for humans. This is done by daisy-chaining a new classification model based on predicting repellents with a published model on predicting human perception. Models use a feature-engineered selection of chemical features to make their predictions. The predicted molecules are then validated against a proxy humanoid (heated brick) and its safety is tested by molecular assays of human cells. The humanistic approach to modeling these authors have taken (which considers cosmetic/aesthetic appeal and safety) is novel and a necessary step for consumer usage. However, the importance of pleasantness over effectiveness is still up for debate (DEET is unpleasant but still used often) and the generalization of safety tests is unknown and assumed. The effectiveness of the prediction models is also still warranted. They pass the authors' own behavioral tests, but their contribution to the field is unknown as both models (new and published) have not been rigorously benchmarked to previous models. Moreover, the author's breadth of literature in this field is sparse, ignoring directly related studies.
Strengths:
Humanistic approach to modeling considers pleasantness and safety. Chaining models can help limit the candidate odorants from the vastness of odor space.
Weaknesses:
The current models need to be bench-marked against leading models predicting similar outcomes. Similarly, many of these papers need to be addressed and discussed in the introduction. The authors might even consider their data sources for model training to increase performance and lexical categorization for interoperability. For instance, the Dravnikes data lexicon, currently used in the human perception lexicon, has been highly criticized for its overlapping and hard-to-interpret descriptive terms ("FRAGRANT", "AROMATIC").
Human Perception
Khan, R. M., Luk, C. H., Flinker, A., Aggarwal, A., Lapid, H., Haddad, R., & Sobel, N. (2007). Predicting odor pleasantness from odorant structure: pleasantness as a reflection of the physical world. Journal of Neuroscience, 27(37), 10015-10023.
Keller, A., Gerkin, R. C., Guan, Y., Dhurandhar, A., Turu, G., Szalai, B., ... & Meyer, P. (2017). Predicting human olfactory perception from chemical features of odor molecules. Science, 355(6327), 820-826.
Gutiérrez, E. D., Dhurandhar, A., Keller, A., Meyer, P., & Cecchi, G. A. (2018). Predicting natural language descriptions of mono-molecular odorants. Nature communications, 9(1), 4979.
Lee, B. K., Mayhew, E. J., Sanchez-Lengeling, B., Wei, J. N., Qian, W. W., Little, K. A., ... & Wiltschko, A. B. (2023). A principal odor map unifies diverse tasks in olfactory perception. Science, 381(6661), 999-1006.<br /> Related cleaned data: https://github.com/BioMachineLearning/openpom
Insect Repellents:
Wright, R. H. (1956). Physical basis of insect repellency. Nature, 178(4534), 638-638.
Katritzky, A. R., Wang, Z., Slavov, S., Tsikolia, M., Dobchev, D., Akhmedov, N. G., ... & Linthicum, K. J. (2008). Synthesis and bioassay of improved mosquito repellents predicted from chemical structure. Proceedings of the National Academy of Sciences, 105(21), 7359-7364.
Bernier, U. R., & Tsikolia, M. (2011). Development of Novel Repellents Using Structure− Activity Modeling of Compounds in the USDA Archival Database. In Recent Developments in Invertebrate Repellents (pp. 21-46). American Chemical Society.
Wei, J. N., Vlot, M., Sanchez-Lengeling, B., Lee, B. K., Berning, L., Vos, M. W., ... & Dechering, K. J. (2022). A deep learning and digital archaeology approach for mosquito repellent discovery. bioRxiv, 2022-09.
The current study assumes that insect repellents repel via their odor valence to the insect, but this is not accurate. Insect repellents also mask the body odor of humans making them hard to locate. The authors need to consult the literature to understand the localization and landing mechanisms of insects to their hosts. Here, they will understand that heat alone is not the attractant as their behavioral assay would have you believe. I suggest the authors test other behaviour assays to show more convincing evidence of effectiveness. See the following studies:
De Obaldia, M. E., Morita, T., Dedmon, L. C., Boehmler, D. J., Jiang, C. S., Zeledon, E. V., ... & Vosshall, L. B. (2022). Differential mosquito attraction to humans is associated with skin-derived carboxylic acid levels. Cell, 185(22), 4099-4116.
McBride, C. S., Baier, F., Omondi, A. B., Spitzer, S. A., Lutomiah, J., Sang, R., ... & Vosshall, L. B. (2014). Evolution of mosquito preference for humans linked to an odorant receptor. Nature, 515(7526), 222-227.
Wei, J. N., Vlot, M., Sanchez-Lengeling, B., Lee, B. K., Berning, L., Vos, M. W., ... & Dechering, K. J. (2022). A deep learning and digital archaeology approach for mosquito repellent discovery. bioRxiv, 2022-09.
-
Reviewer #2 (Public Review):
Summary:<br /> This is an interesting study that seeks to identify novel mosquito repellents that smell attractive to humans.
Strengths:<br /> The combination of standard machine learning methods with mosquito behavioral tests is a strength.
Weaknesses:<br /> The study would be strengthened by describing how other modern ML approaches (RF, decision trees) would classify and identify other potential repellents.
A comparison in the repellent activity between DEET and the top ten hits identified in this new study indicates little change in repellent activity (~3%), suggesting that DEET remains the gold standard. Without additional toxicity tests, the study is arguably incremental. The study's novelty should be better clarified.
The Methods in the repellency tests are sparse, and more information would be useful. Testing the top repellents at low doses (<<1%) and for long periods (2-12 h) would strengthen the manuscript. Without this information, the manuscript is lacking in depth.
Testing human subjects on their olfactory perceptions of the repellents would also increase the depth and utility of the manuscript. Without additional experiments, the authors' conclusions lack support and have limited impact on the state-of-the-art.
This manuscript is a mix of different approaches, which makes it lack cohesion. There is the ML method for classifying new repellents that smell good, but no testing of the repellents on human volunteers. The repellents are not tested at realistic concentrations and durations. And the calcium mobilization test is strange and makes little sense in the context of the other experiments and framing of the manuscript.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> The authors of this study developed a software application, which aims to identify images as either "friendly" or "unfriendly" for readers with deuteranopia, the most common color-vision deficiency. Using previously published algorithms that recolor images to approximate how they would appear to a deuteranope (someone with deuteranopia), authors first manually assessed a set of images from biology-oriented research articles published in eLife between 2012 and 2022. The researchers identified 636 out of 4964 images as difficult to interpret ("unfriendly") for deuteranopes. They claim that there was a decrease in "unfriendly" images over time and that articles from cell-oriented research fields were most likely to contain "unfriendly" images.<br /> The researchers used the manually classified images to develop, train, and validate an automated screening tool. They also created a user-friendly web application of the tool, where users can upload images and be informed about the status of each image as "friendly" or "unfriendly" for deuteranopes.
Strengths:<br /> The authors have identified an important accessibility issue in the scientific literature: the use of color combinations that make figures difficult to interpret for people with color-vision deficiency. The metrics proposed and evaluated in the study are a valuable theoretical contribution. The automated screening tool they provide is well-documented, open source, and relatively easy to install and use. It has the potential to provide a useful service to the scientists who want to make their figures more accessible. The data are open and freely accessible, well documented, and a valuable resource for further research. The manuscript is well written, logically structured, and easy to follow.
Weaknesses:<br /> (1) The authors themselves acknowledge the limitations that arise from the way they defined what constitutes an "unfriendly" image. There is a missed chance here to have engaged deuteranopes as stakeholders earlier in the experimental design. This would have allowed to determine to what extent spatial separation and labelling of problematic color combinations responds to their needs and whether setting the bar at a simulated severity of 80% is inclusive enough. A slightly lowered barrier is still a barrier to accessibility.
(2) The use of images from a single journal strongly limits the generalizability of the empirical findings as well as of the automated screening tool itself. Machine-learning algorithms are highly configurable but also notorious for their lack of transparency and for being easily biased by the training data set. A quick and unsystematic test of the web application shows that the classifier works well for electron microscopy images but fails at recognizing red-green scatter plots and even the classical diagnostic images for color-vision deficiency (Ishihara test images) as "unfriendly". A future iteration of the tool should be trained on a wider variety of images from different journals.
(3) Focusing the statistical analyses on individual images rather than articles (e.g. in figures 1 and 2) leads to pseudoreplication. Multiple images from the same article should not be treated as statistically independent measures, because they are produced by the same authors. A simple alternative is to instead use articles as the unit of analysis and score an article as "unfriendly" when it contains at least one "unfriendly" image. In addition, collapsing the counts of "unfriendly" images to proportions loses important information about the sample size. For example, the current analysis presented in Fig. 1 gives undue weight to the three images from 2012, two of which came from the same article. If we perform a logistic regression on articles coded as "friendly" and "unfriendly" (rather than the reported linear regression on the proportion of "unfriendly" images), there is still evidence for a decrease in the frequency of "unfriendly" eLife articles over time. Another issue concerns the large number of articles (>40%) that are classified as belonging to two subdisciplines, which further compounds the image pseudoreplication. Two alternatives are to either group articles with two subdisciplines into a "multidisciplinary" group or recode them to include both disciplines in the category name.
(4.)The low frequency of "unfriendly" images in the data (under 15%) calls for a different performance measure than the AUROC used by the authors. In such imbalanced classification cases the recommended performance measure is precision-recall area under the curve (PR AUC: https://doi.org/10.1371%2Fjournal.pone.0118432) that gives more weight to the classification of the rare class ("unfriendly" images).
-
Reviewer #2 (Public Review):
Summary:<br /> An analysis of images in the biology literature that are problematic for people with a color-vision deficiency (CVD) is presented, along with a machine learning-based model to identify such images and a web application that uses the model to flag problematic images. Their analysis reveals that about 13% of the images could be problematic for people with CVD and that the frequency of such images decreased over time. Their model yields 0.89 AUC score. It is proposed that their approach could help making biology literature accessible to diverse audiences.
Strengths:<br /> The manuscript focuses on an important yet mostly overlooked problem, and makes contributions both in expanding our understanding of the extent of the problem and in developing solutions to mitigate the problem. The paper is generally well-written and clearly organized. Their CVD simulation combines five different metrics. The dataset has been assessed by two researchers and is likely to be of high-quality. Machine learning algorithm used (convolutional neural network, CNN) is an appropriate choice for the problem. The evaluation of various hyperparameters for the CNN model is extensive.
Weaknesses:<br /> The focus seems to be on one type of CVD (deuteranopia) and it is unclear whether this would generalize to other types. The dataset consists of images from eLife articles. While this is a reasonable starting point, whether this can generalize to other biology/biomedical articles is not assessed. "Probably problematic" and "probably okay" classes are excluded from the analysis and classification, and the effect of this exclusion is not discussed. Machine learning aspects can be explained better, in a more standard way. The evaluation metrics used for validating the machine learning models seem lacking (e.g., precision, recall, F1 are not reported). The web application is not discussed in any depth.
-
Reviewer #3 (Public Review):
Summary:<br /> This work focuses on accessibility of scientific images for individuals with color vision deficiencies, particularly deuteranopia. The research involved an analysis of images from eLife published in 2012-2022. The authors manually reviewed nearly 5,000 images, comparing them with simulated versions representing the perspective of individuals with deuteranopia, and also evaluated several methods to automatically detect such images including training a machine-learning algorithm to do so, which performed the best. The authors found that nearly 13% of the images could be challenging for people with deuteranopia to interpret. There was a trend toward a decrease in problematic images over time, which is encouraging.
Strengths:<br /> The manuscript is well organized and written. It addresses inclusivity and accessibility in scientific communication, and reinforces that there is a problem and that in part technological solutions have potential to assist with this problem.
The number of manually assessed images for evaluation and training an algorithm is, to my knowledge, much larger than any existing survey. This is a valuable open source dataset beyond the work herein.
The sequential steps used to classify articles follow best practices for evaluation and training sets.
Weaknesses:<br /> I do not see any major issues with the methods. The authors were transparent with the limitations (the need to rely on simulations instead of what deuteranopes see), only capturing a subset of issues related to color vision deficiency, and the focus on one journal that may not be representative of images in other journals and disciplines.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this study, the authors use prospective sorting and microarray analyses, extended by single-cell RNA sequencing, in the neural stem cell niche of the subventricular zone (SVZ) to identify and refine a series of states along the continuum from quiescent neural stem cells to mature progeny. Of note, changes in the levels and subgroups of RNA splicing regulators are detailed across this continuum. Using in vitro proliferation and differentiation assays, coupled with in vivo engraftment of some prospectively sorted subsets, the authors argue that a stage they define as immature neuroblasts (iNBs) retain proliferative and multilineage differentiation capacity that is not seen in the mature neuroblast population, and is unexpected based on prior models for lineage progression in this system. This iNB stage is accompanied by a change in RNA splicing regulator expression, which is of interest due to the emerging roles for RNA processing and preferential translation within this niche.
The central tension driving the discussion between authors and reviewers, in my view, is what is required to define cells as a "molecularly distinct population" in a lineage. Is it transcript expression, in vitro potential, or more? The authors argue that sorted immature neuroblasts are a defined, separate step in the neurogenic lineage. An alternative possibility is that this population is simply cycling transit-amplifying progenitors that have initiated a transcriptional program associated with neuroblast fates - that these cells are an intermediate point on a continuum between stem cells, transit-amplifying progeny, and commitment to a neuronal (or other) fate. Despite some additions in response to initial reviews, it is still the case that much of the data presented would be equally or more effective in supporting the second model. For example, the differentially spliced gene sets in Figure S4, which are put forward by the authors to support a different molecular identity for immature neuroblasts, show that the terms enriched for immature neuroblasts are largely also found in transit amplifying progenitors (generation of neurons, neurogenesis, cell projection organization, neuron development) and/or mature neuroblasts (cell projection organization, generation of neurons), suggesting that "immature neuroblasts" are transiting between these two states and that one of their most relevant features is that they are still cycling.
These data complement several additional sc-RNAseq studies of this stem cell niche, and use a different, but similar, sorting strategy to isolate and profile subpopulations of stem/progenitor cells and neuroblast progeny. The claim that immature neuroblasts retain multipotency - the ability to generate glia and neurons - is surprising and somewhat controversial given that this has largely not been reported before under homeostatic conditions. Some factors to consider when interpreting these data are that the "immature neuroblast" populations are studied in some experiments using a transcriptional signature and a functional assay, namely the timing of reappearance of these cells after use of agents that kill rapidly dividing cells (in this case, radiation), leading to reconstitution of the lineage by previously quiescent stem cells. In a separate set of experiments, a tamoxifen-inducible labeling system is used in combination with cell-surface markers to prospectively isolate and study the differentiation potential of neuroblast populations that are assumed to be equivalent to those found in transcriptional experiments. It would be of interest in the future to confirm that the exact sorted populations (using CD24/EGFR/DCX-CreERT2::CAG) have the same transcriptional profile as those studied in earlier experiments within the paper and to confirm the purity of the sorted populations. Finally, while use is made of engraftment of sorted populations to study the differentiation and lineage potential of these immature neuroblasts, a remaining question is the relative abundance of each lineage (neurons/astrocytes/oligodendrocytes) produced by the engrafted cells - is production of glia rare, or common? Could this be due to factors such as alteration of lineage potential due to culture conditions, a disconnect between transcript expression and protein expression, or an incompletely purified starter population?
Overall, this manuscript presents an intriguing possible refinement of models for SVZ neurogenesis, and highlights the role of RNA splicing at specific stages in the lineage. It will be of interest to see if additional groups confirm these findings and whether multiplexed immunostaining, highly multiplexed flow cytometry, or other approaches focused at the proteomic level extend these findings, particularly given recent data in the developing brain that suggest transcript and protein levels are relatively poorly correlated in stem/progenitor populations.
-
Reviewer #3 (Public Review):
Summary:
Bernou et al. propose the existence of a distinct neuroblast population with increased regenerative and differentiation potential. Their claims are based on the analysis of a sorted population identified as LeX-EGFR+CD24low, which they refer to as "immature NeuroBlasts, iNB". This population is defined by transcriptomics features that have been assessed through bulk microarray studies of sorted cells and single cell RNA sequencing of the whole SVZ- lineage. Analysis of these data sets leads to the identification of these iNBs as cycling cells with a specific expression pattern of RNA splicing machinery components. On these grounds, they propose that RNA splicing plays a key role in neuronal differentiation. Although the authors bring an innovative point to the table, their claims are not fully supported by their results.
Strengths:
Interesting Hypothesis
Weaknesses:
The comparison of their microarray data to published single-cell RNA sequencing datasets (scRNAseq) highlights the cycling nature of the iNB population. Moreover, their own cell cycle analysis on their scRNAseq data attributes G2M/S-phase stages to clusters classified as iNBs, while clusters identified as TAPs are assigned to a restricted G1/S-phase stage. However, it would be expected that TAPs, as cycling progenitors, would go through all cell cycle stages and not just the beginning of it. Thus, authors should consider the possibility that their iNB population entails a major fraction of transit amplifying progenitors (TAP) and a couple neuroblasts, as described in numerous previous studies.
Authors regard the iNB population as neuroblasts due to the capacity of their sorted population to proliferate and differentiate into diverse neural cell types (neurons, oligodendrocytes and astrocytes) in vitro. It cannot be discarded that the sorted population (LeX-EGFR+CD24low) may not be pure and may be composed of a mixture of cells in different stages, including TAPs. Such a mixture of different cell types is unavoidable in sorted populations analyzed as bulk and is precisely one of the issues solved by single cell transcriptomics. Thus, the analysis of single cells resolves transition states at higher resolution and should be preferred over bulk analysis to prevent biases in analysis.
To align the authors' findings with the existing body of literature and earlier characterizations of the SVZ niche, it is advisable to combine their single-cell RNA sequencing data with datasets that have already been published. Such integration will enable precise understanding of the identity of their iNB cells.
On another note, the role of RNA splicing on neurogenesis lacks experimental validation. Unless manipulation of RNA splicing factors is conducted, the key role of this machinery in adult neurogenesis cannot be claimed.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this manuscript, authors have performed extensive imaging analysis of six human histone H1 variants, their enrichment and localization, their differential dynamics during interphase and mitosis, and their association with lamina-associated domains (LADs) or nucleolus-associated domains. The manuscript is well-written with high-quality confocal and super-resolution images. Various interesting observations are made on distribution patterns of H1 variants. H1.2, H1.3, and H1.5 are shown to be universally enriched at the nuclear periphery whereas H1.4 and H1X are found to be distributed throughout the nucleus. Interestingly, H1X was the only H1 variant found to be abundant in nucleoli. Depletion of H1 variants has been shown to affect chromatin structure in a variant-specific manner, with H1.2 knock-down resulting in global chromatin decompaction. Overall, the study presents several interesting insights on H1 variants conducted in a large number of cell lines.
-
Reviewer #2 (Public Review):
Summary:
The manuscript by Salinas-Pena et. al examines the distribution of a subgroup of histone H1 variants primarily with the use of high-resolution microscopy. The authors find that while some H1s have a universal distribution pattern, some display a preference for discrete regions within the nuclear landscape namely, the periphery, the center, or the nucleolus. They also show using that the various H1s within a cell did not colocalize significantly with each other, rather, they occupy discrete 'nanodomains' throughout the nucleus which is visualized as a punctate signal.<br /> The authors present evidence towards a long-standing question in the field regarding the spatial distribution of the different H1 variants. Since reliable, specific antibodies toward the variants were unavailable, this question was unable to elicit a definitive answer. This study uses more recently available antibodies against endogenous H1s to put together a systematic and comprehensive view of a group of H1 variant distribution inside a nucleus and ties it with previously generated genome wide data to demonstrate localization and some functional heterogeneity.
Strengths of the study.
(1) First systematic, high-resolution view of H1 variants providing a significant advance towards the long hypothesized functional differences between H1 variants.
(2) The use of endogenous antibodies allows the authors to bypass the need to use tagged proteins or overexpression strategies to study H1 distribution.
(3) The availability of genome wide H1 distribution data for the variants using the endogenous H1 antibodies to strengthen the presented visual data.
Weakness of the study.
One of the major reasons for slow progress in deciphering variant specific function has been the dearth of quality, specific, antibodies. This study is heavily dependent on the antibody function and its ability to accurately report on the distribution. The authors have cited previous validations of the antibodies used using H1 knockdown, immunoblotting and ChIP-seq. For the scope of this study, the controls are adequate.
Impact:
This study sets the stage for an exciting avenue of H1 study where variant-specific cellular functions can be explored which has otherwise been severely understudied.
-
Reviewer #3 (Public Review):
Summary:
This paper uses indirect immunofluorescence, superresolution fluorescence microscopy, and X-ChIP to demonstrate radial distribution profiles of all histone H1 somatic variants with the exception of histone H1.1. The results support earlier work from chromatin immunoprecipitation experiments that revealed biases for active versus repressed states of chromatin. The previous studies provided some support for the subtle sequence variation found primarily within the C-terminus of histone H1 variants conferred preferences in the type of DNA (e.g. methylated DNA) or chromatin bound. The current study significantly strengthens that argument. Importantly, this was shown across multiple cell lines and reveals conserved properties of localization of histone H1 variants.
Strengths:
The strength of the manuscript is the combined use of quantitative analysis of indirect immunofluorescence and X-ChIP. The results generally support the polar organization of the genome and a corresponding distribution of histone H1 variants that reflect this polar organization. AT-rich chromatin is positioned near the lamina and is found to be enriched in H1.2, H1.3, and H1.5. H1.4 and H1.X were more biased towards the GC-rich intranuclear chromatin.
There is emerging functional evidence for variant-specific properties to histone H1 subtypes. This work provides an important building block in understanding how different histone H1 variants may have specific functional consequences. The histone H1 variant that is most abundant in most cell types, H1.2, was found to decrease the area of the immunofluorescent slice that was chromatin-free when depleted, suggesting a more important role in global chromatin organization.
Weaknesses:
While histone H1 variants may show biases in their distributions, it is unlikely that these are more than biases. That is, it is unlikely that specific H1 variants are unable to bind to nucleosomes in regions where they are depleted. Fluorescence recovery after photobleaching experiments have demonstrated differences in binding affinity but the capacity to bind a range of chromatin structures, including highly acetylated chromatin, for histone H1 variants. Thus, it is critical in assessing this data to have accurate quantitative information on the relative abundance of the different histone variants amongst the cell lines tested here. The paper relies upon quantification by immunoblotting.
Another uncertainty in both the ChIP and immunofluorescence datasets is the accessibility of the epitope. This weakness is highlighted by the apparent loss of H1.2 and H1.4 in mitotic chromosomes that is revealed to be false by the detection of the phosphorylated species. The distributions relative to the surface of chromosomes in mitosis and the depletion of H1.2, H1.3, and H1.5 from the central regions of interphase nuclei reveals an unusual dissipation of the staining that is suggestive of antibody accessibility problems. The overall image quality of the immunofluorescence images is poor, further complicating analysis.
-
-
-
Reviewer #1 (Public Review):
Summary:
The authors combined high-speed video tracking of the limbs of freely moving mice with in vivo electrophysiology to demonstrate how striatal neurons encode single-limb gait. They also examine encoding other well-known aspects of locomotion, such as movement velocity and the initiation/termination of movement. The authors show that striatal neurons exhibit firing phase-locked with mouse gait at the single limb but also multi-limb level. Moreover, they describe gait deficits induced by severe unilateral dopamine neuron degeneration, and associate these deficits with a relative strengthening of gait-modulation in the firing of D2-expressing MSNs. Although the source and function of this gait-modulation remain unclear, this manuscript uncovers an important physiological correlate of striatal activity with gait, which may have implications for gait deficits in Parkinson's Disease.
Strengths:
While some previous work has looked at the encoding of gait variables in the striatum and other basal ganglia nuclei, this paper uses more careful quantification of gait with video tracking, comparing healthy and 6-OHDA-treated mice in the open field. The authors have collected a relatively large dataset of optically-identified striatal recordings to shed light on similarities and differences in the encoding of gait by striatal direct and indirect pathway neurons
Weaknesses:
There are some caveats to the interpretation of the analyses presented here, including how to compare encoding of gait variables when animals have markedly different behaviors (eg comparing sham and unilaterally 6-OHDA treated mice). The authors now address this caveat in the Discussion.
In an effort to causally link striatal firing to gait, the authors have added data from N=4 mice in which D2-expressing MSNs are optogenetically activated, and measured the resulting changes in gait parameters. As the authors note, this experiment does not directly get at the question of whether gait modulation of firing in the striatum contributes to the kinematics of gait (an experiment in which they altered the pattern of firing, to reduce modulation, would likely be needed). Given that this experiment has very low N and there are no included controls (eg mice expressing a control construct with optical stimulation), I do not think this data should be included in the manuscript. I think commenting in the Discussion that causal experiments will be needed in the future is adequate.
Many of the examples, as well as the average firing rates shown, are higher than typical for MSNs as reported in the literature. This is true even of the optically identified units that are shown in Figure 4. This may reflect the inclusion of neurons with interneuron-type properties (the authors report that there were some optically identified units with interneuron properties), the inclusion of some multi-unit activity in some recordings, or differences in recording/spike sorting techniques.
-
Reviewer #2 (Public Review):
Yang et al. recorded the activity of D1- and D2-MSNs in the dorsal striatum and analyzed their firing activity in relation to single-limb gait in normal and 6-OHDA lesioned mice. The authors provided evidence that the striatal D1- and D2-MSNs were phase-locked to the walking gait cycles of individual limbs, and dopamine lesions led to enhanced phase-locking between D2-MSN activity and walking gait cycles.
Comments on revised version:
The authors addressed my largest concern, which questioned if D1 and D2 MSNs phase-locked to single limbs better than the global gait cycles.
As to my second major concern, which questioned the causal significance of single limb gait coding in D1 and D2 MSNs on gait control, they performed additional optogenetic experiments to establish evidence that D2 activity is causally relevant for gait pattern control. The additional experiments also closed the logic gap between dopamine lesion, D2 activity and gait control, supporting the hypothesis that dopamine affects gait control and global movement pattern via increasing D2 MSN activity.
-
Reviewer #3 (Public Review):
In this study, Yang et al. address a fundamental question of the role of dorsal striatum in neural coding of gait. The authors study the respective role of D1 and D2 MSNs by linking their balanced activity to detailed gait parameters. In addition, they put in parallel the striatal activity related to whole-body measures such as initiation/cessation of movement or body speed. They are using an elegant combination of high-resolution single-limb motion tracking, identification of bouts of movements and electrophysiological recordings of striatal neurons to correlate those different parameters. Subpopulations of striatal output neurons (D1 and D2 expressing neurons) are identified in neural recordings with optogenetic tagging. Those complementary approaches show that a subset of striatal neurons have phase-locked activity to individual limbs. In addition, more than a third of MSNs appear to encode all three aspects of motor behavior addressed here, initiation/cessation of movement, body speed and gait. This activity is balanced between D1 and D2 neurons, with a higher activity of D1 neurons only for movement initiation. Finally, alterations of gait, and the associated striatal activity, is studied in a mouse model of Parkinson's Disease, using 6-OHDA lesions in the medial forebrain bundle (MFB). In the 6OHDA mice, there is an imbalance toward D2 activity.
Strengths:
The study combines elegant approaches to correlate cell-specific striatal activity with specific aspects of motion and how it is affected in a PD model. The results are convincing, and the methodology supports the conclusions presented here.
Weaknesses:
All the data were not fully exploited or explained in the first version of the manuscript and the present version has been significantly improved.
There is a long-standing debate on the respective role of D1 and D2 MSNs on the control of movement. This study goes beyond prior work by providing detailed quantification of individual limb kinematics, in parallel of whole-body motion, and showing high proportion of MSNs to be phase-locked to precise gait cycle and also encoding whole-body motion. The temporal resolution used here highlights preferential activity of D1 MSN at the movement starts, where previous studies described a more balanced involvement. Finally they reveal neural mechanisms of dopamine depletion induced gait alterations, with a preponderant phase-locked activity of D2 neurons.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
In their article, the authors delve into the therapeutic potential of a newly identified liver-specific lncRNA, FincoR, regulated by the Farnesoid X Receptor (FXR) and induced by the agonist tropifexor, in treating nonalcoholic steatohepatitis (NASH). They demonstrate that FincoR significantly enhances tropifexor's effectiveness in reducing liver fibrosis and inflammation in NASH, presenting it as a promising therapeutic target. The manuscript revisions broaden the study to include both mouse and human data, showing elevated FincoR levels in various mouse models of liver disease and identifying a similar lncRNA in humans, potentially indicating a conserved therapeutic mechanism. This research offers valuable insights into FincoR's role in NASH and suggests further exploration into its functions and mechanisms in liver disease treatment.
Strengths:
This study enhances our understanding of FincoR, a liver-specific lncRNA, and its therapeutic potential in treating NASH through a multifaceted research approach. The revised manuscript further strengthens this contribution by incorporating additional experiments and human relevance, summarized as follows: 1) The use of GRO-seq and RNA-seq technologies has provided an in-depth and unbiased view of the transcriptional alterations driven by the FXR agonist tropifexor, especially emphasizing FincoR's pivotal role. 2) The research expands on the original findings by including diverse mouse models of NAFLD/NASH and cholestatic liver injury. These models demonstrate significant increases in hepatic FincoR levels across various conditions, such as diets high in fat and fructose, chemical induction of liver cholestasis with ANIT, and surgical induction via bile duct ligation. This broadened scope underscores FincoR's involvement in liver disease mechanisms beyond the initial models of FXR knockout (KO) and FincoR liver-specific knockdown (FincoR-LKD). 3) Incorporation of tropifexor, an FDA-approved FXR agonist, alongside these experimental models bridges experimental findings to potential therapeutic applications for NASH patients. 2) The manuscript revision includes promising data on the sequence similarity between mouse FincoR and a human locus, identifying a partially conserved human lncRNA (XR_007061585.1) with elevated levels in NAFLD and PBC patients. This addition enhances the study's relevance to human health. 3) The study's design, with the inclusion of both negative and positive controls and now enriched with a wider array of mouse models and human data, ensures that the observed therapeutic effects can be confidently attributed to FincoR's modulation by tropifexor.
Weaknesses:
The authors acknowledge that certain questions remain unanswered within the scope of this study on FincoR, due to feasibility and technical challenges. While it's important to note that such limitations are rooted in the practical and technical complexities, these unresolved issues might limit the study's immediate impact. The decision to focus on the discovery and initial characterization of FincoR, is strategically but not scientifically justified.
-
Reviewer #2 (Public Review):
Summary:
Nonalcoholic fatty liver disease (NASH), recently renamed as metabolic dysfunction-associated steatohepatitis (MASH) is a leading cause of liver-related death. Farnesoid X receptor (FXR) is a promising drug target for treating NASH and several drugs targeting FXR is under clinical investigation for its efficacy in treating NASH. The authors intended to address whether FXR mediates its hepatic protective effects through regulation of lncRNAs, which would provide novel insights into the pharmacological targeting of FXR for NASH treatment. The authors went from an unbiased transcriptomics profiling to identify a novel enhancer-derived lncRNA FincoR enriched in the liver and showed that the knockdown of FincoR in a murine NASH model attenuated part of the effect of tropifexor, an FXR agonist, namely inflammation and fibrosis, but not steatosis. This study provides a framework how one can investigate the role of noncoding genes in pharmacological intervention targeting a known protein coding genes. Given that many disease-associated genetic variants are located in the non-coding regions, this study, together with others, may provide useful information for improved and individualized treatment for metabolic disorders.
Strengths:
The study leverages both transcriptional profile and epigenetic signatures to identify the top candidate eRNA for further study. The subsequent biochemical characterization of FincoR using FXR-KO mice combined with Gro-seq and Luciferase reporter assays convincingly demonstrates this eRNA as a FXR transcriptional targets sensitive to FXR agonists. The use of in vitro culture cells and the in vivo mouse model of NASH provide multi-level evaluation of the context-dependent importance of the FincoR downstream of FXR in regulation of functions related to liver dysfunction.
Weaknesses:
Future work to dissect the detailed mechanisms by which FincoR facilitates action of FXR and its agonists is warranted. A more direct approach to alter eRNA levels, e.g., overexpression of FincoR in the liver would provide important data to interpret its functional regulation.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Summary:
In their paper Li et al. investigate the transcriptome of satellite cells obtained from different muscle types including hindlimb, diaphragm and extraocular muscles (EOM) from wild type and G93A transgenic mice (end stage ALS) in order to identify potential factors involved in the maintenance of the neuromuscular junction. The underlying hypothesis being that since EOMs are largely spared from this debilitating disease, they may secrete NMJ-protective factors. The results of their transcriptome analysis identified several axon guidance molecules including the chemokine Cxcl12, which are particularly enriched in EOM-derived satellite cells. Transduction of hindlimb-derived satellite cells with AAV encoding Cxcl12 reverted hindlimb-derived myotubes from the G93A mice into myotubes sharing phenotypic characteristics similar to those of EOM-derived satellite cells. Additionally, the authors were able to demonstrate that EOM-derived satellite cell myotube cultures are capable of enhancing axon extensions and innervation in co-culture experiments.
Strengths:
The strength of the paper is that the authors successfully isolated and purified different populations of satellite cells, compared their transcriptomes, identified specific factors release by EOM-derived satellite cells, overexpressed one of these factors (the chemokine Cxcl12) by AAV-mediated transduction of hindlimb-derived satellite cells. The transduced cells were then able to support axon guidance and NMJ integrity. They also show that administration of Na butyrate to mice decreased NMJ denervation and satellite cell-depletion of hind limbs. Furthermore, addition of Na Butyrate to hindlimb derived satellite cell myotube cultures increased Cxcl12 expression. These are impressive results providing important insights for the development of therapeutic targets to slow the loss on neuromuscular function characterizing ALS.
Weaknesses:
Several important aspects have not been addressed by the authors, these include the following points which weaken the conclusions and interpretation of the results.<br /> (a) Na Butyrate was shown to extend the survival of G93A mice by Zhang et al. Na butyrate has a variety of biological effects. For example, anti-inflammatory effects, inhibits mitochondrial oxidative stress, positively influences mitochondrial function, is a class I / II HDAC inhibitor etc. What is the mechanism underlying its beneficial effects both in the context of mouse muscle function in the ALS G93A mice and in the in vitro myotube assay? Cytokine quantification as well as histone acetylation/methylation can be assessed experimentally and this is an important point that has not been appropriately investigated.<br /> (b) In the context of satellite cell characterization, on line 151-152 the authors state that soleus muscles were excluded from further studies since they have a higher content of slow twitch fibers and are more similar to diaphragm. This justification is not valid in the context of ALS as well as many other muscle disorders. Indeed, soleus and diaphragm muscles contain a high proportion of slow twitch fibers (up to 80% and 50% respectively) but soleus muscles are more spared than diaphragm muscles. What makes soleus muscles (and EOMs) more resistant to ALS NMJ injury? Satellite cells from soleus muscles need to be characterized in detail as well.<br /> Furthermore, EOMs are complex muscles, containing many types of fibers and expressing different myosin heavy chain isoforms and muscle proteins. The fact that in mouse both the globular layer and orbital layers of EOMs express slow myosin heavy chain isoform as well as myosin heavy chain 2X, 2A and 2B (Zhou et al., 2010 IOVIS 51:6355-6363) also indicates that the sparing is not directly linked to the fast or slow twitch nature of the muscle fiber. This needs to be considered.<br /> (c) In the context of myotube formation from cultured satellite cells on line 178-179 the authors stained the myotubes for myosin heavy chain. Because of the diversity of myosin heavy chain isoforms and different muscle origin of the satellite cells investigated, the isoform of myosin heavy chain expressed by the myotubes needs to be tested and described. It is not sufficient to state anti-MYH.<br /> (d) The original RNAseq results have not been deposited and while it is true that the authors have analyzed the results and described them in Figures 6 and 7 and relative supplements, the original data needs to be shown both as an xls list as a Volcano plots (q value versus log2 fold change). This will facilitate the independent interpretation of the results by the readers as some transcripts may not be listed. As presented it is rather difficult to identify which transcripts aside Cxcl12 are commonly upregulated. Can the data be presented in a more visual way?<br /> (e) There is no section describing the statistical analysis methods used. In many figures more than 2 groups are compared so the authors need to use an ANOVA followed by a post hoc test.
The authors have achieved their aim in showing that satellite cells derived from EOMs have a distinct transcriptome and that this may be the basis of their sparing in ALS. Furthermore, this work may help develop future therapeutic interventions for patients with ALS.
-
Reviewer #4 (Public Review):
Summary:
In this work, the authors have used a mouse model of familial Amyotrophic lateral sclerosis (ALS) that carries a G93A mutation in the Sod1 gen to understand how the extraocular muscles (EOM) are preserved in ALS while other muscles undergo degeneration. Interestingly, the authors demonstrate that the integrity of neuromuscular junctions (NMJ) is affected by ALS in the limb and diaphragm muscles of G93A mice, while EOM is mostly preserved. The authors also further demonstrate that NaBu treatment partially restores the integrity of NMJ in the limb and diaphragm muscles of G93A mice. The results also indicate that chemokine Cxcl12 is expressed at higher levels in EOM myoblasts, and transduction with AAV encoding Cxcl12 improved the phenotypic characteristics of hindlimb-derived satellite cells.
Strengths:
The authors have used both in vivo and cell culture models. The findings have a translational potential.
Weaknesses:
The use of NaBu could be an issue as it has multiple effects and targets in ALS.
The sample size of animal experiments still needs to be improved.
The molecular mechanism of how Cxcl12 improved the phenotypic characteristics of hindlimb-derived satellite cells is still being determined.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
In this report, the authors investigated the effects of reproductive secretions on sperm function in mice. The authors attempt to weave together an interesting mechanism whereby a testosterone-dependent shift in metabolic flux patterns in the seminal vesicle epithelium supports fatty acid synthesis, which they suggest is an essential component of seminal plasma that modulates sperm function by supporting linear motility patterns.
Strengths:
The topic is interesting and of general interest to the field. The study employs an impressive array of approaches to explore the relationship between mouse endocrine physiology and sperm function mediated by seminal components from various glandular secretions of the male reproductive tract.
Weaknesses:
Unfortunately, support for the proposed mechanism is not convincingly supported by the data, and the experimental design and methodology need more rigor and details, and the presence of numerous (uncontrolled) confounding variables in almost every experimental group significantly reduce confidence in the overall conclusions of the study.
The methodological detail as described is insufficient to support replication of the work. Many of the statistical analyses are not appropriate for the apparent designs (e.g. t-tests without corrections for multiple comparisons). This is important because the notion that different seminal secretions will affect sperm function would likely have a different conclusion if the correct controls were selected for post hoc comparison. In addition, the HTF condition was not adjusted to match the protein concentrations of the secretion-containing media, likely resulting in viscosity differences as a major confounding factor on sperm motility patterns.
There is ambiguity in many of the measurements due to the lack of normalization (e.g. all Seahorse Analyzer measurements are unnormalized, making cell mass and uniformity a major confounder in these measurements). This would be less of a concern if basal respiration rates were consistently similar across conditions and there were sufficient independent samples, but this was not the case in most of the experiments.
The observation that oleic acid is physiologically relevant to sperm function is not strongly supported. The cellular uptake of 10-100uM labeled oleic acid is presumably due to the detergent effects of the oleic acid, and the authors only show functional data for nM concentrations of exogenous oleic acid. In addition, the effect sizes in the supporting data were not large enough to provide a high degree of confidence given the small sample sizes and ambiguity of the design regarding the number of biological and technical replicates in the extracellular flux analysis experiments.
Overall, the most confident conclusion of the study was that testosterone affects the distribution of metabolic fluxes in a cultured human seminal vesicle epithelial cell line, although the physiological relevance of this observation is not clear.
In the introduction, the authors suggest that their analyses "reveal the pathways by which seminal vesicles synthesize seminal plasma, ensure sperm fertility, and provide new therapeutic and preventive strategies for male infertility." These conclusions need stronger or more complete data to support them.
-
Reviewer #2 (Public Review):
Summary:
Using a combination of in vivo studies with testosterone-inhibited and aged mice with lower testosterone levels, as well as isolated mouse and human seminal vesicle epithelial cells, the authors show that testosterone induces an increase in glucose uptake. They find that testosterone induces differential gene expression with a focus on metabolic enzymes. Specifically, they identify increased expression of enzymes that regulate cholesterol and fatty acid synthesis, leading to increased production of 18:1 oleic acid.
Strength:
Oleic acid is secreted by seminal vesicle epithelial cells and taken up by sperm, inducing an increase in mitochondrial respiration. The difference in sperm motility and in vivo fertilization in the presence of 18:1 oleic acid and the absence of testosterone is small but significant, suggesting that the authors have identified one of the fertilization-supporting factors in seminal plasma.
Weaknesses:
Further studies are required to investigate the effect of other seminal vesicle components on sperm capacitation to support the author's conclusions. The author's experiments focused on potential testosterone-induced changes in the rate of seminal vesicle epithelial cell glycolysis and oxphos, however, provide conflicting results and a potential correlation with seminal vesicle epithelial cell proliferation should be confirmed by additional experiments.
-
Reviewer #3 (Public Review):
Summary:
Male fertility depends on both sperm and seminal plasma, but the functional effect of seminal plasma on sperm has been relatively understudied. The authors investigate the testosterone-dependent synthesis of seminal plasma and identify oleic acid as a key factor in enhancing sperm fertility.
Strengths:
The evidence for changes in cell proliferation and metabolism of seminal vesicle epithelial cells and the identification of oleic acid as a key factor in seminal plasma is solid.
Weaknesses:
The evidence that oleic acids enhance sperm fertility in vivo needs more experimental support, as the main phenotypic effect in vitro provided by the authors remains simply as an increase in the linearity of sperm motility, which does not necessarily correlate with enhanced sperm fertility.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The manuscript investigates the role of membrane contact sites (MCSs) and sphingolipid metabolism in regulating vacuolar morphology in the yeast Saccharomyces cerevisiae. The authors show that tricalbin (1-3) deletion leads to vacuolar fragmentation and the accumulation of the sphingolipid phytosphingosine (PHS). They propose that PHS triggers vacuole division through MCSs and the nuclear-vacuolar junction (NVJ). The study presents some solid data and proposes potential mechanisms underlying vacuolar fragmentation driven by this pathway. Although the manuscript is clear in what the data indicates and what is more hypothetical, the story would benefit from providing more conclusive evidence to support these hypothesis. Overall, the study provides valuable insights into the connection between MCSs, lipid metabolism, and vacuole dynamics.
-
Reviewer #2 (Public Review):
This manuscript explores the mechanism underlying the accumulation of phytosphingosine (PHS) and its role in initiating vacuole fission. The study posits the involvement of membrane contact sites (MCSs) in two key stages of this process. Firstly, MCSs tethered by tricalbin between the endoplasmic reticulum (ER) and the plasma membrane (PM) or Golgi regulate the intracellular levels of PHS. Secondly, the amassed PHS triggers vacuole fission, most likely through the nuclear-vacuolar junction (NVJ). The authors propose that MCSs play a regulatory role in vacuole morphology via sphingolipid metabolism.
While some results in the manuscript are intriguing, certain broad conclusions occasionally surpass the available data. Despite the authors' efforts to enhance the manuscript, certain aspects remain unclear. It is still uncertain whether subtle changes in PHS levels could induce such effects on vacuolar fission. Additionally, it is regrettable that the lipid measurements are not comparable with previous studies by the authors. Future advancements in methods for determining intracellular lipid transport and levels are anticipated to shed light on the remaining uncertainties in this study.
-
Reviewer #3 (Public Review):
In this manuscript, the authors investigated the effects of deletion of the ER-plasma membrane/Golgi tethering proteins tricalbins (Tcb1-3) on vacuolar morphology to demonstrate the role of membrane contact sites (MCSs) in regulating vacuolar morphology in Saccharomyces cerevisiae. Their data show that tricalbin deletion causes vacuolar fragmentation possibly in parallel with TORC1 pathway. In addition, their data reveal that levels of various lipids including ceramides, long-chain base (LCB)-1P, and phytosphingosine (PHS) are increased in tricalbin-deleted cells. The authors find that exogenously added PHS can induce vacuole fragmentation and by performing analyses of genes involved in sphingolipid metabolism, they conclude that vacuolar fragmentation in tricalbin-deleted cells is due to the accumulated PHS in these cells. Importantly, exogenous PHS- or tricalbin deletion-induced vacuole fragmentation was suppressed by loss of the nucleus vacuole junction (NVJ), suggesting the possibility that PHS transported from the ER to vacuoles via the NVJ triggers vacuole fission. Of note, the authors find that hyperosmotic shock increases intracellular PHS levels, suggesting a general role of PHS in vacuole fission in response to physiological vacuolar division-inducing stimuli.
This work provides valuable insights into the relationship between MCS-mediated sphingolipid metabolism and vacuole morphology. The conclusions of this paper are mostly supported by their results, but inclusion of direct evidence indicating increased transport of PHS from the ER to vacuoles via NVJ in response to vacuolar division-inducing stimuli would have strengthened this study.
There is another weakness in their claim that the transmembrane domain of Tcb3 contributes to the formation of the tricalbin complex which is sufficient for tethering ER to the plasma membrane and the Golgi complex. Their claim is based only on the structural simulation, but not on by biochemical experiments such as co-immunoprecipitation and pull-down.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Summary:
The authors aimed to study the activation of gliogenesis and the role of newborn astrocytes in a post-ischemic scenario. Combining immunofluorescence, BrdU-tracing, and genetic cellular labelling, they tracked the migration of newborn astrocytes (expressing Thbs4) and found that Thbs4-positive astrocytes modulate the extracellular matrix at the lesion border by synthesis but also degradation of hyaluronan. Their results point to a relevant function of SVZ newborn astrocytes in the modulation of the glial scar after brain ischemia. This work's major strength is the fact that it is tackling the function of SVZ newborn astrocytes, whose role is undisclosed so far.
Strengths:
The article is innovative, of good quality, and clearly written, with properly described Materials and Methods, data analysis, and presentation. In general, the methods are designed properly to answer the main question of the authors, being a major strength. Interpretation of the data is also in general well done, with results supporting the main conclusions of this article.
Weaknesses:
However, there are some points of this article that still need clarification to further improve this work.
- As a first general comment, is it possible that the increase in Thbs4-positive astrocytes can also happen locally close to the glia scar, through the proliferation of local astrocytes or even from local astrocytes at the SVZ? As it was shown in published articles most of the newborn astrocytes in the adult brain actually derive from proliferating astrocytes, and a smaller percentage is derived from NSCs. How can the authors rule out a contribution of local astrocytes to the increase of Thbs4-positive astrocytes? The authors also observed that only about one-third of the astrocytes in the glial scar derived from the SVZ.
- It is known that the local, GFAP-reactive astrocytes at the scar can form the required ECM. The authors propose a role of Thbs4-positive astrocytes in the modulation, and perhaps maintenance, of the ECM at the scar, thus participating in scar formation likewise. So, this means that the function of newborn astrocytes is only to help the local astrocytes in the scar formation and thus contribute to tissue regeneration. Why do we need specifically the Thbs4-positive astrocytes migrating from the SVZ to help the local astrocytes? Can you discuss this further?
- The authors observed that the number of BrdU- and DCX-positive cells decreased 15 dpi in all OB layers (Fig. S5). They further suggest that ischemia-induced a change in the neuroblasts ectopic migratory pathway, depriving the OB layers of the SVZ newborn neurons. Are the authors suggesting that these BrdU/DCX-positive cells now migrate also to the ischemic scar, or do they die? In fact, they see an increase in caspase-3 positive cells in the SVZ after ischemia, but they do not analyse which type of cells are dying. Alternatively, is there a change in the fate of the cells, and astrogliogenesis is increased at the expense of neurogenesis? The authors should understand which cells are Cleaved-caspase-3 positive at the SVZ and clarify if there is a change in cell fate. Also please clarify what happens to the BrdU/DCX-positive cells that are born at the SVZ but do not migrate properly to the OB layers.
- The authors showed decreased Nestin protein levels at 15 dpi by western blot and immunostaining shows a decrease already at 7div (Figure 2). These results mean that there is at least a transient depletion of NSCs due to the promotion of astrogliogenesis. However, the authors show that at 30dpi there is an increase of slow proliferating NSCs (Figure 3). Does this mean, that there is a reestablishment of the SVZ cytogenic process? How does it happen, more specifically, how NSCs number is promoted at 30dpi? Please explain how are the NSCs modulated throughout time after ischemia induction and its impact on the cytogenic process.
- The authors performed a classification of Thbs4-positive cells in the SVZ according to their morphology. This should be confirmed with markers expressed by each of the cell subtypes.
- In Figure S6, the authors quantified HABP spots inside Thbs4-positive astrocytes. Please show a higher magnification picture to show how this quantification was done.
-
Reviewer #1 (Public Review):
Summary:
The authors show that SVZ-derived astrocytes respond to a middle carotid artery occlusion (MCAO) hypoxia lesion by secreting and modulating hyaluronan at the edge of the lesion (penumbra) and that hyaluronan is a chemoattractant to SVZ astrocytes. They use lineage tracing of SVZ cells to determine their origin. They also find that SVZ-derived astrocytes express Thbs-4 but astrocytes at the MCAO-induced scar do not. Also, they demonstrate that decreased HA in the SVZ is correlated with gliogenesis. While much of the paper is descriptive/correlative they do overexpress Hyaluronan synthase 2 via viral vectors and show this is sufficient to recruit astrocytes to the injury. Interestingly, astrocytes preferred to migrate to the MCAO than to the region of overexpressed HAS2.
Strengths:
The field has largely ignored the gliogenic response of the SVZ, especially with regard to astrocytic function. These cells and especially newborn cells may provide support for regeneration. Emigrated cells from the SVZ have been shown to be neuroprotective via creating pro-survival environments, but their expression and deposition of beneficial extracellular matrix molecules are poorly understood. Therefore, this study is timely and important. The paper is very well written and the flow of results is logical.
Weaknesses:
The main problem is that they do not show that Hyaluronan is necessary for SVZ astrogenesis and or migration to MCAO lesions. Such loss of function studies have been carried out by studies they cite (e.g. Girard et al., 2014 and Benner et al., 2013). Similar approaches seem to be necessary in this work.
Major points:
(1) How good of a marker for newborn astrocytes is Thbs4? Did you co-label with B cell markers like EGFr? Is the Thbs4 gene expressed in B cells? Do scRNAseq papers show it is expressed in B cells? Are they B1 or B2 cells?
(2) It is curious that there was no increase in Type C cells after MCAO - do the authors propose a direct NSC-astrocyte differentiation?
(3) The paper would be strengthened with orthogonal views of z projections to show co-localization.
(4) It is not clear why the dorsal SVZ is analysed and focused on in Figure 4. This region emanates from the developmental pallium (cerebral cortex anlagen). It generates some excitatory neurons early postnatally and is thought to have differential signalling such as Wnt (Raineteau group).
(5) Several of the images show the lesion and penumbra as being quite close to the SVZ. Did any of the lesions contact the SVZ? If so, I would strongly recommend excluding them from the analysis as such contact is known to hyperactivate the SVZ.
(6) The authors switch to a rat in vitro analysis towards the end of the study. This needs to be better justified. How similar are the molecules involved between mouse and rat?
(7) Similar comment for overexpression of naked mole rat HA.
-
Reviewer #2 (Public Review):
Summary:
In their manuscript, Ardaya et al have addressed the impact of ischemia-induced gliogenesis from the adult SVZ and their effect on the remodeling of the extracellular matrix (ECM) in the glial scar. They use Thbs4, a marker previously identified to be expressed in astrocytes of the SVZ, to understand its role in ischemia-induced gliogenesis. First, the authors show that Thbs4 is expressed in the SVZ and that its expression levels increase upon ischemia. Next, they claim that ischemia induces the generation of newborn astrocyte from SVZ neural stem cells (NSCs), which migrate toward the ischemic regions to accumulate at the glial scar. Thbs4-expressing astrocytes are recruited to the lesion by Hyaluronan where they modulate ECM homeostasis.
Strengths:
The findings of these studies are in principle interesting and the experiments are in principle good.
Weaknesses:
The manuscript suffers from an evident lack of clarity and precision in regard to their findings and their interpretation.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
This paper considers a challenging motor control task - the critical stability task (CST) - that can be performed equally well by humans and macaque monkeys. This task is of considerable interest since it is rich enough to potentially yield important novel insights into the neural basis of behavior in more complex tasks that point-to-point reaching. Yet it is also simple enough to allow parallel investigation in humans and monkeys, and is also easily amenable to computational modeling. The paper makes a compelling argument for the importance of this type of parallel investigation and the suitability of the CST for doing so.
Behavior in monkeys and in human subjects suggests that behavior seems to include two qualitatively different kinds of behavior - in some cases, the cursor oscillates about the center of the screen, and in other cases, it drifts more slowly in one direction. The authors argue that these two behavioral regimes can be reliably induced by instructing human participants to either maintain the cursor in the center of the screen (position control objective), or keep the cursor still anywhere in the screen (velocity control objective) - as opposed to the usual 'instruction' to just not let the cursor leave the screen. A computational model based on optimal feedback control can reproduce the different behaviors under these two instructions.
Overall, this is a creative study that leverages experiments in humans and computational modeling to gain insight into the nature of individual differences in behavior across monkeys (and people). The authors convincingly demonstrate that they can infer the control objectives from participants who were instructed how to perform the task to emphasize either position or velocity control, based on the RMS cursor position and RMS cursor velocity. The authors show that, while other behavioral metrics do contain similar information about the control objective, RMS position and velocity are sufficient, and their approach classifies control objectives for simulated data with high accuracy (~95%).
The authors also convincingly show that the range of behaviors observed in the CST task cannot be explained as emerging from variations in effort cost, motor execution noise, or sensorimotor delays.
One significant issue, however relates to framing the range of possible control objectives as a simple dichotomy between 'position' and 'velocity' objectives. The authors do clearly state that this is a deliberate choice made in order to simplify their first attempts at solving this challenging problem. However, I do think that the paper at times gives a false impression that this dichotomous view of the control objectives was something that emerged from the data, rather than resulting from a choice to simplify the modeling/inference problem. For instance, line 115: "An optimal control model was used to simulate different control objectives, through which we identified two different control objectives in the experimental data of humans and monkeys."
In the no-instruction condition - which is the starting point and which the ultimate goal of the paper is to understand - there is a lot of variability in behavior across trials (even within an individual) and generally no clear correspondence to either the position or velocity objective. This variability is largely interpreted as the monkeys (and people) switching between control objectives on a trial-to-trial basis. If the behavior were truly a bimodal mixture of these two different behaviors, this might be a convincing interpretation. However, there are a lot of trials that fall in-between the patterns of behavior expected under the position and velocity control objectives. The authors do mention this issue in the discussion. However, it's not clearly examined whether these are simply fringe trials that are ambiguous (like some trials generated by the model are), or whether they reflect a substantial proportion of trials that require some other explanation (whether that is blended position/velocity control, or something else). The existence of these 'in-between' trials (which possibly amount to more than a third of all trials) makes the switching hypothesis a lot less plausible.
Overall, while I think the paper introduces a promising approach and overall helps to improve our understanding of the behavior in this task, I'm not fully convinced that the core issue of explaining the variability in behavior in the no-instruction condition (in monkeys especially) has been resolved. The main explanation put forward is that the monkeys are switching between control objectives on a trial-by-trial basis, but there is no real evidence in the data for this, and I don't think there is yet a good explanation of what is occurring in the 'in-between' trials that aren't explained well by velocity or position objectives.
-
Reviewer #1 (Public Review):
The present study examines whether one can identify kinematic signatures of different motor strategies in both humans and non-human primates (NHP). The Critical Stability Task (CST) requires a participant to control a cursor with complex dynamics based on hand motion. The manuscript includes datasets on performance of NHPs collected from a previous study, as well as new data on humans performing the same task. Further human experiments and optimal control models highlight how different strategies lead to different patterns of hand motion. Finally, classifiers were developed to predict which strategy individuals were using on a given trial.
There are several strengths to this manuscript. I think the CST task provides a very useful behavioural task to explore the neural basis of voluntary control. While reaching is an important basic motor skill and commonly studied, there is much to learn by looking at other motor actions to address many fundamental issues on the neural basis of voluntary control.
I also think the comparison between human and NHP performance is important as there is a common concern that NHPs can be overtrained in performing motor tasks leading to differences in their performance as compared to humans. The present study highlights that there are clear similarities in motor strategies of humans and NHPs. While the results are promising, I would suggest that the actual use of these paradigms and techniques likely need some improvement/refinement. Notably, the threshold or technique to identify which strategy an individual is using on a given trial needs to be more stringent given the substantial overlap in hand kinematics between different strategies.
The most important goal of this study is to set up future studies to examine how changes in motor strategies impact neural processing. The revised manuscript has improved the technique for identifying which strategy appears to be performed by the individual. A pivotal assumption is that one can identify control strategies from differences in behaviour. As I'm sure the authors know, this inversion of the control problem is not trivial and so success requires that there are only a few 'reasonable' strategies to solve the control problem, and that these strategies lead to distinct patterns of behavior. Many of the concerns raised by myself and the other reviewers relate to this challenge. The revised manuscript now uses a more strict criteria which is good improvement.
One of the values of this paper is to start to develop the tools and approaches to address neural basis of control. The strength of the present manuscript is that it includes modelling, explicit strategy instructions in humans, and then analysis of free-form performance in humans and non-human primates. Given the novelty of this question and approach, there likely are many ways that the techniques and approaches could be improved, but I think they've done a great start. Their approach is quite clever and provides an important blueprint for future studies.
One weakness at this point is that there is still substantial overlap in behavoural performance predicted between strategies, as some human participants given an explicit strategy were almost equally categorized as reflecting the other strategy. I'm glad to see the addition of the model performance on perturbation trials as this additional figure clearly highlights much greater separation in performance than when observing natural behavior. While it is not reasonable to expand beyond this for the present manuscript, I think it is essential for this group to develop the perturbation paradigm (and potentially other approaches) that can better isolate behavioral signatures of different control strategies. I think future work will be strengthened by having multiple experimental angles to interpret the neural activity.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The authors investigate the alpha chain t cell receptor landscape in conventional vs regulatory CD4 T cells. Overall I think it is a very well thought out and executed study with interesting conclusions. Findings are valuable and are supported by convincing evidence. This work will be of interest for immunologists studying T cells.
Strengths:
- One of a kind evidence and dataset.
- State of the art analyses using well accepted in the literature tools.
- Interesting conclusions on the breadth of immune response to challenges across different types of challenges (tumor, viral and parasitic).
-
Reviewer #3 (Public Review):
This study presents a valuable exploration of CD4+ T cell response in a fixed TCRβ chain FoxP3-GFP mouse model across stimuli and tissues through the analysis of their TCRα repertoires. This is an insightful paper for the community as it suggests several future directions of exploration.
The authors compare Treg and conventional CD4+ repertoires by looking at diversity measures and the relative overlap of shared clonotypes to characterize similarity across different tissues and antigen challenges. They find distinct yet convergent responses with occasional plasticity across subsets for some stimuli. The observed lack of a general behavior highlights the need for careful comparison of immune repertoires across cell subsets and tissues. Such comparisons are crucial in order to better understand the heterogeneity of the adaptive immune response. This mouse model demonstrates its utility for this task due to the reduced diversity of the TCRα repertoire and the ability to track a single chain.
The revised manuscript has significantly improved in terms of clarity of explanations and presentations of the results.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this manuscript, Shimonty and colleagues study the effects of FNDC5/irisin deletion on osteocytes in a sex-specific manner using models of lactation induced bone loss and bone loss due to low calcium diet (LCD). Consistent with the previous findings of Kim et al. (2018), the authors report 'protective' effects of irisin deficiency in lactating female FNDC5-null mice due to reduced osteocytic osteolysis. Interestingly, FNDC5 null mice show distinct changes when placed on LCD, with mutant females showing some protection from hyperparathyroidism-induced bone loss, while mutant males (which have more cortical bone at baseline) show increased LCD-induced bone loss. Furthermore, new insights into irisin's role in osteocytes regarding cellular energetic metabolism were provided by sex and gene-dependent transcriptomic datasets. Strengths of the well-written manuscript include clear description of sex-dependent effects, strong transcriptomic datasets, and focus on cortical bone changes using microCT, histomorphometry, BSEM, and serum analysis. Despite these strengths, important weaknesses are noted (below) which could be addressed to improve the impact of the work for a broad audience.
Major comments:
(1) Overall, the magnitude of the effect size due to FNDC5 deficiency in both male and female mice is rather modest at the level of bone mass. Looking at the data from a qualitative perspective, it is clear that knockout females still lose bone during lactation and on the low calcium diet (LCD). It is difficult to assess the physiologic consequence of the modest quantitative 'protection' seen in FNDC5 mutants since the mutants still show clear and robust effects of lactation and LCD on all parameters measured. Similarly, the magnitude of the 'increased' cortical bone loss in FNDC5 mutant males is also modest, and perhaps could be related to the fact that these mice are starting with slightly more cortical bone. Since the authors do not provide a convincing molecular explanation for why FNDC5 deficiency causes these somewhat subtle changes, I would like to offer a suggestion for the authors to consider (below, point #2) which might de-emphasize the focus of the manuscript on FNDC5. If the authors chose not to follow this suggestion, the manuscript could be strengthened by addressing the consequences of the modest changes observed in WT versus FNDC5 KO mice. I understand that the effects of FNDC5 are more obvious at the level of osteocyte morphology, and it is reasonable to emphasize these findings here.
(2) The bone RNA-seq findings reported in Figures 4-6 are quite interesting. Although Youlten et al previously reported that the osteocyte transcriptome is sex-dependent, the work here certainly advances that notion to a considerable degree, and likely will be of high interest to investigators studying skeletal biology and sexual dimorphism in general. To this end, one direction for the authors to consider might be to refocus their manuscript towards sexually-dimorphic gene expression patterns in osteocytes and the different effects of LCD on male versus female mice. This would allow the authors to better emphasize these major findings, and then to use FNDC5 deficiency as an illustrative example of how sexually-dimorphic osteocytic gene expression patterns might be affected by deletion of an osteocyte-acting endocrine factor. Ideally, the authors would confirm RNA-seq data comparing male versus female mice in osteocytes using in situ hybridization or immunostaining. Of course, this point is only a suggestion for the authors to consider.
(3) It would be appreciated if the authors could provide additional serum parameters (if possible) to clarify incomplete data in both lactation and low-calcium diet models: RANKL/OPG ratio, Ctx, PTHrP, and 1,25-dihydroxyvitamin D levels. I understand that this may not be possible due to lack of available material.
-
Reviewer #2 (Public Review):
Summary:
The goal of this study was to examine the role of FNDC5 in the response of the murine skeleton to either lactation or a calcium-deficient diet. The authors find that female FNDC5 KO mice are somewhat protected from the bone loss and osteocyte lacunar enlargement caused by either lactation or a calcium-deficient diet. In contrast, male FNDC5 KO mice lose more bone and have a greater enlargement of osteocyte lacunae than their wild type controls. Based on these results, the authors conclude that in males irisin protects bone from calcium deficiency but that in females it promotes calcium removal from bone for lactation.
While some of the conclusions of this study are supported by the results, it is not clear that the modest effects of FNDC5 deletion have an impact on calcium homeostasis or milk production.
Specific comments.
(1) The authors sometimes refer to FNDC5 and other times to irisin when describing causes for a particular outcome. Because irisin was not measured in any of the experiments, the authors should not conclude that lack of irisin is responsible. Along these lines, is there any evidence that either lactation or a calcium-deficient diet increases production of irisin in mice?
(2) The results of the irisin-rescue experiment shown in figure 2G cannot be appropriately interpreted without normal diet controls. In addition, some evidence that the AAV8-irisin virus actually increased irisin levels in the mice would strengthen the conclusion.
(3) There is insufficient evidence to support the idea that the effect of FNDC5 on bone resorption and osteocytic osteolysis is important for the transfer of calcium from bone to milk. Previous studies by others have shown that bone resorption is not required to maintain milk or serum calcium when dietary calcium is sufficient but is critical if dietary calcium is low (Endo. 156:2762-73, 2015). To support the conclusions of the current study, it would be necessary to determine whether FNDC5 is required to maintain calcium levels when lactating mice lack sufficient dietary calcium.
(4) The amount of cortical bone loss due to lactation is very similar in both WT and FNDC5 KO mice. The results of the statistical analysis of the data presented in figure 1B are surprising given the very similar effect size of lactation. The key result from the 2-way ANOVA is whether there is an effect of genotype on the effect size of lactation (genotype-lactation interaction). The interaction terms were not provided. Similar concerns are noted for the results shown in figure 1G and H.
(5) It is not clear what justifies the term 'primed' or 'activated' for resorption. Is there evidence that a certain level of TRAP expression lowers the threshold for osteocytic osteolysis in response to a stimulus?
-
Reviewer #3 (Public Review):
Summary: Irisin has previously been demonstrated to be a muscle-secreted factor that affects skeletal homeostasis. Through the use of different experimental approaches, such as genetic knockout models, recombinant Irisin treatment, or different cell lines, the role of Irisin on skeletal homeostasis has been revealed to be more complex than previously thought and this warrants further examination of its role. Therefore, the current study sought to rigorously examine the effects of global Irisin knockout (KO) in male and female mouse bone. Authors demonstrated that in calcium-demanding settings, such as lactation or low-calcium diet, female Irisin KO mice lose less bone compared to wildtype (WT) female mice. Interestingly male Irisin KO mice exhibited worse skeletal deterioration compared to WT male mice when fed low-calcium diet. When examined for transcriptomic profiles of osteocyte-enriched cortical bone, authors found that Irisin KO altered the expression of osteocytic osteolysis genes as well as steroid and fatty acid metabolism genes in males but not in females. These data support authors' conclusion that Irisin regulates skeletal homeostasis in a sex-dependent manner.
Strengths:
The major strength of the study is rigorous examination of the effects of Irisin deletion in the settings of skeletal maturity and increased calcium demands in female and male mice. Since many of the common musculoskeletal disorders are dependent on sex, examining both sexes in the preclinical setting is crucial. Had the investigators only examined females or males in this study, the conclusion from each sex would have contradicted each other regarding the role of Irisin on bone. Also, the approaches are thorough and comprehensive that assess the functional (mechanical testing), morphological (microCT, BSEM, and histology), and cellular (RNA-seq) properties of bone. Transcriptomic data deposited to NCBI GEO data repository will be a valuable resource to musculoskeletal researchers who aim to further assess the affects of Irisin on skeleton.
Weaknesses:
One of the weaknesses of this study is a lack of detailed mechanistic analysis of why Irisin has sex-dependent role on skeletal homeostasis. However, the osteocyte transcriptome comparisons between LC females vs. LC males lay a foundation for such future mechanistic studies.
Another weakness is authors did not present data that convincingly demonstrate that Irisin secretion is altered in the skeletal muscle between female vs. male WT mice in response to calcium restriction. The supplement skeletal muscle data only present functional and electrophysiological outcomes. Since Itgav or Itgb5 were not different in any of the experimental groups, it is assumed that the changes in the level of Irisin is responsible for the phenotypes observed in WT mice. Assessing Irisin expression will further strengthen the conclusion based on observing skeletal changes that occur in Irisin KO male and female mice.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The authors present a number of deep learning models to analyse the dynamics of epithelia. In this way they want to overcome the time-consuming manual analysis of such data and also remove a potential operator bias. Specifically, they set up models for identifying cell division events and cell division orientation. They apply these tools to the epithelium of the developing Drosophila pupal wing. They confirm a linear decrease of the division density with time and identify a burst of cell division after healing of a wound that they had induced earlier. These division events happen a characteristic time after and a characteristic distance away from the wound. These characteristic quantities depend on the size of the wound.
Strengths:
The methods developed in this work achieve the goals set by the authors and are a very helpful addition to the toolbox of developmental biologists. They could potentially be used on various developing epithelia. The evidence for the impact of wounds on cell division is compelling.
The methods presented in this work should prove to be very helpful for quantifying cell proliferation in epithelial tissues.
-
Reviewer #2 (Public Review):
In this manuscript, the authors propose a computational method based on deep convolutional neural networks (CNNs) to automatically detect cell divisions in two-dimensional fluorescence microscopy timelapse images. Three deep learning models are proposed to detect the timing of division, predict the division axis, and enhance cell boundary images to segment cells before and after division. Using this computational pipeline, the authors analyze the dynamics of cell divisions in the epithelium of the Drosophila pupal wing and find that a wound first induces a reduction in the frequency of division followed by a synchronised burst of cell divisions about 100 minutes after its induction.
Comments on revised version:
Regarding the Reviewer's 1 comment on the architecture details, I have now understood that the precise architecture (number/type of layers, activation functions, pooling operations, skip connections, upsampling choice...) might have remained relatively hidden to the authors themselves, as the U-net is built automatically by the fast.ai library from a given classical choice of encoder architecture (ResNet34 and ResNet101 here) to generate the decoder part and skip connections.
Regarding the Major point 1, I raised the question of the generalisation potential of the method. I do not think, for instance, that the optimal number of frames to use, nor the optimal choice of their time-shift with respect to the division time (t-n, t+m) (not systematically studied here) may be generic hyperparameters that can be directly transferred to another setting. This implies that the method proposed will necessarily require re-labeling, re-training and re-optimizing the hyperparameters which directly influence the network architecture for each new dataset imaged differently. This limits the generalisation of the method to other datasets, and this may be seen as in contrast to other tools developed in the field for other tasks such as cellpose for segmentation, which has proven a true potential for generalisation on various data modalities. I was hoping that the authors would try themselves testing the robustness of their method by re-imaging the same tissue with slightly different acquisition rate for instance, to give more weight to their work.
In this regard, and because the authors claimed to provide clear instructions on how to reuse their method or adapt it to a different context, I delved deeper into the code and, to my surprise, felt that we are far from the coding practice of what a well-documented and accessible tool should be.
To start with, one has to be relatively accustomed with Napari to understand how the plugin must be installed, as the only thing given is a pip install command (that could be typed in any terminal without installing the plugin for Napari, but has to be typed inside the Napari terminal, which is mentioned nowhere). Surprisingly, the plugin was not uploaded on Napari hub, nor on PyPI by the authors, so it is not searchable/findable directly, one has to go to the Github repository and install it manually. In that regard, no description was provided in the copy-pasted templated files associated to the napari hub, so exporting it to the hub would actually leave it undocumented.
Regarding now the python notebooks, one can fairly say that the "clear instructions" that were supposed to enlighten the code are really minimal. Only one notebook "trainingUNetCellDivision10.ipynb" has actually some comments, the other have (almost) none nor title to help the unskilled programmer delving into the script to guess what it should do. I doubt that a biologist who does not have a strong computational background will manage adapting the method to its own dataset (which seems to me unavoidable for the reasons mentioned above).
Finally regarding the data, none is shared publicly along with this manuscript/code, such that if one doesn't have a similar type of dataset - that must be first annotated in a similar manner - one cannot even test the networks/plugin for its own information. A common and necessary practice in the field - and possibly a longer lasting contribution of this work - could have been to provide the complete and annotated dataset that was used to train and test the artificial neural network. The basic reason is that a more performant, or more generalisable deep-learning model may be developed very soon after this one and for its performance to be fairly compared, it requires to be compared on the same dataset. Benchmarking and comparison of methods performance is at the core of computer vision and deep-learning.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This is a clear account of some interesting work. The experiments and analyses seem well done and the data are useful. It is nice to see that VSDI results square well with those from prior extracellular recordings.
The authors have done a good job responding to the main points of my previous review. One important question remains, as stated in that review:
"My reading is that this is primarily a study of surround suppression with results that follow pretty directly from what we already know from that literature, and although they engage with some of the literature they do not directly mention surround suppression in the text. Their major effect - what they repeatedly describe as a "paradoxical" result in which the responses initially show a stronger response to matched targets and backgrounds and then reverse - seems to pretty clearly match the expected outcome of a stimulus that initially evokes additional excitation due to increased center contrast followed by slightly delayed surround suppression tuned to the same peak orientation. Their dynamics result seems entirely consistent with previous work, e.g. Henry at al 2020, particularly their Fig. 3 https://elifesciences.org/articles/54264, so it seems like a major oversight to not engage with that work at all, and to explain what exactly is new here."
Their rebuttal of my first review is not convincing -- I still believe that surround influences are important and perhaps predominant in determining the outcome of the experiments. This is particularly clear for the "paradoxical" dynamics that they observe, which seem exactly to reflect the behavior of the surround.
The authors' arguments to the contrary are based on three main points. First, their stimuli cover the center and surround, unlike those of many previous experiments, so they argue that this somehow diminishes the impact of the surround. But the argument is not accompanied by data showing the effects of center stimuli alone or surround stimuli alone. Second, their model -- a normalization model -- does not need surround influences to account for the masking effect. Third, they cite human psychophysical masking results from their collaborators (Sebastian et al 2017), but do not cite an equally convincing demonstration that surround contrast creates potent orientation selective masking when presented alone (Petrov et al 2005, https://doi.org/10.1523/JNEUROSCI.2871-05.2005).
At the end of the day, these issues will be resolved by further experiments, not argumentation. The paper stands as an excellent contribution, but it might be wise for the authors to be less doctrinaire in their interpretations.
-
Reviewer #2 (Public Review):
Summary
In this experiment, Voltage Sensitive Dye Imaging (VSDI) was used to measure neural activity in macaque primary visual cortex in monkeys trained to detect an oriented grating target that was presented either alone or against an oriented mask. Monkeys' ability to detect the target (indicated by a saccade to its location) was impaired by the mask, with the greatest impairment observed when the mask was matched in orientation to the target, as is also the case in human observers. VSDI signals were examined to test the hypothesis that the target-evoked response would be maximally suppressed by the mask when it matched the orientation of the target. In each recording session, fixation trials were used to map out the spatial response profile and orientation domains that would then be used to decode the responses on detection trials. VSDI signals were analyzed at two different scales: a coarse scale of the retinotopic response to the target and a finer scale of orientation domains within the stimulus-evoked response. Responses were recorded in three conditions: target alone, mask alone, and target presented with mask. Analyses were focused on the target evoked response in the presence of the mask, defined to be the difference in response evoked by the mask with target (target present) versus the mask alone (target absent). These were computed across five 50 msec bins (total, 250 msec, which was the duration of the mask (target present trials, 50% of trials) / mask + target (target present trials, 50% of trials). Analyses revealed that in an initial (transient) phase the target evoked response increased with similarity between target and mask orientation. As the authors note, this is surprising given that this was the condition where the mask maximally impaired detection of the target in behavior. Target evoked responses in a later ('sustained') phase fell off with orientation similarity, consistent with the behavioral effect. When analyzed at the coarser scale the target evoked response, integrated over the full 250 msec period showed a very modest dependence on mask orientation. The same pattern held when the data were analyzed on the finer orientation domain scale, with the effect of the mask in the transient phase running counter to the perceptual effect of the mask and the sustained response correlating the perceptual effect. The effect of the mask was more pronounced when analyzed at the scale.
Strengths
The work is on the whole very strong. The experiments are thoughtfully designed, the data collection methods are good, and the results are interesting. The separate analyses of data at a coarse scale that aggregates across orientation domains and a more local scale of orientation domains is a strength and it is reassuring that the effects at the more localized scale are more clearly related to behavior, as one would hope and expect. The results are strengthened by modeling work shown in Figure 8, which provides a sensible account of the population dynamics. The analyses of the relationship between VSDI data and behavior are well thought out and the apparent paradox of the anti-correlation between VSDI and behavior in the initial period of response, followed by a positive correlation in the sustained response period is intriguing.
-
-
-
Reviewer #1 (Public Review):
Summary:
In this work, the authors utilize recurrent neural networks (RNNs) to explore the question of when and how neural dynamics and the network's output are related from a geometrical point of view. The authors found that RNNs operate between two extremes: an 'aligned' regime in which the weights and the largest PCs are strongly correlated and an 'oblique' regime where the output weights and the largest PCs are poorly correlated. Large output weights led to oblique dynamics, and small output weights to aligned dynamics. This feature impacts whether networks are robust to perturbation along output directions. Results were linked to experimental data by showing that these different regimes can be identified in neural recordings from several experiments.
Strengths:
A diverse set of relevant tasks.
A well-chosen similarity measure.
Exploration of various hyperparameter settings.
Weaknesses:
One of the major connections found BCI data with neural variance aligned to the outputs. Maybe I was confused about something, but doesn't this have to be the case based on the design of the experiment? The outputs of the BCI are chosen to align with the largest principal components of the data.
Proposed experiments may have already been done (new neural activity patterns emerge with long-term learning, Oby et al. 2019). My understanding of these results is that activity moved to be aligned as the manifold changed, but more analyses could be done to more fully understand the relationship between those experiments and this work.
Analysis of networks was thorough, but connections to neural data were weak. I am thoroughly convinced of the reported effect of large or small output weights in networks. I also think this framing could aid in future studies of interactions between brain regions.
This is an interesting framing to consider the relationship between upstream activity and downstream outputs. As more labs record from several brain regions simultaneously, this work will provide an important theoretical framework for thinking about the relative geometries of neural representations between brain regions.
It will be interesting to compare the relationship between geometries of representations and neural dynamics across connected different brain areas that are closer to the periphery vs. more central.
It is exciting to think about the versatility of the oblique regime for shared representations and network dynamics across different computations.
The versatility of the oblique regime could lead to differences between subjects in neural data.
-
Reviewer #2 (Public Review):
Summary:
This paper tackles the problem of understanding when the dynamics of neural population activity do and do not align with some target output, such as an arm movement. The authors develop a theoretical framework based on RNNs showing that an alignment of neural dynamics to output can be simply controlled by the magnitude of the read-out weight vector while the RNN is being trained. Small magnitude vectors result in aligned dynamics, where low-dimensional neural activity recapitulates the target; large magnitude vectors result in "oblique" dynamics, where encoding is spread across many dimensions. The paper further explores how the aligned and oblique regimes differ, in particular, that the oblique regime allows degenerate solutions for the same target output.
Strengths:
- A really interesting new idea that different dynamics of neural circuits can arise simply from the initial magnitude of the output weight vector: once written out (Eq 3) it becomes obvious, which I take as the mark of a genuinely insightful idea.
- The offered framework potentially unifies a collection of separate experimental results and ideas, largely from studies of the motor cortex in primates: the idea that much of the ongoing dynamics do not encode movement parameters; the existence of the "null space" of preparatory activity; and that ongoing dynamics of the motor cortex can rotate in the same direction even when the arm movement is rotating in opposite directions.
- The main text is well written, with a wide-ranging set of key results synthesised and illustrated well and concisely.
- The study shows that the occurrence of the aligned and oblique regimes generalises across a range of simulated behavioural tasks.
- A deep analytical investigation of when the regimes occur and how they evolve over training.
- The study shows where the oblique regime may be advantageous: allows multiple solutions to the same problem; and differs in sensitivity to perturbation and noise.
- An insightful corollary result that noise in training is needed to obtain the oblique regime.
- Tests whether the aligned and oblique regimes can be seen in neural recordings from primate cortex in a range of motor control tasks.
Weaknesses:
- The magnitude of the output weights is initially discussed as being fixed, and as far as I can tell all analytical results (sections 4.6-4.9) also assume this. But in all trained models that make up the bulk of the results (Figures 3-6) all three weight vectors/matrices (input, recurrent, and output) are trained by gradient descent. It would be good to see an explanation or results offered in the main text as to why the training always ends up in the same mapping (small->aligned; large->oblique) when it could, for example, optimise the output weights instead, which is the usual target (e.g. Sussillo & Abbott 2009 Neuron).
- It is unclear what it means for neural activity to be "aligned" for target outputs that are not continuous time-series, such as the 1D or 2D oscillations used to illustrate most points here. Two of the modelled tasks have binary outputs; one has a 3-element binary vector.
- It is unclear what criteria are used to assign the analysed neural data to the oblique or aligned regimes of dynamics.
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The pioneering work of Eve Marder on central pattern generators in the stomatogastric ganglion (STG) has made a strong case for redundancy as a biological mechanism for ensuring functional robustness, where multiple configurations of biophysical parameters are equivalent in terms of their ability to generate desired patterns of periodic circuit activity. In parallel, normative theories of synaptic plasticity have argued for functional equivalences between learning objectives and corresponding plasticity rules in implementing simple unsupervised learning (see Brito & Gerstner 2016, although similar arguments have been made long before e.g. in Aapo Hyvarinen's ICA book). This manuscript argues that similar notions of redundancy need to be taken into account in the study of synaptic plasticity rules in the brain, more specifically in the context of data-driven approaches to extract the "true" synaptic plasticity rule operating in a neural circuit from neural activity recordings. Concretely, the modeling approach takes a set of empirical measurements of the evolution of neural activity and trains a flexibly parametrized model to match that in statistical terms. Instead of being predefined by the experimenter, the features that determine this match are themselves extracted from data using a generative adversarial network framework (GAN). They show that the flexible models manage to reproduce the neural activity to a reasonable degree (though not perfectly), but lead to very different synaptic trajectories.
Strengths:
The idea of learning rule redundancy is a good one, and the use of GANs for the learning rule estimation is a good complement to other data-driven approaches to extract synaptic plasticity ruled from neural data.
Weaknesses:
(1) Numerics provide only partial support to the statements describing the results.
(2) Even if believing the results, I don't necessarily agree with the interpretation. First: unlike the Marder example where there is complementary evidence to argue that the parameter variations actually reflect across animal biophysical variations, here the statements are really about uncertainty that the experimenter has about what is going on in a circuit observed through a certain measurement lens. Second, while taking into account this uncertainty when using the outcomes of this analysis for subsequent scientific goals is certainly sensible, the biggest punchline for me is that simply observing neural activity in a simple and very restricted context does not provide enough information about the underlying learning mechanism, especially when the hypothesis space is very large (as is the case for the MLP). So it seems more useful to use this framework to think about how to enrich the experimental design/ learning paradigms/ or the measurements themselves to make the set of hypotheses more discriminable (in the spirit of the work by Jacob Portes et al, 2022 for instance). Conversely, one should perhaps think about other ways in which to use other forms of experimental data to reasonably constrain the hypothesis space in the first place.
-
Reviewer #2 (Public Review):
Summary:
This paper poses the interesting and important question of whether plasticity rules are mathematically degenerate, which would mean that multiple plasticity rules can give rise to the same changes in neural activity. They claim that the answer is "yes," which would have major implications for many researchers studying the biological mechanisms of learning and memory. Unfortunately, I found the evidence for the claim to be weak and confusing, and I don't think that readers can currently infer much beyond the results of the specific numerical experiments reported in the paper.
Strengths:
I love the premise of the paper. I agree with the authors that neuroscientists often under-emphasize the range of possible models that are consistent with empirical findings and/or theoretical demands. I like their proposal that the field is shifting its thinking towards characterizing the space of plasticity rules. I do not doubt the accuracy of most reported numerical results, just their meaning and interpretation. I therefore think that readers can safely use most of the the numerical results to revise their thinking about plasticity mechanisms and draw their own conclusions.
Weaknesses:
Unfortunately, I found many aspects of the paper to be problematic. As a result, I did not find the overarching conclusions drawn by the authors to be convincing.
First, the authors aren't consistent in how they mathematically define and conceptually interpret the "degeneracy" of plasticity mechanisms. In practice, they say that two plasticity mechanisms are "degenerate" if they can't build a neural network to distinguish between a set of neural trajectories generated by them. Their interpretation extrapolates far beyond this, and they seem to conclude that such plasticity rules are in principle indistinguishable. I think that this conclusion is wrong. Plasticity rules are simply mathematical functions that specify how the magnitude of a synaptic weight changes due to other factors, here presynaptic activity (x), postsynaptic activity (y), and the current value of the weight (w). Centuries-old mathematics proves that very broad classes of functions can be parameterized in a variety of non-degenerate ways (e.g., by their Taylor series or Fourier series). It seems unlikely to me that biology has developed plasticity rules that fall outside this broad class. Moreover, the paper's numerical results are all for Oja's plasticity rule, which is a third-order polynomial function of x, y, and w. That polynomial functions cannot be represented by any other Taylor series is a textbook result from calculus. One might wonder if this unique parameterization is somehow lost when many synapses combine to produce neural activity, but the neuron model used in this work is linear, so the function that specifies how the postsynaptic activity changes is simply a fourth-order polynomial in 3N+1 variables (i.e., the presynaptic activities of N neurons prior to the plasticity event, the weights of N synapses prior to the plasticity event, the postsynaptic activity prior to the plasticity event, the presynaptic activities of N neurons after the plasticity event). The same fundamental results from calculus apply to the weight trajectories and the activity trajectories, and a non-degenerate plasticity rule could in principle be inferred from either. What the authors instead show is that their simulated datasets, chosen parameterizations for the plasticity rule, and fitting procedures fail to reveal a non-degenerate representation of the plasticity rule. To what extent this failure is due to the nature of the simulated datasets (e.g., their limited size), the chosen parameterization (e.g., an overparameterized multi-layer perceptron), and their fitting procedure (e.g., their generative adversarial network framework) is unclear. I suspect that all three aspects contribute.
Second, I am concerned by the authors' decision to use a generative adversarial network (GAN) to fit the plasticity rule. Practically speaking, the quality of the fits shown in the figures seems unimpressive to me, and I am left wondering if the authors could have gotten better fits with other fitting routines. For example, other authors fit plasticity rules through gradient descent learning, and these authors claimed to accurately recover Oja's rule and other plasticity rules (Mehta et al., "Model-based inference of synaptic plasticity rules," bioRxiv, 2023). Whether this difference is one of author interpretation or method accuracy is not currently clear. The authors do include some panels in Figure 3A and Figure 8 that explore more standard gradient descent learning, but their networks don't seem to be well-trained. Theoretically speaking, Eqn. (7) in Section 4.4 indicates that the authors only try to match p(\vec y) between the data and generator network, rather than p(\vec x, \vec y). If this equation is an accurate representation of the authors' method, then the claimed "degeneracy" of the learning rule may simply mean that many different joint distributions for \vec x and \vec y can produce the same marginal distribution for \vec y. This is true, but then the "degeneracy" reported in the paper is due to hidden presynaptic variables. I don't think that most readers would expect that learning rules could be inferred by measuring postsynaptic activity alone.
Third, it's important for readers to note that the 2-dimensional dynamical systems representations shown in figures like Figures 2E are incomplete. Learning rules are N-dimensional nonlinear dynamical systems. The learning rule of any individual synapse depends only on the current presynaptic activity, the current postsynaptic activity, and the current weight magnitude, and slices through this function are shown in figures like Figure 2D. However, the postsynaptic activity is itself a dynamical variable that depends on all N synaptic weights. It's therefore unclear how one is supposed to interpret figures like Figure 2E, because the change in y is not a function of y and any single w. My best guess is that figures like Figure 2E are generated for the case of a single presynaptic neuron, but the degeneracies observed in this reduced system need not match those found when fitting the larger network.
-
Reviewer #3 (Public Review):
Summary:
The authors show that a GAN can learn to reproduce the distribution of outputs of a neuron endowed with Oja's plasticity rule throughout its learning process by learning a plasticity rule. The GAN does not, however, learn Oja's rule. Indeed, the plasticity dynamics it infers can differ dramatically from the true dynamics. The authors propose this approach as a way to uncover families of putative plasticity rules consistent with observed activity patterns in biological systems.
Oja's rule was a great choice for the comparison because it makes explicit, I think, the limitations of this approach. As is well known, Oja's rule allows a (linear) neuron to learn the first principal component of its inputs; the synaptic weights converge to the first eigenvector of the input covariance. After this learning process, the response of a neuron to a particular input sample measures the weighted angle between that input and that principal component.
The other, meta-learned plasticity rules that the authors' GAN uncovers notably do not learn the same computation as Oja's rule (Figure 2). This is, to me, the central finding of the paper and fleshed out nicely. It seems to me that this may be because the objective of the GAN is only to reproduce the marginal output statistics of the neuron. It is, if I understand correctly, blind to the input samples, the inputs' marginal statistics, and to correlations between the input and output. I wonder if a GAN that also had some knowledge of the correlation between input and outputs might be more successful at learning the underlying true dynamics.
The focus on reproducing output statistics has some similarity to some types of experiments (e.g., in vivo recordings) but also seems willfully blind to other aspects of these experiments. In my experience, experimentalists are well aware that the circuits they record receive external inputs. Those inputs are often recorded (perhaps in separate experiments or studies). The point being that I'm not sure that this is an entirely fair comparison to the field.
Finally, the plasticity models studied by theoreticians are not only constructed by intuition and hand-tuning. They also draw, often heavily, on biological data and principles. Oja's rule, for example, is simply the combination of Hebbian learning with a homeostatic constraint on the total synaptic weight amplitude (under the choice of a Euclidean norm).
To me, this study very nicely exposes the caveats and risks associated with a blind machine-learning approach to model specification in biology and highlights the need for understanding underlying biological mechanisms and principles. I agree with the authors that heterogeneity and degeneracy in plasticity rules deserve much more attention in the field.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
This study from Bamgbose et al. identifies a new and important interaction between H4K20me and Parp1 that regulates inducible genes during development and heat stress. The authors present convincing experiments that form a mostly complete manuscript that significantly contributes to our understanding of how Parp1 associates with target genes to regulate their expression.
Strengths:
The authors present 3 compelling experiments to support the interaction between Parp1 and H4K20me, including:
(1) PR-Set7 mutants remove all K4K20me and phenocopy Parp mutant developmental arrest and defective heat shock protein induction.
(2) PR-Set7 mutants have dramatically reduced Parp1 association with chromatin and reduced poly-ADP ribosylation.
(3) Parp1 directly binds H4K20me in vitro.
Weaknesses:
(1) The RNAseq analysis of Parp1/PR-Set7 mutants is reasonable, but there is a caveat to the author's conclusion (Line 251): "our results indicate H4K20me1 may be required for PARP-1 binding to preferentially repress metabolic genes and activate genes involved in neuron development at co-enriched genes." An alternative possibility is that many of the gene expression changes are indirect consequences of altered development induced by Parp1 or PR-Set7 mutants. For example, Parp1 could activate a transcription factor that represses metabolic genes. The authors counter this model by stating that Parp1 directly binds to "repressed" metabolic genes. While this argument supports their model, it does not rule out the competing indirect transcription factor model. Therefore, they should still mention the competing model as a possibility.
(2) The section on inducibility of heat shock genes is interesting but missing an important control that might significantly alter the author's conclusions. Hsp23 and Hsp83 (group B genes) are transcribed without heat shock, which likely explains why they have H4K20me without heat shock. The authors made the reasonable hypothesis that this H4K20me would recruit Parp-1 upon heat shock (line 270). However, they observed a decrease of H4K20me upon heat shock, which led them to conclude that "H4K20me may not be necessary for Parp1 binding/activation" (line 275). However, their RNA expression data (Fig4A) argues that both Parp1 and H40K20me are important for activation. An alternative possibility is that group B genes indeed recruit Parp1 (through H4K20me) upon heat shock, but then Parp1 promotes H3/H4 dissociation from group B genes. If Parp1 depletes H4, it will also deplete H4K20me1. To address this possibility, the authors should also do a ChIP for total H4 and plot both the raw signal of H4K20me1 and total H4 as well as the ratio of these signals. The authors could also note that Group A genes may similarly recruit Parp1 and deplete H3/H4 but with different kinetics than Group B genes because their basal state lacks H4K20me/Parp1. To test this possibility, the authors could measure Parp association, H4K20methylation, and H4 depletion at more time points after heat shock at both classes of genes.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Knudstrup et al. use two-photon calcium imaging to measure neural responses in the mouse primary visual cortex (V1) in response to image sequences. The authors presented mice with many repetitions of the same four-image sequence (ABCD) for four days. Then on the fifth day, they presented unexpected stimulus orderings where one stimulus was either omitted (ABBD) or substituted (ACBD). After analyzing trial-averaged responses of neurons pooled across multiple mice, they observed that stimulus omission (ABBD) caused a small, but significant, strengthening of neural responses but observed no significant change in the response to stimulus substitution (ACBD). Next, they performed population analyses of this dataset. They showed that there were changes in the correlation structure of activity and that many features of sequence ordering could be reliably decoded. This second set of analyses is interesting and exhibited larger effect sizes than the first results about predictive coding. However, concerns about the design of the experiment temper my enthusiasm.
Strengths:
(1) The topic of predictive coding in the visual cortex is exciting, and this task builds on previous important work by the senior author (Gavornik and Bear 2014) where unexpectedly shuffling sequence order caused changes in LFPs recorded from the visual cortex.
(2) Deconvolved calcium responses were used appropriately here to look at the timing of the neural responses.
(3) Neural decoding results showing that the context of the stimuli could be reliably decoded from trial-averaged responses were interesting. However I have concerns about how the data was formatted for performing these analyses.
Weaknesses:
(1) All analyses were performed on trial-averaged neural responses that were pooled across mice. Owing to differences between subjects in behavior, experimental preparation quality, and biological variability, it seems important to perform at least some analyses on individual analyses to assess how behavioral training might differently affect each animal.
(2) The correlation analyses presented in Figure 3 (labeled the second Figure 2 in the text) should be conducted on a single-animal basis. Studying population codes constructed by pooling across mice, particularly when there is no behavioral readout to assess whether learning has had similar effects on all animals, appears inappropriate to me. If the results in Figure 3 hold up on single animals, I think that is definitely an interesting result.
(3) On Day 0 and Day 5, the reordered stimuli are presented in trial blocks where each image sequence is shown 100 times. Why wasn't the trial ordering randomized as was done in previous studies (e.g. Gavornik and Bear 2014)? Given this lack of reordering, did neurons show reduced predictive responses because the unexpected sequence was shown so many times in quick succession? This might change the results seen in Figure 2, as well as the decoder results where there is a neural encoding of sequence order (Figure 4). It would be interesting if the Figure 4 decoder stopped working when the higher-order block structure of the task was disrupted.
(4) A primary advantage of using two-photon calcium imaging over other techniques like extracellular electrophysiology is that the same neurons can be tracked over many days. This is a standard approach that can be accomplished by using many software packages-including Suite2P (Pachitariu et al. 2017), which is what the authors already used for the rest of their data preprocessing. The authors of this paper did not appear to do this. Instead, it appears that different neurons were imaged on Day 0 (baseline) and Day 5 (test). This is a significant weakness of the current dataset.
-
Reviewer #2 (Public Review):
Knudstrup et al set out to probe prediction errors in the mouse visual cortex. They use a variant of an oddball paradigm and test how repeated passive exposure to a specific sequence of visual stimuli affects oddball responses in layer 2/3 neurons. Unfortunately, there are problems with the experimental design which make it difficult to interpret the results in light of the question the authors want to address. The conceptual framing, choice of block design structure, and not tracking the same cells over days, are just some of the reasons that make this work difficult to interpret. Specific comments are as follows:
(1) There appears to be some confusion regarding the conceptual framing of predictive coding. Assuming the mouse learns to expect the sequence ABCD, then ABBD does not probe just for negative prediction errors, and ACBD is not just for positive prediction errors. With ABBD, there is a combination of a negative prediction error for the missing C in the 3rd position, and a positive prediction error for B in the 3rd. Likewise, with ACBD, there is a negative prediction error for the missing B at 2nd and missing C at 3rd, and a positive prediction error for the C in 2nd and B in 3rd. Thus, the authors' experimental design does not have the power to isolate either negative or positive prediction errors. Moreover, looking at the raw data in Figure 2C, this does not look like an "omission" response to C, but more like a stronger response to a longer B. The pitch of the paper as investigating prediction error responses is probably not warranted - we see no way to align the authors' results with this interpretation.
(2) Related to the interpretation of the findings, just because something can be described as a prediction error does not mean it is computed in (or even is relevant to) the visual cortex. To the best of our knowledge, it is still unclear where in the visual stream the responses described here are computed. It is possible that this type of computation happens before the signals reach the visual cortex, similar to mechanisms predicting moving stimuli already in the retina (https://pubmed.ncbi.nlm.nih.gov/10192333/). This would also be consistent with the authors' finding (in previous work) that single-cell recordings in V1 exhibit weaker sequence violation responses than the author's earlier work using LFP recordings.
(3) Recording from the same neurons over the course of this paradigm is well within the technical standards of the field, and there is no reason not to do this. Given that the authors chose to record from different neurons, it is difficult to distinguish representational drift from drift in the population of neurons recorded.
(4) The block paradigm to test for prediction errors appears ill-chosen. Why not interleave oddball stimuli randomly in a sequence of normal stimuli? The concern is related to the question of how many repetitions it takes to learn a sequence. Can the mice not learn ACBD over 100x repetitions? The authors should definitely look at early vs. late responses in the oddball block. Also, the first few presentations after the block transition might be potentially interesting. The authors' analysis in the paper already strongly suggests that the mice learn rather rapidly. The authors conclude: "we expected ABCD would be more-or-less indistinguishable from ABBD and ACBD since A occurs first in each sequence and always preceded by a long (800 ms) gray period. This was not the case. Most often, the decoder correctly identified which sequence stimulus A came from." This would suggest that whatever learning/drift could happen within one block did indeed happen and responses to different sequences are harder to interpret.
(5) Throughout the manuscript, many of the claims are not statistically tested, and where they are the tests do not appear to be hierarchical (https://pubmed.ncbi.nlm.nih.gov/24671065/), even though the data are likely nested.
(6) The manuscript would greatly benefit from thorough proofreading (not just in regard to figure references).
(7) With a sequence of stimuli that are 250ms in length each, the use of GCaMP6s appears like a very poor choice.
(8) The data shown are unnecessarily selective. E.g. it would probably be interesting to see how the average population response evolves with days. The relevant question for most prediction error interpretations would be whether there are subpopulations of neurons that selectively respond to any of the oddballs. E.g. while the authors state they "did" not identify a separate population of omission-responsive neurons, they provide no evidence for this. However, it is unclear whether the block structure of the experiments allows the authors to analyze this.
-
Reviewer #3 (Public Review):
Summary:
This work provides insights into predictive coding models of visual cortex processing. These models predict that visual cortex neurons will show elevated responses when there are unexpected changes to learned sequential stimulus patterns. This model is currently controversial, with recent publications providing conflicting evidence. In this work, the authors test two types of unexpected pattern variations in layer 2/3 of the mouse visual cortex. They show that pattern omission evokes elevated responses, in favor of a predictive coding model, but find no evidence for prediction errors with substituted patterns, which conflicts with both prior results in L4, and with the expectations of a predictive coding model. They also report that with sequence training, responses sparsify and decorrelate, but surprisingly find no changes in the ability of an ideal observer to decode stimulus identity or timing.
These results are an important contribution to the understanding of how temporal sequences and expectations are encoded in the primary visual cortex. However, there are several methodological concerns with the study, and some of the authors' interpretations and conclusions are unsupported by data.
Major concerns:
(1) Experimental design using a block structure. The use of a block structure on test days (0 and 5) in which sequences were presented in 100 repetition blocks leads to several potential confounds. First, there is the potential for plasticity within blocks, which could alter the responses and induce learned expectations. The ability of the authors to clearly distinguish blocks 1 and 2 on Day 0 with a decoder suggests this change over time may be meaningful.
Repeating the experiments with fully interleaved sequences on test days would alleviate this concern. With the existing data, the authors should compare responses from the first trials in a block to the last trials in a block.
This block design likely also accounts for the ability of a decoder to readily distinguish stimulus A in ABCD from A in ABBD. As all ABCD sequences were run in a contiguous block separate from ABBD, the recent history of experience is different for A stimuli in ABCD versus ABBD. Running fully interleaved sequences would also address this point, and would also potentially mitigate the impact of drift over blocks (discussed below).
(2) The computation of prediction error differs significantly for omission as opposed to substitutions, in meaningful ways the authors do not address. For omission errors, PE compares the responses of B1 and B2 within ABBD blocks. These responses are measured from the same trial, within tens of milliseconds of each other. In contrast, substitution PE is computed by comparing C in ABCD to C in ACBD. As noted above, the block structure means that these C responses were recorded in different blocks, when the state of the brain could be different. This may account for the authors' detection of prediction error for omission but not substitution. To address this, the authors should calculate PE for omission using B responses from ABCD.
(3) The behavior of responses to B and C within the trained sequence ABCD differs considerably, yet is not addressed. Responses to B in ABCD potentiate from d0-> d5, yet responses to C in the same sequence go down. This suggests there may be some difference in either the representation of B vs C or position 2 vs 3 in the sequence that may also be contributing to the appearance of prediction errors in ABBD but not ACBD. The authors do not appear to consider this point, which could potentially impact their results. Presenting different stimuli for A,B,C,D across mice would help (in the current paper B is 75 deg and C is 165 deg in all cases). Additionally, other omissions or substitutions at different sequence positions should be tested (eg ABCC or ABDC).
(4) The authors' interpretation of their PCA results is flawed. The authors write "Experience simplifies activity in principal component space". This is untrue based on their data. The variance explained by the first set of PCs does not change with training, indicating that the data is not residing in a lower dimensional ("simpler") space. Instead, the authors show that the first 5 PCs better align with their a priori expectations of the stimulus structure, but that does not mean these PCs necessarily represent more information about the stimulus (and the fact that the authors fail to see an improvement in decoding performance argues against this case). Addressing such a question would be highly interesting, but is lacking in the current manuscript. Without such analysis, referring to the PCs after training as "highly discretized" and "untangled" are largely meaningless descriptions that lack analytical support.
(5) The authors report that activity sparsifies, yet provide only the fraction of stimulus-selective cells. Given that cell detection was automated in a manner that takes into account neural activity (using Suite2p), it is difficult to interpret these results as presented. If the authors wish to claim sparsification, they need to provide evidence that the total number of ROIs drawn on each day (the denominator for sparseness in their calculation) is unbiased. Including more (or less) ROIs can dramatically change the calculated sparseness.
The authors mention sparsification as contributing to coding efficiency but do not test this. Training a decoder on variously sized subsets of their data on days 0 and 5 would test whether redundant information is being eliminated in the network over training.
(6) The authors claim their results show representational drift, but this isn't supported in the data. Rather they show that there is some information in the structure of activity that allows a decoder to learn block ID. But this does not show whether the actual stimulus representations change, and could instead reflect an unrelated artifact that changes over time (responsivity, alertness, bleaching, etc). To actually assess representational drift, the authors should directly compare representations across blocks (one could train a decoder on block 1 and test on blocks 2-5). In the absence of this or other tests of representational drift over blocks, the authors should remove the statement that "These findings suggest that there is a measurable amount of representational drift".
(7) The authors allude to "temporal echoes" in a subheading. This term is never defined, or substantiated with analysis, and should be removed.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
The authors collected BALF samples from lung cancer patients newly diagnosed with PCP, DI-ILD or ICI-ILD. CyTOF was performed on these samples, using two different panels (T-cell and B-cell/myeloid cell panels). Results were collected, cleaned-up, manually gated and pre-processed prior to visualisation with manifold learning approaches t-SNE (in the form of viSNE) or UMAP, and analysed by CITRUS (hierarchical clustering followed by feature selection and regression) for population identification - all using Cytobank implementation - in an attempt to identify possible biomarkers for these disease states. By comparing cell abundances from CITRUS results and qualitative inspection of a small number of marker expressions, the authors claimed to have identified an expansion of CD16+ T-cell population in PCP cases and an increase in CD57+ CD8+ T-cells, FCRL5+ B-cells and CCR2+ CCR5+ CD14+ monocytes in ICI-ILD cases.
By the authors' own admission, there is an absence of healthy donor samples and, perhaps as a result of retrospective experimental design and practical clinical reasons, also an absence of pre-treatment samples. The entire analysis effectively compares three yet-established disease states with no common baseline - what really constitutes a "biomarker" in such cases? These are very limited comparisons among three, and only these three, states.
By including a new scRNA-Seq analysis using a publicly available dataset, the authors addressed this fundamental problem. Though a more thorough and numerical analysis would be appreciated for a deeper and more impactful analysis, this is adequate for the intended objectives of the study.
-
Reviewer #2 (Public Review):
Yanagihara and colleagues investigated the immune cell composition of bronchoalveolar lavage fluid (BALF) samples in a cohort of patients with malignancy undergoing chemotherapy and with lung adverse reactions including Pneumocystis jirovecii pneumonia (PCP) and immune-checkpoint inhibitors (ICIs) or cytotoxic drug induced interstitial lung diseases (ILDs). Using mass cytometry, their aim was to characterize the cellular and molecular changes in BAL to improve our understanding of their pathogenesis and identify potential biomarkers and therapeutic targets. In this regard, the authors identify a correlation between CD16 expression in T cells and the severity of PCP and an increased infiltration of CD57+ CD8+ T cells expressing immune checkpoints and FCLR5+ B cells in ICI-ILD patients.
The conclusions of this paper are mostly well supported by data, but some aspects of the data analysis need to be clarified and extended.
The authors should elaborate on why different sets of markers were selected for each analysis step. E.g., Different sets of markers were used for UMAP, CITRUS and viSNE in the T cell and myeloid analysis.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> In this manuscript, Fister et. al. investigate how amputational and burn wounds affect sensory axonal damage and regeneration in a zebrafish model system. The authors discovered that burn injury results in increased peripheral axon damage and impaired regeneration. Convincing experiments show altered axonal morphology and increased Ca2+ fluxes as a result of burn damage. Further experimental proof supports that early removal of the burnt tissue by amputation rescues axonal damage. Burn damage was also shown to markedly increase keratinocyte migration and increase localized ROS production as measured by the dye Pfbsf. These responses could be inhibited by Arp 2/3 inhibition and isotonic treatment.
Strengths:<br /> The authors use state-of-the-art methods to study and compare transection and burn-induced tissue damage. Multiple experimental approaches (morphology, Ca2+ fluxing, cell membrane labeling) confirm axonal damage and impaired regeneration time. Furthermore, the results are also accompanied by functional response tests of touch sensitivity. This is the first study to extend the role of tissue-damage-related osmotic exposure beyond wound closure and leukocyte migration to a novel layer of pathology: axonal damage and regeneration.
Weaknesses:<br /> The conclusions of the paper claiming a link between burn-induced epithelial cell migration, spatial redox signaling, and sensory axon regeneration are mainly based on correlative observations. Arp 2/3 inhibition impairs cell migration but has no significant effect on axon regeneration and restoration of touch sensitivity.
Pharmacological or genetic approaches should be used to prove the role of ROS production by directly targeting the known H2O2 source in the system: DUOX.
While the authors provide clear and compelling proof that osmotic responses lie at the heart of the burn-induced axonal damage responses, they did not consider the option of further exploring any biology related to osmotic cell swelling. Could osmotic ATP release maybe play a role through excitotoxicity? Could cPLA2 activation-dependent eicosanoid production relate to the process? Pharmacological tests using purinergic receptor inhibition or blockage of eicosanoid production could answer these questions.
The authors provide elegant experiments showing that early removal of the burnt tissue can rescue damage-induced axonal damage, which could also be interpreted in an osmotic manner: tail fin transections could close faster than burn wounds, allowing for lower hypotonic exposure time. Axonal damage and slow regeneration in tail fin burn wounds could be a direct consequence of extended exposure time to hypotonic water.
-
Reviewer #2 (Public Review):
This is an interesting study in which the authors show that a thermal injury leads to extensive sensory axon damage and impaired regrowth compared to a mechanical transection injury. This correlates with increased keratinocyte migration. That migration is inhibited by CK666 drug treatment and isotonic medium. Both restrict ROS signalling to the wound edge. In addition, the isotonic medium also rescues the regrowth of sensory axons and recovery of sensory function. The findings may have implications for understanding non-optimal re-innervation of burn wounds in mammals.
The interpretation of results is generally cautious and controls are robust.
Here are some suggestions for additional discussion:<br /> The study compares burn injury which produces a diffuse injury to a mechanical cut injury which produces focal damage. It would help the reader to give a definition of wound edge in the burn situation. Is the thermally injured tissue completely dead and is resorbed or do axons have to grow into damaged tissue? The two-cut model suggests the latter. Also giving timescales would help, e.g. when do axons grow in relation to keratinocyte movement? An introductory cartoon might help.
Could treatment with CK666 or isotonic solution influence sensory axons directly, or through other non-keratinocyte cell types, such as immune cells?
-
Reviewer #3 (Public Review):
Fister and colleagues use regeneration of the larval zebrafish caudal fin to compare the effects of two modes of tissue damage-transection and burn-on cutaneous sensory axon regeneration. The authors found that restoration of sensory axon density and function is delayed following burn injury compared to transection.
The authors hypothesized that thermal injury triggers signals within the wound microenvironment that impair sensory neuron regeneration. The authors identify differences in the responses of epithelial keratinocytes to the two modes of injury: keratinocytes migrate in response to burn but not transection. Inhibiting keratinocyte migration with the small-molecule inhibitor of Arp2/3 (CK666) resulted in decreased production of reactive oxygen species (ROS) at early, but not late, time points. Preventing keratinocyte migration by wounding in isotonic media resulted in increased sensory function 24 hours after burn.
Strengths of the study include the beautiful imaging and rigorous statistical approaches used by the authors. The ability to assess both axon density and axon function during regeneration is quite powerful. The touch assay adds a unique component to the paper and strengthens the argument that burns are more damaging to sensory structures and that different treatments help to ameliorate this.
A weakness of the study is the lack of genetic and cell-autonomous manipulations. Additional comparisons between transection and burns, in particular with manipulations that specifically modulate ROS generation or cell migration without potentially confounding effects on other cell types or processes would help to strengthen the manuscript. In terms of framing their results, the authors refer to "sensory neurons" and "sensory axons" throughout the text - it should be made clear what type of neuron(s)/axon(s) are being visualized/assayed. Along these lines, a broader discussion of how burn injuries affect sensory function in other systems - and how the authors' results might inform our understanding of these injury responses - would be beneficial to the reader.
In summary, the authors have established a tractable vertebrate system to investigate different sensory axon wound healing outcomes in vivo that may ultimately allow for the identification of improved treatment strategies for human burn patients. Although the study implicates differences in keratinocyte migration and associated ROS production in sensory axon wound healing outcomes, the links between these processes could be more rigorously established.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Peptidoglycan remodeling, particularly that carried out by enzymes known as amidases, is essential for the later stages of cell division including cell separation. In E. coli, amidases are generally activated by the periplasmic proteins EnvC (AmiA and AmiB) and NlpD (AmiC). The ABC family member, FtsEX, in turn, has been implicated as a modulator of amidase activity through interactions with EnvC. Specifically how FtsEX regulates EnvC activity in the context of cell division remains unclear.
Strengths:
Li et al. make two primary contributions to the study of FtsEX. The first, the finding that ATP binding stabilizes FtsEX in vitro, enables the second, structural resolution of full-length FtsEX both alone (Figure 2) and in combination with EnvC (Figure 3). Leveraging these findings, the authors demonstrate that EnvC binding stimulates FtsEX-mediated ATP hydrolysis approximately two-fold. The authors present structural data suggesting EnvC binding leads to a conformational change in the complex. Biochemical reconstitution experiments (Figure 5) provide compelling support for this idea.
Weaknesses:<br /> The potential impact of the study is curtailed by the lack of experiments testing the biochemical or physiological relevance of the model which is derived almost entirely from structural data.
Altogether the data support a model in which interaction with EnvC, results in a conformational change stimulating ATP hydrolysis by FtsEX and EnvC-mediated activation of the amidases, AmiA and AmiB. However, the study is limited in both approach and scope. The importance of interactions revealed in the structures to the function of FtsEX and its role in EnvC activation are not tested. Adding biochemical and/or in vivo experiments to fill in this gap would allow the authors to test the veracity of the model and increase the appeal of the study beyond the small number of researchers specifically interested in FtsEX.
-
Reviewer #1 (Public Review):
Summary:
In this paper, Li and colleagues overcome solubility problems to determine the structure of FtsEX bound to EnvC from E. coli.
Strengths:
The structural work is well done and the work is consistent with previous work on the structure of this complex from P. aerugionsa.
Weaknesses:
The model does not take into account all information that the authors obtained as well as known in vivo data.
The work lacks a clear comparison to the Pseudomonas structure highlighting new information that was obtained so that it is readily available to the reader.
The authors set out to obtain the structure of FtsEX-EnvC complex from E. coli. Previously, they were unable to do so but were able to determine the structure of the complex from P. aeruginosa. Here they persisted in attacking the E. coli complex since more is known about its involvement in cell division and there is a wealth of mutants in E. coli. The structural work is well done and recapitulates the results this lab obtained with this complex from P. aeruginosa. It would be helpful to compare more directly the results obtained here with the E. coli complex with the previously reported P. aeruginosa complex - are they largely the same or has some insight been obtained from the work that was not present in the previous complex from P. aeruginosa. This is particularly the case in discussing the symmetrical FtsX dimer binding to the asymmetrical EnvC, since this is emphasized in the paper. However, Figures 3C & D of this paper appear similar to Figures 2D & E of the P. aeruginosa structure. Presumably, the additional information obtained and presented in Figure 4 is due to the higher resolution, but this needs to be highlighted and discussed to make it clear to a general audience.
The main issue is the model (Figure 6). In the model ATP is shown to bind to FtsEX before EnvC, however, in Figure 1c it is shown that ADP is sufficient to promote binding of FtsEX to EnvC.
The work here is all done in vitro, however, information from in vivo needs to be considered. In vivo results reveal that the ATP-binding mutant FtsE(D162N)X promotes the recruitment of EnvC (Proc Natl Acad Sci U S A 2011 108:E1052-60). Thus, even FtsEX in vivo can bind EnvC without ATP (not sure if this mutant can bind ADP).
Perhaps the FtsE protein from E. coli has to have bound nucleotides to maintain its 3D structure.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This manuscript proposes a new bioinformatics approach identifying several hundreds of previously unknown inhibitory immunoreceptors. When expressed in immune cells (such as neutrophils, monocytes, CD8+, CD4+, and T-cells), such receptors inhibit the functional activity of these cells. Blocking inhibitory receptors represents a promising therapeutic strategy for cancer treatment.
As such, this is a high-quality and important bioinformatics study. One general concern is the absence of direct experimental validation of the results. In addition to the fact that the authors bioinformatically identified 51 known receptors, providing such experimental evaluation (of at least one, or better few identified receptors) would, in my opinion, significantly strengthen the presented evidence.
I will now briefly summarize the results and give my comments.
First, using sequence comparison analysis, the authors identify a large set of putative receptors based on the presence of immunoreceptor tyrosine-based inhibitory motifs (ITIMs), or immunoreceptor tyrosine-based switch motifs (ITSMs). They further filter the identified set of receptors for the presence of the ITIMs or ITSMs in an intracellular domain of the protein. Second, using AlphaFold structure modeling, the authors select only receptors containing ITIMs/ITSMs in structurally disordered regions. Third, the evaluation of gene expression profiles of known and putative receptors in several immune cell types was performed. Fourth, the authors classified putative receptors into functional categories, such as negative feedback receptors, threshold receptors, threshold disinhibition, and threshold-negative feedback. The latter classification was based on the available data from Nat Rev Immunol 2020. Fifth, using publicly available single-cell RNA sequencing data of tumor-infiltrating CD4+ and CD8+ cells from nearly twenty types of cancer, the authors demonstrate that a significant fraction of putative receptors are indeed expressed in these datasets.
In summary, in my opinion, this is an interesting, important, high-quality bioinformatics work. The manuscript is clearly written and all technical details are carefully explained.
One comment/suggestion regarding the methodology of evaluating gene expression profiles of putative receptors: perhaps it might be important to look at clusters of genes that are co-expressed with putative inhibitory receptors.
-
Reviewer #2 (Public Review):
Summary:
The authors developed a bioinformatic pipeline to aid the screening and identification of inhibitory receptors suitable as drug targets. The challenge lies in the large search space and lack of tools for assessing the likelihood of their inhibitory function. To make progress, the authors used a consensus protein membrane topology and sequence motif prediction tool (TOPCOS) combined with both a statistical measure assessing their likelihood function and a machine learning protein structural prediction model (AlphaFold) to greatly cut down the search space. After obtaining a manageable set of 398 high-confidence known and putative inhibitory receptors through this pipeline, the authors then mapped these receptors to different functional categories across different cell types based on their expression both in the resting and activated state. Additionally, by using publicly available pan-cancer scRNA-seq for tumor-infiltrating T-cell data, they showed that these receptors are expressed across various cellular subsets.
Strengths:
The authors presented sound arguments motivating the need to efficiently screen inhibitory receptors and to identify those that are functional. Key components of the algorithm were presented along with solid justification for why they addressed challenges faced by existing approaches. To name a few:
• TOPCON algorithm was elected to optimize the prediction of membrane topology.<br /> • A statistical measure was used to remove potential false positives.<br /> • AlphaFold is used to filter out putative receptors that are low confidence (and likely intrinsically disordered).
To examine receptors screened through this pipeline through a functional lens, the authors proposed to look at their expression of various immune cell subsets to assign functional categories. This is a reasonable and appropriate first step for interpreting and understanding how potential drug targets are differentially expressed in some disease contexts.
Weaknesses:
The paper has strength in the pipeline they presented, but the weakness, in my opinion, lies in the lack of concrete demonstration on how this pipeline can be used to at least "rediscover" known targets in a disease-specific manner. For example, the result that both known and putative immune inhibitory receptors are expressed across a wide variety of tumor-infiltrating T-cell subsets is reassuring, but this would have been more informative and illustrative if the authors could demonstrate using a disease with known targets, as opposed to a pan-cancer context. Additionally, a discussion that contrasts the known and putative receptors in the context above would help readers better identify use cases suitable for their research using this pipeline. Particularly,<br /> • For known receptors, does the pipeline and the expression analysis above rediscover the known target in the disease of interest?<br /> • For putative receptors, what do the functional category mapping and the differential expression across various tumor-infiltrating T-cell subsets imply on a potential therapeutic target?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Li et al. investigated the mechanism of action of an important herbicide, caprylic acid (CAP). The authors used untargeted metabolomics to find out differently expressed metabolites (DEM). It led to the identification of metabolites involved in amino acid metabolism, carbon fixation, carbon, glyoxylate, and dicarboxylate metabolism. Using previously published proteomics data and the newly conducted metabolomics data, the authors identified a serine hydroxymethyl transferase in Conyza canadensis (CcSHMT1) to be a likely candidate for CAP inhibition.
The authors conducted a series of in vitro and in vivo tests to elucidate the effect of CAP on SHMT1 inhibition. Plants overexpressing SHMT1 were used to analyze the effect of SHMT1 expression, activity, and inhibition, among others. Purified SHMT1 was used to elucidate enzyme kinetics in the presence or absence of inhibitors. CRISPR-based editing was a powerful method of investigating the effect of SHMT1 mutants on CAP application and complements the overexpression and in vitro studies. Finally, computational docking of CAP on SHMT1 was conducted to identify key interacting residues. The results are overall consistent with one another and present a unified framework for CAP activity as an herbicide. Unexpected variations in SHMT1 expression and activity levels upon CAP treatment suggest complex biological compensatory mechanisms in response to SHMT1 deficiency. Further studies are needed to understand the effect of these perturbations that will be required to successfully develop and deploy CAP-resistant crops for widespread use in agriculture. In conclusion, the authors did a commendable job of elucidating SHMT1 as a biologically relevant target for CAP.
Strengths:
- Combines computational docking, enzyme kinetics using purified proteins, and several different model plant species and two different methods of testing (overexpression and base editing) to establish plant response and survival.
- Sound experimental designs and the presence of controls validate the results and provide additional confidence in the authors' conclusions.
Weaknesses:
- Relied too heavily on the study of plants overexpressing SHMT1, which do not have native gene regulation, and this might limit the generalizability of their conclusions.
-The authors did not leverage computational docking analysis to validate or seek corroboration of the performance of plant alleles obtained from the base editing experiments.
-
Reviewer #1 (Public Review):
Caprylic acid (CAP), i.e., octanoic acid, is a saturated fatty acid. CAP is commonly used as a food contact surface sanitizer. In mammals, caprylic acid is related to hunger sensation (i.e., food consumption). serine hydroxymethyl transferase (SHMT) has been previously known as a potential herbicidal target. The present study involves a huge amount of work. The results are useful and contribute well to the literature. The data does support the conclusion. It does not seem that SHMT is the only target of CAP though (CAP may act on other proteins as well). A major deficiency of this manuscript is that there are many unclear, inaccurate, or unconcise descriptions.
-
Reviewer #3 (Public Review):
Summary:
Li et al investigated the initial target of the herbicidal caprilic acid (CAP). Using a combination of proteomic and metabolomic approaches, they generated a list of candidate targets for CAP and identified a Serine hydroxymethyl transferase (SHMT) as the best candidate.
CAP application to Conyza canadensis induces an early and brief increase in SHMT1 protein and transcript. Studies with purified recombinant CcSHMT1 indicate that enzymatic activity is inhibited by CAP. The authors suggest a kinetic mechanism of CAP inhibition but more data should be collected to reach a firm conclusion on this point.
Transgenic Arabidopsis and rice plants expressing CcSHMT1 show increased tolerance to CAP, as measured by biomass reduction 7 days after treatment with CAP. Similar results were obtained with Arabidopsis and rice plants overexpressing AtSHMT2 and OsSHMT1, respectively. OsSHMT1 single and double mutant rice plants showed increased tolerance to CAP. These results strongly link CAP tolerance to the level of SHMT, which can be manipulated by transgenesis, and suggest that engineered SHMT can also lead to higher CAP tolerance.
Finally, structural analysis allowed the identification of three residues close to the active site involved in the binding of CAP. Arabidopsis plants containing AtSHMT2 modified in these three residues are more sensitive to CAP.
Strengths:
The work of Li et al. includes a large number of assays using different methodologies. The evidence suggests that SHMT inhibition by CAP is effective in inhibiting plant growth. In addition, new technologies that manipulate SHMT levels or activity may improve crop yield by controlling weeds. Structural analysis can be the starting point for the design of more complex molecules that exceed the herbicidal activity of CAP.
Weaknesses:
The methods are rather incomplete, lacking many details necessary to fully understand the author's reasoning. It is not possible to reproduce the experiments on the basis of the information provided.
Although the conclusions are generally well supported, the results are presented in an incorrect or confusing manner. In the comparison of wild-type and transgenic plants, the control condition is missing in some experiments (Figures 4A and 5A). In some plots, the scales are not logical, making them difficult to interpret and fit into an equation (Figures 4B, 4C, 4E, 5E, 6E, 6F).
A final concern is the finding that some point mutations in the SHMT1 gene lead to more tolerant plants (Figures 6D, 6E, 6F). The authors could then explain whether this means that resistance to CAP could be easily acquired by weeds.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The authors developed a new viral 'gene drive' based on an alternate CRISPR Cas system: UNCas12f1. They show in HSV-1 that the gene drive virus can transmit as hypothesized and is superior to Cas9 in terms of evolutionary robustness.
Strengths:
No doubt this is an impressive technological achievement and UNCas12f1 does appear superior to Cas9 in terms of taking longer to develop resistance. This is a strong body of work and Fig 3B is the crux of the paper for me showing that resistance does take longer in terms of % of viruses that are wildtype versus UNCas12f1 gene drive. I applaud the authors and I think this is a nice technological contribution.
Weaknesses:
I will focus on major conceptual issues.
(1) Mechanism. It is not really that clear to me why the UNCas12f1 has a higher barrier to the evolution of resistance. Is this simply a temporal delay or is there something intrinsic about UNCas12f1 that does not allow resistance to arise? There is a some discussion about this but it is speculative and I could not understand why resistance would not develop.
(2) Evolution. Fig 3B is the crux of the paper for me showing that resistance does take longer in terms of % of viruses that are wildtype versus UNCas12f1 gene drive. The authors did a nice job, however, I think they need to temper the claims somewhat as longer studies (other studies typically go out to >40 days) might show resistance arising. Also, I think absolute viral titers need to be shown in addition to percentage of viruses.
(3) Therapeutic Utility. Is this proposed as a therapeutic strategy? If so, how would it work? Could it lower overall total viral burden (i.e., wt + gene drive)? Another issue that I think needs to be specifically addressed is the issue of MOI as typically HSV-1 is thought to be (i.e. shown to be) a low MOI infection in vivo and in patients, whereas this strategy appears to rely on high MOI. Overall, to me, this is probably the major weakness: i.e., whether this strategy has therapeutic potential.
(4) Title. I don't think the subordinate clause of the title "virus that 'infect' viruses" is quite correct. This needs to be be reworded. This strategy converts the viral population from wild type to a gene drive virus but "infect" does not seem accurate.
-
Reviewer #2 (Public Review):
Summary:
This article develops CRISPR-based gene drives designed to spread in viral populations. By targeting the gene drives to neutral loci, or at least loci where the presence of a gene drive is tolerated. This type of gene drive is designed to work by recognising the cognate target sequence of the CRISPR-Cas nuclease on a wild type virus genome, cutting it and then invoking the homology-directed DNA repair machinery to copy itself into the repaired genome, thereby increasing its frequency in the population. Two types of CRISPR nuclease are tested in this setup: Cas9 and Cas12. There have been a large number of studies describing Cas9- based gene drives, but very few using other Cas nucleases, such as Cas12 reported here. Other nucleases have different targeting ranges and different features of cleavage that may make them more attractive for several reasons, including propensity to generate mutations that may be undesirable for certain applications. For this reason the work reported here is an important step.
There are advantages to this system, in terms of its throughput and speed of testing, which could generate insights into the dynamics of gene drive mutation and repair events. However, its suitability as a proxy for probability of selection of resistant mutations in gene drives designed to work in higher organisms is overstated since this is in large part determined by the force of selection acting on those mutations in the genomes of those target organisms.
Strengths:
Overall I found the experiments to be well planned and executed, with sound rationale and logic. The paper is well structured and well written. The evidence for CRISP-HDR in placing transgenes in specific parts of the viral genome is solid. The experiments to measure frequency of gene drive genotypes invading in the context of convertible WT target sites, and non-convertible target sites, are largely well designed. The authors go further and show in subsequent experiments that there are converted genotypes that contain combinations of linked alleles that should only segregate together in the event of conversion to the gene drive allele (assuming this signal is not conflated by two separate genotypes covering each other). The description of the different types and rates of accumulation of mutations according to Cas architecture is valuable.
Figures are very clear and informative (but could be improved with clearer labelling of genotypes).
The paper is well referenced and captures the literature well.
Weaknesses:
It is not immediately clear to me how you can determine, in your experimental setup, that the three alleles (gD+, GFP+ and gE-) are on the same genome/haplotype rather than split across two or more genomes that infect a cell. Presumably this is because you make a clonal population that started from a dilution that ensure there was at most one genome to start the infection?
Some more discussion of the results, and some surprising observations therein, is warranted. For example: in the invasion experiments, which are generally well described, it is curious that when nearly all the WT target sites are depleted there should still be a further disappearance of the original gene drive allele to the expense of the new converted drive alelle - once WT target sites are exhausted (e.g. V10 in Fig 3B), there are no more opportunities to convert, one would expect ration of green:yellow to stay the same (assuming equal fitness between genotypes)? In fact, the yellow genotype, having both gene drive and Us8 deletion, is expected to be less fit, is it not? So this result is surprising, yet not discussed.
It is not clear why general levels of mutation increase across the whole amplicon, regardless of proximity to target site? e.g by Passage 7 in the Cas12 lines , Fig3D and 3E). Not discussed. This may be due to the fact that their ratio to WT target sequences is inflated due to the presence of the non-mapped sequences but again, the origin of the not mapped sequences is itself not explained.
Gene drives could theoretically increase their frequency by 'destroying' or disabling other genotypes, for example if Cas-induced cleavage removed the cut genome, rather than converting it. Presumably this is what motivated the authors to try and get a concrete signal of converted genotypes rather than just increase in frequency of the original gene drive genotype. This possibility is never discussed.
Line 140 re: the use of refractory target sites to show that gene drive genomes do not increase in frequency when there is no opportunity for genomes to convert; I like this control but it should be noted that there is the possibility, albeit unlikely, that general UL-3/4 deletions compete better than WT generally, and that has not been tested here.
In some places, the description of genotypes rather than arbitrary, non-informative strain names would really help.
It is not obvious to me either where the 'unmapped reads' come from - it is stated that "gene drive viruses took over and interefrered with PCR, causing many unmapped NGS reads". I am not sure what is meant here, and besides, this doesn't explain why reads would be unmapped. If the gene drive allele were too large to be amplified then it should not contribute to sequences in the amplicon.
Re: HSV1 viruses being multiploid - for people, like me, whose virology is not very good, some more explanation would be useful - are you proposing that this happens on 'loose' viral genomes circulating within nucleus or cytoplasm of host cell, or within virions? Can there be more than one genome per virion?
The suggestion that slow reproduction in insects (where many types of gene drive are proposed for control of pest populations) is a barrier to testing at scale is only true to an extent - rue to an extent but there are screens for resistance that are higher throughput and do not need selection experiments over time, but rather in a single generation (e.g KaramiNejadRanjbar et al PNAS 2018; Hammond et al PLoS Genetics 2021) and, for the reasons stated above, selection on an insect genome cannot be replicated in this HSV system.
In the intro, much is made of utility in viral engineering for therapeutic approaches but there is never any detail of this in the discussion other than vague contemplations on utility in 'studying horizontal gene transfer' and 'prevention and treatment of diseases'.<br /> I have other suggestions for improving clarity of text around experimental design but I have confined these to 'Recommendations for Authors'
-
Reviewer #3 (Public Review):
Summary:
The study by Yao, Dai and colleagues successfully describes the design of a viral gene drive against herpes simplex virus 1. Gene drives are genetic modifications designed to spread efficiently in a population. Most applications have been developed in insects to eradicate diseases such as malaria, and the design of gene drives in viruses is an exciting recent development. A viral gene drive system was first described with human cytomegalovirus, another virus of the herpesvirus family (PMID: 32985507), and the authors followed similar methods to design a gene drive against HSV-1. While some key experiments lack rigorous controls, overall the authors convincingly showed that an HSV-1 gene drive could spread efficiently in the target population in cell culture experiments. Cytomegalovirus and HSV-1 have very different infection dynamics, and these new findings suggest that viral gene drives could be developed in a wide variety of herpesviruses. This significantly expands the potential of the technology and will be of interest to readers interested in gene drives, viral engineering, or biotechnology in general.
The most novel and interesting part of the study is the comparison of gene drives relying on spCas9 and Un1Cas12f1 nuclease. Most gene drives developed to date have relied on Cas9 or similar nucleases. Cleavage and repair of the target site by non-homologous end-joining (NHEJ) can lead to the formation of drive-resistant sequences, and, depending on the selective pressure on the wild-type, gene drive and drive-resistant alleles, prevent successful gene drive propagation. By contrast to most RNA-guided nucleases, Un1Cas12f1 cleaves outside of the RNA-recognition site. The authors hypothesized that it could prevent the appearance of drive-resistant sequences, since the target sequence would be preserved after NHEJ repair. Indeed, the study convincingly showed that Un1Cas12f1 induced fewer drive-resistant mutations, which led to almost complete penetrance of the drive. However, the claim in the abstract that an "Un1Cas12f1 gene drive yielded a greater conversion" rate than Cas9 appears unsupported. Together with its smaller size, this positions Un1Cas12f1 as an interesting alternative to Cas9 for gene drives in any organism. This development will be of great interest to researchers interested in gene drives.
Strengths:
Overall, this study is well done and the main conclusions are supported by the data. The authors used flow cytometry to follow gene drive propagation, detecting either fluorescent or cell surface proteins expressed by the different viral populations. This represents an indirect but adequate way of measuring the proportion of the different viral populations, assuming that each of the target BHK cells is infected with only one virus.<br /> In particular, the results in Fig 3 showing that Un1Cas12f1 induces fewer drive-resistant mutations than Cas9 are convincing.
Weaknesses:
The manuscript presents several conceptual and methodological weaknesses that could be discussed or addressed experimentally, which would improve the overall rigor of the study.
(1) In the abstract and the text, the author claims that "HSV1 emerges as a dependable and swift platform for gene drive assessment". It is unclear if the author believes that the main interest of their work with HSV-1 is to provide a platform for testing gene drive for other organisms, or whether a gene drive for HSV-1 could be useful by itself. While their findings with Un1Cas12f1 certainly warrant investigation in other systems, the dynamics of DNA cleavage, recombination, and selection of drive-resistant alleles will be very different between a viral infection where hundreds or thousands of genome copies co-exist in a cell nucleus, and during sexual reproduction where only one gene drive and wild-type allele are present in a fertilized egg. As such, it is unsure whether gene drive dynamics in HSV-1 will be informative for other organisms besides other herpesviruses. On the other hand, the authors provide little perspectives on the potential usage of an HSV-1 gene drive, beyond concluding that "Our study opens new possibilities for using the HSV1 gene drive for the prevention and treatment of diseases". The authors designed a drive against the important viral protein gE in an attempt to limit infectivity, but it is unclear from the data presented whether this was successful. An extended discussion on the potential use case of an HSV-1 gene drive would be informative.
(2) Unfortunately, the experiments presented lack rigorous controls to unambiguously show that gene drive propagation is mediated by CRISPR-directed recombination into the target genome. Gene drive-mediated recombination converts wild-type viruses into new recombinant viruses and the population of recombinants is expected to increase in frequency, as observed with the yellow population in Fig 2G and 3G. However, a rigorous experimental design would show that this population of recombinant viruses does not appear with a non-functional CRISPR system (for example if Cas9 is deleted in the gene drive virus) or if the target site is absent in the recipient virus. The comparison of Fig 2B and 2D does show that gene drive viruses do not increase in frequency when the target site is absent in the V19 virus, but these experiments could not distinguish between original and recombinant gene drive viruses. Thus, it is unknown if the increase in gene drive frequency in Fig 2B is because wild-type viruses have been converted to gene drive viruses, or because the WT and v23 viruses replicate with different dynamics (one could imagine for example that CRISPR cleavage of the WT genomes impaired the replication of the WT virus without inducing recombination, thus giving an advantage to v23). In Fig 2G and 3B, the authors do follow the population of recombinant viruses, in yellow, which increase in frequency as expected. However, in these experiments, either the donor or recipient viruses are mutated for gE, and the different viral populations might replicate with different dynamics, which confounds the interpretation of the results (see point 4. below). Overall, while the data presented suggests that CRISPR-mediated gene drive propagation is happening, it does not conclusively rule out other explanations, especially if viruses have different fitness.
(3) In Fig 2F-G-H, the authors designed a gene drive knocking out an important viral gene, gE, in an attempt to build a drive that reduces infectivity. gE knockout viruses V10 and V15 had smaller plaques but replicated with similar titers (Fig 1B, 1C). The gene drive against gE spread efficiently in Fig 2G. However, gE-KO viruses did not appear to have a meaningful disadvantage in the experimental system used, since the high MOI used in the co-infection experiments allowed to bypass the cell-to-cell defect of gE mutants. It would have been interesting to characterize the final population composed primarily of original and recombinant viruses (at P3 in Fig 2G), and in particular measure the plaque size of these viruses. Recombinant viruses should have smaller plaque sizes, and showing that the gene drive was able to propagate an attenuating phenotype would be a meaningful result that hints at potential therapeutic applications.
(4) Experiments presented in Fig 3 compared the dynamics of Cas9 and Un1Cas12f1 gene drives, but the experimental system used is a bit puzzling and makes the interpretation of the results challenging. In particular, the authors chose to use gE-knockout virus v10 as the recipient for the gene drive, which allowed them to use gE in their flow cytometry assay. Unfortunately, this added a confounding factor to the experiments, since gE- viruses might replicate with different dynamics than gE+ viruses (for example v10 titers are one log higher than WT at 12h in Fig 1C). In Fig 3B, gD+ gE- viruses (in blue) disappear and are replaced by gD+ GFP+ gE- recombinants (in yellow), which is suggestive of efficient gene drive recombination, as pointed out by the authors. However, the population of gD+ GFP+ virus (in green) representing the original gene drive virus also disappeared over time. At the end of the experiments in Fig 3B, the population of gE+ viruses is gone. This is unexpected and suggests that the gD+ GFP+ gE- (yellow) has a replicative advantage over gD+ GFP+ (green), and that the gE- mutation is actually positively selected in these viral competition assays. So in these experiments, both gene drive-mediated recombination and competition between viral genotypes appear to be happening at the same time, which makes interpretation of the results challenging. However, despite these limitations, the results presented convincingly suggested that Un1Cas12f1 gene drives achieved higher penetrance than Cas9's, which is one of the most important findings of the study.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Here the authors examine how increased temperature affects pollen production and fertility of Arabidopsis thaliana plants grown at selected temperature conditions ranging from 16C to 30C. They show that pollen production and fertility decline with increasing temperature. To identify the cause of reduced pollen and fertility, they resort to living cell imaging of male meiotic cells to identify that duration of meiosis increases with an increase in temperature. They also show that pollen sterility is associated with the increased presence of micronuclei likely originating from heat stress-induced impaired meiotic chromosome segregation. They correlate abnormal meiosis to weakened centromere caused by meiosis-specific defective loading of the centromere-specific histone H3 variant (CenH3) to the meiotic centromeres. Similar is the case with kinetochore-associated spindle assembly checkpoint(SAC) protein BMF1. Intriguingly, they observe a reverse trend of strong CENH3 presence in the somatic cells of the tapetum in contrast to reduced loading of CENH3 in male meiocytes with increasing temperature. In contrast to CENH3 and BMF1, the SAC protein BMF3 persists for longer periods than the WT control, based on which authors conclude that the heat stress prolongs the duration of SAC at metaphase I, which in turn extends the time of chromosome biorientation during meiosis I. This study provides insights onto the processes that affect plant reproduction with increasing temperatures which may be relevant to develop climate-resilient cultivars.
Strengths:
This study shows that the centromere function is affected under heat stress in meiotic cells by modulating the dynamics of the centromere specific histone H3 (CENH3) that in turn compromises the assembly of kinetochore complex proteins. This they have demonstrated by the way of live cell imaging of male meiocytes by tracking the loading dynamics and resident time of fluorescently tagged centromere/kinetochore proteins and spindle assembly checkpoint proteins.
Weaknesses:
Though the results presented here are interesting and solid, the current study lacks a deeper mechanistic understanding of what causes the defective loading of CenH3 to the centromeres, and why the SAC protein BMF3 persists only at meiotic centromeres to prolong the spindle assembly checkpoint, which will be interesting to delve further to completely understand the process.
Here the authors monitor one representative centromere protein CENH3, one kinetochore-associated SAC protein BMF1, and the SAC protein BMF3 to conclude that heat stress impairs centromere/kinetochore function and prolongs SAC with increased temperatures. Centromere and its associated protein complex the kinetochores and the SAC contains a multitude of proteins, some of which are well characterized in Arabidopsis thaliana. Hence the authors could have used additional such tagged proteins to further strengthen their claim.
-
Reviewer #3 (Public Review):
Summary:
Khaitova et al. report the formation of micronuclei during Arabidopsis meiosis under elevated temperature. Micronuclei form when chromosomes are not correctly collected to the cellular poles in dividing cells. This happens when whole chromosomes or fragments are not properly attached to the kinetochore microtubules. The incidence of micronuclei formation is shown to increase at elevated temperature in wild type and more so in the weak centromere histone mutant cenH3-4. The number micronuclei formation at high temperature in the recombination mutant spo11 is like that in wild type, indicating that the increased sensitivity of cenh3-4 is not related to the putative role of cenh3 in recombination. The abundance of CENH3-GFP at the centromere declines with higher temperature and correlates with a decline in spindle assembly checkpoint factor BMF1-GFP at the centromeres. The reduction in CENH3-GFP under heat is observed in meiocytes whereas CENH3-GFP abundance increases in the tapetum, suggesting there is a differential regulation of centromere loading in these two cell types. These observations are in line with previous reports on haploidization mutants and their hypersensitivity to heat stress.
Strength:
The paper shows that the kinetochore function during meiosis is sensitive to high temperature and this leads to inequivalent chromosome segregation during meiosis and reduced fertility.
Weakness:
The increased sensitivity to high temperature stress of the hypomorphic mutant cenh3-4 mutant not only reduces fertility but also growth, which is not accompanied with the formation of micronuclei as in meiosis. The impact on mitosis therefore seems to be different from that in meiosis.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The authors aim to develop an easy-to-use image analysis tool for the mother machine that is used for single-cell time-lapse imaging. Compared with related software, they tried to make this software more user-friendly for non-experts with a design of "What You Put Is What You Get". This software is implemented as a plugin of Napari, which is an emerging microscopy image analysis platform. The users can interactively adjust the parameters in the pipeline with good visualization and interaction interface.
Strengths:
- Updated platform with great 2D/3D visualization and annotation support.<br /> - Integrated one-stop pipeline for mather machine image processing.<br /> - Interactive user-friendly interface.<br /> - The users can have a visualization of intermediate results and adjust the parameters.
Weaknesses:
- Based on the presentation of the manuscript, it is not clear that the goals are fully achieved.<br /> - Although there is great potential, there is little evidence that this tool has been adopted by other labs.<br /> - the diversity of datasets used in this study is limited.<br /> - Some paragraphs in the Discussion section are like blogs with general recommendations. Although the suggestions look pretty useful, it is not the focus of this manuscript. It might be more appropriate to put it in the GitHub repo or a documentation page. The discussion should still focus on the software, such as features, software maintenance, software development roadmap, and community adoption.
A discussion of the likely impact of the work on the field, and the utility of the methods and data to the community.<br /> - The impact of this work depends on the adoption of the software MM3. Napari is a promising platform with an expanding community. With good software user experience and long-term support, there is a good chance that this tool could be widely adopted in the mother machine image analysis community.<br /> - The data analysis in this manuscript is used as a demo of MM3 features, rather than scientific research.
-
Reviewer #2 (Public Review):
The authors present an image-analysis pipeline for mother-machine data, i.e., for time-lapses of single bacterial cells growing for many generations in one-dimensional microfluidic channels. The pipeline is available as a plugin of the python-based image-analysis platform Napari. The tool comes with two different previously published methods to segment cells (classical image transformation and thresholding as well as UNet-based analysis), which compare qualitatively and quantitatively well with the results of widely accessible tools developed by others (BACNET, DelTA, Omnipose). The tool comes with a graphical user interface and example scripts, which should make it valuable for other mother-machine users, even if this has not been demonstrated yet.
The authors also add a practical overview of how to prepare and conduct mother-machine experiments, citing their previous work, referring to detailed instructions on their github page, and giving more advice on how to load cells using centrifugation.
Finally, the authors emphasize that machine-learning methods for image segmentation reproduce average quantities of training datasets, such as the length at birth or division. Therefore, differences in training can propagate to differences in measured average quantities. This result is not surprising but good to remember before interpreting absolute measurements of cell shape.
-
-
www.ncbi.nlm.nih.gov www.ncbi.nlm.nih.gov
-
Reviewer #1 (Public Review):
Zhang et al. investigate the hypothesis that tRNA methyl transferase 1 (TRMT1) is cleaved by NSP5 (nonstructural protein 5 or MPro), the SARS-CoV-2 main protease, during SARS-CoV-2 infection. They provide solid evidence that TRMT1 is a substrate of Nsp5, revealing an Nsp5 target consensus sequence and evidence of TRMT1 cleavage in cells. Their conclusions are exceptionally strong given the co-submission by D'Oliveira et al showing cleavage of TRMT1 in vitro by Nsp5. The detection of the N-terminal TRMT1 fragment by western blot is not robust; however, the authors provide corroborating assays and detailed densitometry methods, providing confidence to this reviewer that a TRMT1 fragment is produced under some conditions. Separately, the authors convincingly demonstrate widespread downregulation of RNA modifications during CoV-2 infection, including a requirement for TRMT1 in efficient viral replication. This finding is congruent with the authors' previous work defining the impact of TRMT1 and m2,2g on global translation, which is most likely necessary to support infection and virion production. Based on the data provided here, TRMT1 cleavage may be an act by CoV-2 to self-limit replication, as expression of a non-cleavable TRMT1 (versus wild type TRMT1) supports enhanced viral RNA expression at certain MOIs. The authors propose a few fascinating ideas to why this may be so in "Ideas and Speculation." Theoretically, TRMT1 cleavage should inactivate the modification activity of TRMT1, which the authors thoroughly and elegantly investigate with rigorous biochemical assays. However, only a minority of TRMT1 undergoes cleavage during infection at low MOIs and thus whether TRMT1 cleavage serves an important functional role during CoV-2 replication will be an important topic for future work. The authors fairly assess their work in this regard. In summary, this study demonstrates an important finding that the tRNA modification landscape is altered during CoV-2 infection, and that TRMT1 is an important host factor supporting CoV-2 replication. Their data pushes forward the idea that control of tRNA expression and functionality is an important and understudied area of host-pathogen interaction.
-
Reviewer #2 (Public Review):
Summary:<br /> The manuscript titled 'Proteolytic cleavage and inactivation of the TRMT1 tRNA modification enzyme by SARS-CoV-2 main protease' from K. Zhang et al., demonstrates that several RNA modifications are downregulated during SARS-CoV-2 infection including the widespread m2,2G methylation, which potentially contributes to changes in host translation. To understand the molecular basis behind this global hypomodification of RNA during infection, the authors focused on the human methyltransferase TRMT1 that catalyzes the m2,2G modification. They reveal that TRMT1 not only interacts with the main SARS-CoV-2 protease (Nsp5) in human cells but is also cleaved by Nsp5. To establish if TRMT1 cleavage by Nsp5 contributes to the reduction in m2,2G levels, the authors show compelling evidence that the TRMT1 fragments are incapable of methylating the RNA substrates due to loss of RNA binding by the catalytic domain. They further determine that expression of full-length TRMT1 is required for optimal SARS-CoV-2 replication in 293T cells. Nevertheless, the cleavage of TRMT1 was dispensable for SARS-CoV-2 replication hinting at the possibility that TRMT1 could be an off-target or fortuitous substrate of Nsp5. Overall, this study will be of interest to virologist and biologists studying the role of RNA modification and RNA modifying enzyme in viral infection.
Strengths:<br /> • The authors use state-of-the-art mass spectrometry approach to quantify RNA modifications in human cells infected with SARS-CoV-2.<br /> • The authors go to great lengths to demonstrate that SARS-CoV-2 main protease, Nsp5, interacts and cleaves TRMT1 in cells and perform important controls when needed. They use a series of overexpression with strategically placed tags on both TRMT1 and Nsp5 to strengthen their observations.<br /> • The use of an inactive Nsp5 mutant (C145A) strongly supports the claim of the authors that Nsp5 is solely responsible for TRMT1 cleavage in cells.<br /> • Although the direct cleavage was not experimentally determined, the authors convincingly show that TRMT1 Q530N is not cleaved by Nsp5 suggesting that the predicted cleavage site at this position is most likely the bona fide region processed by Nsp5 in cells.<br /> • To understand the impact of TRMT1 cleavage on its RNA methylation activity, the authors rigorously test four protein constructs for their capacity not only to bind RNA but also to introduce the m2,2G modification. They demonstrate that the fragments resulting from TRMT1 cleavage are inactive and cannot methylate RNA. They further establish that the C-terminal region of TRMT1 (containing a zinc-finger domain) is the main binding site for RNA.<br /> • While 293T cells are unlikely an ideal model system to study SARS-CoV-2 infection, the authors use two cell lines and well-designed rescue experiments to uncover that TRMT1 is required for optimal SARS-CoV-2 replication.
Weaknesses:<br /> • Immunoblotting is extensively used to probe for TRMT1 degradation by Nsp5 in this study. Regretfully, the polyclonal antibody used by the authors shows strong non-specific binding to other epitopes. This complicates the data interpretation and quantification since the cleaved TRMT1 band migrates very closely to a main non-specific band detected by the antibody (for instance Fig 3A). While this reviewer is concerned about the cross-contamination during quantification of the N-TRMT1, the loss of this faint cleaved band with the TRMT1 Q530N mutant is reassuring. Nevertheless, the poor behavior of this antibody for TRMT1 detection was already reported and the authors should have taken better precautions or designed a different strategy to circumvent the limitation of this antibody by relying on additional tags.<br /> • While 293T cells are convenient to use, it is not a well-suited model system to study SARS-CoV-2 infection and replication. Therefore, some of the conclusions from this study might not apply to better suited cell systems such as Vero E6 cells or might not be observed in patient infected cells.<br /> • The reduction of bulk TRMT1 levels is minor during infection of MRC5 cells with SARS-CoV-2 (Fig 1). This does not seem to agree with the more dramatic reduction in m2,2G modification levels. Cellular Localization experiments of TRMT1 would help clarify this. While TRMT1 is found in the cytoplasm and nucleus, it is possible that TRMT1 is more dramatically degraded in the cytoplasm due to easier access by Nsp5.<br /> • In fig 6, the authors show that TRMT1 is required for optimal SARS-CoV-2 replication. This can be rescued by expressing TRMT1 (fig 7). Nevertheless, it is unknown if the methylation activity of TRMT1 is required. The authors could have expressed an inactive TRMT1 mutant (by disrupting the SAM binding site) to establish if the RNA modification by TRMT1 is important for SARS-CoV-2 replication or if it is the protein backbone that might contribute to other processes.<br /> • Fig 7, the authors used the Q530N variant to rescue SARS-CoV-2 replication in TRMT1 KO cells. This is an important experiment and unexpectedly reveals that TRMT1 cleavage by Nsp5 is not required for viral replication. To strengthen the claim of the authors that TRMT1 is required to promote viral replication and that its cleavage inhibits RNA methylation, the authors could express the TRMT1 N-terminal construct in the TRMT1 KO cells to assess if viral replication is restored or not to similar levels as WT TRMT1. This will further validate the potential biological importance of TRMT1 cleavage by Nsp5.<br /> • Fig 7, shows that the TRMT1 Q530N variant rescues SARS-CoV-2 replication to greater levels then WT TRMT1. The authors should discuss this in greater detail and its possible implications with their proposed statement. For instance, are m2,2G levels higher in Q530N compared to WT? Does Q530N co-elute with Nsp5 or is the interaction disrupted in cells?
-
Reviewer #3 (Public Review):
Summary:<br /> In this manuscript, the authors have used biochemical approaches to provide compelling evidence for the cleavage of TRMT1 by SARS-CoV-2 Nsp5 protease.<br /> This work is of wide interest to biochemists, cell biologists, and structural biologists in the coronavirus (CoV) field. Furthermore, it substantially advances the understanding of how CoV's interact with host factors during infection and modify cellular metabolism.
Strengths:<br /> The authors provide multiple lines of biochemical evidence to report a TRMT1-Nsp5 interaction during SARS-CoV-2 infection. They show that the host enzyme TRMT1 is cleaved at a specific site, and that it generates fragments that are incapable of functioning properly. This is an important result because TRMT1 is a critical player in host protein synthesis. This also advances our understanding of virus-host interactions during SARS-CoV-2 infections. Furthermore, this revised submission attempts to address the mechanistic role of TRMT1-Nsp5 interaction.
Weaknesses:<br /> The discussion on the enhanced viral infectivity upon expression of the non-cleavable TRMT1 is unclear. As presented, this is a bit contradictory to the suggested function of the TRMT1-Nsp5 interaction in diverting the host tRNA pools towards viral propagation. If the authors' model were correct, then one would expect a non-cleavable TRMT1 to inhibit viral infectivity because the virus would be unable to divert the host tRNA pools towards its propagation. I think this section needs to be written more clearly. But other than this, I have no further questions/suggestions for the authors.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The study by Vengayil et al. presented a role for Ubp3 for mediating inorganic phosphate (Pi) compartmentalization in cytosol and mitochondria, which regulates metabolic flux between cytosolic glycolysis and mitochondrial processes. Although the exact function of increased Pi in mitochondria is not investigated, findings have valuable implications for understanding the metabolic interplay between glycolysis and respiration under glucose-rich conditions. They showed that UBP3 KO cells regulated decreased glycolytic flux by reducing the key Pi-dependent-glycolytic enzyme abundances, consequently increasing Pi compartmentalization to mitochondria. Increased mitochondria Pi increases oxygen consumption and mitochondrial membrane potential, indicative of increased oxidative phosphorylation. In conclusion, the authors reported that the Pi utilization by cytosolic glycolytic enzymes is a key process for mitochondrial repression under glucose conditions.
Comments on revised version:
This reviewer appreciates the author's responses addressing some of the concerns.
However, the concern of reproducibility and experimental methods applied to the study is still valid, particularly considering that many conclusions were drawn from western blot analysis. The authors used separate gel loading controls for western blot analysis, which is not a valid method. Considering loading and other errors/discrepancies during the transfer phase of the assay, the direct control should be analyzing the membrane after transfer or using an internal control antibody on the same membrane. None of the western blots are indicated with marker sizes, and it isn't very clear how many repeats there are and whether those repeats are biological or technical repeats.
Concern regarding citing the Ouyang et al. paper is still valid. This paper is an essential implication in phosphate metabolism and is directly related to some of the findings associated with mitochondrial function, along with conflicting results, which should be discussed in the discussion section. As a reviewer, I do not request citing any paper from the authors in general; however, considering some of the conflicting results here, citing and discussing paper from Ouyang et al. will improve the interoperation/value of their findings.
Considering these factors, the presented results do not fully support the findings.
-
Reviewer #2 (Public Review):
Summary:
Cells cultured in high glucose tend to repress mitochondrial biogenesis and activity, a prevailing phenotype type called Crabree effect that observed in different cell types and cancer. Many signaling pathways have been put forward to explain this effect. Vengayil et al proposed a new mechanism involved in Ubp3/Ubp10 and phosphate that controls the glucose repression of mitochondria. The central hypothesis is that ∆ubp3 shift the glycolysis to trehalose synthesis, therefore lead to the increase of Pi availability in the cytosol, then mitochondrial received more Pi and therefore the glucose repression is reduced.
Strengths:
The strength is that the authors used an array of different assays to test their hypothesis. Most assays were well designed and controlled.
Weaknesses:
I think the main conclusions are not strongly supported by the current dataset. Here are my comments on authors' response and model.
(1) The authors addressed some of my concerns related to ∆ubp3. But based on the results they observed and discussed, the ∆ubp3 redirect some glycolytic flux to gluconeogenesis while the 0.1% glucose in WT does not. Similarly, the shift of glycolysis to trehalose synthesis is also not relevant to the WT cells cultured in low glucose situation. This should be discussed in the manuscript to make sure readers are not misled to think ∆ubp3 mimic low glucose. It is likely that ∆ubp3 induce proteostasis stress, which is known to activate respiration and trehalose synthesis.
(2) Pi flux: it is known that vacuole can compensate the reduction of Pi in the cytosol. The paper they cited in the response, especially the Van Heerden et al., 2014 showed that the pulse addition of glucose caused transient Pi reduction and then it came back to normal level after 10min or so. If the authors mean the transient change of glycolysis and respiration, they should point that out clearly in the abstract and introduction. If the authors are trying to put out a general model, then the model must be reconsidered.
The cytosol has ~50mM Pi (van Eunen et al., 2010 FEBSJ), while only 1-2mM of glycolysis metabolites, not sure why partial reduction of several glycolysis enzymes will cause significant changes in cytosolic Pi level and make Pi the limiting factor for mitochondrial respiration. In response to this comment, the authors explained the metabolic flux that the rapid, continuous glycolysis will drain the Pi pool even each glycolytic metabolite is only 1-2mM. However, the metabolic flux both consume and release Pi, that's why there is such measurement of overall free Pi concentration amid the active metabolism. One possibility is that the observed cytosolic Pi level changes was caused by the measurement fluctuation, as they showed in "Reviewer response image 3".
Importantly, the authors measured Pi inside mito for ethanol and glucose, but not the cytosolic Pi, which is the key hypothesis in their model. The model here is that the glycolysis competes with mito for free cytosolic Pi, so it needs to inhibit glycolysis to free up cytosolic Pi for mitochondrial import to increase respiration. I don't see measurement of cytosolic Pi upon different conditions, only the total Pi or mito Pi. The fact is that in Fig.3C they saw WT+Pi in the medium increase total free Pi more than the ∆ubc3, while WT decrease mito Pi compared to WT control and ∆ubc3 and therefore decrease basal OCR upon Pi supplement. A simple math of Pitotal = Pi cyto + Pi mito tells us that if WT has more Pitotal (Fig.3C) but less Pi mito (fig.5 supp 1C), then it has higher Pi cyto. This is contradictory to what the authors tried to rationalize. Furthermore, as I pointed out previously, the isolated mitochondria can import more Pi when supplemented, so if there is indeed higher Picyto, then the mito in WT should import more Pi. So, to address these contradictory points, the authors must measure Pi in the cytosol, which is a critical experiment not done for their model. For example, they hypothesized that adding 2-DG, or ∆ubp3, suppress glycolysis and thus increase the supply of cytosolic Pi for mito to import, but no cytosolic Pi was measured (need absolute value, not the relative fold changes). It is also important to specific how the experiments are done, was the measurement done shortly after adding 2-DG. Given that the cells response to glucose changes/pulses differently in transient vs stable state, the authors are encouraged to specify that.
The most likely model to me is that, which is also the consensus in the field, is that no matter 2-DG or ∆ubp3, the cells re-wiring metabolism in both cytosol and mitochondria, and it is the total network shift that cause the mitochondrial respiration increase, which requires the increase of mito import of Pi, ADP, O2, and substrates, but not caused/controlled by the Pi that singled out by the authors in their model.
(3) The explanation that cytosolic pH reduction upon glucose depletion/2DG is a mistake. There are a lot of data in the literature showing the opposite. If the authors do think this is true, then need to show the data. Again, it is important to distinguish transient vs stable state for pH changes.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This study explores whether the extreme polygenicity of common traits (the fact that variation in such traits is explained by a very large number of genetic variants) could be explained in part by competition among genes for limiting molecular resources involved in gene regulation, which would cause the expression of most genes to be correlated. While the hypothesis is interesting, I still have some concerns about the analysis and interpretation.
As the authors say in their rebuttal, assuming extreme resource limitation, i.e., going from equation 2 to 5 essentially assumes assuming that 1/(gtot [G] ) <<1 and that terms that are order [ 1/(gtot [G] ) ] can neglected. However, then the authors derive so-called resource competition terms that are order (1/m) where m is the number of genes, so that gtot is proportional to m. My main criticism (which I am not sure was addressed) is thus: can we reliably derive small order (1/m) effects while neglecting order [ 1/(gtot [G] ) ] terms, when both are presumably similar in order of magnitude? Is this mathematically sound?
I do not think the supplement that the authors have added actually gets to this. For example, section 7.1 just gives the textbook derivation of Michelis-Menten kinetics, and does not address my earlier criticism that the terms neglected in going from eq. 16 to eq. 17 (or from eq. 2 to 3) may be similar in magnitude to the terms being derived and interpreted in eqs. 6 and 7.<br /> Similarly, it is unclear from section 7.2 how the authors are doing the simulations. Are these true Michelis-Menten simulations involving equation 2? If yes, then what is the value of [G] and [P_0] in the simulations? If these are not true Michelis-Menten simulations, but instead something that already uses equation 5, then this still does not address my earlier criticism.
-
Reviewer #2 (Public Review):
The question the authors pose is very simple, and yet very important. Does the fact that many genes compete for Pol II to be transcribed explain why so many trans-eQTL contribute to the heritability of complex traits? That is, if a gene uses up a proportion of Pol II, does that in turn affect the transcriptional output of other genes relevant or even irrelevant for the trait in a way that their effect will be captured in a genome-wide association study? If yes, then the large number of genetic effects associated with variation in complex traits can be explained but such trans-propagating effects on transcriptional output of many genes.
This is a very timely question given that we still don't understand how, mechanistically, so many genes can be involved in complex traits variation. Their approach to this question is very simple and it is framed in classic enzyme-substrate equations. The authors show that the trans-propagating effect is too small to explain the ~70% of heritability of complex traits that is associated with trans-effects. Their conclusion relies on the comparison of the order of magnitude of a) the quantifiable transcriptional effects due to Pol II competition, and b) the observed percentage of variance explained by trans effects (data coming from Liu et al 2019, from the same lab).
The results shown in this manuscript rule out that competition for limiting resources in the cell (not restricted to Pol II, but applicable to any other cellular resource like ribosomes, etc) could explain heritability of complex traits.
-
Reviewer #3 (Public Review):
Human complex traits including common diseases are highly polygenic (influenced by thousands of loci). This observation is in need of an explanation. The authors of this manuscript propose a model that a competition for a single global resource (such as RNA polymerase II) may lead to a highly polygenic architecture of traits. Following an analytical examination the authors reject their hypothesis. This work is of clear interest to the field. It remains to be seen if the model covers the variety of possible competition models.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Two early Cambrian taxa of linguliform brachiopods are assigned to the family Eoobolidae. The taxa exhibit a columnar shell structure and the phylogenetic implications of this shell structure in relation to other early Cambrian families is outlined.
Strengths:
Interesting idea regarding the evolution of shell structure.
Weaknesses:
The early record of shell structures of linguliform brachiopods is incomplete and partly contradictory. The authors maintain silence regarding contradictory information throughout the article to an extend that information is cited wrongly. The article is written under the assumption that all eoobolids have a columnar shell structure. Thus, the previously claimed columnar structure of Eoobolus incipiens which has been re-illustrated in the paper is not convincing and could be interpreted in other ways.
The article still needs a proper results section. The Discussion is mainly a review of published data. Other potential results are hidden in this "discussion". Large sections of the paper appear irrelevant and can be deleted.
A critical revision of the family Eoobolidae and Lingulellotretidae including a revision of the type species of Eoobolus and Lingulellotreta is needed first.
The potential evolutionary patterns that are presented towards the end (summarized in Fig 6) are interesting but rather unconvincing. The stated numbers of shell laminae, whose origin has now been clarified in a still rather short Methods section, represent a mix of data and are not comparable. Achieved numbers of laminae based on literature data include laminae from the secondary and tertiary shell layer, a distinction between the two would be crucial for the proposed claims.<br /> The obtained evolutionary patterns as presented in Fig. 6 must, after the second revision and clarification of the methods used, be regarded as misleading and reflects a limited understanding of shell growths in linguliform brachiopods (despite the extensive review of the literature).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This study by Lee et al. is a direct follow-up on their previous study that described an evolutionary conservancy among placental mammals of two motifs (a transmembrane motif and a juxtamembrane palmitoylation site) in CD4, an antigen co-receptor, and showed their relevance for T-cell antigen signaling. In this study, they describe the contribution of these two motifs to the CD4-mediated antigen signaling in the absence of CD4-LCK binding. Their approach was the comparison of antigen-induced proximal TCR signaling and distal IL-2 production in 58-/- T-cell hybridoma expressing exogenous truncated version of CD4 (without the interaction with LCK), called T1 and T1 version with the mutations in either or both of the conserved motifs. They show that the T1 CD4 can support signaling to extend similar to WT CD4, but the mutation of the conserved motifs substantially reduced the signaling. The authors conclude that the role of these motifs is independent of the LCK-binding.
Strengths:
The authors convincingly show that CD4 is capable of contributing to TCR signaling in a manner independent of LCK, but dependent on the two studied motifs in CD4.
Weaknesses:
(1) Experiments in primary T cells are required to estimate the relative contribution of LCK-dependent and LCK-independent mechanisms of CD4 signaling.
(2) The mechanistic explanation (beyond the independence of LCK binding) of the role of these motifs is unclear at the moment.
-
Reviewer #2 (Public Review):
Summary:
The paper by Kuhn and colleagues follows upon a 2022 eLife paper in which they identified residues in CD4 constrained by evolutionary purifying selection in placental mammals, and then performed functional analyses of these conserved sequences. They showed that sequences distinct from the CXC "clamp" involved in recruitment of Lck have critical roles in TCR signaling, and these include a glycine-rich motif in the transmembrane (TM) domain and the cys-containing juxtamembrane (JM) motif that undergoes palmitylation, both of which promote TCR signaling, and a cytoplasmic domain helical motif, also involved in Lck binding, that constrains signaling. Mutations in the transmembrane and juxtamembrane sequences led to reduced proximal signaling and IL-2 production in a hybridoma's response to antigen presentation, despite retention of abundant CD4 association with Lck in the detergent-soluble membrane fraction, presumably mislocalized outside of lipid rafts and distal to the TCR. A major conclusion of that study was that CD4 sequences required for Lck association, including the CXC "clasp" motif, are not as consequential for CD4 co-receptor function in TCR signaling as the conserved TM and JM motifs. However, the experiments did not determine whether the functions of the TM and JM motifs are dependent on the Lck-binding properties of CD4 - the mutations in those motifs could result in free Lck redistributing to associate with CD4 in signaling-incompetent membrane domains or could function independently of CD4-Lck association. The current study addresses this specific question.
Using the same model system as in the earlier eLife paper (the entire methods section is a citation to the earlier paper), the authors show that truncation of the Lck-binding intracellular domain resulted in a moderate reduction in IL-2 response, as previously shown, but there was no apparent effect on proximal phosphorylation events (CD3z, Lck, ZAP70, PLCg1). They then evaluated a series of TM and JM motif mutations in the context of the truncated Lck-nonbinding molecule and showed that these had substantially impaired co-receptor function in the IL-2 assay and reduced proximal signaling. The proximal signaling could be observed at high ligand density even with a MHC non-binding mutation in CD4, although there was still impaired IL-2 production. This result additionally illustrates that phosphorylation of the proximal signaling molecules is not sufficient to activate IL-2 expression in the context of antigen presentation.
Strengths:
The strength of the paper is the further clear demonstration that the classical model of CD4 co-receptor function (MHCII-binding CD4 bringing Lck to the TCR complex, for phosphorylation of the CD3 chain ITAMs and of the ZAP70 kinase) is not sufficient to explain TCR activation. The data, combined with the earlier eLife paper, further implicate the gly-rich TM sequence and the palmitylation targets in the JM region as having critical roles in productive co-receptor-dependent TCR activation.
Weaknesses:
The major weakness of the paper is the lack of mechanistic insight into how the TM and JM motifs function. The new results are largely incremental in light of the earlier paper from this group as well as other literature, cited by the authors, that implicates "free" Lck, not associated with co-receptors, as having the major role in TCR activation. It is clear that the two motifs are important for CD4 function at low pMHCII ligand density. The proposal that they modulate interactions of TCR complex with cholesterol or other membrane lipids is an interesting one, and it would be worth further exploring by employing approaches that alter membrane lipid composition. The JM sequence presumably dictates localization within the membrane, by way of palmitylation, which may be critical to regulate avidity of the TCR:CD4 complex for pMHCII or TCR complex allosteric effects that influence the activation threshold. Experiments that explore the basis of the mutant phenotype could substantially enhance the impact of this study.
Additional comments:
- Is the "IL-2 sensitivity" measurement for the T1-TP (3C) meaningful (Table 3)? It is showing only a moderate reduction compared to T1 control, while TP (2C) or just the 3C palmitylation mutations essentially eliminate response.
- It is unclear how the pairs of control and mutant cells connected by lines in the figures are related. They are presumably cells from distinct biological experiments, with technical replicates for each, but are they paired because they were derived at the same time with different constructs? This should be explained in this paper, not in a reference.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The authors have addressed most of the concerns I had about the original version in this revised version.
-
Reviewer #2 (Public Review):
The authors have successfully addressed all of the concerns I had about the original version.
-
Reviewer #3 (Public Review):
The message conveyed by figure 1b is now clearer, but could still be improved. The authors explained the meaning of this figure well in their response to the reviewers: "For example, the results for CRISPR were obtained from 15 focus studies (original research) and 18 subsequent studies (papers citing focus articles). Those 15 studies identified 9,268 genes where loss-of-function changed phenotypes but, in their titles and abstracts, mentioned only 18 of those 9,268 genes. While the 9,268 hit genes have received similar research attention to the entirety of protein-coding genes, the 18 hit genes mentioned in the title or abstract are significantly more well studied. The articles citing the focus articles also only mentioned in their titles and abstracts 19 highly studied hit genes".<br /> The new Figure S8 is good.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This study used a unique acute HIV-1 infection cohort, RV217, to study the evolution of transmitted founder viral Envelope sequences under nascent immune pressure. The striking feature of the RV217 cohort is the ability to detect viremia in the first week of infection, which can be followed at discrete Fiebig stages over long time intervals. This study evaluated Env sequences at 1 week, 4 weeks, and 24 weeks to provide a picture of viral and immunological co-evolution from Fiebig Stage I (1 week), Fiebig Stages IV (4 weeks), and Fiebig Stage VI (>24 weeks). This study design enabled lineage tracing of viral variants from a single transmitted founder (T/F) over the Fiebig Stages I, IV, and VI under nascent immune pressure generated in response to the T/F virus and its subsequent mutants.
Strengths:
As expected, there were temporal differences in the appearance of virus quasispecies among the individuals, which were located predominantly in solvent-exposed residues of Env, which is consistent with prior literature. Interestingly, two waves of antibody reactivity were observed for variants with mutations in the V2 region that harbors V2i and V2p epitopes correlated with protection in the RV144 clinical trial. Two waves of antibody response, detected by SPR, were observed, with the first wave being predominated by antibodies specific for the T/F07 V2 epitope associated with H173 located on the C -strand in the V2 region. The second wave was dominated by antibodies specific for an H to Y mutation at 173 that emerged due to antibody-mediated pressure to the original H173 virus. This is a remarkable finding in three ways.
First, the mutation is in the C β-strand, an unlikely paratope contact residue, as this region of the V2 loop is shielded by glycans in Env trimer structures with full glycan representation (see PDB:5t3x). The structure used for modeling in the current study was an earlier structure, PDB:4TVP, that had many truncated glycans. This does not detract from the finding that the H173Y mutation likely causes a conformational shift from a more rigid helical/coil conformation to a more dynamic conformation with a β-stranded and -sheet core preference as indicated by the literature and by the MD simulations carried out by the authors. This observation suggests that using V2 scaffolds with both the H173 and H173Y variants will increase the breadth of potentially protective antibody responses to HIV-1, as indicated in reference 42, cited by the authors. Interestingly, the H173Y mutation abrogates reactivity to mAb CH58 and attenuates reactivity to mAb CH59 isolated from RV144 volunteers. These mAbs recognize conformationally distinct V2 epitopes, adding further credence to the conclusion that the H173Y mutation results in a conformational switch of the V2 region.
Second, the H173Y mutation affects the conformation of V2 epitopes recognized by mAbs that do not neutralize T/F HIV-1 while mediating potent ADCC. The ADCC data in the manuscript provides strong support for this hypothesis and augers for further exploration of the V2 epitopes as HIV-1 vaccine targets.
Third, it is striking that immunogens based on the H173Y mutation successfully recapitulated the observed human antibody responses in wild-type Balb/c mice. The investigators used their extensive knowledge of V2 structures and scaffold-immunogens to create the library of constructs used for this study. In this case, the ΔDSV mutation increased the breadth and magnitude of the murine antibody responses.
-
Reviewer #2 (Public Review):
Summary:
In this study, researchers aimed to understand how a transmitted/founder (T/F) HIV virus escapes host immune pressure during early infection. They focused on the V1V2 domain of the HIV-1 envelope protein, a key determinant of virus escape. The study involved four participants from the RV217 Early Capture HIV Cohort (ECHO) project, which allowed tracking HIV infection from just days after infection.
The study identified a significant H173Y escape mutation in the V2 domain of a T/F virus from one participant. This mutation, located in the relatively conserved "C" β-strand, was linked to viral escape against host immune pressure. The study further investigated the epitope specificity of antibodies in the participant's plasma, revealing that the H173Y mutation played a crucial role in epitope switching during virus escape. Monoclonal antibodies from the RV144 vaccine trial, CH58, and CH59, showed reduced binding to the V1V2-Y173 escape variant. Additionally, the study examined antibody-dependent cellular cytotoxicity (ADCC) responses and found resistance to killing in the Y173 mutants. The H173Y mutation was identified as the key variant selected against the host's immune pressure directed at the V2 domain.
The researchers hypothesized that the H173Y mutation caused a structural/conformational change in the C β-strand epitope, leading to viral escape. This was supported by molecular dynamics simulations and structural modeling analyses. They then designed combinatorial V2 immunogen libraries based on natural HIV-1 sequence diversity, aiming to broaden antibody responses. Mouse immunizations with these libraries demonstrated enhanced recognition of diverse Env antigens, suggesting a potential strategy for developing a more effective HIV vaccine.
In summary, the study provides insights into the early evolution of HIV-1 during infection, highlighting the importance of the V1V2 domain and identifying key escape mutations. The findings suggest a novel approach for designing HIV vaccine candidates that consider the diversity of escape mutations to induce broader and more effective immune responses.
Strengths:
The article presents several strengths:
(1) The experimental design is well-structured, involving multiple stages from phylogenetic analyses to mouse model testing, providing a comprehensive approach to studying virus escape mutations.
(2) The study utilizes a unique dataset from the RV217 Early Capture HIV Cohort (ECHO) project, allowing for the tracking of HIV infection from the very early stages in the absence of antiretroviral therapy. This provides valuable insights into the evolution of the virus.
(3) The use of advanced techniques such as phylogenetic analyses, nanoscaffold technology, controlled mutagenesis, and monoclonal antibody evaluations demonstrates the application of cutting-edge methodologies in the study.
(4) The research goes beyond genetic analysis and provides an in-depth characterization of the escape mutation's impact, including structural analyses through Molecular Dynamics simulations, antibody responses, and functional implications for virus survival.
(5) The study provides insights into the immune responses triggered by the escape mutation, including the specificity of antibodies and their ability to recognize diverse HIV-1 Env antigens.
(7) The exploration of combinatorial immunogen libraries is a strength, as it offers a novel approach to broaden antibody responses, providing a potential avenue for future vaccine design.
(8) The research is highly relevant to vaccine development, as it sheds light on the dynamics of HIV escape mutations and their interaction with the host immune system. This information is crucial for designing effective vaccines that can preemptively interfere with viral acquisition.
(9) The study integrates findings from virology, immunology, structural biology, and bioinformatics, showcasing an interdisciplinary approach that enhances the depth and breadth of the research.
(10) The article is well-written, with a clear presentation of methods, results, and implications, making it accessible to both specialists and a broader scientific audience.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Liao and colleagues generated tagged SMAD1 and SMAD5 mouse models and identified genome occupancy of these two factors in the uterus of these mice using the CUT&RUN assay. The authors used integrative bioinformatic approaches to identify putative SMAD1/5 direct downstream target genes and to catalog the SMAD1/5 and PGR genome co-localization pattern. The role of SMAD1/5 on stromal decidualization was assayed in vitro on primary human endometrial stromal cells. The new mouse models offer opportunities to further dissect SMAD1 and SMAD5 functions without the limitation from SMAD antibodies, which is significant. The CUT&RUN data further support the usefulness of these mouse models for this purpose.
Strengths:
The strength of this study is the novelty of new mouse models and the valuable cistromic data derived from these mice. This revised manuscript provides lots of food for thought inside and outside of the field of reproductive biology.
Weaknesses:
Causal effects of SMAD1/5 on the genome occupancy of other major uterine transcription factors were discussed but not experimentally examined in the present manuscript, which is understandable.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Wang and colleagues presented an investigation of pig-origin bacteria Bacillus velezensis HBXN2020, for its released genome sequence, in vivo safety issue, probiotic effects in vitro, and protection against Salmonella infection in a murine model. Various techniques and assays are performed.
Strengths:
An extensive study on the probiotic properties of the Bacillus velezensis strain HBXN2020.
Weaknesses:
- The main results are all descriptive, without new insight advancing the field or a mechanistic understanding of the observed protection.
- Most of the results and analysis parts are separated without a link or any story-telling to deliver a concise message.
- For the Salmonella Typhimurium-induced mouse model of colitis, it is not clear how an oral infection of C57BL/6 would lead to colitis. Streptomycin is always pretreated (https://link.springer.com/protocol/10.1007/978-1-0716-1971-1_17).
-
Reviewer #2 (Public Review):
Summary:
In this study, Wang and colleagues study the potential probiotic effects of Bacillus velezensis. Bacillus species have the potential benefit of serving as probiotics due to their ability to form endospores and synthesize secondary metabolites. B. velezensis has been shown to have probiotic effects in plants and animals but data for human use are scarce, particularly with respect to salmonella-induced colitis. In this work, the authors identify a strain of B. velezensis and test it for its ability to control colitis in mice.
Key findings:
(1) The authors sequence an isolate for B. velezensis - HBXN2020 and describe its genome (roughly 4 mb, 46% GC-content etc).
(2) The authors next describe the growth of this strain in broth culture and survival under acid and temperature stress. The susceptibility of HBXN2020 was tested against various antibiotics and against various pathogenic bacteria. In the case of the latter, the authors set out to determine if HBXN2020 could directly inhibit the growth of pathogenic bacteria. Convincing data, indicating that this is indeed the case, are presented.
(3) To determine the safety profile of BHXN2020 (for possible use as a probiotic), the authors infected the strain in mice and monitored weight, together with cytokine profiles. Infected mice displayed no significant weight loss and expression of inflammatory cytokines remained unchanged. Blood cell profiles of infected mice were consistent with that of uninfected mice. No significant differences in tissues, including the colon were observed.
(4) Next, the authors tested the ability of HBXN2020 to inhibit the growth of Salmonella typhimurium (STm) and demonstrate that HBXN2020 inhibits STm in a dose-dependent manner. Following this, the authors infect mice with STm to induce colitis and measure the ability of HBXN2020 to control colitis. The first outcome measure was a reduction in STm in faeces. Consistent with this, HBXN2020 reduced STm loads in the ileum, cecum, and colon. Colon length was also affected by HBXN2020 treatment. In addition, treatment with HBXN2020 reduced the appearance of colon pathological features associated with colitis, together with a reduction in inflammatory cytokines.
(5) After noting the beneficial (and anti-inflammatory effects) of HBXN2020, the authors set out to investigate the effects on microbiota during treatment. Using a variety of algorithms, the authors demonstrate that upon HXBN2020 treatment, microbiota composition is restored to levels akin to that seen in healthy mice.
(6) Finally, the authors assessed the effect of using HBXN2020 as prophylactic treatment for colitis by first treating mice with the spores and then infecting them with STm. Their data indicate that treatment with HBXN2020 reduced colitis. A similar beneficial impact was seen with the gut microbiota.
Strengths:
(1) Good use of in vitro and animal models to demonstrate a beneficial probiotic effect.
(2) Most observations are supported using multiple approaches.
(3) The mouse experiments are very convincing.
Weaknesses:
(1) Whilst a beneficial effect is observed, there is no investigation of the mechanism that underpins this.
(2) The mouse experiments would have benefited from the use of standard anti-inflammatory therapies to control colitis. That way the authors could compare their approach of using bacillus spores with the current gold standard for treatment.
-
Reviewer #3 (Public Review):
Summary:<br /> The manuscript by Wang et al. investigates the effects of B. velezensis HBXN2020 in alleviating S. Typhimurium-induced mouse colitis. The results showed that B. velezensis HBXN2020 could alleviate bacterial colitis by enhancing intestinal homeostasis (decreasing harmful bacteria and enhancing the abundance of Lactobacillus and Akkermansia) and gut barrier integrity and reducing inflammation. Overall, the manuscript is of potential interest to readers.
Strengths:<br /> B. velezensis HBXN2020 is a novel species of Bacillus that can produce a great variety of secondary metabolites and exhibit high antibacterial activity against several pathogens. B. velezensis HBXN2020 is able to form endospores and has strong anti-stress capabilities. B. velezensis HBXN2020 has a synergistic effect with other beneficial microorganisms, which can improve intestinal homeostasis.
Weaknesses:<br /> There are few studies about the clinical application of Bacillus velezensis. Thus, more studies are still needed to explore the effectiveness of Bacillus velezensis before clinical application.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
In this paper, Hackwell and colleagues performed technically impressive, long-term, GCaMP fiber photometry recordings from Kiss1 neurons in the arcuate nucleus of mice during multiple reproductive states. The data show an immediate suppression of activity of arc Kiss1 neuronal activity during pregnancy that is maintained during lactation. In the absence of any apparent change in suckling stimulus or milk production, mice lacking prolactin receptors in arcuate Kiss1 neurons regained Kiss1 episodic activity and estrous cyclicity faster than control mice, demonstrating that direct prolactin action on Kiss1 neurons is at least partially responsible for suppressing fertility in this species. The effect of loss of prolactin receptors from CamK2a expressing neurons was even greater, indicating either that prolactin sensitivity in Kiss1 neurons of the RP3V contributes to lactational infertility or that other prolactin-sensitive neurons are involved. These data demonstrate the important role of prolactin in suppressing Kiss1 neuron activity and thereby fertility during the lactational period in the mouse.
Strengths:
This is the first study to monitor the activity of the GnRH pulse-generating system across different reproductive states in the same animal. Another strength in the study design is that it isolated the effects of prolactin by maintaining normal lactation and suckling (assessed indirectly using pup growth curves). The study also offers insight into the phenomenon of postpartum ovulation in mice. The results showed a brief reactivation of arcuate Kiss1 activity immediately prior to parturition, attributed to falling progesterone levels at the end of pregnancy. This hypothesis will be of interest to the field and is likely to inspire testing in future studies. With the exceptions mentioned below, the conclusions of the paper are well supported by the data, and the aims of the study were achieved. This paper is likely to raise the standard for technical expectations in the field and spark new interest in the direct impact of prolactin on Kiss1 neurons during lactation in other species.
Weaknesses:
A weakness in the approach is the use of genetic models that do not offer complete deletion of the prolactin receptor from targeted neuronal populations. A substantial proportion of Kiss1 neurons in both models retain the receptor. As a result, it is not clear whether the partial maintenance of cyclicity during lactation in the genetic models is due to incomplete deletion or to the involvement of other factors. This weakness should be more fully discussed in the text. In addition, results showing no impact of progesterone on LH secretion during lactation are surprising, given the effectiveness of progesterone-containing birth control in lactating women. The progesterone-related experiments were not well justified or discussed in the text. While the authors assert their findings may reflect an important role for prolactin in lactational infertility in other mammalian species, that remains to be seen. Hyperprolactinemia is known to suppress GnRH release, but its importance in the suppression of cyclicity during lactation is controversial. Indeed, in several species, the stimulus of suckling is considered to be the main driver of lactational fertility suppression. Data from rats shows that exogenous prolactin was unable to suppress LH release in dams deprived of their pups shortly after birth; both suckling and prolactin were necessary to suppress a post ovariectomy rise in LH levels. The duration of amenorrhea does not correlate with average prolactin levels in humans, and suckling but not prolactin was required to suppress the postpartum rise in LH in the rhesus monkey. The authors should discuss more thoroughly whether the protocol of this or other studies might result in discordant results and whether mice are likely to be an outlier in their mechanism of cycle suppression.
-
Reviewer #2 (Public Review):
Summary:
The overall goal of Eleni et al. is to determine if the suppression of LH pulses during lactation is mediated by prolactin signaling at kisspeptin neurons. To address this, the authors used GCaMP fiber photometry and serial blood sampling to reveal that in vivo episodic arcuate kisspeptin neuron activity and LH pulses are suppressed throughout pregnancy and lactation. The authors further utilized knockout models to demonstrate that the loss of prolactin receptor signaling at kisspeptin cells prevents the suppression of kisspeptin function and results in early reestablishment of fertility during lactation. The work demonstrates exemplary design and technique, and the outcomes of these experiments are sophistically discussed.
Strengths:
This manuscript demonstrates exemplary skill with powerful techniques and reveals a key role for arcuate kisspeptin neurons in maintaining lactation-induced infertility in mice. In a difficult feat, the authors used fiber photometry to map the activity of arcuate kisspeptin cells into lactation and weaning without disrupting parturition, lactation, or maternal behavior. The authors used a knockout approach to identify if prolactin inhibition of fertility is mediated by direct signaling at arcuate kisspeptin cells. Although the model does not perfectly eliminate prolactin receptor expression in all kisspeptin neurons, results from the achieved knockdown support the conclusion that prolactin signaling at kisspeptin neurons is required to maintain lactational infertility. The methods were advanced and appropriate for the aims, the studies were rigorously conducted, and the conclusions were thoughtfully discussed. Overall, the aims of this study were achieved.
-
Reviewer #3 (Public Review):
Summary:
Grattan and colleagues were trying to establish the neural mechanism underlying lactational infertility, in particular trying to establish the relative importance of the neurogenic effects of the suckling stimulus versus prolactin per se. They have shown that in the mouse it is rather prolactin and more specifically its action on the hypothalamic arcuate kisspeptin neuronal system, which is the key neural construct underlying gonadotrophin-releasing hormone (GnRH) pulse generation and central to the neuroendocrine control of reproduction, that mediates lactational infertility. The authors have taken a measured tone to emphasise the data pertaining to the mouse without extravagant extrapolation to humans. Nevertheless, the key findings provide a substantial foundation to facilitate interpretation of studies in other species.
Strengths:
The major strength of this study is the use of a combination of cutting-edge technologies, which of course underlie the majority of scientific advances rather than intellectual prowess favoured by the majority of scientists. Their approach avoided the major confounding effects of using pharmacological strategies to suppress prolactin action that has complicated the vast majority of previous studies. The study also provides an elegant and comprehensive contiguous description of GnRH pulse generator frequency across the ovarian cycle, through pregnancy and lactation, and into weaning in individual animals.
Weaknesses:<br /> There are no significant weaknesses.
-
-
52.53.155.43 52.53.155.43
-
Reviewer #1 (Public Review):
Summary:
The study investigates the role of cylicin-1 (CYLC1) in sperm acrosome-nucleus connections and its clinical relevance to male infertility. Using mouse models, the researchers demonstrate that cylicin-1 is specifically expressed in the post acrosomal sheath-like region in spermatids and plays a crucial role in mediating acrosome-nucleus connections. Loss of CYLC1 results in severe male subfertility, characterized by acrosome detachment and aberrant head morphology in sperm. Further analysis of a large cohort of infertile men reveals CYLC1 variants in patients with sperm head deformities. The study provides valuable insights into the role of CYLC1 in male fertility and proposes CYLC1 variants as potential risk factors for human male infertility, emphasizing the importance of mouse models in understanding the pathogenicity of such variants.
Strengths:
This article demonstrates notable strengths in various aspects. Firstly, the clarity and excellent writing style contribute to the accessibility of the content. Secondly, the employed techniques are not only relevant but also complementary, enhancing the robustness of the study. The precision in their experimental design and the meticulous interpretation of results reflect the scientific rigor maintained throughout the study. Furthermore, the decision to create a second mouse model with the exact CYLC1 mutation found in humans adds significant qualitative value to the research. This approach not only validates the clinical relevance of the identified variant but also strengthens the translational impact of the findings.
Weaknesses:
There are no obvious weaknesses. While a few minor refinements, as suggested in the recommendations to authors, could enhance the overall support for the data and the authors' messages, these suggested improvements in no way diminish the robustness of the already presented data.
-
Reviewer #2 (Public Review):
Summary:
* To verify the function of PT-associated protein CYLC1, the authors generated a Cylc1-KO mouse model and revealed that loss of cylicin-1 leads to severe male subfertility as a result of sperm head deformities and acrosome detachment.
* Then they also identified a CYLC1 variant by WES analysis from 19 infertile males with sperm head deformities.
* To prove the pathogenicity of the identified mutation site, they further generated Cylc1-mutant mice that carried a single amino acid change equivalent to the variant in human CYLC1. The Cylc1-mutant mice also exhibited male subfertility with detached acrosomes of sperm cells.
Strengths:
* The phenotypes observed in the Cylc1-KO mice provide strong evidence for the function of CYLC1 as a PT-associated protein in spermatogenesis and male infertility.
* Further mechanistic studies indicate that loss of cylicin-1 in mice may disrupt the connections between the inner acrosomal membrane and acroplaxome, leading to detached acrosomes of sperm cells.
Weaknesses:
* The authors identified a missense mutation (c.1377G>T/p. K459N) from 19 infertile males with sperm head deformities. The information for the variant in Table 1 is insufficient to determine the pathogenicity and reliability of the mutation site. More information should be added, including all individuals in gnomAD, East Asians in gnomAD, 1000 Genomes Project for allele frequency in the human population; MutationTaster, M-CAP, FATHMM, and more other tools for function prediction. Then, the expression of CYLC1 in the spermatozoa from men with CYLC1 mutation should be explored by qPCR, Western blot, or IF staining analyses.
* Although 19 infertile males were found carrying the same missense mutation (c.1377G>T/p. K459N), their phenotypes are somewhat different. For example, sperm concentrations for individuals AAX765, BBA344, and 3086 are extremely low but this is not observed in other infertile males. Then, progressive motility for individuals AAT812, 3165, 3172, 3203, and 3209 are extremely low but this is also not observed in other infertile males. It is worth considering why different phenotypes are observed in probands carrying the same mutation.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
In this study, Nishi et al. claim that the ratio of long-term hematopoietic stem cell (LT-HSC) versus short-term HSC (ST-HSC) determines the lineage output of HSCs and reduced ratio of ST-HSC in aged mice causes myeloid-biased hematopoiesis. The authors used Hoxb5 reporter mice to isolate LT-HSC and ST-HSC and performed molecular analyses and transplantation assays to support their arguments. How the hematopoietic system becomes myeloid-biased upon aging is an important question with many implications in the disease context as well. However, their study is descriptive with remaining questions.
Weaknesses:
(1) The authors may need conceptual re-framing of their main argument because whether the ST-HSCs used in this study are functionally indeed short-term "HSCs" is questionable. The data presented in this study and their immunophenotypic definition of ST-HSCs (Lineage negative/Sca-1+/c-Kit+/Flk2-/CD34-/CD150+/Hoxb5-) suggest that authors may find hematopoietic stem cell-like lymphoid progenitors as previously shown for megakaryocyte lineage (Haas et al., Cell stem cell. 2015) or, as the authors briefly mentioned in the discussion, Hoxb5- HSCs could be lymphoid-biased HSCs. The authors disputed the idea that Hoxb5- HSCs as lymphoid-biased HSCs based on their previous 4 weeks post-transplantation data (Chen et al., 2016). However, they overlooked the possibility of myeloid reprogramming of lymphoid-biased population during regenerative conditions (Pietras et al., Cell stem cell., 2015). In other words, early post-transplant ST-HSCs (Hoxb5- HSCs) can be seen as lacking the phenotypic lymphoid-biased HSCs. Thinking of their ST-HSCs as hematopoietic stem cell-like lymphoid progenitors or lymphoid-biased HSCs makes more sense conceptually as well. ST-HSCs come from LT-HSCs and further differentiate into lineage-biased multipotent progenitor (MPP) populations including myeloid-biased MPP2 and MPP3. Based on the authors' claim, LT-HSCs (Hoxb5- HSCs) have no lineage bias even in aged mice. Then these LT-HSCs make ST-HSCs, which produce mostly memory T cells. These memory T cell-producing ST-HSCs then produce MPPs including myeloid-biased MPP2 and MPP3. This differentiation trajectory is hard to accept. If we think Hoxb5- HSCs (ST-HSCs by authors) as a sub-population of immunophenotypic HSCs with lymphoid lineage bias or hematopoietic stem cell-like lymphoid progenitors, the differentiation trajectory has no flaw.
(2) Authors' experimental designs have some caveats to support their claims. Authors claimed that aged LT-HSCs have no myeloid-biased clone expansion using transplantation assays. In these experiments, authors used 10 HSCs and young mice as recipients. Given the huge expansion of old HSC by number and known heterogeneity in immunophenotypically defined HSC populations, it is questionable how 10 out of so many old HSCs can faithfully represent the old HSC population. The Hoxb5+ old HSC primary and secondary recipient mice data (Figure 2C and D) support this concern. In addition, they only used young recipients. Considering the importance of the inflammatory aged niche in the myeloid-biased lineage output, transplanting young vs old LT-HSCs into aged mice will complete the whole picture.
(3) The authors' molecular data analyses need more rigor with unbiased approaches. They claimed that neither aged LT-HSCs nor aged ST-HSCs exhibited myeloid or lymphoid gene set enrichment but aged bulk HSCs, which are just a sum of LT-HSCs and ST-HSCs by their gating scheme (Figure 4A), showed the "tendency" of enrichment of myeloid-related genes based on the selected gene set (Figure 4D). Although the proportion of ST-HSCs is reduced in bulk HSCs upon aging, since ST-HSCs do not exhibit lymphoid gene set enrichment based on their data, it is hard to understand how aged bulk HSCs have more myeloid gene set enrichment compared to young bulk HSCs. This bulk HSC data rather suggests that there could be a trend toward certain lineage bias (although not significant) in aged LT-HSCs or ST-HSCs. The authors need to verify the molecular lineage priming of LT-HSCs and ST-HSCs using another comprehensive dataset.
(4) Some data are too weak to fully support their claims. The authors claimed that age-associated extramedullary changes are the main driver of myeloid-biased hematopoiesis based on no major differences in progenitor populations upon transplantation of 10 young HSCs into young or old recipient mice (Figure 7F) and relatively low donor-derived cells in thymus and spleen in aged recipient mice (Figure 7G-J). However, they used selected mice to calculate the progenitor populations in recipient mice (8 out of 17 from young recipients denoted by * and 8 out of 10 from aged recipients denoted by * in Figure 7C). In addition, they calculated the progenitor populations as frequency in c-kit positive cells. Given that they transplanted 10 LT-HSCs into "sub-lethally" irradiated mice and 8.7 Gy irradiation can have different effects on bone marrow clearance in young vs old mice, it is not clear whether this data is reliable enough to support their claims. The same concern applies to the data Figure 7G-J. Authors need to provide alternative data to support their claims.
-
Reviewer #2 (Public Review):
Summary:
Nishi et al, investigate the well-known and previously described phenomenon of age-associated myeloid-biased hematopoiesis. Using a previously established HoxB5mCherry mouse model, they used HoxB5+ and HoxB5- HSCs to discriminate cells with long-term (LT-HSCs) and short-term (ST-HSCs) reconstitution potential and compared these populations to immunophenotypically defined 'bulk HSCs' that consists of a mixture of LT-HSC and ST-HSCs. They then isolated these HSC populations from young and aged mice to test their function and myeloid bias in non-competitive and competitive transplants into young and aged recipients. Based on quantification of hematopoietic cell frequencies in the bone marrow, peripheral blood, and in some experiments the spleen and thymus, the authors argue against the currently held belief that myeloid-biased HSCs expand with age.
While aspects of their work are fascinating and might have merit, several issues weaken the overall strength of the arguments and interpretation. Multiple experiments were done with a very low number of recipient mice, showed very large standard deviations, and had no statistically detectable difference between experimental groups. While the authors conclude that these experimental groups are not different, the displayed results seem too variable to conclude anything with certainty. The sensitivity of the performed experiments (e.g. Figure 3; Figure 6C, D) is too low to detect even reasonably strong differences between experimental groups and is thus inadequate to support the author's claims. This weakness of the study is not acknowledged in the text and is also not discussed. To support their conclusions the authors need to provide higher n-numbers and provide a detailed power analysis of the transplants in the methods section.
As the authors attempt to challenge the current model of the age-associated expansion of myeloid-biased HSCs (which has been observed and reproduced by many different groups), ideally additional strong evidence in the form of single-cell transplants is provided.
It is also unclear why the authors believe that the observed reduction of ST-HSCs relative to LT-HSCs explains the myeloid-biased phenotype observed in the peripheral blood. This point seems counterintuitive and requires further explanation.
Based on my understanding of the presented data, the authors argue that myeloid-biased HSCs do not exist, as<br /> a) they detect no difference between young/aged HSCs after transplant (mind low n-numbers and large std!); b) myeloid progenitors downstream of HSCs only show minor or no changes in frequency and c) aged LT-HSCs do not outperform young LT-HSC in myeloid output LT-HScs in competitive transplants (mind low n-numbers and large std!).
However, given the low n-numbers and high variance of the results, the argument seems weak and the presented data does not support the claims sufficiently. That the number of downstream progenitors does not change could be explained by other mechanisms, for instance, the frequently reported differentiation short-cuts of HSCs and/or changes in the microenvironment.
Strengths:
The authors present an interesting observation and offer an alternative explanation of the origins of aged-associated myeloid-biased hematopoiesis. Their data regarding the role of the microenvironment in the spleen and thymus appears to be convincing.
Weaknesses:
"Then, we found that the myeloid lineage proportions from young and aged LT-HSCs were nearly comparable during the observation period after transplantation (Figure 3, B and C)."<br /> Given the large standard deviation and low n-numbers, the power of the analysis to detect differences between experimental groups is very low. Experimental groups with too large standard deviations (as displayed here) are difficult to interpret and might be inconclusive. The absence of clearly detectable differences between young and aged transplanted HSCs could thus simply be a false-negative result. The shown experimental results hence do not provide strong evidence for the author's interpretation of the data. The authors should add additional transplants and include a detailed power analysis to be able to detect differences between experimental groups with reasonable sensitivity.
Line 293: "Based on these findings, we concluded that myeloid-biased hematopoiesis observed following transplantation of aged HSCs was caused by a relative decrease in ST-HSC in the bulk-HSC compartment in aged mice rather than the selective expansion of myeloid-biased HSC clones."<br /> Couldn't that also be explained by an increase in myeloid-biased HSCs, as repeatedly reported and seen in the expansion of CD150+ HSCs? It is not intuitively clear why a reduction of ST-HSCs clones would lead to a myeloid bias. The author should try to explain more clearly where they believe the increased number of myeloid cells comes from. What is the source of myeloid cells if the authors believe they are not derived from the expanded population of myeloid-biased HSCs?
-
Reviewer #3 (Public Review):
In this manuscript, Nishi et al. propose a new model to explain the previously reported myeloid-biased hematopoiesis associated with aging. Traditionally, this phenotype has been explained by the expansion of myeloid-biased hematopoietic stem cell (HSC) clones during aging. Here, the authors question this idea and show how their Hoxb5 reporter model can discriminate long-term (LT) and short-term (ST) HSC and characterized their lineage output after transplant. From these analyses, the authors conclude that changes during aging in the LT/ST HSC proportion explain the myeloid bias observed.
Although the topic is appropriate and the new model provides a new way to think about lineage-biased output observed in multiple hematopoietic contexts, some of the experimental design choices, as well as some of the conclusions drawn from the results could be substantially improved. Also, they do not propose any potential mechanism to explain this process, which reduces the potential impact and novelty of the study. Specific concerns are outlined below.
Major
(1) As a general comment, there are experimental details that are either missing or not clear. The main one is related to transplantation assays. What is the irradiation dose? The Methods sections indicates "recipient mice were lethally irradiated with single doses of 8.7 or 9.1 Gy". The only experimental schematic indicating the irradiation dose is Figure 7A, which uses 8.7 Gy. Also, although there is not a "standard", 11 Gy split in two doses is typically considered lethal irradiation, while 9.5 Gy is considered sublethal. Is there any reason for these lower doses? Same question for giving a single dose and for performing irradiation a day before transplant.
(2) The manuscript would benefit from the inclusion of references to recent studies discussing hematopoietic biases and differentiation dynamics at a single-cell level (e.g., Yamamoto et. al 2018; Rodriguez-Fraticelli et al., 2020). Also, when discussing the discrepancy between studies claiming different biases within the HSC pool, the authors mentioned that Montecino-Rodriguez et al. 2019 showed preserved lymphoid potential with age. It would be good to acknowledge that this study used busulfan as the conditioning method instead of irradiation.
(3) When representing the contribution to PB from transplanted cells, the authors show the % of each lineage within the donor-derived cells (Figures 3B-C, 5B, 6B-D, 7C-E, and S3 B-C). To have a better picture of total donor contribution, total PB and BM chimerism should be included for each transplantation assay. Also, for Figures 2C-D and Figures S2A-B, do the graphs represent 100% of the PB cells? Are there any radioresistant cells?
(4) For BM progenitor frequencies, the authors present the data as the frequency of cKit+ cells. This normalization might be misleading as changes in the proportion of cKit+ between the different experimental conditions could mask differences in these BM subpopulations. Representing this data as the frequency of BM single cells or as absolute numbers (e.g., per femur) would be valuable.
(5) Regarding Figure 1B, the authors argue that if myeloid-biased HSC clones increase with age, they should see increased frequency of all components of the myeloid differentiation pathway (CMP, GMP, MEP). This would imply that their results (no changes or reduction in these myeloid subpopulations) suggest the absence of myeloid-biased HSC clones expansion with age. This reviewer believes that differentiation dynamics within the hematopoietic hierarchy can be more complex than a cascade of sequential and compartmentalized events (e.g., accelerated differentiation at the CMP level could cause exhaustion of this compartment and explain its reduction with age and why GMP and MEP are unchanged) and these conclusions should be considered more carefully.
(6) Within the few recipients showing good donor engraftment in Figure 2C, there is a big proportion of T cells that are "amplified" upon secondary transplantation (Figure 2D). Is this expected?
(7) Do the authors have any explanation for the high level of variability within the recipients of Hoxb5+ cells in Figure 2C?
(8) Can the results from Figure 2E be interpreted as Hoxb5+ cells having a myeloid bias? (differences are more obvious/significant in neutrophils and monocytes).
(9) Is Figure 2G considering all primary recipients or only the ones that were used for secondary transplants? The second option would be a fairer comparison.
(10) When discussing the transcriptional profile of young and aged HSCs, the authors claim that genes linked to myeloid differentiation remain unchanged in the LT-HSC fraction while there are significant changes in the ST-HSCs. However, 2 out of the 4 genes shown in Figure S4B show ratios higher than 1 in LT-HSCs.
(11) When determining the lymphoid bias in ST-HSCs, the authors focus on the T-cell subtype, not considering any other any other lymphoid population. Could the authors explain this?
(12) Based on the reduced frequency of donor cells in the spleen and thymus, the authors conclude "the process of lymphoid lineage differentiation was impaired in the spleens and thymi of aged mice compared to young mice". An alternative explanation could be that differentiated cells do not successfully migrate from the bone marrow to these secondary lymphoid organs. Please consider this possibility when discussing the data.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Given knowledge of the amino acid sequence and of some version of the 3D structure of two monomers that are expected to form a complex, the authors investigate whether it is possible to accurately predict which residues will be in contact in the 3D structure of the expected complex. To this effect, they train a deep learning model which takes as inputs the geometric structures of the individual monomers, per-residue features (PSSMs) extracted from MSAs for each monomer, and rich representations of the amino acid sequences computed with the pre-trained protein language models ESM-1b, MSA Transformer, and ESM-IF. Predicting inter-protein contacts in complexes is an important problem. Multimer variants of AlphaFold, such as AlphaFold-Multimer, are the current state of the art for full protein complex structure prediction, and if the three-dimensional structure of a complex can be accurately predicted then the inter-protein contacts can also be accurately determined. By contrast, the method presented here seeks state-of-the-art performance among models that have been trained end-to-end for inter-protein contact prediction.
Strengths:
The paper is carefully written and the method is very well detailed. The model works both for homodimers and heterodimers. The ablation studies convincingly demonstrate that the chosen model architecture is appropriate for the task. Various comparisons suggest that PLMGraph-Inter performs substantially better, given the same input, than DeepHomo, GLINTER, CDPred, DeepHomo2, and DRN-1D2D_Inter.<br /> The authors control for some degree of redundancy between their training and test sets, both using sequence and structural similarity criteria. This is more careful than can be said of most works in the field of PPI prediction.<br /> As a byproduct of the analysis, a potentially useful heuristic criterion for acceptable contact prediction quality is found by the authors: namely, to have at least 50% precision in the prediction of the top 50 contacts.
Weaknesses:
The authors check for performance drops when the test set is restricted to pairs of interacting proteins such that the chain pair is not similar *as a pair* (in sequence or structure) to a pair present in the training set. A more challenging test would be to restrict the test set to pairs of interacting proteins such that *none* of the chains are separately similar to monomers present in the training set. In the case of structural similarity (TM-scores), this would amount to replacing the two "min"s with "max"s in Eq. (4). In the case of sequence similarity, one would simply require that no monomer in the test set is in any MMSeqs2 cluster observed in the training set. This may be an important check to make, because a protein may interact with several partners, and/or may use the same sites for several distinct interactions, contributing to residual data leakage in the test set.
The training set of AFM with v2 weights has a global cutoff of 30 April 2018, while that of PLMGraph-Inter has a cutoff of March 7 2022. So there may be structures in the test set for PLMGraph-Inter that are not in the training set of AFM with v2 weights (released between May 2018 and March 2022). The "Benchmark 2" dataset from the AFM paper may have a few additional structures not in the training or test set for PLMGraph-Inter. I realize there may be only few structures that are in neither training set, but still think that showing the comparison between PLMGraph-Inter and AFM there would be important, even if no statistically significant conclusions can be drawn.
Finally, the inclusion of AFM confidence scores is very good. A user would likely trust AFM predictions when the confidence score is high, but look for alternative predictions when it is low. The authors' analysis (Figure 6, panels c and d) seems to suggest that, in the case of heterodimers, when AFM has low confidence, PLMGraph-Inter improves precision by (only) about 3% on average. By comparison, the reported gains in the "DockQ-failed" and "precision-failed" bins are based on knowledge of the ground truth final structure, and thus are not actionable in a real use-case.
-
Reviewer #2 (Public Review):
This work introduces PLMGraph-Inter, a new deep learning approach for predicting inter-protein contacts, which is crucial for understanding protein-protein interactions. Despite advancements in this field, especially driven by AlphaFold, prediction accuracy and efficiency in terms of computational cost still remains an area for improvement. PLMGraph-Inter utilizes invariant geometric graphs to integrate the features from multiple protein language models into the structural information of each subunit. When compared against other inter-protein contact prediction methods, PLMGraph-Inter shows better performance which indicates that utilizing both sequence embeddings and structural embeddings is important to achieve high-accuracy predictions with relatively smaller computational costs for the model training.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The authors present a new application of the high-content image-based morphological profiling Cell Painting (CP) to single cell type classification in mixed heterogeneous induced pluripotent stem cell-derived mixed neural cultures. Machine learning models were trained to classify single cell types according to either "engineered" features derived from the image or from the raw CP multiplexed image. The authors systematically evaluated experimental (e.g., cell density, cell types, fluorescent channels) and computational (e.g., different models, different cell regions) parameters and convincingly demonstrated that focusing on the nucleus and its surroundings contains sufficient information for robust and accurate cell type classification. Models that were trained on mono-cultures (i.e., containing a single cell type) could generalize for cell type prediction in mixed co-cultures, and describe intermediate states of the maturation process of iPSC-derived neural progenitors to differentiation neurons.
Strengths:
Automatically identifying single-cell types in heterogeneous mixed-cell populations holds great promise to characterize mixed-cell populations and to discover new rules of spatial organization and cell-cell communication. Although the current manuscript focuses on the application of quality control of iPSC cultures, the same approach can be extended to a wealth of other applications including an in-depth study of the spatial context. The simple and high-content assay democratizes use and enables adoption by other labs.
The manuscript is supported by comprehensive experimental and computational validations that raise the bar beyond the current state of the art in the field of high-content phenotyping and make this manuscript especially compelling. These include (i) Explicitly assessing replication biases (batch effects); (ii) Direct comparison of feature-based (a la cell profiling) versus deep-learning-based classification (which is not trivial/obvious for the application of cell profiling); (iii) Systematic assessment of the contribution of each fluorescent channel; (iv) Evaluation of cell-density dependency; (v) Explicit examination of mistakes in classification; (vi) Evaluating the performance of different spatial contexts around the cell/nucleus; (vii) Generalization of models trained on cultures containing a single cell type (mono-cultures) to mixed co-cultures; (viii) Application to multiple classification tasks.
I especially liked the generalization of classification from mono- to co-cultures (Figure 4C), and quantitatively following the gradual transition from NPC to Neurons (Figure 5H).
The manuscript is well-written and easy to follow.
Weaknesses:
I am not certain how useful/important the specific application demonstrated in this study is (quality control of iPSC cultures), this could be better explained in the manuscript. Another issue that I feel should be discussed more explicitly is how far can this application go - how sensitively can the combination of cell painting and machine learning discriminate between cell types that are more subtly morphologically different from one another?
Regarding evaluations, the use of accuracy, which is a measure that can be biased by class imbalance, is not the most appropriate measurement in my opinion. The confusion matrices are a great help, but I would recommend using a measurement that is less sensitive for class imbalance for cell-type classification performance evaluations. Another issue is that the performance evaluation is calculated on a subset of the full cell population - after exclusion/filtering. Could there be a bias toward specific cell types in the exclusion criteria? How would it affect our ability to measure the cell type composition of the population?
I am not entirely convinced by the arguments regarding the superiority of the nucleocentric vs. the nuclear representations. Could it be that this improvement is due to not being sensitive/ influenced by nucleus segmentation errors?
GRADCAM shows cherry-picked examples and is not very convincing.
There are many missing details in the figure panels, figure legend, and text that would help the reader to better appreciate some of the technical details, see details in the section on recommendations for the authors.
-
Reviewer #2 (Public Review):
This study uses an AI-based image analysis approach to classify different cell types in cultures of different densities. The authors could demonstrate the superiority of the CNN strategy used with nucleocentric cell profiling approach for a variety of cell types classification.
The paper is very clear and well-written. I just have a couple of minor suggestions and clarifications needed for the reader.
The entire prediction model is based on image analysis. Could the authors discuss the minimal spatial resolution of images required to allow a good prediction? Along the same line, it would be interesting to the reader to know which metrics related to image quality (e.g. signal to noise ratio) allow a good accuracy of the prediction.
The authors show that nucleocentric-based cell feature extraction is superior to feeding the CNN-based model for cell type prediction. Could they discuss what is the optimal size and shape of this ROI to ensure a good prediction? What if, for example, you increase or decrease the size of the ROI by a certain number of pixels?
It would be interesting for the reader to know the number of ROI used to feed each model and know the minimal amount of data necessary to reach a high level of accuracy in the predictions.
From Figure 1 to Figure 4 the author shows that CNN based approach is efficient in distinguishing 1321N1 vs SH-SY5Y cell lines. The last two figures are dedicated to showing 2 different applications of the techniques: identification of different stages of neuronal differentiation (Figure 5) and different cell types (neurons, microglia, and astrocytes) in Figure 6.
It would be interesting, for these 2 two cases as well, to assess the superiority of the CNN-based approach compared to the more classical Random Forest classification. This would reinforce the universal value of the method proposed.
-
Reviewer #3 (Public Review):
Induced pluripotent stem cells, or iPSCs, are cells that scientists can push to become new, more mature cell types like neurons. iPSCs have a high potential to transform how scientists study disease by combining precision medicine gene editing with processes known as high-content imaging and drug screening. However, there are many challenges that must be overcome to realize this overall goal. The authors of this paper solve one of these challenges: predicting cell types that might result from potentially inefficient and unpredictable differentiation protocols. These predictions can then help optimize protocols.
The authors train advanced computational algorithms to predict single-cell types directly from microscopy images. The authors also test their approach in a variety of scenarios that one may encounter in the lab, including when cells divide quickly and crowd each other in a plate. Importantly, the authors suggest that providing their algorithms with just the right amount of information beyond the cells' nuclei is the best approach to overcome issues with cell crowding.
The work provides many well-controlled experiments to support the authors' conclusions. However, there are two primary concerns: (1) The model may be relying too heavily on the background and thus technical artifacts (instead of the cells) for making CNN-based predictions, and (2) the conclusion that their nucleocentric approach (including a small area beyond the nucleus) is not well supported, and may just be better by random chance. If the authors were to address these two concerns (through additional experimentation), then the work may influence how the field performs cell profiling in the future.
Additionally, the impact of this work will be limited, given the authors do not provide a specific link to the public source code that they used to process and analyze their data.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
SUMO proteins are processed and then conjugated to other proteins via a C-terminal di-glycine motif. In contrast, the N-terminus of some SUMO proteins (SUMO2/3) contains lysine residues that are important for the formation of SUMO chains. Using NMR studies, the N-terminus of SUMO was previously reported to be flexible (Bayer et al., 1998). The authors are investigating the role of the flexible (referred to as intrinsically disordered) N-terminus of several SUMO proteins. They report their findings and modeling data that this intrinsically disordered N-terminus of SUMO1 (and the C. elegans Smo1) regulates the interaction of SUMO with SUMO interacting motifs (SIMs).
Strengths:
Among the strongest experimental data suggesting that the N-terminus plays an inhibitory function are their observations that<br /> (1) SUMO1∆N19 binds more efficiently to SIM-containing Usp25, Tdp2, and RanBp2,<br /> (2) SUMO1∆N19 shows improved sumoylation of Usp25,<br /> (3) changing negatively-charged residues, ED11,12KK in the SUMO1 N-terminus increased the interaction and sumoylation with/of USP25.
The paper is very well-organized, clearly written, and the experimental data are of high quality. There is good evidence that the N-terminus of SUMO1 plays a role in regulating its binding and conjugation to SIM-containing proteins. Therefore, the authors are presenting a new twist in the ever-evolving saga of SUMO, SIMs, and sumoylation.
Weaknesses:
Much has been learned about SUMO through structure-function analyses and this study is another excellent example. I would like to suggest that the authors take some extra time to place their findings into the context of previous SUMO structure-function analyses. Furthermore, it would be fitting to place their finding of a potential role of N-terminally truncated Smo1 into the context of the many prior findings that have been made with regard to the C. elegans SUMO field. Finally, regarding their data modeling/simulation, there are questions regarding the data comparisons and whether manipulations of the N-terminus also have an effect on the 70/80 region of the core.
-
Reviewer #2 (Public Review):
Summary:
This very interesting study originated from a serendipitous observation that the deletion of the disordered N-terminal tail of human SUMO1 enhances its binding to its interaction partners. This suggested that the N terminus of SUMO1 might be an intrinsic competitive inhibitor of SUMO-interacting motif (SIM) binding to SUMO1. Subsequent experiments support this mechanism, showing that in humans it is specific to SUMO1 and does not extend to SUMO2 or SUMO3 (except, perhaps, when the N terminus of SUMO2 becomes phosphorylated, as the authors intriguingly suggest - and partially demonstrate). The auto-inhibition of SUMO1 via its N-terminal tail apparently explains the lower binding of SUMO1 compared to SUMO2 to some SIMs and lower SIM-dependent SUMOylation of some substrates with SUMO1 compared to SUMO2, thus adding an important element to the puzzle of SUMO paralogue preference. In line with this explanation, N-terminally truncated SUMO1 was equally efficient to SUMO2 in the studied cases. The inhibitory role of SUMO1's N terminus appears conserved in other species including S. cerevisiae and C. elegans, both of which contain only one SUMO. The study also elucidates the molecular mechanism by which the disordered N-terminal region of SUMO1 can exert this auto-inhibitory effect. This appears to depend on the transient, very highly dynamic physical interaction between the N terminus and the surroundings of the SIM-binding groove based mostly on electrostatic interactions between acidic residues in the N terminus and basic residues around the groove.
Strengths:
A key strength of this study is the interplay of different techniques, including biochemical experiments, NMR, molecular dynamics simulations, and, at the end, in vivo experiments. The experiments performed with these different techniques inform each other in a productive way and strengthen each others' conclusions. A further strength is the detailed and clear text, which patiently introduces, describes, and discusses the study. Finally, in terms of the message, the study has a clear, mechanistic message of fundamental importance for various aspects of the SUMO field, and also more generally for protein biochemists interested in the functional importance of intrinsically disordered regions.
Weaknesses:
Some of the authors' conclusions are similar to those from a recent study by Lussier-Price et al. (NAR, 2022), the two studies likely representing independent inquiries into a similar topic. I don't see it as a weakness by itself (on the contrary), but it seems like a lost opportunity not to discuss at more length the congruence between these two studies in the discussion (Lussier-Price is only very briefly cited). Another point that can be raised concerns the wording of conclusions from molecular dynamics. The use of molecular dynamics simulations in this study has been rigorous and fruitful - indeed, it can be a model for such studies. Nonetheless, parameters derived from molecular dynamics simulations, including kon and koff values, could be more clearly described as coming from simulations and not experiments. Lastly, some of the conclusions - such as enhanced binding to SIM-containing proteins upon N-terminal deletion - could be additionally addressed with a biophysical technique (e.g. ITC) that is more quantitative than gel-based pull-down assays - but I don't think it is a must.
-
-
-
Reviewer #1 (Public Review):
Summary:
In this manuscript, Ngo et al. report a peculiar effect where a single base mismatch (CC) can enhance the mechanical stability of a nucleosome. In previous studies, the same group used a similar state-of-the-art fluorescence-force assay to study the unwrapping dynamics of 601-DNA from the nucleosome and observed that force-induced unwrapping happens more slowly for DNA that is more bendable because of changes in sequence or chemical modification. This manuscript appears to be a sequel to this line of projects, where the effect of CC is tested. The authors confirmed that CC is the most flexible mismatch using the FRET-based cyclization assay and found that unwrapping becomes slower when CC is introduced at three different positions in the 601 sequence. The CC mismatch only affects the local unwrapping dynamics of the outer turn of nucleosomal DNA.
Strengths:
These results are in good agreement with the previously established correlation between DNA bendability and nucleosome mechanical stability by the same group. This well-executed, technically sound, and well-written experimental study contains novel nucleosome unwrapping data specific to the CC mismatch and 601 sequence, the cyclizability of DNA containing all base pair mismatches, and the unwrapping of 601-DNA from xenophus and yeast histones. Overall, this work will be received with great interest by the biophysics community and is definitely worth attention.
Weaknesses:
The scope and impact of this study are somewhat limited due to the lack of sequence variation. Whether the conclusion from this study can be generalized to other sequences and other bendability-enhancing mismatches needs further investigation.
Major questions:
(1) As pointed out by the authors, the FRET signal is not sensitive to nucleosome position; therefore, the increasing unwrapping force in the presence of CC can be interpreted as the repositioning of the nucleosome upon perturbation. It is then also possible that CC-containing DNA is not positioned exactly the same as normal DNA from the start upon nucleosome assembly, leading to different unwrapping trajectories. What is the experimental evidence that supports identical positioning of the nucleosomes before the first stretch?
(2) The authors chose a constant stretching rate in this study. Can the authors provide a more detailed explanation or rationale for why this rate was chosen? At this rate, the authors found hysteresis, which indicates that stretching is faster than quasi-static. But it must have been slow and weak enough to allow for reversible unwrapping and wrapping of a CC-containing DNA stretch longer than one helical turn. Otherwise, such a strong effect of CC at a single location would not be seen. I am also curious about the biological relevance of the magnitude of the force. Can such force arise during nucleosome assembly in vivo?
(3) In this study, the CC mismatch is the only change made to the 601 sequence. For readers to truly appreciate its unique effect on unwrapping dynamics as a base pair defect, it would be nice to include the baseline effects of other minor changes to the sequence. For example, how robust is the unwrapping force or dynamics against a single-bp change (e.g., AT to GC) at the three chosen positions?
(4) The last section introduces yeast histones. Based on the theme of the paper, I was expecting to see how the effect of CC is or is not preserved with a different histone source. Instead, the experiment only focuses on differences in the unwrapping dynamics. Although the data presented are important, it is not clear how they fit or support the narrative of the paper without the effect of CC.
(5) It is stated that tRNA was excluded in experiments with yeast-expressed nucleosomes. What is the reason for excluding it for yeast nucleosomes? Did the authors rule out the possibility that tRNA causes the measured difference between the two nucleosome types?
-
Reviewer #2 (Public Review):
Summary:
Mismatches occur as a result of DNA polymerase errors, chemical modification of nucleotides, during homologous recombination between near-identical partners, as well as during gene editing on chromosomal DNA. Under some circumstances, such mismatches may be incorporated into nucleosomes but their impact on nucleosome structure and stability is not known. The authors use the well-defined 601 nucleosome positioning sequence to assemble nucleosomes with histones on perfectly matched dsDNA as well as on ds DNA with defined mismatches at three nucleosomal positions. They use the R18, R39, and R56 positions situated in the middle of the outer turn, at the junction between the outer turn and inner turn, and in the middle of the inner turn, respectively. Most experiments are carried out with CC mismatches and Xenopus histones. Unwrapping of the outer DNA turn is monitored by single-molecule FRET in which the Cy3 donor is incorporated on the 68th nucleotide from the 5'-end of the top strand and the Cy5 acceptor is attached to the 7th nucleotide from the 5' end of the bottom strand. Force is applied to the nucleosomal DNA as FRET is monitored to assess nucleosome unwrapping. The results show that a CC mismatch enhances nucleosome mechanical stability. Interestingly, yeast and Xenopus histones show different behaviors in this assay. The authors use FRET to measure the cyclization of the dsDNA substrates to test the hypothesis that mismatches enhance the flexibility of the 601 dsDNA fragment and find that CC, CA, CT, TT, and AA mismatches decrease looping time, whereas GA, GG, and GT mismatches had little to no effect. These effects correlate with the results from DNA buckling assays reported by Euler's group (NAR 41, 2013) using the same mismatches as an orthogonal way to measure DNA kinking. The authors discuss that substitution rates are higher towards the middle of the nucleosome, suggesting that mismatches/DNA damage at this position are less accessible for repair, consistent with the nucleosome stability results.
Strengths:
The single-molecule data show clear and consistent effects of mismatches on nucleosome stability and DNA persistence length.
Weaknesses:
It is unclear in the looping assay how the cyclization rate relates to the reporting looping time. The biological significance and implications such as the effect on mismatch repair or nucleosome remodelers remain untested. It is unclear whether the mutational pattern reflects the behavior of the different mismatches. Such a correlation could strengthen the argument that the observed effects are relevant for mutagenesis.
-
Reviewer #3 (Public Review):
Summary:
The mechanical properties of DNA wrapped in nucleosomes affect the stability of nucleosomes and may play a role in the regulation of DNA accessibility in eukaryotes. In this manuscript, Ngo and coworkers study how the stability of a nucleosome is affected by the introduction of a CC mismatched base pair, which has been reported to increase the flexibility of DNA. Previously, the group has used a sophisticated combination of single-molecule FRET and force spectroscopy with an optical trap to show that the more flexible half of a 601 DNA segment provides for more stable wrapping as compared to the other half. Here, it is confirmed with a single-molecule cyclization essay that the introduction of a CC mismatch increases the flexibility of a DNA fragment. Consistent with the previous interpretation, it also increased the unwrapping force for the half of the 601 segment in which the CC mismatch was introduced, as measured with single-molecule FRET and force spectroscopy. Enhanced stability was found up to 56 bp into the nucleosome. The intricate role of mechanical stability of nucleosomes was further investigated by comparing force-induced unwrapping profiles of yeast and Xenopus histones. Intriguingly, asymmetric unwrapping was more pronounced for yeast histones.
Strengths:
(1) High-quality single-molecule data.
(2) Novel mechanism, potentially explaining the increased prominence of mutations near the dyads of nucleosomes.
(3) A clear mechanistic explanation of how mismatches affect nucleosome stability.
Weaknesses:
(1) Disconnect between mismatches in nucleosomes and measurements comparing Xenopus and yeast nucleosome stability.
(2) Convoluted data in cyclization experiments concerning the phasing of mismatches and biotin site.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> TMC7 knockout mice were generated by the authors and the phenotype was analyzed. They found that Tmc7 is localized to Golgi and is needed for acrosome biogenesis.
Strengths:<br /> The phenotype of infertility is clear, and the results of TMC7 localization and the failed acrosome formation are highly reliable. In this respect, they made a significant discovery regarding spermatogenesis.
Weaknesses:<br /> There are also some concerns, which are mainly related to the molecular function of TMC7 and Figure 5. It is understandable that TMC7 exhibits some channel activity in the Golgi and somehow affects luminal pH or Ca2+, leading to the failure of acrosome formation. On the other hand, since they are conducting the pH and calcium imaging from the cytoplasm, I do not think that the effect of TMC7 channel function in Golgi is detectable with their methods. Rather, it is more likely that they are detecting apoptotic cells that have no longer normal ion homeostasis. Another concern is that n is only 3 for these imaging experiments.
-
Reviewer #2 (Public Review):
Summary:
This study presents a significant finding that enhances our understanding of spermatogenesis. TMC7 belongs to a family of transmembrane channel-like proteins (TMC1-8), primarily known for their role in the ear. Mutations to TMC1/2 are linked to deafness in humans and mice and were originally characterized as auditory mechanosensitive ion channels. However, the function of the other TMC family members remains poorly characterized. In this study, the authors begin to elucidate the function of TMC7 in acrosome biogenesis during spermatogenesis. Through analysis of transcriptomics datasets, they identify TMC7 as a transmembrane channel-like protein with elevated transcript levels in round spermatids in both mouse and human testis. They then generate Tmc7-/- mice and find that male mice exhibit smaller testes and complete infertility. Examination of different developmental stages reveals spermatogenesis defects, including reduced sperm count, elongated spermatids, and large vacuoles. Additionally, abnormal acrosome morphology is observed beginning at the early-stage Golgi phase, indicating TMC7's involvement in proacrosomal vesicle trafficking and fusion. They observed localization of TMC7 in the cis-Golgi and suggest that its presence is required for maintaining Golgi integrity, with Tmc7-/- leading to reduced intracellular Ca2+, elevated pH, and increased ROS levels, likely resulting in spermatid apoptosis. Overall, the work delineates a new function of TMC7 in spermatogenesis and the authors suggest that its ion channel activity is likely important for Golgi homeostasis. This work is of significant interest to the community and is of high quality.
Strengths:
The biggest strength of the paper is the phenotypic characterization of the TMC7-/- mouse model, which has clear acrosome biogenesis/spermatogenesis defects. This is the main claim of the paper and it is supported by the data that are presented.
Weaknesses:
The claim is that TMC7 functions as an ion channel. It is reasonable to assume this given what has been previously published on the more well-characterized TMCs (TMC1/2), but the data supporting this is preliminary here, and more needs to be done to solidify this hypothesis. The authors are careful in their interpretation and present this merely as a hypothesis supporting this idea.
-
Reviewer #3 (Public Review):
Summary:
In this study, Wang et al. have demonstrated that TMC7, a testis-enriched multipass transmembrane protein, is essential for male reproduction in mice. Tmc7 KO male mice are sterile due to reduced sperm count and abnormal sperm morphology. TMC7 co-localizes with GM130, a cis-Golgi marker, in round spermatids. The absence of TMC7 results in reduced levels of Golgi proteins, elevated abundance of ER stress markers, as well as changes of Ca2+ and pH levels in the KO testis. However, further confirmation is required because the analyses were performed with whole testis samples in spite of the differences in the germ cell composition in WT and KO testis. In addition, the causal relationships between the reported anomalies await thorough interrogation.
Strengths:<br /> The microscopic images are of great quality, all figures are properly arranged, and the entire manuscript is very easy to follow.
Weaknesses:<br /> Tmc7 KO male mice show multiple anomalies in sperm production and morphogenesis, such as reduced sperm count, abnormal sperm head, and deformed midpiece. Thus, it is confusing that the authors focused solely on impaired acrosome biogenesis. Further investigations are warranted to determine whether the abnormalities reported in this manuscript (e.g., changes in protein, Ca2+, and pH levels) are directly associated with the molecular function of TMC7 or are the byproducts of partially arrested spermiogenesis. Please find additional comments in "Recommendations for the authors".
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Among the many challenges in the cilia field, is the question of how multicellular organisms assemble a variety of structurally and functionally specialized cilia, including cilia of different lengths. This study addresses the important question of how ciliary length differences are established in vertebrates. Specifically, the authors analyzed the role of intraflagellar transport (IFT) in ciliary length regulation in zebrafish, exploiting the transparency of the embryos. Zebrafish possess functionally specialized motile and non-motile cilia in a variety of tissues. Expression of GFP-tagged IFT88, a component of the IFT-B subcomplex, in a corresponding mutant, allowed the authors to image IFT in five distinct types of cilia. They note that IFT moves faster in longer cilia. Tagging and imaging of the IFT-A protein IFT43 further support this observation. IFT speed was largely unaffected in knock-out and morphants targeting the BBSome, various kinesin-2 motors, and the posttranslational modifications of tubulin polyglycylation and polyglutamylation. Using high-resolution STED imaging, the authors observe that IFT signals (likely, corresponding to IFT trains) are smaller in the shorter spinal cord cilia compared to the long cristae cilia. Based on these observations, the authors test the hypothesis that larger IFT trains recruit more motors or coordinate the motors better, resulting in faster trains, and causing cilia to be longer. This is further tested using partial knock-down of IFT88-GFP, which resulted in shorter crista cilia, reduced IFT particle number, size, and velocity. Some parts of the manuscript show "negative" data (e.g., ciliary length and IFT are not affected by the loss of BBS4) but these add beautifully to the overall story and allow for additional conclusions such as the minor role of ttll3 and ccp knockouts on ciliary length in this model. This is an excellent study, which documents IFT in a vertebrate species and explores its regulation. The data are of high quality and support most of the conclusions.
(1) The main hypothesis/conclusion is summarized in the abstract: "Our study presents an intriguing model of cilia length regulation via controlling IFT speed through the modulation of the size of the IFT complex." The data clearly document the remarkable correlation between IFT velocity and ciliary length in the different cells/tissues/organs analyzed. The experimental test of this idea, i.e., the knock-down of GFP-IFT88, further supports the conclusion but needs to be interpreted more carefully. While IFT particle size and train velocity were reduced in the IFT88 morphants, the number of IFT particles is even more decreased. Thus, the contributions of the reduction in train size and velocity to ciliary length are, in my opinion, not unambiguous. Also, the concept that larger trains move faster, likely because they dock more motors and/or better coordinating kinesin-2 and that faster IFT causes cilia to be loner, is to my knowledge, not further supported by observations in other systems (see below).
(2) I think the manuscript would be strengthened if the IFT frequency would also be analyzed in the five types of cilia. This could be done based on the existing kymographs from the spinning disk videos. As mentioned above, transport frequency in addition to train size and velocity is an important part of estimating the total number of IFT particles, which bind the actual cargoes, entering/moving in cilia.
(3) Here, the variation in IFT velocity in cilia of different lengths within one species is documented - the results document a remarkable correlation between IFT velocity and ciliary length. These data need to be compared to observations from the literature. For example, the velocity of IFT in the quite long (~ 100 um) olfactory cilia of mice is similar to that observed in the rather short cilia of fibroblasts (~0.6 um/s). In Chlamydomonas, IFT velocity is not different in long flagella mutants compared to controls. Probably data are also available for C. elegans or other systems. Discussing these data would provide a broader perspective on the applicability of the model outside of zebrafish.
-
Reviewer #2 (Public Review):
Summary:
In this study, the authors study intraflagellar transport (IFT) in cilia of diverse organs in zebrafish. They elucidate that IFT88-GFP (an IFT-B core complex protein) can substitute for endogenous IFT88 in promoting ciliogenesis and use it as a reporter to visualize IFT dynamics in living zebrafish embryos. They observe striking differences in cilia lengths and velocity of IFT trains in different cilia types, with smaller cilia lengths correlating with lower IFT speed. They generate several mutants and show that disrupting the function of different kinesin-2 motors and BBSome or altering post-translational modifications of tubulin does not have a significant impact on IFT velocity. They however observe that when the amount of IFT88 is reduced it impacts the cilia length, IFT velocity as well as the number and size of IFT trains. They also show that the IFT train size is slightly smaller in one of the organs with shorter cilia (spinal cord). Based on their observations they propose that IFT velocity determines cilia length and go one step further to propose that IFT velocity is regulated by the size of IFT trains.
Strengths:
The main highlight of this study is the direct visualization of IFT dynamics in multiple organs of a living complex multi-cellular organism, zebrafish. The quality of the imaging is really good. Further, the authors have developed phenomenal resources to study IFT in zebrafish which would allow us to explore several mechanisms involved in IFT regulation in future studies. They make some interesting findings in mutants with disrupted function of kinesin-2, BBSome, and tubulin modifying enzymes which are interesting to compare with cilia studies in other model organisms. Also, their observation of a possible link between cilia length and IFT speed is potentially fascinating.
Weaknesses:
The manuscript as it stands, has several issues.
(1) The study does not provide a qualitative description of cilia organization in different cell types, the cilia length variation within the same organ, and IFT dynamics. The methodology is also described minimally and must be detailed with more care such that similar studies can be done in other laboratories.
(2) They provide remarkable new observations for all the mutants. However, discussion regarding what the findings imply and how these observations align (or contradict) with what has been observed in cilia studies in other organisms is incomprehensive.
(3) The analysis of IFT velocities, the main parameter they compare between experiments, is not described at all. The IFT velocities appear variable in several kymographs (and movies) and are visually difficult to see in shorter cilia. It is unclear how they make sure that the velocity readout is robust. Perhaps, a more automated approach is necessary to obtain more precise velocity estimates.
(4) They claim that IFT speeds are determined by the size of IFT trains, based on their observations in samples with a reduced amount of IFT88. If this was indeed the case, the velocity of a brighter IFT train (larger train) would be higher than the velocity of a dimmer IFT train (smaller train) within the same cilia. This is not apparent from the movies and such a correlation should be verified to make their claim stronger.
(5) They make an even larger claim that the cilia length (and IFT velocity) in different organs is different due to differences in the sizes of IFT trains. This is based on a marginal difference they observe between the cilia of crista and the spinal cord in immunofluorescence experiments (Figure 5C). Inferring that this minor difference is key to the striking difference in cilia length and IFT velocity is incorrect in my opinion.
Impact:
Overall, I think this work develops an exciting new multicellular model organism to study IFT mechanisms. Zebrafish is a vertebrate where we can perform genetic modifications with relative ease. This could be an ideal model to study not just the role of IFT in connection with ciliary function but also ciliopathies. Further, from an evolutionary perspective, it is fascinating to compare IFT mechanisms in zebrafish with unicellular protists like Chlamydomonas, simple multicellular organisms like C elegans, and primary mammalian cell cultures. Having said that, the underlying storyline of this study is flawed in my opinion and I would recommend the authors to report the striking findings and methodology in more detail while significantly toning down their proposed hypothesis on ciliary length regulation. Given the technological advancements made in this study, I think it is fine if it is a descriptive manuscript and doesn't necessarily need a breakthrough hypothesis based on preliminary evidence.
-
Reviewer #3 (Public Review):
Summary:
A known feature of cilia in vertebrates and many, if not all, invertebrates is the striking heterogeneity of their lengths among different cell types. The underlying mechanisms, however, remain largely elusive. In the manuscript, the authors addressed this question from the angle of intraflagellar transport (IFT), a cilia-specific bidirectional transportation machinery essential to biogenesis, homeostasis, and functions of cilia, by using zebrafish as a model organism. They conducted a series of experiments and proposed an interesting mechanism. Furthermore, they achieved in situ live imaging of IFT in zebrafish larvae, which is a technical advance in the field.
Strengths:
The authors initially demonstrated that ectopically expressed Ift88-GFP through a certain heat-shock induction protocol fully sustained the normal development of mutant zebrafish that would otherwise be dead by 7 dpf due to the lack of this critical component of IFT-B complex. Accordingly, cilia formations were also fully restored in the tissues examined. By imaging the IFT using Ift88-GFP in the mutant fish as a marker, they unexpectedly found that both anterograde and retrograde velocities of IFT trains varied among cilia of different cell types and appeared to be positively correlated with the length of the cilia.
For insights into the possible cause(s) of the heterogeneity in IFT velocities, the authors assessed the effects of IFT kinesin Kif3b and Kif17, BBSome, and glycylation or glutamylation of axonemal tubulin on IFT and excluded their contributions. They also used a cilia-localized ATP reporter to exclude the possibility of different ciliary ATP concentrations. When they compared the size of Ift88-GFP puncta in crista cilia, which are long, and spinal cord cilia, which are relatively short, by imaging with a cutting-edge super-resolution microscope, they noticed a positive correlation between the puncta size, which presumably reflected the size of IFT trains, and the length of the cilia.
Finally, they investigated whether it is the size of IFT trains that dictates the ciliary length. They injected a low dose (0.5 ng/embryo) of ift88 MO and showed that, although such a dosage did not induce the body curvature of the zebrafish larvae, crista cilia were shorter and contained less Ift88-GFP puncta. The particle size was also reduced. These data collectively suggested mildly downregulated expression levels of Ift88-GFP. Surprisingly, they observed significant reductions in both retrograde and anterograde IFT velocities. Therefore, they proposed that longer IFT trains would facilitate faster IFT and result in longer cilia.
Weaknesses:
The current manuscript, however, contains serious flaws that markedly limit the credibility of major results and findings. Firstly, important experimental information is frequently missing, including (but not limited to) developmental stages of zebrafish larvae assayed (Figures 1, 3, and 5), how the embryos or larvae were treated to express Ift88-GFP (Figures 3-5), and descriptions on sample sizes and the number of independent experiments or larvae examined in statistical results (Figures 3-5, S3, S6). For instance, although Figure 1B appears to be the standard experimental scheme, the authors provided results from 30-hpf larvae (Figure 3) that, according to Figure 1B, are supposed to neither express Ift88-GFP nor be genotyped because both the first round of heat shock treatment and the genotyping were arranged at 48 hpf. Similarly, the results that ovl larvae containing Tg(hsp70l:ift88 GFP) (again, because the genotype is not disclosed in the manuscript, one can only deduce) display normal body curvature at 2 dpf after the injection of 0.5 ng of ift88 MO (Fig 5D) is quite confusing because the larvae should also have been negative for Ift88-GFP and thus displayed body curvature. Secondly, some inferences are more or less logically flawed. The authors tend to use negative results on specific assays to exclude all possibilities. For instance, the negative results in Figures 4A-B are not sufficient to "suggest that the variability in IFT speeds among different cilia cannot be attributed to the use of different motor proteins" because the authors have not checked dynein-2 and other IFT kinesins. In fact, in their previous publication (Zhao et al., 2012), the authors actually demonstrated that different IFT kinesins have different effects on ciliogenesis and ciliary length in different tissues. Furthermore, instead of also examining cilia affected by Kif3b or Kif17 mutation, they only examined crista cilia, which are not sensitive to the mutations. Similarly, their results in Figures 4C-G only excluded the importance of tubulin glycylation or glutamylation in IFT. Thirdly, the conclusive model is based on certain assumptions, e.g., constant IFT velocities in a given cell type. The authors, however, do not discuss other possibilities.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The study "Effect of alpha-tubulin acetylation on the doublet microtubule structure" by S. Yang et al employs a multi-disciplinary approach, including cryo-electron microscopy (cryo-EM), molecular dynamics, and mass spectrometry, to investigate the impact of α-tubulin acetylation at the lysine 40 residue (αK40) on the structure and stability of doublet microtubules in cilia. The work reveals that αK40 acetylation exerts a small-scale, but significant, effect by influencing the lateral rotational angle of the microtubules, thereby affecting their stability. Additionally, the study provided an explanation of the relationship between αK40 acetylation and phosphorylation within cilia, despite that the details still remain elusive. Overall, these findings contribute to our understanding of how post-translational modifications can influence the structure, composition, stability, and functional properties of important cellular components like cilia.
Strengths:
(1) Multi-Disciplinary Approach: The study employs a robust combination of cryo-electron microscopy (cryo-EM), molecular dynamics, and mass spectrometry, providing a comprehensive analysis of the subject matter.<br /> (2) Significant Findings: The paper successfully demonstrates the impact of αK40 acetylation on the lateral rotational angles between protofilaments (inter-PF angles) of doublet microtubules in cilia, thereby affecting their stability. This adds valuable insights into the role of post-translational modifications in cellular components.<br /> (3) Exploration of Acetylation-Phosphorylation Relationship: The study also delves into the relationship between αK40 acetylation and phosphorylation within cilia, contributing to a broader understanding of post-translational modifications.<br /> (4) High-quality data: The authors are cryo-EM experts in the field and the data quality presented in the manuscript is excellent.<br /> (5) Depth of analysis: The authors analyzed the effects of αK40 acetylation in excellent depth which significantly improved our understanding of this system.
Weaknesses:
I have no major concerns about this paper.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> In the present study, authors found the ternary complex formed by NCAN, TNC, and HA as an important factor facilitating the multipolar to bipolar transition in the intermediate zone (IZ) of the developing cortex. NCAM binds HA via the N-terminal Link modules, meanwhile, TNC cross-links NCAN through the CDL domain at the C-terminal. The expression and right localization of these three factors facilitate the multipolar-bipolar transition necessary for immature neurons to migrate radially. TNC and NCAM are also involved in neuronal morphology. The authors used a wide range of techniques to study the interaction between these three molecules in the developing cortex. In addition, single and double KO mice for NCAN and TNC were analyzed to decipher the role of these molecules in neuronal migration and morphology.
Strengths:<br /> The study of the formation of the cerebral cortex is crucial to understanding the pathophysiology of many neurodevelopmental disorders associated with malformation of the cerebral cortex. In this study, the authors showed, for the first time, that the ternary complex formed by NCAN, TNC, and HA promotes neuronal migration. The results regarding the interaction between the three factors forming the ternary complex are convincing.
-
Reviewer #2 (Public Review):
Summary:
ECM components are prominent constituents of the pericellular environment of CNS cells and form complex and dynamic interactomes in the pericellular spaces. Based on bioinformatic analysis, more than 300 genes have been attributed to the so-called matrisome, many of which are detectable in the CNS. Yet, not much is known about their functions while increasing evidence suggests important contributions to developmental processes, neural plasticity, and inhibition of regeneration in the CNS. In this respect, the present work offers new insights and adds interesting aspects to the facets of ECM contributions to neural development. This is even more relevant in view of the fact that neurocan has recently been identified as a potential risk gene for neuropsychiatric diseases. Because ECM components occur in the interstitial space and are linked in interactomes their study is very difficult. A strength of the manuscript is that the authors used several approaches to shed light on ECM function, including proteome studies, the generation of knockout mouse lines, and the analysis of in vivo labeled neural progenitors. This multi-perspective approach permitted to reveal hitherto unknown properties of the ECM and highlighted its importance for the overall organization of the CNS.
Strengths:
Systematic analysis of the ternary complex between neurone, TNC, and hyaluronic acid; establishment of KO mouse lines to study the function of the complex, use of in utero electroporation to investigate the impact on neuronal migration.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The manuscript by Sztangierska et al explores how the Hsp70 chaperone together with its JDP-NEF cofactors and Hsp104 disentangle aggregated proteins. Specifically, the study provides mechanistic findings that explain what role the NEF class Hsp110 has in protein disaggregation. The results explain several previous observations related to Hsp110 in protein disaggregation. Importantly, the study provides compelling evidence that Hsp110 acts early in the disaggregation process.
Strengths:<br /> (1) This is a very well-performed study with multiple in vitro experiments that provide convincing support for the claims.
(2) An important finding is that the study places the Hsp110 function early in the disaggregation process.
(3) The study has an important value in that it picks up on a number of observations in the field that have not been explored or directly tested by experiment. The presented results settle questions and controversy regarding Hsp110 function in disaggregation.
Weaknesses:
(1) While the key finding of this manuscript is that it places Hsp110 early in the disaggregation process, the other findings are advancing the field less.
(2) A claim in the paper is that Hsp110 NEFs improve disaggregation by Hsp70 in a manner dependent on the class of JDP (class A vs class B). However, it rather appears that in the experiments class B JDPs support robust disaggregation, while class A JDPs are not as effective. This simple fact may very well underly the differences and questions if class specificity should be in focus in the interpretation of the data.
(3) The experiments differ somewhat in regard to the aggregated protein used. For example, in Figure 1A, FFL is used with only limited reactivation (10% reactivated at the last timepoint and the curve is flattening), while in Figure 2B FFL-EGFP is used to monitor microscopically what appears to be complete disaggregation. Does FFL-EGFP behave the same as FFL in assays such as the one in Figure 1A or are there major differences that may impact how the data should be interpreted?
-
Reviewer #2 (Public Review):
Sztangierska et al. have investigated the impact of the nucleotide exchange (NEF) factor Hsp110 on the Hsp70-dependent dissolution of amorphous aggregates in the presence of representative members of two classes of J-domain protein.
The authors find that the nucleotide exchange factor of the Hsp110 family, sse1, stimulates the disaggregation activity of yeast Hsp70, ssa1, in particular in the presence of the J-domain protein sis1. Linking chaperone-substrate interactions as determined by biolayer interferometry (BLI) to activity assays, they show that sse1 facilitates the loading of more ssa1 onto the aggregate substrate and propose that this is due to active remodeling of the protein aggregate which exposes more chaperone binding sites and thus facilitates reactivation. This study highlights two important facets of Hsp70 biology: different Hsp70 functions rely on the functional cooperation of specific co-chaperone combinations and the stoichiometry of the different players of the Hsp70 system is an important parameter in tuning Hsp70 chaperone activity.
Strengths:
The manuscript presents a systematic analysis of the functional cooperation of sse1 with a class B J-domain protein sis1 in the disaggregation of two different model aggregate substrates, allowing the authors to draw more general conclusions about Hsp70 disaggregation activity.
The authors can pinpoint the role of sse1 to the initial remodeling of aggregates, rather than the later stages of refolding, highlighting the functional specificity of Hsp70 co-chaperones.
They demonstrate the competitive nature of binding to ssa1 between sse1 and sis1 which can explain the poisoning of Hsp70 chaperone activities observed at high NEF concentrations.
Weaknesses:
Experimental data concerning the class A JDPs should be interpreted with caution. These experiments show very small reactivation activities for luciferase in the range of 0-1% without the addition of Hsp104 and 0-15% with the addition of Hsp104. Moreover, since the assay is based on the recovery of luciferase activity, it conflates two chaperone activities, namely disaggregation and refolding. It is possible that the small degree of reactivation observed for the class A JDP reflects a minor subpopulation of the aggregated species that is particularly easy to disaggregate/refold and may thus not be representative of bulk behaviour.
While structural requirements have been identified that allow sse1, in cooperation with sis1, to facilitate the loading of Hsp70 on the amorphous aggregate substrate, how this is achieved on a mechanistic level remains an open question.
-
Reviewer #3 (Public Review):
Summary:
The authors studied the function of Hsp110 co-chaperones (e.g. yeast Sse1) in Hsp70-dependent protein disaggregation reactions. The study builds on former work by the authors (Wyszkowski et al., 2021, PNAS), analyzing the binding of Hsp70 and J-domain protein (JDP) cochaperones to protein aggregates using bio-layer interferometry (BLI). It was shown before by other groups that Hsp110 enhances Hsp70 disaggregation activity. The mechanism of Hsp110-stimulated disaggregation activity, however, remained poorly defined. Here, the authors show that yeast Hsp110 increases Hsp70 recruitment to the surface of protein aggregates. The effect is largely dependent on J-domain protein (JDP) identity and is particularly pronounced for class B JDPs (e.g. yeast Sis1), which are also more effective in disaggregation reactions. The authors also confirm former results, showing inhibition by increased Hsp110 levels, and provide novel evidence that the inhibitory effect is caused by competition between Hsp110 and JDPs for Hsp70 binding.
Strengths:
The work represents a very thoroughly executed study, which provides novel insights into the mechanism of Hsp70-mediated protein disaggregation. Key findings established for yeast chaperones are also documented for human counterparts. The observation that Hsp110 might displace JDPs from Hsp70 during the disaggregation reaction is very appealing. It will now become important to validate this initial finding and dissect how it propels the disaggregation reaction.
Weaknesses:
How exactly the interplay between JDPs and Hsp110 orchestrates protein disaggregation remains largely speculative and further analysis is required for a deeper mechanistic understanding. Enhanced recruitment of Hsp70 in the presence of Hsp110 was shown for amyloid fibrils before (Beton et al., EMBO J 2022) and should be acknowledged. The assay reporting on the refolding activity of Hsp70 seems problematic due to the high spontaneous refolding of the substrate Luciferase and should be modified.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
In this manuscript, the authors show compelling data indicating that ExoIII has significant ssDNA nuclease activity that is posited to interfere with biosensor assays. This does not come as a surprise as other published works have indeed shown the same, but in this work, the authors provide a deeper analysis of this underestimated activity.
Strengths:
The authors used a variety of assays to examine the ssDNA nuclease activity of ExoIII and its origin. Fluorescence-based assays and native gel electrophoresis, combined with MS analysis clearly indicate that both commercial and laboratory purified ExoIII contain ssDNA nuclease activity. Mutational analysis identifies the residues responsible for this activity. Of note is the observation in this submitted work that the sites of ssDNA and dsDNA exonuclease activity overlap, suggesting that it may be difficult to identify mutations that affect one activity but not the other. In this regard, it is of interest the observation by the authors that the ssDNA nuclease activity depends on the sequence composition of the ssDNA, and this may be used as a strategy to suppress this activity when necessary. For example, the authors point out that a 3′ A4-protruding ssDNA could be employed in ExoIII-based assays due to its resistance to digestion. However, this remains an interesting suggestion that the authors do not test, but that would have strengthened their conclusion.
Weaknesses:
The authors provide a wealth of experimental data showing that E. coli ExoIII has ssDNA nuclease activities, both exo- and endo-, however this work falls short in showing that indeed this activity practically interferes with ExoIII-driven biosensor assays, as suggested by the authors. Furthermore, it is not clear what new information is gained compared to the one already gathered in previously published works (e.g. references 20 and 21). Also, the authors show that ssDNA nuclease activity has sequence dependence, but in the context of the observation that this activity is driven by the same site as dsDNA Exo, how does this differ from similar sequence effects observed for the dsDNA Exo? (e.g. see Linxweiler, W. and Horz, W. (1982). Nucl. Acids Res. 10, 4845-4859).
Because of the claim that the underestimated ssDNA nuclease activity can interfere with commercially available assays, it would have been appropriate to test this. The authors only show that ssDNA activity can be identified in commercial ExoIII-based kits, but they do not assess how this affects the efficiency of a full reaction of the kit. This could have been achieved by exploiting the observed ssDNA sequence dependence of the nuclease activity. In this regard, the work cited in Ref. 20 showed that indeed ExoIII has ssDNA nuclease activity at concentrations as low as 50-fold less than what test in this work. Ref 20 also tested the effect of the ssDNA nuclease activity in Targeted Recycle Assays, rather than just testing for its presence in a kit.
Because of the implication that the presence of ssDNA exonuclease activity may have in reactions that are supposed to only use ExoIII dsDNA exonuclease, it is surprising that in this submitted work no direct comparison of these two activities is done. Please provide an experimental determination of how different the specific activities for ssDNA and dsDNA are.
-
Reviewer #2 (Public Review):
Summary:
This paper describes some experiments addressing 3' exonuclease and 3' trimming activity of bacterial exonuclease III. The quantitative activity is in fact very low, despite claims to the contrary. The work is of low interest with regard to biology, but possibly of use for methods development. Thus the paper seems better suited to a methods forum.
Strengths:
Technical approaches.
Weaknesses:
The purity of the recombinant proteins is critical, but no information on that is provided. The minimum would be silver-stained SDS-PAGE gels, with some samples overloaded in order to detect contaminants.
Lines 74-76: What is the evidence that BER in E. coli generates multinucleotide repair patches in vivo? In principle, there is no need for the nick to be widened to a gap, as DNA Pol I acts efficiently from a nick. And what would control the extent of the 3' excision?
Figure 1: The substrates all report only the first phosphodiester cleavage near the 3' end, which is quite a limitation. Do the reported values reflect only the single phosphodiester cleavage? Including the several other nucleotides likely inflates that activity value. And how much is a unit of activity in terms of actual protein concentration? Without that, it's hard to compare the observed activities to the many published studies. As best I know, Exo III was already known to remove a single-nucleotide 3'-overhang, albeit more slowly than the digestion of a duplex, but not zero! We need to be able to calculate an actual specific activity: pmol/min per µg of protein.
Figures 2 & 3: These address the possible issue of 1-nt excision noted above. However, the question of efficiency is still not addressed in the absence of a more quantitative approach, not just "units" from the supplier's label. Moreover, it is quite common that commercial enzyme preparations contain a lot of inactive material.
Figure 4D: This gets to the quantitative point. In this panel, we see that around 0.5 pmol/min of product is produced by 0.025 µmol = 25,000 pmol of the enzyme. That is certainly not very efficient, compared to the digestion of dsDNA or cleavage of an abasic site. It's hard to see that as significant.
Line 459 and elsewhere: as noted above, the activity is not "highly efficient". I would say that it is not efficient at all.
-
Reviewer #3 (Public Review):
Overall:
ExoIII has been described and commercialized as a dsDNA-specific nuclease. Several lines of evidence, albeit incomplete, have indicated this may not be entirely true. Therefore, Wang et al comprehensively characterize the endonuclease and exonuclease enzymatic activities of ExoIII on ssDNA. A strength of the manuscript is the testing of popular kits that utilize ExoIII and coming up with and testing practical solutions (e.g. the addition of SSB proteins ExoIII variants such as K121A and varied assay conditions).
Comments:
(1) The footprint of ExoIII on DNA is expected to be quite a bit larger than 5-nt, see structure in manuscript reference #5. Therefore, the substrate design in Figure 1A seems inappropriate for studying the enzymatic activity and it seems likely that ExoIII would be interacting with the FAM and/or BHQ1 ends as well as the DNA. Could this cause quenching? Would this represent real ssDNA activity? Is this figure/data necessary for the manuscript?
(2) Based on the descriptions in the text, it seems there is activity with some of the other nucleases in 1C, 1F, and 1I other than ExoIII and Cas12a. Can this be plotted on a scale that allows the reader to see them relative to one other?
(3) The sequence alignment in Figure 2N and the corresponding text indicates a region of ExoIII lacking in APE1 that may be responsible for their differences in substrate specificity in regards to ssDNA. Does the mutational analysis support this hypothesis?
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> In this study, the authors set out to determine whether colorectal cancer surgery site (right, left, rectal) and chemotherapy impact the subsequent risk of developing T2DM in the Danish national health register.
Strengths:<br /> - The research question is conceptually interesting<br /> - The Danish national health register is a comprehensive health database<br /> - The data analysis was thorough and appropriate<br /> -The findings are interesting, and a little surprising that there was no impact of chemotherapy on the development of T2DM<br /> - The authors have addressed my previous clarifications and questions.
- Regarding the generalizability of this study, as the authors discuss the prevalence of T2DM and obesity are lower in Denmark than in a number of other high income countries. Therefore, similar studies in other populations would be of interest.<br /> - The study includes individuals who filled a prescription for diabetes medication, so likely includes some individuals with transient hyperglycemia/steroid induced diabetes during chemotherapy, rather than those with new onset longterm T2DM.
Overall, the authors achieved their aims, and the conclusions are supported by their results as reported.<br /> The results are unlikely to significantly impact clinical practice or T2DM screening in this population, however are of interest to the community.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
When writing a short review on the function of Pin1 some 15 years ago (Lippens et al., Febs J 2007), we concluded the introduction by the following sentence: "..., it seems that further analysis is required to determine whether binding or catalysis is the primary mechanism through which Pin1 affects cell cycle progression." In the present manuscript, the authors provide experimental evidence for the Pin1/PKC interaction that tips the balance towards interaction and not catalysis.
Their main data concern the interaction between the V5 domains of two PKC isoenzymes (alpha and betaII) and Pin1. This V5 domain can be further separated into a Turn Motif (TM) and a Hydrophobic Motif (HM), that both can be phosphorylated on specific positions. Phosphorylation in the TM occurs on a TPP motif, and in agreement with previous results on the same motif in Tau, Pin1 cannot isomerize efficiently the TP amide bond when the residue following the proline is another proline. Phosphorylation of the HM is not proline directed but occurs on a serine flanked by 2 aromatic residues (FSF or FSY, according to the isoenzyme). They dissect in detail the interaction of both motifs with the WW and PPIase domains and conclude that the fully phosphorylated V5 peptide binds Pin1 in a directional mode, with the TM binding to the WW domain and the HM to the PPIase domain.
In the absence of crystals of the complex, they solve a structure by NMR, and use selectively labeled peptides (and probably a lot of NMR time) to obtain a structural model. Finally, they provide functional data by silencing/overepxressing Pin1 and inactive mutants (both at the level of its WW domain and the PPIase domain) in HEK293T cells and evaluating the PKCalpha homeostasis.
The structural part of this work is interesting, as it is the first structure of Pin1 with a ligand that bridges both domains. They might want to underline this - all other structures in the PDB have a single domain complex, but never both domains by a single longer peptide. I would however question the static representation of this structure - the 90{degree sign} kink in the peptide when complexed is probably one single snapshot, but I hardly believe the PPIase/WW domain orientation to be static. Unless the authors have additional information to stand by this static structure, this point merits being commented on in the manuscript.
I would like to point out to literature that described for example the non-canonical binding (Yeh ES, Lew BO & Means AR (2006) The loss of PIN1 deregulates cyclin E and sensitizes mouse embryo fibroblasts to genomic instability. J Biol Chem 281, 241-251. Pin1 recognizes cyclin E via a noncanonical pThr384- Gly385 motif [33] rather than the pThr380-Pro381 motif.). They mention briefly the absence of isomerase activity in similar TPP motifs, but this information might already come in the Results section.
The weakest part seems the in vivo data. Although this is not the main focus of this lab, there is some issues that could be addressed. The expression levels of Pin1 and PKCa are amazingly linear (Fig 7A), but when they overexpress WT Pin1 in a KO line, with 3-4 times higher overexpression, the PKCa levels are hardly higher than in the original WT cell line. Also, the levels in the W34A/R68A/R69A (abolishing both WW and PPIase binding functions) are surprising, why would PKCa levels rise above the level found in the Pin1 KO cells? Finally, if even slight overexpression of the C113S catalytically inactive mutant leads to more efficient PKCa degradation than overexpression of the WT Pin1 (Figure 7C), it is hard to interpret. The conclusion that Pin1-mediated regulation of PKCa requires a bivalent interaction mode of Pin1 with PKCa independent of its catalytic activity do depend on these data, so they merit further analysis.
-
Reviewer #2 (Public Review):
Chen, Dixit et al. report on the first structure of a bivalent interaction between a natural interaction partner of Pin1: the C-terminal tail of PKC phosphorylated at two sites. The biggest strength of the paper is the impressive amount of NMR-based structural data that is sound and clearly reported. The authors strive to propose a novel non-catalytic mechanistic role for Pin1 that is supported by cell culture models and somewhat by the interaction assays, however, in my eyes, they fell short in proving their mechanistic hypothesis. Nevertheless, the potential ways Pin1 may modulate PKC's activity is nicely discussed.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
By using deep convolutional neural networks (CNNs) as model for the visual system, this study aims at understanding and explaining the emergence of mirror-symmetric viewpoint tuning in the brain.
Major strengths of the methods and results:
(1) The paper presents comprehensive, insightful and detailed analyses investigating how mirror-symmetric viewpoint tuning emergence in artificial neural networks, providing significant and novel insights into this complex process.<br /> (2) The authors analyze reflection equivariance and invariance in both trained and untrained CNNs' convolutional layers. This elucidates how object categorization training gives rise to mirror-symmetric invariance in the fully-connected layers.<br /> (3) By training CNNs on small datasets of numbers and a small object set excluding faces, the authors demonstrate mirror-symmetric tuning's potential to generalize to untrained categories and the necessity of view-invariant category training for its emergence.<br /> (4) A further analysis probes the contribution of local versus global features to mirror-symmetric units in the first fully-connected layer of a network. This innovative analysis convincingly shows that local features alone suffice for the emergence of mirror-symmetric tuning in networks.<br /> (5) The results make a clear prediction that mirror-symmetric tuning should also emerge for other bilaterally symmetric categories, opening avenues for future neural studies.
Major weaknesses of the methods and results:
(1) The authors propose a mirror-symmetric viewpoint tuning index, which, although innovative, complicates comparison with previous work and this choice is not well motivated. This index is based on correlating representational dissimilarity matrices (RDMs) with their flipped versions, a method differing from previous approaches.<br /> (2) Faces exhibit unique behavior in terms of the progression of mirror-symmetric viewpoint tuning and their training task and dataset dependency. Given that mirror-symmetric tuning has been identified in the brain for faces, it would be beneficial to discuss this observation and provide potential explanations.<br /> (3) Previous work reported critical differences between CNNs and neural representations in area AL indicating that mirror-symmetric viewpoint tuning is less present than view invariance in CNNs compared to area AL. While such findings could potentially limit the usefulness of CNNs as models for mirror-symmetric viewpoint tuning in the brain, they are not addressed in the study.<br /> (4) The study's results, while informative, are qualitative rather than quantitative, and lack direct comparison with neural data. This obscures the implications for neural mechanisms and their relevance to the broader field.
The study provides compelling evidence that learning to discriminate bilaterally symmetric objects (beyond faces) induces mirror-symmetric viewpoint tuning in the networks, qualitatively similar to the brain. Moreover, the results suggest that this tuning can, in principle, generalize beyond previously trained object categories. Overall, the study provides important conclusions regarding the emergence of mirror-symmetric viewpoint tuning in networks, and potentially the brain. However, the conducted analyses and results do not entirely address the question why mirror-symmetric viewpoint tuning emerges in networks or the brain. Specifically, the results leave open whether mirror-symmetric viewpoint tuning is indeed necessary to achieve view invariance for bilaterally symmetric objects.
Taken together, this study moves us a step closer to uncovering the origins of mirror-symmetric tuning in networks, and has implications for more comprehensive investigations into this neural phenomenon in the brain. The methods of probing CNNs are innovative and could be applied to other questions in the field. This work will be of broad interest to cognitive neuroscientists, psychologists, and computer scientists.
-
Reviewer #2 (Public Review):
Strengths
(1) The statements made in the paper are precise, separating observations from inferences, with claims that are well supported by empirical evidence. Releasing the underlying code repository further bolsters the credibility and reproducibility. I especially appreciate the detailed discussion of limitations and future work.
(2) The main claims with respect to the two convolutional architectures are well supported by thorough analyses. The analyses are well-chosen and overall include good controls, such as changes in the training diet. Going beyond "passive" empirical tests, the paper makes use of the fully accessible nature of computational models and includes more "causal" insertion and deletion tests that support the necessity and sufficiency of local object features.
(3) Based on modeling results, the paper makes a testable prediction: that mirror-symmetric viewpoint tuning is not specific to faces and can also be observed in other bilaterally symmetric objects such as cars and chairs. To test this experimentally in primates (and potentially other model architectures), the stimulus set is available online.
Weaknesses
My main concern with this paper is in its choice of the two model architectures AlexNet and VGG. In an earlier study, Yildirim et al. (2020) found an inverse graphics network "EIG" to better correspond to neural and behavioral data for face processing than VGG. All claims in the paper thus relate to a weaker model of the biological effects since this work does not analyze the EIG model. Since EIG follows an analysis-by-synthesis approach rather than standard classification training, it is unclear whether the claims in this paper generalize to this other model architecture. It is also unclear if the claims will hold for: 1) transformer architectures, 2) the HMAX architecture by Leibo et al. (2017) which has also been proposed as a computational explanation for mirror-symmetric tuning, and, as the authors note in the Discussion, 3) deeper architectures such as ResNet-50 which tend to better align to neural and behavioral data in general. These architectures include different computational motifs such as skip connections and a much smaller proportion of fully-connected layers which are a major focus of this work.
Overall, I thus view the paper's claims as limited to AlexNet- and VGG-like architectures, both of which fall behind state-of-the-art in their alignment to primates in general and also specifically for mirror-symmetric viewpoint tuning.
Minor weaknesses
(1) Figure 1A: since the relevance to primate brains is a major motivator of this work, the results from actual neural recordings should be shown and not just schematics. For instance, the mirror symmetry in AL is not as clean as the illustration (compare with Fig. 3 in Yildirim et al. 2020), and in the paper's current form, this is not easily accessible to the reader.
(2) Figure 4 / L832-845: The claims for the effect of training on mirror-symmetric viewpoint tuning are with respect to the training data only, but there are other differences between the models such as the number of epochs (250 for CIFAR-10 training, 200 for all other datasets), the learning rate (2.5 * 10^-4 for CIFAR-10, 10^-4 for all others), the batch size (128 vs 64), etc. I do not expect these choices to make a major difference for your claims, but it would be much cleaner to keep everything but the training dataset consistent. Especially the different test accuracies worry me a bit (from 81% to 92%, and they appear different from the accuracy numbers in figure S4 e.g. for CIFAR-10 and asymSVHN), at the very least those should be comparable.
(3) L681-685: The general statement made in the paper that "deeper models lose their advantage as models of cortical representations" is not supported by the cited limited comparison on a single dataset. There are many potential confounds here with respect to prior work, e.g. the recording modality (fMRI vs electrodes), the stimulus set (62 images vs thousands), the models that were tested (9 vs hundreds), etc.
-
Reviewer #3 (Public Review):
This study aimed to explore the computational mechanisms of view invariance, driven by the observation that in some regions of monkey visual cortex, neurons show comparable responses to (1) a given face and (2) to the same face but horizontally flipped. Here they study this known phenomenon using AlexNet and other shallow neural networks, using an index for mirror symmetric viewpoint tuning based on representational similarity analyses. They find that this tuning is enhanced at fully connected- or global pooling layers (layers which combine spatial information), and that the invariance is prominent for horizontal- but not vertical- or rotational transformations. The study shows that mirror tuning can be learned when a given set of images are flipped horizontally and given the same label, but *not* if they are flipped and given different labels. They also show that networks learn this tuning by focusing on local features, not global configurations.
I found the study to be a mixed read. Some analyses were fascinating: for example, it was satisfying to see the use of well-controlled datasets to increase or decrease the rate of mirror-symmetry tuning. The insertion- and deletion¬ experiments were elegant tests to probe the mechanisms of mirror symmetry, asking if symmetry could arise from (1) global feature configurations (in a holistic sense) vs. (2) local features, with stronger evidence for the latter. These two sets of results were successful and interpretable. They stand in contrast with the first analysis, which relies on observations that do not seem justified. Specifically, Figure 2D shows mirror-symmetry tuning across 11 stages of image processing, from pixels space to fully connected layers. It shows that images from different object categories evoke considerably different tuning index values. The explanation for this result is that some categories, such as "tools," have "bilaterally symmetric structure," but this is not explicitly measured anywhere. "Boats" are described as having "front-back symmetry," more so than flowers. One imagines flowers being extremely symmetric, but perhaps that depends on the metric. What is the metric? At first I thought it was the mirror-symmetric viewpoint tuning index in the image (pixel) space, but this cannot be, as the index for faces and flowers is negative, cars have no symmetry, and boats are positive. To support these descriptions, one must have an independent variable (for object class symmetry) that can be related to the dependent variable (the mirror-symmetric viewpoint tuning index). If it exists, it is not a part of the Results section. This omission undermines other parts of the Results section: "some car models have an approximate front-back symmetry...however, a flower typically does not..." "Some," "typically:" how many in the dataset exactly, and how often? The description of CIFAR-10 as having bilaterally symmetric categories - are all these categories equally symmetric? If not, would such variability matter in terms of these results? These assessments of object category symmetry values are made before experiments are presented, so they are not interpretations of the results, and it would be circular to write it otherwise.
Overall, my bigger concern is that the framing is misleading or at best incomplete. The manuscript successfully showed that if one introduces left-right symmetry to a dataset, the network will develop population-level representations that are also bilaterally symmetric. But the study does not explain that the model's architecture and random weight distribution are sufficient for symmetry tuning to emerge, without training, just to a much more limited degree. Baek et al. showed in 2021 that viewpoint-invariant face-selective units and mirror-symmetric units emerge in untrained networks ("Face detection in untrained deep neural networks"; this current manuscript cites this paper but does not mention that mirror symmetry is a feature of the 2021 study). This current study also used untrained networks as controls (Fig. 3), and while they were useful in showing that learning boosts symmetry tuning, the results also clearly show that horizontal-reflection invariance is far from zero. So, the simple learning-driven explanation for the mirror-symmetric viewpoint tuning for faces is wrong: while (1) network training and (2) pooling are mechanisms that charge the development of mirror-symmetric tuning, the lottery ticket hypothesis is enough for its emergence. Faces and numbers are simple patterns, so the overparameterization of networks is enough to randomly create units that are tuned to these shapes and to wire many of them together. How learning shapes this process is an interesting direction, especially now that this current study has outlined its importance.
Finally, it would help to cite other previous demonstrations of equivariance and mirror symmetry in neural networks. Chris Olah, Nick Cammarata, Chelsea Voss, Ludwig Schubert, and Gabriel Goh of OpenAI wrote of this phenomenon in 2020 (Distill journal).
Some other observations that might help:
- I am enthusiastic about the experiments using different datasets to increase or decrease the rate of mirror-symmetry tuning (sets including CIFAR10, SVHN, symSVHN, asymSVHN); it is worth noting, however, that the lack of a ground truth metric for category symmetry is a problem here too. In the asymSVHN dataset, images are flipped and given different labels. If some categories are naturally symmetric after horizontal flips, such as images containing "0" or "8", then changing the label is likely to disturb training. This would explain why the training loss is larger for this condition (Figure S4D).
- It is puzzling why greyscale 3D rendered images are used. By using greyscale 3D render (at least as shown in the figures) the study proceeds as if the units are invariant under color transformations. Unfortunately, this is not true and using greyscale images impact the activations of different layers of Alexnet in a way that is not fully defined. Moreover, many units in shallow networks focus on color and exactly these units could be invariant to other transformation like the mirror symmetry, but grey scaling the images makes them inactive.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this manuscript, the authors perform a very thorough, extensive characterization of the impact of an iron-rich diet on multiple phenotypes in a wide range of inbred mouse strains. While a work of this type does not offer mechanistic insights, the value of the study lies not only in its immediate results but also in what it can offer to future researchers as they explore the genetic basis of iron levels and other related phenotypes in rodent studies. The creation of a web resource and the offer from the authors to share all available samples is particularly laudable, and helps to increase the accessibility of the work to other scientists. There is one shortcoming to the work however. To induce iron overload in mice in the main study in this work, mice were placed on an iron-rich diet that differed in its composition from the baseline diet in more than just iron. This could influence some of the phenotypes observed in this study.
-
Reviewer #2 (Public Review):
Here, the authors tried to identify the genes and biological pathways underlying iron overload and its associated pathologies in mice. Several wet lab experiments and measurements alongside many bioinformatic analyses like GWAS, RNA-seq data analysis (DEG), eQTL analysis, TWAS, and gene-set enrichment analysis have been performed. The study design is good enough and the author tried to validate the results. The data have been submitted (Accession #: GSE230674) but are not public yet.
(1) The main issue of this manuscript is its length. It's too long, especially the result section. It's hard for readers to follow the paper. Moreover, you added results about other minerals, mostly copper, which seems too much (considering the fact that this study is about iron). The text doesn't have the required Integrity and focus. You should decide where you want to put the focus of this manuscript and I strongly recommend shortening the manuscript, try to be short and sweet as much as you can.<br /> (2) Also, the "Methods" section is long, some parts are over-detailed (mostly wet lab procedures) and some parts are not detailed enough. It seems the "Statistical analyses" part doesn't have extra information. I recommend removing the first paragraph and moving some of the information from the second paragraph to the right place in the Method section.<br /> (3) Some part of your discussion section, is retelling the results. Please discuss your results and compare them with previous findings.<br /> (4) Add detail about your GWAS model. As you had repeated samples from each strain, it's good to mention how you considered this. Also, show how you determined the significance threshold.<br /> (5) The abstract could be better. It also doesn't have a conclusion.<br /> (6) Page 8, lines 4-7: Please remove these lines or move them to the Method section. The last paragraph of the introduction should clearly explain the goal of the study.<br /> (7) Page 68, line 13: Explain the abbreviation (RINe) before use. Also, most probably it is RIN (RNA Integrity Number).<br /> (8) The heritability estimates seem high and the 1% difference between broad- and narrow-sense heritability means there is almost no dominant and epistatic genetic variance between alleles affecting the studied trait (which is hard to accept). I recommend considering a within-group (strain) variance (common environmental effect) component in the model to absorb this source of variation in this component, so the genetic variance and consequently the heritability estimates would be more accurate. You also can consider this source of variance in your GWAS model.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> Cell-to-cell communication is essential for higher functions in bacterial biofilms. Electrical signals have proven effective in transmitting signals across biofilms. These signals are then used to coordinate cellular metabolisms or to increase antibiotic tolerance. Here, the authors have reported for the first time coordinated oscillation of membrane potential in E. coli biofilms that may have a functional role in photoprotection.
Strengths:<br /> - The authors report original data.<br /> - For the first time, they showed that coordinated oscillations in membrane potential occur in E. Coli biofilms.<br /> - The authors revealed a complex two-phase dynamic involving distinct molecular response mechanisms.<br /> - The authors developed two rigorous models inspired by 1) Hodgkin-Huxley model for the temporal dynamics of membrane potential and 2) Fire-Diffuse-Fire model for the propagation of the electric signal.<br /> - Since its discovery by comparative genomics, the Kch ion channel has not been associated with any specific phenotype in E. coli. Here, the authors proposed a functional role for the putative K+ Kch channel : enhancing survival under photo-toxic conditions.
Weaknesses:<br /> - Since the flow of fresh medium is stopped at the beginning of the acquisition, environmental parameters such as pH and RedOx potential are likely to vary significantly during the experiment. It is therefore important to exclude the contributions of these variations to ensure that the electrical response is only induced by light stimulation. Unfortunately, no control experiments were carried out to address this issue.<br /> - Furthermore, the control parameter of the experiment (light stimulation) is the same as that used to measure the electrical response, i.e. through fluorescence excitation. The use of the PROPS system could solve this problem.<br /> - Electrical signal propagation is an important aspect of the manuscript. However, a detailed quantitative analysis of the spatial dynamics within the biofilm is lacking. In addition, it is unclear if the electrical signal propagates within the biofilm during the second peak regime, which is mediated by the Kch channel. This is an important question, given that the fire-diffuse-fire model is presented with emphasis on the role of K+ ions.<br /> - Since deletion of the kch gene inhibits the long-term electrical response to light stimulation (regime II), the authors concluded that K+ ions play a role in the habituation response. However, Kch is a putative K+ ion channel. The use of specific drugs could help to clarify the role of K+ ions.<br /> - The manuscript as such does not allow us to properly conclude on the photo-protective role of the Kch ion channel.<br /> - The link between membrane potential dynamics and mechanosensitivity is not captured in the equation for the Q-channel opening dynamics in the Hodgkin-Huxley model (Supp Eq 2).<br /> - Given the large number of parameters used in the models, it is hard to distinguish between prediction and fitting.
-
Reviewer #2 (Public Review):
Summary of what the authors were trying to achieve:<br /> The authors thought they studied membrane potential dynamics in E.coli biofilms. They thought so because they were unaware that the dye they used to report that membrane potential in E.coli, has been previously shown not to report it. Because of this, the interpretation of the authors' results is not accurate.
Major strengths and weaknesses of the methods and results:<br /> The strength of this work is that all the data is presented clearly, and accurately, as far as I can tell.
The major critical weakness of this paper is the use of ThT dye as a membrane potential dye in E.coli. The work is unaware of a publication from 2020 https://www.sciencedirect.com/science/article/pii/S0006349519308793 that demonstrates that ThT is not a membrane potential dye in E. coli. Therefore I think the results of this paper are misinterpreted. The same publication I reference above presents a protocol on how to carefully calibrate any candidate membrane potential dye in any given condition.
I now go over each results section in the manuscript.
Result section 1: Blue light triggers electrical spiking in single E. coli cells
I do not think the title of the result section is correct for the following reasons. The above-referenced work demonstrates the loading profile one should expect from a Nernstian dye (Figure 1). It also demonstrates that ThT does not show that profile and explains why is this so. ThT only permeates the membrane under light exposure (Figure 5). This finding is consistent with blue light peroxidising the membrane (see also following work Figure 4 https://www.sciencedirect.com/science/article/pii/S0006349519303923 on light-induced damage to the electrochemical gradient of protons-I am sure there are more references for this).
Please note that the loading profile (only observed under light) in the current manuscript in Figure 1B as well as in the video S1 is identical to that in Figure 3 from the above-referenced paper (i.e. https://www.sciencedirect.com/science/article/pii/S0006349519308793), and corresponding videos S3 and S4. This kind of profile is exactly what one would expect theoretically if the light is simultaneously lowering the membrane potential as the ThT is equilibrating, see Figure S12 of that previous work. There, it is also demonstrated by the means of monitoring the speed of bacterial flagellar motor that the electrochemical gradient of protons is being lowered by the light. The authors state that applying the blue light for different time periods and over different time scales did not change the peak profile. This is expected if the light is lowering the electrochemical gradient of protons. But, in Figure S1, it is clear that it affected the timing of the peak, which is again expected, because the light affects the timing of the decay, and thus of the decay profile of the electrochemical gradient of protons (Figure 4 https://www.sciencedirect.com/science/article/pii/S0006349519303923).
If find Figure S1D interesting. There authors load TMRM, which is a membrane voltage dye that has been used extensively (as far as I am aware this is the first reference for that and it has not been cited https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1914430/). As visible from the last TMRM reference I give, TMRM will only load the cells in Potassium Phosphate buffer with NaCl (and often we used EDTA to permeabilise the membrane). It is not fully clear (to me) whether here TMRM was prepared in rich media (it explicitly says so for ThT in Methods but not for TMRM), but it seems so. If this is the case, it likely also loads because of the damage to the membrane done with light, and therefore I am not surprised that the profiles are similar.
The authors then use CCCP. First, a small correction, as the authors state that it quenches membrane potential. CCCP is a protonophore (https://pubmed.ncbi.nlm.nih.gov/4962086/), so it collapses electrochemical gradient of protons. This means that it is possible, and this will depend on the type of pumps present in the cell, that CCCP collapses electrochemical gradient of protons, but the membrane potential is equal and opposite in sign to the DeltapH. So using CCCP does not automatically mean membrane potential will collapse (e.g. in some mammalian cells it does not need to be the case, but in E.coli it is https://www.biorxiv.org/content/10.1101/2021.11.19.469321v2). CCCP has also been recently found to be a substrate for TolC (https://journals.asm.org/doi/10.1128/mbio.00676-21), but at the concentrations the authors are using CCCP (100uM) that should not affect the results. However, the authors then state because they observed, in Figure S1E, a fast efflux of ions in all cells and no spiking dynamics this confirms that observed dynamics are membrane potential related. I do not agree that it does. First, Figure S1E, does not appear to show transients, instead, it is visible that after 50min treatment with 100uM CCCP, ThT dye shows no dynamics. The action of a Nernstian dye is defined. It is not sufficient that a charged molecule is affected in some way by electrical potential, this needs to be in a very specific way to be a Nernstian dye. Part of the profile of ThT loading observed in https://www.sciencedirect.com/science/article/pii/S0006349519308793 is membrane potential related, but not in a way that is characteristic of Nernstian dye.
Result section 2: Membrane potential dynamics depend on the intercellular distance
In this chapter, the authors report that the time to reach the first intensity peak during ThT loading is different when cells are in microclusters. They interpret this as electrical signaling in clusters because the peak is reached faster in microclusters (as opposed to slower because intuitively in these clusters cells could be shielded from light). However, shielding is one possibility. The other is that the membrane has changed in composition and/or the effective light power the cells can tolerate (with mechanisms to handle light-induced damage, some of which authors mention later in the paper) is lower. Given that these cells were left in a microfluidic chamber for 2h hours to attach in growth media according to Methods, there is sufficient time for that to happen. In Figure S12 C and D of that same paper from my group (https://ars.els-cdn.com/content/image/1-s2.0-S0006349519308793-mmc6.pdf) one can see the effects of peak intensity and timing of the peak on the permeability of the membrane. Therefore I do not think the distance is the explanation for what authors observe.
Result section 3: Emergence of synchronized global wavefronts in E. coli biofilms
In this section, the authors exposed a mature biofilm to blue light. They observe that the intensity peak is reached faster in the cells in the middle. They interpret this as the ion-channel-mediated wavefronts moved from the center of the biofilm. As above, cells in the middle can have different membrane permeability to those at the periphery, and probably even more importantly, there is no light profile shown anywhere in SI/Methods. I could be wrong, but the SI3 A profile is consistent with a potential Gaussian beam profile visible in the field of view. In Methods, I find the light source for the blue light and the type of microscope but no comments on how 'flat' the illumination is across their field of view. This is critical to assess what they are observing in this result section. I do find it interesting that the ThT intensity collapsed from the edges of the biofilms. In the publication I mentioned https://www.sciencedirect.com/science/article/pii/S0006349519308793#app2, the collapse of fluorescence was not understood (other than it is not membrane potential related). It was observed in Figure 5A, C, and F, that at the point of peak, electrochemical gradient of protons is already collapsed, and that at the point of peak cell expands and cytoplasmic content leaks out. This means that this part of the ThT curve is not membrane potential related. The authors see that after the first peak collapsed there is a period of time where ThT does not stain the cells and then it starts again. If after the first peak the cellular content leaks, as we have observed, then staining that occurs much later could be simply staining of cytoplasmic positively charged content, and the timing of that depends on the dynamics of cytoplasmic content leakage (we observed this to be happening over 2h in individual cells). ThT is also a non-specific amyloid dye, and in starving E. coli cells formation of protein clusters has been observed (https://pubmed.ncbi.nlm.nih.gov/30472191/), so such cytoplasmic staining seems possible.
Finally, I note that authors observe biofilms of different shapes and sizes and state that they observe similar intensity profiles, which could mean that my comment on 'flatness' of the field of view above is not a concern. However, the scale bar in Figure 2A is not legible, so I can't compare it to the variation of sizes of the biofilms in Figure 2C (67 to 280um). Based on this, I think that the illumination profile is still a concern.
Result section 4: Voltage-gated Kch potassium channels mediate ion-channel electrical oscillations in E. coli
First I note at this point, given that I disagree that the data presented thus 'suggest that E. coli biofilms use electrical signaling to coordinate long-range responses to light stress' as the authors state, it gets harder to comment on the rest of the results.
In this result section the authors look at the effect of Kch, a putative voltage-gated potassium channel, on ThT profile in E. coli cells. And they see a difference. It is worth noting that in the publication https://www.sciencedirect.com/science/article/pii/S0006349519308793 it is found that ThT is also likely a substrate for TolC (Figure 4), but that scenario could not be distinguished from the one where TolC mutant has a different membrane permeability (and there is a publication that suggests the latter is happening https://onlinelibrary.wiley.com/doi/10.1111/j.1365-2958.2010.07245.x). Given this, it is also possible that Kch deletion affects the membrane permeability. I do note that in video S4 I seem to see more of, what appear to be, plasmolysed cells. The authors do not see the ThT intensity with this mutant that appears long after the initial peak has disappeared, as they see in WT. It is not clear how long they waited for this, as from Figure S3C it could simply be that the dynamics of this is a lot slower, e.g. Kch deletion changes membrane permeability.
The authors themselves state that the evidence for Kch being a voltage-gated channel is indirect (line 54). I do not think there is a need to claim function from a ThT profile of E. coli mutants (nor do I believe it's good practice), given how accurate single-channel recordings are currently. To know the exact dependency on the membrane potential, ion channel recordings on this protein are needed first.
Result section 5: Blue light influences ion-channel mediated membrane potential events in E. coli
In this chapter the authors vary the light intensity and stain the cells with PI (this dye gets into the cells when the membrane becomes very permeable), and the extracellular environment with K+ dye (I have not yet worked carefully with this dye). They find that different amounts of light influence ThT dynamics. This is in line with previous literature (both papers I have been mentioning: Figure 4 https://www.sciencedirect.com/science/article/pii/S0006349519303923 and https://ars.els-cdn.com/content/image/1-s2.0-S0006349519308793-mmc6.pdf especially SI12), but does not add anything new. I think the results presented here can be explained with previously published theory and do not indicate that the ion-channel mediated membrane potential dynamics is a light stress relief process.
Result section 6: Development of a Hodgkin-Huxley model for the observed membrane potential dynamics
This results section starts with the authors stating: 'our data provide evidence that E. coli manages light stress through well-controlled modulation of its membrane potential dynamics'. As stated above, I think they are instead observing the process of ThT loading while the light is damaging the membrane and thus simultaneously collapsing the electrochemical gradient of protons. As stated above, this has been modelled before. And then, they observe a ThT staining that is independent from membrane potential.
I will briefly comment on the Hodgkin Huxley (HH) based model. First, I think there is no evidence for two channels with different activation profiles as authors propose. But also, the HH model has been developed for neurons. There, the leakage and the pumping fluxes are both described by a constant representing conductivity, times the difference between the membrane potential and Nernst potential for the given ion. The conductivity in the model is given as gK*n^4 for potassium, gNa*m^3*h sodium, and gL for leakage, where gK, gNa and gL were measured experimentally for neurons. And, n, m, and h are variables that describe the experimentally observed voltage-gated mechanism of neuronal sodium and potassium channels. (Please see Hodgkin AL, Huxley AF. 1952. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 116:449-72 and Hodgkin AL, Huxley AF. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117:500-44).
Thus, in applying the model to describe bacterial electrophysiology one should ensure near equilibrium requirement holds (so that (V-VQ) etc terms in authors' equation Figure 5 B hold), and potassium and other channels in a given bacterium have similar gating properties to those found in neurons. I am not aware of such measurements in any bacteria, and therefore think the pump leak model of the electrophysiology of bacteria needs to start with fluxes that are more general (for example Keener JP, Sneyd J. 2009. Mathematical physiology: I: Cellular physiology. New York: Springer or https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0000144)
Result section 7: Mechanosensitive ion channels (MS) are vital for the first hyperpolarization event in E. coli.
The results that Mcs channels affect the profile of ThT dye are interesting. It is again possible that the membrane permeability of these mutants has changed and therefore the dynamics have changed, so this needs to be checked first. I also note that our results show that the peak of ThT coincides with cell expansion. For this to be understood a model is needed that also takes into account the link between maintenance of electrochemical gradients of ions in the cell and osmotic pressure.
A side note is that the authors state that the Msc responds to stress-related voltage changes. I think this is an overstatement. Mscs respond to predominantly membrane tension and are mostly nonspecific (see how their action recovers cellular volume in this publication https://www.pnas.org/doi/full/10.1073/pnas.1522185113). Authors cite references 35-39 to support this statement. These publications still state that these channels are predominantly membrane tension-gated. Some of the references state that the presence of external ions is important for tension-related gating but sometimes they gate spontaneously in the presence of certain ions. Other publications cited don't really look at gating with respect to ions (39 is on clustering). This is why I think the statement is somewhat misleading.
Result section 8: Anomalous ion-channel-mediated wavefronts propagate light stress signals in 3D E. coli biofilms.
I am not commenting on this result section, as it would only be applicable if ThT was membrane potential dye in E. coli.
Aims achieved/results support their conclusions:
The authors clearly present their data. I am convinced that they have accurately presented everything they observed. However, I think their interpretation of the data and conclusions is inaccurate in line with the discussion I provided above.
Likely impact of the work on the field, and the utility of the methods and data to the community:
Any other comments:
I note, that while this work studies E. coli, it references papers in other bacteria using ThT. For example, in lines 35-36 authors state that bacteria (Bacillus subtilis in this case) in biofilms have been recently found to modulate membrane potential citing the relevant literature from 2015. It is worth noting that the most recent paper https://journals.asm.org/doi/10.1128/mbio.02220-23 found that ThT binds to one or more proteins in the spore coat, suggesting that it does not act as a membrane potential in Bacillus spores. It is possible that it still reports membrane potential in Bacillus cells and the recent results are strictly spore-specific, but these should be kept in mind when using ThT with Bacillus.
-
Reviewer #3 (Public Review):
It has recently been demonstrated that bacteria in biofilms show changes in membrane potential in response to changes in their environment, and that these can propagate signals through the biofilm to coordinate bacterial behavior. Akabuogu et al. contribute to this exciting research area with a study of blue light-induced membrane potential dynamics in E. coli biofilms. They demonstrate that Thioflavin-T (ThT) intensity (a proxy for membrane potential) displays multiphasic dynamics in response to blue light treatment. They additionally use genetic manipulations to implicate the potassium channel Kch in the latter part of these dynamics. Mechanosensitive ion channels may also be involved, although these channels seem to have blue light-independent effects on membrane potential as well. In addition, there are challenges to the quantitative interpretation of ThT microscopy data which require consideration. The authors then explore whether these dynamics are involved in signaling at the community level. The authors suggest that cell firing is both more coordinated when cells are clustered and happens in waves in larger, 3D biofilms; however, in both cases evidence for these claims is incomplete. The authors present two simulations to describe the ThT data. The first of these simulations, a Hodgkin-Huxley model, indicates that the data are consistent with the activity of two ion channels with different kinetics; the Kch channel mutant, which ablates a specific portion of the response curve, is consistent with this. The second model is a fire-diffuse-fire model to describe wavefront propagation of membrane potential changes in a 3D biofilm; because the wavefront data are not presented clearly, the results of this model are difficult to interpret. Finally, the authors discuss whether these membrane potential changes could be involved in generating a protective response to blue light exposure; increased death in a Kch ion channel mutant upon blue light exposure suggests that this may be the case, but a no-light control is needed to clarify this.
In a few instances, the paper is missing key control experiments that are important to the interpretation of the data. This makes it difficult to judge the meaning of some of the presented experiments.
(1) An additional control for the effects of autofluorescence is very important. The authors conduct an experiment where they treat cells with CCCP and see that Thioflavin-T (ThT) dynamics do not change over the course of the experiment. They suggest that this demonstrates that autofluorescence does not impact their measurements. However, cellular autofluorescence depends on the physiological state of the cell, which is impacted by CCCP treatment. A much simpler and more direct experiment would be to repeat the measurement in the absence of ThT or any other stain. This experiment should be performed both in the wild-type strain and in the ∆kch mutant.
(2) The effects of photobleaching should be considered. Of course, the intensity varies a lot over the course of the experiment in a way that photobleaching alone cannot explain. However, photobleaching can still contribute to the kinetics observed. Photobleaching can be assessed by changing the intensity, duration, or frequency of exposure to excitation light during the experiment. Considerations about photobleaching become particularly important when considering the effect of catalase on ThT intensity. The authors find that the decrease in ThT signal after the initial "spike" is attenuated by the addition of catalase; this is what would be predicted by catalase protecting ThT from photobleaching (indeed, catalase can be used to reduce photobleaching in time lapse imaging).
(3) It would be helpful to have a baseline of membrane potential fluctuations in the absence of the proposed stimulus (in this case, blue light). Including traces of membrane potential recorded without light present would help support the claim that these changes in membrane potential represent a blue light-specific stress response, as the authors suggest. Of course, ThT is blue, so if the excitation light for ThT is problematic for this experiment the alternative dye tetramethylrhodamine methyl ester perchlorate (TMRM) can be used instead.
(4) The effects of ThT in combination with blue light should be more carefully considered. In mitochondria, a combination of high concentrations of blue light and ThT leads to disruption of the PMF (Skates et al. 2021 BioRXiv), and similarly, ThT treatment enhances the photodynamic effects of blue light in E. coli (Bondia et al. 2021 Chemical Communications). If present in this experiment, this effect could confound the interpretation of the PMF dynamics reported in the paper.
(5) Figures 4D - E indicate that a ∆kch mutant has increased propidium iodide (PI) staining in the presence of blue light; this is interpreted to mean that Kch-mediated membrane potential dynamics help protect cells from blue light. However, Live/Dead staining results in these strains in the absence of blue light are not reported. This means that the possibility that the ∆kch mutant has a general decrease in survival (independent of any effects of blue light) cannot be ruled out.
(6) Additionally in Figures 4D - E, the interpretation of this experiment can be confounded by the fact that PI uptake can sometimes be seen in bacterial cells with high membrane potential (Kirchhoff & Cypionka 2017 J Microbial Methods); the interpretation is that high membrane potential can lead to increased PI permeability. Because the membrane potential is largely higher throughout blue light treatment in the ∆kch mutant (Fig. 3AB), this complicates the interpretation of this experiment.
Throughout the paper, many ThT intensity traces are compared, and described as "similar" or "dissimilar", without detailed discussion or a clear standard for comparison. For example, the two membrane potential curves in Fig. S1C are described as "similar" although they have very different shapes, whereas the curves in Fig. 1B and 1D are discussed in terms of their differences although they are evidently much more similar to one another. Without metrics or statistics to compare these curves, it is hard to interpret these claims. These comparative interpretations are additionally challenging because many of the figures in which average trace data are presented do not indicate standard deviation.
The differences between the TMRM and ThT curves that the authors show in Fig. S1C warrant further consideration. Some of the key features of the response in the ThT curve (on which much of the modeling work in the paper relies) are not very apparent in the TMRM data. It is not obvious to me which of these traces will be more representative of the actual underlying membrane potential dynamics.
A key claim in this paper (that dynamics of firing differ depending on whether cells are alone or in a colony) is underpinned by "time-to-first peak" analysis, but there are some challenges in interpreting these results. The authors report an average time-to-first peak of 7.34 min for the data in Figure 1B, but the average curve in Figure 1B peaks earlier than this. In Figure 1E, it appears that there are a handful of outliers in the "sparse cell" condition that likely explain this discrepancy. Either an outlier analysis should be done and the mean recomputed accordingly, or a more outlier-robust method like the median should be used instead. Then, a statistical comparison of these results will indicate whether there is a significant difference between them.
In two different 3D biofilm experiments, the authors report the propagation of wavefronts of membrane potential; I am unable to discern these wavefronts in the imaging data, and they are not clearly demonstrated by analysis.
The first data set is presented in Figures 2A, 2B, and Video S3. The images and video are very difficult to interpret because of how the images have been scaled: the center of the biofilm is highly saturated, and the zero value has also been set too high to consistently observe the single cells surrounding the biofilm. With the images scaled this way, it is very difficult to assess dynamics. The time stamps in Video S3 and on the panels in Figure 2A also do not correspond to one another although the same biofilm is shown (and the time course in 2B is also different from what is indicated in 2B). In either case, it appears that the center of the biofilm is consistently brighter than the edges, and the intensity of all cells in the biofilm increases in tandem; by eye, propagating wavefronts (either directed toward the edge or the center) are not evident to me. Increased brightness at the center of the biofilm could be explained by increased cell thickness there (as is typical in this type of biofilm). From the image legend, it is not clear whether the image presented is a single confocal slice or a projection. Even if this is a single confocal slice, in both Video S3 and Figure 2A there are regions of "haze" from out-of-focus light evident, suggesting that light from other focal planes is nonetheless present. This seems to me to be a simpler explanation for the fluorescence dynamics observed in this experiment: cells are all following the same trajectory that corresponds to that seen for single cells, and the center is brighter because of increased biofilm thickness.
The second data set is presented in Video S6B; I am similarly unable to see any wave propagation in this video. I observe only a consistent decrease in fluorescence intensity throughout the experiment that is spatially uniform (except for the bright, dynamic cells near the top; these presumably represent cells that are floating in the microfluidic and have newly arrived to the imaging region).
3D imaging data can be difficult to interpret by eye, so it would perhaps be more helpful to demonstrate these propagating wavefronts by analysis; however, such analysis is not presented in a clear way. The legend in Figure 2B mentions a "wavefront trace", but there is no position information included - this trace instead seems to represent the average intensity trace of all cells. To demonstrate the propagation of a wavefront, this analysis should be shown for different subpopulations of cells at different positions from the center of the biofilm. Data is shown in Figure 8 that reflects the velocity of the wavefront as a function of biofilm position; however, because the wavefronts themselves are not evident in the data, it is difficult to interpret this analysis. The methods section additionally does not contain sufficient information about what these velocities represent and how they are calculated. Because of this, it is difficult for me to evaluate the section of the paper pertaining to wave propagation and the predicted biofilm critical size.
There are some instances in the paper where claims are made that do not have data shown or are not evident in the cited data:
(1) In the first results section, "When CCCP was added, we observed a fast efflux of ions in all cells"- the data figure pertaining to this experiment is in Fig. S1E, which does not show any ion efflux. The methods section does not mention how ion efflux was measured during CCCP treatment.
(2) In the discussion of voltage-gated calcium channels, the authors refer to "spiking events", but these are not obvious in Figure S3E. Although the fluorescence intensity changes over time, it's hard to distinguish these fluctuations from measurement noise; a no-light control could help clarify this.
(3) The authors state that the membrane potential dynamics simulated in Figure 7B are similar to those observed in 3D biofilms in Fig. S4B; however, the second peak is not clearly evident in Fig. S4B and it looks very different for the mature biofilm data reported in Fig. 2. I have some additional confusion about this data specifically: in the intensity trace shown in Fig. S4B, the intensity in the second frame is much higher than the first; this is not evident in Video S6B, in which the highest intensity is in the first frame at time 0. Similarly, the graph indicates that the intensity at 60 minutes is higher than the intensity at 4 minutes, but this is not the case in Fig. S4A or Video S6B.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Zheng et al. study the 'glass' transitions that occur in proteins at ca. 200K using neutron diffraction and differential isotopic labeling (hydrogen/deuterium) of the protein and solvent. To overcome limitations in previous studies, this work is conducted in parallel with 4 proteins (myoglobin, cytochrome P450, lysozyme, and green fluorescent protein) and experiments were performed at a range of instrument time resolutions (1ns - 10ps). The author's data looks compelling, and suggests that transitions in the protein and solvent behavior are not coupled and contrary to some previous reports, the apparent water transition temperature is a 'resolution effect'; i.e. instrument response is limited. This is likely to be important in the field, as a reassessment of solvent 'slaving' and the role of the hydration shell on protein dynamics should be reassessed in light of these findings.
Strengths:
The use of multiple proteins and instruments with a rate of energy resolution/ timescales.
Weaknesses:
The paper could be organised to better allow the comparison of the complete dataset collected.<br /> The extent of hydration clearly influences the protein transition temperature. The authors suggest that "water can be considered here as lubricant or plasticizer which facilitates the motion of the biomolecule." This may be the case, but the extent of hydration may also alter the protein structure.
-
Reviewer #2 (Public Review):
Summary:
The manuscript entitled "Decoupling of the Onset of Anharmonicity between a Protein and Its Surface Water around 200 K" by Zheng et al. presents a neutron scattering study trying to elucidate if at the dynamical transition temperature water and protein motions are coupled. The origin of the dynamical transition temperature has been highly debated for decades, specifically its relation to hydration.
Strengths:
The study is rather well conducted, with a lot of effort to acquire the perdeuterated proteins, and some results are interesting.
Weaknesses:
The present work could certainly contribute some arguments, but I have the feeling that not all known facts are properly discussed.
The points the authors should carefully discuss are the following:
(1) Daniel et al. (10.1016/S0006-3495(98)77694-5) have shown that enzymes can be functional below the dynamical transition temperature which is at odds with some of the claims of the authors.
(2) It is not as easy to say that protonated proteins in D2O reflect protein dynamics while perdeuterated proteins in H2O reflect water dynamics. A recent study by Nidriche et al. (PRX LIFE 2, 013005 (2024)) reveals that H <-> D exchange is much faster than usually assumed and has important consequences for such studies.
(3) A publication by Jasnin et al. (10.1039/b923878f) on heparin sulfate shows a resolution effect.
(4) The authors should discuss the impact of the chosen q-range on their findings (see Phys. Chem. Chem. Phys., 2012, 14, 4927-4934, where the authors see a huge effect !).
(5) The authors underline that the dynamical transition is intrinsic to the protein. However, Cupane et al. (ref 12) have shown that it can also be found in a mixture of amino acids without any protein backbone.
(6) The authors say that they find similar dependences from MSD. They should explain that the MSD is inversely proportional to the summed intensities squared.
(7) A decoupling between water dynamics and membrane dynamics has already been discussed by K. Wood, G. Zaccai et al.
(8) The fact that transition temperature in lipid membranes is higher when the membrane is dry is also well known (A.V. Popova, D.K. Hincha, BMC Biophys. 4, 11 (2011)).
(9) The authors should mention the slope (K/min) they used for DSC and discuss the impact of it on the results.
(10) In the introduction, the authors should present the different explanations forwarded for the dynamical transition.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This Research Advance is an extension of this group's prior eLife paper published in 2022 on the conserved roles of the Hippo pathway effector Yorkie in C. owczarzaki (PMID: 35659869). This species is an amoeba that holds an important phylogenetic position as a close relative of multicellular animals. The prior study used genome editing to delete the C. owczarzaki Yki (termed coYki) and found that Yki is not required for proliferation but instead regulates cell contractility and cell aggregation. In the current study, the authors wanted to address whether Hippo pathway kinases - coHippo (coHpo) and coWarts (coWts) - regulate coYki and whether they are dispensable for proliferation but instead regulate cell contractility and cell aggregation. They used genome editing to delete coHpo and coWts singly in C. owczarzaki. Both mutant strains had increased nuclear location of transfected coYki (tagged with Scarlet), suggesting that Hippo kinase pathway regulation of Yki is conserved in this organism. Neither kinase is required for proliferation. Either kinase mutant strain had a significantly increased percentage of cells that were elongated, which was relatively rare in a control population. The incident of elongation could be enhanced in both kinase-mutant and in control cells when myosin inhibitors were added to the media. coHpo and coWts-mutant aggregates were more tightly packed than control cell aggregates, which they hypothesize is due to the increased contractility seen in kinase-mutant cells. They could reduce the density of packing in kinase-mutant aggregates when they treated the cells with myosin or F-actin inhibitors. To test whether the effects observed in kinase-mutant strains were due to increased Yki activation, they generated a coYki with four S to A substitutions (termed coYki4SA), which should produce a dominant-active Yki impervious to phosphorylation and hence inactivation by Hippo kinases. Control C. owczarzaki cells transfected with coYki4SA had increased cell density in aggregates and elongation in adherent cells. These results support their conclusions that coHpo and coWts regulate cell contractility and cell packing through coYki.
Strengths:
The major strengths of the paper include high quality data, robust analyses of the data, and a well-written manuscript. The combination of genome editing in C. owczarzaki, transfection of C. owczarzaki, and time-lapse movies of adherent cells generally support the conclusions (1) that control of cell density is an ancient function of the Hippo pathway; (2) that Hippo pathway control of cytoskeletal properties and contractile behavior underlie its regulation of cell density, and (3) that Hippo kinase control of Yki localization is likely an ancient function of the pathway.
Weaknesses:
There are no weaknesses.
-
Reviewer #2 (Public Review):
The study builds on the work of the Pan group and others which has described the existence of core Hippo pathway proteins in Capsaspora and, more recently, described a role for a Yorkie/YAP homologue in regulation of cell shape and actin, as opposed to proliferation. For this recent study, they developed genetic techniques to mutate genes in Capsaspora, and this technology has been leveraged again in this study. Using loss of function genetic approaches, the authors find that loss of either of the two major kinases in the Hippo pathway core kinase cassette (Warts and Hippo) impact Capsaspora morphology and the actin cytoskeleton. This is phenocopied by overexpression of Capsaspora Yorkie/YAP. In addition, Capsaspora Yorkie/YAP accumulates in the nucleus of organisms lacking Warts or Hippo, as it does in metazoans. While these experiments are not overly surprising, they still provide important verification that core Hippo signaling events are conserved in Capsaspora.
Subsequently, they show that Capsaspora lacking Warts or Hippo do not overproliferate, which contrasts with many studies in metazoans (flies, mice, fish), particularly in epithelial tissues where loss of Warts or Hippo often causes overproliferation. Rather, the authors show that Capsaspora Warts and Hippo regulate cell morphology and actomyosin-dependent contractile behaviour. They speculate from these findings that Hippo signalling could regulate the density of Capsaspora when they grow in aggregates and draw parallels to the known role of the Hippo pathway in contact inhibition of mammalian cells grown in culture.
Together with their 2022 paper, this study paints an emerging picture that the ancestral function of the Hippo pathway is to regulate the actin cytoskeleton, not proliferation, which is a significant finding. This also suggests that the ability to control proliferation was something that the Hippo pathway was re-purposed to do at some stage during the evolution of metazoans. These findings are important for the Hippo field, and our understanding of cellular signalling and evolution more broadly.
In future studies, further biochemical and genetic experiments would allow the authors to more conclusively prove that core features of Hippo signalling are conserved in Capsaspora - e.g., that Capsaspora Hippo/MST activates Warts/LATS by phosphorylation and Warts/LATS represses Yorkie/YAP by phosphorylation hey serine residues. Some of these experiments are challenging or not yet possible due to technical limitations. Higher resolution imaging approaches such as electron microscopy would likely give further mechanistic insights into how Hpo, Wts and Yki modulate actomyosin contractility in Capsaspora. Recent advances in mass spectrometry of the phospho-proteome should provide a valuable way to explore Hippo signalling in Capsaspora. The benefit of this approach is it has the potential to give information on all Hippo pathway proteins and could be used to probe signalling events under different culture conditions (e.g., aggregate, non-aggregate).
-
Reviewer #3 (Public Review):
The authors present in this study the characterization of two mutant lines of the filasterean Capsaspora owczarzaki, a unicellular holozoan with a key phylogenetic position to understand multicellular development in animals. The present study is built on a previous work from the same research group, on the mutant of the orthologue of the Yorki gene in C. owczarzaki. By knocking out the two upstream kinases of the same pathway, coHpo-/- and coWts-/-, in single cell and aggregates of C. owkzarzaki, they now have mutated the entire pathway and in different cellular contexts.
The authors obtain results in the same direction as the previous work, demonstrating that the Hippo pathway of the unicellular holozoan C. owczarzaki, is not involved in the control of cell proliferation but is related with cytoskeletal dynamics through the actin-myosin mechanism.
In this revised version of the study, the authors have addressed my concerns by providing additional experiments, references and discussing further the points of controversy.
I think the authors have done a great job improving the robustness of the paper proving further some of the claims raised in the previous version of the manuscript.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
In "Prediction error determines how memories are organized in the brain: a study of Pavlovian fear 2 extinction in rats", Kennedy et al examine how new information is organized in memory. They tested an idea based on latent theory that suggests that a large prediction error leads to the formation of a new memory, whereas a small prediction error leads to memory updating. They directly tested the prediction by extinguishing fear-conditioned rats with gradual extinction. For their experiment, gradual extinction was carried out by progressively reducing the intensity of shocks that were co-terminated with the CS, until the CS was presented alone. Doing so resulted in diminished spontaneous recovery and reinstatement compared to Standard Extinction. The results are compelling, and have important implications for the field of fear learning and memory as well as translation to anxiety-related disorders.
The authors carried out the Spontaneous Recovery experiment in 2 separate experiments. In one, they found differences between the Gradual and Standard Extinction groups, but in the second, they did not. It seems that their reinstatement test was more robust, and showed significant differences between the Gradual and Standard Extinction groups.
The authors carried out important controls that enable proper contextualization of the findings. They included a "Home" group, in which rats received fear conditioning, but not extinction manipulation. Relative to this group, the Gradual and Standard extinction groups showed a reduction in freezing.
In Experiments 3 and 4, the authors essentially carried out clever controls that served to examine whether shock devaluation (Experiment 4) and reduction in shock intensity (rather than a gradual decrease in shock intensity) (Experiment 3) would also yield a decrease in the return of fear. In line with a latent-cause updating explanation for accounting for the Gradual Extinction, they did not.
In Experiment 5, the authors examined whether a prediction error produced by a change of context might contribute interference to the latent cause updating afforded by the Gradual Extinction. Such a prediction would align with a more flexible interpretation of a latent-cause model, such as those proposed by Redish (2007) and Gershman et al (2017), but not the latent-cause interpretation put forth by the Cochran-Cisler model (2019). Their findings showed that whereas Gradual Extinction carried out in the same context as acquisition resulted in less return of fear than Standard Extinction, it actually yielded a greater degree of return of fear when carried out in a different context, in support of the Redish and Gershman accounts, but not Cochran-Cisler.
Experiment 6 extended the findings from Experiment 5 in a different state-splitting modality: timing. In this experiment, the authors tested whether a shift in temporal context also influenced the gradual extinction effect. They thus carried out the extinction sessions 21 days after conditioning. They found that while Gradual Extinction was indeed effective when carried out one day after fear conditioning, it did not when conducted 21 days later.
The authors next carried out an omnibus analysis which included all the data from their 6 experiments, and found that overall, Gradual Extinction resulted in diminished return of fear relative to Standard Extinction. I thought the omnibus analysis was a great idea and an appropriate way to do their data justice.
Strengths:
Compelling findings. The data support the conclusions. 6 rigorous experiments were conducted which included clever controls. Data include male and female rats. I really liked the omnibus analysis.
Weaknesses:
None noted.
-
Reviewer #2 (Public Review):
Summary:
The present article describes a series of experiments examining how a gradual reduction in unconditional stimulus intensity facilitates fear reduction and reduces relapse (spontaneous recovery and reinstatement) relative to a standard extinction procedure. The experiments provide compelling, if somewhat inconsistent, evidence of this effect and couch the results in a scholarly discussion surrounding how mechanisms of prediction error contribute to this effect.
Strengths:
The experiments are theoretically motivated and hypothesis-driven, well-designed, and appropriately conducted and analyzed. The results are clear and appropriately contextualized into the broader relevant literature. Further, the results are compelling and ask fundamental questions regarding how to persistently weaken fear behavior, which has both strong theoretical and real-world implications. I found the 'scrambled' experiment especially important in determining the mechanism through which this reduction in shock intensity persistently weakens fear behavior.
Weaknesses:
Overall, I found very few weaknesses in this paper. I think some might view the somewhat inconsistent effects on relapse between experiments to be a substantial weakness, I appreciate the authors directly confronting this and using it as an opportunity to aggregate data to look at general trends. Further, while Experiment 1 only used males, this was corrected in the rest of the experiments and therefore is not a substantial concern.
-
Reviewer #3 (Public Review):
Summary:
The manuscript examined the role of large versus small prediction errors (PEs) in creating a state-based memory distinction between acquisition and extinction. The premise of the paper is based on theoretical claims and empirical findings that gradual changes between acquisition and extinction would lead to the potential overwriting of the acquisition memory with extinction, resulting in a more durable reduction in conditioned responding (i.e. more durable extinction effect). The paper tests the hypotheses in a series of elegant experiments in which the shock intensity is decreased across extinction sessions before non-reinforced CS presentations are given. Additional manipulations include context change, shock devaluation, and controlling for lower shock intensity exposure. The critical comparison was standard non-reinforced extinction training. The critical tests were done in spontaneous recovery and reinstatement.
Strengths:<br /> The findings are of tremendous importance in understanding how memories can be updated and reveal a well-defined role of PE in this process. It is well-established that PE is critical for learning, so delineating how PE is critical for generating memory states and the role it serves in keeping memories dissociable (or not) is exciting and clever. As such the paper addresses a fundamental question in the field.
The studies test clear and defined predictions derived from simulations of the state-belief model of Cochran & Cisler (2019). The designs are excellent: well-controlled and address the question.
The authors have done an excellent job of explaining the value of the latent state models.
The authors have studied both sexes in the study presented, providing generality across the sexes in their findings. However, depicting the individual data points in the bar graphs and noting which data represent males and which represent females would be of great value.
Weaknesses:
(1) While it seems obvious that delivering a lower intensity shock will generate a smaller PE than say no shock, it would have been nice to see data from say a compound testing procedure that confirms this.
(2) The devaluation experiment is quite clever, but it also would be strengthened if there was evidence in the paper that this procedure does indeed lead to shock devaluation.
(3) It would have been very exciting to see even more parametric examinations of this idea, like maintaining shock intensity but gradually reducing shock duration, which would have increased the impact of the paper.
(4) Individual data points should be represented in the test figures (see above also).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This is an interesting study that performs scRNA-Seq on infected and uninfected wounds. The authors sought to understand how infection with E. faecalis influences the transcriptional profile of healing wounds. The analysis demonstrated that there is a unique transcriptional profile in infected wounds with specific changes in macrophages, keratinocytes, and fibroblasts. They also speculated on potential crosstalk between macrophages and neutrophils and macrophages and endothelial cells using NicheNet analysis and CellChat. Overall the data suggest that infection causes keratinocytes to not fully transition which may impede their function in wound healing and that the infection greatly influenced the transcriptional profile of macrophages and how they interact with other cells.
Strengths:
It is a useful dataset to help understand the impact of wound infection on the transcription of specific cell types. The analysis is very thorough in terms of transcriptional analysis and uses a variety of techniques and metrics.
Weaknesses:
Some drawbacks of the study are the following. First, the fact that it only has two mice per group, and only looks at one time point after wounding decreases the impact of the study. Wound healing is a dynamic and variable process so understanding the full course of the wound healing response would be very important to understand the impact of infection on the healing wound. Including unwounded skin in the scRNA-Seq would also lend a lot more significance to this study. Another drawback of the study is that mouse punch biopsies are very different than human wounds as they heal primarily by contraction instead of re-epithelialization like human wounds. So while the conclusions are generally supported the scope of the work is limited.
-
Reviewer #2 (Public Review):
Summary:
The authors have performed a detailed analysis of the complex transcriptional status of numerous cell types present in wounded tissue, including keratinocytes, fibroblasts, macrophages, neutrophils, and endothelial cells. The comparison between infected and uninfected wounds is interesting and the analysis suggests possible explanations for why infected wounds are delayed in their healing response.
Strengths:
The paper presents a thorough and detailed analysis of the scRNAseq data. The paper is clearly written and the conclusions drawn from the analysis are appropriately cautious. The results provide an important foundation for future work on the healing of infected and uninfected wounds.
Weaknesses:
The analysis is purely descriptive and no attempt is made to validate whether any of the factors identified are playing functional roles in wound healing. The experimental setup is analyzing a single time point and does not include a comparison to unwounded skin.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Abreo et al. performed a detailed multidisciplinary analysis of a pathogenic variant of the KCNQ2 ion channel subunit identified in a child with neonatal-onset epilepsy and neurodevelopmental disorders. These analyses revealed multiple molecular and cellular mechanisms associated with this variant and provided important insights into what distinguishes distinct pathogenic variants of KCNQ2 associated with self-limited familial neonatal epilepsy versus those leading to developmental and epileptic encephalopathy, and how they may mechanistically differ, to result in different extents of developmental impairment.
The authors first provide a detailed clinical description of the patient heterozygous for a novel pathogenic variant encoding KCNQ2 G256W. They then model the structure of the G256W variant based on recent cryo-EM structures of KCNQ2 and other ion channel subunits and find that while the affected position is quite distinct from the channel pore, it participates in a novel, evolutionarily conserved set of amino acids that form a network of hydrogen bonds that stabilize the structure of the pore domain.
They then undertake a series of rigorous and quantitative laboratory experiments in which the KCNQ2 G256W variant is coexpressed exogenously with WT KCNQ2 and KCNQ3 subunits in heterologous cells, and endogenously in novel gene-edited mice generated for this study. This includes detailed electrophysiological analyses in the transfected heterologous cells revealing the dominant-negative phenotype of KCNQ2 G256W. They found altered firing properties in hippocampal CA1 neurons in brain slices from the heterozygous KCNQ2 G256W mice.
They next showed that the expression and localization of KCNQ channels are altered in brain neurons from heterozygous KCNQ2 G256W mice, suggesting that this variant impacts KCNQ2 trafficking and stability.
Together, these laboratory studies reveal that the molecular and cellular mechanisms shaping KCNQ channel expression, localization, and function are impacted at multiple levels by the variant encoding KCNQ2 G256W, likely contributing to the clinical features of the child heterozygous for this variant relative to patients harboring distinct KCNQ2 pathogenic variants.
-
Reviewer #2 (Public Review):
Summary:
The paper entitled "Plural molecular and cellular mechanisms of pore domain KCNQ2 encephalopathy" by Abreo et al. is a complex and integrated paper that is well-written with a focus on a single gene variant that causes a severe developmental encephalopathy. The paper collates clinical outcomes from 4 individuals and investigates a variant causing KCNQ2-DEE using a wide range of experimental techniques including structural biology, in vitro electrophysiology, generation of genetically modified animal models, immunofluorescence, and brain slice recordings. The overall results provide a plausible explanation of the pathophysiology of the G265W variant and provide important findings to the KCNQ2-DEE field as well as beginning to separate the understanding between seizures and encephalopathies.
Strengths:
(1) The authors describe in detail how the structural biology of the channel with a mutation changes the movement of the protein and adds insights into how one variant can change the function of the M-current. The proposed model linking this change to pathogenic consequences should help pave the way for additional studies to further support this type of approach.
(2) The multiple co-expression ratio experiments drill down to the complex nature of the assembly of channels in over-expression systems and help to move toward an understanding of heterozygosity. It might have been interesting if TEA was tested as a blocker to better understand the assembly of the transfected subunits or possibly use vectors to force desired configurations.
(3) The immunofluorescent approach to understanding re-distribution is another component of understanding the function of this critical current. The demonstration that Q2 and Q3 are diminished at the AIS is an important finding and a strength to the totality of the data presented in the paper.
(4) Brain slice work is an important component of studying genetically modified animals as it brings in the systems approach, and helps to explain seizure generation and EEG recordings. The finding that G265W/+ neurons were more sensitive to current injections is a critical component of the paper.
(5) The strength of this body of work is how the authors integrated different scientific approaches to knitting together a compelling set of experiments to better explain how a single variant, and likely extrapolation to other variants, can cause a severe neonatal developmental encephalopathy with a poor clinical outcome.
Weaknesses:
(1) Minor comment: Under the clinical history it is unclear whether the mother was on Leviracetam for suspected in-utero seizures or if Leviracetam was given to individual 1. The latter seems more likely, and if so this should be reworded.
(2) As described in the clinical history of patient 1, treatment with ezogabine was encouraging with rapid onset by a parental global impression with difficulty in weaning off the drug. When studying the genetically modified mice, it would have been beneficial to the paper to talk about any ezogabine effects on the genetically modified mice.
(3) It is a bit surprising that CA1 pyramidal neurons from the heterozygous G256W mice have no difference in resting membrane potential. The discussion section might explore this in a bit more detail.
(4) It was mentioned in the paper about a direct comparison between SLFNE and G256W. However, in the slice recordings, there was no comparison. Having these data comparing SLFNE to G256W would have been a more fulsome story and would have added to the concept around susceptibility to action potential firing.
-
Reviewer #3 (Public Review):
Summary:<br /> This manuscript describes the symptoms of patients harboring KCNQ2 mutation G256W, functional changes of the mutant channel in exogenous expression, and phenotypes of G256W/+ mice. The patients presented seizures, the mutation reduced currents of the channel, and the G256W/+ mice showed seizures, increased firing frequency in neurons, reduced KCNQ2 expression,<br /> and altered subcellular distribution.
Strengths:
This is a large amount of work and all results corroborated the pathogenicity of the mutation in KCNQ2, providing an interesting example of KCNQ2-associated neurological disorder's impact on functions at all levels including molecular, cellular, tissue, animal model, and patients.
Weaknesses:
The manuscript described observations of changes in association with the mutation at molecular cellular functions and animal phenotype, but the results in some aspects are not as strong as in others. Nevertheless, the manuscript made overarching conclusions even when the evidence was not sufficiently strong.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Dr Lenz and colleagues report on their in vitro studies comparing gene transcription and epigenetic modifications in Plasmodium falciparum NF54 parasites selected or not selected for adhesion of the infected erythrocytes (IEs) to the placental IE adhesion receptor chondroitin sulfate A (CSA).
The authors report that selection led to preferential transcription of var2csa, the gene that encodes the VAR2CSA-type PfEMP1 well-established as the PfEMP1 mediating IE adhesion to CSA. They confirm that transcriptional activation of var2csa is associated with distinct depletion of H3K9me3 marks and that transcriptional activation is linked to repositioning of var2csa.
Strengths:
The study confirms previously reported features of gene transcription and epigenetic modifications in Plasmodium falciparum.
Weaknesses:
No major new finding is reported.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Thayer et al build upon their prior findings that ASAR long noncoding RNAs (lncRNAs) are chromatin-associated and are implicated in control of replication timing. To explore the mechanism of function of ASAR transcripts, they leveraged the ENCODE RNA binding protein eCLIP datasets to show that a 7kb region of ASAR6-141 is bound by multiple hnRNP proteins. Deletion of this 7kb region resulted in delayed chromosome 6 replication. Furthermore, ectopic integration of the ASAR6-141 7kb region into autosomes or the inactive X-chromosome also resulted in delayed chromosome replication. They then use RNA FISH experiments to show that the knockdown of these hnRNP proteins disrupts ASAR6-141 localization to chromatin and in turn replication timing.
Strengths:
Given prior publications showing HNRNPU to be important for chromatin retention of XIST and Firre, this work expands upon our understanding of the role of hnRNP proteins in lncRNA function.
Weaknesses:
The work presented is mechanistically interesting, however, one must be careful with the over-interpretation that hnRNP proteins can regular chromosome replication directly. Furthermore, the work could be strengthened by including a few controls and clarifications.
-
Reviewer #2 (Public Review):
Summary:
This paper reports a role for a substantial number of RNA binding proteins (RBPs), in particular hnRNPs, in the function of ASAR "genes". ASARs are (very) long, non-coding RNAs (lncRNAs) that control allelic expression imbalance (e.g.: mono-allelic expression) and replication timing of their resident chromosomes. These relatively novel "genes" have recently been identified on all human autosomes and are of broad significance given their critical importance for basic chromosomal functions and stability. However, the mechanism(s) of ASAR function remain unclear. ASARs exhibit some functional relatedness to Xist RNA, including persistent association of the expressed RNA with its resident chromosome, and similarities in the composition of RNA sequences associated with ASARs, in particular Line1 RNAs. Recent findings that certain hnRNPs control the chromosome territory retention of Cot1-bearing RNAs (which includes Line1) led the authors to test the hypothesis that hnRNPs might regulate ASARs.
Specific new findings in this paper:
-Analysis of eCLIP (RNA-protein interaction) ENCODE data shows numerous interactions of the ASAR6-141 RNA with RBPs, including hnRNPs (e.g.: HNRNPU) that have been implicated in the retention of RNAs within local chromosome territories.
-Most of these interactions can be mapped to a 7kb region of the 185kb ASAR6-141 RNA.
-Deletion of this 7kb region is sufficient to induce the DMC/DRT phenotype associated with deletion of the entire ASAR region.
-Ectopic integration into mouse autosomes of the 7kb region is sufficient to cause DMC/DRT of the targeted autosome, and a similar effect upon ectopic integration into inactive X. This raises the question about integration into the active X, which was not mentioned. Is integration into the active X observed? Is it possible that integration might alter Xist expression confounding this interpretation?
-Knockdown of RBPs that bind the 7kb region causes dissociation of ASAR6-141 RNA from its chromosome territory, and, remarkably, dissociation of Xist RNA from inactive X, and mis-colocalization of the ASAR6-141 and Xist RNAs. Depletion of these RBPs causes DMC/DRT on all autosomes.
Strengths:
These are compelling results suggesting shared mechanism(s) in the regulation of ASARs and Xist RNAs by RBPs that bind Cot1 sequences in these lncRNAs. The identification of these RBPs as shared effectors of ASARs and Xist that are required for RNA territory localization mechanistically links previously independent phenomena.
The data are convincing and support the conclusions. The replication timing method is low resolution and is only a relative measure but seems adequate for the task at hand. The FISH experiments are convincing. The quality of the images is impressive.
Links to other subfields like X-inactivation and RNA association with chromosome territories provide novel context and protein players, new phenotypes to examine.
Weaknesses:
The exact effects of knockdown experiments are unclear and may be indirect, which is acknowledged.
The mechanism is not much clearer than before.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
This article is focused on investigating incremental speech processing, as it pertains to building higher order syntactic structure. This is an important question because speech processing in general is lesser studied as compared to reading, and syntactic processes are lesser studied than lower-level sensory processes. The authors claim to shed light on the neural processes that build structured linguistic interpretations. The authors apply modern analysis techniques, and use state-of-the-art large language models in order to facilitate this investigation. They apply this to a cleverly designed experimental paradigm of EMEG data, and compare neural responses of human participants to the activation profiles in different layers of the BERT language model.
Comments on revised version:
Similar to my original review, I find the paper hard to follow, and it is not clear to me that the use of the LLM is adding much to the findings. Using complex language models without substantial motivation dampens my enthusiasm significantly. This concern has not been alleviated since my original review.
-
Reviewer #3 (Public Review):
Syntactic parsing is a highly dynamic process: When an incoming word is inconsistent with the presumed syntactic structure, the brain has to reanalyze the sentence and construct an alternative syntactic structure. Since syntactic parsing is a hidden process, it is challenging to describe the syntactic structure a listener internally constructs at each time moment. Here, the authors overcome this problem by (1) asking listeners to complete a sentence at some break point to probe the syntactic structure mentally constructed at the break point, and (2) using a DNN model to extract the most likely structure a listener may extract at a time moment.
After obtaining incremental syntactic features using a DNN model, i.e., BERT, the authors analyze how these syntactic features are represented in the brain using MEG. The advantage of the approach is that BERT can potentially integrate syntactic and semantic knowledge and is a computational model, instead of a static theoretical construct, that may more precisely reflect incremental sentence processing in the human brain. The results indeed confirm the similarity between MEG activity and measures from the BERT model.
-
-
-
Reviewer #1 (Public Review):
Summary:
Information transfer between the hippocampus and prefrontal cortex is thought to be critical for spatial working memory, but most of the prior evidence for this hypothesis is correlational. This study attempts to test this causally by linking trial start times to theta-band coherence between these two structures. The authors find that trials initiated during periods of high coherence led to a dramatic improvement in performance. This applied not only to a spatial working memory task, but also to a cue-guided navigation task, suggesting that coherence in these regions may be a signature of a heightened attentional or preparatory state. The authors supplement this behavioral result with electrophysiological recordings and optogenetic manipulations to test whether ventral midline thalamus is likely to mediate hippocampal-prefrontal coherence.
Strengths:
This study demonstrates a striking behavioral effect; by changing the moment at which a trial is initiated, performance on a spatial working memory task improves dramatically, from around 80% correct to over 90% correct. A smaller but nonetheless robust increase in accuracy was also seen in a texture discrimination task. Therefore, prefrontal-hippocampal synchronization in the theta band may not only be important for spatial navigation, but may also be associated with improved performance in a range of tasks. If these results can be replicated using noninvasive EEG, it would open up a powerful avenue for modulating human behavior.
Weaknesses:
Ventral midline thalamic nuclei, such as reuniens, have reciprocal projections to both prefrontal cortex and hippocampus and are therefore well-situated to mediate theta-band interactions between these structures. However, alternative mechanisms cannot be ruled out by the results of this study. For example, theta rhythms are globally coherent across the rodent hippocampus, and ventral hippocampus projects directly to prefrontal cortex. Theta propagation may depend on this pathway, and may only be passively inherited by VMT.
The optogenetic manipulations are intended to show that theta in VMT propagates to PFC and also affects HPC-PFC coherence. However, the "theta" induced by driving thalamic neurons at 7 Hz is extremely artificial. To demonstrate that VMT is causally involved in coordinating activity across HPC and PFC, it would have been better to optogenetically inhibit, rather than excite, these nuclei. If the authors were able to show that the natural occurrence of theta in PFC depends on activity in VMT, that would be much more convincing test of their hypothesis.
-
Reviewer #2 (Public Review):
A number of previous reports have demonstrated that theta synchrony between the hippocampus (HPC) and prefrontal cortex (PFC) is associated with correct performance on spatial working memory tasks. The main goal of the current study is to examine this relationship by initiating trials either randomly (as has typically been done in previous studies) or during periods of high or low PFC-HPC coherence. To this end, they develop a 'brain-machine interface' (BMI) that provides real-time estimates of PFC-HPC theta coherence, which are then used to control trial onset using an automated figure-eight maze. Their main finding is that choice accuracy is significantly higher on trials initiated when theta coherence is high whereas performance on low coherence trials does not differ from randomly initiated control trials. They also observe a similar result using a non-working memory task in the same maze.
Overall the main experiments (Figures 1-4) are well designed and the BMI approach is convincingly validated. There are also appropriate controls and analyses to rule out behavioral confounds and the results are clearly presented. Although the BMI can not establish a causal relationship between PFC-HPC coherence and behavior, it is helpful for examining how extremes in the distribution of brain states are associated with behavioral performance, something that might be more difficult to examine if trials are initiated randomly. As such, the BMI is an interesting approach for studying the neuronal basis of behavior that could be applied in other fields of neuroscience.
In addition to the behavioral results, the authors also examine what neuronal mechanisms might support enhanced PFC-HPC synchrony (Figures 5-6). Here, they examine the potential contribution of the ventromedial thalamus (VMT) but the results are inconclusive. In particular, the results of optogenetic stimulation of the VMT (Figure 6) show that it both increases and decreases PFC-HPC theta synchrony, depending on the exact frequency range examined. These results are also somewhat preliminary as they come from only 2 animals.
-
Reviewer #3 (Public Review):
Stout et al investigate the link between prefrontal-hippocampal (PFC-HPC) theta-band coherence and accurate decisions in spatial decision making tasks. Previous studies show that PFC-HPC theta coherence positively correlates with task learning and correct decisions but the nature of this relation relies on correlations that cannot show whether coherence leads, coincides or is a consequence of decision making. To investigate more precisely this link, the authors devise a novel paradigm. In this paradigm the rat is blocked during a delay period preceding its choice and they control on a trial-by-trial basis the level of PFC-HPC theta coherence prior to the decision by allowing the rat to access the choice point only at a time when coherence reaches above or below a threshold. The design of the paradigm is very well controlled in many ways. First, using the PFC-HPC theta coherence during the delay period to gate when the rat accesses the choice zone clearly separates this coherence from the behavioural decision itself. Moreover, the behaviour of the animal is similar during high and low coherence periods. Finally, control trials are matched trial-by-trial to the time spent waiting by the rat when gated on theta coherence, which is crucial given that working memory performance depends on delay duration. All these features bolster the specificity of the author's main finding which is that PFC-HPC theta coherence prior to choice making is strongly predictive of accuracy in two tasks : one that requires working memory and another in which behaviour is cue-guided. Although this paradigm does not provide direct causal evidence, it convincingly supports the idea that PFC-HPC theta coherence prior to the behavioural decision is related to correct decision making and is not simply temporally coincidental or a consequence of the decision output.
The authors also investigate the mechanisms behind the increase in PFC-HPC coherence during the task and show that it likely involves the recruitment of a small population of PFC neurons, via interactions with the Ventral Midline Thalamus that could mediate prefrontal/hippocampal dialogue.
A key point of interest is the unexpected result showing a link between theta coherence even in the cue-driven version of the task. As the authors point out, muscimol inhibition of neither PFC nor HPC, nor the ventral midline thalamus impacts performance in this task. This raises the question of why coherence between two areas is predictive of choice accuracy when neither area appears to be causally involved. The authors discuss various options and explanations for this discrepancy which clearly adds to the current debate. Moreover their novel paradigm provides new tools to interrogate when inter-area synchrony is associated with information transfer and when this information is then used to drive behavioural decisions.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this study, Lin et al developed a protocol termed MOCAT, to perform tissue clearing and labelling on large-scale FFPE mouse brain specimens. They have optimised protocols for dewaxing and adequate delipidation of FFPE tissues to enable deep immunolabelling, even for whole mouse brains. This was useful for the study of disease models such as in an astrocytoma model to evaluate spatial architecture of the tumour and its surrounding microenvironment. It was also used in a traumatic brain injury model to quantify changes in vasculature density and differences in monoaminergic innervation. They have also demonstrated the potential of multi-round immunolabelling using photobleaching, as well as expansion microscopy with FFPE samples using MOCAT.
Comments on revised version:
The revised manuscript by Lin et al is much improved with a more detailed methods description. There are only a few minor comments for the authors:
- The new figures provided in Supplementary figure 5 did demonstrate a good level of transparency for the mouse brain tissue. However, quite marked tissue expansion can be seen following antigen retrieval and RI matching and this should be mentioned in the manuscript.<br /> - The authors have provided comparison between mouse and human brain samples in Figure S12. However, it is misleading to mention that the "fluorescent signals are comparable at varying depth" as the figure clearly showed a lack of continuous staining especially for SMI312 at 900um depth, and human brain tissue showed considerably increased background signal (likely due to endogenous lipofuscin which has autofluorescent properties).<br /> - It is understandable the authors cannot provide the full detail of the RI matching reagent as it is a commercialised product. However, it may still be useful if they can quote the refractive index +/- pH of the solution.
-
Reviewer #2 (Public Review):
The manuscript details an investigation aimed at developing a protocol to render centimeter-scale formalin-fixed paraffin-embedded specimens optically transparent and suitable for deep immunolabeling. The authors evaluate various detergents and conditions for epitope retrieval such as acidic or basic buffers combined with high temperatures in entire mouse brains that had been paraffin-embedded for months. They use various protein targets to test active immunolabeling and light-sheet microscopy registration of such preparations to validate their protocol. The final procedure, called MOCAT pipeline, briefly involves 1% Tween 20 in citrate buffer, heated in a pressure cooker at 121 {degree sign}C for 10 minutes. The authors also note that part of the delipidation is achieved by the regular procedure.
Major Strengths<br /> - The simplicity and ease of implementation of the proposed procedure using common laboratory reagents distinguish it favorably from more complex methods.
- Direct comparisons with existing protocols and exploration of alternative conditions enhance the robustness and practicality of the methodology.
Major Weaknesses
- The assertion that MOCAT can be rapidly applied in hospital pathology departments seems overstated due to the limited availability of light-sheet microscopes outside research labs. In the first rebuttal letter, authors explain the limitations of other microscopes more readily available in hospitals. This explanation relies on your own investigations and practical experience on the matter, so including them in some part of the manuscript would be beneficial.
- Refractive index matching is a critical point in the protocol, the one providing final transparency. Authors utilized the commercial solutions NFC1 and NFC2 (Nebulem, Taiwan) with a known refractive index, but for which its composition is non-disclosable. My knowledge on the organic chemistry around refractive index matching is limited, but if users don't really know what is going on in this final step, the whole protocol would rely on a single world-wide provider and troubleshooting would be fishing. I suggest that you try to validate the approach with solutions of known composition, or at least provide the solutions sold by other providers.
Final considerations<br /> The evidence presented supports the effectiveness of the proposed method in rendering thick FFPE samples transparent and facilitating repeated rounds of immunolabeling.
The developed procedure holds promise for advancing tissue and 3D-specific determination of proteins of interest in various settings, including hospitals, basic research, and clinical labs, particularly benefiting neuroscience research.
The methodological findings suggest that MOCAT could have broader applications beyond FFPE samples, differentiating it from other tissue-clearing approaches in that the equipment and chemicals needed are broadly accessible.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Mice can learn to associate sensory cues (sound and light) with a reward or activation of dopamine neurons in the ventral tegmental area (VTA), and then anticipate the reward from the sensory cue only. Using this paradigm, Harada et al. showed that after learning, the cue is able to induce dopamine release in the projection targets of the VTA, namely the nucleus accumbens and lateral hypothalamus (LH). Within the LH, dopamine release from VTA neurons (either by presentation of the cue or direct optical stimulation of VTA neurons) activates orexin neurons, measured as an increase in intracellular calcium levels.
Strengths:
This study utilized genetically encoded optical tools to selectively stimulate dopamine neurons and to monitor dopamine release in target brain areas and calcium response of orexin neurons. This allowed a direct assessment of the relationship between the behavioral response of the animals, release of a key neurotransmitter in select brain areas and its effect on target cells with the precision previously not possible. The results shed light onto the mechanism underlying reward-related learning and expectation.
Weaknesses:
Supplementary Fig.2: While the differences in time course are analyzed and extensively discussed, there is also a large discrepancy in the magnitude of change in DA levels in the two areas that is not mentioned. Specifically, DA increases is about 90-fold of baseline in NAc while it is about 2-fold in the LH. This could be because the DA level is either higher during baseline or lower during peak in the LH. Is there a known difference in the DA fiber density or extracellular DA levels in the two areas?
The DA antagonist i.p. study (Fig.5E and suppl fig 4) appears to be repeated measurements in same animals. If so, is it possible that repeated opto-sessions result in desensitization of the response, and therefore the smaller response is not due to the antagonist? Ideally, the order of experiments (i.e. vehicle, SCH23390 and raclopride) would be randomized, and a control group should be shown where DA terminal-stimulation induces consistent response in orexin neurons when applied three times without any antagonists. The result should be assessed using one-way repeated measures ANOVA.
Importantly, only 5 minutes were allowed for i.p. injected drugs to be absorbed and distributed to the brain before DA release was evoked and ORX neuron activity were monitored. Unfortunately, this is too short (In Ref 13, ip injection of SCH 23390 was 30 minutes prior to optogenetics/photometry experiments. In Ref 70, no effect on behavior was detected at 10 min post-i.p. injection of SCH 23390; In Ref 71, the effect of raclopride on behavior was measured 30 min post-ip injection).
Overall, it seems premature to make a conclusion about a role for D2 receptors or lack of involvement of D1 receptors in the observed phenomenon.
Reciprocal activation of VTA DA neurons and LH orexin neurons is an interesting idea. However, if this is the case, the activity of these two types of cells should show similar pattern and time course. This manuscript shows that extracellular DA levels decays quickly following the cessation of optical stimulation (Fig. 3B) whereas orexin neuron activity is long-lasting (Fig. 5). Thus, the hypothesis does not seem to be fully supported by experimental data.
-
Reviewer #3 (Public Review):
Summary:
Harada and colleagues describe an interesting set of experiments characterizing the relationship between dopamine cell activity in ventral tegmental area (VTA) and orexin neuron activity in lateral hypothalamus (LH). All experiments are conducted in the context of an opto-Pavlovian learning task, in which a cue predicts optogenetic stimulation of VTA dopamine neurons. With training, cues that predict DA stimulation come to elicit dopamine release in LH (a similar effect is seen in accumbens). After training, omission trials (cue followed by no laser) result in a dip (inhibition) of dopamine release in LH, characteristic of reward prediction error observed in striatum. Across cue training, the activity pattern of orexin neurons in LH mirrors that of LH DA levels. However, unlike the DA signal, orexin neurons do not exhibit a decrease in activity in omission trials. Systemic blockade of D2 but not D1 receptors blocked DA release in LH following VTA DA cell stimulation.
Strengths:
Although much work has been dedicated to examining projections from orexin cells to VTA, less has been done to characterize reciprocal projections and their function. In this way, this paper is a very important addition to the literature. The experiments are technically sound (with some limitations, below) and utilize sophisticated approaches, the manuscript is nicely written, and the conclusions are mostly reasonable based on the data collected.
Weaknesses:
I believe the impact of the paper could be enhanced by considering and/or addressing the following:
Major<br /> • I encourage the authors to discuss in the Introduction previous work on DA regulation of orexin neurons. In particular, the authors cite, but do not describe in any detail, the very relevant Linehan paper (2019; Am J Physiol Regul) which shows that DA differentially alters excitatory/inhibitory input onto orexin neurons and that these actions are reversed by D1 vs D2 receptor antagonists. Another paper (Bubser, 2005, EJN) showed that dopamine agonists increase activity of orexin neurons and that these effects are blocked by D1/D2 antagonists. The current findings should be discussed in the context of these (and any other relevant) papers in the Discussion, too.
The revised manuscript addresses these concerns.
• In the Discussion, the authors provide 2 (plausible) explanations for why they did not observe a dip in calcium signal of orexin neurons during omission trials. Is it not possible that these cells do not encode for this type of RPE?
The revised manuscript addresses these concerns.
• Related to the above - I am curious about the authors' thoughts on why there is such redundancy in the system. i.e. why is dopamine doing the same thing in NAC and LH in the context of cue-reward learning?
The revised manuscript addresses these concerns.
• The data, as they stand, are largely correlative and do not indicate that DA recruitment of orexin neurons is necessary for learning to occur. It would be compelling if blocking the orexin cell recruitment affected some behavioral outcome of learning. Similarly - does raclopride treatment across training prevent learning?
I maintain that experiments testing the causality of these effects on learning/behavior would enhance the impact of the paper. However, I recognize that this would require substantial additional experimentation and the data here are interesting regardless.
• Only single doses of SCH23390 and raclopride were used. How were these selected? It would be nice to use more of a dose range to show that 1) and effect of D1R blockade was not missed, and 2) that the reduction in orexin signal with raclopride was dose-dependent.
Additional information on dose selection has been included - thank you. Again, these data might be more impactful if the effects of antagonists were found to be dose-dependent.
• Fig 1C, could the effect the authors observed due to movement? Relatedly, what was the behavior like when the cue was on? Did mice orient/approach the cue? Also, when does the learning about the cue occur? Does it take all 10 days of learning or does this learning/cue-induced increase in dopamine signaling occur in less than 10 days?
These have been addressed in the revised manuscript
• Also related to above, could the observed dopamine signal be a result of just the laser turning on? It would seem important to include mice with a control sensor.
The authors note that a control channel was recorded. I agree this is useful, but my concern is that the illumination of laser itself might startle the animal (promote movement), resulting in dopamine release. Showing this does not occur with the same laser in chr2-lacking vta neurons would help resolve this issue.
• Fig 1E, the effect seems to be driven by one mouse which looks like it could be a statistical outlier. Inclusion of additional animals would make these data more compelling.
I would still argue that these data could be strengthened by the addition of more mice. I note that the graph depicting individual data points has been removed from the revised manuscript - i would recommend re-including this figure.
• For Fig 1C, 3D, 3F, and 4D, could the authors please show the traces for the entire length of laser onset? It would be helpful to see both the rise and the fall of dopamine signals.<br /> • Fig 2C, could the authors comment on how they compared the AUC to baseline? Was this comparison against zero? Because of natural hills and troughs during signals prior to cue (which may not equate to a zero), comparing the omission-induced dip to a zero may not be appropriate. A better baseline might be using the signals prior to the cue.<br /> • Could the authors comment on how they came up with the 4-5.3s window to observe the AUC in Fig 3H?
These have all been addressed.
Minor<br /> • When discussing the understudied role of dopamine in brain regions other than the striatum in the Introduction, it might be helpful to cite this article: https://elifesciences.org/articles/81980 where the authors characterize dopamine in the bed nucleus of stria terminalis in associative behaviors and reward prediction error.<br /> • In Discussion, it might be better to refrain from describing the results as 'measuring dopamine release' in the LH. Since there was no direct detection of dopamine release, rather dopamine binding to the dLight receptors, referring to the detection as dopamine signaling/binding/transients is a better alternative.<br /> • In Discussion, without measuring tonic dopamine release, it is difficult to say that there was a tonic dopamine release in the LH prior to negative RPE. In addition, I wouldn't describe the negative RPE as silencing of dopamine neurons projecting to the LH since this was not directly measured and it is hard to say for sure if the dip in dopamine is caused by silencing of the neurons. There certainly seems to be a reduction in extrasynaptic dopamine signaling in LH, however what occurs upstream is unknown.<br /> • Typo at multiple places: 'Tekey's multiple comparison test'.
These have been addressed.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
While I acknowledge the authors' effort in conducting Southern blot analysis to address my prior concern regarding the presence of dual copies of torA and tapA, I find their current resolution inadequate. Specifically, the simple deletion of the respective result sections for torA and tapA significantly impacts the overall significance of this study. The repeated unsuccessful attempts to generate correct mutants only offer circumstantial evidence, as technical issues may have been a contributing factor. Therefore, instead of merely removing these sections, it is essential for the authors to present more compelling experimental data demonstrating that torA and tapA are indeed vital for the viability of A. flavus. Such data would enhance the overall significance of this study.
-
Reviewer #2 (Public Review):
In this study, authors identified TOR, HOG and CWI signaling network genes as modulators of the development, aflatoxin biosynthesis and pathogenicity of A. flavus by gene deletions combined with phenotypic observation. They also analyzed the specific regulatory process and proposed that the TOR signaling pathway interacts with other signaling pathways (MAPK, CWI, calcineurin-CrzA pathway) to regulate the responses to various environmental stresses. Notably, they found that FKBP3 is involved in sclerotia and aflatoxin biosynthesis and rapamycin resistance in A. flavus, especially that the conserved site K19 of FKBP3 plays a key role in regulating aflatoxin biosynthesis. In general, the study involved a heavy workload and the findings are potentially interesting and important for understanding or controlling the aflatoxin biosynthesis. However, the findings have not been deeply explored and the conclusions mostly are based on parallel phenotypic observations.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The authors have identified the predicted EBE of PthA4 in the promoter of Cs9g12620, which is induced by Xcc. The authors identified a homolog of Cs9g12620, which has variations in the promoter region. The authors show that PthA4 suppresses Cs9g12620 promoter activity independent of the binding action. The authors also show that CsLOB1 binds to the promoter of Cs9g12620. Interestingly, the authors show that PthA4 interacts with CsLOB1 at the protein level. Finally, it shows that Cs9g12620 is important for canker symptoms. Overall, this study has reported some interesting discoveries and the writing is generally well done. However, the discoveries are affected by the reliability of the data and some flaws in the experimental designs.
Here are some major issues:<br /> The authors have demonstrated that Cs9g12620 contains the EBE of PthA4 in the promoter region, to show that PthA4 controls Cs9g12620, the authors need to compare to the wild type Xcc and pthA4 mutant for Cs9g12620 expression. The data in Figure 1 is not enough.
The authors confirmed the interaction between PthA4 and the EBE in the promoter of Cs9g12620 using DNA electrophoretic mobility shift assay (EMSA). However, Figure 2B is not convincing. The lane without GST-PthA4 also clearly showed a mobility shift. For the EMSA assay, the authors need also to include a non-labeled probe as a competitor to verify the specificity. The description of the EMSA in this paper suggests that it was not done properly. It is suggested the authors redo this EMSA assay following the protocol: Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions PMID: 17703195.
The authors also claimed that PthA4 suppresses the promote activity of Cs9g12620. The data is not convincing and also contradicts with their own data that overexpression of Cs9g12620 causes canker and silencing of it reduces canker considering PthA4 is required for canker development. The authors conducted the assays using transient expression of PthA4. It should be done with Xcc wild type, pthA4 mutant, and negative control to inoculate citrus plants to check the expression of Cs9g12620.
Figure 6 AB is not convincing. There are no apparent differences. The variations shown in B are common in different wild-type samples. It is suggested that the authors conduct transgenic instead of transient overexpression.
Gene silencing data needs more appropriate controls. Figure D seems to suggest canker symptoms actually happen for the RNAi treated. The authors need to make sure the same amount of Xcc was used for both CTV empty vector and the RNAi. It is suggested a blink test is needed here.
-
Reviewer #2 (Public Review):
The following submission titled "Xanthomonas citri subsp. citri type III effector PthA4 directs the dynamical expression of a putative citrus carbohydrate-binding gene for canker formation" by Chen et al. provides evidence that PthA4 binds to PCs9g12620 to downregulate expression potentially for citrus canker disease development. They tackle a relevant, complicated problem about the timing and regulation of an S gene expression and its relationship to disease development. Most often research stops at an S gene that is upregulated. This study aims to define the complexity of TAL effector family proteins beyond their standard activation role. Cs9g12620 encodes a putative carbohydrate-binding protein, and downregulation of this occurs via PthA4-CsLOB1 direct interaction. Silencing of Cs9g12620 leads to reduced virulence of X. citri, highlighting its importance as an S gene target from PthA4-mediated CsLOB1 induction. The authors also hypothesize that PthA4 represses the expression of Cs9g12620, and it seems to depend not on DNA binding by PthA4 but rather CsLOB1 interaction. This provides an interesting mode of action for a TAL effector, which typically is described as a transcription factor. An overall curiosity is that TAL effectors like PthA4 induce gene expression for virulence activity, but the authors do not probe this question with artificial TAL effectors or PthA4 variants to define the domains required for this activity. These tools, which are widely used in TAL effector research, could help determine what domain is responsible for this repression and if it is unique to PthA4 or a general TAL phenomenon. Work is further needed to also demonstrate the repressive role of PthA4 over time because it is not explicitly clear that the time-related suppression is directly attributed to the PthA4-CsLOB1 interactions.
(1) The authors show that both WT but not WT expressing AvrXa7 induce Cs9g12620 and CsLOB1. They performed an adjacent supportive experiment comparing a Tn5-disrupted pthA4 to WT and saw a similar induction. Do the authors have a southern blot or genome sequence to show this is the true mutation? Have the authors complemented the Tn5 strain with pthA4 and an artificial TAL effector?
(2) Figure 2 and "The expression of Cs9g12620 depends on pthA4 during Xcc infection" section: Overall I cannot determine the biological importance as written in the text about examining an ortholog of Cs9g12620 that is not expressed. The title of Figure 2 is: "Cs9g12620 and Cs9g12650 show different profiles of expression owing to the genetic variation in promoter." What is the biological importance of showing that there is promoter variation when the RNA-seq pointed to this target? This is unclear. Now, an interesting experiment would be to create an artificial TAL that activates the expression of Cs9g12650, which was, yes, not expressed in Nicotiana, but this wasn't examined in citrus and could be with an artificial TAL effector. Moreover, if this is about how something is not expressed, this seems out of place in the story before we arrive at the repression aspect of the narrative. Is the lack of expression a typical state of this gene family and do TAL effectors induce this for virulence? Is it also possible that RT alone isn't sensitive enough to detect relevant Cs9g12650 expression? Could the authors rather build on their RNAseq data or maybe use qPCR, a more sensitive approach, to see if this gene is expressed. Overall, this seems like a non-issue still because it isn't clear why this is important to support their narrative. Finally "2 μg of total RNA extracted" seems to be an extremely high input for RT. In summary here, it would be nice to see the hypothesis they tested and how it supports their overall aim because this is unclear.
(3) Figure 3C: The authors should include a 35S::GUS + 35S::pthA4 control. This control is missing to show that the suppression is not due to overexpressing the two proteins simultaneously.
(4) Figure 3E&G are just the same but rotated. Please include a separate replicate as this would be more beneficial to examine. With this and concerns on some of the reporting, the raw data and images should be included as supplemental for each replicate and detailed as if they are a regular figure.
(5) Figure 3G: What is low and high? There are quantifiable values (e.g. RLU) here that correspond to the intensity of the figure legend. There should be a water/buffer infiltrated control.
(6) Figure 3F: The Y1H data demonstrate that PCs9g12620 is bound by PthA4. The second panel for the gel mobility shift is however lacking a complementary treatment with PCs9g12620 WT. These gel mobility shift assays are always relative to something, and there is no comparison here unfortunately to other treatments. An example to follow as a model for formatting and experimental design could include as seen in Figure 5 by Duan et al. MPP (DOI:10.1111/mpp.12667). These should be performed as a single experiment not separated by panel D. A GST-Tag only should always be an additional control.
(7) Figure 4: CsLOB1 activates Cs9g12620. Figure 4C: A reasonable control would be to include 35S::GUS and 35S::PthA4.
(8) Figure 5F: The purpose of this experiment to show the multiplication over time and increase is not clear. It would be expected to see an increase in growth over time during susceptibility; so why was this documented?
(9) Figure 5: Cs9g12620 expression decreases along with expansion and pectin esterase expression. How do we know that this is not a general downregulation of gene expression more broadly due to cell death or tissue deformation at 10 dpi? To test if this is also PthA4-specific, an experiment needed would be to test a specific pthA4 mutant rather than the TAL effectorless strain, which is already pretty weak a pathogen and does not trigger expression of any tested genes to wild-type levels to see if this is a general trend or specific to PthA4 activity. Finally, why are the color bars switched for time points 5 & 10 dpi for the effectorless strain? This is the finding that led them to suggest the repression. According to the rest of the figure, the gray and black are typically 5 and 10 dpi, respectively, but they seem to be switched to fit the narrative.
(10) Figure 6 nicely documents the interaction between PthA4 and CsLOB1, but why did the authors not take the additional step to define what domains are required for PthA4 interaction? This is an important curiosity of what mediates this interaction. Was it the repeats or C- or N-terminus? Is this general to TAL effectors or precise to PthA4? This seems like the crux of the story especially since there is a TAL effector binding cited in the promoter.
(11) Figure 7: RNAi-mediated silencing of Cs9g12620 demonstrates that this gene is a susceptibility target for X. citri as seen by colonization (E). First, the symptoms are not quite clear in A, and the morphological changes are unclear. Are there additional images for these to showcase the difference reproducibly? They hypothesize that there is complexity in Cs9g12620 expression during infection as proposed in Figure 8. It seems pretty important to perturb this in the opposite direction with artificial TAL effectors that either target a) Cs9g12620 for induction and b) CsLOB1 in a 049E background. One would hypothesize that this would not allow for the CsLOB1 interaction because they demonstrate this is PthA4-specific and therefore Cs9g12620 expression would not decrease while CsLOB1 is induced.
(12) Figure 8: It is unclear if this is an appropriate model. The impact of CsLOB1-PthA4 interaction is depicted as a late phenomenon based on Cs9g12620 expression. However, it is not clear from their data that the CsLOB1-PthA4 interaction does not happen at the early stages of infection. This is not defined by their experiments proposed. As mentioned above, an overall concern is that the authors do not test variants of PthA4 or domains that could examine specifically what permits this suppression. Is this a general TAL effector structure-mediated phenomenon or is it something unique about PthA4 in this family? Does it require both DNA binding and interaction with CsLOB1?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Doxorubincin has long been known to cause bone loss by increasing osteoclast and suppressing osteoblast activities. The study by Wang et al. reports a comprehensive investigation into the off-target effects of doxorubicin on bone tissues and potential mechanisms.. They used a tumor-free model with wild type mice and found that even a single dose of doxorubicin has a major influence by increasing leukopenia and DAMPs and inflammasomes in macrophages and neutrophils, and inflammation-related cell death (pyroptosis and NETosis). The gene knockout study shows that AIM2 and NLRP3 are the major contributors to bone loss. Overall, the study confirmed previous findings regarding the impact of doxorubicin on tissue inflammation and expands the research further into bone tissue. The presented data presented are consistent; however, a major question remains regarding whether doxorubicin drives inflammation and its related events. Most in vitro study showed that the effect of doxorubincin cannot be demonstrated without LPS priming. This observation raises the question of whether doxorubincin itself could activate the inflammasome and the related events. In vivo study, on the other hand, suggested that it doesn't require LPS. The inconsistency here was not explained further. Moreover, a tumor-free mouse model was used for the study; however, immune responses in tumor bearing models would likely be distinct from tumor-free ones. The justification for using tumor-free models is not well-established.
Strengths:<br /> The paper includes a comprehensive study that shows the effects of doxorubincin on cytokine levels in serum, release of DAMPs and NETosis, and leukopenia using both in vivo and in vitro models. Bone marrow cells, macrophages and neutrophils were isolated from the bone marrow, and the levels of cytokines in serum were also determined.
They employed multiple knockout models with deficiency in Aim 2, Nlirp3, and double deficiencies to dissect the functional involvement of these two inflammasomes.
The experiments in general are well designed. The paper is also logically written, and figures were clearly labeled.
Weaknesses:<br /> Most of the data presented are correlative, and there is not much effort to dissect the underlying molecular mechanism.
It is not entirely clear why a tumor free model is chosen to study immune responses, as immune responses can differ significantly with or without tumor-bearing.
Immune responses in isolated macrophages, neutrophils and bone marrow cells require priming with LPS, while such responses are not observed in vivo. There is no explanation for these differences.
The band intensities on Western blots in Fig. 4 and Fig. 5 are not quantified, and the numbers of repeats are also not provided.
Many abbreviations are used throughout the text, and some of the full names are not provided.
Fig. 5B needs a label on X axis.
-
Reviewer #2 (Public Review):
Summary:
Wang and collaborators have evaluated the impact of inflammation on bone loss induced by Doxorubicin, which is commonly used in chemotherapy to treat various cancers. In mice, they show that a single injection of Doxorubicin induces systemic inflammation, leukopenia, and a significant bone loss associated with increased bone-resorbing osteoclast numbers. In vitro, the authors show that Doxorubicin activates the AIM2 and NLRP3 inflammasomes in macrophages and neutrophils. Importantly, they show that the full knockouts (germline deletions) of AIM2 (Aim2-/-) and NLRP3 (Nlrp3-/-) and Caspase 1 (Casp1-/-) limit (but do not completely abolish) bone loss induced 4 weeks after a single injection of Doxorubicin in mice. From these results, they conclude that Doxorubicin activates inflammasomes to cause inflammation-associated bone loss.
Strength:
This manuscript provides functional experiments demonstrating that NRLP3 and/or AIM2 loss-of-functions (and thus the systemic impairment of the inflammatory response) prevent bone-loss induced by Doxorubicin in mice.
Weaknesses:
Numerous studies have reported that Doxorubicin induces systemic inflammation and activates the inflammasome in myeloid cells and various other cell types. It is also known that systemic inflammation and Doxorubicin treatment lead to bone loss. Hence, the key conclusions drawn from this work have been known already or were very much expected. Therefore, the novelty appears somewhat limited. One important limitation is the lack of experiments that could determine which cell lineages are involved in bone loss induced by Doxorubicin in vivo, while the tools to do so exist. The characterization of the bone phenotype is incomplete, and unfortunately does not tell us whether the inflammasome is activated in some of the cell lineages present in bones in vivo. Another limitation is that the relative importance of the inflammasomes compared to cell senescence and autophagy, which are also induced by Doxorubicin, has not been evaluated. Hence the main molecular mechanisms responsible for bone loss induced by Doxorubicin in vivo remains unknown. Lastly, it would have been interesting, on a more clinical point of view, to compare the few relevant treatments that could limit the deleterious effect of Doxorubicin on bone loss while preserving the toxicity on tumor cells.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> The manuscript by Jiayun Li and colleagues aims to provide insight into adipokinetic hormone signaling that mediates the fecundity of Diaphorina citri infected by 'Candidatus Liberibacter asiaticus'. CLas-positive D. citri are more fecund than their CLas-negative counterparts and require extra energy expenditure. Using FISH, qRT-PCR, WB, RNAi, and miRNA-related methods, authors found that knockdown of DcAKH and DcAKHR not only resulted in triacylglycerol accumulation and a decline of glycogen but also significantly decreased fecundity and CLas titer in ovaries. miR-34 suppresses DcAKHR expression by binding to its 3' untranslated region, whilst overexpression of miR-34 resulted in a decline of DcAKHR expression and CLas titer in ovaries and caused defects that mimicked DcAKHR knockdown phenotypes. Most of the methods and results are solid and valuable, but I have a number of concerns with this paper, relating to the writing and lack of sufficient information about data analysis.
-
Reviewer #2 (Public Review):
Diaphorina citri is the primary vector of Candidatus Liberibacter asiaticus (CLas), but the mechanism of how D. citri maintains a balance between lipid metabolism and increased fecundity after infection with CLas remains unknown. In their study, Li et al. presented convincing methodology and data to demonstrate that CLas exploits AKH/AKHR-miR-34-JH signaling to enhance D. citri lipid metabolism and fecundity, while simultaneously promoting CLas replication. These findings are both novel and valuable, not only have theoretical implications for expanding our understanding of the interaction between insect vectors and pathogenic microorganisms but also provide new targets for controlling D. citri and HLB in practical implications. The conclusions of this paper are mostly well supported by data, but some aspects of phrasing and data analysis need to be further clarified and extended.
Key Considerations:
There are specific instances where additional information would enhance comprehension of the results and their interpretation.
There seem to be two inconsistencies related to some results depicted in Figures 1, 2, 3 and 5.
Firstly, Figure 1 shows the effect on CLas infection (CLas+) compared to the control (CLas-), where results show an increase of TAG, Glycogen, lipid droplet size, oviposition period, and fecundity. In Figures 2, 3, and 5, the authors establish the involvement of the genes DcAKH, DcAKHR, and miR34 in this process, by showing that by preventing the function of these three factors the effects of CLas+ are lost. However, while Figure 1 shows the increase of TAG and lipid droplet size in CLas+, Figures 2, 3, and 5 do not show a significant elevation in TAG when comparing CLas- and CLas+.
Secondly, in addition to the absence of statistical difference in TAG and lipid droplet size observed in Figure 1, Figures 2, 3, and 5 show an increase in TAG and lipid droplet size after dsDcAKH (Figure 2), dsDcAKHR (Figure 3) and agomiR34 (Figure 5) treatments. Considering that AKH, AKHR, and miR34 are important factors to CLas-induce increase in TAG and lipid droplet size, one might expect a reduction in TAG and lipid droplet size when CLas+ insects are silenced for these factors, contrary to the observed results.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Satoshi Yamashita et al., investigate the physical mechanisms driving tissue bending using the cellular Potts Model, starting from a planar cellular monolayer. They argue that apical length-independent tension control alone cannot explain bending phenomena in the cellular Potts Model, contrasting with the vertex model. However, the evidence supporting this claim is incomplete. They conclude that an apical elastic term, with zero rest value (due to endocytosis/exocytosis), is necessary in constricting cells and that tissue bending can be enhanced by adding a supracellular myosin cable. Notably, a very high apical elastic constant promotes planar tissue configurations, opposing bending.
Strengths:
- The finding of the required mechanisms for tissue bending in the cellular Potts Model provides a more natural alternative for studying bending processes in situations with highly curved cells.
- Despite viewing cellular delamination as an undesired outcome in this particular manuscript, the model's capability to naturally allow T1 events might prove useful for studying cell mechanics during out-of-plane extrusion.
Weaknesses:
- The authors claim that the cellular Potts Model is unable to obtain the vertex model simulation results, but the lack of a substantial comparison undermines this assertion. No references are provided with vertex model simulations, employing similar setups and rules, and explaining tissue bending solely through an increase in a length-independent apical tension.
- The apparent disparity between the two models is attributed to straight versus curved cellular junctions, with cells with a curved lateral junction achieving lower minimum energies at steady-state. However, a critical discussion on the impact of T1 events, allowing cellular delamination, is absent. Note that some of the cited vertex model works do not allow T1 events while allowing curvature.
- The suggested mechanism for inducing tissue bending in the cellular Potts Model, involving an apical elastic term, has been utilized in earlier studies, including a cited vertex model paper (Polyakov 2014). Consequently, the physical concept behind this implementation is not novel and warrants discussion.
- The absence of information on parameter values, initial condition creation, and boundary conditions in the manuscript hinders reproducibility. Additionally, the explanation for the chosen values and their unit conversion is lacking.
-
Reviewer #2 (Public Review):
Summary:
In their work, the authors study local mechanics in an invaginating epithelial tissue. The mostly computational work relies on the Cellular Potts model. The main result shows that an increased apical "contractility" is not sufficient to properly drive apical constriction and subsequent tissue invagination. The authors propose an alternative model, where they consider an alternative driver, namely the "apical surface elasticity".
Strengths:
It is surprising that despite the fact that apical constriction and tissue invagination are probably most studied processes in tissue morphogenesis, the underlying physical mechanisms are still not entirely understood. This work supports this notion by showing that simply increasing apical tension is perhaps not sufficient to locally constrict and invaginate a tissue.
Weaknesses:<br /> The findings and claims in the manuscript are only partially supported. With the computational methodology for studying tissue mechanics being so well developed in the field, the authors could probably have done a more thorough job of supporting the main findings of their work.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> "Expanding the Drosophila toolkit for dual control of gene expression" by Zirin et al. aims to develop resources for simultaneous independent manipulation of multiple genes in Drosophila. The authors use CRISPR knock-ins to establish a collection of T2A-LexA and T2A-QF2 transgenes with expression patterns in a number of commonly studied organs and tissues. In addition to the transgenic lines that are established, the authors describe a number of plasmids that can be used to generate additional transgenes, including a plasmid to generate a dual insert of LexA and QF that can be resolved into a single insert using FLP/FRT-mediated recombination, and plasmids to generate RNAi reagents for the LexA and QF systems. Finally, the authors demonstrate that a subset of the LexA and QF lines that they generated can induce RNAi phenotypes when paired with LexAop or QUAS shRNA lines. In general, the claims of the paper are well supported by the evidence and the authors do a thorough job of validating the transgenic lines and characterizing their expression patterns.
-
Reviewer #2 (Public Review):
Zirin, Jusiak, and Lopes et al presented an efficient pipeline for making LexA-GAD and QF2 drivers. The tools can be combined with a large collection of existing GAL4 drivers for a dual genetic control of two cell populations. This is essential when studying inter-organ communications since most of the current genetic drivers are biased toward the expression of the central nervous system. In this manuscript, the authors described the methodology for efficiently generating T2A-LexA-GAD and T2A-QF2 knock-ins by CRISPR, targeting a number of genes with known tissue-specific expression patterns. The authors then validated and compared the expression of double as well as single drivers and found the tissue-specific expression results were largely consistent as expected. Finally, a collection of plasmids for LexA-GAD and QF,2 as well as the corresponding LexAop and QUAS plasmids were generated to facilitate the expansion of these tool kits. In general, this study will be of considerable interest to the fly community and the resources can be readily generalized to make drivers for other genes. I believe this toolkit will have a significant, immediate impact on the fly community.
-
-
-
Reviewer #1 (Public Review):
Summary:
The authors use an innovative behavior assay (chamber preference test) and standard calcium imaging experiments on cultured dorsal root ganglion (DRG) neurons to evaluate the consequences of global knockout of TRPV1 and TRPM2, and overexpression of TRPV1, on warmth detection. They find a profound effect of TRPM2 elimination in the behavioral assay, whereas elimination of TRPV1 has the largest effect on neuronal responses. These findings are of importance, as there is still substantial discussion in the field regarding the contribution of TRP channels to different aspects of thermosensation.
Strengths:
The chamber preference test is an important innovation compared to the standard two-plate test, as it depends on thermal information sampled from the entire skin, as opposed to only the plantar side of the paws. With this assay, and the detailed analysis, the authors provide strong supporting evidence for the role of TRPM2 in warmth avoidance. The conceptual framework using the Drift Diffusion Model provides a first glimpse of how this decision of a mouse to change between temperatures can be interpreted and may form the basis for further analysis of thermosensory behavior.
Weaknesses:
The authors juxtapose these behavioral data with calcium imaging data using isolated DRG neurons. Here, there are a few aspects that are less convincing.
(1) The authors study warmth responses using DRG neurons after three days of culturing. They propose that these "more accurately reflect the functional properties and abundance of warm-responsive sensory neurons that are found in behaving animals." However, the only argument to support this notion is that the fraction of neurons responding to warmth is lower after three days of culture. This could have many reasons, including loss of specific subpopulations of neurons, or any other (artificial?) alterations to the neurons' transcriptome due to the culturing. The isolated DRGs are not selected in any way, so also include neurons innervating viscera not involved in thermosensation. If the authors wish to address actual changes in sensory nerves involved in warmth sensing in TRPM2 or TRPV1 KO mice without disturbing the response profile as a result of the isolation procedure, other approaches would be needed (e.g. skin-nerve recordings or in vivo DRG imaging).
(2) The authors state that there is a reduction in warmth-sensitive DRG neurons in the TRPM2 knockout mice based on the data presented in Figure 2D. This is not convincing for the following reasons. First, the authors used t-tests (with FDR correction - yielding borderline significance) whereas three groups are compared here in three repetitive stimuli. This would require different statistics (e.g. ANOVA), and I am not convinced (based on a rapid assessment of the data) that such an analysis would yield any significant difference between WT and TRPM2 KO. Second, there seems to be a discrepancy between the plot and legend regarding the number of LOV analysed (21, 17, and 18 FOV according to the legend, compared to 18, 10, and 12 dots in the plot). Therefore, I would urge the authors to critically assess this part of the study and to reconsider whether the statement (and discussion) that "Trpm2 deletion reduces the proportion of warmth responders" should be maintained or abandoned.
(3) It remains unclear whether the clear behavioral effect seen in the TRPM2 knockout animals is at all related to TRPM2 functioning as a warmth sensor in sensory neurons. As discussed above, the effects of the TRPM2 KO on the proportion of warmth-sensing neurons are at most very subtle, and the authors did not use any pharmacological tool (in contrast to the use of capsaicin to probe for TRPV1 in Figures S3 and S4) to support a direct involvement of TRPM2 in the neuronal warmth responses. Behavioral experiments on sensory-neuron-specific TRPM2 knockout animals will be required to clarify this important point.
(4) The authors only use male mice, which is a significant limitation, especially considering known differences in warmth sensing between male and female animals and humans. The authors state "For this study, only male animals were used, as we aimed to compare our results with previous studies which exclusively used male animals (7, 8, 17, 43)." This statement is not correct: all four mentioned papers include behavioral data from both male and female mice! I recommend the authors to either include data from female mice or to clearly state that their study (in comparison with these other studies) only uses male mice.
-
Reviewer #2 (Public Review):
Summary:
The authors of the study use a technically well-thought-out approach to dissect the question of how far TRPV1 and TRPM2 are involved in the perception of warm temperatures in mice. They supplement the experimental data with a drift-diffusion model. They find that TRPM2 is required to trigger the preference for 31{degree sign}C over warmer temperatures while TRPV1 increases the fidelity of afferent temperature information. A lack of either channel leads to a depletion of warm-sensing neurons and in the case of TRPV1 to a deficit in rapid responses to temperature changes. The study demonstrates that mouse phenotyping can only produce trustworthy results if the tools used to test them measure what we believe they are measuring.
Strengths:
The authors tackle a central question in physiology to which we have not yet found sufficient answers. They take a pragmatic approach by putting existing experimental methods to the test and refining them significantly.
Weaknesses:
It is difficult to find weaknesses. Not only the experimental methods but also the data analysis have been refined meticulously. There is no doubt that the authors achieved their aims and that the results support their conclusions.
There will certainly be some lasting impact on the future use of DRG cultures with respect to (I) the incubation periods, (II) how these data need to be analyzed, and (III) the numbers of neurons to be looked at.
As for the CPT assay, the future will have to show if mouse phenotyping results are more accurate with this technique. I'm more fond of full thermal gradient environments. However, behavioural phenotyping is still one of the most difficult fields in somatosensory research.
-
Reviewer #3 (Public Review):
Summary and strengths:
In the manuscript, Abd El Hay et al investigate the role of thermally sensitive ion channels TRPM2 and TRPV1 in warm preference and their dynamic response features to thermal stimulation. They develop a novel thermal preference task, where both the floor and air temperature are controlled, and conclude that mice likely integrate floor with air temperature to form a thermal preference. They go on to use knockout mice and show that TRPM2-/- mice play a role in the avoidance of warmer temperatures. Using a new approach for culturing DRG neurons they show the involvement of both channels in warm responsiveness and dynamics. This is an interesting study with novel methods that generate important new information on the different roles of TRPV1 and TRPM2 on thermal behavior.
Open questions and weaknesses:
(1) Differences in the response features of cells expressing TRPM2 and TRPV1 are central and interesting findings but need further validation (Figures 3 and 4). To show differences in the dynamics and the amplitude of responses across different lines and stimulus amplitudes more clearly, the authors should show the grand average population calcium response from all responsive neurons with error bars for all 3 groups for the different amplitudes of stimuli (as has been presented for the thermal stimuli traces). The authors should also provide a population analysis of the amplitude of the responses in all groups to all stimulus amplitudes. Prior work suggests that thermal detection is supported by an enhancement or suppression of the ongoing activity of sensory fibers innervating the skin. The authors should present any data on cells with ongoing activity.
(2) The authors should better place their findings in context with the literature and highlight the novelty of their findings. The introduction builds a story of a 'disconnect' or 'contradictory' findings about the role of TRPV1 and TRPM2 in warm detection. While there are some disparate findings in the literature, Tan and McNaughton (2016) show a role for TRPM2 in the avoidance of warmth in a similar task, Paricio et al. (2020) show a significant reduction in warm perception in TRPM2 and TRPV1 knock out lines and Yarmolinksy et al. (2016) show a reduction in warm perception with TRPV1 inactivation. All these papers are therefore in agreement with the authors finding of a role for these channels in warm behavior. The authors should change their introduction and discussion to more correctly discuss the findings of these studies and to better pinpoint the novelty of their own work.
(3) The responses of 60 randomly selected cells are shown in Figure 2B. But, looking at the TRPM2-/- data, warm responses appear more obvious than in WTs and the weaker responders of the WT group appear weaker than the equivalent group in the TRPV1-/- and TRPM2-/- data. This does not necessarily invalidate the results, but it may suggest a problem in the data selection. Because the correct classification of warm-sensitive neurons is central to this part of the study more validation of the classifier should be presented. For example, the authors could state if they trained the classifier using equal amounts of cells, show some randomly selected cells that are warm-insensitive for all genotypes, and show the population average responses of warm-insensitive neurons.
(4) The interpretation of the main behavioral results and justification of the last figure is presented as the result of changes in sensing but differences in this behavior could be due to many factors and this needs clarification and discussion. (i) The authors mention that 'crucially temperature perception is not static' and suggest that there are fluctuating changes in perception over time and conclude that their modelling approach helps show changes in temperature detection. They imply that temperature perceptual threshold changes over time, but the mouse could just as easily have had exactly the same threshold throughout the task but their motivation (or some other cognitive variable) might vary causing them to change chamber. The authors should correct this. (ii) Likewise, from their fascinating and high-profile prior work the authors suggest a model of internal temperature sensing whereby TRPM2 expression in the hypothalamus acts as an internal sensory of body temperature. Given this, and the slow time course of the behavior in chambers with different ambient temperatures, couldn't the reason for the behavioral differences be due to central changes in hypothalamic processing rather than detection by skin temperature? If TRPM2-/- were selectively ablated from the skin or the hypothalamus (these experiments are not necessary for this paper) it might be possible to conclude whether sensation or body temperature is more likely the root cause of these effects but, without further experiments it is tough to conclude either way. (iii) Because the ambient temperature is controlled in this behavior, another hypothesis is that warm avoidance could be due to negative valence associated with breathing warm air, i.e. a result of sensation within the body in internal pathways, rather than sensing from the external skin. Overall, the authors should tone down conclusions about sensation and present a more detailed discussion of these points.
(5) It is an excellent idea to present a more in-depth analysis of the behavioral data collected during the preference task, beyond 'the mouse is on one side or the other'. However, the drift-diffusion approach is complex to interpret from the text in the results and the figures. The results text is not completely clear on which behavioral parameters are analyzed and terms like drift, noise, estimate, and evidence are not clearly defined. Currently, this section of the paper slightly confuses and takes the paper away from the central findings about dynamics and behavioral differences. It seems like they could come to similar conclusions with simpler analysis and simpler figures.
(6) In Figure 2D the % of warm-sensitive neurons are shown for each genotype. Each data point is a field of view, however, reading the figure legend there appear to be more FOVs than data points (eg 10 data points for the TRPV1-/- but 17 FOVs). The authors should check this.
(7) Can the authors comment on why animals with over-expression of TRPV1 spend more time in the warmest chamber to start with at 38C and not at 34C?
-
-
www.researchsquare.com www.researchsquare.com
-
Reviewer #3 (Public Review):
Summary:<br /> The authors report a scene-selective areas in the posterior intraparietal gyrus (PIGS). This area lies outside the classical three scene-selective regions (PPA/TPA, RSC/MPA, TOS/OPA), and is selective for ego motion.
Strengths:<br /> The authors firmly establish the location and selectivity of the new area through a series of well-crafted controlled experiments. They show that the area can be missed with too much smoothing, thus providing a case for why it has not been previously described. They show that it appears in much the same location in different subjects, with different magnetic field strengths, and with different stimulus sets. Finally, they show that it is selective for ego motion - defined as series of sequential photographs of an egocentric trajectory along a path. They further clarify that the area is not generically motion selective by showing that it does not respond to biological motion without an egomotion component to it. All statistics are standard and sound; the evidence presented is strong.
Weaknesses:<br /> There are a few weaknesses in this work. If pressed, I might say that the stimuli depicting ego motion do not, strictly speaking, depict motion, but only apparent motion between 2s apart photographs. However, this choice was made to equate frame rates and motion contrast between the 'ego motion' and a control condition, which is a useful and valid approach to the problem.
This is a very strong paper.
-
Reviewer #2 (Public Review):
Summary
The authors report an extensive series of neuroimaging experiments (at both 3T and 7T) to provide evidence for a scene-selective visual area in human posterior parietal cortex (PIGS) that is distinct from the main three (parahippocampal place area, PPA; occipital place area, OPA; medial place area, MPA) typically reported in the literature. Further, they argue that in comparison with the other three, this region may specifically be involved in representing ego-motion in natural contexts. The characterization of this scene-selective region provides a useful reference point for studies of scene processing in humans.
Strengths
One of the major strengths of the work is the extensive series of experiments reported, showing clear reproducibility of the main finding and providing functional insight into the region studied. The results are clearly presented and convincing with careful comparison to retinotopic and scene-selective regions described in prior studies.
Weaknesses
While the results are strong and clear, the claim in the title ("A previously undescribed scene-selective site is the key to encoding ego-motion in naturalistic environments") is not fully supported. The results show that this scene-selective region is sensitive to visual cues that reflect ego-motion but not that it is "key" to encoding ego-motion. Further, there are many differences between the two types of stimuli used to test ego-motion and greater characterization of this scene-selective region will be needed to confirm this conclusion.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Summary:
Non enzymatic replication of RNA or a similar polymer is likely to be important for the origin of life. The authors present a model of how a functional catalytic sequence could emerge from a mixture of sequences undergoing non-enzymatic replication.
Strengths:
Interesting model describing details of the proposed replication mechanism.
Weaknesses:
The idea of the virtual circular genome proposed in [37] is included in the discussion section together with the problem of sequence scrambling faced by this mechanism that was raised in [38]. Sequence scrambling arises in models that assume cycles of melting and reannealing, in which case only part of a template is copied in one cycle. Scrambling is due to the many alternative ways in which pairs of sequences can reanneal. Many of these alternatives are incorrect and this leads to the disappearance of the original sequence. This problem exists even in the limit where there is zero mutational error rate. Thus, it is a separate problem from the usual error threshold problem. Scrambling would not occur if there was complete copying of a template from one end to the other.
The authors seem to believe that their model avoids the scrambling problem to some extent. If I understand correctly, this is because the functional activity is located in a short sequence region. I can imagine that if the length of a strand that is synthesized in a single melting/annealing cycle is long enough to cover the complete functional region, then sometimes the complete functional sequence can be copied in one cycle. The authors give an estimate of a scrambling-free length. I am not sure how this is determined. I think that the problem of how to encode functional sequences in RNA strands undergoing non-enzymatic replication is still not fully resolved.
-
Reviewer #1 (Public Review):
Summary:
The emergence of catalytic self-replication of polymers is an important question in the context of the origin of life. Tkachenko and Maslov present a model in which such a catalytic polymer sequence emerges from a random pool of replicating polymers.
Strengths:
The model is part of a theme from many previous papers from the same authors and their colleagues. The model is interesting, technically correct and demonstrates qualitatively new phenomena. It is good that the paper also makes a connection with possible experimental scenarios - specifically, concrete proposals are made for testing the core ideas of the model. It would indeed be an exciting demonstration when such an experiment does indeed materialize.
Weaknesses:
Unlike the rest of the paper which is very tight in its arguments, I find that the discussion section is not so. Specifically, sentences such as " In fact, this can be seen as a special case of the classical error catastrophe" are a bit loose and not well substantiated -- although these are in the discussion section, I find this to be a weakness of an otherwise good paper and tightening some of the arguments here will make it an excellent paper in my opinion.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
In this manuscript, the authors suggest that Keratin 17 (K17) a component of intermediate filaments that is highly expressed in the more aggressive basal subtype of pancreatic cancer, is functionally involved in tumor promotion. They use mouse and human cell lines and overexposed wild type or mutant K17 (the latter a form that accumulates in the nuclei) and show a modest reduction in survival and increase in tumor size and metastasis. The authors use in vitro work to show that phosphorylation, through a PKC/MEK/RSK kinase cascade, leads to K17 phosphorylation and K17 disassembly.
Strengths:
K17 is an intriguing protein, as it becomes part of intermediate filaments but it has also been described to have a role in the nucleus. Whether K17 functionally drives the malignant phenotype of pancreatic cancer is unclear. Thus, the article addresses an important area of research.
Weaknesses:
Some shortcomings with the interpretation of results and the strength of the evidence provided are notes. Among those, evidence that nuclear K17 is a feature of basal pancreatic cancer in human tumors is missing. Further, the survival effects observed in the mouse experiments are modest, especially with the L3.6 cell line. Lastly, while the authors point at some potentially intriguing gene expression changes in pancreatic cancer cells expressing K17, such as the expression of genes related to epithelial mesenchymal transition (EMT) they do not provide evidence that these genes are K17 targets, not that they mediate the nuclear function of K17 in experimental models, nor that they are associated with K17-high human tumors.
-
Reviewer #2 (Public Review):
Summary:
Keratin 17 is a highly stress-inducible keratin that has been implicated in various human disorders. For example, higher K17 expression was shown to be associated with poor survival in several cancers including pancreatic carcinoma. To follow up on these observations, Kawalerski et al. assessed the relevance of K17 and its phosphorylation on this deadly tumor. In particular, they identified novel K17 phosphorylation sites and demonstrated that they affect K17 solubility as well as its nuclear localization. They also studied their significance in vivo.
Strengths:
The overall structure is very logical, the manuscript is well-written.
Weaknesses:
Unfortunately, the key experiment, i.e. the assessment of growth of cancer cell lines with different phospho-variants of K17, turned largely negative.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Anobile and colleagues present a manuscript detailing an account of numerosity processing with an appeal to a two-channel model. Specifically, the authors propose that the perception of numerosity relies on (at least) two distinct channels for small and large numerosities, which should be evident in subject reports of perceived numerosity. To do this, the authors had subjects reproduce visual dot arrays of numerosities ranging from 8 to 32 dots, by having subjects repetitively press a response key at a pre-instructed rate (fast or slow) until the number of presses equaled the number of perceived dots. The subjects performed the task remarkably well, yet with a general bias to overestimate the number of presented dots. Further, no difference was observed in the precision of responses across numerosities, providing evidence for a scalar system. No differences between fast and slow tapping were observed. For behavioral analysis, the authors examined correlations between the Weber fractions for all presented numerosities. Here, it was found that the precision at each numerosity was similar to that at neighboring numerosities, but less similar to more distant ones. The authors then went on to conduct PCA and clustering analyses on the weber fractions, finding that the first two components exhibited an interaction with the presented numerosity, such that each were dominant at distinct lower and upper ranges and further well-fit by a log-Gaussian model consistent with the channel explanation proposed at the beginning.
Overall, the authors provide compelling evidence for a two-channel system supporting numerosity processing that is instantiated in sensorimotor processes. A strength of the presented work is the principled approach the authors took to identify mechanisms, as well as the controls put in place to ensure adequate data for analysis.
One remaining question regards the secondary timing task that was used as a control. There may be interesting findings here to pursue, and so I encourage the authors or other researchers to examine those findings and explore further studies there as well.
-
Reviewer #2 (Public Review):
Summary:
The authors wish to apply established psychophysical methods to the study of numbers. Specifically, they wish to test the hypothesis - supported by their previous work - that human sensorimotor processes are tuned to specific number ranges. In a novel set of tasks, they ask participants to tap a button N times (either fast or slow), where N varies between 8 and 32 across trials. As I understood it, they then computed the Weber fraction (WF) for each participant for each number and correlated those values across participants and numbers. They find stronger correlations for nearby numbers than for distant numbers and interpret this as evidence of sensorimotor tuning functions. Two other analyses - cluster analyses and principal component analyses (PCA) - suggest that participants' performance relied on at least 2 mechanisms, one for encoding low numbers of taps (around 10) and another encoding larger numbers (around 27).
Strengths:
Individual differences can be a rich source of scientific insight and I applaud the authors for taking them seriously.
Weaknesses:
Implications of intercorrelation. The experiment "is based on the idea that interindividual variability conveys information that can reveal common sensory processes (Peterzell & Kennedy, 2016)" but I struggle to understand the logic of this technique. The authors explain it most clearly when they write "Regions of high intercorrelation between neighbouring stimuli intensity can be interpreted to imply that sets of stimuli are processed by the same (shared) underlying channel. This channel, while responding relatively more to its preferred stimulus, will also be activated by neighbouring stimuli that although slightly different from the preferred intensity, are nevertheless included in the same response distribution." Why does high intercorrelation imply a shared channel and why should it be calculated across participants? Shouldn't performance on any set of tasks (that vary in difficulty) correlate across participants? Why in principle should people have distinct channels for processing similar stimuli and how could such a system improve (rather than impede) discrimination abilities? What pattern of intercorrelation would disconfirm the existence of tuning mechanisms? And perhaps most fundamentally: What is a channel and why do they matter?
Different channels? I had trouble understanding much of the analyses, and this may account for at least some of my confusion. That said, as I understand it, the results are meant to provide "evidence that tuned mechanisms exist in the human brain, with at least two different tunings" because of the results of the clustering analysis and PCA. But as the authors acknowledge, "PCA aims to summarize the dataset with the minimal number of components (channels). We can therefore not exclude the possible existence of more than two (perhaps not fully independent) channels." I would go a step further and say this technique does not provide more evidence for the existence of 2 channels as for the existence of 4, 8 or 24 channels, the upper bound for a task testing 24 different numbers. If we can conclude that people may have one channel per number, what does "channel" mean?
Several other questions arise when thinking through this technique, which left me skeptical of its utility. If people did have two channels (at least in this range), why would they be so broad? Why would they be centered so near the ends of the tested range? Can such effects be explained by binning on the part of the participants, who might have categorized each number (knowingly or not) as either "small" or "large"? Or by the kind of data-binning or distributions (i.e. Gaussian) used in the analyses? Or by the physical limits and affordances of the effector participants used (i.e. their finger)? Moreover, if people had sensorimotor channels tuned to different numbers, wouldn't this cause discontinuities in their own WF? Why look at correlations across individuals rather than correlations or discontinuities within individuals? Whereas the experiment tested numbers 8-32, numbers are infinite - How could a small number of channels cover an infinite set? Or even the set 8-10,000? What would the existence of multiple such channels mean for our understanding of numerical cognition? There may be good answers to these questions, but they are not clear to this reader.
Theories of numerical cognition. An expansive literature on numerical cognition suggests that many animals, human children, and adults across cultures have two systems for representing numerosity without counting - one that can represent the exact cardinality of sets smaller than about 4 and another that represents the approximate number of larger sets. Recent accounts suggest that what appears to be two systems can be explained by a single system of numerical approximation with limited information capacity (see Cheyette & Piantadosi, 2020). The current paper would benefit from better relating its findings to this long lineage of theories and findings in numerical approximation across cultures, ages, and species.
Specific to numbers? The authors argue that their effects are "number selective" but they do not provide compelling evidence for this selectivity. In principle, their main findings could be explained by the duration of tapping rather than the number of taps. They argue this is unlikely for two reasons. The first reason is that the overall pattern of results was unchanged across the fast and slow tapping conditions, but differences in duration were confounded with numerosity in both conditions, so the comparison is uninformative. The second reason is that temporal reproduction was less precise in their control condition than numerical reproduction, but this logic is unclear: Participants could still use duration (or some combination of speed and duration) as a helpful cue to numerosity, even if their duration reproductions were imperfect.
If the authors wish to test the role of duration, they might consider applying the same analytical techniques they use for number to their duration data. Perhaps participants show similar evidence for duration-selective channels, in the absence of number, as they do for other non-numerical domains (like spatial frequency).
-
Reviewer #3 (Public Review):
Reviewing Editor's Summary:
The revised manuscript has clarified concerns raised by the reviewers concerning the analysis method in constructing the correlation matrix. These key results are now readily comprehensible. They have also added a final section to the Discussion, sketching some important questions for future research (e.g., number/resolution of channels and extension of the logic used here to look at number channels in other tasks).
Reviewer 1 was satisfied with these changes and has updated their review. Reviewer 2 did not think the revision tackled the theoretical issues raised in their initial review; as such, this reviewer has opted to leave their initial public review unchanged.
I also believe that the revision does not adequately address a major theoretical issue, namely whether the current data provide evidence of sensorimotor number channels, the central claim of the paper. The authors argue that since perception is noise free (stimuli were given symbolically), then the task variance comes from processes associated with sensorimotor transformation. Let's consider the task: A number is presented, the participant then attempts to produce that number of taps. To preclude counting, they are required to say the syllable "ba" as fast as possible while tapping. The sensorimotor channel idea would suppose that the symbolic stimulus activates a set of channels, each of which specifies the number of taps that should be produced. For example, a "6" channel likes to produce 6 outputs (with variability), a "10" channel 10 outputs (with variability), etc., with the actual production of the (weighted) integration of these outputs.
An alternative is that, since explicit counting is prevented by the secondary task, the participant makes an internal estimation of the number of produced taps. These judgments could be based on the output of amodal number channels. For example, the same process would be at play if the task were changed such that the participants watched a dot flash and had to estimate the number of flashes (while concurrently saying "ba"). The authors indicate in their response letter that they are conducting experiments along these lines and that the results are similar. They suggest that this provides support for the existence of both sensory and sensorimotor number channels. Extending this, if the experiment were tones instead of flashes, the argument would be that there are auditory, visual, and sensorimotor number channels. It seems more parsimonious to interpret such a pattern as reflective of amodal number channels.
I recognize there are other intriguing reasons to think there may be intimate links between our sense of number and movement, but I remain unconvinced that the current results provide evidence for sensorimotor number channels.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The authors examined whether archerfish have the capacity for motor adaptation in response to airflow perturbations. Through two experiments, they demonstrated that archerfish could adapt. Moreover, when the fish flipped its body position with the perturbation remaining constant, it did not instantaneously counteract the error. Instead, the archerfish initially persisted in correcting for the original perturbation before eventually adapting, consistent with the notion that the archerfish's internal model has been adapted in egocentric coordinates.
Evaluation:
This important study demonstrates the remarkable capacity for motor adaptation in archer fish. I found the results of both experiments to be convincing, given the observable learning curve and the clear aftereffect. Nonetheless, within the current set of experiments, no quantitative is provided to demonstrate that the archer fish is sensitive to the relative change in body position, making it unclear whether motor adaptation in archer fish indeed generalizes in egocentric coordinates.
The authors have cited a previous study to claim that archer fish are sensitive to their relative position in the water tank. However, given the absence of clear visual referents on the screen (e.g., squares with different colors in the corners) and/or some behavioral indication that the fish are sensitive to their relative change in body position, I remain sceptical of the claim that archer fish indeed generalize in egocentric rather than allocentric coordinates. The current results do not rule out the idea that archerfish are ostensibly unaware of changes in body position, they continue with previously successful actions, masquerading as egocentric generalization.
-
Reviewer #2 (Public Review):
Summary:
The work of Volotsky et al presented here shows that adult archerfish are able to adjust their shooting in response to their own visual feedback, taking consistent alterations of their shot, here by an air flow, into account. The evidence provided points to an internal mechanism of shooting adaptation that is independent of external cues, such as wind. The authors provide evidence for this by forcing the fish to shoot from 2 different orientations to the external alteration of their shots (the airflow). This paper thus provides behavioral evidence of an internal correction mechanism, that underlies adaptive motor control of this behavior. It does not provide direct evidence of refractory index-associated shoot adjustance.
Strengths:
The authors have used a high number of trials and strong statistical analysis to analyze their behavioral data. They used an elegant experimental design in which they force the fish to shoot from directions chosen by the authors, which elegantly reduced shooting variability.
Weaknesses:
A large portion of fish did not make it to the final test (as is often the case in behavioral studies) which raises the question whether all individuals are able to solve the task.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
In this study, Osiurak and colleagues investigate the neurocognitive basis of technical reasoning. They use multiple tasks from two neuroimaging studies and overlap analysis to show that the area PF is central for reasoning, and plays an essential role in tool-use and non-tool-use physical problem-solving, as well as both conditions of mentalizing task. They also demonstrate the specificity of the technical reasoning and find that the area PF is not involved in the fluid-cognition task or the mentalizing network (INT+PHYS vs. PHYS-only). This work suggests an understanding of the neurocognitive basis of technical reasoning that supports advanced technologies.
Strengths:
-The topic this study focuses on is intriguing and can help us understand the neurocognitive processes involved in technical reasoning and advanced technologies.
-The researchers obtained fMRI data from multiple tasks. The data is rich and encompasses the mechanical problem-solving task, psychotechnical task, fluid-cognition task, and mentalizing task.
-The article is well written.
Weaknesses:
- Limitations of the overlap analysis method: there are multiple reasons why two tasks might activate the same brain regions. For instance, the two tasks might share cognitive mechanisms, the activated regions of the two tasks might be adjacent but not overlapping at finer resolutions, or the tasks might recruit the same regions for different cognition functions. Thus, although overlap analysis can provide valuable information, it also has limitations. Further analyses that capture the common cognitive components of activation across different tasks are warranted, such as correlating the activation across different tasks within subjects for a region of interest (i.e. the PF).
-Control tasks may be inadequate: the tasks may involve other factors, such as motor/ action-related information. For the psychotechnical task, fluid-cognition task, and mentalizing task, the experiment tasks need not only care about technical-cognition information but also motor-related information, whereas the control tasks do not need to consider motor-related information (mainly visual shape information). Additionally, there may be no difference in motor-related information between the conditions of the fluid-cognition task. Therefore, the regions of interest may be sensitive to motor-related information, affecting the research conclusion.
-Negative results require further validation: the cognitive results for the fluid-cognition task in the study may need more refinement. For instance, when performing ROI analysis, are there any differences between the conditions? Bayesian statistics might also be helpful to account for the negative results.
-
Reviewer #2 (Public Review):
Summary:
The goal of this project was to test the hypothesis that a common neuroanatomic substrate in the left inferior parietal lobule (area PF) underlies reasoning about the physical properties of actions and objects. Four functional MRI (fMRI) experiments were created to test this hypothesis. Group contrast maps were then obtained for each task, and overlap among the tasks was computed at the voxel level. The principal finding is that the left PF exhibited differentially greater BOLD response in tasks requiring participants to reason about the physical properties of actions and objects (referred to as technical reasoning). In contrast, there was no differential BOLD response in the left PF when participants engaged in fMRI variant of the Raven's progressive matrices to assess fluid cognition.
Strengths:
This is a well-written manuscript that builds from extensive prior work from this group mapping the brain areas and cognitive mechanisms underlying object manipulation, technical reasoning, and problem-solving. Major strengths of this manuscript include the use of control conditions to demonstrate there are differentially greater BOLD responses in area PF over and above the baseline condition of each task. Another strength is the demonstration that area PF is not responsive in tasks assessing fluid cognition - e.g., it may just be that PF responds to a greater extent in a harder condition relative to an easy condition of a task. The analysis of data from Task 3 rules out this alternative interpretation. The methods and analysis are sufficiently written for others to replicate the study, and the materials and code for data analysis are publicly available.
Weaknesses:
The first weakness is that the conclusions of the manuscript rely on there being overlap among group-level contrast maps presented in Figure 2. The problem with this conclusion is that different participants engaged in different tasks. Never is an analysis performed to demonstrate that the PF region identified in e.g., participant 1 in Task 2 is the same PF region identified in Participant 1 in Task 4.
A second weakness is that there is a variance in accuracy between tasks that are not addressed. It is clear from the plots in the supplemental materials that some participants score below chance (~ 50%). This means that half (or more) of the fMRI trials of some participants are incorrect. The methods section does not mention how inaccurate trials were handled. Moreover, if 50% is chance, it suggests that some participants did not understand task instructions and were systematically selecting the incorrect item.
A third weakness is related to the fluid cognition task. In the fMRI task developed here, the participant must press a left or right button to select between 2 rows of 3 stimuli while only one of the 3 stimuli is the correct target. This means that within a 10-second window, the participant must identify the pattern in the 3x3 grid and then separately discriminate among 6 possible shapes to find the matching stimulus. This is a hard task that is qualitatively different from the other tasks in terms of the content being manipulated and the time constraints.
In sum, this is an interesting study that tests a neuro-cognitive model whereby the left PF forms a key node in a network of brain regions supporting technical reasoning for tool and non-tool-based tasks. Localizing area PF at the level of single participants and managing variance in accuracy is critically important before testing the proposed hypotheses.
-
Reviewer #3 (Public Review):
Summary:
This manuscript reports two neuroimaging experiments assessing commonalities and differences in activation loci across mechanical problem-solving, technical reasoning, fluid cognition, and "mentalizing" tasks. Each task includes a control task. Conjunction analyses are performed to identify regions in common across tasks. As Area PF (a part of the supramarginal gyrus of the inferior parietal lobe) is involved across 3 of the 4 tasks, the investigators claim that it is the hub of technical cognition.
Strengths:
The aim of finding commonalities and differences across related problem-solving tasks is a useful and interesting one.
The experimental tasks themselves appear relatively well-thought-out, aside from the concern that they are differentially difficult.
The imaging pipeline appears appropriate.
Weaknesses:
(1) Methodological<br /> As indicated in the supplementary tables and figures, the experimental tasks employed differ markedly in 1) difficulty and 2) experimental trial time. Response latencies are not reported (but are of additional concern given the variance in difficulty). There is concern that at least some of the differences in activation patterns across tasks are the result of these fundamental differences in how hard various brain regions have to work to solve the tasks and/or how much of the trial epoch is actually consumed by "on-task" behavior. These difficulty issues should be controlled for by 1) separating correct and incorrect trials, and 2) for correct trials, entering response latency as a regressor in the Generalized Linear Models, 3) entering trial duration in the GLMs.
A related concern is that the control tasks also differ markedly in the degree to which they were easier and faster than their corresponding experimental task. Thus, some of the control tasks seem to control much better for difficulty and time on task than others. For example, the control task for the psychotechnical task simply requires the indication of which array contains a simple square shape (i.e., it is much easier than the psychotechnical task), whereas the control task for mechanical problem-solving requires mentally fitting a shape into a design, much like solving a jigsaw puzzle (i.e., it is only slightly easier than the experimental task).
(2) Theoretical<br /> The investigators seem to overlook prior research that does not support their perspective and their writing seems to lack scientific objectivity in places. At times they over-reach in the claims that can be made based on the present data. Some claims need to be revised/softened.
-
-
www.biorxiv.org www.biorxiv.org
-
Joint Public Review:
The molecular mechanisms that mediate the regulated exocytosis of neuropeptides and neurotrophins from neurons via large dense-core vesicles (LDCVs) are still incompletely understood. Motivated by their earlier discovery that the Rab3-RIM1 pathway is essential for neuronal LDCV exocytosis, the authors now examined the role of the Rab3 effector Rabphilin-3A in neuronal LDCV secretion. Based on multiple live and confocal imaging approaches, the authors provide evidence for a synaptic enrichment of Rabphilin-3A and for independent trafficking of Rabphilin-3A and LDCVs. Using an elegant NPY-pHluorin imaging approach, they show that genetic deletion of Rabphilin-3A causes an increase in electrically triggered LDCV fusion events and increased neurite length. Finally, knock-out-replacement studies, involving Rabphilin-3A mutants deficient in either Rab3- or SNAP25-binding, indicate that the synaptic enrichment of Rabphilin-3A depends on its Rab3 binding ability, while its ability to bind to SNAP25 is required for its effects on LDCV secretion and neurite development. The authors conclude that Rabphilin-3A negatively regulates LDCV exocytosis and propose that this mechanism also affects neurite growth, e.g. by limiting neurotrophin secretion. These are important findings that advance our mechanistic understanding of neuronal large dense-core vesicle (LDCV) secretion.
The major strengths of the present paper are:
(i) The use of a powerful Rabphilin-3A KO mouse model.<br /> (ii) Stringent lentiviral expression and rescue approaches as a strong genetic foundation of the study.<br /> (iii) An elegant FRAP imaging approach.<br /> (iv) A cutting-edge NPY-pHluorin-based imaging approach to detect LDCV fusion events.
Weaknesses that somewhat limit the convincingness of the evidence provided and the corresponding conclusions include the following:
(i) The limited resolution of the various imaging approaches introduces ambiguity to several parameters (e.g. LDCV counts, definition of synaptic localization, Rabphilin-3A-LDCV colocalization, subcellular and subsynaptic localization of expressed proteins, AZ proximity of Rabphilin-3A and LDCVs) and thereby limits the reliability of corresponding conclusions. Super-resolution approaches may be required here.<br /> (ii) The description of the experimental approaches lacks detail in several places, thus complicating a stringent assessment.<br /> (iii) Further analyses of the LDCV secretion data (e.g. latency, release time course) would be important in order to help pinpoint the secretory step affected by Rabphilin-3A.<br /> (iv) It remains unclear why a process that affects a general synaptic SNARE fusion protein - SNAP25 - would specifically affect LDCV but not synaptic vesicle fusion.<br /> (v) The mechanistic links between Rabphilin-3A function, LDCV density in neurites, neurite outgrowth, and the proposed underlying mechanisms involving trophic factor release remain unclear.
-
Reviewer #1 (Public Review):
Summary:
The manuscript by Hoogstraaten et al. investigates the effect of constitutive Rabphilin 3A (RPH3A) ko on the exocytosis of dense core vesicles (DCV) in cultured mouse hippocampal neurons. Using mCherry- or pHluorin-tagged NPY expression and EGFP- or mCherry tagged RPHA3, the authors first analyse the colocalization of DCVs and RPH3A. Using FRAP, the authors next analyse the mobility of DCVs and RAB3A in neurites. The authors go on to determine the number of exocytotic events of DCVs in response to high-frequency electrical stimulation and find that RPH3A ko increases the number of exocytotic events by a factor 2-3, but not the fraction of released DCVs in a given cell (8x 50Hz stim). In contrast, the release fraction is also increased in RBP3A KOs when doubling the stimulation number (16x 50Hz). They further observe that RPH3A ko increases dendrite and axon length and the overall number of ChgrB-positive DCVs. However, the overall number of DCVs and dendritic length in ko cells directly correlate, indicating that the number of vesicles per dendritic length remains unaffected in the RPH3A KOs. Lentiviral co-expression of tetanus toxin (TeNT) showed a non-significant trend to reduce axon and dendrite length in RPH3a KOs. Finally, the authors use co-expression of RAB3A and SNAP25 constructs to show that RAB3A but not SNAP25 interaction is required to allow the exocytosis-enhancing effect in RPH3A KOs.
While the authors' methodology is sound, the microscopy results are performed well and analyzed appropriately, but their results in larger parts do not sufficiently support their conclusions. Moreover, the experiments are not always described in sufficient detail (e.g. FRAP; DCV counts vs. neurite length) to fully understand their claims.
Overall, I thus feel that the manuscript does not provide a sufficient advance in knowledge.
Strengths:
- The authors' methodology is sound, and the microscopy results are performed well and analyzed appropriately.<br /> - Figure 2: The exocytosis imaging is elegant and potentially very insightful. The effect in the RPH3A KOs is convincing.<br /> - Figure 4: the logic of this experiment is elegant. It shows that the increased number of DCV fusion events in RPH3A KOs is related to the interaction of RPH3A with RAB3A but not with SNAP25.
Weaknesses:<br /> - The results in larger parts do not sufficiently support the conclusions.<br /> - The experiments are not always described in sufficient detail (e.g. FRAP; DCV counts vs. neurite length) to fully understand their claims.<br /> - Not of sufficient advance in knowledge for this journal<br /> - The significance of differences in control experiments WT vs. KO) varies between experiments shown in different figures.<br /> - Axons and dendrites were not analyzed separately in Figures 1 and 2.<br /> - The colocalization study in Figure 1 would require super-resolution microscopy.
-
Reviewer #2 (Public Review):
Summary:
Hoogstraaten et al investigated the involvement of rabphilin-3A RPH3A in DCV fusion in neurons during calcium-triggered exocytosis at the synapse and during neurite elongation. They suggest that RPH3A acts as an inhibitory factor for LDV fusion and this is mediated partially via its interaction with SNAP25 and not Rab3A/Rab27. It is a very elegant study although several questions remain to be clarified.
Strengths:
The authors use state-of-the-art techniques like tracking NPY-PHluorin exocytosis and FRAP experiments to quantify these processes providing novel insight into LDCs exocytosis and the involvement of RPH3A.
Weaknesses:
At the current state of the manuscript, further supportive experiments are necessary to fully support the authors' conclusions.
-
Reviewer #3 (Public Review):
Summary:
The molecular mechanism of regulated exocytosis has been extensively studied in the context of synaptic transmission. However, in addition to neurotransmitters, neurons also secrete neuropeptides and neurotrophins, which are stored in dense core vesicles (DCVs). These factors play a crucial role in cell survival, growth, and shaping the excitability of neurons. The mechanism of release for DCVs is similar, but not identical, to that used for SV exocytosis. This results in slow kinetic and low release probabilities for DCV compared to SV exocytosis. There is a limited understanding of the molecular mechanisms that underlie these differences. By investigating the role of rabphilin-3A (RPH3A), Hoogstraaten et al. uncovered for the first time a protein that inhibits DCV exocytosis in neurons.
Strengths:
In the current work, Hoogstraaten et al. investigate the function of rabphilin-3A (RPH3A) in DVC exocytosis. This RAB3 effector protein has been shown to possess a Ca2+ binding site and an independent SNAP25 binding site. Using colocalization analysis of confocal imaging the authors show that in hippocampal neurons RPH3A is enriched at pre- and post-synaptic sites and associates specifically with immobile DCVs. Using site-specific RPH3A mutants they found that the synaptic location was due to its RAB3 interaction site. They further could show that RPH3A inhibits DCV exocytosis due to its interaction with SNAP25. They came to that conclusion by comparing NPY-pHluorin release in WT and RPH3A KO cells and by performing rescue experiments with RPH3A mutants. Finally, the authors showed that by inhibiting stimulated DCV release, RPH3A controlled the axon and dendrite length possibly through the reduced release of neurotrophins. Thereby, they pinpoint how the proper regulation of DCV exocytosis affects neuron physiology.
Weaknesses:
Data context<br /> One of the findings is that RPH3A accumulates at synapses and is mainly associated with immobile DCVs. However, Farina et al. (2015) showed that 66% of all DCVs are secreted at synapses and that these DCVs are immobile prior to secretion. To provide additional context to the data, it would be valuable to determine if RPH3A KO specifically enhances secretion at synapses. Additionally, the authors propose that RPH3A decreases DCV exocytosis by sequestering SNAP25 availability. At first glance, this hypothesis appears suitable. However, due to RPH3A synaptic localization, it should also limit SV exocytosis, which it does not. In this context, the only explanation for RPH3A's specific inhibition of DCV exocytosis is that RPH3A is located at a synapse site remote from the active zone, thus protecting the pool of SNAP25 involved in SV exocytosis from binding to RPH3A. This hypothesis could be tested using super-resolution microscopy.
Technical weakness<br /> One technical weakness of this work consists in the proper counting of labeled DCVs. This is significant since most findings in this manuscript rely on this analysis. Since the data was acquired with epi-fluorescence or confocal microscopy, it doesn't provide the resolution to visualize individual DCVs when they are clumped. The authors use a proxy to count the number of DCVs by measuring the total fluorescence of individual large spots and dividing it by the fluorescence intensity of discrete spots assuming that these correspond to individual DCVs. This is an appropriate method but it heavily depends on the assumption that all DCVs are loaded with the same amount of NPY-pHluorin or chromogranin B (ChgB ). Due to the importance of this analysis for this manuscript, I suggest that the authors show that the number of DCVs per µm2 is indeed affected by RPH3A KO using super-resolution techniques such as dSTORM, STED, SIM, or SRRF.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> Codol et al. present a toolbox that allows simulating biomechanically realistic effectors and training Artificial Neural Networks (ANNs) to control them. The paper provides a detailed explanation of how the toolbox is structured and several examples demonstrating its utility.
Main comments:<br /> (1) The paper is well-written and easy to follow. The schematics facilitate understanding of the toolbox's functionality, and the examples give insight into the potential results users can achieve.<br /> (2) The toolbox's latest version, developed in PyTorch, is expected to offer greater benefits to the community.<br /> (3) The new API, being compatible with Gymnasium, broadens the toolbox's application scope, enabling the use of Reinforcement Learning for training the ANNs.
Impact:<br /> MotorNet is designed to simplify the process of simulating complex experimental setups, enabling the rapid testing of hypotheses on how the brain generates specific movements. Implemented in PyTorch and compatible with widely-used machine learning toolboxes, including Gymnasium, it offers an end-to-end pipeline for training ANNs on simulated setups. This can greatly assist experimenters in determining the focus of their subsequent efforts.
Additional context:<br /> The main outcome of the work, a toolbox, is supplemented by a GitHub repository and a documentation webpage. Both the repository and the webpage are well-organized and user-friendly. The webpage guides users through the toolbox installation process, as well as the construction of effectors and Artificial Neural Networks (ANNs).
-
Reviewer #2 (Public Review):
MotorNet aims to provide a unified interface where the trained RNN controller exists within the same TensorFlow environment as the end effectors being controlled. This architecture provides a much simpler interface for the researcher to develop and iterate through computational hypotheses. In addition, the authors have built a set of biomechanically realistic end effectors (e.g., a 2 joint arm model with realistic muscles) within TensorFlow that are fully differentiable.
MotorNet will prove a highly useful starting point for researchers interested in exploring the challenges of controlling movement with realistic muscle and joint dynamics. The architecture features a conveniently modular design and the inclusion of simpler arm models provides an approachable learning curve. Other state-of-the-art simulation engines offer realistic models of muscles and multi-joint arms and afford more complex object manipulation and contact dynamics than MotorNet. However, MotorNet's approach allows for direct optimization of the controller network via gradient descent rather than reinforcement learning, which is a compromise currently required when other simulation engines (as these engines' code cannot be differentiated through).
The paper has been reorganized to provide clearer signposts to guide the reader. Importantly, the software has been rewritten atop PyTorch which is increasingly popular in ML and computational neuroscience research.
One paragraph in the discussion regarding a "spinal cord" module is a bit perplexing. Quite sensibly, the software architecture partitions motor control into the plant or effector (the physical body being moved) and the controller (a model of the brain and spinal cord). Of course, the authors certainly appreciate this, though a reader from outside of neuro might not realize that control of movement is distributed throughout the central nervous system, spanning a network of spinal, subcortical (cerebellum, basal ganglia, thalamus, brainstem), and cortical brain regions. Casting the spinal cord as a pre-filter within the effector module would seem to belie its complex and dynamic role in these distributed neural circuits. This is particularly noticeable when contrasted with the subsequent paragraph on "Modular polices" (which is excellent). In my view, the spinal cord would be better treated as a module of this policy section rather than as part of the effector. I understand the nuance here, and suspect I'd see eye to eye with the authors for the most part. The choice of controller vs. plant depends on perspective (one could call the arm itself part of the controller, and treat the environment / manipulated object as the plant; similarly, one could treat the brain as controlling the cord rather than the body). However, I fear that someone lacking the appropriate neurophysiological/anatomical context might read the "Spinal Compartment" paragraph, think that it would be fine to introduce a simple filter module as the spinal cord, and then start referring to the MotorNet policy network as a model of motor cortex per se.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #1 (Public Review):
Summary: Leanza et al. investigated the regulation of Wnt signaling factors in the bone tissue obtained from individuals with or without type 2 diabetes. They showed that typical canonical Wnt ligands and downstream factors (Wnt10b, LEF1) are down-regulated, while Wnt5a and sclerostin mRNA is unregulated in diabetic bone tissue. Further, Wnt5a and sclerostin associated with the content of AGEs and SOST mRNA levels also correlated with glycemic control and disease duration.
Strengths:
- A strength of the study is the investigation of Wnt signaling in bone tissue from humans with type 2 diabetes. Most studies measure only serum levels of Wnt inhibitors, but this study takes it further and looks into bone specifically.<br /> - The measurement of AGEs and its correlation to the Wnt signaling molecules is interesting and important. The correlation of sclerostin and Wnt5a with AGEs and disease duration suggests that inhibited Wnt signaling is paralleled by higher AGE levels and potentially weaker bone.<br /> - The methodology in terms of obtaining the bone samples and the rigorous evaluation of RNA integrity is great and provides a solid basis for further analyses.
Weaknesses:
- A weakness may include the rather limited number of samples.
Overall, this study validates findings from the group that have reported similar findings in 2020. This validates their methodology and shows that alterations in Wnt signaling are reproducible in human bone tissue.
-
Reviewer #2 (Public Review):
Summary:
This study reports the levels of expression of selected genes implicated in Wnt signaling in trabecular bone from femur heads obtained after surgery from post-menopausal women with (15 women) or without (21 women) type 2 diabetes. They find higher expression levels of SOST and WNT5A, and lower expression levels of LEF-1 and WNT10B in tissues from subjects with T2D, correlating with glycemia and advanced glycation products. No significant differences in bone density were observed. Overall, this is a cross-sectional, observational study measuring a limited set of genes found to vary with glycemia in postmenopausal women undergoing hip surgery.
Strengths:
The study demonstrates the feasibility of measuring gene expression in post-surgical trabecular bon samples and finds differences associated with glycemia despite a relatively small number of subjects. It can form the basis for further research on the causes and consequences of changes in elements of the WNT signaling pathway in bone biology and disease.
Weaknesses:
The small number of targeted genes does not provide a comprehensive view of the transcriptional landscape within which the effects are observed. The gene expression changes are not associated with cellular or physiological properties of the tissue, raising questions about the biological significance of the observations.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The authors attempt to validate Fisher Kernels on the top of HMM as a way to better describe human brain dynamics at resting state. The objective criterion was the better prediction of the proposed pipeline of the individual traits.
Strengths:<br /> The authors analyzed rs-fMRI dataset from the HCP providing results also from other kernels.<br /> The authors also provided findings from simulation data.
Weaknesses:
(1) The authors should explain in detail how they applied cross-validation across the dataset for both optimization of parameters, and also for cross-validation of the models to predict individual traits.
(2) They discussed throughout the paper that their proposed (HMM+Fisher) kernel approach outperformed dynamic functional connectivity (dFC). However, they compared the proposed methodology with just static FC.
(3) If the authors wanted to claim that their methodology is better than dFC, then they have to demonstrate results based on dFC with the trivial sliding window approach.
-
Reviewer #2 (Public Review):
Summary:
The manuscript presents a valuable investigation into the use of Fisher Kernels for extracting representations from temporal models of brain activity, with the aim of improving regression and classification applications. The authors provide solid evidence through extensive benchmarks and simulations that demonstrate the potential of Fisher Kernels to enhance the accuracy and robustness of regression and classification performance in the context of functional magnetic resonance imaging (fMRI) data. This is an important achievement for the neuroimaging community interested in predictive modeling from brain dynamics and, in particular, state-space models.
Strengths:
(1) The study's main contribution is the innovative application of Fisher Kernels to temporal brain activity models, which represents a valuable advancement in the field of human cognitive neuroimaging.
(2) The evidence presented is solid, supported by extensive benchmarks that showcase the method's effectiveness in various scenarios.
(3) Model inspection and simulations provide important insights into the nature of the signal picked up by the method, highlighting the importance of state rather than transition probabilities.
(4) The documentation and description of the methods are solid including sufficient mathematical details and availability of source code, ensuring that the study can be replicated and extended by other researchers.
Weaknesses:
(1) The generalizability of the findings is currently limited to the young and healthy population represented in the Human Connectome Project (HCP) dataset. The potential of the method for other populations and modalities remains to be investigated.
(2) The possibility of positivity bias in the HMM, due to the use of a population model before cross-validation, needs to be addressed to confirm the robustness of the results.
(3) The statistical significance testing might be compromised by incorrect assumptions about the independence between cross-validation distributions, which warrants further examination or clearer documentation.
(4) The inclusion of the R^2 score, sensitive to scale, would provide a more comprehensive understanding of the method's performance, as the Pearson correlation coefficient alone is not standard in machine learning and may not be sufficient (even if it is common practice in applied machine learning studies in human neuroimaging).
(5) The process for hyperparameter tuning is not clearly documented in the methods section, both for kernel methods and the elastic net.
(6) For the time-averaged benchmarks, a comparison with kernel methods using metrics defined on the Riemannian SPD manifold, such as employing the Frobenius norm of the logarithm map within a Gaussian kernel, would strengthen the analysis, cf. Jayasumana (https://arxiv.org/abs/1412.4172) Table 1, log-euclidean metric.
(7) A more nuanced and explicit discussion of the limitations, including the reliance on HCP data, lack of clinical focus, and the context of tasks for which performance is expected to be on the low end (e.g. cognitive scores), is crucial for framing the findings within the appropriate context.
(8) While further benchmarks could enhance the study, the authors should provide a critical appraisal of the current findings and outline directions for future research, considering the scope and budget constraints of the work.
-
Reviewer #3 (Public Review):
Summary:
In this work, the authors use a Hidden Markov Model (HMM) to describe dynamic connectivity and amplitude patterns in fMRI data, and propose to integrate these features with the Fisher Kernel to improve the prediction of individual traits. The approach is tested using a large sample of healthy young adults from the Human Connectome Project. The HMM-Fisher Kernel approach was shown to achieve higher prediction accuracy with lower variance on many individual traits compared to alternate kernels and measures of static connectivity. As an additional finding, the authors demonstrate that parameters of the HMM state matrix may be more informative in predicting behavioral/cognitive variables in this data compared to state-transition probabilities.
Strengths:
- Overall, this work helps to address the timely challenge of how to leverage high-dimensional dynamic features to describe brain activity in individuals.<br /> - The idea to use a Fisher Kernel seems novel and suitable in this context.<br /> - Detailed comparisons are carried out across the set of individual traits, as well as across models with alternate kernels and features.<br /> - The paper is well-written and clear, and the analysis is thorough.
Potential weaknesses:
- One conclusion of the paper is that the Fisher Kernel "predicts more accurately than other methods" (Section 2.1 heading). I was not certain this conclusion is fully justified by the data presented, as it appears that certain individual traits may be better predicted by other approaches (e.g., as shown in Figure 3) and I found it hard to tell if certain pairwise comparisons were performed -- was the linear Fisher Kernel significantly better than the linear Naive normalized kernel, for example?
- While 10-fold cross-validation is used for behavioral prediction, it appears that data from the entire set of subjects is concatenated to produce the initial group-level HMM estimates (which are then customized to individuals). I wonder if this procedure could introduce some shared information between CV training and test sets. This may be a minor issue when comparing the HMM-based models to one another, but it may be more important when comparing with other models such as those based on time-averaged connectivity, which are calculated separately for train/test partitions (if I understood correctly).
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #1 (Public Review):
Summary:
This study uses whole genome sequencing to characterise the population structure and genetic diversity of a collection of 58 isolates of E. coli associated with neonatal meningitis (NMEC) from seven countries, including 52 isolates that the authors sequenced themselves and a further 6 publicly available genome sequences. Additionally, the study used sequencing to investigate three case studies of apparent relapse. The data show that in all three cases, the relapse was caused by the same NMEC strain as the initial infection. In two cases they also found evidence for gut persistence of the NMEC strain, which may act as a reservoir for persistence and reinfection in neonates. This finding is of clinical importance as it suggests that decolonisation of the gut could be helpful in preventing relapse of meningitis in NMEC patients.
Strengths:
The study presents complete genome sequences for n=18 diverse isolates, which will serve as useful references for future studies of NMEC. The genomic analyses are high quality, the population genomic analyses are comprehensive and the case study investigations are convincing. The full data set (including phylogenetic tree, annotated with source, lineage and virulence factor information) are publicly available in interactive form via the MicroReact platform.
Weaknesses:
The NMEC collection described in the study includes isolates from just seven countries. The majority (n=51/58, 88%) are from high-income countries in Europe, Australia or North America; the rest are from Cambodia (n=7, 12%). Therefore it is not clear how well the results reflect the global diversity of NMEC, nor the populations of NMEC affecting the most populous regions.
The virulence factors section highlights several potentially interesting genes that are present at apparently high frequency in the NMEC genomes; however without knowing their frequency in the broader E. coli population it is hard to know the significance of this.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #1 (Public Review):
Ye et al. used Mendelian randomization method to evaluate the causative association between circulating immune cells and periodontitis, and finally screened out three risk immune cells related to periodontitis. Overall, this is an important and novel piece of work that has the potential to contribute to our understanding of the causal relationship between circulating immune cells related to periodontitis.
-